Parallel Engineering and Scientific Subroutine Library for AIX
$\overline{\overline{\underline{E}} \overline{\overline{E x}}} \overline{\overline{\underline{E}}}$
$\overline{=}$

Guide and Reference

Parallel Engineering and Scientific Subroutine Library for AIX
$\overline{\overline{\underline{E}} \overline{\overline{E x}}} \overline{\overline{\underline{E}}}$
$\overline{=}$

Guide and Reference

Notes!

- Special notices are included in "Special Notices" on page xiii.
- For a summary of changes for Parallel ESSL Version 2 Release 1.1, see page xxv.

| Second Edition (November 1998)

| This edition applies to Version 2 Release 1.1 of the IBM* Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for
| Advanced Interactive Executive (AIX*) licensed program, program number 5765-C41 and all subsequent releases and modifications until otherwise indicated by new editions. Significant changes or additions to the text and illustrations are marked by a vertical line (|) to the left of the change.

Changes are periodically made to the information herein.
Order IBM publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America
FAX: (United States and Canada): 914+432-9405
FAX: (Other countries): Your international Access Code $+1+914-432-9405$
BMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.rs6000.ibm.com
If you would like a reply, be sure to include your name, address, telephone number, or FAX number.
Make sure to include the following in your comment or note:

- Title and order number of this book
- Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 1998. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Looking for a Subroutine? xi
Special Notices xiii
Trademarks xiii
Programming Interfaces xiv
About This Book xv
How to Use This Book xV
How to Find a Subroutine Description xvi
Where to Find Related Publications xvii
How to Look Up a Bibliography Reference xvii
Special Terms xvii
How to Interpret Product Names Used in This Document xix
Abbreviated Names xix
Fonts xX
Scalar Data Notations xX
Special Characters, Symbols, Expressions, and Abbreviations xx
Interpreting the Subroutine Descriptions xxii
Syntax xxii
On Entry xxiii
On Return xxiii
Notes and Coding Rules xxiii
Error Conditions xxiii
Example xxiii
What's New For Parallel ESSL xxv
What's New for Parallel ESSL Version 2 Release 1.1 $x x v$
Changes for Parallel ESSL Version 2.1 xxv
Changes for Parallel ESSL Release 2.1 for AIX xxvi
Changes for Parallel ESSL Release 2.0 for AIX xxvi
Changes for Parallel ESSL Release 1 for AIX xxvii
In Brief—What's Provided in Parallel ESSL xxix
Part 1. Guide Information 1
Chapter 1. Overview, Requirements, and List of Subroutines 3
Overview of Parallel ESSL 3
How Parallel ESSL Works under the Parallel Environment (PE) 3
Accuracy of the Computations 5
The Fortran Language Interface to the Message Passing Subroutines 5
Hardware and Software Products That Can Be Used with Parallel ESSL 6
Parallel ESSL—Hardware 6
Parallel ESSL—System Software 6
Parallel ESSL—Software Products 6
Thread Safety 7
Installation and Customization 8
Software Products for Displaying Parallel ESSL Online Information 8
Parallel ESSL—PostScript File 8
ESSL Internet Resources 8
Obtaining Documentation 8
Accessing ESSL's Home Pages 9
Getting on the ESSL Mailing List 9
BLACS—Usage in Parallel ESSL for Communication 9
List of Parallel ESSL Subroutines (Message Passing and HPF) 10
Level 2 PBLAS 10
Level 3 PBLAS 11
Linear Algebraic Equations 12
Eigensystem Analysis and Singular Value Analysis 14
Fourier Transforms 15
Random Number Generation 15
Utilities 16
Chapter 2. Distributing Your Data 17
Concepts 17
About Global Data Structures 17
About Process Grids 17
What to Do in Your Program 18
Block, Cyclic, and Block-Cyclic Data Distributions 19
Specifying and Distributing Data in a Message Passing Program 23
Specifying Block-Cyclically-Distributed Vectors and Matrices 24
Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations 26
Distributing Data Structures 31
Vectors 31
Matrices 40
Specifying Sparse Matrices for the Fortran 90 and Fortran 77 Sparse Linear Algebraic Equations 60
Specifying Sequences for the Fourier Transforms 66
Distributing Data in an HPF Program 79
Vectors 79
Matrices 80
Sequences (Fourier Transform) 81
Chapter 3. Coding and Running Your Program 83
Coding Tips for Optimizing Parallel Performance 83
Choosing a Parallel ESSL Library 83
XL HPF and Parallel ESSL 84
Parallel ESSL Techniques 84
Avoiding Conflicts with Parallel ESSL and ESSL for AIX Routine Names 86
Coding Your Message Passing Program 86
Initializing the BLACS 87
Using Extrinsic Procedures-The Fortran 90 Sparse Linear Algebraic Equation Subroutines 95
Setting Up the Parallel ESSL Header File for C and C++ 95
Application Program Outline 96
Application Program Outline for the Fortran 90 Sparse Linear Algebraic Equations and Their Utilities 97
Application Program Outline for the Fortran 77 Sparse Linear Algebraic Equations and Their Utilities 99
Running Your Message Passing Program 100
Dynamic Linking Versus Static Linking 101
Fortran Program Procedures 101
C Program Procedures 102
C++ Program Procedures 103
Coding Your HPF Program 105
Coding the Calling Sequences 105
Coding the Directives for Distributing Your Data 107
Sample HPF Programs 107
Running Your HPF Program 109
Dynamic Linking Versus Static Linking 109
HPF Program Procedures 110
Chapter 4. Migrating Your Programs 113
Migrating to Parallel ESSL Version 2 Release 1.1 113
Migrating to Parallel ESSL Version 2.1 113
Array Descriptor Considerations 113
Type-1 Array Descriptor 114
Type-501 and -502 Array Descriptors 114
Future Migration Considerations for Array Descriptors 114
Migrating from ScaLAPACK 1.5 to Parallel ESSL Version 2.1 114
Chapter 5. Using Error Handling 115
Where to Find More Information About Errors 115
Getting Help from IBM Support 115
National Language Support 116
PESSL_ERROR_SYNC Environment Variable 117
Dealing with Errors 117
Program Exceptions 117
Input-Argument Errors 117
Computational Errors 119
Resource Errors 120
Communication Errors 120
Informational and Attention Messages 121
Miscellaneous Errors 121
ESSL for AIX Error Messages 121
MPI Error Messages 121
Messages 121
Message Conventions 121
Input-Argument Error Messages (001-299) 122
Computational Error Messages (300-399) 149
Resource Error Messages (400-499) 151
Communication Error Messages (500-599) 151
Informational and Attention Messages (600-699) 152
Miscellaneous Error Messages (700-799) 153
Input-Argument Error Messages (800-999) 154
Part 2. Reference Information (Message Passing) 159
Chapter 6. Level 2 PBLAS (Message Passing) 161
Overview of the Level 2 PBLAS Subroutines 161
Level 2 PBLAS Subroutines 162
PDGEMV—Matrix-Vector Product for a General Matrix or Its Transpose 163
PDSYMV-Matrix-Vector Product for a Real Symmetric Matrix 181
PDGER—Rank-One Update of a General Matrix 193
PDSYR—Rank-One Update of a Real Symmetric Matrix 205
PDSYR2—Rank-Two Update of a Real Symmetric Matrix 215
PDTRMV—Matrix-Vector Product for a Triangular Matrix or Its Transpose 228
PDTRSV—Solution of Triangular System of Equations with a Single Right-Hand Side 239
Chapter 7. Level 3 PBLAS (Message Passing) 249
Overview of the Level 3 PBLAS Subroutines 249
Level 3 PBLAS Subroutines 250
PDGEMM and PZGEMM—Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate Transpose 251
PDSYMM—Matrix-Matrix Product Where One Matrix is Real Symmetric 269
PDTRMM—Triangular Matrix-Matrix Product 284
PDTRSM—Solution of Triangular System of Equations with Multiple Right-Hand Sides 294
PDSYRK—Rank-K Update of a Real Symmetric Matrix 305
PDSYR2K—Rank-2K Update of a Real Symmetric Matrix 316
PDTRAN—Matrix Transpose for a General Matrix 331
Chapter 8. Linear Algebraic Equations (Message Passing) 341
Overview of the Dense Linear Algebraic Equation Subroutines 341
Overview of the Banded Linear Algebraic Equation Subroutines 341
Overview of the Fortran 90 Sparse Linear Algebraic Equation Subroutines 342
Overview of the Fortran 77 Sparse Linear Algebraic Equation Subroutines 342
Dense Linear Algebraic Equation Subroutines 344
PDGETRF and PZGETRF-General Matrix Factorization 345
PDGETRS and PZGETRS-General Matrix Solve 357
PDPOTRF and PZPOTRF—Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization 369
PDPOTRS and PZPOTRS—Positive Definite Real Symmetric or Complex Hermitian Matrix Solve 379
Banded Linear Algebraic Equation Subroutines 391
PDPBSV—Positive Definite Symmetric Band Matrix Factorization and Solve 392
PDPBTRF—Positive Definite Symmetric Band Matrix Factorization 405
PDPBTRS—Positive Definite Symmetric Band Matrix Solve 415
PDGTSV and PDDTSV-General Tridiagonal Matrix Factorization and Solve 427
PDGTTRF and PDDTTRF-General Tridiagonal Matrix Factorization 443
PDGTTRS and PDDTTRS—General Tridiagonal Matrix Solve 461
PDPTSV—Positive Definite Symmetric Tridiagonal Matrix Factorization and Solve 480
PDPTTRF—Positive Definite Symmetric Tridiagonal Matrix Factorization 495
PDPTTRS—Positive Definite Symmetric Tridiagonal Matrix Solve 509
Fortran 90 Sparse Linear Algebraic Equation Subroutines and Their Utility Subroutines 525
PADALL—Allocates Space for an Array Descriptor for a General Sparse Matrix 526
PSPALL—Allocates Space for a General Sparse Matrix 528
PGEALL—Allocates Space for a Dense Vector 530
PSPINS—Inserts Local Data into a General Sparse Matrix 532
PGEINS—Inserts Local Data into a Dense Vector 537
PSPASB-Assembles a General Sparse Matrix 539
PGEASB—Assembles a Dense Vector 542
PSPGPR—Preconditioner for a General Sparse Matrix 544
PSPGIS—Iterative Linear System Solver for a General Sparse Matrix 547
PGEFREE—Deallocates Space for a Dense Vector 553
PSPFREE—Deallocates Space for a General Sparse Matrix 554
PADFREE—Deallocates Space for an Array Descriptor for a General Sparse Matrix 556
Example-Using the Fortran 90 Sparse Subroutines 557
Fortran 77 Sparse Linear Algebraic Equation Subroutines and Their Utility Subroutines 565
PADINIT—Initializes an Array Descriptor for a General Sparse Matrix 566
PDSPINIT—Initializes a General Sparse Matrix 568
PDSPINS—Inserts Local Data into a General Sparse Matrix 570
PDGEINS-Inserts Local Data into a Dense Vector 575
PDSPASB—Assembles a General Sparse Matrix 578
PDGEASB—Assembles a Dense Vector 582
PDSPGPR-Preconditioner for a General Sparse Matrix 584
PDSPGIS—lterative Linear System Solver for a General Sparse Matrix 587
Example-Using the Fortran 77 Sparse Subroutines 593
Chapter 9. Eigensystem Analysis and Singular Value Analysis (Message Passing) 599
Overview of the Eigensystem Analysis and Singular Value Analysis Subroutines 599
Eigensystem Analysis and Singular Value Analysis Subroutines 600
PDSYEVX—Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix 601
PDSYTRD—Reduce a Real Symmetric Matrix to Tridiagonal Form 619
PDGEHRD—Reduce a General Matrix to Upper Hessenberg Form 630
PDGEBRD—Reduce a General Matrix to Bidiagonal Form 640
Chapter 10. Fourier Transforms (Message Passing) 653
Overview of the Fourier Transforms Subroutines 653
Acceptable Lengths for the Transforms 653
Fourier Transforms Subroutines 655
PSCFT2 and PDCFT2-Complex Fourier Transforms in Two Dimensions 656
PSRCFT2 and PDRCFT2-Real-to-Complex Fourier Transforms in Two Dimensions 663
PSCRFT2 and PDCRFT2-Complex-to-Real Fourier Transforms in Two Dimensions 669
PSCFT3 and PDCFT3-Complex Fourier Transforms in Three Dimensions 675
PSRCFT3 and PDRCFT3—Real-to-Complex Fourier Transforms in Three Dimensions 684
PSCRFT3 and PDCRFT3-Complex-to-Real Fourier Transforms in Three Dimensions 691
Chapter 11. Random Number Generation (Message Passing) 699
Overview of the Random Number Generation Subroutines 699
Random Number Generation Subroutines 700
PDURNG-Uniform Random Number Generator 701
Chapter 12. Utilities (Message Passing) 707
Overview of the Utility Subroutines 707
Utility Subroutines 708
IPESSL—Determine the Level of Parallel ESSL Installed on Your System 709
NUMROC—Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process 711
Part 3. Reference Information (HPF) 715
Chapter 13. PBLAS (HPF) 717
Overview of the PBLAS Subroutines 717
Level 2 PBLAS 717
Level 3 PBLAS 717
PBLAS Subroutines 718
GEMM-Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate Transpose 719
SYMM-Matrix-Matrix Product Where One Matrix is Real Symmetric 730
TRMM—Triangular Matrix-Matrix Product 736
TRSM—Solution of Triangular System of Equations with Multiple Right-Hand Sides 742
SYRK—Rank-K Update of a Real Symmetric Matrix 748
SYR2K—Rank-2K Update of a Real Symmetric Matrix 754
TRAN-Matrix Transpose for a General Matrix 760
Chapter 14. Linear Algebraic Equations (HPF) 763
Overview of the Dense Linear Algebraic Equation Subroutines 763
Overview of the Banded Linear Algebraic Equation Subroutines 763
Dense Linear Algebraic Equation Subroutines 765
GETRF-General Matrix Factorization 766
GETRS-General Matrix Solve 771
POTRF—Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization 776
POTRS—Positive Definite Real Symmetric or Complex Hermitian Matrix Solve 781
Banded Linear Algebraic Equation Subroutines 786
PBSV—Positive Definite Symmetric Band Matrix Factorization and Solve 787
PBTRF—Positive Definite Symmetric Band Matrix Factorization 792
PBTRS—Positive Definite Symmetric Band Matrix Solve 797
GTSV and DTSV-General Tridiagonal Matrix Factorization and Solve 802
GTTRF and DTTRF—General Tridiagonal Matrix Factorization 807
GTTRS and DTTRS-General Tridiagonal Matrix Solve 816
PTSV—Positive Definite Symmetric Tridiagonal Matrix Factorization and Solve 824
PTTRF—Positive Definite Symmetric Tridiagonal Matrix Factorization 829
PTTRS—Positive Definite Symmetric Tridiagonal Matrix Solve 835
Chapter 15. Eigensystem Analysis and Singular Value Analysis (HPF) 841
Overview of the Eigensystem Analysis and Singular Value Analysis
Subroutines 841
Eigensystem Analysis and Singular Value Analysis Subroutines 842
SYEVX—Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix 843
SYTRD—Reduce a Real Symmetric Matrix to Tridiagonal Form 854
GEHRD—Reduce a General Matrix to Upper Hessenberg Form 860
GEBRD—Reduce a General Matrix to Bidiagonal Form 865
Chapter 16. Fourier Transforms (HPF) 873
Overview of the Fourier Transforms Subroutines 873
Acceptable Lengths for the Transforms 873
Fourier Transforms Subroutines 875
FFT-Fourier Transforms in Two Dimensions 876
FFT-Fourier Transforms in Three Dimensions 884
Chapter 17. Random Number Generation (HPF) 895
Overview of the Random Number Generation Subroutine 895
Random Number Generation Subroutine 896
URNG-Uniform Random Number Generator 897
Part 4. Appendixes 901
Appendix A. BLACS Quick Reference Guide 903
BLACS Initialization Subroutines 903
BLACS Deallocating Resources Subroutines 903
BLACS Sending Subroutines 903
BLACS Receiving Subroutines 904
BLACS Global Operation Subroutines 904
BLACS Informational and Miscellaneous Subroutines 904
Data Types 904
Argument Options 905
Appendix B. Sample Programs 907
Sample Programs and Utilities Provided with Parallel ESSL 907
Sample Thermal Diffusion Programs 908
Thermal Diffusion Discussion Paper 910
Program Main (Message Passing) 914
Module Parameters (Message Passing) 920
Module Diffusion (Message Passing) 921
Module Fourier (Message Passing) 925
Module Scale (Message Passing) 933
Program Main (HPF) 944
Module Parameters (HPF) 950
Module Diffusion (HPF) 950
Module Fourier (HPF) 954
Input Data 960
Output Data 960
Sample Sparse Linear Algebraic Equations Programs 963
Fortran 90 Sample Sparse Program 964
Fortran 77 Sample Sparse Program 974
Fortran 90 Sample Sparse Program (using the Harwell-Boeing exchange format) 985
Sample PARTS Subroutine 992
The READ_MAT Subroutine 996
The MAT_DIST Subroutine 1000
The DESYM Subroutine 1004
Sample Makefiles and Run Script 1005
Makefile (Message Passing) 1005
Makefile (HPF) 1009
Run Script 1009
Glossary GLOS-1
Bibliography BIB-1
References BIB-1
Parallel ESSL Publications BIB-3
Evaluation and Planning BIB-3
Installation BIB-3
Application Programming BIB-4
Related Publications BIB-4
AIX for the IBM RS/6000 BIB-4
AIX Version 4 Release 2 for the IBM RS/6000 BIB-4
AIX Version 4 Release 3 for the IBM RS/6000 BIB-4
XL Fortran BIB-4
XL HPF BIB-4
Workstation Processors BIB-4
Parallel Environment Version 2 BIB-4
Parallel System Support Programs Version 2 BIB-5
Parallel System Support Programs Version 3 BIB-5
Index INDEX-1

Looking for a Subroutine?

DTSV... 802
DTTRF... 807
DTTRS... 816
FFT... 876, 884
GEBRD... 865
GEHRD... 860
GEMM... 719
GETRF... 766
GETRS... 771
GTSV... 802
GTTRF... 807
GTTRS... 816
IPESSL... 709
NUMROC... 711
PADALL 526
PADFREE 556
PADINIT 566
PBSV... 787
PBTRF... 792
PBTRS... 797
PDCFT2... 656
PDCFT3... 675
PDCRFT2... 669
PDCRFT3... 691
PDDTSV... 427
PDDTTRF... 443
PDDTTRS... 461
PDGEASB 582
PDGEBRD... 640
PDGEHRD... 630
PDGEINS 575
PDGEMM... 251
PDGEMV... 163
PDGER... 193
PDGETRF... 345
PDGETRS... 357
PDGTSV... 427
PDGTTRF... 443
PDGTTRS... 461
PDPBSV... 392
PDPBTRF... 405
PDPBTRS... 415

PDPOTRF... 369
PDPOTRS... 379
PDPTSV... 480
PDPTTRF... 495
PDPTTRS... 509
PDRCFT2... 663
PDRCFT3... 684
PDSPASB 578
PDSPGIS 587
PDSPGPR 584
PDSPINIT 568
PDSPINS 570
PDSYEVX... 601
PDSYMM... 269
PDSYMV... 181
PDSYR... 205
PDSYRK... 305
PDSYR2... 215
PDSYR2K... 316
PDSYTRD... 619
PDTRAN... 331
PDTRMM... 284
PDTRMV... 228
PDTRSM... 294
PDTRSV... 239
PDURNG... 701
PGEALL 530
PGEASB 542
PGEFREE 553
PGEINS 537
POTRF... 776
POTRS... 781
PSCFT2... 656
PSCFT3... 675
PSCRFT2... 669
PSCRFT3... 691
PSPALL 528
PSPASB 539
PSPFREE 554
PSPGIS 547
PSPGPR 544
PSPINS 532

PSRCFT2... 663
PSRCFT3... 684
PTSV... 824
PTTRF... 829
PTTRS... 835
PZGEMM... 251
PZGETRF... 345
PZGETRS... 357
PZPOTRF... 369
PZPOTRS... 379
SYEVX... 843
SYMM... 730
SYRK... 748
SYR2K... 754
SYTRD... 854
TRAN... 760
TRMM... 736
TRSM... 742
URNG... 897

Special Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property rights may be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road,
Poughkeepsie, NY, 12601-5400
USA
Attention: Information Request.
Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are registered trademarks, trademarks, or service marks of the IBM Corporation in the United States and/or other countries:

AIX	POWER2 Architecture
IBM	RS/6000
IBMLink	SP
PowerPC Architecture	

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service marks of others.

Programming Interfaces

This Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) Guide and Reference manual is intended to help the customer to do application programming. This manual documents General-use Programming Interface and Associated Guidance Information provided by Parallel ESSL.

General-use programming interfaces allow the customer to write programs that obtain the services of Parallel ESSL.

About This Book

The IBM Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) is a set of high-performance mathematical subroutines. This book applies to Parallel ESSL for AIX.

This book is a guide and reference manual for use in doing application programming in Fortran, C, C++, and High Performance Fortran (HPF). It includes:

- An overview of Parallel ESSL and guidance information for coding and running your program, as well as using error handling
- Reference information for coding each subroutine calling sequence

This book is meant to be used in conjunction with the ESSL Version 3 Guide and Reference. Where information is identical between Parallel ESSL and ESSL for AIX, such as matrix storage modes, this book references the appropriate section of the ESSL Version 3 Guide and Reference.

This book is written for a wide class of users: scientists, mathematicians, engineers, statisticians, computer scientists, and system programmers. It assumes a basic knowledge of mathematics, Single Program Multiple Data (SPMD) parallel processing concepts and familiarity with Fortran, C, C++, or HPF.

How to Use This Book

Front Matter consists of the Table of Contents, Special Notices, and Preface. Use these to find or interpret information in the book.

Part 1. "Guide Information" provides guidance information for using Parallel ESSL.

- Chapter 1, "Overview, Requirements, and List of Subroutines" gives an overview of Parallel ESSL and lists required hardware and software products. Read this chapter first to determine the aspects of Parallel ESSL you want to use.
- Chapter 2, "Distributing Your Data" describes how to distribute your data across processes for various types of data structures: vectors, matrices, and sequences. Use this information when designing and coding your program.
- Chapter 3, "Coding and Running Your Program" explains coding requirements for calling Parallel ESSL from Fortran, C, C++, and HPF programs, performance coding tips, and how to run your program in the Parallel Environment. Use this information when coding or running your program.
- Chapter 4, "Migrating Your Program" describes how to migrate your program to Parallel ESSL. Use this information when updating your program for a new release of Parallel ESSL or when moving from ScaLAPACK to Parallel ESSL.
- Chapter 5, "Using Error Handling" describes how to use error handling in Parallel ESSL to retrieve information about errors that occur in your program and diagnose problems. Use this information when designing and coding your program as well as diagnosing your problems.

Part 2. "Reference Information (Message Passing)" provides reference information you need to code calling sequences for the Parallel ESSL message passing subroutines. Each chapter contains an introduction and subroutine descriptions. To understand the information in the subroutine descriptions, see "Interpreting the Subroutine Descriptions" on page xxii. Use the appropriate chapter when coding your program:

- Chapter 6, "Level 2 PBLAS (Message Passing)"
- Chapter 7, "Level 3 PBLAS (Message Passing)"
- Chapter 8, "Linear Algebraic Equations (Message Passing)"
- Chapter 9, "Eigensystem Analysis and Singular Value Analysis (Message Passing)"
- Chapter 10, "Fourier Transforms (Message Passing)"
- Chapter 11, "Random Number Generation (Message Passing)"
- Chapter 12, "Utilities (Message Passing)"

Part 3. "Reference Information (HPF)" provides reference information you need to code Parallel ESSL calling sequences in an HPF program. Each chapter contains an introduction and subroutine descriptions. To understand the information in the subroutine descriptions, see "Interpreting the Subroutine Descriptions" on page xxii. Use the appropriate chapter when coding your program:

- Chapter 13, "PBLAS (HPF)"
- Chapter 14, "Linear Algebraic Equations (HPF)"
- Chapter 15, "Eigensystem Analysis and Singular Value Analysis (HPF)"
- Chapter 16, "Fourier Transforms (HPF)"
- Chapter 17, "Random Number Generation (HPF)"

Appendix A. Basic Linear Algebra Communication Subprograms (BLACS) Quick Reference Guide provides a list of calling sequences for the BLACS subroutines.

Appendix B. Sample Programs contains a sample message passing Fortran 90 and a sample HPF application program, both using Parallel ESSL. It also contains sample message passing application programs using the Fortran 90 and Fortran 77 sparse linear algebraic equation subroutines.

Glossary contains definitions of terms used in this book.
Bibliography provides information about publications related to Parallel ESSL. Use it to identify and order publications with supporting information.

How to Find a Subroutine Description

If you want to locate a subroutine description and you know the subroutine name, you can use the "Looking for a Subroutine?" on page xi, following the Table of Contents. You can also find them listed individually or under the entry "subroutines" in the Index.

Where to Find Related Publications

If you have a question about the SP, PSSP, or a related product, the following online information resources make it easy to find the information you are looking for:

- If you have installed the RS/6000 SP Resource Center available with Parallel System Support Programs (PSSP) Version 3 Release 1 or later, you can access the SP Resource Center by issuing the command:
/usr/lpp/ssp/bin/resource_center
If you have the SP Resource Center on CD ROM, see the readme.txt file for information on how to run it.
- Access the RS/6000 Web site at:
http://www.rs6000.ibm.com
All Parallel ESSL publications, as well as related programming and hardware publications, are listed in the bibliography. Also included is a list of math background publications you may find helpful, along with the necessary information for ordering them from independent sources. See "Bibliography" on page BIB-1.

How to Look Up a Bibliography Reference

Special references are made throughout this book to mathematical background publications and software libraries, available through IBM, publishers, or other companies. All of these are described in detail in the bibliography. A reference to one of these is made by using a number enclosed in square brackets. The number refers to the item listed under that number in the bibliography. For example, reference [1] cites the first item listed in the bibliography.

Special Terms

Standard data processing and mathematical terms are used in this book.
Terminology is generally consistent with that used for Fortran. See the Glossary for more definitions of terms used in this book.

Distribution: Used to describe the method in which global data structures are divided among processes. Reference reports may use the term decomposition to mean the same thing.

Global: Used to identify arguments that must have the same value on all processes.

Local: Used to identify arguments that may have different values on different processes.

LOCp(): For block-cyclic data distribution, $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$represents the number of rows that a process would receive if M_{-}was distributed block-cyclically over p rows of its process column.

The ScaLAPACK Users' Guide uses LOCr, which is equivalent to LOCp.
LOCq(): $\operatorname{LOCq}()$ can be used in three ways:

- For block-cyclic data distribution, LOCq(N_) represents the number of columns that a process would receive if N _ was distributed block-cyclically over q columns of its process row.
- For block-column data distribution, $\mathrm{LOCq}(n)$ represents the number of columns that a process would receive if n was distributed block over q processes.
- For block-plane data distribution, $\mathrm{LOCq}(n)$ represents the number of planes that a process would receive if n was distributed block over q processes.

The ScaLAPACK Users' Guide uses LOCc, which is equivalent to LOCq.
Optional: Indicates an argument does not have to be coded and is assigned a default value if the argument is not present.

Process: Indicates the logical CPUs identified in the process grid. Referenced reports may also use the terms processor or node to mean the same thing.

Process Grid: Indicates a way to view a parallel machine as a logical one- or two-dimensional rectangular grid.

For one-dimensional process grids, the variables p and $n p$ are used interchangeably to indicate the number of processes in a row or column of the process grid.

For two-dimensional process grids, the variables p and nprow are used interchangeably to indicate the number of rows in the process grid. The variables q and npcol are used interchangeably to indicate the number of columns in the process grid.

Referenced reports or manuals may also use the terms processor mesh, processor template, processor shape, or processor grid. These all mean the same thing.

Required: Indicates an argument must be coded in the calling sequence.

Scope: Scope can be used in two ways:

1. Refers to the portion of the parallel computer program within which the definition of an argument remains unchanged. When the scope of an argument is defined as global, the argument must have the same value on all processes. When the scope of an argument is defined as local, the argument may have different values on different processes.
2. In Appendix A on page 903, scope indicates the processes that participate in the broadcast and global operations. It can equal 'all', 'row', or 'column'.

Short and Long Precision: Because Parallel ESSL can be used with more than one programming language, the terms short precision and long precision are used in place of the Fortran terms single precision and double precision.

Subroutines and Subprograms: A subroutine is a named sequence of instructions within the Parallel ESSL library, whose execution is invoked by a call. A subroutine can be called in one or more user programs and at one or more times within each program. The Parallel ESSL subroutines are referred to as subprograms in the areas of Level 2 and 3 Parallel Basic Linear Algebra

Subprograms (PBLAS). The term subprograms is used because it is consistent with the Basica Linear Algebra Subprograms (BLAS).

How to Interpret Product Names Used in This Document

Parallel ESSL refers to the Parallel Engineering and Scientific Subroutine Library for AIX product.

ESSL refers to the Engineering and Scientific Subroutine Library for AIX product.
MPI refers to the Message Passing Interface provided by Parallel Environment (PE).

Abbreviated Names

The abbreviated names used in this book are defined below.

Short Name	Full Name
AIX	Advanced Interactive Executive
BLACS	Basic Linear Algebra Communication Subprograms
BLAS	Basic Linear Algebra Subprograms
ESSL	Engineering and Scientific Subroutine Library
FDDI	Fiber Distributed Data Interface
HPF	High Performance Fortran
HTML	Hypertext Markup Language
IP	Internet Protocol
LAPACK	Linear Algebra Package
LAPI	Low-level Application Programming Interface
MPI	Message Passing Interface
MPL	Message Passing Library
NLS	National Language Support
PE	Parallel Environment
PBLAS	Parallel Basic Linear Algebra Subprograms
POWER, PowerPC, and	RS/6000 processors
POWER2 processors	
PSSP	Parallel System Support Programs
ScaLAPACK	Scalable Linear Algebra Package
SMP	Symmetric Multi-Processing
SPMD	Single Program Multiple Data
US	User Space

Fonts

This book uses a variety of special fonts to distinguish between many mathematical and programming items. These are defined below.

Special Font	Example	Description
Italic with no subscripts	m, incx, uplo	A calling sequence argument or mathematical variable
Italic with subscripts	$x_{1}, a_{i j}, y_{k 1, k 2}$	An element of a vector, matrix, or sequence
Bold italic lowercase	$\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$	A vector or sequence
Bold italic lowercase with subscripts	$\boldsymbol{x}_{i x: i x+n-1}$	A vector, with defined bounds
Bold italic uppercase	$\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$	A matrix
Bold italic uppercase with subscripts	$\boldsymbol{A}_{\text {ia:ia+m-1, ja:ja+n-1 }}$ $\boldsymbol{X}_{i x: i x+n-1, j a: j a}$	A submatrix, with defined bounds A vector (a special form of submatrix), with defined limits
Gothic uppercase	A, B, C, AGB NPROW=2	An array A Fortran statement

Scalar Data Notations

Following are the special notations used in this book for scalar data items. These notations do not imply usage of any precision, short or long.

Data Item	Example	Description
Character item	'T'	Character(s) in single quotation marks
Logical item	.TRUE. .FALSE.	True or false logical value, as indicated
Integer data	1	Number with no decimal point
Real data	1.6	Number with a decimal point
Complex data	$(1.0,-2.9)$	Real part followed by the imaginary part

Special Characters, Symbols, Expressions, and Abbreviations

The mathematical and programming notations used in this book are consistent with traditional mathematical and programming usage. These conventions are explained below, along with special abbreviations that are associated with specific values.

Item	Description
Greek letters: $\alpha, \sigma, \omega, \Omega$	Symbolic scalar values
$\|a\|$	The absolute value of a
$\boldsymbol{a} \bullet \boldsymbol{b}$	The dot product of \boldsymbol{a} and \boldsymbol{b}
x_{i}	The i-th element of vector \boldsymbol{x}
$c_{i j}$	The element in matrix \boldsymbol{C} at row i and column j

Item	Description
$x_{1} \ldots x_{n}$	Elements from x_{1} to x_{n}
$i=1, n$	i is assigned the values 1 to n
$\boldsymbol{y} \leftarrow x$	Vector \boldsymbol{y} is replaced by vector \boldsymbol{x}
$\boldsymbol{x} \boldsymbol{y}$	Vector \boldsymbol{x} times vector \boldsymbol{y}
a^{k}	a raised to the k power
e^{x}	Exponential function of x
$\boldsymbol{A}^{\top} ; \boldsymbol{x}^{\top}$	The transpose of matrix \boldsymbol{A}; the transpose of vector \boldsymbol{x}
$\overline{\boldsymbol{x}} ; \overline{\boldsymbol{A}}$	The complex conjugate of vector \boldsymbol{x}; the complex conjugate of matrix \boldsymbol{A}
$\bar{x}_{i} ; \bar{c}_{j k}$	The complex conjugate of the complex vector element x_{i}, where: $\begin{aligned} & \text { if } x_{i}=\left(a_{i}, b_{i}\right), \\ & \text { then } \bar{x}_{i}=\left(a_{i},-b_{i}\right) \end{aligned}$ The complex conjugate of the complex matrix element $c_{j k}$
$\boldsymbol{x}^{\mathrm{H}} ; \boldsymbol{A}^{\mathrm{H}}$	The complex conjugate transpose of vector \boldsymbol{x}; the complex conjugate transpose of matrix \boldsymbol{A}
1	Identity matrix
$\sum_{i=1}^{n} x_{i}$	The sum of elements x_{1} to x_{n}
$\sqrt{a+b}$	The square root of $a+b$
A^{-1}	The inverse of matrix \boldsymbol{A}
$\boldsymbol{A}^{- \text {- }}$	The transpose of \boldsymbol{A} inverse
$\|\boldsymbol{A}\|$	The determinant of matrix \boldsymbol{A}
m by n matrix \boldsymbol{A}	Matrix \boldsymbol{A} has m rows and n columns
$\sin a$	The sine of a
$\cos b$	The cosine of b
SIGN (a)	The sign of a; the result is either + or -
address \{a\}	The storage address of a
size(a, dim)	The result equals the number of elements in a along a specified dimension dim or if dim is not present the total number of array elements in a.
$\max (\boldsymbol{x})$	The maximum element in vector \boldsymbol{x}
$\min (\boldsymbol{x})$	The minimum element in vector \boldsymbol{x}
ceiling (x)	The smallest integer that is greater than or equal to x
floor (x)	The largest integer that is not greater than x
iceil (m, n)	The smallest integer that is greater than or equal to m / n; that is, iceil $(m, n)=\operatorname{ceiling}(m / n)$
$\operatorname{int}(x), x>0$	The largest integer that is less than or equal to x
$m \mapsto(p, i)$	m is mapped into (p, i)
$\bmod (x, m)$	x modulo m; the remainder when x is divided by m

Item	Description
∞	Infinity
π	$\mathrm{Pi}, 3.14159265$

Interpreting the Subroutine Descriptions

This section explains how to interpret the information in the subroutine descriptions in Part 2 and 3 of this book. Each subroutine description explains the function(s) performed by the subroutine(s). It provides a data types table, showing how the data differs for each subroutine. It also contains sections that are described below.

Syntax

This section shows the syntax for the Fortran, C, C++, and HPF calling statements.

Fortran, C, and C++ Syntax

This section shows the syntax for the Fortran, C, and C++ calling statements.

Fortran	CALL NAME-1 \| NAME-2 $\|\ldots\|$ NAME-n $(\arg -1, \arg -2, \ldots$, arg-m)	
\mathbf{C} and \mathbf{C}_{++}	name-1 \| name-2	$\ldots \mid$ name-n $(\arg -1, \ldots, \arg -m) ;$

The syntax indicates:

- The programming language (Fortran, C, or C++)
- Each possible subroutine name that you can code in the calling sequence. Each name is separated by the | (or) symbol. You specify only one of these names in your calling sequence. (You do not code the | in the calling sequence.)
- The arguments, listed in the order in which you code them in the calling sequence. You must code them all in your calling sequence.

You can distinguish between input arguments and output arguments by looking at the "On Entry" and "On Return" sections, respectively. An argument used for both input and output is described in both the "On Entry" and "On Return" sections. In this case, the input value for the argument is overlaid with the output value.

Fortran 90 or HPF Syntax

This shows the syntax for the Fortran 90 and HPF calling statements.

Fortran 90 or HPF	Equations or Cases	CALL NAME (req-1, \ldots, req-m $)$ CALL NAME (req-1, \ldots, req-m, opt-1, \ldots, opt-1)

The syntax indicates:

- The programming language (Fortran 90 or HPF)
- The mathematical equations or subroutines associated with a calling sequence (HPF only)
- The Parallel ESSL subroutine name, which is a generic name for one or more functions.
- The arguments in the calling sequence.

The first calling sequence shows the arguments required when coding your program. The second calling sequence shows all the arguments, required and optional. The subroutine assigns a default value for any optional argument that is not present.
You can distinguish between input arguments and output arguments by looking at the "On Entry" and "On Return" sections, respectively. An argument used for both input and output is described in both the "On Entry" and "On Return" sections. In this case, the input value for the argument is overlaid with the output value.

On Entry

On Return

This lists the input arguments, which are the arguments you pass to the subroutine. Each argument description first gives the meaning of the argument, and then gives the form of data required for the argument. (To help you avoid errors, output arguments are included, with a reference to the On Return section.)

This lists the output arguments, which are the arguments passed back to your program from the subroutine. Each argument description first gives the meaning of the argument, and then gives the form of data passed back to your program for the argument.

Notes and Coding Rules

The notes describe any programming considerations and restrictions that apply to the arguments or the data for the arguments. There may be references to other parts of the book for further information.

Error Conditions

These are all the Parallel ESSL run-time errors that can occur in the subroutine. They are organized under the headings, "Computational Errors," "Input Argument Errors," "Resource Errors," "Communications Errors," and "Miscellaneous Errors."

Example

The two reference sections in this book contain different types of examples.

Fortran Examples

The examples in Part 2 of this book show how you would call the subroutine in a Fortran program. Each example includes:

- A description of the salient features of the example
- The calling sequence, coded in Fortran
- The input and output data distributed across a process grid

HPF Examples

The examples in Part 3 of this book show how you would call the subroutine in an HPF program. Each example includes:

- A description of the salient features of the example
- The data directives
- One or more ways to code the calling sequence
- The input and output data

What's New For Parallel ESSL

This section summarizes the changes made to each release of Parallel ESSL.

What's New for Parallel ESSL Version 2 Release 1.1

Parallel ESSL for AIX provides distinct libraries for AIX 4.2.1 and AIX 4.3.2:

- The AIX 4.2.1 ParalleI ESSL Thread-Tolerant POWER2 Library and the ParalleI ESSL SMP Library were built using the pthreads draft 7 library supplied on AIX 4.2.1. This is the same as Parallel ESSL 2.1.
- The AIX 4.3.2 Parallel ESSL Thread-Tolerant POWER2 Library and the Parallel ESSL SMP Library were built using the pthreads library that conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.

Changes for Parallel ESSL Version 2.1

- Parallel ESSL provides two new run-time libraries:
- The Parallel ESSL SMP Library is provided for use with the Parallel ESSL message passing subroutines and the PE MPI threaded library. You may run single or multithreaded applications on all types of nodes. However, you cannot simultaneously call Parallel ESSL from multiple threads. Use this library if you are using both Parallel Environment (PE) Message Passing Interface (MPI) and the Communications Low-level Application Programming Interface (LAPI). The SMP library is for use on RS/6000* POWER* and PowerPC* (for example, 604 or 604e High Nodes) processors.
- The Parallel ESSL Thread-Tolerant POWER2 Library is provided for use with the Parallel ESSL message passing subroutines and the PE MPI threaded library. You may run single or multithreaded applications on POWER2 nodes. However, you cannot simultaneously call Parallel ESSL from multiple threads. Use this library if you are using both PE MPI and LAPI. The Thread-Tolerant POWER2 library is tuned for the RS/6000 POWER2* processors.
- The Linear Algebraic Equations Subroutines now include iterative solutions to linear systems of equations for real general sparse matrices.
- The Fourier Transforms subroutines have had the transform length restriction removed. The transform lengths in each direction no longer need to be divisible by the number of processes.
- Parallel ESSL supports an environment variable, PESSL_ERROR_SYNC, which allows you to disable error synchronization. This may improve performance of production level codes.
- Format of array descriptors

Migration Note

If you are using the Message Passing Level 2 or 3 PBLAS, Linear Algebraic Equations, or the Eigensystem Analysis and Singular Value Analysis subroutines, you must now use the array descriptors defined in Chapter 4 on page 113 for your programs to continue to run with Parallel ESSL Version 2.

The format of the array descriptors was changed in Parallel ESSL Version 1.2.1 to maintain compatibility with ScaLAPACK. Therefore, all application programs previously migrated to accommodate the new array descriptor, can run unchanged with Parallel ESSL Version 2.1 However, if you were dependent upon the PESSL_DESC_TYPE environment variable, you must change the array descriptors as defined in Chapter 4 on page 113. If you do not change the array descriptors, Parallel ESSL Version 2.1 issues an error message and terminates your program.

- The files for the Hypertext Markup Language (HTML) version of the Parallel ESSL Version 2 Guide and Reference are packaged with the Parallel ESSL product.

Changes for Parallel ESSL Release 2.1 for AIX

- The format of the array descriptors has been changed in Parallel ESSL Release 2.1 to maintain compatibility with ScaLAPACK 1.2. Therefore, you must either change the way you code array descriptors in your existing application programs, or set and export the PESSL_DESC_TYPE environment variable. If you do not change the array descriptors or use the environment variable, Parallel ESSL Release 2.1 issues an error message and terminates your program.
For more information on the new format for array descriptors, see Chapter 4 on page 113.
- The Banded Linear Algebraic Equations subroutines now include solutions to linear systems of equations for real positive definite symmetric tridiagonal matrices.

Changes for Parallel ESSL Release $\mathbf{2 . 0}$ for AIX

- Parallel ESSL Release 2.0 provides a new set of subroutines that are callable from application programs written in High Performance Fortran (HPF). The HPF subroutines covers the same range of mathematical function that the message passing subroutines cover.
- The Dense Linear Algebraic Equations subroutines now include solutions to linear systems of equations for complex general and complex Hermitian matrices.
- The Banded Linear Algebraic Equations subroutines now include solutions to linear systems of equations for real positive definite symmetric band matrices, real general tridiagonal matrices, and diagonally-dominant real general tridiagonal matrices.
- New short-precision versions for the Fourier transforms subroutines are provided in the product package.
- Parallel ESSL Release 2.0 supports clusters of IBM RS/6000* workstations.

Changes for Parallel ESSL Release 1 for AIX

- Parallel ESSL Release 1 for AIX uses the Parallel Environment (PE) Message Passing Interface (MPI) for communication.
- An InfoExplorer version of the Parallel ESSL Version 2 Guide and Reference manual is provided with the product package.
- Sample programs are provided with the product package.

In Brief-What's Provided in Parallel ESSL

IBM Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for AIX has the following characteristics:

- Parallel ESSL provides these run-time libraries:
- The Parallel ESSL SMP Library is provided for use with the Parallel ESSL message passing subroutines and the PE MPI threaded library. You may run single or multithreaded applications on all types of nodes. However, you cannot simultaneously call Parallel ESSL from multiple threads. Use this Parallel ESSL library if you are using both PE MPI and LAPI. The SMP library is for use on the RS/6000 POWER and PowerPC (for example, 604 or 604 e High Nodes) processors.
- The Parallel ESSL Thread-Tolerant POWER2 Library is provided for use with the Parallel ESSL message passing subroutines and the PE MPI threaded library. You may run single or multithreaded applications on POWER2 nodes. However, you cannot simultaneously call Parallel ESSL from multiple threads. Use this library if you are using both PE MPI and LAPI. The Thread-Tolerant POWER2 library is tuned for the RS/6000 POWER2 processors.
- The Parallel ESSL POWER Libraries are provided for use with the Parallel ESSL message-passing and HPF subroutines, and the MPI signal handling library. The POWER libraries are tuned for the RS/6000 POWER and PowerPC processors.
- The Parallel ESSL POWER2 Libraries are provided for use with the Parallel ESSL message-passing and HPF subroutines, and the MPI signal handling library. The POWER2 libraries are tuned for the RS/6000 POWER2 processors.
- Parallel processing subroutines (distributed memory versions) provided in key math areas:
- Subset of Level 2 and Level 3 Parallel BLAS (PBLAS)
- Linear Algebraic Equations
- Subset of ScaLAPACK (dense and banded)
- Sparse subroutines and their utilities
- Subset of ScaLAPACK Eigensystem Analysis and Singular Value Analysis
- Fourier transforms
- Uniform random number generation

For a list of subroutines, refer to "Looking for a Subroutine?" on page xi.

- Supports the IBM RS/6000 SP and clusters of RS/6000 workstations
- Includes the Basic Linear Algebra Communication Subprograms (BLACS) which provides ease of use for message passing.
- Supports the SPMD programming model:
- Uses the ESSL subroutines for computations on each processor node
- Uses the MPI signal handling or threaded library for communication:
- US—High Performance Switch, SP Switch
- IP—Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI), High Performance Switch, SP Switch
- Callable from application programs written in Fortran, C, C++, and HPF.

Part 1. Guide Information

This part of the book is organized into five chapters, providing guidance information on how to use Parallel ESSL. It is organized as follows:

- Overview, Requirements, and List of Subroutines
- Distributing Your Data
- Coding and Running Your Program
- Migrating Your Program
- Using Error Handling

Chapter 1. Overview, Requirements, and List of Subroutines

This chapter introduces you to IBM* Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for Advanced Interactive Executive (AIX*) products.

Overview of Parallel ESSL

Parallel ESSL is a scalable mathematical subroutine library that supports parallel processing applications on IBM RS/6000* SP* Systems and clusters of IBM RS/6000 workstations. Parallel ESSL supports the Single Program Multiple Data (SPMD) programming model using either the Message Passing Interface (MPI) signal handling library or the MPI threaded library. Parallel ESSL provides subroutines in six major areas of mathematical computations.

Parallel ESSL provides subroutines in the following computational areas:

- Level 2 Parallel Basic Linear Algebra Subprograms (PBLAS)
- Level 3 PBLAS
- Linear Algebraic Equations
- Eigensystem Analysis and Singular Value Analysis
- Fourier Transforms
- Random Number Generation

The subroutines run under the AIX operating system and can be called from application programs written in Fortran, C, C++, and High Performance Fortran (HPF). On the SP, Parallel System Support Programs (PSSP) is also required.

For communication, Parallel ESSL includes the Basic Linear Algebra Communications Subprograms (BLACS), which use the Parallel Environment (PE) Message Passing Interface (MPI). Communications using the User Space (US) require either the High Performance Switch or SP Switch. Communications using the Internet Protocol (IP) may use Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI), High Performance Switch or SP Switch. For computations, Parallel ESSL uses the ESSL for AIX subroutines.

To order the IBM Parallel ESSL for AIX, specify program number 5765-C41.

How Parallel ESSL Works under the Parallel Environment (PE)

Parallel ESSL uses PE for communication during parallel processing, supporting the SPMD programming model, running on the SP or workstation clusters. In other words, your application program must be using PE if you want to call Parallel ESSL subroutines.

The RS/6000 processors are called processor nodes. A parallel program, such as yours with calls to the Parallel ESSL subroutines, executes as a number of individual, but related, parallel tasks on a number of your system's processor nodes. The group of parallel tasks is called a partition. The parallel tasks of your partition can communicate to exchange data or synchronize execution.

Your SP may have an optional high-performance switch for communication. The switch increases the speed of communication between nodes. It supports a high volume of message passing with increased bandwidth and low latency. This helps
your application program, as well as the Parallel ESSL subroutines, achieve maximum performance.

Parallel ESSL assumes that the application program is using the SPMD

 programming model, where the programs running the parallel tasks of your partition are identical. The tasks, however, work on different sets of data.
Parallel ESSL Message Passing Subroutines

The following sections describe how to use the Message Passing subroutines supplied in Parallel ESSL.

Coding Your Program: The application developer begins by creating a parallel program's source code, including calls to the Parallel ESSL subroutines. The application developer might create this program from scratch and then places calls to BLACS or MPI or MPL routines so that it can run as a number of parallel tasks. These calls enable the parallel processes of your partition to communicate data and coordinate their execution. As part of each parallel process, the Parallel ESSL subroutines also perform these types of functions.

Details on what other specific coding additions are required when using Parallel ESSL are given in Chapter 3 on page 83.

Distributing Your Data: Your global data structures (vectors, matrices, or sequences) must be distributed across your processes prior to calling the Parallel ESSL subroutines.

Because data is distributed for both input and output, no implicit bottleneck is created by an initial scatter or ending gather operation. Parallel ESSL works in true SPMD mode, where each process operates only on a portion of the data. Also, the input and output data may be too large to collectively reside on a single node; therefore, problems associated with the storage limitations of a single processor node are eased by performing the computation in actual SPMD fashion.

See Chapter 2 on page 17 for details on distributing your data.
Running and Testing: After writing the parallel application program containing calls to the Parallel ESSL subroutines, the developer then begins a cycle of modification and testing. The application program is run using the Parallel Operating Environment (POE). The POE includes a number of compiler scripts, environment variables, and command-line flags, which may be used to set up your PE execution environment. (For example, before you execute a program, you need to set the size of your partition-the number of parallel tasks-by setting the appropriate environment variables or their command-line flags.) You can use all of these capabilities of POE with Parallel ESSL.

Tuning for Performance: Once the parallel program is debugged, you now want to tune the program for optimal performance. This is an important step of the process, because performance is the key reason for using the Parallel ESSL subroutines. To tune and analyze programs with calls to the Parallel ESSL subroutines, you may wish to use the tools provided by PE. For details, see the PE manuals listed in "Parallel Environment Version 2" on page BIB-4.

Parallel ESSL HPF Subroutines

XL HPF provides an easy way to develop parallel software with the SPMD programming model on your SP or cluster configuration. The XL HPF compiler, guided by XL HPF directives in your source code, handles the distribution of data and communication on multiple processes. There are three steps involved in getting a Fortran program ready to run in a parallel environment:

- Specify how many physical processors are required to run the program or let the compiler perform this function for you. It is to this arrangement, either physical or abstract, that the data is mapped.
- Align the data. Determine which data elements interact at runtime and designate that those elements be grouped to ensure they are assigned to the same process.
- Distribute the data. The aligned data is allocated to the processes specified in the process grid.

These three steps are accomplished using XL HPF directives. To parallelize your Fortran program, you must do the following:

- Analyze your data and algorithm
- Direct the data to different processes, using XL HPF directives

Parallel Environment is required to compile and run Parallel ESSL HPF programs.
For more details about the XL HPF language, see the XL HPF manuals. For more information on distributing your data, see Chapter 2 on page 17. For more information on coding your program, see Chapter 3 on page 83.

Where to Find Information on PE

For further details on PE and its various capabilities, see the PE manuals listed in "Parallel Environment Version 2" on page BIB-4. For more information about MPI, see references [38] and [46].

Accuracy of the Computations

Parallel ESSL provides accuracy comparable to libraries using equivalent algorithms with identical precision formats. The data types operated on are RS/6000 architecture precisions: ANSI/IEEE 64-bit binary floating-point format, and 32-bit integer. See the ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for more detail.

The Fortran Language Interface to the Message Passing Subroutines

The Parallel ESSL subroutines follow standard Fortran calling conventions. When Parallel ESSL subroutines are called from a program in a language other than Fortran, such as C or C++, the Fortran conventions must be used. This applies to all aspects of the interface, such as the linkage conventions and the data conventions. For example, array ordering must be consistent with Fortran array ordering techniques. Data and linkage conventions for each language are given in the ESSL Version 3 Guide and Reference.

Hardware and Software Products That Can Be Used with Parallel ESSL

This section describes the hardware and software products you can use with Parallel ESSL.

Parallel ESSL—Hardware

Parallel ESSL runs on the IBM RS/6000 SP and clusters of RS/6000 workstations supported by the operating systems listed under "Parallel ESSL—System Software."

Parallel ESSL—System Software

Parallel ESSL for AIX is supported in the following operating system environments:

- AIX Version 4.2.1 or later modification levels of AIX Version 4.2 (program number 5765-655 or 5765-C34)
On the SP, you also need the following along with AIX:
- Parallel System Support Programs (PSSP) for AIX, Version 2.3 or later modification levels (program number 5765-529)
- Any additional AIX 4.2.1 PTFs required for running on the SP
- AIX Version 4.3.2 or later modification levels of AIX Version 4.3 (program number 5765-C34)
On the SP, you also need the following along with AIX:
- PSSP for AIX, Version 3.1 or later modification levels (program number 5765-D51)
- Any additional AIX 4.3.2 PTFs required for running on the SP

Parallel ESSL—Software Products

Parallel ESSL for AIX requires the software products shown in Table 1 on page 7 for compiling and running.

ESSL for AIX must be ordered separately.
To assist C and C++ users, a header file is provided with the Parallel ESSL product. Use of this file is described in "Running Your Message Passing Program" on page 100 .

To assist Fortran 90 sparse linear algebraic equation users, a module file is provided with the Parallel ESSL product. Use of this file is described in "Using Extrinsic Procedures-The Fortran 90 Sparse Linear Algebraic Equation Subroutines" on page 95.

To assist HPF users, a module file is provided with the Parallel ESSL product. Use of this file is described in "Using Extrinsic Procedures-The Parallel ESSL Subroutines" on page 105.

Table 1. Software Products Required for Use with Parallel ESSL

For Compiling	For Linking, Loading, or Running
XL Fortran for AIX, Version 5.1.1 or later (program number 5808-AAR part number 04L2110) -or- IBM C, C++ compilers Version 3.6.41 -or- C for AIX, Version 4.3 or later (program number 5765-AAR with part number 04L0675 with feature 2163)	XL Fortran Run-time Environment for AIX, Version 5.1.1 or later (program number 5808-AAR part number 04L2123) -or- XL High Performance Fortran Run-time Environment for AIX, Version 1.3.1 or later (program number 5765-612) -and- Parallel Environment for AIX, Version 2.4 or later (program number 5765-543) on AIX 4.3.2 -or- Parallel Environment for AIX, Version 2.3 (program number 5765-543 and APAR IX72055) on AIX 4.2.1 -and- ESSL for AIX, Version 3.1.1 (program number 5765-C42) -and- C libraries ${ }^{2}$
XL High Performance Fortran for AIX, Version 1.3.1 or later (program number 5765-613)3,4	XL High Performance Fortran Run-Time Environment for AIX, Version 1.3.1 or later (program number 5765-612) ${ }^{1}$-and- Parallel Environment for AIX, Version 2.4 or later (program number 5765-543) on AIX 4.3.2 -or- Parallel Environment for AIX, Version 2.3 (program number 5765-543 and APAR IX72055) on AIX 4.2.1 -and- ESSL for AIX, Version 3.1.1 (program number 5765-C42) -and- C libraries ${ }^{2}$
${ }^{1}$ Available as a component of the VisualAge C++ Professional for AIX, Version 4, product. If using Parallel Environment 2.3 commands to compile with C++ Version 3.6, PE requires APAR IX76163. 2 AIX includes the C libraries and math libraries in the Application Development Toolkit. 3 XL HPF for AIX is only needed when you call Parallel ESSL HPF subroutines. 4 If using Parallel Environment 2.3 commands to compile non-HPF programs with XL HPF, PE requires APAR IX80634.	

Thread Safety

Parallel ESSL is not thread safe; however, Parallel ESSL is thread-tolerant and can therefore be called from a single thread of a multithreaded application. Multiple simultaneous calls to Parallel ESSL from different threads of a single process causes unpredictable results.

For more information on Thread Programming Concepts, see IBM AIX Version 4 General Programming Concepts: Writing and Debugging Programs.

Installation and Customization

Parallel ESSL is distributed on an 4-millimeter cartridge or a 8-millimeter cartridge. The Parallel ESSL Installation Memo provides the detailed information you need to install Parallel ESSL on AIX.

The Parallel ESSL product is packaged in accordance with the AIX guidelines. The product can be installed using the smit command, as described in the IBM Parallel System Support Programs for AIX: Administration Guide. The product can be installed on multiple nodes using the dsh command, as described in the IBM Parallel System Support Programs for AIX: Administration Guide and the installp command, as described in the IBM AIX Version 4 Commands Reference.

Software Products for Displaying Parallel ESSL Online Information

The Parellel ESSL Version 2 Guide and Reference is available in PostScript and HTML on the product media.

To view the online publications shipped on the product media, you need the following:

- Access to a common HTML document browser (such as Netscape Navigator).
- The location of the HTML index file provided with the file sets. Contact your system administrator or installer for this location.

Parallel ESSL—PostScript File

A PostScript file for the Parallel ESSL Version 2 Guide and Reference is provided with Parallel ESSL on the product medium. You can print it on your PostScript printer without any special setup, using whatever printing procedures you normally use for PostScript files. Duplex printing is suggested, due to the size of the book.

ESSL Internet Resources

This section describes how you can use the ESSL resources available over the Internet.

Obtaining Documentation

The Parallel ESSL Guide and Reference Version 2 Release 1.1 is available in PDF and HTML format at the IBM RS/6000 Web site at:
http://www.rs6000.ibm.com
To view the Parallel ESSL PDF publication, you need to access the Adobe Acrobat Reader 3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely available for downloading from th Adobe Web site at:
http://www.adobe.com

Accessing ESSL's Home Pages

The following home pages contain information on Parallel ESSL and ESSL:

- For Parallel ESSL, use:
http://www.rs6000.ibm.com/software/sp_products/essIpara.html
- For ESSL for AIX, use:
http://www.rs6000.ibm.com/software/Apps/essl.html

Getting on the ESSL Mailing List

Information concerning ESSL's home pages and other home pages available for the RS/6000 family of products, plus late breaking information about ESSL, can be obtained by being placed on the ESSL mailing list. In addition, users on the mailing list will receive information about new ESSL function and may receive customer satisfaction surveys and requirements surveys, to provide feedback to ESSL Development on the product and user requirements.

You can be placed on the mailing list by sending a request to either of the following, asking to be placed on the ESSL mailing list:

```
International Business Machines Corporation
ESSL Development
Department LQJA / MS P963
522 South Rd.
Poughkeepsie, N.Y. 12601-5400
```

e-mail: essl@us.ibm.com
Note: You should send us e-mail if you would like to be withdrawn from the ESSL mailing list.

When requesting to be placed on the mailing list or asking any questions, please provide the following information:

- Your name
- The name of your company
- Your mailing address
- Your Internet address
- Your phone number

BLACS—Usage in Parallel ESSL for Communication

The Basic Linear Algebra Communication Subprograms (BLACS) provide the same ease-of-use and portability for message passing in parallel linear algebra programs as the Basic Linear Algebra Subprograms (BLAS) provide for computation in such programs. The BLACS efficiently support not only point-to-point operations between processes on a logical two-dimensional process grid, but also collective communications on such grids, or within just a grid row or column (a one-dimensional process grid).

Most communication packages, such as PE, require an address and a length to be sent; therefore, they are classified as having operations based on vectors. In programming linear algebra problems, however, it is preferable to express all operations in terms of matrices. Vectors and scalars are simply subclasses of
matrices. The BLACS operate on matrices, as defined by an address, column size, row size, leading dimension, and so forth.

Parallel ESSL includes the BLACS. Any public domain interface that calls the BLACS can be used compatibly with Parallel ESSL.

A BLACS quick reference guide can be found in Appendix A on page 903.
An example of the usage of BLACS in a message passing Fortran 90 program is shown in Appendix B on page 907.

The BLACS interface is documented in references [6], [32], and [33].

List of Parallel ESSL Subroutines (Message Passing and HPF)

This section provides an overview of the subroutines in each of the areas of Parallel ESSL.

Level 2 PBLAS

The Level 2 PBLAS include a subset of the standard set of distributed memory parallel versions of the Level 2 BLAS.

Note: The message passing subroutines were designed in accordance with the proposed Level 2 PBLAS standard. (See references [14], [15], and [17].) If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so.

The HPF subroutines were designed to be consistent with the proposals for the Fortran 90 BLAS and the Fortran 90 LAPACK. (See references [30] and [31].) If these subroutines do not comply with any eventual proposal for HPF interfaces to the PBLAS and ScaLAPACK, IBM will consider updating them to do so.

If IBM updates these subroutines, the update could require modifications of the calling application program.

Table 2 (Page 1 of 2). List of Level 2 PBLAS		
Descriptive Name	Long- Precision Subprogram	Page
Matrix-Vector Product for a General Matrix or Its Transpose	PDGEMV GEMM	163
Matrix-Vector Product for a Real Symmetric Matrix	PDSYMV	719
Rank-One Update of a General Matrix	SYMM	181
Rank-One Update of a Real Symmetric Matrix	PDGER	193
Rank-Two Update of a Real Symmetric Matrix	PDSYR	719
Matrix-Vector Product for a Triangular Matrix or Its Transpose	SYRK	205
	PDSYR2	215

Table 2 (Page 2 of 2). List of Level 2 PBLAS

Descriptive Name	Long- Precision Subprogram	Page
Solution of Triangular System of Equations with a Single Right-Hand Side	PDTRSV	294
	TRSM	742

Level 3 PBLAS

The Level 3 PBLAS include a subset of the standard set of distributed memory parallel versions of the Level 3 BLAS.

Note: The message passing subroutines were designed in accordance with the proposed Level 3 PBLAS standard. (See references [14], [15], and [17].) If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so.

The HPF subroutines were designed to be consistent with the proposals for the Fortran 90 BLAS and the Fortran 90 LAPACK. (See references [30] and [31].) If these subroutines do not comply with any eventual proposal for HPF interfaces to the PBLAS and ScaLAPACK, IBM will consider updating them to do so.

If IBM updates these subroutines, the update could require modifications of the calling application program.

Table 3. List of Level 3 PBLAS		
Descriptive Name	Long- Precision Subprogram	Page
Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate Transpose	PDGEMM PZGEMM GEMM	251
Matrix-Matrix Product Where One Matrix is Real Symmetric	PDSYMM SYMM	719
Triangular Matrix-Matrix Product	PDTRMM TRMM	269
Solution of Triangular System of Equations with Multiple Right-Hand Sides	PDTRSM TRSM	284
Rank-K Update of a Real Symmetric Matrix	PDSYRK	294
Rank-2K Update of a Real Symmetric Matrix	SYRK	305
Matrix Transpose for a General Matrix	PDSYR2K	748
	SYR2K	316

Linear Algebraic Equations

These subroutines consist of dense, banded, and sparse subroutines, and include a subset of the ScaLAPACK subroutines.
Note: The message passing dense and banded linear algebraic equations subroutines were designed in accordance with the proposed ScaLAPACK standard. (However, PDDTTRS does not support General Tridiagonal Matrix Transpose Solve. For details, see "PDGTTRS and PDDTTRS-General Tridiagonal Matrix Solve" on page 461.) See references [10], [16], [18], [27], and [28]. If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so.

The HPF dense and banded linear algebraic equations subroutines were designed to be consistent with the proposals for the Fortran 90 BLAS and the Fortran 90 LAPACK. (See references [30] and [31].) If these subroutines do not comply with any eventual proposal for HPF interfaces to the PBLAS and ScaLAPACK, IBM will consider updating them to do so.

If IBM updates these subroutines, the update could require modifications of the calling application program.

Dense Linear Algebraic Equations

The dense linear algebraic equation subroutines provide solutions to linear systems of equations for real and complex general matrices and their transposes, and for positive definite real symmetric and complex Hermitian matrices.

Table 4. List of Dense Linear Algebraic Equation Subroutines		
Descriptive Name	Long- Precision Subroutine	Page
General Matrix Factorization	PDGETRF PZGETRF GETRF	$\begin{aligned} & 345 \\ & 766 \end{aligned}$
General Matrix Solve	PDGETRS PZGETRS GETRS	$\begin{aligned} & 357 \\ & 771 \end{aligned}$
Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization	PDPOTRF PZPOTRF POTRF	$\begin{aligned} & 369 \\ & 776 \end{aligned}$
Positive Definite Real Symmetric or Complex Hermitian Matrix Solve	PDPOTRS PZPOTRS POTRS	$\begin{aligned} & 379 \\ & 781 \end{aligned}$

Banded Linear Algebraic Equations

The banded linear algebraic equation subroutines provide solutions to linear systems of equations for real positive definite symmetric band matrices, real general tridiagonal matrices, diagonally-dominant real general tridiagonal matrices, and real positive definite symmetric tridiagonal matrices.

Table 5. List of Banded Linear Algebraic Equation Subroutines

Descriptive Name	Long- Precision Subroutine	Page
Positive Definite Symmetric Band Matrix Factorization and Solve	PDPBSV PBSV	$\begin{aligned} & 392 \\ & 787 \end{aligned}$
Positive Definite Symmetric Band Matrix Factorization	PDPBTRF PBTRF	$\begin{aligned} & 405 \\ & 792 \end{aligned}$
Positive Definite Symmetric Band Matrix Solve	PDPBTRS PBTRS	$\begin{aligned} & 415 \\ & 797 \end{aligned}$
General Tridiagonal Matrix Factorization and Solve	PDGTSV GTSV	$\begin{aligned} & 427 \\ & 802 \end{aligned}$
General Tridiagonal Matrix Factorization	PDGTTRF GTTRF	$\begin{array}{r} 443 \\ 807 \\ \hline \end{array}$
General Tridiagonal Matrix Solve	PDGTTRS GTTRS	$\begin{aligned} & 461 \\ & 816 \end{aligned}$
Diagonally-Dominant General Tridiagonal Matrix Factorization and Solve	PDDTSV DTSV	$\begin{aligned} & 427 \\ & 802 \end{aligned}$
Diagonally-Dominant General Tridiagonal Matrix Factorization	PDDTTRF DTTRF	$\begin{aligned} & 443 \\ & 807 \end{aligned}$
Diagonally-Dominant General Tridiagonal Matrix Solve	PDDTTRS DTTRS	$\begin{aligned} & 461 \\ & 816 \end{aligned}$
Positive Definite Symmetric Tridiagonal Matrix Factorization and Solve	PDPTSV PTSV	$\begin{aligned} & 480 \\ & 824 \end{aligned}$
Positive Definite Symmetric Tridiagonal Matrix Factorization	PDPTTRF PTTRF	$\begin{aligned} & 495 \\ & 829 \end{aligned}$
Positive Definite Symmetric Tridiagonal Matrix Solve	PDPTTRS PTTRS	$\begin{aligned} & 509 \\ & 835 \end{aligned}$

Fortran 90 Sparse Linear Algebraic Equation Subroutines

The Fortran 90 sparse linear algebraic equation subroutines provide solutions to linear systems of equations for a real general sparse matrix. The sparse utility subroutines provided in Parallel ESSL must be used in conjunction with the sparse linear algebraic equation subroutines.

Table 6 (Page 1 of 2). List of Fortran 90 Sparse Linear Algebraic Equation Subroutines		
Descriptive Name	Long-Precision Subroutine	Page
Allocates Space for an Array Descriptor for a General Sparse Matrix	PADALL	526
Allocates Space for a General Sparse Matrix	PSPALL	528
Allocates Space for a Dense Vector	PGEALL	530
Inserts Local Data into a General Sparse Matrix	PSPINS	532
Inserts Local Data into a Dense Vector	PGEINS	537
Assembles a General Sparse Matrix	PSPASB	539
Assembles a Dense Vector	PGEASB	542
Preconditioner for a General Sparse Matrix	PSPGPR	544

Table 6 (Page 2 of 2). List of Fortran 90 Sparse Linear Algebraic Equation Subroutines

Descriptive Name	Long-Precision Subroutine	Page
Iterative Linear System Solver for a General Sparse Matrix	PSPGIS	547
Deallocates Space for a Dense Vector	PGEFREE	553
Deallocates Space for a General Sparse Matrix	PSPFREE	554
Deallocates Space for an Array Descriptor for a General Sparse Matrix	PADFREE	556

Fortran 77 Sparse Linear Algebraic Equation Subroutines

The Fortran 77 sparse linear algebraic equation subroutines provide solutions to linear systems of equations for a real general sparse matrix. The sparse utility subroutines provided in Parallel ESSL must be used in conjunction with the sparse linear algebraic equation subroutines.

Table 7. List of The Fortran 77 Sparse Linear Algebraic Equation Subroutines		
Descriptive Name	Long-Precision Subroutine	Page
Initializes an Array Descriptor for a General Sparse Matrix	PADINIT	566
Initializes a General Sparse Matrix	PDSPINIT	568
Inserts Local Data into a General Sparse Matrix	PDSPINS	570
Inserts Local Data into a Dense Vector	PDGEINS	575
Assembles a General Sparse Matrix	PDSPASB	578
Assembles a Dense Vector	PDGEASB	582
Preconditioner for a General Sparse Matrix	PDSPGPR	584
Iterative Linear System Solver for a General Sparse Matrix	PDSPGIS	587

Eigensystem Analysis and Singular Value Analysis

The eigensystem analysis and singular value analysis subroutines include a subset of the ScaLAPACK subroutines. See references [19] and [20].
Note: The message passing subroutines were designed in accordance with the proposed ScaLAPACK standard. If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so.

The HPF subroutines were designed to be consistent with the proposals for the Fortran 90 BLAS and the Fortran 90 LAPACK. (See references [30] and [31].) If these subroutines do not comply with any eventual proposal for HPF interfaces to the PBLAS and ScaLAPACK, IBM will consider updating them to do so.

If IBM updates these subroutines, the update could require modifications of the calling application program.

Table 8. List of Eigensystem Analysis and Singular Value Analysis Subroutines		
	Long- Precision Subroutine	Page
Descriptive Name	PDSYEVX	601
Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric	SYEVX	843
Matrix	PDSYTRD	619
Reduce a Real Symmetric Matrix to Tridiagonal Form	SYTRD	854
Reduce a General Matrix to Upper Hessenberg Form	PDGEHRD	630
	GEHRD	860
Reduce a General Matrix to Bidiagonal Form	PDGEBRD	640
	GEBRD	865

Fourier Transforms

The Fourier transform subroutines perform mixed-radix transforms in two and three dimensions. See references [1] and [3].

Table 9. List of Fourier Transform Subroutines			
	Short- Precision Subroutine	Long- Precision Subroutine	Page
Descriptive Name	PSCFT2	PDCFT2	656
Complex Fourier Transforms in Two Dimensions	FFT	FFT	876
Real-to-Complex Fourier Transforms in Two Dimensions	PSRCFT2	PDRCFT2	663
	FFT	FFT	876
Complex-to-Real Fourier Transforms in Two Dimensions	PSCRFT2	PDCRFT2	669
	FFT	FFT	876
Complex Fourier Transforms in Three Dimensions	PSCFT3	PDCFT3	675
	FFT	FFT	884
Real-to-Complex Fourier Transforms in Three Dimensions	PSRCFT3	PDRCFT3	684
	FFT	FFT	884
Complex-to-Real Fourier Transforms in Three Dimensions	PSCRFT3	PDCRFT3	691
	FFT	FFT	884

Random Number Generation

The random number generation subroutine generates uniformly distributed random numbers.

Table 10. List of Random Number Generation Subroutines		
	Long- Precision Descriptive Name	
Uniform Random Number Generator	PDURNG	701

Utilities

The message passing utility subroutines perform general service functions that support Parallel ESSL, rather than mathematical computations.

Table 11. List of Utility Subroutines		
Descriptive Name	Integer Subroutine	Page
Determine the Level of Parallel ESSL Installed on Your System	IPESSL	709
Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process	NUMROC	711

$\overline{\text { Chapter 2. Distributing Your Data }}$

This chapter provides information on how to distribute your data for message passing programs and for HPF programs. The sections include:

- "Concepts"
- "Specifying and Distributing Data in a Message Passing Program" on page 23
- "Distributing Data in an HPF Program" on page 79

Concepts

This section describes the general concepts used in distributing data.

About Global Data Structures

Because the Parallel ESSL subroutines support the SPMD programming model, your global data structures (vectors, matrices, or sequences) must be distributed across your processes prior to calling the Parallel ESSL subroutines.

Conceptually, global data structures have a defined storage mode consistent with those used by the serial ESSL library, except for symmetric tridiagonal matrices. For Parallel ESSL, you must store symmetric tridiagonal matrices as described in this chapter in "Block-Cyclically Distributing a Symmetric Tridiagonal Matrix" on page 49. For how to store all other data structures when using Parallel ESSL, you should see the appropriate section in the ESSL Version 3 Guide and Reference. The FFT-packed storage mode is a new storage mode for Parallel ESSL and is described in "Specifying Sequences for the Fourier Transforms" on page 66.

Global data structures must be mapped to local (distributed memory) data structures, according to the data distribution technique supported by the Parallel ESSL subroutines that you are using. These local data structures are called local arrays.

These data distribution techniques are described throughout this chapter and apply equally to real and complex data structures.

About Process Grids

A parallel machine with k processes is often thought of as a one-dimensional linear array of processes labeled $0,1, \ldots, k-1$. For performance reasons, it is sometimes useful to map this one-dimensional array into a logical two-dimensional rectangular grid, which is also referred to as process grid, of processes. The process grid can have p process rows and q process columns, where $p \times q=k$. A process can now be indexed by row and column, (i,) , where $0 \leq i<p$ and $0 \leq j<q$.

Table 12 on page 18 shows six processes mapped into a process grid using row-major order. For message passing subroutines, the BLACS_GRIDINIT default to map processes is row-major order. In this example, process t_{3} is mapped to P_{10}.

Table 12. Six Processes Mapped to a 2×3 Process Grid Using Row-Major Order			
$\mathbf{p , q}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	t_{0}	t_{1}	t_{2}
$\mathbf{1}$	t_{3}	t_{4}	t_{5}

Table 13 shows six processes mapped into a process grid using column-major order. For HPF subroutines, the XL HPF compiler default to map processes is column-major order. In this example, process t_{3} is mapped to P_{11}.

Table 13. Six Processes Mapped to a 2×3 Process Grid Using Column-Major Order			
$\mathbf{p , q}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	t_{0}	t_{2}	t_{4}
$\mathbf{1}$	t_{1}	t_{3}	t_{5}

All the subroutines, except the Banded Linear Algebraic Equations and Fourier transform subroutines, can view the processes as a logical one- or two-dimensional process grid. The Banded Linear Algebraic Equations support one-dimensional process grids. The Fourier transform subroutines support one-dimensional, row-oriented process grids.

Each process has local memory, and all the processes are connected by a communication network (for example, a switch or Ethernet). In most cases k is less than or equal to the number of processor nodes that your job is running on. In special cases, however, the number of processes can be greater than the number of processor nodes.

What to Do in Your Program

Prior to calling any of the subroutines, you must define your process grid and distribute your data according to the distribution technique required by the Parallel ESSL subroutine you are using.

The size and shape of the process grid and the way global data structures are distributed over the processes has a major impact on performance and scalability. For details, see "Coding Tips for Optimizing Parallel Performance" on page 83. Block-cyclic data distribution generally provides good load balancing for many linear algebra computations. All subroutines support block-cyclic data distributions, except the Fourier Transforms, the HPF versions of the Banded Linear Algebraic Equations, and the HPF version of the Random Number Generation subroutine (URNG). These subroutines support only block distribution, which is a special case of block-cyclic data distribution.

Some of the message passing and HPF data distribution techniques described in this chapter are illustrated in Appendix B on page 907.

For more information using High Performance Fortran, see reference [44], and the XL High Performance Fortran manuals.

Block, Cyclic, and Block-Cyclic Data Distributions

In this section, three types of data distribution are described in algorithmic terms: block, cyclic, and block-cyclic. How these data distribution methods are used by Parallel ESSL is explained later in this chapter.

The example notation means the following:

- B represents the global block row numbers.
- D represents the global block column numbers.
- prepresents the process row index.
- q represents the process column index.

Distribution Techniques

An important aspect of the data distributions described here is that independent distributions are applied over each dimension of the data structure. The algorithms presented here for the vector in one dimension can, therefore, be used for the rows and columns of a matrix, or even for data structures with more dimensions.

Consider the distribution of a vector \boldsymbol{x} of M data objects (elements) over P processes. This can be described by a mapping of the global index $m(0 \leq m<M)$ of a data object to an index pair (p, i), where $p(0 \leq p<P)$ specifies the process to which the data object is mapped, and i specifies its location in the local array.

Two common distributions are the block and cyclic. The block distribution is often used when the computational load is distributed homogeneously over a regular data structure, such as a Cartesian grid. It assigns blocks of size r of the global vector to the processes. For block distribution, the mapping $m \mapsto(p, i)$ is defined as:

$$
m \mapsto(\operatorname{floor}(m / L), m \bmod L)
$$

where $L=\operatorname{ceiling}(M / P)$. The cyclic distribution (also known as the wrapped or scattered decomposition) is commonly used to improve load balance when the computational load is distributed inhomogeneously over a regular data structure. The cyclic distribution assigns consecutive entries of the global vector to successive processes. For cyclic distribution, the mapping $m \mapsto(p, i)$ is defined as:

$$
m \mapsto(m \bmod P, \text { floor }(m / P))
$$

Examples of block and cyclic distribution are shown in Figure 1 and Figure 2 on page 20, where $M=23$ data objects are distributed over $P=3$ processes, using $r=8$ block size. As shown in the examples, there can be uneven distribution, where the last block is smaller than the others. A global block number B is shown for block distribution. For cyclic distribution, there is no concept of block numbers.

m	0	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15		16	17	18	19	20	21	22	
p	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1			2	2	2	2	2	2	2
i	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7			0	1	2	3	4	5	6
B	0	0	0	0	0	0	0	0		1	1	1	1	1	1	1	1			2	2	2	2	2	2	2

Figure 1. Block Distribution
Following are HPF statements you could use to perform this block distribution of your data:

```
!HPF$ PROCESSORS P(3)
!HPF$ DISTRIBUTE X (BLOCK) ONTO P
```


Figure 2. Cyclic Distribution
Following are HPF statements you could use to perform this cyclic distribution of your data:
!HPF\$ PROCESSORS P(3)
!HPF\$ DISTRIBUTE X (CYCLIC) ONTO P

The block-cyclic distribution is a generalization of the block and cyclic distributions, in which blocks of r consecutive data objects are distributed cyclically over the p processes. This can be described by a mapping of the global index m ($0 \leq m<M$) of a data object to an index triplet (p, b, i), where $p(0 \leq p<P)$ specifies the process to which the data object is mapped, b is the block number in process p, and i is the location in the block. For block-cyclic distribution, the mapping $m \mapsto(p$, b, i) is defined as:

$$
m \mapsto(\operatorname{floor}((m \bmod T) / r), \text { floor }(m / T), m \bmod r)
$$

where $T=r P$. (It should be noted that this reverts to the cyclic distribution when $r=1$ and a block distribution when $r=L$.) The inverse mapping to a global index $(p, b, i) \mapsto m$ is defined by:

$$
(p, b, i) \mapsto B r+i=p r+b T+i
$$

where $B=p+b P$ is the global block number. An example of block-cyclic distribution is shown in Figure 3, where $M=23$ data objects are distributed over $P=3$ processes, using $r=2$ block size. As shown in the example, there can be uneven distribution, where the last block is smaller than the others. The inverse mapping is shown in the second part of the example. (This shows what is stored in the local array on each of the three processes.)

m	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		18	19	20	21	22			
p	0	0	1	1	2	2	0	0	1	1	2	2		0	0	1	1	2	2			0	0	1	1	2	
b	0	0	0	0	0	0	1	1	1	1	1	1		2	2	2	2	2	2			3	3	3	3	3	
i	0	1	0	1	0	1	0	1	0	1	0	1		0	1	0	1	0	1			0	1	0	1	0	
B	0	0	1	1	2	2	3	3	4	4	5	5		6	6	7	7	8	8			9	9	10	10	11	

Figure 3. Block-Cyclic Distribution

m	0	1	6	7	12	13	18	19	2	3	8	9	14	15	20	21		4	5	10	11	16	17	22			
p	0	0	0	0	0	0	0	0		1	1	1	1	1	1	1	1			2	2	2	2	2	2	2	
b	0	0	1	1	2	2	3	3		0	0	1	1	2	2	3	3			0	0	1	1	2	2	3	
i	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1			0	1	0	1	0	1	0		
B	0	0	3	3	6	6	9	9		1	1	4	4	7	7	10	10			2	2	5	5	8	8	11	

Figure 4. Inverse Mapping of Block-Cyclic Distribution
Following are HPF statements you could use to perform this block-cyclic distribution of your data:
! HPF\$ PROCESSORS P(3)
!HPF\$ DISTRIBUTE X (CYCLIC(2)) ONTO P

In decomposing an $m \times n$ matrix, \boldsymbol{A}, independent block-cyclic distributions are applied in the row and column directions. Thus, suppose the matrix rows are distributed with block size r over P processes by the $\lambda_{r, P}$ block-cyclic mapping, and the matrix columns are distributed with block size s over Q processes by the $\psi_{s, Q}$ block-cyclic mapping. Then the matrix element indexed globally by (m, n) is mapped as follows:

$$
\begin{aligned}
& m \stackrel{\lambda}{\mapsto}(p, b, i) \\
& n \stackrel{\psi}{\mapsto}(q, d, j)
\end{aligned}
$$

The distribution of the matrix can be regarded as the tensor product of the row and column distributions, which can be expressed as:

$$
(m, n) \mapsto((p, q),(b, d),(i, j))
$$

The block-cyclic matrix distribution expressed above distributes blocks of size $r \times s$ to a grid of $P \times Q$ processes.

An example of block-cyclic distribution of an $m \times n=16 \times 30$ matrix with block size $r \times s=3 \times 4$ and a $P \times Q=2 \times 3$ process grid is shown in Figure 5 on page 22 and Figure 6 on page 22. The numbers in the leftmost column and on the top of the matrix represent the global row and column numbers \mathbf{B} and \mathbf{D}, respectively. Figure 5 on page 22 shows the assignment of global blocks (\mathbf{B}, \mathbf{D}) to processes (P,Q). Figure 6 on page 22 shows which global blocks each process contains.

In this example, the global matrix dimensions are not divisible by the respective block sizes. All the row blocks are of size 3, except the last row block, which only contains 1 row. All column blocks are of size 4, except the last column block, which contains 2 columns. For example, global block $(5,0)$ is 1×4, global block $(1,7)$ is 3×2, and global block $(0,0)$ is 3×4. The global block $(5,7)$ is 1×2. The asterisk $\left(^{*}\right)$ in Figure 5 on page 22 denotes which global blocks contain left over data; that is, the blocks that are not 3×4.

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}	P_{00}	P_{01}	P_{02}	P_{00}	$\mathrm{P}_{01}{ }^{*}$
$\mathbf{1}$	P_{10}	P_{11}	P_{12}	P_{10}	P_{11}	P_{12}	P_{10}	$\mathrm{P}_{11}{ }^{*}$
$\mathbf{2}$	P_{00}	P_{01}	P_{02}	P_{00}	P_{01}	P_{02}	P_{00}	$\mathrm{P}_{01}{ }^{*}$
$\mathbf{3}$	P_{10}	P_{11}	P_{12}	P_{10}	P_{11}	P_{12}	P_{10}	$\mathrm{P}_{11}{ }^{*}$
$\mathbf{4}$	P_{00}	P_{01}	P_{02}	P_{00}	P_{01}	P_{02}	P_{00}	$\mathrm{P}_{01}{ }^{*}$
$\mathbf{5}$	$\mathrm{P}_{10}{ }^{*}$	$\mathrm{P}_{11}{ }^{*}$	$\mathrm{P}_{12}{ }^{*}$	$\mathrm{P}_{10}{ }^{*}$	$\mathrm{P}_{11}{ }^{*}$	$\mathrm{P}_{12}{ }^{*}$	$\mathrm{P}_{10}{ }^{*}$	$\mathrm{P}_{11}{ }^{*}$

Figure 5. Block Distribution Over a 2 by 3 Process Grid

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{5}$
$\mathbf{0}$						${ }^{*}$		
$\mathbf{2}$		P_{00}			P_{01}	${ }^{*}$		P_{02}
$\mathbf{4}$						${ }^{*}$		
$\mathbf{1}$						${ }^{*}$		
$\mathbf{3}$		P_{10}			P_{11}	${ }^{*}$		P_{12}
$\mathbf{5}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$

Figure 6. Data Distribution from a Process Point-of-View

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{5}$
$\mathbf{0}$	$\mathrm{a}_{0: 2,0: 3}$	$\mathrm{a}_{0: 2,12: 15}$	$\mathrm{a}_{0: 2,24: 27}$	$\mathrm{a}_{0: 2,4: 7}$	$\mathrm{a}_{0: 2,16: 19}$	$\mathrm{a}_{0: 2,28: 29}{ }^{*}$	$\mathrm{a}_{0: 2,8: 11}$	$\mathrm{a}_{0: 2,20: 23}$
$\mathbf{2}$	$\mathrm{a}_{6: 8,0: 3}$	$\mathrm{a}_{6: 8,12: 15}$	$\mathrm{a}_{6: 8,24: 27}$	$\mathrm{a}_{6: 8,4: 7}$	$\mathrm{a}_{6: 8,16: 19}$	$\mathrm{a}_{6: 8,28: 29}{ }^{*}$	$\mathrm{a}_{6: 8,8: 11}$	$\mathrm{a}_{6: 8,20: 23}$
$\mathbf{4}$	$\mathrm{a}_{12: 14,0: 3}$	$\mathrm{a}_{12: 14,12: 15}$	$\mathrm{a}_{12: 14,24: 27}$	$\mathrm{a}_{12: 14,4: 7}$	$\mathrm{a}_{12: 14,16: 19}$	$\mathrm{a}_{12: 14,28: 29}{ }^{*}$	$\mathrm{a}_{12: 14,8: 11}$	$\mathrm{a}_{12: 14,20: 23}$
$\mathbf{1}$	$\mathrm{a}_{3: 5,0: 3}$	$\mathrm{a}_{3: 5,12: 15}$	$\mathrm{a}_{3: 5,24: 27}$	$\mathrm{a}_{3: 5,4: 7}$	$\mathrm{a}_{3: 5,16: 19}$	$\mathrm{a}_{3: 5,28: 29}{ }^{*}$	$\mathrm{a}_{3: 5,8: 11}$	$\mathrm{a}_{3: 5,20: 23}$
$\mathbf{3}$	$\mathrm{a}_{9: 11,0: 3}$	$\mathrm{a}_{9: 11,12: 15}$	$\mathrm{a}_{9: 11,24: 27}$	$\mathrm{a}_{9: 11,4: 7}$	$\mathrm{a}_{9: 11,16: 19}$	$\mathrm{a}_{9: 11,28: 29}{ }^{*}$	$\mathrm{a}_{9: 11,8: 11}$	$\mathrm{a}_{9: 11,20: 23}$
$\mathbf{5}$	$\mathrm{a}_{15,0: 3}{ }^{*}$	$\mathrm{a}_{15,12: 15}{ }^{*}$	$\mathrm{a}_{15,24: 27}{ }^{*}$	$\mathrm{a}_{15,4: 7}{ }^{*}$	$\mathrm{a}_{15,16: 19}{ }^{*}$	$\mathrm{a}_{15,28: 29}{ }^{*}$	$\mathrm{a}_{15,8: 11}{ }^{*}$	$\mathrm{a}_{15,20: 23}{ }^{*}$

Figure 7. Distributed Matrix Elements from a Process Point-of-View
Following are HPF statements you could use to perform this block-cyclic distribution of your data:
!HPF\$ PROCESSORS P $(2,3)$
!HPF\$ DISTRIBUTE A (CYCLIC(3),CYCLIC(4)) ONTO P

Special Usage

The block-cyclic distribution can reproduce most of the data distributions commonly used in linear algebra computations on parallel computers. Some examples are:

- Block distribution in the row direction is obtained by $Q=1$ and $r=\operatorname{ceiling}(M / P)$.
- Block distribution in the column direction is obtained by $P=1$ and $s=\operatorname{ceiling}(N / Q)$.
- Block-cyclic distribution in the row direction is obtained by $Q=1$ and r < ceiling (M / P). (You might use this for distributing a single block column to pass to Parallel ESSL.)
- Block-cyclic distribution in the column direction is obtained by $P=1$ and s < ceiling(N/Q). (You might use this for distributing a single block row to pass to Parallel ESSL.)
- To achieve fine granularity of distribution in the following directions, specify:
- For the row direction, $r=1$
- For the column direction, $s=1$
- In both directions, $r=1$ and $s=1$
- To achieve coarse granularity of distribution in the following directions, specify:
- For the row direction, $r=\operatorname{ceiling}(M / P)$.
- For the column direction, $s=\operatorname{ceiling}(N / Q)$.
- In both directions, $r=\operatorname{ceiling}(M / P)$ and $s=\operatorname{ceiling}(N / Q)$.

This section provided a detailed description of the distribution of vectors-one-dimensional data structures. Those same techniques were then applied to matrices-two-dimensional data structures-in the row and column directions. If you have data structures with three or more dimensions, you can use these same techniques by applying them in the direction of each dimension. For example, the block distribution of a three-dimensional sequence is described in "Three-Dimensional Sequences" on page 71.

Specifying and Distributing Data in a Message Passing Program

This section describe the calling sequence arguments for vectors and matrices, and shows how to distribute vectors, matrices and sequences in a message passing program for the following areas:

- For the Level 2 and 3 PBLAS, Dense Linear Algebraic Equations, and Eigensystem Analysis and Singular Value Analysis subroutines, see "Specifying Block-Cyclically-Distributed Vectors and Matrices" on page 24.
- For the Banded Linear Algebraic Equations, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
- For the Sparse Linear Algebraic Equations, see "Specifying Sparse Matrices for the Fortran 90 and Fortran 77 Sparse Linear Algebraic Equations" on page 60.
- For the Fourier Transforms, see "Specifying Sequences for the Fourier Transforms" on page 66.

An example of block-cyclic distribution of a global matrix in a Fortran 90 program in a message passing environment is shown in Appendix B. See the following:

- The subroutine get_diffusion_matrix in "Module Fourier (Message Passing)" on page 925 , which shows how a local array can be assigned values.
- The subroutine rlocal_to_rglobal in "Module Scale (Message Passing)" on page 933, which shows gathering the local portions of the block-cyclically-distributed real array to generate the corresponding global matrix.

Specifying Block-Cyclically-Distributed Vectors and Matrices

For the Level 2 and 3 PBLAS, Dense Linear Algebraic Equations, and Eigensystem Analysis and Singular Value Analysis subroutines, certain calling sequence arguments are used to specify block-cyclically-distributed vectors or matrices.

Calling Sequence Arguments for Block-Cyclically-Distributed Vectors and Matrices

Table 14 describes the arguments associated with a vector \boldsymbol{X}. Table 15 describes the arguments associated with a matrix \boldsymbol{A}.

Table 14. Calling Sequence Arguments for a Block-Cyclically-Distributed Vector	
Argument	Meaning
x	is the local part of the global matrix \boldsymbol{X}. To determine the size of the local array for \boldsymbol{X}, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25.
$i x$	is the row index of global matrix \boldsymbol{X}.
$j x$	is the column index of global matrix \boldsymbol{X}.
desc_x	is the array descriptor for global matrix \boldsymbol{X}. page 25.$)$
$i n c x$	Stride for global vector \boldsymbol{X}.

Note: A global vector of length n is distributed across process rows the same way as an $n \times 1$ matrix is (in this case $\mathrm{M} _\mathrm{X}$ is n and $\mathrm{N} _\mathrm{X}$ is 1). A global vector of length n is distributed across process columns the same way as a $1 \times n$ matrix is (in this case $M_{-} X$ is 1 and $N _X$ is n).

Table 15. Calling Sequence Arguments for a Block-Cyclically-Distributed Matrix	
Argument	Meaning
a	is the local part of the global matrix \boldsymbol{A}. To determine the size of the local array for \boldsymbol{A}, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25.
ia	is the row index of the global matrix \boldsymbol{A}.
ja	is the column index of the global matrix \boldsymbol{A}.
desc_a	is the array descriptor for global matrix \boldsymbol{A}. (See Table 16 on page 25.)

Array Descriptors for Block-Cyclically-Distributed Matrices

An array descriptor, which is an integer array, is needed for each block-cyclically-distributed vector or matrix. The process grid definition and array descriptor are used to establish the mapping between the global vector or matrix and its corresponding process and distributed memory location.

Throughout this book, the _ (underscore) symbol in the array descriptor is followed by an \boldsymbol{X} to indicate a vector or an \boldsymbol{A} to indicate a matrix.

An example of setting up descriptor arrays in a Fortran 90 program is shown in Appendix B. See the subroutines initialize_rarray and initialize_carray in "Module Scale (Message Passing)" on page 933.

Table 16 on page 25 shows the type- 1 array descriptor, as it is used in the Level 2 and 3 PBLAS, Dense Linear Algebraic Equations, and Eigensystem Analysis and Singular Value Analysis subroutines.

Table 16. Type-1 Array Descriptor for Block-Cyclically Distributed Vector or Matrix		
DESC_()	Symbolic name	Meaning
1	DTYPE_	Descriptor type, where DTYPE_=1
2	CTXT_ $_{-}$	BLACS context in which the global matrix is defined. (See "Initializing the BLACS" on page 87.)
3	M_ 2	Number of rows in the global matrix
4	N_- 2	Number of columns in the global matrix
5	NB_ $_{-}$	Row block size
6	RSRC_	Column block size 7 8 The process row of the $p \times q$ q process grid over which the first row of the global matrix is distributed
9	The process column of the $p \times q$ process grid over which the first column of the global matrix is distributed	

Specifying Submatrices

After a global vector or matrix is block-cyclically distributed over a process grid, you may decide to use only a portion of the global data structure. This is called a submatrix. For examples of how to specify the calling sequence arguments, listed in Table 14 and Table 15, for a submatrix, see:

- "Example 1" on page 173
- "Example 2" on page 177
- "Example" on page 201
- "Example" on page 245
- "Example 1" on page 363
- "Example 1" on page 385

Suppose you decide to distribute your global vector or matrix over the process grid, starting at a process other than 0,0 . For examples of how to set the array descriptor values, listed in Table 16, see:

- "Example 1" on page 350
- "Example 1" on page 363
- "Example 1" on page 385

Determining the Number of Rows and Columns in Your Local Arrays

In a Parallel ESSL calling sequence, you specify an array that contains the local part of the global vector or matrix. To determine $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$or $\operatorname{LOCq}\left(\mathrm{N}_{-}\right)$, which are used in the subroutines descriptions in Part 2 of this book, you must make a call to NUMROC:

- For $\operatorname{LOCp}\left(M_{_}\right)$, which represents the number of rows that a process would receive if M _ was distributed block-cyclically over the p rows of its process column, you specify:

$$
\operatorname{LOCp}\left(M_{-}\right)=\operatorname{NUMROC}\left(M_{-}, M B, \text { myrow, RSRC_, } p\right)
$$

where:
M _ is the number of rows in the global matrix.
MB _ is the row block size.
myrow is the process row index. See "Initializing the BLACS" on page 87.
RSRC_ is the process row over which the first row of the global matrix is distributed.
p is the number of rows in the $p \times q$ process grid.

- For $\operatorname{LOCq}\left(\mathrm{N}_{1}\right)$, which represents the number of columns that a process would receive if $N_{\text {_ }}$ was distributed block-cyclically over the q columns of its process row, you specify:
$\operatorname{LOCq}\left(N_{-}\right)=\operatorname{NUMROC}\left(N_{-}, N B\right.$, mycol, CSRC_, q)
where:
N_{\sim} is the number of columns in the global matrix.
NB_ is the column block size.
mycol is the process column index. See "Initializing the BLACS" on
page 87.
CSRC_ is the process column over which the first column of the global matrix is distributed.
q is the number of columns in the $p \times q$ process grid.

Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations

For the Banded Linear Algebraic Equations, certain calling sequence arguments are used to specify block-cyclically distributed matrices on one-dimensional process grids.

Although the global array is block-cyclically distributed, the actual submatrix used in computation is either block-row or block-column distributed. See the appropriate subroutine for restrictions.

Symmetric Band Matrix

A symmetric band matrix must be distributed over a one-dimensional process grid:

- On a $1 \times p$ process grid, the symmetric band matrix is block-cyclically distributed. In this case, either type-501 or type-1 array descriptor may be specified.
- On a $p \times 1$ process grid, the symmetric band matrix is block-cyclically distributed as if the process grid is $1 \times p$. In this case, the type-501 array descriptor must be specified.

Table 17 on page 27 describes the calling sequence arguments associated with a symmetric band matrix.

Table 17. Calling Sequence Arguments for a Distributed Symmetric Band Matrix

Argument	Meaning
n	is the order of the global symmetric band submatrix \boldsymbol{A}.
a	is the local part of the global symmetric band matrix \boldsymbol{A}.
ja	is the column index of the global symmetric band matrix \boldsymbol{A}.
desc_a	is the array descriptor for the global symmetric band matrix \boldsymbol{A}. For more details, see Table 21 on page 29 and Table 16 on page 25.

General Tridiagonal Matrix

A general tridiagonal matrix, represented as three vectors, must be distributed over a one-dimensional process grid using a block-cyclic data distribution. Because vectors are one-dimensional data structures, you can use type-501, type-502, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$. Table 18 describes the calling sequence arguments associated with a general tridiagonal matrix.

Table 18. Calling Sequence Arguments for General Tridiagonal Matrix	
Argument	Meaning
n	is the order of the global general tridiagonal submatrix \boldsymbol{A}.
$d l, d, d u$	is the local part of the global vectors. (The general tridiagonal matrix \boldsymbol{A} is stored in tridiagonal storage mode in dl, d, and $d u)$.
ia	is the row index of the global general tridiagonal matrix \boldsymbol{A}.
desc_a	is the array descriptor for the global general tridiagonal matrix \boldsymbol{A}. For more details, see Table 21 on page 29, Table 16 on page 25, or Table 22 on page 29.

Symmetric Tridiagonal Matrix

A symmetric tridiagonal matrix, represented as two vectors, must be distributed over a one-dimensional process grid using block-cyclic data distribution.

Note: For both serial ESSL and Parallel ESSL, the $n-1$ elements of the equal off-diagonals of a symmetric tridiagonal matrix are stored in a one-dimensional vector of length n. To be compatible with ScaLAPACK, in Parallel ESSL, the off-diagonal is chosen to be the superdiagonal and is stored in elements ia through ia+n-2. In the serial ESSL library, the off-diagonal is chosen to be the subdiagonal and is stored in elements 2 through n.

Because vectors are one-dimensional data structures, you can use a type-501, type-502, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$. Table 19 describes the calling sequence arguments associated with a symmetric tridiagonal matrix.

Table 19 (Page 1 of 2). Calling Sequence Arguments for a Symmetric Tridiagonal Matrix	
Argument	Meaning
n	is the order of the global symmetric tridiagonal submatrix \boldsymbol{A}.

Table 19 (Page 2 of 2). Calling Sequence Arguments for a Symmetric Tridiagonal Matrix

Argument	Meaning
d, e	is the local part of the global vectors. (The symmetric tridiagonal matrix \boldsymbol{A} is stored in parallel-symmetric-tridiagonal storage mode in d and e.)
ia	is the row index of the global symmetric tridiagonal matrix \boldsymbol{A}.
desc_a	is the array descriptor for the global symmetric tridiagonal matrix \boldsymbol{A}. For more details, see Table 21 on page 29, Table 16 on page 25, or Table 22 on page 29.

General Matrix Consisting of Multiple Right-Hand Sides

For the Banded Linear Algebraic Equations subroutines, a general matrix consisting of multiple right-hand sides must be distributed over a one-dimensional process grid:

- On a $p \times 1$ process grid, the multiple right-hand sides is block-cyclically distributed. In this case either type-502 or type-1 array descriptor may be specified.
- On a $1 \times p$ process grid, the multiple right-hand sides is block-cyclically distributed as if the process grid is $p \times 1$. In this case type- 502 array descriptor must be specified.

Table 20 describes the calling sequence arguments associated with the general matrix.

Table 20. Calling Sequence Arguments for a Matrix Containing the Multiple Right-Hand Sides	
Argument	Meaning
n	is the number of rows in the global general submatrix B.
b	is the local part of the global general matrix \boldsymbol{B}.
$i b$	is the row index of the global general matrix \boldsymbol{B}.
desc_b	is the array descriptor for the global general matrix \boldsymbol{B}. For more details, see Table 22 on page 29 and Table 16 on page 25.

Array Descriptors for Banded Matrices

An array descriptor, which is an integer array, is needed for each block-distributed matrix. The process grid definition and the array descriptor are used to establish the mapping between the global matrix and its corresponding process and distributed memory location.

In the Banded Linear Algebraic Equations sections throughout this book, the _ (underscore) symbol in the array descriptor is followed by an \boldsymbol{A} or a \boldsymbol{B}. \boldsymbol{A} indicates a banded, tridiagonal, or symmetric tridiagonal matrix. \boldsymbol{B} indicates a matrix containing the multiple right-hand sides matrix.

When you place a call to the banded or tridiagonal subroutines, you must be careful to choose consistent combinations of array descriptor types for matrix \boldsymbol{A} and matrix B, and process grids. For consistent combinations, see the "Notes and Coding Rules" in the subroutine descriptions in Part 2 of this book.

Therefore, depending on which subroutine you are using in the Banded Linear Algebraic Equations, you may choose different array descriptors in the same subroutine calling sequence. Keep in mind you must only create one process grid; that is, CTXT_A = CTXT_B.

For example, when calling PDPBSV suppose you choose DTYPE_A = 501 for the band matrix \boldsymbol{A} and DTYPE_B $=502$ for matrix \boldsymbol{B}. If you specify CTXT_A as $1 \times p$, you must also specify CTXT_B as $1 \times p$. Or if you specify CTXT_A as $p \times 1$, you must also specify CTXT_B as $p \times 1$. For an example of how to set the array descriptor values, see "Example" on page 400.

Table 21. Type-501 Array Descriptor		
DESC_()	Symbolic name	Value
1	DTYPE_	DTYPE_ $=501$ for $1 \times p$ or $p \times 1$, where p is the number of processes in a process grid.
2	CTXT_	BLACS context in which the global matrix is defined. The BLACS process grid can be defined as $1 \times p$ or $p \times 1$. (See "Initializing the BLACS" on page 87.)
3	N_	Number of columns in the global matrix
4	NB_	Column block size.
5	CSRC	The process column over which the first column of the global matrix is distributed
6	LLD_	Leading dimension of the local array. (See "Determining the Number of Rows or Columns in Your Local Arrays" on page 30.) This value may be different on each process. For the tridiagonal subroutines, this argument is ignored.
7	-	Reserved.

Table 22 (Page 1 of 2). Type-502 Array Descriptor		
DESC_()	Symbolic name	Value
1	DTYPE_	DTYPE $=502$ for $p \times 1$ or $1 \times p$, where p is the number of processes in a process grid.
2	CTXT_	BLACS context in which the global matrix is defined. The BLACS process grid can be defined as $1 \times p$ or $p \times 1$. (See "Initializing the BLACS" on page 87.)
3	M	Number of rows in the global matrix
4	MB_	Row block size.
5	RSRC_	The process row over which the first row of the global matrix is distributed
6	LLD_	Leading dimension of the local array. (See "Determining the Number of Rows or Columns in Your Local Arrays" on page 30.) This value may be different on each process. For the tridiagonal subroutines, this argument is ignored for matrix \boldsymbol{A}.

Table 22 (Page 2 of 2). Type-502 Array Descriptor		
DESC_()	Symbolic name	Value
7	-	Reserved.

Determining the Number of Rows or Columns in Your Local Arrays

For local arrays described by type-501 array descriptor, the number of rows in the local matrix is always equal to the number of rows in the global matrix. The number of columns in the local array is determined as follows:

- For a $1 \times q$ process grid:

$$
\operatorname{LOCq}\left(N_{-}\right)=\operatorname{NUMROC}\left(N_{-}, N B B_{-}, m y c o l, C S R C_{-}, q\right)
$$

- For $q \times 1$ process grid:

$$
\operatorname{LOCq}\left(N_{-}\right)=\operatorname{NUMROC(N_ ,NB}, \text { myrow,CSRC_,q) }
$$

where:
N_{L} is the number of columns in the global matrix.
$N B$ _ is the column block size.
mycol, for a $1 \times q$ process grid, is the process column index. See "Initializing the BLACS" on page 87.
myrow, for a $q \times 1$ process grid, is the process row index. See "Initializing the BLACS" on page 87.
CSRC_ is element 5 of type-501 array descriptor. q is the number of columns in the process grid.

For local arrays described by type- 502 array descriptor, the number of columns in the local matrix is always equal to the number of columns in the global matrix. The number of rows in the local array is determined as follows:

- For a $p \times 1$ process grid:

LOCp $\left(M_{-}\right)=\operatorname{NUMROC(M_ ,MB}$, myrow,RSRC_, p)

- For a $1 \times p$ process grid:

LOCp(M_) = NUMROC(M_,MB_,mycol,RSRC_,p)
where:
M_{-}is the number of rows in the global matrix.
$M B_{-}$is the row block size.
myrow, for a $p \times 1$ process grid, is the process row index. See "Initializing the BLACS" on page 87.
mycol, for a $1 \times p$ process grid, is the process column index. See "Initializing the BLACS" on page 87.
RSRC_ is element 5 of type-502 array descriptor.
p is the number of rows in the process grid.

Distributing Data Structures

You must distribute your data before calling Parallel ESSL from your message passing program. This section shows how you how to distribute your data.

All the Parallel ESSL message passing subroutines, except the Banded Linear Algebraic Equations and Fourier transform subroutines, support block-cyclic distribution. The Banded Linear Algebraic Equations and the Fourier transform subroutines only support block distribution.

The following sections provide examples for distributing data over one- or two-dimensional process grids:

- "Vectors"
- "Matrices" on page 40
- "Specifying Sequences for the Fourier Transforms" on page 66

Vectors

Parallel ESSL supports block-cyclic distribution for vectors over one- or two-dimensional process grids. A vector is distributed over a single row or column of the process grid, except for PDURNG. For PDURNG, vectors are distributed block-cyclically over the entire one- or two-dimensional process grid using row-major order, where the length n of the vector x must be evenly divisible by the available processes $n p$ multiplied by the block size $n b$. In other words, $n /(n p)(n b)$ must be an integer.

Block-Cyclic Distribution over One-Dimensional Process Grids

This example shows how a global vector of length 24 with blocks of size 3 is distributed block-cyclically over one-dimensional process grids. Assume the following:

$$
X=(8,2,3,6,5,1,9,5,3,6,2,4,10,7,4,2,8,2,8,9,2,3,11,10)
$$

Global vector \boldsymbol{x} :

B, D	0
	$[8]$
0	2
	3
	--
	6
1	5
	1
	--
	9
2	5
	3
	--
	6
3	2
	4
	--
	10
4	7
	4
	--
	2
5	8
	2
	--
	8
6	9
	2
	--
	3
7	11
	10

Column-oriented, 4×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{4}$	
$\mathbf{1}$	P_{10}
$\mathbf{5}$	
$\mathbf{2}$	P_{20}
$\mathbf{6}$	
$\mathbf{3}$	P_{30}
7	

Local arrays:

p,q	0
	8
	2
	3
0	10
	7
	4
	6
	5
	1
1	2
	8
	2
	9
	5
	3
2	8
	9
	2
	6
	2
	4
3	3
	11
	10

For the column-oriented example, the array descriptor DESC_X contains the following:

DESC_X()	Symbolic name	Value
1	DTYPE_X	1
2	CTXT_X	BLACS context
3	M_X	24
4	N_X	1
5	MB_X	3
6	NB_X	1
7	RSRC_X	0
8	CSRC_X	0
9	LLD_X	6

Row-oriented, 1×4 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{4}$	$\mathbf{1 5}$	$\mathbf{2 ~ 6}$	$\mathbf{3} \mathbf{7}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}	P_{03}

Local array:

For the row-oriented example, the array descriptor DESC_X contains the following:

DESC_X()	Symbolic name	Value
1	DTYPE_X	1
2	CTXT_X	BLACS context
3	M_X	1
4	N_X	24
5	MB_X	1
6	NB_X	3
7	RSRC_X	0
8	CSRC_X	0
9	LLD_X	1

Note: The same global vector was distributed over a 4×1 grid and then over a 1×4 grid. Notice the values contained in the corresponding local arrays are identical.

Block-Cyclic Distribution over Two-Dimensional Process Grids

This example shows how a global vector of length 18 with block size of 3 is distributed over two-dimensional grids. When a two-dimensional process grid is used, the global vector can be distributed over any single row or any single column of the grid. Assume the following:

$$
X=(4,11,17,21,3,7,12,5,3,15,3,4,9,17,1,10,9,25)
$$

Global vector \boldsymbol{x} :

B, D	0
	[4
0	11
	17
	--
	21
1	3
	7
	--
	12
2	5
	3
	--
	15
3	3
	4
	--
	9
4	17
	1
	--
	10
5	9
	25

Two-dimensional, 2×3 process grid:

$\mathbf{B , D}$	-	-	$\mathbf{0}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}
$\mathbf{2}$			
$\mathbf{4}$			
$\mathbf{1}$	P_{10}	P_{11}	P_{12}
$\mathbf{3}$			
$\mathbf{5}$			

If the global vector is distributed over the third column of a 2×3 process grid, then P_{02} and P_{12} contain the following local arrays:

For the single column example, the array descriptor DESC_X contains the following:

DESC_X()	Symbolic name	Value
1	DTYPE_X	1
2	CTXT_X	BLACS context
3	M_X	18
4	N_X	1
5	MB_X	3
6	NB_X	1
7	RSRC_X	0
8	CSRC_X	2
9	LLD_X	9

If the global vector is distributed over the second row of a 2×3 process grid, then $\mathrm{P}_{10}, \mathrm{P}_{11}$, and P_{12} contain the following local arrays:

For the single row example, the array descriptor DESC_X contains the following:

DESC_X()	Symbolic name	Value
1	DTYPE_X	1
2	CTXT_X	BLACS context
3	M_X	1
4	N_X	18
5	MB_X	1
6	NB_X	3
7	RSRC_X	1
8	CSRC_X	0
9	LLD_X	1

For PDURNG, the global vector is distributed block-cyclically over the entire 2×3 process grid using row-major order, as follows:

Notes:

1. For PDURNG, the length n of the vector x must be evenly divisible by the number of available processes $n p$ multiplied by the block size $n b$. For this example, 18 = (6)(3).
2. For PDURNG, the array descriptor is not used.

Following is an example of uneven block-cyclic distribution for a global vector of length 20 with block size of 3 , where the two local arrays are different sizes. In this case, a fragment of a block with two elements occurs at the end of the vector.
Assume the following:
$X=(0,5,6,3,21,5,6,1,8,9,13,11,12,15,14,15,11,17,18,19)$
Following is a global vector \boldsymbol{x} with block size 3 :

B, D	0
	0
0	5
	6
	--
	3
1	21
	5
	--
	6
2	1
	8
	--
	9
3	13
	11
	--
	12
4	15
	14
	--
	15
5	11
	17
	--
6	18
	19

Two-dimensional, 2×3 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-	-
$\mathbf{0}$	P_{00}	P_{01}	P_{02}
$\mathbf{2}$			
$\mathbf{4}$			
$\mathbf{6}$		P_{11}	P_{12}
$\mathbf{1}$	P_{10}		
$\mathbf{3}$			
$\mathbf{5}$			

If the vector is distributed over the first column of a 2×3 process grid, then P_{00} and P_{10} contain the following local arrays:

p,q	0
	0
	5
	6
	6
	1
0	8
	12
	15
	14
	18
	19

	21
	5
	9
1	13
	11
	15
	11
	17

Array descriptor DESC_X contains the following:

DESC_X()	Symbolic name	Value
1	DTYPE_X	1
2	CTXT_X	BLACS context
3	M_X	20
4	N_X	1
5	MB_X	3
6	NB_X	1
7	RSRC_X	0
8	CSRC_X	0
9	LLD_X	11 (For $\left.P_{00}\right)$
		$9\left(\right.$ For $\left.P_{10}\right)$

If the vector is distributed over the first row of the 2×3 process grid, then $\mathrm{P}_{00}, \mathrm{P}_{01}$, and P_{02} contain the following local arrays:

Array descriptor DESC_X contains the following:

DESC_X()	Symbolic name	Value
1	DTYPE_X	1
2	CTXT_X	BLACS context
3	M_X	1
4	N_X	20
5	MB_X	1
6	NB_X	3
7	RSRC_X	0
8	CSRC_X	0
9	LLD_X	1

Matrices

The Parallel ESSL subroutines, except the Banded Linear Algebraic Equations, support block-cyclic data distribution for matrices using one- or two-dimensional process grids. The Banded Linear Algebraic Equations support only block data distribution using one-dimensional process grids.

The following terminology is used when it is necessary to distinguish special types of matrices:

- Full block matrix - a matrix of blocks distributed over the whole process grid.
- Block row matrix - a matrix of blocks distributed over a single row of the process grid.
- Block column matrix - a matrix of blocks distributed over a single column of the process grid.
- Single block matrix - a matrix consisting of a single block lying in a single process of the process grid.

Distributed over One-Dimensional Process Grids

This section describes how to distribute a matrix block-cyclically over a one-dimensional process grid. It also shows how matrices for the Banded Linear Algebraic Equations are distributed over a one-dimensional process grid using block distribution.

Block-Cyclically Distributing a Matrix: The examples that follow show how a 6×8 global matrix \boldsymbol{A} with blocks of size 2×2 is distributed block-cyclically over one-dimensional process grids. Assume the following global matrix \boldsymbol{A} :

B, D	0		1		2		3	
0	0		2	3	4	5	6	7
		11	12	13		15	16	17
1	20		22	2		25	26	27
	30	31	32	33		35	36	37
2			42	43		45	46	47
	50	51				55	56	57

Column-oriented, 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0 1 2 3}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local arrays:

p,q	0							
0	0	1	2	3	4	5	6	7
	10	11	12	13	14	15	16	17
1	20	21	22	23	24	25	26	27
	30	31	32	33	34	35	36	37
2	40	41	42	43	44	45	46	47
	50	51	52	53	54	55	56	57

For the column-oriented example, the array descriptor DESC_A contains:

DESC_A()	Symbolic name	Value
1	DTYPE_A	1
2	CTXT_A	BLACS context
3	M_A	6
4	N_A	8
5	MB_A	2
6	NB_A	2
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	2

Row-oriented, 1×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0 2}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$		
$\mathbf{2}$		

Local arrays:

p,q	0				1			
	0	1	4	5	2	3	6	7
	10	11	14	15	12	13	16	17
	20	21	24	25	22	23	26	27
0	30	31	34	35	32	33	36	37
	40	41	44	45	42	43	46	47
	50	51	54	55	52	53	56	57

For the row-oriented example, the array descriptor DESC_A:

DESC_A()	Symbolic name	Value
1	DTYPE_A	1
2	CTXT_A	BLACS context
3	M_A	6
4	N_A	8
5	MB_A	2
6	NB_A	2
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	6

For an example of distributing a matrix over a one-dimensional process grid in a Fortran 90 program, see matrix F in Appendix B, which is:

- Created in subroutine initialize_carray in "Module Scale (Message Passing)" on page 933.
- Assigned values in subroutine get_diffusion_matrix in "Module Fourier (Message Passing)" on page 925.
- Used in "Program Main (Message Passing)" on page 914.

Block-Cyclically Distributing a Symmetric Band Matrix: This section shows how to distribute a symmetric band matrix \boldsymbol{A} over a one-dimensional process grid using block-cyclic distribution.

Assume the following symmetric band matrix \boldsymbol{A} of size 9×9 with a half bandwidth of 2 :

$$
A=\left[\begin{array}{rrrrrrrrr}
11 & 21 & 31 & 0 & 0 & 0 & 0 & 0 & 0 \\
21 & 22 & 32 & 42 & 0 & 0 & 0 & 0 & 0 \\
31 & 32 & 33 & 34 & 53 & 0 & 0 & 0 & 0 \\
0 & 42 & 34 & 44 & 54 & 64 & 0 & 0 & 0 \\
0 & 0 & 53 & 54 & 55 & 65 & 75 & 0 & 0 \\
0 & 0 & 0 & 64 & 65 & 66 & 76 & 86 & 0 \\
0 & 0 & 0 & 0 & 75 & 76 & 77 & 87 & 97 \\
0 & 0 & 0 & 0 & 0 & 86 & 87 & 88 & 98 \\
0 & 0 & 0 & 0 & 0 & 0 & 97 & 98 & 99
\end{array}\right]
$$

Matrix \boldsymbol{A} must be stored in upper- or lower-band-packed storage mode. The sections that follow contain examples describing these two storage modes. In these examples, matrix \boldsymbol{A} is stored in an array with dimensions 3×9.

Upper-Band-Packed Storage Mode: The global matrix \boldsymbol{A} with block size of 2 is stored in upper-band-packed storage mode, as follows:
$\left.\begin{array}{c}\mathrm{B}, \mathrm{D} \\ 0\end{array} \begin{array}{cc|cc|cc|cc|c}0 & 1 & 2 & 3 & 4 \\ * & * & 21 & 31 & 42 & 53 & 64 & 75 & 86 \\ \hline & 34 & 54 & 65 & 76 & 87 & 98 \\ 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99\end{array}\right]$

Following is a row-oriented, 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0 3}$	$\mathbf{1 4}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

The following local arrays A are distributed block-cyclically over the 1×3 process grid:

p,q	0	1	2
	* * 7586	314297	5364
0	* 217687	323498	5465
	11227788	334499	5566

where * means you do not have to store a value in that position in the local array. However, these storage positions are required and overwritten during the computation.

The type-501 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A = 501 for $1 \times p$
2	CTXT_A	BLACS context
3	N_A	9
4	NB_A	2
5	CSRC_A	0
6	LLD_A	3
7	-	Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A $=1$ for $1 \times p$
2	CTXT_A	BLACS context
3	M_A	3
4	N_A	9
5	MB_A	1
6	NB_A	2
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	3

Lower-Band-Packed Storage Mode: The global matrix \boldsymbol{A} with block size of 2 is stored in lower-band-packed storage mode, as follows:
B, D

0 | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[\begin{array}{rr\|rr\|rr\|rr\|r}11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 \\ 21 & 32 & 34 & 54 & 65 & 76 & 87 & 98 & * \\ 31 & 42 & 53 & 64 & 75 & 86 & 97 & * & *\end{array}\right]$ | | | | |

Following is a row-oriented, 1×3 process grid:

$\mathbf{B , D}$	$\mathbf{0 3}$	$\mathbf{1 4}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

The following local arrays A are distributed block-cyclically over the 1×3 process grid:

p,q	0	1	2
	11227788	334499	5566
0	21328798	3454 *	6576
	314297 *	5364 *	7586

where * means you do not have to store a value in that position in the local array. However, these storage positions are required and overwritten during the computation.

The type-501 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A $=501$ for $1 \times p$
2	CTXT_A	BLACS context
3	N_A	9
4	NB_A	2
5	CSRC_A	0
6	LLD_A	3
7	-	Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A = 1 for $1 \times p$
2	CTXT_A	BLACS context
3	M_A	3
4	N_A	9
5	MB_A	1
6	NB_A	2
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	3

For more information on how to store symmetric band matrices, see the ESSL Version 3 Guide and Reference manual.

Block-Cyclically Distributing a General Tridiagonal Matrix: A general tridiagonal matrix, represented as three vectors, must be distributed over a one-dimensional process grid using a block-cyclic data distribution. Because vectors are one-dimensional data structures, you can use a type-501, type-502, or type-1 array descriptor regardless of whether the process grid is $1 \times p$ or $p \times 1$.

The first part of this section shows how to distribute a general tridiagonal matrix \boldsymbol{A} over a $p \times 1$ process grid. The second part shows how to distribute the same matrix over a $1 \times p$ process grid. In both cases, the values contained in the corresponding local arrays are identical.

Assume the following general tridiagonal matrix \boldsymbol{A} of size 7×7 :
$\left[\begin{array}{rrrrrrr}11 & 12 & 0 & 0 & 0 & 0 & 0 \\ 21 & 22 & 23 & 0 & 0 & 0 & 0 \\ 0 & 32 & 33 & 34 & 0 & 0 & 0 \\ 0 & 0 & 43 & 44 & 45 & 0 & 0 \\ 0 & 0 & 0 & 54 & 55 & 56 & 0 \\ 0 & 0 & 0 & 0 & 65 & 66 & 67 \\ 0 & 0 & 0 & 0 & 0 & 76 & 77\end{array}\right]$

Matrix \boldsymbol{A} is stored in tridiagonal storage mode in the following three vectors:

```
dl= (*, 21, 32, 43, 54, 65, 76)
d= (11, 22, 33, 44, 55, 66, 77)
du= (12, 23, 34, 45, 56, 67, *)
```

Block-Cyclic Distribution on a $p \times 1$ Process Grid: The general tridiagonal matrix \boldsymbol{A} is stored in tridiagonal storage mode in vectors $\boldsymbol{d l}, \boldsymbol{d}$, and $\boldsymbol{d u}$.

Following is global vector dl:

Following is global vector \boldsymbol{d} :
B,D
0
1
2

3 | 0 |
| :---: |
| $\left[\begin{array}{c}11 \\ 22 \\ -- \\ 33 \\ 44 \\ -- \\ 55 \\ 66 \\ -- \\ 77\end{array}\right]$ |

Following is global vector du:

B, D
0
\mathbf{R}
:---:
$\left[\begin{array}{c}12 \\ 23 \\ -- \\ 34 \\ 45 \\ -- \\ 56 \\ 67 \\ - \\ *\end{array}\right]$

Following is a column-oriented, 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{3}$	
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

The arrays are block-cyclically distributed over the 3×1 process grid.
Following are the local arrays for DL:

p, q	0
0	*
0	21
	76
----	----
1	32
	43
----	----
2	54
	65

Following are the local arrays for D :

p, q	0
0	11
	22
----	77
-1	33
----	44
2	55
	66

Following are the local arrays for DU:

p,q	0
0	12
	23
	*
1	34
	45
2	
	56
	67

where " \star " means you do not have to store a value in that position in the local array. However, these storage positions are required.

The type-502 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A = 502 for $p \times 1$
2	CTXT_A	BLACS context
3	M_A	7
4	MB_A	2
5	RSRC_A	0
6	LLD_A	Not used
7	-	Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A = 1 for $p \times 1$
2	CTXT_A	BLACS context
3	M_A	7
4	N_A	1
5	MB_A	2
6	NB_A	1
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	Not used

Block-Cyclic Distribution on a $1 \times p$ Process Grid: The general tridiagonal matrix \boldsymbol{A} is stored in tridiagonal storage mode in vectors $\boldsymbol{d l}, \boldsymbol{d}$, and $\boldsymbol{d u}$. Because vectors are one-dimensional data structures, the block-cyclically distributed arrays on a $1 \times p$ process grid are identical to the block-cyclically distributed arrays on a $p \times 1$ process grid.

Following is global vector dl:
$\left.\begin{array}{ccccc}B, D & 0 & 1 & 2 & 3 \\ 0\end{array} \begin{array}{c|cc|c|c}* 21 & 3243 & 54 & 65 & 76\end{array}\right]$

Following is global vector \boldsymbol{d} :
$\begin{array}{llll}B, D & 0 & 1 & 2\end{array}$
$0\left[\begin{array}{ll|ll|ll|l}11 & 22 & 33 & 44 & 55 & 66 & 77\end{array}\right]$

Following is global vectors du:
$\begin{array}{lllll}B, D & 0 & 1 & 2 & 3\end{array}$
$0\left[\begin{array}{ll|ll|lll}12 & 23 & 3445 & 5567 \mid *\end{array}\right]$

Following is a row-oriented, 1×3 process grid:

$\mathbf{B , D}$	$\mathbf{0 3}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

The arrays are block-cyclically distributed over the 1×3 process grid.
Following are the local arrays for DL :

Following are the local arrays for D :

Following are the local arrays for DU:

where " "" means you do not have to store a value in that position in the local array. However, these storage positions are required.

The type-501 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A =501 for $1 \times p$
2	CTXT_A	BLACS context
3	N_A	7
4	NB_A	2
5	CSRC_A	0
6	LLD_A	Not used
7	-	Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A $=1$ for $1 \times p$
2	CTXT_A	BLACS context
3	M_A	1
4	N_A	7
5	MB_A	1
6	NB_A	2
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	Not used

For more information on how to store general tridiagonal matrices, see the ESSL Version 3 Guide and Reference manual.

Block-Cyclically Distributing a Symmetric Tridiagonal Matrix: A symmetric tridiagonal matrix, represented as two vectors, must be distributed over a one-dimensional process grid using a block-cyclic data distribution. Because vectors are one-dimensional data structures, you can use a type-501, type-502, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$.
Note: For both serial ESSL and Parallel ESSL, the $n-1$ elements of the equal off-diagonals of a symmetric tridiagonal matrix are stored in a one-dimensional vector of length n. To be compatible with ScaLAPACK, in

Parallel ESSL, the off-diagonal is chosen to be the superdiagonal and is stored in elements 1 through n - 1 . In the serial ESSL library, the off-diagonal is chosen to be the subdiagonal and is stored in elements 2 through n.

The first part of this section shows a how to distribute a symmetric tridiagonal matrix \boldsymbol{A} over a $p \times 1$ process grid. The second part shows how to distribute the same matrix over a $1 \times p$ process grid. In both cases, the values contained in the corresponding local arrays are identical.

Assume the following symmetric tridiagonal matrix \boldsymbol{A} of size 7×7 :

$$
\left[\begin{array}{rrrrrrr}
10 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 20 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 30 & 3 & 0 & 0 & 0 \\
0 & 0 & 3 & 40 & 4 & 0 & 0 \\
0 & 0 & 0 & 4 & 50 & 5 & 0 \\
0 & 0 & 0 & 0 & 5 & 60 & 6 \\
0 & 0 & 0 & 0 & 0 & 6 & 70
\end{array}\right]
$$

Matrix \boldsymbol{A} is stored in parallel-symmetric-tridiagonal storage mode in the following two vectors:
$\boldsymbol{d}=(10,20,30,40,50,60,70)$
$\boldsymbol{e}=(1,2,3,4,5,6, *)$
Block-Cyclic Distribution on a $p \times 1$ Process Grid: The symmetric tridiagonal matrix \boldsymbol{A} is stored in parallel-symmetric-tridiagonal storage mode in vectors \boldsymbol{d} and e.

Following is global vector \boldsymbol{d} :
$\left.\begin{array}{c}\text { B,D } \\ 0 \\ 1 \\ 2\end{array} \begin{array}{c}0 \\ \\ \end{array} \begin{array}{c}10 \\ 20 \\ 30 \\ - \\ 40 \\ 50 \\ 60 \\ - \\ 70\end{array}\right]$

Following is global vector \boldsymbol{e} :

B, D
0
:---:
2
:---:

Following is a column-oriented, 2×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{2}$	
$\mathbf{1}$	P_{10}

The arrays are block-cyclically distributed over the 2×1 process grid.
Following are the local arrays for D:

p, q	0
----	10
0	20
	30
----	----
1	40
	50
	60

Following are the local arrays for E :

where * means you do not have to store a value in that position in the local array. However, these storage positions are required.

The type-502 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A $=502$ for $p \times 1$
2	CTXT_A	BLACS context
3	M_A	7
4	MB_A	3
5	RSRC_A	0
6	LLD_A	Not used
7	-	Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A = 1 for $p \times 1$
2	CTXT_A	BLACS context
3	M_A	7
4	N_A	1
5	MB_A	3
6	NB_A	1
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	Not used

Block-Cyclic Distribution on a $1 \times p$ Process Grid: The symmetric tridiagonal matrix \boldsymbol{A} is stored in parallel-symmetric-tridiagonal storage mode in vectors \boldsymbol{d} and e. Because vectors are one-dimensional data structures, the block-cyclically distributed arrays on a $1 \times p$ process grid are identical to the block-cyclically distributed arrays on a $p \times 1$ process grid.

Following is global vector \boldsymbol{d} :
B, D
0
0
1
2
$0\left[\begin{array}{lll|lll|l}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}\right]$

Following is global vector \boldsymbol{e} :
$\begin{array}{llll}B, D & 0 & 1 & 2\end{array}$
$0\left[\left.\begin{array}{lll|lll|l}1 & 2 & 3 & \mid & 4 & 5 & 6\end{array} \right\rvert\, *\right]$

Following is a row-oriented, 1×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}

The arrays are block-cyclically distributed over the 1×2 process grid.

Following are the local arrays for D :

Following are the local arrays for E :

where " \star " means you do not have to store a value in that position in the local array. However, these storage positions are required.

The type-501 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A $=501$ for $1 \times p$
2	CTXT_A	BLACS context
3	N_A	7
4	NB_A	3
5	CSRC_A	0
6	LLD_A	Not used
7	-	Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	DTYPE_A = 1 for $1 \times p$
2	CTXT_A	BLACS context
3	M_A	1
4	N_A	7
5	MB_A	1
6	NB_A	3
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	Not used

Block-Cyclically Distributing a General Matrix Containing the Right-Hand
Sides: This section shows how to block-cyclically distribute a general matrix \boldsymbol{B} containing the multiple right-hand sides for the Banded Linear Algebraic Equations subroutines.

Following is the global matrix \boldsymbol{B} :

B, D	0
0	$1 \begin{array}{lll}11 & 1213\end{array}$
	212223
1	313233
	414243
2	515253
	616263
3	717273

Following is a 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{3}$	
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Following are the local arrays:

p,q	0
0	111213
	212223
	717273
1	313233
	414243
2	515253
	616263

The type-502 array descriptor DESC_B contains the following:

DESC_B()	Symbolic name	Value
1	DTYPE_B	DTYPE_B $=502$ for $p \times 1$
2	CTXT_B	BLACS context
3	M_B	7
4	MB_B	2
5	RSRC_B	0
6	LLD_B	3 (For P_{00})
7		$2\left(\right.$ For P_{10} and $\left.P_{20}\right)$
7	-	Reserved

Alternately, the type-1 array descriptor DESC_B contains the following:

DESC_B()	Symbolic name	Value
1	DTYPE_B	DTYPE_B = 1 for $p \times 1$
2	CTXT_B	BLACS context
3	M_B	7
4	N_B	3
5	MB_B	2
6	NB_B	1
7	RSRC_B	0
8	CSRC_B	0
9	LLD_B	3 (For Po0)
		2 (For P P10 and P_{20})

Block-Cyclically Distributing over Two-Dimensional Process Grids

This section shows how to distribute general, symmetric, and upper triangular matrices over a two-dimensional process grid using block-cyclic distribution.

Distributing a General Matrix: This example shows how the data for a global matrix \boldsymbol{A} with block size of 2×3 is distributed block-cyclically over the entire 2×3 process grid. Assume the following 9×26 global matrix \boldsymbol{A} with 45 blocks:

B, D	0	1	2	3	4	5	6	7	8
0	$\begin{array}{lll} 11257 \\ 116 & 9 \end{array}$	893 723	$\begin{array}{lll}7 & 5 & 1 \\ 6 & 5 & 6\end{array}$	$\begin{array}{lll}3 & 2 & 1 \\ 4 & 3\end{array}$	$\begin{array}{rrr}8 & 98 & 4 \\ 7 & 2 & 111\end{array}$	894 721	$\begin{array}{lll}13 & 10 \\ 7 & 6 & 15\end{array}$	$\begin{array}{lll}3 & 3 & 10 \\ 7 & 6 & 15\end{array}$	53 76
1	157 696	193 723	$\begin{array}{lll}1 & 5 & 1 \\ 6 & 5 & 6\end{array}$	$\begin{array}{lll}12 & 1 \\ 4 & 3\end{array}$	$\begin{array}{lll}1 & 9 & 4 \\ 7 & 2 & 1\end{array}$	194 721	$\begin{array}{lll}5 & 8 & 10 \\ 7 & 6 & 19\end{array}$	$\begin{array}{lll}3 & 3 & 11 \\ 7 & 1 & 15\end{array}$	53 72
2	257 696	293 723	$\begin{array}{lll}2 & 5 & 1 \\ 6 & 5 & 6\end{array}$	221 4 4	$\begin{array}{lll}2 & 9 & 4 \\ 7 & 2 & 1\end{array}$	294 721	$\begin{array}{lll}1810 \\ 7 & 3\end{array}$	$\begin{array}{lll}2 & 3 & 11 \\ 7 & 4 & 15\end{array}$	3 7 7
3	$\begin{array}{lll}3 & 5 \\ 6 & 9\end{array}$	3	$\begin{array}{lll}3 & 5 & 1 \\ 6 & 5 & 6\end{array}$	$\begin{array}{lll}3 & 2 & 1 \\ 4 & 3\end{array}$	$\begin{array}{lll}3 & 9 & 4 \\ 7 & 2 & 1\end{array}$	$\begin{array}{lll}3 & 9 & 4 \\ 7 & 2 & 1\end{array}$	9810 1 349	$\begin{array}{lll}2 & 3 & 11 \\ 7 & 4 & 55\end{array}$	33 73
4	2019	456	987	143	11521	476	9812	3918	24

Note: In this example, the global matrix dimensions are not divisible by the respective block size. As a result, all of the block sizes are 2×3, except for blocks in the last row and the last column of the blocked matrix.

Two-dimensional, 2×3 process grid:

B,D	$\mathbf{0 3 6}$	$\mathbf{1 4 7}$	25 8
$\mathbf{0}$	P_{00}	P_{01}	P_{02}
$\mathbf{2}$			
$\mathbf{4}$			
$\mathbf{1}$	P_{10}	P_{11}	P_{12}
$\mathbf{3}$			

Local arrays:

p,q	0	1	2
0	1125732211310	89389843310	75189453
	116964327615	723721117615	65672176
	2572211810	2932942311	25129433
	6964327319	72372217415	65672178
	20191439812	4561151213918	98747624
1	157121510810	193319943311	1511954
	6964327619	7237218715	65672172
	3573219810	3933942311	35139433
	6964321349	7237217455	65672173

Array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	1
2	CTXT_A	BLACS context
3	M_A	9
4	N_A	26
5	MB_A	2
6	NB_A	3
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	5 (For P_{00}, P_{01}, and $\left.P_{02}\right)$
		4 (For P_{10}, P_{11}, and $\left.P_{12}\right)$

Distributing a Symmetric Matrix: This example shows how the data for a global symmetric matrix \boldsymbol{A} with block size of 3×3 is distributed block-cyclically over a 2×3 process grid. Assume the following 18×18 global symmetric matrix \boldsymbol{A} with 36 blocks:

B, D	0	1	2	3	4	5
0	123	456	$7 \begin{array}{lll}7 & 8 & 9\end{array}$	101112	131415	161718
	21011	121314	151617	181920	212223	242526
	31120	212223	242526	272829	303132	333435
1	41221	235	71113	171923	293137	414347
	51322	$3 \begin{array}{lll}3 & 1 & 4\end{array}$	91625	364964	811012	141619
	61423	545	61011	151620	212526	303135
2	$\begin{array}{lll}7 & 15 \\ 8\end{array}$	$\begin{array}{rrr}7 & 9 & 6\end{array}$	123	$4 \quad 5 \quad 6$	$7 \quad 8 \quad 9$	101112
	81625	111610	21113	151719	212325	272931
	91726	132511	3132	468	101214	161820
3	101827	173615	4154	$3 \quad 6 \quad 9$	246	$3 \quad 6 \quad 9$
	111928	194916	5176	612	345	678
	122029	236420	6198	$9 \quad 21$	357	91113
4	132130	298121	72110	233	202221	242325
	142231	311025	82312	445	2245	$6 \quad 910$
	152332	371226	92514	$6 \quad 5 \quad 7$	215	278
5	162433	411430	102716	$3 \quad 6 \quad 9$	2462	41115
	172534	431631	112918	6711	$\begin{array}{lll}23 & 9 & 7\end{array}$	111713
	182635	471935	123120	$9 \quad 813$	25108	151321

Two-dimensional, 3×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2 4}$	$\mathbf{1 3 5}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{3}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{4}$		
$\mathbf{2}$	P_{20}	P_{21}
$\mathbf{5}$		

The symmetric matrix is distributed block-cyclically in lower storage mode over a 3×2 process grid:

where * means you do not have to store a value in that position in the local array. However, these storage positions are required.

Notice that the local arrays are not symmetric.
Array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	1
2	CTXT_A	BLACS context
3	M_A	18
4	N_A	18
5	MB_A	3
6	NB_A	3
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	6

For more information on how to store symmetric matrices, see the ESSL Version 3 Guide and Reference manual.

Distributing an Upper Triangular Matrix: This example shows how the data for a global upper triangular matrix \boldsymbol{A} with block size of 2×2 is distributed block-cyclically over a 2×3 process grid. Assume the following 12×12 global upper triangular matrix \boldsymbol{A} with 36 blocks:

B, D	0	1	2	3	4	5
0	$\begin{array}{ll} 2 & 1 \\ 0 & 3 \end{array}$	$\begin{array}{lr}2 & 13 \\ 4 & 4\end{array}$	1310 11	1521 41	2631 5967	
1	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{ll}5 & 9 \\ 0 & 7\end{array}$	$\begin{array}{rr}6 & 9 \\ 16 & 8\end{array}$	3365 $7 \quad 33$	$21 \quad 14$ $3 \quad 7$	$\begin{array}{ll}9 & 4 \\ 5 & 3\end{array}$
2	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	1125 $0 \quad 13$	$\begin{array}{rr}10 & 5 \\ 36 & 12\end{array}$	$\begin{array}{rr}23 & 7 \\ 3 & 13\end{array}$	10 5
3	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	1749 $0 \quad 19$	$\begin{array}{rrr}14 & 1 \\ 64 & 16\end{array}$	$\begin{array}{ll}7 & 2 \\ 1 & 7\end{array}$
4	0 0 0	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	2381 $0 \quad 29$	$\begin{array}{rr}6 & 15 \\ 9 & 4\end{array}$
5	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{ll}5 & 3 \\ 0 & 4\end{array}$				

Two-dimensional, 2×3 process grid:

$\mathbf{B , D}$	$\mathbf{0 3}$	$\mathbf{1 4}$	$\mathbf{2 5}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}
$\mathbf{2}$			
$\mathbf{4}$			
$\mathbf{1}$	P_{10}	P_{11}	P_{12}
$\mathbf{3}$			
$\mathbf{5}$			

The following local arrays are distributed block-cyclically in upper-triangular storage mode over a 2×3 process grid:

where " \star " means you do not have to store a value in that position in the local array. However, these storage positions are required.

Notice the local arrays are not upper triangular.

Array descriptor DESC_A contains the following:

DESC_A()	Symbolic name	Value
1	DTYPE_A	1
2	CTXT_A	BLACS context
3	M_A	12
4	N_A	12
5	MB_A	2
6	NB_A	2
7	RSRC_A	0
8	CSRC_A	0
9	LLD_A	6

For more information on how to store triangular matrices, see the ESSL Version 3 Guide and Reference manual.

Specifying Sparse Matrices for the Fortran 90 and Fortran 77 Sparse Linear Algebraic Equations

For the Fortran 90 and Fortran 77 sparse linear algebraic equation subroutines, you must use the sparse utility subroutines provided with Parallel ESSL to build the sparse matrices on each process in the process grid. This sections shows the calling sequence arguments associated with the sparse matrix \boldsymbol{A}.

Fortran 90 Sparse Linear Algebraic Equation Subroutines

This section contains the following sections:

- "Calling Sequence Arguments for the Sparse Matrix"
- "Derived Data Types" on page 61

Calling Sequence Arguments for the Sparse Matrix: This section describes the calling sequence arguments associated with a sparse matrix \boldsymbol{A}.

Table 23. Calling Sequence Arguments for the Sparse Matrix

Arguments	Meaning
a	is the local part of the sparse matrix \boldsymbol{A} and specified as derived data type D_SPMAT. For more details about D_SPMAT, see "Derived Data Type D_SPMAT" on page 61.
$i a$	is the row index of the sparse matrix \boldsymbol{A}.
$j a$	is the column index of the sparse matrix \boldsymbol{A}.
desc_a	is the array descriptor for the sparse matrix \boldsymbol{A} and specified as derived data type DESC_TYPE. For more details about DESC_TYPE, see "Derived Data Type DESC_TYPE" on page 61.
parts	is a user-supplied subroutine that specifies a mapping between a global index for an element in the global sparse matrix and its corresponding storage location on one or more processes. For details about how you must define the PARTS subroutine, see "Programming Considerations for the Parts Subroutine (Fortran 90 and Fortran 77)" on page 65.

Derived Data Types: Some of the arguments of the Fortran 90 sparse linear algebraic equations and their utility subroutines are derived data types.

For more information on derived data types, see the XL Fortran manuals.
Derived Data Type D_SPMAT: Table 24 describes the components of D_SPMAT that you must provide as input to the PSPINS subroutine. In addition to the components you provide, Parallel ESSL creates other components as necessary that are only for internal use.

Table 24. Components of D_SPMAT		
Components of D_SPMAT	Description	Scope
M	Number of local rows	Local
N	Number of local columns	Local
FIDA	Storage mode for the submatrix	Global
AS	Pointer to the submatrix, which contains the coefficients.	Local
IA1	Pointer to the column numbers of each non-zero element in the submatrix.	Local
IA2	Pointer to the starting positions of each row of the submatrix and one position past the end of the submatrix.	Local
The AS, IA1, and IA2 components, which are described in this table depend on how you specify the FIDA component. This description assumes you are using storage by rows. For details about how these components must be specified and their special restrictions, see the appropriate argument descriptions in "PSPINS-Inserts Local Data into a General Sparse		

Derived Data Type DESC_TYPE: Parallel ESSL builds the array descriptor, desc_a, which is specified as derived data type DESC_TYPE, and its components, as follows:

- PADALL allocates space for the array descriptor and initializes its components.
- PSPINS updates some components of the array descriptor.
- PSPASB makes final updates to some components of the array descriptor.

MATRIX_DATA is one component of the array descriptor. Table 25 on page 62 describes the elements of DESC_A\%MATRIX_DATA that you may want to reference. However, your application programs should not modify the components of the array descriptor directly. These components should only be updated with calls to PSPINS and PSPASB.

Table 25. Elements	DESC_A\%	A(_)			
MATRIX_DATA()	Name	Description	Data Type	Limits	Scope
1	DEC_TYPE	Type of data distribution	Fullword integer	Internal format	Global
2	CTXT	BLACS context	Fullword integer	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M	Number of rows in the global general sparse matrix \boldsymbol{A}	Fullword integer	$\mathrm{M} \geq 0$ and $\mathrm{M}=\mathrm{N}$	Global
4	N	Number of columns in the global general sparse matrix \boldsymbol{A}	Fullword integer	$\mathrm{N} \geq 0$ and $\mathrm{M}=\mathrm{N}$	Global
5	N_ROW	Number of local rows	Fullword integer	N_ROW ≥ 1	Local
6	N_COL	Number of local columns \dagger	Fullword integer	N_COL ≥ 1	Local
†DESC_A\%MATRIX_DATA(6) is stable after you have placed a call to PSPASB.					

Fortran 77 Sparse Linear Algebraic Equation Subroutines

This section contains the following sections:

- "Calling Sequence Arguments for the Sparse Matrix"
- "Array Descriptor" on page 63

Calling Sequence Arguments for the Sparse Matrix: This section describes the calling sequence arguments associated with a general sparse matrix \boldsymbol{A}.

Table 26 (Page 1 of 2). Calling Sequence Arguments for the Sparse Matrix	
Arguments	Meaning
as	is the local part of a matrix
ia	is the row index of the sparse matrix.
ja	is the column index of the sparse matrix.
ia1	is the local part of an array containing the sparse matrix indices.
ia2	is the local part of an array containing the sparse matrix indices. infoa is an integer array for a matrix. For details about infoa see Table 27 is an array descriptor for the sparse matrix. For details about desc_a see "Array Descriptor" on page 63.
desc_a	der

Table 26 (Page 2 of 2). Calling Sequence Arguments for the Sparse Matrix

Arguments	Meaning
parts	is a user-supplied subroutine that specifies a mapping between a global index for an element in the global sparse matrix and its corresponding storage location on one or more processes.
For details about how you must define the PARTS subroutine, see "Programming Considerations for the Parts Subroutine (Fortran 90 and Fortran 77)" on page 65.	

Table 27. Elements of INFOA()		
INFOA()	Description	Scope
1	Length of an array for a matrix	Local
2	Length of an array containing sparse matrix indices.	Local
3	Length of an array containing sparse matrix indices.	Global
4	Storage format of the matrix.	Global
5	Type of matrix.	Local
6	Number of local rows.	Local
7	Number of local columns.	-
8 through 30	Reserved for internal use.	
If infoa is in a subroutine calling sequence, you must always specify a value for INFOA(1), INFOA(2), and INFOA(3).		

Array Descriptor: An integer array descriptor, desc_a, is needed to establish a mapping between the global general sparse matrix \boldsymbol{A} and its corresponding distributed memory location. You must specify an array descriptor length, DLEN, in DESC_A(11) on input to PADINIT:

- For the maximum length you should need, use the following formulas to calculate the length of the array descriptor, DLEN:

If there is no overlap,
DLEN $=33+3(n p)+n+\left(\mathrm{N} _\mathrm{COL}\right)+(n p-1)\left(\mathrm{N} _\right.$ROW $)+\left(\mathrm{N} _\right.$COL-N_ROW $)$

If there is no overlap, $33+3(n p)+4 n$ is an upper bound for DLEN.
If overlap occurs, add at most to DLEN: 3(np)+1+2(np)(N_ROW)
where:
$-\mathrm{N} _$ROW $\leq n$

- N_COL $\leq n$
- N_ROW is approximately $n / n p$
- n is the order of the global general sparse matrix \boldsymbol{A}.
- $n p$ is the number of processes in the process grid.
- Use the following formula(s) to calculate a more typical value of the length of the array descriptor, DLEN:

$$
33+3(n p)+\alpha n \leq \text { DLEN } \leq 33+6(n p)+3 n
$$

where:
$-1<\alpha \leq 2$

- n is the order of the global general sparse matrix \boldsymbol{A}.
- $n p$ is the number of processes in the process grid.

Note: The actual length of the array descriptor depends on the sparse matrix structure and therefore is known after a call to PDSPASB.

Parallel ESSL builds the remaining elements in the array descriptor, as follows:

- PADINIT initializes the array descriptor.
- PDSPINS updates parts of the array descriptor.
- PDSPASB makes final updates to some parts of the array descriptor.

You may want to use some of the values in desc_a to build vector \boldsymbol{b} containing the right-hand side and vector \boldsymbol{x} containing initial guess to the solution. (Parallel ESSL creates other elements in the array descriptor that are for internal use only.) Table 28 describes the elements of of the array descriptor that you may want to reference. Your application programs should not modify the elements of the array descriptor directly. The elements should only be updated with calls to PDSPINS and PDSPASB.

Table 28 (Page 1 of 2). Elements of DESC_A()					
DESC_A()	Name	Description	Data Type	Limits	Scope
1	DEC_TYPE	Type of data distribution	Fullword integer	Internal format	Global
2	CTXT	BLACS context	Fullword integer	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M	Number of rows in the global general sparse matrix \boldsymbol{A}	Fullword integer	$\mathrm{M} \geq 0$ and $\mathrm{M}=\mathrm{N}$	Global
4	N	Number of columns in the global general sparse matrix \boldsymbol{A}	Fullword integer	$\mathrm{N} \geq 0$ and $\mathrm{M}=\mathrm{N}$	Global
5	N_ROW	Number of local rows \dagger	Fullword integer	$1 \leq N _R O W \leq n$	Local
6	N_COL	Number of local columns \ddagger	Fullword integer	$1 \leq \mathrm{N}$-COL $\leq n$	Local
11	DLEN	Length of the array descriptor	Fullword integer	See the formulas shown in the beginning of this section.	Global

Table 28 (Page 2 of 2). Elements of DESC_A()

DESC_A()	Name	Description	Data Type	Limits	Scope

†DESC_A(5) is stable after you have placed a call to PADINIT. You can use this value to calculate Iprcs in PDSPGPR.
$\ddagger D E S C _A(6)$ is stable after you have placed a call to PDSPASB. You can use this value to calculate lprcs in PDSPGPR.

DESC_A(7) through DESC_A(10) are only for internal use.
DESC_A(12) through DESC_A(DLEN) are only for internal use.

Programming Considerations for the Parts Subroutine (Fortran 90 and Fortran 77)

This section describes how to design and code the parts subroutine for use by the Parallel ESSL Fortran 90 and Fortran 77 sparse linear algebraic equation subroutines and their utility subroutines.

You must supply a separate subroutine that is callable by Parallel ESSL. You must specify the name of the subroutine in the parts argument. This subroutine name is selected by you. You must declare parts as an external subroutine in your application program.

Coding and Designing the Parts Subroutine for the Sparse Subroutines: The parts subroutine specifies the mapping between a global index for an element in the global general sparse matrix \boldsymbol{A} and its corresponding storage location on a process or processes (if overlap occurs).

You should design the parts subroutine so it receives, as input, global_index, n, and $n p$. It also must return to Parallel ESSL, as output, the information in the $p v$ and $n v$ arguments indicating the storage location of global_index on one or more processes.

Syntax

Fortran	CALL PARTS (global_index, $n, n p, p v, n v$)
\mathbf{C}	parts (\&global_index, \&n, \&np, pv, \&nv);
$\mathbf{C + +}$	extern "Fortran" void parts(const int \&, const int \&, const int \&, int *, const int \&); parts (global_index, $n, n p, p v, n v) ;$

On Entry
global_index
is an input scalar argument containing an integer that indicates the global index for an element in the global general sparse matrix \boldsymbol{A}, where:
$1 \leq$ global_index $\leq n$.
n
is an input scalar argument containing an integer that indicates the order of the global general sparse matrix \boldsymbol{A}, where: $n \geq 0$.
$n p$
is an input scalar argument containing an integer that indicates the number of processes in the process grid, where: $n p>0$.

On Output

pv
is an output array containing integers that identify which processes are receiving the global index, global_index, where: $0 \leq p v(i)<n p$ and $1 \leq i \leq n v$. $n v$
is an output scalar argument containing an integer that indicates the number of unique processes specified in the $p v$ argument, where: $1 \leq n v \leq n p$.

Notes

1. The parts subroutine can be coded in Fortran, C, or C++. However, for C and C++ programs, all the arguments must be passed by reference.

Examples for the PARTS Subroutine: Examples of how you could code parts for different types of data distribution are shown in:

- "PART_BLOCK (Block Data Distribution)" on page 992
- "Block Data Distribution for a C Program"
- "PARTBCYC (Block-Cyclic Data Distribution)" on page 993
- "PARTRAND (Random Data Distribution)" on page 994

Block Data Distribution for a C Program

```
void part_block(global_indx,n,nnodes,pv,nv)
int *global_indx,*n,*nnodes,*pv,*nv;
{
    int dim block;
        dim_block = (*n + *nnodes -1)/(*nnodes);
        *nv = 1;
        pv[*nv-1] = (*global_indx - 1)/dim_block;
}
```


Specifying Sequences for the Fourier Transforms

This section shows how to use block-column distribution to distribute a two- or three-dimensional sequence over a one-dimensional process grid. It also describes how some of the two- and three-dimensional complex sequences are stored in FFT-packed storage mode.

Two-Dimensional Sequence

Following is a two-dimensional sequence using zero-based indexing where the first dimension is $n 1$, and the second dimension is $n 2$:

$$
\begin{array}{cccc}
a_{0,0} & a_{0,1} & \cdots & a_{0, n 2-1} \\
a_{1,0} & a_{1,1} & \cdots & \cdot \\
\cdot & \cdot & & a_{1, n 2-1} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
a_{n 1-1,0} & a_{n 1-1,1} & \cdots & \cdot \\
\cdot & a_{n 1-1, n 2-1}
\end{array}
$$

Distributing Data: For the Fourier transform subroutines, a two-dimensional sequence is distributed over a one-dimensional process grid, using block-column distribution. The process grid must be arranged as a row ($1 \times q$, where q is the number of processes).
Note: Two-dimensional sequences can be thought of as two-dimensional matrices. The term sequence is used because it is traditional for Fourier transforms.

You must distribute the input sequence sequentially to the processes in the process grid, using block-column distribution. Parallel ESSL also returns the output sequence using block-column distribution. The output sequence may be returned in normal or transposed form.

A sequence can be distributed unevenly; that is, one process in the process grid can receive an array that is smaller than other processes. It can also happen that some processes receive no data. "Example 2" on page 661 shows an example of uneven data distribution.
$\operatorname{LOCq}(n)$ represents the number of columns that a process would receive if n is distributed block over q processes. You need to calculate $\operatorname{LOCq}(n)$ for each process, as follows:

- The number of columns, $\operatorname{LOCq}(n)$, that processes P_{00} through $P_{0, k-1}$ receive is calculated as follows:
$\operatorname{LOCq}(n)=$ NB2 $=(n+q-1) / q$
- The number of columns, $\operatorname{LOCq}(n)$, that process $\mathrm{P}_{0, k}$ receives is calculated as follows:
$\operatorname{LOCq}(n)=n-(q-1)(N B 2)$
- Processes $\mathrm{P}_{0, k+1}$ through $\mathrm{P}_{0, q-1}$ would not receive any data. This may happen if there is not enough data to distribute to all the specified processes.
where:
n represents the following:
n is the second dimension, $n 2$, of the sequence (for normal form)
n is the first dimension, $n 1$, of the sequence (for transposed form and the sequence is not stored in FFT-packed storage mode)
n is $n 1 / 2$ (for transposed form and the sequence is stored in FFT-packed storage mode)
q is the number processes in the process grid
$P_{0, k}$ is the process that receives the last block of data. For uneven data distribution, $\mathrm{P}_{0, k}$ would receive an array that is smaller than the other processes receive.

Following is an example of block-column distribution for a two-dimensional sequence over a one-dimensional, row-oriented process grid.

Global sequence of size 8×12 :

B, D	0	1	2	3
	01020	304050	607080	90100110
	11121	314151	617181	91101111
	21222	324252	627282	92102112
	31323	334353	637383	93103113
0	41424	344454	647484	94104114
	51525	354555	657585	95105115
	61626	364656	667686	96106116
	71727	374757	677787	97107117

Row-oriented, 1×4 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}	P_{03}

Local arrays:

p,q	0			1			2			3		
	0	10	20	30	40	50	60	70	80	90	100	110
	1	11	21	31	41	51	61	71	81	91	101	111
	2	12	22	32	42	52	62	72	82	92	102	112
	3	13	23	33	43	53	63	73	83	93	103	113
0	4	14	24	34	44	54	64	74	84	94	104	114
	5	15	25	35	45	55	65	75	85	95	105	115
	6	16	26	36	46	56	66	76	86	96	106	116
	7	17	27	37	47	57	67	77	87	97	107	117

An example of the distribution of a two-dimensional sequence in a Fortran 90 program is shown in Appendix B. See the following:

- The subroutine initialize-scale in "Module Scale (Message Passing)" on page 933, which determines the parameters to be used for block distribution, ultimately setting up the correct parameters for distributing an FFT sequence.
- The subroutine get-diffusion_matrix in "Module Fourier (Message Passing)" on page 925 , which shows how a local array can be assigned values.
- The subroutine rlocal_to_rglobal in "Module Scale (Message Passing)" on page 933, which shows gathering the local portions of the block-distributed real array to generate the corresponding global sequence/matrix.

FFT-Packed Storage Mode: The output sequence for PSRCFT2 and PDRCFT2, and the input sequence for PSCRFT2 and PDCRFT2 are stored in FFT-packed storage mode because they consist of complex-conjugate, even symmetric data.

For FFT-packed storage mode, only certain elements of the complex-conjugate, even symmetric data are stored. This section describes how the complex elements of sequence y, which is the output sequence for PSRCFT2 and PDRCFT2, and the input sequence for PSCRFT2 and PDCRFT2, are stored in global matrices \boldsymbol{Y} and \boldsymbol{X}, respectively.

For example, suppose y is the two-dimensional sequence to be stored in FFT-packed storage mode for PDRCFT2. The following list describes how the elements in y correspond to the elements in the global matrix \boldsymbol{Y} :

- The real part of $y_{0,0}$ is stored in the real part of $\boldsymbol{Y}_{0,0}$
- The real part of $y_{0, n 2 / 2}$ is stored in the imaginary part of $\boldsymbol{Y}_{0,0}$
- The real part of $y_{n 1 / 2,0}$ is stored in the real part of $\boldsymbol{Y}_{n 2 / 2,0}$
- The real part of $y_{n 1 / 2, n 2 / 2}$ is stored in the imaginary part of $\boldsymbol{Y}_{n 2 / 2,0}$
- The elements $y_{0,1: n 2 / 2-1}$ are stored in elements $\boldsymbol{Y}_{1: n 2 / 2-1,0}$
- The elements $y_{n 1 / 2,1: n 2 / 2-1}$ are stored in elements $\boldsymbol{Y}_{n 2 / 2+1: n 2-1,0}$
- The rows $y_{1: n 1 / 2-1, i}$ are stored in columns $\boldsymbol{Y}_{i, 1: n 1 / 2-1}$
where:
$n 1$ is the first dimension of array y
$n 2$ is the second dimension of array y
$i=0, \ldots, n 2-1$
The remaining elements of y are not stored because they are the complex conjugates of elements already stored. These relationships are shown in the following equations:
- $y_{0, n 2-j}=\bar{y}_{0, j}$ where $j=1, \ldots, n 2 / 2-1$
- $y_{n 1 / 2, n 2-j}=\bar{y}_{n 1 / 2, j}$ where $j=1, \ldots, n 2 / 2-1$
- $y_{n 1-i, 0}=\bar{y}_{i, 0}$ where $i=1, \ldots, n 1 / 2-1$
- $y_{n 1-i, n 2 / 2}=\bar{y}_{i, n 2 / 2}$ where $i=1, \ldots, n 1 / 2-1$
- $y_{n 1-i, n 2-j}=\bar{y}_{i, j}$ where $i=1, \ldots, n 1 / 2-1$ and $j=1, \ldots, n 2 / 2-1, n 2 / 2+1, \ldots, n 2-1$
where:
$n 1$ is the first dimension of array y
$n 2$ is the second dimension of array y

The following example, which uses zero-based indexing, has complex conjugate, even symmetry. The dimensions of array y are 8×8 (that is $n 1=n 2=8$), where array y is:
$\left[\begin{array}{rrrrrrrr}(111,0) & (-3,23) & (-8,10) & (-9,4) & (-9,0) & (-9,-4) & (-8,-10) & (-3,-23) \\ (10,-10) & (4,4) & (9,3) & (-6,2) & (-1,2) & (-2,1) & (-3,1) & (-5,-3) \\ (6,-4) & (1,3) & (0,2) & (-7,1) & (-1,9) & (-1,4) & (-2,-4) & (-2,-2) \\ (6,-2) & (6,2) & (-5,1) & (-8,8) & (-1,4) & (-1,-1) & (-1,-8) & (-1,-2) \\ (6,0) & (-3,2) & (-9,1) & (-1,5) & (-1,0) & (-1,-5) & (-9,-1) & (-3,-2) \\ (6,2) & (-1,2) & (-1,8) & (-1,1) & (-1,-4) & (-8,-8) & (-5,-1) & (6,-2) \\ (6,4) & (-2,2) & (-2,4) & (-1,-4) & (-1,-9) & (-7,-1) & (0,-2) & (1,-3) \\ (10,10) & (-5,3) & (-3,-1) & (-2,-1) & (-1,-2) & (-6,-2) & (9,-3) & (4,-4)\end{array}\right]$

Because zero-based indexing is used, $y_{0,0}=(111,0), y_{3,2}=(-5,1)$, and $y_{5,7}=(6,-2)$.

In this example, the real part of $y_{0,0}$ is 111 , the real part of $y_{0,4}$ is- 9 , the real part of $y_{4,0}$ is 6 , the real part of $y_{4,4}$ is- 1 , and their imaginary parts are all zero. For the FFT-packed storage mode, the imaginary parts at these particular positions are not stored. Therefore, the number stored at position $\boldsymbol{Y}_{0,0}$ is $(111,-9)$, which represents the contents of both $y_{0,0}$ and $y_{0,4}$. The number stored at position $\boldsymbol{Y}_{4,0}$ is $(6,-1)$, which represents the contents of both $y_{4,0}$ and $y_{4,4}$.

The elements $y_{0,1: 3}$ are stored in $\boldsymbol{Y}_{1: 3,0}$. The elements $y_{4,1: 3}$ are stored in $\boldsymbol{Y}_{5: 7,0}$. The rows $y_{1: 3,0: 7}$ are stored in columns $\boldsymbol{Y}_{0: 7,1: 3}$. For FFT-packed storage mode, the elements in positions $y_{0,5: 7}, y_{4,5: 7}$, and rows $y_{5: 7,0: 7}$ are not stored.

Following is the global matrix \boldsymbol{Y} in FFT-packed storage mode:
B, D
$0 \quad\left[\begin{array}{rr|rr}(111,-9) & (10,-10) & (6,-4) & (6,-2) \\ (-3,23) & (4,-4) & (1,3) & (6,2) \\ (-8,10) & (9,-3) & (0,2) & (-5,1) \\ (-9,4) & (-6,2) & (-7,1) & (-8,8) \\ (6,-1) & (-1,2) & (-1,9) & (-1,4) \\ (-3,2) & (-2,-1) & (-1,4) & (-1,-1) \\ (-9,1) & (-3,-1) & (-2,-4) & (-1,-8) \\ (-1,5) & (-5,-3) & (-2,-2) & (-1,-2)\end{array}\right]$

Following is a 1×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}

After the data has been distributed over the process grid, the following local arrays for \boldsymbol{Y} are stored in FFT-packed storage mode:

p,q	0		1	
0	$(111,-9)$	$(10,-10)$	$(6,-4)$	$(6,-2)$
	$(-3,23)$	$(4,4)$	$(1,3)$	$(6,2)$
	$(-8,10)$	$(9,3)$	$(0,2)$	$(-5,1)$
	$(-9,4)$	$(-6,2)$	$(-7,1)$	$(-8,8)$
	$(6,-1)$	$(-1,2)$	$(-1,9)$	$(-1,4)$
	$(-3,2)$	$(-2,1)$	$(-1,4)$	$(-1,-1)$
	$(-9,1)$	$(-3,1)$	$(-2,-4)$	$(-1,-8)$
	$(-1,5)$	$(-5,-3)$	$(-2,-2)$	$(-1,-2)$

Example: The following example shows how to pack data from a two-dimensional array X into a global array $X G$, whose columns could then be block-column distributed among q processes. Array X must contain complex-conjugate even symmetric data.

Each of the q processes would get $\operatorname{LOCq}(n)$ consecutive columns of array XG. Array X is stored as $n 1$ rows by $n 2$ columns. Array $X G$ is stored as $n 2$ rows by $n 1 / 2$ columns. This is the transposed form required by PSCRFT2 and PDCRFT2 for the input array.

```
PROGRAM PACK2D
IMPLICIT NONE
INTEGER*4 N1,N2,INDEX,JINDEX
PARAMETER(N1 = 64, N2 = 32)
COMPLEX*16 XG(0:N2-1,0:N1/2-1)
COMPLEX*16 X(0:N1-1,0:N2-1)
XG(0,0) = ( REAL(X(0,0)) , REAL(X(0,N2/2)) )
XG(N2/2,0) = ( REAL(X(N1/2,0)) , REAL(X(N1/2,N2/2)) )
DO INDEX = 1 , N2/2-1
    XG(INDEX,0) = X(0,INDEX)
    XG(N2/2+INDEX,0) = X(N1/2,INDEX)
ENDDO
DO JINDEX = 0,N2-1
    DO INDEX = 1,N1/2-1
        XG(JINDEX,INDEX) = X(INDEX,JINDEX)
    ENDDO
ENDDO
STOP
END
```


Three-Dimensional Sequences

Following is a three-dimensional sequence using zero-based indexing where the first dimension is $n 1$, the second dimension is $n 2$, and the third dimension is $n 3$:

Plane 0:

$$
\begin{array}{cccc}
a_{0,0,0} & \cdot & \cdot & a_{0, n 2-1,0} \\
a_{1,0,0} & \cdot & \cdot & a_{1, n 2-1,0} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
a_{n 1-1,0,0} & \cdot & \cdot & a_{n 1-1, n 2-1,0}
\end{array}
$$

Plane 1:

$$
\begin{array}{cccc}
a_{0,0,1} & \cdot & \cdot & a_{0, n 2-1,1} \\
a_{1,0,1} & \cdot & \cdot & a_{1, n 2-1,1} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
a_{n 1-1,0,1} & \cdot & \cdot & a_{n 1-1, n 2-1,1}
\end{array}
$$

Plane (n3-1):

$$
\begin{array}{cccc}
a_{0,0, n 3-1} & \cdot & \cdot & \cdot \\
a_{1,0, n 3-1} & \cdot & \cdot & a_{1, n 2-1, n 3-1} \\
\cdot & & & a_{1, n 2-1, n 3-1} \\
\cdot & & & \cdot \\
\cdot & & & \cdot \\
a_{n 1-1,0, n 3-1} & \cdots & \cdot & a_{n 1-1, n 2-1, n 3-1}
\end{array}
$$

Distributing Data: For the Fourier transform subroutines, a three-dimensional sequence is distributed over a one-dimensional process grid, using block-plane distribution. The process grid must be arranged as a row ($1 \times q$, where q is the number of processes).

Note: Three-dimensional sequences can be thought of as three-dimensional matrices. The term sequence is used because it is traditional for Fourier transforms.

You must distribute the three-dimensional input sequence sequentially to the processes in the process grid, using block-plane distribution. Parallel ESSL also returns the output sequence using block-plane distribution. The output sequence may be returned in normal or transposed form.

A sequence can be distributed unevenly; that is, one process in the process grid can receive an array that is smaller than other processes. It can also happen that
some processes receive no data. "Example 2" on page 681 shows an example of when a process does not receive any data.
$\operatorname{LOCq}(n)$ represents the number of planes that a process would receive if n is distributed block over q processes. You need to calculate LOCq (n) for each process, as follows:

- The number of planes, $\operatorname{LOCq}(n)$, that processes P_{00} through $P_{0, k-1}$ receive is calculated as follows:

$$
\operatorname{LOCq}(n)=\mathrm{NB} 3=(n+q-1) / q
$$

- The number of planes, $\operatorname{LOCq}(n)$, that process $P_{0, k}$ receives is calculated as follows:
$\operatorname{LOCq}(n)=n-(q-1)(\mathrm{NB} 3)$
- Processes $P_{0, k+1}$ through $P_{0, q-1}$ would not receive any data. This may happen if there is not enough data to distribute to all the specified processes.
where:
n represents the following:
n is the third dimension, $n 3$, of the sequence (for normal form)
n is the first dimension, $n 1$, of the sequence (for transposed form and the sequence is not stored in FFT-packed storage mode)
n is $n 1 / 2$ (for transposed form and the sequence is stored in FFT-packed storage mode)
q is the number processes in the process grid $\mathrm{P}_{0, k}$ is the process that receives the last block of data. For uneven data distribution, $\mathrm{P}_{0, k}$ would receive an array that is smaller than the other processes receive.

Following is an example of block plane distribution for a three-dimensional sequence over a one-dimensional process grid.

Three-dimensional, global sequence with four planes that are of size 2×2 :

Row-oriented, 1×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}

Local arrays:

FFT-Packed Storage Mode: The output sequence for PSRCFT3 and PDRCFT3, and the input sequence for PSCRFT3 and PDCRFT3 are stored in FFT-packed storage mode because they consist of complex-conjugate, even symmetric data.

For FFT-packed storage mode, only certain elements of the complex-conjugate, even symmetric data are stored. This section describes how the complex elements of sequence y, which is the output sequence for PSRCFT3 and PDRCFT3, and the input sequence for PSCRFT3 and PDCRFT3, are stored in global matrices \boldsymbol{Y} and \boldsymbol{X}, respectively.

For example, suppose y is the three-dimensional sequence to be stored in FFT-packed storage mode for PDRCFT3. The following list describes how the elements in y correspond to the complex elements in the global matrix \boldsymbol{Y} :

- The real part of $y_{0,0,0}$ is stored the real part of $\boldsymbol{Y}_{0,0,0}$
- The real part of $y_{0,0, n 3 / 2}$ is stored in the imaginary part of $\boldsymbol{Y}_{0,0,0}$
- The elements $y_{0,0,1: n 3 / 2-1}$ are stored in elements $\boldsymbol{Y}_{1: n 3 / 2-1,0,0}$
- The real part of $y_{0, n 22,0}$ is stored in the real part of $\boldsymbol{Y}_{n 3 / 2,0,0}$
- The real part of $y_{0, n / 2 / 2, n 3 / 2}$ is stored in the imaginary part of $\boldsymbol{Y}_{n 3 / 2,0,0}$
- The elements $y_{0, n 22,1: n 3 / 2-1}$ are stored in elements $\boldsymbol{Y}_{n 3 / 2+1: n 3-1,0,0}$
- The real part of $y_{n / 2,0,0}$ is stored in the real part of $\boldsymbol{Y}_{0, n / 2 / 2,0}$
- The real part of $y_{n 1 / 2,0, n 3 / 2}$ is stored in the imaginary part of $Y_{0, n 22,0}$
- The elements $y_{n 1 / 2,0,1: n 3 / 2-1}$ are stored in elements $Y_{1: n 3 / 2-1, n / 2,0}$
- The real part of $y_{n 1 / 2, n 22,0}$ is stored in the real part of $\boldsymbol{Y}_{n 3 / 2, n 2 / 2,0}$
- The real part of $y_{n 1 / 2, n 22, n 3 / 2}$ is the imaginary part of $\boldsymbol{Y}_{n 322, n 2 / 2,0}$
- The elements $y_{n 1 / 2, n 22,1: n 3 / 2-1}$ are stored in elements $\boldsymbol{Y}_{n 3 / 2+1: n 3-1, n 22,0}$
- The rows $y_{0,1: \text { :n21-1, } i}$ are stored in columns $\boldsymbol{Y}_{i, 1: \text { :n22-1,0 }}$
- The rows $y_{n 1 / 2,1: n 2 / 2-1, j}$ are stored in columns $\boldsymbol{Y}_{j, \text { n2/2+1:n2-1,0 }}$
- The planes $y_{1: n / 2-1, i, j}$ are stored in planes $\boldsymbol{Y}_{j, i, 1: n / 1 / 2-1}$
where:
$i=0, \ldots, n 2-1$
$j=0, \ldots, n 3-1$
$n 1$ is the first dimension of array y
$n 2$ is the second dimension of array y
$n 3$ is the third dimension of array y
The remaining elements of y are not stored because they are the complex conjugates of elements already stored. These relationships are shown in the following equations:
- $y_{0,0, n 3-k}=\bar{y}_{0,0, k}$ where $k=1, \ldots, n 3 / 2-1$
- $y_{0, n 2 / 2, n 3-k}=\bar{y}_{0, n 2 / 2, k}$ where $k=1, \ldots, n 3 / 2-1$
- $y_{n 1 / 2,0, n 3-k}=\bar{y}_{n 1 / 2,0, k}$ where $k=1, \ldots, n 3 / 2-1$
- $y_{n 1 / 2, n 2 / 2, n 3-k}=\bar{y}_{n / 2, n 2 / 2, k}$ where $k=1, \ldots, n 3 / 2-1$
- $y_{0, n 2-j, 0}=\bar{y}_{0, j, 0}$ where $j=1, \ldots, n 2 / 2-1$
- $y_{0, n 2-j, n 3 / 2}=\bar{y}_{0, j, n 3 / 2}$ where $j=1, \ldots, n 2 / 2-1$
- $y_{n 1 / 2, n 2-j, 0}=\bar{y}_{n 1 / 2, j, 0}$ where $j=1, \ldots, n 2 / 2-1$
- $y_{n 1 / 2, n 2-j, n 3 / 2}=\bar{y}_{n 1 / 2, j, n 3 / 2}$ where $j=1, \ldots, n 2 / 2-1$
- $y_{n 1-i, 0,0}=\bar{y}_{i, 0,0}$ where $i=1, \ldots, n 1 / 2-1$
- $y_{n 1-i, 0, n 3 / 2}=\bar{y}_{i, 0, n 3 / 2}$ where $i=1, \ldots, n 1 / 2-1$
- $y_{n 1-i, n 2 / 2,0}=\bar{y}_{i, n 2 / 2,0}$ where $i=1, \ldots, n 1 / 2-1$
- $y_{n 1-i, n 2 / 2, n 3 / 2}=\bar{y}_{i, n 2 / 2, n 3 / 2}$ where $i=1, \ldots, n 1 / 2-1$
- $y_{0, n 2-j, n 3-k}=\bar{y}_{0, j, k}$ where $j=1, \ldots, n 2 / 2-1$ and $k=1, \ldots, n 3 / 2-1, n 3 / 2+1, \ldots, n 3-1$
- $y_{n 1 / 2, n 2-j, n 3-k}=\bar{y}_{n 1 / 2, j, k}$ where $j=1, \ldots, n 2 / 2-1$ and $k=1, \ldots, n 3 / 2-1, n 3 / 2+1, \ldots, n 3-1$
- $y_{n 1-i, 0, n 3-k}=\bar{y}_{i, 0, k}$ where $i=1, \ldots, n 1 / 2-1$ and $k=1, \ldots, n 3 / 2-1, n 3 / 2+1, \ldots, n 3-1$
- $y_{n 1-i, n 2 / 2, n 3-k}=\bar{y}_{i, n 2 / 2, k}$ where $i=1, \ldots, n 1 / 2-1$ and $k=1, \ldots, n 3 / 2-1, n 3 / 2+1, \ldots, n 3-1$
- $y_{n 1-i, n 2-j, 0}=\bar{y}_{i, j, 0}$ where $i=1, \ldots, n 1 / 2-1$ and $j=1, \ldots, n 2 / 2-1, n 2 / 2+1, \ldots, n 2-1$
- $y_{n 1-i, n 2-j, n 3 / 2}=\bar{y}_{i, j, n 3 / 2}$ where $i=1, \ldots, n 1 / 2-1$ and $j=1, \ldots, n 2 / 2-1, n 2 / 2+1, \ldots, n 2-1$
- $y_{n 1-i, n 2-1-j, n 3-1-k}=\bar{y}_{i, j, k}$ where $i=1, \ldots, n 1 / 2-1$ and $j=1, \ldots, n 2 / 2-1, n 2 / 2+1, \ldots, n 2-1$ and $k=1, \ldots, n 3 / 2-1, n 3 / 2+1, \ldots, n 3-1$
where:
$n 1$ is the first dimension of array y
$n 2$ is the second dimension of array y
$n 3$ is the third dimension of array y
The following example, which uses zero-based indexing, has complex-conjugate, even symmetry. The dimensions of array y are $4 \times 4 \times 4$ (that is $n 1=n 2=n 3=4)$.

Plane 0:

$$
\begin{aligned}
& y_{0: 3,0: 3,0}= \\
& {\left[\begin{array}{rrrr}
(30,0) & (2,-3) & (-0.3,0) & (2,3) \\
(-1,0.7) & (-1,-4) & (-2,-0.7) & (0.5,-2) \\
(-2,0) & (-2,-0.6) & (2,0) & (-2,0.6) \\
(-1,-0.7) & (0.5,2) & (-2,0.7) & (-1,4)
\end{array}\right] }
\end{aligned}
$$

Plane 1:

$$
\begin{aligned}
y_{0: 3,0: 3,1} & = \\
& {\left[\begin{array}{rrrr}
(2,-2) & (-1,1) & (0.7,-2) & (-3,-2) \\
(2,2) & (-2,-1) & (-0.5,3) & (0.04,0.5) \\
(-0.4,3) & (-0.009,-3) & (0.0,0.1) & (-1,-0.2) \\
(-2,-2) & (-2,-1) & (-0.5,2) & (0.1,0.005)
\end{array}\right] }
\end{aligned}
$$

Plane 2:

$$
y_{0: 3,0: 3,2}=
$$

$\left[\begin{array}{rrrr}(3,0) & (0.3,0.5) & (0.1,0) & (0.3,-0.5) \\ (-0.3,-2) & (1,-3) & (2,3) & (-7,3) \\ (2,0) & (2,-1) & (1,0) & (2,1) \\ (-0.3,2) & (-0.7,-3) & (2,-3) & (1,3)\end{array}\right]$

Plane 3:

$y_{0: 3,0: 3,3}=$

$$
\left[\begin{array}{rrrr}
(2,2) & (-3,2) & (0.7,2) & (-1,-1) \\
(-2,2) & (1,-0.005) & (-0.5,-2) & (-0.2,1) \\
(-0.4,-3) & (-1,0.2) & (0.9,-0.1) & (-0.009,3) \\
(2,-2) & (0.04,-0.5) & (-0.5,-3) & (-2,1)
\end{array}\right]
$$

Because zero-based indexing is used, $y_{0,0,0}=(30,0), y_{2,1,1}=(-0.009,-3)$, and $y_{3,1,3}=(0.04,-0.5)$.

In this example, the real part of $y_{0,0,0}$ is 30 , the real part of $y_{0,0,2}$ is 3 , and their imaginary parts are zero. For the FFT-packed storage mode, the imaginary parts at
these particular positions are not stored. Therefore, the element stored at position $\boldsymbol{Y}_{0,0,0}$ is (30,3), which represents the contents of both $y_{0,0,0}$ and $y_{0,0,2}$.

The element $y_{0,0,1}$ is stored in the global matrix $\boldsymbol{Y}_{1,0,0}$ position.
The real part of $y_{0,2,0}$ is -0.3 , the real part of $y_{0,2,2}$ is 0.1 , and their imaginary parts are zero. For the FFT-packed storage mode, the imaginary parts at these particular positions are not stored. Therefore, the element stored at position $\boldsymbol{Y}_{2,0,0}$ is $(-0.3,0.1)$, which represents the contents of both $y_{0,2,0}$ and $y_{0,2,2}$.

The element $y_{0,2,1}$ is stored in the global matrix $\boldsymbol{Y}_{3,0,0}$ position.
The real part of $y_{2,0,0}$ is-2, the real part of $y_{2,0,2}$ is 2 , and their imaginary parts are zero. For the FFT-packed storage mode, the imaginary parts at these particular positions are not stored. Therefore, the element stored at position $\boldsymbol{Y}_{0,2,0}$ is $(-2,2)$, which represents the contents of both $y_{2,0,0}$ and $y_{2,0,2}$.

The element $y_{2,0,1}$ is stored in the global matrix $\boldsymbol{Y}_{1,2,0}$ position.
The real part of $y_{2,2,0}$ is 2 , the real part of $y_{2,2,2}$ is 1 , and their imaginary parts are zero. For the FFT-packed storage mode, the imaginary parts at these particular positions are not stored. Therefore, the element stored at position $\boldsymbol{Y}_{2,2,0}$ is $(2,1)$, which represents the contents of both $y_{2,2,0}$ and $y_{2,2,2}$.

The element $y_{2,2,1}$ is stored in the global matrix $\boldsymbol{Y}_{3,2,0}$ position.
The rows $y_{0,1,0: 3}$ are stored in columns $\boldsymbol{Y}_{0: 3,1,0}$. The rows $y_{2,1,0: 3}$ are stored in columns $\boldsymbol{Y}_{0: 3,3,0}$. The plane $y_{1,0: 3,0: 3}$ is stored in plane $\boldsymbol{Y}_{0: 3,0: 3,1} \cdot$ For FFT-packed storage mode, the remaining elements do not need to be stored due to symmetry.

Following is the global matrix \boldsymbol{Y} in FFT-packed storage mode:

Plane 0:

B, D
$0\left[\begin{array}{rrrr}(30,3) & (2,-3) & (-2,2) & (-2,-0.6) \\ (2,-2) & (-1,1) & (-0.4,3) & (-0.009,-3) \\ (-0.3,0.1) & (0.3,0.5) & (2,1) & (2,1) \\ (0.7,-2) & (-3,2) & (0.9,0.1) & (-1,0.2)\end{array}\right]$

Plane 1:

B, D
$0\left[\begin{array}{rrrr}(-1,0.7) & (-1,-4) & (-2,-0.7) & (0.5,-2) \\ (2,2) & (-2,-1) & (-0.5,3) & (0.04,0.5) \\ (-0.3,-2) & (1,-3) & (2,3) & (-0.7,3) \\ (-2,2) & (-0.1,-0.005) & (-0.5,-2) & (-0.2,1)\end{array}\right]$

Following is a 1×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}

After the data has been distributed over the process grid, the following local arrays for \boldsymbol{Y} are stored in FFT-packed storage mode:

Example: The following example shows how to pack data from a three-dimensional array X into a global array XG, whose planes could then be block distributed among q processes. Array X must contain complex-conjugate even symmetric data.

Each of the q processes would get $\mathrm{LOCq}(n)$ consecutive planes of array XG. Array X is stored as $n 1$ rows by $n 2$ columns by $n 3$ planes. Array $X G$ is stored as $n 3$ rows by $n 2$ columns by $n 1 / 2$ planes. This is the transposed form required by PSCRFT3 and PDCRFT3 for the input array. $n 1, n 2$, and $n 3$ are divisible by $2 q$, as required by PSCRFT3 and PDCRFT3.

```
PROGRAM PACK3D
IMPLICIT NONE
INTEGER*4 N1,N2,N3
INTEGER*4 IINDEX,JINDEX,KINDEX
PARAMETER(N1 = 64, N2 = 32, N3 = 48)
COMPLEX*16 XG(0:N3-1,0:N2-1,0:N1/2-1)
COMPLEX*16 X(0:N1-1,0:N2-1,0:N3-1)
XG(0,0,0) = ( REAL(X(0,0,0)) , REAL(X(0,0,N3/2)) )
XG(N3/2,0,0) = ( REAL(X(0,N2/2,0)) , REAL(X(0,N2/2,N3/2)) )
XG(0,N2/2,0) = ( REAL(X(N1/2,0,0)) , REAL(X(N1/2,0,N3/2)) )
XG(N3/2,N2/2,0) = (REAL(X(N1/2,N2/2,0)),REAL(X(N1/2,N2/2,N3/2)))
DO IINDEX = 1 , N3/2-1
        XG(IINDEX,0,0) = X(0,0,IINDEX)
        XG(N3/2+IINDEX,0,0) = X (0,N2/2,IINDEX)
        XG(IINDEX,N2/2,0) = X(N1/2,0,IINDEX)
        XG(N3/2+IINDEX,N2/2,0) = X(N1/2,N2/2,IINDEX)
ENDDO
DO KINDEX = 0,N3-1
    DO JINDEX = 1,N2/2-1
        XG(KINDEX,JINDEX,0) = X (0,JINDEX,KINDEX)
        XG(KINDEX,N2/2+JINDEX,0) = X(N1/2,JINDEX,KINDEX)
    ENDDO
ENDDO
DO KINDEX = 0,N3-1
    DO JINDEX = 0,N2-1
        DO IINDEX = 1,N1/2-1
            XG(KINDEX,JINDEX,IINDEX) = X(IINDEX,JINDEX,KINDEX)
            ENDDO
    ENDDO
ENDDO
STOP
END
```


Distributing Data in an HPF Program

You must distribute your data before calling Parallel ESSL from your HPF program. This section shows how to use the HPF data distribution directives to distribute your data. An example of the data distribution techniques are also shown in a sample HPF program in Appendix B.

All the Parallel ESSL HPF subroutines, except the Banded Linear Algebraic Equations, Fourier Transforms, and the Random Number Generation subroutine, support block-cyclic distribution. The Banded Linear Algebraic Equations, Fourier Transforms, and the Random Number Generation subroutine only support block distribution.

This section shows examples of how you could distribute your data over one- or two-dimensional process grids:

- "Vectors"
- "Matrices" on page 80
- "Sequences (Fourier Transform)" on page 81

Notes:

1. The XL HPF default to map processes into a process grid is column-major order. For an example, see Table 13 on page 18.
2. XL HPF supports only CYCLIC(1) in the DISTRIBUTE directive, unless it appears in the interface block of a local procedure. For more information, see "Using Extrinsic Procedures-The Parallel ESSL Subroutines" on page 105.
3. All the examples in this section use CYCLIC (which has the same meaning as CYCLIC(1)) and ALIGN in the DISTRIBUTE directives. To find out where to code distribution directives in your HPF program, see "Sample HPF Programs" on page 107.

The examples show real data structures, but the techniques apply equally to complex data structures.

Vectors

Parallel ESSL supports block-cyclic distribution for vectors over one- or two-dimensional process grids, except for URNG. For URNG, vectors are distributed over a one-dimensional process grid using block distribution, where the length n of the vector x must be evenly divisible by the available processes $n p$ multiplied by the block size $n b$. In other words, $n /((n p)(n b))$ must be an integer.

Distributed over One-Dimensional Process Grids

Block-Cyclically Distributing a Vector: This example shows how to distribute a vector of length 24 block-cyclically over a column-oriented, one-dimensional process grid with four processes.

```
    REAL(KIND(1.0D0)), DIMENSION(:,:) :: A
    REAL(KIND(1.0D0)), DIMENSION(24) :: X
!HPF$ PROCESSORS PROC(4)
!HPF$ ALIGN X(:) WITH A(:,*)
!HPF$ DISTRIBUTE (CYCLIC,*) ONTO PROC :: A
```

This example shows how to distribute the same vector block-cyclically over a row-oriented, one-dimensional process grid with four processes.

```
    REAL(KIND(1.0D0)), DIMENSION(:,:) :: A
    REAL(KIND(1.0D0)), DIMENSION(24) :: X
!HPF$ PROCESSORS PROC(4)
!HPF$ ALIGN X(:) WITH A(*,:)
!HPF$ DISTRIBUTE (*,CYCLIC) ONTO PROC :: A
```

Block Distributing a Vector: For URNG, this example shows how to distribute a vector of length 18 block-column over a row-oriented, one-dimensional process grid with six processes.

```
    REAL(KIND(1.0D0)), DIMENSION(18,18) :: A
    REAL(KIND(1.0D0)), DIMENSION(18) :: X
!HPF$ PROCESSORS PROC(6)
!HPF$ ALIGN X(:) WITH A(1,:)
!HPF$ DISTRIBUTE (*,BLOCK) ONTO PROC :: A
```

Note: For URNG, the length n of the vector x must be evenly divisible by the number of available processes $n p$ multiplied by the block size $n b$. For this example, $18=(6)(3)$.

Block-Cyclic Distribution over Two-Dimensional Process Grids

This example shows how to distribute a vector of length 18 block-cyclically over the third column of a two-dimensional process grid.

REAL(KIND(1.0D0)), DIMENSION(:,:) :: A
REAL(KIND(1.0D0)), DIMENSION(18) : : X
!HPF\$ PROCESSORS PROC $(2,3)$
!HPF\$ ALIGN X(:) WITH A(:,3)
!HPF\$ DISTRIBUTE (CYCLIC,CYCLIC) ONTO PROC :: A
This example shows how to distribute the same vector block-cyclically over the second row of a two-dimensional process grid:

REAL(KIND(1.0D0)), DIMENSION(:,:) :: A
REAL(KIND(1.0D0)), DIMENSION(18) : : X
!HPF\$ PROCESSORS PROC $(2,3)$
!HPF\$ ALIGN X(:) WITH A(2,:)
!HPF\$ DISTRIBUTE (CYCLIC,CYCLIC) ONTO PROC :: A

Matrices

Parallel ESSL, except for the Banded Linear Algebraic Equations, supports block-cyclic distribution for matrices over one- or two-dimensional process grids. The Banded Linear Algebraic Equations supports only block distribution for matrices over one-dimensional process grids.

Distributed over One-Dimensional Process Grids

Block-Cyclically Distributing a Matrix: This example shows how a 6×8 matrix \boldsymbol{A} is distributed block-cyclically over a column-oriented, one-dimensional process grid with three processes.

```
    REAL(KIND(1.0D0)), DIMENSION(6,8) :: A
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (CYCLIC,*) ONTO PROC :: A
This example shows how the matrix \boldsymbol{A} is distributed block-cyclically over a row-oriented, one-dimensional process grid with four processes.

```
    REAL(KIND(1.0D0)), DIMENSION(6,8) :: A
!HPF$ PROCESSORS PROC(4)
!HPF$ DISTRIBUTE (*,CYCLIC) ONTO PROC :: A
```

Block Distributing a Matrix: This example shows how a 5×5 matrix \boldsymbol{A} is distributed over a row-oriented, one-dimensional process grid with four processes, using block-column distribution.

REAL(KIND (1.0D0)), $\operatorname{DIMENSION}(5,5):: A$
!HPF\$ PROCESSORS PROC(4)
!HPF\$ DISTRIBUTE (*,BLOCK) ONTO PROC :: A
This example shows how a 5×5 matrix \boldsymbol{A} is distributed over a column-oriented, one-dimensional process grid with four processes, using block-row distribution.

```
    REAL(KIND(1.0D0)), DIMENSION (5,5) :: A
!HPF$ PROCESSORS PROC(4)
!HPF$ DISTRIBUTE (BLOCK,*) ONTO PROC :: A
```

This example shows how a 100×100 matrix \boldsymbol{A} is distributed over a row-oriented, one-dimensional process grid with five processes, using block-column distribution.

```
    REAL(KIND(1.0D0)), DIMENSION(100,100) :: A
!HPF$ PROCESSORS PROC(5)
!HPF$ DISTRIBUTE (*,BLOCK(40)) ONTO PROC :: A
```

Note: The first two processes receive 40 columns of data, the third process receives 20 columns of data, and the remaining processes receive no data.

Block-Cyclic Distribution over Two-Dimensional Process Grids

This example shows how a 9×26 matrix \boldsymbol{A} is distributed block-cyclically over a 2×3, two-dimensional process grid.

REAL(KIND (1.0D0)), $\operatorname{DIMENSION}(9,26):: A$
!HPF\$ PROCESSORS PROC $(2,3)$
!HPF\$ DISTRIBUTE (CYCLIC,CYCLIC) ONTO PROC :: A

Sequences (Fourier Transform)

Parallel ESSL supports block data distribution for two- or three-dimensional sequences over a one-dimensional process grid. (For details on FFT-packed storage mode, see "Two-Dimensional Sequence" on page 66 and "Three-Dimensional Sequences" on page 71.)

Two-Dimensional Sequence

This example shows how an 8×12, two-dimensional sequence is distributed over a one-dimensional process grid with four processes, using block-column distribution. The sequence is distributed with a block size of 3 .

REAL(KIND (1.0D0)), DIMENSION $(8,12):: Y$
!HPF\$ PROCESSORS PROC(4)
!HPF\$ DISTRIBUTE (*, BLOCK) ONTO PROC :: Y

Three-Dimensional Sequences

This example shows how a three-dimensional sequence, with four planes that are each of size 2×2, is distributed over a one-dimensional process grid with two processes, using block plane distribution. The sequence is distributed with a block size of 2:

REAL(KIND(1.0D0)), DIMENSION(2, 2, 4) :: X
!HPF\$ PROCESSORS PROC(2)
!HPF\$ DISTRIBUTE (*, *, BLOCK) ONTO PROC :: X

Chapter 3. Coding and Running Your Program

This chapter explains the Parallel ESSL-specific procedures to follow when coding and running your program.

Coding Tips for Optimizing Parallel Performance

Performance has been the primary objective in the design of the Parallel ESSL subroutines. To achieve this performance goal, the Parallel ESSL subroutines use "state-of-the-art" algorithms tailored to specific operational characteristics of the hardware. In addition, Parallel ESSL will leverage the high performance provided by ESSL for AIX for processor computations.

Choosing a Parallel ESSL Library

The Parallel ESSL library you may use depends on:

1. Your choice of MPI library.
2. The type of nodes you are running on.

The MPI library you choose, is dependent upon the following:

- If you are using the Parallel ESSL message passing subroutines, you may use either the MPI signal handling library or the MPI threaded library.
- If you are an HPF user, you may only use the MPI signal handling library.
- If you are using LAPI, you may only use the MPI threaded library.

The Parallel ESSL library choices for use with the MPI signal handling library are specified in Table 29.

Table 29. Parallel ESSL Libraries used with the MPI Signal Handling Library	
Node Type	Parallel ESSL Library
SMP	Parallel ESSL POWER Library
	PE 2.4 users may specify multiple User Space PE tasks
	per SMP node. For example, you could specify the
number of User Space Tasks per adapter equal to the	
	number of CPUs in your SMP node.
	PE 2.3 users may only have one User Space PE task per
	SMP node.
POWER2	Parallel ESSL POWER2 Library
POWER	Parallel ESSL POWER Library
All nodes must be POWER2 nodes.	

The Parallel ESSL library choices for use with the MPI threaded library are specified in Table 30.

Table 30 (Page 1 of 2). Parallel ESSL Libraries used with the MPI Threaded Library	
Node Type	Parallel ESSL Library
SMP	Parallel ESSL SMP Library Δ

Table 30 (Page 2 of 2). Parallel ESSL Libraries used with the MPI Threaded Library	
Node Type	Parallel ESSL Library
POWER2	Parallel ESSL Thread-Tolerant POWER2 Library
POWER	Parallel ESSL SMP Library
slf you choose to spawn multiple user space tasks per SMP node, you may consider explicitly setting the number of threads used by the Parallel ESSL SMP Library, by setting the environment variable XLSMPOPTS. For further details, see the XLF or C for AIX manuals. -All nodes must be POWER2 nodes.	

XL HPF and Parallel ESSL

XL HPF allows you to easily develop parallel software using the SPMD programming model. The XL HPF compiler, guided by HPF directives in your source code, handles the distribution of data and communication between programs on multiple processes. The HPF directives make developing an HPF program that calls Parallel ESSL easier than developing a message passing program that calls Parallel ESSL. However, the performance obtained when using a Parallel ESSL HPF subroutine is less than that obtained when using a Parallel ESSL message passing subroutine because there is a certain amount of overhead involved in supporting the extrinsic hpf_local interface.

Because the XL HPF compiler only supports CYCLIC(N) in the interface blocks for extrinsic hpf_local subroutines, a redistribution of data occurs whenever a Level 3 PBLAS, Dense Linear Algebraic Equations, Eigensystem Analysis or Singular Value Analysis subroutine is called. Also, data may be copied locally because the extrinsic hpf_local subroutines require the use of assumed-shape arrays while the Parallel ESSL message passing subroutines use assumed-size arrays.

Parallel ESSL Techniques

The following techniques are used by most subroutines to optimize performance:

- Minimizing the impact of communications by exchanging larger blocks of data
- Blocking data to match the processor cache size

The following items also impact performance. They generally depend on the specific parallel routine being called. See the subroutine description in the reference section for any exceptions to these rules.

- Number and types of processors (such as, POWER Thin, POWER2 Thin, POWER Wide)

Choosing the number of processors depends primarily on the problem size. It is reasonable to increase the number of processors, if the global problem size increases sufficiently to keep the amount of local data per process at a reasonable size. If, however, using more processes, such as 17 rather than 16, causes you to use a one-dimensional grid rather than a two-dimensional grid, performance may be degraded. See the next item.

- Shape of process grid

For most subroutines, using a two dimensional (square or as close to square as possible) grid is suggested. For example, if sixteen processors were used,
define a 4 by 4 process grid. For exceptions to this rule, see the subroutine descriptions in the reference section.

- Block size(s) in the Message Passing subroutines

See the following table for suggested block sizes in your message passing program. The optimal block size depends on the underlying node computations, load balancing, communications, system buffering requirements, problem size, and dimension and shape of the process grid. To achieve optimal performance, generally requires experimentation, but the values specified in Table 31 should provide good performance for most cases. For exceptions to these rules, see the subroutine descriptions in the reference section.

Table 31. Suggested Block Sizes	POWER2 Nodes	
Area	POWER Nodes	POW (All subroutines, except PDTRSV)
Level 2 PBLAS	24	24 (PDTRSV)
Level 3 PBLAS	40	70
Dense Linear Algebraic Equations	40	70 (Real subroutines) 30 (Complex subroutines)
Eigensystems Analysis and Singular Value Analysis	24	24
Random Number Generation	.5 (data cache size)	.5 (data cache size)
Note: The data cache size can be obtained with this command: 1sattr -E -H -1 sys0		

- PESSL_HPF module for the HPF subroutines

For all HPF subroutines, except GEBRD, data directives are included in the interface module PESSL_HPF; therefore, you can specify any data distribution for your vectors, matrices, and sequences, because the XL HPF compiler will, if necessary, redistribute the data prior to calling the HPF Parallel ESSL subroutine. Data directives for GEBRD cannot be included in the PESSL_HPF module, because the alignment requirements for some of the vectors depend on the size of the matrix. For details, see "GEBRD-Reduce a General Matrix to Bidiagonal Form" on page 865.
When using cyclic distribution in your HPF program, you can only specify CYCLIC(1) data distributions. However, the performance of the Level 3 PBLAS, Dense Linear Algebraic Equations, and Eigensystems Analysis and Singular Value Analysis subroutines is improved if a CYCLIC(N) data distribution is used. To accomplish this, PESSL_HPF contains CYCLIC(N) data directives for a two-dimensional process grid in the interface for these subroutines. The block sizes specified in the PESSL_HPF module are listed in Table 32 on page 86.
There are CYCLIC(1) directives for a two-dimensional process grid in the interfaces in PESSL_HPF for the Level 2 PBLAS.
There are BLOCK data directives for a one-dimensional process grid in the interfaces in PESSL_HPF for the Banded Linear Algebraic Equations, Fourier transform and Random Number Generation subroutines.
For more information about the PESSL_HPF module, see "Using Extrinsic Procedures-The Parallel ESSL Subroutines" on page 105.

Table 32. Block Sizes Specified in the PESSL_HPF Module	
Area	Block Size
Level 2 PBLAS	1
Level 3 PBLAS	70
Dense Linear Algebraic Equations	70 (Real)
	30 (Complex)
Eigensystems Analysis and Singular Value Analysis	24

- If you are using the MPI threaded library:

1. For a single message-passing thread, specify MP_SINGLE_THREAD=yes to minimize thread overhead.
2. For the Parallel ESSL subroutines p_getrf, p_getrs, p_potrf, or p_potrs, if you are using PE Version 2 Release 4, or later, you may obtain better performance by setting the PE environment variable MP_WAIT_MODE: export MP_WAIT_MODE=yield

- You should be able to improve performance of production-level code by using the PESSL_ERROR_SYNC environment variable to disable error synchronization. For details, see "PESSL_ERROR_SYNC Environment Variable" on page 117.

Avoiding Conflicts with Parallel ESSL and ESSL for AIX Routine Names

Do not use names for your own subroutines, functions, and global variables that are the same as any of the ESSL for AIX or Parallel ESSL routine names. All internal routine names begin with the prefix "ESV" or "HPF_P," so you should avoid using these prefixes for your own routines.

Coding Your Message Passing Program

This section contains Parallel ESSL-specific application program coding requirements and considerations for message passing programs-that is, programs coded in Fortran, C, and C++. To make a Parallel ESSL call in a parallel application program:

1. Call the BLACS initialization subroutines (BLACS_GET followed by a call to either BLACS_GRIDINIT or BLACS_GRIDMAP), to initialize the process grid. For details on how to do this, see "Initializing the BLACS" on page 87.
2. Ensure your data has been distributed across your process grid, according to the particular input distribution specified by the Parallel ESSL subroutine. For details on how to do this, see Chapter 2 on page 17.
3. Call the Parallel ESSL subroutine on all processes in the process grid (defined earlier through the BLACS initialization calls). The Parallel ESSL subroutine call interfaces are documented in Part 2 of this book.
4. When the Parallel ESSL subroutine returns control to the application program, you process the solution data, which is distributed in accordance with the output distribution specified by the Parallel ESSL subroutine.

To look at an application program outline, see the following:

- "Application Program Outline" on page 96 (For all subroutines, except the sparse linear algebraic equation subroutines.)
- "Application Program Outline for the Fortran 90 Sparse Linear Algebraic Equations and Their Utilities" on page 97
- "Application Program Outline for the Fortran 77 Sparse Linear Algebraic Equations and Their Utilities" on page 99

For an example of the use of Parallel ESSL in a sample message passing Fortran 90 application program solving a thermal diffusion problem, see Appendix B on page 907.

The ESSL Version 3 Guide and Reference manual contains additional information about coding ESSL for AIX subroutine calls in Fortran, C, and C++ programs. That information also applies to Parallel ESSL and is not repeated in this book. The specific topics you may want to reference, that apply to Parallel ESSL, are:

- Coding the calling sequences
- Passing arguments
- Setting up scalar data
- Setting up complex data in C and $\mathrm{C}++$ programs
- Setting up arrays

Initializing the BLACS

A parallel machine with k processes is often thought of as a one-dimensional linear array of processes labeled $0,1, \ldots, k-1$. For performance reasons, it is sometimes useful to map this one-dimensional array into a logical two-dimensional rectangular grid, which is also referred to as process grid, of processes. The process grid can have p process rows and q process columns, where $p \times q=k$. A process can now be indexed by row and column, (i, j), where $0 \leq i<p$ and $0 \leq j<q$. (This logical rectangular grid may not necessarily be reflected by the underlying hardware-that is, processor nodes. In most cases k is less than or equal to the number of SP processor nodes that your job is running on. In special cases, however, the number of processes can be greater than the number of SP processor nodes. This is subject to restrictions imposed by PE. For more details refer to the appropriate Parallel Environment: Operation and Use manual.)

Before calling the Parallel ESSL subroutines, you need to call BLACS_GET, followed by a call to either BLACS_GRIDINIT or BLACS_GRIDMAP to define the size and dimensions of your process grid. This identifies what processes are involved in the communication. You can reinitialize the BLACS, as needed, at various points in your application program to redefine the process grid.

When you initialize the BLACS, you must specify the (total) size k of the grid to be less than or equal to the value set in the MP_PROCS PE environment variable or its associated command-line flag -procs. If argument values are not valid, an error message is issued and the program is terminated.

An example of initializing the BLACS in a Fortran 90 program is shown in Appendix B on page 907. See the subroutine initialize_scale in "Module Scale (Message Passing)" on page 933.

BLACS_PINFO

You call the BLACS_PINFO routine when you want to determine how many processes are available. You can use this information as input into other BLACS routines that set up your process grid.

Syntax

Language	Call Statement
Fortran	CALL BLACS_PINF0 (mypnum, nprocs)
C	blacs_pinfo (\&mypnum, \&nprocs);
C++	extern "FORTRAN" void blacs_pinfo(const int \&, const int \&); blacs_pinfo (mypnum, nprocs);

On Return

mypnum
is the local process rank (for example, PE task number) that your program is currently running on.

Returned as: a fullword integer value, where: $0 \leq m y p n u m \leq($ nprocs -1).
nprocs
is the number of processes available for the BLACS to use.
Returned as: a fullword integer value.

BLACS_GET

You call the BLACS_GET routine when you want the values the BLACS are using for internal defaults. The most common use is in retrieving a default system context for input into BLACS_GRIDINIT or BLACS_GRIDMAP.

Syntax

Language	Call Statement
Fortran	CALL BLACS_GET (icontxt, what, val)
C	blacs_get (\&icontxt, \&what, \&val);
C++ and what $=0,2,10$	extern "FORTRAN" void blacs_get(const int \&, const int \&, const int \&); blacs_get (icontxt, what, val);

On Entry

icontxt
has the following meaning:
If $w h a t=0$ or 2 , icontxt is ignored.
If what $=10$, icontxt is the integer handle indicating the BLACS context.
Specified as: a fullword integer value.
what
indicates the BLACS internal to be returned in val. For a description of the values of what, see Table 33 on page 89.

Table 33. Input and Output for BLACS_GET	
Value of what	BLACS Internals That are Returned in val
0	Handle indicating the default system context
2	BLACS debug level
10	Handle indicating the system context used to define the BLACS context whose handle is icontxt. You can redefine the shape of your process grid by calling BLACS_GET with what=10. For examples on how to do this, see the "Notes" section in "BLACS_GRIDINIT" on page 89 or "BLACS_GRIDMAP" on page 92.

Specified as: a fullword integer value 0, 2, 10.

On Return

val is the value of the BLACS internal, as defined for each value of what in
Table 33.
Returned as: a fullword integer value.

BLACS_GRIDINIT

You call the BLACS_GRIDINIT routine when you want to map the processes sequentially in row-major order or column-major order into the process grid. You must specify the same input argument values in the calls to BLACS_GRIDINIT on every process.

Syntax

Language	Call Statement
Fortran	CALL BLACS_GRIDINIT (icontxt, order, nprow, npcol)
C	blacs_gridinit (\&icontxt, \&order, \&nprow, \&npcol);
C++	extern "FORTRAN" void blacs_gridinit(const int \&, char *, const int \&, const int \&); blacs_gridinit (icontxt, order, nprow, npcol);

On Entry

icontxt
is the system context to be used in creating the BLACS context. For examples on obtaining a default system context and reshaping your process grid, see the "Notes" section.

Specified as: a fullword integer value.
order
indicates how to map processes into the process grid, where:
If order = 'R', row-major natural ordering is used. This is the default.
If order $=$ ' C ', column-major natural ordering is used.
Specified as: a single character; order = 'R' or ' C '.
nprow
is the number of rows in this process grid.
Specified as: a fullword integer where: $1 \leq n p r o w \leq p$.
npcol
is the number of columns in this process grid.
Specified as: a fullword integer value where: $1 \leq n p c o l \leq q$.

On Return

icontxt

is the integer handle to the BLACS context, which is a mechanism for partitioning communication space. A defining property of a context is that a message in a context cannot be sent or received in another context. The BLACS context includes the definition of a grid, and each processor's coordinates in the grid.

Returned as: a fullword integer value.

Notes

1. You may obtain a default system context by calling BLACS_GET as follows:

CALL BLACS_GET(0, 0, icontxt)
2. You can redefine the shape of your process grid by calling BLACS_GET with what=10 and then calling BLACS_GRIDINIT. The following example shows how to create a 1×4 process grid, using the context from a 2×2 process grid:
*

* Define the 1×4 process grid
*

CALL BLACS_GET(0, 0, icontxt)
CALL BLACS_GRIDINIT(icontxt, 'R' 2, 2)

* Redefine the shape to a 1×4 process grid
*

CALL BLACS GET(icontxt, 10, newcontxt)
CALL BLACS_GRIDINIT (newcontxt, 'R', 1, 4)
3. Suppose you specified a total of fifteen processes in your MP_PROCS environment variable, referred to as t_{0} through t_{14}. You then call BLACS_GRIDINIT in your Fortran program, as follows:

CALL BLACS_GRIDINIT (icontxt,'R',3,4)
The processes would be mapped sequentially in row major order into a 3 by 4 process grid as follows:

Table 34. A 3 by 4 process grid				
$\mathbf{P}_{p, q}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	t_{0}	t_{1}	t_{2}	t_{3}
$\mathbf{1}$	t_{4}	t_{5}	t_{6}	t_{7}
$\mathbf{2}$	t_{8}	t_{9}	t_{10}	t_{11}

Note: In this example, the process grid is 3 by 4 . You must execute a call to Parallel ESSL on all processes whose process row and column index satisfy $0 \leq i<3$ and $0 \leq j<4$, respectively.

BLACS_GRIDINFO

You call the BLACS_GRIDINFO routine to obtain the process row and column index.

Syntax

Language	Call Statement
Fortran	CALL BLACS_GRIDINF0 (icontxt, nprow, npcol, myrow, mycol)
C	blacs_gridinfo (\&icontxt, \&nprow, \&npcol, \&myrow, \&mycol);
C++	extern "FORTRAN" void blacs_gridinfo(const int \&, const int \&, const int \&, const int \&, const int \&); blacs_gridinfo (icontxt, nprow, npcol, myrow, mycol);

On Entry

icontxt
is the integer handle to the BLACS context which is a mechanism for partitioning communication space. A defining property of a context is that a message in a context cannot be sent or received in another context. The BLACS context include the definition of a grid, and each process coordinates in the grid.
Specified as: a fullword integer value, returned by BLACS_GRIDINIT or BLACS_GRIDMAP.

On Return

nprow
is the number of rows in this process grid.
Specified as: a fullword integer where: $1 \leq$ nprow $\leq p$.
npcol
is the number of columns in this process grid.
Specified as: a fullword integer value where: $1 \leq n p c o l \leq q$.
myrow
is the process grid row index.
Returned as: a fullword integer value where: $0 \leq m y r o w<p$.
mycol
is the process grid column index.
Returned as: a fullword integer value where: $0 \leq m y c o l<q$.

BLACS_GRIDMAP

You call the BLACS_GRIDMAP routine when you want to map the processes in a specific manner into a process grid. You pass in a two-dimensional array containing the process numbers, which is mapped into your new process grid. You must specify the same input argument values in the calls to BLACS_GRIDMAP on every process.

Syntax

Language	Call Statement
Fortran	CALL BLACS_GRIDMAP (icontxt, usermap, Idumap, nprow, npcol)
C	blacs_gridmap (\&icontxt, usermap, \&/dumap, \&nprow, \&npcol);
C++	extern "FORTRAN" void blacs_gridmap(const int \&, int ${ }^{*}$, const int \&, const int \&, const int \&); blacs_gridmap (icontxt, usermap, Idumap, nprow, npco);

On Entry

icontxt

is the system context to be used in creating the BLACS context. For examples on obtaining a default system context and reshaping your process grid, see the "Notes" section.

Specified as: a fullword integer value.
usermap
specifies the process-to-grid mapping. USERMAP(i,j) contains the number of the process to be mapped to the process grid, location (i,j).

Specified as: a two dimensional integer array of size Idumap by npcol.
Idumap
is the leading dimension of the integer array USERMAP.
Specified as: an integer where: Idumap \geq nprow
nprow
is the number of rows in this process grid.
Specified as: a fullword integer where: $1 \leq$ nprow $\leq p$.
npcol
is the number of columns in this process grid.
Specified as: a fullword integer value where: $1 \leq n p c o l \leq q$.

On Return

icontxt
is the integer handle to the BLACS context which is a mechanism for partitioning communication space. A defining property of a context is that a message in a context cannot be sent or received in another context. The BLACS context include the definition of a grid, and each process coordinates in the grid.

Returned as: a fullword integer value.

Notes

1. You may obtain a default system context by calling BLACS_GET as follows:

CALL BLACS_GET(0, 0, icontxt)
2. You can redefine the shape of your process grid by calling BLACS_GET with what=10 and then calling BLACS_GRIDMAP. The following example shows how to create a 1×4 process grid, using the context from a 2×2 process grid:
*

* Define the 1×4 process grid
*

CALL BLACS_GET(0, 0, icontxt)
CALL BLACS_GRIDMAP(icontxt, usermap, 2, 2, 2)
*

* Redefine the shape of your 2×2 process grid
* to a 1×4 process grid
*

CALL BLACS_GET(icontxt, 10, newcontxt)
CALL BLACS_GRIDMAP (newcontxt, usermap, 2, 1, 4)
3. Suppose you specified a total of 15 processes in your MP_PROCS environment variable, referred to as t_{0} through t_{14}. You then called BLACS_GRIDMAP in your Fortran program, as follows:

CALL BLACS_GRIDMAP (icontxt1,USERMAP,5,3,4)
Where array USERMAP1 contained the following integer values:
USERMAP1 $=\left[\begin{array}{rrrr}0 & 1 & 2 & 3 \\ 8 & 9 & 10 & 11 \\ 4 & 5 & 6 & 7 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot\end{array}\right]$
then, the processes would be mapped into a 3 by 4 process grid as follows:

Table 35. 3 by 4 process grid				
$\mathbf{P}_{p, q}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	t_{0}	t_{1}	t_{2}	t_{3}
$\mathbf{1}$	t_{8}	t_{9}	t_{10}	t_{11}
$\mathbf{2}$	t_{4}	t_{5}	t_{6}	t_{7}

BLACS_GRIDMAP sets icontxt1. Use the value of icontxt1 in any subsequent calls to Parallel ESSL to use this process grid.

While the above process grid is active, another overlapping process grid can be defined. Suppose you then called BLACS_GRIDMAP in your Fortran program as follows:

CALL BLACS_GRIDMAP(icontxt2, USERMAP2, 2, 2, 2)
where USERMAP contains the following values:

USERMAP2 $=\left[\begin{array}{ll}1 & 2 \\ 10 & 11\end{array}\right]$
Then the processes would be mapped into a 2 by 2 process grid as follows:

Table 36. 2 by 2 process grid		
$\mathbf{P}_{p, q}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	t_{1}	t_{2}
$\mathbf{1}$	t_{10}	t_{11}

BLACS_GRIDMAP will set icontxt2. Use the value of icontxt2 in any subsequent calls to Parallel ESSL to use this process grid.

Notes:
a. In this example, process t_{1} is mapped to P_{01} in the first grid and to P_{00} in the second grid.
b. Both grids can simultaneously be used in your program.

BLACS_GRIDEXIT

You call the BLACS_GRIDEXIT routine to release a BLACS context.

Syntax

Language	Call Statement
Fortran	CALL BLACS_GRIDEXIT (icontxt)
C	blacs_gridexit (\&icontxt);
C++	extern "FORTRAN" void blacs_gridexit(const int \&); blacs_gridexit (icontxt);

On Entry

icontxt
is the integer handle to the BLACS context indicating the BLACS context to be released.

Specified as: a fullword integer value, returned by BLACS_GRIDINIT or BLACS_GRIDMAP.

BLACS EXIT

You call the BLACS_EXIT routine to release all the BLACS context and the memory allocated by the BLACS.

Syntax

Language	Call Statement
Fortran	CALL BLACS_EXIT (continue)
C	blacs_exit (\&continue);
C++	extern "FORTRAN" void blacs_exit(const int \&); blacs_exit (continue);

On Entry

continue

has the following meaning:
If continue $=0$, all the BLACS context and memory allocated by the BLACS are released. In addition, Parallel ESSL calls MPI_Finalize to exit from MPI. There can only be one call to MPI_Finalize in your program. Therefore, at the end of your program, you should call BLACS_EXIT with continue $=0$ or call MPI_Finalize directly.

If continue $\neq 0$, the BLACS contexts and memory allocated by the BLACS are released, however, you can continue using MPI. When you are finished using MPI, you need to remember to call MPI_Finalize directly.

Specified as: a fullword integer.

Using Extrinsic Procedures-The Fortran 90 Sparse Linear Algebraic Equation Subroutines

In Fortran 90 programs, the Parallel ESSL sparse linear algebraic equation subroutines are invoked with the CALL statement, using the features of Fortran 90-generic interfaces, optional and keyword arguments, assumed-shape arrays, and modules.

The Fortran 90 sparse linear algebraic equation subroutines require that an explicit interface be provided for each extrinsic procedure entry in the scope where it is called, using an interface block. The interface blocks for the Parallel ESSL subroutines are provided for you in the module F90SPARSE, so you do not have to code the interface blocks yourself. In the beginning of your program, before any other specification statements, you must code the statement:

```
use f90sparse
```

This gives the XL Fortran compiler access to the interface blocks. For examples of where to code this statement in your program, see "Application Program Outline for the Fortran 90 Sparse Linear Algebraic Equations and Their Utilities" on page 97.

For further details on coding the CALL statement and other related aspects of Fortran 90 programs, see the Fortran manuals.

Setting Up the Parallel ESSL Header File for C and C++

Before you can call the Parallel ESSL subroutines from your C or C++ program, you must have the Parallel ESSL header file installed on your system. The Parallel ESSL header file allows you to code your function calls as described in Part 2 of this book. The Parallel ESSL header file is named pessl.h. You should check with your system support group to verify that the appropriate Parallel ESSL header file is installed.

C Programs

In the beginning of your C program, before you call any of the Parallel ESSL subroutines, you must code the following statement for the Parallel ESSL header file:

```
#include <pessl.h>
```


C++ Programs

In the beginning of your C++ program, before you call any of the Parallel ESSL subroutines, you must code the following statement for the Parallel ESSL header file:

```
#include <pessl.h>
```


Application Program Outline

For the Level 2 and 3 PBLAS, dense and banded linear algebraic equations, and eigensystem analysis and singular value analysis subroutines, this application program outline shows how you can use the BLACS to define a process grid, set up a Type-1 array descriptor, call a Parallel ESSL subroutine, and exit the BLACS. For a complete example, see Appendix B on page 907.
*

* Determine my process number and the total number of available
* processes

CALL BLACS_PINFO(IAM, NNODES)
*

* Define a process grid that is as close to square as possible
*

NPROW = INT(SQRT(REAL(NNODES)))
NPCOL = NNODES/NPROW
*

* Get the default system context
* Define the process grid
* Determine my process row and column index
*

CALL BLACS GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, 'R', NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
*

* Only call the Parallel ESSL subroutine if I am in the process grid
*

IF (MYROW .LT. NPROW .AND. MYCOL .LT. NPCOL) THEN
*

* Setup input arrays, scalars, array descriptors, etc.
*
* NUMROC can be used to return the size of local arrays
* For example, here is one way to setup the descriptor vector for A
*

DESC A $(1)=$ DTYPE A
DESC_A ${ }^{2}$) $=$ ICONTXT
DESC_A (3) = M_A
DESC_A (4) = N_A
DESC_A (5) = MB_A
DESC_A (6) = NB_A
DESC_A (7) = RSR̄C_A
DESC_A (8) $=$ CSRC-A
DESC_A ${ }^{-}$) $=$MAX (1, NUMROC(DESC_A (3), DESC_A (5), MYROW, DESC_A (7), NPROW))
c

* CALL Parallel ESSL subroutine
CALL PDTRAN(M, N, ALPHA, A, IA, JA, DESC_A, BETA, C, IC, JC, DESC_C)
*
* Process output arrays, scalars etc.
*

```
* At the end of the program, exit from the BLACS and MPI
*
    CALL BLACS_EXIT(0)
    END
```


Application Program Outline for the Fortran 90 Sparse Linear Algebraic Equations and Their Utilities

The following is an outline for a application program that is calling the Fortran 90 sparse linear algebraic equation subroutines and their utilities. For a more complete example, see "Example-Using the Fortran 90 Sparse Subroutines" on page 557 or "Fortran 90 Sample Sparse Program" on page 964.

```
USE F90SPARSE
\bullet
INTERFACE PARTS
    SUBROUTINE PARTS(...)
        INTEGER GLOBAL_INDEX, N,NP
        INTEGER NV
        INTEGER PV(*)
    END SUBROUTINE PARTS
END INTERFACE
!Define the process grid
CALL BLACS_GET (...)
CALL BLACS_GRIDINIT(...)
CALL BLACS_GRIDINFO(...)
!Allocate space for and initialize array descriptor desc_a.
CALL PADALL(...)
!Allocate space and initialize some values
!for sparse matrix A.
CALL PSPALL(...)
!Allocate and build vectors b and x.
CALL PGEALL(...)
!Build the sparse matrix A with multiple calls to PSPINS.
!Each process has to call PSPINS as many times as
!necessary to insert the local rows it owns.
!Update array descriptor desc_a.
do
    CALL PSPINS(...)
enddo
!Build vectors b and x with multiple calls to PGEINS.
!Each process has to call PGEINS as many times as
!necessary to insert the local elements it owns.
do
    CALL PGEINS(...)
enddo
!Finalize the sparse matrix A and array descriptor desc_a
CALL PSPASB(...)
!Finalize the vectors b and x.
!Matrix A and array descriptor desc_a
!must be finalized before calling PGEASB.
CALL PGEASB(...)
!Prepare preconditioner
CALL PSPGPR(...)
```

```
!Call solver
CALL PSPGIS(...)
!Cleanup and exit.
!Deallocate vectors b and x
!Deallocate matrix A and the preconditioner data structure PRC
CALL PGEFREE(...)
CALL PSPFREE(...)
!Deallocate the array descriptor desc_a only after
!vectors b and x, and matrix A are deallocated.
CALL PADFREE(...)
CALL BLACS_GRIDEXIT(...)
CALL BLACS_EXIT(...)
```


Application Program Outline for the Fortran 77 Sparse Linear Algebraic Equations and Their Utilities

The following is an outline for a application program that is calling the Fortran 77 sparse linear algebraic equation subroutines and their utilities. For a complete example, see "Example-Using the Fortran 77 Sparse Subroutines" on page 593 or "Fortran 77 Sample Sparse Program" on page 974.

EXTERNAL PARTS

```
        •
    •
    !Define the process grid
CALL BLACS_GET (...)
CALL BLACS_GRIDINIT(...)
CALL BLACS_GRIDINFO(...)
            •
            .
!Initialize array descriptor desc_a.
CALL PADINIT(...)
!Initialize some values
!for sparse matrix A.
CALL PDSPINIT(...)
!Build the sparse matrix A with multiple calls to PDSPINS.
!Each process has to call PDSPINS as many times as
!necessary to insert the local rows it owns.
!Update array descriptor desc_a.
do
    CALL PDSPINS(...)
enddo
```

```
!Build vectors b and x with multiple calls to PDGEINS.
!Each process has to call PDGEINS as many times as
!necessary to insert the local elements it owns.
do
    CALL PDGEINS(...)
enddo
!Finalize the sparse matrix A and array descriptor desc_a
CALL PDSPASB(...)
!Finalize the vectors b and x.
CALL PDGEASB(...)
!Prepare preconditioner
CALL PDSPGPR(...)
!Call solver
CALL PDSPGIS(...)
    .
CALL BLACS_GRIDEXIT(...)
CALL BLACS_EXIT(...)
```


Running Your Message Passing Program

This section describes both the Parallel ESSL-specific and ESSL-specific changes you need to make to your PE job procedures for compiling, linking, and running your message passing program. For details on general PE job procedures, see the appropriate Parallel Environment: Operation and Use manual.

You can use any procedures you are currently using to compile, link, and run your Fortran, C, and C++ programs, as long as you make the necessary modifications required by Parallel ESSL.

Notes:

1. The default search path for the Parallel ESSL and ESSL libraries is: /usr/lib. (Note that /lib is a symbolic link to /usr/lib.)

If the libraries are installed somewhere else, add the path name of that directory to the beginning of the LIBPATH environment variable, being careful to keep /usr/lib in the path. The correct LIBPATH setting is needed both for linking and executing the program.

For example, if you are using POWER2 nodes only, and you installed the Parallel ESSL libraries in /home/me/lib you would issue ksh commands similar to the following in order to compile and link a program:

```
LIBPATH=/home/me/lib:/usr/lib
export LIBPATH
mpxlf -o myprog myprog.f -less1p2 -1pess1p2 -1blacsp2
```

After setting the LIBPATH command, the /home/me/lib directory is the directory that gets searched first for the necessary libraries. This same search criteria is used at both compile and link time and run time.
2. The ESSL and Parallel ESSL libraries are shared libraries and must be used in conjunction with each other. Equivalent subroutines with the same names in other libraries (such as, libblas.a) will not be used even if they are specified on the command line in place of the ESSL library.
3. In your job procedures, you must use only the allowable compilers and libraries listed in Table 1 on page 7 for AIX.

Dynamic Linking Versus Static Linking

Only dynamic linking is supported for programs using Parallel ESSL. For details about how to do this, see the appropriate Parallel Environment: Operation and Use manual.

Fortran Program Procedures

You do not need to modify your existing Fortran compilation procedures when using Parallel ESSL. For example, you can use:

ESSL Library Name	Command
SMP or Thread-Tolerant	mpxlf_r - -c \quad xyz.f
POWER2 or POWER	mpxlf $-\mathrm{c} \quad$ xyz.f

where xyz.f is the name of your Fortran program.
When linking and running your program, you need to modify your existing PE job procedures for Parallel ESSL, to set up the necessary libraries. If you are accessing Parallel ESSL from a Fortran program, you can compile and link using the following command:

ESSL Library Name	Command
SMP	mpxlf_r -0 xyz.f -lesslsmp -1pesslsmp -1blacssmp
Thread-Tolerant	mpxlf_r -0 xyz.f -1ess1p2_r -1pess1p2_t -1b1acsp2_t
POWER2	mpx1f -0 xyz.f -lesslp2 -1pesslp2 -1blacsp2
POWER	mpxlf -0 xyz.f -less 1 -lpess1 -1blacs

where xyz.f is the name of your Fortran program.
If you want to compile and link your Fortran program in separate steps, you can use the following commands:

ESSL Library Name	Command
SMP	mpxlf_r -0 -c xyz.f mpxlf_r xyz.0 -lesslsmp -lpesslsmp -lblacssmp
Thread-Tolerant	mpxlf_r -0 -c $\quad x y z . f$ mpxlf_r $x y z .0 \quad-1 e s s 1 p 2 _r-1 p e s s 1 p 2 _t-1 b l a c s p 2 _t$

ESSL Library Name	Command
POWER2	```mpxlf -0 -c xyz.f mpx1f xyz.o -less1p2 -lpess1p2 -1blacsp2```
POWER	```mpxlf -0 -c xyz.f mpxlf xyz.0 -lessl -lpessl -1blacs```

where xyz.f is the name of your Fortran program, and xyz.0 is the name of your object file.

Parallel ESSL supports the XL Fortran compile-time option -qextname. For details, see the Fortran manuals.

An example of a makefile is shown in "Makefile (Message Passing)" on page 1005.

C Program Procedures

The Parallel ESSL header file pessl.h, used for C and C++ programs, is installed in the /usr/include directory. You do not need to modify your existing C compilation procedures when using Parallel ESSL, unless you want to specify your own definitions for complex data.

If you want to specify your own definitions for short- and long-precision complex data, add -D_CMPLX and -D_DCMPLX, respectively, to your compile command, as shown here:

ESSL Library Name	Command
SMP or Thread-Tolerant	mpcc_r -c -D_CMPLX -D_DCMPLX xyz.c
POWER2 or POWER	mpcc -c -D_CMPLX -D_DCMPLX xyz.c

where xyz.c is the name of your C program. Otherwise, you automatically use the definitions of short- and long-precision complex data provided in the Parallel ESSL header file.

When linking and running your program, you need to modify your existing PE job procedures for Parallel ESSL, to set up the necessary libraries. If you are accessing Parallel ESSL from a C program, you can compile and link using the following command:

ESSL Library Name	Command
SMP	mpcc_r -0 xyz.c -lesslsmp -1pesslsmp -1blacssmp
Thread-Tolerant	mpcc_r -0 xyz.c -lesslp2_r -1pess1p2_t -1blacsp2_t
POWER2	mpcc -0 xyz.c -1esslp2 -1pesslp2 -1blacsp2
POWER	mpcc -0 xyz.c -lessl -lpessl -1blacs

where $x y z . c$ is the name of your C program.

If you want to compile and link your C program in separate steps, use the following commands:

ESSL Library Name	Command
SMP	mpcc_r -0 -c xyz.c mpcc_r xyz.0 -lesslsmp -lpesslsmp -1blacssmp
Thread-Tolerant	```mpcc_r -0 -c xyz.c mpcc_r xyz.0 -less1p2_r -1pess1p2_t -1blacsp2_t```
POWER2	mpcc -0 -c xyz.c mpcc xyz.0 -less1p2 -lpesslp2 -1blacsp2
POWER	mpcc -0 -c xyz.c mpcc xyz.0 -less1 -lpess1 -lblacs

where $x y z . c$ is the name of your C program and $x y z .0$ is the name of your object file.

In the above cases, you automatically use the definitions of short- and long-precision complex data provided in the Parallel ESSL header file. If you prefer to specify your own definitions for short- and long-precision complex data, add -D_CMPLX and -D_DCMPLX, respectively, to your commands.

ESSL Library Name	Command			
SMP	mpCc_r	-0	-D_CMPLX	-D_DCMPLX

where $x y z . c$ is the name of your C program.

C++ Program Procedures

The Parallel ESSL header file pess1.h, used for C and C++ programs, is installed in the /usr/include directory. You do not need to modify your existing C++ compilation procedures when using Parallel ESSL, unless you want to specify your own definitions for complex data.

If a C++ application containing calls to Parallel ESSL subroutines is compiled using IBM C++ for AIX, Version 3.6.4 or later, the compiler option -qnocinc=/usr/include/pessl must be specified.

If you want to specify your own definition for short-precision complex data, add -D_CMPLX to your command, as shown here:

ESSL Library Name	Command
SMP or Thread-Tolerant	mpCC_r -c -D_CMPLX -D_DCMPLX xyz.C -qnocinc=/usr/include/pess1
POWER2 or POWER	mpCC -c -D_CMPLX -D_DCMPLX xyz.C -qnocinc=/usr/include/pessl

where xyz.C is the name of your C++ program. Otherwise, you automatically use the definition of short-precision complex data provided in the Parallel ESSL header file.

When linking and running your program, you need to modify your existing PE job procedures for Parallel ESSL, to set up the necessary libraries. If you are accessing Parallel ESSL from a C++ program, you can compile and link using the following command:

ESSL Library Name	Command
SMP	mpCC_r -0 xyz.C -lesslsmp -1pess1smp -1blacssmp -qnocinc=/usr/include/pess1
Thread-Tolerant	mpCC_r -0 xyz.C -lesslp2_r -1pess1p2_t -1b1acsp2_t -qnocinc=/usr/include/pess1
POWER2	mpCC -0 xyz.C -less1p2 -1pess1p2 -1blacsp2 -qnocinc=/usr/include/pess1
POWER	mpCC -0 xyz.C -less1 -lpessl -1blacs -qnocinc=/usr/include/pessl

where xyz. C is the name of your $\mathrm{C}++$ program.
If you want to compile and link your C++ program in separate steps, you can use the following commands:

ESSL Library Name	Command	
SMP	mpCC_r mpCC	

where xyz.C is the name of your $\mathrm{C}++$ program, and $x y z .0$ is the name of your object file.

In the above cases, you automatically use the definition of short-precision complex data provided in the Parallel ESSL header file. If you prefer to specify your own definition for short-precision complex data, add -D_CMPLX to your commands.

ESSL Library Name	Command
SMP	mpCC_r -0 -D_CMPLX xyz.C -lesslsmp -1pesslsmp -1blacssmp -qnocinc=/usr/include/pess 1
Thread-Tolerant	mpCC_r -0 -D_CMPLX xyz.C -lesslp2_r -1pesslp2_t -1blacsp2_t -qnocinc=/usr/include/pessi
POWER2	mpCC -0 -D_CMPLX xyz.C -lesslp2 -1pesslp2 -1blacsp2 -qnocinc=/usr/include/pess1
POWER	mpCC -0 -D_CMPLX xyz.C -less1 -lpessl -1blacs -qnocinc=/usr/include/pessl

where xyz.C is the name of your $\mathrm{C}++$ program.

Coding Your HPF Program

This section contains Parallel ESSL-specific application program coding requirements and considerations for HPF programs, as illustrated in the sample HPF programs in "Sample HPF Programs" on page 107. For an example of the use of Parallel ESSL in a sample HPF application program solving a thermal diffusion problem, see Appendix B on page 907.

For further details on coding the CALL statement and other related aspects of HPF programs, see references [11], [17], [30], [31], [41], [44], and [45], as well as the HPF manuals.

Coding the Calling Sequences

In HPF programs, the Parallel ESSL subroutines are invoked with the CALL statement, using the features of Fortran 90-generic interfaces, optional and keyword arguments, assumed-shape arrays, and modules. This section explains how these are used.

Using Extrinsic Procedures-The Parallel ESSL Subroutines

The Parallel ESSL subroutines are HPF_LOCAL extrinsic procedures, conforming to all restrictions imposed by HPF.

HPF requires that an explicit interface be provided for each extrinsic procedure entry in the scope where it is called, using an interface block. The interface blocks for the Parallel ESSL subroutines are provided for you in the module PESSL_HPF, so you do not have to code the interface blocks yourself. In the beginning of your HPF program, before any other specification statements, you must code the statement:

```
use pessl_hpf
```

This gives the XL HPF compiler access to the interface blocks. It also enables the XL HPF compiler to detect, at compile time, certain errors in the calls to the Parallel ESSL subroutines. For examples of where to code this statement in your HPF program, see Figure 9 on page 108 and Figure 10 on page 109.

To understand the redistribution of data that occurs when using the Parallel ESSL HPF subroutines and the performance implications, see "Coding Tips for Optimizing Parallel Performance" on page 83.

Generic Interfaces

The Parallel ESSL subroutines can be accessed through generic interfaces, where a single name covers one or more specific subroutines, whose arguments may differ in data type, precision, or rank (vector or matrix). The XL HPF compiler chooses the specific Parallel ESSL subroutine whose dummy arguments exactly match the characteristics of the actual arguments in the generic call statement. The use of generic interfaces for Parallel ESSL is dependent upon your coding the use statement described in "Using Extrinsic Procedures-The Parallel ESSL Subroutines."

The generic name used for each Parallel ESSL HPF subroutine is indicated in the "Syntax" section for each subroutine in Part 3 of this book.

For examples of how to specify a generic name in a Parallel ESSL call statement, see the sample programs in Figure 9 on page 108 and Figure 10 on page 109.

Optional and Keyword Arguments

As with standard Fortran 90, Parallel ESSL supports both optional and keyword arguments in its calling sequences.

Optional Arguments: Optional arguments do not have to be specified in the calling sequence when the Parallel ESSL subroutine is called. Optional arguments are indicated in the "Syntax" section for the subroutine in Part 3 of this book. Where optional arguments apply, the syntax shows two call statements in succession-the first lists only the required arguments, and the second lists both the required and optional arguments. For example, in the syntax for FFT, shown in "FFT-Fourier Transforms in Two Dimensions" on page 876, there are two call statements for case 1 . The first call statement includes only the required argument x, and the second statement includes x, plus the optional arguments y, transpose, isign, and scale.

Keyword Arguments: Keywords are dummy argument names. You must not specify positional arguments after you specify the first keyword argument. Keyword arguments can be arranged in any order, following the positional arguments in the calling sequence. You may follow a (possibly empty) positional argument list by a keyword argument list. The dummy argument names are listed in the calling sequences in the "Syntax" section for each subroutine in Part 3 of this book. For example, in the syntax for case 1 in FFT, shown in "FFT-Fourier Transforms in Two Dimensions" on page 876, the dummy argument names are x, y, transpose, isign, scale.

Applying these rules, you could code any of the following call statements, and more, for the call statement shown in Figure 10 on page 109.

```
call fft(xc1, yc1, isign=isignc)
call fft(xc1, y=yc1, isign=isignc)
call fft(xc1, isign=isignc, y=yc1)
call fft(x=xc1, y=yc1, isign=isignc)
call fft(isign=isignc, y=yc1, x=xcl)
call fft(scale=scalec, isign=isignc, y=yc1, x=xc1)
call fft(xc1, yc1, transpose='T', isign=isignc)
call fft(xc1, yc1, 'T', isign=isignc)
call fft(xc1, yc1, 'T', isignc, scalec)
call fft(xcl, yc1, 'T', isignc)
call fft(xc1(1:n1,1:n2), yc1(1:n2,1:n1), isign=isignc)
```

Figure 8. Call Statements for FFT

Assumed-Shape Arrays and Problem Sizes

All array arguments in the Parallel ESSL HPF subroutines are assumed-shape arrays of one dimension (shape(:)), two dimensions (shape(:.,:)), or three dimensions (shape(:,,.,:)). Depending on the subroutine, you have several ways to specify, in the calling sequence, the vectors, matrices, and sequences that you want Parallel ESSL to use.

The assumed-shape arrays must have the exact shape required for the problem. For example, SYMM computes a matrix multiplication using three matrices $\boldsymbol{A}, \boldsymbol{B}$,
and \boldsymbol{C}. The required shape of these assumed-shape arrays depends on the value of the side argument. When side $=$ ' L ', Parallel ESSL computes $\boldsymbol{C}=\alpha \boldsymbol{A B}+\beta \boldsymbol{C}$. For this case, the sizes of the assumed-shape arrays must satisfy the following:

- $\operatorname{size}(a, 1)=\operatorname{size}(a, 2)=\operatorname{size}(b, 1)=\operatorname{size}(c, 1)$
- $\operatorname{size}(b, 2)=\operatorname{size}(c, 2)$

These required sizes of the assumed-shape arrays are described in the "Notes" section for each subroutine in Part 3 of this book.

You have two ways to code the vectors, matrices, and sequences in the calling sequences:

- If you want to solve a problem using the entire assumed-shape array, specify only the vector, matrix, or sequence argument in the calling sequence, such as shown here for a, b, and c :

```
call symm(alpha, a, b, beta, c, uplo='U', side='L')
```

Most of the examples in Part 3 of this book use this technique-for example, see "Example 1" on page 733.

- If you want to solve a problem using a submatrix, specify the vector, matrix, or sequence in the calling sequence using Fortran 90 array sections-for example, $A(I A: I A+M-1, J A: J A+N-1)$ or $X(I X: I X+N-1)$, such as shown here for a, b, and c :
call symm(alpha, $a(1: 10,1: 10), b(11: 20,1: 20)$, beta, $c(1: 10,1: 20)$, uplo='U', side='L')

Some of the examples in Part 3 of this book use this technique-for example, see "Example 3" on page 726 and "Example 4" on page 727.

Coding the Directives for Distributing Your Data

Parallel ESSL supports the same data distribution techniques as HPF:

- Block-cyclic—used for the PBLAS, Dense Linear Algebraic Equations, and Eigensystems Analysis subroutines. An example of coding the directives for block-cyclic distribution is shown in Figure 9 on page 108.
- Block—used for the Fourier Transforms, Banded Linear Algebraic Equations, and Random Number Generation subroutines. An example of coding the directives for block distribution is shown in Figure 10 on page 109.

For a description of the various ways to code your directives for block-cyclic and block distribution, see "Distributing Data in an HPF Program" on page 79.
Note: XL HPF only supports CYCLIC(n) distributions for $n>1$ in HPF_LOCAL procedures, such as the Parallel ESSL HPF subroutines. The module PESSL_HPF contains the CYCLIC(n) data distribution directives corresponding to the block sizes listed in Table 32 on page 86.

Sample HPF Programs

Following is a sample program calling a PBLAS subroutine, which uses block-cyclic distribution. It corresponds to "Example 1" on page 733 for computing equation 2 $(\boldsymbol{C} \leftarrow \alpha \boldsymbol{B A}+\beta \boldsymbol{C})$ for SYMM on a 2×2 process grid. See the example for details about the input and output data for this sample program.

An example of the usage of a PBLAS subroutine is also shown in Appendix B. See "Program Main (HPF)" on page 944.

```
program example_symm
    use pessl_hpf
    implicit none
    real(kind(1d0)), dimension(8,8) :: a
    real(kind(1d0)), dimension(16,8) :: b
    real(kind(1d0)), dimension(16,8) :: c
    integer :: i
    integer :: j
! ...
! ... Initialize a and b with the data
! ... shown in Example 1 for SYMM
! ...(Steps not shown here)
! ...
! ... Block Cyclic Distribution on a 2d Process Grid
! ...
!hpf$ processors proc(2,2)
!hpf$ distribute(cyclic, cyclic) onto proc :: a, b, c
! ..
! ... Call Parallel ESSL HPF Subroutine
! ...
            call symm(alpha=1.0d0, a=a, b=b, beta=0.0d0, c=c,
    & uplo='u', side='r')
end program example_symm
```

Figure 9. PBLAS Sample Program Using Block-Cyclic Distribution
Following is a sample program calling a Fourier transform subroutine, which uses block distribution. It corresponds to "Example 1" on page 881 for the two-dimensional complex-to-complex Fourier transform computation for FFT.

An example of the usage of a Fourier transform subroutine is also shown in Appendix B. See "Module Fourier (HPF)" on page 954.

```
program xpfft
    use pessl_hpf
    implicit none
    integer, parameter :: isignc = -1
    integer, parameter :: n1 = 8
    integer, parameter :: n2 = 6
    complex(kind(1d0)), dimension(n1,n2) :: xc1
    complex(kind(1d0)), dimension(n2,n1) :: yc1
    real(kind(1d0)) :: scalec
    integer :: i
    integer :: j
!hpf$ processors p1(number_of_processors())
!hpf$ distribute (*, block) onto p1 :: xc1
!hpf$ distribute (*, block) onto p1 :: yc1
! ...
! ... Setup input
! ...
    xc1 = cmplx(0.0d0,0.0d0)
    xc1(1,1) = cmplx(float(n1*n2),0.0d0)
    scalec = 1.0d0/(float(n1*n2))
! ...
! ... Call Parallel ESSL HPF Subroutine
! ...
    call fft(xc1, yc1, isign=isignc, scale=scalec)
..
... Check the answers
! ...
    do j = 1, n1
        do i = 1, n2
        if (ycl(i,j) .ne. (1.0d0,0.0d0)) write(6,*) 'ERROR:', i, j, yc1(i,j)
        enddo
    endo
end program xpfft
```

Figure 10. Fourier Transform Sample Program Using Block Distribution

Running Your HPF Program

This section describes both the Parallel ESSL-specific and ESSL for AIX-specific changes you need to make to your HPF job procedures for compiling, linking, and running your HPF program. For details on general HPF procedures, see the HPF manuals.

You can use any procedures you are currently using to compile, link, and run your HPF programs, as long as you make the necessary modifications required by Parallel ESSL.

Dynamic Linking Versus Static Linking

When using an xlhpf or xlhpf90 command, only dynamic linking is supported for programs using Parallel ESSL. For details about how to do this, see the appropriate Parallel Environment: Operation and Use and HPF manuals.

HPF Program Procedures

You do not need to modify your existing XL HPF compilation procedures when using Parallel ESSL. For example, you can use:

ESSL Library Name	Command
POWER2 or POWER	$\mathrm{x} \mathrm{hpf}-\mathrm{c} \quad \mathrm{xyz} . \mathrm{f}$

where $x y z . f$ is the name of your HPF program.
Note: You can use either xlhpf or xlhpf90, as needed, in the commands shown below.

When linking and running your program, you need to modify your existing HPF job procedures for Parallel ESSL, to set up the necessary libraries. If you are accessing Parallel ESSL from an HPF program, you can compile and link using the following command:

where xyz.f is the name of your Fortran program.
If you want to compile and link your HPF program in separate steps, you can use the following commands:

where xyz.f is the name of your HPF program, and $x y z .0$ is the name of your object file.

Parallel ESSL supports the XL HPF compile-time option -qextname. For details, see the XL HPF manuals.

Notes:

1. The default search path for the Parallel ESSL and ESSL for AIX libraries is: /usr/lib. (Note that /lib is a symbolic link to /usr/lib.)

If the libraries are installed somewhere else, add the path name of that directory to the beginning of the LIBPATH environment variable, being careful to keep /usr/lib in the path. The correct LIBPATH setting is needed both for linking and executing the program.

For example, if you are using POWER2 nodes only, and you installed the Parallel ESSL libraries in /home/me/lib you would issue ksh commands similar to the following in order to compile and link a program:

```
LIBPATH=/home/me/lib:/usr/lib
export LIBPATH
xlhpf -o myprog myprog.f -lesslp2 -1pess1p2 -1blacsp2 -1pesslhpfp2
```

After setting the LIBPATH command, the /home/me/lib directory is the directory that gets searched first for the necessary libraries. This same search criteria is used at both compile and link time and run time.
2. When you specify -less1p2, -1pess1p2, -1blacsp2, and -lpess1hpfp2 in your commands, then all nodes that Parallel ESSL is running on must be POWER2 nodes. If you are running on both POWER and POWER2 nodes, you must specify -less $1,-1$ pessl, -1blacs, and -1 pesslhpf.
3. The ESSL for AIX and Parallel ESSL libraries are shared libraries and must be used in conjunction with each other. Equivalent subroutines with the same names in other libraries (such as, libblas.a) will not be used even if they are specified on the command line in place of the ESSL for AIX library.
4. In your job procedures, you must use only the allowable compilers and libraries listed in Table 1 on page 7 for AIX.

An example of a makefile for an HPF program is shown in Appendix B. See "Makefile (Message Passing)" on page 1005.

Chapter 4. Migrating Your Programs

This chapter explains many aspects of migrating your application programs.

Migrating to Parallel ESSL Version 2 Release 1.1

No changes to your application programs are required if you are migrating from Parallel ESSL Version 2 Release 1 to Parallel ESSL Version 2 Release 1.1.

Migrating to Parallel ESSL Version 2.1

This section explains how to update your message passing application programs when migrating from an earlier release to Parallel ESSL Version 2.1.

All application programs previously migrated to accommodate the new array descriptor, can run unchanged with Parallel ESSL Version 2.1. However, if you were dependent upon the PESSL_DESC_TYPE environment variable, you must change the array descriptors as described in "Array Descriptor Considerations."

Subroutines with the option of dynamic allocation have been updated to be consistent with ScaLAPACK 1.5. You do not need to update your application programs unless you choose to exploit the new capability.

The message-passing and HPF tridiagonal subroutines have been updated to be consistent with ScaLAPACK 1.5. If Parallel ESSL detects a computational error, the value returned in info is the process number where the error occurred. Previously, the index of the pivot where the matrix failed was returned in info. For the message-passing tridiagonal subroutines, the scope of info is now global. You do not have to make any modifications to your existing programs that call these subroutines. See the subroutines descriptions for specific details.

HPF application programs that run using Parallel ESSL Version 1.2 can be run unchanged using Parallel ESSL Version 2.1.

Array Descriptor Considerations

When using Parallel ESSL, you must code your new application programs using the array descriptors described in Chapter 2 on page 17. Also, if you were dependent upon the PESSL_DESC_TYPE environment variable, you must update any existing application programs to use the array descriptors described in Chapter 2 on page 17.

For more details on the array descriptors and how they are used for data distribution, see "Specifying and Distributing Data in a Message Passing Program" on page 23.

Type-1 Array Descriptor

A field DTYPE_ is at location 1, and the CTXT_field, previously at location 7, is moved to location 2. This causes all other fields to move down one or more locations in the array descriptor. The format of the array descriptor is shown in Table 16 on page 25.

Type-501 and -502 Array Descriptors

The field at location 1 is renamed DTYPE_, and the CTXT_field, previously at location 5 , is moved to location 2 . This causes some of the fields to move down one location in the array descriptor. The format of the array descriptors is shown in Table 21 on page 29 and Table 22 on page 29.

Future Migration Considerations for Array Descriptors

To minimize coding changes in the future, due to changes in the array descriptors, consider referencing the fields in the array descriptors symbolically in your program. For an example of this technique, see the Message Passing sample program in Appendix B on page 907.

Migrating from ScaLAPACK 1.5 to Parallel ESSL Version 2.1

If you are currently using the ScaLAPACK 1.5 offerings from the Oak Ridge National Laboratory, Parallel ESSL Version 2.1 uses compatible calling sequences with this version of ScaLAPACK, except PDDTTRS does not support General Tridiagonal Transpose Solve.

Chapter 5. Using Error Handling

This chapter provides the following information for your use in dealing with errors:

- How to obtain IBM support.
- What to do about NLS (National Language Support) problems.
- A description of the different types of errors that can occur in Parallel ESSL. It explains what happens when an error occurs and, in some instances, how you can use error handling to obtain further information.
- All of the Parallel ESSL error messages are categorized into the different error types. There is also a description of the error message format.

Where to Find More Information About Errors

Information about errors and how to handle them can be found in the following places:

- Specific errors associated with each Parallel ESSL subroutine are listed under "Error Conditions" in each subroutine description in Part 2 and 3 of this book.
- Diagnostic procedures for errors associated with ESSL are provided in the ESSL Version 3 Guide and Reference manual.

Getting Help from IBM Support

Should you require help from IBM in resolving a Parallel ESSL problem, report it and provide the following information, if available and appropriate.

1. Your customer number
2. The Parallel ESSL program number, 5765-C41
3. The version of the AIX operating system that you are running on. To get this information, enter the following command:
oslevel
4. The names and versions of key products being run. To get this information, enter the following command:

1slpp -h product
where:

Table 37 (Page 1 of 2). Product Names when Using AIX Version 4	
Product	Descriptive Name
essl. ${ }^{*}$	ESSL for AIX
pessl. *	Parallel ESSL for AIX
ppe.poe	Parallel Operating Environment
xlfrte	XL Fortran Run-Time Environment
xlfcmp	XL Fortran Compiler
xlhpf.rte	XL HPF Run-Time Environment

Table 37 (Page 2 of 2). Product Names when Using AIX Version 4	
Product	Descriptive Name
xlhpf.cmp	XL HPF Compiler
vac.C	C for AIX Compiler
ibmcxx.cmp	IBM C, C++ Version 3.6 Compiler

5. The message that is returned when an error is detected.
6. Any error message relating to core dumps.
7. The compiler listings, including compiler options in effect, and any run-time listings produced
8. Program changes made in comparison with a previous successful run
9. A small test case demonstrating the problem using the minimum number of statements and variables, including input data

Consult your IBM Service representative for more assistance.

National Language Support

For National Language Support (NLS), all Parallel ESSL subroutines display messages located in externalized message catalogs. English versions of the message catalogs are shipped with the Parallel ESSL product, but your site may be using its own translated message catalogs. The AIX environment variable NLSPATH is used by the various Parallel ESSL subroutines to find the appropriate message catalog. NLSPATH specifies a list of directories to search for message catalogs. The directories are searched, in the order listed, to locate the message catalog. In resolving the path to the message catalog, NLSPATH is affected by the value of the environment variables LC_MESSAGES and LANG. If you get an error saying that a message catalog is not found and want the default message catalog, enter the following:

```
export NLSPATH=/usr/lib/nls/msg/%L/%N
export LANG=C
```

The Parallel ESSL message catalogs are in English, and are located in the following directories:
/usr/lib/nls/msg/C
/usr/lib/n1s/msg/En_US
/usr/lib/nls/msg/en_US
If your site is using its own translations of the message catalogs, consult your system administrator for the appropriate value of NLSPATH or LANG. For additional information on NLS and message catalogs, see IBM AIX for RS/6000 General Programming Concepts.

If Parallel ESSL cannot successfully find a message, Parallel ESSL returns message 799, indicating which message could not be located. Message 799 is described in "Miscellaneous Error Messages (700-799)" on page 153.

PESSL ERROR SYNC Environment Variable

The PESSL_ERROR_SYNC environment variable allows you to enable and disable error synchronization. If error synchronization is disabled, the first process containing input-argument error(s) to finish computing, issues its error message(s) and terminates Parallel ESSL processing on all processes. Therefore, you should only disable error synchronization when your application program is debugged.

```
PESSL_ERROR_SYNC=no
    -Or-
PESSL ERROR SYNC=NO
export PESSL_ERROR_SYNC
```

This causes Parallel ESSL to disable error synchronization in all calls to the Parallel ESSL subroutines.

If you do not set the environment variable or you set something other than 'no' or 'NO ', Parallel ESSL uses error synchronization in all calls to the Parallel ESSL subroutines.

Dealing with Errors

At run time, you can encounter a number of different types of errors that are specifically related to the use of the Parallel ESSL subroutines:

- Program exceptions
- Input-argument errors (001-299, 800-999)
- Computational errors (300-399)
- Resource errors (400-499)
- Communication errors (500-599)
- Miscellaneous errors (700-799)

This section explains what causes these errors, what happens when they occur (all are terminating, except computational errors), and what you can do to fix them.

This section also explains what to do when you receive informational and attention messages (600-699).

Program Exceptions

The program exceptions you can encounter in Parallel ESSL are described in the RS/6000 architecture manuals. For details, see:

- The ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985
- The IBM RS/6000 POWERstation and POWERserver Hardware Technical Reference Information-General Architectures manual

Input-Argument Errors

This section describes how Parallel ESSL implements input-argument error checking when error synchronization is enabled. For more information on the PESSL_ERROR_SYNC environment variable, which allows you to enable or disable error synchronization, see "PESSL_ERROR_SYNC Environment Variable."

Two types of input-argument error checking may be performed:

- First, on each participating process, Parallel ESSL checks the validity of most input-arguments in multiple stages.
When all the input-arguments in one stage are valid, Parallel ESSL checks the validity of the input-arguments in the next stage, and so on. (The number of errors and stages that can occur for each subroutine are listed under its "Error Conditions" section, which is in Part 2 and 3 of this book.)
When a message passing input argument is not valid on all participating processes in the parallel environment, a single comprehensive error message is issued, rather than one for each process. (This is indicated in the error message by Process(-1,-1).) Otherwise, an error message is issued from each process where the discrepancy occurred. When an HPF input-argument is not valid, an error message is issued from one or more processes.
Parallel ESSL then terminates your program on all processes, and any arguments in the stages that follow are not checked. When this occurs, you should use standard programming techniques to diagnose and fix the errors.
- Next, Linear Algebraic Equations and Eigensystem Analysis subroutines check to ensure that global scalar arguments are the same on all participating processes.
If the value of the global scalar argument on all processes except P_{00} does not match the value of the argument at process P_{00}, a single error message is issued. (This is indicated in the error message by Process(-1,-1).) Otherwise, an error message is issued from each process where the discrepancy occurred. Parallel ESSL then terminates your program on all processes, and you should use standard programming techniques to diagnose and fix the errors.
For all other Parallel ESSL subroutines, the global scalar arguments are not checked to ensure they are the same for all processes.

How This Differs from ESSL for AIX:

The capabilities of ERRSET, ERRSAV, and ERRSTR, supported in ESSL for AIX, are not provided in Parallel ESSL.

Using the capabilities of ERRSET, ERRSAV, and ERRSTR with your ESSL for AIX subroutines does not affect the Parallel ESSL subroutines.

For the Fourier transform subroutines, an invalid transform length is not recoverable, as in ESSL for AIX. Parallel ESSL checks the validity of the transform length you provide to the Fourier transform subroutine. If it is not an acceptable value, a Parallel ESSL input-argument error message is issued, containing the next larger acceptable transform length required for successful computing of a Fourier transform. See the appropriate subroutine for additional constraints on valid transform lengths. Your program is then terminated on all processes. You should correct the value and rerun your program.

Computational Errors

Parallel ESSL computational errors are errors that occur in the computational data, such as in your vectors and matrices, during a computation-for example, the detection of a singular system during a factorization. (The computational errors that can occur for each subroutine, are listed under "Computational Errors.") When a computational error occurs, Parallel ESSL issues an error message containing information key to the diagnosis of the error-such as the location in the input matrix where the singularity occurred. Any subroutine that issues a computational error has an info argument in its calling sequence. For all the Parallel ESSL subroutines, info is a global argument containing fullword integers, except in the tridiagonal subroutines. For these tridiagonal subroutines, info is a local argument containing fullword integers.

For message passing programs, when a computational error occurs, your program continues to execute. After each call where a computational error can occur, you should check the info output argument to see if an error occurred and take the appropriate action. When a computational error occurs, you should assume that the results are unpredictable. The result of the computation is valid only if no errors have occurred.

For HPF programs, when a computational error occurs and if the info argument is present, your program continues to execute. After each call where a computational error can occur, you should check the info output argument to see if an error occurred and take the appropriate action. When a computational error occurs, you should assume that the results are unpredictable. The result of the computation is valid only if no errors have occurred. If the info argument is not present and a computational error occurs, Parallel ESSL issues an additional error message containing the value of info and the application program is terminated.

How This Differs from ESSL for AIX:

The way you handle computational errors for Parallel ESSL differs from how you handle them for ESSL for AIX. This is because the capabilities of ERRSET, ERRSAV, and ERRSTR, supported in ESSL for AIX for recoverable computational errors, are not supported in Parallel ESSL. This results in the following differences:

- For message passing programs, you do not have the option of Parallel ESSL terminating your program when a computational error occurs in an Parallel ESSL subroutine. Control always returns to your program.
For HPF programs, if you choose not to specify the optional info argument and a computational error occurs, Parallel ESSL issues a computational error message and the application program is terminated.
- The information about the error is returned to your program through the info argument (if present for HPF), rather than through a subsequent call to the EINFO subroutine.

Using the capabilities of ERRSET, ERRSAV, and ERRSTR with your ESSL for AIX subroutines does not affect the Parallel ESSL subroutines.

Resource Errors

A resource error occurs when a buffer storage allocation request fails in a Parallel ESSL subroutine. In general, the Parallel ESSL subroutines allocate internal auxiliary storage dynamically as needed. Without sufficient storage, the subroutine cannot complete the computation.

When a buffer storage allocation request fails, a resource error message is issued, and the application program is terminated. You need to reduce the memory constraint on the system or increase the amount of memory available before rerunning the application program.

Ways to Reduce Memory Constraints:

The following ways may reduce memory constraints:

- If you are using a one-dimensional process grid, change to a two-dimensional process grid, if possible. (Keep the shape of the two-dimensional process grid as close to a square as possible.)
- If you are using a two-dimensional process grid, change the shape of the process grid to be a square or as close to a square as possible.
- Increase the number of nodes. As you increase the number of nodes, keep the process grid as square as possible. For example, if using more processes, such as 17 rather than 16, causes you to use a one-dimensional grid rather than a two-dimensional grid, performance may be degraded.
- For message passing subroutines, reduce the block sizes.
- If your application terminated because you did not have enough storage and you received resource error 400 issued by the internal Parallel ESSL subroutine emergency_buff, consider running your PE application in user space (US) mode.
- For message passing subroutines, set the leading dimension equal to the number of rows in the local matrix.
- Investigate the load of your process and run in a more dedicated environment.
- Increase your node's paging space.
- Select nodes with more available memory.
- Select nodes that are not being used by other programs.

Communication Errors

Communication errors are errors that occur when Parallel ESSL encounters problems in communicating between processes-sending and receiving data or synchronizing operations. When a communication error occurs, at least one communication message is issued and the application program is terminated. This is because communication errors usually indicate a serious problem, where it is not feasible to continue.

Be aware that, due to the nature of communication errors, some error messages, including communications error messages from various processes, may be lost.

Informational and Attention Messages

When you receive an informational or attention message, check your application to determine why the condition was detected. You may decide to change your application so you do not receive the message. For example, if your application called a BLACS routine to send data from one process to the same process, you would receive an attention message.

Parallel ESSL does not terminate your application program, but performance may be degraded.

Miscellaneous Errors

A miscellaneous error is an error that does not fall under any of the other categories. Miscellaneous errors are checked in stages along with input-argument errors.

If no errors are detected in the first stage, Parallel ESSL checks the next stage, and so on. (The number of errors and stages that can occur for each subroutine are listed under its "Error Conditions" section.)

When Parallel ESSL detects a miscellaneous error, you receive an error message with information on how to correct the problem, your application program is terminated, and any arguments in the stages that follow are not checked.

ESSL for AIX Error Messages

For problems relating directly to ESSL for AIX, see the ESSL Version 3 Guide and Reference manual. If the ESSL for AIX error resulted from a Parallel ESSL subroutine, see "Getting Help from IBM Support" on page 115 to find out how to report the problem.

MPI Error Messages

If you receive an MPI error message while calling a BLACS routine, the cause is most likely one of the following:

- The BLACS have not been initialized.
- The context passed to the BLACS routine is not the same as the context obtained from a call to the BLACS_GET, BLACS_GRIDINIT, or BLACS_GRIDMAP routine.

Messages

This section describes the message conventions and lists all messages for input-argument errors, computational errors, resource errors, communication errors, informational and attention messages, and miscellaneous errors.

Message Conventions

About Upper- and Lowercase:

The literals, such as ' N ', ' T ', ' U ', and so forth, appear in the messages in this book in uppercase; however, they may be specified in your Parallel ESSL calling sequence in either upper- or lowercase, for example, ' n ', ' t ', and ' u '.

Message Format:

The Parallel ESSL messages are issued in your output in the following format:

```
rtn-name: 0040-nnn Context(\) Task(k) Process(p,q) Grid P }\times
message-text
```

Figure 11. Message Format
The parts of the Parallel ESSL message are as follows:
rtn-name gives the name of the PE subroutine that encountered the error.
0040 is the Parallel ESSL component identification number.
$n n n \quad$ is the message identification number:
001-299 Input-argument error messages
300-399 Computational error messages
400-499 Resource-allocation error messages
500-599 Communications error messages
600-699 Informational and attention messages
700-799 Miscellaneous error messages
800-999 Input-argument error messages
Context $\quad l$ is the communication context number defined for this process grid, where $/$ is an integer. If $I=-1$, then the context is invalid; in addition, the process and grid coordinates are set to -1 .
Task(k) is the PE task identification number.
Process $(p, q) \quad$ are the process grid coordinates, indicating the process where the error occurred.

If $p=q=-1$ and the context is valid, then the same error occurred on all the processes, but is only reported on P_{00}.
Grid $P \times Q \quad$ gives the dimensions of the process grid.
message-text describes the nature of the error. The possible unique parts are:

- For the message passing error messages, the argument number of each argument involved in the error is included in the message description as (ARG NO. _).

For the HPF error messages, the name of each argument involved in the error is included in the message description.

- Additional information about the error is included in the message. The placement of this information is shown in the messages as (_)

Input-Argument Error Messages (001-299)

RTN_NAME : 0040-001 Context(_) Task(_) Process(_,_) Grid _ x _ The SCOPE (ARG NO. _) of a broadcast must be 'R', 'C', or ' A^{-}

RTN_NAME : 0040-002 Context(_) Task(_) Process(_,_) Grid _ x UPLO (ARG NO. _), which specifies whether an input matrix (ARG NO. _) is upper or lower, must be 'U' or 'L'.

RTN_NAME : 0040-003 Context(_) Task(_) Process(_,_) Grid _ x _ DIAG (ARG NO. _), which specifies whether an input matrix (ARG NO. _) is unit, must be 'U' or 'N'.

RTN_NAME : 0040-004 Context(_) Task(_) Process(_,_) Grid _ x _ The process row (ARG NO. _) must be greater than or equal to zero and less than the total number of processes in a row.

RTN_NAME : 0040-005 Context(_) Task(_) Process(_,_) Grid _ x _ The process column (ARG NO. _) must be greater than or equal to zero and less than the total number of processes in a column.

RTN_NAME : 0040-006 Context(_) Task(_) Process(_,_) Grid _ x The SCOPE is specified by (ARG NO. _); therefore, the index of the source process (ARG NO. _) must be equal to (_).

RTN_NAME : 0040-007 Context(_) Task(_) Process(_,_) Grid _ x _ The TOPOLOGY parameter (ARG NO. _) is invalid.

RTN_NAME : 0040-008 Context(_) Task(_) Process(_,_) Grid _ x The requested number of processes (_) is greater than the available number of processes (_).

RTN_NAME : 0040-009 Context(_) Task(_) Process(_,_) Grid _ x The requested number of process rows (_) and process columns (_) must be positive.

RTN_NAME : 0040-010 Context(_) Task(_) Process(_,_) Grid _ x _ The number of rows (ARG NO. _) in a matrix must be greater than or equal to zero.

RTN_NAME : 0040-011 Context(_) Task(_) Process(_,_) Grid _ x _ The number of columns (ARG NO. _) in a matrix must be greāter than or equal to zero.

RTN_NAME : 0040-012 Context(_) Task(_) Process(_,_) Grid _ x _ The block size (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-013 Context(_) Task(_) Process(_,_) Grid _ x _ The offset (ARG NO. _) must be greater than or equal to zero and less than the block size (ARG NO. _).

RTN_NAME : 0040-014 Context(_) Task(_) Process(_,_) Grid _ x _ The stride (ARG NO. _) for a vector must be positive.

RTN_NAME : 0040-015 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be a double precision odd whole number greater than or equal to 1.0 and less than $2 * * 48$.

RTN_NAME : 0040-016 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be zero or one.

RTN_NAME : 0040-017 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 0040-018 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-019 Context(_) Task(_) Process(_,_) Grid _ x _ The number of rows (ARG NO. _) must be less than or equal to the block size (ARG NO. _).

RTN_NAME : 0040-020 Context(_) Task(_) Process(_,_) Grid _ x _ The number of columns (ARG NO. _) must be less than or equal to the block size (ARG NO. _).

RTN_NAME : 0040-021 Context(_) Task(_) Process(_,_) Grid _ x _ The number of rows (ARG NO. _) must be less than or equal to the size of the leading dimension (ARG NO. _) of its array.

RTN_NAME : 0040-022 Context(_) Task(_) Process(_,_) Grid _ x _ The order of a matrix (ARG NO. _) must be less than or equal to the block size (ARG NO. _).

RTN_NAME : 0040-023 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be a multiple of the product of (ARG NO. _) and the number of processes (_).

RTN_NAME : 0040-024 Context(_) Task(_) Process(_,_) Grid _ x _ The size of the leading dimension (ARG NO. _) of the local array must be greater than zero.

RTN_NAME : 0040-025 Context(_) Task(_) Process(_,_) Grid _ x _ The process column (ARG NO. _) that contains matrix (ARG NO. ._) must be equal to the process column (ARG NO. _) that contains matrix (ARG NO. _)

RTN_NAME : 0040-026 Context(_) Task(_) Process(_,_) Grid _ x _ The process row (ARG NO. _) that contains matrix (ARG NO._ _) must be equal to the process row (ARG NO. _) that contains matrix (ARG NO. _)

RTN_NAME : 0040-027 Context(_) Task(_) Process(_,_) Grid _ x _ The order (ARG NO. _) of a matrix must be greater than or equā to zero.

RTN_NAME : 0040-028 Context(_) Task(_) Process(_,_) Grid _ x MTXBLK (ARG NO. _), which specifies whether an input matrix ($\bar{A} R G$ NO. _) is a full block matrix or a single block matrix, must be 'M' or 'B'.

RTN_NAME : 0040-029 Context(_) Task(_) Process(_,_) Grid _ x _ The process row (ARG NO. _) must be greater than or equal to $\overline{-1}$ and less than the total number of rows in the process grid.

RTN_NAME : 0040-030 Context(_) Task(_) Process(_,_) Grid _ x _ The process column (ARG NO. _) must be greater than or equal to -1 and less than the total number of columns in the process grid.

RTN_NAME : 0040-031 Context(_) Task(_) Process(_,_) Grid _ x _ The - argument which specifies whether a matrix ($\overline{\mathrm{A} R G} \mathrm{~N}$ N. _) is workspace must be ' Y ' or 'N'.

RTN_NAME : 0040-032 Context(_) Task(_) Process(_,_) Grid _ x _ TRANS (ARG NO. _), which specifies the computation to be performed, must be 'N', 'T', or 'C'.

RTN_NAME : 0040-033 Context(_) Task(_) Process(_,_) Grid _x The size of leading dimension (ARG NO. _) of the local array (ARG NO. _) must be greater than or equal to (_).

RTN_NAME : 0040-034 Context(_) Task(_) Process(_,_) Grid _ x _ SID \bar{E} (ARG NO. _), which specifies whether the input matrix
(ARG NO. _) appears on the left or right of the other input matrix, must be 'L' or 'R'.

RTN_NAME : 0040-035 Context(_) Task(_) Process(_,_) Grid _ x _ The number of right hand sides (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 0040-036 Context(_) Task(_) Process(_,_) Grid _ x _ TRANS (ARG NO. _), specifies whether an input matrix (ARG ${ }^{-} \mathrm{NO}^{-}{ }_{-}$), its transpose, or its conjugate transpose should be used. TRANS must be 'N', 'T', or 'C'.

RTN_NAME : 0040-037 Context(_) Task(_) Process(_,_) Grid _ x _ Task has issued a receive for its own broadcast.

RTN_NAME : 0040-038 Context(_) Task(_) Process(_,_) Grid _ x Minimum message id in message id range (element 1 of ARG $\bar{N} 0 . \overline{3}$) must be less than the maximum message id (element 2 of ARG NO. 3).

RTN_NAME : 0040-039 Context(_) Task(_) Process(_,_) Grid _ x _ The communications context (ARG NO. _) is invalid.

RTN_NAME : 0040-040 Context(_) Task(_) Process(_,_) Grid _ x _ The process row or column (ARG NO. _) must be greater than 0.

RTN_NAME : 0040-041 Context(_) Task(_) Process(_,_) Grid _ x _ The process row, RSRC_, (element 7 of ARG NO. _) must be greater than or equal to 0 and less than the total number of rows in the process grid.

RTN_NAME : 0040-042 Context(_) Task(_) Process(_,_) Grid _ x _ The process column, CSRC_, ($\overline{\mathrm{e}}$ lement $\overline{8}$ of ARG NO. -_) must $\overline{\mathrm{b}} \mathrm{e}$ greater than or equal to 0 and less than the total number of columns in the process grid.

RTN_NAME : 0040-043 Context(_) Task(_) Process(_,_) Grid _x The communications context, $\bar{C} T X T$, (element 2 of $\overline{A R G}$ NO. _) of the matrix (ARG NO. _) must be equal to the communications context (element $\overline{2}$ of ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-044 Context(_) Task(_) Process(_,_) Grid _ x _ The size of the leading dimension, LLD_, (element 9 of ARG NO. _) of the local array (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-045 Context(_) Task(_) Process(_,_) Grid _ x _ The size of leading dimension, LLD_, (element 9 of ARG NO. _) of the local array (ARG NO. _) must be greater than or equal to (_).

RTN_NAME : 0040-046 Context(_) Task(_) Process(_,_) Grid _ x The number of rows, M_, (element 3 of ARG NO. _) in the ḡobā matrix (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-047 Context(_) Task(_) Process(_,_) Grid _ x The number of columns, $\mathrm{N}_{\mathrm{\prime}}$, (element 4 of ARG NO. _) in the global matrix (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-048 Context(_) Task(_) Process(_,_) Grid _ x _ The \quad global row index (ARG NO. _) of matrix (ARG $\overline{N O} \overline{0}$. _) must bē greater than 0.

RTN_NAME : 0040-049 Context(_) Task(_) Process(_,_) Grid _ x _ The global column index (ARG NO. _) of matrix (ARG NO. _) must be greater than 0 .

RTN_NAME : 0040-050 Context(_) Task(_) Process(_,_) Grid _ x _ The stride (ARG NO. _) for vector (ARG NO. _) is $\overline{1}$, but the row block size, MB_, (element 5 of ARG NO. _) is not equal to the block size (element _ of ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-051 Context(_) Task(_) Process(_,_) Grid _ x _ The row and column block sizes, MB_ and NB_, (elements 5 and 6 of ARG NO. _) of the matrix (ARG NO. _) must be equal.

RTN_NAME : 0040-052 Context(_) Task(_) Process(_,_) Grid _ x _ The submatrix referenced is incompatible with the global matrix definition. The global row index (ARG NO. _) plus the number of rows (ARG NO. _) of the matrix (ARG NO. _) minus 1 must be less than or equal to the number of rows, M_, (element 3 of ARG NO. _).

RTN_NAME : 0040-053 Context(_) Task(_) Process(_,_) Grid _ x The submatrix referenced is incompatible with the global matrix definition. The global column index (ARG NO. _) plus the number of columns (ARG NO. _) of the matrix (ARG NO. _) minus 1 must be less than or equal to the number of columns, N_{-}, (element 4 of ARG NO. _).

RTN_NAME : 0040-054 Context(_) Task(_) Process(_,_) Grid _ x The stride (ARG NO. _) and global indices (ARG $\overline{\mathrm{N}} \mathrm{O}_{\text {. _ }}$ and $\overline{\mathrm{A} R G} \overline{\mathrm{~N}} \mathrm{O}_{\text {. _ }}$) of the vector (ARG N $\overline{0}$. _) are inconsistent with the ${ }^{-}$global dimensions, M_{-}and N_{-}, (elements 3 and 4 of ARG NO. _) of the matrix.

RTN_NAME : 0040-055 Context(_) Task(_) Process(_,_) Grid _x The vector (ARG NO. _) is row-distributed but the column $\bar{b} l o c \bar{k}$ size, NB_, (element 6 of ARG NO. _) is not equal to the row block size, MB_, (element 5 of ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-056 Context(_) Task(_) Process(_,_) Grid _ x
The vector (ARG NO. _) is column-distributed but the row $\overline{\mathrm{b}}$ lock size, MB_, (element 5 of ARG NO. _) is not equal to the row block size, MB_, (element 5 of ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-057 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (ARG NO. _) is row-distributed, but the block \bar{c} column offset of the vector is not equal to the block row offset of the matrix (ARG NO. _).

RTN_NAME : 0040-058 Context(_) Task(_) Process (_,_) Grid _ x The vector (ARG NO. _) is row-distributed but the column $\bar{b} l o c \bar{k}$ size, NB_, (element 6 of ARG NO. _) is not equal to the column block size, NB_, (element 6 of ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-059 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (ARG NO. _) is row-distributed, but the block column offset of the vector is not equal to the block column offset of the matrix (ARG NO. _).

RTN_NAME : 0040-060 Context(_) Task(_) Process(_,_) Grid _ x The vector (ARG NO. _) is row-distributed, but the process column (_), containing the first element of the vector is not equal to the process column (_) containing the first column of the submatrix (ARG NO. _).

RTN_NAME : 0040-061 Context(_) Task(_) Process(_,_) Grid _ x The vector (ARG NO. _) is column-distributed but the row block size, MB_, (element 5 of ARG NO. _) is not equal to the column block size, NB_, (element 6 of ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-062 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (ARG NO. _) is column-distributed, but the block row offset of the vector is not equal to the block column offset of the matrix (ARG NO. _).

RTN_NAME : 0040-063 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (ARG NO. _) is column-distributed, but the block row offset of the vector is not equal to the block row offset of the matrix (ARG NO. _).

RTN_NAME : 0040-064 Context(_) Task(_) Process(_,_) Grid _ x _
The vector (ARG NO. _) is column-distributed, but the process row (_), containing the first element of the vector is not equal to the process row (_) containing the first row of the submatrix (ARG NO. _).

RTN_NAME : 0040-065 Context(_) Task(_) Process(_,_) Grid _ x _ The stride (ARG NO. _) for vector (ĀRG NO. _) must be equà lō either 1 or the number of rows, M_, (element 3 of ARG NO. _).

RTN_NAME : 0040-066 Context(_) Task(_) Process(_,_) Grid _ x _ The calculated block row offset and block column offset of the submatrix referenced within the global matrix (ARG NO. _) must be equal.

RTN_NAME : 0040-067 Context(_) Task(_) Process(_,_) Grid _ x _ Matrices (ARG NO. _) and (ARG NO. _) have incompatible blōck sizes. The block size (element _ of ARG NO. _) must be equal to the block size (element _ of ARG NO. _).

RTN_NAME : 0040-068 Context(_) Task(_) Process(_,_) Grid _ x _ The ${ }^{-}$global row index (ARG NO. _) and global column index ($\mathrm{ARG}^{-} \mathrm{NO}^{\prime}$. _) of matrix (ARG NO. _) must be equal.

RTN_NAME : 0040-069 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _), which represents a process row or column, must be greater than or equal to zero and less than (ARG NO. _).

RTN_NAME : 0040-070 Context(_) Task(_) Process(_,_) Grid _ x _ The transform length (ARG NO. _) must be divisible by the number of tasks (_).

RTN_NAME : 0040-071 Context(_) Task(_) Process(_,_) Grid _ x _ The transform length (ARG NO. _) divided by the number of tasks must be an even number.

RTN_NAME : 0040-072 Context(_) Task(_) Process(_,_) Grid _ x _ The scaling parameter (ARG NO. _) must be nonzero.

RTN_NAME : 0040-073 Context(_) Task(_) Process(_,_) Grid _ x_ The transform length (ARG NO. _) is not an allowed value. The next higher value is (_).

RTN_NAME : 0040-074 Context(_) Task(_) Process(_,_) Grid _ x _ The output data distribution format (element 2 of ARG NO. _) must be zero or one.

RTN_NAME : 0040-075 Context(_) Task(_) Process(_,_) Grid _ x _ (Element _ of ARG NO. _) must be either zero or greater than or equal to the transform dimension (ARG NO. _).

RTN_NAME : 0040-076 Context(_) Task(_) Process(_,_) Grid _ x _ The transform direction parameter (ARG NO. _) must be nonzero.

RTN_NAME : 0040-077 Context(_) Task(_) Process(_,_) Grid _ x_ The transform length (ARG NO. _) must be less than or equal to (_).

RTN_NAME : 0040-078 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be nonzero.

RTN_NAME : 0040-079 Context(_) Task(_) Process(_,_) Grid _ x _ The submatrix referenced must be a block row matrix.
The block row offset plus the number of rows (ARG NO. _) of the matrix (ARG NO. _) must be less than or equal to the row block size (element $\overline{5}$ of ARG NO. _).

RTN_NAME : 0040-080 Context(_) Task(_) Process(_,_) Grid _ x _ The submatrix referenced must be a block column matrix.
The block column offset plus the number of columns (ARG NO. _) of the matrix (ARG NO. _) must be less than or equal to the column block size (element 6 of ARG NO. _).

RTN_NAME : 0040-081 Context(_) Task(_) Process(_,_) Grid _ x In $\overline{\text { the }}$ process grid, the process row (_), containing the $\overline{\text { firs }} \overline{\mathrm{t}}$ row of the submatrix (ARG NO. _) must be equal to the process row (_) containing the first row of the submatrix (ARG NO. _).

RTN_NAME : 0040-082 Context(_) Task(_) Process(_,_) Grid _ x The communications context, $\overline{\mathrm{C}} \mathrm{TXT}_{-}$, (element 2 of $\overline{\mathrm{A} R G} \mathrm{NO}$. _) of the matrix (ARG NO. _) must be equal to the communications context (element $\overline{2}$ of ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-083 Context(_) Task(_) Process(_,_) Grid _ x In $\overline{\text { the }}$ process grid, the process column (_), containing the first column of the submatrix (ARG NO. _) must be equal to the process column (_) containing the first column of the submatrix (ARG NO. _).

RTN_NAME : 0040-084 Context(_) Task(_) Process(_,_) Grid _ x _ The ${ }^{-}$dimension (ARG NO. _) of the matrices must $\bar{b} \bar{e}^{-}$greater ${ }^{-}$than or equal to zero.

RTN_NAME : 0040-085 Context(_) Task(_) Process(_,_) Grid _ x _ The submatrices referenced must be properly aligned.
The block offset for matrix (ARG NO. _) generated by (ARG NO. _) and block size (element _ of ARG NO. _) must be equal to the block offsē for matrix (ARG NO. _) generated by (ARG NO. _) and block size
(element _ of ARG NO. _).
RTN_NAME : 0040-086 Context(_) Task(_) Process(_,_) Grid _ x _ The communications context (_) is not currently active.

RTN_NAME : 0040-087 Context(_) Task(_) Process(_,_) Grid _ x _ The communications context (_) is invalid.

RTN_NAME : 0040-088 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be defined with the number of rows set to 1.

RTN_NAME : 0040-089 Context(_) Task(_) Process(_,_) Grid _ X_ The vectors referenced must be distributed along the same axis. Either the stride (ARG NO. _) for vector (ARG NO. _) and the stride (ARG NO. _) for vector (ARG NO. _) must both be equal to 1 or the stride for vector (ARG NO. _) must be equal to the number of rows, M_, (element 3 of ARG NO. _) and the stride for vector (ARG NO. _) must be equal to the number of rows, M_{-}, (element 3 of ARG NO. _).

RTN_NAME : 0040-090 Context(_) Task(_) Process(_,_) Grid _ x The row block size, MB_, (element 5 of ARG NO. _) of the matrix (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-091 Context(_) Task(_) Process(_,_) Grid _ x _ The column block size, NB_, (element 6 of ARG NO. _) of the matrix (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-092 Context(_) Task(_) Process(_,_) Grid _ x _ The submatrix referenced must be aligned on a row block bōundāry. (ARG NO. _) minus 1 must be a multiple of the row block size, MB_, (element 5 of ARG NO. _) of matrix (ARG NO. _).

RTN_NAME : 0040-093 Context(_) Task(_) Process(_,_) Grid _ x _ The submatrix referenced must be aligned on a column block boundary. (ARG NO. _) minus 1 must be a multiple of the column block size, NB_, (element $\overline{6}$ of ARG NO. _) of matrix (ARG NO. _).

RTN_NAME : 0040-094 Context(_) Task(_) Process(_,_) Grid _ x _ The global row index (ARG NO. _) of vector (ARG NO. _) must be greater than 0 and less than the number of rows, M_, (element 3 of ARG NO. _).

RTN_NAME : 0040-095 Context(_) Task(_) Process(_,_) Grid _ x The \quad global column index ($\mathrm{ARG}^{-} \mathrm{NO}$. _) of vector ($\overline{\mathrm{ARG}} \mathrm{NO}$. _) must be greater than 0 and less than or equal to the number of $\overline{c o l u m n s, ~} N_{-}$, (element 4 of ARG NO. _).

RTN_NAME : 0040-096 Context(_) Task(_) Process(_,_) Grid _ x _ TRANS (ARG NO. _), which specifies the operation to be performed, must be 'T' or 'C'.

RTN_NAME : 0040-097 Context(_) Task(_) Process(_,_) Grid _ x _ The global row index (ARG NO. _) of matrix (ARG NO. _) mūst bē
greater than 0 and less than or equal to the number of rows in the global matrix, M_, (element 3 of ARG NO. _).

RTN_NAME : 0040-098 Context(_) Task(_) Process(_,_) Grid _ x The global column index (ARG NO. _) of matrix (ARG NO. _) must be greater than 0 and less than or equal to the number of columns in the global matrix, N_{-}, (element 4 of ARG NO. _).

RTN_NAME : 0040-099 Context(_) Task(_) Process(_,_) Grid _ x The number of rows, M_, (element 3 of ARG NO. _) in a nul̄ mātrix (ARG NO. _) must be greater than or equal to zèro.

RTN_NAME : 0040-100 Context(_) Task(_) Process(_,_) Grid _ x _ The number of columns, N_{-}, (element 4 of ARG NO. _) in a null matrix (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 0040-101 Context(_) Task(_) Process(_,_) Grid _ x The number of rows (ARG NO. _) of a matrix must be the same för all processes.

RTN_NAME : 0040-102 Context(_) Task(_) Process(_,_) Grid _ x _ The number of columns (ARG NO. _) of a matrix must be the same for all processes.

RTN_NAME : 0040-103 Context(_) Task(_) Process(_,_) Grid _ x _ The order (ARG NO. _) of a matrix must be the same for al $\overline{1}$ processes.

RTN_NAME : 0040-104 Context(_) Task(_) Process(_,_) Grid _ x _ The global row index (ARG NO. _) of the matrix (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-105 Context(_) Task(_) Process(_,_) Grid _ x The global column index (ARG NO. _) of the matrix (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-106 Context(_) Task(_) Process(_,_) Grid _ x _ UPL̄̄ (ARG NO. _), which specifies whether an input matrix (ARG NO. _) is upper or lower, must be the same for all processes.

RTN_NAME : 0040-107 Context(_) Task(_) Process(_,_) Grid _ x _ TRANS (ARG NO. _), which specifies whether an input matrix, its transpose, or its conjugate transpose should be used, must be the same for all processes.

RTN_NAME : 0040-108 Context(_) Task(_) Process(_,_) Grid _ x _ NRHS (ARG NO. _), which specifies the number of right hand sides in the system to be solved, must be the same for all processes.

RTN_NAME : 0040-109 Context(_) Task(_) Process(_,_) Grid _ x _ ILO (ARG NO. _), which specifies a lower range of rows or columns in a matrix, must be the same for all processes.

RTN_NAME : 0040-110 Context(_) Task(_) Process(_,_) Grid _ x _ IHI (ARG NO. _), which specifies an upper range of rows or columns in a matrix, must be the same for all processes.

RTN_NAME : 0040-111 Context(_) Task(_) Process(_,_) Grid _ x The number of rows, M_, (element 3 of ARG NO. _) in the ḡobā matrix (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-112 Context(_) Task(_) Process(_,_) Grid _ x The number of columns, N_{-}, (element $\overline{4}$ of ARG NO. _) in the global matrix (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-113 Context(_) Task(_) Process(_,_) Grid _ x The row block size MB_, (element 5 of ARG NO. _) of the ḡobā matrix (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-114 Context(_) Task(_) Process(_,_) Grid _ x The column block size NB_, (element $\overline{6}$ of ARG NO. -) of the glōbal matrix (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-115 Context(_) Task(_) Process(_,_) Grid _ x _ The process row RSRC_, (element 7 of ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-116 Context(_) Task(_) Process(_,_) Grid _ x _ The process column CSRC_, (element 8 of ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-117 Context(_) Task(_) Process(_,_) Grid _ x The number of elements (ARG $\bar{N} 0^{-}$) in a work array (ARG NO. . _) must be zero, to indicate dynamic allocation, minus one, to indicate workspace query, or greater than or equal to (_) if a work array is being supplied.

RTN_NAME : 0040-118 Context(_) Task(_) Process(_,_) Grid _ x _ ILO (ARG NO. _), which specifies a lower range of rows or columns in a matrix, must be greater than or equal to one and less than or equal to the larger of one and the order (ARG NO. _) of the matrix.

RTN_NAME : 0040-119 Context(_) Task(_) Process(_,_) Grid _ x _ IHI (ARG NO. _), which specifies an upper range of rows or columns in a matrix, must be greater than or equal to the smaller of ILO (ARG NO. _) and the order (ARG NO. _) of the matrix and less than or equal to the order (ARG NO. _) of the matrix.

RTN_NAME : 0040-120 Context(_) Task(_) Process(_,_) Grid _ x The row-distributed vector referenced is incompatible with the global matrix definition. The global column index (ARG NO. _) plus the number of columns (ARG NO. _) of the vector (ARG NO. _) minus 1 must be less than or equal to the number of columns, N_{-}, (element 4 of ARG NO. _).

RTN_NAME : 0040-121 Context(_) Task(_) Process(_,_) Grid _ x _ The column-distributed vector referenced is incompatible with the global matrix definition. The global row index (ARG NO. _) plus the number of rows (ARG NO. _) of the vector (ARG NO. _) minus 1 must be less than or equal to the number of rows, \mathbf{M}_{-}, (element 3 of ARG NO. _).

RTN_NAME : 0040-122 Context(_) Task(_) Process(_,_) Grid _ x JOBZ (ARG NO. _), which specifies whèther or not to compū̄e eigenvectors, must be 'N' or 'V'.

RTN_NAME : 0040-123 Context(_) Task(_) Process(_,_) Grid _ x _ RANḠE (ARG NO. .), which specifies which eigenvā \bar{u} ues to find, must be 'A', 'V', or 'I'.

RTN_NAME : 0040-124 Context(_) Task(_) Process(_,_) Grid _ x VU (ARG NO. _), which specifies the upper bound of the interval to be searched for eigenvalues, must be greater than VL (ARG NO. _), which specifies the lower bound of the interval to be searched for eigenvalues.

RTN_NAME : 0040-125 Context(_) Task(_) Process(_,_) Grid _ x _ IL (ARG NO. _), which specifies the index of the smallest eigenvalue to be returned, must be greater than or equal to 1.

RTN_NAME : 0040-126 Context(_) Task(_) Process(_,_) Grid _ x _ IU (ARG NO. _), which specifies the index of the largest eigenvalue to be returned, must be greater than or equal to the smaller of the order (ARG NO. _) of the matrix (ARG NO. _) and IL (ARG NO. _) and less than or equal to the order of the matrix.

RTN_NAME : 0040-127 Context(_) Task(_) Process(_,_) Grid _ x _ The global row index (ARG NO. _) of the matrix (ARG NO. _) must be 1.

RTN_NAME : 0040-128 Context(_) Task(_) Process(_,_) Grid _ x _ The global column index (ARG NO. _) of the matrix (ARG NO. _) must be 1.

RTN_NAME : 0040-129 Context(_) Task(_) Process(_,_) Grid _ x _ The global row index (ARG NO. _) of the matrix (ARG NO. _) must be equal to the global row index (ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-130 Context(_) Task(_) Process(_,_) Grid _ x _ The global column index (ARG NO. _) of the matrix (ARG NO. _) must be equal to the global column index (ARG NO. _) of the matrix (ARG NO. _).

RTN_NAME : 0040-131 Context(_) Task(_) Process(_,_) Grid _ x _ The number of rows, M_{-}(element 3 of ARG NO. _) in the global matrix (ARG NO. _) must be equal to the number of rows, M_ (element 3 of ARG NO. _) in the global matrix (ARG NO. _).

RTN_NAME : 0040-132 Context(_) Task(_) Process(_,_) Grid _ x _ The number of columns, N_{-}(element 4 of ARG NO. _) in the g lobal matrix (ARG NO. _) must be equa $\overline{1}$ to the number of columns, N (element $\overline{4}$ of ARG NO. _) in the global matrix (ARG NO. _).

RTN_NAME : 0040-133 Context(_) Task(_) Process(_,_) Grid _ x _ The process row, RSRC_ (element 7 of ARG NO. _) must be zero.

RTN_NAME : 0040-134 Context(_) Task(_) Process(_,_) Grid _ x _ The process column, CSRC_ (ē ement 8 of ARG NO. _) must bē zēro.

RTN_NAME : 0040-135 Context(_) Task(_) Process(_,_) Grid _ x _ The process row, RSRC_ (element 7 of ARG NO. _) must be equal to the process row, RSRC_ (element 7 of ARG NO. _).

RTN_NAME : 0040-136 Context(_) Task(_) Process(_,_) Grid _ x _ The process column, CSRC_ (element 8 of ARG NO. _) must be equal to the process column, CSRC__ $_{-}^{-}$(element 8 of ARG NO. _).

RTN_NAME : 0040-137 Context(_) Task(_) Process(_,_) Grid _ x ORFAC (ARG NO. _), which specifies which eigenvectors should be orthogonalized, must be the same for all processes.

RTN_NAME : 0040-138 Context(_) Task(_) Process(_,_) Grid _ x _ JOBZ (ARG NO. _), which specifies whether or not to compūte eigenvectors, must be the same for all processes.

RTN_NAME : 0040-139 Context(_) Task(_) Process(_,_) Grid _ x _ RANGE (ARG NO. _), which specifies which eigenvalues to find, must be the same for all processes.

RTN_NAME : 0040-140 Context(_) Task(_) Process(_,_) Grid _ x _ VL (ARG NO. _), which specifies the lower bound of the intervā to be searched for eigenvalues, must be the same for all processes.

RTN_NAME : 0040-141 Context(_) Task(_) Process(_,_) Grid _ x VU (ARG NO. _), which specifies the upper bound of the interval to be searched for eigenvalues, must be the same for all processes.

RTN_NAME : 0040-142 Context(_) Task(_) Process(_,_) Grid _ x _ IL (ARG NO. _), which specifies the index of the smallest eigenvalue to be returned, must be the same for all processes.

RTN_NAME : 0040-143 Context(_) Task(_) Process(_,_) Grid _ x _ IU (ARG NO.), which specifies the index of the largest $\overline{\mathrm{e}}$ igeñalue to be returned, must be the same for all processes.

RTN_NAME : 0040-144 Context(_) Task(_) Process(_,_) Grid _ x _ The ${ }^{-}$vector (ARG NO. _) is row-distributed and TRANS (ARG $\overline{\mathrm{N}} \mathrm{O}_{\mathrm{C}}{ }_{-}$) is 'T' or 'C', but the process column (_), containing the first element of the vector is not equal to the process column (_) containing the first column of the submatrix (ARG NO. _).

RTN_NAME : 0040-145 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (ARG NO. _) is column-distributed and TRANS (ARG NO. _) is ' N', but the process row (_), containing the first element of the vector is not equal to the process row (_) containing the first row of the submatrix (ARG NO. _).

RTN_NAME : 0040-146 Context(_) Task(_) Process(_,_) Grid _ x _ ABSTOL (ARG NO. _), which specifies the absolute error tolerance for the eigenvalues, must be the same for all processes.

RTN_NAME : 0040-147 Context(_) Task(_) Process(_,_) Grid _ x _ No attributes or key is defined for the communicator. The probable cause is that the BLACS have not been initialized.

RTN_NAME : 0040-148 Context(_) Task(_) Process(_,_) Grid _ x _ MPI is not initialized. The probable cause is that the BLACS have not been initialized.

RTN_NAME : 0040-149 Context(_) Task(_) Process(_,_) Grid _ x _ The Cartesian grid is not defined. The probable cause is that the BLACS have not been initialized.

RTN_NAME : 0040-150 Context(_) Task(_) Process(_,_) Grid _ x _ The Cartesian grid is not defined as two-dimensional. The probable cause is that the BLACS have not been initialized.

RTN_NAME : 0040-151 Context(_) Task(_) Process(_,_) Grid _ x _ The rank of the ultimate align target for (_) is (_). It must be equal to 1 or 2.

RTN_NAME : 0040-152 Context(_) Task(_) Process(_,_) Grid _ x _ The process rank must be the same for all assumed shape ārrays. The process rank of (_) is (_).
The process rank of (_) is (_).
RTN_NAME : 0040-153 Context(_) Task(_) Process(_,_) Grid _ x _ The process rank must be the same for all assumed shape arrays. The process rank of (_) is (_).
The process rank of (_) is (_).
The process rank of (_) is (_).
RTN_NAME : 0040-154 Context(_) Task(_) Process(_,_) Grid _ x _ The process rank of (_) is (_). The rank must be equal to 1 or 2.

RTN_NAME : 0040-155 Context(_) Task(_) Process(_,_) Grid _ x _ The process rank of (_) is (_). The rank must be 1.

RTN_NAME : 0040-156 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be the same for all assumed shape ārrays.
The process grid for (_) is (_).
The process grid for (_) is (_).
RTN_NAME : 0040-157 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be the same for all assumed shape arrays.
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
RTN_NAME : 0040-158 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be the same for all assumed shape arrays.
The process grid for (_) is (_).
The process grid for (_) is (_).
The process grid for (_) is (_).
RTN_NAME : 0040-159 Context(_) Task(_) Process(_,_) Grid _ x _
The process grid must be the same for all assumed shape arrays.
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
RTN_NAME : 0040-160 Context(_) Task(_) Process(_,_) Grid _ x _ The axis_map argument of HPF library routine global_alignment indicates that there is an inconsistent data distribution between the matrices. The process rank is 1 and one of the following must be true: The first dimension of the matrices must both be collapsed or the second dimension of the matrices must both be collapsed.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.

RTN_NAME : 0040-161 Context(_) Task(_) Process(_,_) Grid _ x _
The axis_map argument of HPF library routine global_alignment indicates that there is an inconsistent data distribution among the matrices. The process rank is 1 and one of the following must be true: The first dimension of the matrices must all be collapsed or the second dimension of the matrices must all be collapsed.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.

RTN_NAME : 0040-162 Context(_) Task(_) Process(_,_) Grid _ x _ The axis_map argument of HPF library routine global_alignment indicates that there is an inconsistent data distribution between the matrices. The values for axis_map(1) and axis_map(2) for the matrices must be 1 or 2. The values for axis_map(1) for both matrices must be equal and the values for axis_map(2) for both matrices must be equal.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.

RTN_NAME : 0040-163 Context(_) Task(_) Process(_,_) Grid _ x _ The axis_map argument of HPF library routine global_alignment indicates that there is an inconsistent data distribution among the matrices.
The values for axis_map(1) and axis_map(2) for the matrices must be 1 or 2. The values for axis_map(1) for all matrices must be equal and the values for axis_map(2) for all matrices must be equal.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.

RTN_NAME : 0040-164 Context(_) Task(_) Process(_,_) Grid _ x _ Arrāy (_) has incorrect dimensions for the transpose case. It must have (_) rows and (_) columns.

RTN_NAME : 0040-165 Context(_) Task(_) Process(_,_) Grid _ x _ Array (_) has incorrect dimensions for the normal case. It must have (_) rows and (_) columns.

RTN_NAME : 0040-166 Context(_) Task(_) Process(_,_) Grid _ x _ Array (_) has incorrect dimensions for the transpose case. It must have (_) rows, (_) columns, and (_) planes.

RTN_NAME : 0040-167 Context(_) Task(_) Process(_,_) Grid _ x _ Array (_) has incorrect dimensions for the normal case. It must have (_) rows, (_) columns, and (_) planes.

RTN_NAME : 0040-168 Context(_) Task(_) Process(_,_) Grid _ x _ Arrāy (_) must be (*,BLOCK) distributed.

RTN_NAME : 0040-169 Context(_) Task(_) Process(_,_) Grid _ x _ Array (_) must be (*,*,BLOCK) distributed.

RTN_NAME : 0040-170 Context(_) Task(_) Process(_,_) Grid _ x _ Argument (_) must be less than or equal to (_).

RTN_NAME : 0040-171 Context(_) Task(_) Process(_,_) Grid _ x _ The process rank must be the same for all assumed shape ārrays. The process rank of (_) is (_).
RTN_NAME : 0040-172 Context(_) Task(_) Process(_,_) Grid _ x _ The process rank must be the same for all assumed shape ārrays.
The process rank of (_) is (_).
RTN_NAME : 0040-173 Context(_) Task(_) Process(_,_) Grid _ x _ The axis_map argument of HPF library routine global_alignment indicates that there is an inconsistent data distribution between the matrix and vector.
The value for axis_map(1) for the vector must be 1 or 2 .
The value for axis_map(1) for vector (_) is (_).
RTN_NAME : 0040-174 Context(_) Task(_) Process(_,_) Grid _ x _ The axis_map argument of HPF^{-}library routine global_alignment ${ }^{-}$indicates that there is an inconsistent data distribution between the matrix and vectors.
The values for axis_map(1) for the vectors must be 1 or 2.
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
RTN_NAME : 0040-175 Context(_) Task(_) Process(_,_) Grid _ x_
The axis_map argument of HPF^{-}library routine global_alignment ${ }^{-}$indicates that there is an inconsistent data distribution for the vectors.
The value for axis_map(1) for the vectors must be 1.
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
RTN_NAME : 0040-176 Context(_) Task(_) Process(_,_) Grid _ x _ The data distribution for the matrix is unsupported.
The process rank is 1 and one of the following must be true: The first dimension of the matrix must be collapsed or the second dimension of the matrix must be collapsed.
The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.

RTN_NAME : 0040-177 Context(_) Task(_) Process(_,_) Grid _ x _ The data distribution for the matrix is unsupported.
The process rank is 2 and the following must be true: The values for axis_map(1) and axis_map(2) for the matrix must be 1 or 2. the matrix must not be cōllapsed.

The values for axis_map(1) and axis_map(2) for matrix (_) are (_) and (_), respectively.

RTN_NAME : 0040-178 Context(_) Task(_) Process(_,_) Grid _ x _ Vectors (_), (_), (_), (_), and (_) must all be BLOCK distribūted.

RTN_NAME : 0040-179 Context(_) Task(_) Process(_,_) Grid _ x _ The vectors must all be not replicated.
The number of copies of the vector (_) is (_).
The number of copies of the vector (_) is (_). The number of copies of the vector (_) is (_).
The number of copies of the vector (_) is (_).
The number of copies of the vector (_) is (_).
RTN_NAME : 0040-180 Context(_) Task(_) Process(_,_) Grid _ X _ The data distribution for matrix (_) is unsupported.
The array must be either a block row, a block column, a single block, or the first element of the array must be aligned on the block boundary(s) of the ultimate align target.

RTN_NAME : 0040-181 Context(_) Task(_) Process(_,_) Grid _ x _ SID \bar{E}, which specifies whether the input matrix (_) appears on the left or right of the other input matrix (_), must be 'L' or 'R'.

RTN_NAME : 0040-182 Context(_) Task(_) Process(_,_) Grid _ x _ TRAN̄SA, which specifies whether inpū matrix A, its transpose- or its conjugate transpose should be used, must be 'N', 'T', or 'C'.

RTN_NAME : 0040-183 Context(_) Task(_) Process(_,_) Grid _ x _ TRANSB, which specifies whether input matrix B, its transpose, or its conjugate transpose should be used, must be 'N', 'T', or 'C'.

RTN_NAME : 0040-184 Context(_) Task(_) Process(_,_) Grid _ x TRANS, which specifies the computation to be performed, must be 'N', 'T', or 'C'.

RTN_NAME : 0040-185 Context(_) Task(_) Process(_,_) Grid _ x _ The column block size of the matrix and the block size of the vector are incompatible.
The column block size of the matrix (_) is (_).
The block size of the vector (_) is (_).
RTN_NAME : 0040-186 Context(_) Task(_) Process(_,_) Grid _ x _ ILO, which specifies a lower range of rows or columns in \bar{a} matrix, must be greater than or equal to one and less than or equal to the larger of one and the order of the matrix (_).

RTN_NAME : 0040-187 Context(_) Task(_) Process(_,_) Grid _ x _ IHI, which specifies an upper range $\overline{\text { of }}$ rows or $\overline{\text { columns }}$ in ${ }^{-}$a matrix, must be greater than or equal to the smaller of ILO and the order of the matrix (_) and less than or equal to the order of the matrix.

RTN_NAME : 0040-188 Context(_) Task(_) Process(_,_) Grid _ x _ The assumed shape array must be evenly distributed among the processes. The column block size (_) of the assumed shape array (_) must be equal to the number of columns (_) distributed on this process.

RTN_NAME : 0040-189 Context(_) Task(_) Process(_,_) Grid _ x _ The assumed shape array must be evenly distributed among the processes. The plane block size (_) of the assumed shape array (_) must be equal to the number of planes (_) distributed on this process.

RTN_NAME : 0040-190 Context(_) Task(_) Process(_,_) Grid _ x _ TRANSPOSE, which specifies whether the output data is stored \bar{i} n normal or transposed format, must be 'N' or 'T'.

```
RTN_NAME : 0040-191 Context(_) Task(_) Process(_,_) Grid _ x _
The r rank of the ultimate align target for (_) is (_). It mus\overline{t}}\mathrm{ be
equal to 1.
RTN_NAME : 0040-192 Context(_) Task(_) Process(_,_) Grid _ x _
The assumed shape array has an invalid shape.
Array (_) has (_) rows and (_) columns.
RTN_NAME : 0040-193 Context(_) Task(_) Process(_,_) Grid _ x _
The shapes of the 3 assumed shape arrays are incompatible.
The value of (_) is (_).
Array (_) has (_) rows and (_) columns.
Array (_) has (_) elements
Array (_) has (_) elements.
```

RTN_NAME : 0040-194 Context(_) Task(_) Process(_,_) Grid _ x _
The - size of the assumed shape array (_) is (_).
It must be a multiple of the product of the block size (_), and the
number of processes (_).
RTN_NAME : 0040-195 Context(_) Task(_) Process(_,_) Grid _ x _
The shapes of the 3 assumed shape arrays are incompatible.
The value of (_) is (_).
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.
RTN_NAME : 0040-196 Context(_) Task(_) Process(_,_) Grid _ x _
The shapes of the 3 assumed shape arrays are incompatible.
The value of (_) is (_).
The value of (_) is (_).
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.
RTN_NAME : 0040-197 Context(_) Task(_) Process(_,_) Grid _ x _
The shapes of the 2 assumed shape arrays are incompatible.
The value of (_) is (_).
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.
RTN_NAME : 0040-198 Context(_) Task(_) Process(_,_) Grid _ x _
The shapes of the 2 assumed shape arrays are incompatible.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.
RTN_NAME : 0040-199 Context(_) Task(_) Process(_,_) Grid _ x _
The shapes of the 2 assumed shape arrays are incompatible.

Array (_) has (_) rows, (_) columns, and (_) planes.
Array (_) has (_) rows, (_) columns, and (_) planes.
RTN_NAME : 0040-200 Context(_) Task(_) Process (_,_) Grid _ x _ The shapes of the 3 assumed shape arrays are incompatible.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.

```
RTN_NAME : 0040-201 Context(_) Task(_) Process(_,_) Grid _ x _
The orientation of vectors (_) and (_) must be either both
row-distributed or both column-distributed.
```

RTN_NAME : 0040-202 Context(_) Task(_) Process(_,_) Grid _ x _ The data distribution for the vector is unsupported. The vector (_) must not be replicated.

RTN_NAME : 0040-203 Context(_) Task(_) Process(_,_) Grid _ x _ The data distribution for the vector(s) is unsupported. Vectors (_) and (_) must not be replicated.

RTN_NAME : 0040-204 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (_) must be column-distributed.

RTN_NAME : 0040-205 Context(_) Task(_) Process(_,_) Grid _ x _ The row block size of the matrix and the block size of the vector are incompatible.
The row block size of the matrix (_) is (_).
The block size of the vector (_) is (_).
RTN_NAME : 0040-206 Context(_) Task(_) Process(_,_) Grid _ x _ The column block size of the matrix and the block sizes of the vectors are incompatible.
The column block size of the matrix (_) is (_).
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
RTN_NAME : 0040-207 Context(_) Task(_) Process(_,_) Grid _ x _ The -block sizes of the matrix are incompatible with the b̄ock sizes of the vectors.
The row block size of the matrix (_) is (_) and the column block size of the matrix is (_).
The block size of the vector (_) is (_) and must be equal to the row block size of the matrix.
The block size of the vector (_) is (_) and must be equal to the column block size of the matrix.
The block size of the vector (_) is (_) and must be equal to the column block size of the matrix.
The block size of the vector (_) is (_) and must be equal to the row block size of the matrix.

RTN_NAME : 0040-208 Context(_) Task(_) Process(_,_) Grid _ x _ The shapes of the assumed shape arrays are incompatible.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) elements.

RTN_NAME : 0040-209 Context(_) Task(_) Process(_,_) Grid _ x _ The shapes of the assumed shape arrays are incompatible.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) elements.
Array (_) has (_) elements.
RTN_NAME : 0040-210 Context(_) Task(_) Process(_,_) Grid _ x _ The shapes of the assumed shape arrays are incompatible.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) elements.
Array (_) has (_) elements.
Array (_) has (_) elements.
RTN_NAME : 0040-211 Context(_) Task(_) Process(_,_) Grid _ x _ The shapes of the assumed shape arrays are incompatible. Array (_) has (_) rows and (_) columns.
Array (_) has (_) elements.
RTN_NAME : 0040-212 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract process index for the matrix must be equal to the abstract process index for the vector.
The abstract process index for matrix (_) is (_).
The abstract process index for vector (_) is (_).
RTN_NAME : 0040-213 Context(_) Task(_) Process(_,_) Grid _ x _
The abstract row process index for the matrix must be equal to the abstract row process index for the vector.
The abstract row process index for matrix (_) is (_).
The abstract row process index for vector (_) is (_).
RTN_NAME : 0040-214 Context(_) Task(_) Process(_,_) Grid _ x The - abstract column process \bar{i} ndex for the matrix must be $\overline{\text { equa }} \overline{\bar{l}}$ to the abstract column process index for the vector.
The abstract column process index for matrix (_) is (_).
The abstract column process index for vector (_) is (_).
RTN_NAME : 0040-215 Context(_) Task(_) Process(_,_) Grid _ x _ The shapes of the assumed shape arrays are incompatible.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) elements.
RTN_NAME : 0040-216 Context(_) Task(_) Process(_,_) Grid _ x_
The abstract process index for the matrix must be equal to the abstract process indices for the vectors.
The abstract process index for matrix (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
RTN_NAME : 0040-217 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract column process \bar{i} ndex for the matrix must be $\overline{\text { equa }} \overline{\bar{l}}$ to the abstract process indices for the vectors.
The abstract column process index for matrix (_) is (_).
The abstract column process index for vector (_) is (_).

The abstract column process index for vector (_) is (_). The abstract column process index for vector (_) is (_).

RTN_NAME : 0040-218 Context(_) Task(_) Process(_,_) Grid _ x _
The abstract process index for the matrix must be equal to the abstract process indices for the vectors.
The abstract process index for matrix (_) is (_).
The abstract process index for vector (_) is (_). The abstract process index for vector (_) is (_). The abstract process index for vector (_) is (_). The abstract process index for vector (_) is (_).

RTN_NAME : 0040-219 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract process indices for the matrix are inconsistent with the abstract process indices for the vectors.
The abstract process indices for matrix (_) are (_,_).
The abstract process index for vector (_) is (_) and must be equal to the abstract process row index for the matrix. The abstract process index for vector (_) is (_) and must be equal to the abstract process column index for the matrix. The abstract process index for vector (_) is (_) and must be equal to the abstract process column index for the matrix. The abstract process index for vector (_) is (_) and must be equal to the abstract process row index for the matrix.

RTN_NAME : 0040-220 Context(_) Task(_) Process(_,_) Grid _ x The process grid must be the same for all assumed shape arrays.
The process grid for (_) is (_).
RTN_NAME : 0040-221 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be the same for all assumed shape arrays.
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
RTN_NAME : 0040-222 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be the same for all assumed shape arrays.
The process grid for (_) is (_).
RTN_NAME : 0040-223 Context(_) Task(_) Process(_,_) Grid _ x _ The ${ }^{-}$process grid must be the same for all assumed shape ārrays.
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
The process grid for (_) is (_ x _).
RTN_NAME : 0040-224 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (_) must be replicated and row-distributed.

The value for axis_map(1) for the vector is (_). The number of copies of the vector is (_).

```
RTN_NAME : 0040-225 Context(_) Task(_) Process(_,_) Grid _ x _
The vector (_) must be replicated and column-distributed.
The value for axis_map(1) for the vector is (_).
The number of copies of the vector is (_).
RTN_NAME : 0040-226 Context(_) Task(_) Process(_,_) Grid _ x _
The vectors must all be replicated and row-distributed.
The value for axis map(1) for vector (_) is (_).
The number of copies of the vector is (_).
The value for axis_map(1) for vector (_) is (_).
The number of copies of the vector is (_).
The value for axis_map(1) for vector (_) is (_).
The number of copies of the vector is (_).
```

RTN_NAME : 0040-227 Context(_) Task(_) Process(_,_) Grid _ x _
The vector (_) must be replicated and row-distributed.
The value for axis_map(1) for the vector is (_).
The number of copies of the vector is (_).
The vector (_) must be replicated and column-distributed.
The value for axis_map(1) for the vector is (_).
The number of copies of the vector is (_).
The vector (_) must be replicated and row-distributed.
The value for axis_map(1) for the vector is (_).
The number of copies of the vector is (_).
The vector (_) must be replicated and column-distributed.
The value for axis_map(1) for the vector is (_).
The number of copies of the vector is (_).
RTN_NAME : 0040-228 Context(_) Task(_) Process(_,_) Grid _ x _
The vector (_) must be replicated and column-distributed.
The value for axis map(1) for the vector is (_).
The number of copies of the vector is (_).
The vector (_) must be replicated and row-distributed.
The value for axis_map(1) for the vector is (_).
The number of copies of the vector is (_).
The vector (_) must be replicated and row-distributed.
The value for axis_map(1) for the vector is (_).
The number of copies of the vector is (_).
The vector (_) must be replicated and column-distributed.
The value for axis_map(1) for the vector is (_).
The number of copies of the vector is (_).

RTN_NAME : 0040-229 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract process indices for the matrix are inconsistent with the abstract process indices for the vectors.
The abstract process indices for matrix (_) are (_,_).
The abstract process index for vector (_) is (_) and must be equal to the abstract process column index for the matrix. The abstract process index for vector (_) is (_) and must be equal to the abstract process row index for the matrix. The abstract process index for vector (_) is (_) and must be equal to the abstract process column index for the matrix. The abstract process index for vector (_) is (_) and must be equal to the abstract process row index for the matrix.

RTN_NAME : 0040-230 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be defined with either the number of process rows or the number of process columns set to 1 .

RTN_NAME : 0040-231 Context(_) Task(_) Process(_,_) Grid _ x The number of columns, N_{-}, (\bar{e} lement $\overline{3}$ of ARG NO. _) in the global matrix (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-232 Context(_) Task(_) Process(_,_) Grid _ x _ The block size (element 4 of ARG NO.__) must be equal to (_).

RTN_NAME : 0040-233 Context(_) Task(_) Process(_,_) Grid _ x The process row, RSRC_, (element 5 of ARG NO. _) must be equal to (_).

RTN_NAME : 0040-234 Context(_) Task(_) Process(_,_) Grid _ x _ The size of leading dimension, LLD_, (element 6 of ARG NO. _) of the local array (ARG NO. _) must be greater than or equal to (_).

RTN_NAME : 0040-235 Context(_) Task(_) Process(_,_) Grid _ x _ Argument (_) must be greater than or equal to (_).

RTN_NAME : 0040-236 Context(_) Task(_) Process(_,_) Grid _ x_ DTYPE_ (element 1 of ARG NO. _), which specifies the descriptor type, must be the same for all processes.

RTN_NAME : 0040-237 Context(_) Task(_) Process(_,_) Grid _ x _ The communications context, $\overline{\mathrm{C}}$ TXT_, (e lement 2 of $\overline{\mathrm{A}}$ RG NO. _-), must be the same for all processes.

RTN_NAME : 0040-238 Context(_) Task(_) Process(_,_) Grid _ x _ The number of elements in the matrix (ARG NO. _) supplied to store the factor must be greater than or equal to (_).

RTN_NAME : 0040-239 Context(_) Task(_) Process(_,_) Grid _ x _ TRANS (ARG NO. _), which specifies the operation to be performed, must be 'N' or 'n'.

RTN_NAME : 0040-240 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract process index for the matrix must be equal to the abstract process indices for the vectors.
The abstract process index for matrix (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
RTN_NAME : 0040-241 Context(_) Task(_) Process(_,_) Grid _ x _ The block sizes of the matrix are incompatible with the block sizes of the vectors.
The row block size of the matrix (_) is (_) and the column block size of the matrix is (_).
The block size of the vector (_) is (_) and must be equal to the column block size of the matrix.
The block size of the vector (_) is (_) and must be equal to the row block size of the matrix.
The block size of the vector (_) is (_) and must be equal to the column block size of the matrix.

The block size of the vector (_) is (_) and must be equal to the row block size of the matrix.

RTN_NAME : 0040-242 Context(_) Task(_) Process(_,_) Grid _ x The number of rows, M_, (element 3 of ARG NO. _) in the globā matrix must be greater than the half-bandwidth, k.

RTN_NAME : 0040-243 Context(_) Task(_) Process(_,_) Grid _ x _ The half bandwidth, k, (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-244 Context(_) Task(_) Process(_,_) Grid _ x The -block size, NB_, (element 4 of ARG NO. _) of matrix ($\bar{A} R G \bar{N} 0 . ~ „)$ must be equal to the least integer that is greater than or equal to the quotient of the global number of columns in packed format divided by the number of processes.

RTN_NAME : 0040-245 Context(_) Task(_) Process(_,_) Grid _ x _ The process row or column, ($\bar{e}]$ ement $\overline{5}$ of ARG NO. - _) must $\bar{b} e$ equal to (_).

RTN_NAME : 0040-246 Context(_) Task(_) Process(_,_) Grid _ x _ The global row index (ARG NO. _) of matrix (ARG NO. _) must be equal to 1 for a 1-dimensional process grid with 1 column.

RTN_NAME : 0040-247 Context(_) Task(_) Process(_,_) Grid _ x The \quad global column index (ARG NO. _) of matrix ($\overline{\mathrm{A} R G} \mathrm{NO}$. _) must be equal to 1 for a 1-dimensional process grid with 1 row.

RTN_NAME : 0040-248 Context(_) Task(_) Process(_,_) Grid _ x _ The half bandwidth (ARG NO. _) of a matrix must be greater than or equal to zero.

RTN_NAME : 0040-249 Context(_) Task(_) Process(_,_) Grid _ x _ The half bandwidth (ARG NO. _) of the band matrix (ARG NO. _) must be less than the order of the matrix.

RTN_NAME : 0040-250 Context(_) Task(_) Process(_,_) Grid _ x _ The number of rows (ARG NO. _) of matrix (ARG NO. _) must be smaller than or equal to the product of the number of processors and the block size (element _ of ARG NO. _) minus the modulus of (ARG NO. _) minus one with the block size (element _ of ARG NO. _).

RTN_NAME : 0040-251 Context(_) Task(_) Process(_,_) Grid _ x _ It \bar{i} s not possible to determine the type of eigenvalue computation to perform.
If you want to compute all eigenvalues, then vl, vu, il and iu must not be present. If you want to select eigenvalues by specifying a range of values, then vl and vu must be present and il and iu must not be present. If you want to select eigenvalues by specifying a range of indices, then either or both of $i 1$ and $i u$ must be present and $v 1$ and vu must not be present.

RTN_NAME : 0040-252 Context(_) Task(_) Process(_,_) Grid _ x _ The shapes of the assumed shape arrays are incompatible.
Array (_) has (_) rows and (_) columns. Array (_) has (_) rows and (_) columns. Array (_) has (_) elements.

RTN_NAME : 0040-253 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (_) must be replicated and collapsed. The value for axis_map(1) for the vector is (_). The number of copies of the vector is (_).

RTN_NAME : 0040-254 Context(_) Task(_) Process(_,_) Grid _ x _ The assumed shape array has an invalid shape.
Array (_) has (_) elements.

```
RTN_NAME : 0040-255 Context(_) Task(_) Process(_,_) Grid _ x _
The shapes of the assumed shape arrays are incompatible.
Array (_) has (_) elements.
```

RTN_NAME : 0040-256 Context(_) Task(_) Process(_,_) Grid _ x _
The block sizes of the vectors must all be equal.
The block size of vector (_) is (_).
RTN_NAME : 0040-257 Context(_) Task(_) Process(_,_) Grid _ x _
The abstract process index must be the same for al 1
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).

RTN_NAME : 0040-258 Context(_) Task(_) Process(_,_) Grid _ x _ Vectors (_), (_), and (_) must all be BLOCK distributed.

RTN_NAME : 0040-259 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be the same for all assumed shape arrays. The process grid for (_) is (_). The process grid for (_) is (_). The process grid for (_) is (_).
The process grid for (_) is (_).
The process grid for (_) is (_).
The process grid for (_) is (_).

RTN_NAME : 0040-260 Context(_) Task(_) Process(_,_) Grid _ x _ Array (_) must be (BLOCK,*) distributed.

RTN_NAME : 0040-261 Context(_) Task(_) Process(_,_) Grid _ x _ The axis_map argument of HPF library routine global_alignment indicates that there is an inconsistent data distribution between the matrix and vectors. The process rank is 1 and the following must be true: The values for axis_map(1) for the matrix and vectors must be 1. The value for axis_map(1) for matrix (_) is (_). The value for axis_map(1) for vector (_) is (_). The value for axis_map(1) for vector (_) is (_). The value for axis_map(1) for vector (_) is (_).

The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).

```
RTN_NAME : 0040-262 Context(_) Task(_) Process(_,_) Grid _ x _
The shapes of the 6 assumed shape arrays are incompatible.
Array (_) has (_) rows and (_) columns.
Array (_) has (_) elements
Array (_) has (_) elements.
```

RTN_NAME : 0040-263 Context(_) Task(_) Process(_,_) Grid _ x _ The row block size of the matrix and the block sizes of the vectors are incompatible.
The row block size of the matrix (_) is (_).
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).

RTN_NAME : 0040-264 Context(_) Task(_) Process(_,_) Grid _ x _
The abstract process index for the matrix must be equal to the abstract process indices for the vectors.
The abstract process index for matrix (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
RTN_NAME : 0040-265 Context(_) Task(_) Process(_,_) Grid _ x _ The -axis type argument of HPF library routine global distribū̄ion indicates that there is an inconsistent data distribution among the vectors.
The values for axis_type(1) for all of the vectors must be BLOCK.
The value for axis_type(1) for vector (_) is (_).
The value for axis_type(1) for vector (_) is (_).
The value for axis_type(1) for vector (_) is (_).

```
RTN_NAME : 0040-266 Context(_) Task(_) Process(_,_) Grid _ x
The axis_map argument of HPF library routine global_alignment indicates
that there is an inconsistent data distribution between the matrix and
vectors. The process rank is 1 and the following must be true:
The values for axis_map(1) for the matrix and vectors must be 1.
The value for axis_map(1) for matrix (_) is (_).
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
RTN_NAME : 0040-267 Context(_) Task(_) Process(_,_) Grid _ x _
The vectors must all be not replicated.
The number of copies of the vector (_) is (_).
The number of copies of the vector (_) is (_).
The number of copies of the vector (_) is (_).
```

RTN_NAME : 0040-268 Context(_) Task(_) Process(_,_) Grid _ x _ The row block size of the matrix and the block sizes of the vectors are incompatible.
The row block size of the matrix (_) is (_).
The block size of the vector () is ().
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
RTN_NAME : 0040-269 Context(_) Task(_) Process(_,_) Grid _ x _ The shapes of the assumed shape arrays are incompatible.
Array (_) has (_) elements.
Array (_) has (_) elements.
Array (_) has (_) elements.
RTN_NAME : 0040-270 Context(_) Task(_) Process(_,_) Grid _ x _ The block sizes of the vectors must all be equal.
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
RTN_NAME : 0040-271 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract process indices for the vectors must be equal.
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
RTN_NAME : 0040-272 Context(_) Task(_) Process(_,_) Grid _ x _ The value of UPLO is U. NB_ (element _ of ARG NO. _) must be greater than or equal to the half bandwidth, K (ARG NO. _).

RTN_NAME : 0040-273 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (_) must be CYCLIC distributed.

RTN_NAME : 0040-274 Context(_) Task(_) Process (_,_) Grid _ x _ The axis_map argument of HPF library routine global_alignment indicates that there is an inconsistent data distribution for the vectors. The value for axis_map(1) for the vectors must be 1.
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
RTN_NAME : 0040-275 Context(_) Task(_) Process(_,_) Grid _ x _ The value for axis_map(1) for the vector must be 1.
The value for axis_map(1) for vector (_) is (_).
RTN_NAME : 0040-276 Context(_) Task(_) Process(_,_) Grid _ x _ The number of columns, N_{-}, (element 4 of ARG NO. _) in the global matrix must be greater than or equal to the number of right hand sides (ARG NO. _).

RTN_NAME : 0040-277 Context(_) Task(_) Process(_,_) Grid _ x _ The global row index (ARG NO. _) of matrix (ARG NO. _) must be greater than 0 and less than or equal to the number of rows in the global matrix, M_, (element _ of ARG NO. _).

RTN_NAME : 0040-278 Context(_) Task(_) Process(_,_) Grid _ x

greater than 0 and less than or equal to the number of columns in the global matrix, N_{-}, (element _ of ARG NO. _).

RTN_NAME : 0040-279 Context(_) Task(_) Process(_,_) Grid _ x _ The block size (element 4 of ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-280 Context(_) Task(_) Process(_,_) Grid _ x _ The process column CSRC_, (element 5 of ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-281 Context(_) Task(_) Process(_,_) Grid _ x The number of columns, N_, (element $\overline{3}$ of ARG NO. - _) in the glōbal matrix (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-282 Context(_) Task(_) Process(_,_) Grid _ x _ The process row RSRC_, (element 5 of ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-283 Context(_) Task(_) Process(_,_) Grid _ x _ The block size (element 4 of ARG NO. _) in the global matrix (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-284 Context(_) Task(_) Process(_,_) Grid _ x The (_) block size of array (_) must be equal to the (_) $\overline{\mathrm{b}}$ lock size of array (_).

RTN_NAME : 0040-285 Context(_) Task(_) Process(_,_) Grid _ x _ The vector (_) must be BLOCK distributed.

RTN_NAME : 0040-286 Context(_) Task(_) Process(_,_) Grid _ x _ The descriptor type, DTYPE_ (element 1 of ARG NO. _) is invalid. The valid descriptor type for this routine is _.

RTN_NAME : 0040-287 Context(_) Task(_) Process(_,_) Grid _ x The submatrix referenced is incompatible with the global matrix definition. The global column index (ARG NO. _) plus the number of columns (ARG NO. _) of the matrix (ARG NO. _) minus 1 must be less than or equal to the number of columns, N_{-}, (element 3 of ARG NO. _).

RTN_NAME : 0040-288 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract process indices for the matrices must be equā̄.
The abstract process index for matrix (_) is (_).
The abstract process index for matrix (_) is (_).
RTN_NAME : 0040-289 Context(_) Task(_) Process(_,_) Grid _ x _ The row block size, MB_, (element 4 of ARG NO. _) of the matrix (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-290 Context(_) Task(_) Process(_,_) Grid _ x _ The number of columns, N_{-}, (element $\overline{3}$ of ARG NO. _) in a null matrix (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 0040-291 Context(_) Task(_) Process(_,_) Grid _ X _ The column block size, NB_, (element 4 of ARG NO._ _) of the mātrix (ARG NO. _) must be greater than zero.

RTN_NAME : 0040-292 Context(_) Task(_) Process(_,_) Grid _ x _ The order (ARG NO. _) of matrix (ARG NO. _) must be smaller than or equal to the product of the number of processors and the block size (element _ of ARG NO. _) minus the modulus of
(ARG NO. _) minus one with the block size (element _ of ARG NO. _).
RTN_NAME : 0040-293 Context(_) Task(_) Process(_,_) Grid _ x The descriptor type, DTYPE_ (element 1 of ARG NO. _) is invalid. Valid descriptor types for this routine are _ and ..

RTN_NAME : 0040-294 Context(_) Task(_) Process(_,_) Grid _ x The descriptor type, DTYPE_ (element 1 of ARG NO. _ _) is iñvalid. Valid descriptor types for this routine are _, _, and _.

RTN_NAME : 0040-297 Context(_) Task(_) Process(_,_) Grid _ x _ End of global input-argument error reporting. For more information, refer to Parallel ESSL Guide and Reference.

RTN_NAME : 0040-299 Context(_) Task(_) Process(_,_) Grid _x End of input-argument error reporting. For more information, refer to Parallel ESSL Guide and Reference.

Note: There are more input-argument error messages listed in "Input-Argument Error Messages (800-999)" on page 154.

Computational Error Messages (300-399)

RTN_NAME : 0040-300 Context(_) Task(_) Process(_,_) Grid _ x _ The input matrix (ARG NO. _) is singular. The first diagonal element found to be exactly 0 , was in column (_).

RTN_NAME : 0040-301 Context(_) Task(_) Process(_,_) Grid _ x _ The storage space, specified by (ARG NO. _) is insufficient. (_) bytes are required.

RTN_NAME : 0040-302 Context(_) Task(_) Process(_,_) Grid _ x _ The matrix (ARG NO. _) is not positive definite. The leading minor of order (_) has a nonpositive determinant.

RTN_NAME : 0040-303 Context(_) Task(_) Process(_,_) Grid _ x _ Bisection failed to converge for some eigenvalues. The eigenvā ues may not be as accurate as the absolute and relative tolerances.

RTN_NAME : 0040-304 Context(_) Task(_) Process(_,_) Grid _ x _ The number of eigenvalues computed (ARG NO. _) does not mātch the number of eigenvalues requested.

RTN_NAME : 0040-305 Context(_) Task(_) Process(_,_) Grid _ x _ No eigenvalues were computed since the Gershgorin interval initially used was incorrect.

RTN_NAME : 0040-306 Context(_) Task(_) Process(_,_) Grid _ x _ (_) eigenvectors failed to converge after (_) iterations.
The indices are stored in IFAIL (ARG NO. _).
RTN_NAME : 0040-307 Context(_) Task(_) Process(_,_) Grid _ x Eigenvectors corresponding to one or more clusters of eigenvalues could not
be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in ICLUSTR (ARG NO. _).

RTN NAME : 0040-308 Context() Task() Process(,) Grid x All of the eigenvectors between VL (ARG NO. _) and VU (ARG NO. _) could not be computed due to insufficient workspace. The number of eigenvectors computed is returned in NZ (ARG NO. _).

RTN_NAME : 0040-309 Context(_) Task(_) Process(_,_) Grid _ x The number of eigenvalues computed (ĀRG NO. _) does not equal the number of eigenvectors computed (ARG NO. _).

RTN_NAME : 0040-310 Context(_) Task(_) Process(_,_) Grid _ x _ The input matrix is either (nearly) singular or reducible. The value of INFO is (_). The portion of the global submatrix stored on process (_) and factored locally is either (nearly) singular or reducible. A pivot element whose magnitude is too small or zero was detected.

RTN_NAME : 0040-311 Context(_) Task(_) Process(_,_) Grid _ x _ The input matrix is not diagonally dominant.
The value of INFO is (_). The portion of the global submatrix stored on process (_) and factored locally is not diagonally dominant. A pivot element whose magnitude is too small or zero was detected.

RTN_NAME : 0040-312 Context(_) Task(_) Process(_,_) Grid _ x _ The input matrix is not positive definite.
The value of INFO is (_). The portion of the global submatrix stored on process (_) and factored locally is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.

RTN_NAME : 0040-313 Context(_) Task(_) Process(_,_) Grid _ x _ The maximum number of specified iterations (_) has been performed without satisfying the convergence criterion as specified by (_).

RTN_NAME : 0040-314 Context(_) Task(_) Process(_,_) Grid _ X _ The preconditioner, as specified by argument (_) for sparse matrix (_) is unstable.

RTN_NAME : 0040-315 Context(_) Task(_) Process(_,_) Grid _ x _ The sparse matrix (_) contains duplicated coefficients.

RTN_NAME : 0040-316 Context(_) Task(_) Process(_,_) Grid _ x _ The maximum number of specified iterations (_) has been performed without satisfying the convergence criterion as specified by (ARG NO. _).

RTN_NAME : 0040-317 Context(_) Task(_) Process(_,_) Grid _ x _ The preconditioner, as specified by argument (ARG NO. _) for sparse matrix (ARGS NO. _-_) is unstable.

RTN_NAME : 0040-318 Context(_) Task(_) Process(_,_) Grid _ x _ The sparse matrix (ARGS NO. _-_) contains duplicated coefficiēnts.

RTN_NAME : 0040-319 Context(_) Task(_) Process(_,_) Grid _ x _ The sparse matrix (_) contains empty row(s).

RTN_NAME : 0040-320 Context(_) Task(_) Process(_,_) Grid _ x _ The sparse matrix (ARGS NO. _-_) contains empty row(s).

RTN_NAME : 0040-321 Context(_) Task(_) Process(_,_) Grid _ x _ The input matrix is either (nearly) singular or reducible. The value of INFO is (_). The portion of the global submatrix stored on process (_) representing interactions with other processes is either (nearly) singular or reducible.
A pivot element whose magnitude is too small or zero was detected.
RTN_NAME : 0040-322 Context(_) Task(_) Process(_,_) Grid _ x _ The input matrix is not diagonally dominant.
The value of INFO is (_). The portion of the global submatrix stored on process (_) representing interactions with other processes is not diagonally dominant. A pivot element whose value is less than or equal to a small positive number was detected.

RTN_NAME : 0040-323 Context(_) Task(_) Process(_,_) Grid _ x _ The input matrix is not positive definite.
The value of INFO is (_). The portion of the global submatrix stored on process (_) representing interactions with other processes is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.

RTN_NAME : 0040-399 Context(_) Task(_) Process(_,_) Grid _ x Job is terminated. Optional argument (_) was not specified, but a computational error occurred. The value returned is (_).

Resource Error Messages (400-499)

RTN_NAME : 0040-400 Context(_) Task(_) Process(_,_) Grid _ x _ An internal buffer allocation has failed due to insufficiēnt memory.

RTN_NAME : 0040-401 Context(_) Task(_) Process(_,_) Grid _ x Unab̄le to allocate component(s) of derived data type (_) $\bar{d} u \bar{x}^{\prime}$ insufficient memory.

Communication Error Messages (500-599)

RTN_NAME : 0040-500 Context(_) Task(_) Process(_,_) Grid _ x _ Communication error encountered Job Terminated with rc = . Refer to IBM AIX Parallel Environment Parallel Programming Subroutine Reference (SH26-7230).

RTN_NAME : 0040-501 Context(_) Task(_) Process(_,_) Grid _ x During process grid synchronization, task(_) has reported an incorrect grid (_,_). Actual grid dimension is (_,_).

RTN_NAME : 0040-502 Context(_) Task(_) Process(_,_) Grid _ x During process grid synchronization, task(_) has returned an incorrect value (_) for its own task id.

RTN_NAME : 0040-503 Context(_) Task(_) Process(_,_) Grid _x During process grid synchronization, task(_) has returned an incorrect message id range (_,_). Expected range is (_,_).

Informational and Attention Messages (600-699)

RTN_NAME : 0040-600 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: process is sending data to itself.

RTN_NAME : 0040-601 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: process is receiving data from itself.

RTN_NAME : 0040-602 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: process has received data whose length (_) differs from the expected length (_).

RTN_NAME : 0040-603 Context(_) Task(_) Process(_,_) Grid _ x Attention: The message id range for point-to-point communications will be reused every (_) messages.

RTN_NAME : 0040-604 Context(_) Task(_) Process(_,_) Grid _ x Attention: The message id range for scoped communications wil $\overline{1}$ be reused every (_) operations.

RTN_NAME : 0040-605 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: gettimeofday system call returned bad rc (_).

RTN_NAME : 0040-606 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: Attempt to change message id range after process grid definition. Message id range not changed.

RTN_NAME : 0040-607 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: Configuration parameter (ARG NO. _) is invalid.

RTN_NAME : 0040-608 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: Application waited for memory allocation.

RTN_NAME : 0040-609 Context(_) Task(_) Process(_,_) Grid _ x _ Atténtion: getrusage system call returned bad rc (_).

RTN_NAME : 0040-610 Context(_) Task(_) Process(_,_) Grid _ x Attēntion: Attempt to define process grid before calling $\bar{B} L A C \bar{S}$ GET.

RTN_NAME : 0040-611 Context(_) Task(_) Process(_,_) Grid _ x Attēntion: BLACS system context can only be set by calling BLĀCS_GET.

RTN_NAME : 0040-612 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: The number of rings cannot be set to zero.

RTN_NAME : 0040-613 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: The number of branches (_) must be greater than zero.

RTN_NAME : 0040-614 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: Cannot set BLACS debug level.

RTN_NAME : 0040-615 Context(_) Task(_) Process(_,_) Grid _ x Attention: Environment variable PESSL_DESC_TYPE has specified the use of obsolete descriptor vectors.

RTN_NAME : 0040-616 Context(_) Task(_) Process(_,_) Grid _ x Convergence indicator for iterative method (_) at step (_): (_).

RTN_NAME : 0040-617 Context(_) Task(_) Process(_,_) Grid _ x _ Message buffer space exceeded for error message number (_). One or more instances of the message was suppressed.

Miscellaneous Error Messages (700-799)

RTN_NAME : 0040-700 Context(_) Task(_) Process(_,_) Grid _ x _ Internal Parallel ESSL error number (_).
Contact your IBM service representative.

RTN_NAME : 0040-701 Context(_) Task(_) Process(_,_) Grid _ x _ Unable to open Parallel ESSL Message Catalog.
See your System Administrator for further assistance.
RTN_NAME : 0040-702 Context(_) Task(_) Process(_,_) Grid _ x Internal Parallel ESSL error: message buffer space exceeded for error message number (_). Contact your IBM service representative.

RTN_NAME : 0040-703 Context(_) Task(_) Process(_,_) Grid _ x _ Intērnal Parallel ESSL error: message number requested (_) is outside of the valid range. Contact your IBM service representative.

RTN_NAME : 0040-704 Context(_) Task(_) Process(_,_) Grid _ x Parallel ESSL has been called from outside the process grid definition.

RTN_NAME : 0040-705 Context(_) Task(_) Process(_,_) Grid _ x _ The communications context (_) is invalid.

RTN_NAME : 0040-706 Context(_) Task(_) Process(_,_) Grid _ x The process grid must be defined with the number $\overline{\text { of }}$ rows $\overline{\text { set }} \overline{\text { to }} 1$.

RTN_NAME : 0040-707 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be defined with the number of columns set to 1.

RTN_NAME : 0040-708 Context(_) Task(_) Process(_,_) Grid _ x _ The user supplied subroutine (_) has produced an incorrect output. Argument (_) must be greater than or equal to 1 and less than or equal to the number of processes in the process grid.

RTN_NAME : 0040-709 Context(_) Task(_) Process(_,_) Grid _ x _ The user supplied subroutine (_) has produced an incorrect output. Argument (_) must be greater than or equal to 0 and less than the the number of processes in the process grid.

RTN_NAME : 0040-710 Context(_) Task(_) Process(_,_) Grid _ x _ The user supplied subroutine (ARG NO. _) has produced an incorrect output. (ARG NO.) of the user supplied subroutine must be greater than or equal to 1 and less than or equal to the number of processes in the process grid.

RTN_NAME : 0040-711 Context(_) Task(_) Process(_,_) Grid _ x_ The user supplied subroutine (ARG NO. _) has produced an incorrect output.
(ARG NO. _) of the user supplied subroutine must be greater than or equal to 0 and less than the number of processes in the process grid.

RTN_NAME : 0040-712 Context(_) Task(_) Process(_,_) Grid _ x _ The size of input array (ARG NO. _) must be greater than or equal to (_).

RTN_NAME : 0040-713 Context(_) Task(_) Process(_,_) Grid _x Envīronment variable PESSL_DESC_TYPE has specified the use of obsolete descriptor vectors. You must update the descriptor vectors in your program as described in the Parallel ESSL Guide and Reference.

Input-Argument Error Messages (800-999)

RTN_NAME : 0040-800 Context(_) Task(_) Process(_,_) Grid _ x _ DTYPE_ (element _ of ARG NO. _) for matrix (ARG NO. _) is _. The process grid for matrix (ARG NO. _) must be defined with the number of rows set to 1 .

RTN_NAME : 0040-801 Context(_) Task(_) Process(_,_) Grid _ x _ DTYPE_ (element _ of ARG NO._ _) for matrix (ARG NO. _) is _. The process grid ${ }^{-}$for matrix ($\bar{A} R G$ NO. _) must be defined with the number of columns set to 1 .

RTN_NAME : 0040-802 Context(_) Task(_) Process(_,_) Grid _ x The global column index, (ARG NO. _) must be equal to the global row index (ARG NO. _).

RTN_NAME : 0040-803 Context(_) Task(_) Process (_,_) Grid _ x The submatrix referenced is incompatible with the global matrix definition. The global row index (ARG NO. _) plus the number of rows (ARG NO. _) of the matrix (ARG NO. _) minus 1 must be less than or equal to the number of rows, N_, (element _ of ARG NO. _).

RTN_NAME : 0040-804 Context(_) Task(_) Process(_,_) Grid _ x The number of rows, M_, (element _ of ARG NO. _) in the globa $\overline{1}$ matrix (ARG NO. _) must be equal to one.

RTN_NAME : 0040-805 Context(_) Task(_) Process(_,_) Grid _ x _ The number of columns, $\mathrm{N}_{\mathbf{\prime}}$, (element _ of ARG NO. _) in the global matrix (ARG NO. _) must be equal to one.

RTN_NAME : 0040-806 Context(_) Task(_) Process (_,_) Grid _ x DTYPE (element of ARG NO._) is one. At least one of the following must be true: For the global matrix (ARG NO. _), the number of rows, M_, (element _ of ARG NO. _) must be equal to one or the number of columns, N_{-}, (element _ of ARG NO. _) must be equal to one.

RTN_NAME : 0040-807 Context(_) Task(_) Process (_,_) Grid _ x The row block size MB_, (element _of ARG NO. _) of the global matrix (ARG NO. _) must be the same for $\overline{1} 11$ processes.

RTN_NAME : 0040-808 Context(_) Task(_) Process(_,_) Grid _ x _ Vectors (_) and (_) must be BLOCK distributed.

RTN_NAME : 0040-809 Context(_) Task(_) Process(_,_) Grid _ x _ The axis_map argument of HPF library routine global_alignment ${ }^{-}$indicates that there is an inconsistent data distribution for the vectors. The value for axis_map(1) for the vectors must be 1 .
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
RTN_NAME : 0040-810 Context(_) Task(_) Process(_,_) Grid _ x _ The shapes of the assumed shape arrays are incompatible.

Array (_) has (_) elements.
Array (_) has (_) elements.
RTN_NAME : 0040-811 Context(_) Task(_) Process(_,_) Grid _ x _ The block sizes of the vectors must be equal.
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
RTN_NAME : 0040-812 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract process indices for the vectors must be equal.
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
RTN_NAME : 0040-813 Context(_) Task(_) Process(_,_) Grid _ x _ The axis_map argument of HPF library routine global_alignment indicates that there is an inconsistent data distribution between the matrix and vectors. The process rank is 1 and the following must be true: The values for axis_map(1) for the matrix and vectors must be 1.
The value for axis_map(1) for matrix (_) is (_).
The value for axis_map(1) for vector (_) is (_).
The value for axis_map(1) for vector (_) is (_).
RTN_NAME : 0040-814 Context(_) Task(_) Process(_,_) Grid _ x _ The row block size of the matrix and the block sizes of the vectors are incompatible.
The row block size of the matrix (_) is (_).
The block size of the vector (_) is (_).
The block size of the vector (_) is (_).
RTN_NAME : 0040-815 Context(_) Task(_) Process(_,_) Grid _ x _ The abstract process index for the matrix must be equal to the abstract process indices for the vectors.
The abstract process index for matrix (_) is (_).
The abstract process index for vector (_) is (_).
The abstract process index for vector (_) is (_).
RTN_NAME : 0040-816 Context(_) Task(_) Process(_,_) Grid _ x _ The process grid must be defined with the number of columns set to 1 .

RTN_NAME : 0040-817 Context(_) Task(_) Process(_,_) Grid _ x _ The size of array (ARG NO. _) must be greater than or equā to (_).

RTN_NAME : 0040-818 Context(_) Task(_) Process(_,_) Grid _ x _ The array descriptor (_) has not been initialized. Routine (_) must be called prior to this routine.

RTN_NAME : 0040-819 Context(_) Task(_) Process(_,_) Grid _ x _ The array descriptor (_) contains invalid component(s). Routine (_) must be called prior to this routine.

RTN_NAME : 0040-820 Context(_) Task(_) Process(_,_) Grid _ x _ The array descriptor (_) contains invalid component(s).

RTN_NAME : 0040-821 Context(_) Task(_) Process(_,_) Grid _ X _
 therefore cannot be freed.

RTN_NAME : 0040-822 Context(_) Task(_) Process(_,_) Grid _ x _ The size of array (_) must be greater than or equal to (_). Routine (_) must be called prior to this routine.

RTN_NAME : 0040-823 Context(_) Task(_) Process(_,_) Grid _ x _ The sparse matrix (_) is invalid.
Routine (_) must be called prior to this routine.
RTN_NAME : 0040-824 Context(_) Task(_) Process(_,_) Grid _ x _ The sparse matrix (_) was not initialized properly.
Some local row(s) are missing.
Additional calls to (_) may be required.
RTN_NAME : 0040-825 Context(_) Task(_) Process(_,_) Grid _ x _ The value of argument (_) is (_); therefore argument (_) is required.

RTN_NAME : 0040-826 Context(_) Task(_) Process(_,_) Grid _ x _ The - storage format (_) specified for sparse matrix (_) must be (_).

RTN_NAME : 0040-827 Context(_) Task(_) Process(_,_) Grid _ x _ Argument (_) must be equal to (_).

RTN_NAME : 0040-828 Context(_) Task(_) Process(_,_) Grid _ X _ The storage format for sparse matrix (_) must be (_). Routine (_) must be called prior to this routine.

RTN_NAME : 0040-829 Context(_) Task(_) Process(_,_) Grid _ x _ The contents of array descriptor (ARG NO. _) are invalid.

RTN_NAME : 0040-830 Context(_) Task(_) Process(_,_) Grid _ x _ The sparse matrix (ARGS NO. _-_) is invalid.
Routine (_) must be called prior to this routine.
RTN_NAME : 0040-831 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be greater than or equal to (_) and less than or equal to (_).

RTN_NAME : 0040-832 Context(_) Task(_) Process(_,_) Grid _ x _ The storage format of sparse matrix (ARGS NO. _-_) is invāid.

RTN_NAME : 0040-833 Context(_) Task(_) Process(_,_) Grid _ x _ One or more of the rows requested for insertion with (_) does not belong to this process.

RTN_NAME : 0040-834 Context(_) Task(_) Process(_,_) Grid _ x _ One or more of the rows requested for insertion with (ARG ${ }^{-} \mathrm{NO}^{-}{ }^{-}$) does not belong to this process.

RTN_NAME : 0040-835 Context(_) Task(_) Process(_,_) Grid _ x _ Argument (_) must be the same for all processes.

RTN_NAME : 0040-836 Context(_) Task(_) Process(_,_) Grid _ x _ Argument (_) must be greater than or equal to (_) and less than or equal to (_).

RTN_NAME : 0040-837 Context(_) Task(_) Process(_,_) Grid _ x _ The - sparse matrix (ARGS NO. _-_) was not initialized propērly.

Some local row(s) are missing.
Additional calls to (_) may be required.
RTN_NAME : 0040-838 Context(_) Task(_) Process(_,_) Grid _ x The storage format (ARG NO. _) specified for sparse matrix (ARGS NO. _-_) must be (_).

RTN_NAME : 0040-839 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be equal to (_).

RTN_NAME : 0040-840 Context(_) Task(_) Process(_,_) Grid _ x _ (ARG NO. _) must be the same for all processes.

RTN_NAME : 0040-841 Context(_) Task(_) Process(_,_) Grid _ x _ Element (_) of array (ARG NO. _) must be equal to (_).

RTN_NAME : 0040-842 Context(_) Task(_) Process(_,_) Grid _ x Element (_) of array (ARG NO. _) must be greater $\overline{\text { th }}$. (_) and less than or equal to (_).

RTN_NAME : 0040-843 Context(_) Task(_) Process(_,_) Grid _ x _ The process row, RSRC_, (element _ of ARG NO. _) must be greater than or equal to 0 and less than the total number of rows in the process grid.

RTN_NAME : 0040-844 Context(_) Task(_) Process(_,_) Grid _ x _ The process column, CSRC_, (element _ of ARG NO. - _) must b̄e greater than or equal to 0 and less than the total number of columns in the process grid.

RTN_NAME : 0040-845 Context(_) Task(_) Process(_,_) Grid _ x _ The process column, CSRC_, (element _ of ARG NO. _) must be equal to the process row, RSRC_, (element _ of ARG NO. _).

RTN_NAME : 0040-846 Context(_) Task(_) Process(_,_) Grid _ x _ The workspace size (ARG NO. _) has been specified as minus one for a subset of the processes and therefore it must be specified as minus one for all processes.

RTN_NAME : 0040-847 Context(_) Task(_) Process(_,_) Grid _ x _ The preconditioner (_) contains invalid components. Routine (_) must be called prior to this routine.

RTN_NAME : 0040-848 Context(_) Task(_) Process(_,_) Grid _ x _ The preconditioner (ARG NO. _) contains invalid components. Routine (_) must be called prior to this routine.

RTN_NAME : 0040-849 Context(_) Task(_) Process(_,_) Grid _ x The size of array (_) must be greater than or equal to (_) and less than or equal to (_).

RTN_NAME : 0040-850 Context(_) Task(_) Process(_,_) Grid _ x The matrix type (_) specified for sparse matrix (_) must be (_).

RTN_NAME : 0040-851 Context(_) Task(_) Process(_,_) Grid _ x _ The matrix type (ARG NO. _) specified for sparse matrix ($\bar{A} R G S^{-}$NO. _-_) must be (_).

RTN_NAME : 0040-852 Context(_) Task(_) Process(_,_) Grid _ x _ Element (_) of vector (ARG N $\overline{0}$. _) must be greater than or equà to zero.

RTN_NAME : 0040-853 Context(_) Task(_) Process(_,_) Grid _ x _ Element (_) of vector (ARG NO. _) must be the same for al $\overline{1}$ processes.

RTN_NAME : 0040-854 Context(_) Task(_) Process(_,_) Grid _ x _ LWORK (ARG NO. _), which specifies the size of the local work array, must be the same for all processes.

RTN_NAME : 0040-855 Context(_) Task(_) Process(_,_) Grid _ x The preconditioner data structure (_) must be passed unchāngē to the solver subroutine.

RTN_NAME : 0040-856 Context(_) Task(_) Process(_,_) Grid _ x _ The preconditioner data structure (ARG NO. _) must be passed unchanged to the solver subroutine.

RTN_NAME : 0040-857 Context(_) Task(_) Process(_,_) Grid _ x _ The size of array (_) must be greater than or equà to (_).

RTN_NAME : 0040-858 Context(_) Task(_) Process(_,_) Grid _ x _ The global row index (ARG NO. _) of matrix (ARG NO. _) must be greater than 0 and less than or equal to the number of columns in the global matrix, $\mathrm{N}_{\mathbf{\prime}}$, (element _ of ARG NO. _).

RTN_NAME : 0040-859 Context(_) Task(_) Process(_,_) Grid _ x The process row, RSRC_, (element _ of ARG NO. _) must be equal to the process row, RSRC_, (element _ of ARG NO. _).

Part 2. Reference Information (Message Passing)

This part of the book is organized into seven areas, providing reference information for coding the Parallel ESSL message passing subroutines. It is organized as follows:

- Level 2 PBLAS
- Level 3 PBLAS
- Linear Algebraic Equations
- Eigensystem Analysis and Singular Value Analysis
- Fourier Transforms
- Random Number Generation
- Utilities

Chapter 6. Level 2 PBLAS (Message Passing)

This chapter describes the Level 2 PBLAS subroutines.
This chapter describes the Level 2 PBLAS subroutines.

Overview of the Level 2 PBLAS Subroutines

The Level 2 PBLAS include a subset of the standard set of distributed memory parallel versions of the Level 2 BLAS.
Note: These subroutines are designed in accordance with the proposed Level 2 PBLAS standard. (See references [14], [15], and [17].) If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.

Table 38. List of Level 2 PBLAS (Message Passing)		
Descriptive Name	Long-Precision Subprogram	Page
Matrix-Vector Product for a General Matrix or Its Transpose	PDGEMV	163
Matrix-Vector Product for a Real Symmetric Matrix	PDSYMV	181
Rank-One Update of a General Matrix	PDGER	193
Rank-One Update of a Real Symmetric Matrix	PDSYR	205
Rank-Two Update of a Real Symmetric Matrix	PDSYR2	215
Matrix-Vector Product for a Triangular Matrix or Its Transpose	PDTRMV	228
Solution of Triangular System of Equations with a Single Right-Hand Side	PDTRSV	239

Level 2 PBLAS Subroutines

This section contains the Level 2 PBLAS subroutine descriptions.

PDGEMV-Matrix-Vector Product for a General Matrix or Its Transpose

This subroutine computes one of the following matrix-vector products:

$$
\begin{aligned}
& \boldsymbol{y} \leftarrow \alpha \boldsymbol{A} \boldsymbol{x}+\beta \boldsymbol{y} \\
& \boldsymbol{y} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{x}+\beta \boldsymbol{y}
\end{aligned}
$$

where, in the formulas above:
\boldsymbol{A} represents the global general submatrix $\boldsymbol{A}_{i a: i a+m-1, j a: j a+n-1}$.
\boldsymbol{x} represents the global vector:

- For transa = ' N ':
- For incx $=\mathrm{M} _X$, it is $X_{i x: i x, j x: j x+n-1}$.
- For incx $=1$ and incx $\neq M _X$, it is $X_{i x: i x+n-1, j x: j x}$.
- For transa = 'T':
- For incx $=\mathrm{M} _X$, it is $X_{i x: i x, j x: j x+m-1}$.
- For incx $=1$ and incx $\neq M _X$, it is $X_{i x: i x+m-1, j x: j x}$.
\boldsymbol{y} represents the global vector:
- For transa = 'N':
- For incy $=\mathrm{M}_{-} \mathrm{Y}$, it is $\boldsymbol{Y}_{i y: i y, ~ j y: j y+m-1}$.
- For incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, it is $\boldsymbol{Y}_{i y: i y+m-1, j y: j y}$.
- For transa = 'T':
- For incy $=\mathrm{M}_{-} \mathrm{Y}$, it is $\boldsymbol{Y}_{\text {iy:iy, } i y: j y+n-1}$.
- For incy $=1$ and incy $\neq M_{-} Y$, it is $\boldsymbol{Y}_{i y: i y+n-1, j y: j y}$. α and β are scalars.

Note: No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

In the following three cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $m=0$
- $n=0$
- α is zero and β is one.

See references [14] and [15].

Table 39. Data Types	
$\alpha, \beta, \boldsymbol{A}, \boldsymbol{x}, \boldsymbol{y}$	Subprogram
Long-precision real	PDGEMV

Syntax

Fortran	CALL PDGEMV (transa, m, n, alpha, a, ia, ja, desc_a, $x, i x, j x$, desc_ x, incx, beta, $y, ~ i y, ~ j y, ~$ desc_y, incy)
C and C++	pdgemv (transa, m, n, alpha, a, ia, ja, desc_a, $x, i x, j x$, desc_x, incx, beta, $y, i y, j y$, desc_y, incy);

On Entry

transa

indicates the form of matrix \boldsymbol{A} to use in the computation, where:
If transa $=$ ' N ', \boldsymbol{A} is used in the computation.
If transa $={ }^{\prime} \mathrm{T}^{\prime}, \boldsymbol{A}^{\top}$ is used in the computation.
Scope: global
Specified as: a single character; transa $={ }^{\prime} \mathrm{N}^{\prime}$ or ${ }^{\prime} \mathrm{T}^{\prime}$.
m
is the number of rows in submatrix \boldsymbol{A} used in the computation, and:
If transa $=$ ' N ', it is the number of elements in vector \boldsymbol{y}.
If transa $={ }^{\prime} \mathrm{T}^{\prime}$, it is the number of elements in vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; $m \geq 0$.
n
is the number of columns in submatrix \boldsymbol{A} used in the computation, and:
If transa $=$ ' N ', it is the number of elements in vector \boldsymbol{x}.
If transa $={ }^{\prime} \mathrm{T}^{\prime}$, it is the number of elements in vector \boldsymbol{y}.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
alpha
is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 39 on page 163.
a
is the local part of the global general matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+m-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading ia+m-1 by ja+n-1 part of the global matrix.
Note: No data should be moved to form $\boldsymbol{A}^{\mathrm{T}}$; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.
Scope: local
Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 39 on page 163. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix
A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and $i a+m-1 \leq M _A$.
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer; $1 \leq j a \leq \mathrm{N} _\mathrm{A}$ and $j a+n-1 \leq \mathrm{N} _\mathrm{A}$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $m=0$ or $n=0$: $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If $m=0$ or $n=0$: N_A ≥ 0 Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	$N B _A \geq 1$	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A)	Local

Specified as: an array of (at least) length 9, containing fullword integers.
is the local part of the global matrix \boldsymbol{X}. This identifies the first element of the local array X . This subroutine computes the location of the first element of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol; therefore, assuming the following:

If transa $=$ ' N ', numx $=n$
If transa $=$ ' T ', numx $=m$
the following must be true:

- If incx = M_X, the leading LOCp(ix) by LOCq(jx+numx-1) part of the local array X must contain the local pieces of the leading $i x$ by $j x+n u m x-1$ part of the global matrix.
- If incx = 1 and incx $\neq \mathrm{M} _X$, the leading $\operatorname{LOCp}(i x+n u m x-1)$ by LOCq($j x$) part of the local array X must contain the local pieces of the leading $i x+n u m x-1$ by $j x$ part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) $\operatorname{LOCq}\left(\mathrm{N} _X\right)$ array, containing numbers of the data type indicated in Table 39 on page 163. Details about the block-cyclic data distribution of the global matrix \boldsymbol{X} are stored in desc_x.

PDGEMV

ix
has the following meaning:
If incx $=$ M_X, it indicates which row of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
If incx $=1$ and incx $\neq \mathrm{M}_{-} \mathrm{X}$, it is the row index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; $1 \leq i x \leq M _X$, and if incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, then:
If transa $=$ ' N ', then $i x+n-1 \leq \mathrm{M} _\mathrm{X}$.
If transa $=$ ' T ', then $i x+m-1 \leq M _X$.
jx
has the following meaning:
If incx $=\mathrm{M}$ _ X , it is the column index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

If incx $=1$ and incx $\neq \mathrm{M} _X$, it indicates which column of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.

Scope: global
Specified as: a fullword integer; $1 \leq j x \leq \mathrm{N} _\mathrm{X}$, and if incx $=\mathrm{M} _\mathrm{X}$, then:
If transa $=$ ' N ', then $j x+n-1 \leq \mathrm{N} _\mathrm{X}$.
If transa $=$ ' T ', then $j x+m-1 \leq \mathrm{N} _\mathrm{X}$.
desc_x
is the array descriptor for global matrix \boldsymbol{X}, described in the following table:

desc_ x	Name	Description	Limits	Scope
1	DTYPE_X	Descriptor type	DTYPE_X=1	Global
2	CTXT_X	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_X	Number of rows in the global matrix	$\begin{aligned} & \text { If transa }=\text { 'N' and } n=0 \text { : } \\ & M^{\prime} X \geq 0 \\ & \text { If transa }=\text { 'T' and } m=0 \text { : } \\ & M _X \geq 0 \\ & \text { Otherwise: } \\ & M _X \geq 1 \end{aligned}$	Global
4	N_X	Number of columns in the global matrix	$\begin{aligned} & \text { If transa }=\text { 'N' and } n=0 \text { : } \\ & N \mathrm{X} \geq 0 \\ & \text { If transa }=1 \text { ' } \\ & \mathrm{N} X \geq 0 \\ & \text { Otherwise: } \\ & \mathrm{N} X \geq 1 \end{aligned}$	Global
5	MB_X	Row block size	MB_X ≥ 1	Global
6	NB_X	Column block size	NB_X l 1	Global
7	RSRC_X	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq R S R C _$< p	Global

desc_x	Name	Description	Limits	Scope
8	CSRC_X	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_X $<q$	Global
9	LLD_X	The leading dimension of the local array	LLD_X \geq max(1,LOCp(M_X))	Local

Specified as: an array of (at least) length 9, containing fullword integers. incx
is the stride for global vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; incx = 1 or incx = M_X, where:
If incx $=\mathrm{M} _\mathrm{X}$, then \boldsymbol{x} is a row-distributed vector.
If incx $=1$ and incx $\neq M _X$, then \boldsymbol{x} is a column-distributed vector. beta
is the scalar β.
Scope: global
Specified as: a number of the data type indicated in Table 39 on page 163. y
is the local part of the global matrix \boldsymbol{Y}. This identifies the first element of the local array Y . This subroutine computes the location of the first element of the local subarray used, based on iy, jy, desc_y, p, q, myrow, and mycol; therefore, assuming the following:
If transa $=$ ' N ', numy $=m$
If transa $=$ ' T ', numy $=n$
the following must be true:

- If incy = M_Y, the leading LOCp(iy) by LOCq(jy+numy-1) part of the local array Y must contain the local pieces of the leading iy by jy+numy-1 part of the global matrix.
- If incy = 1 and incy $\neq \mathrm{M} _\mathrm{Y}$, the leading LOCp(iy+numy-1) by LOCq(jy) part of the local array Y must contain the local pieces of the leading iy+numy-1 by jy part of the global matrix.

When β is zero, \boldsymbol{y} need not be set on input.

Scope: local

Specified as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers of the data type indicated in Table 39 on page 163. Details about the block-cyclic data distribution of the global matrix \boldsymbol{Y} are stored in desc_y.
iy
has the following meaning:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, it indicates which row of global matrix \boldsymbol{Y} is used for vector \boldsymbol{y}.
If incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, it is the row index of global matrix \boldsymbol{Y}, identifying the first element of vector \boldsymbol{y}.
Scope: global

Specified as: a fullword integer; $1 \leq i y \leq M _Y$, and if incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, then:
If transa $=$ ' N ', then $i y+m-1 \leq M _Y$.
If transa $=$ ' T ', then $i y+n-1 \leq \mathrm{M} _\mathrm{Y}$.
jy
has the following meaning:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, it is the column index of global matrix \boldsymbol{Y}, identifying the first element of vector \boldsymbol{y}.
If incy $=1$ and incy $\neq \mathrm{M} _\mathrm{Y}$, it indicates which column of global matrix \boldsymbol{Y} is used for vector \boldsymbol{y}.
Scope: global
Specified as: a fullword integer; $1 \leq j y \leq \mathrm{N}_{-} \mathrm{Y}$, and if incy $=\mathrm{M} _\mathrm{Y}$, then:
If transa $=$ ' N ', then $j y+m-1 \leq \mathrm{N} _\mathrm{Y}$.
If transa $=$ ' T ', then $j y+n-1 \leq N _Y$.
desc_y
is the array descriptor for global matrix \boldsymbol{Y}, described in the following table:

desc_y	Name	Description	Limits	Scope
1	DTYPE_Y	Descriptor type	DTYPE_Y=1	Global
2	CTXT_Y	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_Y	Number of rows in the global matrix	If transa $=$ ' N ' and $m=0$: $M_{-} Y \geq 0$ If transa $=' T$ ' and $n=0$: $M_{-} Y \geq 0$ Otherwise: $M_{-} Y \geq 1$	Global
4	N_Y	Number of columns in the global matrix	If transa $=$ ' N ' and $m=0$: $N_{-} Y \geq 0$ If transa $=$ ' T ' and $n=0$: $N_{-} Y \geq 0$ Otherwise: $N_{-} Y \geq 1$	Global
5	MB_Y	Row block size	MB_Y ≥ 1	Global
6	NB_Y	Column block size	NB_Y ≥ 1	Global
7	RSRC_Y	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq R S R C _Y<p$	Global
8	CSRC_Y	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_Y $<q$	Global
9	LLD_Y	The leading dimension of the local array	LLD_Y $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _Y) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers.
incy
is the stride for global vector \boldsymbol{y}.

Scope: global

Specified as: a fullword integer; incy = 1 or incy = M_Y, where:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, then \boldsymbol{y} is a row-distributed vector.
If incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, then \boldsymbol{y} is a column-distributed vector.

On Return

y
is the updated local part of the global matrix \boldsymbol{Y}, containing the results of the computation.
Scope: local
Returned as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers of the data type indicated in Table 39 on page 163.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the transa argument.
2. If you specify ' C ' for the transa, it is interpreted as though you specified ' T '.
3. The matrix and vectors must have no common elements; otherwise, results are unpredictable.
4. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M} _\right)$and $\mathrm{LOCq}\left(\mathrm{N} _\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
5. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
6. The following values must be equal: CTXT_A = CTXT_X = CTXT_Y.
7. The following coding rules depend upon the values specified for transa and incx:

- If transa $=$ ' N ' and incx $=\mathrm{M} \mathbf{X}$:
- The following block sizes must be equal: NB_A = NB_X.
- In the process grid, the process column containing the first column of the submatrix \boldsymbol{X} must also contain the first column of the submatrix \boldsymbol{A}; that is, iacol $=i x c o l$, where:

$$
\begin{aligned}
& \text { iacol }=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& i x c o l=\bmod \left(\left(\left((j x-1) / N B _X\right)+C S R C _X\right), q\right)
\end{aligned}
$$

- The block column offset of \boldsymbol{x} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod (j x-1$, NB_X) $=\bmod (j a-1$, NB_A $)$.
- If transa = ' N ' and incx $=1\left(\neq \mathrm{M} _\mathrm{X}\right)$:
- The following block sizes must be equal: NB_A = MB_X.
- The block row offset of \boldsymbol{x} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(i x-1, M B _X\right)=\bmod \left(j a-1, N B _A\right)$.
- If transa $=$ ' T^{\prime} and incx $=\mathrm{M} _\mathrm{X}$:
- The following block sizes must be equal: $M B _A=$ NB_X.
- The block column offset of \boldsymbol{x} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(j x-1, N B _X\right)=\bmod \left(i a-1, M B _A\right)$.
- If transa $=$ ' T ' and incx $=1\left(\neq M _X\right)$:
- The following block sizes must be equal: MB_A = MB_X.
- In the process grid, the process row containing the first row of the submatrix \boldsymbol{X} must also contain the first row of the submatrix \boldsymbol{A}; that is, iarow $=$ ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ixrow }=\bmod \left(\left(\left((i x-1) / M B _X\right)+\text { RSRC_X }\right), p\right)
\end{aligned}
$$

- The block row offset of \boldsymbol{x} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(i x-1, M B _X\right)=\bmod \left(i a-1, M B _A\right)$.

8. The following coding rules depend upon the values specified for transa and incy:

- If transa = ' N ' and incy $=\mathrm{M}$ _ Y :
- The following block sizes must be equal: $M B _A=N B _Y$.
- The block column offset of \boldsymbol{y} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(j y-1, N B _Y\right)=\bmod \left(i a-1, M B _A\right)$.
- If transa $=$ ' N ' and incy $=1\left(\neq \mathrm{M} _\mathrm{Y}\right)$:
- The following block sizes must be equal: MB_A = MB_Y.
- In the process grid, the process row containing the first row of the submatrix \boldsymbol{Y} must also contain the first row of the submatrix \boldsymbol{A}; that is, iarow = iyrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { iyrow }=\bmod \left(\left(\left((i y-1) / M B _Y\right)+R S R C _Y\right), p\right)
\end{aligned}
$$

- The block row offset of \boldsymbol{y} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(i y-1, M B _Y\right)=\bmod \left(i a-1, M B _A\right)$.
- If transa $=$ ' $\mathrm{T}^{\text {' }}$ and incy $=\mathrm{M}_{-} \mathrm{Y}$:
- The following block sizes must be equal: NB_A = NB_Y.
- In the process grid, the process column containing the first column of the submatrix \boldsymbol{Y} must also contain the first column of the submatrix \boldsymbol{A}; that is, iacol = iycol, where:

```
iacol = mod}((((ja-1)/NB_A)+CSRC_A),q
iycol = mod((((jy-1)/NB_Y)+CSRC_Y),q)
```

- The block column offset of \boldsymbol{y} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(j y-1, N B _Y\right)=\bmod \left(j a-1, N B _A\right)$.
- If transa $=$ ' T^{\prime} and incy $=1\left(\neq \mathrm{M} _\mathrm{Y}\right)$:
- The following block sizes must be equal: NB_A = MB_Y.
- The block row offset of \boldsymbol{y} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(i y-1, M B _Y\right)=\bmod \left(j a-1, N B _A\right)$.

9. An example of the use of this subroutine in a thermal diffusion application program is shown in Appendix B. See "Program Main (Message Passing)" on page 914.

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors
Stage 1

1. DTYPE_A is invalid.
2. DTYPE_X is invalid.
3. DTYPE_Y is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDGEMV was called from outside the process grid.

Stage 4

1. transa $\neq ' \mathrm{~N}$ ', ' T ', or ' C^{\prime}
2. $m<0$
3. $n<0$
4. $\mathrm{M} _\mathrm{A}<0$ and ($m=0$ or $n=0$); M_A <1 otherwise
5. N_A < 0 and ($m=0$ or $n=0$); N_A < 1 otherwise
6. $M B _A<1$
7. NB_A < 1
8. RSRC_A <0 or RSRC_A $\geq p$
9. CSRC_A <0 or CSRC_A $\geq q$
10. $i a<1$
11. $j a<1$

If $\left(n=0\right.$ and transa $=' \mathrm{~N}$ ') or ($m=0$ and transa $=$ ' T^{\prime}):
12. $M-X<0$
13. N_X < 0

Otherwise:
14. M _ $X<1$
15. N_X < 1

In all cases:
16. MB_X < 1
17. NB_X < 1
18. RSRC_X <0 or RSRC_X $\geq p$
19. CSRC_X <0 or CSRC_X $\geq q$
20. CTXT_A \neq CTXT_X
21. $i x<1$
22. $j x<1$

If ($m=0$ and transa $=' \mathrm{~N}$ ') or ($n=0$ and transa = 'T'):
23. M_Y < 0
24. N_Y < 0

Otherwise:
25. $M_{-} Y<1$
26. N_Y < 1

In all cases:
27. $M B-Y<1$
28. NB_- $^{-}$< 1
29. RSRC_Y <0 or RSRC_ $Y \geq p$
30. CSRC_Y <0 or CSRC_Y $\geq q$
31. CTXT_A $\neq C T X T _Y$
32. $i y<1$
33. $j y<1$

Stage 5
If $m \neq 0$ and $n \neq 0$:

1. ia $>M _A$
2. $j a>N _A$
3. $i a+m-1>M _A$
4. $j a+n-1>$ N_A

If $(n \neq 0$ and transa $=' \mathrm{~N}$ ' $)$ or $\left(m \neq 0\right.$ and transa $\left.=' \mathrm{~T}^{\prime}\right)$:
5. $i x>\mathrm{M}$ - X
6. $j x>\mathrm{N} _\mathrm{X}$

If $\left.(m \neq 0 \text { and transa }=' \mathrm{~N})^{\prime}\right)$ or $\left(n \neq 0\right.$ and transa $\left.=' \mathrm{~T}^{\prime}\right)$:
7. iy > M_Y
8. $j y>\mathrm{N}_{-} \mathrm{Y}$

If incx $=\mathrm{M} _\mathrm{X}$ and transa $=$ ' N ':
9. $N B _X \neq N B _A$
10. $\bmod \left(j x-1, N B _X\right) \neq \bmod \left(j a-1, N B _A\right)$
11. $n \neq 0$ and $j x+n-1 \leq \mathrm{N} _X$

If incx $=\mathrm{M} _\mathrm{X}$ and transa $=$ ' T ':
12. NB_X \neq MB_A
13. $\bmod \left(j x-1, N B _X\right) \neq \bmod \left(i a-1, M B _A\right)$
14. $m \neq 0$ and $j x+m-1 \leq \mathrm{N} _X$

If incx $=1\left(\neq M _X\right)$ and transa $=' \mathrm{~N}$ ':
15. MB_X \neq NB_A
16. $\bmod \left(i x-1, M B _X\right) \neq \bmod \left(j a-1, N B _A\right)$
17. $n \neq 0$ and $i x+n-1 \leq M _X$

If incx $=1\left(\neq M _X\right)$ and transa $=' T$ ':
18. MB_X $\neq M B _A$
19. $\bmod \left(i x-1, M B _X\right) \neq \bmod \left(i a-1, M B _A\right)$
20. $m \neq 0$ and $i x+m-1 \leq M _X$

In all cases:
21. incx $\neq M _X$ and incx $\neq 1$

If incy $=\mathrm{M}_{-} \mathrm{Y}$ and transa $=$ ' N ':
22. NB_Y $\neq \mathrm{MB} _A$
23. $\bmod \left(j y-1, N B _Y\right) \neq \bmod \left(i a-1, M B _A\right)$
24. $m \neq 0$ and $j y+m-1 \leq$ N_Y

If incy $=\mathrm{M}_{-} \mathrm{Y}$ and transa $=\mathrm{T}$ ':
25. NB_Y \neq NB_A
26. $\bmod \left(j y-1, N B _Y\right) \neq \bmod \left(j a-1, N B _A\right)$
27. $n \neq 0$ and $j y+n-1 \leq N _Y$

If incy $=1\left(\neq \mathrm{M} _\mathrm{Y}\right)$ and transa $=$ ' N ':
28. MB_Y \neq MB_A
29. $\bmod (i y-1$, MB_Y $) \neq \bmod \left(i a-1, M B _A\right)$
30. $m \neq 0$ and $i y+m-1 \leq M _Y$

If incy $=1\left(\neq \mathrm{M} _\mathrm{Y}\right)$ and transa $={ }^{\prime} \mathrm{T}$ ':
31. MB_Y \neq NB_A
32. $\bmod \left(i y-1\right.$, MB_Y $\left.^{\prime}\right) \neq \bmod \left(j a-1, N B _A\right)$
33. $n \neq 0$ and $i y+n-1 \leq M-Y$

In all cases:
34. incy $\neq \mathrm{M}_{-} \mathrm{Y}$ and incy $\neq 1$

Stage 6
If transa = ' N ':

1. If incx $=M _X$, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{X} does not contain the first column of the submatrix \boldsymbol{A}; that is, iacol $\neq i x c o l$, where:

$$
\begin{aligned}
& \text { iacol }=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& i x c o l=\bmod \left(\left(\left((j x-1) / N B _X\right)+C S R C _X\right), q\right)
\end{aligned}
$$

2. If incy $=1\left(\neq M _Y\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{Y} does not contain the first row of the submatrix \boldsymbol{A}; that is, iarow \neq iyrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { iyrow }=\bmod \left(\left(\left((i y-1) / M B _Y\right)+\text { RSRC_Y }\right), p\right)
\end{aligned}
$$

If transa $=$ ' T^{\prime} :
3. If incx $=1\left(\neq M _X\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{X} does not contain the first row of the submatrix \boldsymbol{A}; that is, iarow \neq ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ixrow }=\bmod \left(\left(\left((i x-1) / M B _X\right)+\text { RSRC_X }\right), p\right)
\end{aligned}
$$

4. If incy $=M_{-} Y$, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{Y} does not contain the first column of the submatrix \boldsymbol{A}; that is, iacol $\neq i y c o l$, where:

$$
\begin{aligned}
& \text { iacol }=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& i y c o l=\bmod \left(\left(\left((j y-1) / N B _Y\right)+C S R C-Y\right), q\right)
\end{aligned}
$$

In all cases:
5. LLD_A < max(1, LOCp(M_A))
6. LLD_X < $\max \left(1, \operatorname{LOCp}\left(M _X\right)\right)$
7. LLD_Y < $\max \left(1, \operatorname{LOCp}\left(M _Y\right)\right)$

Example 1: This example computes $\boldsymbol{y}=\alpha \boldsymbol{A} \boldsymbol{x}+\beta \boldsymbol{y}$ using a 2×2 process grid. The input matrices $\boldsymbol{A}, \boldsymbol{X}$, and \boldsymbol{Y}, used here, are the same as $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}, used in "Example 1" on page 262 for PDGEMM. The updated portion of \boldsymbol{Y} is the same as for \boldsymbol{C} in PDGEMM, as this computation is equivalent to a portion of the PDGEMM computation.

This example uses a global submatrix \boldsymbol{A} within a global matrix \boldsymbol{A} by specifying $i a=3$ and $j a=1$. It uses vectors \boldsymbol{x} and \boldsymbol{y}, which are column-distributed vectors within a column of \boldsymbol{X} and \boldsymbol{Y}, respectively, by specifying incx $=1$, $i x=1$, and $j x=2$ for \boldsymbol{x} and incy $=1$, $i y=3$, and $j y=2$ for \boldsymbol{y}.

Call Statements and Input

ORDER = 'R'
NPROW $=2$
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A	Desc_X	Desc_Y
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	6	5	6
N	5	4	4
MB	3	2	3
NB	2	2	2
RSRC_	0	0	0
CSRC_	0	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$	See below ${ }^{2}$

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M-A, M B _A\right.\right.$, MYROW, RSRC_A, NPROW))
LLD_X $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} X, M B B_{-}^{-} X\right.\right.$, MYROW, RSRC_X, NPROW) $)$
LLD_Y = MAX (1,NUMROC (M_Y, MB_Y, MYROW, RSRC_Y, NPROW))
In this example, LLD_A $=$ LLD_ $Y=3$ on all processes, LLD_X $=3$ on P_{00} and P_{01}, and LLD_X $=2$ on P_{10} and P_{11}.

After the global matrix \boldsymbol{A} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{A}. Following is the global 4×5 submatrix \boldsymbol{A}, starting at row 3 and column 1 in global general 6×5 matrix \boldsymbol{A} with block size 3×2 :

B, D	0	1	2
0	$\begin{array}{cc\|cc\|c} . & . & . & . & . \\ . & . & . & . & . \\ 1.0 & -1.0 & -1.0 & 1.0 & 2.0 \end{array}$		
	-3.0 2.0	2.02 .0	0.0
1	4.00 .0	-2.0 1.0	-1.0
	-1.0-1.0	1.0-3.0	2.0

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

p,q	0	1
	. . .	- .
0	- . -	. \cdot
	1.0-1.0 2.0	-1.0 1.0
	$\begin{array}{lll}-3.0 & 2.0 & 0.0\end{array}$	2.02 .0
1	4.0 0.0-1.0	-2.0 1.0
	-1.0-1.0 2.0	1.0-3.0

After the global matrix \boldsymbol{X} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{x}, which is a column-distributed vector. Following is the global vector \boldsymbol{x} of size 5×1, starting at row 1 and column 2 in 5×4 global matrix X with block size 2×2 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{x} :

After the global matrix \boldsymbol{Y} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{y}, which is a column-distributed vector. Following is the global vector \boldsymbol{y} of size 4×1, starting at row 3 and column 2 in 6×4 global matrix \boldsymbol{Y} with block size 3×2 :

$$
\begin{aligned}
& \begin{array}{lll}
B, D & 0 & 1
\end{array} \\
& 0\left[\begin{array}{cc|cc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & 0.5 & \cdot & \cdot \\
-\cdots & 0.5 & \cdot & \cdot \\
\cdot & 0.5 & \cdot & \cdot \\
\cdot & 0.5 & \cdot & \cdot
\end{array}\right]
\end{aligned}
$$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{y} :

Output:

After the global matrix \boldsymbol{Y} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{y}, which is a column-distributed vector. Following is the global vector \boldsymbol{y} of size 4×1, starting at row 3 and column 2 in 6×4 global matrix \boldsymbol{Y} with block size 3×2 :

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{y} :

Example 2: This example computes $\boldsymbol{y}=\alpha \boldsymbol{A} \boldsymbol{x}+\boldsymbol{\beta} \boldsymbol{y}$ using a 2×2 process grid. The input matrices $\boldsymbol{A}, \boldsymbol{X}$, and \boldsymbol{Y}, used here, are the same as $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C}, used in "Example 1" on page 262 for PDGEMM.

This example uses a global submatrix \boldsymbol{A} within a global matrix \boldsymbol{A} by specifying $i a=2$ and $j a=2$. It uses vector \boldsymbol{x}, which is a row-distributed vector within a row of \boldsymbol{X}, by specifying incx $=\mathrm{M} _\mathrm{X}=5, i x=4$, and $j x=2$. It uses vector \boldsymbol{y}, which is a column-distributed vector within a column of \boldsymbol{Y}, by specifying incy $=1$, iy $=2$, and $j y=3$.

```
Call Statements and Input
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_X	Desc_Y
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	6	5	6
N_	5	4	4
MB	3	2	3
NB	2	2	2
RSRC_	0	0	0
CSRC_	0	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ LLD_X $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} X, M B B_{-}^{-} X\right.\right.$, MYROW, RSRC_X, NPROW) $)$ LLD_Y $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-} Y, M B_{-} Y\right.\right.$, MYROW, RSRC_Y, NPROW)) In this example, LLD_A = LLD_Y = 3 on all processes, LLD_X $=3$ on P_{00} and P_{01}, and LLD_X $=2$ on P_{10} and P_{11}.			

After the global matrix \boldsymbol{A} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{A}. Following is the global 4×3 submatrix \boldsymbol{A}, starting at row 2 and column 2 in global general 6×5 matrix \boldsymbol{A} with block size 3×2 :
B, D
$0 \quad\left[\left.\begin{array}{cc}\cdot & . \\ \cdot & 0.0 \\ \cdot & -1.0 \\ -\cdots & 2.0 \\ \cdot & 0.0 \\ \cdot & \cdot\end{array} \right\rvert\,\right.$
1
2

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

After the global matrix \boldsymbol{X} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{x}, which is a row-distributed vector. Following is the global vector \boldsymbol{x} of size 1×3, starting at row 4 and column 2 in 5×4 global matrix \boldsymbol{X} with block size 2×2 :
B, D
0
1

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{x} :

After the global matrix \boldsymbol{Y} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{y}, which is a column-distributed vector. Following is the global vector \boldsymbol{y} of size 4×1, starting at row 2 and column 3 in 6×4 global matrix \boldsymbol{Y} with block size 3×2 :
$\begin{array}{lll}B, D & 0 & 1\end{array}$

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{y} :

p,q		0	1
	-	.	-
0	.	.	0.5
	.	.	0.5
1	-	-	0.5
	-	-	0.5
	-	.	-

Output:

After the global matrix \boldsymbol{Y} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{y}, which is a column-distributed vector. Following is the global vector \boldsymbol{y} of size 4×1, starting at row 2 and column 3 in 6×4 global matrix \boldsymbol{Y} with block size 3×2 :
$\begin{array}{lll}B, D & 0 & 1\end{array}$
$0\left[\begin{array}{cc|cc}\cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1.0 & \cdot \\ \cdot & \cdot & 0.0 & \cdot \\ ---- & - & -1.0 & \cdot \\ \cdot & \cdot & -2.0 & \cdot \\ \cdot & \cdot & \cdot & \cdot\end{array}\right]$
The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{y} :

PDSYMV—Matrix-Vector Product for a Real Symmetric Matrix

This subroutine computes the following matrix-vector product:

$$
\boldsymbol{y} \leftarrow \alpha \boldsymbol{A} \boldsymbol{x}+\beta \boldsymbol{y}
$$

where, in the formula above:
\boldsymbol{A} represents the global symmetric submatrix $\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}$.
\boldsymbol{x} represents the global vector:

- For incx $=$ M_X, it is $X_{i x: i x, j x: j x+n-1}$.
- For incx $=1$ and incx $\neq \mathrm{M} _X$, it is $X_{i x: i x+n-1, j x: j x}$. \boldsymbol{y} represents the global vector:
- For incy $=$ M_Y, it is $\boldsymbol{Y}_{i y: i y, j y: j y+n-1}$.
- For incy = 1 and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, it is $\boldsymbol{Y}_{\text {iy:iy+n-1, iy:jr }}$. α and β are scalars.

In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $n=0$
- α is zero and β is one.

See references [14] and [15].

Table 40. Data Types	
$\alpha, \beta, \boldsymbol{A}, \boldsymbol{x}, \boldsymbol{y}$	Subprogram
Long-precision real	PDSYMV

Syntax

Fortran	CALL PDSYMV (uplo, n, alpha, a, ia, ja, desc_a, x, ix, jx, desc_x, incx, beta, y, iy, jy, desc_y, incy)
C and C++	pdsymv (uplo, n, alpha, a, ia, ja, desc_a, x, ix, jx, desc_x, incx, beta, y, iy, jy, desc_y, incy);

On Entry

uplo
indicates whether the upper or lower triangular part of the global symmetric submatrix \boldsymbol{A} is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
n
is the number of rows and columns in submatrix \boldsymbol{A} and the number of elements in vectors \boldsymbol{x} and \boldsymbol{y} used in the computation.
Scope: global
Specified as: a fullword integer; $n \geq 0$.

alpha

is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 40 on page 181. a
is the local part of the global symmetric matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp($i a+n-1$) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading $i a+n-1$ by $j a+n-1$ part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global symmetric submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, }{ }^{\text {aj:ja+n-1 }}}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global symmetric submatrix $\boldsymbol{A}_{i a: i a+n-1, ~ j a: j a+n-1}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Scope: local
Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 40 on page 181. Details about the square block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq \mathrm{M} _\mathrm{A}$ and $i a+n-1 \leq \mathrm{M} _\mathrm{A}$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq \mathrm{N} _\mathrm{A}$ and $j a+n-1 \leq \mathrm{N} _\mathrm{A}$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP
2	CTXT_A	BLACS context	Global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1
3	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global

desc_a	Name	Description	Limits	Scope
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	NB_A ≥ 1	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$	Global
8	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A <q		
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A))	Local

Specified as: an array of (at least) length 9, containing fullword integers.
is the local part of the global matrix \boldsymbol{X}. This identifies the first element of the local array X . This subroutine computes the location of the first element of the local subarray used, based on $i x, j x$, desc_x, p, q, myrow, and mycol; therefore:

- If incx $=\mathrm{M} _X$, the leading $\operatorname{LOCp}(i x)$ by $\operatorname{LOCq}(j x+n-1)$ part of the local array X must contain the local pieces of the leading ix by $j x+n-1$ part of the global matrix.
- If incx = 1 and $i n c x \neq M _X$, the leading $\operatorname{LOCp}(i x+n-1)$ by LOCq($\left.j x\right)$ part of the local array X must contain the local pieces of the leading $i x+n-1$ by $j x$ part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 40 on page 181. Details about the block-cyclic data distribution of the global matrix \boldsymbol{X} are stored in desc_x.
has the following meaning:
If incx $=$ M_X, it indicates which row of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
If incx $=1$ and incx $\neq \mathrm{M} _X$, it is the row index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; $1 \leq i x \leq M _X$ and:
If incx $=1$ and incx $\neq M _X$, then $i x+n-1 \leq M _X$.
$j x$
has the following meaning:
If incx $=M _X$, it is the column index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.
If incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, it indicates which column of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.

Scope: global
Specified as: a fullword integer; $1 \leq j x \leq N _X$ and:
If incx $=\mathrm{M} _\mathrm{X}$, then $j x+n-1 \leq \mathrm{N} _X$.
desc_x
is the array descriptor for global matrix \boldsymbol{X}, described in the following table:

desc_x	Name	Description	Limits	Scope
1	DTYPE_X	Descriptor type	DTYPE_X=1	Global
2	CTXT_X	BLACS context	Valid value, as returned by BLACS GRIDINIT or BLACS_GRIDMAP	Global
3	M_X	Number of rows in the global matrix	$\begin{aligned} & \text { If } n=0: \\ & M _X \geq 0 \end{aligned}$ Otherwise: $M _X \geq 1$	Global
4	N_X	Number of columns in the global matrix	$\begin{aligned} & \text { If } n=0: \\ & \quad \mathrm{N} _X \geq 0 \end{aligned}$ Otherwise: $N _X \geq 1$	Global
5	MB_X	Row block size	MB_X ≥ 1	Global
6	NB_X	Column block size	NB_X ≥ 1	Global
7	RSRC_X	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq R S R C _$- p	Global
8	CSRC_X	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_X $<q$	Global
9	LLD_X	The leading dimension of the local array	LLD_X $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _X) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers. incx
is the stride for global vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; incx = 1 or incx = M_X, where:
If incx $=\mathrm{M} _X$, then \boldsymbol{x} is a row-distributed vector.
If incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, then \boldsymbol{x} is a column-distributed vector. beta
is the scalar β.
Scope: global
Specified as: a number of the data type indicated in Table 40 on page 181. y
is the local part of the global matrix \boldsymbol{Y}. This identifies the first element of the local array Y . This subroutine computes the location of the first element of the local subarray used, based on $i y$, jy, desc_y, p, q, myrow, and mycol; therefore:

- If incy $=$ M_Y, the leading LOCp(iy) by LOCq($j y+n-1$) part of the local array Y must contain the local pieces of the leading iy by $j y+n-1$ part of the global matrix.
- If incy = 1 and incy $\neq \mathrm{M} _\mathrm{Y}$, the leading LOCp(iy+n-1) by LOCq(iy) part of the local array Y must contain the local pieces of the leading $i y+n-1$ by $j y$ part of the global matrix.

When β is zero, \boldsymbol{y} need not be set on input.
Scope: local
Specified as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers of the data type indicated in Table 40 on page 181. Details about the block-cyclic data distribution of the global matrix \boldsymbol{Y} are stored in desc_y.
has the following meaning:
If incy $=\mathrm{M} _\mathrm{Y}$, it indicates which row of global matrix \boldsymbol{Y} is used for vector \boldsymbol{y}.
If incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, it is the row index of global matrix \boldsymbol{Y}, identifying the first element of vector y.
Scope: global
Specified as: a fullword integer; $1 \leq i y \leq M _Y$ and:
If incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, then $i y+n-1 \leq M _Y$.
jy
has the following meaning:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, it is the column index of global matrix \boldsymbol{Y}, identifying the first element of vector \boldsymbol{y}.

If incy $=1$ and incy $\neq \mathrm{M} _\mathrm{Y}$, it indicates which column of global matrix \boldsymbol{Y} is used for vector \boldsymbol{y}.

Scope: global
Specified as: a fullword integer; $1 \leq j y \leq N _Y$ and:
If incy $=$ M_Y, then $j y+n-1 \leq$ N_Y.
desc_y
is the array descriptor for global matrix \boldsymbol{Y}, described in the following table:

desc_y	Name	Description	Limits	Scope
1	DTYPE_Y	Descriptor type	DTYPE_Y=1	Global
2	CTXT_Y	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_Y	Number of rows in the global matrix	If $n=0:$ M_Y ≥ 0 Otherwise: M_Y ≥ 1	Global
4	N_Y	Number of columns in the global matrix	If $n=0:$ N_Y ≥ 0 Otherwise: N_Y ≥ 1	Global
5	MB_Y	Row block size	MB_Y ≥ 1	GB_Y ≥ 1

desc_y	Name	Description	Limits	Scope
7	RSRC_Y	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq R S R C-Y<p$	Global
8	CSRC_Y	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_Y < q	Global
9	LLD_Y	The leading dimension of the local array	LLD_Y $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _Y) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers. incy
is the stride for global vector \boldsymbol{y}.
Scope: global
Specified as: a fullword integer; incy = 1 or incy = M_X, where:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, then \boldsymbol{y} is a row-distributed vector.
If incy $=1$ and incy $\neq M_{-} Y$, then \boldsymbol{y} is a column-distributed vector.

On Return

y
is the updated local part of the global matrix \boldsymbol{Y}, containing the results of the computation.

Scope: local

Returned as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers of the data type indicated in Table 40 on page 181.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the uplo argument.
2. The matrix and vectors must have no common elements; otherwise, results are unpredictable.
3. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$and LOCq(N_) used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
4. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
5. The following values must be equal: CTXT_A = CTXT_X = CTXT_Y.
6. The global symmetric matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, $M B _A=N B _A$.
7. The block row and block column offsets of the global symmetric matrix \boldsymbol{A} must be equal; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.
8. The vectors \boldsymbol{x} and \boldsymbol{y} must be distributed along the same axis-that is, they must both be row distributed or column distributed, where:

- incx = M_X and incy = M_Y for row distribution
- incx $=1\left(\neq M _X\right)$ and incy $=1\left(\neq M _Y\right)$ for column distribution

9. If incx $=\mathrm{M} _\mathrm{X}$ and incy $=\mathrm{M} _\mathrm{Y}$, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrices \boldsymbol{X} and \boldsymbol{Y}; that is:
```
iacol = ixcol
iacol = iycol
where:
    iacol = mod((((ja-1)/NB_A)+CSRC_A),q)
    ixcol = mod((((jx-1)/NB_X)+CSRC_X), q)
    iycol = mod((((jy-1)/NB_Y)+CSRC_Y), q)
```

10. If incx $=1\left(\neq M_{-} X\right)$ and incy $=1\left(\neq M_{-} Y\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrices \boldsymbol{X} and \boldsymbol{Y}; that is:
```
iarow = ixrow
iarow = iyrow
where:
        iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
    ixrow = mod((((ix-1)/MB_X)+RSRC_X), p)
    iyrow = mod((((iy-1)/MB_Y)+RSRC_Y), p)
```

11. If incx $=\mathrm{M} _\mathrm{X}$:

- The block column offset of \boldsymbol{x} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(j x-1, N B _X\right)=\bmod \left(j a-1, N B _A\right)$.
- The following block sizes must be equal: NB_X = NB_A.

12. If incx $=1\left(\neq M _X\right)$:

- The block row offset of \boldsymbol{x} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(i x-1, M B _X\right)=\bmod \left(j a-1, N B _A\right)$.
- The following block sizes must be equal: MB_X = NB_A.

13. If incy $=\mathrm{M}$ _ Y :

- The block column offset of \boldsymbol{y} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(j y-1\right.$, NB_Y) $=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: NB_Y = MB_A.

14. If incy $=1\left(\neq \mathrm{M} _\mathrm{Y}\right)$:

- The block row offset of \boldsymbol{y} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(i y-1, M B _Y\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: MB_Y = MB_A.

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_ X is invalid.
3. DTYPE_Y is invalid.

Stage 2

1. $C T X T _A$ is invalid.

Stage 3

1. PDSYMV was called from outside the process grid.

Stage 4

1. uplo \neq 'U' or 'L'
2. $n<0$
3. $M B _X<1$
4. $N B _X<1$
5. $M _X<0$ and $n=0 ; M _X<1$ otherwise
6. $\mathrm{N} _\mathrm{X}<0$ and $n=0 ; \mathrm{N} _\mathrm{X}<1$ otherwise
7. RSRC_X <0 or RSRC_X $\geq p$
8. CSRC_X <0 or CSRC_X $\geq q$
9. CTXT_A $\neq C T X T _X$
10. $i x<1$
11. $j x<1$
12. $M B-Y<1$
13. $N B$ _ $Y<1$
14. $M_{-} Y<0$ and $n=0 ; M_{-} Y<1$ otherwise
15. N_Y < 0 and $n=0 ;$ N_Y <1 otherwise
16. RSRC_Y < 0 or RSRC_ $Y \geq p$
17. CSRC_Y <0 or CSRC_Y $\geq q$
18. CTXT_A $\neq C T X T _Y$
19. iy <1
20. $j y<1$
21. RSRC_A <0 or RSRC_A $\geq p$
22. CSRC_A <0 or CSRC_A $\geq q$
23. $M _A<0$ and $(m=0$ and $n=0)$; $M _A<1$ otherwise
24. N_A <0 and ($m=0$ and $n=0$); N_A <1 otherwise
25. NB_A < 1
26. $M B _A<1$
27. $j a<1$
28. ia < 1

Stage 5

1. $M B _A \neq N B _A$

If $n \neq 0$:
2. $i x>M _X$
3. $j x>\mathrm{N} _\mathrm{X}$
4. iy > M_Y
5. $j y>$ N_Y
6. $i a+n-1>M _A$
7. $j a+n-1>$ N_A

If incx $=\mathrm{M} _\mathrm{X}$ and incy $=\mathrm{M} _\mathrm{Y}$:
8. $N B _A \neq N B _X$
9. $M B _A \neq N B _Y$
10. $\bmod \left(j x-1, N B _X\right) \neq \bmod \left(j a-1, N B _A\right)$
11. $\bmod \left(j y-1, N B _Y\right) \neq \bmod \left(i a-1, M B _A\right)$
12. $n \neq 0$ and $j x+n-1>\mathrm{N} _X$
13. $n \neq 0$ and $j y+n-1>N_{-} Y$

If incx $=1\left(\neq M _X\right)$ and incy $=1\left(\neq M _Y\right)$:
14. NB_A $\neq M B _X$
15. $M B _A \neq M B _Y$
16. $\bmod \left(i x-1, M B _X\right) \neq \bmod \left(j a-1, N B _A\right)$
17. $\bmod \left(i y-1, M B _Y\right) \neq \bmod \left(i a-1, M B _A\right)$
18. $n \neq 0$ and $i x+n-1>M _X$
19. $n \neq 0$ and $i y+n-1>M_{-} Y$

Otherwise:
20. incx $\neq \mathrm{M} _X$ and incx $\neq 1$
21. incy $\neq M_{-} Y$ and incy $\neq 1$

Stage 6

1. LLD_A $<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. $\operatorname{LLD} _X<\max \left(1, \operatorname{LOCp}\left(M _X\right)\right)$
3. LLD_Y < $\max \left(1, \operatorname{LOCp}\left(\mathrm{M}_{-} \mathrm{Y}\right)\right)$
4. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(j a-1, N B _A\right)$
5. If incx $=M _X$ and incy $=M _Y$, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrices \boldsymbol{X} and \boldsymbol{Y}; that is:
```
ixcol # iacol
iycol # iacol
where:
```


6. If incx $=1\left(\neq M _X\right)$ and incy $=1\left(\neq M _Y\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrices \boldsymbol{X} and \boldsymbol{Y}; that is:

```
ixrow \not= iarow
iyrow = iarow
where:
        iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
        ixrow = mod}((((ix-1)/MB_X)+RSRC_X),p
        iyrow = mod((((iy-1)/MB_Y)+RSRC_Y), p)
```

Example: This example computes $\boldsymbol{y}=\alpha \boldsymbol{A} \boldsymbol{x}+\beta \boldsymbol{y}$ using a 2×2 process grid.
Call Statements and Input

```
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_X	Desc_Y
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	8	8	8
N	8	1	1
MB	2	2	2
NB	2	2	2
RSRC	0	0	0
CSRC	0	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ LLD_X $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} X, M_{B}^{-} X\right.\right.$, MYROW, RSRC_X, NPROW) $)$ LLD_- $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} Y, M B_{-}^{-} Y\right.\right.$, MYROW, RSRC_Y, NPROW)) In this example, LLD_A $=4$ on all processes, and LLD_X $=$ LLD_Y $=4$ on P_{00} and P_{10}.			

Global symmetric matrix \boldsymbol{A} of order 8 with block size 2×2 :
B, D
1
2
3

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{A} :

p,q	0			1			
0	0.0-1.0	0.0	0.0	-1.0	0.0	0.0	0.0
	1.0	0.0	1.0	0.0	1.0	0.0	1.0
	- -	-1.0	0.0	.	-	0.0	0.0
	- -	-	1.0	-	-	0.0	0.0
1	- .	0.0	0.0	-1.0	-1.0	1.0	0.0
		1.0	1.0		-1.0	0.0	1.0
	- -	.	.	-	.	0.0	0.0
							0.0

Global vector \boldsymbol{x} of size 8×1 with block size 2 :
B,D 0
$\left.\begin{array}{l}0 \\ 2 \quad\left[\begin{array}{r}1.0 \\ 1.0 \\ --- \\ 1.0 \\ 1.0 \\ --- \\ 1.0 \\ 1.0 \\ --- \\ 1.0 \\ 1.0\end{array}\right]\end{array}\right]$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{x} :

p,q	0
	1.0
	1.0
0	1.0
	1.0
	1.0
	1.0
1	1.0
	1.0

Output:

Global vector \boldsymbol{y} of size 8×1 with block size 2×1 :
B, D 0
$\left.\begin{array}{l}0 \quad\left[\begin{array}{r}-2.0 \\ 3.0 \\ --- \\ -2.0 \\ 2.0 \\ --- \\ 0.0 \\ 3.0 \\ --- \\ 1.0 \\ 2.0\end{array}\right]\end{array}\right]$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{y} :

p, q	0
----	-----
	-2.0
0	3.0
	0.0
----	3.0
	-2.0
1	2.0
	1.0
	2.0

PDGER—Rank-One Update of a General Matrix

This subroutine computes the following rank-one update:

$$
A \leftarrow \alpha \boldsymbol{x} \boldsymbol{y}^{\top}+\boldsymbol{A}
$$

where, in the formula above:
\boldsymbol{A} represents the global general submatrix $\boldsymbol{A}_{i a: i a+m-1, j a: j a+n-1}$.
\boldsymbol{x} represents the global vector:

- For incx $=$ M_X, it is $X_{i x: i x, ~}^{\text {jx:jx+m-1 }}$.
- For incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, it is $\boldsymbol{X}_{i x: i x+m-1, j x \cdot j x}$.
\boldsymbol{y} represents the global vector:
- For incy $=\mathrm{M}_{-} \mathrm{Y}$, it is $\boldsymbol{Y}_{\text {iy:iy, }}$ jy:jy+n-1 .
- For incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, it is $\boldsymbol{Y}_{i y: i y+n-1, ~ i j: j y}$. α is a scalar.

Note: No data should be moved to form the vector transpose; that is, the vector should always be stored in its untransposed form.

In the following three cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $m=0$
- $n=0$
- α is zero.

See references [14] and [15].

Table 41. Data Types	
$\alpha, \boldsymbol{A}, \boldsymbol{x}, \boldsymbol{y}$	Subprogram
Long-precision real	PDGER

Syntax

Fortran	CALL PDGER (m, n, alpha, $x, i x, j x$, desc_ x, incx, $y, i y, j y$, desc_ y, incy, $\left.a, i a, j a, d e s c _a\right)$
C and C++	pdger (m, n, alpha, $x, i x, j x$, desc_x, incx, $y, i y, j y$, desc_y, incy, $a, i a, j a$, desc_a);

On Entry
m
is the number of rows in submatrix \boldsymbol{A} and the number of elements in vector \boldsymbol{x} used in the computation.

Scope: global

Specified as: a fullword integer; $m \geq 0$.
n
is the number of columns in submatrix \boldsymbol{A} and the number of elements in vector \boldsymbol{y} used in the computation.

Scope: global

Specified as: a fullword integer; $n \geq 0$.
alpha
is the scalar α.
Scope: global

Specified as: a number of the data type indicated in Table 41.
is the local part of the global matrix \boldsymbol{X}. This identifies the first element of the local array X. This subroutine computes the location of the first element of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol; therefore:

- If incx = M_X, the leading LOCp(ix) by LOCq(jx+m-1) part of the local array X must contain the local pieces of the leading ix by $j x+m-1$ part of the global matrix.
- If incx = 1 and incx $\neq \mathrm{M} _X$, the leading LOCp($(x+m-1)$ by LOCq(jx) part of the local array X must contain the local pieces of the leading $i x+m-1$ by $j x$ part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 41 on page 193. Details about the block-cyclic data distribution of the global matrix \boldsymbol{X} are stored in desc_ x.
ix
has the following meaning:
If incX $=\mathrm{M}_{-} \mathrm{X}$, it indicates which row of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
If incx $=1$ and $i n c x \neq M _X$, it is the row index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

Scope: global
Specified as: a fullword integer; $1 \leq i x \leq M _X$ and:
If incx $=1$ and $i n c x \neq M _X$, then $i x+m-1 \leq M _X$.
jx
has the following meaning:
If incx $=\mathrm{M}$ _X, it is the column index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

If incx = 1 and incx $\neq \mathrm{M} _X$, it indicates which column of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.

Scope: global
Specified as: a fullword integer; $1 \leq j x \leq N _X$ and:
If incx $=\mathrm{M} _\mathrm{X}$, then $j x+m-1 \leq \mathrm{N} _\mathrm{X}$.
desc_x
is the array descriptor for global matrix \boldsymbol{X}, described in the following table:

desc_ x	Name	Description	Limits	Scope
1	DTYPE_X	Descriptor type	DTYPE_X=1	Global
2	CTXT_X	BLACS context	Valid value, as returned by BLACS_GRIDIITT or BLACS_GRIDMAP	Global
3	M_X	Number of rows in the global matrix	If $m=0:$ M_X ≥ 0 Otherwise: M_X ≥ 1	Global

desc_X	Name	Description	Limits	Scope
4	N_X	Number of columns in the global matrix	If $m=0$: $\mathrm{N} _\mathrm{X} \geq 0$ Otherwise: $N _X \geq 1$	Global
5	MB_X	Row block size	MB_X ≥ 1	Global
6	NB_X	Column block size	NB_X ≥ 1	Global
7	RSRC_X	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_X $<$ p	Global
8	CSRC_X	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_X $<q$	Global
9	LLD_X	The leading dimension of the local array	LLD_X $\geq \max (1, \operatorname{LOCp}(\mathrm{M}$ _X) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers. incx
is the stride for global vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; incx = 1 or incx = M_X, where:
If incx $=\mathrm{M} _\mathrm{X}$, then \boldsymbol{x} is a row-distributed vector.
If incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, then \boldsymbol{x} is a column-distributed vector.
y
is the local part of the global matrix \boldsymbol{Y}. This identifies the first element of the local array Y . This subroutine computes the location of the first element of the local subarray used, based on iy, jy, desc_y, p, q, myrow, and mycol; therefore:

- If incy = M_Y, the leading LOCp(iy) by LOCq(jy+n-1) part of the local array Y must contain the local pieces of the leading iy by jy+n-1 part of the global matrix.
- If incy = 1 and incy $\neq \mathrm{M} _\mathrm{Y}$, the leading LOCp(iy+n-1) by LOCq(jy) part of the local array Y must contain the local pieces of the leading $i y+n-1$ by $j y$ part of the global matrix.

Note: No data should be moved to form $\boldsymbol{y}^{\boldsymbol{\top}}$; that is, the vector \boldsymbol{y} should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers of the data type indicated in Table 41 on page 193. Details about the block-cyclic data distribution of the global matrix \boldsymbol{Y} are stored in desc_y.
iy
has the following meaning:
If incy $=\mathrm{M}_{\mathrm{Y}} \mathrm{Y}$, it indicates which row of global matrix \boldsymbol{Y} is used for vector \boldsymbol{y}.
If incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, it is the row index of global matrix \boldsymbol{Y}, identifying the first element of vector \boldsymbol{y}.
Scope: global

Specified as: a fullword integer; $1 \leq i y \leq M _Y$ and:
If incy $=1$ and incy $\neq M_{-} Y$, then $i y+n-1 \leq M _Y$.
jy
has the following meaning:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, it is the column index of global matrix \boldsymbol{Y}, identifying the first element of vector \boldsymbol{y}.
If incy $=1$ and incy $\neq \mathrm{M} _\mathrm{Y}$, it indicates which column of global matrix \boldsymbol{Y} is used for vector \boldsymbol{y}.
Scope: global
Specified as: a fullword integer; $1 \leq j y \leq N _Y$ and:
If incy $=\mathrm{M} _\mathrm{Y}$, then $j y+n-1 \leq \mathrm{N} _\mathrm{Y}$.
desc_y
is the array descriptor for global matrix \boldsymbol{Y}, described in the following table:

desc_y	Name	Description	Limits	Scope
1	DTYPE_Y	Descriptor type	DTYPE_Y $=1$	Global
2	CTXT_Y	BLACS context	Valid value, as returned by BLACS_GRRDITIT or BLACS_GRIDMAP	Global
3	M_Y	Number of rows in the global matrix	If $n=0:$ M_Y ≥ 0 Otherwise: M_Y ≥ 1	Global
4	N_Y	Number of columns in the global matrix	If $n=0:$ N_Y ≥ 0 Otherwise: N_Y ≥ 1	Global
5	MB_Y	Row block size	MB_Y ≥ 1	Global
6	NB_Y	Column block size	NB_Y ≥ 1	
7	RSRC_Y	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_Y $<p$	Global
8	CSRC_Y	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_Y $<q$	Local
9	LLD_Y	The leading dimension of the local array	LLD_Y \geq max(1,LOCp(M_Y))	

Specified as: an array of (at least) length 9, containing fullword integers. incy
is the stride for global vector \boldsymbol{y}.
Scope: global
Specified as: a fullword integer; incy = 1 or incy $=\mathrm{M} _\mathrm{X}$, where:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, then \boldsymbol{y} is a row-distributed vector.
If incy $=1$ and incy $\neq \mathrm{M} _\mathrm{Y}$, then \boldsymbol{y} is a column-distributed vector.
is the local part of the global general matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp($i a+m-1$) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading ia+m-1 by ja+n-1 part of the global matrix.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 41 on page 193. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and $i a+m-1 \leq M _A$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq N _A$ and $j a+n-1 \leq N _A$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $m=0$ or $n=0$: $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If $m=0$ or $n=0$: N_A ≥ 0 Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$N B _A \geq 1$	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A < p	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A $\geq \max \left(1, \mathrm{LOCp}\left(\mathrm{M} _\right.\right.$A $)$)	Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

a
is the updated local part of the global matrix \boldsymbol{A}, containing the results of the computation.

Scope: local
Returned as: an LLD_A by (at least) $\operatorname{LOCq}\left(N _A\right)$ array, containing numbers of the data type indicated in Table 41 on page 193.

Notes and Coding Rules

1. The matrix and vectors must have no common elements; otherwise, results are unpredictable.
2. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$and $\mathrm{LOCq}\left(\mathrm{N}_{-}\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
3. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
4. The following values must be equal: CTXT_A = CTXT_X = CTXT_Y.
5. If incx $=$ M_X:

- The block column offset of \boldsymbol{x} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(j x-1, N B _X\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: NB_X = MB_A.

6. If incx $=1\left(\neq M _X\right)$:

- In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{X}; that is, iarow = ixrow, where:

```
iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
ixrow = mod((((ix-1)/MB_X)+RSRC_X), p)
```

- The block row offset of \boldsymbol{x} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(i x-1, M B _X\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: $M B _X=M B _A$.

7. If incy $=\mathrm{M}_{-} \mathrm{Y}$:

- In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrix \boldsymbol{Y}; that is, iacol = iycol, where:

$$
\begin{aligned}
& \text { iacol }=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& \text { iycol }=\bmod \left(\left(((j y-1) / \text { NB_Y })+C S R C _Y\right), q\right)
\end{aligned}
$$

- The block column offset of \boldsymbol{y} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(j y-1, N B _Y\right)=\bmod \left(j a-1, N B _A\right)$.
- The following block sizes must be equal: NB_Y = NB_A.

8. If incy $=1\left(\neq M_{-} Y\right)$:

- The block row offset of \boldsymbol{y} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(i y-1, M B_{-} Y\right)=\bmod \left(j a-1, N B _A\right)$.
- The following block sizes must be equal: $M B _Y=$ NB_A.

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_ X is invalid.
3. DTYPE_Y is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDGER was called from outside the process grid.

Stage 4

1. $m<0$
2. $n<0$
3. $\mathrm{M} _\mathrm{X}<0$ and $m=0 ; \mathrm{M} _\mathrm{X}<1$ otherwise
4. N_X < 0 and $m=0 ; N _X<1$ otherwise
5. MB_X < 1
6. NB_X <1
7. RSRC_X < 0 or RSRC_X $\geq p$
8. CSRC_X < 0 or CSRC_X $\geq q$
9. CTXT_A \neq CTXT_X
10. $i x<1$
11. $j x<1$
12. $\mathrm{M}_{-} \mathrm{Y}<0$ and $n=0 ; \mathrm{M}_{-} \mathrm{Y}<1$ otherwise
13. N_Y < 0 and $n=0$; N_Y < 1 otherwise
14. MB_Y $_{1}<1$
15. NB_Y < 1
16. RSRC_Y < 0 or RSRC_Y $\geq p$
17. CSRC_Y < 0 or CSRC_Y $\geq q$
18. CTXT_A \neq CTXT_Y
19. $i y<1$
20. $j y<1$
21. $\mathrm{M} _\mathrm{A}<0$ and ($m=0$ or $n=0$); M_A <1 otherwise
22. N_A < 0 and ($m=0$ or $n=0$); N_A <1 otherwise
23. $M B _A<1$
24. $N B$ _ <1
25. RSRC_A <0 or RSRC_A $\geq p$
26. CSRC_A < 0 or CSRC_A $\geq q$
27. $i a<1$
28. $j a<1$

Stage 5

If $m \neq 0$ and $n \neq 0$:

1. $i a>M A$
2. $j a>N _A$
3. $i a+m-1>M _A$
4. $j a+n-1>$ N_A

If $m \neq 0$:
5. $i x>M-X$
6. $j x>\mathrm{N} _\mathrm{X}$

If $n \neq 0$:
7. iy > M_Y
8. $j y>$ N_Y

If incx = M_X:
9. $N B _X \neq M B _A$
10. $\bmod \left(j x-1, N B _X\right) \neq \bmod \left(i a-1, M B _A\right)$
11. $m \neq 0$ and $j x+m-1>N X$

If incx $=1\left(\neq \mathrm{M}_{-} \mathrm{X}\right)$:
12. $M B _X \neq M B _A$
13. $\bmod (i x-1$, MB_X $) \neq \bmod \left(i a-1, M B _A\right)$
14. $m \neq 0$ and $i x+m-1>M _X$

Otherwise:
15. incx $\neq \mathrm{M}_{-} \mathrm{X}$ and incx $\neq 1$

If incy $=$ M_Y:
16. NB_Y \neq NB_A
17. $\bmod \left(j y-1, N B _Y\right) \neq \bmod \left(j a-1, N B _A\right)$
18. $n \neq 0$ and $j y+n-1>N-Y$

If incy $=1\left(\neq \mathrm{M}_{-} \mathrm{Y}\right)$:
19. MB_Y \neq NB_A
20. $\bmod \left(i y-1, M_{-} _Y\right) \neq \bmod \left(j a-1, N B _A\right)$
21. $n \neq 0$ and $i y+n-1>M_{-} Y$

Otherwise:
22. incy $\neq \mathrm{M} _\mathrm{Y}$ and incy $\neq 1$

Stage 6

1. If incx $=1\left(\neq M_{-}\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{X}; that is, iarow \neq ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod ((((i a-1) / \text { MB_A })+\text { RSRC_A }), p) \\
& \text { ixrow }=\bmod \left(\left(\left((i x-1) / M B _X\right)+\text { RSRC_X), } p\right)\right.
\end{aligned}
$$

2. If incy $=\mathrm{M}$ _Y, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{Y}; that is, iacol $\neq i y c o l$, where:

$$
\text { iacol }=\text { mod }\left(\left(\left((j a-1) / N B _A\right)+C S R C _A\right), q\right)
$$

iycol = mod((((jy-1)/NB_Y)+CSRC_Y), q)
3. LLD_A < max(1, LOCp(M_A))
4. LLD_X < max(1, LOCp(M_X))
5. LLD_Y < max(1, LOCp(M_Y))

Example: This example computes $\boldsymbol{A}=\alpha \boldsymbol{x} \boldsymbol{y}^{\top}+\boldsymbol{A}$ using a 2×2 process grid. It uses a global submatrix \boldsymbol{A} within a global matrix \boldsymbol{A} by specifying ia $=2$ and $j a=2$. It uses vector \boldsymbol{x}, which is a column-distributed vector within a column of global matrix \boldsymbol{X}, by specifying incx $=1$, ix $=2$, and $j x=1$. It uses vector \boldsymbol{y}, which is a row-distributed vector within a row of global matrix \boldsymbol{Y}, by specifying incy $=M_{-} Y=5$, $i y=1$, and $j y=2$.

Call Statements and Input

```
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_X	Desc_Y
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	10	11	1
N_{-}	10	1	11
MB	4	4	1
NB	4	10	4
RSRC_	0	0	0
CSRC_	0	0	0
LLD_	See below2	See below2	See below2

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$
LLD_X $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} X, M_{-}^{-} X\right.\right.$, MYROW, RSRC_X, NPROW) $)$

In this example, LLD_A $=6$ on P_{00} and P_{01}, LLD_A $=4$ on P_{10} and P_{11},
LLD_ $X=7$ on P_{00}, LLD_ $X=4$ on P_{10}, LLD_ $Y=1$ on P_{00} and P_{01}.

After the global matrix \boldsymbol{A} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{A}. Following is the global 9×9 submatrix \boldsymbol{A}, starting at row 2 and column 2 in global general 10×10 matrix \boldsymbol{A} with block size 4×4 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

After the global matrix \boldsymbol{X} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{x}, which is a column-distributed vector. Following is the global vector \boldsymbol{x} of size 9×1, starting at row 2 and column 1 in 11×1 global matrix \boldsymbol{X} with block size 4 :
B, D
0
$\mathbf{O} \quad\left[\begin{array}{c}0 \\ 0 \\ 1.0 \\ 1.0 \\ 1.0 \\ --- \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ ---- \\ 1.0 \\ 1.0 \\ .\end{array}\right]$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{x} :

After the global matrix \boldsymbol{Y} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{y}, which is a row-distributed vector. Following is the global vector \boldsymbol{y} of size 1×9, starting at row 1 and column 2 in 1×11 global matrix \boldsymbol{Y} with block size 4:
B, D
0 [.
0
$2.0 \quad 3.0 \quad 4.0 \quad \mid$
$\begin{array}{llll}5.0 & 6.0 & 7.0 & 8.0\end{array}$
2
$9.010 .0 \quad . \quad]$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
-	P_{10}	P_{11}

Local arrays for \boldsymbol{y} :

Output:

After the global matrix \boldsymbol{A} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{A}. Following is the global 9×9 submatrix \boldsymbol{A}, starting at row 2 and column 2 in global general 10×10 matrix \boldsymbol{A} with block size 4×4 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

PDSYR—Rank-One Update of a Real Symmetric Matrix

This subroutine computes the following rank-one update:

$$
\boldsymbol{A} \leftarrow \alpha \boldsymbol{x} \boldsymbol{x}^{\top}+\boldsymbol{A}
$$

where, in the formula above:
\boldsymbol{A} represents the global symmetric submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$.
\boldsymbol{x} represents the global vector:

- For incx $=\mathrm{M}_{-} \mathrm{X}$, it is $\boldsymbol{X}_{i x: i x, j x: j x+n-1}$.
- For incx $=1$ and incx $\neq \mathrm{M} _X$, it is $\boldsymbol{X}_{i x: i x+n-1, j x ; j x}$. α is a scalar.

Note: No data should be moved to form the vector transpose; that is, the vector should always be stored in its untransposed form.

In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $n=0$
- α is zero.

See references [14] and [15].

Table 42. Data Types	
$\boldsymbol{A}, \boldsymbol{x}, \alpha$	Subprogram
Long-precision real	PDSYR

Syntax

Fortran	CALL PDSYR (uplo, n, alpha, $x, i x, j x$, desc_ x, incx, $a, i a, j a$, desc_a)
C and C_{++}	pdsyr (uplo, n, alpha, $x, i x, j x$, desc_ $x, i n c x, ~ a, i a, j a$, desc_a);

On Entry

uplo
indicates whether the upper or lower triangular part of the global symmetric submatrix \boldsymbol{A} is referenced, where:

If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
n
is the number of rows and columns in submatrix \boldsymbol{A} and the number of elements in vector \boldsymbol{x} used in the computation.

Scope: global
Specified as: a fullword integer; $n \geq 0$.
alpha
is the scalar α.
Scope: global

Specified as: a number of the data type indicated in Table 42.
is the local part of the global matrix \boldsymbol{X}. This identifies the first element of the local array X. This subroutine computes the location of the first element of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol; therefore:

- If incx = M_X, the leading LOCp(ix) by LOCq(jx+n-1) part of the local array X must contain the local pieces of the leading ix by $j x+n-1$ part of the global matrix.
- If incx = 1 and incx $\neq \mathrm{M} _X$, the leading LOCp($i x+n-1$) by LOCq($j x$) part of the local array X must contain the local pieces of the leading $i x+n-1$ by $j x$ part of the global matrix.

Note: No data should be moved to form $\boldsymbol{x}^{\boldsymbol{\top}}$; that is, the vector \boldsymbol{x} should always be stored in its untransposed form.
Scope: local
Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 42 on page 205. Details about the block-cyclic data distribution of the global matrix \boldsymbol{X} are stored in desc_x.
ix
has the following meaning:
If incx $=$ M_X, it indicates which row of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
If incx $=1$ and incx $\neq M _X$, it is the row index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

Scope: global
Specified as: a fullword integer; $1 \leq i x \leq M _X$ and:
If incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, then $i x+n-1 \leq M _X$.
jx
has the following meaning:
If incx = M_X, it is the column index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

If incx $=1$ and incx $\neq \mathrm{M} _X$, it indicates which column of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.

Scope: global
Specified as: a fullword integer; $1 \leq j x \leq N _X$ and:
If incx $=\mathrm{M} _\mathrm{X}$, then $j x+n-1 \leq \mathrm{N} _X$.
desc_x
is the array descriptor for global matrix \boldsymbol{X}, described in the following table:

desc_ x	Name	Description	Limits	Scope
1	DTYPE_X	Descriptor type	DTYPE_X=1	Global
2	CTXT_X	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global

desc_x	Name	Description	Limits	Scope
3	M_X	Number of rows in the global matrix	$\begin{aligned} & \text { If } n=0: \\ & M _X \geq 0 \end{aligned}$ Otherwise: $M _X \geq 1$	Global
4	N_X	Number of columns in the global matrix	If $n=0$: $\mathrm{N} _\mathrm{X} \geq 0$ Otherwise: $N _X \geq 1$	Global
5	MB_X	Row block size	MB_X ≥ 1	Global
6	NB_X	Column block size	NB_X ≥ 1	Global
7	RSRC_X	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_X $<p$	Global
8	CSRC_X	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_X $<q$	Global
9	LLD_X	The leading dimension of the local array	LLD_X $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _ X$)$)	Local

Specified as: an array of (at least) length 9, containing fullword integers. incx
is the stride for global vector \boldsymbol{x}.

Scope: global

Specified as: a fullword integer; incx = 1 or incx = M_X, where:
If incx $=\mathrm{M} _X$, then \boldsymbol{x} is a row-distributed vector.
If incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, then \boldsymbol{x} is a column-distributed vector.
a
is the local part of the global symmetric matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading $i a+n-1$ by $j a+n-1$ part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global symmetric submatrix $\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global symmetric submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 42 on page 205. Details about the square block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix
A.

Scope: global

Specified as: a fullword integer; $1 \leq i a \leq \mathrm{M} _\mathrm{A}$ and $i a+n-1 \leq \mathrm{M} _\mathrm{A}$.
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.
Scope: global
Specified as: a fullword integer; $1 \leq j a \leq N _A$ and $j a+n-1 \leq N _A$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { desc_a } & \text { Name } & \text { Description } & \text { Limits } & \text { Scope } \\
\hline 1 & \text { DTYPE_A } & \text { Descriptor type } & \text { DTYPE_A=1 } & \begin{array}{l}\text { Valid value, as returned by } \\
\text { BLACS_GRIDINIT or } \\
\text { BLACS_GRIDMAP }\end{array} \\
\hline 2 & \text { CTXT_A } & \begin{array}{l}\text { Number of rows in the global } \\
\text { matrix }\end{array} & \begin{array}{l}\text { If } n=0: \\
\text { M_A } \geq 0 \\
\text { Otherwise: } \\
\text { M_A } \geq 1\end{array} & \text { Global } \\
\hline 3 & \text { N_A } & \begin{array}{l}\text { Number of columns in the } \\
\text { global matrix }\end{array} & \begin{array}{l}\text { If } n=0: \\
\text { N_A } \geq 0 \\
\text { Otherwise: } \\
\text { N_A } \geq 1\end{array}
$$ \& Global

\hline 4 \& MB_A \& NB_A \& Row block size \& MB_A \geq 1\end{array}\right]\)| Global |
| :--- |
| 5 |

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

a
is the updated local part of the global matrix \boldsymbol{A}, containing the results of the computation.

Scope: local
Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 42 on page 205.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the uplo argument.
2. The matrix and vector must have no common elements; otherwise, results are unpredictable.
3. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(M_{-}\right)$and $\operatorname{LOCq}\left(N_{-}\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
4. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
5. The following values must be equal: CTXT_A = CTXT_Y.
6. The global symmetric matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, $M B _A=N B _A$.
7. The block row and block column offsets of the global symmetric matrix \boldsymbol{A} must be equal; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.
8. If incx $=\mathrm{M} _X$:

- In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrix \boldsymbol{X}; that is, iacol = ixcol, where:

```
iacol = mod((((ja-1)/NB_A)+CSRC_A), q)
ixcol = mod((((jx-1)/NB_X)+CSRC_X),q)
```

- The block column offset of \boldsymbol{x} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(j x-1, N B _X\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: NB_X = NB_A.

9. If incx $=1\left(\neq M _X\right)$:

- In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{X}; that is, iarow $=$ ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ixrow }=\bmod \left(\left(\left((i x-1) / M B _X\right)+R S R C _X\right), p\right)
\end{aligned}
$$

- The block row offset of \boldsymbol{x} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(i x-1, M B _X\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: MB_X = MB_A.

Error Conditions

Computational Errors: None

Resource Errors: Unable to allocate work space

Input-Argument and Miscellaneous Errors
Stage 1

1. DTYPE_A is invalid.
2. DTYPE_ X is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDSYR was called from outside the process grid.

Stage 4

1. uplo \neq 'U' or 'L'
2. $n<0$
3. $\mathrm{M} _\mathrm{X}<0$ and $n=0 ; \mathrm{M} _\mathrm{X}<1$ otherwise
4. $\mathrm{N} _\mathrm{X}<0$ and $n=0 ; \mathrm{N} _\mathrm{X}<1$ otherwise
5. MB_X < 1
6. NB_X <1
7. RSRC_X < 0 or RSRC_X $\geq p$
8. CSRC_X <0 or CSRC_X $\geq q$
9. CTXT_A \neq CTXT_X
10. $i x<1$
11. $j x<1$
12. $\mathrm{M} _\mathrm{A}<0$ and $n=0 ; \mathrm{M} _\mathrm{A}<1$ otherwise
13. $\mathrm{N} _\mathrm{A}<0$ and $n=0$; $\mathrm{N} _\mathrm{A}<1$ otherwise
14. $M B _A<1$
15. NB_A < 1
16. RSRC_A <0 or RSRC_A $\geq p$
17. CSRC _ $A<0$ or CSRC_A $\geq q$
18. $i a<1$
19. $j a<1$

Stage 5

1. NB_A $\neq M B _A$

If $n \neq 0$:
2. $i a>M _A$
3. $j a>N _A$
4. $i a+n-1>M _A$
5. $j a+n-1>$ N_A
6. $i x>\mathrm{M}-\mathrm{X}$
7. $j x>$ N_X

If incx $=$ M_X:
8. NB_X $=$ NB_A
9. $\bmod \left(j x-1\right.$, NB_X) $\neq \bmod \left(i a-1, M B _A\right)$
10. $n \neq 0$ and $j x+n-1>N _X$

If incx $=1\left(\neq M_{-}\right)$:
11. MB_X \neq MB_A
12. $\bmod (i x-1$, MB_X $) \neq \bmod \left(i a-1, M B _A\right)$
13. $n \neq 0$ and $i x+n-1>M _X$

Otherwise:
14. incx $\neq \mathrm{M} _X$ and incx $\neq 1$

Stage 6

1. $\bmod \left(j a-1, N B _A\right) \neq \bmod \left(i a-1, M B _A\right)$
2. If incx $=\mathrm{M}$ _ X, then (in the process grid) the process column containing the first
column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{X}; that is, iacol $\neq i x c o l$, where:

$$
\begin{aligned}
& \text { iacol }=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& \text { ixcol }=\bmod \left(\left(\left((j x-1) / \text { NB_X }^{\prime}\right)+\text { CSRC_X }\right), q\right)
\end{aligned}
$$

3. If incx $=1\left(\neq M _X\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{X}; that is, iarow \neq ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod ((((\text { ia-1)/MB_A)+RSRC_A), } p) \\
& \text { ixrow }=\bmod ((((i x-1) / \mathrm{MB} \text { X })+\text { RSRC_X }), p)
\end{aligned}
$$

4. LLD_A < max(1, LOCp(M_A))
5. LLD_X < $\max \left(1, \operatorname{LOCp}\left(M _X\right)\right)$

Example: This example computes $\boldsymbol{A}=\alpha \boldsymbol{x} \boldsymbol{x}^{\top}+\boldsymbol{A}$ using a 2×2 process grid.

Call Statements and Input

ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A	Desc_X
DTYPE_	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	9	9
N	9	1
MB_	4	4
NB	4	1
RSRC_	0	0
CSRC_	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A\right.\right.$, MYROW, RSRC_A, NPROW) $)$
LLD_X $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} X, M_{-}^{-} X\right.\right.$, MYROW, RSRC_X, NPROW) $)$
In this example, LLD_A $=5$ on P_{00} and P_{01}, LLD_ $A=4$ on P_{10} and P_{11},
LLD_X $=5$ on P_{00}, and LLD_ $X=4$ on P_{10}.
Global symmetric matrix \boldsymbol{A} of order 9 with block size 4×4 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

Global vector \boldsymbol{x} of size 9×1 with block size 4 :
B, D
0
1

2 | 0 |
| :---: |
| $\left[\begin{array}{r}1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ --- \\ 1.0\end{array}\right]$ |

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{x} :

p, q	0
-----	1.0
0	1.0
	1.0
	1.0
	1.0

	1.0
	1.0
	1.0

Output:

Global matrix \boldsymbol{A} of order 9 with block size 4×4 :

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

p,q	0					1			
0	2.0				.	-	-	-	
	3.0	13.0	.	.	-	-		-	
	4.0	14.0	24.0	.	.	-	.	-	
	5.0	15.0	25.0	35.0	-	-	-	-	-
	10.0	20.0	30.0	40.0	90.0	50.0	60.0	70.0	80.0
	$\begin{array}{llll}6.0 & 16.0 & 26.0 & 36.0\end{array}$					46.0			
	7.0	17.0	27.0	37.0		47.0	57.0	.	
1	8.0	18.0	28.0	38.0		48.0	58.0	68.0	
	9.0	19.0	29.0	39.0		49.0	59.0	69.0	79.0

PDSYR2—Rank-Two Update of a Real Symmetric Matrix

This subroutine computes the following rank-two update:

$$
\boldsymbol{A} \leftarrow \alpha \boldsymbol{x} \boldsymbol{y}^{\top}+\alpha \boldsymbol{y} \boldsymbol{x}^{\top}+\boldsymbol{A}
$$

where, in the formula above:
\boldsymbol{A} represents the global symmetric submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$.
\boldsymbol{x} represents the global vector:

- For incx $=\mathrm{M}_{-} \mathrm{X}$, it is $\boldsymbol{X}_{i x: i x, j, j: X X+n-1}$.
- For incx $=1$ and incx $\neq \mathrm{M} _X$, it is $X_{i x: i x+n-1, j x \cdot j x}$.
y represents the global vector:
- For incy $=$ M_Y, it is $\boldsymbol{Y}_{i y: i y, j y: j y+n-1}$.
- For incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, it is $\boldsymbol{Y}_{i y: i y+n-1, j y: j r}$. α is a scalar.

Note: No data should be moved to form the vector transposes; that is, the vectors should always be stored in their untransposed form.

In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $n=0$
- α is zero.

See references [14] and [15].

Table 43. Data Types	
$\boldsymbol{A}, \boldsymbol{x}, \boldsymbol{y}, \alpha$	Subprogram
Long-precision real	PDSYR2

Syntax

Fortran	CALL PDSYR2 (uplo, n, alpha, $x, i x, j x$, desc_x, incx, $y, i y, j y$, desc_ y, incy, a, ia, ja, desc_a)
C and C_{++}	pdsyr2 (uplo, n, alpha, $x, i x, j x$, desc_ $x, i n c x, y, i y, j y$, desc_y, incy, $a, i a, j a$, desc_a);

On Entry
uplo
indicates whether the upper or lower triangular part of the global symmetric submatrix \boldsymbol{A} is referenced, where:

If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.

Scope: global

Specified as: a single character; uplo = 'U' or 'L'.
n
is the number of rows and columns in submatrix \boldsymbol{A} and the number of elements in vectors \boldsymbol{x} and \boldsymbol{y} used in the computation.

Scope: global
Specified as: a fullword integer; $n \geq 0$.

alpha

is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 43 on page 215.
is the local part of the global matrix \boldsymbol{X}. This identifies the first element of the local array X. This subroutine computes the location of the first element of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol; therefore:

- If incx $=\mathrm{M} _X$, the leading $\operatorname{LOCp}(i x)$ by $\operatorname{LOCq}(j x+n-1)$ part of the local array X must contain the local pieces of the leading ix by $j x+n-1$ part of the global matrix.
- If incx = 1 and $i n c x \neq M _X$, the leading LOCp($i x+n-1$) by LOCq($\left.j x\right)$ part of the local array X must contain the local pieces of the leading $i x+n-1$ by $j x$ part of the global matrix.

Note: No data should be moved to form $\boldsymbol{x}^{\boldsymbol{\top}}$; that is, the vector \boldsymbol{x} should always be stored in its untransposed form.

Scope: local
Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 43 on page 215. Details about the block-cyclic data distribution of the global matrix \boldsymbol{X} are stored in desc_x.
ix
has the following meaning:
If incx $=$ M_X, it indicates which row of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
If incx $=1$ and incx $\neq \mathrm{M}_{_} X$, it is the row index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; $1 \leq i x \leq M _X$ and:
If incx $=1$ and incx $\neq M _X$, then $i x+n-1 \leq M _X$.
has the following meaning:
If incx $=\mathrm{M}$ _X, it is the column index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

If incx $=1$ and incx $\neq \mathrm{M} _X$, it indicates which column of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; $1 \leq j x \leq N _X$ and:
If incx $=\mathrm{M} _\mathrm{X}$, then $j x+n-1 \leq \mathrm{N} _\mathrm{X}$.
desc_x
is the array descriptor for global matrix \boldsymbol{X}, described in the following table:

desc_x	Name	Description	Limits	Scope
1	DTYPE_X	Descriptor type	DTYPE_X=1	Global

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { desc_x } & \text { Name } & \text { Description } & \text { Limits } & \text { Scope } \\
\hline 2 & \text { CTXT_X } & \text { BLACS context } & \begin{array}{l}\text { Valid value, as returned by } \\
\text { BLACS_GRIDINIT or } \\
\text { BLACS_GRIDMAP }\end{array} & \text { Global } \\
\hline 3 & \text { M_X } & \begin{array}{l}\text { Number of rows in the global } \\
\text { matrix }\end{array} & \begin{array}{l}\text { If } n=0: \\
\text { M_X } \geq 0 \\
\text { Otherwise: } \\
\text { M_X } \geq 1\end{array} & \text { Global } \\
\hline 4 & \text { N_X } & \begin{array}{l}\text { Number of columns in the } \\
\text { global matrix }\end{array}
$$ \& \begin{array}{l}If n=0:

N_X \geq 0

Otherwise:

N_X \geq 1\end{array} \& MB_X \geq 1\end{array}\right]\)| Global |
| :--- |
| 5 |
| 6 |

Specified as: an array of (at least) length 9, containing fullword integers. incx
is the stride for global vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; incx = 1 or incx = M_X, where:
If incx $=\mathrm{M} _\mathrm{X}$, then \boldsymbol{x} is a row-distributed vector.
If incx $=1$ and incx $\neq \mathrm{M} _X$, then \boldsymbol{x} is a column-distributed vector. y
is the local part of the global matrix \boldsymbol{Y}. This identifies the first element of the local array Y . This subroutine computes the location of the first element of the local subarray used, based on $i y$, jy, desc_y, p, q, myrow, and mycol; therefore:

- If incy = M_Y, the leading LOCp(iy) by LOCq(jy+n-1) part of the local array Y must contain the local pieces of the leading iy by $j y+n-1$ part of the global matrix.
- If incy $=1$ and incy $\neq \mathrm{M} _\mathrm{Y}$, the leading $\operatorname{LOCp}(i y+n-1)$ by LOCq(iy) part of the local array Y must contain the local pieces of the leading iy+n-1 by jy part of the global matrix.

Scope: local

Specified as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers of the data type indicated in Table 43 on page 215. Details about the block-cyclic data distribution of the global matrix \boldsymbol{Y} are stored in desc_y.

PDSYR2

iy
has the following meaning:
If incy $=\mathrm{M}_{\mathbf{\prime}} \mathrm{Y}$, it indicates which row of global matrix \boldsymbol{Y} is used for vector \boldsymbol{y}.
If incy $=1$ and incy $\neq M_{-} Y$, it is the row index of global matrix \boldsymbol{Y}, identifying the first element of vector \boldsymbol{y}.
Scope: global
Specified as: a fullword integer; $1 \leq i y \leq M _Y$ and:
If incy $=1$ and incy $\neq M _Y$, then $i y+n-1 \leq M _Y$.
jy
has the following meaning:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, it is the column index of global matrix \boldsymbol{Y}, identifying the first element of vector \boldsymbol{y}.

If incy $=1$ and incy $\neq M_{-} Y$, it indicates which column of global matrix \boldsymbol{Y} is used for vector \boldsymbol{y}.

Scope: global
Specified as: a fullword integer; $1 \leq j y \leq$ N_Y and:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, then $j y+n-1 \leq \mathrm{N}_{-} \mathrm{Y}$.
desc_y
is the array descriptor for global matrix \boldsymbol{Y}, described in the following table:

desc_y	Name	Description	Limits	Scope
1	DTYPE_Y	Descriptor type	DTYPE_Y=1	Global
2	CTXT_Y	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_Y	Number of rows in the global matrix	If $n=0$: M_Y ≥ 0 Otherwise: $M _Y \geq 1$	Global
4	N_Y	Number of columns in the global matrix	If $n=0$: N_Y ≥ 0 Otherwise: $N_{-} Y \geq 1$	Global
5	MB_Y	Row block size	MB_Y ≥ 1	Global
6	NB_Y	Column block size	NB_Y ≥ 1	Global
7	RSRC_Y	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq R S R C$ - $<$ p	Global
8	CSRC_Y	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_Y < q	Global
9	LLD_Y	The leading dimension of the local array	LLD_Y $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _Y) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers.
incy
is the stride for global vector \boldsymbol{y}.

Scope: global

Specified as: a fullword integer; incy = 1 or incy = M_X, where:
If incy $=\mathrm{M}_{-} \mathrm{Y}$, then \boldsymbol{y} is a row-distributed vector.
If incy $=1$ and incy $\neq \mathrm{M}_{-} \mathrm{Y}$, then \boldsymbol{y} is a column-distributed vector.
a
is the local part of the global symmetric matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq $(j a+n-1)$ part of the local array A must contain the local pieces of the leading $i a+n-1$ by $j a+n-1$ part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global symmetric submatrix $\boldsymbol{A}_{i a: i a+n-1, ~ j a: j a+n-1}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global symmetric submatrix $\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 43 on page 215. Details about the square block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq \mathrm{M} _\mathrm{A}$ and $i a+n-1 \leq \mathrm{M} _\mathrm{A}$.
ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer; $1 \leq j a \leq \mathrm{N} _\mathrm{A}$ and $j a+n-1 \leq \mathrm{N} _\mathrm{A}$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDIITT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global

desc_a	Name	Description	Limits	Scope
4	N_A	Number of columns in the global matrix	If $n=0$: $N _A \geq 0$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$N B _A \geq 1$	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A < p	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A)	Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

a
is the updated local part of the global matrix \boldsymbol{A}, containing the results of the computation.

Scope: local
Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 43 on page 215.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the uplo argument.
2. The matrix and vectors must have no common elements; otherwise, results are unpredictable.
3. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M} _\right)$and $\operatorname{LOCq}\left(\mathrm{N} _\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
4. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
5. The following values must be equal: CTXT_A = CTXT_X = CTXT_Y.
6. The vectors \boldsymbol{x} and \boldsymbol{y} must be distributed along the same axis-that is, they must both be row distributed or column distributed, where:

- incx $=\mathrm{M} _\mathrm{X}$ and incy $=\mathrm{M} _\mathrm{Y}$ for row distribution
- incx $=1\left(\neq \mathrm{M} _\mathrm{X}\right)$ and incy $=1\left(\neq \mathrm{M} _\mathrm{Y}\right)$ for column distribution

7. The global symmetric matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, $M B _A=N B _A$.
8. The block row and block column offsets of the global symmetric matrix \boldsymbol{A} must be equal; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.
9. If incx $=\mathrm{M} _\mathrm{X}$:

- In the process grid, the process column containing the first column of the submatrix \boldsymbol{X} must also contain the first column of the submatrix \boldsymbol{A}; that is, iacol $=$ ixcol, where:

$$
\begin{aligned}
& \text { iacol }=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& i x c o l=\bmod \left(\left(((j x-1) / \text { NB_X })+C S R C _X\right), q\right)
\end{aligned}
$$

- The block column offset of \boldsymbol{x} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(j x-1, N B _X\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: NB_X = NB_A.

10. If incx $=1\left(\neq M _X\right)$:

- In the process grid, the process row containing the first row of the submatrix \boldsymbol{X} must also contain the first row of the submatrix \boldsymbol{A}; that is, iarow $=$ ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ixrow }=\bmod \left(\left(\left((i x-1) / M B _X\right)+\text { RSRC_X }\right), p\right)
\end{aligned}
$$

- The block row offset of \boldsymbol{x} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(i x-1, M B _X\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: $M B _X=M B _A$.

11. If incy $=M_{-} Y$:

- In the process grid, the process column containing the first column of the submatrix \boldsymbol{Y} must also contain the first column of the submatrix \boldsymbol{A}; that is, iacol $=$ iycol, where:

$$
\begin{aligned}
& \text { iacol }=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& i y c o l=\bmod \left(\left(((j y-1) / \text { NB_Y })+C S R C _Y\right), q\right)
\end{aligned}
$$

- The block column offset of \boldsymbol{y} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(j y-1, N B _Y\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: NB_Y = NB_A.

12. If incy $=1\left(\neq M_{-} Y\right)$:

- In the process grid, the process row containing the first row of the submatrix \boldsymbol{Y} must also contain the first row of the submatrix \boldsymbol{A}; that is, iarow $=$ iyrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+R S R C _A\right), p\right) \\
& \text { iyrow }=\bmod \left(\left(\left((i y-1) / M B _Y\right)+R S R C _Y\right), p\right)
\end{aligned}
$$

- The block row offset of \boldsymbol{y} must be equal to the block row offset of \boldsymbol{A}; that is, $\bmod \left(i y-1, M B _Y\right)=\bmod \left(i a-1, M B _A\right)$.
- The following block sizes must be equal: $M B _Y=M B _A$.

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_ X is invalid.
3. DTYPE_Y is invalid.

Stage 2

1. $\mathrm{CTXT} A$ is invalid.

Stage 3

1. PDSYR2 was called from outside the process grid.

Stage 4

1. uplo \neq 'U' or 'L'
2. $n<0$
3. $\mathrm{M}_{-} \mathrm{X}<0$ and $n=0 ; \mathrm{M}-\mathrm{X}<1$ otherwise
4. $\mathrm{N} _\mathrm{X}<0$ and $n=0 ; \mathrm{N} _\mathrm{X}<1$ otherwise
5. $M B _X<1$
6. NB_X < 1
7. RSRC_X <0 or RSRC_X $\geq p$
8. CSRC_X <0 or CSRC_X $\geq q$
9. CTXT_A $\neq C T X T _X$
10. $i x<1$
11. $j x<1$
12. $M_{-} Y<0$ and $n=0 ; M_{-} Y<1$ otherwise
13. N_Y < 0 and $n=0 ;$ N_Y < 1 otherwise
14. $M B-Y<1$
15. NB_Y < 1
16. RSRC_Y < 0 or RSRC_ $Y \geq p$
17. CSRC_Y <0 or CSRC_Y $\geq q$
18. CTXT_A $\neq C T X T _Y$
19. $i y<1$
20. $j y<1$
21. $M _A<0$ and $n=0 ; M _A<1$ otherwise
22. N_A <0 and $n=0 ;$ N_A <1 otherwise
23. $M B _A<1$
24. NB_A < 1
25. RSRC_A <0 or RSRC_A $\geq p$
26. CSRC_A <0 or CSRC_A $\geq q$
27. $i a<1$
28. $j a<1$

Stage 5

1. NB_A $\neq M B _A$

If $n \neq 0$:
2. $i a>M _A$
3. $j a>$ N_A
4. $i a+n-1>M _A$
5. $j a+n-1>$ N_A
6. $i x>M _X$
7. $j x>\mathrm{N} _\mathrm{X}$
8. $i y>M_{-} Y$

```
9. jy > N_Y
If incx = M_X:
10. NB_X = NB_A
11. mod}(jx-1,NB_X)\not=\operatorname{mod}(ia-1,MB_A
12. n\not=0 and jx+n-1 > N_X
If incx = 1( }=\textrm{M}X)\mathrm{ :
13. MB_X = MB_A
14. mod}(ix-1,MB_X) \not= mod(ia-1, MB_A
15. n\not=0 and ix+n-1 > M_X
Otherwise:
16. incx \(\neq M \_X\) and incx \(\neq 1\)
If incy \(=\mathrm{M}_{-} \mathrm{Y}\) :
17. NB_Y \(\neq\) NB_A
18. \(\bmod \left(j y-1, N B \_Y\right) \neq \bmod \left(i a-1, M B \_A\right)\)
19. \(n \neq 0\) and \(j y+n-1>\) N_Y
If incy \(=1\left(\neq M_{-} Y\right)\) :
20. \(M B \_Y \neq M B \_A\)
21. \(\bmod \left(i y-1, M B \_Y\right) \neq \bmod \left(i a-1, M B \_A\right)\)
22. \(n \neq 0\) and \(i y+n-1>M_{-} Y\)
```

Otherwise:
23. incy $\neq \mathrm{M}$ _ Y and incy $\neq 1$

Stage 6

1. $\bmod \left(j a-1, N B _A\right) \neq \bmod \left(i a-1, M B _A\right)$
2. If incx $=M _X$, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{X}; that is, iacol \neq ixcol, where:

$$
\begin{aligned}
& \text { iacol }=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& i x c o l=\bmod ((((j x-1) / \text { NB_X })+\text { CSRC_X }), q)
\end{aligned}
$$

3. If incx $=1\left(\neq M _X\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{X}; that is, iarow \neq ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ixrow }=\bmod \left(\left(\left((i x-1) / M B _X\right)+R S R C _X\right), p\right)
\end{aligned}
$$

4. If incy $=M_{-} Y$, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{Y}; that is, iacol \neq iycol, where:

$$
\begin{aligned}
& \text { iacol }=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& \text { iycol }=\bmod ((((j y-1) / \text { NB_Y })+\text { CSRC_Y }), q)
\end{aligned}
$$

5. If incy $=1\left(\neq M_{-} Y\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{Y}; that is, iarow \neq iyrow, where:
iarow $=\bmod \left(\left(\left((i a-1) / M B _A\right)+R S R C _A\right), p\right)$
iyrow $=\bmod \left(\left(\left((i y-1) / M B _Y\right)+\right.\right.$ RSRC_Y $\left.), p\right)$
6. LLD_A < $\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
7. LLD_X < $\max \left(1, \operatorname{LOCp}\left(M _X\right)\right)$
8. LLD_Y $<\max \left(1, \operatorname{LOCp}\left(\mathrm{M}_{-} \mathrm{Y}\right)\right)$

Example: This example computes $\boldsymbol{A}=\alpha \boldsymbol{x} \boldsymbol{y}^{\top}+\alpha \boldsymbol{y} \boldsymbol{x}^{\top}+\boldsymbol{A}$ using a 2×2 process grid.

Call Statements and Input

ORDER $=$ 'R'
NPROW $=2$
NPCOL $=2$
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

DESC_Y	INCY	A	IA	JA	DESC_A
DESC_Y	\mid	1	\mid	\mid	\mid

	Desc_A	Desc_X	Desc_Y
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	9	9	9
N_	9	1	1
MB	4	4	4
NB_	4	1	1
RSRC_	0	0	0
CSRC_	0	0	0
LLD_	See below2	See below ${ }^{2}$	See below ${ }^{2}$

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A\right.\right.$, MYROW, RSRC_A, NPROW))
LLD_X $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} X, M B B_{-}^{-} X\right.\right.$, MYROW, RSRC_X, NPROW) $)$
LLD_- $Y=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} Y, M B E_{-}^{-} Y\right.\right.$, MYROW, RSRC_Y, NPROW) $)$
In this example, LLD_A $=5$ on P_{00} and P_{01}, LLD_A $=4$ on P_{10} and P_{11}, LLD_X $=$ LLD_Y $=5$ on P_{00}, and LLD_X $=$ LLD_Y $=4$ on P_{10}.

Global symmetric matrix \boldsymbol{A} of order 9 with block size 4×4 :
B, D
0
1
2

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

p,q	0					1			
0	1.0	-	-	-	-	-	-	-	
	2.0	12.0	-	-	-	.	-	-	
	3.0	13.0	23.0	-	-	-	-	-	
	4.0	14.0	24.0	34.0	-	-	-	-	-
	9.0	19.0	29.0	39.0	89.0	49.0	59.0	69.0	79.0
	5.0	15.0	25.0	35.0		45.0			
	6.0	16.0	26.0	36.0		46.0	56.0	.	
1	7.0	17.0	27.0	37.0		47.0	57.0	67.0	
	8.0	18.0	28.0	38.0	-	48.0	58.0	68.0	78.0

Global vector \boldsymbol{x} of size 9×1 with block size 4 :
B, D
0
1

2 | 0 |
| :---: |
| $\left[\begin{array}{r}1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ --- \\ 1.0\end{array}\right]$ |

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{x} :

p,q	0
	1.0
	1.0
0	1.0
	1.0
	1.0
	1.0
	1.0
1	1.0
	1.0

Global vector \boldsymbol{y} of size 9×1 with block size 4 :
B, D 0
$0 \quad\left[\begin{array}{r}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ --- \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ --- \\ 2.0\end{array}\right]$

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{y} :

p,q	0
	2.0
	2.0
0	2.0
	2.0
	2.0
	2.0
	2.0
1	2.0
	2.0

Output:
Global matrix \boldsymbol{A} of order 9 with block size 4×4 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

p,q	0					1			
0	5.0		-	-	-	-	-	-	
	6.0	16.0	-	-	-	.	.	-	
	7.0	17.0	27.0	-	-	-	-	-	
	8.0	18.0	28.0	38.0	-	.	-	-	.
	13.0	23.0	33.0	43.0	93.0	53.0	63.0	73.0	83.0
1	9.0	19.0	29.0	39.0		49.0			
	10.0	20.0	30.0	40.0		50.0	60.0	-	
	11.0	21.0	31.0	41.0		51.0	61.0	71.0	.
	12.0	22.0	32.0	42.0		52.0	62.0	72.0	82.0

PDTRMV—Matrix-Vector Product for a Triangular Matrix or Its Transpose

This subroutine computes one of the following matrix-vector products:

$$
\text { 1. } x \leftarrow A x
$$

2. $x \leftarrow A^{\top} x$
where, in the formulas above:
\boldsymbol{A} represents the global triangular submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$.
\boldsymbol{x} represents the global vector:

- For incx $=\mathrm{M} _X$, it is $\boldsymbol{X}_{i x: i x, j x: j x+n-1}$.
- For incx $=1$ and incx $\neq M _X$, it is $X_{i x: i x+n-1, j x: j x}$.

Note: No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

If $n=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [14] and [15].

Table 44. Data Types	
$\boldsymbol{A}, \boldsymbol{x}$	Subprogram
Long-precision real	PDTRMV

Syntax

Fortran	CALL PDTRMV (uplo, transa, diag, $n, a, i a, j a$, desc_a, $x, i x, j x$, desc_ x, incx)
\mathbf{C} and \mathbf{C}_{++}	pdtrmv (uplo, transa, diag, $n, a, i a, j a, d e s c _a, x, i x, j x$, desc_x, incx);

On Entry
uplo
indicates whether the upper or lower triangular part of the global triangular submatrix \boldsymbol{A} is referenced, where:

If uplo $=$ ' U ', the upper triangular part is referenced.
If uplo $=$ ' L ', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
transa
indicates the form of matrix \boldsymbol{A} to use in the computation, where:
If transa $=$ ' N ', \boldsymbol{A} is used in the computation, resulting in equation 1.
If transa $={ }^{\prime} \mathrm{T}^{\prime}, \boldsymbol{A}^{\mathrm{T}}$ is used in the computation, resulting in equation 2.
Scope: global
Specified as: a single character; transa = ${ }^{\prime} \mathrm{N}^{\prime}$ or ${ }^{\prime} \mathrm{T}$ '.
diag
indicates the characteristics of the diagonal of matrix \boldsymbol{A}, where:
If diag $=$ ' U ', \boldsymbol{A} is a unit triangular matrix.
If $\operatorname{diag}={ }^{\prime} \mathrm{N}$ ', \boldsymbol{A} is not a unit triangular matrix.

Scope: global

Specified as: a single character; diag = 'U' or ' N '.
is the order of global triangular submatrix \boldsymbol{A} and the length of global vector \boldsymbol{x}.

Scope: global

Specified as: a fullword integer; $n \geq 0$.
a
is the local part of the global triangular matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp($(a+n-1)$ by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading $i a+n-1$ by $j a+n-1$ part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global triangular submatrix $\boldsymbol{A}_{\text {ia:ia } a n-1, \text { jaj:ja+n-1 }}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading lower triangular part of the global triangular submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Note: No data should be moved to form \boldsymbol{A}^{\top}; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 44 on page 228. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a$ and $i a+n-1 \leq M _A$.
ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer; $1 \leq j a$ and $j a+n-1 \leq$ N_A.
desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global

PDTRMV

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { desc_a } & \text { Name } & \text { Description } & \text { Limits } & \text { Scope } \\
\hline 4 & \text { N_A } & \begin{array}{l}\text { Number of columns in the } \\
\text { global matrix }\end{array} & \begin{array}{l}\text { If } n=0: \\
\text { N_A } \geq 0 \\
\text { Otherwise: } \\
\text { M_A } \geq 1\end{array}
$$ \& Global

\hline 5 \& MB_A \& Row block size \& MB_A \geq 1\end{array}\right]\)| NB_A ≥ 1 |
| :--- |
| 6 |
| 7 |

Specified as: an array of (at least) length 9, containing fullword integers.
is the local part of the global matrix \boldsymbol{X}. This identifies the first element of the local array X. This subroutine computes the location of the first element of the local subarray used, based on $i x, j x$, desc_ x, p, q, myrow, and mycol; therefore:

- If incx = M_X, the leading LOCp(ix) by LOCq(jx+n-1) part of the local array X must contain the local pieces of the leading $i x$ by $j x+n-1$ part of the global matrix.
- If incx = 1 and $i n c x \neq M _X$, the leading $\operatorname{LOCp}(i x+n-1)$ by LOCq($\left.j x\right)$ part of the local array X must contain the local pieces of the leading $i x+n-1$ by $j x$ part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 44 on page 228. Details about the block-cyclic data distribution of the global matrix \boldsymbol{X} are stored in desc_x.
ix
has the following meaning:
If $i n c x=M _X$, it indicates which row of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
If incx $=1$ and incx $\neq \mathrm{M}_{_} X$, it is the row index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

Scope: global
Specified as: a fullword integer; $1 \leq i x \leq M _X$ and:
If incx $=1$ and $i n c x \neq M _X$, then $i x+n-1 \leq M _X$.
jx
has the following meaning:
If incx $=\mathrm{M} _\mathrm{X}$, it is the column index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

If incx = 1 and incx $\neq \mathrm{M} _X$, it indicates which column of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.

Scope: global

Specified as: a fullword integer; $1 \leq j x \leq \mathrm{N} _\mathrm{X}$ and:
If incx $=\mathrm{M} _\mathrm{X}$, then $j x+n-1 \leq \mathrm{N} _\mathrm{X}$.
desc_x
is the array descriptor for global matrix \boldsymbol{X}, described in the following table:

desc_x	Name	Description	Limits	Scope
1	DTYPE_X	Descriptor type	DTYPE_X=1	Global
2	CTXT_X	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_X	Number of rows in the global matrix	If $n=0$: $M _X \geq 0$ Otherwise: $M _X \geq 1$	Global
4	N_X	Number of columns in the global matrix	If $n=0$: N _ $\mathrm{X} \geq 0$ Otherwise: $M _X \geq 1$	Global
5	MB_X	Row block size	MB_X ≥ 1	Global
6	NB_X	Column block size	NB_X ≥ 1	Global
7	RSRC_X	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_X $<$ p	Global
8	CSRC_X	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_X $<q$	Global
9	LLD_X	The leading dimension of the local array	LLD_X \geq max(1,LOCp(M_X))	Local

Specified as: an array of (at least) length 9, containing fullword integers. incx
is the stride for global vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; incx = 1 or incx $=\mathrm{M} _\mathrm{X}$, where:
If incx $=M _X$, then \boldsymbol{x} is a row-distributed vector.
If incx $=1$ and incx $\neq M _X$, then \boldsymbol{x} is a column-distributed vector.

On Return

x
is the updated local part of the global matrix \boldsymbol{X}, containing the results of the computation.
Scope: local
Returned as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 44 on page 228.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the uplo, transa, and diag arguments.
2. If you specify ' C ' for transa, it is interpreted as though you specified ' T '.
3. The matrix and vector must have no common elements; otherwise, results are unpredictable.
4. PDTRMV assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit triangular matrices, the elements of the diagonal are assumed to be one. When using an upper or lower triangular matrix, the unreferenced elements in the strictly lower or upper triangular part, respectively, are assumed to be zero.
5. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$and $\operatorname{LOCq}\left(\mathrm{N}_{-}\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
6. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
7. The following values must be equal: CTXT_A = CTXT_X.
8. The global triangular matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
9. The block row and block column offsets of the global triangular matrix \boldsymbol{A} must be equal; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.
10. If incx = M_X:

- The following block sizes must be equal: NB_X = MB_A = NB_A
- In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrix \boldsymbol{X}; that is, iacol = ixcol, where:

$$
\begin{aligned}
& \text { iacol }=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& i x c o l=\bmod ((((j x-1) / \text { NB_X })+C S R C-X), q)
\end{aligned}
$$

- The block column offset of \boldsymbol{x} must be equal to the block row and block column offsets of \boldsymbol{A}; that is, $\bmod \left(j x-1, N B _X\right)=\bmod (j a-1$, NB_A) $=\bmod \left(i a-1, M B _A\right)$.

11. If incx $=1\left(\neq M _X\right)$:

- The following block sizes must be equal: $M B _X=M B _A=N B _A$
- In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{X}; that is, iarow $=$ ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ixrow }=\bmod \left(\left(\left((i x-1) / M B _X\right)+\text { RSRC_X }\right), p\right)
\end{aligned}
$$

- The block row offset of \boldsymbol{x} must be equal to the block row and block column offsets of \boldsymbol{A}; that is, $\bmod \left(i x-1, M B _X\right)=\bmod \left(i a-1, M B _A\right)=\bmod (j a-1$, NB_A).

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_X is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDTRMV was called from outside the process grid.

Stage 4

1. uplo \neq 'U' or 'L'
2. transa $\neq ' \mathrm{~N}$ ', ' T ', or ' C^{\prime}
3. $\operatorname{diag} \neq$ ' N ' or ' U '
4. $n<0$
5. $\mathrm{M} _\mathrm{A}<0$ and $n=0 ; \mathrm{M} _\mathrm{A}<1$ otherwise
6. $\mathrm{N} \mathrm{A}<0$ and $n=0 ; \mathrm{N} \mathrm{A}<1$ otherwise
7. $M B A<1$
8. $N B A<1$
9. RSRC_A <0 or RSRC_A $\geq p$
10. CSRC_A <0 or CSRC_A $\geq q$
11. CTXT_A \neq CTXT_X
12. $M_{-} X<0$ and $n=0 ; M-X<1$ otherwise
13. $\mathrm{N} _\mathrm{X}<0$ and $n=0$; $\mathrm{N} _\mathrm{X}<1$ otherwise
14. $M B-X<1$
15. NB_X < 1
16. RSRC_X <0 or RSRC_X $\geq p$
17. CSRC - $X<0$ or CSRC_X $\geq q$

Stage 5

1. $M B _A=N B _A$
2. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(j a-1, N B _A\right)$

If $n \neq 0$:
3. ix > M_X
4. $j x>\mathrm{N} _\mathrm{X}$
5. $i a>M-A$
6. $j a>$ N_A
7. $i a+n-1>M _A$
8. $j a+n-1>$ N_A

If incx = M_X:
9. $N B _A \neq N B _X$
10. $\bmod \left(j x-1, N B _X\right) \neq \bmod \left(j a-1, N B _A\right)$
11. $n \neq 0$ and $j x+n-1>N _X$

If incx $=1\left(\neq M _X\right)$:
12. MB_A $\neq M B _X$
13. $\bmod (i x-1$, MB_X $) \neq \bmod \left(i a-1, M B _A\right)$
14. $n \neq 0$ and $i x+n-1>M _X$

Otherwise:
15. incx $\neq 1$ and incx $\neq \mathrm{M}_{-} \mathrm{X}$

Stage 6

1. $\operatorname{LLD_ A}<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. LLD_X < max(1, LOCp(M_X))
3. If incx $=M \quad X$, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{X}; that is, iacol $\neq i x c o l$, where:

$$
\begin{aligned}
& i a c o l=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& i x c o l=\bmod \left(\left(\left((j x-1) / N B _X\right)+C S R C-X\right), q\right)
\end{aligned}
$$

4. If incx $=1\left(\neq M _X\right)$, then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{X}; that is, iarow \neq ixrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ixrow }=\bmod \left(\left(\left((i x-1) / M B _X\right)+\text { RSRC_X }\right), p\right)
\end{aligned}
$$

Example: This example computes $\boldsymbol{x}=\boldsymbol{A} \boldsymbol{x}$ using a 2×2 process grid. It uses a global submatrix \boldsymbol{A} within a global matrix \boldsymbol{A} by specifying $i a=2$ and $j a=2$. It uses vector \boldsymbol{x}, which is a column-distributed vector within a column of \boldsymbol{X}, by specifying $\operatorname{incx}=1, i x=2$, and $j x=1$.

Call Statements and Input

```
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_X
DTYPE_	1	1
CTXT_ $_{-}$	icontxt 1	icontxt 1
M_{-}	13	13
$\mathrm{~N}_{-}$	13	1
MB_ $^{\text {NB_ }}$	3	3
RSRC_	3	3
CSRC_	0	0

	Desc_A	Desc_X
LLD	See below ${ }^{2}$	See below
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, N U M R O C\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ LLD_X $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _X, M B _X, M Y R O W, R S R C _X, N P R O W\right)\right)$ In this example, LLD_A $=7$ on P_{00} and P_{01}, LLD_A $=6$ on P_{10} and P_{11} LLD_X $=7$ on P_{10}, and LLD_X $=6$ on P_{11}.		

After the global matrix \boldsymbol{A} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{A}. Following is the global submatrix \boldsymbol{A} of order 12, starting at row 2 and column 2 in global triangular matrix \boldsymbol{A} of order 13 with block size 3×3 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2 4}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{4}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{A} :

PDTRMV

After the global matrix \boldsymbol{X} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{x}, which is a column-distributed vector. Following is the global vector \boldsymbol{x} of size 12×1, starting at row 2 in 13×1 global matrix \boldsymbol{X} with block size 3:

B, D	0
0	2.0
	3.0

	1.0
1	2.0
	3.0

	1.0
2	2.0
	3.0

	1.0
3	2.0
	3.0

4	1.0

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{4}$		P_{10}
$\mathbf{1}$		

Local arrays for \boldsymbol{x} :

p,q	0
	2.0
	3.0
0	1.0
	2.0
	3.0
	1.0
	1.0
	2.0
	3.0
1	1.0
	2.0
	3.0

Output:

After the global matrix \boldsymbol{X} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{x}, which is a column-distributed vector. Following is the global vector \boldsymbol{x} of size 12×1, starting at row 2 in 13×1 global matrix \boldsymbol{X} with block size 3 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{4}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{x} :

PDTRMV

p,q	0
	42.0
	48.0
0	23.0
	23.0
	23.0
	1.0
	39.0
	31.0
	34.0
1	15.0
	12.0
	6.0

PDTRSV—Solution of Triangular System of Equations with a Single Right-Hand Side

This subroutine performs one of the following solves for a triangular system of equations with a single right-hand side:

Solution	Equation
1. $x \leftarrow \boldsymbol{A}^{-1} \boldsymbol{X}$	$\boldsymbol{A x}=\boldsymbol{b}$
2. $\boldsymbol{x} \leftarrow \boldsymbol{A}^{-\top} \boldsymbol{X}$	$\boldsymbol{A}^{\top} \boldsymbol{x}=\boldsymbol{b}$

where, in the formulas above:
\boldsymbol{A} represents the global triangular submatrix $\boldsymbol{A}_{\text {ia:iaa }+n-1, j a: j a+n-1}$.
\boldsymbol{x} represents the global vector:

- For incx $=$ M_X, it is $\boldsymbol{X}_{i x: i x, j x: j x+n-1}$.
- For incx $=1$ and incx $\neq \mathrm{M} _X$, it is $X_{i x: i x+n-1, j x \cdot j x}$.

Notes:

1. The term bused in the systems of equations listed above represents the right-hand side of the system. It is important to note that in these subroutines the right-hand side of the equation is actually provided in the input-output argument x.
2. No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

If $n=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [14] and [15].

Table 45. Data Types	
$\boldsymbol{A}, \boldsymbol{x}$	Subprogram
Long-precision real	PDTRSV

Syntax

Fortran	CALL PDTRSV (uplo, transa, diag, n, $a, i a, j a$, desc_a, $x, i x, j x$, desc_ $x, i n c x$)
\mathbf{C} and C++	pdtrsv (uplo, transa, diag, $n, a, i a, j a, d e s c _a, x, i x, j x$, desc_x, incx);

On Entry
uplo
indicates whether the upper or lower triangular part of the global triangular submatrix \boldsymbol{A} is referenced, where:

If uplo = 'U', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
transa
indicates the form of matrix \boldsymbol{A} used in the system of equations, where:
If transa $={ }^{\prime} \mathrm{N}^{\prime}, \boldsymbol{A}$ is used in the system of equations, resulting in solution 1 .
If transa $={ }^{\prime} \mathrm{T}^{\prime}, \boldsymbol{A}^{\top}$ is used in the system of equations, resulting in solution 2.

Scope: global
Specified as: a single character; transa $=$ ' N ' or ' T '.
diag
indicates the characteristics of the diagonal of matrix \boldsymbol{A}, where:
If diag $=$ ' U ', \boldsymbol{A} is a unit triangular matrix.
If $\operatorname{diag}={ }^{\prime} \mathrm{N}$ ', \boldsymbol{A} is not a unit triangular matrix.
Scope: global
Specified as: a single character; $\operatorname{diag}=$ ' U ' or ' N '. n
is the order of global triangular submatrix \boldsymbol{A} and the length of global vector \boldsymbol{x}.

Scope: global

Specified as: a fullword integer; $n \geq 0$.
a
is the local part of the global triangular matrix \boldsymbol{A}, used in the system of equations. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on $i a, j a$, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq $(j a+n-1)$ part of the local array A must contain the local pieces of the leading $i a+n-1$ by $j a+n-1$ part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global triangular submatrix $\boldsymbol{A}_{\text {ia:ia }}{ }^{n-1,1, j a j a+n-1}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo = 'L', the leading lower triangular part of the global triangular submatrix $\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Note: No data should be moved to form \boldsymbol{A}^{\top}; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.
Scope: local
Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 45 on page 239. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix
A.

Scope: global
Specified as: a fullword integer; $1 \leq i a$ and $i a+n-1 \leq$ M_A.
ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer; $1 \leq j a$ and $j a+n-1 \leq N _A$.
desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { desc_a } & \text { Name } & \text { Description } & \text { Limits } & \text { Scope } \\
\hline 1 & \text { DTYPE_A } & \text { Descriptor type } & \text { DTYPE_A=1 } & \begin{array}{l}\text { Valid value, as returned by } \\
\text { BLACS_GRIDINIT or } \\
\text { BLACS_GRIDMAP }\end{array} \\
\hline 2 & \text { CTXT_A } & \text { M_A } & \begin{array}{l}\text { Number of rows in the global } \\
\text { matrix }\end{array} & \begin{array}{l}\text { If } n=0: \\
\text { M_A } \geq 0 \\
\text { Otherwise: } \\
M _A \geq 1\end{array} \\
\hline 3 & \text { N_A } & \begin{array}{l}\text { Number of columns in the } \\
\text { global matrix }\end{array} & \begin{array}{l}\text { If } n=0: \\
\text { N_A } \geq 0 \\
\text { Otherwise: } \\
M _A \geq 1\end{array}
$$ \& Global

\hline 4 \& MB_A \& NB_A \& Row block size \& MB_A \geq 1\end{array}\right]\)| Global |
| :--- |
| 5 |

Specified as: an array of (at least) length 9, containing fullword integers.
is the local part of the global matrix \boldsymbol{X}, containing the right-hand side of the triangular system to be solved. This identifies the first element of the local array X. This subroutine computes the location of the first element of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol; therefore:

- If incx = M_X, the leading LOCp(ix) by LOCq($(x+n-1)$ part of the local array X must contain the local pieces of the leading ix by $j x+n-1$ part of the global matrix.
- If incx $=1$ and $i n c x \neq M _X$, the leading $\operatorname{LOCp}(i x+n-1)$ by LOCq($\left.j x\right)$ part of the local array X must contain the local pieces of the leading $i x+n-1$ by $j x$ part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 45 on page 239. Details about the block-cyclic data distribution of the global matrix \boldsymbol{X} are stored in desc_x.
ix
has the following meaning:
If incx $=$ M_X, it indicates which row of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
If incx $=1$ and incx $\neq \mathrm{M}_{-} \mathrm{X}$, it is the row index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.

Scope: global

PDTRSV

Specified as: a fullword integer; $1 \leq i x \leq M _X$ and:
If incx $=1$ and $i n c x \neq \mathrm{M} _\mathrm{X}$, then $i x+n-1 \leq \mathrm{M} _\mathrm{X}$. jx
has the following meaning:
If incx $=M_{-} X$, it is the column index of global matrix \boldsymbol{X}, identifying the first element of vector \boldsymbol{x}.
If incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, it indicates which column of global matrix \boldsymbol{X} is used for vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; $1 \leq j x \leq \mathrm{N} _\mathrm{X}$ and:
If incx $=\mathrm{M} _\mathrm{X}$, then $j x+n-1 \leq \mathrm{N} _\mathrm{X}$. desc_x
is the array descriptor for global matrix \boldsymbol{X}, described in the following table:

desc_x	Name	Description	Limits	Scope
1	DTYPE_X	Descriptor type	DTYPE_X=1	Global
2	CTXT_X	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_X	Number of rows in the global matrix	If $n=0$: $M _X \geq 0$ Otherwise: $M _X \geq 1$	Global
4	N_X	Number of columns in the global matrix	If $n=0$: N_X ≥ 0 Otherwise: $M _X \geq 1$	Global
5	MB_X	Row block size		Global
6	NB_X	Column block size	NB_X ≥ 1	Global
7	RSRC_X	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq R S R C _$- ${ }^{\text {c }}$	Global
8	CSRC_X	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_X $<q$	Global
9	LLD_X	The leading dimension of the local array	LLD_X \geq max(1,LOCp(M_X) ${ }^{\text {a }}$	Local

Specified as: an array of (at least) length 9, containing fullword integers. incx
is the stride for global vector \boldsymbol{x}.
Scope: global
Specified as: a fullword integer; incx $=1$ or incx $=M _X$, where:
If incx $=\mathrm{M} _X$, then \boldsymbol{x} is a row-distributed vector.
If incx $=1$ and incx $\neq \mathrm{M} _\mathrm{X}$, then \boldsymbol{x} is a column-distributed vector.

On Return

x

is the updated local part of the global matrix \boldsymbol{X}, containing the solution vector.

Scope: local

Returned as: an LLD_X by (at least) LOCq(N_X) array, containing numbers of the data type indicated in Table 45 on page 239.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the uplo, transa, and diag arguments.
2. If you specify ' C ' for transa, it is interpreted as though you specified ' T '.
3. The matrix and vector must have no common elements; otherwise, results are unpredictable.
4. PDTRSV assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit triangular matrices, the elements of the diagonal are assumed to be one. When using an upper or lower triangular matrix, the unreferenced elements in the strictly lower or upper triangular part, respectively, are assumed to be zero.
5. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$and $\mathrm{LOCq}\left(\mathrm{N}_{-}\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
6. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
7. The following values must be equal: CTXT_A = CTXT_X.
8. The global triangular matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, $M B _A=N B _A$.
9. The block row and block column offsets of the global triangular matrix \boldsymbol{A} must be equal; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.
10. If incx $=M _X$:

- The following block sizes must be equal: NB_X = MB_A = NB_A
- If transa $=$ ' T^{\prime}, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrix \boldsymbol{X}; that is, iacol $=$ ixcol, where:

$$
\begin{aligned}
& i a c o l=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& i x c o l=\bmod \left(\left(((j x-1) / \text { NB_X })+C S R C _X\right), q\right)
\end{aligned}
$$

- The block column offset of \boldsymbol{x} must be equal to the block row and block column offsets of \boldsymbol{A}; that is, $\bmod \left(j x-1, N B _X\right)=\bmod (j a-1$, $\left.N B _A\right)=\bmod \left(i a-1, M B _A\right)$.

11. If incx $=1\left(\neq M _X\right)$:

- The following block sizes must be equal: $M B _X=M B _A=N B _A$
- If transa $=$ ' N ', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{X}; that is, iarow $=i x r o w$, where:

```
iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
ixrow = mod}((((ix-1)/MB_X)+RSRC_X),p
```

- The block row offset of \boldsymbol{x} must be equal to the block row and block column offsets of \boldsymbol{A}; that is, $\bmod \left(i x-1, M B _X\right)=\bmod \left(i a-1, M B _A\right)=\bmod (j a-1$, NB_A).

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_X is invalid.

Stage 2

1. $C T X T _A$ is invalid.

Stage 3

1. PDTRSV was called from outside the process grid.

Stage 4

1. uplo \neq 'U' or 'L'
2. transa \neq ' N^{\prime}, ' T^{\prime}, or ' C^{\prime}
3. $\operatorname{diag} \neq$ ' N ' or ' U '
4. $n<0$
5. M_A < 0 and $n=0 ;$ M_A < 1 otherwise
6. N_A <0 and $n=0 ;$ N_A <1 otherwise
7. $M B _A<1$
8. $N B _A<1$
9. RSRC_A <0 or RSRC_A $\geq p$
10. C SRC_A <0 or CSRC_A $\geq q$
11. CTXT_A $\neq C T X T _X$
12. $M _X<0$ and $n=0 ; M _X<1$ otherwise
13. $\mathrm{N} _\mathrm{X}<0$ and $n=0 ; \mathrm{N} _\mathrm{X}<1$ otherwise
14. $M B _X<1$
15. NB_X < 1
16. RSRC_X <0 or RSRC_X $\geq p$
17. CSRC_X <0 or CSRC_X $\geq q$

Stage 5

1. $M B _A=N B _A$
2. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(j a-1, N B _A\right)$

If $n \neq 0$:
3. $i x>M _X$
4. $j x>\mathrm{N} _\mathrm{X}$
5. ia > M_A
6. $j a>$ N_A
7. $i a+n-1>M A$
8. $j a+n-1>$ N_A

If incx $=\mathrm{M} _\mathrm{X}$:
9. NB_A $\neq N B _X$
10. $\bmod \left(j x-1, N B _X\right) \neq \bmod \left(j a-1, N B _A\right)$
11. $n \neq 0$ and $j x+n-1>N _X$

If incx $=1\left(\neq M _X\right)$:
12. $M B _A \neq M B _X$
13. $\bmod \left(i x-1, M B _X\right) \neq \bmod \left(i a-1, M B _A\right)$
14. $n \neq 0$ and $i x+n-1>M _X$

Otherwise:
15. incx $\neq 1$ and incx $\neq M _X$

Stage 6

1. $\operatorname{LLD} _A<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. $\operatorname{LLD} _X<\max \left(1, \operatorname{LOCp}\left(M _X\right)\right)$
3. If incx $=\mathrm{M} _\mathrm{X}$ and transa $=$ ' T ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{X}; that is, iacol $\neq i \times c o l$, where:
iacol $=\bmod \left(\left(((j a-1) /\right.\right.$ NB_A $\left.\left.)+C S R C _A\right), q\right)$
$i x c o l=\bmod (((j x-1) /$ NB_X $)+$ CSRC_X $), q)$
4. If incx $=1\left(\neq M _X\right)$ and transa $=' N$ ', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix X; that is, iarow $\neq i x r o w$, where:
iarow $=\bmod \left(\left(\left((i a-1) / M B _A\right)+\right.\right.$ RSRC_A $\left.), p\right)$
ixrow $=\bmod ((((i x-1) / M B X)+$ RSRC X), $p)$
ixrow $=\bmod \left(\left(\left((i x-1) / M B _X\right)+\right.\right.$ RSRC_X $\left.), p\right)$
Example: This example solves $\boldsymbol{x} \leftarrow \boldsymbol{A}^{-1} \boldsymbol{x}$ using a 2×2 process grid, where \boldsymbol{A} is a unit triangular matrix. It uses a global submatrix \boldsymbol{A} within a global matrix \boldsymbol{A} by specifying ia $=2$ and ja $=2$. It uses vector \boldsymbol{x}, which is a row-distributed vector within a row of global matrix \boldsymbol{X}, by specifying specifying incx $=\mathrm{M} _\mathrm{X}=1$, $i x=1$, and $j x=2$.

Call Statements and Input

```
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_X
DTYPE_	1	1

PDTRSV

	Desc_A	Desc_X
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	13	1
N	13	13
MB	3	3
NB	3	3
RSRC_	0	0
CSRC_	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ LLD_X $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} X, M B-X\right.\right.$, MYROW, RSRC_X, NPROW) $)$ In this example, LLD_A $=7$ on P_{00} and P_{01}, LLD_A $=6$ on P_{10} and P_{11}, and LLD_X = 1 on all processes.		

After the global matrix \boldsymbol{A} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{A}. Following is the global submatrix \boldsymbol{A} of order 12, starting at row 2 and column 2 in global triangular matrix \boldsymbol{A} of order 13 with block size 3×3 :

B, D	0	1	2	3	4
0		$\begin{array}{lll}. & . & . \\ \cdot & \cdot & \cdot\end{array}$		$\begin{array}{ll}. & . \\ . & . \\ . & .\end{array}$.
1	$\begin{array}{ll} 3.0 & 2.0 \\ 1.0 & 3.0 \\ 2.0 & 1.0 \end{array}$	$\begin{array}{ccc}1.0 & . & . \\ 2.0 & 1.0 & . \\ 3.0 & 2.0 & 1.0\end{array}$		$\cdots \quad . \quad$.	-
2	$\begin{array}{ll}3.0 & 2.0 \\ 1.0 & 3.0 \\ 2.0 & 1.0\end{array}$	$\begin{array}{lll}1.0 & 3.0 & 2.0 \\ 2.0 & 1.0 & 3.0 \\ 3.0 & 2.0 & 1.0\end{array}$	$\begin{array}{ccc}1.0 & . & . \\ 2.0 & 1.0 & . \\ 3.0 & 2.0 & 1.0\end{array}$	$\cdots \quad . \quad$.	.
3	$\begin{array}{ll} 3.0 & 2.0 \\ 1.0 & 3.0 \\ 2.0 & 1.0 \end{array}$	$\begin{array}{lll}1.0 & 3.0 & 2.0 \\ 2.0 & 1.0 & 3.0 \\ 3.0 & 2.0 & 1.0\end{array}$	$\begin{array}{lll}1.0 & 3.0 & 2.0 \\ 2.0 & 1.0 & 3.0 \\ 3.0 & 2.0 & 1.0\end{array}$	$\begin{array}{ccc}1.0 & . & . \\ 2.0 & 1.0 & \text { c. } \\ 3.0 & 2.0 & 1.0\end{array}$	-
4	3.02 .0	$1.0 \quad 3.0 \quad 2.0$	$1.0 \quad 3.0 \quad 2.0$	$1.0 \quad 3.0 \quad 2.0$	1.0

Note: Because matrix \boldsymbol{A} is unit triangular, the diagonal elements are not referenced. This subroutine assumes a value of 1.0 for the diagonal elements.

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2 4}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{4}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{A} :

After the global matrix \boldsymbol{X} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{x}, which is a row-distributed vector. Following is the global vector \boldsymbol{x} of size 1×12, starting at row 1 and column 2 in 1×13 global matrix \boldsymbol{X} with block size 3 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2 4}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
-	P_{10}	P_{11}

Local arrays for \boldsymbol{x} :

Output:

After the global matrix \boldsymbol{X} is distributed over the process grid, only a portion of the global data structure is used-that is, global vector \boldsymbol{x}, which is a row-distributed

PDTRSV

vector. Following is the global vector \boldsymbol{x} of size 1×12, starting at row 1 and column 2 in 1×13 global matrix \boldsymbol{X} with block size 3 :

The following is the 2×2 process grid:

B,D	$\mathbf{0 2 4}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
-	P_{10}	P_{11}

Local arrays for \boldsymbol{x} :

Chapter 7. Level 3 PBLAS (Message Passing)

This chapter describes the Level 3 PBLAS subroutines.

Overview of the Level 3 PBLAS Subroutines

The Level 3 PBLAS include a subset of the standard set of distributed memory parallel versions of the Level 3 BLAS.
Note: These subroutines are designed in accordance with the proposed Level 3 PBLAS standard. (See references [14], [15], and [17].) If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.

Table 46. List of Level 3 PBLAS (Message Passing)		
Descriptive Name	Long-Precision Subprogram	Page
Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate Transpose	PDGEMM PZGEMM	251
Matrix-Matrix Product Where One Matrix is Real Symmetric	PDSYMM	269
Triangular Matrix-Matrix Product	PDTRMM	284
Solution of Triangular System of Equations with Multiple Right-Hand Sides	PDTRSM	294
Rank-K Update of a Real Symmetric Matrix	PDSYRK	305
Rank-2K Update of a Real Symmetric Matrix	PDSYR2K	316
Matrix Transpose for a General Matrix	PDTRAN	331

Level 3 PBLAS Subroutines

This section contains the Level 3 PBLAS subroutine descriptions.

PDGEMM and PZGEMM-Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate Transpose

PDGEMM performs any one of the following combined matrix computations:

$$
\begin{aligned}
& \boldsymbol{C} \leftarrow \alpha \boldsymbol{A} \boldsymbol{B}+\beta \boldsymbol{C} \\
& \boldsymbol{C} \leftarrow \alpha \boldsymbol{A B}^{\top}+\beta \boldsymbol{C} \\
& \boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}+\beta \boldsymbol{C} \\
& \boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}^{\top}+\beta \boldsymbol{C}
\end{aligned}
$$

PZGEMM performs any one of the following combined matrix computations:

```
\(C \leftarrow \alpha A B+\beta C\)
\(C \leftarrow \alpha A B^{\top}+\beta C\)
\(C \leftarrow \alpha \boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{B}+\beta \boldsymbol{C}\)
\(C \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}^{\top}+\beta \boldsymbol{C}\)
\(C \leftarrow \alpha \boldsymbol{A}^{H} B+\beta C\)
\(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{H} \boldsymbol{B}^{\top}+\beta \boldsymbol{C}\)
\(C \leftarrow \alpha A B^{H}+\beta C\)
\(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}^{H}+\beta \boldsymbol{C}\)
\(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{H} \boldsymbol{B}^{H}+\beta \boldsymbol{C}\)
```

where, in the PDGEMM and PZGEMM formulas above:
\boldsymbol{A} represents the global general submatrix:

- For transa $=$ ' N ', it is $\boldsymbol{A}_{i a: i a+m-1, \text { ja:ja+k-1 }}$.
- For transa $=$ ' T ' or ' C ', it is $\boldsymbol{A}_{i a: i a+k-1, ~ j a: j a+m-1 ~}$.
\boldsymbol{B} represents the global general submatrix:
- For transb $=$ ' N ', it is $\boldsymbol{B}_{i b: i b+k-1, j b: j b+n-1}$.
- For transb = 'T' or ' C ', it is $\boldsymbol{B}_{i b: i b+n-1, j b: j b+k-1}$.
\boldsymbol{C} represents the global general submatrix $\boldsymbol{C}_{i c: i c+m-1, j c: j+n-1}$.
α and β are scalars.
Note: No data should be moved to form the matrix transposes; that is, the matrices should always be stored in their untransposed forms.

In the following four cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $m=0$
- $n=0$
- α is zero and β is one.
- $k=0$ and β is one.

Assuming the above conditions do not exist, if β is not one and k is 0 , then $\beta \boldsymbol{C}$ is returned.

See references [14] and [15].

Table 47. Data Types	
$\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \alpha, \beta$	Subroutine
Long-precision real	PDGEMM
Long-precision complex	PZGEMM

Syntax

| Fortran | CALL PDGEMM \\| PZGEMM (transa, transb, $m, ~ n, ~ k, ~ a l p h a, ~ a, ~ i a, ~ j a, ~ d e s c _a, ~ b, ~ i b, ~ j b, ~ d e s c _b, ~$
 $\left.b e t a, ~ c, i c, ~ j c, ~ d e s c _c\right) ~$ |
| :--- | :--- |$|$| pdgemm \| pzgemm (transa, transb, m, n, k, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b, beta, c, ic, |
| :--- |
| $j c$, desc_c); |

On Entry

transa
indicates the form of matrix \boldsymbol{A} to use in the computation, where:
If transa $=$ ' N ', \boldsymbol{A} is used in the computation.
If transa $={ }^{\prime} \mathrm{T}^{\prime}, \boldsymbol{A}^{\mathrm{T}}$ is used in the computation.
If transa $=$ ' C ', \boldsymbol{A} H is used in the computation.
Scope: global
Specified as: a single character; transa $=$ ' N ', ' T ', or ' C '
transb
indicates the form of matrix \boldsymbol{B} to use in the computation, where:
If transb $={ }^{\prime} \mathrm{N}^{\prime}, \boldsymbol{B}$ is used in the computation.
If transb $=$ ' $\mathrm{T}^{\prime}, \boldsymbol{B}^{\mathrm{T}}$ is used in the computation.
If transb $={ }^{\prime} \mathrm{C}^{\prime}, \boldsymbol{B}^{\mathrm{H}}$ is used in the computation.
Scope: global
Specified as: a single character; transb = ' N ', ' T ', or ' C '
m
is the number of rows in submatrix \boldsymbol{C} used in the computation, and:
If transa $=$ ' N ', it is the number of rows in submatrix \boldsymbol{A}.
If transa $=$ ' T ' or ' C ', it is the number of columns in submatrix \boldsymbol{A}.
Scope: global
Specified as: a fullword integer; $m \geq 0$.
n
is the number of columns in submatrix \boldsymbol{C} used in the computation, and:
If transb $=$ ' N ', it is the number of columns in submatrix \boldsymbol{B}.
If transb $=$ ' T ' or ' C ', it is the number of rows in submatrix \boldsymbol{B}.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
k
has the following meaning:
If transa $=$ ' N ', it is the number of columns in submatrix \boldsymbol{A}.
If transa $=$ ' T ' or ' C ', it is the number of rows in submatrix \boldsymbol{A}.
In addition:
If transb $=$ ' N ', it is the number of rows in submatrix \boldsymbol{B}.
If transb = 'T' or ' C ', it is the number of columns in submatrix \boldsymbol{B}.
Scope: global
Specified as: a fullword integer; $k \geq 0$.

alpha

is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 47 on page 251.
is the local part of the global general matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore:

- If transa = ' N ', the leading LOCp($i a+m-1$) by LOCq(ja+k-1) part of the local array A must contain the local pieces of the leading $i a+m-1$ by $j a+k-1$ part of the global matrix.
- If transa $=$ ' T ' or ' C^{\prime} ', the leading LOCp($i a+k-1$) by LOCq($j a+m-1$) part of the local array A must contain the local pieces of the leading ia+k-1 by $j a+m-1$ part of the global matrix.

Note: No data should be moved to form \boldsymbol{A}^{\top} or $\boldsymbol{A}^{\mathrm{H}}$; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.
Scope: local
Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 47 on page 251. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$, and:
If transa $=$ ' N ', then $i a+m-1 \leq M _A$.
If transa $=$ ' T ' or ' C ', then $i a+k-1 \leq M _A$.
ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq \mathrm{N} _\mathrm{A}$, and:
If transa $=$ ' N ', then $j a+k-1 \leq N _A$.
If transa $=$ ' T ' or ' C ', then $j a+m-1 \leq \mathrm{N} _\mathrm{A}$.
desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRRIDITT or BLACS_GRIDMAP	Global

PDGEMM and PZGEMM

desc_a	Name	Description	Limits	Scope
3	M_A	Number of rows in the global matrix	If$m=0$ or $k=0:$ $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If $m=0$ or $k=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
5	MB_A	NB_A	Row block size	Column block size

Specified as: an array of (at least) length 9, containing fullword integers.
b
is the local part of the global general matrix \boldsymbol{B}. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on ib, jb, desc_b, p, q, myrow, and mycol; therefore:

- If transb $=$ ' N ', the leading LOCp($(i b+k-1)$ by LOCq $(j b+n-1)$ part of the local array B must contain the local pieces of the leading $i b+k-1$ by $j b+n-1$ part of the global matrix.
- If transb = 'T' or ' C ', the leading LOCp($i b+n-1$) by LOCq(jb+k-1) part of the local array B must contain the local pieces of the leading $i b+n-1$ by $j b+k-1$ part of the global matrix.

Note: No data should be moved to form \boldsymbol{B}^{\top} or $\boldsymbol{B}^{\boldsymbol{H}}$; that is, the matrix \boldsymbol{B} should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 47 on page 251. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global
Specified as: a fullword integer; $1 \leq i b \leq M _B$, and:
If transb $=$ ' N ', then $i b+k-1 \leq M _B$.
If transb $=$ ' T ' or ' C ', then $i b+n-1 \leq \mathrm{M} _\mathrm{B}$.
is the column index of the global matrix \boldsymbol{B}, identifying the first column of the submatrix B.
Scope: global
Specified as: a fullword integer; $1 \leq j b \leq N _B$, and:
If transb $=$ ' N ', then $j b+n-1 \leq N _B$.
If transb $=$ ' T ' or ' C ', then $j b+k-1 \leq \mathrm{N} _\mathrm{B}$.
desc_b
is the array descriptor for global matrix \boldsymbol{B}, described in the following table:
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { desc_b } & \text { Name } & \text { Description } & \text { Limits } & \text { Scope } \\
\hline 1 & \text { DTYPE_B } & \text { Descriptor type } & \text { DTYPE_B=1 } & \begin{array}{l}\text { Valid value, as returned by } \\
\text { BLACS_GRIDINIT or } \\
\text { BLACS_GRIDMAP }\end{array} \\
\hline 2 & \text { CTXT_B } & \text { M_B } & \begin{array}{l}\text { Number of rows in the global } \\
\text { matrix }\end{array} & \begin{array}{l}\text { If } k=0 \text { or } n=0: \\
\text { M_B } \geq 0 \\
\text { Otherwise: } \\
\text { M_B } \geq 1\end{array} \\
\hline 3 & \text { N_B } & \begin{array}{l}\text { Number of columns in the } \\
\text { global matrix }\end{array} & \begin{array}{l}\text { If } k=0 \text { or } n=0: \\
\text { N_B } \geq 0\end{array}
$$ \& Global

\hline 4 \& MB_B \& NB_B \& RSRC_B \geq 1\end{array}\right]\)| Global |
| :--- |
| 5 |

Specified as: an array of (at least) length 9, containing fullword integers.
beta
is the scalar β.
Scope: global
Specified as: a number of the data type indicated in Table 47 on page 251. c
is the local part of the global general matrix \boldsymbol{C}. This identifies the first element of the local array C. This subroutine computes the location of the first element of the local subarray used, based on ic, jc, desc_c, p, q, myrow, and mycol; therefore, the leading LOCp($i c+m-1$) by LOCq($j c+n-1$) part of the local array C must contain the local pieces of the leading ic+m-1 by $j c+n-1$ part of the global matrix.

When β is zero, \boldsymbol{C} need not be set on input.

PDGEMM and PZGEMM

Scope: local

Specified as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 47 on page 251. Details about the block-cyclic data distribution of global matrix \boldsymbol{C} are stored in desc_c.
is the row index of the global matrix \boldsymbol{C}, identifying the first row of the submatrix C.

Scope: global
Specified as: a fullword integer; $1 \leq i c \leq M _C$ and $i c+m-1 \leq M _C$.
jc
is the column index of the global matrix \boldsymbol{C}, identifying the first column of the submatrix \boldsymbol{C}.
Scope: global
Specified as: a fullword integer; $1 \leq j c \leq N _C$ and $j c+n-1 \leq N _C$. desc c
is the array descriptor for global matrix \boldsymbol{C}, described in the following table:

desc_c	Name	Description	Limits	Scope
1	DTYPE_C	Descriptor type	DTYPE_C=1	Global
2	CTXT_C	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_C	Number of rows in the global matrix	If $m=0$ or $n=0$: M_C ≥ 0 Otherwise: $M _C \geq 1$	Global
4	N_C	Number of columns in the global matrix	$\begin{aligned} & \text { If } m=0 \text { or } n=0: \\ & \quad N _C \geq 0 \end{aligned}$ Otherwise: $\text { N_C } \geq 1$	Global
5	MB_C	Row block size	MB_C ≥ 1	Global
6	NB_C	Column block size	NB_C ≥ 1	Global
7	RSRC_C	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_C < p	Global
8	CSRC_C	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_C $<q$	Global
9	LLD_C	The leading dimension of the local array	LLD_C \geq max(1,LOCp(M_C) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

c
is the updated local part of the global matrix \boldsymbol{C}, containing the results of the computation.

Scope: local

Returned as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 47 on page 251.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the transa and transb arguments.
2. For PDGEMM, if you specify ' C ' for the transa or transb argument, it is interpreted as though you specified ' T '.
3. The matrices must have no common elements; otherwise, results are unpredictable.
4. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M} _\right)$and $\operatorname{LOCq}\left(\mathrm{N} _\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
5. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
6. The following values must be equal: CTXT_A = CTXT_B = CTXT_C.
7. The coding rules described in this note depend upon which matrix- $\boldsymbol{A}, \boldsymbol{B}$, or \boldsymbol{C}-is used as the reference matrix, which is referred to, in general, as matrix \boldsymbol{X}. For each of the three possible selections for the reference matrix, there is a unique set of coding rules that must be met. These are detailed in Table 48 on page 258 and Table 49 on page 259. Follow these steps to select a reference matrix and determine what coding rules to use:

Step 1: First, the reference matrix is selected. For optimal performance, the reference matrix is selected based on the arguments m, n, and k, as follows:

$$
\begin{aligned}
& \text { If } k \leq \min (m, n) \text {, then } \boldsymbol{X}=\boldsymbol{C} \\
& \text { If } n \leq \min (m, k) \text {, then } \boldsymbol{X}=\boldsymbol{A} \\
& \text { If } m \leq \min (n, k) \text {, then } \boldsymbol{X}=\boldsymbol{B}
\end{aligned}
$$

The matrix selected must satisfy coding rules a and d, described below, to be a suitable reference matrix. If it does, you go to step 2. If it does not, then it checks to see if either of the other two matrices satisfies coding rules a, c, and d, making one of them a suitable reference matrix. If one of them is suitable, then you go to step 2. If neither matrix is suitable, an error condition results.
Step 2: After a suitable reference matrix is chosen in Step 2, all remaining coding rules, described below, are checked. If the rules are satisfied, the subroutine continues normally. If they are not, an error condition results.
Coding Rules: Following are the coding rules:
a. The reference matrix must be aligned on a block boundary; that is:
$i x-1$ must be a multiple of MB_X.
$j x-1$ must be a multiple of NB_X.
These indexes are indicated in column 5 of Table 48 on page 258 for each entry for \boldsymbol{X}.
b. The block sizes that must be equal are indicated in column 4 of Table 48 on page 258 for each entry for \boldsymbol{X}. The rules for block sizes depend only upon the values of transa and transb, and not on the reference matrix selected; however, for your convenience, the rules are repeated in the table for each reference matrix.
c. Given the reference matrix \boldsymbol{X}, additional rules apply to the block row and block column offsets of the two nonreference matrices. These rules are listed in column 7 of Table 48 for each entry for \boldsymbol{X}. These rules must only be met when looping is required-that is, either of the conditions in column 8 is met.
d. The indexes of the nonreference matrices, which need to be on a block boundary, are listed in column 6 of Table 48 for each entry for \boldsymbol{X}.

Table 48 (Page 1 of 2). Coding Rules for the Reference Matrix X							
x^{-1-}	$-2-$ transa	$\begin{aligned} & -3- \\ & \text { transb } \end{aligned}$	-4- (b) Equal Block Sizes	-5- (a) Block Bndry For X	-6- (d) Block Bndry For Other	-7- (c) Equal Block Offsets (If Looping is Required)	-8- (c) Conditions For Looping
A	'N'	'N'	$\begin{aligned} & \text { MB_A }=\text { MB_C } \\ & N B-B=N B-C \\ & N B _A=M B _B \end{aligned}$	ia, ja	ib, ic	$\begin{gathered} \hline \bmod \left(j b-1, N B _B\right) \\ = \\ \bmod \left(j c-1, N B _C\right) \end{gathered}$	$\begin{aligned} & n+\bmod (j b-1, \text { NB_B })>\text { NB_B } \\ & \text {-or- } \\ & n+\bmod \left(j c-1, N B _C\right)>N B _C \end{aligned}$
A	'N'	$\begin{aligned} & \text { 'T' } \\ & \text { or } \\ & C^{\prime} \end{aligned}$	$\begin{aligned} & \text { MB_A }=\text { MB_C } \\ & M B _B=N B-C \\ & N B_{-} A=N B_{-} B \end{aligned}$	ia, ja	jb, ic	$\begin{gathered} \hline \bmod \left(i b-1, M B _B\right) \\ = \\ \bmod \left(j c-1, N B _C\right) \end{gathered}$	$\begin{aligned} & n+\bmod (i b-1, \text { MB_B })>\text { MB_B } \\ & - \text { or- } \\ & n+\bmod (j c-1, \text { NB_C })>\text { NB_C } \end{aligned}$
A	$\begin{aligned} & \hline \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	'N'	$\begin{aligned} & \text { NB_A }=\text { MB_C } \\ & N B _B=N B _C \\ & M B _A=M B _B \end{aligned}$	ia, ja	ib, ic	$\begin{gathered} \hline \bmod \left(j b-1, N B _B\right) \\ = \\ \bmod \left(j c-1, N B _C\right) \end{gathered}$	$\begin{aligned} & \hline n+\bmod (j b-1, \text { NB_B })>\text { NB_B } \\ & \quad \text { or- } \\ & n+\bmod \left(j c-1, \text { NB_C }^{2}\right)>\text { NB_C } \end{aligned}$
A	$\begin{aligned} & \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	$\begin{aligned} & \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	$\begin{aligned} & \text { NB_A }=\text { MB_C } \\ & \text { MB_B }=\text { NB_C } \\ & M B _A=N B _B \end{aligned}$	ia, ja	jb, ic	$\begin{gathered} \bmod \left(i b-1, M B _B\right) \\ = \\ \bmod \left(j c-1, N B _C\right) \end{gathered}$	$\begin{aligned} & n+\bmod (i b-1, \text { MB_B })>\text { MB_B } \\ & \text {-or- } \\ & n+\bmod \left(j c-1, \text { NB_C }^{2}\right)>\text { NB_C } \end{aligned}$
B	'N'	'N'	$\begin{aligned} & \text { MB_A }=\text { MB_C } \\ & N B-B=N B-C \\ & N B-A=M B-B \end{aligned}$	ib, jb	ja, jc	$\begin{gathered} \hline \bmod \left(i a-1, M B _A\right) \\ = \\ \bmod \left(i c-1, M B _C\right) \end{gathered}$	$\begin{aligned} & \hline m+\bmod (i a-1, \text { MB_A })>\text { MB_A } \\ & - \text { or- } \\ & m+\bmod \left(i c-1, M B _C\right)>M B _C \end{aligned}$
B	'N'	$\begin{aligned} & \hline \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	$\begin{aligned} & \text { MB_A }=\text { MB_C } \\ & \text { MB_B }=N B \text { _C } \\ & N B _A=N B _B \end{aligned}$	ib, jb	ja, jc	$\begin{gathered} \hline \bmod \left(i a-1, M B _A\right) \\ = \\ \bmod \left(i c-1, M B _C\right) \end{gathered}$	$\begin{aligned} & \hline m+\bmod (i a-1, \text { MB_A })>\text { MB_A } \\ & - \text { or- } \\ & m+\bmod \left(i c-1, M B _C\right)>M B _C \end{aligned}$
B	$\begin{aligned} & \hline \mathrm{T}^{\prime} \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	'N'	$\begin{aligned} & \text { NB_A }=M B_{B} C \\ & N B _B=N B _C \\ & M B _A=M B _B \end{aligned}$	ib, jb	ia, jc	$\begin{gathered} \hline \bmod \left(j a-1, N B _A\right) \\ = \\ \bmod \left(i c-1, M B _C\right) \end{gathered}$	$\begin{gathered} \hline m+\bmod (j a-1, \text { NB_A })>\text { NB_A } \\ - \text { or- } \\ m+\bmod \left(i c-1, M B _C\right)>M B _C \end{gathered}$
B	$\begin{aligned} & \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	$\begin{aligned} & \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	$\begin{aligned} & \text { NB_A }=\text { MB_C } \\ & M B_{-}=B_{1}=N \\ & M B_{-} A=N B_{-} \end{aligned}$	ib, jb	ia, jc	$\begin{gathered} \hline \text { mod }(j a-1, \text { NB_A }) \\ = \\ \bmod \left(i c-1, M B _C\right) \end{gathered}$	$\begin{aligned} & m+\bmod (j a-1, \text { NB_A })>\text { NB_A } \\ & m+\bmod \left(i c-1, M B _C\right)>\text { MB_C } \end{aligned}$
c	'N'	'N'	$\begin{aligned} & \text { MB_A }=M B \text { B_C } \\ & N B _B=N B _C \\ & N B _A=M B _B \end{aligned}$	ic, jc	ia, jb	$\begin{gathered} \hline \bmod \left(j a-1, N B _A\right) \\ = \\ \bmod \left(i b-1, M B _B\right) \end{gathered}$	$\begin{gathered} k+\bmod (j a-1, \text { NB_A })>\text { NB_A } \\ \text {-or- } \\ k+\bmod \left(i b-1, M B _B\right)>\text { MB_B } \end{gathered}$
c	'N'	$\begin{aligned} & \hline \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	$\begin{aligned} & \text { MB_A }=\text { MB_C } \\ & \text { MB_B }=\text { NB_C } \\ & \text { NB_A }=N B_{_} B \end{aligned}$	ic, jc	ia, ib	$\begin{gathered} \hline \bmod \left(j a-1, N B _A\right) \\ = \\ \bmod \left(j b-1, N B _B\right) \end{gathered}$	$\begin{aligned} & k+\bmod (j a-1, \text { NB_A })>\text { NB_A } \\ & - \text { or- } \\ & k+\bmod \left(j b-1, N B _B\right)>\text { NB_B } \end{aligned}$

Table 48 (Page 2 of 2). Coding Rules for the Reference Matrix X							
X^{-1-}	$\begin{aligned} & \hline-2- \\ & \text { transa } \end{aligned}$	$\begin{aligned} & -3- \\ & \text { transb } \end{aligned}$	-4- (b) Equal Block Sizes	-5- (a) Block Bndry For X	-6- (d) Block Bndry For Other	-7- (c) Equal Block Offsets (If Looping is Required)	-8- (c) Conditions For Looping
c	$\begin{aligned} & \hline \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	'N'	$\begin{aligned} & \text { NB_A }=M B_{B} C \\ & N B_{-}=N_{1}=C \\ & M B _A=M B_{-} B \end{aligned}$	ic, jc	ja, jb	$\begin{gathered} \hline \bmod \left(i a-1, M B _A\right) \\ = \\ \bmod \left(i b-1, M B _B\right) \end{gathered}$	$\begin{aligned} & k+\bmod (i a-1, \text { MB_A })>\text { MB_A } \\ & - \text { or- } \\ & k+\bmod \left(i b-1, M B _B\right)>\text { MB_B } \end{aligned}$
c	$\begin{aligned} & \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	$\begin{aligned} & \hline \text { 'T' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	$\begin{aligned} & \text { NB_A }=\text { MB_C } \\ & \text { MB_B }=\text { NB_C } \\ & \text { MB_A }=\text { NB_B } \end{aligned}$	ic, jc	ja, ib	$\begin{gathered} \hline \bmod \left(i a-1, M B^{2} A\right) \\ = \\ \bmod \left(j b-1, N B _B\right) \end{gathered}$	$\begin{aligned} & k+\bmod (i a-1, \text { MB_A })>\text { MB_A } \\ & - \text { or- } \\ & k+\bmod \left(j b-1, N B _B\right)>\text { NB_B } \end{aligned}$

e. Additional rules apply to the row and column alignment of the various matrices in the process grid; specifically, the process row or process column containing the first row or column of the reference submatrix \boldsymbol{X}, respectively, must also contain the first row or column of one of the other two nonreference submatrices, as indicated in column 4 of Table 49 for each entry for \boldsymbol{X}. Following is the definition of ixrow and ixcol, which holds true for $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} :

```
ixrow = mod((((ix-1)/MB_X)+RSRC_X), p)
ixcol = mod((((jx-1)/NB_X)+CSRC_X), q)
```

$\begin{aligned} & -1- \\ & \mathrm{X} \end{aligned}$	-2transa	-3- transb	-4- (e) Process Grid Alignment
A	'N'	'N'	iarow $=$ icrow
A	'N'	'T' or 'C'	$\begin{aligned} & \text { iarow }=\text { icrow } \\ & \text { ibcol }=\text { iacol } \end{aligned}$
A	'T' or 'C'	'N'	iarow = ibrow
A	'T' or 'C'	'T' or 'C'	(no rules)
B	'N'	'N'	$i \mathrm{ibcol}=$ iccol
B	'N'	'T' or 'C'	ibcol $=$ iacol
B	'T' or 'C'	'N'	$\begin{aligned} & \text { iarow = ibrow } \\ & \text { ibcol = iccol } \end{aligned}$
B	'T' or 'C'	'T' or 'C'	(no rules)
C	'N'	'N'	$\begin{aligned} & \text { iarow }=\text { icrow } \\ & \text { ibcol }=\text { iccol } \end{aligned}$
C	'N'	'T' or 'C'	iarow $=$ icrow
C	'T' or 'C'	'N'	ibcol = iccol
C	'T' or 'C'	'T' or 'C'	(no rules)

Example: Following is an example of the coding rules necessary for the case where transa $=$ ' N ' and transb $=$ ' N ', where the reference matrix selected is
A. Following are the indexes, dimensions, and block sizes used in the computation for the matrices:

a. \boldsymbol{A} must be aligned on a block boundary, as indicated in column 5 in Table 48 on page 258:
ia-1 must be a multiple of MB_A.
ja-1 must be a multiple of NB_A.
b. The block sizes that correspond to each matrix dimension must be equal, where MB_ represents the row dimension and NB_ represents the column dimension, as indicated in column 4 in Table 48 on page 258:

$$
\begin{aligned}
& \text { MB_A }=\text { MB_C } \\
& \text { NB_B }=\text { NB_C } \\
& \text { NB_A }=\text { MB_B }
\end{aligned}
$$

c. As shown above, m and k are the dimensions of the reference matrix \boldsymbol{A}; therefore, n is used to determine if looping is required; that is, if one of the following is true, as indicated in column 8 in Table 48 on page 258:

$$
\begin{aligned}
& n+\bmod \left(j c-1, \text { NB_C }^{\prime}\right)>\text { NB_C } \\
& n+\bmod \left(j b-1, \text { NB_B }^{2}\right)>\text { NB_B }
\end{aligned}
$$

then the following offsets must be equal, as indicated in column 7 in Table 48 on page 258:
$\bmod \left(j b-1, N B _B\right)=\bmod \left(j c-1, N B _C\right)$
d. The other indexes from each of the nonreference matrices-not used in c above-must be aligned on a block boundary, as indicated in column 6 in Table 48 on page 258:
ic-1 must be a multiple of MB_C.
$i b-1$ must be a multiple of MB_B.
e. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{C}, as indicated in column 4 in Table 49 on page 259; that is, iarow = icrow, where:

```
iarow \(=\bmod (((\) (ia-1)/MB_A)+RSRC_A), \(p)\)
icrow \(=\bmod (((\) (ic-1)/MB_C)+RSRC_C), \(p\) )
```


Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.
3. DTYPE_C is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. The subroutine was called from outside the process grid.

Stage 4

1. transa \neq ' N ', ' T^{\prime}, or ' C^{\prime}
2. transb $\neq ' \mathrm{~N}$ ', ' T ', or ' C^{\prime}
3. $m<0$
4. $n<0$
5. $k<0$
6. $\mathrm{M} _\mathrm{A}<0$ and ($m=0$ or $k=0$); $\mathrm{M} _\mathrm{A}<1$ otherwise
7. $\mathrm{N} _\mathrm{A}<0$ and ($m=0$ or $k=0$); N_A < 1 otherwise
8. $\mathrm{M} _\mathrm{B}<0$ and $(k=0$ or $n=0$); M_B < 1 otherwise
9. $\mathrm{N} _\mathrm{B}<0$ and $\left(k=0\right.$ or $n=0$); $\mathrm{N} _\mathrm{B}<1$ otherwise
10. M_C < 0 and ($m=0$ or $n=0$); M_C <1 otherwise
11. N_C < 0 and ($m=0$ or $n=0$); N_C < 1 otherwise
12. $i a<1$
13. $i b<1$
14. ic <1
15. $j a<1$
16. $j b<1$
17. $j c<1$
18. $M B _A<1$
19. $M B _B<1$
20. $M B$ _C <1
21. NB_A < 1
22. NB_B < 1
23. NB_C < 1
24. RSRC_A < 0 or RSRC_A $\geq p$
25. RSRC_B < 0 or RSRC_B $\geq p$
26. RSRC_C <0 or RSRC_C $\geq p$
27. CSRC_A <0 or CSRC_A $\geq q$
28. CSRC_B <0 or CSRC_B $\geq q$
29. CSRC_C <0 or CSRC_C $\geq q$
30. CTXT_A \neq CTXT_B
31. CTXT_A \neq CTXT_C

Stage 5
If $m \neq 0$ and $k \neq 0$:

1. transa $=$ ' N ' and $i a+m-1>\mathrm{M} _\mathrm{A}$
2. transa $=$ ' T ' or ' C ' and $i a+k-1>\mathrm{M} _\mathrm{A}$
3. transa $=$ ' N ' and $j a+k-1>\mathrm{N} _\mathrm{A}$
4. transa $=$ ' T ' or ' C ' and $j a+m-1>\mathrm{N} _\mathrm{A}$
5. $i a>M _A$
6. $j a>N _A$

If $n \neq 0$ and $k \neq 0$:
7. transb $=$ ' N ' and $i b+k-1>M _B$
8. transb $=$ ' T ' or ' C ' and $i b+n-1>\mathrm{M} _\mathrm{B}$
9. transb $=$ ' N ' and $j b+n-1>\mathrm{N} _\mathrm{B}$
10. transb $=$ ' T ' or ' C ' and $j b+k-1>\mathrm{N} _\mathrm{B}$
11. ib > M_B
12. $j b>$ N_B

If $m \neq 0$ and $n \neq 0$:
13. $i c+m-1>M _C$
14. $j c+n-1>$ N_C
15. ic > M_C
16. $j c>$ N_C
17. For the reference matrix (defined in note 7 in "Notes and Coding Rules" on page 257) and the appropriate transa and transb values, the indexes listed in column 5 of Table 48 are not aligned on a block boundary, where boundary alignment is defined as:
$i x-1$ must be a multiple of MB_X.
$j x-1$ must be a multiple of NB_X.
18. For the two nonreference matrices (defined in note 7 in "Notes and Coding Rules" on page 257) and the appropriate transa and transb values, the indexes listed in column 6 of Table 48 are not aligned on a block boundary. Using \boldsymbol{Z} to represent one of the nonreference matrices, each boundary alignment is expressed as one of the following:
$i z-1$ must be a multiple of MB_Z.
jz-1 must be a multiple of NB_Z.
19. For the reference matrix (defined in note 7 in "Notes and Coding Rules" on page 257) and the appropriate transa and transb values, if looping occurs-that is, one of the conditions in column 8 of Table 48 is true-then the block offsets indicated in column 7 are not equal.

Stage 6

1. For the appropriate transa and transb values indicated in Table 48 (where the reference matrix does not matter), some of the block sizes indicated in column 4 are not equal.
2. LLD_A < max(1, LOCp(M_A))
3. $\operatorname{LLD} _B<\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$
4. LLD_C < $\max \left(1, \operatorname{LOCp}\left(\mathrm{M}_{2} \mathrm{C}\right)\right)$
5. In the process grid, the process row or process column containing the first row or column of the reference submatrix \boldsymbol{X} (defined in note 7 in "Notes and Coding Rules" on page 257), respectively, does not contain the first row or column of one of the other two nonreference submatrices, as indicated in column 4 of Table 49. Following is the definition of ixrow and ixcol, which holds true for \boldsymbol{A}, B, and C :
ixrow $=\bmod \left(\left(\left((i x-1) /\right.\right.\right.$ MB_X $\left.^{2}\right)+$ RSRC_X $\left.), p\right)$
$i x c o l=\bmod \left(\left(\left((j x-1) / N B _X\right)+C S R C _X\right), q\right)$
Example 1: This example computes $\boldsymbol{C}=\beta \boldsymbol{C}+\alpha \boldsymbol{A} \boldsymbol{B}$ using a 2×2 process grid.
Call Statements and Input

ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A	Desc_B	Desc_C
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	6	5	6
N	5	4	4
MB	3	2	3
NB	2	2	2
RSRC_	0	0	0
CSRC_	0	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$	See below ${ }^{2}$

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$
LLD_B $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} B, M_{-}^{-} B\right.\right.$, MYROW, RSRC_B, NPROW) $)$
LLD_C $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} C, M_{-}^{-} C\right.\right.$, MYROW, RSRC_C, NPROW) $)$
In this example, LLD_A = LLD_C $=3$ on all processes, and LLD_B $=3$ on P_{10} and P_{01} and LLD_B $=2$ on P_{10} and P_{11}.

Global general 6×5 matrix \boldsymbol{A} with block size 3×2 :
B, D
$0 \quad\left[\begin{array}{rr|rr|r}1.0 & 2.0 & -1.0 & -1.0 & 4.0 \\ 2.0 & 0.0 & 1.0 & 1.0 & -1.0 \\ 1.0 & -1.0 & -1.0 & 1.0 & 2.0 \\ --3.0 & 2.0 & 2.0 & 2.0 & 0.0 \\ -3.0 & 2.0 & ---2 & -1.0 & -1.0 \\ 4.0 & 0.0 & -2.0 & 1.0 \\ -1.0 & -1.0 & 1.0 & -3.0 & 2.0\end{array}\right]$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

PDGEMM and PZGEMM

Local arrays for \boldsymbol{A} :

p,q	0	1
	$1.0 \quad 2.0 \quad 4.0$	-1.0-1.0
0	2.0 0.0-1.0	1.01 .0
	1.0-1.0 2.0	-1.0 1.0
	$\begin{array}{lll}-3.0 & 2.0 & 0.0\end{array}$	2.02 .0
1	4.0 0.0-1.0	-2.0 1.0
	-1.0-1.0 2.0	1.0-3.0

Global general 5×4 matrix B with block size 2×2 :

B, D	0	1
0	$\begin{array}{rr}1.0 & -1.0 \\ 2.0 & 2.0\end{array}$	$\begin{array}{rr}0.0 & 2.0 \\ -1.0 & -2.0\end{array}$
1	1.00 .0	-1.0 1.0
	-3.0-1.0	$1.0-1.0$
2	4.02 .0	-1.0 1.0

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for B :

p,q	0	1
	$1.0-1.0$	0.02 .0
0	2.02 .0	-1.0-2.0
	4.02 .0	-1.0 1.0
1	1.00 .0	-1.0 0.0
	-3.0-1.0	$1.0-1.0$

Global general 6×4 matrix \boldsymbol{C} with block size 3×2 :

B, D	0		1	
	0.5	0.5	0.5	0.5
0	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5
1	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{C} :

p,q	0		1	
0	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5
1	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5

Output:

Global general 6×4 matrix \boldsymbol{C} with block size 3×2 :

B, D	0		1	
0	24.0	13.0	-5.0	3.0
	-3.0	-4.0	2.0	4.0
	4.0	1.0	2.0	5.0
1	-2.0	6.0	-1.0	-9.0
	-4.0	-6.0	5.0	5.0
	16.0	7.0	-4.0	7.0

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{C} :

p,q	0		1	
0	24.0	13.0	-5.0	3.0
	-3.0	-4.0	2.0	4.0
	4.0	1.0	2.0	5.0
1	-2.0	6.0	-1.0	-9.0
	-4.0	-6.0	5.0	5.0
	16.0	7.0	-4.0	7.0

Example 2: This example computes $\boldsymbol{C}=\beta \boldsymbol{C}+\alpha \boldsymbol{A} \boldsymbol{B}$ using a 2×2 process grid.
Call Statements and Input

PDGEMM and PZGEMM

ORDER = 'R'
NPROW $=2$
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A	Desc_B	Desc_C
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	6	3	6
N	3	2	2
MB	2	2	2
NB	2	2	2
RSRC_	0	0	0
CSRC_	0	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, N U M R O C\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ LLD_B $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(\right.\right.$ M_B $^{-}$, MB_B $^{-}$, MYROW, RSRC_B, NPROW) $)$ LLD_C $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-} C, M B _C\right.\right.$, MYROW, RSRC_C, NPROW) $)$ In this example, LLD_A $=4$ on P_{00} and P_{01} and LLD_A $=2$ on P_{10} and P_{11}. LLD_B $=2$ on P_{00} and LLD_B $=1$ on P_{10}. LLD_C $=4$ on P_{00} and LLD_C $=2$ on P_{10}.			

Global general 6×3 matrix \boldsymbol{A} with block size 2×2 :
$\left.\begin{array}{l}\text { B, D } \\ 0 \\ 0 \quad\left[\begin{array}{cc|r}(1.0,5.0) & (9.0,2.0) & (1.0,9.0) \\ (2.0,4.0) & (8.0,3.0) & (1.0,8.0) \\ \hdashline(3.0,3.0) & (7.0,5.0) & (1.0,7.0) \\ (4.0,2.0) & (4.0,7.0) & (1.0,5.0) \\ \hdashline(5.0,1.0) & (5.0,1.0) & (1.0,6.0) \\ (6.0,6.0) & (3.0,6.0) & (1.0,4.0)\end{array}\right], ~\end{array}\right]$

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

p,q	0		1
0	$(1.0,5.0)$	(9.0,2.0)	(1.0,9.0)
	(2.0,4.0)	$(8.0,3.0)$	(1.0,8.0)
	(5.0,1.0)	$(5.0,1.0)$	(1.0,6.0)
	(6.0,6.0)	$(3.0,6.0)$	(1.0,4.0)
1	(3.0,3.0)	$(7.0,5.0)$	(1.0,7.0)
	(4.0,2.0)	(4.0,7.0)	$(1.0,5.0)$

Global general 3×2 matrix B with block size 2×2 :
B, D
0
1 $\left[\begin{array}{cc}(1.0,8.0) & (2.0,7.0) \\ (4.0,4.0) & (6.0,8.0) \\ -16.0,2.0) & (4.0,5.0)\end{array}\right]$

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{B} :

p,q	0	
0	$(1.0,8.0)$	(2.0,7.0)
	(4.0,4.0)	(6.0,8.0)
1	$(6.0,2.0)$	$(4.0,5.0)$

Global general 6×2 matrix \boldsymbol{C} with block size 2×2 :

B, D	0	
0	(0.5,0.0)	(0.5,0.0)
	(0.5,0.0)	(0.5,0.0)
1	$(0.5,0.0)$	(0.5,0.0)
	(0.5,0.0)	(0.5,0.0)
2	(0.5,0.0)	(0.5,0.0)
	(0.5,0.0)	$(0.5,0.0)$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{C} :

Output:

Global general 6×2 matrix \boldsymbol{C} with block size 2×2 :

B, D	0	
0	(-22.0, 113.0)	(-35.0.142.0)
	(-19.0, 114.0)	(-35.0.141.0)
1	(-20.0, 119.0)	(-43.0.146.0)
	(-27.0, 110.0)	(-58.0.131.0)
2	(8.0,103.0)	(0.0.112.0)
	(-55.0, 116.0)	(-75.0.135.0)

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	-
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{C} :

p,q	0	
0	$(-22.0,113.0)$	(-35.0.142.0)
	(-19.0,114.0)	(-35.0.141.0)
	(8.0,103.0)	(0.0.112.0)
	(-55.0, 116.0)	(-75.0.135.0)
1	$(-20.0,119.0)$	(-43.0.146.0)
	(-27.0, 110.0)	(-58.0.131.0)

PDSYMM—Matrix-Matrix Product Where One Matrix is Real Symmetric

This subroutine computes one of the following matrix-matrix products:

1. $C \leftarrow \alpha A B+\beta C$
2. $C \leftarrow \alpha B A+\beta C$
where, in the formulas above:
\boldsymbol{A} represents the global symmetric submatrix:

- For side $=$ ' L ', it is $\boldsymbol{A}_{\text {ia:ia+m-1, ja:ja+m-1 }}$.
- For side $=$ ' R ', it is $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$.
\boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+m-1, j b: j b+n-1}$. \boldsymbol{C} represents the global general submatrix $\boldsymbol{C}_{i c: i c+m-1, j c: j+n-1}$. α and β are scalars.

In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $m=0$ or $n=0$
- α is zero and β is one.

See references [14] and [15].

Table 50. Data Types	
$\alpha, \beta, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$	Subprogram
Long-precision real	PDSYMM

Syntax

Fortran	CALL PDSYMM (side, uplo, m, n, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b, beta, c, ic, jc, desc_c)
C and C++	pdsymm (side, uplo, m, n, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b, beta, c, ic, jc, desc_c);

On Entry

side
indicates whether \boldsymbol{A} is located to the left or right of \boldsymbol{B} in the equation used for this computation, where:
If side $=$ ' L ', \boldsymbol{A} is to the left of \boldsymbol{B}, resulting in equation 1 .
If side $=$ ' $\mathrm{R}^{\prime}, \boldsymbol{A}$ is to the right of \boldsymbol{B}, resulting in equation 2 .
Scope: global
Specified as: a single character; side $=$ ' L ' or ' R '.
uplo
indicates whether the upper or lower triangular part of the global symmetric submatrix \boldsymbol{A} is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Scope: global

Specified as: a single character; uplo = 'U' or 'L'.
is the number of rows in submatrices \boldsymbol{B} and \boldsymbol{C} used in the computation, and:
If side $=$ ' L ', it is the number of rows and columns in submatrix \boldsymbol{A} used in the computation.
Scope: global
Specified as: a fullword integer; $m \geq 0$.
n
is the number of columns in submatrices \boldsymbol{B} and \boldsymbol{C} used in the computation, and:
If side $=$ ' R ', it is the number of rows and columns in submatrix \boldsymbol{A} used in the computation.

Scope: global
Specified as: a fullword integer; $n \geq 0$.
alpha
is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 50 on page 269.
a
is the local part of the global symmetric matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, assuming the following:

If side $=$ 'L', numa $=m$
If side $=$ ' R^{\prime}, numa $=n$
the leading LOCp(ia+numa-1) by LOCq(ja+numa-1) part of the local array A must contain the local pieces of the leading ia+numa-1 by ja+numa-1 part of the global matrix, and:

- If uplo $=$ ' U ', the leading numa \times numa upper triangular part of the global symmetric submatrix $\boldsymbol{A}_{\text {ia:ia+numa-1, ja:ja+numa-1 }}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading numa \times numa lower triangular part of the global symmetric submatrix $\boldsymbol{A}_{\text {ia:ia+numa-1, ja:ja+numa-1 }}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Scope: local

Specified as: an LLD_A by (at least) $\operatorname{LOCq}\left(N _A\right)$ array, containing numbers of the data type indicated in Table 50 on page 269. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and ia+numa-1 $\leq M _A$.
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.
Scope: global
Specified as: a fullword integer; $1 \leq j a \leq \mathrm{N} _\mathrm{A}$ and $j a+n u m a-1 \leq \mathrm{N} _\mathrm{A}$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $m=0$ and side $=$ ' L ' or $n=0$ and side $=$ ' R ': $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If $m=0$ and side $=$ ' L ' or $n=0$ and side $=$ ' R ': $N _A \geq 0$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	NB_A ≥ 1	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _A) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers.
b
is the local part of the global general matrix \boldsymbol{B}. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on ib, jb, desc_b, p, q, myrow, and mycol; therefore, the leading $\operatorname{LOCp}(i b+m-1)$ by $\operatorname{LOCq}(j b+n-1)$ part of the local array B must contain the local pieces of the leading $i b+m-1$ by $j b+n-1$ part of the global matrix.

Scope: local
Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 50 on page 269. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global

Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+m-1 \leq M _B$.
is the column index of the global matrix \boldsymbol{B}, identifying the first column of the submatrix B.
Scope: global
Specified as: a fullword integer; $1 \leq j b \leq N _B$ and $j b+n-1 \leq N _B$. desc_b
is the array descriptor for global matrix \boldsymbol{B}, described in the following table:

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B=1	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $m=0$ or $n=0$: $M _B \geq 0$ Otherwise: $M _B \geq 1$	Global
4	N_B	Number of columns in the global matrix	$\text { If } m=0 \text { or } n=0 \text { : }$ $\mathrm{NB} \geq 0$ Otherwise: N_B ≥ 1	Global
5	MB_B	Row block size	MB_B ≥ 1	Global
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B $<p$	Global
8	CSRC_B	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_B $<q$	Global
9	LLD_B	The leading dimension of the local array	LLD_B $\geq \max \left(1, \mathrm{LOCp}\left(\mathrm{M} _\right.\right.$B) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers. beta
is the scalar β.
Scope: global
Specified as: a number of the data type indicated in Table 50 on page 269. c
is the local part of the global general matrix \boldsymbol{C}. This identifies the first element of the local array C. This subroutine computes the location of the first element of the local subarray used, based on ic, jc, desc_c, p, q, myrow, and mycol; therefore, the leading LOCp(ic+m-1) by LOCq(ic+n-1) part of the local array C must contain the local pieces of the leading ic+m-1 by $j c+n-1$ part of the global matrix.

When β is zero, \boldsymbol{C} need not be set on input.
Scope: local

Specified as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 50 on page 269. Details about the block-cyclic data distribution of global matrix \boldsymbol{C} are stored in desc_c. ic
is the row index of the global matrix \boldsymbol{C}, identifying the first row of the submatrix C.

Scope: global

Specified as: a fullword integer; $1 \leq i c \leq M _C$ and $i c+m-1 \leq M _C$. jc
is the column index of the global matrix \boldsymbol{C}, identifying the first column of the submatrix C.

Scope: global

Specified as: a fullword integer; $1 \leq j c \leq N _C$ and $j c+n-1 \leq$ N_C. desc_c
is the array descriptor for global matrix \boldsymbol{C}, described in the following table:

desc_c	Name	Description	Limits	Scope
1	DTYPE_C	Descriptor type	DTYPE_C=1	Global
2	CTXT_C	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_C	Number of rows in the global matrix	If $m=0$ or $n=0$: M_C ≥ 0 Otherwise: $M _C \geq 1$	Global
4	N_C	Number of columns in the global matrix	If $m=0$ or $n=0$: N_C ≥ 0 Otherwise: $\text { N_C } \geq 1$	Global
5	MB_C	Row block size	MB_C ≥ 1	Global
6	NB_C	Column block size	NB_C ≥ 1	Global
7	RSRC_C	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_C < p	Global
8	CSRC_C	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_C < q	Global
9	LLD_C	The leading dimension of the local array	LLD_C $\geq \max (1, \operatorname{LOCp}(\mathrm{M}$ _C) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

c
is the updated local part of the global matrix \boldsymbol{C}, containing the results of the computation.

Scope: local

Returned as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 50 on page 269.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the side and uplo arguments.
2. The matrices must have no common elements; otherwise, results are unpredictable.
3. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$and $\mathrm{LOCq}\left(\mathrm{N}_{\mathbf{\prime}}\right)$ used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
4. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
5. The following values must be equal: CTXT_A = CTXT_B = CTXT_C.
6. If side $=$ ' L ':

- In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrices \boldsymbol{B} and \boldsymbol{C}; that is:

```
iarow \(=\) ibrow
iarow \(=\) icrow
where:
        iarow \(=\bmod \left(\left(\left((i a-1) / M B \_A\right)+R S R C \_A\right), p\right)\)
    ibrow \(=\bmod \left(\left(\left((i b-1) / M B \_B\right)+\right.\right.\) RSRC_B \(\left.), p\right)\)
    icrow \(=\bmod \left(\left(\left((i c-1) / M B \_C\right)+R S R C \_C\right), p\right)\)
```

- If looping is required-that is, either of the following is true:

```
n+mod(jb-1,NB_B) > NB_B
n+mod(jc-1,NB_C) > NB_C
```

then:

- The following block sizes must be equal: NB_B = NB_C.
- The block column offset of \boldsymbol{B} must be equal to the block column offset of C; that is, $\bmod \left(j b-1, N B _B\right)=\bmod \left(j c-1, N B _C\right)$.

7. If side $=$ ' R ':

- In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrices \boldsymbol{B} and \boldsymbol{C}; that is:

```
iacol = ibcol
iacol = iccol
where:
    iacol = mod}((((ja-1)/NB_A)+CSRC_A),q
    ibcol = mod}((((jb-1)/NB_B)+CSRC_B),q
    iccol = mod((((jc-1)/NB_C)+CSRC_C),q)
```

- If looping is required-that is, either of the following is true:

```
m+mod(ib-1, MB_B) > MB_B
m+mod(ic-1, MB_C) > MB_C
```

then:

- The following block sizes must be equal: MB_B = MB_C.
- The block row offset of \boldsymbol{B} must be equal to the block row offset of \boldsymbol{C}; that is, $\bmod \left(i b-1, \mathrm{MB}_{-} \mathrm{B}\right)=\bmod \left(i c-1, \mathrm{MB}_{-} \mathrm{C}\right)$

8. If all the following are true:

- \boldsymbol{A} is contained within a single block, that is:

$$
\begin{aligned}
& \text { numa+mod }(i a-1, \text { MB_A }) \leq \text { MB_A } \\
& \text { numa+mod }(j a-1, \text { NB_A }) \leq N B _A \\
& \text { where: } \\
& \text { If } \operatorname{side}=\text { 'L', numa }=m \\
& \text { If side }=\text { 'R', numa }=n
\end{aligned}
$$

- If side $=$ ' L ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{B} must also contain the first column of the submatrix C , that is, ibcol $=i c c o l$, where:

```
ibcol = mod((((jb-1)/NB_B)+CSRC_B), q)
iccol = mod((((jc-1)/NB_C)+CSRC_C),q)
```

- If side = 'R', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{B} must also contain the first row of the submatrix \boldsymbol{C}; that is, ibrow = icrow, where:

```
ibrow = mod((((ib-1)/MB_B)+RSRC_B), p)
icrow = mod((((ic-1)/MB_C)+RSRC_C), p)
```

then you must follow these rules:

- If side $=$ ' L ', then \boldsymbol{B} and \boldsymbol{C} must be block row matrices; that is, if $p>1$:

```
\(m+\bmod \left(i b-1\right.\), MB_B \(\left.^{2}\right) \leq M B \_B\)
\(m+\bmod \left(i c-1, M B \_C\right) \leq M B \_C\)
```

- If side $=$ ' R ', then \boldsymbol{B} and \boldsymbol{C} must be block column matrices; that is, if $q>1$:

```
\(n+\bmod \left(j b-1, N_{B} \_B\right) \leq N B \_B\)
\(n+\bmod \left(j c-1, N B_{-} C\right) \leq N B_{-} C\)
```

9. If the following is true:

- \boldsymbol{A} is not contained within a single block.
or if all the following are true:
- \boldsymbol{A} is contained within a single block.
- If side $=$ ' L ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{B} does not contain the first column of the submatrix \boldsymbol{C}, that is, ibcol $\neq \mathrm{iccol}$, where:

```
ibcol = mod((((jb-1)/NB_B)+CSRC_B), q)
iccol = mod((((jc-1)/NB_C)+CSRC_C),q)
```

- If side = 'R', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{B} does not contain the first row of the submatrix \boldsymbol{C}; that is, ibrow \neq icrow, where:
ibrow = mod((((ib-1)/MB_B)+RSRC_B), p)

$$
\text { icrow }=\bmod \left(\left(\left((i c-1) / \mathrm{MB} _\mathrm{C}\right)+\mathrm{RSRC} _\mathrm{C}\right), p\right)
$$

then you must follow these rules:

- The global symmetric matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
- The global symmetric matrix \boldsymbol{A} must be aligned on a block boundary, that is:
ia-1 must be a multiple of MB_A.
ja-1 must be a multiple of NB_A.
- If side = 'L':
- The following block sizes must be equal: $M B _B=M B _C=N B _A$.
- The global matrices \boldsymbol{B} and \boldsymbol{C} must be aligned on a block row boundary, that is:
ib-1 must be a multiple of MB_B.
$i c-1$ must be a multiple of MB_C.
- If side = 'R':
- The following block sizes must be equal: NB_B = NB_C = MB_A.
- The global matrices \boldsymbol{B} and \boldsymbol{C} must be aligned on a block column boundary, that is:
$j b-1$ must be a multiple of NB_B.
$j c-1$ must be a multiple of NB_C.

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.
3. DTYPE_C is invalid.

Stage 2

1. $C T X T _A$ is invalid.

Stage 3

1. PDSYMM was called from outside the process grid.

Stage 4

1. side $\neq{ }^{\prime} L$ ' or ' R '
2. uplo \neq 'U' or 'L'
3. $m<0$
4. $n<0$
5. $\mathrm{M} _\mathrm{A}<0$ and $m=0$ and side $=' \mathrm{~L}$ '; $\mathrm{M} _\mathrm{A}<0$ and $n=0$ and side $=$ ' R '; M_A < 1 otherwise
6. N_A < 0 and $m=0$ and side $=$ 'L'; N_A < 0 and $n=0$ and side = 'R'; N_A < 1 otherwise
7. $M B _A<1$
8. NB_A <1
9. RSRC_A < 0 or RSRC_A $\geq p$
10. CSRC_A <0 or CSRC_A $\geq q$
11. $i a<1$
12. $j a<1$
13. $\mathrm{M} _\mathrm{B}<0$ and ($m=0$ or $n=0$); M_B <1 otherwise
14. N_B < 0 and ($m=0$ or $n=0$); N_B < 1 otherwise
15. $M B$ B $B<1$
16. NB_B < 1
17. RSRC_B < 0 or RSRC_B $\geq p$
18. CSRC_B < 0 or CSRC_B $\geq q$
19. $i b<1$
20. $j b<1$
21. M_C < 0 and ($m=0$ or $n=0$); M_C <1 otherwise
22. N_C < 0 and ($m=0$ or $n=0$); N_C < 1 otherwise
23. $M B$ _C < 1
24. NB_C < 1
25. RSRC_C <0 or RSRC_C $\geq p$
26. CSRC_C < 0 or CSRC_C $\geq q$
27. ic < 1
28. jc < 1
29. CTXT_A \neq CTXT_B
30. CTXT_A \neq CTXT_C

Stage 5: If ($m \neq 0$ or side $\neq ' L^{\prime}$) and ($n \neq 0$ or side $\neq '^{\prime}$):

1. $i a>M _A$
2. $j a>$ N_A
3. ia+numa-1 > M_A
4. ja+numa-1 > N_A

$$
\text { where numa }=m \text { if side }=\text { ' } \mathrm{L} \text { ' and numa }=n \text { if side }=\text { 'R'. }
$$

If $m \neq 0$ and $n \neq 0$:

1. ib > M_B
2. $j b>N _B$
3. $i b+m-1>M _B$
4. $j b+n-1>N _B$
5. ic > M_C
6. $j c>\mathrm{N} _\mathrm{C}$
7. $i c+m-1>M _C$
8. $j c+n-1>$ N_C

Stage 6: If \boldsymbol{A} is contained within a single block, that is:

$$
\begin{aligned}
& \text { numa+mod }(i a-1, \text { MB_A }) \leq M B _A \\
& \text { numa+mod }(j a-1, \text { NB_A }) \leq N B _A \\
& \text { where: } \\
& \text { If side }=\text { 'L', numa }=m \\
& \text { If side }=\text { 'R', numa }=n
\end{aligned}
$$

and:

- If side $=$ ' L ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{B} must also contain the first column of the submatrix \boldsymbol{C}, that is, ibcol = iccol, where:

$$
\begin{aligned}
& \text { ibcol }=\bmod ((((j b-1) / \text { NB_B })+\text { CSRC_B }), q) \\
& \text { iccol }=\bmod \left(\left(\left((j c-1) / N B _C\right)+C S R C _C\right), q\right)
\end{aligned}
$$

- If side = 'R', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{B} must also contain the first row of the submatrix \boldsymbol{C}; that is, ibrow = icrow, where:

$$
\begin{aligned}
& \text { ibrow }=\bmod ((((i b-1) / \mathrm{MB} \text { _B })+\text { RSRC_B }), p) \\
& \text { icrow }=\bmod \left(\left(\left((i c-1) / \mathrm{MB} _\mathrm{C}\right)+\text { RSRC_C }\right), p\right)
\end{aligned}
$$

then:

- If side = ' L ':

1. $p>1$ and $m+\bmod \left(i b-1, M B B_{-}\right)>$MB_B 2
2. $p>1$ and $m+\bmod \left(i c-1, \mathrm{MB}_{-} \mathrm{C}\right)>\mathrm{MB}_{-} \mathrm{C}$

- If side = 'R':

1. $q>1$ and $n+\bmod \left(j b-1\right.$, NB_B $_{-}>$NB_B $_{-}$
2. $q>1$ and $n+\bmod \left(j c-1, N B _C\right)>N B _C$

If \boldsymbol{A} is not contained within a single block, or if \boldsymbol{A} is contained within a single block and:

- If side $=$ ' L ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{B} does not contain the first column of the submatrix \boldsymbol{C}, that is, ibcol $\neq i c c o l$, where:

$$
\begin{aligned}
& i b c o l=\bmod \left(\left(\left((j b-1) / N B _B\right)+C S R C _B\right), q\right) \\
& \left.i c c o l=\bmod \left(\left((j c-1) / N B _C\right)+C S R C _C\right), q\right)
\end{aligned}
$$

- If side = 'R', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{B} does not contain the first row of the submatrix \boldsymbol{C}; that is, ibrow \neq icrow, where:
ibrow $=\bmod ((($ (ib-1)/MB_B)+RSRC_B), p)
icrow $=\bmod \left(\left(\left((i c-1) / M B _C\right)+\right.\right.$ RSRC_C $\left.), p\right)$
then:

1. MB_A \neq NB_A
2. $\bmod \left(i a-1, M B _A\right) \neq 0$
3. $\bmod \left(j a-1, N B _A\right) \neq 0$

If side $=$ ' L ':
4. MB_B \neq NB_A
5. $M B _C \neq N B _A$
6. $\bmod \left(i b-1, M B _B\right) \neq 0$
7. $\bmod \left(i c-1, M B _C\right) \neq 0$

If side $=$ ' R ':
8. NB_B \neq MB_A
9. NB_C \neq MB_A
10. $\bmod (j b-1$, NB_B $) \neq 0$
11. $\bmod \left(j c-1, N B _C\right) \neq 0$

In all cases:

1. $\operatorname{LLD} _A<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. $\operatorname{LLD} _B<\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$
3. LLD_C < max(1, LOCp(M_C))

If side $=$ ' L ' and looping is required-that is, either of the following is true:
$n+\bmod \left(j b-1\right.$, NB_B $\left._{-}\right)>$NB_B $_{-}$
$n+\bmod \left(j c-1, \mathrm{NB}_{-} \mathrm{C}\right)>\mathrm{NB}_{-} \mathrm{C}$
then:
4. $N B _B \neq N B _C$
5. $\bmod \left(j b-1, N B _B\right) \neq \bmod \left(j c-1, N B _C\right)$.

If side $=$ ' L ':

6. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{B}; that is, iarow $\neq i b r o w$, where: iarow $=\bmod \left(\left(\left((i a-1) / M B _A\right)+\right.\right.$ RSRC_A $\left.), p\right)$ ibrow $=\bmod \left(\left(\left((i b-1) / \mathrm{MB}_{-} \mathrm{B}\right)+\right.\right.$ RSRC_B $\left.), p\right)$
7. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{C}; that is, iarow $\neq i$ icrow, where: iarow $=\bmod ((($ (ia-1)/MB_A)+RSRC_A), $p)$ icrow $=\bmod ((($ (c-1)/MB_C $)+$ RSRC_C $), p)$

If side $=$ ' R ' and looping is required-that is, either of the following is true:
$m+\bmod \left(i b-1\right.$, MB_B $\left.^{2}\right)>$ MB_B
$m+\bmod (i c-1, M B B C)>$ MB_C
then:
8. $M B _B \neq M B _C$
9. $\bmod \left(i b-1, M B _B\right) \neq \bmod \left(i c-1, M B _C\right)$.

If side = 'R':
10. In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{B}; that is, iacol $\neq i b c o l$, where:
iacol $=$ mod ((((ja-1)/NB_A)+CSRC_A), q)
ibcol $\left.=\bmod \left(\left((j b-1) / N B _B\right)+C S R C _B\right), q\right)$
11. In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{C}; that is, iacol \neq iccol, where:
iacol $=\bmod ((($ (ja-1)/NB_A)+CSRC_A), q)
$\left.i c c o l=\bmod \left(\left((j c-1) / N B _C\right)+C S R C _C\right), q\right)$
Example: This example computes $\boldsymbol{C}=\beta \boldsymbol{C}+\alpha \boldsymbol{B A}$ using a 2×2 process grid.
Call Statements and Input

PDSYMM

ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A	Desc_B	Desc_C
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	8	16	16
N	8	8	8
MB	2	4	4
NB	2	2	2
RSRC_	0	0	0
CSRC	0	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ LLD_B $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(\right.\right.$ M_B $^{-}$, MB_B $^{-}$, MYROW, RSRC_B, NPROW) $)$ LLD_C $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-} C, M B _C, M Y R O W, R S R C _C, N P R O W\right)\right)$ In this example, LLD_A $=4$ on all processes, and LLD_B = LLD_C $=8$ on all processes.			

Global symmetric matrix \boldsymbol{A} of order 8 with block size 2×2 :
B, D
1
2
3

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{A} :

p,q	0			1			
0	0.0-1.0	0.0	0.0	-1.0	0.0	0.0	0.0
	1.0	0.0	1.0	0.0	1.0	0.0	1.0
	. .	-1.0	0.0	-	.	0.0	0.0
	- -	.	1.0	-	-	0.0	0.0
1	- -	0.0	0.0	-1.0	-1.0	1.0	0.0
	- -	1.0	1.0	.	-1.0	0.0	1.0
	- .	-	-	.	-	0.0	0.0
	- -		-	-	-	.	0.0

Global general 16×8 matrix \boldsymbol{B} with block size 4×2 :

B, D	0	1	2	3
0	-1.0 0.0	$1.0-1.0$	1.01 .0	-1.0-1.0
	-1.0-1.0	1.00 .0	$1.0-1.0$	-1.0 1.0
	1.01 .0	-1.0 0.0	-1.0 0.0	1.00 .0
	0.0-1.0	$0.0 \quad 0.0$	$0.0 \quad 0.0$	0.0-1.0
1	0.01 .0	0.01 .0	0.01 .0	1.00 .0
	0.00 .0	1.00 .0	-1.0-1.0	0.00 .0
	1.01 .0	$0.0 \quad 0.0$	1.01 .0	0.0-1.0
	$0.0 \quad 0.0$	-1.0 0.0	0.01 .0	0.01 .0
2	0.00 .0	$0.0-1.0$	$1.0 \quad 1.0$	0.01 .0
	-1.0-1.0	1.00 .0	$0.0-1.0$	0.01 .0
	0.00 .0	0.01 .0	1.00 .0	0.00 .0
	0.00 .0	1.01 .0	0.0-1.0	0.00 .0
3	1.01 .0	-1.0 0.0	-1.0-1.0	1.01 .0
	0.00 .0	0.00 .0	1.00 .0	0.0-1.0
	0.01 .0	0.00 .0	$0.0 \quad 0.0$	0.00 .0
	-1.000	$-1.0 \quad 0.0$	0.01 .0	1.00 .0

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{B} :

p,q	0				1			
	-1.	0.0	1.0	1.0	1.0	-1.0	-1.0	-1.0
	-1.	-1.0	1.0	-1.0	1.0	0.0	-1.0	1.0
	1.	1.0	-1.0	0.0	-1.0	0.0	1.0	0.0
	0.	-1.0	0.0	0.0	0.0	0.0	0.0	-1.0
0	0.	0.0	1.0	1.0	0.0	-1.0	0.0	1.0
	-1.	-1.0	0.0	-1.0	1.0	0.0	0.0	1.0
	0.	0.0	1.0	0.0	0.0	1.0	0.0	0.0
	0.	0.0	0.0	-1.0	1.0	1.0	0.0	0.0
	0.	1.0	0.0	1.0	0.0	1.0	1.0	0.0
	0.	0.0	-1.0	-1.0	1.0	0.0	0.0	0.0
	1.	1.0	1.0	1.0	0.0	0.0	0.0	-1.0
	0.	0.0	0.0	1.0	-1.0	0.0	0.0	1.0
1	1.	1.0	-1.0	-1.0	-1.0	0.0	1.0	1.0
	0.	0.0	1.0	0.0	0.0	0.0	0.0	-1.0
	0.	1.0	0.0	0.0	0.0	0.0	0.0	0.0
	-1.	0.0	0.0	1.0	-1.0	0.0	1.0	0.0

Output:

Global general 16×8 matrix \boldsymbol{C} with block size 4×2 :

B, D	0	1	2	3
0	$\begin{array}{rr}-1.0 & 0.0 \\ 0.0 & 0.0\end{array}$	$\begin{array}{rr}0.0 & 1.0 \\ -1.0 & -1.0\end{array}$	$\begin{array}{rr}-2.0 & 0.0 \\ -1.0 & -2.0\end{array}$	1.0 1.0 1.0
	0.00 .0	1.01 .0	1.01 .0	$-1.01 .0$
	1.0-2.0	0.0-2.0	0.0-1.0	0.0-1.0
1	-1.0 3.0	0.01 .0	1.03 .0	0.02 .0
	-1.0-1.0	-1.0-3.0	1.0-1.0	1.00 .0
	-1.0 0.0	-1.0 2.0	-1.0 2.0	0.01 .0
	1.02 .0	1.03 .0	0.01 .0	-1.0 0.0
2	0.01 .0	1.04 .0	-2.0 0.0	$0.0-1.0$
	0.00 .0	0.0-2.0	0.0-2.0	1.0-1.0
	0.01 .0	-1.0 0.0	0.01 .0	0.01 .0
	-1.0 0.0	-2.0-3.0	1.00 .0	1.01 .0
3	0.00 .0	1.01 .0	1.00 .0	-1.0 1.0
	0.0-1.0	0.00 .0	-1.0 0.0	0.00 .0
		0.01 .0	0.01 .0	0.01 .0
	1.02 .0	3.02 .0	0.01 .0	$-1.0 \quad 0.0$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{C} :

PDTRMM—Triangular Matrix-Matrix Product

This subroutine computes one of the following matrix-matrix products:

1. $B \leftarrow \alpha A B$
2. $\boldsymbol{B} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}$
3. $B \leftarrow \alpha B A$
4. $\boldsymbol{B} \leftarrow \alpha \boldsymbol{B} \boldsymbol{A}^{\top}$
where, in the formulas above:
\boldsymbol{A} represents the global triangular submatrix:

- For side $=$ ' L ', it is $\boldsymbol{A}_{i a: i a+m-1, \text { ja:ja+m-1 }}$.
- For side $=$ ' R ', it is $\boldsymbol{A}_{\text {ia:ia } i+n-1, \text { ja:ja }+n-1}$.
\boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+m-1, j b: j b+n-1}$. α is a scalar.

Note: No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

If $m=0$ or $n=0$, no computation is performed, and the subroutine returns after doing some parameter checking.

See references [14] and [15].

Table 51. Data Types	
$\alpha, \boldsymbol{A}, \boldsymbol{B}$	Subprogram
Long-precision real	PDTRMM

Syntax

Fortran	CALL PDTRMM (side, uplo, transa, diag, m, n, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b)
\mathbf{C} and \mathbf{C}_{++}	pdtrmm (side, uplo, transa, diag, m, n, alpha, $a, i a, j a, d e s c _a, b, i b, j b$, desc_b);

On Entry
side
indicates whether \boldsymbol{A} is located to the left or right of \boldsymbol{B} in the equation used for this computation, where:

If side $=$ ' L ', \boldsymbol{A} is to the left of \boldsymbol{B}, resulting in equation 1 or 2 .
If side $=$ ' R ', \boldsymbol{A} is to the right of \boldsymbol{B}, resulting in equation 3 or 4 .
Scope: global
Specified as: a single character; side $=$ 'L' or 'R'.
uplo
indicates whether the upper or lower triangular part of the global triangular submatrix \boldsymbol{A} is referenced, where:
If uplo $=$ ' U ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.

transa

indicates the form of matrix \boldsymbol{A} to use in the computation, where:
If transa $=$ ' N ', \boldsymbol{A} is used in the computation, resulting in equation 1 or 3.
If transa $=$ ' $\mathrm{T}^{\prime}, \boldsymbol{A}^{\mathrm{T}}$ is used in the computation, resulting in equation 2 or 4 .
Scope: global
Specified as: a single character; transa $=$ ' N ' or ' T '.
diag
indicates the characteristics of the diagonal of matrix \boldsymbol{A}, where:
If diag $=$ ' U ', \boldsymbol{A} is a unit triangular matrix.
If $\operatorname{diag}={ }^{\prime} \mathrm{N}^{\prime}, \boldsymbol{A}$ is not a unit triangular matrix.
Scope: global
Specified as: a single character; $d i a g=$ ' U ' or ' N '.
m
is the number of rows in submatrix \boldsymbol{B}, and:
If side $=$ ' L ', it is the number of rows and columns in submatrix \boldsymbol{A} used in the computation.

Scope: global
Specified as: a fullword integer; $m \geq 0$.
n
is the number of columns in submatrix \boldsymbol{B}, and:
If side $=$ ' R ', it is the number of rows and columns in submatrix \boldsymbol{A} used in the computation.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
alpha
is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 51 on page 284.
a
is the local part of the global triangular matrix \boldsymbol{A}. This identifies the first
element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, assuming the following:
If side $=$ 'L', numa $=m$
If side $=$ 'R', numa $=n$
the leading LOCp(ia+numa-1) by LOCq(ja+numa-1) part of the local array A must contain the local pieces of the leading ia+numa-1 by ja+numa-1 part of the global matrix, and:

- If uplo $=$ ' U ', the leading numa \times numa upper triangular part of the global triangular submatrix $\boldsymbol{A}_{\text {ia:ia+numa-1, ja:ja+numa-1 }}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading numa \times numa lower triangular part of the global triangular submatrix $\boldsymbol{A}_{\text {ia:ia+numa-1, ja:ja+numa-1 }}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

PDTRMM

Note: No data should be moved to form $\boldsymbol{A}^{\boldsymbol{T}}$; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 51 on page 284. Details about the square block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and ia+numa-1 $\leq M _A$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq N _A$ and ja+numa-1 \leq N_A. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $m=0$ and side $=$ ' L ' or $n=0$ and side $=$ ' R ': $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If $m=0$ and side $=' \mathrm{~L}$ ' or $n=0$ and side $=$ 'R': $\mathrm{N} _A \geq 0$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$N B _A \geq 1$	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A)	Local

Specified as: an array of (at least) length 9, containing fullword integers.
is the local part of the global general matrix \boldsymbol{B}. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on ib, jb, desc_b, p, q, myrow, and mycol; therefore, the leading LOCp($(i b+m-1)$ by LOCq(jb+n-1) part of the local array B must contain the local pieces of the leading $i b+m-1$ by $j b+n-1$ part of the global matrix.

Scope: local

Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 51 on page 284. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global

Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+m-1 \leq M _B$.
is the column index of the global matrix \boldsymbol{B}, identifying the first column of the submatrix B.
Scope: global
Specified as: a fullword integer; $1 \leq j b \leq N _B$ and $j b+n-1 \leq N _B$. desc_b
is the array descriptor for global matrix \boldsymbol{B}, described in the following table:

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B=1	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $m=0$ or $n=0$: $M _B \geq 0$ Otherwise: $M _B \geq 1$	Global
4	N_B	Number of columns in the global matrix	If $m=0$ or $n=0$: N_B ≥ 0 Otherwise: $N _B \geq 1$	Global
5	MB_B	Row block size	MB_B ≥ 1	Global
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B < p	Global
8	CSRC_B	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_B $<q$	Global
9	LLD_B	The leading dimension of the local array	LLD_B $\geq \max \left(1, \mathrm{LOCp}\left(\mathrm{M} _\mathrm{B}\right)\right.$)	Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

b
is the updated local part of the global matrix \boldsymbol{B}, containing the results of the computation.

Scope: local
Returned as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 51 on page 284.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the side, uplo, transa, and diag arguments.
2. If you specify ' C ' for transa, it is interpreted as though you specified ' T '.
3. The matrices must have no common elements; otherwise, results are unpredictable.
4. PDTRMM assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit triangular matrices, the elements of the diagonal are assumed to be one. When using an upper or lower triangular matrix, the unreferenced elements in the lower and upper triangular part, respectively, are assumed to be zero.
5. The NUMROC utility subroutine can be used to determine the values of LOCp(M_) and LOCq(N_) used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
6. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
7. The following values must be equal: CTXT_A = CTXT_B.
8. If \boldsymbol{A} is not contained within a single block, that is:
```
numa+mod(ia-1, MB_A) > MB_A
numa+mod(ja-1,NB_A) > NB_A
where:
    If side = 'L', numa = m
    If side = 'R', numa = n
```

then:

- The global triangular matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
- The global triangular matrix \boldsymbol{A} must be aligned on a block boundary, that is:
ia-1 must be a multiple of MB_A.
ja-1 must be a multiple of NB_A.

9. If side $=$ ' L ':

- If \boldsymbol{A} is not contained within a single block, then:
- The following block sizes must be equal: $M B _B=N B _A$.
- The global matrix \boldsymbol{B} must be aligned on a block row boundary; that is, $i b-1$ must be a multiple of MB_B.
- In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{B}; that is, iarow = ibrow, where:

```
iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
ibrow = mod((((ib-1)/MB_B)+RSRC_B), p)
```

- If \boldsymbol{A} is contained within a single block, then \boldsymbol{B} must be a block row matrix; that is, if $p>1$:

$$
m+\bmod \left(i b-1, \text { MB_B }_{-}\right) \leq M B _B
$$

10. If side $=$ ' R ':

- If \boldsymbol{A} is not contained within a single block, then:
- The following block sizes must be equal: NB_B = MB_A
- The global matrix \boldsymbol{B} must be aligned on a block column boundary; that is, $j b-1$ must be a multiple of NB_B.
- In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrix \boldsymbol{B}, that is, iacol = ibcol, where:

```
iacol = mod((((ja-1)/NB_A)+CSRC_A), q)
ibcol = mod((((jb-1)/NB_B)+CSRC_B), q)
```

- If \boldsymbol{A} is contained within a single block, then \boldsymbol{B} must be a block column matrix; that is, if $q>1$:

$$
n+\bmod \left(j b-1, N B _B\right) \leq N B _B
$$

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDTRMM was called from outside the process grid.

Stage 4

1. side \neq ' L ' or 'R'
2. uplo \neq 'U' or 'L'
3. transa \neq ' N ', 'T', or ' C '
4. $\operatorname{diag} \neq ' \mathrm{~N}$ ' or ' U '
5. $m<0$
6. $n<0$
7. $\mathrm{M} _\mathrm{A}<0$ and $m=0$ and side $=' \mathrm{~L}$ '; $\mathrm{M} _\mathrm{A}<0$ and $n=0$ and side $=$ ' R^{\prime}; M_A < 1 otherwise
8. N_A < 0 and $m=0$ and side $=$ 'L'; N_A < 0 and $n=0$ and side $=$ 'R'; N_A < 1 otherwise
9. $M B _A<1$
10. NB_A < 1
11. $\mathrm{M} _\mathrm{B}<0$ and ($m=0$ or $n=0$); $\mathrm{M} _\mathrm{B}<1$ otherwise
12. N_B < 0 and ($m=0$ or $n=0$); N_B <1 otherwise
13. $M B$ B <1
14. NB_B < 1
15. RSRC_A <0 or RSRC_A $\geq p$
16. CSRC_A <0 or CSRC_A $\geq q$
17. RSRC_B < 0 or RSRC_B $\geq p$
18. CSRC_B <0 or CSRC_B $\geq q$
19. $i a<1$
20. $j a<1$
21. $i b<1$
22. $j b<1$
23. CTXT_A \neq CTXT_B

Stage 5

1. MB_A \neq NB_A

If \boldsymbol{A} is not contained within a single block, that is:

$$
\begin{aligned}
& \text { numa+mod }(i a-1, \text { MB_A })>\text { MB_A } \\
& \text { numa+mod }(j a-1, \text { NB_A) }>\text { NB_A } \\
& \text { where: } \\
& \text { If side }=' \text { '' }, \text { numa }=m \\
& \text { If side }=\text { 'R', numa }=n
\end{aligned}
$$

and:
2. side $=$ ' L ' and MB_ $B \neq$ NB_A $^{\prime}$
3. side $=$ ' R ' and $N B_{-} B \neq M B _A$

If ($m \neq 0$ or side $\neq '^{\prime}$) and ($n \neq 0$ or side $\neq '^{\prime} \mathrm{R}^{\prime}$):

1. $i a>M _A$
2. $j a>N _A$
3. ia+numa-1 > M_A
4. ja+numa-1 > N_A
where numa $=m$ if side $=' \mathrm{~L}$ ' and numa $=n$ if side $=$ ' R^{\prime}.
If $m \neq 0$ and $n \neq 0$:
5. ib > M_B
6. $j b>N-B$
7. $i b+m-1>M _B$
8. $j b+n-1>$ N_B

If \boldsymbol{A} is not contained in a single block:

1. $\bmod \left(i a-1, M B _A\right) \neq 0$
2. $\bmod \left(j a-1, N B _A\right) \neq 0$
3. side $=$ 'L' and mod $\left(i b-1, M B _B\right) \neq 0$
4. side $=$ 'R' and $\bmod \left(j b-1, N B _B\right) \neq 0$

Stage 6

1. $\operatorname{LLD} _A<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. $\operatorname{LLD_ B}<\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$

If side $=$ ' L ':

3. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{B}; that is, iarow $\neq i b r o w$, where:
iarow $=\bmod ((($ (ia-1)/MB_A $)+$ RSRC_A $), p)$
ibrow $=\bmod ((((i b-1) /$ MB_B $)+$ RSRC_B $), p)$
4. If \boldsymbol{A} is contained in a single block:

$$
p>1 \text { and } m+\bmod \left(i b-1, \text { MB_B }_{-}\right)>\text {MB_B }
$$

If side = 'R':
5. In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{B}; that is, iacol \neq ibcol, where:

```
iacol = mod((((ja-1)/NB_A)+CSRC_A),q)
ibcol = mod((((jb-1)/NB_B)+CSRC_B),q)
```

6. If \boldsymbol{A} is contained in a single block:

$$
q>1 \text { and } n+\bmod \left(j b-1, \text { NB_B }_{-}\right)>\text {NB_B }
$$

Example: This example computes $\boldsymbol{B}=\alpha \boldsymbol{A}$ using a 2×2 process grid.

Call Statements and Input

```
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_B
DTYPE_	1	1
CTXT_ $_{-}$	icontxt	icontxt
M_{-}	5	5
$\mathrm{~N}_{-}$	5	3
MB_{-}	2	2
NB_{-}	2	2
RSRC_	0	0

	Desc_A	Desc_B
CSRC_	0	0
LLD	See below ${ }^{2}$	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ LLD_B $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} B, M_{-}^{-} B\right.\right.$, MYROW, RSRC_B, NPROW) $)$ In this example, LLD_A $=$ LLD_B $=3$ on P_{00} and P_{01}, and LLD_A $=$ LLD_B $=2$ on P_{10} and P_{11}.		

Global triangular matrix \boldsymbol{A} of order 5 is upper triangular with block size 2×2 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

Global rectangular 5×3 matrix \boldsymbol{B} with block size 2×2 :

B, D	0	1
0	2.03 .0	1.0
	5.05 .0	4.0
1	0.01 .0	2.0
	3.01 .0	-3.0
2	-1.0 2.0	1.0

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{B} :

p,q	0		1
0	2.0	3.0	1.0
	5.0	5.0	4.0
	-1.0	2.0	1.0
1	0.0	1.0	2.0
	3.0	1.0	-3.0

Output:
Global rectangular 5×3 matrix \boldsymbol{B} with block size 2×2 :

B, D	0		1
0	6.0	10.0	-2.0
	-16.0	-1.0	6.0
1	-2.0	1.0	-4.0
	14.0	0.0	-14.0
2	-1.0	2.0	1.0

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{B} :

p,q	0		1
0	6.0	10.0	-2.0
	-16.0	-1.0	6.0
	-1.0	2.0	1.0
1	-2.0	1.0	-4.0
	14.0	0.0	-14.0

PDTRSM—Solution of Triangular System of Equations with Multiple Right-Hand Sides

This subroutine performs one of the following solves for a triangular system of equations with multiple right-hand sides:

Solution	Equation
1. $\boldsymbol{B} \leftarrow \alpha\left(\boldsymbol{A}^{-1}\right) \boldsymbol{B}$	$\boldsymbol{A X}=\alpha \boldsymbol{B}$
2. $\boldsymbol{B} \leftarrow \alpha\left(\boldsymbol{A}^{-\top}\right) \boldsymbol{B}$	$\boldsymbol{A}^{\top} \boldsymbol{X}=\alpha \boldsymbol{B}$
3. $\boldsymbol{B} \leftarrow \alpha \boldsymbol{B}(\boldsymbol{A}-1)$	$\boldsymbol{X} \boldsymbol{A}=\alpha \boldsymbol{B}$
4. $\boldsymbol{B} \leftarrow \alpha \boldsymbol{B}\left(\boldsymbol{A}^{-\top}\right)$	$\boldsymbol{X} \boldsymbol{A}^{\top}=\alpha \boldsymbol{B}$

where, in the formulas above:
\boldsymbol{A} represents the global triangular submatrix:

- For side $=$ ' L ', it is $\boldsymbol{A}_{\text {ia:ia }}$ im-1, ja:ja+m-1 .
- For side $=$ ' R ', it is $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$.
\boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+m-1, j b: j b+n-1}$. α is a scalar.

Notes:

1. The term \boldsymbol{X} used in the systems of equations listed above represents the output solution matrix. It is important to note that, in this subroutine, the solution matrix is actually returned in the input-output argument b.
2. No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

If $m=0$ or $n=0$, no computation is performed, and the subroutine returns after doing some parameter checking.

See references [14] and [15].

Table 52. Data Types	
$\alpha, \boldsymbol{A}, \boldsymbol{B}$	Subprogram
Long-precision real	PDTRSM

Syntax

Fortran	CALL PDTRSM (side, uplo, transa, diag, m, n, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b)
C and C++	pdtrsm (side, uplo, transa, diag, m, n, alpha, $a, i a, j a$, desc_a, b, ib, jb, desc_b);

On Entry
side
indicates whether \boldsymbol{A} is located to the left or right of \boldsymbol{B} in the system of equations, where:
If side $=$ ' L ', \boldsymbol{A} is to the left of \boldsymbol{B}, resulting in solution 1 or 2 .
If side $=$ ' R ', \boldsymbol{A} is to the right of \boldsymbol{B}, resulting in solution 3 or 4 .
Scope: global
Specified as: a single character; side = 'L' or 'R'.
uplo
indicates whether the upper or lower triangular part of the global triangular submatrix \boldsymbol{A} is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
transa
indicates the form of matrix \boldsymbol{A} used in the system of equations, where:
If transa $=$ ' N ', \boldsymbol{A} is used in the system of equations, resulting in solution 1 or 3.

If transa $={ }^{\prime} \mathrm{T}^{\prime}, \boldsymbol{A}^{\top}$ is used in the system of equations, resulting in solution 2 or 4.

Scope: global
Specified as: a single character; transa $={ }^{\prime} \mathrm{N}$ ' or ' T '.
diag
indicates the characteristics of the diagonal of matrix \boldsymbol{A}, where:
If diag $=$ ' U ', \boldsymbol{A} is a unit triangular matrix.
If diag $={ }^{\prime} \mathrm{N}$ ', \boldsymbol{A} is not a unit triangular matrix.
Scope: global
Specified as: a single character; diag = 'U' or ' N '.
is the number of rows in submatrix \boldsymbol{B}, and:
If side $=$ ' L ', it is the number of rows and columns in submatrix \boldsymbol{A} used in the computation.
Scope: global
Specified as: a fullword integer; $m \geq 0$.
n
is the number of columns in submatrix \boldsymbol{B}, and:
If side $=$ ' R ', it is the number of rows and columns in submatrix \boldsymbol{A} used in the computation.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
alpha
is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 52 on page 294.
a
is the local part of the global triangular matrix \boldsymbol{A}, used in the system of equations. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, assuming the following:

If side $=$ 'L', numa $=m$
If side $=$ 'R', numa $=n$

PDTRSM

the leading LOCp(ia+numa-1) by LOCq(ja+numa-1) part of the local array A must contain the local pieces of the leading ia+numa-1 by ja+numa-1 part of the global matrix, and:

- If uplo $=$ ' U ', the leading numa \times numa upper triangular part of the global triangular submatrix $\boldsymbol{A}_{\text {ia:ia+numa-1, jaja+numa-1 }}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ 'L', the leading numa \times numa lower triangular part of the global triangular submatrix $\boldsymbol{A}_{\text {ia:ia+numa-1, ja:jaanuma-1 }}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Note: No data should be moved to form \boldsymbol{A}^{\top}; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.
Scope: local
Specified as: an LLD_A by (at least) $\operatorname{LOCq}\left(N _A\right)$ array, containing numbers of the data type indicated in Table 52 on page 294. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
$i a$
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and $i a+n u m a-1 \leq M _A$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer; $1 \leq j a \leq N _A$ and ja+numa-1 \leq N_A. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If side $=$ ' L ' and $m=0$: $M _A \geq 0$ If side $=$ ' R ' and $n=0$: $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If side $=$ ' L ' and $m=0$: $N _A \geq 0$ If side $=$ ' R ' and $n=0$: N_A ≥ 0 Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$N B _A \geq 1$	Global

desc_a	Name	Description	Limits	Scope
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A <p	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A <q	Global
9	LLD_A	The leading dimension of the local array	LLD_A $\geq \max \left(1, L O C p\left(M _A\right)\right)$	Local

Specified as: an array of (at least) length 9, containing fullword integers.
b
is the local part of the global general matrix \boldsymbol{B}, containing the right-hand sides of the triangular system to be solved. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on $i b, j b$, desc_b, p, q, myrow, and mycol; therefore, the leading LOCp($(i b+m-1)$ by LOCq(jb+ $n-1)$ part of the local array B must contain the local pieces of the leading $i b+m-1$ by $j b+n-1$ part of the global matrix.

Scope: local

Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 52 on page 294. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global
Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+m-1 \leq M _B$.
$j b$
is the column index of the global matrix \boldsymbol{B}, identifying the first column of the submatrix B.
Scope: global
Specified as: a fullword integer; $1 \leq j b \leq N _B$ and $j b+n-1 \leq N _B$.
desc_b
is the array descriptor for global matrix \boldsymbol{B}, described in the following table:

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B=1	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If side $=$ 'L' and $m=0:$ M_B ≥ 0 If side $=$ 'R' and $n=0:$ M_B ≥ 0 Otherwise: M_B ≥ 1	Global

PDTRSM

desc_b	Name	Description	Limits	Scope
4	N_B	Number of columns in the global matrix	N_B ≥ 1	Global
5	MB_B	Row block size	MB_B ≥ 1	Global
6	NB_B	Column block size	If side $=$ ' L ' and $m=0$: $N _B \geq 0$ If side $=$ ' R ' and $n=0$: $N _B \geq 0$ Otherwise: $N _B \geq 1$	Global
7	RSRC_B	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B < p	Global
8	CSRC_B	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_B $<q$	Global
9	LLD_B	The leading dimension of the local array	LLD_B \geq max(1,LOCp(M_B) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

b
is the updated local part of the global matrix \boldsymbol{B}, containing the n solution vectors of length m.

Scope: local
Returned as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 52 on page 294.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the side, uplo, transa, and diag arguments.
2. If you specify ' C ' for transa, it is interpreted as though you specified ' T '.
3. The matrices must have no common elements; otherwise, results are unpredictable.
4. PDTRSM assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit triangular matrices, the elements of the diagonal are assumed to be one. When using an upper or lower triangular matrix, the unreferenced elements in the lower and upper triangular part, respectively, are assumed to be zero.
5. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M} _\right)$and $\mathrm{LOCq}\left(\mathrm{N} _\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
6. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
7. The following values must be equal: CTXT_A = CTXT_B.
8. If looping is required-that is, either of the following is true:
```
side = 'L' and m+mod(ia-1,MB_A) > MB_A
side = 'R' and n+mod(ja-1, NB_A) > NB_A
```

then the global triangular matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
9. If \boldsymbol{A} is not contained within a single block, that is:

```
numa+mod(ia-1, MB_A) > MB_A
numa+mod(ja-1, NB_A) > NB_A
where:
    If side = 'L', numa =m
    If side = 'R', numa = n
```

then the global triangular matrix \boldsymbol{A} must be aligned on a block boundary, that is:
$i a-1$ must be a multiple of MB_A.
$j a-1$ must be a multiple of NB_A.
10. If side $=$ ' L ':

- If \boldsymbol{A} is not contained within a single block, then:
- The following block sizes must be equal: MB_B = NB_A
- The global matrix \boldsymbol{B} must be aligned on a block row boundary; that is, ib-1 must be a multiple of MB_B.
- In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{B}; that is, iarow = ibrow, where:

```
iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
ibrow = mod((((ib-1)/MB_B)+RSRC_B), p)
```

11. If side $=$ ' R ':

- If \boldsymbol{A} is not contained within a single block, then:
- The following block sizes must be equal: NB_B = MB_A
- The global matrix \boldsymbol{B} must be aligned on a block column boundary; that is, $j b-1$ must be a multiple of NB_B.
- In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrix \boldsymbol{B}, that is, iacol = ibcol, where:

$$
\begin{aligned}
& i a c o l=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& i b c o l=\bmod \left(\left(\left((j b-1) / \text { NB_B }^{2}\right)+\text { CSRC_B }\right), q\right)
\end{aligned}
$$

12. If \boldsymbol{A} is contained within a single block, then:

- If side $=$ ' L ', then \boldsymbol{B} must be a block row matrix; that is, if $p>1$:

$$
m+\bmod \left(i b-1, \mathrm{MB}_{-} \mathrm{B}\right) \leq \mathrm{MB} _\mathrm{B}
$$

- If side $=$ ' R ', then \boldsymbol{B} must be a block column matrix; that is, if $q>1$:
$n+\bmod \left(j b-1, N B _B\right) \leq N B _B$

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors
Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDTRSM was called from outside the process grid.

Stage 4

1. side \neq 'L' or 'R'
2. uplo \neq ' U ' or ' L '
3. transa $\neq ' \mathrm{~N}$ ', 'T', or 'C'
4. $\operatorname{diag} \neq$ ' N ' or ' U '
5. $m<0$
6. $n<0$
7. $\mathrm{M} _\mathrm{A}<0$ and $m=0$ and side $=$ 'L'; M_A <0 and $n=0$ and side $=$ ' R ';

$$
\text { M_A < } 1 \text { otherwise }
$$

8. N_A < 0 and $m=0$ and side $=$ 'L'; N_A <0 and $n=0$ and side = 'R'; N_A < 1 otherwise
9. $M B _A<1$
10. NB_A < 1
11. $\mathrm{M} _\mathrm{B}<0$ and ($m=0$ or $n=0$); $\mathrm{M} _\mathrm{B}<1$ otherwise
12. $\mathrm{N} _\mathrm{B}<0$ and ($m=0$ or $n=0$); $\mathrm{N} _\mathrm{B}<1$ otherwise
13. $\mathrm{MB}_{-} \mathrm{B}<1$
14. NB_B < 1
15. RSRC_A <0 or RSRC_A $\geq p$
16. CSRC_A < 0 or CSRC_A $\geq q$
17. RSRC_B < 0 or RSRC_ $\mathrm{B} \geq p$
18. CSRC_B <0 or CSRC_B $\geq q$
19. $i a<1$
20. $j a<1$
21. $i b<1$
22. $j b<1$
23. CTXT_A \neq CTXT_B

Stage 5: If \boldsymbol{A} is not contained within a single block, that is:
numa+mod(ia-1, MB_A) > MB_A numa+mod(ja-1, NB_A) > NB_A where:

If side $=$ 'L', numa $=m$
If side $=$ 'R', numa $=n$
then:

1. MB_A \neq NB_A
2. side = 'L' and MB_B \neq NB_A
3. side $=$ 'R' and NB_B $\neq M B _A$

If ($m \neq 0$ or side $\neq ' \mathrm{~L}$ ') and ($n \neq 0$ or side $\neq \mathrm{R}^{\prime}$):

1. $i a>M _A$
2. $j a>N _A$
3. ia+numa-1 > M_A
4. ja+numa-1 > N_A
where numa $=m$ if side $=$ ' L ' and numa $=n$ if side $=$ ' R '.
If $m \neq 0$ and $n \neq 0$:
5. $i b>M-B$
6. $j b>N+B$
7. $i b+m-1>M _B$
8. $j b+n-1>N _B$

If \boldsymbol{A} is not contained in a single block:

1. $\bmod \left(i a-1, M B _A\right) \neq 0$
2. $\bmod \left(j a-1, N B _A\right) \neq 0$
3. side $=$ 'L' and $\bmod \left(i b-1, M B _B\right) \neq 0$
4. side $='$ R' and $\bmod \left(j b-1, N B _B\right) \neq 0$

Stage 6

1. $\operatorname{LLD} _A<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. $\operatorname{LLD} _B<\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$

If side $=$ ' L ':

1. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{B}; that is, iarow \neq ibrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ibrow }=\bmod \left(\left(\left((i b-1) / M B _B\right)+\text { RSRC_B }\right), p\right)
\end{aligned}
$$

2. If \boldsymbol{A} is contained in a single block:

$$
p>1 \text { and } m+\bmod \left(i b-1, \text { MB_B }^{2}\right)>\text { MB_B }
$$

If side = 'R':

1. In the process grid, the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix \boldsymbol{B}; that is, iacol $\neq i b c o l$, where:

$$
\begin{aligned}
& \text { iacol }=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& i b c o l=\bmod \left(\left(\left((j b-1) / N B _B\right)+C S R C _B\right), q\right)
\end{aligned}
$$

2. If \boldsymbol{A} is contained in a single block:

$$
q>1 \text { and } n+\bmod (j b-1, \text { NB_B })>\text { NB_B }
$$

Example: This example shows the solution $\boldsymbol{B} \leftarrow \alpha\left(\boldsymbol{A}^{-1}\right) \boldsymbol{B}$ using a 2×2 process grid.

PDTRSM

Call Statements and Input

```
ORDER = 'R'
NPROW \(=2\)
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
CALL PDTRSM (
SIDE UPLO \(\quad\) TRANSA DIAG \({ }^{\text {I }}\)
```


	Desc_A	Desc_B
DTYPE_	1	1
CTXT_ $_{-}$	ccontxt 1	icontxt 1
M_{-}	5	5
$\mathrm{~N}_{-}$	5	3
MB_ 2	2	2
NB_ $^{\text {RSRC_ }}$	2	2
CSRC_	0	0
LLD_	0	0
See below 2	See below 2	

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$

In this example, LLD_A $=$ LLD_B $=3$ on P_{00} and P_{01}, and
LLD_A $=$ LLD_B $=2$ on P_{10} and P_{11}.

Global triangular matrix \boldsymbol{A} of order 5 is upper triangular with block size 2×2 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

Global general 5×3 matrix \boldsymbol{B} with block size 2×2 :

B, D	0		1
0	6.0	10.0	-2.0
	-16.0	-1.0	6.0
1	-2.0	1.0	-4.0
	14.0	0.0	-14.0
2	-1.0	2.0	1.0

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for B :

Output:

Global general 5×3 matrix \boldsymbol{B} with block size 2×2 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for B :

p,q	0		1
0	2.0	3.0	1.0
	5.0	5.0	4.0
	-1.0	2.0	1.0
1	0.0	1.0	2.0
	3.0	1.0	-3.0

PDSYRK—Rank-K Update of a Real Symmetric Matrix

This subroutine computes one of the following rank-k updates:

1. $\boldsymbol{C} \leftarrow \alpha \boldsymbol{A A}^{\top}+\beta \boldsymbol{C}$
2. $C \leftarrow \alpha A^{\top} \boldsymbol{A}+\beta \boldsymbol{C}$
where, in the formulas above:
\boldsymbol{A} represents the global general submatrix:

- For trans $=$ ' N ', it is $\boldsymbol{A}_{\text {ia:ia }}$ 立-1, ja:ja+k-1 .
- For trans $=$ ' T ', it is $\boldsymbol{A}_{\text {ia:ia } a-k-1, j a: j a+n-1}$.
\boldsymbol{C} represents the global symmetric submatrix $\boldsymbol{C}_{i c: i c+n-1, j c: j+n-1}$. α and β are scalars.

Note: No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $n=0$
- β is one, and α is zero or $k=0$.

See references [14] and [15].

Table 53. Data Types	
$\alpha, \beta, \boldsymbol{A}, \boldsymbol{C}$	Subprogram
Long-precision real	PDSYRK

Syntax

Fortran	CALL PDSYRK (uplo, trans, n, k, alpha, a, ia, ja, desc_a, beta, $c, i c, j c$, desc_c)
\mathbf{C} and \mathbf{C}_{++}	pdsyrk (uplo, trans, n, k, alpha, $a, i a, j a, d e s c _a$, beta, $c, i c, j c, d e s c _c$);

On Entry
uplo
indicates whether the upper or lower triangular part of the symmetric submatrix \boldsymbol{C} is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.

Scope: global

Specified as: a single character; uplo = 'U' or 'L'.
trans
indicates which computation is performed, where:
If trans $=$ ' N ', the computation in equation 1 is performed.
If trans $=$ ' T ', the computation in equation 2 is performed.
Scope: global
Specified as: a single character; trans $=$ ' N ' or ' T '.
n
is the order of the global symmetric submatrix \boldsymbol{C} used in the computation, and: If trans $=$ ' N ', it is the number of rows in submatrix \boldsymbol{A} used in the computation.
If trans $=$ ' T ', it is the number of columns in submatrix \boldsymbol{A} used in the computation.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
k
has the following meaning:
If trans $=$ ' N ', it is the number of columns in submatrix \boldsymbol{A} used in the computation.
If trans $=$ ' T ', it is the number of rows in submatrix \boldsymbol{A} used in the computation.
Scope: global
Specified as: a fullword integer; $k \geq 0$.
alpha
is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 53 on page 305.
a
is the local part of the global general matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore:

- If trans = ' N ', the leading LOCp($i a+n-1$) by LOCq(ja+k-1) part of the local array A must contain the local pieces of the leading ia+n-1 by ja+k-1 part of the global matrix.
- If trans $=$ ' T ', the leading LOCp(ia+k-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading $i a+k-1$ by $j a+n-1$ part of the global matrix.

Note: No data should be moved to form \boldsymbol{A}^{\top}; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.
Scope: local
Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 53 on page 305. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$, and:
If trans $=$ ' N ', then $i a+n-1 \leq \mathrm{M} _\mathrm{A}$.
If trans $=$ ' T ', then $i a+k-1 \leq M _$.
ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer; $1 \leq j a \leq N _A$, and:
If trans $=$ ' N ', then $j a+k-1 \leq N _A$.
If trans $=$ ' T ', then $j a+n-1 \leq N _A$.
desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0$ or $k=0$: $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If $n=0$ or $k=0$: $N _A \geq 0$ Otherwise: $\mathrm{N} _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$N B _A \geq 1$	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A < p	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A))	Local

Specified as: an array of (at least) length 9, containing fullword integers. beta
is the scalar β.

Scope: global

Specified as: a number of the data type indicated in Table 53 on page 305. c
is the local part of the global symmetric matrix \boldsymbol{C}. This identifies the first element of the local array C. This subroutine computes the location of the first element of the local subarray used, based on ic, jc, desc_c, p, q, myrow, and mycol; therefore, the leading LOCp(ic+n-1) by LOCq(jc+n-1) part of the local array C must contain the local pieces of the leading $i c+n-1$ by $j c+n-1$ part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global symmetric submatrix $\boldsymbol{C}_{i c: i c+n-1, j c: j c+n-1}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global symmetric submatrix $\boldsymbol{C}_{i c: i c+n-1, j c: j+n-1}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

When β is zero, \boldsymbol{C} need not be set on input.
Scope: local
Specified as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 53 on page 305. Details about the block-cyclic data distribution of global matrix \boldsymbol{C} are stored in desc_c.
ic
is the row index of the global matrix \boldsymbol{C}, identifying the first row of the submatrix c.

Scope: global
Specified as: a fullword integer; $1 \leq i c \leq M _C$ and $i c+n-1 \leq M _C$.
is the column index of the global matrix \boldsymbol{C}, identifying the first column of the submatrix \boldsymbol{C}.

Scope: global

Specified as: a fullword integer; $1 \leq j c \leq N _C$ and $j c+n-1 \leq N _C$. desc_c
is the array descriptor for global matrix \boldsymbol{C}, described in the following table:

desc_c	Name	Description	Limits	Scope
1	DTYPE_C	Descriptor type	DTYPE_C=1	Global
2	CTXT_C	BLACS context	Valid value, as returned by BLACS_GRIDIITT or BLACS_GRIDMAP	Global
3	M_C	Number of rows in the global matrix	If $n=0:$ M_C ≥ 0 Otherwise: M_C ≥ 1	Global
4	N_C	Number of columns in the global matrix	If $n=0:$ N_C ≥ 0 Otherwise: N_C ≥ 1	Global
5	MB_C	Row block size	MB_C ≥ 1	Global
6	NB_C	Column block size	NB_C ≥ 1 7 The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_C $<p$
8	CSRC_C	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_C $<q$	Global
9	LLD_C	The leading dimension of the local array	LLD_C \geq max(1,LOCp(M_C))	Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

c
is the updated local part of the global symmetric matrix \boldsymbol{C}, containing the results of the computation.

Scope: local

Returned as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 53 on page 305.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the uplo and trans arguments.
2. If you specify ' C ' for the trans argument, it is interpreted as though you specified 'T'.
3. The matrices must have no common elements; otherwise, results are unpredictable.
4. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$and $\operatorname{LOCq}\left(\mathrm{N}_{-}\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
5. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
6. The following values must be equal: CTXT_A = CTXT_C.
7. If \boldsymbol{C} is not contained within a single block, that is:

$$
\begin{aligned}
& n+\bmod \left(i c-1, M B _C\right)>\text { MB_C } \\
& n+\bmod \left(j c-1, N B _C\right)>\text { NB_C }
\end{aligned}
$$

then:

- The global symmetric matrix \boldsymbol{C} must be distributed using a square block-cyclic distribution; that is, MB_C = NB_C.
- The global symmetric matrix \boldsymbol{C} must be aligned on a block boundary, that is:
$i c-1$ must be a multiple of $M B _C$.
$j c-1$ must be a multiple of NB_C.

8. If trans $=' \mathrm{~N}$ ':

- If \boldsymbol{C} is not contained within a single block, then:
- The following block sizes must be equal: MB_A = NB_C.
- The global matrix \boldsymbol{A} must be aligned on a block row boundary; that is, ia-1 must be a multiple of MB_A.
- In the process grid, the process row containing the first row of the submatrix \boldsymbol{C} must also contain the first row of the submatrix \boldsymbol{A}; that is, icrow = iarow, where:
icrow $=\bmod \left(\left(\left((i c-1) / \mathrm{MB} _C\right)+\right.\right.$ RSRC_C $\left.), p\right)$
iarow $=\bmod \left(\left(\left((i a-1) / M B _A\right)+R S R C _A\right), p\right)$

9. If trans $=$ ' T ':

- If \boldsymbol{C} is not contained within a single block, then:
- The following block sizes must be equal: NB_A = MB_C.
- The global matrix \boldsymbol{A} must be aligned on a block column boundary; that is, ja-1 must be a multiple of NB_A.
- In the process grid, the process column containing the first column of the submatrix \boldsymbol{C} must also contain the first column of the submatrix \boldsymbol{A}; that is, $i c c o l=i a c o l$, where:

$$
\begin{aligned}
& i c c o l=\bmod \left(\left(\left((j c-1) / \text { NB_C }_{1}\right)+\text { CSRC_C }\right), q\right) \\
& \text { iacol }=\bmod \left(\left(\left((j a-1) / \text { NB_A }^{2}\right)+C S R C _A\right), q\right)
\end{aligned}
$$

10. If \boldsymbol{C} is contained within a single block:

- If trans $=$ ' N ', \boldsymbol{A} must be a block row matrix; that is, if $p>1$:

$$
n+\bmod \left(i a-1, M B _A\right) \leq M B _A
$$

- If trans $=$ ' T ', \boldsymbol{A} must be a block column matrix; that is, if $q>1$:

$$
n+\bmod (j a-1, \text { NB_A }) \leq \text { NB_A }
$$

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_C is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDSYRK was called from outside the process grid.

Stage 4

1. uplo \neq ' U ' or ' L '
2. trans $\neq ' \mathrm{~N}$ ', ' T ', or ' C^{\prime}
3. $n<0$ and trans $=' \mathrm{~N}^{\prime}$
4. $n<0$ and trans $=' T$ ' or ' C^{\prime}
5. $n<0$ and trans is invalid.
6. $k<0$ and trans $=' \mathrm{~N}$ '
7. $k<0$ and trans $=$ ' T ' or ' C^{\prime}
8. $k<0$ and trans is invalid.
9. M_A <0 and ($n=0$ or $k=0$); M_A <1 otherwise
10. N_A < 0 and ($n=0$ or $k=0$); N_A < 1 otherwise
11. $M B _A<1$
12. $N B _A<1$
13. RSRC_A <0 or RSRC_A $\geq p$
14. $\operatorname{CSRC} A<0$ or CSRC_A $\geq q$
15. $i a<1$
16. $j a<1$
17. M_C < 0 and $n=0 ;$ M_C < 1 otherwise
18. N_C < 0 and $n=0 ;$ N_C < 1 otherwise
19. MB _C < 1
20. NB_C < 1
21. RSRC_C <0 or RSRC_C $\geq p$
22. CSRC_C <0 or CSRC_C $\geq q$
23. ic <1
24. $j c<1$
25. CTXT_A \neq CTXT_C

If $n \neq 0$ and $k \neq 0$:

1. ia $>M _A$
2. $j a>N _A$
3. trans $=$ ' N ' and $i a+n-1>\mathrm{M} _\mathrm{A}$
4. trans $=' \mathrm{~N}$ ' and $j a+k-1>\mathrm{N} _\mathrm{A}$
5. trans $={ }^{\prime} T$ ' and $i a+k-1>M _A$
6. trans $=' \mathrm{~T}$ ' and $j a+n-1>\mathrm{N} _A$

If $n \neq 0$:

1. ic $>\mathrm{M}$ _C
2. $j c>\mathrm{N} _\mathrm{C}$
3. $i c+n-1>M _C$
4. $j c+n-1>\mathrm{N} _\mathrm{C}$

Stage 5

1. If \boldsymbol{C} is not contained within a single block, that is:

$$
\begin{aligned}
& n+\bmod \left(i c-1, M B _C\right)>\text { MB_C } \\
& n+\bmod \left(j c-1, N B _C\right)>\text { NB_C }
\end{aligned}
$$

and NB_C \neq MB_C.
2. trans $=$ ' N ' and $N B _C \neq M B _A$.
3. $\operatorname{trans}=$ ' T ' and $M B _C \neq$ NB_A.

If \boldsymbol{C} is not contained within a single block:

1. $\bmod \left(i c-1, M B _C\right) \neq 0$
2. $\bmod \left(j c-1, N B _C\right) \neq 0$
3. trans $=' \mathrm{~N}$ ' and $\bmod \left(i a-1, M B _A\right) \neq 0$
4. trans $=' T$ ' and $\bmod \left(j a-1, N B _A\right) \neq 0$

Stage 6

1. $\operatorname{LLD} _A<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. $\operatorname{LLD} _\mathrm{C}<\max (1, \operatorname{LOCp}(\mathrm{M}-\mathrm{C}))$
3. If trans $=$ ' N ', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{C} does not contain the first row of the submatrix \boldsymbol{A}; that is, icrow \neq iarow, where:

$$
\begin{aligned}
& \text { icrow }=\bmod \left(\left(\left((i c-1) / M B _C\right)+\text { RSRC_C }\right), p\right) \\
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+R S R C _A\right), p\right)
\end{aligned}
$$

4. If trans $={ }^{\prime} T^{\prime}$, then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{C} does not contain the first column of the submatrix \boldsymbol{A}; that is, iccol \neq iacol, where:

PDSYRK

$$
\begin{aligned}
& i c c o l=\bmod ((((j c-1) / \text { NB_C })+\text { CSRC_C }), q) \\
& \text { iacol }=\text { mod }\left(\left((\text { (ja-1)/NB_A })+C S R C _A\right), q\right)
\end{aligned}
$$

If \boldsymbol{C} is contained within a single block:

1. If trans $=$ ' N ':
$p>1$ and $n+\bmod \left(i a-1, M B _A\right)>$ MB_A
2. If trans = 'T':
$q>1$ and $n+m o d(j a-1$, NB_A $)>$ NB_A
Example: This example computes $\boldsymbol{C}=\alpha \boldsymbol{A} \boldsymbol{A}^{\top}+\beta \boldsymbol{C}$ using a 2×3 process grid.

Call Statements and Input

ORDER = 'R'
NPROW $=2$
NPCOL $=3$
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A	Desc_C
DTYPE_	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	8	8
N	5	8
MB	2	2
NB	2	2
RSRC_	0	0
CSRC_	0	0
LLD_	See below2	See below2

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$

In this example, LLD_A = LLD_C = 4 on all processes.

Global general 8×5 matrix \boldsymbol{A} with block size 2×2 :

B, D	0		1		2
0	0.0	8.0	16.0	24.0	32.0
	1.0	9.0	17.0	25.0	33.0
1	2.0	10.0	18.0	26.0	34.0
	3.0	11.0	19.0	27.0	35.0
2	4.0	12.0	20.0	28.0	36.0
	5.0	13.0	21.0	29.0	37.0
3	6.0	14.0	22.0	30.0	38.0
	7.0	15.0	23.0	31.0	39.0

The following is the 2×3 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}
$\mathbf{2}$			
$\mathbf{1}$	P_{10}	P_{11}	P_{12}
$\mathbf{3}$			

Local arrays for \boldsymbol{A} :

p,q	0		1		2
0	0.0	8.0	16.0	24.0	32.0
	1.0	9.0	17.0	25.0	33.0
	4.0	12.0	20.0	28.0	36.0
	5.0	13.0	21.0	29.0	37.0
1	2.0	10.0	18.0	26.0	34.0
	3.0	11.0	19.0	27.0	35.0
	6.0	14.0	22.0	30.0	38.0
	7.0	15.0	23.0	31.0	39.0

Global symmetric matrix \boldsymbol{C} of order 8 block size 2×2 :

The following is the 2×3 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}
$\mathbf{2}$			
$\mathbf{1}$	P_{10}	P_{11}	P_{12}
$\mathbf{3}$			

Local arrays for \boldsymbol{C} :

p,q	0				1		2	
	0.0			-	-	-	-	-
	1.0	8.0	-	-	-	-	-	
0	4.0	11.0	-	-	17.0	22.0	26.0	.
	5.0	12.0	-	-	18.0	23.0	27.0	30.0
	2.0	9.0			15.0 .		-	
	3.0	10.0			16.0	21.0	.	
1	6.0	13.0	33.0		19.0	24.0	28.0	31.0
	7.0	14.0	34.0	35.0	20.0	25.0	29.0	32.0

Output:

Global symmetric matrix \boldsymbol{C} of order 8 with block size 2×2 :

The following is the 2×3 process grid:

$\mathbf{B , D}$	$\mathbf{0 3}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}
$\mathbf{2}$			
$\mathbf{1}$	P_{10}	P_{11}	P_{12}
$\mathbf{3}$			

Local arrays for \boldsymbol{C} :

p,q	0				1		2	
	1920.0			-	-	-	-	.
	2001.0	2093.0		.	.	-	-	
0	2244.0	2351.0	-	-	2457.0	2562.0	2666.0	.
	2325.0	2437.0	-	-	2548.0	2658.0	2767.0	2875.0
	2082.0	2179.0			2275.0 .			
	2163.0	2265.0			2366.0	2466.0		
1	2406.0	2523.0	3093.0	.	2639.0	2754.0	2868.0	2981.0
	2487.0	2609.0	3204.0	3320.0	2730.0	2850.0	2969.0	3087.0

PDSYR2K—Rank-2K Update of a Real Symmetric Matrix

This subroutine computes one of the following rank-2k updates:

1. $C \leftarrow \alpha \boldsymbol{A B}^{\top}+\alpha \boldsymbol{B A}^{\top}+\beta \boldsymbol{C}$
2. $C \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}+\alpha \boldsymbol{B}^{\top} \boldsymbol{A}+\beta \boldsymbol{C}$
where, in the formulas above:
\boldsymbol{A} represents the global general submatrix:

- For trans $=$ ' N ', it is $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+k-1 }}$.
- For trans $=$ ' T ', it is $\boldsymbol{A}_{i a: i a+k-1, j a: j a+n-1}$.
\boldsymbol{B} represents the global general submatrix:
- For trans $=$ ' N ', it is $\boldsymbol{B}_{i b: i b+n-1, j b: j b+k-1}$.
- For trans $=$ ' T^{\prime} ', it is $\boldsymbol{B}_{i b: i b+k-1, j, j b: j b+n-1}$.
\boldsymbol{C} represents the global symmetric submatrix $\boldsymbol{C}_{i c: i c+n-1, j c: j c+n-1}$. α and β are scalars.

Note: No data should be moved to form the matrix transposes; that is, the matrices should always be stored in their untransposed forms.

In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $n=0$
- β is one, and α is zero or $k=0$.

See references [14] and [15].

Table 54. Data Types	
$\alpha, \beta, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$	Subprogram
Long-precision real	PDSYR2K

Syntax

Fortran	CALLL PDSYR2K (uplo, trans, $n, ~ k, ~ a l p h a, ~ a, ~ i a, ~ j a, ~ d e s c _a, ~$ desc_c) ib, jb, desc_b, beta, $c, ~ i c, ~ j c, ~$
C and C++	pdsyr2k (uplo, trans, n, k, alpha, $a, i a, j a$, desc_a, $b, i b, j b$, desc_b, beta, $c, i c, j c$, desc_c);

On Entry
uplo
indicates whether the upper or lower triangular part of the symmetric submatrix \boldsymbol{C} is referenced, where:

If uplo = 'U', the upper triangular part is referenced.
If uplo $=$ ' L ', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
trans
indicates which computation is performed, where:
If trans $=$ ' N ', the computation in equation 1 is performed.
If trans $=$ ' T ', the computation in equation 2 is performed.

Scope: global

Specified as: a single character; trans = ' N^{\prime} or ${ }^{\prime} \mathrm{T}$ '.
is the order of the global symmetric submatrix \boldsymbol{C} used in the computation, and:
If trans $=$ ' N ', it is the number of rows in submatrices \boldsymbol{A} and \boldsymbol{B} used in the computation.
If trans $={ }^{\prime} \mathrm{T}^{\prime}$, it is the number of columns in submatrices \boldsymbol{A} and \boldsymbol{B} used in the computation.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
k
has the following meaning:
If trans $=$ ' N ', it is the number of columns in submatrices \boldsymbol{A} and \boldsymbol{B} used in the computation.

If trans $=$ ' T ', it is the number of rows in submatrices \boldsymbol{A} and \boldsymbol{B} used in the computation.

Scope: global

Specified as: a fullword integer; $k \geq 0$.
alpha
is the scalar α.

Scope: global

Specified as: a number of the data type indicated in Table 54 on page 316.
a
is the local part of the global general matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore:

- If trans $=$ ' N ', the leading LOCp(ia+n-1) by LOCq(ja+k-1) part of the local array A must contain the local pieces of the leading ia+n-1 by ja+k-1 part of the global matrix.
- If trans $=$ ' T^{\prime}, the leading LOCp(ia+k-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading ia+k-1 by ja+n-1 part of the global matrix.

Note: No data should be moved to form \boldsymbol{A}^{\top}; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.
Scope: local
Specified as: an LLD_A by (at least) $\operatorname{LOCq}\left(N _A\right)$ array, containing numbers of the data type indicated in Table 54 on page 316. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix
A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$, and:
If trans $=$ ' N ', then $i a+n-1 \leq \mathrm{M} _\mathrm{A}$.

```
    If trans = 'T', then ia+k-1 \leq M_A.
ja
is the column index of the global matrix \(\boldsymbol{A}\), identifying the first column of the submatrix \(\boldsymbol{A}\).
Scope: global
Specified as: a fullword integer; \(1 \leq j a \leq \mathrm{N} \_\mathrm{A}\), and:
If trans \(=\) ' N ', then \(j a+k-1 \leq N \_A\).
If trans \(=\) ' T ', then \(j a+n-1 \leq \mathrm{N} \_\mathrm{A}\).
desc_a
is the array descriptor for global matrix \(\boldsymbol{A}\), described in the following table:
```

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	$\begin{gathered} \text { If } n=0 \text { or } k=0: \\ M _A \geq 0 \end{gathered}$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If $n=0$ or $k=0$: N_A ≥ 0 Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$N B _A \geq 1$	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A < p	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _A) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers. b
is the local part of the global general matrix \boldsymbol{B}. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on ib, jb, desc_b, p, q, myrow, and mycol; therefore:

- If trans $=$ ' N ', the leading LOCp(ib+n-1) by LOCq(jb+k-1) part of the local array B must contain the local pieces of the leading $i b+n-1$ by $j b+k-1$ part of the global matrix.
- If trans = 'T', the leading LOCp(ib+k-1) by LOCq(jb+n-1) part of the local array B must contain the local pieces of the leading $i b+k-1$ by $j b+n-1$ part of the global matrix.

Note: No data should be moved to form $\boldsymbol{B}^{\boldsymbol{\top}}$; that is, the matrix \boldsymbol{B} should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 54 on page 316. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global
Specified as: a fullword integer; $1 \leq i b \leq M _B$, and:
If trans $=$ ' N ', then $i b+n-1 \leq M _B$.
If trans $=$ ' T ', then $i b+k-1 \leq M _B$.
$j b$
is the column index of the global matrix \boldsymbol{B}, identifying the first column of the submatrix B.

Scope: global

Specified as: a fullword integer; $1 \leq j b \leq N _B$, and:
If trans $=$ ' N ', then $j b+k-1 \leq \mathrm{N} _\mathrm{B}$.
If trans $=$ ' T^{\prime}, then $j b+n-1 \leq \mathrm{N}$ B.
desc_b
is the array descriptor for global matrix \boldsymbol{B}, described in the following table:

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B=1	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0$ or $k=0$: $M _B \geq 0$ Otherwise: $M _B \geq 1$	Global
4	N_B	Number of columns in the global matrix	If $n=0$ or $k=0$: N_B ≥ 0 Otherwise: $N _B \geq 1$	Global
5	MB_B	Row block size	MB_B ≥ 1	Global
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B < p	Global
8	CSRC_B	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_B $<q$	Global
9	LLD_B	The leading dimension of the local array	LLD_B $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _B) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers. beta
is the scalar β.
Scope: global
Specified as: a number of the data type indicated in Table 54 on page 316. c
is the local part of the global symmetric matrix \boldsymbol{C}. This identifies the first element of the local array C. This subroutine computes the location of the first element of the local subarray used, based on ic, jc, desc_c, p, q, myrow, and mycol; therefore, the leading LOCp(ic+n-1) by LOCq(jc+n-1) part of the local array C must contain the local pieces of the leading $i c+n-1$ by $j c+n-1$ part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global symmetric submatrix $\boldsymbol{C}_{i c: i c+n-1, j c: j c+n-1}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global symmetric submatrix $C_{i c: i c+n-1, ~}^{\text {c: }: j+n-1}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

When β is zero, \boldsymbol{C} need not be set on input.
Scope: local
Specified as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 54 on page 316. Details about the block-cyclic data distribution of global matrix \boldsymbol{C} are stored in desc_c.
ic
is the row index of the global matrix \boldsymbol{C}, identifying the first row of the submatrix C.

Scope: global
Specified as: a fullword integer; $1 \leq i c \leq M _C$ and $i c+n-1 \leq M _C$.
jc
is the column index of the global matrix \boldsymbol{C}, identifying the first column of the submatrix \boldsymbol{C}.

Scope: global
Specified as: a fullword integer; $1 \leq j c \leq N _C$ and $j c+n-1 \leq N _C$. desc_c
is the array descriptor for global matrix \boldsymbol{C}, described in the following table:

desc_c	Name	Description	Limits	Scope
1	DTYPE_C	Descriptor type	DTYPE_C=1	Global
2	CTXT_C	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_C	Number of rows in the global matrix	If $n=0:$ M_C ≥ 0 Otherwise: M_C ≥ 1	Global

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { desc_c } & \text { Name } & \text { Description } & \text { Limits } & \text { Scope } \\
\hline 4 & \text { N_C } & \begin{array}{l}\text { Number of columns in the } \\
\text { global matrix }\end{array} & \begin{array}{l}\text { If } n=0: \\
\text { N_C } \geq 0 \\
\text { Otherwise: } \\
\text { N_C } \geq 1\end{array}
$$ \& Global

\hline 5 \& MB_C \& Row block size \& MB_C \geq 1\end{array}\right]\)| Global |
| :--- |
| 6 |
| 7 |

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

c
is the updated local part of the global symmetric matrix \boldsymbol{C}, containing the results of the computation.

Scope: local

Returned as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 54 on page 316.

Notes and Coding Rules

1. This subroutine accepts lowercase letters for the uplo and trans arguments.
2. If you specify ' C ' for the trans argument, it is interpreted as though you specified ' T '.
3. The matrices must have no common elements; otherwise, results are unpredictable.
4. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M} _\right)$and $\operatorname{LOCq}\left(\mathrm{N} _\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
5. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
6. The following values must be equal: CTXT_A = CTXT_B = CTXT_C.
7. If trans $=$ ' N ':

- In the process grid, the process row containing the first row of the submatrix \boldsymbol{C} must also contain the first row of the submatrices \boldsymbol{A} and \boldsymbol{B}; that is:

$$
\begin{aligned}
& \text { icrow }=\text { iarow } \\
& \text { icrow }=\text { ibrow }
\end{aligned}
$$

where:

$$
\begin{aligned}
& \text { iarow }=\bmod ((((i a-1) / \text { MB_A })+\text { RSRC_A }), p) \\
& \text { ibrow }=\bmod \left(\left(\left((i b-1) / \mathrm{MB}_{3} \mathrm{~B}\right)+\text { RSRC_B }\right), p\right) \\
& \text { icrow }=\bmod \left(\left(\left((i c-1) / \mathrm{MB} _\mathrm{C}\right)+\text { RSRC_C }\right), p\right)
\end{aligned}
$$

- If looping is required-that is, either of the following is true:

```
k+mod(ja-1,NB_A) > NB_A
k+mod(jb-1,NB_B) > NB_B
```

then the block column offset of \boldsymbol{A} must be equal to the block column offset of B; that is, $\bmod \left(j a-1, N B _A\right)=\bmod \left(j b-1, N B _B\right)$.
8. If trans $=$ ' T ':

- In the process grid, the process column containing the first column of the submatrix \boldsymbol{C} must also contain the first column of the submatrices \boldsymbol{A} and \boldsymbol{B}; that is:

$$
\begin{aligned}
& i c c o l=i a c o l \\
& i c c o l=i b c o l \\
& \text { where: } \\
& i a c o l=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& i b c o l=\bmod ((((j b-1) / \text { NB_B })+C S R C-B), q) \\
& i c c o l=\bmod \left(\left(((j c-1) / \text { NB_C })+C S R C _C\right), q\right)
\end{aligned}
$$

- If looping is required-that is, either of the following is true:

```
k+mod(ia-1, MB_A) > MB_A
k+mod(ib-1, MB_B) > MB_B
```

then the block row offset of \boldsymbol{A} must be equal to the block row offset of \boldsymbol{B}; that is, $\bmod (i a-1$, MB_A $)=\bmod (i b-1$, MB_B $)$
9. If all the following are true:

- \boldsymbol{C} is contained within a single block, that is:

```
n+mod(ic-1, MB_C) \leq MB_C
n+mod(jc-1, NB_C) \leq NB_C
```

- If trans = ' N ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrix B; that is, iacol $=i b c o l$, where:

$$
\begin{aligned}
& \text { iacol }=\bmod \left(\left(\left((j a-1) / N B _A\right)+C S R C _A\right), q\right) \\
& i b c o l=\bmod \left(\left(\left((j b-1) / N B _B\right)+C S R C _B\right), q\right)
\end{aligned}
$$

- If trans $=$ ' T ', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{B}; that is, iarow = ibrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ibrow }=\bmod \left(\left(\left((i b-1) / M B _B\right)+\text { RSRC_B }\right), p\right)
\end{aligned}
$$

then you must follow these rules:

- If trans = ' N ':
- \boldsymbol{A} and \boldsymbol{B} must be block row matrices; that is, if $p>1$:

$$
\begin{aligned}
& n+\bmod \left(i a-1, M B _A\right) \leq M B _A \\
& n+\bmod \left(i b-1, M B _B\right) \leq M B _B
\end{aligned}
$$

- If looping is required, the following block sizes must be equal: NB_A = NB_B.
- If trans = ' T ':
- \boldsymbol{A} and \boldsymbol{B} must be block column matrices; that is, if $q>1$:

```
n+mod(ja-1,NB_A) \leq NB_A
n+mod(jb-1,NB_B) \leq NB_B
```

- If looping is required, the following block sizes must be equal: $M B _A=M B _B$.

10. If the following is true:

- \boldsymbol{C} is not contained within a single block.
or if all the following are true:
- \boldsymbol{C} is contained within a single block.
- If trans $=$ ' N ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix B; that is, iacol $\neq i b c o l$, where:

$$
\begin{aligned}
& i a c o l=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& \left.i b c o l=\bmod \left(((j b-1) / \text { NB_B })+C S R C _B\right), q\right)
\end{aligned}
$$

- If trans = ' T ', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{B}; that is, iarow \neq ibrow, where:

```
iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
ibrow = mod((((ib-1)/MB_B)+RSRC_B), p)
```

then you must follow these rules:

- The global symmetric matrix \boldsymbol{C} must be distributed using a square block-cyclic distribution; that is, MB_C = NB_C.
- The global symmetric matrix \boldsymbol{C} must be aligned on a block boundary, that is:
$i c-1$ must be a multiple of MB_C.
$j c-1$ must be a multiple of NB_C.
- If trans = ' N ':
- The following block sizes must be equal:

$$
\begin{aligned}
& N B _A=N B _B \\
& M B _A=M B _B=N B _C .
\end{aligned}
$$

- The global matrices \boldsymbol{A} and \boldsymbol{B} must be aligned on a block row boundary, that is:
$i a-1$ must be a multiple of MB_A.
ib-1 must be a multiple of MB_B.
- If trans = ' T ':
- The following block sizes must be equal:

```
MB_A = MB_B
NB_A = NB_B = MB_C.
```

- The global matrices \boldsymbol{A} and \boldsymbol{B} must be aligned on a block column boundary, that is:
ja-1 must be a multiple of NB_A.
$j b-1$ must be a multiple of NB_B.

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.
3. DTYPE_C is invalid.

Stage 2

1. $C T X T _A$ is invalid.

Stage 3

1. PDSYR2K was called from outside the process grid.

Stage 4

1. uplo \neq 'U' or 'L'
2. trans \neq ' N ', ' T ', or ' C^{\prime}
3. $n<0$ and trans $=$ ' $\mathrm{N}^{\prime} ; n<0$ and trans $=$ ' T^{\prime} or ' C '; $n<0$ and trans is invalid.
4. $k<0$ and trans $=$ ' N '; $k<0$ and trans $=$ ' T^{\prime} or ${ }^{\prime} \mathrm{C}^{\prime} ; k<0$ and trans is invalid.
5. M_A <0 and ($n=0$ or $k=0$); M_A <1 otherwise
6. N_A <0 and $(n=0$ or $k=0)$; N_A <1 otherwise
7. $M B _A<1$
8. $N B _A<1$
9. RSRC_A <0 or RSRC_A $\geq p$
10. CSRC_A <0 or CSRC_A $\geq q$
11. ia <1
12. $j a<1$
13. M _ $\mathrm{B}<0$ and $(n=0$ or $k=0)$; $\mathrm{M} _\mathrm{B}<1$ otherwise
14. N_B <0 and $(n=0$ or $k=0) ;$ N_B <1 otherwise
15. $M B$ _B <1
16. NB_B < 1
17. RSRC_B <0 or RSRC_B $\geq p$
18. CSRC_B <0 or CSRC_B $\geq q$
19. $i b<1$
20. $j b<1$
21. M_C < 0 and $n=0 ;$ M_C < 1 otherwise
22. N_C < 0 and $n=0 ;$ N_C < 1 otherwise
23. MB _C <1
24. NB_C < 1
25. RSRC_C <0 or RSRC_C $\geq p$
26. CSRC_C < 0 or CSRC_C $\geq q$
27. ic <1
28. $j c<1$
29. CTXT_A $\neq C T X T _B$
30. CTXT_A $\neq C T X T _C$

Stage 5: If $n \neq 0$ and $k \neq 0$:

1. $i a>M _A$
2. $j a>N _A$
3. trans $=$ ' N ' and $i a+n-1>\mathrm{M} _\mathrm{A}$
4. $\operatorname{trans}=$ ' N ' and $j a+k-1>\mathrm{N} _\mathrm{A}$
5. trans $={ }^{\prime} T$ ' and $i a+k-1>M _A$
6. $\operatorname{trans}=$ ' T ' and $j a+n-1>\mathrm{N} _\mathrm{A}$
7. $i b>M _B$
8. $j b>$ N_B
9. trans $=$ ' N ' and $i b+n-1>\mathrm{M} _\mathrm{B}$
10. $\operatorname{trans}=$ ' N ' and $j b+k-1>\mathrm{N}-\mathrm{B}$
11. trans $=$ ' T ' and $i b+k-1>M _B$
12. trans $=$ ' T ' and $j b+n-1>$ N_B

If $n \neq 0$:
13. ic $>$ M_C
14. $j c>$ N_C
15. $i c+n-1>M _C$
16. $j c+n-1>\mathrm{N} _\mathrm{C}$

Stage 6: If \boldsymbol{C} is contained within a single block, that is:

```
n+mod(ic-1, MB_C) \leq MB_C
n+mod(jc-1,NB_C) \leq NB_C
```

and:

- If trans $=$ ' N ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} must also contain the first column of the submatrix B; that is, iacol = ibcol, where:

$$
\begin{aligned}
& \text { iacol }=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right) \\
& i b c o l=\bmod \left(\left(((j b-1) / \text { NB_B })+C S R C _B\right), q\right)
\end{aligned}
$$

- If trans $=$ ' T ', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{B}; that is, iarow = ibrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / M B _A\right)+\text { RSRC_A }\right), p\right) \\
& \text { ibrow }=\bmod \left(\left(\left((i b-1) / M B _B\right)+\text { RSRC_B }\right), p\right)
\end{aligned}
$$

then:

- If trans $=$ ' N ':

1. $p>1$ and $n+\bmod \left(i a-1, M B _A\right)>M B _A$
2. $p>1$ and $n+\bmod \left(i b-1, M B _B\right)>$ MB_B
3. Looping is required-that is, either of the following is true:
$k+\bmod \left(j a-1, N B _A\right)>N B _A$
$k+\bmod \left(j b-1, N B _B\right)>$ NB_B
and NB_A \neq NB_B.

- If trans = ' T ':

1. $q>1$ and $n+\bmod (j a-1$, NB_A) $>$ NB_A
2. $q>1$ and $n+\bmod \left(j b-1, N B _B\right)>$ NB_B
3. Looping is required-that is, either of the following is true:
$k+\bmod \left(i a-1, M B _A\right)>M B _A$
$k+\bmod \left(i b-1, M B _B\right)>M B _B$
and MB_A $\neq M B _B$.
If \boldsymbol{C} is not contained within a single block, or if \boldsymbol{C} is contained within a single block and:

- If trans $=$ ' N ', then (in the process grid) the process column containing the first column of the submatrix \boldsymbol{A} does not contain the first column of the submatrix B; that is, iacol $\neq i b c o l$, where:

$$
\begin{aligned}
& \text { iacol }=\bmod ((((j a-1) / \text { NB_A })+\text { CSRC_A }), q) \\
& \text { ibcol }=\bmod \left(\left(((j b-1) / \text { NB_B })+C S R C _B\right), q\right)
\end{aligned}
$$

- If trans $=$ ' T ', then (in the process grid) the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{B}; that is, iarow \neq ibrow, where:
iarow $=\bmod \left(\left(\left((i a-1) / M B _A\right)+\right.\right.$ RSRC $\left.\left.-A\right), p\right)$
ibrow $=\bmod \left(\left(\left((i b-1) / M B _B\right)+\right.\right.$ RSRC_B $\left.), p\right)$
then:

1. $M B _C \neq N B _C$
2. $\bmod \left(i c-1, M B _C\right) \neq 0$
3. $\bmod \left(j c-1, N B _C\right) \neq 0$

If trans $=$ ' N ':
4. NB_C $\neq \mathrm{MB} _A$
5. NB_C $\neq M B _B$
6. NB_A $\neq N B _B$
7. $\bmod \left(i a-1, M B _A\right) \neq 0$
8. $\bmod \left(i b-1, M B _B\right) \neq 0$

If trans $=$ ' T ':
9. $M B _C \neq N B _A$
10. $M B _C \neq N B _B$
11. $M B _A \neq M B _B$
12. $\bmod \left(j a-1, N B _A\right) \neq 0$
13. $\bmod \left(j b-1, N B _B\right) \neq 0$

In all cases:

1. LLD_A $<\max \left(1, \operatorname{LOCp}\left(\mathrm{M} _A\right)\right)$
2. LLD_B < max(1, LOCp(M_B))
3. LLD_C < max(1, LOCp(M_C))

If trans = ' N ':
4. Looping is required and $\bmod \left(j a-1, N B _A\right) \neq \bmod \left(j b-1, N B _B\right)$.
5. In the process grid, the process row containing the first row of the submatrix \boldsymbol{C} does not contain the first row of the submatrix \boldsymbol{A}; that is, icrow \neq iarow, where: icrow $=\bmod \left(\left(\left((i c-1) / M B _C\right)+\right.\right.$ RSRC_C $\left.), p\right)$
iarow $=\bmod \left(\left(\left((i a-1) / M B _A\right)+R S R C _A\right), p\right)$
6. In the process grid, the process row containing the first row of the submatrix \boldsymbol{C} does not contain the first row of the submatrix \boldsymbol{B}; that is, icrow $\neq i b r o w$, where:
icrow $=\bmod \left(\left(\left((i c-1) / M B _C\right)+\right.\right.$ RSRC_C $\left.), p\right)$
ibrow $=\bmod \left(\left(\left((i b-1) / M B _B\right)+\right.\right.$ RSRC_B $\left.), p\right)$

If trans = ' T ':

7. Looping is required and $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(i b-1, M B _B\right)$.
8. In the process grid, the process column containing the first column of the submatrix \boldsymbol{C} does not contain the first column of the submatrix \boldsymbol{A}; that is, iccol \neq iacol, where:

$$
\begin{aligned}
& \text { iccol }=\bmod ((((j c-1) / \text { NB_C })+\text { CSRC_C }), q) \\
& \text { iacol }=\bmod \left(\left(((j a-1) / \text { NB_A })+C S R C _A\right), q\right)
\end{aligned}
$$

9. In the process grid, the process column containing the first column of the submatrix \boldsymbol{C} does not contain the first column of the submatrix \boldsymbol{B}; that is, iccol $\neq i b c o l$, where:

$$
\begin{aligned}
& i c c o l=\bmod ((((j c-1) / \text { NB_C })+\text { CSRC_C }), q) \\
& i b c o l=\bmod \left(\left(((j b-1) / \text { NB_B })+C S R C _B\right), q\right)
\end{aligned}
$$

Example: This example computes $\boldsymbol{C}=\alpha \boldsymbol{A}^{\top} \boldsymbol{B}+\alpha \boldsymbol{B}^{\top} \boldsymbol{A}+\beta \boldsymbol{C}$ using a 2×2 process grid.

Call Statements and Input

ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

CALL PDSYR2K (

	Desc_A	Desc_B	Desc_C
DTYPE_	1	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	8	8	9
N	9	9	9
MB	2	2	4
NB	4	4	4
RSRC_	0	0	0
CSRC_	0	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$	See below
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ LLD_B $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} B, M B _B, M Y R O W, R S R C _B, N P R O W\right)\right)$ LLD_C $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-} C, M B _C\right.\right.$, MYROW, RSRC_C, NPROW) $)$ In this example, LLD_A = LLD_B $=4$ on all processes, LLD_C $=5$ on P_{00} and P_{01}, and LLD_C $=4$ on P_{10} and P_{11}.			

Global general 8×9 matrix \boldsymbol{A} with block size 2×4 :

B, D	0			1				2
0	0.	-1.0-1.0	0.0	0.0	0.0	0.0	0.0	1.0
	0.	$1.0 \quad 0.0$	1.0	0.0	1.0	0.0	1.0	1.0
1	0.	0.0-1.0	-1.0	0.0	0.0	1.0	0.0	1.0
	0.	$1.0 \quad 0.0$	-1.0	1.0	1.0	0.0	1.0	1.0
2	1.	$0.0 \quad 0.0$	0.0	-1.0	0.0	0.0	0.0	1.0
	1.	$0.0 \quad 0.0$	0.0	1.0	1.0	0.0	0.0	1.0
3	0.	0.0-1.0	0.0	-1.0	0.0	0.0	0.0	1.0
	-1.	$0.0 \quad 0.0$		0.0		-1.0		1.0

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{A} :

p,q	0					1			
0	0.0	-1.0	-1.0	0.0	1.0	0.0	0.0	0.0	0.0
	0.0	1.	0.0	1.0	1.0	0.0	1.0	0.0	1.0
	1.0	0.0	0.0	0.0	1.0	-1.0	0.0	0.0	0.0
	1.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0
1	0.	0.1.	$\begin{array}{r} -1.0 \\ 0.0 \end{array}$	-1.0	1.0	$\begin{array}{cccc}0.0 & 0.0 & 1.0 & 0.0\end{array}$			
	0.0			-1.0	1.0	1.0	1.0	0.0	1.0
	0.0	0.0	-1.0	0.0	1.0	-1.0	0.0	0.0	0.0
	-1.0	0.0	0.0	0.0	1.0	0.0	0.0	-1.0	0.0

Global general 8×9 matrix \boldsymbol{B} with block size 2×4 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for B :

Output:

Global symmetric matrix \boldsymbol{C} of order 9 with block size 4×4 :

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{C} :

p,q	0					1			
	-6.0	0.0	0.0	0.0	-2.0	0.0		-2.0	0.0
		-6.0	-2.0	0.0	-2.0	-2.0	-4.0	0.0	-4.0
0	-	.	-6.0	-2.0	6.0	-2.0	0.0	2.0	0.0
	-	-	.	-6.0	2.0	2.0	0.0	2.0	0.0
	-	-	-	.	-16.0	-	-	-	-
		-			0.0	-8.0			-2.0
					-6.0		-6.0		-4.0
1	-				0.0	-	.	-4.0	0.0
	-	-	-	-	-4.0	-	-	-	-4.0

PDTRAN—Matrix Transpose for a General Matrix

This subroutine performs the following matrix computation:
$\boldsymbol{C} \leftarrow \beta \boldsymbol{C}+\alpha \boldsymbol{A}^{\boldsymbol{\top}}$
where, in the formula above:
\boldsymbol{A} represents the global general submatrix $\boldsymbol{A}_{i a: i a+n-1, j \text { ja:ja+m-1 }}$. \boldsymbol{C} represents the global general submatrix $\boldsymbol{C}_{i c: i c+m-1, j c: j+n-1}$. α and β are scalars.

Note: No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

In the following three cases, no computation is performed and the subroutine returns after doing some parameter checking:

- $m=0$
- $n=0$
- α is zero and β is one.

See references [14] and [15].

Table 55. Data Types	
$\alpha, \beta, \boldsymbol{A}, \boldsymbol{C}$	Subprogram
Long-precision real	PDTRAN

Syntax

Fortran	CALL PDTRAN (m, n, alpha, a, ia, ja, desc_a, beta, c, ic, jc, desc_c)
C and C++	pdtran (m, n, alpha, a, ia, ja, desc_a, beta, c, ic, jc, desc_c);

On Entry
m
is the number of rows in submatrix \boldsymbol{C} and the number of columns in submatrix \boldsymbol{A} used in the computation.

Scope: global

Specified as: a fullword integer; $m \geq 0$.
n
is the number of columns in submatrix \boldsymbol{C} and the number of rows in submatrix \boldsymbol{A} used in the computation.

Scope: global

Specified as: a fullword integer; $n \geq 0$.
alpha
is the scalar α.
Scope: global
Specified as: a number of the data type indicated in Table 55.
a
is the local part of the global general matrix \boldsymbol{A}. This identifies the first element of the local array A. This subroutine computes the location of the first element
of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+m-1) part of the local array A must contain the local pieces of the leading ia+n-1 by ja+m-1 part of the global matrix.

Note: No data should be moved to form \boldsymbol{A}^{\top}; that is, the matrix \boldsymbol{A} should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 55 on page 331. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq \mathrm{N} _\mathrm{A}$ and $j a+m-1 \leq \mathrm{N} _\mathrm{A}$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A $=1$	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDIITT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $m=0$ or $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	N_A	Number of columns in the global matrix	If $m=0$ or $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	NB_A ≥ 1	
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Local
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A))	

Specified as: an array of (at least) length 9, containing fullword integers.

beta

is the scalar β.

Scope: global

Specified as: a number of the data type indicated in Table 55 on page 331.
c
is the local part of the global general matrix \boldsymbol{C}. This identifies the first element of the local array C. This subroutine computes the location of the first element of the local subarray used, based on ic, jc, desc_c, p, q, myrow, and mycol; therefore, the leading $\operatorname{LOCp}(i c+m-1)$ by $\operatorname{LOCq}(j c+n-1)$ part of the local array C must contain the local pieces of the leading $i c+m-1$ by $j c+n-1$ part of the global matrix.

When β is zero, \boldsymbol{C} need not be set on input.
Scope: local
Specified as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 55 on page 331. Details about the block-cyclic data distribution of global matrix \boldsymbol{C} are stored in desc_c.
ic
is the row index of the global matrix \boldsymbol{C}, identifying the first row of the submatrix c.

Scope: global
Specified as: a fullword integer; $1 \leq i c \leq M _C$ and $i c+m-1 \leq M _C$.
jc
is the column index of the global matrix \boldsymbol{C}, identifying the first column of the submatrix \boldsymbol{C}.

Scope: global

Specified as: a fullword integer; $1 \leq j c \leq N _C$ and $j c+n-1 \leq$ N_C. desc_c
is the array descriptor for global matrix \boldsymbol{C}, described in the following table:
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { desc_c } & \text { Name } & \text { Description } & \text { Limits } & \text { Scope } \\
\hline 1 & \text { DTYPE_C } & \text { Descriptor type } & \text { DTYPE_C=1 } & \begin{array}{l}\text { Valid value, as returned by } \\
\text { BLACS_GRIDINIT or } \\
\text { BLACS_GRIDMAP }\end{array} \\
\hline 2 & \text { CTXT_C } & \text { BLACS context } & \begin{array}{l}\text { Number of rows in the global } \\
\text { matrix }\end{array} & \begin{array}{l}\text { If } m=0 \text { or } n=0: \\
\text { M_C } \geq 0 \\
\text { Otherwise: } \\
\text { M_C } \geq 1\end{array} \\
\hline 3 & \text { N_C } & \begin{array}{l}\text { Number of columns in the } \\
\text { global matrix }\end{array} & \begin{array}{l}\text { If } m=0 \text { or } n=0: \\
\text { N_C } \geq 0\end{array}
$$ \& Global

\hline 4 \& MB_C \& NB_C \& Row block size \& MB_C \geq 1\end{array}\right]\)| Global |
| :--- |
| 5 |

desc_c	Name	Description	Limits	Scope
8	CSRC_C	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_C $<q$	Global
9	LLD_C	The leading dimension of the local array	LLD_C $\geq \max (1$, LOCp(M_C))	Local

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

c
is the updated local part of the global general matrix \boldsymbol{C}, containing the results of the computation.

Scope: local

Returned as: an LLD_C by (at least) LOCq(N_C) array, containing numbers of the data type indicated in Table 55 on page 331.

Notes and Coding Rules

1. The matrices must have no common elements; otherwise, results are unpredictable.
2. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$and $\operatorname{LOCq}\left(\mathrm{N} _\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
3. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
4. The following values must be equal: CTXT_A = CTXT_C.
5. The coding rules (given in this section) and the error conditions (given in the next section) are written in terms of adist. To determine a value for adist, check the following conditions, in order, and chose the first value having a true condition:
a. If \boldsymbol{A} is a block column matrix, that is:

$$
m+\bmod (j a-1, \text { NB_A }) \leq \text { NB_A }
$$

then adist $=$ ' C '
b. If \boldsymbol{A} is a block row matrix, that is:

$$
n+\bmod \left(i a-1, M B _A\right) \leq M B _A
$$

then adist = 'R'
c. If \boldsymbol{A} is neither a block column or a block row matrix, then:

- If $m \leq n$, then adist $=$ ' C '.
- Otherwise, adist = 'R'.

6. If adist $=$ ' C ', then you must follow these coding rules:

- A must be aligned on a block row boundary, that is:
$i a-1$ must be a multiple of MB_A.
- \boldsymbol{C} must be aligned on a block column boundary, that is:
jc-1 must be a multiple of NB_C.
- MB_A = NB_C
- If looping is required-that is, either of the following is true:
$m+\bmod \left(j a-1\right.$, NB_A $\left.^{2}\right)>$ NB_A
$m+\bmod \left(i c-1, M B _C\right)>M B _C$
then:
- The block column offset of \boldsymbol{A} must be equal to the block row offset of \boldsymbol{C}; that is, $\bmod \left(j a-1, N B _A\right)=\bmod \left(i c-1, M B _C\right)$.
- NB_A = MB_C

7. If adist = 'R', then you must follow these coding rules:

- A must be aligned on a block column boundary, that is:
$j a-1$ must be a multiple of NB_A.
- \boldsymbol{C} must be aligned on a block row boundary, that is:
$i c-1$ must be a multiple of MB_C.
- NB_A = MB_C
- If looping is required-that is, either of the following is true:
$n+\bmod (i a-1, M B-A)>$ MB_A 2
$n+\bmod (j c-1, N B C)>N B C$
then:
- The block row offset of \boldsymbol{A} must be equal to the block column offset of \boldsymbol{C}; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j c-1, N B _C\right)$.
- MB_A = NB_C

Error Conditions

Computational Errors: None
Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors
Stage 1

1. DTYPE_A is invalid.
2. DTYPE_C is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDTRAN was called from outside the process grid.

Stage 4

1. $m<0$
2. $n<0$
3. $\mathrm{M} _\mathrm{A}<0$ and ($m=0$ or $n=0$); $\mathrm{M} _\mathrm{A}<1$ otherwise
4. $\mathrm{N} _\mathrm{A}<0$ and ($m=0$ or $n=0$); N_A < 1 otherwise
5. $M B _A<1$
6. $N B _A<1$
7. RSRC_A < 0 or RSRC_A $\geq p$
8. CSRC_A < 0 or CSRC_A $\geq q$
9. $i a<1$
10. $j a<1$
11. $\mathrm{M} _\mathrm{C}<0$ and ($m=0$ or $n=0$); M_C < 1 otherwise
12. N_C < 0 and ($m=0$ or $n=0$); N_C < 1 otherwise
13. $M B<C<1$
14. NB_C < 1
15. RSRC_C <0 or RSRC_C $\geq p$
16. CSRC_C <0 or CSRC_C $\geq q$
17. ic <1
18. $j c<1$
19. CTXT_A \neq CTXT_C

Stage 5
Note: Some of the following error conditions depend on the value of adist-that is, adist $=$ ' C ' or or adist $=$ ' R '. For details on determining the value, see "Notes and Coding Rules" on page 334.

If $m \neq 0$ and $n \neq 0$:

1. $i a>M _A$
2. $j a>\mathrm{N} _\mathrm{A}$
3. $i a+n-1>M _A$
4. $j a+m-1>$ N_A
5. ic > M_C
6. $j c>\mathrm{N}=\mathrm{C}$
7. $i c+m-1>M _C$
8. $j c+n-1>$ N_C

If adist = ' C ':

1. $\bmod \left(i a-1, M B _A\right) \neq 0$
2. $\bmod \left(j c-1, N B _C\right) \neq 0$
3. MB_A \neq NB_C
4. If looping is required-that is, either of the following is true:
$m+\bmod (j a-1$, NB_A $)>$ NB_A
$m+\bmod \left(i c-1, M B _C\right)>M B _C$
then:
a. $\bmod \left(j a-1, N B _A\right) \neq \bmod \left(i c-1, M B _C\right)$
b. NB_A $\neq M B$ _C.

If adist = 'R':

1. $\bmod \left(j a-1, N B _A\right) \neq 0$
2. $\bmod \left(i c-1, M B^{-} C\right) \neq 0$
3. $N B _A \neq M B _C$
4. If looping is required-that is, either of the following is true:
$n+\bmod \left(i a-1, M B _A\right)>M B _A$
$n+\bmod \left(j c-1, N B _C\right)>$ NB_C
then:
a. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(j c-1, N B _C\right)$
b. $M B _A \neq N B _C$.

Stage 6

1. $\operatorname{LLD} _A<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. $\operatorname{LLD} _C \quad$ < $\max \left(1, \operatorname{LOCp}\left(M _C\right)\right)$

Example: This example computes $\boldsymbol{C}=\beta \boldsymbol{C}+\alpha \boldsymbol{A}^{\top}$ using a 2×2 process grid.
Call Statements and Input
ORDER $=$ 'R'
NPROW $=2$
NPCOL $=2$
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A	Desc_C
DTYPE_	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M	8	9
N_{-}	9	8
MB_	2	4
NB	4	2
RSRC_	0	0
CSRC_	0	0
LLD_	See below ${ }^{2}$	See below ${ }^{2}$

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$
LLD_C $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M_{-}^{-} C, M B_{-}^{-} C\right.\right.$, MYROW, RSRC_C, NPROW) $)$
In this example, LLD_A $=4$ on all processes, LLD_C $=5$ on P_{00} and P_{01}, and LLD_C $=4$ on P_{10} and P_{11}.

Global general 8×9 matrix \boldsymbol{A} with block size 2×4 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}
$\mathbf{3}$		

Local arrays for \boldsymbol{A} :

Global general 9×8 matrix \boldsymbol{C} with block size 4×2 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{C} :

p,q	0				1			
	0.	1.0	6.0	7.0	1.0	5.0	8.0	9.0
	0.	-1.0	0.0	-1.0	0.0	-1.0	0.0	1.0
0	0.	0.0	0.0	0.0	1.0	1.0	-1.0	0.0
	0.	-1.0	-1.0	-1.0	0.0	1.0	0.0	1.0
	1.	2.0	1.0	1.0	3.0	4.0	1.0	1.0
	-1.	2.0	1.0	0.0	0.0	0.0	0.0	0.0
	-1.	3.0	-1.0	-1.0	0.0	0.0	0.0	0.0
1	0.	4.0	1.0	0.0	1.0	0.0	0.0	0.0
	1.	5.0	0.0	0.0	0.0	0.0	1.0	0.0

Output:

Global general 9×8 matrix \boldsymbol{C} with block size 4×2 :

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0 2}$	$\mathbf{1 3}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{C} :

Chapter 8. Linear Algebraic Equations (Message Passing)

The linear algebraic equation subroutines are described in this chapter. These subroutines include a subset of the ScaLAPACK subroutines.

Note: The dense and banded linear algebraic equation subroutines are designed in accordance with the proposed ScaLAPACK standard. (However, PDDTTRS does not support General Tridiagonal Matrix Transpose Solve.) See references [16], [18], [27], and [28]. If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.

Overview of the Dense Linear Algebraic Equation Subroutines

The dense linear algebraic equation subroutines provide solutions to linear systems of equations for real and complex general matrices and their transposes, and for positive definite real symmetric and complex Hermitian matrices.

Table 56. List of Dense Linear Algebraic Equation Subroutines		
Descriptive Name	Long-Precision Subroutine	Page
General Matrix Factorization	PDGETRF PZGETRF	345
General Matrix Solve	PDGETRS PZGETRS	357
Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization	PDPOTRF PZPOTRF	369
Positive Definite Real Symmetric or Complex Hermitian Matrix Solve	PDPOTRS PZPOTRS	379

Overview of the Banded Linear Algebraic Equation Subroutines

The banded linear algebraic equation subroutines provide solutions to linear systems of equations for real positive definite symmetric band matrices, real general tridiagonal matrices, diagonally-dominant real general tridiagonal matrices, and real positive definite symmetric tridiagonal matrices.

Table 57 (Page 1 of 2). List of Banded Linear Algebraic Equation Subroutines		
Descriptive Name	Long-Precision Subroutine	Page
Positive Definite Symmetric Band Matrix Factorization and Solve	PDPBSV	392
Positive Definite Symmetric Band Matrix Factorization	PDPBTRF	405
Positive Definite Symmetric Band Matrix Solve	PDPBTRS	415
General Tridiagonal Matrix Factorization and Solve	PDGTSV	427
General Tridiagonal Matrix Factorization	PDGTTRF	443
General Tridiagonal Matrix Solve	PDGTTRS	461

Table 57 (Page 2 of 2). List of Banded Linear Algebraic Equation Subroutines

Descriptive Name	Long-Precision Subroutine	Page
Diagonally-Dominant General Tridiagonal Matrix Factorization and Solve	PDDTSV	427
Diagonally-Dominant General Tridiagonal Matrix Factorization	PDDTTRF	443
Diagonally-Dominant General Tridiagonal Matrix Solve	PDDTTRS	461
Positive Definite Symmetric Tridiagonal Matrix Factorization and Solve	PDPTSV	480
Positive Definite Symmetric Tridiagonal Matrix Factorization	PDPTTRF	495
Positive Definite Symmetric Tridiagonal Matrix Solve	PDPTTRS	509

Overview of the Fortran 90 Sparse Linear Algebraic Equation Subroutines

The Fortran 90 sparse linear algebraic equation subroutines provide solutions to linear systems of equations for a real general sparse matrix. The sparse utility subroutines provided in Parallel ESSL must be used in conjunction with the sparse linear algebraic equation subroutines.

Table 58. List of Fortran 90 Sparse Linear Algebraic Equation Subroutines	Page	
Descriptive Name	Long-Precision Subroutine	
Allocates Space for an Array Descriptor for a General Sparse Matrix	PADALL	526
Allocates Space for a General Sparse Matrix	PSPALL	528
Allocates Space for a Dense Vector	PGEALL	530
Inserts Local Data into a General Sparse Matrix	PSPINS	532
Inserts Local Data into a Dense Vector	PGEINS	537
Assembles a General Sparse Matrix	PSPASB	539
Assembles a Dense Vector	PGEASB	542
Preconditioner for a General Sparse Matrix	PSPGPR	544
Iterative Linear System Solver for a General Sparse Matrix	PSPGIS	547
Deallocates Space for a Dense Vector	PGEFREE	553
Deallocates Space for a General Sparse Matrix	PSPFREE	554
Deallocates Space for an Array Descriptor for a General Sparse Matrix	PADFREE	556

Overview of the Fortran 77 Sparse Linear Algebraic Equation Subroutines

The Fortran 77 sparse linear algebraic equation subroutines provide solutions to linear systems of equations for a real general sparse matrix. The sparse utility subroutines provided in Parallel ESSL must be used in conjunction with the sparse linear algebraic equation subroutines.

Table 59. List of The Fortran 77 Sparse Linear Algebraic Equation Subroutines		
Descriptive Name	Long-Precision Subroutine	Page
Initializes an Array Descriptor for a General Sparse Matrix	PADINIT	566
Initializes a General Sparse Matrix	PDSPINIT	568
Inserts Local Data into a General Sparse Matrix	PDSPINS	570
Inserts Local Data into a Dense Vector	PDGEINS	575
Assembles a General Sparse Matrix	PDSPASB	578
Assembles a Dense Vector	PDGEASB	582
Preconditioner for a General Sparse Matrix	PDSPGPR	584
Iterative Linear System Solver for a General Sparse Matrix	PDSPGIS	587

Dense Linear Algebraic Equation Subroutines

This section contains the dense linear algebraic equation subroutine descriptions.

PDGETRF and PZGETRF-General Matrix Factorization

These subroutines factor general matrix \boldsymbol{A} using Gaussian elimination with partial pivoting, ipvt, to compute the $\mathbf{L U}$ factorization of \boldsymbol{A}, where, in this description:
\boldsymbol{A} represents the global general submatrix $\boldsymbol{A}_{i \text { ia:ia }+m-1, j a: j a+n-1}$ to be factored. ipvt represents the global vector $\boldsymbol{i p v t}_{\mathrm{ia:ia}^{\mathrm{iam-1}}}$ containing the pivoting indices.
L is a lower triangular matrix.
\boldsymbol{U} is an upper triangular matrix.
On output, the transformed matrix \boldsymbol{A} contains \boldsymbol{U} in the upper triangle (if $m \geq n$) or upper trapezoid (if $m<n$) and L in the strict lower triangle (if $m \leq n$) or lower trapezoid (if $m>n$). ipvt contains the pivots representing permutation \boldsymbol{P}, such that $A=P L U$.

To solve the system of equations with any number of right-hand sides, follow the call to these subroutines with one or more calls to PDGETRS or PZGETRS, respectively.

If $m=0$ or $n=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [16], [18], [22], [36], and [37].

Table 60. Data Types		
\boldsymbol{A}	ipvt	Subroutine
Long-precision real	Integer	PDGETRF
Long-precision complex	Integer	PZGETRF

Syntax

Fortran	CALL PDGETRF \\| PZGETRF (m, n, a, ia, ja, desc_a, ipvt, info)
C and C++	pdgetrf \\| pzgetrf ($m, n, a, i a, j a$, desc_a, ipvt, info);

On Entry
m
is the number of rows in submatrix \boldsymbol{A} and the number of elements in vector ipvt used in the computation.

Scope: global

Specified as: a fullword integer; $m \geq 0$.
n
is the number of columns in submatrix \boldsymbol{A} used in the computation.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
a
is the local part of the global general matrix \boldsymbol{A}, used in the system of equations. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on $i a, j a$, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+m-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading $i a+m-1$ by $j a+n-1$ part of the global matrix.

PDGETRF and PZGETRF

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 60 on page 345. Details about the square block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and $i a+m-1 \leq M _A$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq \mathrm{N} _\mathrm{A}$ and $j a+n-1 \leq \mathrm{N} _\mathrm{A}$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A $=1$	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDIITT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $m=0$ or $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	N_A	Number of columns in the global matrix	If $m=0$ or $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	NB_A ≥ 1	
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Local
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A))	

Specified as: an array of (at least) length 9, containing fullword integers.
ipvt
See On Return.
info
See On Return.
On Return
is the updated local part of the global matrix \boldsymbol{A}, containing the results of the factorization.

Scope: local

Returned as: an LLD_A by (at least) $\operatorname{LOCq}\left(N _A\right)$ array, containing numbers of the data type indicated in Table 60 on page 345.
is the local part of the global vector ipvt, containing the pivot indices. This identifies the first element of the local array IPVT. This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, p, and myrow; therefore, the leading LOCp(ia+m-1) part of the local array IPVT must contain the local pieces of the leading ia+m-1 part of the global vector.
A copy of the vector ipvt, with a block size of MB_A and global index ia, is returned to each column of the process grid. The process row over which the first row of ipvt is distributed is RSRC_A.
Scope: local
Returned as: an array of (at least) length LOCp(ia+m-1), containing fullword integers, where $i a \leq$ (pivoting indices) $\leq i a+m-1$. Details about the block-cyclic data distribution of global vector ipvt are stored in desc_a.
info
has the following meaning:
If info $=0$, global submatrix \boldsymbol{A} is not singular, and the factorization completed normally.
If info >0, global submatrix \boldsymbol{A} is singular; that is, one or more columns of \boldsymbol{L} and the corresponding diagonal of \boldsymbol{U} contain all zeros. All columns of \boldsymbol{L} are checked. info is set equal to i, the first column of L with a corresponding $\boldsymbol{U}=0$ diagonal element, encountered at $\boldsymbol{A}_{i a+i-1, j a+i-1}$. The factorization is completed; however, if you call PDGETRS/PZGETRS with these factors, results are unpredictable.

Scope: global

Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. The matrix and vector must have no common elements; otherwise, results are unpredictable.
3. The scalar data specified for input argument n must be the same for both PDGETRF/PZGETRF and PDGETRS/PZGETRS. In addition, the scalar data specified for input argument m in PDGETRF/PZGETRF must be the same as input argument n in both PDGETRF/PZGETRF and PDGETRS/PZGETRS.
If, however, you do not plan to call PDGETRS/PZGETRS after calling PDGETRF/PZGETRF, then input arguments m and n in PDGETRF/PZGETRF do not need to be equal.
4. The global submatrices for \boldsymbol{A} and ipvt input to PDGETRS/PZGETRS must be the same as for the corresponding output arguments for PDGETRF/PZGETRF;
and thus, the scalar data specified for ia, ja, and the contents of desc_a must also be the same.
5. The NUMROC utility subroutine can be used to determine the values of LOCp(M_) and LOCq(N_) used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
6. The way these subroutines handle singularity differs from ScaLAPACK. These subroutines use the info argument to provide information about the singularity of \boldsymbol{A}, like ScaLAPACK, but also provide an error message.
7. On both input and output, matrix \boldsymbol{A} conforms to ScaLAPACK format.
8. The global general matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, $M B _A=N B _A$.
9. The global general matrix \boldsymbol{A} must be aligned on a block row boundary; that is, ia-1 must be a multiple of MB_A.
10. The block row offset of \boldsymbol{A} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.
11. There is no array descriptor for ipvt. It is a column-distributed vector with block size MB_A, local arrays of dimension LOCp(ia+m-1) by 1 , and global index ia. A copy of this vector exists on each column of the process grid, and the process row over which the first column of ipvt is distributed is RSRC_A.

Performance Considerations

1. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
2. Pivoting imposes additional communication requirements over the process grid columns; therefore, you achieve optimal performance by using a process grid with $p<q$. On the other hand, a $p \times 1$ grid provides the worse possible configuration.
3. For optimal performance, take the following items into consideration when choosing the NB_A (= MB_A) value:

- The cache size of the computational nodes. NB_A determines the granularity of the most expensive part of the computation, which tends to increase the optimal value of NB_A.
- The communication and synchronization overhead. This has two aspects, the cost of internal synchronization points and the cost of broadcasts. These tend to slightly decrease the optimal value of NB_A.
- The model of communication adapter you are using. The High Performance Switch Adapter-2 allows a larger NB.
- Load balancing. For the best processor utilization, it is necessary for the processor nodes to be active for as long as possible; therefore, each one should have as many blocks as possible. For a given problem size, this tends to decrease the optimal value of NB_A (best load balancing: 1) and is most relevant at very small problem sizes.
- If NB_A is equal to a power of 2, performance may be degraded.
- Use the following rules of thumb for reasonably-sized problems:
- For the POWER processors, choose NB_A in the following range:
- For PDGETRF, use [30, 50], avoiding 32.
- For PZGETRF, use [10, 25], avoiding 16.
- For the POWER2 processors, choose NB_A in the following range:
- For PDGETRF, use [60, 80], avoiding 64.
- For PZGETRF, use [20, 40], avoiding 32.

4. If you are using the PE Version 2 Release 4, or later, MPI threaded library, you may obtain better performance by setting the PE environment variable MP_WAIT_MODE:
export MP_WAIT_MODE=yield

Error Conditions

Computational Errors: Matrix \boldsymbol{A} is a singular matrix. For details, see the description of the info argument.

Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. $m<0$
2. $n<0$
3. $\mathrm{M} _\mathrm{A}<0$ and ($m=0$ or $n=0$); M_A <1 otherwise
4. N_A <0 and ($m=0$ or $n=0$); N_A < 1 otherwise
5. $i a<1$
6. $j a<1$
7. $M B$ _A <1
8. NB_A < 1
9. RSRC_A <0 or RSRC_A $\geq p$
10. CSRC_A <0 or CSRC_A $\geq q$

Stage 5
If $m \neq 0$ and $n \neq 0$:

1. $i a>M-A$
2. $j a>N-A$
3. $i a+m-1>M _A$
4. $j a+n-1>N _A$

In all cases:
5. $M B _A \neq N B _A$
6. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(j a-1, N B _A\right)$
7. $\bmod \left(i a-1, M B _A\right) \neq 0$

PDGETRF and PZGETRF

Stage 6

1. LLD_A < max(1, LOCp(M_A))

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
2. m differs.
3. n differs.
4. ia differs.
5. ja differs.
6. DTYPE_A differs.
7. M_A differs.
8. N_A differs.
9. MB_A differs.
10. NB A differs.
11. RSRC_A differs.
12. CSRC_A differs.

Example 1: This example factors a 9×9 real general matrix using a 2×2 process grid. By specifying RSRC_A = 1, the rows of global matrix \boldsymbol{A} and the elements of global vector ipvt are distributed over the process grid starting in the second row of the process grid.

Call Statements and Input

ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A
DTYPE_	1
CTXT_	icontxt ${ }^{1}$
M-	9
N_	9
MB_	3
NB_	3
RSRC_	1
CSRC_	0
LLD_	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, N U M R O C\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ In this example, LLD_A $=3$ on P_{00} and P_{01}, and LLD_A $=6$ on P_{10} and P_{11}.	

Global general 9×9 matrix \boldsymbol{A} with block size 3×3 :

B, D	0			1			2		
0	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6
	1.2	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4
	1.	1.2	1.0	1.2	1.4	1.6	1.8	2.0	2.2
1	1.6	1.4	1.2	1.0	1.2	1.4	1.6	1.8	2.0
	1.8	1.6	1.4	1.2	1.0	1.2	1.4	1.6	1.8
	2.	1.8	1.6	1.4	1.2	1.0	1.2	1.4	1.6
2	2.2	2.0	1.8	1.6	1.4	1.2	1.0	1.2	1.4
	2.	2.2	2.0	1.8	1.6	1.4	1.2	1.0	1.2
	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of \boldsymbol{A} begins in the second row of the process grid.
Local arrays for \boldsymbol{A} :

Output:

Global general 9×9 transformed matrix \boldsymbol{A} with block size 3×3 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of \boldsymbol{A} begins in the second row of the process grid.
Local arrays for \boldsymbol{A} :

p,q	0					1		
0	0.5-0.3	0.0	1.6	2.0	2.4	0.4	0.8	1.2
	0.6-0.3	0.0	1.2	1.6	2.0	0.0	0.4	0.8
	0.7-0.2	0.0	0.8	1.2	1.6	0.0	0.0	0.4
1	2.62 .4	2.2	1.4	1.2	1.0	2.0	1.8	1.6
	$0.4 \quad 0.3$	0.6	1.7	1.9	2.2	0.8	1.1	1.4
	0.5-0.4	0.4	2.0	2.4	2.8	0.8	1.2	1.6
	0.8-0.2	0.0	0.4	0.8	1.2	0.0	0.0	0.0
	0.8-0.1	0.0	0.0	0.4	0.8	0.0	0.0	0.0
	0.9-0.1	0.0	0.0	0.0	0.4	0.0	0.0	0.0

Global vector ipvt of length 9 with block size 3:

B, D
0
:---:
$\left[\begin{array}{r}9 \\ 9 \\ 9 \\ -- \\ 9 \\ 9 \\ 9 \\ - \\ 9 \\ 9 \\ 9\end{array}\right]$

Note: A copy of ipvt is distributed across each column of the process grid.
The following is the 2×2 process grid:

$\mathbf{B , D}$		
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of ipvt begins in the second row of the process grid. Local arrays for ipvt:

p,q	0	1
0	9	9
	9	9
	9	9
1	9	9
	9	9
	9	9
	9	9
	9	9
	9	9

The value of info is 0 on all processes.
Example 2: This example factors a 9×9 complex matrix using a 2×2 process grid. By specifying RSRC_A $=1$, the rows of global matrix \boldsymbol{A} and the elements of global vector ipvt are distributed over the process grid starting in the second row of the process grid.

Call Statements and Input

ORDER = 'R'
NPROW $=2$
NPCOL $=2$
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A
DTYPE_	1
CTXT_	icontxt ${ }^{1}$
M	9
N	9
MB	3
NB	3
RSRC_	1
CSRC_	0
LLD_	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ In this example, LLD_A $=3$ on P_{00} and P_{01}, and LLD_ $A=6$ on P_{10} and P_{11}.	

Global general 9×9 matrix \boldsymbol{A} with block size 3×3 :

B, D		0			1			2	
0	(2.0, 1.0)	$(2.4,-1.0)$	$(2.8,-1.0)$	$(3.2,-1.0)$	(3.6,-1.0)	$(4.0,-1.0)$	$(4.4,-1.0)$	$(4.8,-1.0)$	$(5.2,-1.0)$
	(2.4, 1.0)	(2.0, 1.0)	$(2.4,-1.0)$	$(2.8,-1.0)$	(3.2,-1.0)	$(3.6,-1.0)$	$(4.0,-1.0)$	(4.4, -1.0)	$(4.8,-1.0)$
	$(2.8,1.0)$	(2.4, 1.0)	(2.0, 1.0)	(2.4,-1.0)	$(2.8,-1.0)$	(3.2,-1.0)	$(3.6,-1.0)$	$(4.0,-1.0)$	($4.4,-1.0$)
1	(3.2, 1.0)	$(2.8,1.0)$	$(2.4,1.0)$	(2.0, 1.0)	(2.4,-1.0)	$(2.8,-1.0)$	$(3.2,-1.0)$	$(3.6,-1.0)$	$(4.0,-1.0)$
	$(3.6,1.0)$	(3.2, 1.0)	$(2.8,1.0)$	(2.4, 1.0)	(2.0, 1.0)	(2.4,-1.0)	$(2.8,-1.0)$	(3.2,-1.0)	$(3.6,-1.0)$
	$(4.0,1.0)$	(3.6, 1.0)	(3.2, 1.0)	$(2.8,1.0)$	(2.4, 1.0)	(2.0, 1.0)	(2.4,-1.0)	(2.8,-1.0)	(3.2,-1.0)
2	(4.4, 1.0)	(4.0, 1.0)	$(3.6,1.0)$	$(3.2,1.0)$	$(2.8,1.0)$	$(2.4,1.0)$	(2.0, 1.0)	(2.4,-1.0)	$(2.8,-1.0)$
	$(4.8,1.0)$	(4.4, 1.0)	(4.0, 1.0)	$(3.6,1.0)$	(3.2, 1.0)	$(2.8,1.0)$	$(2.4,1.0)$	(2.0, 1.0)	$(2.4,-1.0)$
	$(5.2,1.0)$	$(4.8,1.0)$	(4.4, 1.0)	(4.0, 1.0)	(3.6, 1.0)	(3.2, 1.0)	(2.8, 1.0)	(2.4, 1.0)	(2.0, 1.0)

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of \boldsymbol{A} begins in the second row of the process grid.
Local arrays for \boldsymbol{A} :

p,q	0						1		
0	$(3.2,1.0)$	$(2.8,1.0)$	(2.4, 1.0)	$(3.2,-1.0)$	$(3.6,-1.0)$	(4.0,-1.0)	(2.0, 1.0)	(2.4,-1.0)	(2.8,-1.0)
	(3.6, 1.0)	(3.2, 1.0)	$(2.8,1.0)$	(2.8,-1.0)	$(3.2,-1.0)$	($3.6,-1.0)$	(2.4, 1.0)	$(2.0,1.0)$	$(2.4,-1.0)$
	(4.0, 1.0)	(3.6, 1.0)	(3.2, 1.0)	(2.4,-1.0)	$(2.8,-1.0)$	(3.2,-1.0)	$(2.8,1.0)$	$(2.4,1.0)$	$(2.0,1.0)$
1	(2.0, 1.0)	(2.4,-1.0)	(2.8,-1.0)	$(4.4,-1.0)$	$(4.8,-1.0)$	$(5.2,-1.0)$	$(3.2,-1.0)$	$(3.6,-1.0)$	$(4.0,-1.0)$
	(2.4, 1.0)	(2.0, 1.0)	(2.4,-1.0)	$(4.0,-1.0)$	$(4.4,-1.0)$	$(4.8,-1.0)$	$(2.8,-1.0)$	(3.2,-1.0)	$(3.6,-1.0)$
	(2.8, 1.0)	(2.4, 1.0)	(2.0, 1.0)	$(3.6,-1.0)$	$(4.0,-1.0)$	(4.4,-1.0)	(2.4,-1.0)	(2.8,-1.0)	(3.2,-1.0)
	(4.4, 1.0)	(4.0, 1.0)	(3.6, 1.0)	(2.0, 1.0)	(2.4,-1.0)	$(2.8,-1.0)$	(3.2, 1.0)	$(2.8,1.0)$	(2.4, 1.0)
	(4.8, 1.0)	(4.4, 1.0)	(4.0, 1.0)	(2.4, 1.0)	(2.0, 1.0)	(2.4,-1.0)	(3.6, 1.0)	(3.2, 1.0)	$(2.8,1.0)$
	(5.2, 1.0)	(4.8, 1.0)	(4.4, 1.0)	$(2.8,1.0)$	(2.4, 1.0)	(2.0, 1.0)	(4.0, 1.0)	$(3.6,1.0)$	(3.2, 1.0)

Output:

Global general 9×9 transformed matrix \boldsymbol{A} with block size 3×3 :
B,D 0

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of \boldsymbol{A} begins in the second row of the process grid.
Local arrays for \boldsymbol{A} :

p,q	0						1		
0	(0.6, 0.1)	(0.0,-0.1)	(-0.1,-0.1)	(2.7,-1.5)	(3.4,-1.4)	$(4.0,-1.2)$	(0.7,-1.9)	$(1.3,-1.7)$	(2.0,-1.6)
	(0.6, 0.1)	(0.0,-0.1)	(-0.1,-0.1)	(2.2,-1.6)	$(2.9,-1.5)$	$(3.7,-1.3)$	(-0.1, 0.0)	(0.7,-1.9)	$(1.5,-1.7)$
	(0.7, 0.1)	(0.0,-0.1)	(0.0, 0.0)	(1.6,-1.8)	(2.4,-1.6)	(3.2,-1.5)	(-0.1, 0.0)	(-0.1, 0.0)	(0.8, -1.9)
1	(5.2, 1.0)	$(4.8,1.0)$	(4.4, 1.0)	(2.8, 1.0)	(2.4, 1.0)	(2.0, 1.0)	(4.0, 1.0)	$(3.6,1.0)$	(3.2, 1.0)
	(0.4, 0.1)	(0.6,-2.0)	$(1.1,-1.9)$	(3.4,-1.7)	(3.9,-1.7)	$(4.5,-1.6)$	(1.7,-1.9)	(2.3,-1.8)	$(2.8,-1.8)$
	(0.5, 0.1)	(0.0,-0.1)	$(0.6,-1.9)$	(3.1,-1.5)	(3.7,-1.4)	$(4.3,-1.3)$	$(1.2,-1.8)$	$(1.8,-1.7)$	$(2.5,-1.6)$
	(0.8, 0.0$)$	(0.0, 0.0)	(0.0, 0.0)	(0.8,-1.9)	(1.7,-1.8)	$(2.5,-1.8)$	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)
	(0.9, 0.0)	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)	$(0.8,-2.0)$	$(1.7,-1.9)$	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)
	(0.9, 0.0)	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)	(0.8,-2.0)	(0.0, 0.0)	(0.0, 0.0)	(0.0, 0.0)

Global vector ipvt of length 9 with block size 3 :

B, D
0
$\mathbf{0}$
:---:
---:

Note: A copy of ipvt is distributed across each column of the process grid.
The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of ipvt begins in the second row of the process grid.
Local arrays for ipvt:

PDGETRF and PZGETRF

p,q	0	1
	9	9
0	9	9
	9	9
	9	9
	9	9
	9	9
1	9	9
	9	9
	9	9

The value of info is 0 on all processes.

PDGETRS and PZGETRS—General Matrix Solve

PDGETRS solves one of the following systems of equations for multiple right-hand sides:

> 1. $A X=B$
> 2. $A^{\top} X=B$

PZGETRS solves one of the following systems of equations for multiple right-hand sides:

1. $A X=B$
2. $\boldsymbol{A}^{\top} \boldsymbol{X}=\boldsymbol{B}$
3. $\boldsymbol{A}^{H} \boldsymbol{X}=\boldsymbol{B}$

In the formulas above:
\boldsymbol{A} represents the global general submatrix $\boldsymbol{A}_{\text {ia:ia } i=n-1, j a: j a+n-1}$ containing the $\boldsymbol{L} \boldsymbol{U}$ factorization.
\boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1, \text { jb:jb+nrrs-1 }}$ containing the right-hand sides in its columns.
\boldsymbol{X} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1, j b: j b+n r h s-1}$ containing the solution vectors in its columns.

These subroutines use the results of the factorization of matrix \boldsymbol{A}, produced by a preceding call to PDGETRF or PZGETRF, respectively. For details on the factorization, see "PDGETRF and PZGETRF-General Matrix Factorization" on page 345 .

If $n=0$ or nrhs $=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [16], [18], [22], [36], and [37].

Table 61. Data Types			
$\boldsymbol{A}, \boldsymbol{B}$	ipvt	Subroutine	
Long-precision real	Integer	PDGETRS	
Long-precision complex	Integer	PZGETRS	

Syntax

Fortran	CALL PDGETRS \\| PZGETRS (transa, n, nrhs, $\left.a, i a, j a, d e s c _a, i p v t, b, i b, j b, d e s c _b, i n f o\right)$
\mathbf{C} and C_{++}	pdgetrs \| pzgetrs (transa, n, nrhs, $\left.a, i a, j a, d e s c _a, i p v t, b, i b, j b, d e s c _b, i n f o\right) ;$

On Entry
transa
indicates the form of matrix \boldsymbol{A} to use in the computation, where:
If transa $=$ ' N ', \boldsymbol{A} is used in the computation, resulting in solution 1.
If transa $=$ ' $\mathrm{T}^{\prime}, \boldsymbol{A}^{\mathrm{T}}$ is used in the computation, resulting in solution 2.
If transa $={ }^{\prime} \mathrm{C}^{\prime}, \boldsymbol{A}^{\mathrm{H}}$ is used in the computation, resulting in solution 3 .
Scope: global
Specified as: a single character; transa $={ }^{\prime} \mathrm{N}^{\prime}$, ' T ', or ' C^{\prime}.

PDGETRS and PZGETRS

n
is the order of the factored matrix \boldsymbol{A} and the number of rows in submatrix \boldsymbol{B}.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
nrhs
is the number of right-hand sides- that is, the number of columns in submatrix B used in the computation.
Scope: global
Specified as: a fullword integer; nrhs ≥ 0.
a
is the local part of the global general matrix \boldsymbol{A}, containing the factorization of matrix \boldsymbol{A} produced by a preceding call to PDGETRF or PZGETRF, respectively. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading $i a+n-1$ by $j a+n-1$ part of the global matrix.
Scope: local
Specified as: an LLD_A by (at least) $\operatorname{LOCq}\left(N _A\right)$ array, containing numbers of the data type indicated in Table 61 on page 357 . Details about the square block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer; $1 \leq j a \leq$ N_A and ja+ $n-1 \leq$ N_A. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0$: $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	If $n=0$: $\mathrm{N} _A \geq 0$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	MB_A ≥ 1	Global

desc_a	Name	Description	Limits	Scope
6	NB_A	Column block size	$N B _A \geq 1$	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A < p	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A < \quad d	Global
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A)	Local

Specified as: an array of (at least) length 9, containing fullword integers.
is the local part of the global vector ipvt, containing the pivoting indices produced on a preceding call to PDGETRF or PZGETRF, respectively. This identifies the first element of the local array IPVT. This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, p, and myrow; therefore, the leading LOCp($i a+n-1$) part of the local array IPVT must contain the local pieces of the leading ia+n-1 part of the global vector.

A copy of the vector ipvt, with a block size of MB_A and global index ia, is contained in each column of the process grid. The process row over which the first row of ipvt is distributed is RSRC_A.

Scope: local

Specified as: an array of (at least) length LOCp(ia+n-1), containing fullword integers, where $i a \leq$ (pivoting index values) $\leq i a+m-1$, and m is an argument in PDGETRF and PZGETRF. Details about the block-cyclic data distribution of global vector ipvt are stored in desc_a.
is the local part of the global general matrix \boldsymbol{B}, containing the right-hand sides of the system. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on ib, jb, desc_b, p, q, myrow, and mycol; therefore, the leading $\operatorname{LOCp}(i b+n-1)$ by LOCq(jb+nrhs-1) part of the local array B must contain the local pieces of the leading $i b+n-1$ by $j b+n r h s-1$ part of the global matrix.

Scope: local

Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 61 on page 357. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global
Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+n-1 \leq M _B$.
is the column index of the global matrix \boldsymbol{B}, identifying the first column of the submatrix B.

Scope: global

PDGETRS and PZGETRS

Specified as: a fullword integer; $1 \leq j b \leq$ N_B and $j b+n r h s-1 \leq$ N_B. desc_b
is the array descriptor for global matrix \boldsymbol{B}, described in the following table:
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \text { desc_b } & \text { Name } & \text { Description } & \text { Limits } & \text { Scope } \\
\hline 1 & \text { DTYPE_B } & \text { Descriptor type } & \text { DTYPE_B=1 } & \begin{array}{l}\text { Valid value, as returned by } \\
\text { BLACS_GRIDINIT or } \\
\text { BLACS_GRIDMAP }\end{array} \\
\hline 2 & \text { CTXT_B } & \begin{array}{l}\text { Number of rows in the global } \\
\text { matrix }\end{array} & \begin{array}{l}\text { If } n=0 \text { or nrhs }=0: \\
\text { M_B } \geq 0 \\
\text { Otherwise: } \\
\text { M_B } \geq 1\end{array} & \text { Global } \\
\hline 3 & \text { N_B } & \begin{array}{l}\text { Number of columns in the } \\
\text { global matrix }\end{array} & \begin{array}{l}\text { If } n=0 \text { or nrhs }=0: \\
\text { N_B } \geq 0\end{array} & \begin{array}{l}\text { Otherwise: } \\
\text { N_B } \geq 1\end{array}
$$

\hline 4 \& MB_B \& NB_B \& Row block size \& MB_B \geq 1\end{array}\right]\)| Global |
| :--- |
| 5 |

Specified as: an array of (at least) length 9, containing fullword integers.
info
See On Return.

On Return

b
is the updated local part of the global matrix \boldsymbol{B}, containing the solution vectors.
Scope: local
Returned as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 61 on page 357.
info
indicates that a successful computation occurred.
Scope: global
Returned as: a fullword integer; info $=0$.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. This subroutine accepts lowercase letters for the transa argument.
3. For PDGETRS, if you specify ' C ' for the transa argument, it is interpreted as though you specified 'T'.
4. The matrices and vector must have no common elements; otherwise, results are unpredictable.
5. The scalar data specified for input argument n must be the same for both PDGETRF/PZGETRF and PDGETRS/PZGETRS. In addition, the scalar data specified for input argument m in PDGETRF/PZGETRF must be the same as input argument n in both PDGETRF/PZGETRF and PDGETRS/PZGETRS.
If, however, you do not plan to call PDGETRS/PZGETRS after calling PDGETRF/PZGETRF, then input arguments m and n in PDGETRF/PZGETRF do not need to be equal.
6. The global submatrices for \boldsymbol{A} and ipvt input to PDGETRS/PZGETRS must be the same as for the corresponding output arguments for PDGETRF/PZGETRF; and thus, the scalar data specified for $i a, j a$, and the contents of desc_a must also be the same.
7. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{-}\right)$and $\operatorname{LOCq}\left(\mathrm{N}_{-}\right)$used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
8. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
9. On both input and output, matrices \boldsymbol{A} and \boldsymbol{B} conform to ScaLAPACK format.
10. The following values must be equal: CTXT_A = CTXT_B.
11. The global general matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
12. The following block sizes must be equal: $M B _A=M B _B$.
13. The global general matrix \boldsymbol{A} must be aligned on a block row boundary; that is, ia-1 must be a multiple of MB_A.
14. The block row offset of \boldsymbol{A} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.
15. The block row offset of \boldsymbol{A} must be equal to the block row offset of \boldsymbol{B}; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(i b-1, M B _B\right)$.
16. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{B}; that is, iarow = ibrow, where:

$$
\begin{aligned}
& \text { iarow }=\bmod \left(\left(\left((i a-1) / \text { MB_A }^{2}\right)+\text { RSRC_A }\right), p\right) \\
& \text { ibrow }=\bmod \left(\left(\left((i b-1) / \mathrm{MB}_{-} \mathrm{B}\right)+\text { RSRC_B }\right), p\right)
\end{aligned}
$$

17. There is no array descriptor for ipvt. It is a column-distributed vector with block size MB_A, local arrays of dimension LOCp($i a+m-1$) by 1 , and global index ia. A copy of this vector exists on each column of the process grid, and the process row over which the first column of ipvt is distributed is RSRC_A.

Error Conditions

Computational Errors: None
Note: If the factorization performed by PDGETRF/PZGETRF failed because of a singular matrix \boldsymbol{A}, the results returned by this subroutine are unpredictable. For details, see the info output argument for PDGETRF/PZGETRF.

Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors
Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. transa $\neq ' \mathrm{~N}$ ', ' T ', or ' C^{\prime}
2. $n<0$
3. nrhs <0
4. $\mathrm{M} _\mathrm{A}<0$ and $n=0 ; \mathrm{M} _\mathrm{A}<1$ otherwise
5. $\mathrm{N} _\mathrm{A}<0$ and $n=0 ; \mathrm{N} _\mathrm{A}<1$ otherwise
6. $i a<1$
7. $j a<1$
8. $M B _A<1$
9. NB_A <1
10. RSRC_A <0 or RSRC_A $\geq p$
11. CSRC_A <0 or CSRC_A $\geq q$
12. $M _B<0$ and ($n=0$ or nrhs $=0$); $M _B<1$ otherwise
13. $\mathrm{N} _\mathrm{B}<0$ and ($n=0$ or $n r h s=0$); $\mathrm{N} _\mathrm{B}<1$ otherwise
14. $i b<1$
15. $j b<1$
16. $M B _B<1$
17. NB_B < 1
18. RSRC_B < 0 or RSRC_B $\geq p$
19. CSRC_B <0 or CSRC_B $\geq q$
20. CTXT_A \neq CTXT_B

Stage 5
If $n \neq 0$:

1. $i a>M _A$
2. $j a>\mathrm{N} _\mathrm{A}$
3. $i a+n-1>M _A$
4. $j a+n-1>$ N_A

If $n \neq 0$ and $n r h s \neq 0$:
5. ib > M_B
6. $j b>N-B$
7. $i b+n-1>M _B$
8. $j b+n r h s-1>N _B$

In all cases:
9. $M B _A \neq N B _A$
10. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(j a-1, N B _A\right)$
11. $M B _B \neq M B _A$
12. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(i b-1, M B _B\right)$.
13. $\bmod \left(i a-1, M B _A\right) \neq 0$
14. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{B}; that is, iarow $\neq i b r o w$, where: iarow $=\bmod \left(\left(\left((i a-1) / M B _A\right)+R S R C _A\right), p\right)$ ibrow $=\bmod \left(\left(\left((i b-1) / M B _B\right)+\right.\right.$ RSRC_B $\left.), p\right)$

Stage 6

1. $\operatorname{LLD_ A}<\max \left(1, \operatorname{LOCp}\left(M _A\right)\right)$
2. $\operatorname{LLD} _B<\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
3. transa differs.
4. n differs.
5. nrhs differs.
6. ipvt differs.
7. ia differs.
8. ja differs.
9. DTYPE_A differs.
10. M_A differs.
11. N_A differs.
12. $M B _A$ differs.
13. NB_A differs.
14. RSRC_A differs.
15. CSRC_A differs.
16. ib differs.
17. jb differs.
18. DTYPE_B differs.
19. M_B differs.
20. N_B differs.
21. $M B$ B differs.
22. NB_B differs.
23. RSR \bar{R} _B differs.
24. CSRC_B differs.

Example 1: This example solves the real system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ with 5 right-hand sides using a 2×2 process grid. The input ipvt vector and transformed matrix \boldsymbol{A} are the output from "Example 1" on page 350.

This example uses a global submatrix \boldsymbol{B} within a global matrix \boldsymbol{B} by specifying $i b=1$ and $j b=2$.

By specifying RSRC_B = 1, the rows of global matrix \boldsymbol{B} are distributed over the process grid starting in the second row of the process grid. In addition, by specifying CSRC_B = 1, the columns of global matrix B are distributed over the process grid starting in the second column of the process grid.

Call Statements and Input

PDGETRS and PZGETRS

```
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_B
DTYPE_	1	1
CTXT_	icontxt1	icontxt1
M	9	9
N	9	6
MB	3	3
NB	3	2
RSRC_	1	1
CSRC_	0	1
LLD_	See below2	See below ${ }^{2}$

1 icontxt is the output of the BLACS_GRIDINIT call.
2 Each process should set the LLD_ as follows:
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$

In this example, LLD_A $=$ LLD_B $=3$ on P_{00} and P_{01}, and
LLD_A $=$ LLD_B $=6$ on P_{10} and P_{11}.
After the global matrix \boldsymbol{B} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{B}. Following is the global 9×5 submatrix \boldsymbol{B}, starting at row 1 and column 2 in global general 9×6 matrix \boldsymbol{B} with block size 3×2 :
B, D
0
1
2

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{1}$	$\mathbf{0 2}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of \boldsymbol{B} begins in the second row of the process grid, and the first column of \boldsymbol{B} begins in the second column of the process grid.

Local arrays for B :

Output:

After the global matrix \boldsymbol{B} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{B}. Following is the global 9×5 submatrix \boldsymbol{B}, starting at row 1 and column 2 in global general 9×6 matrix \boldsymbol{B} with block size 3×2 :

B, D	0	1		2	
0	1.0	2.0	3.0	4.0	5.0
	2.0	4.0	6.0	8.0	10.0
	3.0	6.0	9.0	12.0	15.0
1	4.0	8.0	12.0	16.0	20.0
	5.0	10.0	15.0	20.0	25.0
	6.0	12.0	18.0	24.0	30.0
2	7.0	14.0	21.0	28.0	35.0
	8.0	16.0	24.0	32.0	40.0
	- 9.0	18.0	27.0	36.0	45.0

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{1}$	$\mathbf{0 2}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of \boldsymbol{B} begins in the second row of the process grid, and the first column of \boldsymbol{B} begins in the second column of the process grid.

PDGETRS and PZGETRS

Local arrays for B :

p,q	0			1		
	8.0	12.0		4.0	16.0	20.0
0	10.0	15.0		5.0	20.0	25.0
	12.0	18.0	-	6.0	24.0	30.0
	2.0	3.0	-	1.0	4.0	5.0
	4.0	6.0	-	2.0	8.0	10.0
	6.0	9.0	-	3.0	12.0	15.0
1	14.0	21.0	-	7.0	28.0	35.0
	16.0	24.0		8.0	32.0	40.0
	18.0	27.0		9.0	36.0	45.0

The value of info is 0 on all processes.
Example 2: This example solves the complex system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ with 5 right-hand sides using a 2×2 process grid. The input ipvt vector and transformed matrix \boldsymbol{A} are the output from "Example 2" on page 353.

This example uses a global submatrix \boldsymbol{B} within a global matrix \boldsymbol{B} by specifying $i b=1$ and $j b=2$.

By specifying RSRC_B = 1, the rows of global matrix \boldsymbol{B} are distributed over the process grid starting in the second row of the process grid. In addition, by specifying CSRC_B $=1$, the columns of global matrix \boldsymbol{B} are distributed over the process grid starting in the second column of the process grid.

Call Statements and Input

```
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_B
DTYPE_ $^{\mid}$	1	1
CTXT_ $_{-}$	icontxt 1	icontxt 1
M_{-}	9	9
$\mathrm{~N}_{-}$	9	6
MB_ $^{\text {NB_ }}$	3	3
RSRC_ $^{\text {CSRC_ }}$	3	2
LLD_	1	1
	0	1

	Desc_A	Desc_B
1 icontxt is the output of the BLACS_GRIDINIT call.		
2 Each process should set the LLD_ as follows:		
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M-A, M B _A\right.\right.$, MYROW, RSRC_A, NPROW $\left.)\right)$		
LLD_B $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M-B, M B _B, M Y R O W, R S R C _B, N P R O W\right)\right)$		
In this example, LLD_A $=$ LLD_B $=3$ on P_{00} and P_{01}, and		
LLD_A $=$ LLD_B $=6$ on P_{10} and P_{11}.		

After the global matrix \boldsymbol{B} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{B}. Following is the global 9×5 submatrix \boldsymbol{B}, starting at row 1 and column 2 in global general 9×6 matrix \boldsymbol{B} with block size 3×2 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{1}$	$\mathbf{0 2}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of \boldsymbol{B} begins in the second row of the process grid, and the first column of \boldsymbol{B} begins in the second column of the process grid.

Local arrays for B :

p,q	0			1		
0	(142.0, 27.8)	(143.0, 54.2)		(141.0, 1.4)	(144.0, 80.6)	$(145.0,107.0)$
	(128.0, 37.0)	(127.0, 63.0)		(129.0, 11.0)	(126.0, 89.0)	(125.0,115.0)
	(118.0, 49.8)	(115.0, 76.2)		(121.0, 23.4)	(112.0,102.6)	(109.0,129.0)
1	(200.0, 21.8)	(207.0, 54.2)		(193.0, -10.6)	(214.0, 86.6)	(221.0,119.0)
	(178.8, 20.2)	(183.8, 49.8)		(173.8, -9.4)	(188.8, 79.4)	(193.8,109.0)
	(159.2, 22.2)	(162.2, 49.8)		(156.2, -5.4)	(165.2, 77.4)	$(168.2,105.0)$
	(112.8, 66.2)	(107.8, 93.8)		(117.8, 38.6)	$(102.8,121.4)$	(97.8,149.0)
	(113.2, 86.2)	$(106.2,115.8)$		(120.2, 56.6)	(99.2,145.4)	$(92.2,175.0)$
	(120.0, 109.8)	(111.0,142.2)		(129.0, 77.4)	(102.0,174.6)	(93.0,207.0)

PDGETRS and PZGETRS

Output:

After the global matrix \boldsymbol{B} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{B}. Following is the global 9×5 submatrix \boldsymbol{B}, starting at row 1 and column 2 in global general 9×6 matrix \boldsymbol{B} with block size 3×2 :

B, D	0			2	
	(1.0, 1.0)	(1.0, 2.0)	(1.0, 3.0)	(1.0, 4.0	(1.0, 5.0)
0	(2.0, 1.0)	(2.0, 2.0)	(2.0, 3.0)	(2.0, 4.0	(2.0, 5.0)
	(3.0, 1.0)	(3.0, 2.0)	(3.0, 3.0)	(3.0, 4.0)	(3.0, 5.0)
1	(4.0, 1.0)	(4.0, 2.0)	(4.0, 3.0)	(4.0, 4.0	(4.0, 5.0)
	(5.0, 1.0)	(5.0, 2.0)	(5.0, 3.0)	(5.0, 4.0)	(5.0, 5.0)
	$(6.0,1.0)$	(6.0, 2.0)	(6.0, 3.0)	(6.0, 4.0)	$(6.0,5.0)$
2	(7.0, 1.0)	(7.0, 2.0)	(7.0, 3.0)	(7.0, 4.0	(7.0, 5.0)
	(8.0, 1.0)	(8.0, 2.0)	(8.0, 3.0)	(8.0, 4.0)	(8.0, 5.0)
	(9.0, 1.0)	(9.0, 2.0)	(9.0, 3.0)	(9.0, 4.0	$(9.0,5.0)$

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{1}$	$\mathbf{0 2}$
$\mathbf{1}$	P_{00}	P_{01}
$\mathbf{0}$	P_{10}	P_{11}
$\mathbf{2}$		

Note: The first row of \boldsymbol{B} begins in the second row of the process grid, and the first column of \boldsymbol{B} begins in the second column of the process grid.

Local arrays for \boldsymbol{B} :

The value of info is 0 on all processes.

PDPOTRF and PZPOTRF-Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization

PDPOTRF uses Cholesky factorization to factor a positive definite real symmetric matrix \boldsymbol{A} into one of the following forms:
$\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{\top}$ if \boldsymbol{A} is lower triangular.
$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{U} \boldsymbol{U}$ if \boldsymbol{A} is upper triangular.
PZPOTRF uses Cholesky factorization to factor a positive definite complex Hermitian matrix \boldsymbol{A} into one of the following forms:
$\boldsymbol{A}=\boldsymbol{L} L^{H}$ if \boldsymbol{A} is lower triangular.
$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{H} \boldsymbol{U}$ if \boldsymbol{A} is upper triangular.
In the formulas above:
\boldsymbol{A} represents the global positive definite real symmetric or complex Hermitian submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$ to be factored.
L is a lower triangular matrix.
\boldsymbol{U} is an upper triangular matrix.
To solve the system of equations with any number of right-hand sides, follow the call to these subroutines with one or more calls to PDPOTRS or PZPOTRS, respectively.

If $n=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [16], [18], [22], [36], and [37].

Table 62. Data Types

\boldsymbol{A}	Subroutine
Long-precision real	PDPOTRF
Long-precision complex	PZPOTRF

Syntax

Fortran	CALL PDPOTRF \| PZPOTRF (uplo, $n, a, i a, j a$, desc_a, info)
C and \mathbf{C}_{++}	pdpotrf \| pzpotrf (uplo, n, a, ia, ja, desc_a, info);

On Entry
uplo
indicates whether the upper or lower triangular part of the global real symmetric or complex Hermitian submatrix \boldsymbol{A} is referenced, where:

If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.

Scope: global

Specified as: a single character; uplo = 'U' or 'L'.
n
is the number of rows and columns in submatrix \boldsymbol{A} used in the computation.
Scope: global

PDPOTRF and PZPOTRF

Specified as: a fullword integer; $n \geq 0$.
a
is the local part of the global real symmetric or complex Hermitian matrix A, used in the system of equations. This identifies the first element of the local array A . This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading ia+n-1 by ja+n-1 part of the global matrix, and:

- If uplo = 'U', the leading $n \times n$ upper triangular part of the global real symmetric or complex Hermitian submatrix $\boldsymbol{A}_{\text {ia:iatn-1, ja:ja+n-1 }}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global real symmetric or complex Hermitian submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 62 on page 369. Details about the square block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq \mathrm{N} _\mathrm{A}$ and $j a+n-1 \leq \mathrm{N} _\mathrm{A}$. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	NB_A ≥ 1	Global

desc_a	Name	Description	Limits	Scope
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq R S R C _$- $<$	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A $\geq \max \left(1, \mathrm{LOCp}\left(\mathrm{M} _\right.\right.$A) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers. info

See On Return.

On Return

a
is the updated local part of the global matrix \boldsymbol{A}, containing the results of the factorization.

Scope: local

Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 62 on page 369.
info
has the following meaning:
If info $=0$, global real symmetric or complex Hermitian submatrix \boldsymbol{A} is positive definite, and the factorization completed normally.

If info >0, the leading minor of order k of the global real symmetric or complex Hermitian submatrix \boldsymbol{A} is not positive definite. info is set equal to k, where the leading minor was encountered at $\boldsymbol{A}_{i a+k-1, j a+k-1}$. The factorization is not completed. \boldsymbol{A} is overwritten with the partial factors.

Scope: global

Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. This subroutine accepts lowercase letters for the uplo argument.
3. On input to PZPOTRF, the imaginary parts of the diagonal elements of the complex Hermitian matrix \boldsymbol{A} are assumed to be zero, so you do not have to set these values. On output, they are set to zero.
4. The scalar data specified for input argument n must be the same for both PDPOTRF/PZPOTRF and PDPOTRS/PZPOTRS.
5. The global submatrix \boldsymbol{A} input to PDPOTRS/PZPOTRS must be the same as for the corresponding output argument for PDPOTRF/PZPOTRF; and thus, the scalar data specified for ia, ja, and the contents of desc_a must also be the same.
6. The NUMROC utility subroutine can be used to determine the values of $\operatorname{LOCp}\left(\mathrm{M}_{_}\right)$and $\operatorname{LOCq}\left(\mathrm{N} _\right)$used in the argument descriptions above. For details,
see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
7. The way these subroutines handle nonpositive definiteness differs from ScaLAPACK. These subroutines use the info argument to provide information about the nonpositive definiteness of \boldsymbol{A}, like ScaLAPACK, but also provides an error message.
8. On both input and output, matrix \boldsymbol{A} conforms to ScaLAPACK format.
9. The global real symmetric or complex Hermitian matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
10. The global real symmetric or complex Hermitian matrix \boldsymbol{A} must be aligned on a block row boundary; that is, ia-1 must be a multiple of MB_A.
11. The block row offset of \boldsymbol{A} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.

Performance Considerations

1. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
2. For optimal performance, you should use a square process grid to minimize the communication path length in both directions.
3. For optimal performance, take the following items into consideration when choosing the NB_A (= MB_A) value:

- Whether you are using the upper or lower triangular part of \boldsymbol{A}, which may affect performance.
- The cache size of the computational nodes. NB_A determines the granularity of the most expensive part of the computation, which tends to increase the optimal value of NB_A.
- The communication and synchronization overhead. This has two aspects, the cost of internal synchronization points and the cost of broadcasts. These tend to slightly decrease the optimal value of NB_A.
- The model of communication adapter you are using. The High Performance Switch Adapter-2 allows a larger NB.
- Load balancing. For the best processor utilization, it is necessary for the processor nodes to be active for as long as possible; therefore, each one should have as many blocks as possible. For a given problem size, this tends to decrease the optimal value of NB_A (best load balancing: 1) and is most relevant at very small problem sizes.
- If NB_A is equal to a power of 2 , performance may be degraded.
- Use the following rules of thumb for reasonably-sized problems:
- For the POWER processors, choose NB_A in the following range:
- For PDPOTRF, use [30, 50], avoiding 32.
- For PZPOTRF, use [10, 25], avoiding 16.
- For the POWER2 processors, choose NB_A in the following range:
- For PDPOTRF, use [60, 80], avoiding 64.
- For PZPOTRF, use [20, 40], avoiding 32.

4. If you are using the PE Version 2 Release 4, or later, MPI threaded library, you may obtain better performance by setting the PE environment variable MP_WAIT_MODE:
export MP_WAIT_MODE=yield

Error Conditions

Computational Errors: Matrix \boldsymbol{A} is not positive definite. For details, see the description of the info argument.

Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. uplo \neq 'U' or 'L'
2. $n<0$
3. $\mathrm{M} _\mathrm{A}<0$ and $n=0 ; \mathrm{M} _\mathrm{A}<1$ otherwise
4. $\mathrm{N} _\mathrm{A}<0$ and $n=0 ; \mathrm{N} \mathrm{A}<1$ otherwise
5. $i a<1$
6. $j a<1$
7. $M B$ A <1
8. $N B A<1$
9. RSRC_A <0 or RSRC_A $\geq p$
10. CSRC_A < 0 or CSRC_A $\geq q$

Stage 5
If $n \neq 0$:

1. $i a>M _A$
2. $j a>\mathrm{N} _\mathrm{A}$
3. $i a+n-1>M _A$
4. $j a+n-1>N _A$

In all cases:
5. $M B _A \neq N B _A$
6. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(j a-1, N B _A\right)$
7. $\bmod \left(i a-1, M B _A\right) \neq 0$

PDPOTRF and PZPOTRF

Stage 6

1. LLD_A < max(1, LOCp(M_A))

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
2. uplo differs.
3. n differs.
4. ia differs.
5. ja differs.
6. DTYPE_A differs.
7. M_A differs.
8. N_A differs.
9. MB_A differs.
10. NB_A differs.
11. RSRC_A differs.
12. CSRC_A differs.

Example 1: This example factors a 9×9 positive definite real symmetric matrix using a 2×2 process grid.

Call Statements and Input
ORDER = 'R'
NPROW $=2$
NPCOL $=2$
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A
DTYPE_	1
CTXT_	icontxt ${ }^{1}$
M-	9
N-	9
MB_	3
NB_	3
RSRC_	0
CSRC_	0
LLD_	See below
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, N U M R O C\left(M _A, M B _A, M Y R O W, R S R C _A, N P R O W\right)\right)$ In this example, LLD_A $=6$ on P_{00} and P_{01}, and LLD_A $=3$ on P_{10} and P_{11}.	

Global real symmetric matrix \boldsymbol{A} of order 9 with block size 3×3 :

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

p,q	0						1		
	1.0								
	1.0	2.0	.	.				.	
	1.0	2.0	3.0	.					
0	1.0	2.0	3.0	7.0			4.0	5.0	6.0
	1.0	2.0	3.0	7.0	8.0		4.0	5.0	6.0
	1.0	2.0	3.0	7.0	8.0	9.	4.0	5.0	6.0
	1.0	2.0	3.0				4.0		
1	1.0	2.0	3.0				4.0	5.0	
	1.0	2.0	3.0	.			4.0	5.0	6.0

Output:

Global real symmetric matrix \boldsymbol{A} of order 9 with block size 3×3 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

The value of info is 0 on all processes.
Example 2: This example factors a 9×9 positive definite complex Hermitian matrix using a 2×2 process grid.

Call Statements and Input
ORDER = 'R'
NPROW $=2$
NPCOL $=2$
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A
DTYPE	1
CTXT	icontxt ${ }^{1}$
M-	9
N-	9
MB_	3
NB	3
RSRC_	0
CSRC	0
LLD_	See below ${ }^{2}$

	Desc_A
1 icontxt is the output of the BLACS_GRIDINIT call.	
2 Each process should set the LLD_ as follows:	
LLD_A $=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M _A, M B _A, M Y R O W\right.\right.$, RSRC_A, NPROW) $)$	
In this example, LLD_A $=6$ on P_{00} and P_{01}, and LLD_A $=3$ on P_{10} and P_{11}.	

Global complex Hermitian matrix \boldsymbol{A} of order 9 with block size 3×3 :

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \boldsymbol{A} are assumed to be zero, so you do not have to set these values.

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{0} \mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for A:

p,q	0						1		
0	$(18.0, ~$.	$(18.0, .)$							
	(1.0, 1.0)		(18.0,)		-	-	-	-	
	$(1.0,1.0)$	$(3.0,1.0)$	(18.0, .)	-	-	-	(7.0. 1.0$)$	(9.0,	
	(1.0, 1.0)	(3.0, 1.0)	(5.0, 1.0)	(18.0, .)	.	.	(7.0, 1.0)	(9.0, 1.0)	$(11.0,1.0)$
	(1.0, 1.0)	(3.0, 1.0)	(5.0, 1.0)	(13.0, 1.0)	(18.0, .)	,	(7.0, 1.0)	(9.0, 1.0)	(11.0, 1.0)
	(1.0, 1.0)	(3.0, 1.0)	(5.0, 1.0)	(13.0, 1.0)	(15.0, 1.0)	(18.0,	(7.0, 1.0)	(9.0, 1.0)	(11.0, 1.0)
	$(1.0,1.0)$	(3.0, 1.0)	(5.0, 1.0)	.	.	.	$(18.0, ~$.		-
1	$(1.0,1.0)$	(3.0, 1.0)	(5.0, 1.0)			.	(7.0, 1.0)	(18.0, .)	(
	$(1.0,1.0)$	(3.0, 1.0)	(5.0, 1.0)	-	-	-	(7.0, 1.0)	(9.0, 1.0)	(18.0, .)

Output:

Global complex Hermitian matrix \boldsymbol{A} of order 9 with block size 3×3 :

PDPOTRF and PZPOTRF

Note: On output, the imaginary parts of the diagonal elements of the matrix are set to zero.

The following is the 2×2 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0 2}$	$\mathbf{1}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Local arrays for \boldsymbol{A} :

p,q	0						1		
0	$(4.2,0.0)$					-	-	-	
	(0.24, 0.24)	(4.2, 0.0)	-	-			-		
	(0.24, 0.24)	(0.68, 0.24)	(4.2, 0.0)						
	(0.24, 0.24)	(0.68, 0.24)	(1.1, 0.24)	(3.2, 0,0)	-	-	(1.3, 0.25)	(1.4, 0.26)	(1.5, 0.28)
	(0.24, 0.24)	(0.68, 0.24)	(1.1, 0.24)	(1.6, 0.32)	(2.7, 0.0)	(2. 0)	(1.3, 0.25)	(1.4, 0.26)	$(1.5,0.28)$
	(0.24, 0.24)	(0.68, 0.24)	(1.1, 0.24)	$(1.6,0.32)$	(1.6, 0.37)	(2.2, 0.0)	(1.3, 0.25)	(1.4, 0.26)	$(1.5,0.28)$
1	(0.24, 0.24)	(0.68, 0.24)	(1.1, 0.24)	.			$(4.0,0.0)$		
	(0.24, 0.24)	(0.68, 0.24)	(1.1, 0.24)	.	-		(1.3, 0.25)	(3.8, 0.0	-
	(0.24, 0.24)	(0.68, 0.24)	(1.1, 0.24)	-	.	-	(1.3, 0.25)	(1.4, 0.26)	$(3.5,0.0)$

The value of info is 0 on all processes.

PDPOTRS and PZPOTRS—Positive Definite Real Symmetric or Complex Hermitian Matrix Solve

These subroutines solve the following systems of equations for multiple right-hand sides:

$$
A X=B
$$

where, in the formula above:
\boldsymbol{A} represents the global positive definite real symmetric or complex Hermitian submatrix $\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}$ factored by Cholesky factorization.
\boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1, j b: j b+n r h s-1}$ containing the right-hand sides in its columns.
\boldsymbol{X} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1, j b: j b+n r h s-1}$ containing the solution vectors in its columns.

This subroutine uses the results of the factorization of matrix \boldsymbol{A}, produced by a preceding call to PDPOTRF or PZPOTRF, respectively. For details on the factorization, see "PDPOTRF and PZPOTRF—Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization" on page 369.

If $n=0$ or $n r h s=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [16], [18], [22], [36], and [37].

Table 63. Data Types

$\boldsymbol{A}, \boldsymbol{B}$	Subroutine
Long-precision real	PDPOTRS
Long-precision complex	PZPOTRS

Syntax

Fortran	CALL PDPOTRS \| PZPOTRS (uplo, n, nrhs, a, ia, ja, desc_a, b, ib, jb, desc_b, info)
\mathbf{C} and C++	pdpotrs \| pzpotrs (uplo, n, nrhs, a, ia, ja, desc_a, b, ib, jb, desc_b, info);

On Entry

uplo
indicates whether the upper or lower triangular part of the global real symmetric or complex Hermitian submatrix \boldsymbol{A} is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
n
is the order of the factored matrix \boldsymbol{A}.
Scope: global
Specified as: a fullword integer; $n \geq 0$.
nrhs
is the number of right-hand sides- that is, the number of columns in submatrix \boldsymbol{B} used in the computation.

PDPOTRS and PZPOTRS

Scope: global

Specified as: a fullword integer; nrhs ≥ 0.
a
is the local part of the global real symmetric or complex Hermitian matrix \boldsymbol{A}, containing the factorization of matrix \boldsymbol{A} produced by a preceding call to PDPOTRF or PZPOTRF, respectively. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading ia+n-1 by ja+n-1 part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global real symmetric or complex Hermitian submatrix $\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global real symmetric or complex Hermitian submatrix $\boldsymbol{A}_{\text {ia:ia } a+n-1, j a: j a+n-1}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Scope: local
Specified as: an LLD_A by (at least) $\operatorname{LOCq}\left(N _A\right)$ array, containing numbers of the data type indicated in Table 63 on page 379 . Details about the square block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
is the row index of the global matrix \boldsymbol{A}, identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer; $1 \leq j a \leq$ N_A and ja+n-1 \leq N_A. desc_a
is the array descriptor for global matrix \boldsymbol{A}, described in the following table:

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A=1	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global

desc_a	Name	Description	Limits	Scope
4	N_A	Number of columns in the global matrix	If $n=0$: $N _A \geq 0$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	$N B _A \geq 1$	Global
7	RSRC_A	The process row of the $p \times q$ grid over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$	Global
8	CSRC_A	The process column of the $p \times q$ grid over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<q$	Global
9	LLD_A	The leading dimension of the local array	LLD_A \geq max(1,LOCp(M_A))	Local

Specified as: an array of (at least) length 9, containing fullword integers.
b
is the local part of the global general matrix \boldsymbol{B}, containing the right-hand sides of the system. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on ib, jb, desc_b, p, q, myrow, and mycol; therefore, the leading $\operatorname{LOCp}(i b+n-1)$ by LOCq $(j b+n r h s-1)$ part of the local array B must contain the local pieces of the leading $i b+n-1$ by $j b+n r h s-1$ part of the global matrix.
Scope: local
Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers of the data type indicated in Table 63 on page 379. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global

Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+n-1 \leq M _B$. jb
is the column index of the global matrix \boldsymbol{B}, identifying the first column of the submatrix B.

Scope: global

Specified as: a fullword integer; $1 \leq j b \leq N _B$ and $j b+n r h s-1 \leq N _B$. desc_b
is the array descriptor for global matrix \boldsymbol{B}, described in the following table:

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B=1	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global

PDPOTRS and PZPOTRS

desc_b	Name	Description	Limits	Scope
3	M_B	Number of rows in the global matrix	If $n=0$ or nrhs $=0:$ M_B ≥ 0 Otherwise: M_B ≥ 1	Global
4	N_B	Number of columns in the global matrix	If $n=0$ or nrhs $=0:$ N_B ≥ 0 Otherwise: N_B ≥ 1	Global
5	MB_B	NB_B	Row block size	Column block size

Specified as: an array of (at least) length 9, containing fullword integers.
info
See On Return.

On Return

b
is the updated local part of the global matrix \boldsymbol{B}, containing the solution vectors.
Scope: local
Returned as: an LLD_B by (at least) $\mathrm{LOCq}\left(\mathrm{N} _\mathrm{B}\right.$) array, containing numbers of the data type indicated in Table 63 on page 379.
info
indicates that a successful computation occurred.

Scope: global

Returned as: a fullword integer; info $=0$.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. This subroutine accepts lowercase letters for the uplo argument.
3. The matrices must have no common elements; otherwise, results are unpredictable.
4. The scalar data specified for input argument n must be the same for both PDPOTRF/PZPOTRF and PDPOTRS/PZPOTRS.
5. The global submatrix \boldsymbol{A} input to PDPOTRS/PZPOTRS must be the same as for the corresponding output argument for PDPOTRF/PZPOTRS; and thus, the scalar data specified for ia, ja, and the contents of desc_a must also be the same.
6. The NUMROC utility subroutine can be used to determine the values of LOCp(M_) and LOCq(N_) used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
7. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
8. On both input and output, matrices \boldsymbol{A} and \boldsymbol{B} conform to ScaLAPACK format.
9. The following values must be equal: CTXT_A = CTXT_B.
10. The global real symmetric or complex Hermitian matrix \boldsymbol{A} must be distributed using a square block-cyclic distribution; that is, $M B _A=N B _A$.
11. The following block sizes must be equal: $M B _A=M B _B$.
12. The global real symmetric or complex Hermitian matrix \boldsymbol{A} must be aligned on a block row boundary; that is, ia-1 must be a multiple of MB_A.
13. The block row offset of \boldsymbol{A} must be equal to the block column offset of \boldsymbol{A}; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(j a-1, N B _A\right)$.
14. The block row offset of \boldsymbol{A} must be equal to the block row offset of \boldsymbol{B}; that is, $\bmod \left(i a-1, M B _A\right)=\bmod \left(i b-1, M B _B\right)$.
15. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} must also contain the first row of the submatrix \boldsymbol{B}; that is, iarow $=$ ibrow, where:
```
iarow = mod((((ia-1)/MB_A)+RSRC_A), p)
ibrow = mod((((ib-1)/MB_B)+RSRC_B), p)
```


Error Conditions

Computational Errors: None
Note: If the factorization performed by PDPOTRF/PZPOTRF failed because of a nonpositive definite matrix \boldsymbol{A}, the results returned by this subroutine are unpredictable. For details, see the info output argument for PDPOTRF/PZPOTRF.

Resource Errors: Unable to allocate work space
Input-Argument and Miscellaneous Errors
Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

PDPOTRS and PZPOTRS

Stage 4

1. uplo \neq 'U' or 'L'
2. $n<0$
3. nrhs < 0
4. $M _A<0$ and $n=0 ;$ M_A < 1 otherwise
5. N_A <0 and $n=0 ; N _A<1$ otherwise
6. ia < 1
7. $j a<1$
8. $M B _A<1$
9. $N B _A<1$
10. RSRC_A <0 or RSRC_A $\geq p$
11. CSRC_A <0 or CSRC_A $\geq q$
12. $\mathrm{M} _\mathrm{B}<0$ and ($n=0$ or nrhs $=0$); $\mathrm{M} _\mathrm{B}<1$ otherwise
13. N_B <0 and ($n=0$ or nrhs $=0$); N_B <1 otherwise
14. $i b<1$
15. $j b<1$
16. $M B$ _B < 1
17. NB_B < 1
18. RSRC_B <0 or RSRC_ $B \geq p$
19. CSRC_B <0 or CSRC_B $\geq q$
20. CTXT_A $\neq C T X T _B$

Stage 5

If $n \neq 0$:

1. ia $>M A$
2. $j a>N _A$
3. $i a+n-1>M _A$
4. $j a+n-1>N _A$

If $n \neq 0$ and nrhs $\neq 0$:
5. ib > M_B
6. $j b>$ N_B
7. $i b+n-1>M _B$
8. $j b+n r h s-1>N _B$

In all cases:
9. $M B _A \neq N B _A$
10. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(j a-1, N B _A\right)$
11. $M B _B \neq M B _A$
12. $\bmod \left(i a-1, M B _A\right) \neq \bmod \left(i b-1, M B _B\right)$.
13. $\bmod \left(i a-1, M B _A\right) \neq 0$
14. In the process grid, the process row containing the first row of the submatrix \boldsymbol{A} does not contain the first row of the submatrix \boldsymbol{B}; that is, iarow \neq ibrow, where:
iarow $=\bmod \left(\left(\left((i a-1) / M B _A\right)+R S R C _A\right), p\right)$
ibrow $=\bmod \left(\left(\left((i b-1) / M B _B\right)+\right.\right.$ RSRC_B $\left.), p\right)$
Stage 6

1. LLD_A < max(1, LOCp(M_A))
2. LLD_B < $\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
3. uplo differs.
4. n differs.
5. nrhs differs.
6. ia differs.
7. ja differs.
8. DTYPE_A differs.
9. M A differs.
10. N_A differs.
11. MB_A differs.
12. NB_A differs.
13. RSRC_A differs.
14. CSRC_A differs.
15. ib differs.
16. $j b$ differs.
17. DTYPE_B differs.
18. M_B differs.
19. N_B differs.
20. MB_B differs.
21. NB_B differs.
22. RSRC_B differs.
23. CSRC_B differs.

Example 1: This example solves the positive definite real symmetric system
$\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ with 5 right-hand sides using a 2×2 process grid. The transformed matrix \boldsymbol{A} is the output from "Example 1" on page 374.

This example uses a global submatrix \boldsymbol{B} within a global matrix \boldsymbol{B} by specifying $i b=1$ and $j b=2$.

By specifying CSRC_B = 1, the columns of global matrix \boldsymbol{B} are distributed over the process grid starting in the second column of the process grid.

Call Statements and Input

```
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A	Desc_B
DTYPE_	1	1
CTXT_ $_{-}$	icontxt 1	icontxt 1
M_{-}	9	9
$\mathrm{~N}_{-}$	9	6
MB_ $^{\text {NB_ }}$	3	3
RSRC_	3	2
CSRC_	0	0

PDPOTRS and PZPOTRS

	Desc_A	Desc_B
LLD	See below ${ }^{2}$	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. 2 Each process should set the LLD_ as follows: LLD_A = MAX (1,NUMROC (M_A, MB_A, MYROW, RSRC_A, NPROW)) LLD_B $=\operatorname{MAX}\left(1, N U M R O C\left(M _B, M B _B, M Y R O W, R S R C _B, N P R O W\right)\right)$ In this example, LLD_A $=$ LLD_B $=6$ on P_{00} and P_{01}, and LLD_A $=$ LLD_B $=3$ on P_{10} and P_{11}.		

After the global matrix \boldsymbol{B} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{B}. Following is the global 9×5 submatrix \boldsymbol{B}, starting at row 1 and column 2 in global general 9×6 matrix \boldsymbol{B} with block size 3×2 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{1}$	$\mathbf{0 2}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Note: The first column of \boldsymbol{B} begins in the second column of the process grid.
Local arrays for \boldsymbol{B} :

p,q	0			1		
0	27.0	36.0		18.0	45.0	9.0
	51.0	68.0		34.0	85.0	17.0
	72.0	96.0		48.0	120.0	24.0
	126.0	168.0		84.0	210.0	42.0
	132.0	176.0	-	88.0	220.0	44.0
	135.0	180.0	-	90.0	225.0	45.0
1	90.0	120.0	-	60.0	150.0	30.0
	105.0	140.0	-	70.0	175.0	35.0
	117.0	156.0	-	78.0	195.0	39.0

Output:

After the global matrix \boldsymbol{B} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{B}. Following is the global 9×5 submatrix \boldsymbol{B}, starting at row 1 and column 2 in global general 9×6 matrix \boldsymbol{B} with block size 3×2 :

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{1}$	$\mathbf{0 2}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Note: The first column of \boldsymbol{B} begins in the second column of the process grid.
Local arrays for B :

p,q	0		1		
	3.0	4.0	2.0	5.0	1.0
	3.0	4.0	2.0	5.0	1.0
	3.0	4.0	2.0	5.0	1.0
0	3.0	4.0	2.0	5.0	1.0
	3.0	4.0	2.0	5.0	1.0
	3.0	4.0	2.0	5.0	1.0
	3.0	4.0	2.0	5.0	1.0
1	3.0	4.0	- 2.0	5.0	1.0
	3.0	4.0	2.0	5.0	1.0

The value of info is 0 on all processes.
Example 2: This example solves the positive definite complex Hermitian system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ with 5 right-hand sides using a 2×2 process grid. The transformed matrix \boldsymbol{A} is the output from "Example 2" on page 376 .

This example uses a global submatrix \boldsymbol{B} within a global matrix \boldsymbol{B} by specifying $i b=1$ and $j b=2$.

By specifying CSRC_B $=1$, the columns of global matrix B are distributed over the process grid starting in the second column of the process grid.

PDPOTRS and PZPOTRS

Call Statements and Input
ORDER = 'R'
NPROW $=2$
NPCOL $=2$
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A	Desc_B
DTYPE_	1	1
CTXT_	icontxt ${ }^{1}$	icontxt ${ }^{1}$
M-	9	9
N-	9	6
MB_	3	3
NB_	3	2
RSRC_	0	0
CSRC_	0	1
LLD_	See below ${ }^{2}$	See below ${ }^{2}$
1 icontxt is the output of the BLACS_GRIDINIT call. ${ }^{2}$ Each process should set the LLD_ as follows: LLD_A $=\operatorname{MAX}\left(1, N U M R O C\left(M _A, M B A, M Y R O W, R S R C _A, N P R O W\right)\right)$ $L L D _B=\operatorname{MAX}\left(1, N U M R O C\left(M_{-} B, M B-B\right.\right.$, MYROW, RSRC_B, NPROW) $)$		

After the global matrix \boldsymbol{B} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{B}. Following is the global 9×5 submatrix \boldsymbol{B}, starting at row 1 and column 2 in global general 9×6 matrix \boldsymbol{B} with block size 3×2 :

B, D	0				2	
0		(60.0, 10.0)	(86.0, 2.0)	(112.0, -6.0)	(138.0, -14.0)	(34.0, 18.0)
		(86.0, 28.0)	(126.0, 22.0)	(166.0, 16.0)	(206.0, 10.0)	(46.0, 34.0)
		(108.0, 44.0)	(160.0, 40.0)	(212.0, 36.0)	(264.0, 32.0)	(56.0, 48.0)
1		(126.0, 58.0)	(188.0, 56.0)	(250.0, 54.0)	(312.0, 52.0)	(64.0, 60.0)
		(140.0, 70.0)	(210.0, 70.0)	(280.0, 70.0)	(350.0, 70.0)	(70.0, 70.0)
		(150.0, 80.0)	(226.0, 82.0)	(302.0, 84.0)	(378.0, 86.0)	(74.0, 78.0)
2		(156.0, 88.0)	(236.0, 92.0)	(316.0, 96.0)	(396.0, 100.0)	(76.0, 84.0)
		(158.0, 94.0)	(240.0, 100.0)	(322.0, 106.0)	(404.0, 112.0)	(76.0, 88.0)
		(156.0, 98.0)	(238.0, 106.0)	(320.0, 114.0)	(402.0, 122.0)	(74.0, 90.0)

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{1}$	$\mathbf{0} \mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Note: The first column of \boldsymbol{B} begins in the second column of the process grid.
Local arrays for \boldsymbol{B} :

p,q	0			1		
0	(86.0, 2.0)	(112.0, -6.0)		(60.0, 10.0)	(138.0, -14.0)	(34.0, 18.0)
	(126.0, 22.0)	(166.0, 16.0)		(86.0, 28.0)	(206.0, 10.0)	(46.0, 34.0)
	(160.0, 40.0)	(212.0, 36.0)		(108.0, 44.0)	(264.0, 32.0)	(56.0, 48.0)
	(236.0, 92.0)	(316.0, 96.0)		(156.0, 88.0)	(396.0, 100.0)	(76.0, 84.0)
	(240.0, 100.0)	(322.0, 106.0)		(158.0, 94.0)	(404.0, 112.0)	(76.0, 88.0)
	(238.0, 106.0)	(320.0, 114.0)		(156.0, 98.0)	(402.0, 122.0)	(74.0, 90.0)
1	(188.0, 56.0)	(250.0, 54.0)		(126.0, 58.0)	(312.0, 52.0)	(64.0, 60.0)
	(210.0, 70.0)	(280.0, 70.0)		(140.0, 70.0)	(350.0, 70.0)	(70.0, 70.0)
	(226.0, 82.0)	(302.0, 84.0)		(150.0, 80.0)	(378.0, 86.0)	(74.0, 78.0)

Output:

After the global matrix \boldsymbol{B} is distributed over the process grid, only a portion of the global data structure is used-that is, global submatrix \boldsymbol{B}. Following is the global 9×5 submatrix \boldsymbol{B}, starting at row 1 and column 2 in global general 9×6 matrix \boldsymbol{B} with block size 3×2 :

B, D	0			2	
	(2.0, 1.0)	(3.0, 1.0)	(4.0, 1.0)	(5.0, 1.0)	(1.0, 1.0)
0	(2.0, 1.0)	(3.0, 1.0)	(4.0, 1.0)	(5.0, 1.0)	(1.0, 1.0)
	(2.0, 1.0)	(3.0, 1.0)	$(4.0,1.0)$	(5.0, 1.0)	$(1.0,1.0)$
	$(2.0,1.0)$	(3.0, 1.0)	(4.0, 1.0)	(5.0, 1.0)	(1.0, 1.0)
1	(2.0, 1.0)	(3.0, 1.0)	(4.0, 1.0)	(5.0, 1.0)	(1.0, 1.0)
	$(2.0,1.0)$	(3.0, 1.0)	$(4.0,1.0)$	(5.0, 1.0)	$(1.0,1.0)$
	(2.0, 1.0)	(3.0, 1.0)	(4.0, 1.0)	(5.0, 1.0)	(1.0, 1.0)
2	- (2.0, 1.0)	(3.0, 1.0)	$(4.0,1.0)$	$(5.0,1.0)$	$(1.0,1.0)$
	- (2.0, 1.0)	$(3.0,1.0)$	$(4.0,1.0)$	$(5.0,1.0)$	$(1.0,1.0)$

The following is the 2×2 process grid:

$\mathbf{B , D}$	$\mathbf{1}$	$\mathbf{0 2}$
$\mathbf{0}$	P_{00}	P_{01}
$\mathbf{2}$		
$\mathbf{1}$	P_{10}	P_{11}

Note: The first column of \boldsymbol{B} begins in the second column of the process grid.

PDPOTRS and PZPOTRS

Local arrays for \boldsymbol{B} :

The value of info is 0 on all processes.

Banded Linear Algebraic Equation Subroutines

This section contains the banded linear algebraic equation subroutine descriptions.

PDPBSV—Positive Definite Symmetric Band Matrix Factorization and Solve

This subroutine solves the following system of equations for multiple right-hand sides:

$$
A X=B
$$

where, in the formula above:
\boldsymbol{A} represents the global positive definite symmetric band submatrix $\boldsymbol{A}_{j a: j a+n-1}$, $j a: j a+n-1$ to be factored by Cholesky factorization.
\boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: n r h s}$ containing the right-hand sides in its columns.
\boldsymbol{X} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1}$:nrrs containing the output solution vectors in its columns.

If $n=0$ or nrhs $=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [2], [23], [39], and [40].

Table 64. Data Types	
$\boldsymbol{A}, \boldsymbol{B}$, work	Subroutine
Long-precision real	PDPBSV

Syntax

Fortran	CALL PDPBSV (uplo, n, k, nrhs, a, ja, desc_a, b, ib, desc_b, work, Iwork, info)
\mathbf{C} and \mathbf{C}_{++}	pdpbsv (uplo, $n, k, n r h s, a, j a$, desc_a, $b, i b$, desc_b, work, Iwork, info);

On Entry
uplo
indicates whether the upper or lower triangular part of the global submatrix \boldsymbol{A} is referenced, where:

If uplo = 'U', the upper triangular part is referenced.
If uplo $=$ ' L ', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
n
is the number of columns in the submatrix \boldsymbol{A}, stored in the upper- or lower-band-packed storage mode. It is also the number of rows in the general submatrix \boldsymbol{B} containing the multiple right-hand sides.
Scope: global
Specified as: a fullword integer; $0 \leq n \leq$ (NB_A)p-mod(ja-1,NB_A).
k
is the half bandwidth of the submatrix \boldsymbol{A}.
Scope: global
Specified as: a fullword integer, where:

- If uplo $=$ ' U ', $0 \leq k \leq$ NB_A.
- If uplo $=$ ' L ', $0 \leq k<n$.

These limits for k are extensions of the ScaLAPACK standard. nrhs is the number of columns in submatrix \boldsymbol{B} used in the computation.

Scope: global

Specified as: a fullword integer; nrhs ≥ 0.
a
is the local part of the global positive definite symmetric band matrix \boldsymbol{A}, stored in upper- or lower-band-packed storage mode, to be factored. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on k, ja, desc_a, and p; therefore, the leading $k+1$ by $\operatorname{LOCp}(j a+n-1)$ part of the local array A must contain the local pieces of the leading $k+1$ by $j a+n-1$ part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global submatrix $\boldsymbol{A}_{j a: j a+n-1, j a j a+n-1}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global submatrix $\boldsymbol{A}_{j a: j a+n-1, ~ j a: j a+n-1}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Scope: local

Specified as: an LLD_A by (at least) LOCp(ja+n-1) array, containing numbers of the data type indicated in Table 64 on page 392. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

On output, array A is overwritten; that is, original input is not preserved. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq$ N_A and $j a+n-1 \leq$ N_A. desc_a
is the array descriptor for global matrix \boldsymbol{A}, which may be type 501 or type 1, as described in the following tables. For rules on using array descriptors, see "Notes and Coding Rules" on page 397.

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A $=501$ for $1 \times p$ or $p \times 1$ where_ p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global

PDPBSV

desc_a	Name	Description	Limits	Scope
4	NB_A	Column block size	NB_A ≥ 1 and $0 \leq n \leq\left(N B _A\right) p-m o d\left(j a-1, N B _A\right) ~$	Global
5	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A <p	Global
6	LLD_A	Leading dimension	LLD_A $\geq k+1$	Local
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A = 1 for $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	M _A $>k$	Global
4	N_A	Number of columns in the global matrix	If $n=0$: $N _A \geq 0$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$\begin{aligned} & \text { NB_A } \geq 1 \text { and } \\ & 0 \leq n \leq\left(N B _A\right) p-\bmod \left(j a-1, N B _A\right) \end{aligned}$	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	RSRC_A=0	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<p$	Global
9	LLD_A	The leading dimension of the local array	LLD_A $\geq k+1$	Local

Specified as: an array of (at least) length 9, containing fullword integers.
b
is the local part of the global general matrix \boldsymbol{B}, containing the multiple right-hand sides of the system. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on $i b$, desc_b, and p; therefore, the leading LOCp $(i b+n-1)$ by nrhs part of the local array B must contain the local pieces of the leading $i b+n-1$ by nrhs part of the global matrix.

Scope: local

Specified as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 64 on page 392. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix
B.

Scope: global

Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+n-1 \leq M _B$. desc_b
is the array descriptor for global matrix B, which may be type 502 or type 1 , as described in the following tables. For rules on using array descriptors, see "Notes and Coding Rules" on page 397.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B $=502$ for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0$: $M _B \geq 0$ Otherwise: $M _B \geq 1$	Global
4	MB_B	Row block size	$\begin{aligned} & \mathrm{MB} _\mathrm{B} \geq 1 \text { and } \\ & 0 \leq n \leq\left(\mathrm{MB} _\mathrm{B}\right) p-\bmod \left(i b-1, \mathrm{MB} _\mathrm{B}\right) \end{aligned}$	Global
5	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B $<p$	Global
6	LLD_B	Leading dimension	LLD_B \geq max(1,LOCp(M_B) $)$	Local
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B = 1 for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0$: $M _B \geq 0$ Otherwise: $M _B \geq 1$	Global
4	N_B	Number of columns in the global matrix	N_B \geq nrhs	Global
5	MB_B	Row block size	$\begin{aligned} & \text { MB_B } \geq 1 \text { and } \\ & 0 \leq n \leq(\text { MB_B }) p-\bmod \left(i b-1, M B _B\right) \end{aligned}$	Global

desc_b	Name	Description	Limits	Scope
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq R S R C _B<p$	Global
8	CSRC_B	The process column over which the first column of the global matrix is distributed	CSRC_B=0	Global
9	LLD_B	Leading dimension	LLD_B $\geq \max \left(1, L O C p\left(M _B\right)\right.$	Local

Specified as: an array of (at least) length 9, containing fullword integers.
work
has the following meaning:
If lwork $=0$, work is ignored.
If Iwork $\neq 0$, work is the work area used by this subroutine, where:

- If Iwork $\neq-1$, the size of work is (at least) of length Iwork.
- If /work $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in
Table 64 on page 392. Iwork
is the number of elements in array WORK.
Scope:

- If Iwork ≥ 0, Iwork is local
- If Iwork $=-1$, Iwork is global

Specified as: a fullword integer, where:

- If Iwork = 0, PDPBSV dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard. It is suggested that you specify /work=0.
- If Iwork = -1, PDPBSV performs a work area query and returns the optimum size of work in work. No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, it must have the following value:
$l w o r k \geq\left(N B _A+2 k\right)(k)+\max (n r h s, k)(k)$
info
See On Return.
On Return
a
a is overwritten; that is, the original input is not preserved. This subroutine overwrites data in positions that do not contain the positive definite symmetric band matrix \boldsymbol{A} stored in upper- or lower-band-packed storage mode.
b
b is the updated local part of the global matrix \boldsymbol{B}, containing the solution vectors.

Scope: local

Returned as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 64 on page 392.
is the work area used by this subroutine if Iwork $\neq 0$, where:
If Iwork $\neq 0$ and Iwork $\neq-1$, the size of work is (at least) of length Iwork.
If Iwork $=-1$, the size of work is (at least) of length 1 .
Scope: local
Returned as: an area of storage, containing numbers of the data type indicated in Table 64 on page 392, where:

- If lwork ≥ 1, work $_{1}$ is set to the minimum /work value needed.
- If Iwork $=-1$, work ${ }_{1}$ is set to the optimum Iwork value needed.

Except for work ${ }_{1}$, the contents of work are overwritten on return.
info
has the following meaning:
If info $=0$, global submatrix \boldsymbol{A} is positive definite, and the factorization completed normally or the work area query completed successfully.

If info >0, the leading minor of order i of the global submatrix \boldsymbol{A} is not positive definite. info is set equal to i, where the first leading minor was encountered at $\boldsymbol{A}_{j a+i-1, j a+i-1}$. The results contained in matrix \boldsymbol{A} are not defined.

Scope: global

Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. The subroutine accepts lowercase letters for the uplo argument.
3. This subroutine gives the best performance for wide band widths, for example:

$$
k>100 \sqrt{p}
$$

where p is the number of processes. For details, see references [2], [39], and [40]. Also, it is suggested that you specify uplo = 'L'.
4. $\boldsymbol{A}, \boldsymbol{B}$, and work must have no common elements; otherwise, results are unpredictable.
5. In all cases, follow these rules:

- ib = ja
- DTYPE_A=501 or 1
- DTYPE_B=502 or 1
- NB_A = MB_B
- If $D T Y P E _A=1, R S R C _A=0, M _A \geq k+1$, and $M B _A \geq 1$.
- If $D T Y P E _B=1, C S R C _B=0, N _B \geq n r h s$, and $N B _B \geq 1$.
- CTXT_A = CTXT_B
- Following are the consistent combinations of array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	DTYPE_B	Process Grid
501	502	$p \times 1$ or $1 \times p$
501	1	$1 \times p$
1	502	$p \times 1$
1	1	1×1

6. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
7. The global band matrix \boldsymbol{A} must be positive definite. If \boldsymbol{A} is not positive definite, this subroutine uses the info argument to provide information about \boldsymbol{A} and issues an error message. This differs from ScaLAPACK, which only uses the info argument to provide information about \boldsymbol{A}.
8. The global positive definite symmetric band matrix \boldsymbol{A} must be stored in upperor lower-band-packed storage mode. See the section on block-cyclically distributing a symmetric matrix in "Matrices" on page 40.
Matrix \boldsymbol{A} must be distributed over a one-dimensional process grid using block-cyclic data distribution. For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
9. Matrix \boldsymbol{B} must be distributed over a one-dimensional process grid, using block-cyclic data distribution. For more information on block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26. Also, see the section on distributing the right-hand side matrix in "Matrices" on page 40.
10. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
11. Although global matrices \boldsymbol{A} and \boldsymbol{B} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of $n, j a, i b$, NB_A and MB_B, must be chosen so that each process has at most one full or partial block of each of the global submatrices \boldsymbol{A} and \boldsymbol{B}.

Error Conditions

Computational Errors: Matrix \boldsymbol{A} is not positive definite (corresponding computational error messages are issued by both PDPBTRF and PDPBSV). For details, see the description of the info argument.

Resource Errors: Iwork = 0 and unable to allocate workspace
Input-Argument and Miscellaneous Errors
Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDPBSV was called from outside the process grid.

Stage 4

1. The process grid is not $1 \times p$ or $p \times 1$.
2. uplo \neq ' U ' or ' L '
3. $n<0$
4. $k<0$
5. $k+1>n$
6. $j a<1$
7. DTYPE A $=1$ and:
a. $M _\bar{A}<k+1$
b. $M B$ _A <1
c. $R S R C _A \neq 0$
d. The process grid is not $1 \times p$.
8. N_A < 0 and ($n=0$); N_A < 1 otherwise
9. $N B _A<1$
10. $n+\bmod \left(j a-1\right.$, NB_A) $>\left(N B _A\right) p$
11. CSRC_A <0 or CSRC_A $\geq p$
12. uplo = 'U' and $k>$ NB_A
13. nrhs < 0
14. $i b \neq j a$
15. $i b<1$
16. DTYPE_B $=1$ and:
a. $\mathrm{N} _\mathrm{B}<n r h s$
b. NB_B < 1
c. CSRC_B $\neq 0$
d. The process grid is not $p \times 1$.
17. $\mathrm{M}-\mathrm{B}<0$ and ($n=0$); $\mathrm{M} _\mathrm{B}<1$ otherwise
18. $M B _B<1$
19. $n+\bmod \left(i b-1, \mathrm{MB} _\mathrm{B}\right)>\left(\mathrm{MB} _\mathrm{B}\right) p$
20. MB_B \neq NB_A
21. RSRC_B < 0 or RSRC_ $\mathrm{B} \geq p$
22. CTXT_A \neq CTXT_B

Stage 5: If $n \neq 0$:

1. $j a+n-1>N _A$
2. $j a>\mathrm{N}$ A
3. $i b>M _B$
4. $i b+n-1>M-B$
5. $\operatorname{LLD} _A<k+1$

Stage 6

1. $\operatorname{LLD} _B<\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$
2. Iwork $\neq 0$, Iwork $\neq-1$, and $/$ work $<\left(N B _A+2 k\right)(k)+\max (n r h s, k)(k)$

Stage 7

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :

1. uplo differs.
2. n differs.
3. k differs.
4. nrhs differs.
5. ja differs.
6. DTYPE_A differs.
7. DTYPE_A does not differ and:
a. $N _A$ differs.
b. $N \bar{B} \quad A$ differs.
c. CSRC_A differs.
d. $\operatorname{DTYPE} A=1$ and:
1) $M _A$ differs.
2) MB_A differs.
3) RSRC_A differs.
8. ib differs.
9. DTYPE_B differs.
10. DTYPE_B does not differ and:
a. $M _B$ differs.
b. $M B _B$ differs.
c. RSRC_B differs.
d. DTYPE_A = 1 and:
1) $N _B$ differs.
2) $N B _B$ differs.
3) CSRC_B differs.

Also:
11. Iwork $=-1$ on a subset of processes.

Example: This example shows a factorization of the positive definite symmetric band matrix \boldsymbol{A} of order 9 with a half bandwidth of 7 :

$$
\left[\begin{array}{lllllllll}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\
1.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 1.0 \\
1.0 & 2.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 2.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 3.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & 5.0 & 5.0 & 4.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & 6.0 & 5.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & 6.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 7.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0
\end{array}\right]
$$

Matrix \boldsymbol{A} is stored in lower-band-packed storage mode:
$\left[\begin{array}{ccccccccc}1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 8.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & . & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 4.0 & . & . & . & . \\ 1.0 & 2.0 & 3.0 & 3.0 & . & . & . & . & . \\ 1.0 & 2.0 & 2.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & .\end{array}\right]$
where "." means you do not have to store a value in that position in the local array. However, these storage positions are required and are overwritten during the computation.

Notes:

1. On output, the submatrix \boldsymbol{A} is overwritten; that is, the original input is not preserved.
2. Notice only one process grid was created, even though, DTYPE_A = 501 and DTYPE_B = 502.
3. Because Iwork = 0, PDPBSV dynamically allocates the work area used by this subroutine.

Call Statements and Input

```
ORDER = 'R'
NPROW = 1
NPCOL = 3
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A
DTYPE_	501
CTXT_ $_{-}$	icontxt1
N_{-}	9
NB_ $^{\text {CSRC_ }}$	3
LLD_A	0
Reserved	8
1 icontxt is the output of the BLACS_GRIDINIT call.	

	Desc_B
DTYPE_ $_{-}$	502
CTXT_ $_{-}$	icontxt1

	Desc_B
M_-	9
MB_ $_{-}$	3
RSRC_	0
LLD_B	3
Reserved	-
icontxt is the output of the BLACS_GRIDINIT call.	

Global matrix \boldsymbol{A} stored in lower-band-packed storage mode with block size of 3:
B, D
0
$0 \quad\left[\left.\begin{array}{ccc}1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 2.0 \\ 1.0 & 1.0 & .\end{array} \right\rvert\,\right.$
1
2

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array A with block size of 3:

p,q	0			1			2		
	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	8.0
	1.0	2.0	3.0	4.0	5.0	6.0	7.0	7.0	
	1.0	2.0	3.0	4.0	5.0	6.0	6.0	.	
	1.0	2.0	3.0	4.0	5.0	5.0	-	-	
0	1.0	2.0	3.0	4.0	4.0	.	-	-	
	1.0	2.0	3.0	3.0	.	-	-	-	-
	1.0	2.0	2.0	.	-	-	-	-	-
	1.0	1.0	.	-	.	-	-	.	-

Global matrix \boldsymbol{B} with block size of 3 :

B, D	0
	$8.0 \quad 36.0 \quad 44.0$
0	16.080 .080 .0
	23.0122 .0108 .0
	29.0161 .0129 .0
1	34.0196 .0144 .0
	38.0226 .0154 .0
	41.0250 .0160 .0
2	43.0267 .0163 .0
	36.0240 .0120 .0

The following is the 1×3 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array B with block size of 3 :

p,q	0			1			2		
	8.0	36.0	44.0	29.0	161.0	129.0	41.	250.0	160.0
0	16.0	80.0	80.0	34.0	196.0	144.0	43.	267.0	163.0
	23.0	122.0	108.0	38.0	226.0	154.0	36.	240.0	120.0

Output:

Global matrix \boldsymbol{B} with block size of 3 :
B, D
$0 \quad\left[\begin{array}{ccc}1.0 & 1.0 & 9.0 \\ 1.0 & 2.0 & 8.0 \\ 1.0 & 3.0 & 7.0 \\ -----1 \\ 1.0 & 4.0 & 6.0 \\ 1.0 & 5.0 & 5.0 \\ 1.0 & 6.0 & 4.0 \\ ---1.0 & 7.0 & 3.0 \\ 1.0 & 8.0 & 2.0 \\ 1.0 & 9.0 & 1.0\end{array}\right]$

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array B with block size of 3 :

p,q	0			1			2		
	1.0	1.0	9.0	1.0	4.0	6.0	1.0	7.0	3.0
0	1.0	2.0	8.0	1.0	5.0	5.0	1.0	8.0	2.0
	1.0	3.0	7.0	1.0	6.0	4.0	1.0	9.0	1.0

The value of info is 0 on all processes.

PDPBTRF—Positive Definite Symmetric Band Matrix Factorization

This subroutine uses Cholesky factorization to factor a positive definite symmetric band matrix \boldsymbol{A}, stored in upper- or lower-band-packed storage mode, into one of the following forms:
$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\top} \boldsymbol{U}$ if \boldsymbol{A} is upper triangular.
$\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{\top}$ if \boldsymbol{A} is lower triangular.
where, in the formulas above:
\boldsymbol{A} represents the global positive definite symmetric band submatrix $\boldsymbol{A}_{\text {ja:ja+n-1 }}$, ja:ja+n-1 to be factored.
\boldsymbol{U} is an upper triangular matrix.
L is a lower triangular matrix.
To solve the system of equations with multiple right-hand sides, follow the call to this subroutine with one of more calls to PDPBTRS. The output from this factorization subroutine should be used only as input to PDPBTRS.

If $n=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [2], [23], [39], and [40].

Table 65. Data Types	
A, af, work	Subroutine
Long-precision real	PDPBTRF

Syntax

Fortran	CALL PDPBTRF (uplo, $n, k, a, j a$, desc_a, af, laf, work, Iwork, info)
C and C++	pdpbtrf (uplo, $n, k, a, j a$, desc_a, af, laf, work, lwork, info);

On Entry

uplo
indicates whether the upper or lower triangular part of the global submatrix \boldsymbol{A} is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
n
is the number of columns in the submatrix \boldsymbol{A}, stored in upper- or lower-band-packed storage mode, to be factored.
Scope: global
Specified as: a fullword integer; $0 \leq n \leq\left(N B _A\right) p-\bmod \left(j a-1, N B _A\right)$.
k
is the half bandwidth of the submatrix \boldsymbol{A} to be factored.
Scope: global

PDPBTRF

Specified as: a fullword integer, where:

- If uplo $=$ ' U ', $0 \leq k \leq$ NB_A.
- If uplo $=$ ' L ', $0 \leq k<n$.

These limits for k are extensions of the ScaLAPACK standard.
a
is the local part of the global positive definite symmetric band matrix \boldsymbol{A}, stored in upper- or lower-band-packed storage mode, to be factored. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on k, ja, desc_a, and p; therefore, the leading $k+1$ by $\operatorname{LOCp}(j a+n-1)$ part of the local array A must contain the local pieces of the leading $k+1$ by ja+n-1 part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global submatrix $\boldsymbol{A}_{\text {ja:ja+n-1, ja:ja+n-1 }}$ must contain the upper triangular part of the submatrix, and the strictly lower triangular part is not referenced.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global submatrix $\boldsymbol{A}_{j a: j a+n-1, j a: j a+n-1}$ must contain the lower triangular part of the submatrix, and the strictly upper triangular part is not referenced.

Scope: local

Specified as: an LLD_A by (at least) LOCp(ja+n-1) array, containing numbers of the data type indicated in Table 65 on page 405 . Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

On output, array A is overwritten; that is, original input is not preserved.
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq$ N_A and ja+n-1 \leq N_A.
desc_a
is the array descriptor for global matrix \boldsymbol{A}, which may be type 501 or type 1 , as described in the following tables.

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A $=501$ for $1 \times p$ or $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
4	NB_A	Column block size	NB_A $0 \leq 1$ and $n \leq\left(N B _A\right) p-m o d\left(j a-1, N B _A\right) ~$	Global

desc_a	Name	Description	Limits	Scope
5	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A <p	Global
6	LLD_A	Leading dimension	LLD_A $\geq k+1$	Local
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	DTYPE_A $=1$ for $1 \times p$ where p is the number of processes in a process grid.	Global 2	CTXT_A
3	M_A	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global	
4	N_A	Number of rows in the global matrix	M_A $>k$ global matrix	If $n=0:$ N_A ≥ 0 Otherwise: $N _A \geq 1$
5	MB_A	NB_A	Row block size	Column block size

Specified as: an array of (at least) length 9, containing fullword integers.
is a reserved output area and its size is specified by LAF.
Scope: local
Specified as: for migration purposes, you should specify a one-dimensional, long-precision array of (at least) length LAF.
laf
is the number of elements in array AF.
The laf argument must be specified; however, this subroutine currently ignores its value. For migration purposes, you should specify laf using the formula below.

Scope: local

Specified as: a fullword integer, laf $\geq\left(N B _A+2 k\right)(k)$.
work
has the following meaning:
If /work $=0$, work is ignored.
If /work $\neq 0$, work is the work area used by this subroutine, where:

- If /work $\neq-1$, the size of work is (at least) of length /work.
- If /work $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 65 on page 405.
Iwork
is the number of elements in array WORK.
Scope:

- If /work ≥ 0, Iwork is local
- If /work = -1, /work is global

Specified as: a fullword integer; where:

- If /work $=0$, PDPBTRF dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard. It is suggested that you specify /work=0.
- If /work = -1, PDPBTRF performs a work area query and returns the optimum required size of work in work. . No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, it must have the following value:
lwork $\geq k^{2}$
info
See On Return.

On Return

a
a is the updated local part of the global matrix \boldsymbol{A}, containing the results of the factorization, where:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global submatrix $\boldsymbol{A}_{j a: j a+n-1, j a ; j a+n-1}$ contains the results of the factorization. The remaining elements stored in submatrix \boldsymbol{A} were overwritten by this subroutine.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global submatrix $\boldsymbol{A}_{\text {ja:jan-n-1, ja:ja+n-1 }}$ contains the results of the factorization. The remaining elements stored in submatrix \boldsymbol{A} were overwritten by this subroutine.

Scope: local

Returned as: an LLD_A by (at least) LOCp(ja+n-1) array, containing numbers of the data type indicated in Table 65 on page 405.

On output, array A is overwritten; that is, original input is not preserved.
af
is a reserved area.
work
is the work area used by this subroutine if /work $\neq 0$, where:
If /work $\neq 0$ or lwork $\neq-1$, the size of work is (at least) of length Iwork.
If /work $=-1$, the size of work is (at least) of length 1 .
Scope: local
Returned as: an area of storage, containing numbers of the data type indicated in Table 65 on page 405, where:

- If /work ≥ 1, work ${ }_{1}$ is set to the minimum /work value needed.
- If /work $=-1$, work k_{1} is set to the optimum /work value needed.

Except for work ${ }_{1}$, the contents of work are overwritten on return.
info
has the following meaning:
If info $=0$, global submatrix \boldsymbol{A} is positive definite and the factorization completed normally, or the work area query completed successfully.

If info >0, the leading minor of order i of the global submatrix \boldsymbol{A} is not positive definite. info is set equal to i, where the first leading minor was encountered at $\boldsymbol{A}_{j a+i-1, j a+i-1}$. The results contained in matrix \boldsymbol{A} are not defined.

Scope: global

Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. This subroutine accepts lowercase letters for the uplo argument.
3. This subroutine gives the best performance for wide band widths, for example:

$$
k>100 \sqrt{p}
$$

where p is the number of processes. For details, see references [2], [39], and [40]. Also, it is suggested that you specify uplo = 'L'.
4. The $k+1$ by n array specified for submatrix \boldsymbol{A} must remain unchanged between calls to PDPBTRF and PDPBTRS. This subroutine overwrites data in positions that do not contain the positive definite symmetric band matrix \boldsymbol{A} stored in upper- or lower-band-packed storage mode.
5. The output from this factorization subroutine should be used only as input to the solve subroutine PDPBTRS.

The data specified for input arguments uplo, n, and k must be the same for both PDPBTRF and PDPBTRS.

The matrix \boldsymbol{A} and af input to PDPBTRS must be the same as the corresponding output arguments for PDPBTRF; and thus, the scalar data specified for ja, desc_a, and laf must also be the same.
6. In all cases, follow these rules:

- DTYPE_A=501 or 1
- If DTYPE_A $=1$, RSRC_A $=0, M _A \geq k+1$, and MB_A ≥ 1.
- Following are the allowable array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	Process Grid
501	$p \times 1$ or $1 \times p$
1	$1 \times p$

7. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
8. Matrix A, af, and work must have no common elements; otherwise, results are unpredictable.
9. The global symmetric band matrix \boldsymbol{A} must be positive definite. If \boldsymbol{A} is not positive definite, this subroutine uses the info argument to provide information about \boldsymbol{A} and issues an error message. This differs from ScaLAPACK, which only uses the info argument to provide information about \boldsymbol{A}.
10. The global positive definite symmetric band matrix \boldsymbol{A} must be stored in upperor lower-band-packed storage mode. See the section on block-cyclically distributing a symmetric matrix in "Matrices" on page 40.

Matrix \boldsymbol{A} must be distributed over a one-dimensional process grid, using block-cyclic data distribution. For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
11. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
12. Although global matrix \boldsymbol{A} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of $n, j a$, and NB_A must be chosen so that each process has at most one full or partial block of the global submatrix \boldsymbol{A}.

Error Conditions

Computational Errors: Matrix \boldsymbol{A} is not positive definite. For details, see the description of the info argument.

Resource Errors: Iwork= 0 and unable to allocate workspace
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. PDPBTRF was called from outside the process grid.

Stage 4

1. The process grid is not $1 \times p$ or $p \times 1$.
2. uplo \neq ' U ' or ' L '
3. $n<0$
4. $j a<1$
5. $k<0$
6. $k+1>n$
7. $\operatorname{DTYPE} A=1$ and:
a. $M _\bar{A}<k+1$
b. $M B _A<1$
c. $\operatorname{RS} \bar{R} C _A \neq 0$
d. The process grid is not $1 \times p$.
8. $\mathrm{N} _\mathrm{A}<0$ and $(n=0)$; $\mathrm{N} _\mathrm{A}<1$ otherwise
9. $N B _A<1$
10. $n>($ NB_A $) p-\bmod \left(j a-1, N B _A\right)$
11. CSRC_A < 0 or CSRC_A $\geq p$
12. uplo $=$ ' U ' and $k>$ NB_A.

Stage 5

1. $j a>N _A$ and $(n>0)$
2. $j a+n-1>$ N_A and $(n>0)$
3. LLD_A < $k+1$

Stage 6

1. Iwork $\neq 0$, Iwork $\neq-1$, and /work $<k^{2}$

Stage 7

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :

1. uplo differs.
2. n differs.
3. k differs.
4. $j a$ differs.
5. DTYPE_A differs.
6. DTYPE_A does not differ and:
a. $N _A$ differs.
b. NB _A differs.
c. CSRC_A differs.
d. DTYPE $A=1$ and:
1) $M _A$ differs.
2) MB_A differs.
3) RSRC_A differs.

Also:
7. Iwork $=-1$ on a subset of processes.

Example: This example shows a factorization of the positive definite symmetric band matrix \boldsymbol{A} of order 9 with a half bandwidth of 7 :
$\left[\begin{array}{lllllllll}1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\ 1.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 1.0 \\ 1.0 & 2.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 2.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 3.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & 5.0 & 5.0 & 4.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & 6.0 & 5.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & 6.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 7.0 \\ 0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0\end{array}\right]$

Matrix \boldsymbol{A} is stored in lower-band-packed storage mode:
$\left[\begin{array}{ccccccccc}1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 8.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & . & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 4.0 & . & . & . & . \\ 1.0 & 2.0 & 3.0 & 3.0 & . & . & . & . & . \\ 1.0 & 2.0 & 2.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & .\end{array}\right]$
where "." means you do not have to store a value in that position in the local array. However, these storage positions are required and are overwritten during the computation.

Matrix \boldsymbol{A} is distributed over a 1×3 process grid using block-cyclic distribution.

Notes:

1. Matrix \boldsymbol{A}, output from PDPBTRF, must be passed, unchanged, to the solve subroutine PDPBTRS.
2. The laf argument must be specified; however, this subroutine currently ignores its value. For migration purposes, in this example, laf is specified as 119.
3. The af argument is reserved and not shown in this example.
4. Because Iwork $=0$, PDPBTRF dynamically allocates the work area used by this subroutine.

Call Statements and Input

ORDER $=$ 'R'
NPROW $=1$
NPCOL $=3$
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

	Desc_A
DTYPE_	501

	Desc_A
CTXT_ $_{-}$	icontxt ${ }^{1}$
$\mathrm{~N}_{-}$	9
NB_ $^{\text {CSRC_ }}$	3
LLD_A	0
Reserved	8
1 icontxt is the output of the BLACS_GRIDINIT call.	

Global matrix \boldsymbol{A} stored in lower-band-packed storage mode with block size of 3 :
B, D
0
1
2
$0 \quad\left[\begin{array}{ccc}1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 3.0 \\ 1.0 & 2.0 & 2.0 \\ 1.0 & 1.0 & .\end{array}\right.$
$\left.\begin{array}{ccc|ccc}4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 8.0 \\ 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & . \\ 4.0 & 5.0 & 6.0 & 6.0 & . & . \\ 4.0 & 5.0 & 5.0 & . & . & . \\ 4.0 & 4.0 & . & . & . & . \\ 3.0 & \cdot & . & . & . & . \\ . & . & . & . & . & . \\ . & . & . & . & . & .\end{array}\right]$

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array A with block size of 3 :

p,q	0			1			2		
	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	8.0
	1.0	2.0	3.0	4.0	5.0	6.0	7.0	7.0	.
	1.0	2.0	3.0	4.0	5.0	6.0	6.0	.	
	1.0	2.0	3.0	4.0	5.0	5.0	.	.	
0	1.0	2.0	3.0	4.0	4.0	.	.	-	
	1.0	2.0	3.0	3.0	.	.	-	-	
	1.0	2.0	2.0	.	-	.	-	-	
	1.0	1.0	.		-	-	-	-	

Output:

Global matrix \boldsymbol{A} is returned in lower-band-packed storage mode with block size of 3:
B, D
$0 \quad\left[\begin{array}{ccc|ccc|ccc} & 0 & & 1 & & \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . & . \\ 1.0 & 1.0 & 1.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & .\end{array}\right]$

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array A with block size of 3:

p,q	0			1			2		
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	.
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-	
	1.0	1.0	1.0	1.0	1.0	1.0	.	-	
0	1.0	1.0	1.0	1.0	1.0	.		-	
	1.0	1.0	1.0	1.0	.		.	-	
	1.0	1.0	1.0	.	-	.	-	.	
	1.0	1.0	.			-		-	

The value of info is 0 on all processes.

PDPBTRS—Positive Definite Symmetric Band Matrix Solve

This subroutine solves the following system of equations for multiple right-hand sides:

$$
A X=B
$$

where, in the formula above:
\boldsymbol{A} represents the global positive definite symmetric band submatrix $\boldsymbol{A}_{j a: j a+n-1}$, ja:ja+n-1 factored by Cholesky factorization.
\boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: n r h s}$ containing the right-hand sides in its columns.
\boldsymbol{X} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: n r h s}$ containing the output solution vectors in its columns.

This subroutine uses the results of the factorization of matrix \boldsymbol{A}, produced by a preceding call to PDPBTRF. The output from PDPBTRF should be used only as input to this solve subroutine.

If $n=0$ or nrhs $=0$, no computation is performed and the subroutine returns after doing some parameter checking. See references [2], [23], [39], and [40].

Table 66. Data Types	
$\boldsymbol{A}, \boldsymbol{B}$, af, work	Subroutine
Long-precision real	PDPBTRS

Syntax

Fortran	CALL PDPBTRS (uplo, n, k, nrhs, $a, j a$, desc_a, b, ib, desc_b, af, laf, work, Iwork, info)
\mathbf{C} and C++	pdpbtrs (uplo, n, k, nrhs, $a, j a$, desc_a, b, ib, desc_b, af, laf, work, Iwork, info);

On Entry

uplo
indicates whether the upper or lower triangular part of the global submatrix \boldsymbol{A} is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
n
is the number of columns in the submatrix \boldsymbol{A}, stored in the upper- or lower-band-packed storage mode. It is also the number of rows in the general submatrix \boldsymbol{B} containing the multiple right-hand sides.

Scope: global

Specified as: a fullword integer; $0 \leq n \leq\left(N B _A\right) p-m o d\left(j a-1, N B _A\right)$.
k
is the half bandwidth of the factored submatrix \boldsymbol{A}.
Scope: global

PDPBTRS

Specified as: a fullword integer, where:

- If uplo $=$ ' U ', $0 \leq k \leq$ NB_A.
- If uplo $=$ ' L ', $0 \leq k<n$.

These limits for k are extensions of the ScaLAPACK standard. nrhs
is the number of columns in submatrix \boldsymbol{B} used in the computation.

Scope: global

Specified as: a fullword integer; nrhs ≥ 0.
a
is the local part of the global positive definite symmetric band matrix \boldsymbol{A}, stored in upper- or lower-band-packed storage mode, containing the factorization of matrix \boldsymbol{A} produced from a preceding call to PDPBTRF. This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on k, ja, desc_a, and p; therefore, the leading $k+1$ by $\operatorname{LOCp}(j a+n-1)$ part of the local array A must contain the local pieces of the leading $k+1$ by ja+n-1 part of the global matrix, and:

- If uplo $=$ ' U ', the leading $n \times n$ upper triangular part of the global submatrix $\boldsymbol{A}_{j a: j a+n-1, j a: j a+n-1}$ contains the factorization.
- If uplo $=$ ' L ', the leading $n \times n$ lower triangular part of the global submatrix $\boldsymbol{A}_{j a: j a+n-1, j a: j a+n-1}$ contains the factorization.

Scope: local

Specified as: an LLD_A by (at least) LOCp(ja+n-1) array, containing numbers of the data type indicated in Table 66 on page 415. Details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

On output, array A is overwritten; that is, original input is not preserved. ja
is the column index of the global matrix \boldsymbol{A}, identifying the first column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; $1 \leq j a \leq N _A$ and $j a+n-1 \leq$ N_A. desc_a
is the array descriptor for global matrix \boldsymbol{A}, which may be type 501 or type 1 , as described in the following tables. For rules on using array descriptors, see "Notes and Coding Rules" on page 420.

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A $=501$ for $1 \times p$ or $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global

desc_a	Name	Description	Limits	Scope
4	NB_A	Column block size	NB_A ≥ 1 and $0 \leq n \leq\left(N B _A\right) p-m o d\left(j a-1, N B _A\right) ~$	Global
5	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A <p	Global
6	LLD_A	Leading dimension	LLD_A $\geq k+1$	Local
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A $=1$ for $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	M _A > k	Global
4	N_A	Number of columns in the global matrix	If $n=0$: $N _A \geq 0$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	$\begin{aligned} & \text { NB_A } \geq 1 \text { and } \\ & 0 \leq n \leq\left(N B _A\right) p-m o d\left(j a-1, N B _A\right) \end{aligned}$	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	RSRC_A=0	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<p$	Global
9	LLD_A	The leading dimension of the local array	LLD_A $\geq k+1$	Local

Specified as: an array of (at least) length 9, containing fullword integers. b
is the local part of the global general matrix \boldsymbol{B}, containing the multiple right-hand sides of the system. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on ib, desc_b, and p; therefore, the leading $\operatorname{LOCp}(i b+n-1)$ by nrhs part of the local array B must contain the local pieces of the leading $i b+n-1$ by nrhs part of the global matrix.

Scope: local

PDPBTRS

Specified as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 66 on page 415. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix
B.
Scope: global
Specified as: a fullword integer; $1 \leq i b \leq M _B$.
desc_b
is the array descriptor for global matrix B, which may be type 502 or type 1 , as described in the following tables. For rules on using array descriptors, see "Notes and Coding Rules" on page 420.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B $=502$ for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_B	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global	
3	M_B	Number of rows in the global matrix	If $n=0:$ M_B ≥ 0 Otherwise: $M _B \geq 1$	MB_B ≥ 1 and $0 \leq n \leq\left(M B _B\right) p-m o d\left(i b-1, M B _B\right)$
4	MB_B	Row block size	$0 \leq R S R C _B<p$	Global
5	RSRC_B	The process row over which the first row of the global matrix is distributed	Leading dimension	LLD_B \geq max(1, LOCp(M_B))

Specified as: an array of (at least) length 7, containing fullword integers.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type DTYPE_B $=1$ for $p \times 1$ a process grid.	Global	
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0:$ M_B ≥ 0 Mtherwise: M_B ≥ 1	Global
4	N_B	Number of columns in the global matrix	N_B $\geq n r h s$	Global
5	MB_B	Row block size	MB_B ≥ 1 and $0 \leq n \leq\left(M B _B\right) p-m o d\left(i b-1, M B _B\right) ~$	Global

desc_b	Name	Description	Limits	Scope
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B <p	Global
8	CSRC_B	The process column over which the first column of the global matrix is distributed	CSRC_B=0	Global
9	LLD_B	Leading dimension	LLD_B $\geq \max (1$, LOCp(M_B))	Local

Specified as: an array of (at least) length 9, containing fullword integers.
af
is a reserved area. Its size is specified by LAF.

Scope: local

Specified as: for migration purposes, you should specify a one-dimensional, long-precision array of (at least) length laf.
laf
is the number of elements in array AF.
The laf argument must be specified; however, this subroutine currently ignores its value. For migration purposes, you should specify laf using the formula below.

Scope: local

Specified as: a fullword integer, laf $\geq\left(\mathrm{NB} _\mathrm{A}+2 k\right)(k)$.
work
has the following meaning:
If lwork $=0$, work is ignored.
If Iwork $\neq 0$, work is the work area used by this subroutine, where:

- If Iwork $\neq-1$, the size of work is (at least) of length Iwork.
- If Iwork $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 66 on page 415.
lwork
is the number of elements in array WORK.

Scope:

- If lwork ≥ 0, lwork is local
- If /work $=-1$, Iwork is global

Specified as: a fullword integer; where:

- If lwork $=0$, PDPBTRS dynamically allocates the work area used by the subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard. It is suggested that you specify Iwork=0.
- If /work = -1, PDPBTRS performs a work area query and returns the optimum required size of work in work. . No computation is performed and the subroutine returns after error checking is complete.
- Otherwise,
lwork $\geq(n r h s)(k)$
info
See On Return.

On Return

b
b is the updated local part of the global matrix \boldsymbol{B}, containing the solution vectors.

Scope: local
Returned as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 66 on page 415.
work
is the work area used by this subroutine if /work $\neq 0$, where:
If /work $\neq 0$ or Iwork $\neq-1$, the size of work is (at least) of length Iwork.
If /work $=-1$, the size of work is (at least) of length 1 .
Scope: local
Returned as: an area of storage, containing numbers of the data type indicated in Table 66 on page 415, where:

- If /work $=-1$, work ${ }_{1}$ is set to the optimum /work value needed.
- If /work ≥ 1, work ${ }_{1}$ is set to the minimum /work value needed.

Except for work k_{1}, the contents of work are overwritten on return.
info
indicates a successful computation or work area query occurred.
Scope: global
Returned as: a fullword integer; info $=0$.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. The subroutine accepts lowercase letters for the uplo argument.
3. This subroutine gives the best performance for wide band widths, for example:
$k>100 \sqrt{p}$
where p is the number of processes). For details, see references [2], [39], and [40]. Also, it is suggested that you specify uplo = 'L'.
4. The $k+1$ by n array specified for submatrix \boldsymbol{A} must remain unchanged between calls to PDPBTRF and PDPBTRS. This subroutine overwrites data in positions that do not contain the positive definite symmetric band matrix \boldsymbol{A} stored in upper- or lower-band-packed storage mode.
5. The output from the PDPBTRF subroutine should be used only as input to the solve subroutine PDPBTRS.

The input arguments uplo, n, and k must be the same for both PDPBTRF and PDPBTRS.

The global matrix \boldsymbol{A} and af input to PDPBTRS must be the same as the corresponding output arguments for PDPBTRF; and thus, the scalar data specified for ja, desc_a, and laf must also be the same.
6. In all cases, follow these rules:

- $i b=j a$
- DTYPE_A=501 or 1
- DTYPE_B=502 or 1
- NB_A = MB_B
- If DTYPE_A=1, RSRC_A=0, $M _A \geq k+1$, and $M B _A \geq 1$.
- If DTYPE_B=1, CSRC_B=0, N_B $\geq n r h s$, and NB_B ≥ 1.
- CTXT_A = CTXT_B
- Following are the consistent combinations of array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	DTYPE_B	Process Grid
501	502	$p \times 1$ or $1 \times p$
501	1	$1 \times p$
1	502	$p \times 1$
1	1	1×1

7. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
8. $\boldsymbol{A}, \boldsymbol{B}$, af and work must have no common elements; otherwise, results are unpredictable.
9. The global positive definite symmetric band matrix \boldsymbol{A} must be stored in upperor lower-band-packed storage mode. See the section on block distributing a symmetric matrix in "Matrices" on page 40.

Matrix \boldsymbol{A} must be distributed over a one-dimensional process grid, using block-cyclic data distribution. For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
10. Matrix B must be distributed over a one-dimensional process grid, using block-cyclic data distribution. For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26. Also, see the section on distributing the right-hand side matrix in "Matrices" on page 40.
11. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 , they must all specify -1 .
12. Although global submatrices \boldsymbol{A} and \boldsymbol{B} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of $n, j a, i b$, NB_A, and MB_B must be
chosen so that each process has at most one full or partial block of each of the global submatrices \boldsymbol{A} and \boldsymbol{B}.

Error Conditions

Computational Errors: None
Note: If the factorization performed by PDPBTRF failed because of a nonpositive definite matrix \boldsymbol{A}, the results returned by this subroutine are unpredictable. For details, see the info output argument for PDPBTRF.

Resource Errors: Iwork = 0 and unable to allocate workspace
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. $C T X T _A$ is invalid.

Stage 3

1. PDPBTRS was called from outside the process grid.

Stage 4

1. The process grid is not $1 \times p$ or $p \times 1$.
2. uplo \neq 'U' or 'L'
3. $n<0$
4. $k<0$
5. $k+1>n$
6. $j a<1$
7. DTYPE_A = 1 and:
a. $M _A<k+1$
b. $M B _A<1$
c. RSRC_A $\neq 0$
d. The process grid is not $1 \times p$.
8. N_A < 0 and $(n=0)$; N_A < 1 otherwise
9. $N B _A<1$
10. $n>\left(N B _A\right) p-\bmod \left(j a-1, N B _A\right)$
11. uplo $=$ ' U' and $k>$ NB_A
12. CSRC_A <0 or CSRC_A $\geq p$
13. nrhs <0
14. $i b \neq j a$
15. $i b<1$
16. DTYPE_B $=1$ and:
a. N_B $<n r h s$
b. NB_B <1
c. CSRC_B $\neq 0$
d. The process grid is not $p \times 1$.
17. M _ $\mathrm{B}<0$ and $(n=0)$; M - $\mathrm{B}<1$ otherwise
18. MB - $\mathrm{B}<1$
19. $n>\left(\mathrm{MB} _\mathrm{B}\right) p-\bmod \left(i b-1, \mathrm{MB} _\mathrm{B}\right)$
20. $M B _B \neq$ NB_A
21. RSRC_B <0 or RSRC_ $B \geq p$
22. CTXT_A \neq CTXT_B

Stage 5: If $n>0$:

1. $j a+n-1>N _A$
2. $j a>\mathrm{N} _\mathrm{A}$
3. $i b>M-B$
4. $i b+n-1>M _B$
5. $\operatorname{LLD_ A}<k+1$

Stage 6

1. $\operatorname{LLD_ B}<\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$
2. Iwork $\neq 0$,
3. Iwork $\neq-1$, and $/$ work $<(n r h s)(k)$

Stage 7

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :

1. uplo differs.
2. n differs.
3. k differs.
4. nrhs differs.
5. ja differs.
6. DTYPE_A differs.
7. DTYPE_A does not differ and:
a. $N _A$ differs.
b. NB_A differs.
c. CSRC_A differs.
d. DTYPE_A = 1 and:
1) $M _A$ differs.
2) $M B _A$ differs.
3) RSRC_A differs.
8. ib differs.
9. DTYPE_B differs.
10. DTYPE_B does not differ and:
a. $M _B$ differs.
b. MB_B differs.
c. RSRC_B differs.
d. DTYPE_A = 1 and:
1) $N _B$ differs.
2) NB_B differs.
3) CSRC_B differs.

Also:
11. Iwork $=-1$ on a subset of processes.

Example: This example solves the $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ system, where matrix \boldsymbol{A} is the same positive definite symmetric band matrix factored in "Example" on page 411 for PDPBTRF.

PDPBTRS

Notes:

1. Matrix A, output from PDPBTRF, must be passed, unchanged, to the solve subroutine PDPBTRS.

The input values for desc_a are the same values shown in "Example" on page 411.
2. Notice only one process grid was created, even though, DTYPE_A $=501$ and DTYPE_B = 502.
3. The laf argument must be specified; however, this subroutine currently ignores its value. For migration purposes, in this example, laf is specified as 119.
4. The af argument, output from PDPBTRF, must be passed, unchanged, to the solve subroutine PDPBTRS.
5. Because lwork = 0, PDPBTRS dynamically allocates the work area used by this subroutine.

Call Statements and Input

```
ORDER = 'R'
NPROW = 1
NPCOL = 3
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_B
DTYPE_	502
CTXT_ $_{-}$	icontxt1
M_-	9
MB_ 2	3
RSRC_	0
LLD_B	3
Reserved	-
1 icontxt is the output of the BLACS_GRIDINIT call.	

Global matrix \boldsymbol{A} stored in lower-band-packed storage mode with block size of 3:
B, D
$0 \quad\left[\left.\begin{array}{lll}1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & .\end{array} \right\rvert\,\right.$

1

1.0	1.0	1.0
1.0	1.0	1.0
1.0	1.0	1.0
1.0	1.0	1.0
1.0	1.0	.
1.0	.	.
.	.	.
.	.	.

2

$$
\left.\begin{array}{ccc}
1.0 & 1.0 & 1.0 \\
1.0 & 1.0 & \cdot \\
1.0 & \cdot & . \\
. & \cdot & \cdot \\
. & . & . \\
. & . & \cdot \\
. & . & .
\end{array}\right]
$$

The following is the 1×3 process grid:

$\mathbf{B}, \boldsymbol{D}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array A with block size of 3 :

p,q	0			1			2		
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-	
	1.0	1.0	1.0	1.0	1.0	1.0	.	-	
0	1.0	1.0	1.0	1.0	1.0	.	-	-	
	1.0	1.0	1.0	1.0	.	-	-	.	
	1.0	1.0	1.0	.	-	-	-	-	
	1.0	1.0	.			-	-	-	-

Global matrix \boldsymbol{B} with block size of 3 :

B, D	0
	$8.0 \quad 36.0 \quad 44.0$
0	16.080 .080 .0
	23.0122 .0108 .0
	29.0161 .0129 .0
1	34.0196 .0144 .0
	38.0226 .0154 .0
	41.0250 .0160 .0
2	43.0267 .0163 .0
	36.0240 .0120 .0

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array B with block size of 3 :

p,q	0			1			2		
	8.0	36.0	44.0	29.0	161.0	129.0	41.0	250.0	160.0
0	16.0	80.0	80.0	34.0	196.0	144.0	43.0	267.0	163.0
	23.0	122.0	108.0	38.0	226.0	154.0	36.0	240.0	120.0

Output:

Global matrix \boldsymbol{B} with block size of 3 :

B, D	0		
	1.	1.	9.0
0	1.0	2.	8.0
	1.	3.	7.0
	1.	4.	6.0
1	1.	5.	5.0
	1.	6.	4.0
	1.	7.	3.0
2	1.	8.	2.0
	1.	9.	1.0

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array B with block size of 3 :

p,q	0			1			2		
	1.0	1.0	9.0	1.0	4.0	6.0	1.0	7.0	3.0
0	1.0	2.0	8.0	1.0	5.0	5.0	1.0	8.0	2.0
	1.0	3.0	7.0	1.0	6.0	4.0	1.0	9.0	1.0

The value of info is 0 on all processes.

PDGTSV and PDDTSV—General Tridiagonal Matrix Factorization and Solve

PDGTSV solves the tridiagonal systems of linear equations, $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$, using Gaussian elimination with partial pivoting for the general tridiagonal matrix \boldsymbol{A} stored in tridiagonal storage mode.

PDDTSV solves the tridiagonal systems of linear equations, $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$, using Gaussian elimination for the diagonally dominant general tridiagonal matrix \boldsymbol{A} stored in tridiagonal storage mode.

- \boldsymbol{A} represents the global square general tridiagonal submatrix $\boldsymbol{A}_{i a: i a+n-1, \text { ia:ia+n-1 }}$.
- \boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: n r h s}$ containing the right-hand sides in its columns.
- \boldsymbol{X} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1}$:nrrs containing the output solution vectors in its columns.

If $n=0$ or nrhs $=0$, no computation is performed and the subroutine returns after doing some parameter checking. See reference [51].

Table 67. Data Types	
$\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d} \boldsymbol{u}, \boldsymbol{B}$, work	Subroutine
Long-precision real	PDGTSV and PDDTSV

Syntax

Fortran	CALL PDGTSV \| PDDTSV (n, nrhs, dl, d, du, ia, desc_a, b, ib, desc_b, work, Iwork, info)
\mathbf{C} and C++	pdgtsv \| pddtsv (n, nrhs, dl, d, du, ia, desc_a, b, ib, desc_b, work, Iwork, info);

On Entry

n
is the order of the general tridiagonal matrix \boldsymbol{A} and the number of rows in the general submatrix \boldsymbol{B}, which contains the multiple right-hand sides.

Scope: global

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $0 \leq n \leq\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right)$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $0 \leq n \leq\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right)$.
where p is the number of processes in a process grid.
nrhs
is the number of right-hand sides; that is, the number of columns in submatrix B used in the computation.
Scope: global
Specified as: a fullword integer; nrhs ≥ 0.
$d l$
is the local part of the global vector $\boldsymbol{d l}$. This identifies the first element of the local array DL. These subroutines compute the location of the first element of
the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp $(i a+n-1)$ part of the local array DL contains the local pieces of the leading $i a+n-1$ part of the global vector.

The global vector \boldsymbol{d} contains the subdiagonal of the global general tridiagonal submatrix \boldsymbol{A} in elements $i a+1$ through ia+n-1.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 67 on page 427. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
On output, DL is overwritten; that is, the original input is not preserved. d
is the local part of the global vector \boldsymbol{d}. This identifies the first element of the local array D. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading $\operatorname{LOCp}(i a+n-1)$ part of the local array D contains the local pieces of the leading $i a+n-1$ part of the global vector.
The global vector \boldsymbol{d} contains the main diagonal of the global general tridiagonal submatrix \boldsymbol{A} in elements ia through $i a+n-1$.
Scope: local
Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1) containing numbers of the data type indicated in Table 67 on page 427. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

On output, D is overwritten; that is, the original input is not preserved.
$d u$
is the local part of the global vector $\boldsymbol{d u}$. This identifies the first element of the local array DU. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading $\operatorname{LOCp}(i a+n-1)$ part of the local array DU contains the local pieces of the leading $i a+n-1$ part of the global vector.

The global vector $\boldsymbol{d u}$ contains the superdiagonal of the global general tridiagonal submatrix \boldsymbol{A} in elements ia through ia+n-2.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 67 on page 427. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

On output, DU is overwritten; that is, the original input is not preserved.
is the row or column index of the global matrix \boldsymbol{A}, identifying the first row or column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $1 \leq i a \leq N _A$ and $i a+n-1 \leq N _A$.
desc_a
is the array descriptor for global matrix \boldsymbol{A}. Because vectors are one-dimensional data structures, you may use a type-502, type-501, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$. For a type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For a type-501 array descriptor, the process grid is used as if it is a $1 \times p$ process grid. For a type-1 array descriptor, the process grid is used as if it is either a $p \times 1$ process grid or a $1 \times p$ process grid.
The following tables describe the three types of array descriptors. For rules on using array descriptors, see "Notes and Coding Rules" on page 434.

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=502 for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS GRIDMAP	Global
3	M_A	Number of rows in the global matrix	$\begin{aligned} & \text { If } n=0: \\ & M _A \geq 0 \end{aligned}$ Otherwise: $M _A \geq 1$	Global
4	MB_A	Row block size	$\begin{aligned} & \text { MB_A } \geq 1 \text { and } \\ & 0 \leq n \leq(\text { MB_A })(p)-\bmod \left(i a-1, M B _A\right) \end{aligned}$	Global
5	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A < p	Global
6	-	Not used by these subroutines.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 69 (Page 1 of 2). Type-1 Array Descriptor ($p \times 1$ Process Grid)					
desc_a	Name	Description	Limits	Scope	
1	DTYPE_A	Descriptor Type	DTYPE_A $=1$ for $p \times 1$ where p is the number of processes in a process grid.	Global	
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global	
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global	

PDGTSV and PDDTSV

Table 69 (Page 2 of 2). Type-1 Array Descriptor ($p \times 1$ Process Grid)				
desc_a	Name	Description	Limits	Scope
4	N_A	Number of columns in the global matrix	N_A $=1$	Global
5	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right) ~$	Global
6	NB_A	Column block size	NB_A ≥ 1	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A <p	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	CSRC_A $=0$	-
9	-	Not used by these subroutines.	-	

Specified as: an array of (at least) length 9, containing fullword integers.

Table 70. Type-501 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=501 for $1 \times p$ or $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
4	NB_A	Column block size	NB_A ≥ 1 and $0 \leq n \leq\left(N B _A\right)(p)-m o d\left(i a-1, N B _A\right) ~$	Global
5	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A <p	Global
6	-	Not used by these subroutines.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 71 (Page 1 of 2). Type-1 Array Descriptor $(1 \times p$ Process Grid)					
desc_a	Name	Description	Limits	Scope	
1	DTYPE_A	Descriptor type	DTYPE_A $=1$ for $1 \times p$ where p is the number of processes in a process grid.	Global	

Table 71 (Page 2 of 2). Type-1 Array Descriptor ($\times \mathrm{p}$ Process Grid)				
desc_a	Name	Description	Limits	Scope
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS GRIDMAP	Global
3	M_A	Number of rows in the global matrix	M_A = 1	Global
4	N_A	Number of columns in the global matrix	$\begin{aligned} & \text { If } n=0: \\ & \quad \mathrm{N} _\mathrm{A} \geq 0 \end{aligned}$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$\begin{aligned} & \text { NB_A } \geq 1 \text { and } \\ & 0 \leq n \leq(\text { NB_A })(p)-\bmod \left(i a-1, N B _A\right) \end{aligned}$	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	RSRC_A $=0$	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<p$	Global
9	-	Not used by these subroutines.	-	-

Specified as: an array of (at least) length 9, containing fullword integers.
b
is the local part of the global general matrix \boldsymbol{B}, containing the multiple right-hand sides of the system. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on $i b$, desc_b, and p; therefore, the leading LOCp(ib+n-1) by nrhs part of the local array B must contain the local pieces of the leading $i b+n-1$ by nrhs part of the global matrix.
Scope: local
Specified as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 67 on page 427. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global

Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+n-1 \leq M _B$ desc_b
is the array descriptor for global matrix \boldsymbol{B}, which may be type-502 or type-1, as described in the following tables. For type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For rules on using array descriptors, see "Notes and Coding Rules" on page 434.

PDGTSV and PDDTSV

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B $=502$ for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0$: $M _B \geq 0$ Otherwise: $M _B \geq 1$	Global
4	MB_B	Row block size	$M B _B \geq 1$ and $0 \leq n \leq\left(M B _B\right) p-\bmod \left(i b-1, M B _B\right)$	Global
5	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B $<p$	Global
6	LLD_B	Leading dimension	LLD_B $\geq \max (1, \mathrm{LOCp}(\mathrm{M}$ _B) $)$	Local
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B $=1$ for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0$: M_B ≥ 0 Otherwise: $M _B \geq 1$	Global
4	N_B	Number of columns in the global matrix	N_B \geq nrhs	Global
5	MB_B	Row block size	$\begin{aligned} & \text { MB_B } \geq 1 \text { and } \\ & 0 \leq n \leq(\text { MB_B }) p-\bmod \left(i b-1, M B _B\right) \end{aligned}$	Global
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B < \quad -	Global
8	CSRC_B	The process column over which the first column of the global matrix is distributed	CSRC_B $=0$	Global
9	LLD_B	Leading dimension	LLD_B $\geq \max \left(1, \mathrm{LOCp}\left(\mathrm{M} _\mathrm{B}\right)\right.$)	Local

Specified as: an array of (at least) length 9, containing fullword integers.
work
has the following meaning:
If $/$ work $=0$, work is ignored.
If Iwork $\neq 0$, work is the work area used by this subroutine, where:

- If Iwork $\neq-1$, the size of work is (at least) of length Iwork.
- If Iwork $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 67 on page 427.
Iwork
is the number of elements in array WORK.

Scope:

- If Iwork ≥ 0, Iwork is local
- If Iwork $=-1$, Iwork is global

Specified as: a fullword integer; where:

- If Iwork $=0$, PDGTSV and PDDTSV dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If lwork $=-1$, PDGTSV and PDDTSV perform a work area query and return the optimum size of work in work. No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, if (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A = 502:
- If nrhs ≤ 1, then:
- For PDGTSV, Iwork $\geq 18 \mathrm{P}+\mathrm{MB} _\mathrm{A}+12$.
- For PDDTSV, lwork $\geq 10 \mathrm{P}+10$
- If nrhs > 1, then:
- For PDGTSV, Iwork $\geq 24 \mathrm{P}+5\left(\mathrm{MB} _\mathrm{A}+n r h s\right)$
- For PDDTSV, lwork $\geq 20 \mathrm{P}+2\left(\mathrm{MB} _\mathrm{A}\right)+4$ (nrhs)
where, in the above formulas, P is the actual number of processes containing data.
If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, you would substitute NB_A in place of MB_A in the formulas above.

Note: In ScaLAPACK 1.5, PDDTSV requires
lwork $=22 \mathrm{P}+3 \mathrm{MB} _\mathrm{A}+4$ (nrhs). This value is greater than or equal to the value required by Parallel ESSL.
info
See On Return.
On Return
dl
is overwritten; that is, the original input is not preserved.
d
is overwritten; that is, the original input is not preserved.
du
is overwritten; that is, the original input is not preserved.
b
b is the updated local part of the global matrix \boldsymbol{B}, containing the solution vectors.
Scope: local
Returned as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 67 on page 427.
work
is the work area used by this subroutine if /work $\neq 0$, where:
If /work $\neq 0$ and /work $\neq-1$, its size is (at least) of length /work.
If /work $=-1$, its size is (at least) of length 1 .
Scope: local
Returned as: an area of storage, containing numbers of the data type indicated in Table 67 on page 427, where:

- If /work ≥ 1, work ${ }_{1}$ is set to the minimum /work value needed.
- If /work $=-1$, work ${ }_{1}$ is set to the optimum /work value needed.

Except for work ${ }_{1}$, the contents of work are overwritten on return.
info
has the following meaning:
If info $=0$, the factorization or the work area query completed successfully.
Note: For PDDTSV, if the input matrix \boldsymbol{A} is not diagonally dominant, the subroutine may still complete the factorization; however, results are unpredictable.

If $1 \leq$ info $\leq p$, the portion of the global submatrix \boldsymbol{A} stored on process info-1 and factored locally, is singular or reducible (for PDGTSV), or not diagonally dominant (for PDDTSV). The magnitude of a pivot element was zero or too small.

If info $>p$, the portion of the global submatrix \boldsymbol{A} stored on process info- $p-1$ representing interactions with other processes, is singular or reducible (for PDGTSV), or not diagonally dominant (for PDDTSV). The magnitude of a pivot element was zero or too small.

If info > 0, the results are unpredictable.
Scope: global
Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. $\boldsymbol{d} \boldsymbol{I}, \boldsymbol{d}, \boldsymbol{d} \mathbf{u}, \boldsymbol{B}$, and work must have no common elements; otherwise, results are unpredictable.
3. In all cases, follow these rules:

- $i a=i b$
- CTXT_A = CTXT_B
- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, MB_A = MB_B.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, NB_A = MB_B.
- If DTYPE_A = 1 , then:
- For a $p \times 1$ process grid (where $p>1$), $N _A=1, N B _A \geq 1$, and CSRC_A $=0$.
- For a $1 \times p$ process grid, $M _A=1, M B _A \geq 1$, and $R S R C _A=0$.
- For a 1×1 process grid:

$$
\begin{aligned}
& - \text { If } N _A=1, N B _A \geq 1 \text {, and } C S R C _A=0 . \\
& - \text { If } M _A=1, M B _A \geq 1 \text {, and } R S R C _A=0 .
\end{aligned}
$$

- If DTYPE_B = $1, N _B \geq n r h s, N B _B \geq 1$, and $C S R C _B=0$.
- Following are the consistent combinations of array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	DTYPE_B	Process Grid
501	502	$p \times 1$ or $1 \times p$
502	502	$p \times 1$ or $1 \times p$
501	1	$p \times 1$
502	1	$p \times 1$
1	502	$1 \times p$
1	1	1×1

4. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
5. For PDGTSV, the global general tridiagonal matrix \boldsymbol{A} must be non-singular and irreducible. For PDDTSV, the global general tridiagonal matrix \boldsymbol{A} must be diagonally dominant to ensure numerical accuracy, because no pivoting is performed. These subroutines use the info argument to provide information about \boldsymbol{A}, like ScaLAPACK. However, these subroutines also issue an error message, which differs from ScaLAPACK.
6. The global general tridiagonal matrix \boldsymbol{A} must be stored in tridiagonal storage mode and distributed over a one-dimensional process grid, using block-cyclic data distribution. See the section on block-cyclically distributing a tridiagonal matrix in "Matrices" on page 40.
For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
7. Matrix B must be distributed over a one-dimensional process grid, using block-cyclic data distribution. For more information using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26. Also, see the section on distributing the right-hand side matrix in "Matrices" on page 40.
8. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
9. Although global matrices \boldsymbol{A} and \boldsymbol{B} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of n, $i a, i b, \mathrm{MB}_{-} \mathrm{A}$ (if (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A = 502), NB_A (if (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$), must be chosen so that each process has at most one full or partial block of each of the global submatrices \boldsymbol{A} and \boldsymbol{B}.
10. For global tridiagonal matrix \boldsymbol{A}, use of the type-1 array descriptor with a $p \times 1$ process grid is an extension to ScaLAPACK 1.5. If your application needs to run with both Parallel ESSL and ScaLAPACK 1.5, it is suggested that you use either a type-501 or a type-502 array descriptor for the matrix \boldsymbol{A}.

Error Conditions

Computational Errors: Matrix \boldsymbol{A} is a singular or reducible matrix (for PDGTSV), or not diagonally dominant (for PDDTSV). For details, see the description of the info argument.

Resource Errors: $/$ work $=0$ and unable to allocate workspace
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. $C T X T _A$ is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

Note: In the following error conditions:

- If $M _A=1$ and DTYPE_A $=1$, a 1×1 process grid is treated as a $1 \times p$ process grid.
- If $N _A=1$ and $D T Y P E _A=1$, a 1×1 process grid is treated as a $p \times 1$ process grid.

1. The process grid is not $1 \times p$ or $p \times 1$.
2. CTXT_A \neq CTXT_B
3. $n<0$
4. $i a<1$
5. DTYPE_A $=1$ and $M _A \neq 1$ and $N _A \neq 1$

If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$:
6. $\mathrm{N} _\mathrm{A}<0$ and $(n=0)$; N A <1 otherwise
7. $N B _A<1$
8. $n>($ NB_A $)(p)-m o d\left(i a-1, N B _A\right)$
9. $i a>$ N_A and $(n>0)$
10. $i a+n-1>$ N_A and $(n>0)$
11. CSRC _A <0 or CSRC_A $\geq p$
12. NB_A $\neq M B _B$
13. $\operatorname{CSRC} A \neq$ RSRC_B

If the process grid is $1 \times p$ and DTYPE_A $=1$:
14. $M _A \neq 1$
15. $M B _A<1$
16. RSRC_A $\neq 0$

If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$:
17. $\mathrm{M} _\mathrm{A}<0$ and $(n=0) ; \mathrm{M} _\mathrm{A}<1$ otherwise
18. $M B _A<1$
19. $n>\left(\mathrm{MB} _\mathrm{A}\right)(p)-\bmod \left(i a-1, \mathrm{MB} _A\right)$
20. ia $>M _A$ and $(n>0)$
21. $i a+n-1>M _A$ and $(n>0)$
22. RSRC_A <0 or RSRC_A $\geq p$
23. $M B _A \neq M B _B$
24. RSRC_A \neq RSRC_B

If the process grid is $p \times 1$ and DTYPE_A $=1$:
25. $N _A \neq 1$
26. NB_A < 1
27. C SRC_A $\neq 0$

In all cases:
28. ia $\neq i b$
29. DTYPE_B $=1$ and the process grid is $1 \times p$ and $p>1$
30. nrhs <0
31. $i b<1$
32. M _ $\mathrm{B}<0$ and $(n=0) ; \mathrm{M} _\mathrm{B}<1$ otherwise
33. $M B$ B <1
34. $i b>M _B$ and $(n>0)$
35. $i b+n-1>\mathrm{M}$ - B and $(n>0)$
36. RSRC_B <0 or RSRC_B $\geq p$
37. LLD_B < $\max \left(1, L O C p\left(M _B\right)\right)$

If DTYPE_B $=1$:
38. N_B < 0 and (nrhs = 0); N_B < 1 otherwise
39. N_B < nrhs
40. NB_B < 1
41. CSRC_B $\neq 0$

In all cases:
42. Iwork $\neq 0$, Iwork $\neq-1$, and Iwork $<$ (minimum value) (For the minimum value, see the Iwork argument description.)

Stage 5
Each of the following global input arguments are checked to determine whether its value is the same on all processes in the process grid:

1. n differs.
2. nrhs differs.
3. ia differs.
4. ib differs.
5. DTYPE_A differs.

If DTYPE_A = 1 on all processes:
6. M_A differs.
7. N_A differs.
8. MB_A differs.
9. NB_A differs.
10. RSRC_A differs.
11. CSRC_A differs.

If DTYPE_A = 501 on all processes:
12. N_A differs.
13. NB_A differs.
14. CSRC_A differs.

If DTYPE_A = 502 on all processes:
15. M_A differs.
16. MB_A differs.
17. RSRC_A differs.

In all cases:
18. DTYPE_B differs.

If DTYPE_B = 1 on all processes:
19. $M-B$ differs.
20. N_B differs.
21. $M B _B$ differs.
22. NB_B differs.
23. RSRC_B differs.
24. CSRC_B differs.

If $D T Y P E _B=502$ on all processes:
25. M_B differs.
26. $M \bar{B} _B$ differs.
27. RSRC_B differs.

Also:
28. Iwork $=-1$ on a subset of processes.

Example: This example shows a factorization of the general tridiagonal matrix \boldsymbol{A} of order 12:
$\left[\begin{array}{llllllllllll}2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0\end{array}\right]$

Matrix \boldsymbol{A} is distributed over a 1×3 process grid using block-column distribution.

Notes:

1. On output, the vectors $\boldsymbol{d l}, \boldsymbol{d}$, and $\boldsymbol{d u}$ are overwritten by this subroutine.
2. Notice only one process grid was created, even though, DTYPE_A = 501 and DTYPE_B = 502.
3. Because /work $=0$, this subroutine dynamically allocates the work area used by this subroutine.

Call Statements and Input

```
ORDER = 'R'
NPROW = 1
NPCOL = 3
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


CALL PDDTSV (12,3 , DL , D , DU , 1, DESC_A , B , 1 , DESC_B , WORK , 0 , INFO)

	Desc_A
DTYPE_	501
CTXT_ $_{-}$	icontxt ${ }^{1}$
$\mathrm{~N}_{-}$	12
NB $_{-}$	4
CSRC_	0
Not used	-
Reserved	-
1 icontxt is the output of the BLACS_GRIDINIT call.	

	Desc_B
DTYPE_	502
CTXT_ $_{-}$	icontxt 1
M_ 1	12
MB_ 2	4
RSRC_	0
LLD_B	4
Reserved	-
1 icontxt is the output of the BLACS_GRIDINIT call.	

Global vector dl with block size of 4:

PDGTSV and PDDTSV

B, D
0
1
$0\left[\begin{array}{llll}. & 1.0 & 1.0 & 1.0\end{array}\right.$

Global vector \boldsymbol{d} with block size of 4 :

B, D	0				1					2					
0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3	. 0	3.0		. 0		3.0	3.0

Global vector $d u$ with block size of 4 :

B, D		0				1					2			
0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		. 0		. 0	.

The following is the 1×3 process grid:

$\mathbf{B , D}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array DL with block size of 4 :

Local array D with block size of 4:

Local array DU with block size of 4 :

Global matrix \boldsymbol{B} with a block size of 4 :

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local matrix \boldsymbol{B} with a block size of 4 :

p, q	0			1			2		
	46.0	6.0	4.0	47.0	31.0	6.0	23.0	55.0	6.0
	65.	13.0	6.0	41.0	37.0	6.0	17.0	61.0	6.0
0	59.0	19.0	6.0	35.0	43.0	6.0	11.0	67.0	6.0
	53.0	25.0	6.0	29.0	49.0	6.0	5.0	47.0	4.0

Output:

Global matrix \boldsymbol{B} with a block size of 4 :

p,q	0		
0	12.	1.0	1.0
	11.	2.0	1.0
	10.	3.0	1.0
	9.	4.0	1.0
1	8.	5.0	1.0
	7.	6.0	1.0
	6.	7.0	1.0
	5.	8.0	1.0
2	4.	9.0	1.0
	3.	10.0	1.0
	2.	11.0	1.0
	1.	12.0	1.0

The following is the 1×3 process grid:

$\mathbf{B}, \boldsymbol{D}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

PDGTSV and PDDTSV

Local matrix \boldsymbol{B} with a block size of 4 :

p,q	0			1			2		
	12.0	1.0	1.0	8.0	5.0	1.0	4.0	9.0	1.0
	11.0	2.0	1.0	7.0	6.0	1.0	3.0	10.0	1.0
0	10.0	3.0	1.0	6.0	7.0	1.0	2.0	11.0	1.0
	9.0	4.0	1.0	5.0	8.0	1.0	1.0	12.0	1.0

The value of info is 0 on all processes.

PDGTTRF and PDDTTRF-General Tridiagonal Matrix Factorization

PDGTTRF factors the general tridiagonal matrix \boldsymbol{A}, stored in tridiagonal storage mode, using Gaussian elimination with partial pivoting.

PDDTTRF factors the diagonally dominant general tridiagonal matrix \boldsymbol{A}, stored in tridiagonal storage mode, using Gaussian elimination.

In these subroutine descriptions, \boldsymbol{A} represents the global square general tridiagonal submatrix $\boldsymbol{A}_{\text {ia:ia }+n-1, \text { ia:iaan-1 }}$.

To solve a tridiagonal system of linear equations with multiple right-hand sides, follow the call to PDGTTRF or PDDTTRF with one or more calls to PDGTTRS or PDDTTRS, respectively. The output from these factorization subroutines should be used only as input to the solve subroutines PDGTTRS and PDDTTRS, respectively.

If $n=0$, no computation is performed and the subroutine returns after doing some parameter checking. See reference [51].

Table 72. Data Types			
$\boldsymbol{d} \boldsymbol{l}, \boldsymbol{d}, \boldsymbol{d} \mathbf{u}, \boldsymbol{d} \mathbf{d} 2$, af, work	ipiv	Subroutine	
Long-precision real	Integer	PDGTTRF and PDDTTRF	

Syntax

Fortran	CALL PDGTTRF (n, dl, d, du, du2, ia, desc_a, ipiv, af, laf, work, Iwork, info) CALL PDDTTRF ($n, d l$, $d, d u$, ia, desc_a, af, laf, work, lwork, info)
C and C++	pdgttrf (n, dl, d, du, du2, ia, desc_a, ipiv, af, laf, work, Iwork, info); pddttrf (n, dll, d, du, ia, desc_a, af, laf, work, Iwork, info);

On Entry
n
is the order of the general tridiagonal matrix \boldsymbol{A} and the number of elements in vector ipiv used in the computation.

Scope: global

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $0 \leq n \leq\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right)$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $0 \leq n \leq\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right)$.
where p is the number of processes in a process grid.
dl
is the local part of the global vector dl. This identifies the first element of the local array DL. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp(ia+n-1) part of the local array DL contains the local pieces of the leading $i a+n-1$ part of the global vector.

The global vector dl contains the subdiagonal of the global general tridiagonal submatrix \boldsymbol{A} in elements $i a+1$ through ia $+n-1$.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 72 on page 443. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
On output, DL is overwritten; that is, the original input is not preserved.
is the local part of the global vector \boldsymbol{d}. This identifies the first element of the local array D. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp(ia+ $n-1$) part of the local array D contains the local pieces of the leading $i a+n-1$ part of the global vector.
The global vector \boldsymbol{d} contains the main diagonal of the global general tridiagonal submatrix \boldsymbol{A} in elements ia through ia+n-1.
Scope: local
Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1). containing numbers of the data type indicated in Table 72 on page 443.
Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

On output, D is overwritten; that is, the original input is not preserved.
$d u$
is the local part of the global vector $\boldsymbol{d} \boldsymbol{u}$. This identifies the first element of the local array DU. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading $\operatorname{LOCp}(i a+n-1)$ part of the local array DU contains the local pieces of the leading $i a+n-1$ part of the global vector.

The global vector $d u$ contains the superdiagonal of the global general tridiagonal submatrix \boldsymbol{A} in elements ia through ia $+n-2$.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 72 on page 443.
Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

On output, DU is overwritten; that is, the original input is not preserved. du2

See On Return.
ia
is the row or column index of the global matrix \boldsymbol{A}, identifying the first row or column of the submatrix \boldsymbol{A}.
Scope: global
Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$ $1 \leq i a \leq N _A$ and $i a+n-1 \leq N _A$
desc_a
is the array descriptor for global matrix \boldsymbol{A}. Because vectors are one-dimensional data structures, you may use a type-502, type-501, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$. For a type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For a type-501 array descriptor, the process grid is used as if it is a $1 \times p$ process grid. For a type-1 array descriptor, the process grid is used as if it is either a $p \times 1$ process grid or a $1 \times p$ process grid. The following tables describe three types of array descriptors. For rules on using array descriptors, see "Notes and Coding Rules" on page 450.

Table 73. Type-502 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=502 for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0$: $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	MB_A	Row block size	$\begin{aligned} & \text { MB } _A \geq 1 \text { and } \\ & 0 \leq n \leq\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right) \end{aligned}$	Global
5	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \leq R S R C _A<p$	Global
6	-	Not used by these subroutines.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 74 (Page 1 of 2). Type-1 Array Descriptor ($p \times 1$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A = 1 for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0$: $M _A \geq 0$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	N_A = 1	

PDGTTRF and PDDTTRF

Table 74 (Page 2 of 2). Type-1 Array Descriptor ($p \times 1$ Process Grid)					
desc_a	Name	Description	Limits	Scope	
5	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right) ~$	Global	
6	NB_A	Column block size	NB_A ≥ 1	Global	
7	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A <p	Global	
8	CSRC_A	The process column over which the first column of the global matrix is distributed	CSRC_A $=0$	Global	
9	-	Not used by these subroutines.	-	-	

Specified as: an array of (at least) length 9, containing fullword integers.

Table 75. Type-501 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=501 for $1 \times p$ or $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
4	NB_A	Column block size	NB_A ≥ 1 and $0 \leq n \leq\left(N B _A\right)(p)-m o d\left(i a-1, N B _A\right) ~$	Global
5	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A <p	Global
6	-	Not used by these subroutines.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 76 (Page 1 of 2). Type-1 Array Descriptor ($1 \times p$ Process Grid)					
desc_a	Name	Description	Limits	Scope	
1	DTYPE_A	Descriptor type	DTYPE_A $=1$ for $1 \times p$ where p is the number of processes in a process grid.	Global	

Table 76 (Page 2 of 2). Type-1 Array Descriptor ($1 \times p$ Process Grid)				
desc_a	Name	Description	Limits	Scope
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	M_A = 1	Global
4	N_A	Number of columns in the global matrix	$\begin{aligned} & \text { If } n=0: \\ & \quad \text { N_A } \geq 0 \end{aligned}$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	$\begin{aligned} & N B _A \geq 1 \text { and } \\ & 0 \leq n \leq\left(N B _A\right)(p)-m o d\left(i a-1, N B _A\right) \end{aligned}$	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	RSRC_A $=0$	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<p$	Global
9	-	Not used by these subroutines.	-	-

Specified as: an array of (at least) length 9, containing fullword integers.
ipiv
See On Return.
af
See On Return.
laf
is the number of elements in array AF.
Scope: local
Specified as: a fullword integer, where:
If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$:

- For PDGTTRF, laf $\geq 12 \mathrm{P}+3$ (MB_A)
- For PDDTTRF, laf $\geq 12 P+2\left(M B _A\right)$.
where, in the above formulas, P is the actual number of processes containing data.

If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE $A=501$, you would substitute NB_A in place of MB_A in the formulas above.

Note: In ScaLAPACK 1.5, PDDTTRF requires laf = 12P+3NB_A. This value is greater than or equal to the value required by Parallel ESSL.
work
has the following meaning:
If /work $=0$, work is ignored.
If /work $\neq 0$, work is the work area used by this subroutine, where:

- If Iwork $\neq-1$, the size of work is (at least) of length /work.
- If /work $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 72 on page 443. Iwork
is the number of elements in array WORK.
Scope:

- If Iwork ≥ 0, Iwork is local
- If Iwork $=-1$, Iwork is global

Specified as: a fullword integer; where:

- If Iwork $=0$, PDGTTRF and PDDTTRF dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If lwork $=-1$, PDGTTRF and PDDTTRF perform a work area query and return the optimum size of work in work. No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, Iwork must have the following value:

For PDGTTRF, Iwork $\geq 10 \mathrm{P}$
For PDDTTRF, Iwork $\geq 8 \mathrm{P}$
where, in the above formulas, P is the actual number of processes containing data.
info
See On Return.

On Return

dl
$d l$ is the updated local part of the global vector $d l$, containing part of the factorization.

Scope: local
Returned as: a one-dimensional array of (at least) LOCp(ia+n-1), containing numbers of the data type indicated in Table 72 on page 443.

On output, DL is overwritten; that is, the original input is not preserved.
d
d is the updated local part of the global vector \boldsymbol{d}, containing part of the factorization.

Scope: local
Returned as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 72 on page 443.

On output, D is overwritten; that is, the original input is not preserved.
du
$d u$ is the updated local part of the global vector $d u$, containing part of the factorization.

Scope: local
Returned as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 72 on page 443.
On output, DU is overwritten; that is, the original input is not preserved. du2
is the local part of the global vector du2, containing part of the factorization.
Scope: local
Returned as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 72 on page 443. ipiv
is the local part of the global vector ipiv, containing the pivot information needed by PDGTTRS. This identifies the first element of the local array IPIV. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading $\operatorname{LOCp}(i a+n-1)$ part of the local array IPIV contains the local pieces of the leading ia+n-1 part of the global vector.

Scope: local
Returned as: an array of (at least) length LOCp(ia+n-1), containing fullword integers. There is no array descriptor for ipiv. The details about the block data distribution of global vector ipiv are stored in desc_a.
af
is a work area used by these subroutines and contains part of the factorization. Its size is specified by laf.

Scope: local
Returned as: a one-dimensional array of (at least) length laf, containing numbers of the data type indicated in Table 72 on page 443.
work
is the work area used by this subroutine if Iwork $\neq 0$, where:
If Iwork $\neq 0$ and Iwork $\neq-1$, the size of work is (at least) of length /work.
If Iwork $=-1$, the size of work is (at least) of length 1.
Scope: local
Returned as: an area of storage, containing numbers of data type indicated in Table 72 on page 443, where:

- If lwork ≥ 1, the work $_{1}$ is set to the minimum Iwork value needed.
- If Iwork $=-1$, the work ${ }_{1}$ is set to the optimum Iwork value needed.

Except for work ${ }_{1}$, the contents of work are overwritten on return. info
has the following meaning:
If info $=0$, the factorization or work area query completed successfully.
Note: For PDDTTRF, if the input matrix \boldsymbol{A} is not diagonally dominant, the subroutine may still complete the factorization; however, results are unpredictable.

If $1 \leq$ info $\leq p$, the portion of the global submatrix \boldsymbol{A} stored on process info-1 and factored locally, is singular or reducible (for PDGTTRF), or not diagonally dominant (for PDDTTRF). The magnitude of a pivot element was zero or too small.
If info $>p$, the portion of the global submatrix \boldsymbol{A} stored on process info- $p-1$ representing interactions with other processes, is singular or reducible (for PDGTTRF), or not diagonally dominant (for PDDTTRF). The magnitude of a pivot element was zero or too small.
If info > 0, the factorization is completed; however, if you call PDGTTRS/PDDTTRS with these factors, results are unpredictable.

Scope: global

Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. The output from these factorization subroutines should be used only as input to the solve subroutines PDGTTRS and PDDTTRS, respectively.

The factored matrix \boldsymbol{A} is stored in an internal format that depends on the number of processes.

The scalar data specified for input argument n must be the same for both PDGTTRF/PDDTTRF and PDGTTRS/PDDTTRS.

The global vectors for $\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d u}, \boldsymbol{d u}$, and af input to PDGTTRS/PDDTTRS must be the same as the corresponding output arguments for PDGTTRF/PDDTTRF; and thus, the scalar data specified for ia, desc_a, and laf must also be the same.
3. In all cases, follow these rules:

- $i a=i b$
- If DTYPE_A=1, then:
- For a $p \times 1$ process grid (where $p>1$), $N _A=1, N B _A \geq 1$, and CSRC_A=0.
- For a $1 \times p$ process grid (where $p>1$), $M _A=1, M B _A \geq 1$, and RSRC_A=0.
- For a 1×1 process grid:
- If $N _A=1, N B _A \geq 1$ and CSRC_A $=0$.
- If $M _A=1, M B _A \geq 1$ and $R S R C _A=0$.
- Following are the consistent combinations of array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	Process Grid
501	$p \times 1$ or $1 \times p$
502	$p \times 1$ or $1 \times p$
1	$p \times 1$ or $1 \times p$

4. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on
page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
5. dl, d, du, du2, ipiv, af, and work must have no common elements; otherwise, results are unpredictable.
6. For PDGTTRF, the global general tridiagonal matrix \boldsymbol{A} must be non-singular and irreducible. For PDDTTRF, the global general tridiagonal matrix \boldsymbol{A} must be diagonally dominant to ensure numerical accuracy, because no pivoting is performed. These subroutines use the info argument to provide information about \boldsymbol{A}, like ScaLAPACK. However, these subroutines also issue an error message, which differs from ScaLAPACK.
7. The global general tridiagonal matrix \boldsymbol{A} must be stored in tridiagonal storage mode and distributed over a one-dimensional process grid, using block-cyclic data distribution. See the section on block-cyclically distributing a tridiagonal matrix in "Matrices" on page 40.
For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
8. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
9. Although global matrix \boldsymbol{A} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of $n, i a, M B _A$ (if (the process grid is $p \times 1$ and DTYPE_A = 1) or DTYPE_A = 502), NB_A (if (the process grid is $1 \times p$ and DTYPE_A = 1) or DTYPE_A = 501), must be chosen so that each process has at most one full or partial block of global submatrix \boldsymbol{A}.
10. For global tridiagonal matrix \boldsymbol{A}, use of the type-1 array descriptor is an extension to ScaLAPACK 1.5. If your application needs to run with both Parallel ESSL and ScaLAPACK 1.5, it is suggested that you use either a type-501 or a type-502 array descriptor for the matrix \boldsymbol{A}.

Error Conditions

Computational Errors: Matrix \boldsymbol{A} is a singular or reducible matrix (for PDGTTRF), or not diagonally dominant (for PDDTTRF). For details, see the description of the info argument.

Resource Errors: Iwork $=0$ and unable to allocate workspace
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4
Note: In the following error conditions:

- If $M _A=1$ and DTYPE_A $=1$, a 1×1 process grid is treated as a $1 \times p$ process grid.
- If $N _A=1$ and $D T Y P E _A=1$, a 1×1 process grid is treated as a $p \times 1$ process grid.

1. The process grid is not $1 \times p$ or $p \times 1$.
2. $n<0$
3. $i a<1$
4. DTYPE $A=1$ and $M _A \neq 1$ and $N _A \neq 1$

If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$:
5. $\mathrm{N} _\mathrm{A}<0$ and ($n=0$); $\mathrm{N} _\mathrm{A}<1$ otherwise
6. $N B _A<1$
7. $n>\left(N B _A\right)(p)-m o d\left(i a-1, N B _A\right)$
8. $i a>N _A$ and $(n>0)$
9. $i a+n-1>N _A$ and $(n>0)$
10. CSRC_A < 0 or CSRC_A $\geq p$

If the process grid is $1 \times p$ and DTYPE_A $=1$:
11. $M _A \neq 1$
12. $M B _A<1$
13. RSRC_A $\neq 0$

If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$:
14. $\mathrm{M} _\mathrm{A}<0$ and ($n=0$); $\mathrm{M} _\mathrm{A}<1$ otherwise
15. $M B _A<1$
16. $n>\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right)$
17. $i a>M _A$ and $(n>0)$
18. $i a+n-1>\mathrm{M} _\mathrm{A}$ and $(n>0)$
19. RSRC_A <0 or RSRC_A $\geq p$

If the process grid is $p \times 1$ and DTYPE_A $=1$:
20. $N _A \neq 1$
21. $N B _A<1$
22. $\operatorname{CSRC} _A \neq 0$

In all cases:
23. laf < (minimum value) (For the minimum value, see the laf argument description.)
24. Iwork $\neq 0$, Iwork $\neq-1$, and $/$ work < (minimum value) (For the minimum value, see the /work argument description.)

Stage 5

Each of the following global input arguments are checked to determine whether its value is the same on all processes in the process grid:

1. n differs.
2. ia differs.
3. DTYPE_A differs.

If DTYPE_A $=1$ on all processes:
4. M_A differs.
5. N_A differs.
6. MB_A differs.
7. NB_A differs.
8. RSRC_A differs.
9. CSRC_A differs.

If DTYPE_A = 501 on all processes:
10. N_A differs.
11. NB_A differs.
12. CSRC_A differs.

If DTYPE_A $=502$ on all processes:
13. M_A differs.
14. MB_A differs.
15. RSRC_A differs.

Also:
16. Iwork $=-1$ on a subset of processes.

Example 1: This example shows a factorization of the general tridiagonal matrix \boldsymbol{A} of order 12.
$\left[\begin{array}{llllllllllll}2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0\end{array}\right]$

Matrix \boldsymbol{A} is stored in tridiagonal storage mode and is distributed over a 3×1 process grid using block-cyclic distribution.

Notes:

1. The vectors $\boldsymbol{d} \boldsymbol{l}$, \boldsymbol{d}, and $\boldsymbol{d} \boldsymbol{u}$, output from PDGTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine PDGTTRS.
2. The contents of the du2 and af vectors, output from PDGTTRF, are not shown. These vectors are passed, unchanged, to the solve subroutine PDGTTRS.
3. Because Iwork = 0, PDGTTRF dynamically allocates the work area used by this subroutine.

Call Statements and Input

PDGTTRF and PDDTTRF

```
ORDER = 'R'
NPROW = 3
NPCOL = 1
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
CALL PDGTtRF ( \(12, D L\), D , DU , DU2 , 1, DESC_A , IPIV , AF , 48, WORK, 0, INFO )
```

	Desc_A
DTYPE_ $_{-}$	502
CTXT_ $_{-}$	icontxt1
M_ $_{-}$	12
MB_ 2	4
RSRC_	0
Not used	-
Reserved	-
icontxt is the output of the BLACS_GRIDINIT call.	

Global vector dla with block size of 4:

B, D	0
	1.0
0	1.0
	1.0

	1.0
	1.0
1	1.0
	1.0

	1.0
	1.0
2	1.0
	1.0

Global vector \boldsymbol{d} with block size of 4 :

B, D	0
	2.0
	3.0
0	3.0
	3.0

	3.0
	3.0
1	3.0
	3.0

	3.0
	3.0
2	3.0
	3.0

Global vector $d u$ with block size of 4 :

B, D	0
	2.0
	2.0
0	2.0
	2.0

	2.0
	2.0
1	2.0
	2.0

	2.0
	2.0
2	2.0

The following is the 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local array DL with block size of 4 :

PDGTTRF and PDDTTRF

Local array D with block size of 4 :

p,q	0
0	2.0
	3.0
	3.0
	3.0
1	3.0
	3.0
	3.0
	3.0
2	3.0
	3.0
	3.0
	3.0

Local array DU with block size of 4 :

p,q	0
	2.0
	2.0
0	2.0
	2.0
	2.0
	2.0
1	2.0
	2.0
	2.0
	2.0
2	2.0

Output:

Global vector $\boldsymbol{d} \boldsymbol{l}$ with block size of 4:

B, D
0
:---:
:---:
$\left[\begin{array}{c}. \\ 0.5 \\ 0.5 \\ 0.5 \\ ---- \\ 1.0 \\ 0.33 \\ 0.43 \\ 0.47 \\ ---- \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0\end{array}\right]$

Global vector \boldsymbol{d} with block size of 4 :

B, D	0
	0.5 0.5
0	0.5
	2.0

	0.43
1	0.47
	2.07

	0.47
2	0.43
	0.33

Global vector $\boldsymbol{d} u$ with block size of 4 :

$$
B, D \quad 0
$$

$0 \quad 1 \quad\left[\begin{array}{c} \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ --.- \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ ---- \\ 0.93 \\ 0.86 \\ 0.67 \\ .\end{array}\right]$

Global vector ipiv with block size of 4:

PDGTTRF and PDDTTRF

B, D
0
$\mathbf{2} \quad\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ - \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

The following is the 3×1 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local array DL with block size of 4:

p,q	0
	-
	0.5
0	0.5
	0.5
	1.0
	0.33
1	0.43
	0.47
	1.0
	1.0
2	1.0
	1.0

Local array D with block size of 4:

p,q	0
0	0.5
	0.5
	0.5
	2.0
1	0.33
	0.43
	0.47
	2.07
2	2.07
	0.47
	0.43
	0.33

Local array DU with block size of 4 :

p,q	0
	2.0
	2.0
0	2.0
	2.0
	2.0
	2.0
1	2.0
	2.0
	0.93
	0.86
2	0.67
	-

Local array IPIV with block size of 4 :

The value of info is 0 on all processes.

Example 2: This example shows a factorization of the diagonally dominant general tridiagonal matrix \boldsymbol{A} of order 12. Matrix \boldsymbol{A} is stored in tridiagonal storage mode and distributed over a 3×1 process grid using block-cyclic distribution.

Matrix \boldsymbol{A} and the input and/or output values for $d l$, d, $d u$, desc_a, and info in this example are the same as shown for "Example 1" on page 453.

Notes:

1. The vectors $\boldsymbol{d l}$, \boldsymbol{d}, and $\boldsymbol{d} \boldsymbol{u}$, output from PDDTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine PDDTTRS.
2. The contents of vector af, output from PDDTTRF, are not shown. This vector is passed, unchanged, to the solve subroutine PDDTTRS.
3. Because Iwork = 0, PDDTTRF dynamically allocates the work area used by this subroutine.

Call Statements and Input

```
ORDER = 'R'
NPROW = 3
NPCOL = 1
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


PDGTTRS and PDDTTRS—General Tridiagonal Matrix Solve

These subroutines solve the following systems of equations for multiple right-hand sides:

$$
\text { 1. } A X=B
$$

PDGTTRS solves the tridiagonal systems of linear equations, using Gaussian elimination with partial pivoting for the general tridiagonal matrix \boldsymbol{A} stored in tridiagonal storage mode.

PDDTTRS solves the tridiagonal systems of linear equations, using Gaussian elimination for the diagonally dominant general tridiagonal matrix \boldsymbol{A} stored in tridiagonal storage mode.

In these subroutines:

- \boldsymbol{A} represents the global square general tridiagonal submatrix $\boldsymbol{A}_{\text {ia:ia }}$ n-1, ia:ia $+n-1$.
- \boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: n r h s}$ containing the right-hand sides in its columns.
- \boldsymbol{X} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: n r r s}$ containing the output solution vectors in its columns.

These subroutines use the results of the factorization of matrix \boldsymbol{A}, produced by a preceding call to PDGTTRF or PDDTTRF, respectively. The output from the factorization subroutines, PDGTTRF and PDDTTRF, should be used only as input to these solve subroutines, respectively.

If $n=0$ or nrhs $=0$, no computation is performed and the subroutine returns after doing some parameter checking. See reference [51].

Table 77. Data Types			
$\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d} \boldsymbol{u}, \boldsymbol{d} \mathbf{d} 2, \boldsymbol{B}$, af, work	ipiv	Subroutine	
Long-precision real	Integer	PDGTTRS and PDDTTRS	

Syntax

Fortran	CALL PDGTTRS (transa, n, nrhs, dl, d, du, du2, ia, desc_a, ipiv, b, ib, desc_b, af, laf, work, lwork, info) CALL PDDTTRS (transa, n, nrhs, dl, d, du, ia, desc_a, b, ib, desc_b, af, laf, work, Iwork, info)
C and C++	pdgttrs (transa, n, nrhs, dl, d, du, du2, ia, desc_a, ipiv, b, ib, desc_b, af, laf, work, Iwork, info); pddttrs (transa, n, nrhs, dl, d, du, ia, desc_a, b, ib, desc_b, af, laf, work, Iwork, info);

On Entry

transa
indicates submatrix \boldsymbol{A} is used in the computation, resulting in solution 1.
Scope: global
Specified as: a single character; transa $=$ ' N '.

PDGTTRS and PDDTTRS

Note: PDDTTRS does not support transa = ' C ' or ' T '. You can only migrate from the ScaLAPACK 1.5 version of this subroutine to PDDTTRS if transa $=$ ' N '.
is the order of the general tridiagonal submatrix \boldsymbol{A} and the number of rows in the general submatrix \boldsymbol{B}, which contains the multiple right-hand sides.

Scope: global

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $0 \leq n \leq\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right)$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE $A=501$, $0 \leq n \leq\left(N B _A\right)(p)-m o d\left(i a-1, N B _A\right)$.
where p is the number of processes in a process grid.
nrhs
is the number of right-hand sides; that is, the number of columns in submatrix
B used in the computation.

Scope: global

Specified as: a fullword integer; nrhs ≥ 0.
dl
is the local part of the global vector dl, containing part of the factorization produced from a preceding call to PDGTTRF or PDDTTRF. This identifies the
first element of the local array DL. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp(ia+n-1) part of the local array DL contains the local pieces of the leading ia+n-1 part of the global vector.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 77 on page 461. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
d
is the local part of the global vector \boldsymbol{d}, containing part of the factorization produced from a preceding call to PDGTTRF or PDDTTRF. This identifies the first element of the local array D. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp $(i a+n-1)$ part of the local array D contains the local pieces of the leading ia+n-1 part of the global vector.
Scope: local
Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 77 on page 461. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
du
is the local part of the global vector $\mathbf{d u}$, containing part of the factorization produced from a preceding call to PDGTTRF or PDDTTRF. This identifies the first element of the local array DU. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p;
therefore, the leading LOCp(ia+n-1) part of the local array DU contains the local pieces of the leading $i a+n-1$ part of the global vector.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 77 on page 461. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
du2
is the local part of the global vector du2, containing part of the factorization produced from a preceding call to PDGTTRF. This identifies the first element of the local array DU2. These subroutines compute the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp(ia+n-1) part of the local array DU2 contains the local pieces of the leading ia+n-1 part of the global vector.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 77 on page 461. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row or column index of the global matrix \boldsymbol{A}, identifying the first row or column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $1 \leq i a \leq N _A$ and $i a+n-1 \leq N _A$
desc_a
is the array descriptor for global matrix \boldsymbol{A}. Because vectors are one-dimensional data structures, you may use a type-502, type-501, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$. For a type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For a type-501 array descriptor, the process grid is used as if it is a $1 \times p$ process grid. For a type-1 array descriptor, the process grid is used as if it is either a $p \times 1$ process grid or a $1 \times p$ process grid. The following tables describe three types of array descriptors. For rules on using array descriptors, see "Notes and Coding Rules" on page 469.

desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=502 for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global

PDGTTRS and PDDTTRS

Table 78 (Page 2 of 2). Type-502 Array Descriptor					
desc_a	Name	Description	Limits	Scope	
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global	
4	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right) ~$	Global	
5	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A <p	Global	
6	-	Not used by these subroutines.	-	-	
7	-	Reserved	-	-	

Specified as: an array of (at least) length 7, containing fullword integers.

Table 79. Type-1 Array Descriptor ($p \times 1$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A $=1$ for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	N_A	Number of columns in the global matrix	N_A $=1$	Global
5	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right) ~$	Global
6	NB_A	RSRC_A	Column block size The process row over which the first row of the global matrix is distributed	NB_A ≥ 1 $0 \leq$ RSRC_A < p
8	CSRC_A	The process column over which the first column of the global matrix is distributed	CSRC_A $=0$	Global
9	-	Not used by these subroutines.	-	-

Specified as: an array of (at least) length 9, containing fullword integers.

Table 80. Type-501 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=501 for $1 \times p$ or $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
4	NB_A	Column block size	NB_A ≥ 1 and $0 \leq n \leq($ NB_A)(p)-mod(ia-1,NB_A)	Global
6	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<p$	Global
7	-	Not used by these subroutines.	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 81. Type-1 Array Descriptor $(1 \times p$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A $=1$ for $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	M_A $=1$	Global
4	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	NB_A ≥ 1 and $0 \leq n \leq\left(N B _A\right)(p)-m o d(i a-1$, NB_A)	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	RSRC_A $=0$	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A < p	Global
9	-	Not used by these subroutines.	-	-

PDGTTRS and PDDTTRS

Specified as: an array of (at least) length 9, containing fullword integers. ipiv
is the local part of the global vector ipiv, containing the pivot indices produced on a preceding call to PDGTTRF. This identifies the first element of the local array IPIV. This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp $(i a+n-1)$ part of the local array IPIV must contain the local pieces of the leading ia+n-1 part of the global vector.

Scope: local

Specified as: an array of (at least) LOCp(ia+n-1), containing fullword integers. There is no array descriptor for ipiv. The details about the block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
b
is the local part of the global general matrix \boldsymbol{B}, containing the multiple right-hand sides of the system. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on $i b$, desc_b, and p; therefore, the leading LOCp(ib+n-1) by nrhs part of the local array B must contain the local pieces of the leading $i b+n-1$ by nrhs part of the global matrix.

Scope: local

Specified as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 77 on page 461. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix B.

Scope: global
Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+n-1 \leq M _B$. desc_b
is the array descriptor for global matrix \boldsymbol{B}, which may be type 502 or type 1 , as described in the following tables. For type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For rules on using array descriptors, see "Notes and Coding Rules" on page 469.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B $=502$ for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0:$ M_B ≥ 0 Otherwise: $M _B \geq 1$	MB_B ≥ 1 and $0 \leq n \leq\left(M B _B\right) p-m o d\left(i b-1, M B _B\right)$
4	MB_B	Row block size		Global

desc_b	Name	Description	Limits	Scope
5	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B <p	Global
6	LLD_B	Leading dimension	LLD_B $\geq \max (1$, LOCp(M_B))	Local
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B = 1 for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0$: $M _B \geq 0$ Otherwise: $M _B \geq 1$	Global
4	N_B	Number of columns in the global matrix	N_B \geq nrhs	Global
5	MB_B	Row block size	$\begin{aligned} & \text { MB_B } \geq 1 \text { and } \\ & 0 \leq n \leq\left(M B _B\right) p-\bmod \left(i b-1, M B _B\right) \end{aligned}$	Global
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B < p	Global
8	CSRC_B	The process column over which the first column of the global matrix is distributed	CSRC_B $=0$	Global
9	LLD_B	Leading dimension	LLD_B $\geq \max (1, \operatorname{LOCp}(\mathrm{M}$ _B) $)$	Local

Specified as: an array of (at least) length 9, containing fullword integers.
af
is a work area used by these subroutines and contains part of the factorization produced on a preceding call to PDGTTRF or PDDTTRF. Its size is specified by laf.

Scope: local

Specified as: a one-dimensional array of (at least) length laf, containing numbers of the data type indicated in Table 77 on page 461.
laf
is the number of elements in array AF.
Scope: local
Specified as: a fullword integer, where:
If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$:

PDGTTRS and PDDTTRS

- For PDGTTRS, laf $\geq 12 P+3\left(M B _A\right)$
- For PDDTTRS, laf $\geq 12 P+2\left(M B _A\right)$.
where, in the above formulas, P is the actual number of processes containing data.

If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, you would substitute NB_A in place of MB_A in the formulas above.

Note: In ScaLAPACK 1.5, PDDTTRS requires laf $=12 \mathrm{P}+3\left(\mathrm{NB} _A\right)$. This value is greater than or equal to the value required by Parallel ESSL.
work
has the following meaning:
If Iwork $=0$, work is ignored.
If Iwork $\neq 0$, work is the work area used by this subroutine, where:

- If Iwork $\neq-1$, the size of work is (at least) of length Iwork.
- If Iwork $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 77 on page 461.
Iwork
is the number of elements in array WORK.
Scope:

- If Iwork ≥ 0, Iwork is local
- If Iwork $=-1$, Iwork is global

Specified as: a fullword integer; where:

- If Iwork $=0$, PDGTTRS and PDDTTRS dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If Iwork $=-1$, PDGTTRS and PDDTTRS perform a work area query and return the optimum size of work in work . $^{\text {. No computation is performed and }}$ the subroutine returns after error checking is complete.
- Otherwise, Iwork must have the following value:
- For PDGTTRS, Iwork $\geq 12 \mathrm{P}+5$ (nrhs).
- For PDDTTRS, Iwork $\geq 10 \mathrm{P}+4$ (nrhs)
where, in the above formulas, P is the actual number of processes containing data.
info
See On Return.

On Return

b
b is the updated local part of the global matrix \boldsymbol{B}, containing the solution vectors.

Scope: local

Returned as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 77 on page 461.
work
is the work area used by this subroutine if /work $\neq 0$, where:
If /work $\neq 0$ and /work $\neq-1$, the size of work is (at least) of length Iwork.
If /work $=-1$, the size of work is (at least) of length 1 .
Scope: local
Returned as: an area of storage, containing numbers of data type indicated in Table 77 on page 461, where:

- If /work $=-1$, the work ${ }_{1}$ is set to the optimum /work value needed.
- If /work ≥ 1, the work $_{1}$ is set to the minimum /work value needed.

Except for work ${ }_{1}$, the contents of work are overwritten on return.
info
indicates that a successful computation or work area query occurred.

Scope: global

Returned as: a fullword integer; info $=0$.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. The subroutine accepts lowercase letters for the transa argument.
3. The output from these factorization subroutines should be used only as input to the solve subroutines PDGTTRS and PDDTTRS, respectively.
The factored matrix \boldsymbol{A} is stored in an internal format that depends on the number of processes.
The scalar data specified for input argument n must be the same for both PDGTTRF/PDDTTRF and PDGTTRS/PDDTTRS.

The global vectors for $\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d} \mathbf{u}, \boldsymbol{d u 2}$, ipiv, and af input to PDGTTRS/PDDTTRS must be the same as the corresponding output arguments for PDGTTRF/PDDTTRF; and thus, the scalar data specified for ia, desc_a, and laf must also be the same.
4. In all cases, follow these rules:

- $i a=i b$
- CTXT_A = CTXT_B
- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $M B _A=M B _B$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, NB_A = MB_B.
- If DTYPE_A=1, then:
- For a $p \times 1$ process grid (where $p>1$), $\mathrm{N} _A=1, \mathrm{NB} _A \geq 1$, and CSRC_A=0.
- For a $1 \times p$ process grid (where $p>1$), $M _A=1, M B _A \geq 1$, and RSRC_A=0.
- For a 1×1 process grid:
- If $N _A=1, N B _A \geq 1$ and CSRC_A=0.
- If $M _A=1, M B _A \geq 1$ and RSRC_A=0.
- If $D T Y P E _B=1, N _B \geq n r h s, N B _B \geq 1$, and $C S R C _B=0$.
- Following are the consistent combinations of array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	DTYPE_B	Process Grid
501	502	$p \times 1$ or $1 \times p$
502	502	$p \times 1$ or $1 \times p$
501	1	$p \times 1$
502	1	$p \times 1$
1	502	$p \times 1$ or $1 \times p$
1	1	$p \times 1$

5. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
6. $\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d u}, \boldsymbol{d u} 2, i p i v, ~ a f ~ a n d ~ w o r k ~ m u s t ~ h a v e ~ n o ~ c o m m o n ~ e l e m e n t s ; ~ o t h e r w i s e, ~$ results are unpredictable.
7. The global general tridiagonal matrix \boldsymbol{A} must be stored in tridiagonal storage mode and distributed over a one-dimensional process grid, using block-cyclic data distribution. See the section on block-cyclically distributing a tridiagonal matrix in "Matrices" on page 40.
For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
8. Matrix \boldsymbol{B} must be distributed over a one-dimensional process grid, using block-cyclic data distribution. For more information using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26. Also, see the section on distributing the right-hand side matrix in "Matrices" on page 40.
9. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
10. Although global matrices \boldsymbol{A} and \boldsymbol{B} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of $n, i a, i b, M B _A$ (if (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$), NB_A (if (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_ $A=501$), must be chosen so that each process has at most one full or partial block of each of the global submatrices \boldsymbol{A} and \boldsymbol{B}.
11. For global tridiagonal matrix \boldsymbol{A}, use of the type-1 array descriptor is an extension to ScaLAPACK 1.5. If your application needs to run with both Parallel ESSL and ScaLAPACK 1.5, it is suggested that you use either a type-501 or a type-502 array descriptor for the matrix \boldsymbol{A}.

Error Conditions

Computational Errors: None
Note: If the factorization performed by PDGTTRF or PDDTTRF failed because matrix \boldsymbol{A} is singular or reducible, or is not diagonally dominant, respectively,
the results returned by this subroutine are unpredictable. For details, see the info output argument for PDGTTRF or PDDTTRF.

Resource Errors: Iwork = 0 and unable to allocate workspace
Input-Argument and Miscellaneous Errors
Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. $C T X T _A$ is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

Note: In the following error conditions:

- If $M _A=1$ and DTYPE_A $=1$, a 1×1 process grid is treated as a $1 \times p$ process grid.
- If $N _A=1$ and DTYPE_A $=1$, a 1×1 process grid is treated as a $p \times 1$ process grid.

1. The process grid is not $1 \times p$ or $p \times 1$.
2. CTXT_A $\neq C T X T _B$
3. transa $\neq{ }^{\prime} \mathrm{N}^{\prime}$
4. $n<0$
5. ia < 1
6. DTYPE_A = 1 and $M _A \neq 1$ and $N _A \neq 1$

If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$:
7. $\mathrm{N} _\mathrm{A}<0$ and $(n=0)$; $\mathrm{N} _\mathrm{A}<1$ otherwise
8. $N B _A<1$
9. $n>\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right)$
10. ia > N_A and ($n>0$)
11. $i a+n-1>$ N_A and $(n>0)$
12. CSRC_A <0 or CSRC_A $\geq p$
13. NB_A $\neq M B$ _B
14. CSRC_A \neq RSRC_B

If the process grid is $1 \times p$ and DTYPE_A $=1$:
15. $M _A \neq 1$
16. $M B _A<1$
17. RSRC_A $\neq 0$

If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$:
18. $M _A<0$ and $(n=0) ; M _A<1$ otherwise
19. $M B _A<1$
20. $n>\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right)$
21. ia > MB_A and $(n>0)$
22. $i a+n-1>M _A$ and $(n>0)$
23. RSRC_A <0 or RSRC_A $\geq p$
24. $M B _A \neq M B _B$

PDGTTRS and PDDTTRS

25. RSRC_A \neq RSRC_B

If the process grid is $p \times 1$ and DTYPE_A $=1$:
26. $N _A \neq 1$
27. NB_A < 1
28. CSRC_A $\neq 0$

In all cases:
29. ia $\neq i b$
30. DTYPE_B $=1$ and the process grid is $1 \times p$ and $p>1$
31. nrhs <0
32. $i b<1$
33. M _ $\mathrm{B}<0$ and $(n=0)$; M - $\mathrm{B}<1$ otherwise
34. $M B$ B <1
35. $i b>M _B$ and $(n>0)$
36. $i b+n-1>\mathrm{M} _\mathrm{B}$ and $(n>0)$
37. RSRC_B <0 or RSRC_B $\geq p$
38. LLD_B < $\max \left(1, \operatorname{LOCp}\left(M _B\right)\right)$

If DTYPE_B = 1 :
39. N_B <0 and (nrhs = 0); N_B <1 otherwise
40. N_B < nrhs
41. NB_B < 1
42. $\operatorname{CSR} C-B \neq 0$

In all cases:
43. laf < (minimum value) (For the minimum value, see the laf argument description.)
44. Iwork $\neq 0$, Iwork $\neq-1$, and Iwork < (minimum value) (For the minimum value, see the Iwork argument description.)

Stage 5
Each of the following global input arguments are checked to determine whether its value is the same on all processes in the process grid:

1. n differs.
2. nrhs differs.
3. transa differs.
4. ia differs.
5. ib differs.
6. DTYPE_A differs.

If DTYPE_A = 1 on all processes:
7. M_A differs.
8. N_A differs.
9. MB_A differs.
10. NB_A differs.
11. RSRC_A differs.
12. CSRC_A differs.

If DTYPE_A = 501 on all processes:
13. N_A differs.
14. NB_A differs.
15. CSRC_A differs.

If DTYPE_A = 502 on all processes:
16. $M _A$ differs.
17. MB_A differs.
18. RSRC_A differs.

In all cases:
19. DTYPE_B differs.

If DTYPE_B = 1 on all processes:
20. M_B differs.
21. N_B differs.
22. $M B$ _B differs.
23. NB_B differs.
24. RSRC_B differs.
25. CSRC_B differs.

If DTYPE_B = 502 on all processes:
26. M_B differs.
27. $M B$ B_B differs.
28. RSRC_B differs.

Also:
29. Iwork $=-1$ on a subset of processes.

Example 1: This example shows how to solve the system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$, where matrix \boldsymbol{A} is the same general tridiagonal matrix factored in "Example 1" on page 453 for PDGTTRF.

Notes:

1. The vectors $\boldsymbol{d} \boldsymbol{l}$, \boldsymbol{d}, and $\boldsymbol{d u}$, output from PDGTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine PDGTTRS.
2. The contents of these du2 and af vectors, output from PDGTTRF, are not shown. These vectors are passed, unchanged, to the solve subroutine PDGTTRS.
3. Because Iwork = 0, PDGTTRS dynamically allocates the work area used by this subroutine.

Call Statements and Input

```
ORDER = 'R'
NPROW = 3
NPCOL = 1
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A
DTYPE_	502

PDGTTRS and PDDTTRS

	Desc_A
CTXT_ $_{-}$	icontxt1
M_ $_{-}$	12
MB_ $_{-}$	4
RSRC_	0
Not used	-
Reserved	
icontxt is the output of the BLACS_GRIDINIT call.	

	Desc_B
DTYPE_	502
CTXT_ $_{-}$	icontxt ${ }^{1}$
M_-	12
MB_ 2	4
RSRC_	0
LLD_B	4
Reserved	-
1 icontxt is the output of the BLACS_GRIDINIT call.	

Global vector $\boldsymbol{d} \boldsymbol{l}$ with block size of 4 :
B, D 0
$0\left[\begin{array}{l} \\ 0 \\ 0.5 \\ 0.5 \\ 0.5 \\ ---- \\ 1.0 \\ 0.33 \\ 0.43 \\ 0.47 \\ --- \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0\end{array}\right]$

Global vector \boldsymbol{d} with block size of 4 :

B, D	0
	0.5
	0.5
0	0.5
	2.0
	0.33
	0.43
1	0.47
	2.07
	2.07
	0.47
2	0.43
	0.33

Global vector $d u$ with block size of 4 :

B, D	0
	2.0 2.0
0	2.0
	2.0

	2.0
1	2.0
	2.0

	0.86
2	0.67
	-

Global vector ipiv with block size of 4 :
B, D 0
$0\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ - \\ 0 \\ 0 \\ 0 \\ 0 \\ - \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

The following is the 3×1 process grid:

PDGTTRS and PDDTTRS

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local array DL with block size of 4 :

p, q	0
0	
	0.5
	0.5
	0.5
1	1.0
	0.33
	0.43
	0.47
2	1.0
	1.0
	1.0
	1.0

Local array D with block size of 4 :

p,q	0
	0.5
	0.5
0	0.5
	2.0
	0.33
	0.43
1	0.47
	2.07
	2.07
	0.47
2	0.43
	0.33

Local array DU with block size of 4 :

p,q	0
	2.0
	2.0
0	2.0
	2.0
	2.0
	2.0
1	2.0
	2.0
	0.93
	0.86
2	0.67

Local array IPIV with block size of 4 :

Global matrix \boldsymbol{B} with block size of 4 :

The following is the 3×1 process grid:

PDGTTRS and PDDTTRS

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local matrix \boldsymbol{B} with block size of 4 :

p,q	0	
0	46.06 .0	4.0
	65.013 .0	6.0
	59.019 .0	6.0
	53.025 .0	6.0
1	47.031 .0	6.0
	41.037 .0	6.0
	35.043 .0	6.0
	29.049 .0	6.0
2	23.055 .0	6.0
	17.061 .0	6.0
	11.067 .0	6.0
	5.047 .0	4.0

Output:

Global matrix \boldsymbol{B} with block size of 4 :

B, D	0		
	[12.0	1.0	1.0
	11.0	2.0	1.0
0	10.0	3.0	1.0
	9.0	4.0	1.0
	8.0	5.0	1.0
	7.0	6.0	1.0
1	6.0	7.0	1.0
	5.0	8.0	1.0
	4.0	9.0	1.0
	3.0	10.0	1.0
2	2.0	11.0	1.0
	1.0	12.0	1.0

The following is the 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local matrix \boldsymbol{B} with block size of 4 :

p,q	0		
0	12.0	1.0	1.0
	11.0	2.0	1.0
	10.0	3.0	1.0
	9.0	4.0	1.0
1	8.0	5.0	1.0
	7.0	6.0	1.0
	6.0	7.0	1.0
	5.0	8.0	1.0
2	4.0	9.0	1.0
	3.0	10.0	1.0
	2.0	11.0	1.0
	1.0	12.0	1.0

The value of info is 0 on all processes.
Example 2: This example shows how to solve the system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$, where matrix \boldsymbol{A} is the same diagonally dominant general tridiagonal matrix factored in "Example 2" on page 460 for PDDTTRF. The input and/or output values for $d l, d, d u$, desc_a, and info in this example are the same as shown for "Example 1" on page 453.

Notes:

1. The vectors $\boldsymbol{d l}, \boldsymbol{d}$, and $\mathbf{d u}$, output from PDDTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine PDDTTRS.
2. The contents of vector af, output from PDDTTRF, are not shown. This vector is passed, unchanged, to the solve subroutine PDDTTRS.
3. Because Iwork = 0, PDDTTRS dynamically allocates the work area used by this subroutine.

Call Statements and Input

```
ORDER = 'R'
NPROW = 3
NPCOL = 1
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


PDPTSV—Positive Definite Symmetric Tridiagonal

 Matrix Factorization and SolveThis subroutine solves the tridiagonal systems of linear equations, $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$, where the positive definite symmetric tridiagonal matrix \boldsymbol{A} is stored in parallel-symmetric-tridiagonal storage mode. In this description:

- \boldsymbol{A} represents the global positive definite symmetric tridiagonal submatrix $\boldsymbol{A}_{\text {ia: }}$ ia $+n-1$, ia:ia+n-1.
- \boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: n r h s}$ containing the right-hand sides in its columns.
- \boldsymbol{X} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: \text { :rrhs }}$ containing the output solution vectors in its columns.

If $n=0$ or nrhs $=0$, no computation is performed and the subroutine returns after doing some parameter checking. See reference [51].

Table 82. Data Types	
$\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{B}$, work	Subroutine
Long-precision real	PDPTSV

Syntax

Fortran	CALL PDPTSV (n, nrhs, d, e, ia, desc_a, b, ib, desc_b, work, Iwork, info)
C and C++	pdptsv (n, nrhs, d, e, ia, desc_a, b, ib, desc_b, work, Iwork, info);

On Entry
n
is the order of the positive definite symmetric tridiagonal matrix \boldsymbol{A} and the number of rows in the general submatrix \boldsymbol{B}, which contains the multiple right-hand sides.

Scope: global

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $0 \leq n \leq\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right)$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $0 \leq n \leq\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right)$.
where p is the number of processes in a process grid.
nrhs
is the number of right-hand sides; that is, the number of columns in submatrix B used in the computation.
Scope: global
Specified as: a fullword integer; nrhs ≥ 0.
d
is the local part of the global vector \boldsymbol{d}. This identifies the first element of the local array D . This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading

LOCp(ia+n-1) part of the local array D contains the local pieces of the leading $i a+n-1$ part of the global vector.

The global vector \boldsymbol{d} contains the main diagonal of the global positive definite symmetric tridiagonal submatrix \boldsymbol{A} in elements ia through ia+ $n-1$.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1) containing numbers of the data type indicated in Table 82 on page 480. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
On output, D is overwritten; that is, the original input is not preserved.
is the local part of the global vector \boldsymbol{e}. This identifies the first element of the local array E . This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading $\operatorname{LOCp}(i a+n-1)$ part of the local array E contains the local pieces of the leading $i a+n-1$ part of the global vector.
The global vector \boldsymbol{e} contains the off-diagonal of the global positive definite symmetric tridiagonal submatrix \boldsymbol{A} in elements ia through ia+ $n-2$.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 82 on page 480. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

On output, E is overwritten; that is, the original input is not preserved.
ia
is the row or column index of the global matrix \boldsymbol{A}, identifying the first row or column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $1 \leq i a \leq N _A$ and $i a+n-1 \leq$ N_A.
desc_a
is the array descriptor for global matrix \boldsymbol{A}. Because vectors are one-dimensional data structures, you may use a type-502, type-501, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$. For a type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For a type-501 array descriptor, the process grid is used as if it is a $1 \times p$ process grid. For a type-1 array descriptor, the process grid is used as if it is either a $p \times 1$ process grid or a $1 \times p$ process grid. The following tables describe three types of array descriptors. For rules on using array descriptors, see "Notes and Coding Rules" on page 487.

PDPTSV

Table 83. Type-502 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=502 for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right) ~$	Global
5	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$	Global
7	-	Not used by this subroutine.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 84. Type-1 Array Descriptor ($p \times 1$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A $=1$ for $p \times 1$ where_ p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	N_A	Number of columns in the global matrix	N_A $=1$	Global
5	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right) ~$	Global
7	RSRC_A	Column block size	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A $<p$
8	CSRC_A	The process column over which the first column of the global matrix is distributed	CSRC_A =0	Global
9	-	Not used by this subroutine.	-	Global

Specified as: an array of (at least) length 9, containing fullword integers.

Table 85. Type-501 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=501 for $1 \times p$ or $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	N_A	Number of columns in the global matrix	If $n=0$: N_A ≥ 0 Otherwise: $\mathrm{N} _A \geq 1$	Global
4	NB_A	Column block size	$\begin{aligned} & \text { NB } \quad A \geq 1 \text { and } \\ & 0 \leq n \leq\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right) \end{aligned}$	Global
5	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<p$	Global
6	-	Not used by this subroutine.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 86. Type-1 Array Descriptor (1 $\times \mathrm{p}$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A = 1 for $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	M _A $=1$	Global
4	N_A	Number of columns in the global matrix	If $n=0$: N_A ≥ 0 Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size	$\begin{aligned} & \text { NB } _A \geq 1 \text { and } \\ & 0 \leq n \leq\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right) \end{aligned}$	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	RSRC_A=0	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<p$	Global
9	-	Not used by this subroutine.	-	-

PDPTSV

Specified as: an array of (at least) length 9, containing fullword integers. b
is the local part of the global general matrix \boldsymbol{B}, containing the multiple right-hand sides of the system. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on $i b$, desc_b, and p; therefore, the leading LOCp(ib+n-1) by nrhs part of the local array B must contain the local pieces of the leading $i b+n-1$ by $n r h s$ part of the global matrix.

Scope: local
Specified as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 82 on page 480. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix
B.
Scope: global
Specified as: a fullword integer; $1 \leq i b \leq M _B$ and $i b+n-1 \leq M _B$. desc_b
is the array descriptor for global matrix B, which may be type 502 or type 1, as described in the following tables. For type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For rules on using array descriptors, see "Notes and Coding Rules" on page 487.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B $=502$ for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0:$ M_B ≥ 0 Otherwise: M_B ≥ 1	Global
4	MB_B	Row block size	MB_B ≥ 1 and $0 \leq n \leq\left(M B _B\right)(p)-m o d\left(i a-1, M B _B\right) ~$	Global
5	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B $<p$	Global
6	LLD_B	Leading dimension	LLD_B \geq max(1, LOCp(MB_B))	Local
7	-	-	-	

Specified as: an array of (at least) length 7, containing fullword integers.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B $=1$ for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0:$ M_B ≥ 0 Otherwise: M_B ≥ 1	Global
4	N_B	Number of columns in the global matrix	N_B \geq nrhs	Global
5	MB_B	Row block size	MB_B ≥ 1 and $0 \leq n \leq$ (MB_B) $(p)-m o d\left(i b-1, M B _B\right) ~$	Global
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B < p	
8	CSRC_B	The process column over which the first column of the global matrix is distributed	CSRC_B $=0$	Global
9	LLD_B	Leading dimension	LLD_B \geq max(1,LOCp(MB_B))	Local

Specified as: an array of (at least) length 9, containing fullword integers. work
has the following meaning:
If /work $=0$, work is ignored.
If /work $\neq 0$, work is the work area used by this subroutine, where:

- If /work $\neq-1$, the size of work is (at least) of length /work.
- If /work $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 82 on page 480. /work
is the number of elements in array WORK.
Scope:

- If /work ≥ 0, Iwork is local
- If Iwork = -1, Iwork is global

Specified as: a fullword integer; where:

- If /work = 0, PDPTSV dynamically allocates the work area used by the subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If /work = -1 , PDPTSV performs a work area query and return the optimum size of work in work ${ }_{1}$. No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, if (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A = 502:
- If nrhs ≤ 1, lwork $\geq 10 \mathrm{P}+\mathrm{MB}$ _A +10 .
- If $n r h s>1$, (lwork $\left.\geq(20+2 \min (100, n r h s)) \mathrm{P}+3\left(M B _A\right)+4(n r h s)\right)$.
where, in the above formulas, P is the actual number of processes containing data.
If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, you would substitute $N B _A$ in place of $M B _A$ in the formulas above.
Note: In ScaLAPACK 1.5, PDPTSV requires Iwork $=22 \mathrm{P}+3 \mathrm{MB} _\mathrm{A}+2 \mathrm{~min}(100, n r h s) \mathrm{P}+4$ (nrhs). This value is greater than or equal to the value required by Parallel ESSL.

info

See On Return.

On Return

d
is overwritten; that is, the original input is not preserved.
e
is overwritten; that is, the original input is not preserved.
b
p is the updated local part of the global matrix \boldsymbol{B}, containing the solution vectors.
Scope: local
Returned as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 82 on page 480.
work
is the work area used by this subroutine if /work $\neq 0$, where:
If /work $\neq 0$ and /work $\neq-1$, the size of work is (at least) of length Iwork.
If /work $=-1$, the size of work is (at least) of length 1.
Scope: local
Returned as: an area of storage, containing numbers of the data type indicated in Table 82 on page 480, where:

- If /work ≥ 1, work ${ }_{1}$ is set to the minimum /work value needed.
- If /work = -1, work ${ }_{1}$ is set to the optimum /work value needed.

Except for work ${ }_{1}$, the contents of work are overwritten on return. info
has the following meaning:
If info $=0$, global submatrix \boldsymbol{A} is positive definite, and the factorization completed successfully or the work area query completed successfully.
If $1 \leq$ info $\leq p$, the portion of global submatrix \boldsymbol{A} stored on process info-1 and factored locally, is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.

If info $>p$, the portion of global submatrix \boldsymbol{A} stored on process info-p-1 representing interactions with other processes, is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.

If info >0, the results of the computation are unpredictable.

Scope: global

Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. $\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{B}$, and work must have no common elements; otherwise, results are unpredictable.
3. In all cases, follow these rules:

- $i a=i b$
- CTXT_A = CTXT_B
- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, MB_A = MB_B.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, NB_A = MB_B.
- If DTYPE_A=1, then:
- For a $p \times 1$ process grid (where $p>1$), $\mathrm{N} _A=1, \mathrm{NB} _A \geq 1$, and CSRC_A=0.
- For a $1 \times p$ process grid (where $p>1$), $M _A=1, M B _A \geq 1$, and RSRC_A=0.
- For a 1×1 process grid:
- If $N _A=1, N B _A \geq 1$ and CSRC_A=0.
- If $M _A=1, M B _A \geq 1$ and RSRC_A=0.
- If $D T Y P E _B=1, N _B \geq n r h s, N B _B \geq 1$, and $C S R C _B=0$.
- Following are the consistent combinations of array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	DTYPE_B	Process Grid
501	502	$p \times 1$ or $1 \times p$
502	502	$p \times 1$ or $1 \times p$
501	1	$p \times 1$
502	1	$p \times 1$
1	502	$p \times 1$ or $1 \times p$
1	1	

4. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
5. The global symmetric tridiagonal matrix \boldsymbol{A} must be positive definite. This subroutine uses the info argument to provide information about \boldsymbol{A}, like ScaLAPACK. However, this subroutine also issues an error message, which differs from ScaLAPACK.
6. The global positive definite symmetric tridiagonal matrix \boldsymbol{A} must be stored in parallel-symmetric-tridiagonal storage mode and distributed over a one-dimensional process grid, using block-cyclic data distribution. See the section on block-cyclically distributing a tridiagonal matrix in "Matrices" on page 40.

For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
7. Matrix \boldsymbol{B} must be distributed over a one-dimensional process grid, using block-cyclic data distribution. For more information using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26. Also, see the section on distributing the right-hand side matrix in "Matrices" on page 40.
8. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
9. Although global matrices \boldsymbol{A} and \boldsymbol{B} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of $n, i a, i b, \mathrm{MB} _\mathrm{A}$ (if (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$), NB_A (if (the process grid is $1 \times p$ and DTYPE_ $A=1$) or DTYPE_A $=501$), must be chosen so that each process has at most one full or partial block of each of the global submatrices \boldsymbol{A} and \boldsymbol{B}.
10. For global tridiagonal matrix \boldsymbol{A}, use of the type-1 array descriptor is an extension to ScaLAPACK 1.5. If your application needs to run with both Parallel ESSL and ScaLAPACK 1.5, it is suggested that you use either a type-501 or a type-502 array descriptor for the matrix \boldsymbol{A}.

Error Conditions

Computational Errors: Matrix \boldsymbol{A} is not positive definite. For details, see the description of the info argument.

Resource Errors: Iwork = 0 and unable to allocate workspace
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

Note: In the following error conditions:

- If $\mathrm{M} _\mathrm{A}=1$ and DTYPE_A $=1$, a 1×1 process grid is treated as a $1 \times p$ process grid.
- If $N _A=1$ and DTYPE_A $=1$, a 1×1 process grid is treated as a $p \times 1$ process grid.

1. The process grid is not $1 \times p$ or $p \times 1$.
2. CTXT_A \neq CTXT_B
3. $n<0$
4. $i a<1$
5. DTYPE_A $=1$ and $M _A \neq 1$ and $N _A \neq 1$

If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$:
6. N_A < 0 and ($n=0$); N_A < 1 otherwise
7. $N B _A<1$
8. $n>\left(N B _A\right)(p)-m o d\left(i a, N B _A\right)$
9. $i a>$ N_A and $(n>0)$
10. $i a+n-1>\mathrm{N} _\mathrm{A}$ and $(n>0)$
11. CSRC_A < 0 or CSRC_A $\geq p$
12. NB_A $\neq M B$ _B
13. CSRC_A \neq RSRC_B

If the process grid is $1 \times p$ and DTYPE $A=1$:
14. $M _A \neq 1$
15. $M B _A<1$
16. RSRC_A $\neq 0$

If (the process grid is $p \times 1$ and DTYPE $A=1$) or DTYPE $A=502$:
17. $\mathrm{M} _\mathrm{A}<0$ and ($n=0$); $\mathrm{M} _\mathrm{A}<1$ otherwise
18. $M B _A<1$
19. $n>\left(M B _A\right)(p)-m o d\left(i a, M B _A\right)$
20. $i a>M _A$ and $(n>0)$
21. $i a+n-1>M _A$ and $(n>0)$
22. RSRC_A <0 or RSRC_A $\geq p$
23. $M B _A \neq M B _B$
24. RSRC_A \neq RSRC_B

If the process grid is $p \times 1$ and DTYPE $_A=1$:
25. $N _A \neq 1$
26. $N B _A<1$
27. $\operatorname{CSRC} _A \neq 0$

In all cases:
28. $i a \neq i b$
29. DTYPE_B $=1$ and the process grid is $1 \times p$ and $p>1$
30. nrhs <0
31. $i b<1$
32. $\mathrm{M} _\mathrm{B}<0$ and ($n=0$); $\mathrm{M} _\mathrm{B}<1$ otherwise
33. $M B-B<1$
34. $i b>M$ B and $(n>0)$
35. $i b+n-1>M _B$ and $(n>0)$
36. RSRC_B ≤ 0 or RSRC_B $\geq p$
37. LLD_B < $\max \left(1, L O C p\left(M _B\right)\right)$

If DTYPE_B $^{2}=1$:
38. $\mathrm{N} _\mathrm{B}<0$ and (nrhs $=0$); $\mathrm{N} _\mathrm{B}<1$ otherwise
39. N_B < nrhs
40. NB_B < 1
41. CSRC_B $\neq 0$

In all cases:
42. Iwork $\neq 0$, Iwork $\neq-1$, and $/$ work < (minimum value) (For the minimum value, see the /work argument description.)

Stage 5

Each of the following global input arguments are checked to determine whether its value is the same on all processes in the process grid:

1. n differs.
2. nrhs differs.
3. ia differs.
4. ib differs.
5. DTYPE_A differs.

If $\operatorname{DTYPE} A=1$ on all processes:
6. M_A differs.
7. N_A differs.
8. MB_A differs.
9. NB_A differs.
10. RSRC_A differs.
11. CSRC_A differs.

If DTYPE_A = 501 on all processes:
12. N_A differs.
13. NB_A differs.
14. CSRC_A differs.

If DTYPE_A = 502 on all processes:
15. M_A differs.
16. MB_A differs.
17. RSRC_A differs.

In all cases:
18. DTYPE_B differs.

If DTYPE_B = 1 on all processes:
19. M_B differs.
20. N _B differs.
21. MB_B differs.
22. NB_B differs.
23. RSRC_B differs.
24. CSRC_B differs.

If DTYPE_B = 502 on all processes:
25. M_B differs.
26. MB_B differs.
27. RSRC_B differs.

Also:
28. Iwork $=-1$ on a subset of processes.

Example: This example shows a factorization of the positive definite symmetric tridiagonal matrix \boldsymbol{A} of order 12:
$\left[\begin{array}{llllllllllll}4.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0\end{array}\right]$

Matrix \boldsymbol{A} is stored in parallel-symmetric-tridiagonal storage mode and is distributed over a 1×3 process grid using block-cyclic distribution.

Notes:

1. On output, the vectors \boldsymbol{d} and \boldsymbol{e} are overwritten by this subroutine.
2. Notice only one process grid was created, even though, DTYPE_A = 501 and DTYPE_B = 502.
3. Because Iwork $=0$, this subroutine dynamically allocates the work area used by this subroutine.

Call Statements and Input

ORDER = 'R'
NPROW $=1$
NPCOL = 3
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

CALL PDPTSV

	Desc_A
DTYPE_	501
CTXT_ $_{-}$	icontxt1
N_{-}	12
NB_	4
CSRC_	0
Not used	-
Reserved	
icontxt is the output of the BLACS_GRIDINIT call.	

	Desc_B
DTYPE_	502

PDPTSV

	Desc_B
CTXT_ $_{-}$	icontxt 1
M_ $_{-}$	12
MB_ 2	4
RSRC_	0
LLD_B	4
Reserved	
icontxt is the output of the BLACS_GRIDINIT call.	

Global vector \boldsymbol{d} with block size of 4 :
$B, D \quad 0$
1
2
$0\left[\begin{array}{lllll}4.0 & 5.0 & 5.0 & 5.0\end{array}\right.$
$\begin{array}{llll}5.0 & 5.0 & 5.0 & 5.0\end{array}$
$\left.\begin{array}{llll}5.0 & 5.0 & 5.0 & 5.0\end{array}\right]$

Global vector \boldsymbol{e} with block size of 4:
B, D
0
1
2
$0\left[\left.\begin{array}{llll}2.0 & 2.0 & 2.0 & 2.0\end{array} \right\rvert\,\right.$
$2.0 \quad 2.0 \quad 2.0 \quad 2.0$
$\left.\begin{array}{llll}2.0 & 2.0 & 2.0 & \end{array}\right]$

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local array D with block size of 4:

Local array E with block size of 4:

Global matrix \boldsymbol{B} with a block size of 4 :

p,q	0		
0	70.0	8.0	6.0
	99.0	18.0	9.0
	90.0	27.0	9.0
	81.0	36.0	9.0
1	72.0	45.0	9.0
	63.0	54.0	9.0
	54.0	63.0	9.0
	45.0	72.0	9.0
2	36.0	81.0	9.0
	27.0	90.0	9.0
	18.0	99.0	9.0
	9.0	82.0	7.0

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local matrix \boldsymbol{B} with a block size of 4 :

p,q	0		1		2		
	70.08 .0	6.0	72.045 .0	9.0	36.0	81.0	9.0
	99.018 .0	9.0	63.054 .0	9.0	27.0	90.0	9.0
0	90.027 .0	9.0	54.063 .0	9.0	18.0	99.0	9.0
	81.036 .0	9.0	45.072 .0	9.0	9.0	82.0	7.0

Output:

Global matrix \boldsymbol{B} with a block size of 4 :

p,q	0		
0	12.0	1.0	1.0
	11.0	2.0	1.0
	10.0	3.0	1.0
	9.0	4.0	1.0
1	----------------		
	7.0	6.0	1.0
	6.0	7.0	1.0
	5.0	8.0	1.0
2	$------------1.0 ~$		
	3.0	10.0	1.0
	2.0	11.0	1.0
	1.0	12.0	1.0

The following is the 1×3 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	P_{00}	P_{01}	P_{02}

Local matrix \boldsymbol{B} with a block size of 4 :

p,q	0			1			2		
	12.0	1.0	1.0	8.0	5.0	1.0	4.0	9.0	1.0
	11.0	2.0	1.0	7.0	6.0	1.0	3.0	10.0	1.0
0	10.0	3.0	1.0	6.0	7.0	1.0	2.0	11.0	1.0
	9.0	4.0	1.0	5.0	8.0	1.0	1.0	12.0	1.0

The value of info is 0 on all processes.

PDPTTRF—Positive Definite Symmetric Tridiagonal Matrix Factorization

This subroutine factors the positive definite symmetric tridiagonal matrix \boldsymbol{A}, stored in parallel-symmetric-tridiagonal storage mode, where, in this description, \boldsymbol{A} represents the global positive definite symmetric tridiagonal submatrix $\boldsymbol{A}_{i a: i a+n-1}$,
ia:ia+n-1.
To solve a tridiagonal system of linear equations with multiple right-hand sides, follow the call to PDPTTRF with one or more calls to PDPTTRS. The output from this factorization subroutine should be used only as input to the solve subroutine PDPTTRS.

If $n=0$, no computation is performed and the subroutine returns after doing some parameter checking. See reference [51].

Table 87. Data Types	
$\boldsymbol{d}, \boldsymbol{e}$, af, work	Subroutine
Long-precision real	PDPTTRF

Syntax

Fortran	CALL PDPTTRF (n, d, e, ia, desc_a, af, laf, work, Iwork, info)
C and C++	pdpttrf (n, d, e, ia, desc_a, af, laf, work, Iwork, info);

On Entry

n
is the order of the positive definite symmetric tridiagonal matrix \boldsymbol{A}.
Scope: global
Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $0 \leq n \leq\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right)$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $0 \leq n \leq\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right)$.
where p is the number of processes in a process grid.
d
is the local part of the global vector \boldsymbol{d}. This identifies the first element of the local array D. This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp(ia+n-1) part of the local array D contains the local pieces of the leading $i a+n-1$ part of the global vector.

The global vector \boldsymbol{d} contains the main diagonal of the global positive definite symmetric tridiagonal submatrix \boldsymbol{A} in elements ia through ia+n-1.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1). containing numbers of the data type indicated in Table 87. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.

PDPTTRF

On output, D is overwritten; that is, the original input is not preserved.
e
is the local part of the global vector \boldsymbol{e}. This identifies the first element of the local array E . This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp(ia+ $n-1$) part of the local array E contains the local pieces of the leading ia+n-1 part of the global vector.

The global vector \boldsymbol{e} contains the off-diagonal of the global positive definite symmetric tridiagonal submatrix \boldsymbol{A} in elements ia through ia+ $n-2$.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 87 on page 495. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
On output, E is overwritten; that is, the original input is not preserved.
ia
is the row or column index of the global matrix \boldsymbol{A}, identifying the first row or column of the submatrix \boldsymbol{A}.

Scope: global
Specified as: a fullword integer; where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $1 \leq i a \leq N _A$ and $i a+n-1 \leq N _A$.
desc_a
is the array descriptor for global matrix \boldsymbol{A}. Because vectors are one-dimensional data structures, you may use a type-502, type-501, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$. For a type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For a type-501 array descriptor, the process grid is used as if it is a $1 \times p$ process grid. For a type-1 array descriptor, the process grid is used as if it is either a $p \times 1$ process grid or a $1 \times p$ process grid. The following tables describe three types of array descriptors.

Table 88 (Page 1 of 2). Type-502 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=502 for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right) ~$	Global

Table 88 (Page 2 of 2). Type-502 Array Descriptor				
desc_a	Name	Description	Limits	Scope
5	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_A <p	Global
6	-	Not used by this subroutine.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 89. Type-1 Array Descriptor ($p \times 1$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A = 1 for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	$\begin{aligned} & \text { If } n=0: \\ & M _A \geq 0 \end{aligned}$ Otherwise: $M _A \geq 1$	Global
4	N_A	Number of columns in the global matrix	N_A $=1$	
5	MB_A	Row block size	$\begin{aligned} & \text { MB_A } \geq 1 \text { and } \\ & 0 \leq n \leq(\text { MB_A })(p)-\bmod \left(i a-1, M B _A\right) \end{aligned}$	Global
6	NB_A	Column block size	NB_A ≥ 1	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \leq R S R C _A<p$	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	CSRC_A $=0$	Global
9	-	Not used by this subroutine.	-	-

Specified as: an array of (at least) length 9, containing fullword integers.

Table 90 (Page 1 of 2). Type-501 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=501 for $1 \times p$ or $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global

PDPTTRF

Table 90 (Page 2 of 2). Type-501 Array Descriptor					
desc_a	Name	Description	Limits	Scope	
3	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global	
4	NB_A	Column block size	NB_A ≥ 1 and $0 \leq n \leq\left(N B _A\right)(p)-m o d\left(i a-1, N B _A\right) ~$	Global	
5	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A $<p$	Global	
6	-	Not used by this subroutine.	-	-	
7	-	Reserved	-	-	

Specified as: an array of (at least) length 7, containing fullword integers.

Table 91. Type-1 Array Descriptor $(1 \times p$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A $=1$ for $1 \times p$ where_ p is the number of processes in aprocess grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	M_A $=1$	Global
4	N_A	Number of columns in the global matrix	If $n=0:$ N_A ≥ 0 Otherwise: N_A ≥ 1	Global
5	MB_A	Row block size	MB_A ≥ 1	Global
6	NB_A	Column block size NB_A ≥ 1 and $0 \leq n \leq\left(N B _A\right)(p)-m o d\left(i a-1, N B _A\right) ~$	Global	
7	RSRC_A	The process row over which the first row of the global matrix is distributed	RSRC_A $=0$	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A < p	Global
9	-	Not used by this subroutine.	-	-

Specified as: an array of (at least) length 9, containing fullword integers.
af
See On Return.
laf
is the number of elements in array AF.
Scope: local

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $l a f \geq 12 \mathrm{P}+3$ (MB_A).
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, laf $\geq 12 \mathrm{P}+3$ (NB_A).
where, in the formulas above, P is the actual number of processes containing data.
work
has the following meaning:
If Iwork $=0$, work is ignored.
If /work $\neq 0$, work is the work area used by this subroutine, where:
- If Iwork $\neq-1$, the size of work is (at least) of length Iwork.
- If Iwork $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 87 on page 495.
lwork
is the number of elements in array WORK.
Scope:

- If Iwork ≥ 0, Iwork is local
- If Iwork $=-1$, Iwork is global

Specified as: a fullword integer; where:

- If Iwork $=0$, PDPTTRF dynamically allocates the work area used by the subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If Iwork $=-1$, PDPTTRF performs a work area query and return the optimum size of work in work. No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, lwork $\geq 8 \mathrm{P}$, where P is the actual number of processes containing data.
info
See On Return.

On Return

d
d is the updated local part of the global vector \boldsymbol{d}, containing part of the factorization.

Scope: local

Returned as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 87 on page 495.
On output, D is overwritten; that is, the original input is not preserved.
e
e is the updated local part of the global vector \boldsymbol{e}, containing part of the factorization.

Scope: local

Returned as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 87 on page 495.
On output, E is overwritten; that is, the original input is not preserved.
af
is a work area used by this subroutine and contains part of the factorization. Its size is specified by laf.

Scope: local

Returned as: a one-dimensional array of (at least) length laf, containing numbers of the data type indicated in Table 87 on page 495.
work
is the work area used by this subroutine if /work $\neq 0$, where:
If /work $\neq 0$ and /work $\neq-1$, the size of work is (at least) of length Iwork.
If /work $=-1$, the size of work is (at least) of length 1 .
Scope: local
Returned as: an area of storage, containing numbers of data type indicated in Table 87 on page 495, where:

- If /work ≥ 1, the work ${ }_{1}$ is set to the minimum /work value needed.
- If /work $=-1$, the work 1 is set to the optimum /work value needed.

Except for work ${ }_{1}$, the contents of work are overwritten on return.
info
has the following meaning:
If info $=0$, global submatrix \boldsymbol{A} is positive definite, and the factorization completed successfully or the work area query completed successfully.
If $1 \leq$ info $\leq p$, the portion of global submatrix \boldsymbol{A} stored on process info- 1 and factored locally, is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.
If info $>p$, the portion of global submatrix \boldsymbol{A} stored on process info- $p-1$ representing interactions with other processes, is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.
If info >0, the factorization is completed; however, if you call PDPTTRS with these factors, the results of the computation are unpredictable.

Scope: global

Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. The output from these factorization subroutines should be used only as input to the solve subroutine PDPTTRS.

The factored matrix \boldsymbol{A} is stored in an internal format that depends on the number of processes.

The scalar data specified for input argument n must be the same for both PDPTTRF and PDPTTRS.

The global vectors for $\boldsymbol{d}, \boldsymbol{e}$, and af input to PDPTTRS must be the same as the corresponding output arguments for PDPTTRF; and thus, the scalar data specified for ia, desc_a, and laf must also be the same.
3. In all cases, follow these rules:

- If DTYPE_A=1, then:
- For a $p \times 1$ process grid (where $p>1$), $N _A=1, N B _A \geq 1$, and CSRC_A=0.
- For a $1 \times p$ process grid (where $p>1$), $M _A=1, M B _A \geq 1$, and RSRC_A=0.
- For a 1×1 process grid:
- If $N _A=1, N B _A \geq 1$ and $C S R C _A=0$.
- If $M _A=1, M B _A \geq 1$ and $R S R C _A=0$.
- Following are the consistent combinations of array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	Process Grid
501	$p \times 1$ or $1 \times p$
502	$p \times 1$ or $1 \times p$
1	$p \times 1$ or $1 \times p$

4. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
5. $\boldsymbol{d}, \boldsymbol{e}$, af, and work must have no common elements; otherwise, results are unpredictable.
6. The global symmetric tridiagonal matrix \boldsymbol{A} must be positive definite. This subroutine uses the info argument to provide information about \boldsymbol{A}, like ScaLAPACK. However, this subroutine also issues an error message, which differs from ScaLAPACK.
7. The global positive definite symmetric tridiagonal matrix \boldsymbol{A} must be stored in parallel-symmetric-tridiagonal storage mode and distributed over a one-dimensional process grid, using block-cyclic data distribution. See the section on block-cyclically distributing a tridiagonal matrix in "Matrices" on page 40.
For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
8. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
9. Although global matrix \boldsymbol{A} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of $n, i a, M B _A$ (if (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$), NB_A (if (the process grid is $1 \times p$ and DTYPE_A = 1) or DTYPE_A = 501), must be chosen so that each process has at most one full or partial block of global submatrix \boldsymbol{A}.
10. For global tridiagonal matrix \boldsymbol{A}, use of the type-1 array descriptor is an extension to ScaLAPACK 1.5. If your application needs to run with both Parallel ESSL and ScaLAPACK 1.5, it is suggested that you use either a type-501 or a type-502 array descriptor for the matrix \boldsymbol{A}.

Error Conditions

Computational Errors: Matrix \boldsymbol{A} is not positive definite. For details, see the description of the info argument.

Resource Errors: Iwork $=0$ and unable to allocate workspace

Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

Note: In the following error conditions:

- If $M _A=1$ and DTYPE_A $=1$, a 1×1 process grid is treated as a $1 \times p$ process grid.
- If $N _A=1$ and DTYPE_A $=1$, a 1×1 process grid is treated as a $p \times 1$ process grid.

1. The process grid is not $1 \times p$ or $p \times 1$.
2. $n<0$
3. $i a<1$
4. $D T Y P E _A=1$ and $M _A \neq 1$ and $N _A \neq 1$

If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$:
5. N_A < 0 and ($n=0$); N_A < 1 otherwise
6. NB_A < 1
7. $n>($ NB_A $)(p)-m o d\left(i a-1, N B _A\right)$
8. $i a>$ N_A and $(n>0)$
9. $i a+n-1>$ N_A and $(n>0)$
10. CSRC_A < 0 or CSRC_A $\geq p$

If the process grid is $1 \times p$ and DTYPE $A=1$:
11. $M _A \neq 1$
12. $M B _A<1$
13. RSRC_A $\neq 0$

If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$:
14. $\mathrm{M} _\mathrm{A}<0$ and ($n=0$); $\mathrm{M} _\mathrm{A}<1$ otherwise
15. $M B _A<1$
16. $n>\left(M B _A\right)(p)-\bmod \left(i a-1, M B _A\right)$
17. $i a>M _A$ and $(n>0)$
18. $i a+n-1>M _A$ and $(n>0)$
19. RSRC_A <0 or RSRC_A $\geq p$

If the process grid is $p \times 1$ and DTYPE_A $=1$:
20. $N _A \neq 1$
21. NB_A < 1
22. CSRC_A $\neq 0$

In all cases:
23. laf $<$ (minimum value) (For the minimum value, see the laf argument description.)
24. Iwork $\neq 0$, Iwork $\neq-1$, and Iwork < (minimum value) (For the minimum value, see the Iwork argument description.)

Stage 5
Each of the following global input arguments are checked to determine whether its value is the same on all processes in the process grid:

1. n differs.
2. ia differs.
3. DTYPE_A differs.

If DTYPE_A = 1 on all processes:
4. M_A differs.
5. N_A differs.
6. MB_A differs.
7. NB_A differs.
8. RSRC_A differs.
9. CSRC_A differs.

If DTYPE_A = 501 on all processes:
10. N_A differs.
11. NB_A differs.
12. CSRC_A differs.

If DTYPE_A = 502 on all processes:
13. M_A differs.
14. MB_A differs.
15. RSRC_A differs.

Also:
16. lwork $=-1$ on a subset of processes.

Example: This example shows a factorization of the positive definite symmetric tridiagonal matrix A of order 12.
$\left[\begin{array}{llllllllllll}4.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0\end{array}\right]$

Matrix \boldsymbol{A} is stored in parallel-symmetric-tridiagonal storage mode and is distributed over a 3×1 process grid using block-cyclic distribution.

Notes:

1. The vectors \boldsymbol{d} and \boldsymbol{e}, output from PDPTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine PDPTTRS.
2. The contents of the af vector, output from PDPTTRF, is not shown. This vector is passed, unchanged, to the solve subroutine PDPTTRS.
3. Because Iwork $=0$, this subroutine dynamically allocates the work area used by this subroutine.

Call Statements and Input

```
ORDER = 'R'
NPROW = 3
NPCOL = 1
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A
DTYPE_	502
CTXT_ $_{-}$	icontxt1
M_ $_{-}$	12
MB_ $_{-}$	4
RSRC_	0
Not used	-
Reserved	-
icontxt is the output of the BLACS_GRIDINIT call.	

Global vector \boldsymbol{d} with block size of 4 :

B, D	0
	. 0
	4.0 5.0
0	5.0
	5.0

	5.0
	5.0
1	5.0
	5.0

	5.0
	5.0
2	5.0
	5.0

Global vector \boldsymbol{e} with block size of 4 :

The following is the 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local array D with block size of 4:

p, q	0
	4.0
	5.0
0	5.0
	5.0
	5.0
	5.0
1	5.0
	5.0
	5.0
	5.0
2	5.0
	5.0

Local array E with block size of 4:

p,q	0
	2.0
	2.0
0	2.0
	2.0
	2.0
	2.0
1	2.0
	2.0
	2.0
	2.0
2	2.0

Output:

Global vector \boldsymbol{d} with block size of 4 :
B, D 0
$0\left[\begin{array}{c}.25 \\ .25 \\ .25 \\ 4.0 \\ ---- \\ .2 \\ .24 \\ .25 \\ 4.01 \\ ---- \\ 4.01 \\ .25 \\ .24 \\ .2\end{array}\right]$

Global vector \boldsymbol{e} with block size of 4:
B, D
0
1
2
$\left[\begin{array}{c}0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ --- \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ ---- \\ .49 \\ .48 \\ .4 \\ .\end{array}\right]$

The following is the 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local array D with block size of 4 :

p,q	0
	. 25
	. 25
0	. 25
	4.0
	. 2
	. 24
1	. 25
	4.01
	4.01
	. 25
2	. 24
	. 2

Local array E with block size of 4 :

PDPTTRF

p,q	0
	2.0
	2.0
0	2.0
	2.0
	2.0
	2.0
1	2.0
	2.0
	. 49
	. 48
2	. 4

The value of info is 0 on all processes.

PDPTTRS—Positive Definite Symmetric Tridiagonal Matrix Solve

This subroutine solves the following tridiagonal systems of linear equations for multiple right-hand sides, using the positive definite symmetric tridiagonal matrix \boldsymbol{A}, where \boldsymbol{A} is stored in parallel-symmetric-tridiagonal storage mode:

$$
A X=B
$$

In this subroutine:

- \boldsymbol{A} represents the global positive definite symmetric tridiagonal submatrix $\boldsymbol{A}_{\text {ia: } i a+n-1, \text { ia:ia+n-1 }}$.
- \boldsymbol{B} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: \text { nrhs }}$ containing the right-hand sides in its columns.
- \boldsymbol{X} represents the global general submatrix $\boldsymbol{B}_{i b: i b+n-1,1: \text { :rrhs }}$ containing the output solution vectors in its columns.

This subroutine uses the results of the factorization of matrix \boldsymbol{A}, produced by a preceding call to PDPTTRF. The output from PDPTTRF should be used only as input to this solve subroutine.

If $n=0$ or nrhs $=0$, no computation is performed and the subroutine returns after doing some parameter checking. See reference [51].

Table 92. Data Types	
$\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{B}$, af, work	Subroutine
Long-precision real	PDPTTRS

Syntax

Fortran	CALL PDPTTRS (n, nrhs, d, e, ia, desc_a, b, ib, desc_b, af, laf, work, Iwork, info)
\mathbf{C} and \mathbf{C}_{++}	pdpttrs ($n, n r h s, d, e, i a$, desc_a, b, ib, desc_b, af, laf, work, Iwork, info);

On Entry

n
is the order of the positive definite symmetric tridiagonal submatrix \boldsymbol{A} and the number of rows in the general submatrix \boldsymbol{B}, which contains the multiple right-hand sides.

Scope: global

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE $A=1$) or DTYPE_A $=502$, $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right)$.
- If (the process grid is $1 \times p$ and DTYPE $A=1$) or DTYPE_A $=501$, $0 \leq n \leq\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right)$.
where p is the number of processes in a process grid.
nrhs
is the number of right-hand sides; that is, the number of columns in submatrix B used in the computation.

Scope: global
Specified as: a fullword integer; nrhs ≥ 0.
d
is the local part of the global vector \boldsymbol{d}, containing part of the factorization produced from a preceding call to PDPTTRF. This identifies the first element of the local array D. This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp(ia+n-1) part of the local array D contains the local pieces of the leading $i a+n-1$ part of the global vector.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 92 on page 509. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
e
is the local part of the global vector \mathbf{e}, containing part of the factorization produced from a preceding call to PDPTTRF. This identifies the first element of the local array E . This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, and p; therefore, the leading LOCp(ia+n-1) part of the local array E contains the local pieces of the leading $i a+n-1$ part of the global vector.

Scope: local

Specified as: a one-dimensional array of (at least) length LOCp(ia+n-1), containing numbers of the data type indicated in Table 92 on page 509. Details about block-cyclic data distribution of global matrix \boldsymbol{A} are stored in desc_a.
ia
is the row or column index of the global matrix \boldsymbol{A}, identifying the first row or column of the submatrix \boldsymbol{A}.

Scope: global

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, $1 \leq i a \leq M _A$ and $i a+n-1 \leq M _A$.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $1 \leq i a \leq N _A$ and $i a+n-1 \leq N _A$.
desc_a
is the array descriptor for global matrix \boldsymbol{A}. Because vectors are one-dimensional data structures, you may use a type-502, type-501, or type-1 array descriptor regardless of whether the process grid is $p \times 1$ or $1 \times p$. For a type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For a type-501 array descriptor, the process grid is used as if it is a $1 \times p$ process grid. For a type-1 array descriptor, the process grid is used as if it is either a $p \times 1$ process grid or a $1 \times p$ process grid. The following tables describe three types of array descriptors. For rules on using array descriptors, see "Notes and Coding Rules" on page 516.

Table 93. Type-502 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=502 for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq\left(M B _A\right)(p)-m o d\left(i a-1, M B _A\right) ~$	Global
5	RSRC_A	The process row over which the first row of the global matrix is distributed	$0 \geq$ RSRC_A <p	Global
6	-	Not used by this subroutine.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 94. Type-1 Array Descriptor ($p \times 1$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A $=1$ for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	If $n=0:$ M_A ≥ 0 Otherwise: M_A ≥ 1	Global
4	N_A	Number of columns in the global matrix	N_A $=1$	Global
5	MB_A	Row block size	MB_A ≥ 1 and $0 \leq n \leq$ (MB_A)(p)-mod(ia-1,MB_A)	Global
7	NB_A	Column block size	NB_A 1	

PDPTTRS

Specified as: an array of (at least) length 9, containing fullword integers.

Table 95. Type-501 Array Descriptor				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor Type	DTYPE_A=501 for $1 \times p$ or $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	N_A	Number of columns in the global matrix	If $n=0$: $N _A \geq 0$ Otherwise: $\text { N_A } \geq 1$	Global
4	NB_A	Column block size	$\begin{aligned} & \text { NB_A } \geq 1 \text { and } \\ & 0 \leq n \leq\left(N B _A\right)(p)-\bmod \left(i a-1, N B _A\right) \end{aligned}$	Global
5	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A < p	Global
6	-	Not used by this subroutine.	-	-
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

Table 96. Type-1 Array Descriptor ($\times \mathrm{p}$ Process Grid)				
desc_a	Name	Description	Limits	Scope
1	DTYPE_A	Descriptor type	DTYPE_A = 1 for $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_A	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_A	Number of rows in the global matrix	M_A = 1	Global
4	N_A	Number of columns in the global matrix	$\text { If } \begin{aligned} & n=0: \\ & \text { N_A } \geq 0 \end{aligned}$ Otherwise: $N _A \geq 1$	Global
5	MB_A	Row block size	$M B _A \geq 1$	Global
6	NB_A	Column block size	$\begin{aligned} & \text { NB_A } \geq 1 \text { and } \\ & 0 \leq n \leq\left(N B _A\right)(p)-m o d\left(i a-1, N B _A\right) \end{aligned}$	Global
7	RSRC_A	The process row over which the first row of the global matrix is distributed	RSRC_A $=0$	Global
8	CSRC_A	The process column over which the first column of the global matrix is distributed	$0 \leq$ CSRC_A < p	Global
9	-	Not used by this subroutine.	-	-

Specified as: an array of (at least) length 9, containing fullword integers. b
is the local part of the global general matrix \boldsymbol{B}, containing the multiple right-hand sides of the system. This identifies the first element of the local array B. This subroutine computes the location of the first element of the local subarray used, based on ib, desc_b, and p; therefore, the leading LOCp(ib+n-1) by nrhs part of the local array B must contain the local pieces of the leading $i b+n-1$ by $n r h s$ part of the global matrix.
Scope: local
Specified as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 92 on page 509. Details about the block-cyclic data distribution of global matrix \boldsymbol{B} are stored in desc_b.
ib
is the row index of the global matrix \boldsymbol{B}, identifying the first row of the submatrix
B.

Scope: global

Specified as: a fullword integer; $1 \leq i b \leq \mathrm{M} _\mathrm{B}$ and $i b+n-1 \leq \mathrm{M} _\mathrm{B}$.
desc_b
is the array descriptor for global matrix \boldsymbol{B}, which may be type 502 or type 1 , as described in the following tables. For type-502 array descriptor, the process grid is used as if it is a $p \times 1$ process grid. For rules on using array descriptors, see "Notes and Coding Rules" on page 516.

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B $=502$ for $p \times 1$ or $1 \times p$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0$: M_B ≥ 0 Otherwise: $M _B \geq 1$	Global
4	MB_B	Row block size	$\begin{aligned} & \text { MB } _\mathrm{B} \geq 1 \text { and } \\ & 0 \leq n \leq\left(\mathrm{MB}_{-} \mathrm{B}\right)(p)-\bmod \left(i b-1, \mathrm{MB} _\mathrm{B}\right) \end{aligned}$	Global
5	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B < p	Global
6	LLD_B	Leading dimension	LLD_B \geq max(1, LOCp(M_B))	Local
7	-	Reserved	-	-

Specified as: an array of (at least) length 7, containing fullword integers.

PDPTTRS

desc_b	Name	Description	Limits	Scope
1	DTYPE_B	Descriptor type	DTYPE_B = 1 for $p \times 1$ where p is the number of processes in a process grid.	Global
2	CTXT_B	BLACS context	Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP	Global
3	M_B	Number of rows in the global matrix	If $n=0$: $M _B \geq 0$ Otherwise: $M _B \geq 1$	Global
4	N_B	Number of columns in the global matrix	N_B \geq nrhs	Global
5	MB_B	Row block size	$\begin{aligned} & \text { MB } _\mathrm{B} \geq 1 \text { and } \\ & 0 \leq n \leq(\text { MB_B })(p)-\bmod \left(i b-1, M B _B\right) \end{aligned}$	Global
6	NB_B	Column block size	NB_B ≥ 1	Global
7	RSRC_B	The process row over which the first row of the global matrix is distributed	$0 \leq$ RSRC_B < p	Global
8	CSRC_B	The process column over which the first column of the global matrix is distributed	CSRC_B $=0$	Global
9	LLD_B	Leading dimension	LLD_B \geq max(1, LOCp(M_B))	Local

Specified as: an array of (at least) length 9, containing fullword integers. af
is a work area used by this subroutine and contains part of the factorization produced on a preceding call to PDPTTRF. Its size is specified by laf.

Scope: local
Specified as: a one-dimensional array of (at least) length laf, containing numbers of the data type indicated in Table 92 on page 509.
laf
is the number of elements in array AF.

Scope: local

Specified as: a fullword integer, where:

- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, laf $\geq 12 \mathrm{P}+3$ (MB_A).
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, $l a f \geq 12 \mathrm{P}+3\left(\mathrm{NB} _A\right)$.
where, in the above formulas, P is the actual number of processes containing data.
work
has the following meaning:
If /work $=0$, work is ignored.
If lwork $\neq 0$, work is the work area used by this subroutine, where:
- If /work $\neq-1$, the size of work is (at least) of length Iwork.
- If /work $=-1$, the size of work is (at least) of length 1 .

Scope: local

Specified as: an area of storage containing numbers of data type indicated in Table 92 on page 509.
Iwork
is the number of elements in array WORK.
Scope:

- If Iwork ≥ 0, Iwork is local
- If Iwork = -1, Iwork is global

Specified as: a fullword integer; where:

- If /work $=0$, this subroutine dynamically allocates the work area used by the subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If /work $=-1$, PDPTTRS performs a work area query and return the optimum size of work in work. No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, Iwork $\geq(10+2 \min (100, n r h s)) \mathrm{P}+4(n r h s)$, where P is the actual number of processes containing data.
info
See On Return.

On Return

b
b is the updated local part of the global matrix \boldsymbol{B}, containing the solution vectors.
Scope: local
Returned as: an LLD_B by (at least) nrhs array, containing numbers of the data type indicated in Table 92 on page 509.
work
is the work area used by this subroutine if /work $\neq 0$, where:
If /work $\neq 0$ and /work $\neq-1$, the size of work is (at least) of length /work.
If /work $=-1$, the size of work is (at least) of length 1 .
Scope: local
Returned as: an area of storage, containing numbers of data type indicated in Table 92 on page 509, where:

- If /work $=-1$, the work 1 is set to the optimum /work value needed.
- If /work ≥ 1, the work ${ }_{1}$ is set to the minimum /work value needed.

Except for work ${ }_{1}$, the contents of work are overwritten on return.
info
indicates that a successful computation or work area query occurred.
Scope: global

Returned as: a fullword integer; info $=0$.

Notes and Coding Rules

1. In your C program, argument info must be passed by reference.
2. The output from the PDPTTRF subroutine should be used only as input to the solve subroutine PDPTTRS.

The factored matrix \boldsymbol{A} is stored in an internal format that depends on the number of processes.
The scalar data specified for input argument n must be the same for both PDPTTRF and PDPTTRS.

The global vectors for $\boldsymbol{d}, \boldsymbol{e}$, and af input to PDPTTRS must be the same as the corresponding output arguments for PDPTTRF; and thus, the scalar data specified for ia, desc_a, and laf must also be the same.
3. In all cases, follow these rules:

- $i a=i b$
- CTXT_A = CTXT_B
- If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$, MB_A = MB_B.
- If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$, NB_A = MB_B.
- If DTYPE_A=1, then:
- For a $p \times 1$ process grid (where $p>1$), $N _A=1, N B _A \geq 1$, and CSRC_A=0.
- For a $1 \times p$ process grid (where $p>1$), $M _A=1, M B _A \geq 1$, and RSRC_A=0.
- For a 1×1 process grid:
- If $N _A=1, N B _A \geq 1$ and CSRC_A=0.
- If $M _A=1, M B _A \geq 1$ and RSRC_A=0.
- If DTYPE_B=1, $\mathrm{N} _\mathrm{B} \geq n r h s, N B _B \geq 1$, and $C S R C _B=0$.
- Following are the consistent combinations of array descriptor types and process grids, where p is the number of processes in the process grid:

DTYPE_A	DTYPE_B	Process Grid
501	502	$p \times 1$ or $1 \times p$
502	502	$p \times 1$ or $1 \times p$
501	1	$p \times 1$
502	1	$p \times 1$
1	502	$p \times 1$ or $1 \times p$
1	1	$p \times 1$

4. To determine the values of $\operatorname{LOCp}(n)$ used in the argument descriptions, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 for descriptor type-1 or "Determining the Number of Rows or Columns in Your Local Arrays" on page 30 for descriptor type-501 and type-502.
5. $\boldsymbol{d}, \boldsymbol{e}$, af and work must have no common elements; otherwise, results are unpredictable.
6. The global positive definite symmetric tridiagonal matrix \boldsymbol{A} must be stored in parallel-symmetric-tridiagonal storage mode and distributed over a one-dimensional process grid, using block-cyclic data distribution. See the section on block-cyclically distributing a tridiagonal matrix in "Matrices" on page 40.

For more information on using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
7. Matrix \boldsymbol{B} must be distributed over a one-dimensional process grid, using block-cyclic data distribution. For more information using block-cyclic data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26. Also, see the section on distributing the right-hand side matrix in "Matrices" on page 40.
8. If /work $=-1$ on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
9. Although global matrices \boldsymbol{A} and \boldsymbol{B} may be block-cyclically distributed on a $1 \times p$ or $p \times 1$ process grid, the values of $n, i a, i b, \mathrm{MB}_{-} \mathrm{A}$ (if (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$), NB_A (if (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$), must be chosen so that each process has at most one full or partial block of each of the global submatrices \boldsymbol{A} and \boldsymbol{B}.
10. For global tridiagonal matrix \boldsymbol{A}, use of the type-1 array descriptor is an extension to ScaLAPACK 1.5. If your application needs to run with both Parallel ESSL and ScaLAPACK 1.5, it is suggested that you use either a type-501 or a type-502 array descriptor for the matrix \boldsymbol{A}.

Error Conditions

Computational Errors: None

Note: If the factorization performed by PDPTTRF failed because of a nonpositive definite matrix \boldsymbol{A}, the results returned by this subroutine are unpredictable. For details, see the info output argument for PDPTTRF.

Resource Errors: Iwork = 0 and unable to allocate workspace
Input-Argument and Miscellaneous Errors

Stage 1

1. DTYPE_A is invalid.
2. DTYPE B is invalid.

Stage 2

1. CTXT_A is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4
Note: In the following error conditions:

- If $M _A=1$ and $D T Y P E _A=1$, a 1×1 process grid is treated as a $1 \times p$ process grid.
- If $N _A=1$ and $D T Y P E _A=1$, a 1×1 process grid is treated as a $p \times 1$ process grid.

1. The process grid is not $1 \times p$ or $p \times 1$.
2. CTXT_A \neq CTXT_B
3. $n<0$
4. $i a<1$
5. DTYPE $_A=1$ and $M _A \neq 1$ and $N _A \neq 1$

If (the process grid is $1 \times p$ and DTYPE_A $=1$) or DTYPE_A $=501$:
6. $\mathrm{N} _\mathrm{A}<0$ and ($n=0$); $\mathrm{N} _\mathrm{A}<1$ otherwise
7. $N B _A<1$
8. $n>($ NB_A $)(p)-m o d\left(i a-1, N B _A\right)$
9. $i a>N _A$ and $(n>0)$
10. $i a+n-1>\mathrm{N}$ A and $(n>0)$
11. CSRC _ $\mathrm{A}<0$ or CSRC_A $\geq p$
12. NB_A $\neq M B _B$
13. CSRC_A \neq RSRC_B

If the process grid is $1 \times p$ and DTYPE $A=1$:
14. $M _A \neq 1$
15. $M B _A<1$
16. $\operatorname{RSR} C _A \neq 0$

If (the process grid is $p \times 1$ and DTYPE_A $=1$) or DTYPE_A $=502$:
17. $M _A<0$ and ($n=0$); M_A < 1 otherwise
18. $M B _A<1$
19. $n>($ MB_A $)(p)-\bmod \left(i a-1, M B _A\right)$
20. $i a>M _A$ and $(n>0)$
21. $i a+n-1>M _A$ and $(n>0)$
22. RSRC_A <0 or RSRC_A $\geq p$
23. MB_A $\neq M B _B$
24. RSRC_A \neq RSRC_B

If the process grid is $p \times 1$ and DTYPE_A $=1$:
25. $\mathrm{N} _\mathrm{A} \neq 1$
26. $N B _A<1$
27. CSRC_A $\neq 0$

In all cases:
28. $i a \neq i b$
29. DTYPE_B $=1$ and the process grid is $1 \times p$ and $p>1$
30. nrhs < 0
31. $i b<1$
32. M _ $\mathrm{B}<0$ and ($n=0$); $\mathrm{M} _\mathrm{B}<1$ otherwise
33. $M B _B<1$
34. $i b>M _B$ and $(n>0)$
35. $i b+n-1>M _B$ and $(n>0)$
36. RSRC_B <0 or RSRC_B $\geq p$
37. LLD_B < max(1,LOCp(M_B))

If $D_{T Y P E} B=1$:
38. N_B < 0 and (nrhs = 0); N_B < 1 otherwise
39. N_B < nrhs
40. NB_B < 1
41. CSRC_B $\neq 0$

In all cases:
42. laf $<$ (minimum value) (For the minimum value, see the laf argument description.)
43. Iwork $\neq 0$, Iwork $\neq-1$, and Iwork $<$ (minimum value) (For the minimum value, see the /work argument description.)

Stage 5
Each of the following global input arguments are checked to determine whether its value is the same on all processes in the process grid:

1. n differs.
2. nrhs differs.
3. ia differs.
4. ib differs.
5. DTYPE_A differs.

If $D T Y P E _A=1$ on all processes:
6. M_A differs.
7. N_A differs.
8. MB_A differs.
9. NB_A differs.
10. RSRC_A differs.
11. CSRC_A differs.

If DTYPE_A = 501 on all processes:
12. N_A differs.
13. NB_A differs.
14. CSRC_A differs.

If DTYPE_A = 502 on all processes:
15. M_A differs.
16. MB_A differs.
17. RSRC_A differs.

In all cases:
18. DTYPE_B differs.

If DTYPE_B = 1 on all processes:
19. M_B differs.
20. N_B differs.
21. MB_B differs.
22. NB_B differs.
23. RSRC_B differs.
24. CSRC_B differs.

If DTYPE_B = 502 on all processes:
25. M_B differs.
26. MB_B differs.
27. RSRC_B differs.

Also:
28. lwork $=-1$ on a subset of processes.

PDPTTRS

Example: This example shows how to solve the system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$, where matrix \boldsymbol{A} is the same positive definite symmetric tridiagonal matrix factored in "Example" on page 503 for PDPTTRF.

Notes:

1. The vectors \boldsymbol{d} and \boldsymbol{e}, output from PDPTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine PDPTTRS.
2. The contents of the af vector, output from PDPTTRF, is not shown. This vector is passed, unchanged, to the solve subroutine PDPTTRS.
3. Because Iwork $=0$, this subroutine dynamically allocates the work area used by this subroutine.

Call Statements and Input

```
ORDER = 'R'
NPROW = 3
NPCOL = 1
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
```


	Desc_A
DTYPE_	502
CTXT_ $_{-}$	icontxt1
M_ $_{-}$	12
MB_ $_{-}$	4
RSRC_	0
Not used	-
Reserved	-
1 icontxt is the output of the BLACS_GRIDINIT call.	

	Desc_B
DTYPE_	502
CTXT_ $_{-}$	icontxt 1
M_ $^{\prime}$	12
MB_ 2	4
RSRC_	0
LLD_B	4
Reserved	-
1 icontxt is the output of the BLACS_GRIDINIT call.	

Global vector \boldsymbol{d} with block size of 4 :
B, D
0
1

2 | 0 |
| :---: |
| $\left[\begin{array}{c}.25 \\ .25 \\ .25 \\ 4.0 \\ ---- \\ .2 \\ .24 \\ .25 \\ 4.01 \\ ---- \\ 4.01 \\ .25 \\ .24 \\ .2\end{array}\right]$ |

Global vector \boldsymbol{e} with block size of 4 :

B, D
0
:---:
$\left[\begin{array}{c}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ --- \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ ---- \\ .49 \\ .48 \\ .4 \\ .\end{array}\right]$

The following is the 3×1 process grid:

\mathbf{B}, \mathbf{D}	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local array D with block size of 4 :

p,q	0
	. 25
	. 25
0	. 25
	4.0
	. 2
	. 24
1	. 25
	4.01
	4.01
	. 25
2	. 24
	. 2

Local array E with block size of 4:

p,q	0
	2.0
	2.0
0	2.0
	2.0
	2.0
	2.0
1	2.0
	2.0
	. 49
	. 48
2	. 4
	-

Global matrix \boldsymbol{B} with a block size of 4 :

p,q	0		
0	70.	8.0	6.0
	99.0	18.0	9.0
	90.0	27.0	9.0
	81.	36.0	9.0
1	---------------		
	63.0	54.0	9.0
	54.0	63.0	9.0
	45.0	72.0	9.0
2	----------------		
	27.0	90.0	9.0
	18.0	99.0	9.0
	9.	82.0	7.0

The following is the 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local matrix \boldsymbol{B} with block size of 4 :

p,q	0	
0	70.08 .0	6.0
	99.018 .0	9.0
	90.027 .0	9.0
	81.036 .0	9.0
1	72.045 .0	9.0
	63.054 .0	9.0
	54.063 .0	9.0
	45.072 .0	9.0
2	36.081 .0	9.0
	27.090 .0	9.0
	18.099 .0	9.0
	9.082 .0	7.0

Output:

Global matrix \boldsymbol{B} with block size of 4 :

The following is the 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local matrix \boldsymbol{B} with block size of 4 :

p,q	0		
0	12.0	1.0	1.0
	11.0	2.0	1.0
	10.0	3.0	1.0
	9.0	4.0	1.0
1	8.0	5.0	1.0
	7.0	6.0	1.0
	6.0	7.0	1.0
	5.0	8.0	1.0
2	4.0	9.0	1.0
	3.0	10.0	1.0
	2.0	11.0	1.0
	1.0	12.0	1.0

The value of info is 0 on all processes.

Fortran 90 Sparse Linear Algebraic Equation Subroutines and Their Utility Subroutines

This section contains the sparse linear algebraic equation subroutine descriptions and their sparse utility subroutines.

PADALL—Allocates Space for an Array Descriptor for a General Sparse Matrix

This sparse utility subroutine allocates space for an array descriptor, which is needed to establish a mapping between the global general sparse matrix \boldsymbol{A} and its corresponding distributed memory location. This subroutine also initializes the components of the array descriptor desc_a.

Syntax

Fortran	CALL PADALL (n, parts, desc_a, icontxt)

On Entry
n
is the order of the global general sparse matrix \boldsymbol{A} and the size of the index space.

Scope: global
Type: required
Specified as: a fullword integer, where: $n>0$. parts
is a user-supplied subroutine that specifies a mapping between a global index for an element in the global general sparse matrix \boldsymbol{A} and its corresponding storage location on one or more processes.

Sample parts subroutines for common types of data distributions are shown in "Sample PARTS Subroutine" on page 992.

For details about how you must define the PARTS subroutine, see
"Programming Considerations for the Parts Subroutine (Fortran 90 and Fortran 77)" on page 65.

Scope: global
Type: required
Specified as: parts must be declared as an external subroutine in your application program. It can be whatever name you choose.
desc_a
See On Return.
icontxt
is the BLACS context parameter.
Scope: global
Type: required
Specified as: a fullword integer that was returned in a prior call to BLACS_GRIDINIT or BLACS_GRIDMAP.

On Return
desc_a
is the local space allocated for the array descriptor for the global general sparse matrix \boldsymbol{A}. This subroutine also initializes the components of the array descriptor desc_a. The components of desc_a are updated with subsequent calls to PSPINS and finalized with a call to PSPASB.

Table 25 on page 62 describes some of the elements of MATRIX_DATA, which is one component of the array descriptor, that you may want to reference. However, your application programs should not modify the components of the array descriptor directly. These components should only be updated with calls to PSPINS and PSPASB.
Type: required
Returned as: the derived data type DESC_TYPE.

Notes and Coding Rules

1. Before you call this subroutine, you must create a $n p \times 1$ process grid, where $n p$ is the number of processes.
2. PADALL allocates desc_a as necessary. Prior to further calls to PADALL with the same desc_a, you must call PADFREE; otherwise, there will be a memory leak.

Error Conditions

Computational Errors: None

Resource Errors

1. Unable to allocate work space.
2. Unable to allocate component(s) of desc_a

Input-Argument and Miscellaneous Errors

Stage 1

1. The BLACS context is invalid.

Stage 2

1. This subroutine was called from outside the process grid.

Stage 3

1. The process grid is not $n p \times 1$.
2. $n \leq 0$

Stage 4

1. Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
n differs.

Stage 5

1. $p v$ or $n v$, output from the user-supplied parts subroutine, was not valid. For valid values, see the appropriate argument description in "Programming Considerations for the Parts Subroutine (Fortran 90 and Fortran 77)" on page 65.

PSPALL—Allocates Space for a General Sparse Matrix

This sparse utility subroutine allocates space for the local data of a general sparse matrix \boldsymbol{A}. It also initializes some values, which are only for internal use, of the general sparse matrix \boldsymbol{A}.

Syntax

Fortran	CALL PSPALL (a, desc_a) CALL PSPALL ($(a$, desc_a, nnz)

On Entry

a
See On Return.
desc_a
is the array descriptor for a global general sparse matrix \boldsymbol{A} that is produced on a preceding call to PADALL.
Type: required
Specified as: the derived data type DESC_TYPE.
nnz
is an estimate of the number of non-zero elements in the local part of the global general sparse matrix \boldsymbol{A}. If the actual number of non-zero elements is greater than nnz, Parallel ESSL attempts to allocate additional space.
If $n n z$ is not present, Parallel ESSL estimates how many non-zero elements, $n n z$, are present based on the order of the global general sparse matrix \boldsymbol{A}.

Scope: local
Type: optional
Specified as: a fullword integer, where $n n z>0$.
On Return
a
is the local space, which contains some internal values that are initialized by Parallel ESSL, allocated for the global general sparse matrix \boldsymbol{A}.

Scope: local
Type: required
Returned as: the derived data type D_SPMAT.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PADALL.
2. For details about some of the elements stored in DESC_A\%MATRIX_DATA, see "Derived Data Type DESC_TYPE" on page 61.
3. PSPALL allocates matrix \boldsymbol{A} as necessary. Prior to further calls to PSPALL with the same matrix \boldsymbol{A}, you must call PSPFREE; otherwise, there will be a memory leak.

Error Conditions

Computational Errors: None

Resource Errors

1. Unable to allocate component(s) of \boldsymbol{A}.

Input-Argument and Miscellaneous Errors
Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.
2. desc_a component(s) are not valid.
3. $n n z \leq 0$

PGEALL

PGEALL—Allocates Space for a Dense Vector

This sparse utility subroutine allocates space for a dense vector.

Syntax

Fortran	CALL PGEALL $(x$, desc_a)

On Entry
x
See On Return.
desc_a
is the array descriptor that is produced on a preceding call to PADALL.
Type: required
Specified as: the derived data type DESC_TYPE.
On Return
x
is a pointer to the local space of the dense vector.
Scope: local
Type: required
Returned as: a pointer to an assumed-shape array with shape (:), containing long-precision real numbers.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PADALL.
2. You do not need a separate array descriptor for a dense vector because it must conform to the size of matrix \boldsymbol{A}. For details about some of the elements stored in DESC_A\%MATRIX_DATA, see "Derived Data Type DESC_TYPE" on page 61.
3. This subroutine must be called for:

- Vector \boldsymbol{b} containing the right-hand side.
- Vector \boldsymbol{x} containing the initial guess to the solution.

4. PGEALL allocates the dense vector as necessary. Prior to further calls to PGEALL with the same dense vector, you must call PGEFREE; otherwise, there will be a memory leak.

Error Conditions

Computational Errors: None
Resource Errors

1. Unable to allocate the dense vector.

Input-Argument and Miscellaneous Errors

Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.
2. desc_a component(s) are not valid.

PSPINS—Inserts Local Data into a General Sparse Matrix

This sparse utility subroutine is used by each process to insert all blocks of data it owns into its local part of the general sparse matrix \boldsymbol{A}.

Syntax

Fortran	CALL PSPINS (a, ia, ja, blck, desc_a)

On Entry
a
is the local part of the global general sparse matrix \boldsymbol{A} that is produced on a preceding call to PSPALL or previous call(s) to this subroutine.

Scope: local
Type: required
Specified as: the derived data type D_SPMAT.
ia
is the first global row index of the general sparse matrix \boldsymbol{A} that receives data from the submatrix BLCK.

Scope: local
Type: required
Specified as: a fullword integer; $1 \leq i a \leq$ DESC_A\%MATRIX_DATA(M).
ja
is the first global column index of the general sparse matrix \boldsymbol{A} that receives data from the submatrix BLCK.

Scope: local
Type: required
Specified as: a fullword integer, where: $j a=1$.
blck
is the local part of the submatrix BLCK to be inserted into the global general sparse matrix \boldsymbol{A}. Each call to this subroutine inserts one contiguous block of rows into the local part of the sparse matrix corresponding to the global submatrix $\boldsymbol{A}_{\text {ia: }}$ ia $+\mathrm{BLCK} \% \mathrm{M}-1$, ja: a a+BLCK\% $\mathrm{N}-1$. This subroutine only can insert blocks of data it owns into its local part of the general sparse matrix \boldsymbol{A}. BLCK contains the following components:

- BLCK\%M is the number of local rows in the submatrix BLCK. Scope: local.

Specified as: a fullword integer; $1 \leq \operatorname{BLCK} \% \mathrm{M} \leq \mathrm{DESC}$ _A\%MATRIX_DATA(N_ROW).

- BLCK\%N is an upper bound on the number of local columns in the submatrix BLCK. Scope: local.
Specified as: a fullword integer; $1 \leq B L C K \% N \leq n$, where n is the order of the global general sparse matrix \boldsymbol{A}.
- BLCK\%FIDA is the storage mode for the submatrix BLCK, where:

If BLCK\%FIDA='CSR', the submatrix BLCK is stored in the storage-by-rows storage mode. Scope: global.
Specified as: a character variable of length 5 ; BLCK\%FIDA='CSR'.
If BLCK\%FIDA='CSR', then you must specify the BLCK\%AS, BLCK\%IA1, and BLCK\%IA2 components, as follows:

- BLCK\%AS is a pointer to the submatrix BLCK that is stored by rows. See "Notes". Scope: local.

Specified as: a pointer to an assumed-shape array with shape (:), containing long-precision real numbers.

- BLCK\%IA1 is a pointer to the column numbers of each non-zero element in the submatrix BLCK. See "Notes". Scope: local.

Specified as: a pointer to an assumed-shape array with shape (:), containing fullword integers; $1 \leq$ BLCK\%IA1(i) $\leq \mathrm{BLCK} \%$, where:
$i=1, n z$ and $n z$ is the actual number of non-zero elements in the submatrix BLCK.

- BLCK\%IA2 is a pointer to the starting positions of each row of the submatrix BLCK in BLCK\%AS and one position past the end of BLCK\%AS. See "Notes". Scope: local.

Specified as: a pointer to an assumed-shape array with shape (:), containing fullword integers, where:

BLCK\%IA2(1) = 1
BLCK\%IA2(BLCK\%M+1) = $1+n z$ and $n z$ is the actual number of non-zero elements in the submatrix BLCK.

Specified as: the derived data type D_SPMAT.
desc_a
is the descriptor vector for a global general sparse matrix \boldsymbol{A} that is produced on a preceding call to PADALL or previous call(s) to this subroutine.

Type: required

Specified as: the derived data type DESC_TYPE.

On Return

a
is the updated local part of the global general sparse matrix \boldsymbol{A}, updated with data from the submatrix BLCK.

Scope: local
Type: required
Returned as: the derived data type D_SPMAT.
desc_a
is the updated array descriptor for the global general sparse matrix \boldsymbol{A}.
Type: required
Returned as: the derived data type DESC_TYPE.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PADALL and PSPALL.
2. This subroutine accepts mixed case letters for the BLCK\%FIDA component.
3. Arguments BLCK and A must not have common elements; otherwise, results are unpredictable.
4. For details about some of the elements stored in DESC_A\%MATRIX_DATA, see "Derived Data Type DESC_TYPE" on page 61.
5. The submatrix BLCK must be stored by rows; that is BLCK\%FIDA = 'CSR'. For information about the storage-by-rows storage mode, see the ESSL Version 3 Guide and Reference.
6. Once you declare BLCK of derived data type D_SPMAT, you must allocate the components of BLCK that point to an array. The following example shows how to code the allocate statement if each row of the submatrix BLCK contains no more than 20 elements:
```
TYPE(D_SPMAT) :: BLCK !Declare the BLCK variable
ALLOCATE(BLCK%AS(20),BLCK%IA1(20),BLCK%IA2(2)) !Allocate array pointers
```

When you are finished calling PSPINS, you should deallocate BLCK\%AS, BLCK\%IA1, and BLCK\%IA2.
7. Each process has to call PSPINS as many times as necessary to insert the local rows it owns. It is also possible to call PSPINS multiple times to insert different or duplicate coefficients of the same local row it owns. For information on how duplicate coefficients are handled, see the dupflag argument description in PSPASB. For an example of inserting coefficients of the same local row, see "Example" on page 535.

Error Conditions:

Computational Errors: None

Resource Errors

1. Unable to allocate work space.
2. Unable to allocate component(s) of \boldsymbol{A}.

Input-Argument and Miscellaneous Errors
Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.
2. $i a<1$ or $i a>$ DESC_A\%MATRIX_DATA(M)
3. $j a \neq 1$
4. desc_a component(s) are not valid.
5. The sparse matrix \boldsymbol{A} is not valid.
6. BLCK\%M < 1 or BLCK\%M > DESC_A\%MATRIX_DATA(N_ROW)
7. $\mathrm{BLCK} \% \mathrm{~N}$ < 1 or BLCK\%N > n
8. BLCK\%FIDA \neq 'CSR'
9. One or more rows to be inserted into submatrix \boldsymbol{A} does not belong to the process.

Example: This piece of an example shows how to insert coefficients into the same GLOB_ROW row by calling PSPINS multiple times. It would be useful in finite element applications, where PSPINS inserts one element at a time into the global matrix, but more than one element may contribute to the same matrix row. In this case, PSPINS is called with the same value of ia by all the elements contributing to that row.

For a complete example, see "Example—Using the Fortran 90 Sparse Subroutines" on page 557.

```
        •
DO GLOB_ROW = 1,N
ROW_MAT%DESCRA(1) = 'G'
ROW_MAT%FIDA = 'CSR'
ROW_MAT%IA2(1) = 1
ROW_MAT%IA2(2) = 1
IA = GLOB_ROW
! (x-1,y,z)
ROW_MAT%AS(1) = COEFF(X-1,Y,Z,X,Y,Z)
ROW_MAT%IA1(1) = IDX(X-1,Y,Z)
CALL PSPINS(A,IA,1,ROW_MAT,DESC_A)
! (x,y-1,z)
ROW_MAT%AS(1) = COEFF(X,Y-1,Z,X,Y,Z)
ROW_MAT%IA1(1) = IDX(X,Y-1,Z)
CALL̄ PSPINS(A,IA,1,ROW_MAT,DESC_A)
! (x,y,z-1)
ROW_MAT%AS(1) = COEFF(X,Y,Z-1,X,Y,Z)
ROW_MAT%IA1(1) = IDX(X,Y,Z-1)
CALL PSPINS(A,IA,1,ROW_MAT,DESC_A)
! (x,y,z)
ROW_MAT%AS(1) = COEFF(X,Y,Z,X,Y,Z)
ROW_MAT%IA1(1) = IDX(X,Y,Z)
CALL PSPINS(A,IA,1,ROW_MAT,DESC_A)
! (x,y,z+1)
ROW_MAT%AS(1) = COEFF(X,Y,Z+1,X,Y,Z)
ROW_MAT%IA1(1) = IDX(X,Y,Z+1)
CALL PSPINS(A,IA,1,ROW_MAT,DESC_A)
! (x,y+1,z)
```

```
    ROW_MAT%AS(1) = COEFF(X,Y+1,Z,X,Y,Z)
    ROW_MAT%IA1(1) = IDX(X,Y+1,Z)
    CALL̄ PSPINS(A,IA,1,ROW_MAT,DESC_A)
    ! (x+1,y,z)
    ROW MAT%AS(1) = COEFF(X+1,Y,Z,X,Y,Z)
    ROW_MAT%IA1(1) = IDX(X+1,Y,Z)
    CALL PSPINS(A,IA,1,ROW_MAT,DESC_A)
END DO
```


PGEINS—Inserts Local Data into a Dense Vector

This sparse utility subroutine is used by each process to insert all blocks of data it owns into its local part of the dense vector.

Syntax

Fortran \quad CALL PGEINS (x, blck, desc_a, ix)

On Entry

x
is a pointer to the local space for the dense vector that is produced by a preceding call to PGEALL or previous call(s) to this subroutine.

Scope: local
Type: required
Specified as: a pointer to an assumed-shape array with shape (:), containing long-precision real numbers.
blck
is the local part of the submatrix BLCK to be inserted into the dense vector. Each call to this subroutine inserts one contiguous block of data into the local part of the dense vector corresponding to the global submatrix $\boldsymbol{X}_{\boldsymbol{i x}: \mathbf{i x}+\text { size }(b l c k, 1)-1}$. This subroutine only inserts a block of data it owns into its local part of the dense vector.

Scope: local
Type: required
Specified as: an assumed-shape array with shape (:), containing long-precision real numbers, where: $1 \leq$ size(blck,1) \leq DESC_A\%MATRIX_DATA(N_ROW)
desc_a
is the array descriptor that is produced by a preceding call to PADALL or PSPINS.
Type: required
Specified as: the derived data type DESC_TYPE.
ix
is the first global row index of the dense vector that receives data from the submatrix BLCK.

Scope: local
Type: optional
Specified as: a fullword integer; $1 \leq i x \leq$ DESC_A\%MATRIX_DATA(M). The default value is 1 .

On Return
x
is a pointer to the local space for the dense vector, updated with local data from the submatrix BLCK.

Scope: local
Type: required

Returned as: a pointer to an assumed-sized array with shape (:), containing long-precision real numbers.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PGEALL and PADALL.
2. You do not need a separate array descriptor for a dense vector because it must conform to the size of matrix \boldsymbol{A}. For details about some of the elements stored in DESC_A\%MATRIX_DATA, see "Derived Data Type DESC_TYPE" on page 61.
3. This subroutine must be called for:

- Vector \boldsymbol{b} containing the right-hand side.
- Vector \boldsymbol{x} containing the initial guess to the solution.

4. Each process has to call PGEINS as many times as necessary to insert the local elements it owns. It is also possible to call PGEINS multiple times to insert different coefficients of the same local row it owns. Duplicate coefficients are overwritten.

Error Conditions

Computational Errors: None
Resource Errors: None.
Input-Argument and Miscellaneous Errors
Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. desc_a component(s) are not valid.
2. The process grid is not $n p \times 1$.
3. $i x<1$ or $i x>$ DESC_A\%MATRIX_DATA(M)
4. $\operatorname{size}(x, 1)<\max (1$, DESC_A\%MATRIX_DATA(N_ROW))
5. size $($ blck, 1$)$ < 1 or size(blck, 1) > DESC_A\%MATRIX_DATA(N_ROW)

Stage 5

1. One or more elements to be inserted into the dense vector does not belong to the process.

PSPASB—Assembles a General Sparse Matrix

This sparse utility subroutine uses the output from PSPINS to assemble the global general sparse matrix \boldsymbol{A} and its array descriptor desc_a.

Syntax

Fortran	CALL PSPASB (a, desc_a) CALL PSPASB (a, desc_a, mtype, stor, dupflag, info)

On Entry

a
is the local part of the global general sparse matrix \boldsymbol{A} that is produced by previous call(s) to PSPINS.
Scope: local
Type: required
Specified as: the derived data type D_SPMAT.
desc_a
is the array descriptor for the global general sparse matrix \boldsymbol{A} that is produced by previous call(s) to PSPINS.
Type: required
Specified as: the derived data type DESC_TYPE.
mtype
indicates the form of the global sparse matrix \boldsymbol{A} used, where:
If mtype $=$ 'GEN', \boldsymbol{A} is a general sparse matrix.
Scope: global
Type: optional
Specified as: a character variable of length 5; mtype = 'GEN'. The default value is 'GEN'.
indicates the storage mode that the global general sparse matrix \boldsymbol{A} is returned in, where:

If stor = 'DEF', this subroutine chooses an appropriate storage mode, which is an internal format accepted by the preconditioner and solver subroutines, for storing the global general sparse matrix \boldsymbol{A} on output.
If stor = 'CSR', the global general sparse matrix \boldsymbol{A} is stored in the storage-by-rows storage mode on output.
Scope: global
Type: optional
Specified as: a character variable of length 5 ; stor $=$ 'DEF' or 'CSR'. The default value is 'DEF'.
dupflag
is a flag indicating how to use coefficients that are specified more than once on the same process; that is, duplicate coefficients within the same local part of the matrix \boldsymbol{A} :

If dupflag $=0$, this subroutine uses the first of the duplicate coefficients.

If dupflag $=1$, this subroutine adds all the duplicate coefficients with the same indices.

If dupflag $=2$, this subroutine raises an error condition indicating that there are unexpected duplicate coefficients.
Scope: global
Type: optional
Specified as: a fullword integer; dupflag $=0,1$, or 2 . The default value is 0 .
info
See On Return.

On Return

a
is the updated local part of the global general sparse matrix \boldsymbol{A}, where:
If stor = 'DEF', this subroutine chooses an appropriate storage mode, which is an internal format accepted by the preconditioner and solver subroutines, for storing the global general sparse matrix \boldsymbol{A} on output.
If stor = 'CSR', the global general sparse matrix \boldsymbol{A} is stored in the storage-by-rows storage mode on output.

Scope: local
Type: required
Returned as: the derived data type D_SPMAT.
desc_a
is the final updated array descriptor for the global general sparse matrix \boldsymbol{A}.
Type: required
Returned as: the derived data type DESC_TYPE.
info
has the following meaning, when info is present:

If info $=0$, then no input-argument errors or computational errors occurred.
This indicates a normal exit.
Note: Because Parallel ESSL terminates the application if input-argument errors occur, the setting of info is irrelevant for these errors.
If info >0, then one or more of the following computational errors occurred and the appropriate error messages were issued, indicating an error exit, where:

- If info $=1$, the sparse matrix \boldsymbol{A} contains duplicate coefficients.
- If info $=2$, the sparse matrix \boldsymbol{A} contains empty row(s).

Scope: global

Type: optional
Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PSPINS as many times as needed; that is, you must have completed building the matrix with call(s) to PSPINS before you place a call to this subroutine.
2. This subroutine accepts mixed case letters for the mtype and stor arguments.
3. For details about some of the elements stored in DESC_A\%MATRIX_DATA, see "Derived Data Type DESC_TYPE" on page 61.

Error Conditions

Computational Errors: The sparse matrix \boldsymbol{A} contains duplicate coefficients or empty row(s). For details, see the description of the info argument.

Resource Errors

1. Unable to allocate work space.
2. Unable to allocate component(s) of desc_a.
3. Unable to allocate component(s) of \boldsymbol{A}.

Input-Argument and Miscellaneous Errors

Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. desc_a component(s) are not valid.
2. The process grid is not $n p \times 1$.
3. The sparse matrix \boldsymbol{A} is not valid.
4. mtype \neq 'GEN'
5. stor \neq 'DEF' or 'CSR'
6. dupflag $\neq 0,1$, or 2
7. Some local rows in the sparse matrix \boldsymbol{A} are missing.

Stage 5

1. Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
mtype differs.
stor differs.
dupflag differs.

PGEASB—Assembles a Dense Vector

This sparse utility subroutine assembles a dense vector.

Syntax

Fortran	CALL PGEASB $(x$, desc_a)

On Entry
x
is a pointer to the local part of the dense vector that is produced by previous call(s) to PGEINS.

Scope: local
Type: required
Specified as: a pointer to an assumed-shape array with shape (:), containing long-precision real numbers.
desc_a
is the array descriptor, which was finalized in a preceding call to PSPASB.
Type: required
Specified as: the derived data type DESC_TYPE.
On Return
x
is a pointer to the local part of the global dense vector.
Scope: local
Type: required
Returned as: a pointer to an assumed-sized array with shape (:), containing long-precision real numbers.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PGEINS as many times as needed; that is, you must have completed building the dense vectors with call(s) to PGEINS before you place a call to this subroutine.

Before you call this subroutine, you must have called PSPASB.
2. You do not need a separate array descriptor for a dense vector because it must conform to the size of matrix \boldsymbol{A}. For details about some of the elements stored in DESC_A\%MATRIX_DATA, see "Derived Data Type DESC_TYPE" on page 61.
3. This subroutine must be called for:

- Vector \boldsymbol{b} containing the right-hand side.
- Vector \boldsymbol{x} containing the initial guess to the solution.

Error Conditions

Computational Errors: None
Resource Errors: None.

Input-Argument and Miscellaneous Errors

Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.
2. desc_a component(s) are not valid.
3. $\operatorname{size}(x, 1)$ < DESC_A\%MATRIX_DATA(N_ROW)

PSPGPR—Preconditioner for a General Sparse Matrix

This subroutine computes a preconditioner for a global general sparse matrix \boldsymbol{A} that should be passed unchanged to the PSPGIS subroutine. The preconditioners include diagonal scaling or an incomplete LU factorization.

Syntax

Fortran	CALL PSPGPR (iprec,, a, prcs, desc_a) CALL PSPGPR (iprec, a, prcs, desc_a, info)

On Entry
iprec
is a flag that determines the type of preconditioning, where:
If iprec $=0$, which is referred to as none, indicates the local part of the submatrix \boldsymbol{A} is not preconditioned. PSPGIS will not be effective in this case, unless the coefficient matrix is well conditioned; if your input matrix is not well conditioned, you should consider using iprec $=1$ or 2 .
If iprec $=1$, which is referred to as diagsc, indicates the local part of the submatrix \boldsymbol{A} is preconditioned by a local diagonal submatrix.

If iprec $=2$, which is referred to as ilu, indicates the local part of the submatrix \boldsymbol{A} is preconditioned by a local incomplete LU factorization.

It is suggested that you use a preconditioner. For an explanation, see "Notes and Coding Rules" on page 545.

Scope: global
Type: required
Specified as: a fullword integer, where: iprec $=0,1$, or 2.
a
is the local part of the global general sparse matrix \boldsymbol{A}, finalized on a preceding call to PSPASB.

Scope: local
Type: required
Specified as: the derived data type D_SPMAT.
prcs
See On Return.
desc_a
is the array descriptor for the global general sparse matrix \boldsymbol{A} that was finalized in a call to PSPASB.

Type: required
Specified as: the derived data type DESC_TYPE.
info
See On Return.
On Return
prcs
is the preconditioner data structure prcs that must be passed unchanged to PSPGIS.

Scope: local

Type: required
Returned as: the derived data type D_PRECN. info
has the following meaning, when info is present:

If info $=0$, then no input-argument errors or computational errors occurred. This indicates a normal exit.

Note: Because Parallel ESSL terminates the application if input-argument errors occur, the setting of info is irrelevant for these errors.

If info > 0 , the value stored in info indicates the row index in the global general sparse matrix \boldsymbol{A} where the preconditioner failed.

Scope: global
Type: optional
Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PSPASB and PGEASB.
2. PSPGPR allocates prcs, as necessary. Prior to further calls to PSPGPR with the same prcs, you must call PSPFREE; otherwise, there will be a memory leak.
3. For details about some of the elements stored in DESC_A\%MATRIX_DATA, see "Derived Data Type DESC_TYPE" on page 61.
4. Parallel ESSL builds the preconditioner, prcs, which is specified as derived data type D_PRECN, and its components. All the components of derived data type D_PRECN are used for internal use only.
5. The convergence rate of an iterative method as applied to a given system of linear equations depends on the spectral properties of the coefficient matrix of the linear system; therefore it is often convenient to apply a linear transformation to the system such that the solution of the transformed system is the same (in exact arithmetic) as that of the original, but the spectral properties and the convergence behavior are more favorable. Such a transformation is called preconditioning. If a matrix \boldsymbol{M} approximates \boldsymbol{A}, then:
$\left(\boldsymbol{M}^{-1}\right) \boldsymbol{A x}=\left(\boldsymbol{M}^{-1}\right) \boldsymbol{b}$
is a preconditioned system and \boldsymbol{M} is called a preconditioner. In practice, the new coefficient matrix $\left(\boldsymbol{M}^{-1}\right) \boldsymbol{A}$ is almost never formed explicitly, but rather its action is computed during the application of the iterative method. The effectiveness of the preconditioning operation depends on a trade-off between how well \boldsymbol{M} approximates \boldsymbol{A} and how costly it is to compute and invert it; no single preconditioner will give best overall performance under all situations. Note finally that it is quite rare for a linear system to behave well enough so as not to require preconditioning; indeed most linear systems originating from the discretization of difficult physical problems require preconditioning to have any convergence at all.
See references [9] and [37].

Error Conditions

Computational Errors

1. The preconditioner for the sparse matrix \boldsymbol{A} is unstable. For details, see the info output argument for this subroutine.

Resource Errors

1. Unable to allocate work space.
2. Unable to allocate component(s) of prcs.

Input-Argument and Miscellaneous Errors

Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.
2. desc_a component(s) are not valid.
3. iprec $\neq 0$, 1 , or 2
4. The storage format for \boldsymbol{A} is not supported.

Stage 5

1. Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
iprec differs.

PSPGIS—Iterative Linear System Solver for a General Sparse Matrix

This subroutine solves a general sparse linear system of equations, using an iterative algorithm, with or without preconditioning. The methods include the more smoothly converging variant of the CGS method (Bi-CGSTAB), conjugate gradient squared (CGS), or transpose-free quasi-minimal residual method (TFQMR).

See references [7], [9], [12], and [35].

Syntax

Fortran	CALL PSPGIS $(a, b, x$, prcs, desc_a)
	CALL PSPGIS $(a, b, x$, prcs, desc_a, iparm, rparm, info $)$

On Entry

a
is the local part of the coefficient matrix \boldsymbol{A}, produced on a previous call to PSPASB.

Scope: local
Type: required
Specified as: the derived data type D_SPMAT.
b
is a pointer to the local part of the global vector \boldsymbol{b}, containing the right-hand side of the matrix problem and produced on a previous call to PGEASB.
Scope: local
Type: required
Specified as: a pointer to an assumed-shape array with shape (:), containing long-precision real numbers.
x
is a pointer to the local part of the global vector \boldsymbol{x}, containing the initial guess to the solution of the linear system and produced on a previous call to PGEASB.

Scope: local
Type: required
Specified as: a pointer to an assumed-shape array with shape (:), containing long-precision real numbers.
prcs
is the preconditioner data structure prcs, produced on a previous call to PSPGPR.

Scope: local

Type: required
Specified as: the derived data type D_PRECN.
desc_a
is the array descriptor, produced on a previous call to PSPASB, for the global general sparse matrix \boldsymbol{A}.

Type: required

Specified as: the derived data type DESC_TYPE.
iparm
is an array of parameters, $\operatorname{IPARM}(i)$, where:

- IPARM(1) is the flag, referred to as methd, used to select the iterative procedure used, where:

If methd $=1$, the more smoothly converging variant of the CGS method, referred to as Bi-CGSTAB, is used.

If methd $=2$, the conjugate gradient squared method, referred to as CGS, is used.

If methd $=3$, the transpose-free quasi-minimal residual method, referred to as TFQMR, is used.

- IPARM(2) is the flag, istopc, used to select the stopping criterion used in the computation, where the following items are used in the definitions of the stopping criteria below:
$-\varepsilon$ is the desired relative accuracy and is stored in eps
$-x_{j}$ is the solution found at the j-th iteration.
- r_{j} and r_{0} are the preconditioned residuals obtained at iterations j and 0 , respectively. (The residual at iteration j is defined as $\boldsymbol{b}-\boldsymbol{A} x_{j}$)

If istopc $=1$, the iterative method is stopped when:

$$
\left\|r_{j}\right\|_{2} /\left\|x_{j}\right\|_{2}<\varepsilon
$$

If istopc $=2$, the iterative method is stopped when:

$$
\left\|r_{j}\right\|_{2} /\left\|r_{0}\right\|_{2}<\varepsilon
$$

If istopc $=3$, the iterative method is stopped when:

$$
\left\|x_{j}-x_{j-1}\right\|_{2} /\left\|x_{j}\right\|_{2}<\varepsilon
$$

Note: Stopping criterion 3 performs poorly with the TFQMR method; therefore, if you specify TFQMR (methd $=3$), you should not specify stopping criterion 3.

- IPARM (3) is the maximum number of iterations itmax allowed.
- IPARM (4), referred to as itrace, has the following meaning:

If itrace $=0$, then itrace is ignored.
If itrace >0, an informational message about the convergence, which is based on the stopping criterion described in istopc, is issued at every itrace-th iteration and upon exit.

- IPARM(5), see On Return.
- IPARM(6) through IPARM(20) are reserved.

Scope: global
Type: optional

Default:
methd $=1$
istopc $=1$
itmax $=500$
itrace $=0$

Specified as: an array of length 20, containing fullword integers, where:
methd $=1,2$, or 3
istopc $=1,2$, or 3
itmax ≥ 0
itrace ≥ 0
IPARM(6) through IPARM(20) should be set to zero.
rparm
is an array of parameters, $\operatorname{RPARM}(i)$, where:

- RPARM(1), referred to as eps, is the relative accuracy ε used in the stopping criterion.
- RPARM(2), see On Return.
- RPARM(3) through RPARM(20) are reserved.

Scope: global

Type: optional
Default: eps = 10-8
Specified as: an array of length 20, containing long-precision real numbers, where:
$e p s \geq 0$.
RPARM(3) through RPARM(20) should be set to zero.
info
See On Return.

On Return

x
is a pointer to the local part of the solution vector \boldsymbol{x}
Scope: local
Type: required
Returned as: a pointer to an assumed-shape array of shape (:), containing long-precision real numbers.
iparm
has the following meaning, when iparm is present:
$\operatorname{IPARM}(5)$ is the number of iterations, iter, performed by this subroutine.
Scope: global

Type: optional

Returned as: an array of length 20 , containing fullword integers, where iter ≥ 0. rparm
has the following meaning, when rparm is present:
RPARM(2) contains the estimate of the error, err, of the solution, according to the
stopping criterion, istopc, in use. For details, see the istopc argument description.

Scope: global

Type: optional
Returned as: an array of length 20, containing long-precision real numbers, where err ≥ 0.
info
has the following meaning, when info is present:

If info $=0$, then no input-argument errors or computational errors occurred. This indicates a normal exit.

Note: Because Parallel ESSL terminates the application if input-argument errors occur, the setting of info is irrelevant for these errors.

If info >0, then this subroutine exceeded itmax iterations without converging. You may want to try the following to get your matrix to converge:

- You can increase the number of iterations and call this subroutine again without making any other changes to your program.
- You can change the requested precision and/or the stopping criterion; your original precision requirement may be too stringent under a given stopping criterion.
- You can use a preconditioner if you were not already doing so, or to change the one you were using. Note also that the efficiency of the preconditioner may depend on the data distribution strategy adopted. See "Notes and Coding Rules" on page 545.

Scope: global
Type: optional
Returned as: a fullword integer; info ≥ 0.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PSPGPR.
2. For details about some of the elements stored in DESC_A\%MATRIX_DATA, see "Derived Data Type DESC_TYPE" on page 61.
3. Parallel ESSL builds the preconditioner, prcs, which is specified as derived data type D_PRECN, and its components. All the components of derived data type D_PRECN are used for internal use only.

Error Conditions

Computational Errors: This subroutine exceeded itmax iterations without converging. Vector \boldsymbol{x} contains the approximate solution computed at the last iteration.

Note: If the preconditioner computed by PSPGPR failed because the sparse matrix \boldsymbol{A} is unstable, the results returned by this subroutine are unpredictable. For details, see the info output argument for PSPGPR.

You may want to try the following to get your matrix to converge:

- You can increase the number of iterations and call this subroutine again without making any other changes to your program.
- You can change the requested precision and/or the stopping criterion; your original precision requirement may be too stringent under a given stopping criterion.
- You can use a preconditioner if you were not already doing so, or to change the one you were using. Note also that the efficiency of the preconditioner may depend on the data distribution strategy adopted. See "Notes and Coding Rules" on page 545.

Resource Errors

1. Unable to allocate work space.

Input-Argument and Miscellaneous Errors

Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.
2. desc_a component(s) are not valid.
3. The sparse matrix \boldsymbol{A} is not valid.
4. size(iparm) < 20
5. size(rparm) < 20
6. eps < 0.0
7. methd $\neq 1,2$, or 3
8. iprec $\neq 0,1$, or 2
9. istopc $\neq 1,2$, or 3
10. itmax <0
11. itrace < 0
12. The storage format for the sparse matrix \boldsymbol{A} is not supported.

Stage 5

1. $\operatorname{size}(x)$ < DESC_A\%MATRIX_DATA(N_ROW)
2. $\operatorname{size}(b)$ < DESC_A\%MATRIX_DATA(N_ROW)
3. The preconditioner data structure prcs is not valid.

Stage 6

1. Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
eps differs.
methd differs.
istopc differs.
itmax differs.

PSPGIS

itrace differs.
Component(s) of prcs differ.

PGEFREE—Deallocates Space for a Dense Vector

This sparse utility subroutine deallocates space that is used for a dense vector.
Syntax

Fortran	CALL PGEFREE $(x$, desc_a)

On Entry
x
is a pointer to the dense vector \boldsymbol{x}.
Scope: local
Type: required
Specified as: a pointer to an assumed-shape array with shape (:), containing long-precision real numbers.
desc_a is the array descriptor for the sparse matrix \boldsymbol{A}.
Type: required
Specified as: the derived data type DESC_TYPE.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PGEALL.
2. You must deallocate $\boldsymbol{b}, \boldsymbol{x}$, sparse matrix \boldsymbol{A}, and preconditioner data structure pros before you deallocate the array descriptor desc_a.

Error Conditions

Computational Errors: None
Resource Errors: None.
Input-Argument and Miscellaneous Errors
Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.
2. The pointer x is not associated and therefore cannot be deallocated.

PSPFREE—Deallocates Space for a General Sparse Matrix

This sparse utility subroutine deallocates space that is used for a global general sparse matrix \boldsymbol{A} or a preconditioner data structure prcs.

Syntax

Fortran	CALL PSPFREE (a, desc_a) CALL PSPFREE (prcs, desc_a)

On Entry

a
is the general sparse matrix \boldsymbol{A}.
Scope: local
Type: required
Specified as: the derived data type D_SPMAT.
prcs
is the preconditioner data structure prcs.
Scope: local
Type: required
Specified as: the derived data type D_PRECN.
desc_a
is the array descriptor for the sparse matrix \boldsymbol{A}.
Type: required
Specified as: the derived data type DESC_TYPE.

Notes and Coding Rules

1. Before you call this subroutine to deallocate the sparse matrix \boldsymbol{A}, you must have called PSPALL.

Before you call this subroutine to deallocate the preconditioner data structure prcs, you must have called PSPGPR.
2. You must deallocate $\boldsymbol{b}, \boldsymbol{x}$, sparse matrix \boldsymbol{A}, and preconditioner data structure prcs before you deallocate the array descriptor desc_a.
3. PSPGPR allocates components of prcs as necessary. Prior to further calls to PSPGPR with the same prcs you must call PSPFREE; otherwise, there will be a memory leak.
4. PSPALL allocates matrix \boldsymbol{A} as necessary. Prior to further calls to PSPALL with the same matrix \boldsymbol{A}, you must call PSPFREE; otherwise, there will be a memory leak.

Error Conditions

Computational Errors: None
Resource Errors: None.
Input-Argument and Miscellaneous Errors

Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.
2. The preconditioner data structure prcs is not valid.
3. The pointer components of \boldsymbol{A} or prcs are not associated and therefore cannot be deallocated.

PADFREE—Deallocates Space for an Array Descriptor for a General Sparse Matrix

This sparse utility subroutine deallocates space that is used for the array descriptor for a global general sparse matrix \boldsymbol{A}.

Syntax

Fortran	CALL PADFREE (desc_a)

On Entry
desc_a
is the array descriptor for the sparse matrix \boldsymbol{A}.
Type: required
Specified as: the derived data type DESC_TYPE.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PADALL.
2. You must deallocate $\boldsymbol{b}, \boldsymbol{x}$, sparse matrix \boldsymbol{A}, and preconditioner data structure prcs before you deallocate the array descriptor desc_a.
3. PADALL allocates desc_a as necessary. Prior to further calls to PADALL with the same desc_a, you must call PADFREE; otherwise, there will be a memory leak.

Error Conditions

Computational Errors: None
Resource Errors: None.
Input-Argument and Miscellaneous Errors
Stage 1

1. desc_a has not been initialized.

Stage 2

1. The BLACS context is invalid.

Stage 3

1. This subroutine was called from outside the process grid.

Stage 4

1. The process grid is not $n p \times 1$.

Example—Using the Fortran 90 Sparse Subroutines

This example finds the solution to the linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. It also contains an application program that shows how you can use the Fortran 90 sparse linear algebraic equation subroutines and their utilities to solve this example.

The following is the general sparse matrix \boldsymbol{A} :
$\left[\begin{array}{rrrrrrrrr}2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 1.0 & 0.0 & 0.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0\end{array}\right]$

The following is the dense vector \boldsymbol{b}, containing the right-hand side:
$\left[\begin{array}{l}2.0 \\ 1.0 \\ 3.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 3.0\end{array}\right]$

The following is the dense vector \boldsymbol{x}, containing the initial guess to the solution:
$\left[\begin{array}{l}0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0\end{array}\right]$

Output: Global vector \boldsymbol{x} :

Example

B, D
0
:---:
$\left[\begin{array}{c}1.0 \\ 1.0 \\ 1.0 \\ --- \\ 1.0 \\ 1.0 \\ 1.0 \\ -- \\ 1.0 \\ 1.0 \\ 1.0\end{array}\right]$

The following is the 3×1 process grid:

$\mathbf{B , D}$	$\mathbf{0}$
$\mathbf{0}$	P_{00}
$\mathbf{1}$	P_{10}
$\mathbf{2}$	P_{20}

Local vector \boldsymbol{x} :

p,q	0
0	1.0
	1.0
	1.0
1	1.0
	1.0
	1.0
	1.0
2	1.0
	1.0

ITER = 4
$E R R=0.4071 D-15$

The value of info is 0 on all processes.
Application Program: This application program illustrates how to use the Fortran 90 sparse linear algebraic equation subroutines and their utilities.

```
@process init(f90ptr)
!
! This program illustrates how to use the PESSL F90 Sparse Iterative
! Solver and its supporting utility subroutines. A very simple problem
! (DSRIS Example 1 from the ESSL Guide and Reference) using an
! HPF BLOCK data distribution is solved.
!
    PROGRAM EXAMPLE90
! Interface module required to use the PESSL F90 Sparse Iterative Solver
    USE F90SPARSE
    IMPLICIT NONE
! Interface definition for the PARTS subroutine PART_BLOCK
    INTERFACE PART_BLOCK
    SUBROUTINE PARTT_BLOCK(GLOBAL_INDX,N,NP,PV,NV)
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
    INTEGER, INTENT(OUT) :: NV
    INTEGER, INTENT(OUT) :: PV(*)
    END SUBROUTINE PART_BLOCK
    END INTERFACE
! Parameters
    CHARACTER, PARAMETER :: ORDER='R'
    INTEGER, PARAMETER :: IZERO=0, IONE=1
! Sparse Matrices
        TYPE(D_SPMAT) :: A, BLCK
! Preconditioner Data Structure
        TYPE(D_PRECN) :: PRC
! Dense Vectors
    REAL(KIND(1.D0)), POINTER :: B(:), X(:)
! Communications data structure
        TYPE(DESC_TYPE) :: DESC_A
! BLACS parameters
        INTEGER :: NPROW, NPCOL, ICTXT, IAM, NP, MYROW, MYCOL
! Solver parameters
    INTEGER :: ITER, ITMAX, IERR, ITRACE,
    &
        REAL(KIND(1.D0)) :: ERR, EPS, RPARM(20)
! Other variables
        CHARACTER*5 :: AFMT, ATYPE
        INTEGER :: IRCODE, IRCODE1, IRCODE2, IRCODE3
        INTEGER :: I,J
        INTEGER :: N,NNZERO
        INTEGER, POINTER :: PV(:)
        INTEGER :: LPROCS, NROW, NCOL
        INTEGER :: GLOBAL_INDX, NV_COUNT
        INTEGER :: GLOBAL_INDX_OWNER, NV
```

```
            INTEGER :: LOCAL_INDX
!
    Global Problem
        DSRIS Example 1 from the ESSL Guide and Reference
        REAL*8 :: A_GLOBAL(22),B_GLOBAL(9),XINIT_GLOBAL(9)
        INTEGER :: JA(22),IA(10)
        DATA A_GLOBAL /2.D0,2.D0,-1.D0,1.D0,2.D0,1.D0,2.D0,-1.D0,
        $ 1.D0,2.D0,-1.D0,1.D0,2.D0,-1.D0,1.D0,2.D0,
        $ -1.D0,1.D0,2.D0,-1.D0,1.D0,2.D0/
        DATA JA /1,2,3,2,3,1,4,5,4,5,6,5,6,7,6,7,8,
        $ 7,8,9,8,9/
    DATA IA /1,2,4,6,9,12,15,18,21,23/
    DATA B_GLOBAL /2.D0,1.D0,3.D0,2.D0,2.D0,2.D0,2.D0,2.D0,
$ 3.D0/
    DATA XINIT_GLOBAL /0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
        $ 0.D0/
! Initialize BLACS
! Define a NP x 1 Process Grid
        CALL BLACS_PINFO(IAM,NP)
        CALL BLACS_GET(IZERO, IZERO, ICTXT)
        CALL BLACS_GRIDINIT(ICTXT, ORDER, NP, IONE)
        CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYROW, MYCOL)
!
! Initialize the global problem size
    N = SIZE(IA)-1
!
! Guess for the local number of nonzeros
!
    NNZERO = SIZE(A_GLOBAL)
!
! Allocate and initialize some elements of the sparse matrix A
! its descriptor vector, DESC_A, the rhs vector B, and the
! solution vector X.
!
    CALL PADALL(N,PART_BLOCK,DESC_A,ICTXT)
    CALL PSPALL(A,DESC_A,NNZ=NNZERO)
    CALL PGEALL(B,DESC_A)
    CALL PGEALL(X,DESC_A)
!
! Allocate an integer work area to be used as an argument for
! the PART_BLOCK PARTS subroutine
!
    NROW = N
    NCOL = NROW
    LPROCS = MAX(NPROW, NROW + NCOL)
    ALLOCATE(PV(LPROCS), STAT = IRCODE)
    IF (IRCODE /= 0) THEN
        WRITE(6,*) 'PV Allocation failed'
        CALL BLACS_ABORT(ICTXT,-1)
```

```
        STOP
ENDIF
! SETUP BLCK
    BLCK%M = 1
    BLCK%N = NCOL
    BLCK%FIDA = 'CSR'
    ALLOCATE(BLCK%AS(BLCK%N),STAT=IRCODE1)
    ALLOCATE(BLCK%IA1 (BLCK%N),STAT=IRCODE2)
    ALLOCATE(BLCK%IA2 (BLCK}%M+1),STAT=IRCODE3)
    IRCODE = IRCODE1 + IRCODE2 + IRCODE3
    IF (IRCODE /= 0) THEN
    WRITE(6,*) 'Error allocating BLCK'
    CALL BLACS_ABORT(ICTXT,-1)
    STOP
ENDIF
!
! In this simple example, all processes have a copy of
! the global sparse matrix, A, the global rhs vector, B,
! and the global initial guess vector, X.
! Each process will call PSPINS as many times as necessary
! to insert the local rows it owns.
!
! Each process will call PGEINS as many times as necessary
! to insert the local elements it owns.
    DO GLOBAL_INDX = 1, NROW
    CALL PART_BLOCK(GLOBAL_INDX,N,NP,PV,NV)
!
! In this simple example, NV will always be 1
! since there will not be duplicate coefficients
!
    DO NV_COUNT = 1, NV
        GLOBAL_INDX_OWNER = PV (NV_COUNT)
        IF (GLOBAL_INDX_OWNER == MYROW) THEN
        BLCK%IA2(1) = \overline{1}
        BLCK%IA2(2) = 1
        DO J = IA(GLOBAL_INDX), IA(GLOBAL_INDX+1)-1
            BLCK%AS(BLCK%IA2(2)) = A_GLOBAL(J)
            BLCK%IA1(BLCK%IA2(2)) = JA(J)
            BLCK%IA2(2) =BLCK%IA2(2) + 1
        ENDDO
        CALL PSPINS(A,GLOBAL_INDX,1,BLCK,DESC_A)
        CALL PGEINS(B,B_GLOBAL(GLOBAL_INDX:GLO
    & DESC
        CALL PGEINS(X,XINIT_GLOBAL(GLOBAL_INDX:GLOBAL_INDX),
    &
                                    DESC_A,GLOBAL_INDX)
        ENDIF
        END DO
        END DO
! Assemble A and DESC_A
    AFMT = 'DEF'
```

```
            ATYPE = 'GEN'
            CALL PSPASB(A,DESC_A,MTYPE=ATYPE,
                &
                STOR=A\overline{FMT,DUPFLAG=2,INFO=IERR)}
            IF (IERR /= 0) THEN
                        IF (IAM.EQ.0) THEN
                        WRITE(6,*) 'Error in assembly :',IERR
                        CALL BLACS_ABORT(ICTXT,-1)
                STOP
    END IF
END IF
! Assemble B and X
    CALL PGEASB(B,DESC_A)
    CALL PGEASB(X,DESC_A)
!
! Deallocate BLCK
!
IF (ASSOCIATED(BLCK%AS)) DEALLOCATE(BLCK%AS)
IF (ASSOCIATED(BLCK%IA1)) DEALLOCATE(BLCK%IA1)
IF (ASSOCIATED(BLCK%IA2)) DEALLOCATE(BLCK%IA2)
!
! Deallocate Work vector
!
    IF (ASSOCIATED(PV)) DEALLOCATE(PV)
!
! Preconditioning
!
! We are using ILU for the preconditioner; PESSL
will allocate PRC.
!
            IPREC = 2
            CALL PSPGPR(IPREC,A,PRC,DESC_A,INFO=IERR)
            IF (IERR /= 0) THEN
            IF (IAM.EQ.0) THEN
                WRITE(6,*) 'Error in preconditioner :',IERR
                CALL BLACS_ABORT(ICTXT,-1)
                STOP
            END IF
            END IF
                !
                    ! Iterative Solver - use the BICGSTAB method
!
    ITMAX = 1000
    EPS = 1.D-8
    METHD = 1
    ISTOPC = 1
    ITRACE = 0
    IPARM = 0
    IPARM(1) = METHD
    IPARM(2) = ISTOPC
    IPARM(3) = ITMAX
```

```
            IPARM(4) = ITRACE
            RPARM = 0.0D0
            RPARM(1) = EPS
                    CALL PSPGIS(A,B,X,PRC,DESC_A,IPARM=IPARM,RPARM=RPARM,
&
                        INFO=IERR)
            IF (IERR /= 0) THEN
            IF (IAM.EQ.0) THEN
            WRITE (6,*) 'Error in solver :',IERR
            CALL BLACS_ABORT(ICTXT,-1)
            STOP
            END IF
                END IF
                    ITER = IPARM(5)
                    ERR = RPARM(2)
            IF (IAM.EQ.0) THEN
            WRITE(6,*) 'Number of iterations : ',ITER
            WRITE(6,*) 'Error on exit : ',ERR
END IF
!
Each process prints their local piece of the solution vector
!
        IF (IAM.EQ.0) THEN
            Write(6,*) 'Solution Vector X'
        END IF
        LOCAL_INDX = 1
        Do GLOBAL_INDX = 1, NROW
        CALL PART_BLOCK(GLOBAL_INDX,N,NP,PV,NV)
!
! In this simple example, NV will always be 1
! since there will not be duplicate coefficients
!
    DO NV_COUNT = 1, NV
                GLOBAL_INDX_OWNER = PV (NV_COUNT)
            IF (GLOBAL_INDX_OWNER == M
            Write(6,*)}\mathrm{ GLOB
            LOCAL_INDX = LOCAL_INDX +1
        ENDIF
            END DO
        END DO
!
! Deallocate the vectors, the sparse matrix, and
! the preconditioner data structure.
! Finally, deallocate the descriptor vector
    CALL PGEFREE(B, DESC_A)
    CALL PGEFREE(X, DESC_A)
    CALL PSPFREE(A, DESC_A)
    CALL PSPFREE(PRC, DESC_A)
    CALL PADFREE(DESC_A)
```


Example

!
! Terminate the process grid and the BLACS
!
CALL BLACS GRIDEXIT(ICTXT)
CALL BLACS_EXIT(0)

END PROGRAM EXAMPLE90

Fortran 77 Sparse Linear Algebraic Equation Subroutines and Their Utility Subroutines

This section contains the Fortran 77 sparse linear algebraic equation subroutine descriptions and their sparse utility subroutines.

PADINIT—Initializes an Array Descriptor for a General Sparse Matrix

This sparse utility subroutine initializes an array descriptor, which is needed to establish a mapping between the global general sparse matrix \boldsymbol{A} and its corresponding distributed memory location.

Syntax

Fortran	CALL PADINIT (n, parts, desc_a, icontxt)
C and C++	padinit (n, parts, desc_a, icontxt);

On Entry
n
is the order of the global general sparse matrix \boldsymbol{A} and the size of the index space.

Scope: global
Specified as: a fullword integer, where: $n>0$.
parts
is a user-supplied subroutine that specifies a mapping between a global index for an element in the global general sparse matrix \boldsymbol{A} and its corresponding storage location on one or more processes.

Sample parts subroutines for common types of data distributions are shown in "Sample PARTS Subroutine" on page 992.

For details about how you must define the PARTS subroutine, see
"Programming Considerations for the Parts Subroutine (Fortran 90 and Fortran 77)" on page 65.

Scope: global
Specified as: parts must be declared as an external subroutine in your application program. It can be whatever name you choose.
desc_a
is the array descriptor for the global general sparse matrix \boldsymbol{A}. DESC_A(11), which is the length of the array descriptor, DLEN, is the only element that you must specify. To determine a sufficient value, see "Array Descriptor" on page 63.
Specified as: an array of length DLEN, containing fullword integers.
icontxt
is the BLACS context parameter.
Scope: global
Specified as: a fullword integer that was returned in a prior call to BLACS_GRIDINIT or BLACS_GRIDMAP.

On Return
desc_a
is the array descriptor for the global general sparse matrix \boldsymbol{A}. This subroutine initializes the remaining elements in the array descriptor desc_a. The elements of desc_a are updated with subsequent calls to PDSPINS and finalized with a call to PDSPASB.

Table 28 on page 64 describes some of the elements of the array descriptor that you may want to reference. Your application programs should not modify the elements of the array descriptor directly. The elements should only be updated with calls to PDSPINS and PDSPASB.

Returned as: an array of length DLEN, containing fullword integers.

Notes and Coding Rules

1. Before you call this subroutine, you must create a $n p \times 1$ process grid, where $n p$ is the number of processes.
2. N _ROW is stable after you have placed a call to this subroutine. $\mathrm{N} _$COL is stable after you have placed a call to PDSPASB. For more details about N_ROW, N_COL, and other elements of desc_a, see Table 28 on page 64.

Error Conditions

Computational Errors: None.
Resource Errors: None.
Input-Argument and Miscellaneous Errors

Stage 1

1. The BLACS context is invalid.

Stage 2

1. This subroutine was called from outside the process grid.

Stage 3

1. The process grid is not $n p \times 1$.
2. $n \leq 0$

Stage 4

1. Each of the following global input arguments are checked to determine whether its value differs from the value specified on process P_{00} :
n differs.

Stage 5

1. $p v$ or $n v$, output from the user-supplied parts subroutine, was not valid. For valid values, see the appropriate argument description in "Programming Considerations for the Parts Subroutine (Fortran 90 and Fortran 77)" on page 65.
2. DLEN is too small. For valid values, see "Array Descriptor" on page 63.

PDSPINIT—Initializes a General Sparse Matrix

This sparse utility subroutine initializes the local part of a general sparse matrix \boldsymbol{A}.
Syntax

Fortran	CALL PDSPINIT (as, ia1, ia2, infoa, desc_a)
C and \mathbf{C}_{++}	pdspinit (as, ia1, ia2, infoa, desc_a);

On Entry

as
See On Return.
ia1
See On Return.
ia2
See On Return.
infoa
is an array, referred to as INFOA, providing more information about the general sparse matrix \boldsymbol{A}. You must specify INFOA(1) through INFOA (3), as follows:

- $\operatorname{INFOA}(1)$ is the length of the array AS, where: $\operatorname{INFOA}(1) \geq \max (2, n n z e)$.
- INFOA(2) is the length of the array IA1, where: INFOA(2) \geq max($3,\left(n n z e+N _R O W\right)$).
- INFOA(3) is the length of the array IA2, where: INFOA (3) \geq max $\left(3,\left(n n z e+N _C O L\right)\right.$).
- INFOA(4) through INFOA(30) are reserved for internal use.
$n n z e$ is the number of non-zero elements (including duplicate coefficients) in the local part of the global general sparse matrix \boldsymbol{A}.

Specified as: an array of length 30, containing fullword integers.
desc_a
is the array descriptor for a global general sparse matrix \boldsymbol{A} that is produced on a preceding call to PADINIT.
Specified as: an array of length DLEN, containing fullword integers.

On Return

as
is the local part, containing some internal values that are initialized by Parallel ESSL, of the global general sparse matrix \boldsymbol{A}.

Scope: local
Returned as: a one-dimensional array of (at least) length INFOA(1), containing long-precision real numbers.
ia1
is the local part, containing some internal values that are initialized by Parallel ESSL, of the sparse matrix indices.

Scope: local
Returned as: a one-dimensional array of (at least) length INFOA(2), containing fullword integers.
ia2
is the local part, containing some internal values that are initialized by Parallel ESSL, of the sparse matrix indices.

Scope: local
Returned as: a one-dimensional array of (at least) length INFOA (3), containing fullword integers.
infoa
is the array INFOA updated with some internal values that are set by Parallel ESSL.

Returned as: an array of length 30, containing fullword integers.
desc_a is the updated array descriptor for the global general sparse matrix \boldsymbol{A}.
Returned as: an array of length DLEN, containing fullword integers.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PADINIT.
2. For more details about N_ROW, N_COL, and other elements of desc_a, see Table 28 on page 64.
3. For details about some of the elements stored in infoa, see Table 27 on page 63.

Error Conditions

Computational Errors: None
Resource Errors: None.
Input-Argument and Miscellaneous Errors
Stage 1

1. The BLACS context is invalid.

Stage 2

1. This subroutine was called from outside the process grid.

Stage 3

1. The process grid is not $n p \times 1$.
2. $\operatorname{INFOA}(1)<2$; that is, the size of $\mathrm{AS}<2$
3. INFOA (2) <3; that is, the size of IA1 <3
4. INFOA $(3)<3$; that is, the size of IA2 <3

PDSPINS—Inserts Local Data into a General Sparse Matrix

This sparse utility subroutine is used by each process to insert all blocks of data it owns into its local part of the general sparse matrix \boldsymbol{A}.

Syntax

Fortran	CALL PDSPINS (as, ia1, ia2, infoa, desc_a, ia, ja, blcks, ib1, ib2, infob)
C and C++	pdspins (as, ia1, ia2, infoa, desc_a, ia, ja, blcks, ib1, ib2, infob);

On Entry

as
is the local part of the global general sparse matrix \boldsymbol{A} that is produced on a preceding call to PDSPINIT or previous call(s) to this subroutine.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(1), containing long-precision real numbers.
ia1
is the local part of array IA1 that is produced on a preceding call to PDSPINIT or previous call(s) to this subroutine.

Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(2), containing fullword integers.
is the local part of the array IA2 that is produced on a preceding call to PDSPINIT or previous call(s) to this subroutine.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(3), containing fullword integers.
infoa
is the array INFOA that is produced on a preceding call to PDSPINIT or previous call(s) to this subroutine.
Specified as: an array of length 30, containing fullword integers.
desc_a
is the array descriptor for a global general sparse matrix \boldsymbol{A} that is produced on a preceding call to PDSPINIT or previous call(s) to this subroutine.
Specified as: an array of length DLEN, containing fullword integers.
ia
is the first global row index of the general sparse matrix \boldsymbol{A} that receives data from the submatrix BLCK.

Scope: local
Specified as: a fullword integer; $1 \leq i a \leq M$.
is the first global column index of the general sparse matrix \boldsymbol{A} that receives data from the submatrix BLCK.

Scope: local

Specified as: a fullword integer, where: $j a=1$.
blcks
is the local part of the sparse submatrix BLCK, referred to as BLCKS, to be inserted into the global general sparse matrix \boldsymbol{A}. Each call to this subroutine inserts one contiguous block of rows into the local part of the sparse matrix corresponding to the global submatrix $\boldsymbol{A}_{\text {ia:ia+INFOB(6)-1, ja:ja+1NFOB(7)-1 }}$. This subroutine only can insert blocks of data it owns into its local part of the general sparse matrix \boldsymbol{A}.

Scope: local
Specified as: a one-dimensional array of (at least) length INFOB (1), containing long-precision real numbers.
ib1
is an array, referred to as IB1, containing column numbers of each non-zero element in the submatrix BLCK.

Scope: local

Specified as: a one-dimensional array of (at least) length INFOB (2), containing fullword integers.
is the array, referred to as IB2, containing the starting positions of each row of the submatrix BLCK in array BLCKS and one position past the end of BLCKS.

Scope: local
Specified as: a one-dimensional array of (at least) length INFOB (3), containing fullword integers:
$\operatorname{lB2} 2(1)=1$
IB2(INFOB $(6)+1)=1+n z$ and $n z$ is the actual number of non-zero elements in the submatrix BLCK.
infob
is an array, referred to as INFOB, providing information about the submatrix
BLCK. You must specify $\operatorname{INFOB(1)}$ through $\operatorname{INFOB}(7)$, as follows:

- $\operatorname{INFOB}(1)$ is the length of the array BLCKS, where: $\operatorname{INFOB}(1) \geq n z$.
- INFOB (2) is the length of the array IB1, where: $\operatorname{INFOB}(2) \geq n z$.
- $\operatorname{INFOB}(3)$ is the length of the array IB2, where: $\operatorname{INFOB}(3) \geq(\operatorname{INFOB}(6)+1)$.
- INFOB (4) is the storage format of submatrix BLCK, where:

If $\operatorname{INFOB}(4)=1$, submatrix BLCK is stored by rows.

- INFOB(5) indicates the matrix type, where:

If $\operatorname{INFOB}(5)=1, B L C K$ is a general sparse matrix.

- $\operatorname{INFOB}(6)$ is the number of local rows in the submatrix BLCK, where: $1 \leq \operatorname{INFOB}(6) \leq N _R O W$.
- INFOB(7) is an upper bound on the number of local columns in the submatrix BLCK, where: $1 \leq \operatorname{INFOB}(7) \leq n$. n is the order of the global general sparse matrix \boldsymbol{A}.
- INFOB(8) through INFOB(30) are reserved.

Specified as: an array of length 30, containing fullword integers.

On Return

is the updated local part of the global general sparse matrix \boldsymbol{A}, updated with data from the submatrix BLCK.

Scope: local
Returned as: a one-dimensional array of (at least) length INFOA(1), containing long-precision real numbers.
ia1
is the updated local part of array IA1.
Scope: local
Returned as: a one-dimensional array of (at least) length INFOA(2), containing fullword integers.
ia2
is the updated local part of the array IA2.
Scope: local
Returned as: a one-dimensional array of (at least) length INFOA(3), containing fullword integers.
infoa
is the updated local part of array INFOA.
Returned as: an array of length 30, containing fullword integers.
desc_a
is the updated array descriptor for the global general sparse matrix \boldsymbol{A}.
Returned as: an array of length DLEN, containing fullword integers.

Notes and Coding Rules

1. Before you call this subroutine, you must have called PADINIT and PDSPINIT.
2. Arguments BLCK and \boldsymbol{A} must not have common elements; otherwise, results are unpredictable.
3. For more details about N_ROW, N_COL, and other elements of desc_a, see Table 28 on page 64.
4. For details about some of the elements stored in infoa or infob, see Table 27 on page 63.
5. The submatrix BLCK must be stored by rows; that is $\operatorname{INFOB}(4)=1$. For information about the storage-by-rows storage mode, see the ESSL Version 3 Guide and Reference.
6. Each process has to call PDSPINS as many times as necessary to insert the local rows it owns. It is also possible to call PDSPINS multiple times to insert different or duplicate coefficients of the same local row it owns. For information on how duplicate coefficients are handled, see the dupflag argument description in PDSPASB. For an example of inserting coefficients of the same local row, see "Example" on page 573.

Error Conditions

Computational Errors: None.
Resource Errors: None.
Input-Argument and Miscellaneous Errors

Stage 1

1. The BLACS context is invalid.

Stage 2

1. This subroutine was called from outside the process grid.

Stage 3

1. The process grid is not $n p \times 1$.
2. $j a \neq 1$
3. desc_a is not valid.
4. The sparse matrix \boldsymbol{A} is not valid.
5. $\operatorname{INFOB}(4) \neq 1$
6. INFOB(5) $\neq 1$
7. $\operatorname{INFOB}(6)<1$ or $\operatorname{INFOB(6)}>$ N_ROW
8. $\operatorname{INFOB}(7)<1$ or $\operatorname{INFOB}(7)>n$
9. $i a<1$ or $i a>M$
10. One or more rows to be inserted into submatrix \boldsymbol{A} does not belong to the process.
11. DLEN is too small. For valid values, see "Array Descriptor" on page 63.
12. $\operatorname{INFOB}(1)<n z$; that is, the size of BLCKS $<n z$
13. INFOB(2) < $n z$; that is, the size of IB1 $<n z$
14. $\operatorname{INFOB}(3)<(\operatorname{INFOB}(6)+1)$; that is, the size of IB2 $<(\operatorname{INFOB}(6)+1)$
15. INFOA $(1)<\max (2, n n z e)$; that is, the size of AS $<\max (2, n n z e)$
16. INFOA(2) < max(3,(nnze+N_ROW)); that is, the size of IA1 < max(3,(nnze+N_ROW))
17. INFOA (3) < max $\left(3,\left(n n z e+N _C O L\right)\right)$; that is, the size of IA2 < max(3,(nnze+N_COL))

Example: This piece of an example shows how to insert coefficients into the same GLOB_ROW row by calling PDSPINS multiple times. This example would be useful in finite element applications, where PDSPINS inserts one element at a time into the global matrix, but more than one element may contribute to the same matrix row. In this case, PDSPINS is called with the same value of $i a$ by all the elements contributing to that row.

For a complete example, see "Example—Using the Fortran 77 Sparse Subroutines" on page 593.

```
                        .
        .
DO GLOB_ROW = 1,N
    RINFOA(1) = 20
    RINFOA(2) = 20
    RINFOA(3) = 20
    RINFOA(4) = 1
    RINFOA(5) = 1
    RINFOA(6) = 1
    RINFOA(7) = N
    RIA2(1) = 1
    RIA2(2) = 2
    IA = GLOB_ROW
```

```
C
C
C
C
C
```

```
    + IA,1,RAS,RIA1,RIA2,RINFOA)
```

 + IA,1,RAS,RIA1,RIA2,RINFOA)
 RAS(1) = COEFF(X-1,Y,X,Y)
 RAS(1) = COEFF(X-1,Y,X,Y)
 RIA1(1) = IDX(X-1,Y)
 RIA1(1) = IDX(X-1,Y)
 CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
 CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
 RAS(1) = COEFF(X,Y-1,X,Y)
 RAS(1) = COEFF(X,Y-1,X,Y)
 RIA1(1) = IDX(X,Y-1)
 RIA1(1) = IDX(X,Y-1)
 CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
 CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
 + IA,1,RAS,RIA1,RIA2,RINFOA)
 + IA,1,RAS,RIA1,RIA2,RINFOA)
 ! (x,y)
 ! (x,y)
 RAS(1) = COEFF(X,Y,X,Y)
 RAS(1) = COEFF(X,Y,X,Y)
 RIA1(1) = IDX(X,Y)
 RIA1(1) = IDX(X,Y)
 CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
 CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
 IA,1,RAS,RIA1,RIA2,RINFOA)
 IA,1,RAS,RIA1,RIA2,RINFOA)
 +
 +
    ```
                ! (x-1,y)
```

 ! (x-1,y)
 + IA,1,RAS,RIA1,RIA2,RINFOA)
+ IA,1,RAS,RIA1,RIA2,RINFOA)
! (x,y-1)
! (x,y-1)
! (x,y+1)
! (x,y+1)
RAS(1) = COEFF(X,Y+1,X,Y)
RAS(1) = COEFF(X,Y+1,X,Y)
RIA1(1) = IDX (X,Y+1)
RIA1(1) = IDX (X,Y+1)
CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
IA,1,RAS,RIA1,RIA2,RINFOA)
IA,1,RAS,RIA1,RIA2,RINFOA)
! (x+1,y)
! (x+1,y)
RAS(1) = COEFF(X+1,Y,X,Y)
RAS(1) = COEFF(X+1,Y,X,Y)
RIA1(1) = IDX(X+1,Y)
RIA1(1) = IDX(X+1,Y)
CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
IA,1,RAS,RIA1,RIA2,RINFOA)
IA,1,RAS,RIA1,RIA2,RINFOA)
END DO

```

\section*{PDGEINS—Inserts Local Data into a Dense Vector}

This sparse utility subroutine is used by each process to insert all blocks of data it owns into its local part of the dense vector.

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PDGEINS \((n x, x, I d x, i x, j x, m b, n b, b / c k s, I d b\), desc_a) \\
\hline C and \(\mathbf{C}_{++}\) & pdgeins ( \(\left.n x, x, I d x, i x, j x, m b, n b, b l c k s, I d b, d e s c \_a\right) ;\) \\
\hline
\end{tabular}

\section*{On Entry}
\(n x\)
is the number of columns in the local dense vector.
Scope: local
Specified as: fullword integer; \(n x=1\).
\(x\)
See On Return.
\(1 d x\)
is the local leading dimension of the local array.
Scope: local
Specified as: fullword integer; Id \(x \geq \max \left(1, N \_R O W\right)\).
ix
is the first global row index of the dense vector that receives data from the submatrix BLCK.

Scope: local
Specified as: a fullword integer; \(1 \leq i x \leq M\).
jx
is the first global column index of the dense vector that receives data from the submatrix BLCK.

Scope: local
Specified as: fullword integer; \(j x=1\).
mb
is the number of local rows to be inserted into the dense vector.
Scope: local
Specified as: fullword integer; \(1 \leq m b \leq \min \left(N \_R O W, / d b\right)\).
nb
is the number of local columns to be inserted into the dense vector.
Scope: local
Specified as: fullword integer; \(n b=1\).
blcks
is the local part, referred to as BLCKS, of the submatrix BLCK, containing the coefficients to be inserted into the dense vector. Each call to this subroutine inserts one contiguous block of data into the local part of the dense vector corresponding to the global submatrix \(\boldsymbol{X}_{i x: i x+m b-1, j x: j x+n b-1}\).
Scope: local

Specified as: an Idb by (at least) nb array, containing long-precision real numbers.
ddb
is the local leading dimension for the local array BLCKS.
Scope: local
Specified as: fullword integer; \(I d b \geq \max (1, m b)\).
desc_a
is the array descriptor that is produced on a preceding call to PADINIT, PDSPINIT, or PDSPINS.
Specified as: an array of length DLEN, containing fullword integers.

\section*{On Return}
\(x\)
is the updated local part of the dense vector.
Scope: local
Returned as: an Idx by (at least) \(n x\) array, containing long-precision real numbers.

\section*{Notes and Coding Rules}
1. Before you call this subroutine, you must have called PADINIT.
2. You do not need a separate array descriptor for a dense vector because it must conform to the size of matrix \(\boldsymbol{A}\). For more details about N_ROW, N_COL, and other elements of desc_a, see Table 28 on page 64.
3. This subroutine must be called for:
- Vector \(\boldsymbol{b}\) containing the right-hand side.
- Vector \(\boldsymbol{x}\) containing the initial guess to the solution.
4. Each process has to call PDGEINS as many times as necessary to insert the local elements it owns. It is also possible to call PDGEINS multiple times to insert different coefficients of the same local row it owns. Duplicate coefficients are overwritten.

\section*{Error Conditions}

Computational Errors: None

\section*{Resource Errors}
1. None.

\section*{Input-Argument and Miscellaneous Errors}

\section*{Stage 1}
1. The BLACS context is invalid.

\section*{Stage 2}
1. This subroutine was called from outside the process grid.

\section*{Stage 3}
1. The process grid is not \(n p \times 1\).
2. \(n b \neq 1\)
3. \(n x \neq 1\)
4. \(j x \neq 1\)
5. desc_a is not valid.

Stage 4
1. \(I d x<\max \left(1, \mathrm{~N} \_\right.\)ROW \()\)
2. \(1<m b\) or \(m b>N \_R O W\)
3. \(l d b<\max (1, m b)\)
4. \(i x<1\) or \(i x>M\)

Stage 5
1. One or more elements to be inserted into the submatrix BLCK does not belong to the process.

\section*{PDSPASB—Assembles a General Sparse Matrix}

This sparse utility subroutine uses the output from PDSPINS to assemble the global general sparse matrix \(\boldsymbol{A}\) and its array descriptor desc_a.

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PDSPASB (as, ia1, ia2, infoa, desc_a, mtype, stor, dupflag, info) \\
\hline C and \(\mathbf{C}_{++}\) & pdspasb (as, ia1, ia2, infoa, desc_a, mtype, stor, dupflag, info); \\
\hline
\end{tabular}

On Entry
as
is the local part of the global general sparse matrix \(\boldsymbol{A}\) that is produced by previous call(s) to PDSPINS.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(1), containing long-precision real numbers.
ia1
is the local part of array IA1 that is produced by previous call(s) to PDSPINS.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(2), containing fullword integers.
ia2
is the local part of array IA2 that is produced by previous call(s) to PDSPINS.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(3), containing fullword integers.
infoa
is the array INFOA that is produced by previous call(s) to PDSPINS. Specified as: an array of length 30, containing fullword integers.
desc_a
is the array descriptor for the global general sparse matrix \(\boldsymbol{A}\) that is produced by previous call(s) to PDSPINS.

Specified as: an array of length DLEN, containing fullword integers.
mtype
indicates the the form of the global sparse matrix \(\boldsymbol{A}\) used, where:
If mtype \(=\) 'GEN', \(\boldsymbol{A}\) is a general sparse matrix.
Scope: global
Specified as: a character variable of length 5; mtype = 'GEN'.
stor
indicates the storage mode that the global general sparse matrix \(\boldsymbol{A}\) is returned in, where:

If stor = 'DEF', this subroutine chooses an appropriate storage mode, which is an internal format accepted by the preconditioner and solver subroutines, for storing the global general sparse matrix \(\boldsymbol{A}\) on output.
If stor = 'CSR', the global general sparse matrix \(\boldsymbol{A}\) is stored in the storage-by-rows storage mode on output.

\section*{Scope: global}

Specified as: a character variable of length 5 ; stor = 'DEF' or 'CSR'. dupflag
is a flag indicating how to use coefficients that are specified more than once on the same process; that is, duplicate coefficients within the same local part of the matrix \(\boldsymbol{A}\) :

If dupflag \(=0\), this subroutine uses the first of the duplicate coefficients.
If dupflag \(=1\), this subroutine adds all the duplicate coefficients with the same indices.

If dupflag \(=2\), this subroutine raises an error condition indicating that there are unexpected duplicate coefficients.

\section*{Scope: global}

Specified as: a fullword integer; dupflag \(=0,1\), or 2.
info
See On Return.

\section*{On Return}
as
is the updated local part of array AS of the global general sparse matrix \(\boldsymbol{A}\), where:

If stor = 'DEF', this subroutine chooses an appropriate storage mode, which is an internal format accepted by the preconditioner and solver subroutines, for storing the global general sparse matrix \(\boldsymbol{A}\) on output.

If stor = 'CSR', the global general sparse matrix \(\boldsymbol{A}\) is stored in the storage-by-rows storage mode on output.

Scope: local
Returned as: a one-dimensional array of (at least) length INFOA(1), containing long-precision real numbers.
ia1
is the updated local part of array IA2.
Scope: local
Returned as: a one-dimensional array of (at least) length INFOA(2), containing fullword integers.
ia2
is the updated local part of array IA2.
Scope: local
Returned as: a one-dimensional array of (at least) length INFOA (3), containing fullword integers.
infoa
is the updated array INFOA.
Returned as: an array of length 30, containing fullword integers.
desc_a
is the final updated array descriptor for the global general sparse matrix \(\boldsymbol{A}\).
Returned as: an array of length DLEN, containing fullword integers.
info
has the following meaning, when info is present:

If info \(=0\), then no input-argument errors or computational errors occurred. This indicates a normal exit.

Note: Because Parallel ESSL terminates the application if input-argument errors occur, the setting of info is irrelevant for these errors.

If info \(>0\), then one or more of the following computational errors occurred and the appropriate error messages were issued, indicating an error exit, where:
- If info \(=1\), the sparse matrix \(\boldsymbol{A}\) contains duplicate coefficients.
- If info \(=2\), the sparse matrix \(\boldsymbol{A}\) contains empty row(s).

\section*{Scope: global}

Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. In your C program, info must be passed by reference.
2. This subroutine accepts mixed case letters for the mtype and stor arguments.
3. Before you call this subroutine, you must have called PDSPINS as many times as needed; that is, you must have completed building the matrix with call(s) to PDSPINS before you place a call to this subroutine.
4. Your program must declare mtype and stor to be characters of length 5 with blanks padded to the right. C programs can use the fifth character for the null terminator.
5. For more details about N_ROW, N_COL, and other elements of desc_a, see Table 28 on page 64.
6. For details about some of the elements stored in infoa, see Table 27 on page 63.

\section*{Error Conditions}

Computational Errors: The sparse matrix A contains duplicate coefficients or empty row(s). For details, see the description of the info argument.

\section*{Resource Errors}
1. Unable to allocate work space.
2. Unable to deallocate work space.

Input-Argument and Miscellaneous Errors

\section*{Stage 1}
1. The BLACS context is invalid.

\section*{Stage 2}
1. This subroutine was called from outside the process grid.

\section*{Stage 3}
1. The process grid is not \(n p \times 1\).
2. desc_a is not valid.
3. The sparse matrix \(\boldsymbol{A}\) is not valid.
4. mtype \(\neq\) 'GEN'
5. stor \(\neq\) 'DEF' or 'CSR'
6. dupflag \(\neq 0,1\), or 2
7. Some local rows in the sparse matrix \(\boldsymbol{A}\) are missing.

\section*{Stage 4}
1. DLEN is too small. For valid values, see "Array Descriptor" on page 63.
2. \(\operatorname{INFOA}(1)<\max (2, n n z e)\); that is, the size of AS \(<\max (2, n n z e)\)
3. INFOA(2) < max \(\left(3,\left(n n z e+N \_R O W\right)\right)\); that is, the size of IA1 < max(3,(nnze+N_ROW))
4. INFOA (3) < max \((3,(n n z e+N+C O L))\); that is, the size of IA2 < max \(\left(3,\left(n n z e+N \_C O L\right)\right)\)

Stage 5
1. Each of the following global input arguments are checked to determine whether its value differs from the value specified on process \(\mathrm{P}_{00}\) :
mtype differs.
stor differs.
dupflag differs.

\section*{PDGEASB—Assembles a Dense Vector}

This sparse utility subroutine assembles a dense vector.
Syntax
\begin{tabular}{|l|l|}
\hline Fortran & CALL PDGEASB \((n x, x, I d x\), desc_a) \\
\hline C and \(\mathbf{C}_{++}\) & pdgeasb \((n x, x, I d x\), desc_a); \\
\hline
\end{tabular}

\section*{On Entry}
\(n x\)
is the number of columns in the local dense vector.
Scope: local
Specified as: fullword integer; \(n x=1\).
\(x\)
is the local part of the dense matrix \(\boldsymbol{x}\) produced by previous call(s) to PDGEINS.

Scope: local
Specified as: an Idx by (at least) \(n x\) array, containing long-precision real numbers.
ldx
is the local leading dimension of the dense matrix.
Scope: local
Specified as: fullword integer; Idx \(\geq \max \left(1, N \_R O W\right)\).
desc_a
is the array descriptor, which was finalized in a preceding call to PDSPASB.
Specified as: an array of length DLEN, containing fullword integers.

\section*{On Return}
\(x\)
is the updated local part of the dense matrix.
Scope: local
Returned as: an Idx by (at least) length \(n x\), containing long-precision real numbers.

\section*{Notes and Coding Rules}
1. Before you call this subroutine, you must have called PDGEINS as many times as needed; that is, you must have completed building the dense vectors with call(s) to PDGEINS before you place a call to this subroutine.
Before you call this subroutine, you must have called PDSPASB.
2. You do not need a separate array descriptor for a dense vector because it must conform to the size of matrix \(\boldsymbol{A}\). For more details about N_ROW, N_COL, and other elements of desc_a, see Table 28 on page 64.
3. This subroutine must be called for:
- Vector \(\boldsymbol{b}\) containing the right-hand side.
- Vector \(\boldsymbol{x}\) containing the initial guess to the solution.

\section*{Error Conditions}

Computational Errors: None
Resource Errors: None.
Input-Argument and Miscellaneous Errors
Stage 1
1. The BLACS context is invalid.

Stage 2
1. This subroutine was called from outside the process grid.

Stage 3
1. The process grid is not \(n p \times 1\).
2. desc \(a\) is not valid.

Stage 4
1. \(I d x<\max \left(1, \mathrm{~N} \_\right.\)ROW \()\)

\section*{PDSPGPR—Preconditioner for a General Sparse Matrix}

This subroutine computes a preconditioner for the global general sparse matrix \(\boldsymbol{A}\) that should be passed unchanged to the PDSPGIS subroutine. The preconditioners include diagonal scaling or an incomplete LU factorization.

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PDSPGPR (iprec, as, ia1, ia2, infoa, prcs, Iprcs, desc_a, info) \\
\hline C and \(\mathbf{C}_{++}\) & pdspgpr (iprec, as, ia1, ia2, infoa, prcs, Iprcs, desc_a, info); \\
\hline
\end{tabular}

On Entry
iprec
is a flag that determines the type of preconditioning, where:
If iprec \(=0\), which is referred to as none, indicates the local part of the submatrix \(\boldsymbol{A}\) is not preconditioned. PDSPGIS may not be effective in this case, unless the coefficient matrix is well conditioned; if your input matrix is not well conditioned, you should consider using iprec \(=1\) or 2 .
If iprec \(=1\), which is referred to as diagsc, indicates the local part of the submatrix \(\boldsymbol{A}\) is preconditioned by a local diagonal submatrix.
If iprec \(=2\), which is referred to as ilu, indicates the local part of the submatrix \(\boldsymbol{A}\) is preconditioned by a local incomplete LU factorization.
It is suggested that you use a preconditioner. For an explanation, see "Notes and Coding Rules" on page 585.

Scope: global
Specified as: a fullword integer, where: iprec \(=0,1\), or 2.
as
is the local part of the global general sparse matrix \(\boldsymbol{A}\), finalized on a preceding call to PDSPASB.

Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(1), containing long-precision real numbers.
ia1
is the local part of array IA1 produced by a previous call to PDSPASB.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(2), containing fullword integers.
ia2
is the local part of array IA2 produced by a previous call to PDSPASB.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(3), containing fullword integers.
infoa
is the array INFOA produced by a previous call to PDSPASB.
Specified as: an array of length 30, containing fullword integers.
prcs
See On Return.

Iprcs
is the length of array PRCS.
Scope: local
Specified as: fullword integer, where:
If iprec \(=0\), Iprcs \(\geq 10\).
If iprec \(=1\), lprcs \(\geq 10+\) N_ROW.
If iprec \(=2\), lprcs \(\geq 10+2(n n z)+\mathrm{N} \_\)ROW \(+\mathrm{N} \_C O L+31\)
\(n n z\) is the number of non-zero elements (without duplicate coefficients) in the local part of the global general sparse matrix \(\boldsymbol{A}\).
desc_a
is the array descriptor for the global general sparse matrix \(\boldsymbol{A}\) that was finalized in a call to PDSPASB.

Specified as: an array of length DLEN, containing fullword integers.
info
See On Return.

\section*{On Return}
prcs
is the preconditioner data structure that must be pass unchanged to PDSPGIS.
Scope: local
Returned as: a one-dimensional array of (at least) length Iprcs, containing long-precision real numbers.
info
has the following meaning, when info is present:

If info \(=0\), then no input-argument errors or computational errors occurred. This indicates a normal exit.

Note: Because Parallel ESSL terminates the application if input-argument errors occur, the setting of info is irrelevant for these errors.

If info \(>0\), the value stored in info indicates the row index in the global general sparse matrix \(\boldsymbol{A}\) where the preconditioner failed.

\section*{Scope: global}

Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. Before you call this subroutine, you must have called PDGEASB and PDSPASB.
2. In your C program, info must be passed by reference.
3. For more details about N_ROW, N_COL, and other elements of desc_a, see Table 28 on page 64.
4. For details about some of the elements stored in infoa see Table 27 on page 63.
5. The convergence rate of an iterative method as applied to a given system of linear equations depends on the spectral properties of the coefficient matrix of the linear system; therefore it is often convenient to apply a linear
transformation to the system such that the solution of the transformed system is the same (in exact arithmetic) as that of the original, but the spectral properties and the convergence behavior are more favorable. Such a transformation is called preconditioning. If a matrix \(\boldsymbol{M}\) approximates \(\boldsymbol{A}\), then:
\(\left(\boldsymbol{M}^{-1}\right) \boldsymbol{A} \boldsymbol{x}=\left(\boldsymbol{M}^{-1}\right) \boldsymbol{b}\)
is a preconditioned system and \(\boldsymbol{M}\) is called a preconditioner. In practice, the new coefficient matrix \(\left(\boldsymbol{M}^{-1}\right) \boldsymbol{A}\) is almost never formed explicitly, but rather its action is computed during the application of the iterative method. The effectiveness of the preconditioning operation depends on a trade-off between how well \(\boldsymbol{M}\) approximates \(\boldsymbol{A}\) and how costly it is to compute and invert it; no single preconditioner will give best overall performance under all situations. Note finally that it is quite rare for a linear system to behave well enough so as not to require preconditioning; indeed most linear systems originating from the the discretization of difficult physical problems require preconditioning to have any convergence at all.

\section*{Error Conditions}

\section*{Computational Errors}
1. The preconditioner for the sparse matrix \(\boldsymbol{A}\) is unstable. For details, see the info output argument for this subroutine.

\section*{Resource Errors}
1. Unable to allocate work space.

\section*{Input-Argument and Miscellaneous Errors}

\section*{Stage 1}
1. The BLACS context is invalid.

\section*{Stage 2}
1. This subroutine was called from outside the process grid.

\section*{Stage 3}
1. The process grid is not \(n p \times 1\).
2. desc_a is not valid.
3. iprec \(\neq 0,1\), or 2
4. iprec \(=0\) and Iprcs \(<10\)
5. iprec \(=1\) and lprcs \(<10+\) N_ROW
6. iprec \(=2\) and lprcs < 10+2(nnz)+N_ROW+N_COL+31
7. The storage format for \(\boldsymbol{A}\) is not supported.

\section*{Stage 4}
1. Each of the following global input arguments are checked to determine whether its value differs from the value specified on process \(\mathrm{P}_{00}\) : iprec differs.

\section*{PDSPGIS—Iterative Linear System Solver for a General Sparse Matrix}

This subroutine solves a general sparse linear system of equations, using an iterative algorithm, with or without preconditioning. The methods include the more smoothly converging variant of the CGS method (Bi-CGSTAB), conjugate gradient squared (CGS), or transpose-free quasi-minimal residual method (TFQMR).

See references [7 ], [9 ], [12 ], and [35 ].

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & \begin{tabular}{l} 
CALL PDSPGIS (as, ia1, ia2, infoa, nrhs, b, Idb, \(x\), Idx, prcs, desc_a, iparm, rparm, \\
info)
\end{tabular} \\
\hline C and C++ & pdspgis (as, ia1, ia2, infoa, nrhs, b, Idb, x, Idx, prcs, desc_a, iparm, rparm, info); \\
\hline
\end{tabular}

On Entry
as
is the local part of the global general sparse matrix \(\boldsymbol{A}\), finalized on a preceding call to PDSPASB.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(1), containing long-precision real numbers.
ia1
is the local part of array IA1 produced by a previous call to PDSPASB.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(2), containing fullword integers.
ia2
is the local part of array IA2 produced by a previous call to PDSPASB.
Scope: local
Specified as: a one-dimensional array of (at least) length INFOA(3), containing fullword integers.
infoa
is the array INFOA produced by a previous call to PDSPASB.
Specified as: an array of length 30, containing fullword integers.
nrhs
the number of right-hand sides.
Scope: global
Specified as: a fullword integer; nrhs = 1.
b
is the local part of the matrix \(\boldsymbol{b}\), containing the right-hand side of the matrix problem produced on a previous call to PDGEASB.

Scope: local
Specified as: an ldb by (at least) length nrhs array, containing long-precision real numbers.

Idb
is the leading dimension of the local array B.
Scope: local
Specified as: a fullword integer; Idb \(\geq\) max(1,N_ROW)
\(x\)
is the local part of the global vector \(\boldsymbol{x}\), containing the initial guess to the solution of the linear system and produced on a previous call to PDGEASB.
Scope: local
Specified as: an Idx by (at least) nrhs array, containing long-precision real numbers.
Idx
is the leading dimension of the local array X .
Scope: local
Specified as: a fullword integer; \(I d x \geq \max \left(1, N \_R O W\right)\)
prcs
is the preconditioner data structure prcs produced by a previous call to PDSPGPR.

Scope: local
Specified as: a one-dimensional array of (at least) length /prcs, containing long-precision real numbers.
desc_a
is the array descriptor for the global general sparse matrix \(\boldsymbol{A}\) that was finalized in a call to PDSPASB.

Specified as: an array of length DLEN, containing fullword integers.
iparm
is an array of parameters, \(\operatorname{IPARM}(i)\), where:
- IPARM(1) is the flag, methd, used to select the iterative procedure used, where:

If \(\operatorname{IPARM}(1)=0\), the following defaults are used:
\[
\begin{aligned}
& \text { methd }=1 \\
& \text { istopc }=1 \\
& \text { itmax }=500 \\
& \text { itrace }=0 \\
& e p s=10^{-8}
\end{aligned}
\]

If methd \(=1\), the more smoothly converging variant of the CGS method, referred to as Bi-CGSTAB, is used.

If methd \(=2\), the conjugate gradient squared method, referred to as CGS, is used.

If methd \(=3\), the transpose-free quasi-minimal residual method, referred to as TFQMR, is used.
- IPARM(2) is the flag, istopc used to select the stopping criterion used in the computation, where the following items are used in the definitions of the stopping criteria below:
- \(\varepsilon\) is the desired relative accuracy and is stored in eps
- \(x_{j}\) is the solution found at the \(j\)-th iteration.
- \(r_{j}\) and \(r_{0}\) are the preconditioned residuals obtained at iterations \(j\) and 0 , respectively. (The residual at iteration \(j\) is defined as \(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{j}\).)

If istopc \(=1\), the iterative method is stopped when:
\[
\left\|r_{j}\right\|_{2} /\left\|x_{j}\right\|_{2}<\varepsilon
\]

If istopc \(=2\), the iterative method is stopped when:
\[
\left\|r_{j}\right\|_{2} /\left\|r_{0}\right\|_{2}<\varepsilon
\]

If istopc \(=3\), the iterative method is stopped when:
\[
\left\|x_{j}-x_{j-1}\right\|_{2} /\left\|x_{j}\right\|_{2}<\varepsilon
\]

Note: Stopping criterion 3 performs poorly with the TFQMR method; therefore, if you specify TFQMR (methd \(=3\) ), you should not specify stopping criterion 3.
- IPARM(3) is the maximum number, itmax, of iterations allowed.
- IPARM(4), referred to as itrace, has the following meaning:

If itrace \(=0\), then itrace is ignored.
If itrace > 0, an informational message about convergence, which is based on the stopping criterion described in istopc, is issued at every itrace-th iteration and upon exit.
- IPARM(5), see On Return.
- IPARM(6) through IPARM(20) are reserved.

\section*{Scope: global}

Specified as: an array of length 20, containing fullword integers, where:
methd \(=1,2\), or 3
istopc \(=1,2\), or 3 .
itmax \(\geq 0\).
itrace \(\geq 0\).
IPARM(6) through IPARM(20) should be set to zero.
rparm
is an array of parameters, \(\operatorname{RPARM}(i)\), where:
- RPARM(1) is the relative accuracy \(\epsilon\), referred to as eps, used in the stopping criterion.
- RPARM(2), see On Return.
- RPARM(3) through RPARM(20) are reserved.

\section*{Scope: global}

Specified as: an array of length 20, containing long-precision real numbers, where:
\(e p s \geq 0\).
RPARM(3) through RPARM(20) should be set to zero.
info
See On Return.

\section*{On Return}
\(x\)
is the local part of the solution vector \(\boldsymbol{x}\)

\section*{Scope: local}

Returned as: an array of (at least) length N_ROW, containing long-precision real numbers.
iparm
is an array of parameters, \(\operatorname{IPARM}(1)\), where:
- IPARM(2) is the number of iterations, iter, performed by this subroutine.

\section*{Scope: global}

Returned as: an array of length 20, containing fullword integers, where:
```

iter \geq0

```
rparm
is an array of parameters, \(\operatorname{RPARM}(i)\), where:
- RPARM (2) contains the estimate of the error, err, of the solution, according to the stopping criterion, istopc, in use. For details, see the istopc argument description.

\section*{Scope: global}

Returned as: an array of length 20, containing long-precision real numbers, where:
\(e r r \geq 0\)
info
has the following meaning, when info is present:

If info \(=0\), then no input-argument errors or computational errors occurred. This indicates a normal exit.

Note: Because Parallel ESSL terminates the application if input-argument errors occur, the setting of info is irrelevant for these errors.
If info \(>0\), then this subroutine exceeded itmax iterations without converging.
You may want to try the following to get your matrix to converge:
1. You can increase the number of iterations and call this subroutine again without making any other changes to your program.
2. You can change the requested precision and/or the stopping criterion; your original precision requirement may be too stringent under a given stopping criterion.
3. You can use a preconditioner if you were not already doing so, or to change the one you were using. Note also that the efficiency of the preconditioner may depend on the data distribution strategy adopted. See "Notes and Coding Rules" on page 585.

\section*{Scope: global}

Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. In your C program, info must be passed by reference.
2. Before you call this subroutine, you must have called PDSPGPR.
3. For more details about \(N \_\)ROW, \(N \_C O L\), and other elements of desc_a, see Table 28 on page 64.
4. For details about some of the elements stored in infoa see Table 27 on page 63.

\section*{Error Conditions}

\section*{Computational Errors}
1. This subroutine exceeded itmax iterations without converging. Vector \(\boldsymbol{x}\) contains the approximate solution computed at the last iteration.

Note: If the preconditioner computed by PDSPGPR failed because the sparse matrix \(\boldsymbol{A}\) is unstable, the results returned by this subroutine are unpredictable. For details, see the info output argument for PDSPGPR.

You may want to try the following to get your matrix to converge:
a. You can increase the number of iterations and call this subroutine again without making any other changes to your program.
b. You can change the requested precision and/or the stopping criterion; your original precision requirement may be too stringent under a given stopping criterion.
c. You can use a preconditioner if you were not already doing so, or to change the one you were using. Note also that the efficiency of the preconditioner may depend on the data distribution strategy adopted. See "Notes and Coding Rules" on page 585.

\section*{Resource Errors}
1. Unable to allocate work space.

\section*{Input-Argument and Miscellaneous Errors}

\section*{Stage 1}
1. The BLACS context is invalid.

\section*{Stage 2}
1. This subroutine was called from outside the process grid.

\section*{Stage 3}
1. The process grid is not \(n p \times 1\).
2. desc_a is not valid.
3. nrhs \(\neq 1\)
4. eps < 0.0
5. methd \(\neq 1,2\), or 3
6. The preconditioner data structure prcs is not valid.
7. istopc \(\neq 1,2\), or 3
8. itmax \(<0\)
9. itrace < 0
10. The sparse matrix \(\boldsymbol{A}\) is not valid.
11. The storage format for the sparse matrix \(\boldsymbol{A}\) is not supported.

Stage 4
1. \(I d b<\max \left(1, N \_R O W\right)\)
2. \(l d x<\max \left(1, N \_R O W\right)\)
3. The preconditioner data structure pres is not valid.

\section*{Stage 5}
1. Each of the following global input arguments are checked to determine whether its value differs from the value specified on process \(P_{00}\) :
iparm differs.
rparm differs.
eps differs.
methd differs.
istopc differs.
itmax differs.
itrace differs.
Some element(s) of prcs differ.

\section*{Example—Using the Fortran 77 Sparse Subroutines}

This example finds the solution to the linear system \(\boldsymbol{A x}=\boldsymbol{b}\). It also contains an application program that shows how you can use the Fortran 77 sparse linear algebraic equation subroutines and their utilities to solve the problem shown in "Example-Using the Fortran 90 Sparse Subroutines" on page 557.

Application Program: This application program illustrates how to use the Fortran 77 sparse linear algebraic equation subroutines and their utilities.
!
! This program illustrates how to use the PESSL F77 Sparse Iterative
! Solver and its supporting utility subroutines. A very simple problem
! (DSRIS Example 1 from the ESSL Guide and Reference) using an
! HPF BLOCK data distribution is solved.
!
PROGRAM EXAMPLE77
IMPLICIT NONE
! Interface definition for the PARTS subroutine PART_BLOCK
INTERFACE PART_BLOCK
SUBROUTINE PARTT_BLOCK (GLOBAL_INDX,N,NP,PV,NV)
IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) : : PV(*)
END SUBROUTINE PART_BLOCK
END INTERFACE
! External declaration for the PARTS subroutine PART_BLOCK
EXTERNAL PART_BLOCK
! Parameters
CHARACTER*1 ORDER
CHARACTER*5 STOR
CHARACTER*5 MTYPE
INTEGER*4 IZERO, IONE, DUPFLAG, N, NNZ
PARAMETER (ORDER='R')
PARAMETER (STOR='DEF')
PARAMETER (MTYPE='GEN')
PARAMETER (IZERO=0)
PARAMETER (IONE=1)
PARAMETER ( \(\mathrm{N}=9\) )
PARAMETER (NNZ=22)
PARAMETER (DUPFLAG=2)
! Descriptor Vector
INTEGER*4, ALLOCATABLE :: DESC_A(:)
! Sparse Matrices and related information
REAL*8 AS(NNZ)
INTEGER*4 IA1 (NNZ+N), IA2 (NNZ+N)
INTEGER*4 INFOA(30)
REAL*8 BS (NNZ)

```

! Allocate the descriptor vector
!
ALLOCATE(DESC_A(30 + 3*NP + 4*N + 3),STAT=IERR)
IF (IERR .NE. 0) THEN
WRITE(6,*) 'Error allocating DESC_A :',IERR
CALL BLACS_ABORT(ICTXT,-1)
STOP
END IF
! Initialize some elements of the sparse matrix A
and its descriptor vector, DESC_A
DESC_A(11) = SIZE(DESC_A)
CALL PADINIT(N,PART_BLOCK,DESC_A,ICTXT)
INFOA(1) = SIZE(AS)
INFOA(2) = SIZE(IA1)
INFOA(3) = SIZE(IA2)
CALL PDSPINIT(AS,IA1,IA2,INFOA,DESC_A)
!
! In this simple example, all processes have a copy of
! the global sparse matrix, A, the global rhs vector B,
and the global initial guess vector, X
Each process will call PDSPINS as many times as necessary
! to insert the local rows it owns.
! Each process will call PDGEINS as many times as necessary
to insert the local elements it owns.
NB = 1
LDB = SIZE (B,1)
LDBG = SIZE(B_GLOBAL,1)
NX = 1
LDX = SIZE (X,1)
LDXG = SIZE(XINIT_GLOBAL,1)
DO GLOBAL_INDX = 1, N
CALL PAR\overline{T}_BLOCK(GLOBAL_INDX,N,NP,PV,NV)
!
! In this simple example, NV will always be 1
! since there will not be duplicate coefficients
DO NV_COUNT = 1, NV
GLOBAL_INDX_OWNER = PV (NV_COUNT)
IF (GLOBAL_INDX_OWNER == MYROW) THEN
IB2(1) = 1
IB2(2) = 1
DO J = IA(GLOBAL_INDX), IA(GLOBAL_INDX+1)-1
BS(IB2(2)) = A_GLOBAL(J)
IB1(IB2(2)) = JA(J)
IB2(2) = IB2(2) + 1
ENDDO
INFOB(1) = IB2(2) - 1
INFOB(2) = IB2(2) - 1
INFOB(3) = 2

```
```

 INFOB(4) = 1
 INFOB(5) = 1
 INFOB(6) = 1
 INFOB(7) = N
 CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,GLOBAL_INDX, 1,
 &
 BS,IB1,IB2,INFOB)
 CALL PDGEINS(NB,B,LDB,GLOBAL_INDX,1,1,1,
 B_GLOBAL(GLOBAL_INDX),LDBG,DESC_A)
 CALL PDGEINS(NX,X,LDX,GLOBAL_INDX,1,1,1,
 &
 XINIT_GLOBAL(GLOBAL_INDX),LDXG,DESC_A)
 ENDIF
 END DO
 END DO
 ! Assemble A and DESC_A
CALL PDSPASB(AS,IA1,IA2,INFOA,DESC_A,
\&
IF (INFO .NE. 0) THEN
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Error in assembly :',INFO
CALL BLACS_ABORT(ICTXT,-1)
STOP
END IF
END IF
! Assemble B and X
CALL PDGEASB(NB,B,LDB,DESC_A)
CALL PDGEASB(NX,X,LDX,DESC_A)
Preconditioning
!
We are using ILU for the preconditioner
!
IPREC = 2
CALL PDSPGPR(IPREC,AS,IA1,IA2,INFOA,
\&
PRCS,SIZE(PRCS),DESC_A,INFO)
IF (INFO .NE. 0) THEN
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Error in preconditioner :',INFO
CALL BLACS_ABORT(ICTXT,-1)
STOP
END IF
END IF
!
! Iterative Solver - use the BICGSTAB method
NRHS = 1
ITMAX = 1000
EPS = 1.D-8
METHD = 1
ISTOPC = 1
ITRACE = 0

```
```

 IPARM = 0
 IPARM(1) = METHD
 IPARM(2) = ISTOPC
 IPARM(3) = ITMAX
 IPARM(4) = ITRACE
 RPARM = 0.0D0
 RPARM(1) = EPS
 CALL PDSPGIS(AS,IA1,IA2,INFOA,NRHS,B,LDB,X,LDX,PRCS,DESC_A,
 \&
IPARM, RPARM, INFO)
IF (INFO .NE. 0) THEN
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Error in solver :',INFO
CALL BLACS_ABORT(ICTXT,-1)
STOP
END IF
END IF
ERR = RPARM(2)
ITER = IPARM(5)
IF (IAM.EQ.0) THEN
WRITE (6,*) 'Number of iterations : ',ITER
WRITE(6,*) 'Error on exit : ',ERR
END IF
!
Each process prints their local piece of the solution vector
IF (IAM.EQ.0) THEN
Write(6,*) 'Solution Vector X'
END IF
LOCAL_INDX = 1
Do GLOBAL_INDX = 1, N
CALL PART_BLOCK(GLOBAL_INDX,N,NP,PV,NV)
!
! In this simple example, NV will always be 1
! since there will not be duplicate coefficients
!
DO NV COUNT = 1,NV
GLOBA
IF (GLOBAL_INDX_OWNER == MYROW) THEN
Write(6,*) GLOBAL_INDX, X(LOCAL_INDX)
LOCAL_INDX = LOCAL_INDX +1
ENDIF
END DO
END DO
!
! Deallocate the descriptor vector
!
DEALLOCATE(DESC_A, STAT=IERR)
IF (IERR .NE. 0) THEN
WRITE(6,*) 'Error deallocating DESC_A :',IERR
CALL BLACS_ABORT(ICTXT,-1)
STOP

```

\section*{Example}

END IF
!
! Terminate the process grid and the BLACS
!
CALL BLACS_GRIDEXIT (ICTXT)
CALL BLACS_EXIT(0)

END PROGRAM EXAMPLE77

\section*{Chapter 9. Eigensystem Analysis and Singular Value Analysis (Message Passing)}

This chapter describes the eigensystem analysis and singular value analysis subroutines.

\section*{Overview of the Eigensystem Analysis and Singular Value Analysis} Subroutines

The eigensystem analysis and singular value analysis subroutines include a subset of the ScaLAPACK subroutines. See references [19] and [20 ].

Note: These subroutines are designed in accordance with the proposed ScaLAPACK standard. If these subroutines do no comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.
\begin{tabular}{|l|l|l|}
\hline Table 97. List of Eigensystem Analysis and Singular Value Analysis Subroutines (Message Passing) \\
\hline Descriptive Name & \begin{tabular}{l} 
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline \begin{tabular}{l} 
Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric \\
Matrix
\end{tabular} & PDSYEVX & 601 \\
\hline Reduce a Real Symmetric Matrix to Tridiagonal Form & PDSYTRD & 619 \\
\hline Reduce a General Matrix to Upper Hessenberg Form & PDGEHRD & 630 \\
\hline Reduce a General Matrix to Bidiagonal Form & PDGEBRD & 640 \\
\hline
\end{tabular}

\section*{Eigensystem Analysis and Singular Value Analysis Subroutines}

This section contains the eigensystem analysis subroutine descriptions.

\section*{PDSYEVX—Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix}

This subroutine computes selected eigenvalues and, optionally, the eigenvectors of a real symmetric matrix \(\boldsymbol{A}\), where \(\boldsymbol{A}\) represents the global symmetric submatrix \(\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}\). Eigenvalues and eigenvectors can be selected by specifying a range of values or a range of indices for the eigenvalues.

If \(n=0\), no computation is performed and the subroutine returns after doing some parameter checking.

See references [13 ], [24 ], [25 ], and [26 ].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|l|}{ Table 98. Data Types } \\
\hline \begin{tabular}{c} 
A, vl, vu, abstol, orfac, \(\boldsymbol{Z}, \boldsymbol{w}\), \\
work, gap
\end{tabular} & iwork, ifail, iclustr & Subroutine \\
\hline Long-precision real & Integer & PDSYEVX \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & \begin{tabular}{l} 
CALL PDSYEVX (jobz, range, uplo, n, a, ia, ja, desc_a, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, \\
jz, desc_z, work, Iwork, iwork, liwork, ifail, iclustr, gap, info)
\end{tabular} \\
\hline C and C++ & \begin{tabular}{l} 
pdsyevx (jobz, range, uplo, n, a, ia, ja, desc_a, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, \\
desc_z, work, Iwork, iwork, liwork, ifail, iclustr, gap, info);
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
jobz
indicates the type of computation to be performed, where:
If jobz \(=\) ' N ', eigenvalues only are computed.
If \(j o b z=\) ' V ', eigenvalues and eigenvectors are computed.
Scope: global
Specified as: a single character; \(j o b z=' N\) ' or ' V '.
range
indicates which eigenvalues to compute, where:
If range \(=\) ' A ', all eigenvalues are to be found.
If range \(=' \mathrm{~V}\) ', all eigenvalues in the interval \([v /, v u]\) are to be found.
If range \(=\) ' \(I\) ', the il-th through iu-th eigenvalues are to be found.
Scope: global
Specified as: a single character; range = 'A', 'V', or 'I'.
uplo
indicates whether the upper or lower triangular part of the global symmetric submatrix \(\boldsymbol{A}\) is referenced, where:

If uplo = 'U', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
\(n\)
is the order of submatrix \(\boldsymbol{A}\) used in the computation.

\section*{Scope: global}

Specified as: a fullword integer; \(n \geq 0\).
a
is the local part of the global symmetric matrix \(\boldsymbol{A}\). This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of the local array \(A\) must contain the local pieces of the leading \(i a+n-1\) by ja+n-1 part of the global matrix, and:
- If uplo \(=\) ' \(U\) ', the leading \(n \times n\) upper triangular part of the global symmetric submatrix \(\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}\) must contain the upper triangular part of the symmetric matrix, and the strictly lower triangular part is not referenced.
- If uplo \(=\) ' \(L\) ', the leading \(n \times n\) lower triangular part of the global symmetric submatrix \(\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}\) must contain the lower triangular part of the symmetric matrix, and the strictly upper triangular part is not referenced.

Scope: local
Specified as: an LLD_A by (at least) \(\operatorname{LOCq}\left(N \_A\right)\) array, containing numbers of the data type indicated in Table 98 on page 601. Details about the square block-cyclic data distribution of global matrix \(\boldsymbol{A}\) are stored in desc_a.
is the row index of the global matrix \(\boldsymbol{A}\), identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; \(1 \leq i a \leq M \_A\) and \(i a+n-1 \leq M \_A\). ja
is the column index of the global matrix \(\boldsymbol{A}\), identifying the first column of the submatrix \(\boldsymbol{A}\).

\section*{Scope: global}

Specified as: a fullword integer; \(1 \leq j a \leq\) N_A and ja+n-1 \(\leq\) N_A. desc_a
is the array descriptor for global matrix \(\boldsymbol{A}\), described in the following table:
\begin{tabular}{|l|l|l|l|l|}
\hline desc_a & Name & Description & Limits & Scope \\
\hline 1 & DTYPE_A & Descriptor type & DTYPE_A=1 & Global \\
\hline 2 & CTXT_A & \begin{tabular}{l} 
Valid value, as returned by \\
BLACS_GRIDINIT or \\
BLACS_GRIDMAP
\end{tabular} & Global \\
\hline 3 & M_A & \begin{tabular}{l} 
Number of rows in the global \\
matrix
\end{tabular} & \begin{tabular}{l} 
If \(n=0: M \_A \geq 0\) \\
Otherwise: M_A \(\geq 1\)
\end{tabular} & Global \\
\hline 4 & N_A & \begin{tabular}{l} 
Number of columns in the \\
global matrix
\end{tabular} & \begin{tabular}{l} 
If \(n=0:\) N_A \(\geq 0\) \\
Otherwise: \(N\) _A \(\geq 1\)
\end{tabular} & Global \\
\hline 5 & MB_A & Row block size & MB_A \(\geq 1\) & Global \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline desc_a & Name & Description & Limits & Scope \\
\hline 6 & NB_A & Column block size & NB_A \(\geq 1\) & Global \\
\hline 7 & RSRC_A & The process row of the \(p \times q\) grid over which the first row of the global matrix is distributed & \(0 \leq\) RSRC_A < \(p\) & Global \\
\hline 8 & CSRC_A & The process column of the \(p \times q\) grid over which the first column of the global matrix is distributed & \(0 \leq\) CSRC_A < \(q\) & Global \\
\hline 9 & LLD_A & The leading dimension of the local array & LLD_A \(\geq\) max(1,LOCp(M_A)) & Local \\
\hline
\end{tabular}

Specified as: an array of (at least) length 9, containing fullword integers.
has the following meaning:
If range \(=\) ' V ', it is the lower bound of the interval to be searched for eigenvalues.
If range \(\neq ' \mathrm{~V}\) ', this argument is ignored.
Scope: global
Specified as: a number of the data type indicated in Table 98 on page 601. If range = 'V', vl < vu.
vu
has the following meaning:
If range \(=\) ' V ', it is the upper bound of the interval to be searched for eigenvalues.

If range \(\neq\) ' V ', this argument is ignored.
Scope: global
Specified as: a number of the data type indicated in Table 98 on page 601. If
range = 'V', vl < vu.
il
has the following meaning:
If range \(=\) ' I ', it is the index (from smallest to largest) of the smallest eigenvalue to be returned.

If range \(\neq\) ' \(I\) ', this argument is ignored.
Scope: global
Specified as: a fullword integer; il \(\geq 1\).
iu
has the following meaning:
If range \(=\) ' \(I\) ', it is the index (from smallest to largest) of the largest eigenvalue to be returned.

If range \(\neq\) ' I ', this argument is ignored.

\section*{Scope: global}

Specified as: a fullword integer; \(\min (i l, n) \leq i u \leq n\).
abstol
is the absolute tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to:
abstol+ \((\max (|a|,|b|))\)
where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon(\operatorname{norm}(\boldsymbol{T})\) is used in its place, where \(\operatorname{norm}(\boldsymbol{T})\) is the 1 -norm of the tridiagonal matrix obtained by reducing \(\boldsymbol{A}\) to tridiagonal form. For most problems, this is the appropriate level of accuracy to request.

For certain strongly graded matrices, greater accuracy can be obtained in very small eigenvalues by setting abstol to a very small positive number. However, if abstol is less than:
\[
\sqrt{u n f l}
\]
where unfl is the underflow threshold, then:
\[
\sqrt{u n f l}
\]
is used in its place.
Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold-that is, (2)(unf).
If jobz = 'V', then setting abstol to unfl, the underflow threshold, yields the most orthogonal eigenvectors.

\section*{Note:}
- \(\varepsilon\) is approximately \(0.222044604925031308 \mathrm{E}-15\)
- unfl is approximately \(0.222507385850720138 \mathrm{E}-307\)
- \(\sqrt{u n f l}\) is approximately \(0.149166814624004135 \mathrm{E}-153\)

\section*{Scope: global}

Specified as: a number of the data type indicated in Table 98 on page 601.
\(m\)
See On Return.
nz
See On Return.
w
See On Return.
orfac
specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within:
```

ortol = (orfac)(norm(A))

```
of each other (where norm \((\boldsymbol{A})\) is the 1 -norm of \(\boldsymbol{A}\) ) are to be reorthogonalized.

However, if the workspace is insufficient (see Iwork), ortol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process.
If orfac is zero, no reorthogonalization is done.
If orfac is less than zero, a default value of \(10^{-3}\) is used.
Scope: global
Specified as: a number of the data type indicated in Table 98 on page 601.
z
See On Return.
iz
is the row index of the global matrix \(\boldsymbol{Z}\), identifying the first row of the submatrix \(Z\).

Scope: global
Specified as: a fullword integer; \(1 \leq i z \leq M \_Z\) and \(i z+n-1 \leq M \_Z\). jz
is the column index of the global matrix \(\boldsymbol{Z}\), identifying the first column of the submatrix \(\boldsymbol{Z}\).

\section*{Scope: global}

Specified as: a fullword integer; \(1 \leq j z \leq N \_Z\) and \(j z+n-1 \leq N \_Z\). desc_z
is the array descriptor for global matrix \(\boldsymbol{Z}\), described in the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline desc_z & Name & Description & Limits & Scope \\
\hline 1 & DTYPE_Z & Descriptor type & DTYPE_Z=1 & Global \\
\hline 2 & CTXT_Z & BLACS context & Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP & Global \\
\hline 3 & M_Z & Number of rows in the global matrix & \begin{tabular}{l}
If \(n=0: M \_\geq 0\) \\
Otherwise: \(\mathrm{M} \_\mathrm{Z} \geq 1\)
\end{tabular} & Global \\
\hline 4 & N_Z & Number of columns in the global matrix & \begin{tabular}{l}
If \(n=0: \mathrm{N} Z \geq 0\) \\
Otherwise: \(\mathrm{N} Z \geq 1\)
\end{tabular} & Global \\
\hline 5 & MB_Z & Row block size & MB_Z \(\geq 1\) & Global \\
\hline 6 & NB_Z & Column block size & NB_Z \(\geq 1\) & Global \\
\hline 7 & RSRC_Z & The process row of the \(p \times q\) grid over which the first row of the global matrix is distributed & \(0 \leq R S R C \_\)- \(<\) & Global \\
\hline 8 & CSRC_Z & The process column of the \(p \times q\) grid over which the first column of the global matrix is distributed & \(0 \leq\) CSRC_Z \(<q\) & Global \\
\hline 9 & LLD_Z & The leading dimension of the local array & LLD_Z \(\geq \max (1, \mathrm{LOCp}(\mathrm{M}\) _Z) \()\) & Local \\
\hline
\end{tabular}

Specified as: an array of (at least) length 9, containing fullword integers. work
has the following meaning:
If Iwork = 0, work is ignored.

If /work \(\neq 0\), work is a work area used by this subroutine, where:
- If /work \(\neq-1\), then its size is (at least) of length /work.
- If /work \(=-1\), then its size is (at least) of length 1 .

\section*{Scope: local}

Specified as: an area of storage containing numbers of data type indicated in Table 98 on page 601. Iwork
is the number of elements in array WORK.
Scope:
- If /work \(\geq 0\), Iwork is local.
- If /work = -1, Iwork is global.

Specified as: a fullword integer; where:
- If /work = 0, PDSYEVX dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If /work \(=-1\), PDSYEVX performs a work area query and returns the minimum required size of work in work. . No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, use the following rules to determine the value to specify:
- If jobz = ' N ', it must have the following value:

Iwork \(\geq 3(n+j a-1)+2 n+\max (5 n n,(n b)(n p+1))\)
- If \(j o b z=\) ' V ', then the amount of workspace required to guarantee that all eigenvectors are computed is:
/work \(\geq 3(n+j a-1)+2 n+\max (5 n n,(n p 0)(m q 0)+2(n b)(n b))+\) iceil(neig, (nprow)(npcol))(nn)
where:
```

$n n=\max (n, n b, 2)$
neig is the number of eigenvectors requested
$n b=M B _A=$ NB_A $=$ MB_Z $=$ NB_Z
$n p=\operatorname{NUMROC}(n n, n b$, myrow, iarow, nprow)
$n p 0=\operatorname{NUMROC}(n n+i r o f f z, n b$, izrow, izrow, nprow)
$m q 0=\operatorname{NUMROC}(\max (n e i g, n b, 2)+i c o f f z, n b, i z c o l$, izcol, npcol)
iarow $=\bmod ($ RSRC_A $+(i a-1) / n b$, nprow $)$
izrow $=\bmod ($ RSRC_Z $+(i z-1) / n b$, nprow $)$
$i z c o l=\bmod \left(C S R C _Z+(j z-1) / n b, n p c o l\right)$
iroffz $=\bmod (i z-1$, MB_Z)
$i c o f f z=\bmod \left(j z-1, N B _Z\right)$

```

The computed eigenvectors may not be orthogonal if the minimum workspace is supplied and ortol is too small; therefore, if you want to guarantee orthogonality (at the cost of potentially compromising performance), you should add the following to /work:
(clustersize-1)(n)
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
\[
\left\{w_{k}, \ldots, w_{k+i c l u s t r s z-1} \mid w_{j+1} \leq w_{j}+\operatorname{orfac}(2)(\operatorname{norm}(\boldsymbol{A}))\right\}
\]

Note: This subroutine does not add this amount when dynamically allocating this workspace. You must use static allocation if you want to guarantee orthogonality.
When Iwork is too small:
- If /work is too small to guarantee orthogonality, this subroutine attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
- If /work is too small to compute all the eigenvectors requested, no computation is performed, except that if range \(=\) ' V ', this subroutine does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, if range \(=\) ' V ' and /work is large enough to allow this subroutine to compute the eigenvalues, this subroutine computes the eigenvalues and as many eigenvectors as it can.
Relationship between workspace, orthogonality, and performance:
If clustersize is:
\[
\text { clustersize } \geq n / \sqrt{(\text { nprow })(\text { npcol })}
\]
then providing enough space to compute all the eigenvectors orthogonally causes serious degradation in performance. In the limit (clustersize \(=n-1\) ), performance may be no better than using one process.
If clustersize is:
clustersize \(=n / \sqrt{(\text { nprow })(\text { npcol })}\)
then reorthogonalizing all eigenvectors increases the total execution time by a factor of 2 or more.
If clustersize is:
clustersize \(>n / \sqrt{(\text { nprow })(\text { npcol })}\)
then execution time grows as the square of the cluster size, assuming all other factors remain equal and there is enough workspace. Less workspace means less reorthogonalization, but faster execution.
iwork
has the following meaning:
If liwork \(=0\), iwork is ignored.
If liwork \(\neq 0\), iwork is a work area used by this subroutine, where:
- If liwork \(\neq-1\), then its size is (at least) of length liwork.
- If liwork \(=-1\), then its size is (at least) of length 1 .

\section*{Scope: local}

Specified as: an area of storage containing fullword integers.
liwork
is the number of elements in array IWORK.
Scope:
- If liwork \(\geq 0\), liwork is local.
- If liwork \(=-1\), liwork is global.

Specified as: a fullword integer; where:
- If liwork = 0, PDSYEVX dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If liwork = -1, PDSYEVX performs a work area query and returns the minimum required size of iwork in iwork. No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, it must have the following value:
liwork \(\geq \max (\) isizestein, isizestebz) \(+2 n\)
where:
isizestein must have the following value:
- If jobz = ' N ', isizestein \(=3 n+n p r o c s+1\)
- If jobz = 'V', isizestein \(=(n+j z-1)+2 n+n p r o c s+1\)
isizestebz \(=\max (4 n, 14\), nprocs \()\) nprocs \(=(\) nprow \()(\) npcol)
ifail
See On Return.
iclustr
See On Return.
gap
See On Return.
info
See On Return.

\section*{On Return}
a
\(a\) is the local part of the global symmetric matrix \(\boldsymbol{A}\), where:
If uplo = ' U ', the upper triangle and diagonal of submatrix \(\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}\) are overwritten; that is, the original input is not preserved.
If uplo \(=\) ' L ', the lower triangle and diagonal of submatrix \(\boldsymbol{A}_{\text {ia:ia+n-1, ja:jan-n-1 }}\) are overwritten; that is, the original input is not preserved.

Scope: local
Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 98 on page 601.
\(m\)
is the number of eigenvalues found.
Scope: global

Returned as: a fullword integer; \(0 \leq m \leq n\).
has the following meaning:
If \(j o b z \neq\) ' V ', then \(n z\) is ignored.
If \(j o b z=\) ' \(V\) ', then \(n z\) is the number of eigenvectors computed-that is, the number of columns of \(\boldsymbol{Z}\) used in the computation. On output, \(n z=m\) unless you provide insufficient space. To get all the eigenvectors requested, you must supply both sufficient space to hold the eigenvectors in \(\boldsymbol{Z}\) and sufficient workspace to compute them (see /work).
If range \(=\) ' A ' or ' I ', PDSYEVX does not perform any computations if the work space supplied is insufficient. In this case, an input-argument error is issued and your job is terminated. For range \(=\) ' V ', the number of requested eigenvectors is unknown until the eigenvalues are found. In this case, PDSYEVX computes as many eigenvectors as space allows. Then, if \(n z \neq m\), a computational error message is issued.

\section*{Scope: global}

Returned as: a fullword integer; \(0 \leq n z \leq m\).
On normal exit (see info), it is the vector \(\boldsymbol{w}\), containing the selected eigenvalues in ascending order in the first \(m\) elements of \(\boldsymbol{w}\).

\section*{Scope: global}

Returned as: a one-dimensional array of (at least) length \(n\), containing numbers of the data type indicated in Table 98 on page 601.
has the following meaning:
If \(j o b z=\) ' N ', then \(z\) is ignored.
If jobz = ' V ' and there is a normal exit (see info), then this is the updated local part of the global matrix \(\boldsymbol{Z}\), where columns \(j z\) to \(j z+m-1\) of the global matrix \(\boldsymbol{Z}\) contain the orthonormal eigenvectors of the global matrix \(\boldsymbol{A}\), corresponding to the selected eigenvalues. If an eigenvector fails to converge, then the corresponding column of the global matrix \(\boldsymbol{Z}\) contains the last approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

This identifies the first element of the local array Z. This subroutine computes the location of the first element of the local subarray used, based on iz, jz, desc_z, p, q, myrow, and mycol; therefore, the leading LOCp(iz+n-1) by LOCq(jz+n-1) part of the local array \(Z\) must contain the local pieces of the leading \(i z+n-1\) by \(j z+n-1\) part of the global matrix \(\boldsymbol{Z}\).

\section*{Scope: local}

Returned as: an LLD_Z by (at least) LOCq(N_Z) array, containing numbers of the data type indicated in Table 98 on page 601.
work
is the work area used by this subroutine if /work \(\neq 0\),where:
If lwork \(\neq 0\) and /work \(\neq-1\), its size is (at least) of length /work.
If /work \(=-1\), its size is (at least) of length 1 .
Scope: local

Returned as: an area of storage, containing numbers of the data type indicated in Table 98 on page 601, where:
If /work \(\geq 1\) or /work \(=-1\), then:
- If \(j o b z=' \mathrm{~N}\) ', then work \({ }_{1}\) is set to the minimum Iwork value needed.
- If \(j o b z=\) ' V ', then work \(k_{1}\) is set to the minimum /work value needed to compute all eigenvectors, but not necessarily sufficient to guarantee orthogonality of the eigenvectors. Except for work 1 , the contents of work are overwritten on return.
iwork
is the work area used by this subroutine if liwork \(\neq 0\), where:
If liwork \(\neq 0\) and liwork \(\neq-1\), then its size is (at least) of length liwork.
If liwork \(=-1\), then its size is (at least) of length 1 .

Scope: local
Returned as: an area of storage, where:
If liwork \(\geq 1\) or liwork \(=-1\), then iwork \({ }_{1}\) is set to the minimum liwork value and contains numbers of the data type indicated in Table 98 on page 601.
Except for iwork \(_{1}\), the contents of iwork are overwritten on return.
ifail
has the following meaning:
If \(j o b z=\) ' N ', then ifail is ignored.
If jobz \(=\) ' V ', it is vector ifail, where:
- If there is a normal exit (see info), the first \(m\) elements of ifail are zero.
- If there is an error exit (where one or more eigenvectors failed to converge-see info), ifail contains the indices of the eigenvectors that failed to converge.

\section*{Scope: global}

Returned as: a one-dimensional array of (at least) length \(n\), containing fullword integers; \(0 \leq\) ifail \(_{j} \leq n\).
iclustr
has the following meaning:
If \(j o b z=\) ' N ', then iclustr is ignored.
If jobz = ' V ', it is vector iclustr, containing the indices of the eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace. Eigenvectors corresponding to clusters of eigenvalues indexed iclustr \(2_{i-1}\) to iclustr \({ }_{2 i}\) could not be reorthogonalized due to lack of workspace. Hence, the eigenvectors corresponding to these clusters may not be orthogonal.
iclustr is a zero-terminated vector; that is, the last element of iclustr is set to zero. Assuming that \(k\) is the number of clusters, then:
\[
\text { iclustr }_{2 k} \neq 0 \text { and iclustr }{ }_{2 k+1}=0
\]

Scope: global

Returned as: a one-dimensional array of (at least) length 2(nprow)(npco), containing fullword integers; \(0 \leq\) iclustr \(_{i} \leq n\).
gap
has the following meaning:
If \(j o b z=\) ' N ', then gap is ignored.
If jobz = ' V ', it is vector gap, containing the gap between the eigenvalues whose eigenvectors could not be reorthogonalized. The values in this vector correspond to the clusters indicated by iclustr. As a result, the dot product between the eigenvectors corresponding to the \(i\)-th cluster may be as high as \((C)(n) / g a p_{i}\), where \(C\) is a small constant.

\section*{Scope: global}

Returned as: a one-dimensional array of (at least) length (nprow)(npcol), containing numbers of the data type indicated in Table 98 on page 601. info
has the following meaning:
If info \(=0\), then no input-argument errors or computational errors occurred. This indicates a normal exit.

Note: One use of info in ScaLAPACK is to identify whether input-argument errors occurred. Because Parallel ESSL terminates the application if input-argument errors occur, the setting of info is irrelevant for these errors.

If info \(>0\), then one or more of the following computational errors occurred and the appropriate error messages were issued, indicating an error exit, where:
- If \(\bmod (\) info, 2\() \neq 0\), then one or more eigenvectors failed to converge. Their indices are stored in ifail. (Ensure that abstol \(=(2)(\) unfl).)
- If \(\bmod (\) info \(/ 2,2) \neq 0\), then the eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in iclustr.
- If \(\bmod (\) info/4, 2\() \neq 0\), then all the eigenvectors between \(v /\) and \(v u\) could not be computed because of insufficient space. The number of eigenvectors computed is returned in \(n z\).
- If \(\bmod (\) info/8, 2\() \neq 0\), then one of more eigenvalues were not computed. (Ensure that abstol \(=(2)(u n f)\) ).)

\section*{Scope: global}

Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. This subroutine accepts lowercase letters for the jobz, range, and uplo arguments.
2. In your C program, argument info must be passed by reference.
3. A, Z, w, ifail, iclustr, gap, work, and iwork must have no common elements; otherwise, results are unpredictable.
4. The NUMROC utility subroutine can be used to determine the values of \(\operatorname{LOCp}\left(\mathrm{M} \_\right)\)and \(\operatorname{LOCq}\left(\mathrm{N} \_\right)\)used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on
page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
5. The global symmetric matrix \(\boldsymbol{A}\) must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
6. The global symmetric matrix \(\boldsymbol{A}\) must be aligned on a block boundary; that is:
- ia-1 must be a multiple of MB_A
- ja-1 must be a multiple of NB_A
7. If \(j o b z=\) ' V ', then also follow these rules:
- In the process grid, the process row containing the first row of the submatrix \(\boldsymbol{A}\) must also contain the first row of the submatrix \(\boldsymbol{Z}\); that is: iarow \(=\) izrow
where:
- iarow \(=\) mod(RSRC_A+(ia-1)/MB_A, \(p\) )
- izrow \(=\) mod(RSRC_Z+(iz-1)/MB_Z, p)
- \(M \_A=M \_Z\)
- MB_A = MB_Z
- NB_A = NB_Z
- RSRC_A = RSRC_Z
- CSRC_A = CSRC_Z
- CTXT_A = CTXT_Z
- The block row offset of the global symmetric matrix \(\boldsymbol{A}\) must be equal to the block row offset of the global general matrix \(\boldsymbol{Z}\); that is:
\(-\bmod \left(\left(i a-1, M B \_A\right)=\bmod \left(i z-1, M B \_Z\right)\right)\)
8. Eigenvectors associated with tightly clustered eigenvalues may not be orthogonal.
9. Eigenvectors that are on different processes are not reorthogonalized. For details, see the Iwork argument.
10. An example of the use of this subroutine in a thermal diffusion application program is shown in Appendix B. See "Program Main (Message Passing)" on page 914.
11. If /work \(=-1\) on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .
12. If liwork \(=-1\) on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .

Function: This subroutine computes selected eigenvalues and, optionally, the eigenvectors of a real symmetric matrix \(\boldsymbol{A}\). Eigenvalues and eigenvectors can be selected by specifying a range of values or a range of indices for the eigenvalues. The computation involves the following steps:
1. Reduce the real symmetric matrix \(\boldsymbol{A}\) to real symmetric tridiagonal form.
2. Compute the requested eigenvalues of the real symmetric tridiagonal matrix using bisection.
3. If requested, compute the eigenvectors of the real symmetric tridiagonal matrix using inverse iteration, and then back transform the eigenvectors to obtain the eigenvectors of the real symmetric matrix \(\boldsymbol{A}\).

\section*{Error Conditions}

\section*{Computational Errors}

Note: For more details, see output argument info.
1. Bisection failed to converge for some eigenvalues. The eigenvalues may not be as accurate as the absolute and relative tolerances.
2. The number of eigenvalues computed does not match the number of eigenvalues requested.
3. No eigenvalues were computed, because the Gershgorin interval initially used was incorrect.
4. Some eigenvectors failed to converge. The indices are stored in ifail.
5. Eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in iclustr.
6. All the eigenvectors between \(v /\) and \(v u\) could not be computed due to insufficient workspace. The number of eigenvectors computed is returned in \(n z\).

\section*{Resource Errors}
1. (lwork \(=0\) or liwork \(=0)\) and unable to allocate work space

\section*{Input-Argument and Miscellaneous Errors}

\section*{Stage 1}
1. DTYPE_A is invalid.
2. DTYPE_Z is invalid and jobz = ' V '

\section*{Stage 2}
1. \(C T X T \_A\) is invalid.

\section*{Stage 3}
1. PDSYEVX has been called from outside the process grid.

\section*{Stage 4}
1. \(j o b z \neq{ }^{\prime} \mathrm{N}\) ' or ' V '
2. range \(\neq\) 'U', 'V', or 'I'
3. uplo \(\neq\) 'U' or 'L'
4. \(n<0\)
5. \(\mathrm{M} \_\mathrm{A}<0\) and \(n=0\); M_A \(<1\) otherwise
6. \(\mathrm{N} \_\mathrm{A}<0\) and \(n=0 ; \mathrm{N} \_\mathrm{A}<1\) otherwise
7. \(M B \_A<1\)
8. \(N B \_A<1\)
9. RSRC_A \(<0\) or RSRC_A \(\geq p\)
10. \(\operatorname{CSRC} A<0\) or \(\operatorname{CSRC} A \geq q\)
11. \(i a<1\)
12. \(j a<1\)

If \(j o b z=\) ' \(V\) ':
13. \(\mathrm{M} \_Z<0\) and \(n=0 ; \mathrm{M} Z \mathrm{Z}<1\) otherwise
14. N_Z \(<0\) and \(n=0 ;\) N_Z \(<1\) otherwise
15. MB_Z < 1
16. \(N B\) _ \(Z<1\)
17. \(\operatorname{RSR} \bar{R} \_Z<0\) or RSRC_Z \(\geq p\)
18. CSRC_Z \(<0\) or CSRC_Z \(\geq q\)
19. \(i z<1\)
20. \(j z<1\)
21. CTXT_A \(\neq C T X T \_Z\)

\section*{Stage 5}
1. \(v u \leq v /\) and range \(=' \mathrm{~V}\) ' and \(n \neq 0\)
2. il \(<1\) and range \(={ }^{\prime} I '\)
3. \((i u<\min (n, i)\) or \(i u>n)\) and range \(=' I '\)

If \(n \neq 0\) :
4. ia > M_A
5. \(j a>\mathrm{N} \_\mathrm{A}\)
6. \(i a+n-1>M \_A\)
7. \(j a+n-1>\) N_A

If \(n \neq 0\) and \(j o b z=' \mathrm{~V}\) ':
8. \(i z>M \_Z\)
9. \(j z>\) N_Z
10. \(i z+n-1>M \_Z\)
11. \(j z+n-1>N Z Z\)

In all cases:
12. \(M B \_A \neq N B \_A\)
13. \(\bmod \left(i a-1, M B \_A\right) \neq 0\)
14. \(\bmod \left(j a-1, N B \_A\right) \neq 0\)

If \(j o b z=\) 'V':
15. \(M \_A \neq M \_Z\)
16. \(M B \_A \neq M B \_Z\)
17. \(N B \_A \neq N B \_Z\)
18. \(\bmod \left(i z-1, M B \_Z\right) \neq \bmod \left(i a-1, M B \_A\right)\)
19. In the process grid, the process row containing the first row of the submatrix \(\boldsymbol{A}\) does not contain the first row of the submatrix \(\boldsymbol{Z}\); that is, iarow \(\neq\) izrow, where:
a. iarow \(=\bmod \left(\right.\) RSRC \(\left.\_A+(i a-1) / M B \_A, p\right)\)
b. izrow \(=\bmod \left(\right.\) RSRC_Z \(\left.+(i z-1) / M B \_Z, p\right)\)
20. RSRC_A \(\neq\) RSRC_Z
21. CSRC_A \(\neq\) CSRC_Z

\section*{Stage 6}
1. \(\operatorname{LLD} \_A<\max \left(1, \operatorname{LOCp}\left(M \_A\right)\right)\)
2. Iwork \(\neq 0\), Iwork \(\neq-1\), and Iwork \(<\) (minimum value). (For the minimum value, see the lwork argument description.)
3. liwork \(\neq 0\), liwork \(\neq-1\), and liwork \(<\) (minimum value). (For the minimum value, see the liwork argument description.)

If \(j o b z=\) ' V ':
4. \(\operatorname{LLD} Z Z<\max \left(1, \operatorname{LOCp}\left(M \_Z\right)\right)\)

\section*{Stage 7}

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process \(P_{00}\) :
1. jobz differs.
2. range differs.
3. uplo differs.
4. \(n\) differs.
5. ia differs.
6. ja differs.
7. DTYPE_A differs.
8. M_A differs.
9. N_A differs.
10. \(M B \_A\) differs.
11. NB_A differs.
12. RSRC_A differs.
13. CSRC_A differs.
14. ABSTOL differs.

Also:
15. lwork \(=-1\) on a subset of processes.
16. liwork \(=-1\) on a subset of processes.

Stage 8
Each of the following global input arguments are checked to determine whether its value differs from the value specified on process \(\mathrm{P}_{00}\) :

If range = ' V ':
1. \(\mathrm{v} /\) differs.
2. \(v u\) differs.

If range \(=\) ' 1 ':
3. il differs.
4. iu differs.

If \(j o b z=\) ' V ':
5. iz differs.
6. jz differs.
7. DTYPE_Z differs.
8. M_Z differs.
9. \(N \_Z\) differs.
10. MB_Z differs.
11. NB_Z differs.
12. RSRC_Z differs.
13. CSRC_Z differs.
14. ORFAC differs.

Example: This example shows how to find all the eigenvalues and eigenvectors of a real symmetric matrix \(\boldsymbol{A}\) of order 4 using a \(2 \times 2\) process grid.

\section*{Notes:}
1. Because range \(={ }^{\prime} \mathrm{A}^{\prime}\), arguments \(v l, v u, i l\), and \(i u\) are not referenced.
2. Because lwork \(=0\) and liwork \(=0\), PDSYEVX dynamically allocates the work areas used by this subroutine.

\section*{Call Statements and Input}
```

ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

```


\begin{tabular}{|c|c|c|}
\hline & DESC_A & DESC_Z \\
\hline DTYPE_ & 1 & 1 \\
\hline CTXT_ & icontxt \({ }^{1}\) & icontxt \({ }^{1}\) \\
\hline M- & 4 & 4 \\
\hline N_ & 4 & 4 \\
\hline MB_ & 1 & 1 \\
\hline NB & 1 & 1 \\
\hline RSRC_ & 0 & 0 \\
\hline CSRC_ & 0 & 0 \\
\hline LLD_ & See below \({ }^{2}\) & See below \({ }^{2}\) \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
1 icontxt is the output of the BLACS_GRIDINIT call. \\
2 Each process should set the LLD_ as follows: \\
LLD_A \(=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M \_A, M B \_A, M Y R O W, ~ R S R C \_A, N P R O W\right)\right) ~\) \\
LLD_Z = MAX(1,NUMROC(M_Z, MB_Z, MYROW, RSRC_Z, NPROW))
\end{tabular}} \\
\hline
\end{tabular}

Global symmetric matrix \(\boldsymbol{A}\) of order 4 with block sizes \(1 \times 1\) :


The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0} \mathbf{2}\) & \(\mathbf{1 3}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\(\mathbf{2}\) & & \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\) \\
\(\mathbf{3}\) & &
\end{tabular}

Local arrays for \(\boldsymbol{A}\) :


\section*{Output:}

The upper triangle, including the diagonal, of the global symmetric matrix \(\boldsymbol{A}\) is overwritten; that is, the original input is not preserved.

On all processes, \(m=4\) and \(n z=4\).
Global vector \(\boldsymbol{w}\) of length 4 is the same on all processes:
\[
w=(1.00,2.00,5.00,10.00)
\]

Global general matrix \(\boldsymbol{Z}\) of order 4 with block sizes \(1 \times 1\) :
\begin{tabular}{|c|c|c|c|c|}
\hline B, D & 0 & 1 & 2 & 3 \\
\hline 0 & 0.7071 & 0.0000 & -0.3162 & -0.6325 \\
\hline 1 & -0.7071 & 0.0000 & -0.3162 & -0.6325 \\
\hline 2 & 0.0000 & -0.7071 & 0.6325 & -0.3162 \\
\hline 3 & 0.0000 & 0.7071 & 0.6325 & -0.3162 \\
\hline
\end{tabular}

The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0 2}\) & \(\mathbf{1 3}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\(\mathbf{2}\) & & \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\) \\
\(\mathbf{3}\) & &
\end{tabular}

Local arrays for \(\boldsymbol{Z}\) :
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} \\
\hline 0 & 0.7071 & -0.3162 & 0.0000 & -0.6325 \\
\hline & 0.0000 & 0.6325 & -0.7071 & -0.3162 \\
\hline \multirow[t]{2}{*}{1} & -0.7071 & -0.3162 & 0.0000 & -0.6325 \\
\hline & 0.0000 & 0.6325 & 0.7071 & -0.3162 \\
\hline
\end{tabular}

Global vector ifail of length 4 is the same on all processes:
\[
\text { ifail }=(0,0,0,0)
\]

Global vector iclustr of length \(8(=2(n p r o w)(n p c o l))\) is the same on all processes:
iclustr \(=(0,0,0,0,0,0,0,0)\)
Global vector gap of length 4 ( \(=(\) nprow \()(n p c o l)\) ) is the same on all processes:
```

gap = (-1.0, -1.0, -1.0, -1.0)

```

The value of info is 0 on all processes.

\section*{PDSYTRD—Reduce a Real Symmetric Matrix to Tridiagonal Form}

This subroutine reduces a real symmetric matrix \(\boldsymbol{A}\) to symmetric tridiagonal form \(\boldsymbol{T}\) by an orthogonal similarity transformation:
\[
T=Q^{\top} A Q
\]
where \(\boldsymbol{A}\) represents the global symmetric submatrix \(\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}\).
If \(n=0\), no computation is performed and the subroutine returns after doing some parameter checking.

See references [13 ] and [21 ].
\begin{tabular}{|c|c|}
\hline Table 99. Data Types \\
\hline \(\boldsymbol{A}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{\tau}\), work & Subroutine \\
\hline Long-precision real & PDSYTRD \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PDSYTRD (uplo, \(n\), \(a\), ia, ja, desc_a, d, e, tau, work, Iwork, info) \\
\hline C and C++ & pdsytrd (uplo, n, a, ia, ja, desc_a, d, e, tau, work, Iwork, info); \\
\hline
\end{tabular}

\section*{On Entry}
uplo
indicates whether the upper or lower triangular part of the global symmetric submatrix \(\boldsymbol{A}\) is referenced, where:

If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Scope: global
Specified as: a single character; uplo = 'U' or 'L'.
\(n\)
is the order of submatrix \(\boldsymbol{A}\) used in the computation.
Scope: global
Specified as: a fullword integer; \(n \geq 0\).
\(a\)
is the local part of the global symmetric matrix \(\boldsymbol{A}\). This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp( \((a+n-1)\) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading \(i a+n-1\) by \(j a+n-1\) part of the global matrix, and:
- If uplo \(=\) ' U ', the leading \(n \times n\) upper triangular part of the global symmetric submatrix \(\boldsymbol{A}_{i a: i a+n-1, \text { ja:jan-1 }}\) must contain the upper triangular part of the symmetric matrix, and the strictly lower triangular part is not referenced.
- If uplo \(=\) ' L ', the leading \(n \times n\) lower triangular part of the global symmetric submatrix \(\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}\) must contain the lower triangular part
of the symmetric matrix, and the strictly upper triangular part is not referenced.

\section*{Scope: local}

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 99 on page 619. Details about the square block-cyclic data distribution of global matrix \(\boldsymbol{A}\) are stored in desc_a. ia
is the row index of the global matrix \(\boldsymbol{A}\), identifying the first row of the submatrix A.

Scope: global
Specified as: a fullword integer; \(1 \leq i a \leq M \_A\) and \(i a+n-1 \leq M \_A\). ja
is the column index of the global matrix \(\boldsymbol{A}\), identifying the first column of the submatrix \(\boldsymbol{A}\).

Scope: global
Specified as: a fullword integer; \(1 \leq j a \leq N \_A\) and \(j a+n-1 \leq N \_A\). desc_a
is the array descriptor for global matrix \(\boldsymbol{A}\), described in the following table:
\begin{tabular}{|l|l|l|l|l|}
\hline desc_a & Name & Description & Limits & Scope \\
\hline 1 & DTYPE_A & Descriptor type & DTYPE_A=1 & Global \\
\hline 2 & CTXT_A & BLACS context & \begin{tabular}{l} 
Valid value, as returned by \\
BLACS_GRIDINIT or \\
BLACS_GRIDMAP
\end{tabular} & Global \\
\hline 3 & M_A & \begin{tabular}{l} 
Number of rows in the global \\
matrix
\end{tabular} & \begin{tabular}{l} 
If \(n=0:\) M_A \(\geq 0\) \\
Otherwise: M_A \(\geq 1\)
\end{tabular} & Global \\
\hline 4 & N_A & \begin{tabular}{l} 
Number of columns in the \\
global matrix
\end{tabular} & \begin{tabular}{l} 
If \(n=0:\) N_A \(\geq 0\) \\
Otherwise: \(N \_A \geq 1\)
\end{tabular} & Global \\
\hline 5 & MB_A & Row block size & MB_A \(\geq 1\) & Global \\
\hline 6 & NB_A & Column block size & GB_A \(\geq 1\) & Global \\
\hline 7 & RSRC_A & \begin{tabular}{l} 
The process row of the \(p \times q\) \\
grid over which the first row of \\
the global matrix is distributed
\end{tabular} & \(0 \leq\) RSRC_A \(<p\) & Global \\
\hline 8 & CSRC_A & \begin{tabular}{l} 
The process column of the \\
\(p \times q\) grid over which the first \\
column of the global matrix is \\
distributed
\end{tabular} & \(0 \leq\) CSRC_A \(<q\) & Local \\
\hline 9 & LLD_A & \begin{tabular}{l} 
The leading dimension of the \\
local array
\end{tabular} & LLD_A \(\geq\) max(1,LOCp(M_A)) & \\
\hline
\end{tabular}

Specified as: an array of (at least) length 9, containing fullword integers.
See On Return.
\(e\)
See On Return.
tau
See On Return.
work
has the following meaning:
If \(/\) work \(=0\), work is ignored.
If Iwork \(\neq 0\), work is the work area used by this subroutine, where:
- If /work \(\neq-1\), its size is (at least) of length /work.
- If Iwork \(=-1\), its size is (at least) of length 1 .

\section*{Scope: local}

Specified as: an area of storage containing numbers of data type indicated in Table 99 on page 619.
Iwork
is the number of elements in array WORK.

\section*{Scope:}
- If Iwork \(\geq 0\), Iwork is local
- If Iwork \(=-1\), Iwork is global

Specified as: a fullword integer; where:
- If Iwork \(=0\), PDSYTRD dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If lwork \(=-1\), PDSYTRD performs a work area query and returns the minimum size of work in work \(_{1}\). No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, it must have the following value:
```

lwork \geq max(nb(np+1),3nb)

```
where:
\[
\begin{aligned}
& n b=\mathrm{MB} \_\mathrm{A}=\mathrm{NB} \_\mathrm{A} \\
& \text { iarow }=\bmod (\mathrm{RSRC} \mathrm{~A}+(\text { ia-1)/nb, nprow }) . \\
& n p=\operatorname{NUMROC}(n, n b, \text { myrow, iarow, nprow })
\end{aligned}
\]
info
See On Return.

\section*{On Return}
a
is the updated local part of the global symmetric matrix \(\boldsymbol{A}\), containing the results of the computation, where:
- If uplo \(=\) ' \(U\) ', the diagonal and first superdiagonal of \(\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}\) are overwritten by the corresponding elements of the tridiagonal matrix \(\boldsymbol{T}\). The elements above the first superdiagonal are overwritten with \(\boldsymbol{v}_{1: i-1}\). These elements with \(\tau\) represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of of elementary reflectors.
- If uplo \(=\) ' L ', the diagonal and first subdiagonal of \(\boldsymbol{A}_{\text {ia:ia+n-1, ja:ja+n-1 }}\) are overwritten by the corresponding elements of the tridiagonal matrix \(\boldsymbol{T}\). The elements below the first subdiagonal are overwritten with \(\boldsymbol{v}_{i+2: n}\). These elements with \(\tau\) represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of elementary reflectors.

See "Function" on page 624, for more information.
Scope: local
Returned as: an LLD_A by (at least) \(\operatorname{LOCq}\left(N \_A\right)\) array, containing numbers of the data type indicated in Table 99 on page 619. Details about the square block-cyclic data distribution of global matrix \(\boldsymbol{A}\) are stored in desc_a.
\(d\)
is the updated local part of the global matrix \(\boldsymbol{D}\), where \(\boldsymbol{d}_{j a: j a+n-1}\) contains the diagonal elements of the tridiagonal matrix \(\boldsymbol{T}\).
This identifies the first element of the local array \(D\). This subroutine computes the location of the first element of the local subarray used, based on ja, desc_a, p, q, myrow, and mycol; therefore, the leading 1 by LOCq(ja+n-1) part of the local array D must contain the local pieces of the leading 1 by \(j a+n-1\) part of the global matrix \(\boldsymbol{D}\).
A copy of the vector \(\boldsymbol{d}\), with a block size of NB_A and global index \(j\) a, is returned to each row of the process grid. The process column over which the first column of \(\boldsymbol{d}\) is distributed is CSRC_A.
Scope: local
Returned as: a 1 by (at least) \(\operatorname{LOCq}\left(N \_A\right)\) array, containing numbers of the data type indicated in Table 99 on page 619.
is the updated local part of the global matrix \(E\), containing the off-diagonal elements of the tridiagonal matrix \(\boldsymbol{T}\), where:

If uplo \(=\) ' U ', then \(\boldsymbol{e}_{j a}=0\) and \(\boldsymbol{e}_{j a+1: j a+n-1}\) contains the superdiagonal elements of the tridiagonal matrix \(\boldsymbol{T}\).
If uplo \(=\) 'L', then \(\boldsymbol{e}_{j a: j a+n-2}\) contains the subdiagonal elements of the tridiagonal matrix \(\boldsymbol{T}\), and \(\boldsymbol{e}_{j a+n-1}=0\).
This identifies the first element of the local array E . This subroutine computes the location of the first element of the local subarray used, based on ja, desc_a, p, q, myrow, and mycol; therefore, the leading 1 by LOCq(ja+n-1) part of the local array E must contain the local pieces of the leading 1 by \(j a+n-1\) part of the global matrix \(E\).

A copy of the vector \(\boldsymbol{e}\), with a block size of NB_A and global index ja, is returned to each row of the process grid. The process column over which the first column of E is distributed is CSRC_A.

Scope: local
Returned as: a 1 by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 99 on page 619.
tau
is the updated local part of the global matrix \(\tau\), containing the scalar factors of the elementary reflectors, where:
If uplo \(=\) ' U ', then \(\tau_{j a}=0\) and \(\tau_{j a+1: j a+n-1}\) contains the scalar factors of the elementary reflectors.

If uplo \(=\) ' L ', then \(\tau_{\text {ja:ja+n-2 }}\) contains the scalar factors of the elementary reflectors and \(\tau_{j a+n-1}=0\)
This identifies the first element of the local array \(\tau\). This subroutine computes the location of the first element of the local subarray used, based on ja,
desc_a, \(p\), \(q\), myrow, and mycol; therefore, the leading 1 by LOCq(ja+n-1) part of the local array \(\tau\) must contain the local pieces of the leading 1 by ja+ \(n-1\) part of the global matrix \(\tau\).

A copy of the vector \(\tau\), with a block size of NB_A and global index ja, is returned to each row of the process grid. The process column over which the first column of \(\tau\) is distributed is CSRC_A.

Scope: local
Returned as: a 1 by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 99 on page 619.
work
is the work area used by this subroutine if Iwork \(\neq 0\), where:
If /work \(\neq 0\) and Iwork \(\neq-1\), its size is (at least) of length /work.
If /work \(=-1\), its size is (at least) of length 1 .
Scope: local
Returned as: an area of storage, where:
If Iwork \(\geq 1\) or Iwork \(=-1\), then work \({ }_{1}\) is set to the minimum Iwork value and contains numbers of the data type indicated in Table 99 on page 619. Except for work \({ }_{1}\), the contents of work are overwritten on return.
info
indicates that a successful computation occurred.

\section*{Scope: global}

Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. This subroutine accepts lowercase letters for the uplo argument.
2. In your \(C\) program, argument info must be passed by reference.
3. Matrix \(\boldsymbol{A}, \boldsymbol{d}, \boldsymbol{e}, \tau\), and work must have no common elements; otherwise, results are unpredictable.
4. The NUMROC utility subroutine can be used to determine the values of \(\operatorname{LOCp}\left(\mathrm{M}_{-}\right)\)and \(\operatorname{LOCq}\left(\mathrm{N}_{-}\right)\)used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
5. The global symmetric matrix \(\boldsymbol{A}\) must be distributed using a square block-cyclic distribution; that is, \(M B \_A=N B \_A\).
6. The global symmetric matrix \(\boldsymbol{A}\) must be aligned on a block boundary; that is:
- ia-1 must be a multiple of MB_A
- ja-1 must be a multiple of NB_A
7. There are no array descriptors for \(\boldsymbol{d}, \boldsymbol{e}\), and \(\tau\). These are all row distributed vectors with block size NB_A, local arrays of dimension 1 by LOCq(N_A), and global index ja. A copy of these vectors exist on each row of the process grid, and the process column over which the first column of \(\boldsymbol{D}, \boldsymbol{E}\), and \(\tau\) is distributed is CSRC_A.
8. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
9. If Iwork \(=-1\) on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .

Function: This subroutine reduces a real symmetric matrix \(\boldsymbol{A}\) to symmetric tridiagonal form \(\boldsymbol{T}\) by an orthogonal similarity transformation:
\(\boldsymbol{T}=\boldsymbol{Q}^{\top} \boldsymbol{A} \boldsymbol{Q}\)
where:
- \(\boldsymbol{A}\) represents the global symmetric submatrix \(\boldsymbol{A}_{i a: i a+n-1, j a: j a+n-1}\).
- Matrix \(\boldsymbol{Q}\) represents the following:
- For uplo = ' \(U^{\prime}\) ', the matrix \(\mathbf{Q}\) is the product of elementary reflectors:
\(\boldsymbol{Q}=\boldsymbol{H}_{n-1} \ldots \boldsymbol{H}_{2} \boldsymbol{H}_{1}\),
where:
For each \(i: \boldsymbol{H}_{i}=\boldsymbol{I}-\tau \boldsymbol{v} \boldsymbol{v}^{\top}\)
\(\tau\) is a real scalar
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{i+1: n}=0\) and \(\boldsymbol{v}_{i}=1\)
\(\boldsymbol{v}_{1: i-1}\) is stored on return in submatrix \(\boldsymbol{A}_{1+(i a-1): i-1+(i a-1), i+1+(j a-1)}\)
\(\tau\) is stored on return in \(\tau_{i+(j a-1)}\)
\(I\) is the identity matrix

If uplo = 'U', then the following example shows the contents of \(\boldsymbol{A}\) on return with \(n=5\) and \(i a=j a=1\) :
\[
\left[\begin{array}{ccccc}
d & e & v_{2} & v_{3} & v_{4} \\
\cdot & d & e & v_{3} & v_{4} \\
\cdot & \cdot & d & e & v_{4} \\
\cdot & \cdot & \cdot & d & e \\
\cdot & \cdot & \cdot & \cdot & d
\end{array}\right]
\]
where:
\(d\) represents the diagonal elements of \(\boldsymbol{T}\)
\(e\) represents the superdiagonal elements of \(\boldsymbol{T}\)
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i}\).
- For uplo = ' L ', the matrix \(\boldsymbol{Q}\) is the product of elementary reflectors: \(\boldsymbol{Q}=\boldsymbol{H}_{1} \boldsymbol{H}_{2} \ldots \boldsymbol{H}_{n-1}\),
where:
For each \(i: \boldsymbol{H}_{i}=\boldsymbol{I}-\boldsymbol{\tau} \boldsymbol{V} \boldsymbol{V}^{\boldsymbol{\top}}\)
\(\tau\) is a real scalar
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{1: i}=0\) and \(\boldsymbol{v}_{i+1}=1\).
\(\boldsymbol{v}_{i+2: n}\) is stored on return in submatrix \(\boldsymbol{A}_{i+2+(i a-1): n+(i a-1), i+(j a-1)}\).
\(\tau\) is stored on return in \(\tau_{i+(j a-1)}\)
\(I\) is the identity matrix.

If uplo \(=\) ' L ', then the following example shows the contents of \(\boldsymbol{A}\) on return with \(n=5\) and \(i a=i j=1\) :
\[
\left[\begin{array}{lllll}
d & \cdot & \cdot & \cdot & \cdot \\
e & d & \cdot & \cdot & \cdot \\
v_{1} & e & d & \cdot & \cdot \\
v_{1} & v_{2} & e & d & \cdot \\
v_{1} & v_{2} & v_{3} & e & d
\end{array}\right]
\]
where:
\(d\) represents the diagonal elements of \(\boldsymbol{T}\)
\(e\) represents the subdiagonal elements of \(\boldsymbol{T}\)
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i}\).

\section*{Error Conditions}

Computational Errors: None

\section*{Resource Errors}
1. Iwork \(=0\) and unable to allocate work space

\section*{Input-Argument and Miscellaneous Errors}

Stage 1
1. DTYPE_A is invalid.

\section*{Stage 2}
1. CTXT_A is invalid.

\section*{Stage 3}
1. PDSYTRD has been called from outside the process grid.

\section*{Stage 4}
1. uplo \(\neq\) 'U' or 'L'
2. \(n<0\)
3. \(\mathrm{M} \_\mathrm{A}<0\) and \(n=0 ; \mathrm{M} \_\mathrm{A}<1\) otherwise
4. \(\mathrm{N} \_\mathrm{A}<0\) and \(n=0 ; \mathrm{N} \_\mathrm{A}<1\) otherwise
5. \(M B \_A<1\)
6. \(N B \_A<1\)
7. RSRC_A < 0 or RSRC_A \(\geq p\)
8. \(\operatorname{CSRC}\) - \(A<0\) or CSRC_A \(\geq q\)
9. \(i a<1\)
10. \(j a<1\)

Stage 5: If \(n \neq 0\) :
1. \(i a>M \_A\)
2. \(j a>\mathrm{N}-\mathrm{A}\)
3. \(i a+n-1>M \_A\)
4. \(j a+n-1>\) N_A

In all cases:
1. MB_A \(\neq\) NB_A
2. \(\bmod \left(i a-1, M B \_A\right) \neq 0\)
3. \(\bmod \left(j a-1, N B \_A\right) \neq 0\)

\section*{Stage 6}
1. \(\operatorname{LLD} \_A<\max \left(1, \operatorname{LOCp}\left(M \_A\right)\right)\)
2. Iwork \(\neq 0\), Iwork \(\neq-1\), and /work \(<\max (n b(n p+1), 3 n b)\)
where:
\(n b=M B \_A=N B \_A\)
larow \(=\bmod (\) RSRC_A+(ia-1)/nb, nprow).
\(n p=\operatorname{NUMROC}(n, n b\), myrow, iarow, nprow)
Stage 7
Each of the following global input arguments are checked to determine whether its value differs from the value specified on process \(\mathrm{P}_{00}\) :
1. uplo differs.
2. \(n\) differs.
3. ia differs.
4. ja differs.
5. DTYPE_A differs.
6. M_A differs.
7. N_A differs.
8. MB_A differs.
9. NB A differs.
10. RSRC_A differs.
11. CSRC_A differs.

Also:
12. Iwork \(=-1\) on a subset of processes.

Example: This example shows the reduction of a symmetric matrix of order 4 to symmetric tridiagonal form, using a \(2 \times 2\) process grid.

Note: Because /work = 0, PDSYTRD dynamically allocates the work area used by this subroutine.

Call Statements and Input
```

ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

```

\begin{tabular}{|c|c|}
\hline & DESC_A \\
\hline DTYPE_ & 1 \\
\hline CTXT_ \(_{-}\) & icontxt 1 \\
\hline \(\mathrm{M}_{-}\) & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & DESC_A \\
\hline N & 4 \\
\hline MB & 1 \\
\hline NB & 1 \\
\hline RSRC_ & 0 \\
\hline CSRC_ & 0 \\
\hline LLD_ & See below \({ }^{2}\) \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
1 icontxt is the output of the BLACS_GRIDINIT call. \\
2 Each process should set the LLD_ as follows: \\
LLD_A \(=\operatorname{MAX}\left(1, N U M R O C\left(M \_A, M B \_A, M Y R O W, ~ R S R C \_A, N P R O W\right)\right)\) \\
In this example, LLD_A \(=2\) on all processes.
\end{tabular}} \\
\hline
\end{tabular}

Global symmetric matrix \(\boldsymbol{A}\) of order 4 with block sizes \(1 \times 1\) :
\begin{tabular}{|c|c|c|c|c|}
\hline B, D & 0 & 1 & 2 & 3 \\
\hline 0 & 5.0 & 4.0 & 1.0 & 1.0 \\
\hline 1 & & 5.0 & 1.0 & 1.0 \\
\hline 2 & & - & 4.0 & 2.0 \\
\hline 3 & & & & 4.0 \\
\hline
\end{tabular}

The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0 2}\) & \(\mathbf{1 3}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\(\mathbf{2}\) & & \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\) \\
\(\mathbf{3}\) & &
\end{tabular}

Local arrays for \(\boldsymbol{A}\) :
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} \\
\hline 0 & 5.0 & 1.0 & 4.0 & 1.0 \\
\hline & & 4.0 & & 2.0 \\
\hline \multirow[t]{2}{*}{1} & & 1.0 & 5.0 & 1.0 \\
\hline & & - & - & 4.0 \\
\hline
\end{tabular}

\section*{Output:}

Global symmetric matrix \(\boldsymbol{A}\) of order 4 with block sizes \(1 \times 1\) :
\begin{tabular}{|c|c|c|c|c|}
\hline B, D & 0 & 1 & 2 & 3 \\
\hline 0 & 1.00 & 0.00 & 0.41 & 0.22 \\
\hline 1 & - & 6.00 & 2.83 & 0.22 \\
\hline 2 & & - & 7.00 & -2.45 \\
\hline 3 & & & & 4.00 \\
\hline
\end{tabular}

The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0 2}\) & \(\mathbf{1 3}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\(\mathbf{2}\) & & \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\) \\
\(\mathbf{3}\) & &
\end{tabular}

Local arrays for \(\boldsymbol{A}\) :
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} \\
\hline \multirow[t]{2}{*}{0} & 1.00 & 0.41 & 0.00 & 0.22 \\
\hline & & 7.00 & & -2.45 \\
\hline \multirow[t]{2}{*}{1} & & 2.83 & 6.00 & 0.22 \\
\hline & & & & 4.00 \\
\hline
\end{tabular}

Global row vector \(\boldsymbol{D}\) of length 4 with block sizes \(1 \times 1\) :
\(\left.\begin{array}{c}\mathrm{B}, \mathrm{D} \\ 0\end{array} \begin{array}{cccccc}0 & 1 & 2 & 3 \\ 1.00 & 6.00 & 7.00 & 4.00\end{array}\right]\)

Note: A copy of \(\boldsymbol{D}\) is distributed across each row of the process grid.
The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0 2}\) & \(\mathbf{1 3}\) \\
\hline & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\boldsymbol{D}\) :
\begin{tabular}{|c|c|c|c|}
\hline p,q & 0 & \multicolumn{2}{|c|}{1} \\
\hline 0 & 1.007 .00 & 6.00 & 4.00 \\
\hline 1 & 1.007 .00 & 6.00 & 4.00 \\
\hline
\end{tabular}

Global row vector \(E\) of length 4 with block sizes \(1 \times 1\) :
\(\left.\begin{array}{c}\mathrm{B}, \mathrm{D} \\ 0\end{array} \begin{array}{ccccc}0 & 1 & 2 & 3 \\ 0.00 & 0.00 & 2.83 & -2.45\end{array}\right]\)

Note: A copy of \(E\) is distributed across each row of the process grid.
The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0} \mathbf{2}\) & \(\mathbf{1 3}\) \\
\hline & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(E\) :
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|r|}{1} \\
\hline 0 & 0.00 & 2.83 & 0.00 & -2.45 \\
\hline 1 & 0.00 & 2.83 & 0.00 & -2.45 \\
\hline
\end{tabular}

Global row vector \(\tau\) of length 4 with block sizes \(1 \times 1\) :
\(\mathrm{B}, \mathrm{D}\)
0 \begin{tabular}{cccccc}
0 & 1 & 2 & 3 \\
{\(\left[\begin{array}{lllll}0.00 & 0.00 & 1.71 & 1.82\end{array}\right]\)}
\end{tabular}

Note: A copy of \(\tau\) is distributed across each row of the process grid.
The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c} 
B,D & \(\mathbf{0} \mathbf{2}\) & \(\mathbf{1 3}\) \\
\hline & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\tau\) :
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} \\
\hline 0 & 0.00 & 1.71 & 0.00 & 1.82 \\
\hline 1 & 0.00 & 1.71 & 0.00 & 1.82 \\
\hline
\end{tabular}

The value of info is 0 on all processes.

\section*{PDGEHRD—Reduce a General Matrix to Upper Hessenberg Form}

This subroutine reduces a real general matrix \(\boldsymbol{A}\) to upper Hessenberg form \(\boldsymbol{H}\) by an orthogonal similarity transformation:
\[
H=Q^{\top} A Q
\]
where \(\boldsymbol{A}\) represents the global general submatrix \(\boldsymbol{A}_{\text {iatilo-1: }}\) iatihi-1, ja+ilo-1: ja+ihi-1 .
If \(n=0\), no computation is performed, and the subroutine returns after doing some parameter checking. Then, if \(i h i=\) ilo, the subroutine returns after doing some parameter checking and setting \(\tau_{j a: j a+i l o-2}\) and \(\tau_{j a+i h i-1: j a+n-2}\) to zero.

See references [13 ] and [21 ].
\begin{tabular}{|c|c|}
\hline Table 100. Data Types \\
\hline \(\boldsymbol{A}, \tau\), work & Subroutine \\
\hline Long-precision real & PDGEHRD \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PDGEHRD (n, ilo, ihi, a, ia, ja, desc_a, tau, work, Iwork, info) \\
\hline C and C++ & pdgehrd (n, ilo, ihi, a, ia, ja, desc_a, tau, work, Iwork, info); \\
\hline
\end{tabular}

\section*{On Entry}
\(n\)
is the order of submatrix \(\boldsymbol{A}\) used in the computation.
Scope: global
Specified as: a fullword integer; \(n \geq 0\).
ilo
lower range of the rows or columns in the global general submatrix \(\boldsymbol{A}\) used in the computation.

Scope: global
Specified as: a fullword integer; \(1 \leq i l o \leq \max (1, n)\).
ihi
upper range of the rows or columns in the global general submatrix \(\boldsymbol{A}\) used in the computation.
Scope: global
Specified as: a fullword integer; \(\min (i l o, n) \leq i h i \leq n\).
a
is the local part of the global general matrix \(\boldsymbol{A}\). This identifies the first element of the local array A. This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading \(i a+n-1\) by \(j a+n-1\) part of the global matrix.
Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 100. Details about the square block-cyclic data distribution of global matrix \(\boldsymbol{A}\) are stored in desc_a.
is the row index of the global matrix \(\boldsymbol{A}\), identifying the first row of the submatrix
A.

Scope: global
Specified as: a fullword integer; \(1 \leq i a \leq \mathrm{M} \_\mathrm{A}\) and \(i a+n-1 \leq \mathrm{M} \_\mathrm{A}\). ja
is the column index of the global matrix \(\boldsymbol{A}\), identifying the first column of the submatrix \(\boldsymbol{A}\).

\section*{Scope: global}

Specified as: a fullword integer; \(1 \leq j a \leq \mathrm{N} \_\mathrm{A}\) and \(j a+n-1 \leq \mathrm{N} \_\mathrm{A}\). desc_a
is the array descriptor for global matrix \(\boldsymbol{A}\), described in the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline desc_a & Name & Description & Limits & Scope \\
\hline 1 & DTYPE_A & Descriptor type & DTYPE_A=1 & Global \\
\hline 2 & CTXT_A & BLACS context & Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP & Global \\
\hline 3 & M_A & Number of rows in the global matrix & \begin{tabular}{l}
If \(n=0: M \_A \geq 0\) \\
Otherwise: \(\mathrm{M} \_A \geq 1\)
\end{tabular} & Global \\
\hline 4 & N_A & Number of columns in the global matrix & \begin{tabular}{l}
If \(n=0: N \_A \geq 0\) \\
Otherwise: N_A \(\geq 1\)
\end{tabular} & Global \\
\hline 5 & MB_A & Row block size & MB_A \(\geq 1\) & Global \\
\hline 6 & NB_A & Column block size & \(N B \_A \geq 1\) & Global \\
\hline 7 & RSRC_A & The process row of the \(p \times q\) grid over which the first row of the global matrix is distributed & \(0 \leq\) RSRC_A \(<p\) & Global \\
\hline 8 & CSRC_A & The process column of the \(p \times q\) grid over which the first column of the global matrix is distributed & \(0 \leq\) CSRC_A < \(q\) & Global \\
\hline 9 & LLD_A & The leading dimension of the local array & LLD_A \(\geq \max \left(1, \mathrm{LOCp}\left(\mathrm{M} \_\right.\right.\)A) \()\) & Local \\
\hline
\end{tabular}

Specified as: an array of (at least) length 9, containing fullword integers.
tau
See On Return.
work
has the following meaning:
If /work \(=0\), work is ignored.
If lwork \(\neq 0\), work is the work area used by this subroutine, where:
- If /work \(\neq-1\), its size is (at least) of length /work.
- If /work \(=-1\), its size is (at least) of length 1 .

\section*{Scope: local}

Specified as: an area of storage containing numbers of data type indicated in Table 100 on page 630.
Iwork
is the number of elements in array WORK.
Scope:
- If /work \(\geq 0\), Iwork is local
- If /work \(=-1\), Iwork is global

Specified as: a fullword integer; where:
- If /work \(=0\), PDGEHRD dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If /work \(=-1\), PDGEHRD performs a work area query and returns the minimum size of work in work. No computation is performed and the subroutine returns after error checking is complete.
- Otherwise, it must have the following value:
```

lwork \geq(nb x nb)+nb x max(ihip+1,ih/p+inlq)

```
where:
\[
\begin{aligned}
& n b=M B \_A=N B \_A \\
& \text { ioff }=\bmod (i a+i l o-2, n b) \\
& \text { iroffa }=\bmod (i a-1, n b) \\
& \text { iarow }=\text { mod(RSRC_A+(ia-1)/nb, nprow) } \\
& \text { ilrow }=\bmod (\text { RSRC_A }+(i a+i l o-2) / n b \text {, nprow }) \\
& \text { ilcol }=\bmod \left(C S R C \_A+(j a+i l o-2) / n b, n p c o l\right) \\
& \text { ihip }=\text { NUMROC(ihi+iroffa, nb, myrow, iarow, nprow) } \\
& \text { ihlp }=\text { NUMROC(ihi-ilo+ioff+1, nb, myrow, ilrow, nprow) } \\
& \text { inlq }=\operatorname{NUMROC(n-ilo+ioff+1,~nb,~mycol,~ilcol,~npcol)~}
\end{aligned}
\]
info
See On Return.

\section*{On Return}
a
is the updated local part of the global general matrix \(\boldsymbol{A}\), containing the results of the computation.
The upper triangle and the first subdiagonal of \(\boldsymbol{A}_{\text {ia:ia }}\) n-1, ja:ja+n-1 are overwritten by the corresponding elements of the upper Hessenberg matrix \(\boldsymbol{H}\). The elements below the first subdiagonal are overwritten with \(\boldsymbol{v}_{i+2: i h i}\). These elements with \(\tau\) represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of elementary reflectors.
See "Function" on page 634, for more information.
Scope: local
Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 100 on page 630. Details about the square block-cyclic data distribution of global matrix \(\boldsymbol{A}\) are stored in desc_a.
tau
is the updated local part of the global matrix \(\tau\), where:
- \(\tau_{j a+i l o-1: j a+i h i-2}\) contains the scalar factors of the elementary reflectors.
- \(\tau_{j a: j a+i l o-2}\) are set to zero.
- \(\tau_{j a+i h i-1: j a+n-2}\) are set to zero.

This identifies the first element of the local array \(\tau\). This subroutine computes the location of the first element of the local subarray used, based on \(j a\), desc_a, p, q, myrow, and mycol; therefore, the leading 1 by LOCq(ja+n-2) part of the local array \(\tau\) must contain the local pieces of the leading 1 by ja+n-2 part of the global matrix \(\tau\).

A copy of the vector \(\tau\), with a block size of NB_A and global index \(j a\), is returned to each row of the process grid. The process column over which the first column of \(\tau\) is distributed is CSRC_A.

\section*{Scope: local}

Returned as: a 1 by (at least) LOCq(N_A-1) array, containing numbers of the data type indicated in Table 100 on page 630.
work
is the work area used by this subroutine if /work \(\neq 0\), where:
If /work \(\neq 0\) and \(/\) work \(\neq-1\), its size is (at least) of length /work.
If /work \(=-1\), its size is (at least) of length 1 .
Scope: local
Returned as: an area of storage, where:
If /work \(\geq 1\) or /work \(=-1\), then work is set to the minimum /work value and contains numbers of the data type indicated in Table 100 on page 630. Except for work \({ }_{1}\), the contents of work are overwritten on return. info
indicates that a successful computation occurred.

\section*{Scope: global}

Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. In your C program, argument info must be passed by reference.
2. Matrix \(\boldsymbol{A}, \tau\), and work must have no common elements; otherwise, results are unpredictable.
3. On entry, the general submatrix \(\boldsymbol{A}_{i: i a+n-1, j a: j a+n-1}\) must already be upper triangular in rows (ia:ia+ilo-2) and (ia+ihi:ia+n-1), and upper triangular in columns (ja:ja+ilo-2) and (ja+ihi:ja+n-1). If this is not the case, you should set ilo \(=1\) and ihi \(=n\).

If \(n=0\), you should set ilo \(=1\) and ihi \(=0\). If \(n>0\), you should set \(1 \leq i l o \leq i h i \leq n\).
4. The NUMROC utility subroutine can be used to determine the values of LOCp(M_) and LOCq(N_) used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
5. The global general matrix \(\boldsymbol{A}\) must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
6. The global general matrix \(\boldsymbol{A}\) must be aligned on a block boundary; that is:
- ia-1 must be a multiple of MB_A
- ja-1 must be a multiple of NB_A
7. There is no array descriptor for \(\tau . \tau\) is a row-distributed vector with block size NB_A, local arrays of dimension 1 by LOCq(N_A-1), and global index ja. A copy of \(\tau\) exists on each row of the process grid, and the process column over which the first column of \(\tau\) is distributed is CSRC_A.
8. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
9. If /work \(=-1\) on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .

Function: This subroutine reduces a real general matrix \(\boldsymbol{A}\) to upper Hessenberg form \(\boldsymbol{H}\) by an orthogonal similarity transformation:
\[
H=Q^{\top} A Q
\]
where:
- \(\boldsymbol{A}\) represents the global general submatrix \(\boldsymbol{A}_{\text {iatilo-1:ia+ihi-1, ja+ilo-1:ja+ihi-1 }}\)
- Matrix \(\boldsymbol{Q}\) is represented as a product of (ihi-ilo) elementary reflectors:
\(\boldsymbol{Q}=\boldsymbol{H}_{i l} \boldsymbol{H}_{i l+1} \ldots \boldsymbol{H}_{i h i-1}\)
where:
For each \(i: \boldsymbol{H}_{i}=\boldsymbol{I}-\boldsymbol{\tau} \boldsymbol{v} \boldsymbol{v}^{\top}\)
\(\tau\) is a real scalar
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{1: i}=0, \boldsymbol{v}_{i+1}=1\), and \(\boldsymbol{v}_{i h i+1: n}=0\)
\(\boldsymbol{v}_{i+2: i h i}\) is stored on return in in submatrix \(\boldsymbol{A}_{i+i l o+1+(i a-1) \text { :ihi+ }(i a-1) \text {, ilo+i-1+(ja-1) }}\)
\(\tau\) is stored on return in \(\tau_{i+i l o-1+(j a-1)}\)
\(I\) is the identity matrix

The following example shows the contents of the general submatrix \(\boldsymbol{A}\) on entry with \(n=7, i a=j a=1\), \(i l o=2\), and \(i h i=6\) :
\[
\left[\begin{array}{ccccccc}
a & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & a
\end{array}\right]
\]

Following is the general submatrix \(\boldsymbol{A}\) on return:
\(\left[\begin{array}{lllllll}a & a & h & h & h & h & a \\ \cdot & a & h & h & h & h & a \\ \cdot & h & h & h & h & h & h \\ \cdot & v_{2} & h & h & h & h & h \\ \cdot & v_{2} & v_{3} & h & h & h & h \\ \cdot & v_{2} & v_{3} & v_{4} & h & h & h \\ \cdot & \cdot & . & . & . & a\end{array}\right]\)
where:
\(a\) represents an element of the original submatrix \(\boldsymbol{A}\).
\(h\) represents a updated element of the upper Hessenberg matrix \(\boldsymbol{H}\).
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i(0+i-1+(\mathrm{ja-1})}\).

\section*{Error Conditions}

Computational Errors: None

\section*{Resource Errors}
1. Iwork \(=0\) and unable to allocate work space

\section*{Input-Argument and Miscellaneous Errors}

\section*{Stage 1}
1. DTYPE_A is invalid.

\section*{Stage 2}
1. CTXT_A is invalid.

\section*{Stage 3}
1. PDGEHRD has been called from outside the process grid.

\section*{Stage 4}
1. \(n<0\)
2. \(\mathrm{M} \_\mathrm{A}<0\) and \(n=0 ; \mathrm{M} \_\mathrm{A}<1\) otherwise
3. N_A \(<0\) and \(n=0 ;\) N_A \(<1\) otherwise
4. \(M B \_A<1\)
5. NB_A < 1
6. RSRC_A < 0 or RSRC_A \(\geq p\)
7. CSRC_A < 0 or CSRC_A \(\geq q\)
8. \(i a<1\)
9. \(j a<1\)

\section*{Stage 5}
1. ilo \(<1\) or ilo \(>\max (1, n)\)
2. ihi \(<\min (i l o, n)\) or \(i h i>n\)

If \(n \neq 0\) :
1. \(i a>M A\)
2. \(j a>\mathrm{N} \_\mathrm{A}\)
3. \(i a+n-1>M \_A\)
4. \(j a+n-1>N \_A\)

In all cases:
1. \(M B \_A \neq N B \_A\)
2. \(\bmod \left(i a-1, M B \_A\right) \neq 0\)
3. \(\bmod \left(j a-1, N B \_A\right) \neq 0\)

Stage 6
1. \(\operatorname{LLD} \_A<\max \left(1, \operatorname{LOCp}\left(M \_A\right)\right)\)
2. Iwork \(\neq 0\), Iwork \(\neq-1\), and Iwork \(<(n b \times n b)+n b \times \max (i h i p+1\), ih/p+inlq) where:
\[
\begin{aligned}
& n b=\text { MB_A }=\text { NB_A } \\
& \text { ioff }=\bmod (i a+i l o-2, n b) \\
& \text { iroffa }=\bmod (\text { ia-1, nb }) \\
& \text { iarow }=\bmod \left(R S R C \_A+(i a-1) / n b, n p r o w\right) \\
& \text { ilrow }=\bmod \left(R S R C \_A+(i a+i l o-2) / n b, \text { nprow }\right) \\
& \text { ilcol }=\bmod \left(C S R C \_A+(j a+i l o-2) / n b, \text { npcol }\right) \\
& \text { ihip }=\text { NUMROC(ihi+iroffa, nb, myrow, iarow, nprow }) \\
& \text { ihlp }=\text { NUMROC(ihi-ilo+ioff }+1, n b, \text { myrow, ilrow, nprow }) \\
& \text { inlq }=\text { NUMROC(n-ilo+ioff }+1, \text { nb, mycol, ilcol, npcol) }
\end{aligned}
\]

\section*{Stage 7}

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process \(\mathrm{P}_{00}\) :
1. \(n\) differs.
2. ilo differs.
3. ihi differs.
4. ia differs.
5. ja differs.
6. DTYPE_A differs.
7. M_A differs.
8. N_A differs.
9. MB_A differs.
10. NB_A differs.
11. RSRC_A differs.
12. CSRC_A differs.

Also:
13. Iwork \(=-1\) on a subset of processes.

Example: This example shows the reduction of a general matrix of order 3 to upper Hessenberg form using a \(2 \times 2\) process grid.
Note: Because Iwork = 0, PDGEHRD dynamically allocates the work area used by this subroutine.

Call Statements and Input
```

ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

```

\begin{tabular}{|c|c|}
\hline & DESC_A \\
\hline DTYPE_ & 1 \\
\hline CTXT_ & icontxt \({ }^{1}\) \\
\hline M & 3 \\
\hline N_ & 3 \\
\hline MB & 1 \\
\hline NB & 1 \\
\hline RSRC_ & 0 \\
\hline CSRC_ & 0 \\
\hline LLD_ & See below2 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
1 icontxt is the output of the BLACS_GRIDINIT call. \\
2 Each process should set the LLD_ as follows: \\
LLD_A \(=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M \_A, M B \_A, M Y R O W, R S R C \_A, N P R O W\right)\right)\) \\
In this example, LLD_A \(=2\) on \(P_{00}\) and \(P_{01}\), and LLD_ \(A=1\) on \(P_{10}\) and \(P_{11}\).
\end{tabular}} \\
\hline
\end{tabular}

Global general matrix \(\boldsymbol{A}\) of order 3 with block sizes \(1 \times 1\) :
\begin{tabular}{|c|c|c|c|}
\hline B, D & 0 & 1 & 2 \\
\hline 0 & 33.0 & 16.0 & 72.0 \\
\hline 1 & -24.0 & -10.0 & -57.0 \\
\hline 2 & -8.0 & -4.0 & -17.0 \\
\hline
\end{tabular}

The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0 2}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\(\mathbf{2}\) & & \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\boldsymbol{A}\) :

\section*{PDGEHRD}


\section*{Output:}

Global general matrix \(\boldsymbol{A}\) of order 3 with block sizes \(1 \times 1\) :
\begin{tabular}{|c|c|c|c|}
\hline B, D & 0 & 1 & 2 \\
\hline 0 & 33.00 & -37.95 & 63.25 \\
\hline 1 & 25.30 & -29.00 & 53.00 \\
\hline 2 & 0.16 & 0.00 & 2.00 \\
\hline
\end{tabular}

The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0 2}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\(\mathbf{2}\) & & \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\boldsymbol{A}\) :
\begin{tabular}{|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & 1 \\
\hline 0 & 33.0 & 63.25 & -37.95 \\
\hline & 0.16 & 2.00 & 0.00 \\
\hline 1 & 25.30 & 53.00 & -29.00 \\
\hline
\end{tabular}

Global row vector \(\tau\) of length 2 with block sizes of 1 :
\(\begin{array}{lll}B, D & 0 & 1\end{array}\)
\(0\left[\begin{array}{lll}1.95 & 0.00\end{array}\right]\)

Note: A copy of \(\tau\) is distributed across each row of the process grid.
The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\tau\) :
\begin{tabular}{|c|c|c|}
\hline p,q & 0 & 1 \\
\hline 0 & 1.95 & 0.00 \\
\hline 1 & 1.95 & 0.00 \\
\hline
\end{tabular}

The value of info is 0 on all processes.

\section*{PDGEBRD—Reduce a General Matrix to Bidiagonal Form}

This subroutine reduces a real general matrix \(\boldsymbol{A}\) of order \(m\) by \(n\) to upper or lower bidiagonal form \(\boldsymbol{B}\) by an orthogonal transformation:
\[
B=Q^{\top} A P
\]
where:
- \(\boldsymbol{A}\) represents the global general submatrix \(\boldsymbol{A}_{i a: i a+m-1, j a: j a+n-1}\).
- If \(m \geq n\), then \(\boldsymbol{B}\) is upper bidiagonal.
- If \(m<n\), then \(\boldsymbol{B}\) is lower bidiagonal.

If \(\min (m, n)=0\), no computation is performed and the subroutine returns after doing some parameter checking.

See references [13] and [21].
\begin{tabular}{|c|c|}
\hline Table 101. Data Types \\
\hline \(\boldsymbol{A}, \boldsymbol{d}, \boldsymbol{e}, \tau_{q}, \tau_{p}\), work & Subroutine \\
\hline Long-precision real & PDGEBRD \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|}
\hline Fortran & CALL PDGEBRD ( \(m, n, a\), ia, ja, desc_a, d, e, tauq, taup, work, Iwork, info) \\
\hline C and C++ & pdgebrd (m, n, a, ia, ja, desc_a, d, e, tauq, taup, work, Iwork, info); \\
\hline
\end{tabular}

On Entry
m
is the number of rows of submatrix \(\boldsymbol{A}\) used in the computation.
Scope: global
Specified as: a fullword integer; \(m \geq 0\)
\(n\)
is the number of columns of submatrix \(\boldsymbol{A}\) used in the computation.
Scope: global
Specified as: a fullword integer; \(n \geq 0\).
a
is the local part of the global general matrix \(\boldsymbol{A}\). This identifies the first element of the local array \(A\). This subroutine computes the location of the first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+m-1) by LOCq(ja+n-1) part of the local array A must contain the local pieces of the leading \(i a+m-1\) by ja+n-1 part of the global matrix.

Scope: local
Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 101. Details about the square block-cyclic data distribution of global matrix \(\boldsymbol{A}\) are stored in desc_a.
ia
is the row index of the global matrix \(\boldsymbol{A}\), identifying the first row of the submatrix
A.

\section*{Scope: global}

Specified as: a fullword integer; \(1 \leq i a \leq M \_A\) and \(i a+m-1 \leq M \_A\). ja
is the column index of the global matrix \(\boldsymbol{A}\), identifying the first column of the submatrix \(\boldsymbol{A}\).

\section*{Scope: global}

Specified as: a fullword integer; \(1 \leq j a \leq N \_A\) and \(j a+n-1 \leq N \_A\). desc_a
is the array descriptor for global matrix \(\boldsymbol{A}\), described in the following table:
\begin{tabular}{|c|c|c|c|c|}
\hline desc_a & Name & Description & Limits & Scope \\
\hline 1 & DTYPE_A & Descriptor type & DTYPE_A=1 & Global \\
\hline 2 & CTXT_A & BLACS context & Valid value, as returned by BLACS_GRIDINIT or BLACS_GRIDMAP & Global \\
\hline 3 & M_A & Number of rows in the global matrix & \begin{tabular}{l}
If \(m=0\) or \(n=0: M \_A \geq 0\) \\
Otherwise: \(M \_\geq 1\)
\end{tabular} & Global \\
\hline 4 & N_A & Number of columns in the global matrix & If \(m=0\) or \(n=0: N \_A \geq 0\) Otherwise: \(\mathrm{N} \_\mathrm{A} \geq 1\) & Global \\
\hline 5 & MB_A & Row block size & MB_A \(\geq 1\) & Global \\
\hline 6 & NB_A & Column block size & \(N B \_A \geq 1\) & Global \\
\hline 7 & RSRC_A & The process row of the \(p \times q\) grid over which the first row of the global matrix is distributed & \(0 \leq\) RSRC_A < \(p\) & Global \\
\hline 8 & CSRC_A & The process column of the \(p \times q\) grid over which the first column of the global matrix is distributed & \(0 \leq\) CSRC_A \(<q\) & Global \\
\hline 9 & LLD_A & The leading dimension of the local array & LLD_A \(\geq\) max(1,LOCp(M_A)) & Local \\
\hline
\end{tabular}

Specified as: an array of (at least) length 9, containing fullword integers.
d
See On Return.
e
See On Return.
tauq
See On Return.
taup
See On Return.
work
has the following meaning:
If /work \(=0\), work is ignored.
If lwork \(\neq 0\), work is the work area used by this subroutine, where:
- If /work \(\neq-1\), its size is (at least) of length /work.
- If /work \(=-1\), its size is (at least) of length 1 .

\section*{Scope: local}

Specified as: an area of storage containing numbers of data type indicated in Table 101 on page 640.
Iwork
is the number of elements in array WORK.
Scope:
- If /work \(\geq 0\), Iwork is local
- If /work \(=-1\), Iwork is global

Specified as: a fullword integer; where:
- If /work \(=0\), PDGEBRD dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the ScaLAPACK standard.
- If /work = -1, PDGEBRD performs a work area query and return the minimum size of work in work \({ }^{\text {. No computation is performed and the }}\) subroutine returns after error checking is complete.
- Otherwise, it must have the following value:
\[
\text { Iwork } \geq n b(m p 0+n q 0+1)+n q 0
\]
where:
\[
\begin{aligned}
& n b=\text { MB_A }=\text { NB_A } \\
& \text { iroffa }=\bmod (i a-1, n b) \\
& \text { icoffa }=\bmod (j a-1, n b) \\
& \text { iarow }=\bmod (\text { RSRC_A }+(i a-1) / n b, \text { nprow }) . \\
& \text { iacol }=\bmod \left(C S R C \_A+(j a-1) / n b, n p c o l\right) . \\
& m p 0=\operatorname{NUMROC}(m+i r o f f a, n b, \text { myrow, iarow, nprow }) \\
& \text { nq0 }=\operatorname{NUMROC}(n+i c o f f a, n b, \text { mycol, iacol, npcol })
\end{aligned}
\]
info
See On Return.

\section*{On Return}
a
is the updated local part of the global general matrix \(\boldsymbol{A}\), containing the results of the computation, where:
- If \(m \geq n\), the diagonal and first superdiagonal of \(\boldsymbol{A}_{\text {ia:ia }+m-1, j a: j a+n-1}\) are overwritten by the corresponding elements of the upper bidiagonal matrix \(\boldsymbol{B}\). The elements below the diagonal are overwritten with \(\boldsymbol{v}_{i+1: m}\). These elements with \(\tau_{q}\) represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of of elementary reflectors. The elements above the first superdiagonal are overwritten with \(\boldsymbol{u}_{i+2: n}\). These elements with \(\tau_{p}\) represent the orthogonal matrix \(\boldsymbol{P}\) as a product of of elementary reflectors.
- If \(m<n\), the diagonal and first subdiagonal of \(\boldsymbol{A}_{\text {ia:ia+m-1, ja:ja+n-1 }}\) are overwritten by the corresponding elements of the lower bidiagonal matrix \(\boldsymbol{B}\). The elements below the first subdiagonal are overwritten with \(\boldsymbol{v}_{i+2: m}\). These elements with \(\tau_{q}\) represent the orthogonal matrix \(\mathbf{Q}\) as a product of elementary reflectors. The elements above the diagonal are overwritten
with \(\boldsymbol{u}_{i+1: n}\). These elements with \(\tau_{p}\) represent the orthogonal matrix \(\boldsymbol{P}\) as a product of elementary reflectors.

See "Function" on page 646, for more information.
Scope: local
Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers of the data type indicated in Table 101 on page 640. Details about the square block-cyclic data distribution of global matrix \(\boldsymbol{A}\) are stored in desc_a.
is the updated local part of the global matrix \(\boldsymbol{D}\), where:
- If \(m \geq n\), then \(\boldsymbol{d}_{j a: j a+n-1}\) contains the diagonal elements of the bidiagonal matrix \(B\).

This identifies the first element of the local array D. This subroutine computes the location of the first element of the local subarray used, based on ja, desc_a, p, q, myrow, and mycol; therefore, the leading 1 by LOCq(ja+n-1) part of the local array D must contain the local pieces of the leading 1 by ja+n-1 part of the global matrix \(\boldsymbol{D}\).

A copy of the vector \(\boldsymbol{d}\), with a block size of NB_A and global index \(j\) a, is returned to each row of the process grid. The process column over which the first column of \(\boldsymbol{d}\) is distributed is CSRC_A.
- If \(m<n\), then \(\boldsymbol{d}_{i a: i a+m-1}\) contains the diagonal elements of the bidiagonal matrix \(B\).

This identifies the first element of the local array D. This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+m-1) by 1 part of the local array D must contain the local pieces of the leading \(i a+m-1\) by 1 part of the global matrix \(\boldsymbol{D}\).

A copy of the vector \(\boldsymbol{d}\), with a block size of MB_A and global index ia, is returned to each column of the process grid. The process row over which the first row of \(\boldsymbol{d}\) is distributed is RSRC_A.

\section*{Scope: local}

Returned as: a 1 by (at least) LOCq(N_A) array if \(m \geq n\), and a LOCp(M_A) by 1 array if \(m<n\), containing numbers of the data type indicated in Table 101 on page 640.
is the updated local part of the global matrix \(\boldsymbol{E}\), where:
- If \(m \geq n\), then \(\boldsymbol{e}_{i a: i a+n-2}\) contains the superdiagonal elements of the bidiagonal matrix \(\boldsymbol{B}\).
This identifies the first element of the local array E . This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-2) by 1 part of the local array E must contain the local pieces of the leading \(i a+n-2\) by 1 part of the global matrix \(E\).
A copy of the vector \(\boldsymbol{e}\), with a block size of MB_A and global index \(i a\), is returned to each column of the process grid. The process row over which the first row of \(\boldsymbol{e}\) is distributed is RSRC_A.
- If \(m<n\), then \(\boldsymbol{e}_{\text {ja:ja+m-2 }}\) contains the subdiagonal elements of the bidiagonal matrix \(B\).

This identifies the first element of the local array D. This subroutine computes the location of the first element of the local subarray used, based on ja, desc_a, p, q, myrow, and mycol; therefore, the leading 1 by LOCq(ja+m-2) part of the local array E must contain the local pieces of the leading 1 by ja+m-2 part of the global matrix \(\boldsymbol{E}\).
A copy of the vector \(\boldsymbol{e}\), with a block size of NB_A and global index \(j\) a, is returned to each row of the process grid. The process column over which the first column of \(\boldsymbol{e}\) is distributed is CSRC_A.

\section*{Scope: local}

Returned as: an (at least) LOCp(N_A-1) by 1 array if \(m \geq n\) and a 1 by (at least) \(\operatorname{LOCq}\left(\mathrm{M} \_A-1\right)\) array if \(m<n\), containing numbers of the data type indicated in Table 101 on page 640.
tauq
is the updated local part of the global matrix \(\tau_{q}\), where:
\[
\tau_{q_{j a ; j a+\min (m, n)-1}}
\]
contains the scalar factors of the elementary reflectors which represent the orthogonal matrix \(\boldsymbol{Q}\). See "Function" on page 646 for more details.
This identifies the first element of the local array \(\tau_{q}\). This subroutine computes the location of the first element of the local subarray used, based on \(j a\), desc_a, \(p, q\), myrow, and mycol; therefore, the leading 1 by LOCq \((j a+\min (m\), n)-1) part of the local array \(\tau_{q}\) must contain the local pieces of the leading 1 by \(j a+\min (m, n)-1\) part of the global matrix \(\tau_{q}\).
A copy of the vector \(\tau_{q}\), with a block size of NB_A and global index \(j a\), is returned to each row of the process grid. The process column over which the first column of \(\tau_{q}\) is distributed is CSRC_A.
Scope: local
Returned as: a 1 by (at least) \(\operatorname{LOCq}\left(\min \left(M \_A, N \_A\right)\right.\) ) array, containing numbers of the data type indicated in Table 101 on page 640.
taup
is the updated local part of the global matrix \(\tau_{p}\), where:
\(\tau_{p_{i a: i a+\min (m, n)-1}}\)
contains the scalar factors of the elementary reflectors which represent the orthogonal matrix \(\boldsymbol{P}\). See "Function" on page 646 for more details.

This identifies the first element of the local array \(\tau_{p}\). This subroutine computes the location of the first element of the local subarray used, based on ia, desc_a, \(p\), \(q\), myrow, and mycol; therefore, the leading \(\operatorname{LOCp}(i a+\min (m, n)-1)\) by 1 part of the local array \(\tau_{p}\) must contain the local pieces of the leading \(i a+\min (m, n)-1\) by 1 part of the global matrix \(\tau_{p}\).

A copy of the vector \(\tau_{p}\), with a block size of MB_A and global index \(i a\), is returned to each column of the process grid. The process row over which the first row of \(\tau_{p}\) is distributed is RSRC_A.

\section*{Scope: local}

Returned as: an (at least) \(\operatorname{LOCp}\left(\min \left(M \_A, N \_A\right)\right)\) by 1 array, containing numbers of the data type indicated in Table 101 on page 640. work
is the work area used by this subroutine if /work \(\neq 0\), where:
If /work \(\neq 0\) and /work \(\neq-1\), its size is (at least) of length /work.
If /work \(=-1\), its size is (at least) of length 1 .
Scope: local
Returned as: an area of storage, where:
If /work \(\geq 1\) or /work \(=-1\), then work is set to the minimum /work value and contains numbers of the data type indicated in Table 101 on page 640. Except for work \({ }_{1}\), the contents of work are overwritten on return.
info
indicates that a successful computation occurred.

\section*{Scope: global}

Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. In your C program, argument info must be passed by reference.
2. Matrix \(\boldsymbol{A}, \boldsymbol{d}, \boldsymbol{e}, \tau_{q}, \tau_{p}\), and work must have no common elements; otherwise, results are unpredictable.
3. The NUMROC utility subroutine can be used to determine the values of \(\operatorname{LOCp}\left(\mathrm{M}_{-}\right)\)and \(\operatorname{LOCq}\left(\mathrm{N}_{-}\right)\)used in the argument descriptions above. For details, see "Determining the Number of Rows and Columns in Your Local Arrays" on page 25 and "NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process" on page 711.
4. The global general matrix \(\boldsymbol{A}\) must be distributed using a square block-cyclic distribution; that is, MB_A = NB_A.
5. For the global general matrix \(\boldsymbol{A}\), the block row offset must be equal to the block column offset; that is, mod (ia-1, MB_A) = mod(ja-1, NB_A)
6. For suggested block sizes, see "Coding Tips for Optimizing Parallel Performance" on page 83.
7. There is no array descriptor for \(\boldsymbol{d}\), where:
- If \(m \geq n\), then \(\boldsymbol{d}\) is a row-distributed vector with block size NB_A, local array of dimension 1 by LOCq(N_A), and global index ja. A copy of d exists on each row of the process grid, and the process column over which the first column of \(\boldsymbol{d}\) is distributed is CSRC_A.
- If \(m<n\), then \(\boldsymbol{d}\) is a column-distributed vector with block size MB_A, local array of dimension \(\operatorname{LOCp}\left(M \_A\right)\) by 1 , and global index ia. A copy of \(\boldsymbol{d}\) exists on each column of the process grid, and the process row over which the first row of \(\boldsymbol{d}\) is distributed is RSRC_A.
8. There is no array descriptor for \(\boldsymbol{e}\), where:
- If \(m \geq n\), then \(\boldsymbol{e}\) is a column-distributed vector with block size MB_A, local array of dimension \(\operatorname{LOCp}\left(\mathrm{N} \_A-1\right)\) by 1, and global index ia. A copy of \(\boldsymbol{e}\) exists on each column of the process grid, and the process row over which the first row of \(\boldsymbol{e}\) is distributed is RSRC_A.
- If \(m<n\), then \(\boldsymbol{e}\) is a row-distributed vector with block size NB_A, local array of dimension 1 by \(\operatorname{LOCq}\left(\mathrm{M} \_A-1\right)\), and global index ja. A copy of \(\boldsymbol{e}\) exists on each row of the process grid, and the process column over which the first column of \(\boldsymbol{e}\) is distributed is CSRC_A.
9. There is no array descriptor for \(\tau_{q} \tau_{q}\) is a row-distributed vector with block size NB_A, local array of dimension 1 by LOCq(min(M_A, N_A), and global index ja. A copy of \(\tau_{q}\) exists on each row of the process grid, and the process column over which the first column of \(\tau_{q}\) is distributed is CSRC_A.
10. There is no array descriptor for \(\tau_{p} . \quad \tau_{p}\) is a column-distributed vector with block size MB_A, local array of dimension LOCp(min(M_A, N_A) by 1, and global index ia. A copy of \(\tau_{p}\) exists on each column of the process grid, and the process row over which the first row of \(\tau_{p}\) is distributed is RSRC_A.
11. If Iwork \(=-1\) on any process, it must equal -1 on all processes. That is, if a subset of the processes specifies -1 for the work area size, they must all specify -1 .

Function: This subroutine reduces a real general matrix \(\boldsymbol{A}\) of order \(m\) by \(n\) to upper or lower bidiagonal form \(\boldsymbol{B}\) by an orthogonal transformation:
\[
B=Q^{\top} A P
\]
where:
- \(\boldsymbol{A}\) represents the global general submatrix \(\boldsymbol{A}_{i a: i a+m-1, j a: j a+n-1}\).
- If \(m \geq n\), then \(\boldsymbol{B}\) is upper bidiagonal, and matrices \(\boldsymbol{Q}\) and \(\boldsymbol{P}\) are represented as the product of elementary reflectors:
\[
\begin{array}{lllll}
\boldsymbol{Q}=\boldsymbol{H}_{1} & \boldsymbol{H}_{2} & \ldots & \boldsymbol{H}_{n} \\
\boldsymbol{P}=\boldsymbol{G}_{1} & \boldsymbol{G}_{2} & \ldots & \boldsymbol{G}_{n-1}
\end{array}
\]
where:
For each \(i: \boldsymbol{H}_{i}=\boldsymbol{I}-\tau_{q} \boldsymbol{V} \boldsymbol{V}^{\top}\)
For each \(i\) : \(\boldsymbol{G}_{i}=\boldsymbol{I}-\tau_{p} \boldsymbol{u} \boldsymbol{u}^{\top}\)
\(\tau_{q}\) is a real scalar and is stored on return in:
\[
\tau_{q_{i+(j a-1)}}
\]
\(\tau_{p}\) is a real scalar and is stored on return in:
\[
\tau_{p_{i+(i a-1)}}
\]
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{1: i-1}=0\) and \(\boldsymbol{v}_{i}=1\)
\(\boldsymbol{v}_{i+1: m}\) is stored on return in submatrix \(\boldsymbol{A}_{i+1+(i a-1): m+(i a-1), i+(j a-1)}\)
\(\boldsymbol{u}\) is a real vector with \(\boldsymbol{u}_{1: i}=0\) and \(\boldsymbol{u}_{i+1}=1\)
\(\boldsymbol{u}_{i+2: n}\) is stored on return in submatrix \(\boldsymbol{A}_{i+(i a-1), i+2+(j a-1): n+(j a-1)}\)
\(I\) is the identity matrix

The following example shows the contents of \(\boldsymbol{A}\) on return with \(i a=j a=1\), \(m=6\), and \(n=5\) :
\[
\left[\begin{array}{lllll}
d & e & u_{1} & u_{1} & u_{1} \\
v_{1} & d & e & u_{2} & u_{2} \\
v_{1} & v_{2} & d & e & u_{3} \\
v_{1} & v_{2} & v_{3} & d & e \\
v_{1} & v_{2} & v_{3} & v_{4} & d \\
v_{1} & v_{2} & v_{3} & v_{4} & v_{5}
\end{array}\right]
\]
where:
\(d\) represents the diagonal elements of \(\boldsymbol{B}\) \(e\) represents the off-diagonal elements of \(\boldsymbol{B}\)
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i}\).
\(u_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{G}_{i}\).
- If \(m<n\), then \(\boldsymbol{B}\) is lower bidiagonal, and matrices \(\boldsymbol{Q}\) and \(\boldsymbol{P}\) are represented as the product of elementary reflectors:
\[
\begin{array}{lllll}
\boldsymbol{Q}=\boldsymbol{H}_{1} & \boldsymbol{H}_{2} & \ldots & \boldsymbol{H}_{m-1} \\
\boldsymbol{P}=\boldsymbol{G}_{1} & \boldsymbol{G}_{2} & \ldots & \boldsymbol{G}_{m}
\end{array}
\]
where:
For each \(i: \boldsymbol{H}_{i}=\boldsymbol{I}-\tau_{q} \boldsymbol{V} \boldsymbol{V}^{\top}\)
For each \(i\) : \(\boldsymbol{G}_{i}=\boldsymbol{I}-\tau_{p} \boldsymbol{u} \boldsymbol{u}^{\top}\)
\(\tau_{q}\) and \(\tau_{p}\) are real scalars
\(\tau_{q}\) is stored on return in:
\[
\tau_{q_{i+(j a-1)}}
\]
\(\tau_{p}\) is stored on return in:
\[
\tau_{p_{i+(i a-1)}}
\]
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{1: i}=0\) and \(\boldsymbol{v}_{i+1}=1\)
\(\boldsymbol{v}_{i+2: m}\) is stored on return in submatrix \(\boldsymbol{A}_{i+2+(i a-1): m+(i a-1), i+(j a-1)}\)
\(\boldsymbol{u}\) is a real vector with \(\boldsymbol{u}_{1: i-1}=0\) and \(\boldsymbol{u}_{i}=1\)
\(\boldsymbol{u}_{i+1: n}\) is stored on return in submatrix \(\boldsymbol{A}_{i+(i a-1), i+1+(j a-1): n+(j a-1)}\)
\(I\) is the identity matrix

The following example shows the contents of \(\boldsymbol{A}\) on return with \(i a=j a=1\), \(m=5\), and \(n=6\) :
\[
\left[\begin{array}{llllll}
d & u_{1} & u_{1} & u_{1} & u_{1} & u_{1} \\
e & d & u_{2} & u_{2} & u_{2} & u_{2} \\
v_{1} & e & d & u_{3} & u_{3} & u_{3} \\
v_{1} & v_{2} & e & d & u_{4} & u_{4} \\
v_{1} & v_{2} & v_{3} & e & d & u_{5}
\end{array}\right]
\]
where:
\(d\) represents the diagonal elements of \(\boldsymbol{B}\) e represents the off-diagonal elements of \(B\) \(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i}\). \(u_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{G}_{i}\).

\section*{Error Conditions}

Computational Errors: None

\section*{Resource Errors}
1. Iwork \(=0\) and unable to allocate work space

Input-Argument and Miscellaneous Errors

\section*{Stage 1}
1. DTYPE_A is invalid.

\section*{Stage 2}
1. \(C T X T \_A\) is invalid.

\section*{Stage 3}
1. PDGEBRD has been called from outside the process grid.

Stage 4
1. \(m<0\)
2. \(n<0\)
3. \(M \_A<0\) if \(m=0\) or \(n=0 ; M \_A<1\) otherwise
4. N_A \(<0\) if \(m=0\) or \(n=0 ;\) N_A \(<1\) otherwise
5. \(M B \_A<1\)
6. \(N B \_A<1\)
7. RSRC_A \(<0\) or RSRC_A \(\geq p\)
8. CSRC_A \(<0\) or CSRC_A \(\geq q\)
9. \(i a<1\)
10. \(j a<1\)

Stage 5: If \(m \neq 0\) and \(n \neq 0\) :
1. ia > M_A
2. \(j a>N \_A\)
3. \(i a+m-1>M \_A\)
4. \(j a+n-1>\) N_A

In all cases:
1. \(M B \_A \neq N B \_A\)

Stage 6
1. \(\bmod \left(i a-1, M B \_A\right) \neq \bmod \left(j a-1, N B \_A\right)\)
2. LLD_A < max(1, LOCp(M_A))
3. Iwork \(\neq 0\), Iwork \(\neq-1\), and lwork \(<n b(m p 0+n q 0+1)+n q 0\)
where:
\[
n b=M B \_A=N B \_A
\]
\[
\begin{aligned}
& \text { iroffa }=\bmod (i a-1, n b) \\
& \text { icoffa }=\bmod (j a-1, n b) \\
& \text { iarow }=\bmod (\text { RSRC_A }+(i a-1) / n b, \text { nprow }) . \\
& \text { iacol }=\bmod (\text { CSRC_A+(ja-1)/nb, npcol). } \\
& m p 0=\operatorname{NUMROC}(m+i r o f f a, n b, \text { myrow, iarow, nprow }) \\
& n q 0=\operatorname{NUMROC}(n+i c o f f a, n b, \text { mycol, iacol, npcol })
\end{aligned}
\]

\section*{Stage 7}

Each of the following global input arguments are checked to determine whether its value differs from the value specified on process \(\mathrm{P}_{00}\) :
1. \(m\) differs.
2. \(n\) differs.
3. ia differs.
4. ja differs.
5. \(M \_A\) differs.
6. N_A differs.
7. DTYPE_A differs.
8. MB_A differs.
9. NB_A differs.
10. RSRC_A differs.
11. CSRC_A differs.

Also:
12. Iwork \(=-1\) on a subset of processes.

Example: This example shows the reduction of a general matrix of order 4 by 3 to bidiagonal form using a \(2 \times 2\) process grid.

Note: Because /work = 0, PDGEBRD dynamically allocates the work area used by this subroutine.

Call Statements and Input
ORDER = 'R'
NPROW \(=2\)
NPCOL \(=2\)
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

\begin{tabular}{|c|c|}
\hline & DESC_A \\
\hline DTYPE_ & 1 \\
\hline CTXT_ \(_{-}\) & iconttt \\
\hline \(\mathrm{M}_{-}\) & 4 \\
\hline \(\mathrm{~N}_{-}\) & 3 \\
\hline \(\mathrm{MB}_{-}\) & 2 \\
\hline \(\mathrm{NB}_{-}\) & 2 \\
\hline RSRC_ & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & DESC_A \\
\hline CSRC_ & 0 \\
\hline LLD_ & See below \({ }^{2}\) \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
1 icontxt is the output of the BLACS_GRIDINIT call. \\
2 Each process should set the LLD_ as follows: \\
LLD_A \(=\operatorname{MAX}\left(1, \operatorname{NUMROC}\left(M \_A, M B \_A, M Y R O W, R S R C \_A, N P R O W\right)\right)\) \\
In this example, LLD_A \(=2\) on all processes.
\end{tabular}} \\
\hline
\end{tabular}

Global general matrix \(\boldsymbol{A}\) of order \(4 \times 3\) with block sizes \(2 \times 2\) :
\begin{tabular}{|c|c|c|}
\hline B, D & 0 & 1 \\
\hline \multirow[t]{2}{*}{0} & 10.05 .0 & 9.0 \\
\hline & 2.016 .0 & 10.0 \\
\hline \multirow[t]{2}{*}{1} & 3.07 .0 & 21.0 \\
\hline & 4.08 .0 & 12.0 \\
\hline
\end{tabular}

The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\boldsymbol{A}\) :
\begin{tabular}{|c|c|c|}
\hline p,q & 0 & 1 \\
\hline 0 & 10.05 .0 & 9.0 \\
\hline & 2.016 .0 & 10.0 \\
\hline \multirow[t]{2}{*}{1} & 3.07 .0 & 21.0 \\
\hline & 4.08 .0 & 12.0 \\
\hline
\end{tabular}

\section*{Output:}

Global general matrix \(\boldsymbol{A}\) of order \(4 \times 3\) with block sizes \(2 \times 2\) :
B, D
0 \(\quad\left[\begin{array}{rr|r}0 & 1 \\ -11.36 & 22.80 & 0.56 \\ 0.09 & 23.32 & 1.67 \\ ---14 & 0.46 & -9.68 \\ 0.14 & -19 & 0.22\end{array}\right]\)

The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\boldsymbol{A}\) :
\begin{tabular}{|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & 1 \\
\hline \multirow[t]{2}{*}{0} & -11.36 & 22.80 & 0.56 \\
\hline & 0.09 & 23.32 & 1.67 \\
\hline \multirow[t]{2}{*}{1} & 0.14 & 0.46 & -9.68 \\
\hline & 0.19 & 0.22 & 0.08 \\
\hline
\end{tabular}

Global row vector \(\boldsymbol{D}\) of length 3 with block size 2 :
B, D
\(0\left[\begin{array}{llll}-11.36 & 23.32 & \mid & -9.68\end{array}\right]\)

Note: A copy of \(\boldsymbol{D}\) is distributed across each row of the process grid.
The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c} 
B,D & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\boldsymbol{D}\) :
\begin{tabular}{|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & 1 \\
\hline 0 & -11.36 & 23.32 & -9.68 \\
\hline 1 & -11.36 & 23.32 & -9.68 \\
\hline
\end{tabular}

Global column vector \(\boldsymbol{E}\) of length 2 with block size 2:
\(B, D \quad 0\)
\(0\left[\begin{array}{r}22.80 \\ 1.67\end{array}\right]\)
Note: A copy of \(\boldsymbol{E}\) is distributed across each column of the process grid.
The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & & \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(E\) :
\begin{tabular}{|c|c|c|}
\hline p,q & 0 & 1 \\
\hline 0 & 22.80 & 22.80 \\
\hline & 1.67 & 1.67 \\
\hline 1 & & \\
\hline
\end{tabular}

Global row vector \(\tau_{q}\) of length 3 with block size 2 :
B, D
0
1
\(0\left[\begin{array}{ll|l}1.88 & 1.59 & 1.99\end{array}\right]\)

Note: A copy of \(\tau_{q}\) is distributed across each row of the process grid.
The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\tau_{q}\) :
\begin{tabular}{|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & 1 \\
\hline 0 & 1.88 & 1.59 & 1.99 \\
\hline 1 & 1.88 & 1.59 & 1.99 \\
\hline
\end{tabular}

Global column vector \(\tau_{p}\) of length 3 with block size 2 :
\(\left.\begin{array}{cc}B, D & 0 \\ 0 \\ 1\end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}1.52 \\ 0.00 \\ ---- \\ 0.00\end{array}\right]\)

Note: A copy of \(\tau_{p}\) is distributed across each column of the process grid.
The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & & \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\tau_{p}\) :
\begin{tabular}{|c|c|c|}
\hline p,q & 0 & 1 \\
\hline 0 & 1.52 & 1.52 \\
\hline & 0.00 & 0.00 \\
\hline 1 & 0.00 & 0.00 \\
\hline
\end{tabular}

The value of info is 0 on all processes.

\title{
Chapter 10. Fourier Transforms (Message Passing)
}

This chapter describes the Fourier Transforms subroutines.

\section*{Overview of the Fourier Transforms Subroutines}

The Fourier transform subroutines perform mixed-radix transforms in two and three dimensions. See references [1] and [3].
\begin{tabular}{|l|l|l|l|}
\hline Table 102. List of Fourier Transform Subroutines (Message Passing) \\
\hline Descriptive Name & \begin{tabular}{l} 
Short-Precision \\
Subroutine
\end{tabular} & \begin{tabular}{l} 
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline Complex Fourier Transforms in Two Dimensions & PSCFT2 & PDCFT2 & 656 \\
\hline Real-to-Complex Fourier Transforms in Two Dimensions & PSRCFT2 & PDRCFT2 & 663 \\
\hline Complex-to-Real Fourier Transforms in Two Dimensions & PSCRFT2 & PDCRFT2 & 669 \\
\hline Complex Fourier Transforms in Three Dimensions & PSCFT3 & PDCFT3 & 675 \\
\hline Real-to-Complex Fourier Transforms in Three Dimensions & PSRCFT3 & PDRCFT3 & 684 \\
\hline Complex-to-Real Fourier Transforms in Three Dimensions & PSCRFT3 & PDCRFT3 & 691 \\
\hline
\end{tabular}

\section*{Acceptable Lengths for the Transforms}

Use the following formula to determine acceptable transform lengths:
\[
n=\left(2^{h}\right)\left(3^{\prime}\right)\left(5^{\prime}\right)\left(7^{k}\right)(11 \mathrm{~m}) \quad \text { for } n \leq 37748736
\]
where:
\[
\begin{aligned}
& h=1,2, \ldots, 25 \\
& i=0,1,2 \\
& j, k, m=0,1
\end{aligned}
\]

Figure 12 on page 654 lists all the acceptable values for transform lengths in the Fourier transform subroutines.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 \\
\hline 20 & 22 & 24 & 28 & 30 & 32 & 36 & 40 & 42 \\
\hline 44 & 48 & 56 & 60 & 64 & 66 & 70 & 72 & 80 \\
\hline 84 & 88 & 90 & 96 & 110 & 112 & 120 & 126 & 128 \\
\hline 132 & 140 & 144 & 154 & 160 & 168 & 176 & 180 & 192 \\
\hline 198 & 210 & 220 & 224 & 240 & 252 & 256 & 264 & 280 \\
\hline 288 & 308 & 320 & 330 & 336 & 352 & 360 & 384 & 396 \\
\hline 420 & 440 & 448 & 462 & 480 & 504 & 512 & 528 & 560 \\
\hline 576 & 616 & 630 & 640 & 660 & 672 & 704 & 720 & 768 \\
\hline 770 & 792 & 840 & 880 & 896 & 924 & 960 & 990 & 1008 \\
\hline 1024 & 1056 & 1120 & 1152 & 1232 & 1260 & 1280 & 1320 & 1344 \\
\hline 1386 & 1408 & 1440 & 1536 & 1540 & 1584 & 1680 & 1760 & 1792 \\
\hline 1848 & 1920 & 1980 & 2016 & 2048 & 2112 & 2240 & 2304 & 2310 \\
\hline 2464 & 2520 & 2560 & 2640 & 2688 & 2772 & 2816 & 2880 & 3072 \\
\hline 3080 & 3168 & 3360 & 3520 & 3584 & 3696 & 3840 & 3960 & 4032 \\
\hline 4096 & 4224 & 4480 & 4608 & 4620 & 4928 & 5040 & 5120 & 5280 \\
\hline 5376 & 5544 & 5632 & 5760 & 6144 & 6160 & 6336 & 6720 & 6930 \\
\hline 7040 & 7168 & 7392 & 7680 & 7920 & 8064 & 8192 & 8448 & 8960 \\
\hline 9216 & 9240 & 9856 & 10080 & 10240 & 10560 & 10752 & 11088 & 11264 \\
\hline 11520 & 12288 & 12320 & 12672 & 13440 & 13860 & 14080 & 14336 & 14784 \\
\hline 15360 & 15840 & 16128 & 16384 & 16896 & 17920 & 18432 & 18480 & 19712 \\
\hline 20160 & 20480 & 21120 & 21504 & 22176 & 22528 & 23040 & 24576 & 24640 \\
\hline 25344 & 26880 & 27720 & 28160 & 28672 & 29568 & 30720 & 31680 & 32256 \\
\hline 32768 & 33792 & 35840 & 36864 & 36960 & 39424 & 40320 & 40960 & 42240 \\
\hline 43008 & 44352 & 45056 & 46080 & 49152 & 49280 & 50688 & 53760 & 55440 \\
\hline 56320 & 57344 & 59136 & 61440 & 63360 & 64512 & 65536 & 67584 & 71680 \\
\hline 73728 & 73920 & 78848 & 80640 & 81920 & 84480 & 86016 & 88704 & 90112 \\
\hline 92160 & 98304 & 98560 & 101376 & 107520 & 110880 & 112640 & 114688 & 118272 \\
\hline 122880 & 126720 & 129024 & 131072 & 135168 & 143360 & 147456 & 147840 & 157696 \\
\hline 161280 & 163840 & 168960 & 172032 & 177408 & 180224 & 184320 & 196608 & 197120 \\
\hline 202752 & 215040 & 221760 & 225280 & 229376 & 236544 & 245760 & 253440 & 258048 \\
\hline 262144 & 270336 & 286720 & 294912 & 295680 & 315392 & 322560 & 327680 & 337920 \\
\hline 344064 & 354816 & 360448 & 368640 & 393216 & 394240 & 405504 & 430080 & 443520 \\
\hline 450560 & 458752 & 473088 & 491520 & 506880 & 516096 & 524288 & 540672 & 573440 \\
\hline 589824 & 591360 & 630784 & 645120 & 655360 & 675840 & 688128 & 709632 & 720896 \\
\hline 737280 & 786432 & 788480 & 811008 & 860160 & 887040 & 901120 & 917504 & 946176 \\
\hline 983040 & 1013760 & 1032192 & 1048576 & 1081344 & 1146880 & 1179648 & 1182720 & 1261568 \\
\hline 1290240 & 1310720 & 1351680 & 1376256 & 1419264 & 1441792 & 1474560 & 1572864 & 1576960 \\
\hline 1622016 & 1720320 & 1774080 & 1802240 & 1835008 & 1892352 & 1966080 & 2027520 & 2064384 \\
\hline 2097152 & 2162688 & 2293760 & 2359296 & 2365440 & 2523136 & 2580480 & 2621440 & 2703360 \\
\hline 2752512 & 2838528 & 2883584 & 2949120 & 3145728 & 3153920 & 3244032 & 3440640 & 3548160 \\
\hline 3604480 & 3670016 & 3784704 & 3932160 & 4055040 & 4128768 & 4194304 & 4325376 & 4587520 \\
\hline 4718592 & 4730880 & 5046272 & 5160960 & 5242880 & 5406720 & 5505024 & 5677056 & 5767168 \\
\hline 5898240 & 6291456 & 6307840 & 6488064 & 6881280 & 7096320 & 7208960 & 7340032 & 7569408 \\
\hline 7864320 & 8110080 & 8257536 & 8388608 & 8650752 & 9175040 & 9437184 & 9461760 & 10092544 \\
\hline 10321920 & 10485760 & 10813440 & 11010048 & 11354112 & 11534336 & 11796480 & 12582912 & 12615680 \\
\hline 12976128 & 13762560 & 14192640 & 14417920 & 14680064 & 15138816 & 15728640 & 16220160 & 16515072 \\
\hline 16777216 & 17301504 & 18350080 & 18874368 & 18923520 & 20185088 & 20643840 & 20971520 & 21626880 \\
\hline 22020096 & 22708224 & 23068672 & 23592960 & 25165824 & 25231360 & 25952256 & 27525120 & 28385280 \\
\hline 28835840 & 29360128 & 30277632 & 31457280 & 32440320 & 33030144 & 33554432 & 34603008 & 36700160 \\
\hline 37748736 & & & & & & & & \\
\hline
\end{tabular}

Figure 12. Table of Acceptable Lengths for the Transforms

\section*{Fourier Transforms Subroutines}

This section contains the Fourier transform subroutine descriptions.

\section*{PSCFT2 and PDCFT2-Complex Fourier Transforms in Two Dimensions}

These subroutines compute the mixed-radix two-dimensional discrete Fourier transform of complex data:
\[
y_{k 1, k 2}=\text { scale } \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} x_{j 1, j 2} W_{n 1}^{(\text {Isign }) j 1 k 1} W_{n 2}^{(\text {Isign }) j 2 k 2}
\]
for:
\[
\begin{aligned}
& k 1=0,1, \ldots, n 1-1 \\
& k 2=0,1, \ldots, n 2-1
\end{aligned}
\]
where:
\[
\begin{aligned}
& W_{n 1}=e^{-2 \pi(\sqrt{-1}) / n 1} \\
& W_{n 2}=e^{-2 \pi(\sqrt{-1}) / n 2}
\end{aligned}
\]
and where:
\(x_{j 1, j 2}\) are elements of array \(X\).
\(y_{k 1, k 2}\) are elements of array Y .
Isign is + or - (determined by argument isign).
scale is a scalar value.
For scale = 1 and isign being positive, you obtain the discrete Fourier transform. For scale \(=1 /((n 1)(n 2))\) and isign being negative, you obtain the inverse Fourier transform.

See references [1] and [3].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|l|}{ Table 103. Data Types } & scale & Subroutine \\
\hline \(\mathrm{X}, \mathrm{Y}\) & Short-precision real & PSCFT2 \\
\hline Short-precision complex & Long-precision real & PDCFT2 \\
\hline Long-precision complex & \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PSCFT2 | PDCFT2 ( \(x, y, n 1, n 2\), isign, scale, icontxt, ip) \\
\hline C and C++ & pscft2 | pdcft2 ( \(x, y, n 1, n 2\), isign, scale, icontxt, ip); \\
\hline
\end{tabular}

On Entry
\(x\)
is the local array X , containing the two-dimensional data to be transformed that has been block-column distributed over a \(1 \times q\) process grid, where \(q\) is the number of processes. (The value of \(l d x\) is set in the IP array.)

\section*{Scope: local}

Specified as: an array of (at least) length \(I d x \times\) LOCq( \(n 2\) ), containing numbers of the data type indicated in Table 103 on page 656. This array must be aligned on a doubleword boundary.
\(y\)
See On Return.
n1
is the length of the first dimension of the two-dimensional data in the array to be transformed.

Scope: global
Specified as: a fullword integer; \(n 1 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n2
is the length of the second dimension of the two-dimensional data in the array to be transformed.

\section*{Scope: global}

Specified as: a fullword integer; n2 \(\leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
isign
controls the direction of the transform, determining the sign, isign, of the exponent of \(W_{n}\), where:
If isign \(=\) positive value, Isign \(=+\) (transforming time to frequency).
If isign \(=\) negative value, Isign \(=-\) (transforming frequency to time).
Scope: global
Specified as: a fullword integer; where isign \(>0\) or isign \(<0\).
scale
is the scaling constant scale.

\section*{Scope: global}

Specified as: a number of the data type indicated in Table 103 on page 656, where scale \(>0.0\) or scale \(<0.0\).
icontxt
is the BLACS context parameter.

\section*{Scope: global}

Specified as: the fullword integer that was returned by a prior call to
BLACS_GRIDINIT or BLACS_GRIDMAP.
ip
is an array of parameters, \(\operatorname{IP}(i)\), where:
- IP(1) indicates whether the default values for ip are used or you set the values for ip.
If \(\operatorname{IP}(1)=0\), then the following default values are used:
- \(y\) is returned in transposed form; that is, global \(y\) has dimensions \(n 2 \times n 1\)
- Idx, the leading dimension of the array specified for \(X\), equals \(n 1\)
- Idy, the leading dimension of the array specified for \(Y\), equals n2

The remaining parameters of the array IP are ignored.

If \(\operatorname{IP}(1) \neq 0\), then you set the remaining values of ip to indicate whether \(y\) is stored in normal or transposed form, and indicate values for \(I d x\) and \(I d y\).
- IP(2) indicates whether \(y\) is to be stored in normal or transposed form. If \(\operatorname{IP}(2)=0\), then \(y\) is to be stored in transposed form on output.
If \(\operatorname{IP}(2)=1\), then \(y\) is to be stored in normal form on output.
- IP(3-19) are reserved.
- IP(20) indicates the value of the leading dimension, Idx, of the array specified for \(X\), where:

If \(\operatorname{IP}(20)=0\), then \(I d x=n 1\).
If \(\operatorname{IP}(20) \neq 0\), then \(I d x\) is this value of \(\operatorname{IP}(20)\).
- IP(21) indicates the value of the leading dimension, Idy, of the array specified for \(Y\), where:

If \(\operatorname{IP}(21)=0\) and \(y\) is to be stored in normal form, then \(I d y=n 1\).
If IP 21 ) \(=0\) and \(y\) is to be stored in transposed form, then \(I d y=n 2\).
If IP \((21) \neq 0\), then Idy is this value of \(\operatorname{IP}(21)\).
- IP(22-40) are reserved.

\section*{Scope: global}

Specified as: a one-dimensional array of (at least) length 40, containing fullword integers, where:
\(\operatorname{IP}(1)\) is any integer
\(\operatorname{IP}(2)=0\) or 1
\(\operatorname{IP}(20) \geq n 1\) or \(\operatorname{IP}(20)=0\)
\(\operatorname{IP}(21) \geq n 1\) (for normal form) or \(\operatorname{IP}(21)=0\)
\(\operatorname{IP}(21) \geq n 2\) (for transposed form) or \(\operatorname{IP}(21)=0\)

\section*{On Return}
\(y\)
is the local array \(Y\) that is block-column distributed and contains the results of the computation, where:
If \(\operatorname{IP}(1)=0\), the local array \(Y\) is stored in transposed form and has dimensions \(n 2 \times \operatorname{LOCq}(n 1)\).
If \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(2)=0\), the local array \(Y\) is stored in transposed form and has dimensions \(I d y \times \mathrm{LOCq}(n 1)\).
If \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(2)=1\), the local array \(Y\) is stored in normal form and has dimensions \(l d y \times \operatorname{LOCq}(n 2)\).
Scope: local
Returned as: an \(I d y \times \operatorname{LOCq}(n 2)\) array (for normal form) or an \(I d y \times \mathrm{LOCq}(n 1)\) array (for transposed form), containing the numbers of the data type indicated in Table 103 on page 656. This array must be aligned on a doubleword boundary.

\section*{Notes and Coding Rules}
1. You may specify the same array for both \(X\) and \(Y\). In this case, output overwrites input. If you specify different arrays \(X\) and \(Y\), they must have no common elements; otherwise, results are unpredictable.
2. For the output array Y , these subroutines may use any extra space available when Idy is greater than its minimum value.
3. For more information on \(\operatorname{LOCq}\left(\_\right.\)) and how sequences are block-column distributed, see "Two-Dimensional Sequence" on page 66.
In general, distributing your data evenly provides the best work load balance among the processes and allows the use of the most efficient collective communication. However, for your specific problem size and number of processes available, experimentation is necessary to achieve optimal performance.
4. An example of the use of this subroutine in a thermal diffusion application program is shown in Appendix B. See subroutine fourier in "Module Fourier (Message Passing)" on page 925.

\section*{Error Conditions}

Computational Errors: None
Resource Errors
1. Unable to allocate work space

Input-Argument and Miscellaneous Errors

\section*{Stage 1}
1. icontxt is invalid

\section*{Stage 2}
1. Process grid is not \(1 \times q\)
2. The subroutine was called from outside the process grid.

\section*{Stage 3}
1. \(n 1>37748736\)
2. \(n 2>37748736\)
3. The length of \(n 1\) or \(n 2\) is not an allowable transform length.
4. isign \(=0\)
5. scale \(=0.0\)
6. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(2) \neq 0\) or 1
7. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(20) \neq 0\) and \(\operatorname{IP}(20)<n 1\) (that is, \(I d x<n 1\) )
8. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(2)=1\) (for normal mode) and \(\operatorname{IP}(21) \neq 0\) and \(\operatorname{IP}(21)<n 1\) (that is, Idy < n1)
9. IP(1) \(\neq 0\) and IP(2) \(=0\) (for transpose mode) and \(\operatorname{IP}(21) \neq 0\) and IP(21) < n2 (that is, Idy < n2)

Example 1: This example shows how to compute a two-dimensional transform. In this example, the IP array is set to 0 , which means array \(Y\) is returned in transposed form, \(I d x=n 1\), and \(I d y=n 2\). The data is block-column distributed over a \(1 \times 2\) process grid. The arrays are declared as follows:

\section*{PSCFT2 and PDCFT2}
```

COMPLEX*16 X(0:7,0:2), Y(0:5,0:3)
INTEGER*4 IP(40)
REAL*8 SCALE

```

\section*{Call Statements and Input}
```

ORDER = 'R'
NPROW = 1
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
IP(1) = 0

```

Global matrix \(\boldsymbol{X}\) of order \(8 \times 6\) :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{B, D} & & 0 & & & 1 & \\
\hline & (48.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline \multirow[t]{4}{*}{0} & \((0.0,0.0)\) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & \((0.0,0.0)\) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline
\end{tabular}

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

Local arrays for \(\boldsymbol{X}\) :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{3}{|c|}{0} & \multicolumn{3}{|c|}{1} \\
\hline \multirow{8}{*}{0} & (48.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & (0.0,0.0) & \((0.0,0.0)\) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & \((0.0,0.0)\) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & \((0.0,0.0)\) & \((0.0,0.0)\) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & \((0.0,0.0)\) \\
\hline & (0.0,0.0) & \((0.0,0.0)\) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & \((0.0,0.0)\) \\
\hline & \((0.0,0.0)\) & \((0.0,0.0)\) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & \((0.0,0.0)\) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & (0.0,0.0) & \((0.0,0.0)\) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & \((0.0,0.0)\) \\
\hline
\end{tabular}

Output: Global matrix for \(\boldsymbol{Y}\) :
\(B, D \quad 0\)
\(\left[\left.\begin{array}{llll}(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0)\end{array} \right\rvert\,\right.\)

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

Local matrix for \(\boldsymbol{Y}\) :


Example 2: This example shows how to compute a two-dimensional transform.
This is an example of uneven block-column distribution over a \(1 \times 3\) process grid. In this example, the IP array is set to 0 , which means array \(Y\) is returned in transposed form, \(I d x=n 1\), and \(I d y=n 2\). The arrays are declared as follows:
```

COMPLEX*16 X(0:7,0:2), Y(0:7,0:2)
INTEGER*4 IP(40)
REAL*8 SCALE

```

\section*{Call Statements and Input}
```

ORDER = 'R'
NPROW = 1
NPCOL = 3
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
IP(1) = 0

```


Global matrix \(\boldsymbol{X}\) of order \(8 \times 8\) :
B, D
\(\quad\left[\begin{array}{rrr}(0.0,98.0) & (67.0,27.0) & (67.0,82.0) \\ (13.0,49.0) & (93.0,91.0) & (0.0,12.0) \\ (75.0,26.0) & (38.0,52.0) & (38.0,1.0) \\ (45.0,9.0) & (51.0,46.0) & (6.0,68.0) \\ (53.0,94.0) & (83.0,94.0) & (41.0,86.0) \\ (21.0,7.0) & (3.0,5.0) & (68.0,62.0) \\ (4.0,50.0) & (5.0,76.0) & (58.0,73.0) \\ (67.0,38.0) & (52.0,77.0) & (93.0,72.0)\end{array}\right.\)
\begin{tabular}{|crr|}
\multicolumn{1}{c}{1} \\
\begin{tabular}{|rrr}
\((84.0,99.0)\) & \((26.0,41.0)\) & \((24.0,15.0)\) \\
\((52.0,88.0)\) & \((4.0,84.0)\) & \((98.0,57.0)\) \\
\((9.0,23.0)\) & \((73.0,26.0)\) & \((72.0,80.0)\) \\
\((65.0,30.0)\) & \((32.0,41.0)\) & \((75.0,3.0)\) \\
\((41.0,35.0)\) & \((63.0,53.0)\) & \((65.0,53.0)\) \\
\((70.0,51.0)\) & \((75.0,46.0)\) & \((7.0,49.0)\) \\
\((91.0,59.0)\) & \((99.0,28.0)\) & \((63.0,95.0)\) \\
\((76.0,84.0)\) & \((36.0,17.0)\) & \((88.0,74.0)\)
\end{tabular}
\end{tabular}
\begin{tabular}{cr}
\multicolumn{2}{c}{2} \\
\((27.0,55.0)\) & \((48.0,9.0)\) \\
\((43.0,89.0)\) & \((89.0,27.0)\) \\
\((76.0,62.0)\) & \((90.0,0.0)\) \\
\((47.0,84.0)\) & \((6.0,41.0)\) \\
\((23.0,15.0)\) & \((90.0,2.0)\) \\
\((27.0,21.0)\) & \((50.0,70.0)\) \\
\((35.0,71.0)\) & \((51.0,93.0)\) \\
\((16.0,13.0)\) & \((31.0,23.0)\)
\end{tabular}\(]\)

The following is the \(1 \times 3\) process grid:
\begin{tabular}{c|c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) & \(\mathrm{P}_{02}\)
\end{tabular}

Local arrays for \(\boldsymbol{X}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{3}{|c|}{0} & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|c|}{2} \\
\hline \multirow{8}{*}{0} & (0.0,98.0) & \((67.0,27.0)\) & \((67.0,82.0)\) & (84.0,99.0) & (26.0,41.0) & (24.0, 15.0) & (27.0,55.0) & (48.0,9.0) \\
\hline & (13.0,49.0) & (93.0,91.0) & (0.0,12.0) & \((52.0,88.0)\) & (4.0,84.0) & (98.0,57.0) & (43.0,89.0) & (89.0,27.0) \\
\hline & (75.0,26.0) & \((38.0,52.0)\) & (38.0,1.0) & \((9.0,23.0)\) & (73.0,26.0) & \((72.0,80.0)\) & (76.0,62.0) & (90.0,0.0) \\
\hline & (45.0,9.0) & \((51.0,46.0)\) & (6.0,68.0) & (65.0,30.0) & (32.0,41.0) & (75.0,3.0) & \((47.0,84.0)\) & (6.0,41.0) \\
\hline & (53.0,94.0) & (83.0,94.0) & \((41.0,86.0)\) & (41.0,35.0) & \((63.0,53.0)\) & \((65.0,53.0)\) & (23.0,15.0) & (90.0,2.0) \\
\hline & (21.0,7.0) & \((3.0,5.0)\) & \((68.0,62.0)\) & \((70.0,51.0)\) & (75.0,46.0) & (7.0,49.0) & (27.0,21.0) & (50.0,70.0) \\
\hline & (4.0,50.0) & (5.0,76.0) & \((58.0,73.0)\) & \((91.0,59.0)\) & (99.0,28.0) & (63.0,95.0) & (35.0,71.0) & (51.0,93.0) \\
\hline & (67.0,38.0) & (52.0,77.0) & (93.0,72.0) & (76.0,84.0) & (36.0,17.0) & (88.0,74.0) & \((16.0,13.0)\) & (31.0,23.0) \\
\hline
\end{tabular}

\section*{Output: Global matrix for \(\boldsymbol{Y}\) :}
\(B, D\)
\(0 \quad\left[\begin{array}{rrr|rrrrr} \\ (198.6,200.1) & (-10.6,9.8) & (0.8,7.2) & (5.8,-5.2) & (11.2,9.1) & (-38.3,-18.7) & (-10.2,-1.9) & (14.0,12.6) \\ (-0.3,-6.8) & (19.3,-18.7) & (28.7,-3.6) & (-7.2,2.5) & (1.5,14.6) & (-22.0,-20.7) & (29.8,-15.0) & (-10.7,0.8) \\ (11.3,-6.2) & (-24.0,-8.1) & (8.6,11.6) & (-29.9,6.5) & (13.7,13.5) & (-16.7,-4.4) & (-26.6,-0.8) & (-3.3,9.5) \\ (5.7,17.1) & (3.7,-7.0) & (-2.5,13.9) & (-19.5,-15.9) & (-18.4,20.1) & (11.6,-1.8) & (-0.3,-8.2) & (26.8,30.0) \\ (-29.8,-3.4) & (-0.5,7.4) & (-17.1,27.5) & (18.5,32.6) & (9.4,9.6) & (7.6,-8.0) & (-13.1,13.9) & (-26.6,-16.5) \\ (-10.2,1.6) & (-5.0,28.8) & (-5.0,25.0) & (5.0,12.1) & (-13.5,9.9) & (2.5,0.6) & (0.0,-5.6) & (-11.8,-8.3) \\ (-8.7,-13.6) & (10.0,11.1) & (0.6,9.4) & (12.2,-21.2) & (-9.3,-0.9) & (14.5,-15.6) & (2.4,11.1) & (-22.7,0.2) \\ (-27.7,-3.1) & (-21.8,-21.3) & (-22.6,6.0) & (0.2,11.6) & (-1.6,6.6) & (-7.2,-0.4) & (0.5,25.6) & (20.3,23.8)\end{array}\right]\)

The following is the \(1 \times 3\) process grid:
\begin{tabular}{c|c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) & \(\mathrm{P}_{02}\)
\end{tabular}

Local matrix for \(\boldsymbol{Y}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{3}{|c|}{0} & \multicolumn{3}{|c|}{1} & \multicolumn{2}{|r|}{2} \\
\hline & \((198.6,200.1)\) & \((-10.6,9.8)\) & \((0.8,7.2)\) & \((5.8,-5.2)\) & (11.2,9.1) & \((-38.3,-18.7)\) & \((-10.2,-1.9)\) & \((14.0,12.6)\) \\
\hline & (-0.3, -6.8) & (19.3,-18.7) & (28.7, -3.6) & (-7.2,2.5) & (1.5,14.6) & (-22.0, -20.7) & (29.8,-15.0) & (-10.7,0.8) \\
\hline & (11.3,-6.2) & (-24.0,-8.1) & (8.6,11.6) & (-29.9,6.5) & \((13.7,13.5)\) & (-16.7, -4.4) & (-26.6,-0.8) & (-3.3, 9.5) \\
\hline & (5.7,17.1) & (3.7, -7.0) & \((-2.5,13.9)\) & (-19.5, -15.9) & (-18.4,20.1) & (11.6,-1.8) & (-0.3, -8.2) & (26.8,30.0) \\
\hline 0 & \((-29.8,-3.4)\) & (-0.5,7.4) & \((-17.1,27.5)\) & (18.5,32.6) & (9.4,9.6) & (7.6,-8.0) & \((-13.1,13.9)\) & \((-26.6,-16.5)\) \\
\hline & \((-10.2,1.6)\) & \((-5.0,28.8)\) & \((-5.0,25.0)\) & (5.0,12.1) & (-13.5,9.9) & (2.5,0.6) & (0.0,-5.6) & \((-11.8,-8.3)\) \\
\hline & (-8.7, -13.6) & \((10.0,11.1)\) & (0.6,9.4) & (12.2,-21.2) & (-9.3,-0.9) & (14.5,-15.6) & (2.4,11.1) & (-22.7,0.2) \\
\hline & \((-27.7,-3.1)\) & \((-21.8,-21.3)\) & \((-22.6,6.0)\) & \((0.2,11.6)\) & (-1.6,6.6) & (-7.2, -0.4) & (0.5,25.6) & \((20.3,23.8)\) \\
\hline
\end{tabular}

\section*{PSRCFT2 and PDRCFT2—Real-to-Complex Fourier Transforms in Two Dimensions}

These subroutines compute the mixed-radix two-dimensional complex conjugate even discrete Fourier transform of real data:
\[
y_{k 1, k 2}=\text { scale } \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} x_{j 1, j 2} W_{n 1}^{(\text {Lsign }) j 1 k 1} W_{n 2}^{(\text {Lsign }) j 2 k 2}
\]
for:
\[
\begin{aligned}
& k 1=0,1, \ldots, n 1-1 \\
& k 2=0,1, \ldots, n 2-1
\end{aligned}
\]
where:
\[
\begin{aligned}
& W_{n 1}=e^{-2 \pi(\sqrt{-1}) / n 1} \\
& W_{n 2}=e^{-2 \pi(\sqrt{-1}) / n 2}
\end{aligned}
\]
and where:
\(x_{j 1, j 2}\) are elements of array X.
\(y_{k 1, k 2}\) are elements of array Y .
Isign is + or - (determined by argument isign).
scale is a scalar value.
For scale \(=1\) and isign being positive, you obtain the discrete Fourier transform. For scale \(=1 /((n 1)(n 2))\) and isign being negative, you obtain the inverse Fourier transform.

See references [1] and [3].
\begin{tabular}{|c|c|c|}
\hline Table 104. Data Types & Y & Subroutine \\
\hline X , scale & Short-precision complex & PSRCFT2 \\
\hline Short-precision real & Long-precision complex & PDRCFT2 \\
\hline Long-precision real & \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PSRCFT2 | PDRCFT2 ( \(x, y, n 1, n 2\), isign, scale, icontxt, ip) \\
\hline C and C++ & psrcft2 | pdrcft2 \((x, y, n 1, n 2\), isign, scale, icontxt, ip); \\
\hline
\end{tabular}

On Entry
\(x\)
is the local array X , containing the two-dimensional data to be transformed that has been block-column distributed over a \(1 \times q\) process grid, where \(q\) is the number of processes. (The value of \(l d x\) is set in the IP array.)

\section*{Scope: local}

Specified as: an array of (at least) length \(I d x \times \mathrm{LOCq}(n 2)\), containing numbers of the data type indicated in Table 104 on page 663. This array must be aligned on a doubleword boundary.

See On Return.
\(n 1\)
is the length of the first dimension of the two-dimensional data in the array to be transformed.

\section*{Scope: global}

Specified as: a fullword integer; \(n 1 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n2
is the length of the second dimension of the two-dimensional data in the array to be transformed.

\section*{Scope: global}

Specified as: a fullword integer; \(n 2 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
isign
controls the direction of the transform, determining the sign, isign, of the exponent of \(W_{n}\), where:
If isign \(=\) positive value, Isign \(=+\) (transforming time to frequency).
If isign \(=\) negative value, Isign \(=-\) (transforming frequency to time).
Scope: global
Specified as: a fullword integer; where isign > 0 or isign < 0.
scale
is the scaling constant scale.
Scope: global
Specified as: a number of the data type indicated in Table 104 on page 663, where scale > 0.0 or scale < 0.0.
icontxt
is the BLACS context parameter.
Scope: global
Specified as: the fullword integer that was returned by a prior call to
BLACS_GRIDINIT or BLACS_GRIDMAP.
ip
is an array of parameters, \(\operatorname{IP}(i)\), where:
- IP(1) indicates whether the default values for ip are used or you set the values for ip.
If \(\operatorname{IP}(1)=0\), then the following default values are used:
- \(I d x\), the leading dimension of the array specified for \(X\), equals \(n 1\)
- Idy, the leading dimension of the array specified for \(Y\), equals n2

The remaining parameters of the array IP are ignored.
If \(\operatorname{IP}(1) \neq 0\), then you set the remaining values of ip to indicate values for \(l d x\) and \(I d y\).
- IP(2-19) are reserved.
- IP(20) indicates the value of the leading dimension, Idx, of the array specified for X , where:
If \(\operatorname{IP}(20)=0\), then \(I d x=n 1\).
If \(\operatorname{IP}(20) \neq 0\), then \(I d x\) is this value of \(\operatorname{IP}(20)\).
- IP(21) indicates the value of the leading dimension, ldy, of the array specified for \(Y\), where:
If \(\operatorname{IP}(21)=0\), then \(I d y=n 2\).
If \(\operatorname{IP}(21) \neq 0\), then \(/ d y\) is this value of \(\operatorname{IP}(21)\).
- IP(22-40) are reserved.

\section*{Scope: global}

Specified as: a one-dimensional array of (at least) length 40, containing fullword integers, where:
\(\operatorname{IP}(1)\) is any integer
\(\operatorname{IP}(20) \geq n 1\) or \(\operatorname{IP}(20)=0\)
\(\operatorname{IP}(21) \geq n 2\) or \(\operatorname{IP}(21)=0\)

\section*{On Return}
\(y\)
is the local array Y , stored in FFT-packed storage mode, containing the results of the computation that are block-column distributed, where:
If \(\operatorname{IP}(1)=0\), the local array \(Y\) has dimensions \(n 2 \times \operatorname{LOCq}(n 1 / 2)\).
If \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21)=0\), the local array \(Y\) has dimensions \(n 2 \times \operatorname{LOCq}(n 1 / 2)\).
If \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21) \neq 0\), the local array \(Y\) has dimensions \(l d y \times \operatorname{LOCq}(n 1 / 2)\).
Scope: local
Returned as: an \(I d y \times \operatorname{LOCq}(n 1 / 2)\) array, containing the numbers of the data type indicated in Table 104 on page 663. This array must be aligned on a doubleword boundary.

\section*{Notes and Coding Rules}
1. These subroutines always return \(Y\) in transposed form.
2. For the output array Y , these subroutines may use any extra space available when \(l d y\) is greater than its minimum value.
3. You may specify the same array for \(X\) and \(Y\). In this case, output overwrites input. If you specify different arrays \(X\) and \(Y\), they must have no common elements; otherwise, results are unpredictable.
4. For more information on LOCq(_), and how sequences are block-column distributed and stored in FFT-packed storage mode, see "Two-Dimensional Sequence" on page 66.

In general, distributing your data evenly provides the best work load balance among the processes and allows the use of the most efficient collective communication. However, for your specific problem size and number of processes available, experimentation is necessary to achieve optimal performance.

\section*{Error Conditions}

\section*{Computational Errors: None}

\section*{Resource Errors}
1. Unable to allocate work space

Input-Argument and Miscellaneous Errors

\section*{Stage 1}
1. icontxt is invalid

\section*{Stage 2}
1. Process grid is not \(1 \times q\)
2. The subroutine was called from outside the process grid.

Stage 3
1. \(n 1>37748736\)
2. \(n 2>37748736\)
3. The length of \(n 1\) or \(n 2\) is not an allowable transform length.
4. isign \(=0\)
5. scale \(=0.0\)
6. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(20) \neq 0\) and \(\operatorname{IP}(20)<n 1\) (that is, \(I d x<n 1\) )
7. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21) \neq 0\) and \(\operatorname{IP}(21)<n 2\) (that is, \(I d y<n 2\) )

Example: This example shows how to compute a two-dimensional transform. The data is block-column distributed over a \(1 \times 2\) process grid. The arrays are declared as follows:
```

REAL*8 X(0:11,0:1)
COMPLEX*16 Y(0:6,0:1)
INTEGER*4 IP(40)
REAL*8 SCALE

```

\section*{Call Statements and Input}
```

ORDER = 'R'
NPROW = 1
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
IP(1) = 1
IP(20) = 12 (that is, ldx = 12)
IP(21) = 7 (that is, ldy = 7)

```


Global matrix \(\boldsymbol{X}\) of order \(8 \times 4\) :
B, D \(\quad\)\begin{tabular}{c}
0 \\
\\
\\
\hline
\end{tabular}\(\quad\left[\begin{array}{cc|cc}1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . \\
. & . & . & . \\
. & . & . & . \\
. & . & . & .\end{array}\right]\)

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

Local arrays for \(\boldsymbol{X}\) :
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} \\
\hline & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \multirow[t]{6}{*}{0} & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & - & - & - & - \\
\hline & - & - & - & - \\
\hline & - & - & - & - \\
\hline & & & & \\
\hline
\end{tabular}

Output: The following global matrix \(\boldsymbol{Y}\) is returned in transposed form and stored in FFT-packed storage mode:
B, D
0
1
\(0 \quad\left[\left.\begin{array}{cc}(1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ (1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ . & . \\ . & .\end{array} \right\rvert\,\right.\)
\(\left.\begin{array}{cc}(1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot \\ \cdot & \cdot\end{array}\right]\)

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

The following local arrays for \(\boldsymbol{Y}\) are returned in transposed form and stored in FFT-packed storage mode:
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} \\
\hline & \((1.0,1.0)\) & (1.0,0.0) & (1.0,0.0) & \((1.0,0.0)\) \\
\hline & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\hline & \((1.0,1.0)\) & \((1.0,0.0)\) & (1.0,0.0) & \((1.0,0.0)\) \\
\hline 0 & \((1.0,0.0)\) & \((1.0,0.0)\) & (1.0,0.0) & (1.0,0.0) \\
\hline & - & - & - & - \\
\hline & - & - & - & - \\
\hline & - & - & & - \\
\hline
\end{tabular}

\section*{PSCRFT2 and PDCRFT2-Complex-to-Real Fourier Transforms in Two Dimensions}

These subroutines compute the mixed-radix two-dimensional real discrete Fourier transform of complex conjugate even data:
\[
y_{k 1, k 2}=\text { scale } \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} x_{j 1, j 2} W_{n 1}^{(\text {Isign }) j 1 k 1} W_{n 2}^{(\text {Isign }) j 2 k 2}
\]
for:
\[
\begin{aligned}
& k 1=0,1, \ldots, n 1-1 \\
& k 2=0,1, \ldots, n 2-1
\end{aligned}
\]
where:
\[
\begin{aligned}
& W_{n 1}=e^{-2 \pi(\sqrt{-1}) / n 1} \\
& W_{n 2}=e^{-2 \pi(\sqrt{-1}) / n 2}
\end{aligned}
\]
and where:
\(x_{j 1, j 2}\) are elements of array \(X\).
\(y_{k 1, k 2}\) are elements of array Y .
Isign is + or - (determined by argument isign).
scale is a scalar value.

For scale \(=1\) and isign being positive, you obtain the discrete Fourier transform. For scale \(=1 /((n 1)(n 2))\) and isign being negative, you obtain the inverse Fourier transform.

See references [1] and [3].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{ Table 105. Data Types } & Y, scale & Subroutine \\
\hline X & Short-precision real & PSCRFT2 \\
\hline Short-precision complex & Long-precision real & PDCRFT2 \\
\hline Long-precision complex & \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PSCRFT2 | PDCRFT2 ( \(x, y, n 1\), n2, isign, scale, icontxt, ip) \\
\hline C and C++ & pscrft2 | pdcrft2 ( \(x, y, n 1, n 2\), isign, scale, icontxt, ip); \\
\hline
\end{tabular}

On Entry
\(x\)
is the local array \(X\), containing the two-dimensional data to be transformed that has been block-column distributed over a \(1 \times q\) process grid, where \(q\) is the number of processes. (The value of \(l d x\) is set in the IP array.) Array \(X\) is stored in FFT-packed storage mode.

\section*{Scope: local}

Specified as: an array of (at least) length \(I d x \times \operatorname{LOCq}(n 1 / 2)\), containing numbers of the data type indicated in Table 105 on page 669. This array must be aligned on a doubleword boundary.

See On Return.
n1
is the length of the second dimension of the two-dimensional data of the array to be transformed.

\section*{Scope: global}

Specified as: a fullword integer; \(n 1 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n2
is the length of the first dimension of two-dimensional data of the array to be transformed.

Scope: global
Specified as: a fullword integer; \(n 2 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
isign
controls the direction of the transform, determining the sign, isign, of the exponent of \(W_{n}\), where:
If isign \(=\) positive value, Isign \(=+\) (transforming time to frequency).
If isign \(=\) negative value, Isign \(=-\) (transforming frequency to time).
Scope: global
Specified as: a fullword integer; where isign > 0 or isign < 0 .
scale
is the scaling constant scale.
Scope: global
Specified as: a number of the data type indicated in Table 105 on page 669, where scale > 0.0 or scale < 0.0.
icontxt
is the BLACS context parameter.
Scope: global
Specified as: the fullword integer that was returned by a prior call to
BLACS_GRIDINIT or BLACS_GRIDMAP.
ip
is an array of parameters, IP \((i)\), where:
- IP(1) indicates whether the default values for ip are used or you set the values for ip.
If \(\operatorname{IP}(1)=0\), then the following default values are used:
- Idx, the leading dimension of the array specified for \(X\), equals \(n 2\)
- Idy, the leading dimension of the array specified for \(Y\), equals n1

The remaining parameters of the array IP are ignored.
If \(\operatorname{IP}(1) \neq 0\), then you set the remaining values of ip to indicate values for \(I d x\) and \(I d y\).
- IP(2-19) are reserved.
- IP(20) indicates the value of the leading dimension, Idx, of the array specified for \(X\), where:
If \(\operatorname{IP}(20)=0\), then \(I d x=n 2\).
If \(\operatorname{IP}(20) \neq 0\), then \(I d x\) is this value of \(\operatorname{IP}(20)\).
- IP (21) indicates the value of the leading dimension, Idy, of the array specified for \(Y\), where:
If \(\operatorname{IP}(21)=0\) then \(I d y=n 1\).
If \(\operatorname{IP}(21) \neq 0\), then \(l d y\) is this value of \(\operatorname{IP}(21)\).
- IP(22-40) are reserved.

\section*{Scope: global}

Specified as: a one-dimensional array of (at least) length 40, containing fullword integers, where:
\(\operatorname{IP}(1)\) is any integer
\(\operatorname{IP}(20) \geq n 2\) or \(\operatorname{IP}(20)=0\)
\(\operatorname{IP}(21) \geq n 1\) or \(\operatorname{IP}(21)=0\)

\section*{On Return}

\section*{\(y\)}
is the local array \(Y\) that is block-column distributed and contains the results of the computation, where:
If \(\operatorname{IP}(1)=0\), the local array \(Y\) is stored in normal form and has dimensions \(n 1 \times \operatorname{LOCq}(n 2)\).
If \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21)=0\), the local array \(Y\) is stored in normal form and has dimensions \(n 1 \times \operatorname{LOCq}(n 2)\).
If \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21) \neq 0\), the local array \(Y\) is stored in normal form and has dimensions \(1 d y \times \operatorname{LOCq}(n 2)\).
Scope: local
Returned as: an \(I d y \times \operatorname{LOCq}(n 2)\) array, containing the numbers of the data type indicated in Table 105 on page 669. This array must be aligned on a doubleword boundary.

\section*{Notes and Coding Rules}
1. These subroutines always return \(Y\) in normal form.
2. For the output array \(Y\), these subroutines may use any extra space available when Idy is greater than its minimum value.
3. For more information on LOCq(_), and how sequences are block-column distributed and stored in FFT-packed storage mode, see "Two-Dimensional Sequence" on page 66.

In general, distributing your data evenly provides the best work load balance among the processes and allows the use of the most efficient collective communication. However, for your specific problem size and number of
processes available, experimentation is necessary to achieve optimal performance.
4. You may specify the same array for \(X\) and \(Y\). In this case, output overwrites input. If you specify different arrays \(X\) and \(Y\), they must have no common elements; otherwise, results are unpredictable.

\section*{Error Conditions}

Computational Errors: None

\section*{Resource Errors}
1. Unable to allocate work space.

Input-Argument and Miscellaneous Errors

\section*{Stage 1}
1. icontxt is invalid

\section*{Stage 2}
1. Process grid is not \(1 \times q\)
2. The subroutine was called from outside the process grid.

\section*{Stage 3}
1. \(n 1>37748736\)
2. \(n 2>37748736\)
3. The length of \(n 1\) or \(n 2\) is not an allowable transform length.
4. isign \(=0\)
5. scale \(=0.0\)
6. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(20) \neq 0\) and \(\operatorname{IP}(20)<n 2\) (that is, \(I d x<n 2\) )
7. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21) \neq 0\) and \(\operatorname{IP}(21)<n 1\) (that is, \(l d y<n 1\) )

Example: This example shows how to compute a two-dimensional transform. The data is block-column distributed over a \(1 \times 2\) process grid. The arrays are declared as follows:
```

COMPLEX*16 X(0:6,0:1)
REAL*8 Y(0:11,0:1)
INTEGER*4 IP(40)
REAL*8 SCALE

```

\section*{Call Statements and Input}
```

ORDER = 'R'
NPROW = 1
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
IP(1) = 1
IP(20) = 7 (that is, ldx = 7)
IP(21) = 12 (that is, ldy = 12)

```


The following global matrix \(\boldsymbol{X}\) is stored in FFT-packed storage mode:
B, D
0
1 \(0 \quad\left[\begin{array}{cc}(1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ (1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot \\ \cdot & \cdot \\ . & \cdot\end{array}\right.\)
\(\left.\begin{array}{cc}(1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot \\ \cdot & \cdot\end{array}\right]\)

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

The following local arrays for \(\boldsymbol{X}\) are stored in FFT-packed storage mode:
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} \\
\hline \multirow{7}{*}{0} & \((1.0,1.0)\) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\hline & \((1.0,0.0)\) & \((1.0,0.0)\) & (1.0,0.0) & \((1.0,0.0)\) \\
\hline & \((1.0,1.0)\) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\hline & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\hline & - & - & - & - \\
\hline & - & - & - & - \\
\hline & - & - & - & - \\
\hline
\end{tabular}

\section*{Output: Global matrix \(\boldsymbol{Y}\) :}
B, D
0 \(\quad\left[\begin{array}{cc|cc}1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ . & . & . & . \\ . & . & . & . \\ . & . & . & . \\ . & . & . & .\end{array}\right]\)

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

Local arrays for \(\boldsymbol{Y}\) :
\begin{tabular}{|c|c|c|c|c|}
\hline p,q & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{1} \\
\hline & 1.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline \multirow[t]{6}{*}{0} & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & - & - & - & . \\
\hline & - & - & - & - \\
\hline & - & - & - & - \\
\hline & - & & - & \\
\hline
\end{tabular}

\section*{PSCFT3 and PDCFT3-Complex Fourier Transforms in Three Dimensions}

These subroutines compute the mixed-radix three-dimensional discrete Fourier transform of complex data:
\[
y_{k 1, k 2, k 3}=\text { scale } \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1, j 2, j 3} W_{n l}^{(I s i g n) j 1 k l} W_{n 2}^{(\text {Isign)j2k2}} W_{n 3}^{(I s i g n) j 3 k 3}
\]
for:
\[
\begin{aligned}
& k 1=0,1, \ldots, n 1-1 \\
& k 2=0,1, \ldots, n 2-1 \\
& k 3=0,1, \ldots, n 3-1
\end{aligned}
\]
where:
\[
\begin{aligned}
& W_{n 1}=e^{-2 \pi(\sqrt{-1}) / n 1} \\
& W_{n 2}=e^{-2 \pi(\sqrt{-1}) / n 2} \\
& W_{n 3}=e^{-2 \pi(\sqrt{-1}) / n 3}
\end{aligned}
\]
and where:
\(x_{j 1, j, j, j}\) are elements of array X.
\(y_{k 1, k 2, k 3}\) are elements of array Y .
Isign is + or - (determined by argument isign).
scale is a scalar value.
For scale \(=1\) and isign being positive, you obtain the discrete Fourier transform. For scale \(=1 /((n 1)(n 2)(n 3))\) and isign being negative, you obtain the inverse Fourier transform.

See references [1] and [3].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|l|}{ Table 106. Data Types } & scale & Subroutine \\
\hline \(\mathrm{X}, \mathrm{Y}\) & Short-precision real & PSCFT3 \\
\hline Short-precision complex & Long-precision real & PDCFT3 \\
\hline Long-precision complex & \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PSCFT3 | PDCFT3 \((x, y, n 1, n 2, n 3\), isign, scale, icontxt, ip) \\
\hline \(\mathbf{C}\) and \(C_{++}\) & pscft3 | pdcft3 \((x, y, n 1, n 2, n 3\), isign, scale, icontxt, ip); \\
\hline
\end{tabular}

On Entry
\(x\)
is the local array \(X\), containing the three-dimensional data to be transformed that has been block-plane distributed over a \(1 \times q\) process grid, where \(q\) is the number of processes. (The values of \(I d x 1\) and \(I d x 2\) are set in the IP array.)

Scope: local
Specified as: an array of (at least) length \(I d x 1 \times I d x 2 \times \operatorname{LOCq}(n 3)\), containing numbers of the data type indicated in Table 106 on page 675 . This array must be aligned on a doubleword boundary.
\(y\)
See On Return.
n1
is the length of the first dimension of the three-dimensional data of the array to be transformed.
Scope: global
Specified as: a fullword integer; \(n 1 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n2
is the length of the second dimension of the three-dimensional data of the array to be transformed.

Scope: global
Specified as: a fullword integer; \(n 2 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n3
is the length of the third dimension of the three-dimensional data of the array to be transformed.

Scope: global
Specified as: a fullword integer; n3 \(\leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
isign
controls the direction of the transform, determining the sign, isign, of the
exponent of \(W_{n}\), where:
If isign \(=\) positive value, Isign \(=+\) (transforming time to frequency).
If isign \(=\) negative value, Isign \(=-\) (transforming frequency to time).
Scope: global
Specified as: a fullword integer; where isign > 0 or isign \(<0\).
scale
is the scaling constant scale.
Scope: global
Specified as: a number of the data type indicated in Table 106 on page 675, where scale \(>0.0\) or scale \(<0.0\).
icontxt
is the BLACS context parameter.
Scope: global
Specified as: the fullword integer that was returned by a prior call to BLACS_GRIDINIT or BLACS_GRIDMAP.
is an array of parameters, IP(i), where:
- IP(1) indicates whether the default values for ip are used or you set the values for ip.
If \(\operatorname{IP}(1)=0\), then the following default values are used:
- \(y\) is returned in transposed form; that is global \(y\) has dimensions \(n 3 \times n 2 \times n 1\).
- \(I d x 1\) and \(I d x 2\), the leading dimensions of the array specified for \(X\), equal \(n 1\) and \(n 2\), respectively.
- Idy1 and \(/ d y 2\), the leading dimensions of the array specified for Y , equal \(n 3\) and \(n 2\), respectively.
The remaining parameters of array IP are ignored.
If \(\operatorname{IP}(1) \neq 0\), then you set the remaining values of ip to indicate whether \(y\) is stored in normal or transposed form, and indicate values for the leading dimensions.
- IP(2) indicates whether \(y\) is to be stored in normal or transposed form. If \(\operatorname{IP}(2)=0\), then \(y\) is to be stored in transposed form on output.
If \(\operatorname{IP}(2)=1\), then \(y\) is to be stored in normal form on output.
- IP(3-19) are reserved.
- IP(20) indicates the values of the leading dimension, Idx1, for the array specified for \(X\), where:
If \(\operatorname{IP}(20)=0\), then \(I d x 1=n 1\).

If \(\operatorname{IP}(20) \neq 0\), then \(I d x 1\) is this value of \(\operatorname{IP}(20)\).
- IP(21) indicates the values of the leading dimension, Idx2, for the array specified for \(X\), where:
If \(\operatorname{IP}(21)=0\), then \(I d x 2=n 2\).
If \(\operatorname{IP}(21) \neq 0\), then \(I d x 2\) is this value of \(\operatorname{IP}(21)\).
- IP(22) indicates the values of the leading dimension, Idy1, for the array specified for \(Y\), where:
If \(\operatorname{IP}(22)=0\) and \(\operatorname{IP}(2)=1\), then \(/ d y 1=n 1\).
If \(\operatorname{IP}(22)=0\) and \(\operatorname{IP}(2)=0\), then \(I d y 1=n 3\).
If \(\operatorname{IP}(22) \neq 0\), then \(\operatorname{ldy} 11\) is this value of \(\operatorname{IP}(22)\).
- IP(23) indicates the values of the leading dimension, Idy2, for the array specified for Y , where:
If \(\operatorname{IP}(23)=0\), then \(/ d y 2=n 2\).

If \(\operatorname{IP}(23) \neq 0\), then \(\operatorname{ldy} 2\) is this value of \(\operatorname{IP}(23)\).
- IP (24-40) are reserved.

\section*{Scope: global}

Specified as: a one-dimensional array of (at least) length 40, containing fullword integers, where:
\(\operatorname{IP}(1)\) is any integer
\(\operatorname{IP}(2)=0\) or 1
\(\operatorname{IP}(20) \geq n 1\) or \(\operatorname{IP}(20)=0\)
\(\operatorname{IP}(21) \geq n 2\) or \(\operatorname{IP}(21)=0\)
IP \((22) \geq n 1\) (for normal form) or IP \((22)=0\)
\(\operatorname{IP}(22) \geq n 3\) (for transposed form) or \(\operatorname{IP}(22)=0\)
\(\operatorname{IP}(23) \geq n 2\) or \(\operatorname{IP}(23)=0\)

\section*{On Return}
\(y\)
is the local array \(Y\) that is block-plane distributed and contains the results of the computation, where:
If \(\operatorname{IP}(1)=0\), the local array \(Y\) is stored in transposed form and has dimensions \(n 3 \times n 2 \times \operatorname{LOCq}(n 1)\).

If \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(2)=0\), then the local array \(Y\) is stored in transposed form and has dimensions \(/ d y 1 \times I d y 2 \times \operatorname{LOCq}(n 1)\).

If \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(2)=1\), then the local array \(Y\) is stored in normal form and has dimensions ldy \(1 \times 1 d y 2 \times \operatorname{LOCq}(n 3)\).

\section*{Scope: local}

Returned as: an Idy \(1 \times 1\) dy \(2 \times \operatorname{LOCq}(n 3)\) array (for normal form) or an \(\operatorname{ldy} 1 \times \operatorname{ldy} 2 \times \operatorname{LOCq}(n 1)\) array (for transposed form), containing the numbers of the data type indicated in Table 106 on page 675. This array must be aligned on a doubleword boundary.

\section*{Notes and Coding Rules}
1. For the output array Y , these subroutines may use any extra space available when \(I d y 1\) and \(l d y 2\) are greater than their minimum value.
2. You may specify the same array for \(X\) and \(Y\). In this case, output overwrites input. If you specify different arrays \(X\) and \(Y\), they must have no common elements; otherwise, results are unpredictable.
3. For more information on LOCq(_) and how sequences are block-plane distributed, see "Three-Dimensional Sequences" on page 71.

In general, distributing your data evenly provides the best work load balance among the processes and allows the use of the most efficient collective communication. However, for your specific problem size and number of processes available, experimentation is necessary to achieve optimal performance.

\section*{Error Conditions}

Computational Errors: None
Resource Errors
1. Unable to allocate work space.

\section*{Input-Argument and Miscellaneous Errors}

\section*{Stage 1}
1. icontxt is invalid

\section*{Stage 2}
1. Process grid is not \(1 \times q\)
2. The subroutine was called from outside the process grid.

\section*{Stage 3}
1. \(n 1>37748736\)
2. \(n 2>37748736\)
3. \(n 3>37748736\)
4. The length of \(n 1, n 2\), or \(n 3\) is not an allowable transform length.
5. isign \(=0\)
6. scale \(=0.0\)
7. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(2) \neq 0\) or 1
8. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(20) \neq 0\) and \(\operatorname{IP}(20)<n 1\) (that is, \(I d x 1<n 1\) )
9. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21) \neq 0\) and \(\operatorname{IP}(21)<n 2\) (that is, \(I d x 2<n 2\) )
10. \(\operatorname{IP}(1) \neq 0\) and IP(2) \(=0\) (for transpose mode) and IP(22) \(\neq 0\) and IP(22) < n3 (that is, Idy1 < n3)
11. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(2)=1\) (for normal mode) and \(\operatorname{IP}(22) \neq 0\) and \(\operatorname{IP}(22)<n 1\) (that is, Idy1 < n1)
12. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(23) \neq 0\) and \(\operatorname{IP}(23)<n 2\) (that is, \(I d y 2<n 2\) )

Example 1: This example shows how to compute a three-dimensional transform. The data is block-plane distributed over a \(1 \times 2\) process grid. The arrays are declared as follows:
```

COMPLEX*16 X(0:3,0:3,0)
COMPLEX*16 Y(0:3,0:3,0)
INTEGER*4 IP(40)
REAL*8 SCALE

```

\section*{Call Statements and Input}

ORDER \(=\) ' \(\mathrm{R}^{\prime}\)
NPROW \(=1\)
NPCOL \(=2\)
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
IP(1) = 1
\(I P(2)=1\)
\(\operatorname{IP}(20)=4\)
\(\operatorname{IP}(21)=4\)
\(\operatorname{IP}(22)=4\)
\(\operatorname{IP}(23)=4\)

Global matrix \(\boldsymbol{X}\) :
Plane 0:

B,D 0
\(0 \quad\left[\begin{array}{llll}(1.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0)\end{array}\right]\)

\section*{Plane 1:}

B, D
\(0 \quad\left[\begin{array}{llll}(0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0)\end{array}\right]\)
The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

Local arrays for \(\boldsymbol{X}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{4}{|c|}{0} & \multicolumn{4}{|c|}{1} \\
\hline & (1.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline 0 & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & \((0.0,0.0)\) & (0.0,0.0) \\
\hline & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\
\hline
\end{tabular}

\section*{Output: Global matrix \(\boldsymbol{Y}\) :}

\section*{Plane 0:}
B, D
0
\(0\left[\begin{array}{llll}(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0)\end{array}\right]\)

Plane 1:
B, D
1
\(0\left[\begin{array}{llll}(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0)\end{array}\right]\)

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

Local arrays for \(\boldsymbol{Y}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{4}{|c|}{0} & \multicolumn{4}{|c|}{1} \\
\hline & \((1.0,0.0)\) & \((1.0,0.0)\) & (1.0,0.0) & \((1.0,0.0)\) & \((1.0,0.0)\) & (1.0,0.0) & \((1.0,0.0)\) & (1.0,0.0) \\
\hline & \((1.0,0.0)\) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & \((1.0,0.0)\) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\hline 0 & \((1.0,0.0)\) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & \((1.0,0.0)\) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\hline & \((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) & (1.0,0.0) & \((1.0,0.0)\) & (1.0,0.0) \\
\hline
\end{tabular}

Example 2: This example shows how to compute a three-dimensional transform. In this example, the IP array is set to 0 , which means array \(Y\) is returned in transposed form, \(l d x=n 1\), and \(l d y=n 3\). This is an example of uneven block-plane distribution over a \(1 \times 3\) process grid. The arrays are declared as follows:
```

COMPLEX*16 X(0:3,0:1,0:1), Y(0:5,0:1,0:1)
INTEGER*4 IP(40)
REAL*8 SCALE

```

\section*{Call Statements and Input}

ORDER = 'R'
NPROW = 1
NPCOL \(=3\)
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
\(\operatorname{IP}(1)=0\)


Global matrix \(\boldsymbol{X}\) :

\section*{PSCFT3 and PDCFT3}


The following is the \(1 \times 3\) process grid:
\begin{tabular}{c|c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) & \(\mathrm{P}_{02}\)
\end{tabular}

Local arrays for \(\boldsymbol{X}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{4}{|c|}{0} & \multicolumn{4}{|l|}{} & \multicolumn{4}{|c|}{2} \\
\hline & (4.9,3.9) & \((5.9,3.1)\) & \((2.2,5.1)\) & \((5.9,1.5)\) & (8.3,2.3) & (7.3,7.3) & \((4.6,5.9)\) & \((3.3,3.0)\) & (1.0,1.0) & \((2.2,8.2)\) & \((5.4,3.6)\) & \((4.8,4.0)\) \\
\hline & \((6.8,4.6)\) & (6.7,9.8) & (2.1,0.5) & \((3.5,2.9)\) & (4.5,8.9) & (0.2,0.9) & \((3.6,5.0)\) & (3.4,0.4) & (8.8,1.0) & \((8.9,5.8)\) & (2.0,2.6) & \((5.2,9.5)\) \\
\hline 0 & \((4.9,1.9)\) & \((1.6,4.9)\) & (7.0,6.8) & \((6.4,1.1)\) & (1.8,6.5) & \((2.5,1.7)\) & (8.5,9.3) & \((0.2,1.7)\) & (3.3,0.0) & \((8.9,7.5)\) & \((3.1,9.7)\) & (5.4,7.5) \\
\hline & (2.9,7.6) & \((7.5,5.5)\) & (0.6,4.6) & \((9.0,7.6)\) & (6.4,5.2) & \((7.8,5.3)\) & (8.7,9.1) & \((9.1,5.5)\) & \((8.7,8.3)\) & \((6.3,5.4)\) & \((1.5,9.6)\) & (4.4,4.4) \\
\hline
\end{tabular}

\section*{Output: Global matrix \(\boldsymbol{Y}\) :}

Plane 0:
Plane 1:


Plane 2:
Plane 3:


The following is the \(1 \times 3\) process grid:
\begin{tabular}{c|c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) & \(\mathrm{P}_{02}\)
\end{tabular}

Local arrays for \(\boldsymbol{Y}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{4}{|c|}{0} & \multicolumn{4}{|c|}{1} \\
\hline \multirow{6}{*}{0} & \((29.8,29.7)\) & \((-1.9,1.1)\) & (-3.0,0.9) & \((-3.0,-3.8)\) & (-2.4, -2.8) & (2.0,0.1) & \((3.6,-3.4)\) & (1.4,0.0) \\
\hline & \((-3.3,1.0)\) & (0.4,-2.5) & (4.1,-3.9) & \((-4.6,-1.4)\) & (2.1,-3.5) & \((2.8,1.3)\) & (-1.9,-0.1) & (2.3,6.3) \\
\hline & (-1.7,-1.2) & \((0.1,3.4)\) & \((0.9,5.0)\) & (-0.6,1.6) & (-1.7,0.7) & \((2.8,1.0)\) & \((2.0,1.4)\) & (-0.6,1.0) \\
\hline & (2.3,-0.5) & \((1.0,-4.6)\) & (3.1,0.8) & (1.7,0.4) & (-3.3, -2.2) & \((-3.2,-5.1)\) & \((-0.3,3.3)\) & (0.8,0.5) \\
\hline & \((3.0,1.9)\) & \((4.5,0.6)\) & \((0.5,-3.8)\) & \((-3.0,-0.1)\) & (-1.5, -3.1) & (1.4,0.1) & \((-1.3,-1.7)\) & \((-2.7,0.7)\) \\
\hline & (1.0,0.1) & \((-5.7,-1.9)\) & (-1.4, -1.2) & \((0.8,2.6)\) & \((1.8,0.6)\) & \((-0.7,3.2)\) & \((0.2,2.9)\) & \((1.0,-2.1)\) \\
\hline
\end{tabular}

There is not any data located on \(\mathrm{P}_{02}\).

\section*{PSRCFT3 and PDRCFT3—Real-to-Complex Fourier Transforms in Three Dimensions}

These subroutines compute the mixed-radix three-dimensional complex conjugate even discrete Fourier transform of real data:
\[
y_{k 1, k 2, k 3}=\text { scale } \sum_{j l=0}^{n l-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j l, j 2, j 3} W_{n l}^{(s s i g n j i l k l} W_{n 2}^{(s i g n j j 2 k 2} W_{n 3}^{(I s i g n j 3 k k}
\]
for:
\[
\begin{aligned}
& k 1=0,1, \ldots, n 1-1 \\
& k 2=0,1, \ldots, n 2-1 \\
& k 3=0,1, \ldots, n 3-1
\end{aligned}
\]
where:
\[
\begin{aligned}
& W_{n 1}=e^{-2 \pi(\sqrt{-1}) / n 1} \\
& W_{n 2}=e^{-2 \pi(\sqrt{-1}) / n 2} \\
& W_{n 3}=e^{-2 \pi(\sqrt{-1}) / n 3}
\end{aligned}
\]
and where:
\(x_{j 1, j, j, j}\) are elements of array \(X\).
\(y_{k 1, k 2, k 3}\) are elements of array \(Y\).
Isign is + or - (determined by argument isign).
scale is a scalar value.
See references [1] and [3 ].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{ Table 107. Data Types } & y & Subroutine \\
\hline X , scale & Short-precision complex & PSRCFT3 \\
\hline Short-precision real & Long-precision complex & PDRCFT3 \\
\hline Long-precision real & \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PSRCFT3 \| PDRCFT3 \((x, y, n 1, n 2, n 3\), isign, scale, icontxt, ip) \\
\hline C and C++ & psrcft3 | pdrcft3 \((x, y, n 1, n 2, n 3\), isign, scale, icontxt, ip); \\
\hline
\end{tabular}

On Entry
\(x\)
is the local array X , containing the three-dimensional data to be transformed that has been block-plane distributed over a \(1 \times q\) process grid, where \(q\) is the number of processes. (The value of \(I d x 1\) and \(I d x 2\) are set in the IP array.)

Scope: local

Specified as: an array of (at least) length \(l d x 1 \times I d \times 2 \times \operatorname{LOCq}(n 3)\), containing numbers of the data type indicated in Table 107. This array must be aligned on a doubleword boundary.
\(y\)
See On Return.
\(n 1\)
is the length of the first dimension of the three-dimensional data in the array to be transformed.

Scope: global
Specified as: a fullword integer; \(n 1 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n2
is the length of the second dimension of the three-dimensional data in the array to be transformed.
Scope: global
Specified as: a fullword integer; \(n 2 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n3
is the length of the third dimension of the three-dimensional data in the array to be transformed.

Scope: global
Specified as: a fullword integer; \(n 3 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
isign
controls the direction of the transform, determining the sign, isign, of the
exponent of \(W_{n}\), where:
If isign = positive value, Isign \(=+\) (transforming time to frequency).
If isign \(=\) negative value, Isign \(=-\) (transforming frequency to time).
Scope: global
Specified as: a fullword integer; where isign > 0 or isign < 0 .
scale
is the scaling constant scale.

\section*{Scope: global}

Specified as: a number of the data type indicated in Table 107 on page 684, where scale > 0.0 or scale < 0.0.
icontxt
is the BLACS context parameter.
Scope: global
Specified as: the fullword integer that was returned by a prior call to BLACS_GRIDINIT or BLACS_GRIDMAP.
ip
is an array of parameters, IP(i), where:
- IP(1) indicates whether the default values for ip are used or you set the values for ip.
If \(\operatorname{IP}(1)=0\), then the following default values are used:
- Idx1 and \(I d x 2\), the leading dimensions of the array specified for \(X\), equal \(n 1\) and \(n 2\), respectively.
- Idy1 and Idy2, the leading dimensions of the array specified for \(Y\), equal \(n 3\) and \(n 2\), respectively.

The remaining parameters of the array IP are ignored.
If \(\operatorname{IP}(1) \neq 0\), then you set the remaining values of \(i p\) to indicate values for the leading dimensions.
- IP(2-19) are reserved.
- IP(20) indicates the value of the leading dimension, Idx1, of the array specified for \(X\), where:
If \(\operatorname{IP}(20)=0\), then \(I d x 1=n 1\).

If \(\operatorname{IP}(20) \neq 0\), then \(I d x 1\) is this value of \(\operatorname{IP}(20)\).
- IP(21) indicates the value of the leading dimension, \(I d x 2\), of the array specified for \(X\), where:

If \(\operatorname{IP}(21)=0\), then \(I d x 2=n 2\).

If \(\operatorname{IP}(21) \neq 0\), then \(I d x 2\) is this value of \(\operatorname{IP}(21)\).
- IP(22) indicates the value of the leading dimension, Idy1, of the array specified for \(Y\), where:
If \(\operatorname{IP}(22)=0\), then \(I d y 1=n 3\).

If \(\operatorname{IP}(22) \neq 0\), then \(I d y 1\) is this value of \(\operatorname{IP}(22)\).
- IP(23) indicates the value of the leading dimension, Idy2, of the array specified for \(Y\), where:
If \(\operatorname{IP}(23)=0\), then \(I d y 2=n 2\).

If \(\operatorname{IP}(23) \neq 0\), then \(I d y 2\) is this value of \(\operatorname{IP}(23)\).
- IP(24-40) are reserved.

\section*{Scope: global}

Specified as: a one-dimensional array of (at least) length 40, containing fullword integers, where:
\(\operatorname{IP}(1)\) is any integer
\(\operatorname{IP}(20) \geq n 1\) or \(\operatorname{IP}(20)=0\)
\(\operatorname{IP}(21) \geq n 2\) or \(\operatorname{IP}(21)=0\)
\(\operatorname{IP}(22) \geq n 3\) or \(\operatorname{IP}(22)=0\)
\(\operatorname{IP}(23) \geq n 2\) or \(\operatorname{IP}(23)=0\)

\section*{On Return}
\(y\)
is the local array \(Y\), stored in FFT-packed storage mode, containing the results of the computation that are block-plane distributed, where:
If \(\operatorname{IP}(1)=0\), the local array \(Y\) has dimensions \(n 3 \times n 2 \times \operatorname{LOCq}(n 1 / 2)\).

If \(\operatorname{IP}(1) \neq 0\), the local array \(Y\) has dimensions \(/ d y 1 \times I d y 2 \times \operatorname{LOCq}(n 1 / 2)\).

\section*{Scope: local}

Returned as: an \(I d y 1 \times I d y 2 \times \operatorname{LOCq}(n 1 / 2)\) array, containing the numbers of the data type indicated in Table 107 on page 684. This array must be aligned on a doubleword boundary.

\section*{Notes and Coding Rules}
1. These subroutines always return \(Y\) in transposed form.
2. For the output array \(Y\), these subroutines may use any extra space available when \(I d y 1\) and \(l d y 2\) are greater than their minimum value.
3. You may specify the same array for \(X\) and \(Y\). In this case, output overwrites input. If you specify different arrays \(X\) and \(Y\), they must have no common elements; otherwise, results are unpredictable.
4. For more information on \(\mathrm{LOCq}\left(\_\right)\), and how sequences are blocked-plane distributed and stored in FFT-packed storage mode, see "Three-Dimensional Sequences" on page 71.

In general, distributing your data evenly provides the best work load balance among the processes and allows the use of the most efficient collective communication. However, for your specific problem size and number of processes available, experimentation is necessary to achieve optimal performance.

\section*{Error Conditions}

Computational Errors: None

\section*{Resource Errors}
1. Unable to allocate work space

Input-Argument and Miscellaneous Errors

\section*{Stage 1}
1. icontxt is invalid

\section*{Stage 2}
1. Process grid is not \(1 \times q\)
2. The subroutine was called from outside the process grid.

\section*{Stage 3}
1. \(n 1>37748736\)
2. \(n 2>37748736\)
3. \(n 3>37748736\)
4. The length of \(n 1, n 2\), or \(n 3\) is not an allowable transform length.
5. isign \(=0\)
6. scale \(=0.0\)
7. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(20) \neq 0\) and \(\operatorname{IP}(20)<n 1\) (that is, \(I d x 1<n 1\) )
8. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21) \neq 0\) and \(\operatorname{IP}(21)<n 2\) (that is, \(I d x 2<n 2\) )
9. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(22) \neq 0\) and \(\operatorname{IP}(22)<n 3\) (that is, \(I d y 1<n 3\) )
10. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(23) \neq 0\) and \(\operatorname{IP}(23)<n 2\) (that is, \(I d y 2<n 2)\)

Example: This example shows how to compute a three-dimensional transform. The data is block-plane distributed over a \(1 \times 2\) process grid. The arrays are declared as follows:
```

REAL*8 X(0:8,0:3,0:1)
COMPLEX*16 Y(0:4,0:3,0)
INTEGER*4 IP(40)
REAL*8 SCALE

```

Call Statements and Input
ORDER = 'R'
NPROW \(=1\)
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
\(\operatorname{IP}(1)=1\)
\(\operatorname{IP}(20)=9\)
\(\operatorname{IP}(21)=4\)
\(\operatorname{IP}(22)=5\)
\(I P(23)=4\)


Global matrix \(\boldsymbol{X}\) :


The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

Local arrays for \(\boldsymbol{X}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{8}{|c|}{0} & \multicolumn{8}{|c|}{1} \\
\hline & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0 & . & . & . & . & . & . & . & . & . & . & . & . & & & & . \\
\hline & \(\cdot\) & . & & & . & & & . & & . & . & & . & . & - & \\
\hline & - & . & . & . & - & & - & & & - & & & - & & & \\
\hline & & & & & & & & & & & & &  & & & \\
\hline
\end{tabular}

Output: The following global matrix \(\boldsymbol{Y}\) is returned in transposed form and stored in FFT-packed storage mode:

\section*{Plane 0}

\section*{PSRCFT3 and PDRCFT3}

B,D 0
\(0\left[\begin{array}{cccc}(1.0,1.0) & (1.0,0.0) & (1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,1.0) & (1.0,0.0) & (1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot & \cdot & \cdot\end{array}\right]\)

\section*{Plane 1:}
B,D
\(0 \quad\left[\right.\)\begin{tabular}{cccc} 
& \multicolumn{4}{c}{} \\
\((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) \\
\((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) \\
\((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) \\
\((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) \\
. &. &. &.
\end{tabular}\(\left.]\right]\)

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

The following local arrays for \(\boldsymbol{Y}\) are returned in transposed form and stored in FFT-packed storage mode:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{4}{|c|}{0} & \multicolumn{4}{|c|}{1} \\
\hline \multirow{5}{*}{0} & \((1.0,1.0)\) & (1.0,0.0) & \((1.0,1.0)\) & (1.0,0.0) & \((1.0,0.0)\) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\hline & \((1.0,0.0)\) & (1.0,0.0) & \((1.0,0.0)\) & (1.0,0.0) & \((1.0,0.0)\) & \((1.0,0.0)\) & (1.0,0.0) & (1.0,0.0) \\
\hline & \((1.0,1.0)\) & (1.0,0.0) & \((1.0,1.0)\) & (1.0,0.0) & \((1.0,0.0)\) & \((1.0,0.0)\) & \((1.0,0.0)\) & (1.0,0.0) \\
\hline & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\hline & - & - & - & - & - & - & & . \\
\hline
\end{tabular}

\section*{PSCRFT3 and PDCRFT3-Complex-to-Real Fourier Transforms in Three Dimensions}

These subroutines compute the mixed-radix three-dimensional real discrete Fourier transform of complex conjugate even data:
\[
y_{k 1, k 2, k 3}=\text { scale } \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1, j 2, j 3} W_{n l}^{(I s i g n) j i k l} W_{n 2}^{(\text {ssign)j2k2}} W_{n 3}^{(I \text { sign) } j 3 k 3}
\]
for:
\[
\begin{aligned}
& k 1=0,1, \ldots, n 1-1 \\
& k 2=0,1, \ldots, n 2-1 \\
& k 3=0,1, \ldots, n 3-1
\end{aligned}
\]
where:
\[
\begin{aligned}
& W_{n 1}=e^{-2 \pi(\sqrt{-1}) / n 1} \\
& W_{n 2}=e^{-2 \pi(\sqrt{-1}) / n 2} \\
& W_{n 3}=e^{-2 \pi(\sqrt{-1}) / n 3}
\end{aligned}
\]
and where:
\(x_{j 1, j, j, j}\) are elements of array X.
\(y_{k 1, k 2, k 3}\) are elements of array \(Y\).
Isign is + or - (determined by argument isign).
scale is a scalar value.
See references [1] and [3].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{ Table 108. Data Types } & Y, scale & Subroutine \\
\hline X & Short-precision real & PSCRFT3 \\
\hline Short-precision complex & Long-precision real & PDCRFT3 \\
\hline Long-precision complex & \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & CALL PSCRFT3 | PDCRFT3 ( \(x, y, n 1, n 2, n 3\), isign, scale, icontxt, ip) \\
\hline C and \(\mathbf{C}_{++}\) & pscrft3 | pdcrft3 \((x, y, n 1, n 2, n 3\), isign, scale, icontxt, ip); \\
\hline
\end{tabular}

On Entry
\(x\)
is the local array X , containing the three-dimensional data to be transformed that has been block-plane distributed over a \(1 \times q\) process grid, where \(q\) is the number of processes. (The value of \(I d x 1\) and \(I d x 2\) are set in the IP array.) Array X is stored in FFT-packed storage mode.

\section*{Scope: local}

Specified as: an array of (at least) length \(I d x 1 \times I d x 2 \times \operatorname{LOCq}(n 1 / 2)\), containing numbers of the data type indicated in Table 108 on page 691. This array must be aligned on a doubleword boundary.

See On Return.
n1
is the length of the first dimension of the three-dimensional data in the array to be transformed.

\section*{Scope: global}

Specified as: a fullword integer; \(n 1 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n2
is the length of the second dimension of the three-dimensional data in the array to be transformed.

\section*{Scope: global}

Specified as: a fullword integer; \(n 2 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
n3
is the length of the third dimension of the three-dimensional data in the array to be transformed.

\section*{Scope: global}

Specified as: a fullword integer; \(n 3 \leq 37748736\) and must be one of the values listed in Figure 12 on page 654.
isign
controls the direction of the transform, determining the sign, isign, of the
exponent of \(W_{n}\), where:
If isign \(=\) positive value, Isign \(=+\) (transforming time to frequency).
If isign \(=\) negative value, Isign \(=-\) (transforming frequency to time).
Scope: global
Specified as: a fullword integer; where isign > 0 or isign < 0.
scale
is the scaling constant scale.
Scope: global
Specified as: a number of the data type indicated in Table 108 on page 691,
where scale > 0.0 or scale \(<0.0\).
icontxt
is the BLACS context parameter.
Scope: global
Specified as: the fullword integer that was returned by a prior call to
BLACS_GRIDINIT or BLACS_GRIDMAP.
ip
is an array of parameters, IP \((i)\), where:
- IP(1) indicates whether the default values for ip are used or you set the values for ip.
If \(\operatorname{IP}(1)=0\), then the following default values are used:
- Idx1 and \(I d x 2\), the leading dimensions of the array specified for \(X\), equal n3 and n2, respectively.
- Idy1 and Idy2, the leading dimensions of the array specified for Y, equal \(n 1\) and \(n 2\), respectively.

The remaining parameters of the array IP are ignored.
If \(\operatorname{IP}(1) \neq 0\), then you set the remaining values of \(i p\) to indicate values for the leading dimensions.
- IP(2-19) are reserved.
- IP(20) indicates the value of the leading dimension, Idx1, of the array specified for \(X\), where:

If \(\operatorname{IP}(20)=0\), then \(I d x 1=n 3\).

If \(\operatorname{IP}(20) \neq 0\), then \(I d x 1\) is this value of \(\operatorname{IP}(20)\).
- IP(21) indicates the value of the leading dimension, \(I d x 2\), of the array specified for \(X\), where:

If \(\operatorname{IP}(21)=0\), then \(I d x 2=n 2\).

If \(\operatorname{IP}(21) \neq 0\), then \(I d x 2\) is this value of \(\operatorname{IP}(21)\).
- IP(22) indicates the value of the leading dimension, Idy1, of the array specified for \(Y\), where:

If \(\operatorname{IP}(22)=0\), then \(I d y 1=n 1\).

If \(\operatorname{IP}(22) \neq 0\), then \(I d y 1\) is this value of \(\operatorname{IP}(22)\).
- IP (23) indicates the value of the leading dimension, Idy2, of the array specified for \(Y\), where:
```

If IP(23) = 0, then Idy2 = n2.

```

If \(\operatorname{IP}(23) \neq 0\), then \(I d y 2\) is this value of \(\operatorname{IP}(23)\).
- IP(24-40) are reserved.

\section*{Scope: global}

Specified as: a one-dimensional array of (at least) length 40, containing fullword integers, where:
\(\operatorname{IP}(1)\) is any integer
\(\operatorname{IP}(20) \geq n 3\) or \(\operatorname{IP}(20)=0\)
\(\operatorname{IP}(21) \geq n 2\) or \(\operatorname{IP}(21)=0\)
\(\operatorname{IP}(22) \geq n 1\) or \(\operatorname{IP}(22)=0\)
\(\operatorname{IP}(23) \geq n 2\) or \(\operatorname{IP}(23)=0\)

\section*{On Return}
\(y\)
is the local array \(Y\) that is block-plane distributed and contains the results of the computation, where:

If \(\operatorname{IP}(1)=0\), the local array \(Y\) has dimensions \(n 1 \times n 2 \times \operatorname{LOCq}(n 3)\).
If \(\operatorname{IP}(1) \neq 0\), the local array \(Y\) has dimensions \(l d y 1 \times I d y 2 \times \operatorname{LOCq}(n 3)\).

\section*{Scope: local}

Returned as: an \(1 d y 1 \times I d y 2 \times \operatorname{LOCq}(n 3)\) array, containing the numbers of the data type indicated in Table 108 on page 691. This array must be aligned on a doubleword boundary.

\section*{Notes and Coding Rules}
1. These subroutines always return \(Y\) in normal form.
2. For the output array Y , these subroutines may use any extra space available when \(I d y 1\) and \(I d y 2\) are greater than their minimum value.
3. You may specify the same array for \(X\) and \(Y\). In this case, output overwrites input. If you specify different arrays \(X\) and \(Y\), they must have no common elements; otherwise, results are unpredictable.
4. For more information on \(\mathrm{LOCq}\left(\_\right)\), and how sequences are block-plane distributed and stored in FFT-packed storage mode, see "Three-Dimensional Sequences" on page 71.

In general, distributing your data evenly provides the best work load balance among the processes and allows the use of the most efficient collective communication. However, for your specific problem size and number of processes available, experimentation is necessary to achieve optimal performance.

\section*{Error Conditions}

Computational Errors: None

\section*{Resource Errors}
1. Unable to allocate work space

Input-Argument and Miscellaneous Errors

\section*{Stage 1}
1. icontxt is invalid

\section*{Stage 2}
1. Process grid is not \(1 \times q\)
2. The subroutine was called from outside the process grid.

\section*{Stage 3}
1. \(n 1>37748736\)
2. \(n 2>37748736\)
3. \(n 3>37748736\)
4. The length of \(n 1, n 2, n 3\) is not an allowable transform length.
5. isign \(=0\)
6. scale \(=0.0\)
7. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(20) \neq 0\) and \(\operatorname{IP}(20)<n 3\) (that is, \(I d x 1<n 3\) )
8. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(21) \neq 0\) and \(\operatorname{IP}(21)<n 2\) (that is, \(I d x 2<n 2\) )
9. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(22) \neq 0\) and \(\operatorname{IP}(22)<n 1\) (that is, \(\operatorname{Idy} 1<n 1\) )
10. \(\operatorname{IP}(1) \neq 0\) and \(\operatorname{IP}(23) \neq 0\) and \(\operatorname{IP}(23)<n 2\) (that is, Idy2 \(<n 2\) )

Example: This example shows how to compute a three-dimensional transform. The data is block-plane distributed over a \(1 \times 2\) process grid. The arrays are declared as follows:
```

COMPLEX*16 X(0:4,0:3,0)
REAL*8 Y(0:8,0:3,0:1)
INTEGER*4 IP(40)
REAL*8 SCALE

```

Call Statements and Input
```

ORDER = 'R'
NPROW = 1
NPCOL = 2
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
SCALE = 1.0D0/4*4*4
IP(1) = 1
IP(20) = 5
IP(21) = 4
IP(22) = 9
IP(23) = 4

```


The following global matrix \(\boldsymbol{X}\) is stored in FFT-packed storage mode:

\section*{Plane 0:}

\section*{B, D}

0
\(0\left[\begin{array}{cccc}(1.0,1.0) & (1.0,0.0) & (1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,1.0) & (1.0,0.0) & (1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot & \cdot & \cdot\end{array}\right]\)

\section*{Plane 1:}
B, D
1
\(0 \quad\left[\begin{array}{cccc}(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot & . & \cdot\end{array}\right]\)

The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B}, \mathbf{D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

The following local arrays for \(\boldsymbol{X}\) are stored in FFT-packed storage mode:


\section*{Output:}

Global matrix \(\boldsymbol{Y}\) :
Plane 0:
Plane 1:


Plane 2:
Plane 3:


The following is the \(1 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\)
\end{tabular}

Local arrays for \(\boldsymbol{Y}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{8}{|c|}{0} & \multicolumn{8}{|c|}{1} \\
\hline & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0 & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline & \(\cdot\) & \(\cdot\) & - & \(\cdot\) & . & & \(\stackrel{.}{ }\) & \(\stackrel{ }{ } \cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & - & \(\cdot\) & - \\
\hline & . & . & . & . & . & . & . & - & - & - & - & . & . & - & . & \\
\hline & - & - & . & . & . & & . & . & & . & . & . & . & . & . & \\
\hline
\end{tabular}

\section*{Chapter 11. Random Number Generation (Message Passing)}

This chapter describes the random number generation subroutines.

\section*{Overview of the Random Number Generation Subroutines}

The random number generation subroutine generates uniformly distributed random numbers.
\begin{tabular}{|l|l|l|}
\hline Table 109. List of Random Number Generation Subroutines (Message Passing) & \multicolumn{1}{l|}{} \\
\hline Descriptive Name & \begin{tabular}{l} 
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline Uniform Random Number Generator & PDURNG & 701 \\
\hline
\end{tabular}

\section*{Random Number Generation Subroutines}

This section contains the random number generation subroutine description.

\section*{PDURNG—Uniform Random Number Generator}

This subroutine generates a global vector \(\boldsymbol{x}\) of \(n\) uniform pseudo-random numbers in the ranges \((0,1)\) or \((-1,1)\), depending on the iopt argument. The random numbers are generated using the multiplicative congruential method with a user-specified seed, as follows:
\[
\begin{aligned}
s_{i} & =\left(a\left(s_{i-1}\right)\right) \bmod (m)=\left(a i s_{0}\right) \bmod (m) \\
x_{i} & =s / m \\
x_{i} & =(2 s / m)-1 \quad \text { if } \text { iopt }=0 \\
& \text { for } i=1,2, \ldots, n
\end{aligned}
\]
where:
\(s_{0}\) is the initial seed provided by the caller.
\(s_{i}\) for \(i=1, n\) is a random sequence.
\(x_{i}\) for \(i=1, n\) are the random numbers.
\(a=44485709377909.0\)
\(m=2.0^{48}\)
\(n\) is the number of random numbers to be generated.
If \(n\) is 0 , no computation is performed, and the initial seed is unchanged.
The global output vector \(\boldsymbol{x}\) is distributed across the \(n p\) processes, using block-cyclic distribution with a block size \(n b\). (The processor grid can be one- or two-dimensions. For two dimensions, processes are selected in row-major order.) The length \(n\) of vector \(\boldsymbol{x}\) must be a multiple of \((n p)(n b)\).
\begin{tabular}{|c|c|}
\hline Table 110. Data Types \\
\hline \(\boldsymbol{x}\), seed & Subroutine \\
\hline Long-precision real & PDURNG \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|}
\hline Fortran & CALL PDURNG (seed, \(n, n b, x\), iopt, icontxt) \\
\hline C and \(\mathbf{C}_{++}\) & pdurng (seed, \(n, n b, x\), iopt, icontxt); \\
\hline
\end{tabular}

\section*{On Entry}
seed
is the initial value \(s_{0}\) used to generate the random numbers.

\section*{Scope: global}

Specified as: a number of the data type indicated in Table 110. You should specify seed to be an odd, whole number; otherwise, PDURNG sets it to an odd, whole number and continues with the computation. The value of seed must be \(1.0 \leq\) seed \(<2.048\).
\(n\)
is the global number of random numbers to be generated.

\section*{Scope: global}

Specified as: a fullword integer; \(n \geq 0\) and \(n\) must be divisible by ( \(n b\) )( \(n p\) ).
nb
is the block size for vector \(\boldsymbol{x}\), used in the block-cyclic distribution.
Scope: global
Specified as: a fullword integer; \(n b>0\).
\(x\)
See On Return.
iopt
indicates the range of uniform random numbers to generate, where:
If iopt \(=0\), the range is \((0,1)\).
If iopt \(=1\), the range is \((-1,1)\).
Scope: global
Specified as: a fullword integer; iopt \(=0\) or 1.
icontxt
is the BLACS context parameter.
Scope: global
Specified as: the fullword integer that was returned by a prior call to BLACS_GRIDINIT or BLACS_GRIDMAP.

\section*{On Return}
seed
is the new seed that is to be used to generate additional random numbers in subsequent invocations of PDURNG, having a value of seed \(=\left(a^{n} s_{0}\right) \bmod (m)\).

Scope: global
Returned as: a number of the data type indicated in Table 110 on page 701. It is an odd, whole number, where \(1.0 \leq\) seed \(<2.0^{48}\).
\(x\)
is the local vector \(\boldsymbol{x}\) of size \(n / n p\), containing the uniform pseudo-random numbers, where:

If iopt \(=0\), they are in the range \((0,1)\).
If iopt \(=1\), they are in the range \((-1,1)\).
Scope: local
Returned as: a one-dimensional array of (at least) length \(n / n p\), with a block size of \(n b\), containing numbers of the data type indicated in Table 110 on page 701.

\section*{Notes and Coding Rules}
1. In your C program, argument seed must be passed by reference.
2. The suggested block size is (data cache size)/2, where, the data cache size can be obtained by entering:

1sattr -E -H -1 sys0
3. There is no performance impact for \(n b=1\).
4. If you want \(n / n p\) random numbers generated on each process, just set the block size to \(n b=n / n p\).
5. To generate more than (231-1) random numbers, you should make multiple calls to PDURNG.
6. The local vector \(\boldsymbol{x}\) of length \(n / n p\) can have sequential correlations. For details, see references [42 ], [47 ], [48 ], [49 ], and [50].

\section*{Error Conditions}

Computational Errors: None
Input-Argument and Miscellaneous Errors

\section*{Stage 1}
1. icontxt is invalid

\section*{Stage 2}
1. PDURNG was called from outside the process grid.

\section*{Stage 3}
1. seed \(<1.0\) or seed \(\geq 2.0^{48}\)
2. \(n<0\)
3. \(n\) is not divisible by ( \(n b\) )(np)
4. \(n b \leq 0\)
5. iopt \(\neq 0\) or 1

Example: This example generates 30 random numbers in global vector \(\boldsymbol{x}\) with a block size of 3 , using block-cyclic distribution over a \(5 \times 1\) process grid.

\section*{Call Statements and Input}

ORDER = 'R'
NPROW \(=5\)
NPCOL \(=1\)
CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

SEED = 31415926535897.0
Note: icontxt is the output of the BLACS_GRIDINIT call.
Output: SEED \(=\left(a^{30} s_{0}\right) \bmod (m)=6316434292705.0\)
Global vector \(\boldsymbol{x}\) with block size 3:

\section*{PDURNG}
\begin{tabular}{|c|c|}
\hline B, D & 0 \\
\hline & 0.683821516135299845 \\
\hline 0 & 0.058874407800946215 \\
\hline & 0.391855250856924187 \\
\hline & 0.755994653022330709 \\
\hline 1 & 0.557764301423606668 \\
\hline & 0.001333801764989317 \\
\hline & 0.056855932753212101 \\
\hline 2 & 0.331063036202269956 \\
\hline & 0.347339794409027292 \\
\hline & 0.649429020370863697 \\
\hline 3 & 0.386144876217390021 \\
\hline & 0.457224855098420591 \\
\hline & 0.892518134165118937 \\
\hline 4 & 0.074548748224632532 \\
\hline & 0.912379366805073033 \\
\hline & 0.112809499110515077 \\
\hline 5 & 0.857547605095465570 \\
\hline & 0.756480901897081282 \\
\hline & 0.046993364463578046 \\
\hline 6 & 0.889457684002341153 \\
\hline & 0.167775766106718294 \\
\hline & 0.504952722600595649 \\
\hline 7 & 0.999725924546471134 \\
\hline & 0.696269487398215148 \\
\hline & 0.671896598019703362 \\
\hline 8 & 0.271472156040264423 \\
\hline & 0.566418406688985243 \\
\hline & 0.464684865759100063 \\
\hline 9 & 0.982442539763031419 \\
\hline & 0.022440482512937620 \\
\hline
\end{tabular}

The following is the \(5 \times 1\) process grid:
\begin{tabular}{c|c}
\(\mathbf{B , D}\) & \(\mathbf{0}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) \\
\(\mathbf{5}\) & \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) \\
\(\mathbf{6}\) & \\
\hline \(\mathbf{2}\) & \(\mathrm{P}_{20}\) \\
\(\mathbf{7}\) & \\
\hline \(\mathbf{3}\) & \(\mathrm{P}_{30}\) \\
\(\mathbf{8}\) & \\
\hline \(\mathbf{4}\) & \(\mathrm{P}_{40}\) \\
\(\mathbf{9}\) &
\end{tabular}

Local arrays for \(\boldsymbol{x}\) :
\begin{tabular}{|c|c|}
\hline p,q & 0 \\
\hline & 0.683821516135299845 \\
\hline & 0.058874407800946215 \\
\hline & 0.391855250856924187 \\
\hline 0 & 0.112809499110515077 \\
\hline & 0.857547605095465570 \\
\hline & 0.756480901897081282 \\
\hline & 0.755994653022330709 \\
\hline & 0.557764301423606668 \\
\hline & 0.001333801764989317 \\
\hline 1 & 0.046993364463578046 \\
\hline & 0.889457684002341153 \\
\hline & 0.167775766106718294 \\
\hline & 0.056855932753212101 \\
\hline & 0.331063036202269956 \\
\hline & 0.347339794409027292 \\
\hline 2 & 0.504952722600595649 \\
\hline & 0.999725924546471134 \\
\hline & 0.696269487398215148 \\
\hline & 0.649429020370863697 \\
\hline & 0.386144876217390021 \\
\hline & 0.457224855098420591 \\
\hline 3 & 0.671896598019703362 \\
\hline & 0.271472156040264423 \\
\hline & 0.566418406688985243 \\
\hline & 0.892518134165118937 \\
\hline & 0.074548748224632532 \\
\hline & 0.912379366805073033 \\
\hline 4 & 0.464684865759100063 \\
\hline & 0.982442539763031419 \\
\hline & 0.022440482512937620 \\
\hline
\end{tabular}

PDURNG

\section*{Chapter 12. Utilities (Message Passing)}

This chapter describes the utility subroutines.

\section*{Overview of the Utility Subroutines}

The utility subroutines perform general service functions that support Parallel ESSL, rather than mathematical computations.
\begin{tabular}{|l|l|l|}
\hline Table 111. List of Utility Subroutines (Message Passing) & \begin{tabular}{l} 
Integer \\
Subroutine
\end{tabular} & Page \\
\hline Descriptive Name & IPESSL & 709 \\
\hline Determine the Level of Parallel ESSL Installed on Your System & NUMROC & 711 \\
\hline \begin{tabular}{l} 
Compute the Number of Rows or Columns of a Block-Cyclically Distributed \\
Matrix Contained in a Process
\end{tabular} & \\
\hline
\end{tabular}

\section*{Utility Subroutines}

This section contains the utility subroutine descriptions.

\section*{IPESSL—Determine the Level of Parallel ESSL Installed on Your System}

This function returns the current level of Parallel ESSL installed on your system, where the level consists of a version number, release number, and modification number, plus the fix number of the most recent PTF installed.

Note: This subroutine is useful to you in those instances where your program is using a subroutine or feature that exists only in certain levels of Parallel ESSL. It is also useful when your program is dependent upon certain PTFs being applied to Parallel ESSL.

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline Fortran & IPESSL () \\
\hline C and C \(_{++}\) & ipessI ()\(;\) \\
\hline
\end{tabular}

\section*{On Return}

\section*{Function value}
is the level of Parallel ESSL installed on your system. It is provided as a fullword integer in the form vvrrmmff, where each two digits represents a part of the level:
- \(v v\) is the version number.
- \(r r\) is the release number.
- \(m m\) is the modification number.
- \(f f\) is the fix number of the most recent PTF installed.

Scope: global
Returned as: a fullword integer; vvrrmmff > 0 .

\section*{Notes}
1. To use IPESSL effectively, you must install your Parallel ESSL PTFs in their proper sequential order. As part of the result, IPESSL returns the value ff of the most recent PTF installed, rather than the highest number PTF installed. Therefore, if you do not install your PTFs sequentially, the ff value returned by IPESSL does not reflect the actual level of ESSL.
2. Declare the IPESSL function in your program as returning a fullword integer value.
3. For the first release of Parallel ESSL for AIX Version 4, \(v v=01\) and \(r r=01\), and IPESSL returns 1010000.

Example: This example shows several ways to use the IPESSL function. Most typically, you use IPESSL for checking the version and release level of Parallel ESSL. Suppose you are dependent on a new capability in Parallel ESSL, such as a new subroutine or feature, provided for the first time in (fictitious) Parallel ESSL Version 3 Release 2. You can add the following check in your program before using the new capability:
```

IF IPESSL() \geq 3020000

```

By specifying 0000 for mmff, the modification and fix level, you are independent of the order in which your modifications and PTFs are installed.

Less typically, you use IPESSL for checking the PTF level of Parallel ESSL. Suppose you are dependent on (fictitious) PTF 24 being installed on your Parallel ESSL Version 1 Release 0 system You want to know whether to call a different user-callable subroutine to set up your array data. You can add the following check in your program before making the call:

IF \(\operatorname{IPESSL}() \geq 1000024\)
If your system support group installed the Parallel ESSL PTFs in their proper sequential order, this test works properly; otherwise, it is unpredictable.

\section*{NUMROC-Compute the Number of Rows or Columns of a Block-Cyclically Distributed Matrix Contained in a Process}

This function computes the local number of rows or columns of a block-cyclically distributed matrix contained in a process row or process column, respectively, indicated by the calling sequence argument iproc.

See references [14 ] and [15 ].
Syntax
\begin{tabular}{|l|l|}
\hline Fortran & NUMROC ( \(n\), nb, iproc, isrcproc, nprocs) \\
\hline C and C++ & numroc ( \(n, n b\), iproc, isrcproc, nprocs); \\
\hline
\end{tabular}

\section*{On Entry}
n
is the number of rows \(M_{-}\)or columns \(N_{-}\)in a global matrix that has been block-cyclically distributed.

Scope: global
Specified as: a fullword integer; \(n \geq 0\).
nb
is the row block size MB_ or the column block size NB_.
Scope: global
Specified as: a fullword integer; \(n b>0\).
iproc
is process row index myrow or the process column index mycol.
Scope: local
Specified as: a fullword integer; \(0 \leq i p r o c<n p r o c s\).
isrcproc
is the process row RSRC_ or the process column CSRC_ over which the first row or column, respectively, of the global matrix is distributed.

\section*{Scope: global}

Specified as: a fullword integer; \(0 \leq i s r c p r o c<n p r o c s\).
nprocs
is the number of rows nprow or the number of columns npcol in the process grid.

Scope: global
Specified as: a fullword integer; nprocs > 0 .
On Return

\section*{Function value}
is the local number of rows or columns of a block-cyclically distributed matrix contained in a process row or process column, respectively, indicated by the calling sequence argument iproc.

\section*{Scope: local}

Returned as: a fullword integer.

Note: The variables \(p\) and nprow are used interchangeably to indicate the number of rows in a process grid. The variables \(q\) and npcol are used interchangeably to indicate the number of columns in a process grid.

\section*{Error Conditions}

Computational Errors: None

Resource Errors: None

Input-Argument and Miscellaneous Errors
Stage 1
1. \(n b \leq 0\)
2. nprocs \(\leq 0\)

Example: This example shows the local invocations of NUMROC from four processes in a \(2 \times 2\) process grid, using a global symmetric matrix of order 9 .

Call Statements and Input
ORDER = 'R'
NPROW = 2
NPCOL = 2
CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)
The NUMROC function invocations and associated data on each process are shown in "Local Invocations of NUMROC."

The pertinent array descriptor values for global matrix \(\boldsymbol{C}\) are shown below:
\begin{tabular}{|c|c|}
\hline & Desc_C \\
\hline \(\mathrm{M}_{-}\) & 9 \\
\hline \(\mathrm{~N}_{-}\) & 9 \\
\hline \(\mathrm{MB}_{-}\) & 4 \\
\hline \(\mathrm{NB}_{-}\) & 4 \\
\hline RSRC_ & 0 \\
\hline CSRC_ & 0 \\
\hline
\end{tabular}

Global symmetric matrix \(\boldsymbol{C}\) of order 9 is stored in upper storage mode with block sizes \(4 \times 4\) :


The following is the \(2 \times 2\) process grid:
\begin{tabular}{c|c|c}
\(\mathbf{B , D}\) & \(\mathbf{0} \mathbf{2}\) & \(\mathbf{1}\) \\
\hline \(\mathbf{0}\) & \(\mathrm{P}_{00}\) & \(\mathrm{P}_{01}\) \\
\(\mathbf{2}\) & & \\
\hline \(\mathbf{1}\) & \(\mathrm{P}_{10}\) & \(\mathrm{P}_{11}\)
\end{tabular}

Local arrays for \(\boldsymbol{C}\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline p,q & \multicolumn{5}{|c|}{0} & \multicolumn{4}{|c|}{1} \\
\hline \multirow{5}{*}{0} & -6. & 0.0 & 0.0 & 0.0 & -2.0 & 0.0 & & -2.0 & 0.0 \\
\hline & & -6.0 & -2.0 & 0.0 & -2.0 & -2.0 & & 0.0 & -4.0 \\
\hline & - & . & -6.0 & -2.0 & 6.0 & -2.0 & 0.0 & 2.0 & 0.0 \\
\hline & - & - & - & -6.0 & 2.0 & 2.0 & 0.0 & 2.0 & 0.0 \\
\hline & - & - & - & - & -16.0 & - & - & - & . \\
\hline \multirow{4}{*}{1} & - & - & - & - & 0.0 & -8.0 & & 0.0 & -2.0 \\
\hline & - & - & - & & -6.0 & . & -6.0 & 0.0 & -4.0 \\
\hline & - & - & - & - & 0.0 & - & . & -4.0 & 0.0 \\
\hline & - & & & . & -4.0 & - & - & . & -4.0 \\
\hline
\end{tabular}

Local Invocations of NUMROC:


\section*{Output:}

The local number of rows MP and columns NQ of the block-cyclically distributed matrix returned by NUMROC on each process:
\begin{tabular}{|c|c|c|}
\hline p,q & 0 & 1 \\
\hline \multirow[t]{2}{*}{0} & MP \(=5\) & MP=5 \\
\hline & \(N \mathrm{Q}=5\) & \(\mathrm{NQ}=4\) \\
\hline \multirow[t]{2}{*}{1} & \(\mathrm{MP}=4\) & \(\mathrm{MP}=4\) \\
\hline & \(N Q=5\) & \(N \mathrm{~N}=4\) \\
\hline
\end{tabular}

\section*{Part 3. Reference Information (HPF)}

This part of the book is organized into five areas, providing reference information for coding the Parallel ESSL calling sequences in a High Performance Fortran (HPF) program. It is organized as follows:
- PBLAS
- Linear Algebraic Equations
- Eigensystem Analysis and Singular Value Analysis
- Fourier Transforms
- Random Number Generation

\section*{Chapter 13. PBLAS (HPF)}

This chapter describes the Level 2 and 3 PBLAS subroutines that can be called from an HPF program.

\section*{Overview of the PBLAS Subroutines}

The Level 2 and 3 PBLAS include a subset of the standard set of distributed memory parallel versions of the Level 2 and 3 BLAS.
Note: These subroutines are designed to be consistent with the proposals for the Fortran 90 BLAS and the Fortran 90 LAPACK. (See references [30] and [31 ].) If these subroutines do not comply with any eventual proposal for HPF interfaces to the PBLAS and ScaLAPACK, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.

\section*{Level 2 PBLAS}
\begin{tabular}{|l|l|l|}
\hline Table 112. List of Level 2 PBLAS (HPF) & \multicolumn{1}{l|}{} \\
\hline Descriptive Name & \begin{tabular}{l} 
Long-Precision \\
Subprogram
\end{tabular} & Page \\
\hline Matrix-Vector Product for a General Matrix or Its Transpose & GEMM & 719 \\
\hline Matrix-Vector Product for a Real Symmetric Matrix & SYMM & 730 \\
\hline Rank-One Update of a General Matrix & GEMM & 719 \\
\hline Rank-One Update of a Real Symmetric Matrix & SYRK & 748 \\
\hline Rank-Two Update of a Real Symmetric Matrix & SYR2K & 754 \\
\hline Matrix-Vector Product for a Triangular Matrix or Its Transpose & TRMM & 736 \\
\hline Solution of Triangular System of Equations with a Single Right-Hand Side & TRSM & 742 \\
\hline
\end{tabular}

\section*{Level 3 PBLAS}
\begin{tabular}{|l|l|l|}
\hline Table 113. List of Level 3 PBLAS (HPF) & \multicolumn{1}{l|}{} \\
\hline Descriptive Name & \begin{tabular}{l} 
Long-Precision \\
Subprogram
\end{tabular} & Page \\
\hline \begin{tabular}{l} 
Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate \\
Transpose
\end{tabular} & GEMM & 719 \\
\hline Matrix-Matrix Product Where One Matrix is Real Symmetric & SYMM & 730 \\
\hline Triangular Matrix-Matrix Product & TRMM & 736 \\
\hline Solution of Triangular System of Equations with Multiple Right-Hand Sides & TRSM & 742 \\
\hline Rank-K Update of a Real Symmetric Matrix & SYRK & 748 \\
\hline Rank-2K Update of a Real Symmetric Matrix & SYR2K & 754 \\
\hline Matrix Transpose for a General Matrix & TRAN & 760 \\
\hline
\end{tabular}

\section*{PBLAS Subroutines}

This section contains the PBLAS subroutine descriptions.

\section*{GEMM—Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate Transpose}

This subroutine performs any one of the following combined matrix computations:
1. \(C \leftarrow \alpha A B+\beta C\)
2. \(C \leftarrow \alpha \boldsymbol{A} B^{\top}+\beta C\)
3. \(C \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}+\beta \boldsymbol{C}\)
4. \(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{\boldsymbol{\top}} \boldsymbol{B}^{\top}+\beta \boldsymbol{C}\)
5. \(C \leftarrow \alpha \boldsymbol{A}^{H} \boldsymbol{B}+\beta \boldsymbol{C}\)
6. \(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{\mathrm{H}} \boldsymbol{B}^{\mathrm{T}}+\beta \boldsymbol{C}\)
7. \(C \leftarrow \alpha A B^{H}+\beta C\)
8. \(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}^{H}+\beta \boldsymbol{C}\)
9. \(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{\mathrm{H}} \boldsymbol{B}^{\mathrm{H}}+\beta \boldsymbol{C}\)
10. \(\boldsymbol{c} \leftarrow \alpha \boldsymbol{A} \boldsymbol{b}+\beta \boldsymbol{c}\)
11. \(\boldsymbol{c} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{b}+\beta \boldsymbol{c}\)
12. \(C \leftarrow \alpha a b^{\top}+C\)
where, in the formulas above:
\(\boldsymbol{A}, \boldsymbol{B}\), and \(\boldsymbol{C}\) are general matrices.
\(\boldsymbol{a}, \boldsymbol{b}\), and \(\boldsymbol{c}\) are vectors.
\(\alpha\) and \(\beta\) are scalars.
Note: No data should be moved to form the matrix transposes or matrix conjugate transposes; that is, the matrices should always be stored in their untransposed forms.

In the following cases, no computation is performed and the subroutine returns after doing some parameter checking:
- For equations 1-9:
- The assumed-shape array for \(\boldsymbol{C}\) has a size of zero.
- \(\alpha\) is zero and \(\beta\) is one.
- \(\beta\) is one, and the assumed-shape arrays for \(\boldsymbol{A}\) and \(\boldsymbol{B}\) have a size of zero.

Assuming the above conditions do not exist, if \(\beta\) is not one and the assumed-shape arrays for \(\boldsymbol{A}\) and \(\boldsymbol{B}\) have a size of zero, then \(\beta \boldsymbol{C}\) is returned.
- For equations 10 and 11:
- Any of the assumed-shape arrays have a size of zero.
- \(\alpha\) is zero and \(\beta\) is one.
- For equation 12:
- Any of the assumed-shape arrays have a size of zero.
\(-\alpha\) is zero.
See references [17 ], [30 ], [31 ], and [44 ].
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ Table 114. Data Types } \\
\hline\(\alpha, \beta, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) & Subroutine \\
\hline Long-precision real & GEMM \\
\hline Long-precision complex & GEMM \\
\hline
\end{tabular}

\section*{Syntax}

\section*{GEMM}
\begin{tabular}{|l|l|l|}
\hline HPF & Equations 1-9 & \begin{tabular}{l} 
CALL GEMM (alpha, a, b, beta, c) \\
CALL GEMM (alpha, a, b, beta, c, transa, transb)
\end{tabular} \\
\hline HPF & Equations 10 and 11 & \begin{tabular}{l} 
CALL GEMM (alpha, \(a, b\), beta, \(c\) ) \\
CALL GEMM (alpha, \(a, b\), beta, \(c\), transa)
\end{tabular} \\
\hline HPF & Equation 12 & CALL GEMM (alpha, \(a, b, c\) ) \\
\hline
\end{tabular}

\section*{On Entry}
alpha
is the scalar \(\alpha\).
Type: required
Specified as: a number of the data type indicated in Table 114 on page 719.
a
is the general matrix \(\boldsymbol{A}\) or the vector \(\mathbf{a}\), where:
If transa \(=\) ' N ', \(\boldsymbol{A}\) is used in the computation.
If transa \(=\) ' \(\mathrm{T}^{\prime}, \boldsymbol{A}^{\mathrm{T}}\) is used in the computation.
If transa \(={ }^{\prime} \mathrm{C}^{\prime}, \boldsymbol{A}^{\mathrm{H}}\) is used in the computation.
Note: No data should be moved to form \(\boldsymbol{A}^{\top}\) or \(\boldsymbol{A}^{H}\); that is, the matrix \(\boldsymbol{A}\) should always be stored in its untransposed form.

\section*{Type: required}

Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 114 on page 719.
b
is the general matrix \(\boldsymbol{B}\) or the vector \(\boldsymbol{b}\), where:
If transb \(={ }^{\prime} \mathrm{N}\) ', \(\boldsymbol{B}\) is used in the computation.
If transb \(={ }^{\prime} \mathrm{T}^{\prime}, \boldsymbol{B}^{\boldsymbol{T}}\) is used in the computation.
If transb \(={ }^{\prime} \mathrm{C}^{\prime}, \boldsymbol{B}^{\mathrm{H}}\) is used in the computation.
Type: required
Note: No data should be moved to form \(\boldsymbol{B}^{\top}\) or \(\boldsymbol{B}^{\boldsymbol{H}}\); that is, the matrix \(\boldsymbol{B}\) should always be stored in its untransposed form.

Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 114 on page 719.
beta
is the scalar \(\beta\).
Type: required (equations 1-11); not present (equation 12)
Specified as: a number of the data type indicated in Table 114 on page 719. c
is the general matrix \(\boldsymbol{C}\) or the vector \(\boldsymbol{c}\). When \(\beta\) is zero, \(\boldsymbol{c}\) need not be set on input.

\section*{Type: required}

Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 114 on page 719.
transa
indicates the form of matrix \(\boldsymbol{A}\) to use in the computation, where:
If transa \(=\) ' N ', \(\boldsymbol{A}\) is used in the computation, resulting in equation \(1,2,7\), or 10.

If transa \(={ }^{\prime} \mathrm{T}^{1}, \boldsymbol{A}^{\top}\) is used in the computation, resulting in equation \(3,4,8\), or 11.

If transa \(={ }^{\prime} \mathrm{C}^{\prime}, \boldsymbol{A}^{\mathrm{H}}\) is used in the computation, resulting in equation 5,6 , or 9 .
Type: optional (equations 1-11); not present (equation 12)
Default: transa = ' N '
Specified as: a single character; transa \(={ }^{\prime} \mathrm{N}^{\prime}\), ' T ', or ' \(\mathrm{C}^{\prime}\).
transb
indicates the form of matrix \(\boldsymbol{B}\) to use in the computation, where:
If transb \(={ }^{\prime} \mathrm{N}\) ', \(\boldsymbol{B}\) is used in the computation, resulting in equation 1,3 , or 5 .
If transb \(=\) ' \(\mathrm{T}^{\prime}, \boldsymbol{B}^{\mathrm{T}}\) is used in the computation, resulting in equation 2,4 , or 6 .
If transb \(={ }^{\prime} \mathrm{C}^{\prime}, \boldsymbol{B}^{\mathrm{H}}\) is used in the computation, resulting in equation 7,8 , or 9 .
Type: optional (equations 1-9); not present (equations 10-12)
Default: transb = 'N'
Specified as: a single character; transb \(=\) ' N ' or ' T '.

\section*{On Return}
c
is the updated matrix \(\boldsymbol{C}\) or vector \(\boldsymbol{c}\), containing the results of the computation.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 114 on page 719.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- For equations 1 through 9:
- If transa \(=\) ' N ' and transb \(=\) ' N ':
- \(\operatorname{size}(a, 1)=\operatorname{size}(c, 1)\)
- \(\operatorname{size}(b, 2)=\operatorname{size}(c, 2)\)
- \(\operatorname{size}(a, 2)=\operatorname{size}(b, 1)\)
- If transa \(=\) ' N ' and transb \(=\) ' T ' or ' C ':
- \(\operatorname{size}(a, 1)=\operatorname{size}(c, 1)\)
- \(\operatorname{size}(b, 1)=\operatorname{size}(c, 2)\)
- \(\operatorname{size}(a, 2)=\operatorname{size}(b, 2)\)
- If transa \(=\) ' T ' or ' C ' and transb \(=\) ' N ':
- \(\operatorname{size}(a, 2)=\operatorname{size}(c, 1)\)
- \(\operatorname{size}(b, 2)=\operatorname{size}(c, 2)\)
- \(\operatorname{size}(a, 1)=\operatorname{size}(b, 1)\)
- If transa \(=\) ' T ' or ' C ' and transb \(=\) ' T ' or ' C ':
- \(\operatorname{size}(a, 2)=\operatorname{size}(c, 1)\)
- \(\operatorname{size}(b, 1)=\operatorname{size}(c, 2)\)
- \(\operatorname{size}(a, 1)=\operatorname{size}(b, 2)\)
- For equations 10 and 11:
- If transa = ' N ':
- \(\operatorname{size}(a, 1)=\operatorname{size}(c)\)
- \(\operatorname{size}(a, 2)=\operatorname{size}(b)\)
- If transa = 'T':
- \(\operatorname{size}(a, 1)=\operatorname{size}(b)\)
- \(\operatorname{size}(a, 2)=\operatorname{size}(c)\)
- For equation 12 :
\(-\operatorname{size}(c, 1)=\operatorname{size}(a)\)
\(-\operatorname{size}(c, 2)=\operatorname{size}(b)\)
2. This subroutine accepts lowercase letters for the transa and transb arguments.
3. If you are using long-precision real data and specify ' C ' for the transa or transb argument, it is interpreted as though you specified ' T '.
4. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
5. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
6. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
7. The restrictions given in "Notes and Coding Rules" on page 257, "Notes and Coding Rules" on page 169, and "Notes and Coding Rules" on page 198 also apply to this subroutine.
8. An example of the use of this subroutine in a thermal diffusion application program is shown in Appendix B. See "Program Main (HPF)" on page 944.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 260, "Error Conditions" on page 171, and "Error Conditions" on page 199 also apply to this subroutine.

Input-Argument Errors for Equations 1-9

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a, b\), or \(c\).
2. The process rank is not the same for \(a, b\), and \(c\).
3. The process rank is not 1 or 2 for \(a, b\), or \(c\).

\section*{Stage 2}
1. transa is present, and transa \(\neq '^{\prime} \mathrm{N}^{\prime}\), ' \(\mathrm{T}^{\prime}\), or ' \(\mathrm{C}^{\prime}\).
2. transb is present, and transb \(\not \neq^{\prime} \mathrm{N}^{\prime}\), ' T ', or ' \(\mathrm{C}^{\prime}\).

Stage 3: The process grid is not the same for \(a, b\), and \(c\).
Stage 4: The data distribution is inconsistent for \(a, b\), and \(c\).

Stage 5: The shape of the assumed-shape arrays \(a, b\), and \(c\) is incompatible:
1. transa \(=\) ' N ' and transb \(=\) ' N ': \(\operatorname{size}(a, 1) \neq \operatorname{size}(c, 1)\) or \(\operatorname{size}(b, 2) \neq \operatorname{size}(c, 2)\) or \(\operatorname{size}(a, 2) \neq \operatorname{size}(b, 1)\)
2. transa = ' N ' and transb \(=\) ' T ' or ' C ':
\(\operatorname{size}(a, 1) \neq \operatorname{size}(c, 1)\) or
\(\operatorname{size}(b, 1) \neq \operatorname{size}(c, 2)\) or \(\operatorname{size}(a, 2) \neq \operatorname{size}(b, 2)\)
3. transa \(=\) ' T ' or ' C ' and transb \(=\) ' N ':
\(\operatorname{size}(a, 2) \neq \operatorname{size}(c, 1)\) or
\(\operatorname{size}(b, 2) \neq \operatorname{size}(c, 2)\) or \(\operatorname{size}(a, 1) \neq \operatorname{size}(b, 1)\)
4. transa \(=\) ' T ' or ' C ' and transb \(=\) ' T ' or ' C ':
\(\operatorname{size}(a, 2) \neq \operatorname{size}(c, 1)\) or
\(\operatorname{size}(b, 1) \neq \operatorname{size}(c, 2)\) or \(\operatorname{size}(a, 1) \neq \operatorname{size}(b, 2)\)

Stage 6: The data distribution for \(a, b\), or \(c\) is unsupported.
Input-Argument Errors for Equations 10 and 11

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a, b\), or \(c\).
2. The process rank is not the same for \(a, b\), and \(c\).
3. The process rank is not 1 or 2 for \(a, b\), or \(c\).

Stage 2: transa is present, and transa \(\neq{ }^{\prime} \mathrm{N}^{\prime}\), ' \(\mathrm{T}^{\prime}\), or ' \(\mathrm{C}^{\prime}\).
Stage 3: The process grid is not the same for \(a, b\), and \(c\).

\section*{Stage 3}
1. The vector for \(b\) or \(c\) is replicated.
2. The data distribution for \(a\) is unsupported.

\section*{Stage 5}
1. Vector distribution error for \(b\) or \(c\)
2. The shape of the assumed-shape arrays \(a, b\), and \(c\) is incompatible:
a. transa = ' N ':
\(\operatorname{size}(a, 1) \neq \operatorname{size}(c)\) or \(\operatorname{size}(a, 2) \neq \operatorname{size}(b)\)
b. transa = 'T':
\(\operatorname{size}(a, 1) \neq \operatorname{size}(b)\) or
\(\operatorname{size}(a, 2) \neq \operatorname{size}(c)\)
Stage 6: The data distribution for \(a, b\), or \(c\) is unsupported.
Input-Argument Errors for Equation 12

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a, b\), or \(c\).
2. The process rank is not the same for \(a, b\), and \(c\).
3. The process rank is not 1 or 2 for \(a, b\), or \(c\).

Stage 2: The process grid is not the same for \(a, b\), and \(c\).
Stage 3: The data distribution for \(c\) is unsupported.
Stage 4: The vector for \(a\) or \(b\) is replicated.
Stage 5: The data distribution is inconsistent for \(a\) and \(b\).
Stage 6
1. Vector distribution error for \(a\) or \(b\).
2. The shape of the assumed-shape arrays \(a, b\), and \(c\) is incompatible:
\[
\begin{aligned}
& \operatorname{size}(c, 1) \neq \operatorname{size}(a) \text { or } \\
& \operatorname{size}(c, 2) \neq \operatorname{size}(b)
\end{aligned}
\]

Stage 7: The data distribution for \(a, b\), or \(c\) is unsupported.
Example 1: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{A} \boldsymbol{B}+\beta \boldsymbol{C}\). As in "Example 1" on page 262 , array data is block-cyclically distributed using a \(2 \times 2\) process grid.
!HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B, C
CALL GEMM( 1.0D0 , A , B , 2.0D0 , C )
-or-
CALL GEMM ( 1.000 , A , B , 2.0D0 , C , TRANSA='N', TRANSB='N' )
Input: General \(6 \times 5\) matrix \(\boldsymbol{A}\) :
\(\left[\begin{array}{rrrrr}1.0 & 2.0 & -1.0 & -1.0 & 4.0 \\ 2.0 & 0.0 & 1.0 & 1.0 & -1.0 \\ 1.0 & -1.0 & -1.0 & 1.0 & 2.0 \\ -3.0 & 2.0 & 2.0 & 2.0 & 0.0 \\ 4.0 & 0.0 & -2.0 & 1.0 & -1.0 \\ -1.0 & -1.0 & 1.0 & -3.0 & 2.0\end{array}\right]\)

General \(5 \times 4\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrrr}1.0 & -1.0 & 0.0 & 2.0 \\ 2.0 & 2.0 & -1.0 & -2.0 \\ 1.0 & 0.0 & -1.0 & 1.0 \\ -3.0 & -1.0 & 1.0 & -1.0 \\ 4.0 & 2.0 & -1.0 & 1.0\end{array}\right]\)

General \(6 \times 4\) matrix \(\boldsymbol{C}\) :
\(\left[\begin{array}{llll}0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5\end{array}\right]\)

Output: General \(6 \times 4\) matrix \(\boldsymbol{C}\) :
\[
\left[\begin{array}{rrrr}
24.0 & 13.0 & -5.0 & 3.0 \\
-3.0 & -4.0 & 2.0 & 4.0 \\
4.0 & 1.0 & 2.0 & 5.0 \\
-2.0 & 6.0 & -1.0 & -9.0 \\
-4.0 & -6.0 & 5.0 & 5.0 \\
16.0 & 7.0 & -4.0 & 7.0
\end{array}\right]
\]

Example 2: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{A}+\beta \boldsymbol{C}\). As in "Example 2" on page 265 , array data is block-cyclically distributed using a \(2 \times 2\) process grid.
!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B, C
CALL GEMM ( ( \(1.000,0.0 \mathrm{D} 0\) ) , A , B , (2.0D0,0.0D0) , C )
-or-
CALL GEMM ( (1.0D0,0.0D0) , A , B , (2.0D0,0.0D0) , C , TRANSA='N' , TRANSB='N' )
Input: General \(6 \times 3\) matrix \(\boldsymbol{A}\) :
\(\left[\begin{array}{lll}(1.0,5.0) & (9.0,2.0) & (1.0,9.0) \\ (2.0,4.0) & (8.0,3.0) & (1.0,8.0) \\ (3.0,3.0) & (7.0,5.0) & (1.0,7.0) \\ (4.0,2.0) & (4.0,7.0) & (1.0,5.0) \\ (5.0,1.0) & (5.0,1.0) & (1.0,6.0) \\ (6.0,6.0) & (3.0,6.0) & (1.0,4.0)\end{array}\right]\)

General \(3 \times 2\) matrix \(\boldsymbol{B}\) :
\[
\left.\begin{array}{ll}
(1.0,8.0) & (2.0,7.0) \\
(4.0,4.0) & (6.0,8.0) \\
(6.0,2.0) & (4.0,5.0)
\end{array}\right]
\]

General \(6 \times 2\) matrix \(\boldsymbol{C}\) :
\[
\left[\begin{array}{ll}
(0.5,0.0) & (0.5,0.0) \\
(0.5,0.0) & (0.5,0.0) \\
(0.5,0.0) & (0.5,0.0) \\
(0.5,0.0) & (0.5,0.0) \\
(0.5,0.0) & (0.5,0.0) \\
(0.5,0.0) & (0.5,0.0)
\end{array}\right]
\]

Output: General \(6 \times 2\) matrix \(\boldsymbol{C}\) :
\(\left[\begin{array}{rr}(-22.0,113.0) & (-35.0 .142 .0) \\ (-19.0,114.0) & (-35.0 .141 .0) \\ (-20.0,119.0) & (-43.0 .146 .0) \\ (-27.0,110.0) & (-58.0 .131 .0) \\ (8.0,103.0) & (0.0 .112 .0) \\ (-55.0,116.0) & (-75.0 .135 .0)\end{array}\right]\)

Example 3: This example computes \(\boldsymbol{c}=\alpha \boldsymbol{A} \boldsymbol{b}+\beta \boldsymbol{c}\). The input matrices \(\boldsymbol{A}, \boldsymbol{B}\), and \(\boldsymbol{C}\), used here, are the same as the matrices used in "Example 1" on page 724. The updated portion of \(\boldsymbol{C}\) is also the same, as this computation is equivalent to a portion of the computation.

Array sections are specified for arguments \(a, b\), and \(c\), resulting in the computation using a submatrix \(\boldsymbol{A}\) starting at row 3 and column 1 in an array, a column vector \(\boldsymbol{b}\) starting at row 1 and column 2 in an array, and a column vector c, starting at row 3 and column 2 in an array.

As in "Example 1" on page 173, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
!HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B, C
CALL GEMM ( 1.0 D 0 , \(\mathrm{A}(3: 6,1: 5), \mathrm{B}(1: 5,2: 2), 2.0 \mathrm{D} 0, \mathrm{C}(3: 6,2: 2)\) )
-or-
CALL GEMM ( \(1.0 \mathrm{D} 0, \mathrm{~A}(3: 6,1: 5), \mathrm{B}(1: 5,2: 2), 2.0 \mathrm{D} 0, \mathrm{C}(3: 6,2: 2)\), TRANSA='N')
Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{A}\). Following is the \(4 \times 5\) submatrix \(\boldsymbol{A}\), starting at row 3 and column 1 in the \(6 \times 5\) array:
\[
\left[\begin{array}{rrrrr}
. & . & . & . & . \\
. & \cdot & . & . & . \\
1.0 & -1.0 & -1.0 & 1.0 & 2.0 \\
-3.0 & 2.0 & 2.0 & 2.0 & 0.0 \\
4.0 & 0.0 & -2.0 & 1.0 & -1.0 \\
-1.0 & -1.0 & 1.0 & -3.0 & 2.0
\end{array}\right]
\]

Only a portion of the data structure is used-that is, vector \(\boldsymbol{b}\), which is a column vector. Following is the vector \(\boldsymbol{b}\) of size 5 , starting at row 1 and column 2 in the \(5 \times 4\) array:
\[
\left[\begin{array}{rrrl} 
& -1.0 & \cdot & \cdot \\
\cdot & 2.0 & \cdot & \cdot \\
\cdot & 0.0 & \cdot & \cdot \\
\cdot & -1.0 & \cdot & \cdot \\
\cdot & 2.0 & \cdot & \cdot
\end{array}\right]
\]

Only a portion of the data structure is used-that is, vector \(\boldsymbol{c}\), which is a column vector. Following is the vector \(\boldsymbol{c}\) of size 4 , starting at row 3 and column 2 in the \(6 \times 4\) array:
\[
\left[\begin{array}{cccc} 
& & & \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & 0.5 & \cdot & \cdot
\end{array}\right]
\]

Output: Only a portion of the data structure is used-that is, vector \(\boldsymbol{c}\), which is a column vector. Following is the vector \(\boldsymbol{c}\) of size 4 , starting at row 3 and column 2 in the \(6 \times 4\) array:
\[
\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & 1.0 & \cdot & \cdot \\
\cdot & 6.0 & \cdot & \cdot \\
\cdot & -6.0 & \cdot & \cdot \\
\cdot & 7.0 & \cdot & \cdot
\end{array}\right]
\]

Example 4: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{A} \boldsymbol{b}+\beta \boldsymbol{c}\). The input matrices \(\boldsymbol{A}, \boldsymbol{B}\), and \(\boldsymbol{C}\), used here, are the same as \(\boldsymbol{A}, \boldsymbol{B}\), and \(\boldsymbol{C}\), used in "Example 1" on page 724.

Array sections are specified for arguments \(a, b\), and \(c\), resulting in the computation using a submatrix \(\boldsymbol{A}\) starting at row 2 and column 2 in an array, a row vector \(\boldsymbol{b}\) starting at row 4 and column 2 in an array, and a column vector \(\boldsymbol{c}\) starting at row 2 and column 3 in an array.

As in "Example 2" on page 177, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B, C

```

CALL GEMM ( 1.0 D 0 , \(\mathrm{A}(2: 5,2: 4)\), \(\mathrm{B}(4: 4,2: 4), 2.0 \mathrm{D} 0, \mathrm{C}(2: 5,3: 3)\) )
-or-
CALL GEMM ( 1.0 D 0 , \(\mathrm{A}(2: 5,2: 4)\), \(\mathrm{B}(4: 4,2: 4), 2.0 \mathrm{D} 0, \mathrm{C}(2: 5,3: 3)\), TRANSA='N' )

Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{A}\). Following is the \(4 \times 3\) submatrix \(\boldsymbol{A}\), starting at row 2 and column 2 in the \(6 \times 5\) array:
\[
\left[\begin{array}{ccccc}
\cdot & \cdot & . & . & \cdot \\
\cdot & 0.0 & 1.0 & 1.0 & \cdot \\
\cdot & -1.0 & -1.0 & 1.0 & \cdot \\
\cdot & 2.0 & 2.0 & 2.0 & \cdot \\
\cdot & 0.0 & -2.0 & 1.0 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
\]

Only a portion of the data structure is used-that is, vector \(\boldsymbol{b}\), which is a row vector. Following is the vector \(\boldsymbol{b}\) of size 3 , starting at row 4 and column 2 in the \(5 \times 4\) array:


Only a portion of the data structure is used-that is, vector \(\boldsymbol{c}\), which is a column vector. Following is the vector \(\boldsymbol{c}\) of size 4 , starting at row 2 and column 3 in the \(6 \times 4\) array:
\[
\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 0.5 & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
\]

Output: Only a portion of the data structure is used-that is, vector \(\boldsymbol{c}\), which is a column vector. Following is the vector \(\boldsymbol{c}\) of size 4, starting at row 2 and column 3 in the \(6 \times 4\) array:
\[
\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1.0 & \cdot \\
\cdot & \cdot & 0.0 & \cdot \\
\cdot & \cdot & -1.0 & \cdot \\
\cdot & \cdot & -2.0 & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
\]

Example 5: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{a b}^{\top}+\boldsymbol{C}\).
Array sections are specified for arguments \(a, b\), and \(c\), resulting in the computation using a submatrix \(\boldsymbol{C}\) starting at row 2 and column 2 in an array, a column vector \(\boldsymbol{a}\), starting at element 2 in an array, and a row vector \(\boldsymbol{b}\) starting at element 2 in an array.

As in "Example" on page 201, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
! HPF \(\$\) PROCESSORS PROC \((2,2)\)
!HPF\$ ALIGN A(:) WITH C(:,1)
!HPF\$ ALIGN B(:) WITH C( \(1,:\) )
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: C
CALL GEMM ( 1.0 D 0 , \(\mathrm{A}(2: 10)\), \(\mathrm{B}(2: 10)\), \(\mathrm{C}(2: 10,2: 10)\) )
Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{C}\). Following is the \(9 \times 9\) submatrix \(\boldsymbol{C}\), starting at row 2 and column 2 in the \(10 \times 10\) array:
\(\left[\begin{array}{cccccccccc}. & . & . & . & . & . & . & . & . & . \\ \cdot & 12.0 & 22.0 & 32.0 & 42.0 & 52.0 & 62.0 & 72.0 & 82.0 & 92.0 \\ \cdot & 13.0 & 23.0 & 33.0 & 43.0 & 53.0 & 63.0 & 73.0 & 83.0 & 93.0 \\ \cdot & 14.0 & 24.0 & 34.0 & 44.0 & 54.0 & 64.0 & 74.0 & 84.0 & 94.0 \\ \cdot & 15.0 & 25.0 & 35.0 & 45.0 & 55.0 & 65.0 & 75.0 & 85.0 & 95.0 \\ \cdot & 16.0 & 26.0 & 36.0 & 46.0 & 56.0 & 66.0 & 76.0 & 86.0 & 96.0 \\ \cdot & 17.0 & 27.0 & 37.0 & 47.0 & 57.0 & 67.0 & 77.0 & 87.0 & 97.0 \\ \cdot & 18.0 & 28.0 & 38.0 & 48.0 & 58.0 & 68.0 & 78.0 & 88.0 & 98.0 \\ \cdot & 19.0 & 29.0 & 39.0 & 49.0 & 59.0 & 69.0 & 79.0 & 89.0 & 99.0 \\ . & 20.0 & 30.0 & 40.0 & 50.0 & 60.0 & 70.0 & 80.0 & 90.0 & 100.0\end{array}\right]\)

Only a portion of the data structure is used-that is, vector \(\boldsymbol{a}\), which is a column vector. Following is the vector \(\boldsymbol{a}\) of size 9 , starting at element 2 in the array of size 11:
\(\left[\begin{array}{c}. \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ .\end{array}\right]\)

Only a portion of the data structure is used-that is, vector \(\boldsymbol{b}\), which is a row vector. Following is the vector \(\boldsymbol{b}\) of size 9 , starting at element 2 in the array of size 11:
\[
\left[\begin{array}{lllllllllll}
. & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 & 10.0 & .
\end{array}\right]
\]

Output: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{C}\). Following is the \(9 \times 9\) submatrix \(\boldsymbol{C}\), starting at row 2 and column 2 in the \(10 \times 10\) array:


\section*{SYMM—Matrix-Matrix Product Where One Matrix is Real Symmetric}

This subroutine computes one of the following matrix-matrix products:
1. \(C \leftarrow \alpha A B+\beta C\)
2. \(C \leftarrow \alpha B A+\beta C\)
3. \(c \leftarrow \alpha \boldsymbol{A} \boldsymbol{b}+\beta \boldsymbol{c}\)
where, in the formulas above:
\(\boldsymbol{A}\) is a symmetric matrix.
\(\boldsymbol{B}\) and \(\boldsymbol{C}\) are general matrices.
\(\boldsymbol{b}\) and \(\boldsymbol{c}\) are vectors.
\(\alpha\) and \(\beta\) are scalars.
In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:
- Any of the assumed-shape arrays have a size of zero.
- \(\alpha\) is zero and \(\beta\) is one.

See references [17 ], [30 ], [31 ], and [44 ].
\begin{tabular}{|c|c|}
\hline Table 115. Data Types \\
\hline\(\alpha, \beta, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{b}, \boldsymbol{c}\) & Subprogram \\
\hline Long-precision real & SYMM \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|l|}
\hline HPF & Equations 1 and 2 & CALL SYMM (alpha, \(a, b\), beta, \(c\), uplo, side) \\
\hline HPF & Equation 3 & CALL SYMM (alpha, \(a, b\), beta, \(c\), uplo) \\
\hline
\end{tabular}

On Entry
alpha
is the scalar \(\alpha\).
Type: required
Specified as: a number of the data type indicated in Table 115.
a
is the symmetric matrix \(\boldsymbol{A}\), where:
If uplo = ' U ', the array contains the upper triangle of the symmetric matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.
If uplo \(=\) ' L ', the array contains the lower triangle of the symmetric matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 115, where size \((a, 1)=\operatorname{size}(a, 2)\).
b
is the general matrix \(\boldsymbol{B}\) or the vector \(\boldsymbol{b}\).
Type: required
Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 115 on page 730.
beta
is the scalar \(\beta\).
Type: required
Specified as: a number of the data type indicated in Table 115 on page 730.
c
is the general matrix \(\boldsymbol{C}\) or the vector \(\boldsymbol{c}\). When \(\beta\) is zero, \(\boldsymbol{c}\) need not be set on input.
Type: required
Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 115 on page 730.
uplo
indicates whether the upper or lower triangular part of the symmetric matrix \(\boldsymbol{A}\) is referenced, where:

If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
side
indicates whether \(\boldsymbol{A}\) is located to the left or right of \(\boldsymbol{B}\) in the equation used for this computation, where:

If side \(=\) ' L ', \(\boldsymbol{A}\) is to the left of \(\boldsymbol{B}\), resulting in equation 1 .
If side \(=\) ' R ', \(\boldsymbol{A}\) is to the right of \(\boldsymbol{B}\), resulting in equation 2.
Type: required (equations 1 and 2); not present (equation 3)
Specified as: a single character; side = 'L' or 'R'.

\section*{On Return}
c
is the updated matrix \(\boldsymbol{C}\) or vector \(\boldsymbol{c}\), containing the results of the computation.
Type: required
Returned as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 115 on page 730.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- For equations 1 and 2:
- If side = 'L':
- \(\operatorname{size}(b, 1)=\operatorname{size}(c, 1)=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
- \(\operatorname{size}(b, 2)=\operatorname{size}(c, 2)\)
- If side = 'R':
\[
\begin{aligned}
-\operatorname{size}(b, 1) & =\operatorname{size}(c, 1) \\
-\operatorname{size}(b, 2) & =\operatorname{size}(c, 2)=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)
\end{aligned}
\]
- For equation 3: \(\operatorname{size}(a, 1)=\operatorname{size}(a, 2)=\operatorname{size}(b)=\operatorname{size}(c)\)
2. For migration purposes, note that the side and uplo arguments appear in reverse order from the corresponding BLAS and PBLAS subroutines.
3. This subroutine accepts lowercase letters for the side and uplo arguments.
4. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
5. The restrictions given in "Notes and Coding Rules" on page 274 and "Notes and Coding Rules" on page 186 also apply to this subroutine.
6. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
7. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 276 and "Error Conditions" on page 187 also apply to this subroutine.

Input-Argument Errors for Equations 1 and 2

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a, b\), or \(c\).
2. The process rank is not the same for \(a, b\), and \(c\).
3. The process rank is not 1 or 2 for \(a, b\), or \(c\).

Stage 2: The process grid is not the same for \(a, b\), and \(c\).
Stage 3: The data distribution is inconsistent for \(a, b\), and \(c\).

\section*{Stage 4}
1. side is present, and side \(\neq\) ' L ' or ' R '.
2. side \(=\) 'L' or 'R', and the shape of the assumed-shape arrays \(a, b\), and \(c\) is incompatible:
a. side = 'L' and:
\[
\begin{aligned}
\operatorname{size}(b, 1) & \neq \operatorname{size}(c, 1) \text { or } \\
\operatorname{size}(c, 1) & \neq \operatorname{size}(a, 1) \text { or } \\
\operatorname{size}(a, 1) & \neq \operatorname{size}(a, 2) \text { or } \\
\operatorname{size}(b, 2) & \neq \operatorname{size}(c, 2)
\end{aligned}
\]
b. side \(=\) ' R ' and:
\(\operatorname{size}(b, 1) \neq \operatorname{size}(c, 1)\) or
\(\operatorname{size}(b, 2) \neq \operatorname{size}(c, 2)\) or
\(\operatorname{size}(c, 2) \neq \operatorname{size}(a, 1)\) or
\(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)
3. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)

Stage 5: The data distribution for \(a, b\), or \(c\) is unsupported.
Input-Argument Errors for Equation 3
Stage 1
1. The rank of the ultimate align target is greater than 2 for \(a, b\), or \(c\).
2. The process rank is not the same for \(a, b\), and \(c\).
3. The process rank is not 1 or 2 for \(a, b\), or \(c\).

Stage 2: The process grid is not the same for \(a, b\), and \(c\).

\section*{Stage 3}
1. The vector for \(b\) or \(c\) is replicated.
2. The data distribution for \(a\) is unsupported.

\section*{Stage 4}
1. Vector distribution error for \(b\) or \(c\).
2. The shape of the assumed-shape arrays \(a, b\), and \(c\) is incompatible:
\[
\begin{aligned}
\operatorname{size}(a, 1) & \neq \operatorname{size}(a, 2) \text { or } \\
\operatorname{size}(a, 1) & \neq \operatorname{size}(b) \text { or } \\
\operatorname{size}(a, 1) & \neq \operatorname{size}(c)
\end{aligned}
\]
3. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)

Stage 5: The data distribution for \(a, b\), or \(c\) is unsupported.
Example 1: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{B} \boldsymbol{A}+\beta \boldsymbol{C}\). Because \(\beta=0, \boldsymbol{C}\) need not be set on input. As in "Example" on page 279, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B, C
CALL SYMM ( 1.0D0, A, B, 0.0D0, C, 'U', 'R' )
Input: Symmetric matrix \(\boldsymbol{A}\) of order 8:
\[
\left[\begin{array}{cccccccc}
0.0 & -1.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 \\
. & . & -1.0 & -1.0 & 0.0 & 0.0 & 1.0 & 0.0 \\
. & . & . & -1.0 & 1.0 & 1.0 & 0.0 & 1.0 \\
. & . & . & . & -1.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . & . & 1.0 & 0.0 & 0.0 \\
. & . & . & . & . & . & 0.0 & 0.0 \\
. & . & . & . & . & . & . & 0.0
\end{array}\right]
\]

General \(16 \times 8\) matrix \(B\) :
\[
\left[\begin{array}{rrrrrrrr}
-1.0 & 0.0 & 1.0 & -1.0 & 1.0 & 1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & 1.0 & 0.0 & 1.0 & -1.0 & -1.0 & 1.0 \\
1.0 & 1.0 & -1.0 & 0.0 & -1.0 & 0.0 & 1.0 & 0.0 \\
0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 \\
0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 0.0 & -1.0 & -1.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0 & -1.0 \\
0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 1.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 0.0 & -1.0 & 1.0 & 1.0 & 0.0 & 1.0 \\
-1.0 & -1.0 & 1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 0.0 & -1.0 & 0.0 & 0.0 \\
1.0 & 1.0 & -1.0 & 0.0 & -1.0 & -1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & -1.0 \\
0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
-1.0 & 0.0 & -1.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0
\end{array}\right]
\]

Output: General \(16 \times 8\) matrix \(\boldsymbol{C}\) :
\[
\left[\begin{array}{rrrrrrrr}
-1.0 & 0.0 & 0.0 & 1.0 & -2.0 & 0.0 & 1.0 & -1.0 \\
0.0 & 0.0 & -1.0 & -1.0 & -1.0 & -2.0 & 1.0 & -1.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 1.0 & 1.0 & -1.0 & 1.0 \\
1.0 & -2.0 & 0.0 & -2.0 & 0.0 & -1.0 & 0.0 & -1.0 \\
-1.0 & 3.0 & 0.0 & 1.0 & 1.0 & 3.0 & 0.0 & 2.0 \\
-1.0 & -1.0 & -1.0 & -3.0 & 1.0 & -1.0 & 1.0 & 0.0 \\
-1.0 & 0.0 & -1.0 & 2.0 & -1.0 & 2.0 & 0.0 & 1.0 \\
1.0 & 2.0 & 1.0 & 3.0 & 0.0 & 1.0 & -1.0 & 0.0 \\
0.0 & 1.0 & 1.0 & 4.0 & -2.0 & 0.0 & 0.0 & -1.0 \\
0.0 & 0.0 & 0.0 & -2.0 & 0.0 & -2.0 & 1.0 & -1.0 \\
0.0 & 1.0 & -1.0 & 0.0 & 0.0 & 1.0 & 0.0 & 1.0 \\
-1.0 & 0.0 & -2.0 & -3.0 & 1.0 & 0.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 1.0 & 0.0 & -1.0 & 1.0 \\
0.0 & -1.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 \\
-1.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 \\
1.0 & 2.0 & 3.0 & 2.0 & 0.0 & 1.0 & -1.0 & 0.0
\end{array}\right]
\]

Example 2: This example computes \(\boldsymbol{c}=\alpha \boldsymbol{A} \boldsymbol{b}+\boldsymbol{\beta} \boldsymbol{c}\). As in "Example" on page 189, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
! HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ ALIGN B(:) WITH A(:,1)
!HPF\$ ALIGN C(:) WITH A(:,1)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A
CALL SYMM( 1.0D0, A, B, 0.0D0, C, 'U' )
Input: Symmetric matrix \(\boldsymbol{A}\) of order 8:
\[
\left[\begin{array}{cccccccc}
0.0 & -1.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 \\
. & . & -1.0 & -1.0 & 0.0 & 0.0 & 1.0 & 0.0 \\
. & . & . & -1.0 & 1.0 & 1.0 & 0.0 & 1.0 \\
. & . & . & . & -1.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . & . & 1.0 & 0.0 & 0.0 \\
. & . & . & . & . & . & 0.0 & 0.0 \\
. & . & . & . & . & . & . & 0.0
\end{array}\right]
\]

Vector \(\boldsymbol{b}\) of size 8 :
\[
\left[\begin{array}{l}
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0
\end{array}\right]
\]

Output: Vector cof size 8:
\(\left[\begin{array}{r}-2.0 \\ 3.0 \\ -2.0 \\ 2.0 \\ 0.0 \\ 3.0 \\ 1.0 \\ 2.0\end{array}\right]\)

\section*{TRMM—Triangular Matrix-Matrix Product}

This subroutine computes one of the following matrix-matrix products:
1. \(B \leftarrow \alpha A B\)
2. \(\boldsymbol{B} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}\)
3. \(\boldsymbol{B} \leftarrow \alpha \boldsymbol{B} \boldsymbol{A}\)
4. \(B \leftarrow \alpha \boldsymbol{B A}^{\top}\)
5. \(\boldsymbol{b} \leftarrow \boldsymbol{A b}\)
6. \(\boldsymbol{b} \leftarrow \boldsymbol{A}^{\top} \boldsymbol{b}\)
where, in the formulas above:
\(\boldsymbol{A}\) is a triangular matrix.
\(\boldsymbol{B}\) is a general matrix.
\(\boldsymbol{b}\) is a vector.
\(\alpha\) is a scalar.
Note: No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

If any of the assumed-shape arrays have a size of zero, no computation is performed, and the subroutine returns after doing some parameter checking.

See references [17 ], [30 ], [31 ], and [44 ].
\begin{tabular}{|c|c|}
\hline Table 116. Data Types \\
\hline\(\alpha, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{b}\) & Subprogram \\
\hline Long-precision real & TRMM \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|l|}
\hline HPF & Equations 1-4 & \begin{tabular}{l} 
CALL TRMM (alpha, a, \(b\), uplo, side) \\
CALL TRMM (alpha, a, b, uplo, side, transa, diag)
\end{tabular} \\
\hline HPF & Equations 5 and 6 & \begin{tabular}{l} 
CALL TRMM (a, b, uplo) \\
CALL TRMM (a, b, uplo, transa, diag)
\end{tabular} \\
\hline
\end{tabular}

On Entry
alpha
is the scalar \(\alpha\).
Type: required (equations 1-4); not present (equations 5 and 6)
Specified as: a number of the data type indicated in Table 116.
a
is the triangular matrix \(\boldsymbol{A}\), where:
If uplo \(=\) ' U ', the array contains the upper triangle of the triangular matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.
If uplo = 'L', the array contains the lower triangle of the triangular matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.

Type: required

Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 116, where size \((a, 1)=\operatorname{size}(a, 2)\).
b
is the general matrix \(\boldsymbol{B}\) or the vector \(\boldsymbol{b}\).
Type: required
Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 116 on page 736.
indicates whether the upper or lower triangular part of the triangular matrix \(\boldsymbol{A}\) is referenced, where:

If uplo = ' U ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
side
indicates whether \(\boldsymbol{A}\) is located to the left or right of \(\boldsymbol{B}\) in the equation used for this computation, where:

If side \(=\) ' L ', \(\boldsymbol{A}\) is to the left of \(\boldsymbol{B}\), resulting in equation 1 or 2 .
If side \(=\) ' R ', \(\boldsymbol{A}\) is to the right of \(\boldsymbol{B}\), resulting in equation 3 or 4 .
Type: required (equations 1-4); not present (equations 5 and 6)
Specified as: a single character; side = 'L' or 'R'.
transa
indicates the form of matrix \(\boldsymbol{A}\) to use in the computation, where:
If transa \(=\) ' N ', \(\boldsymbol{A}\) is used in the computation, resulting in equation 1,3 , or 5 .
If transa \(=\) ' \(\mathrm{T}^{\prime}\), \(\boldsymbol{A}^{\top}\) is used in the computation, resulting in equation 2,4 , or 6.
Type: optional
Default: transa = ' N '
Specified as: a single character; transa \(={ }^{\prime} \mathrm{N}^{\prime}\) or \({ }^{\prime} \mathrm{T}^{\prime}\).
diag
indicates the characteristics of the diagonal of matrix \(\boldsymbol{A}\), where:
If diag \(=' U\) ', \(\boldsymbol{A}\) is a unit triangular matrix.
If \(\operatorname{diag}={ }^{\prime} \mathrm{N}^{\prime}, \boldsymbol{A}\) is not a unit triangular matrix.
Type: optional
Default: diag = ' N '
Specified as: a single character; diag = 'U' or 'N'.

\section*{On Return}
b
is the updated matrix \(\boldsymbol{B}\) or vector \(\boldsymbol{b}\), containing the results of the computation.
Type: required
Returned as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 116 on page 736.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- For equations 1 through 4:
- If side \(=\) ' L ', \(\operatorname{size}(b, 1)=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
- If side \(=\) 'R', \(\operatorname{size}(b, 2)=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
- For equations 5 and 6 : \(\operatorname{size}(b)=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
2. For migration purposes, note that the side and uplo arguments appear in reverse order from the corresponding BLAS and PBLAS subroutines.
3. This subroutine accepts lowercase letters for the side, uplo, transa, and diag arguments.
4. If you specify ' C ' for transa, it is interpreted as though you specified ' T '.
5. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
6. This subroutine assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit triangular matrices, the elements of the diagonal are assumed to be one. When using an upper or lower triangular matrix, the unreferenced elements in the strictly lower or upper triangular part, respectively, are assumed to be zero.
7. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
8. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
9. The restrictions given in "Notes and Coding Rules" on page 288 and "Notes and Coding Rules" on page 232 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 289 and "Error Conditions" on page 232 also apply to this subroutine.

Input-Argument Errors for Equations 1-4
Stage 1
1. The rank of the ultimate align target is greater than 2 for \(a\) or \(b\).
2. The process rank is not the same for \(a\) and \(b\).
3. The process rank is not 1 or 2 for \(a\) or \(b\).

Stage 2: The process grid is not the same for \(a\) and \(b\).
Stage 3: The data distribution is inconsistent for \(a\) and \(b\).

\section*{Stage 4}
1. side is present, and side \(\neq\) ' L ' or ' R '.
2. side \(=\) ' L ' or ' R ', and the shape of the assumed-shape arrays \(a\) and \(b\) is incompatible:
a. side = 'L' and:
\[
\begin{aligned}
& \operatorname{size}(b, 1) \neq \operatorname{size}(a, 2) \text { or } \\
& \operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)
\end{aligned}
\]
b. side \(=\) ' \(R\) ' and: \(\operatorname{size}(b, 2) \neq \operatorname{size}(a, 1)\) or \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)
3. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)

Stage 5: The data distribution for \(a\) or \(b\) is unsupported.
Input-Argument Errors for Equations 5 and 6

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a\) or \(b\).
2. The process rank is not the same for \(a\) and \(b\).
3. The process rank is not 1 or 2 for \(a\) or \(b\).

Stage 2: The process grid is not the same for \(a\) and \(b\).
Stage 3: The data distribution is inconsistent for \(a\) and \(b\).
Stage 4: The shape of the assumed-shape array for \(a\) is invalid:
\(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)
Stage 5: The data distribution for \(a\) or \(b\) is unsupported.
Stage 6: The shape of the assumed-shape arrays \(a\) and \(b\) is incompatible:
\(\operatorname{size}(a, 1) \neq \operatorname{size}(b)\)
Example 1: This example computes \(\boldsymbol{B}=\alpha \boldsymbol{A} \boldsymbol{B}\). As in "Example" on page 291, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B

```

CALL TRMM( 1.0D0 , A , B , 'U' , 'L' ) -or-
CALL TRMM ( 1.0D0, A , B , 'U' , 'L' , TRANSA='N' , DIAG='N' )
Input: Triangular matrix \(\boldsymbol{A}\) of order 5 is upper triangular:
\[
\left[\begin{array}{cccrr}
3.0 & -1.0 & 2.0 & 2.0 & 1.0 \\
\cdot & -2.0 & 4.0 & -1.0 & 3.0 \\
\cdot & \cdot & -3.0 & 0.0 & 2.0 \\
\cdot & \cdot & \cdot & 4.0 & -2.0 \\
\cdot & \cdot & \cdot & \cdot & 1.0
\end{array}\right]
\]

Rectangular \(5 \times 3\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrr}2.0 & 3.0 & 1.0 \\ 5.0 & 5.0 & 4.0 \\ 0.0 & 1.0 & 2.0 \\ 3.0 & 1.0 & -3.0 \\ -1.0 & 2.0 & 1.0\end{array}\right]\)

Output: Rectangular \(5 \times 3\) matrix \(B\) :
\[
\left[\begin{array}{rrr}
6.0 & 10.0 & -2.0 \\
-16.0 & -1.0 & 6.0 \\
-2.0 & 1.0 & -4.0 \\
14.0 & 0.0 & -14.0 \\
-1.0 & 2.0 & 1.0
\end{array}\right]
\]

Example 2: This example computes \(\boldsymbol{b}=\boldsymbol{A} \boldsymbol{b}\), where \(\boldsymbol{A}\) is not a unit triangular matrix, and \(\boldsymbol{b}\) is a column vector.

Array sections are specified for arguments \(a\) and \(b\), resulting in the computation using a submatrix \(\boldsymbol{A}\) starting at row 2 and column 2 in an array and a column vector \(\boldsymbol{b}\) starting at element 2 in an array.

As in "Example" on page 234, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
```

!HPF\$ PROCESSORS PROC (2,2)
!HPF\$ ALIGN B(:) WITH A(:,1)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A
CALL TRMM(A(2:13,2:13) , B(2:13) , 'U')
-or-
CALL TRMM(A(2:13,2:13) , B(2:13) , 'U' , TRANSA='N' , DIAG='N')

```

Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{A}\). Following is the triangular submatrix \(\boldsymbol{A}\) of order 12, starting at row 2 and column 2 in the array of order 13:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline . & 1.0 & 2.0 & 1.0 & 2.0 & 1.0 & 1.0 & 3.0 & 1.0 & 1.0 & 2.0 & 3.0 & 2.0 \\
\hline . & . & 3.0 & 2.0 & 3.0 & 1.0 & 2.0 & 3.0 & 1.0 & 1.0 & 2.0 & 3.0 & 3.0 \\
\hline - & - & . & 3.0 & 1.0 & 3.0 & 2.0 & 1.0 & 2.0 & 1.0 & 2.0 & 3.0 & 1.0 \\
\hline - & - & - & - & 1.0 & 2.0 & 2.0 & 1.0 & 1.0 & 1.0 & 2.0 & 3.0 & 2.0 \\
\hline & - & - & - & . & 2.0 & 1.0 & 2.0 & 2.0 & 1.0 & 2.0 & 3.0 & 3.0 \\
\hline . & - & - & - & - & . & 1.0 & 2.0 & 1.0 & 1.0 & 2.0 & 3.0 & 1.0 \\
\hline & - & - & - & - & - & . & 2.0 & 1.0 & 1.0 & 2.0 & 3.0 & 2.0 \\
\hline & - & - & - & - & - & - & - & 2.0 & 1.0 & 2.0 & 3.0 & 3.0 \\
\hline & . & . & - & - & - & - & - & . & 3.0 & 1.0 & 3.0 & 1.0 \\
\hline & . & . & . & . & - & - & - & - & . & 2.0 & 2.0 & 2.0 \\
\hline & . & . & . & . & - & - & - & - & . & . & 1.0 & 3.0 \\
\hline & . & - & . & . & - & . & - & - & - & - & . & 1.0 \\
\hline
\end{tabular}

Only a portion of the data structure is used-that is, vector \(\boldsymbol{b}\), which is a column vector. Following is the vector \(\boldsymbol{b}\) of size 12, starting at element 2 in the array of size 13:
\(\left[\begin{array}{l}. \\ 2.0 \\ 3.0 \\ 1.0 \\ 2.0 \\ 3.0 \\ 1.0 \\ 2.0 \\ 3.0 \\ 1.0 \\ 2.0 \\ 3.0 \\ 1.0\end{array}\right]\)

Output: Only a portion of the data structure is used-that is, vector \(\boldsymbol{b}\), which is a column vector. Following is the vector \(\boldsymbol{b}\) of size 12, starting at element 2 in the array of size 13 :
\(\left[\begin{array}{r}. \\ 42.0 \\ 48.0 \\ 39.0 \\ 31.0 \\ 34.0 \\ 23.0 \\ 23.0 \\ 23.0 \\ 15.0 \\ 12.0 \\ 6.0 \\ 1.0\end{array}\right]\)

\section*{TRSM—Solution of Triangular System of Equations with Multiple Right-Hand Sides}

This subroutine performs one of the following solves for a triangular system of equations with multiple right-hand sides:
\begin{tabular}{cc} 
Solution & Equation \\
\hline 1. \(\boldsymbol{B} \leftarrow \alpha\left(\boldsymbol{A}^{-1}\right) \boldsymbol{B}\) & \(\boldsymbol{A} \boldsymbol{X}=\alpha \boldsymbol{B}\) \\
2. \(\boldsymbol{B} \leftarrow \alpha\left(\boldsymbol{A}^{-\top}\right) \boldsymbol{B}\) & \(\boldsymbol{A}^{\top} \boldsymbol{X}=\alpha \boldsymbol{B}\) \\
3. \(\boldsymbol{B} \leftarrow \alpha \boldsymbol{B}\left(\boldsymbol{A}^{-1}\right)\) & \(\boldsymbol{X} \boldsymbol{A}=\alpha \boldsymbol{B}\) \\
4. \(\boldsymbol{B} \leftarrow \alpha \boldsymbol{B}\left(\boldsymbol{A}^{-\top}\right)\) & \(\boldsymbol{X} \boldsymbol{A}^{\top}=\alpha \boldsymbol{B}\) \\
5. \(\boldsymbol{b} \leftarrow\left(\boldsymbol{A}^{-1}\right) \boldsymbol{b}\) & \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{b}\) \\
6. \(\boldsymbol{b} \leftarrow\left(\boldsymbol{A}^{-\top}\right) \boldsymbol{b}\) & \(\boldsymbol{A}^{\top} \boldsymbol{X}=\boldsymbol{b}\)
\end{tabular}
where, in the formulas above:
\(\boldsymbol{A}\) is a triangular matrix.
\(\boldsymbol{B}\) is a general matrix.
\(\boldsymbol{b}\) is a vector.
\(\alpha\) is a scalar.

\section*{Notes:}
1. The term \(\boldsymbol{X}\) or \(\boldsymbol{x}\) used in the systems of equations listed above represents the output solution matrix or vector, respectively. It is important to note that, in this subroutine, the solution matrix or vector is actually returned in the input-output argument \(b\).
2. No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

If any of the assumed-shape arrays have a size of zero, no computation is performed, and the subroutine returns after doing some parameter checking.

See references [17 ], [30 ], [31 ], and [44 ].
\begin{tabular}{|c|c|}
\hline Table 117. Data Types \\
\hline\(\alpha, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{b}\) & Subprogram \\
\hline Long-precision real & TRSM \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|l|}
\hline HPF & Solutions 1-4 & \begin{tabular}{l} 
CALL TRSM (alpha, a, b, uplo, side) \\
CALL TRSM (alpha, a, b, uplo, side, transa, diag)
\end{tabular} \\
\hline HPF & Solutions 5 and 6 & \begin{tabular}{l} 
CALL TRSM (a, b, uplo) \\
CALL TRSM (a, b, uplo, transa, diag)
\end{tabular} \\
\hline
\end{tabular}

On Entry
alpha
is the scalar \(\alpha\).
Type: required (solutions 1-4); not present (solutions 5 and 6)
Specified as: a number of the data type indicated in Table 117.
a
is the triangular matrix \(\boldsymbol{A}\) used in the system of equations, where:
If uplo = ' \(U\) ', the array contains the upper triangle of the triangular matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.
If uplo \(=\) ' L ', the array contains the lower triangle of the triangular matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.

\section*{Type: required}

Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 117 on page 742 , where size \((a, 1)=\operatorname{size}(a, 2)\).
is the general matrix \(\boldsymbol{B}\) or the vector \(\boldsymbol{b}\), containing the right-hand side(s) of the triangular system to be solved.
Type: required
Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 117 on page 742.
uplo
indicates whether the upper or lower triangular part of the triangular matrix \(\boldsymbol{A}\) is referenced, where:

If uplo \(=\) ' \(U\) ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
side
indicates whether \(\boldsymbol{A}\) is located to the left or right of \(\boldsymbol{B}\) in the system of equations, where:

If side \(=\) ' L ', \(\boldsymbol{A}\) is to the left of \(\boldsymbol{B}\), resulting in solution 1 or 2 .
If side \(=\) ' \(\mathrm{R}^{\prime}, \boldsymbol{A}\) is to the right of \(\boldsymbol{B}\), resulting in solution 3 or 4 .
Type: required (solutions 1-4); not present (solutions 5 and 6)
Specified as: a single character; side = 'L' or 'R'.
transa
indicates the form of matrix \(\boldsymbol{A}\) used in the system of equations, where:
If transa \(=\) ' N ', \(\boldsymbol{A}\) is used in the system of equations, resulting in solution 1,3 , or 5 .
If transa \(={ }^{\prime} T^{\prime}, \boldsymbol{A}^{\top}\) is used in the system of equations, resulting in solution 2 , 4 , or 6.

\section*{Type: optional}

Default: transa \(=\) ' N '
Specified as: a single character; transa \(=\) ' \(N\) ' or ' \(T^{\prime}\).
diag
indicates the characteristics of the diagonal of matrix \(\boldsymbol{A}\), where:
If diag = ' \(\mathrm{U}^{\prime}, \boldsymbol{A}\) is a unit triangular matrix.
If \(\operatorname{diag}={ }^{\prime} \mathrm{N}\) ', \(\boldsymbol{A}\) is not a unit triangular matrix.

\section*{Type: optional}

Default: diag = 'N'
Specified as: a single character; diag = 'U' or ' N '.

\section*{On Return}
b
is the updated matrix \(\boldsymbol{B}\) or vector \(\boldsymbol{b}\), containing the solution vector(s).
Type: required
Returned as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 117 on page 742.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- For solutions 1 through 4:
- If side = 'L', \(\operatorname{size}(b, 1)=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
- If side \(=\) 'R', size \((b, 2)=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
- For solutions 5 and 6 : \(\operatorname{size}(b)=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
2. For migration purposes, note that the side and uplo arguments appear in reverse order from the corresponding BLAS and PBLAS subroutines.
3. This subroutine accepts lowercase letters for the side, uplo, transa, and diag arguments.
4. If you specify ' C ' for transa, it is interpreted as though you specified ' T '.
5. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
6. This subroutine assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit triangular matrices, the elements of the diagonal are assumed to be one. When using an upper or lower triangular matrix, the unreferenced elements in the strictly lower or upper triangular part, respectively, are assumed to be zero.
7. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
8. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
9. The restrictions given in "Notes and Coding Rules" on page 298 and "Notes and Coding Rules" on page 243 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 300 and "Error Conditions" on page 244 also apply to this subroutine.

Input-Argument Errors for Solutions 1-4

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a\) or \(b\).
2. The process rank is not the same for \(a\) and \(b\).
3. The process rank is not 1 or 2 for \(a\) or \(b\).

Stage 2: The process grid is not the same for \(a\) and \(b\).
Stage 3: The data distribution is inconsistent for \(a\) and \(b\).

\section*{Stage 4}
1. side is present, and side \(\neq\) ' L ' or ' R '.
2. side \(=\) ' L ' or ' R ', and the shape of the assumed-shape arrays \(a\) and \(b\) is incompatible:
a. side = 'L' and:
\(\operatorname{size}(b, 1) \neq \operatorname{size}(a, 2)\) or
\(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)
b. side \(=\) ' \(R\) ' and:
\(\operatorname{size}(b, 2) \neq \operatorname{size}(a, 1)\) or
\(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)
3. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)

Stage 5: The data distribution for \(a\) or \(b\) is unsupported.
Input-Argument Errors for Solutions 5 and 6

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a\) or \(b\).
2. The process rank is not the same for \(a\) and \(b\).
3. The process rank is not 1 or 2 for \(a\) or \(b\).

Stage 2: The process grid is not the same for \(a\) and \(b\).
Stage 3: The data distribution is inconsistent for \(a\) and \(b\).
Stage 4: The shape of the assumed-shape array for \(a\) is invalid:
\(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)
Stage 5: The data distribution for \(a\) or \(b\) is unsupported.
Stage 6: The shape of the assumed-shape arrays \(a\) and \(b\) is incompatible:
\(\operatorname{size}(a, 1) \neq \operatorname{size}(b)\)
Example 1: This example shows the solution \(\boldsymbol{B} \leftarrow \alpha\left(\boldsymbol{A}^{-1}\right) \boldsymbol{B}\). As in "Example" on page 301, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
!HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B
CALL TRSM ( 1.0D0, A , B , 'U' , 'L' )
-or-
CALL TRSM ( \(1.0 \mathrm{DO} 0, \mathrm{~A}, \mathrm{~B}, \mathrm{U}\) ' , 'L', TRANSA='N', DIAG='N' )
Input: Triangular matrix \(\boldsymbol{A}\) of order 5 is upper triangular:
\(\left[\begin{array}{cccrr}3.0 & -1.0 & 2.0 & 2.0 & 1.0 \\ \cdot & -2.0 & 4.0 & -1.0 & 3.0 \\ \cdot & \cdot & -3.0 & 0.0 & 2.0 \\ \cdot & \cdot & \cdot & 4.0 & -2.0 \\ \cdot & \cdot & \cdot & \cdot & 1.0\end{array}\right]\)

General \(5 \times 3\) matrix \(B\) :
\[
\left[\begin{array}{rrr}
6.0 & 10.0 & -2.0 \\
-16.0 & -1.0 & 6.0 \\
-2.0 & 1.0 & -4.0 \\
14.0 & 0.0 & -14.0 \\
-1.0 & 2.0 & 1.0
\end{array}\right]
\]

Output: General \(5 \times 3\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrr}2.0 & 3.0 & 1.0 \\ 5.0 & 5.0 & 4.0 \\ 0.0 & 1.0 & 2.0 \\ 3.0 & 1.0 & -3.0 \\ -1.0 & 2.0 & 1.0\end{array}\right]\)

Example 2: This example solves \(\boldsymbol{b} \leftarrow \boldsymbol{A}^{-1} \boldsymbol{b}\), where \(\boldsymbol{A}\) is a unit triangular matrix, and \(\boldsymbol{b}\) is a row vector.

Array sections are specified for arguments \(a\) and \(b\), resulting in the computation using a submatrix \(\boldsymbol{A}\) starting at row 2 and column 2 in an array and a row vector \(\boldsymbol{b}\) starting at element 2 in an array.

As in "Example" on page 245, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
```

!HPF\$ PROCESSORS PROC(2,2)

```
!HPF\$ ALIGN B(:) WITH A(1,:)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A

CALL TRSM ( \(A(2: 13,2: 13)\), \(B(2: 13), ~ ' L ', D I A G=' U ')\)
-or-
CALL TRSM ( \(\mathrm{A}(2: 13,2: 13)\), \(\mathrm{B}(2: 13)\), 'L' , TRANSA='N' , DIAG='U' )
Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{A}\). Following is the triangular submatrix \(\boldsymbol{A}\) of order 12, starting at row 2 and column 2 in the array of order 13:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & . & & & - & . & - & . & \\
\hline - & 1.0 & & & - & - & . & - & - & - & - & . & \\
\hline & 2.0 & 1.0 & & - & - & . & . & - & - & - & . & \\
\hline . & 3.0 & 2.0 & 1.0 & & . & . & . & . & . & - & . & \\
\hline & 1.0 & 3.0 & 2.0 & 1.0 & . & . & - & - & . & . & . & \\
\hline . & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & & - & . & . & . & & \\
\hline & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & . & . & & . & . & \\
\hline & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & & & . & . & \\
\hline & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & . & . & . & \\
\hline & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & & & \\
\hline & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & & \\
\hline & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & \\
\hline & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 & 3.0 & 2.0 & 1.0 \\
\hline
\end{tabular}

Note: Because matrix \(\boldsymbol{A}\) is unit triangular, the diagonal elements are not referenced. This subroutine assumes a value of 1.0 for the diagonal elements.

Only a portion of the data structure is used-that is, vector \(\boldsymbol{b}\), which is a row vector. Following is the vector \(\boldsymbol{b}\) of size 12 , starting at element 2 in the array of size 13:
\[
\left[\begin{array}{lllllllllllll}
. & 2.0 & 7.0 & 13.0 & 15.0 & 17.0 & 26.0 & 28.0 & 27.0 & 39.0 & 41.0 & 37.0 & 52.0
\end{array}\right]
\]

Output: Only a portion of the data structure is used-that is, vector \(\boldsymbol{b}\), which is a row vector. Following is the vector \(\boldsymbol{b}\) of size 12, starting at element 2 in the array of size 13:
\(\left[\begin{array}{lllllllllllll}. & 2.0 & 3.0 & 1.0 & 2.0 & 3.0 & 1.0 & 2.0 & 3.0 & 1.0 & 2.0 & 3.0 & 1.0\end{array}\right]\)

\section*{SYRK-Rank-K Update of a Real Symmetric Matrix}

This subroutine computes one of the following rank-k updates:
1. \(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A A}^{\top}+\beta \boldsymbol{C}\)
2. \(C \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{A}+\beta \boldsymbol{C}\)
3. \(C \leftarrow \alpha a a^{\top}+C\)
where, in the formulas above:
\(\boldsymbol{A}\) is a general matrix.
\(\boldsymbol{C}\) is a symmetric matrix.
\(\boldsymbol{a}\) is a vector.
\(\alpha\) and \(\beta\) are scalars.
Note: No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

In the following cases, no computation is performed and the subroutine returns after doing some parameter checking:
- For equations 1 and 2 :
- Any of the assumed-shape arrays have a size of zero.
- \(\alpha\) is zero and \(\beta\) is one.
- For equation 3:
- Any of the assumed-shape arrays have a size of zero.
- \(\alpha\) is zero.

See references [17 ], [30 ], [31 ], and [44 ].
\begin{tabular}{|c|c|}
\hline Table 118. Data Types \\
\hline\(\alpha, \beta, \boldsymbol{A}, \boldsymbol{C}, \boldsymbol{a}\) & Subprogram \\
\hline Long-precision real & SYRK \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|l|}
\hline HPF & Equations 1 and 2 & \begin{tabular}{l} 
CALL SYRK (alpha, a, beta, c, uplo) \\
CALL SYRK (alpha, a, beta, c, uplo, trans)
\end{tabular} \\
\hline HPF & Equation 3 & CALL SYRK (alpha, a, c, uplo) \\
\hline
\end{tabular}

On Entry
alpha
is the scalar \(\alpha\).
Type: required
Specified as: a number of the data type indicated in Table 118.
a
is the general matrix \(\boldsymbol{A}\) or the vector \(\boldsymbol{a}\).
Type: required
Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 118.

\section*{beta}
is the scalar \(\beta\).
Type: required (equations 1 and 2); not present (equation 3)
Specified as: a number of the data type indicated in Table 118 on page 748.
c
is the symmetric matrix \(\boldsymbol{C}\), where:
If uplo = ' U ', the array contains the upper triangle of the symmetric matrix \(\boldsymbol{C}\) in its upper triangle, and its strictly lower triangular part is not referenced.
If uplo = 'L', the array contains the lower triangle of the symmetric matrix \(\boldsymbol{C}\) in its lower triangle, and its strictly upper triangular part is not referenced.
For equations 1 and 2 , when \(\beta\) is zero, \(\boldsymbol{C}\) need not be set on input.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 118 on page 748, where size \((c, 1)=\operatorname{size}(c, 2)\). uplo
indicates whether the upper or lower triangular part of the symmetric matrix \(\boldsymbol{C}\) is referenced, where:

If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'. trans
indicates which computation is performed, where:
If trans \(=\) ' N ', the computation in equation 1 is performed.
If trans = ' T ', the computation in equation 2 is performed.
Type: optional (equations 1 and 2); not present (equation 3)
Default: trans = 'N'
Specified as: a single character; trans \(=\) ' N ' or ' T '.

\section*{On Return}
c
is the updated symmetric matrix \(\boldsymbol{C}\), containing the results of the computation.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 118 on page 748.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- For equations 1 and 2:
- If trans \(=\) ' N ', \(\operatorname{size}(c, 1)=\operatorname{size}(c, 2)=\operatorname{size}(a, 1)\)
- If trans = 'T', \(\operatorname{size}(c, 1)=\operatorname{size}(c, 2)=\operatorname{size}(a, 2)\)
- For equation 3: \(\operatorname{size}(c, 1)=\operatorname{size}(c, 2)=\operatorname{size}(a)\)
2. This subroutine accepts lowercase letters for the uplo and trans arguments.
3. If you specify ' C ' for the trans argument, it is interpreted as though you specified ' T '.
4. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
5. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
6. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
7. The restrictions given in "Notes and Coding Rules" on page 309 and "Notes and Coding Rules" on page 209 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 310 and "Error Conditions" on page 209 also apply to this subroutine.

Input-Argument Errors for Equations 1 and 2

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a\) or \(c\).
2. The process rank is not the same for \(a\) and \(c\).
3. The process rank is not 1 or 2 for \(a\) or \(c\).

Stage 2: The process grid is not the same for \(a\) and \(c\).
Stage 3: The data distribution is inconsistent for \(a\) and \(c\).

\section*{Stage 4}
1. trans is present, and trans \(\not{ }^{\prime} \mathrm{N}^{\prime}\), ' T ', or ' \(\mathrm{C}^{\prime}\)
2. trans \(=\) ' \(\mathrm{N}^{\prime}\), ' T ', or ' \(\mathrm{C}^{\prime}\), and the shape of the assumed-shape arrays \(a\) and \(c\) is incompatible:
a. trans = ' N ':
\(\operatorname{size}(c, 2) \neq \operatorname{size}(a, 1)\) or
\(\operatorname{size}(c, 1) \neq \operatorname{size}(c, 2)\)
b. trans \(=\) ' T ':
\(\operatorname{size}(c, 2) \neq \operatorname{size}(a, 2)\) or
\(\operatorname{size}(c, 1) \neq \operatorname{size}(c, 2)\)
3. The shape of the assumed-shape array for \(c\) is invalid: \(\operatorname{size}(c, 1) \neq \operatorname{size}(c, 2)\)

Stage 5: The data distribution for \(a\) or \(c\) is unsupported.
Input-Argument Errors for Equation 3

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a\) or \(c\).
2. The process rank is not the same for \(a\) and \(c\).
3. The process rank is not 1 or 2 for \(a\) or \(c\).

Stage 2: The process grid is not the same for \(a\) and \(c\).
Stage 3: The data distribution is unsupported for \(c\).
Stage 4: The vector for \(a\) is replicated.
Stage 5: The data distribution for \(a\) is unsupported.
Stage 6: The shape of the assumed-shape array for \(c\) is invalid:
\(\operatorname{size}(c, 1) \neq \operatorname{size}(c, 2)\)
Stage 7: The data distribution for \(c\) or \(a\) is unsupported.
Stage 8: The shape of the assumed-shape arrays \(c\) and \(a\) is incompatible: \(\operatorname{size}(c, 1) \neq \operatorname{size}(a)\)

Example 1: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{A} \boldsymbol{A}^{\top}+\beta \boldsymbol{C}\). As in "Example" on page 312, array data is block-cyclically distributed using a \(2 \times 3\) process grid.
!HPF\$ PROCESSORS PROC \((2,3)\)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, C
CALL SYRK ( 1.0 DO , A , 1.0 D 0 , \(\mathrm{C}, \mathrm{UPLO}=\) 'L' )
-or-
CALL SYRK ( 1.0 DO , A , 1.0D0 , C , UPLO='L' , TRANS='N' )
Input: General \(8 \times 5\) matrix \(\boldsymbol{A}\) :
\(\left[\begin{array}{rrrrr}0.0 & 8.0 & 16.0 & 24.0 & 32.0 \\ 1.0 & 90.0 & 17.0 & 25.0 & 33.0 \\ 2.0 & 10.0 & 18.0 & 26.0 & 34.0 \\ 3.0 & 11.0 & 19.0 & 27.0 & 35.0 \\ 4.0 & 12.0 & 20.0 & 28.0 & 36.0 \\ 5.0 & 13.0 & 21.0 & 29.0 & 37.0 \\ 6.0 & 14.0 & 22.0 & 30.0 & 38.0 \\ 7.0 & 15.0 & 23.0 & 31.0 & 39.0\end{array}\right]\)

Symmetric matrix \(\boldsymbol{C}\) of order 8:
\(\left[\begin{array}{rrrrrrrr}0.0 & . & . & . & . & . & . & . \\ 1.0 & 8.0 & . & . & . & . & . & . \\ 2.0 & 9.0 & 15.0 & . & . & . & . & . \\ 3.0 & 10.0 & 16.0 & 21.0 & . & . & . & . \\ 4.0 & 11.0 & 17.0 & 22.0 & 26.0 & . & . & \cdot \\ 5.0 & 12.0 & 18.0 & 23.0 & 27.0 & 30.0 & . & . \\ 6.0 & 13.0 & 19.0 & 24.0 & 28.0 & 31.0 & 33.0 & . \\ 7.0 & 14.0 & 20.0 & 25.0 & 29.0 & 32.0 & 34.0 & 35.0\end{array}\right]\)

Output: Symmetric matrix \(\boldsymbol{C}\) of order 8:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1920.0 & & - & - & - & . & - & \\
\hline 2001.0 & 2093.0 & - & - & - & - & - & \\
\hline 2082.0 & 2179.0 & 2275.0 & - & - & - & - & \\
\hline 2163.0 & 2265.0 & 2366.0 & 2466.0 & - & - & - & \\
\hline 2244.0 & 2351.0 & 2457.0 & 2562.0 & 2666.0 & - & - & - \\
\hline 2325.0 & 2437.0 & 2548.0 & 2658.0 & 2767.0 & 2875.0 & - & . \\
\hline 2406.0 & 2523.0 & 2639.0 & 2754.0 & 2868.0 & 2981.0 & 3093.0 & - \\
\hline 2487.0 & 2609.0 & 2730.0 & 2850.0 & 2969.0 & 3087.0 & 3204.0 & 3320.0 \\
\hline
\end{tabular}

Example 2: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{a} \boldsymbol{a}^{\top}+\boldsymbol{C}\). As in "Example" on page 211, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ ALIGN A(:) WITH C(:,1)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A

```

CALL SYRK ( 1.0D0 , A , C , UPLO='L' )
Input: Symmetric matrix \(\boldsymbol{C}\) of order 9:
\(\left[\begin{array}{ccccccccc}1.0 & . & . & . & . & . & . & . & . \\ 2.0 & 12.0 & . & . & . & . & . & . & . \\ 3.0 & 13.0 & 23.0 & . & . & . & . & . & . \\ 4.0 & 14.0 & 24.0 & 34.0 & . & . & . & . & . \\ 5.0 & 15.0 & 25.0 & 35.0 & 45.0 & . & . & . & . \\ 6.0 & 16.0 & 26.0 & 36.0 & 46.0 & 56.0 & . & . & . \\ 7.0 & 17.0 & 27.0 & 37.0 & 47.0 & 57.0 & 67.0 & . & . \\ 8.0 & 18.0 & 28.0 & 38.0 & 48.0 & 58.0 & 68.0 & 78.0 & . \\ 9.0 & 19.0 & 29.0 & 39.0 & 49.0 & 59.0 & 69.0 & 79.0 & 89.0\end{array}\right]\)

Vector \(\boldsymbol{a}\) of size 9:
\[
\left[\begin{array}{l}
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0
\end{array}\right]
\]

Output: Matrix C of order 9:


\section*{SYR2K—Rank-2K Update of a Real Symmetric Matrix}

This subroutine computes one of the following rank-2k updates:
1. \(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A B}^{\top}+\alpha \boldsymbol{B A}^{\top}+\beta \boldsymbol{C}\)
2. \(\boldsymbol{C} \leftarrow \alpha \boldsymbol{A}^{\top} \boldsymbol{B}+\alpha \boldsymbol{B}^{\top} \boldsymbol{A}+\beta \boldsymbol{C}\)
3. \(\boldsymbol{C} \leftarrow \alpha \boldsymbol{a} \boldsymbol{b}^{\top}+\alpha \boldsymbol{b} \boldsymbol{a}^{\top}+\boldsymbol{C}\)
where, in the formulas above:
\(\boldsymbol{A}\) and \(\boldsymbol{B}\) are general matrices.
\(\boldsymbol{C}\) is a symmetric matrix.
\(\boldsymbol{a}\) and \(\boldsymbol{b}\) are vectors.
\(\alpha\) and \(\beta\) are scalars.
Note: No data should be moved to form the matrix transposes; that is, the matrices should always be stored in their untransposed forms.

In the following cases, no computation is performed and the subroutine returns after doing some parameter checking:
- For equations 1 and 2 :
- All of the assumed-shape arrays have a size of zero.
- \(\beta\) is one, and ( \(\alpha\) is zero or the assumed-shape arrays for \(a\) and \(b\) have a size of zero).
- For equation 3:
- Any of the assumed-shape arrays have a size of zero.
- \(\alpha\) is zero.

See references [17 ], [30 ], [31 ], and [44 ].
\begin{tabular}{|c|c|}
\hline Table 119. Data Types \\
\hline\(\alpha, \beta, \boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{a}, \boldsymbol{b}\) & Subprogram \\
\hline Long-precision real & SYR2K \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|l|}
\hline HPF & Equations 1 and 2 & \begin{tabular}{l} 
CALL SYR2K (alpha, a, b, beta, c, uplo) \\
CALL SYR2K (alpha, \(a, b\), beta, \(c\), uplo, trans)
\end{tabular} \\
\hline HPF & Equation 3 & CALL SYR2K (alpha, \(a, b, c\), uplo) \\
\hline
\end{tabular}

On Entry
alpha
is the scalar \(\alpha\).
Type: required
Specified as: a number of the data type indicated in Table 119.
\(a\)
is the general matrix \(\boldsymbol{A}\) or the vector \(\boldsymbol{a}\).
Type: required
Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 119.
b
is the general matrix \(\boldsymbol{B}\) or the vector \(\boldsymbol{b}\).
Type: required
Specified as: an assumed-shape array with shape (:,:) or (:), containing numbers of the data type indicated in Table 119 on page 754.
beta
is the scalar \(\beta\).
Type: required (equations 1 and 2); not present (equation 3 )
Specified as: a number of the data type indicated in Table 119 on page 754.
c
is the symmetric matrix \(\boldsymbol{C}\), where:
If uplo = ' U ', the array contains the upper triangle of the symmetric matrix \(\boldsymbol{C}\) in its upper triangle, and its strictly lower triangular part is not referenced.
If uplo = 'L', the array contains the lower triangle of the symmetric matrix \(\boldsymbol{C}\) in its lower triangle, and its strictly upper triangular part is not referenced.

For equations 1 and 2 , when \(\beta\) is zero, \(\boldsymbol{C}\) need not be set on input.

\section*{Type: required}

Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 119 on page 754, where size \((c, 1)=\operatorname{size}(c, 2)\). uplo
indicates whether the upper or lower triangular part of the symmetric matrix \(\boldsymbol{C}\) is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
trans
indicates which computation is performed, where:
If trans \(=\) ' N ', the computation in equation 1 is performed.
If trans \(=\) ' T ', the computation in equation 2 is performed.
Type: optional (equations 1 and 2); not present (equation 3)
Default: trans = ' N '
Specified as: a single character; trans \(=\) ' N ' or ' T '.

\section*{On Return}
c
is the updated symmetric matrix \(\boldsymbol{C}\), containing the results of the computation.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 119 on page 754.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- For equations 1 and 2 :
- If trans = ' N ':
- \(\operatorname{size}(c, 1)=\operatorname{size}(c, 2)=\operatorname{size}(a, 1)=\operatorname{size}(b, 1)\)
- \(\operatorname{size}(a, 2)=\operatorname{size}(b, 2)\)
- If trans = ' T ':
- \(\operatorname{size}(c, 1)=\operatorname{size}(c, 2)=\operatorname{size}(a, 2)=\operatorname{size}(b, 2)\)
- \(\operatorname{size}(a, 1)=\operatorname{size}(b, 1)\)
- For equation 3: \(\operatorname{size}(c, 1)=\operatorname{size}(c, 2)=\operatorname{size}(a)=\operatorname{size}(b)\)
2. This subroutine accepts lowercase letters for the uplo and trans arguments.
3. If you specify ' C ' for the trans argument, it is interpreted as though you specified 'T'.
4. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
5. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
6. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
7. The restrictions given in "Notes and Coding Rules" on page 321 and "Notes and Coding Rules" on page 220 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Notes and Coding Rules" on page 321 and "Notes and Coding Rules" on page 220 also apply to this subroutine.

\section*{Input-Argument Errors for Equations 1 and 2}

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a, b\), or \(c\).
2. The process rank is not the same for \(a, b\), and \(c\).
3. The process rank is not 1 or 2 for \(a, b\), or \(c\).

Stage 2: The process grid is not the same for \(a, b\), and \(c\).
Stage 3: The data distribution is inconsistent for \(a, b\), and \(c\).

\section*{Stage 4}
1. trans is present, and trans \(\neq{ }^{\prime} \mathrm{N}^{\prime}\), ' \(\mathrm{T}^{\prime}\), or ' \(\mathrm{C}^{\prime}\)
2. trans \(=\) ' N ', ' \(\mathrm{T}^{\prime}\), or ' \(\mathrm{C}^{\prime}\), and the shape of the assumed-shape arrays for \(a, b\), and \(c\) is incompatible:
a. trans \(=\) ' N ':
\[
\begin{aligned}
& \operatorname{size}(c, 1) \neq \operatorname{size}(c, 2) \text { or } \\
& \operatorname{size}(c, 2) \neq \operatorname{size}(a, 1) \text { or } \\
& \operatorname{size}(a, 1) \neq \operatorname{size}(b, 1) \text { or } \\
& \operatorname{size}(a, 2) \neq \operatorname{size}(b, 2) \\
& \text { b. trans }=' T^{\prime}:
\end{aligned}
\]
```

size(c,1) \# size(c,2) or
size(c,2) }\not=\operatorname{size}(a,2)\mathrm{ or
size(a,2) }\not=\operatorname{size}(b,2) o
size(a,1) \not= \operatorname{size}(b,1)

```
3. The shape of the assumed-shape array for \(c\) is invalid: \(\operatorname{size}(c, 1) \neq \operatorname{size}(c, 2)\)

Stage 5: The data distribution for \(a, b\), or \(c\) is unsupported.
Input-Argument Errors for Equation 3
Stage 1
1. The rank of the ultimate align target is greater than 2 for \(a, b\), or \(c\).
2. The process rank is not the same for \(a, b\), and \(c\).
3. The process rank is not 1 or 2 for \(a, b\), or \(c\).

Stage 2: The process grid is not the same for \(a, b\), and \(c\).
Stage 3: The data distribution is unsupported for \(c\).
Stage 4: The vector for \(a\) or \(b\) is replicated.
Stage 5: The data distribution is unsupported for \(a\) or \(b\).
Stage 6
1. The shape of the assumed-shape arrays for \(a, b\), and \(c\) is incompatible:
\[
\begin{aligned}
\operatorname{size}(c, 1) & \neq \operatorname{size}(c, 2) \text { or } \\
\operatorname{size}(c, 1) & \neq \operatorname{size}(a) \text { or } \\
\operatorname{size}(c, 1) & \neq \operatorname{size}(b)
\end{aligned}
\]
2. The shape of the assumed-shape array for \(c\) is invalid: \(\operatorname{size}(c, 1) \neq \operatorname{size}(c, 2)\)

Stage 7: The data distribution for \(a, b\), or \(c\) is unsupported.
Example 1: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{A}^{\top} \boldsymbol{B}+\alpha \boldsymbol{B}^{\top} \boldsymbol{A}+\beta \boldsymbol{C}\). As in "Example" on page 327, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
!HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B, C
CALL SYR2K ( 1.0D0 , A , B , 0.0D0 , C , 'U' , 'T' )

Input: General \(8 \times 9\) matrix \(\boldsymbol{A}\) :
\(\left[\begin{array}{rrrrrrrrr}0.0 & -1.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 & 1.0 \\ 0.0 & 0.0 & -1.0 & -1.0 & 0.0 & 0.0 & 1.0 & 0.0 & 1.0 \\ 0.0 & 1.0 & 0.0 & -1.0 & 1.0 & 1.0 & 0.0 & 1.0 & 1.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & -1.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 1.0\end{array}\right]\)

General \(8 \times 9\) matrix \(B\) :
\[
\left[\begin{array}{rrrrrrrrr}
0.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 \\
0.0 & -1.0 & 0.0 & -1.0 & 0.0 & -1.0 & 0.0 & -1.0 & -1.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 0.0 & 0.0 & -1.0 & 0.0 & -1.0 \\
0.0 & -1.0 & 0.0 & 1.0 & -1.0 & -1.0 & 0.0 & -1.0 & -1.0 \\
-1.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 \\
-1.0 & 0.0 & 0.0 & 0.0 & -1.0 & -1.0 & 0.0 & 0.0 & -1.0 \\
0.0 & 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & -1.0 \\
1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & -1.0
\end{array}\right]
\]

Output: Symmetric matrix \(\boldsymbol{C}\) of order 9:
\[
\left[\begin{array}{rrrrrrrrr}
-6.0 & 0.0 & 0.0 & 0.0 & 0.0 & -2.0 & -2.0 & 0.0 & -2.0 \\
. & -6.0 & -2.0 & 0.0 & -2.0 & -4.0 & 0.0 & -4.0 & -2.0 \\
. & . & -6.0 & -2.0 & -2.0 & 0.0 & 2.0 & 0.0 & 6.0 \\
. & . & . & -6.0 & 2.0 & 0.0 & 2.0 & 0.0 & 2.0 \\
. & . & . & . & -8.0 & -4.0 & 0.0 & -2.0 & 0.0 \\
. & . & . & . & . & -6.0 & 0.0 & -4.0 & -6.0 \\
. & . & . & . & . & . & -4.0 & 0.0 & 0.0 \\
. & . & . & . & . & . & . & -4.0 & -4.0 \\
. & . & . & . & . & . & . & . & -16.0
\end{array}\right]
\]

Example 2: This example computes \(\boldsymbol{C}=\alpha \boldsymbol{a b}^{\top}+\alpha \boldsymbol{b} \boldsymbol{a}^{\top}+\boldsymbol{C}\). As in "Example" on page 223, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
!HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ ALIGN A(:) WITH C(:,1)
!HPF\$ ALIGN B(:) WITH C(:,1) !HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: C

CALL SYR2K ( 1.0D0 , A , B , C , 'L' )
Input: Symmetric matrix \(\boldsymbol{C}\) of order 9:
\(\left[\begin{array}{ccccccccc}1.0 & . & . & . & . & . & . & . & . \\ 2.0 & 12.0 & . & . & . & . & . & . & . \\ 3.0 & 13.0 & 23.0 & . & . & . & . & . & . \\ 4.0 & 14.0 & 24.0 & 34.0 & . & . & . & . & . \\ 5.0 & 15.0 & 25.0 & 35.0 & 45.0 & . & . & . & . \\ 6.0 & 16.0 & 26.0 & 36.0 & 46.0 & 56.0 & . & . & . \\ 7.0 & 17.0 & 27.0 & 37.0 & 47.0 & 57.0 & 67.0 & . & . \\ 8.0 & 18.0 & 28.0 & 38.0 & 48.0 & 58.0 & 68.0 & 78.0 & . \\ 9.0 & 19.0 & 29.0 & 39.0 & 49.0 & 59.0 & 69.0 & 79.0 & 89.0\end{array}\right]\)

Vector \(\boldsymbol{a}\) of size 9:
\(\left[\begin{array}{l}1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0\end{array}\right]\)

Vector \(\boldsymbol{b}\) of size 9:
\(\left[\begin{array}{l}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0\end{array}\right]\)

Output: Matrix C of order 9:
\(\left[\begin{array}{rcccccccc}5.0 & . & . & . & . & . & . & . & . \\ 6.0 & 16.0 & . & . & . & . & . & . & . \\ 7.0 & 17.0 & 27.0 & . & . & . & . & . & . \\ 8.0 & 18.0 & 28.0 & 38.0 & . & . & . & . & . \\ 9.0 & 19.0 & 29.0 & 39.0 & 49.0 & . & . & . & . \\ 10.0 & 20.0 & 30.0 & 40.0 & 50.0 & 60.0 & . & . & . \\ 11.0 & 21.0 & 31.0 & 41.0 & 51.0 & 61.0 & 71.0 & . & . \\ 12.0 & 22.0 & 32.0 & 42.0 & 52.0 & 62.0 & 72.0 & 82.0 & . \\ 13.0 & 23.0 & 33.0 & 43.0 & 53.0 & 63.0 & 73.0 & 83.0 & 93.0\end{array}\right]\)

\section*{TRAN—Matrix Transpose for a General Matrix}

This subroutine performs the following matrix computation:
\(\boldsymbol{C} \leftarrow \beta \boldsymbol{C}+\alpha \boldsymbol{A}^{\boldsymbol{\top}}\)
where, in the formula above:
\(\boldsymbol{A}\) and \(\boldsymbol{C}\) are general matrices.
\(\alpha\) and \(\beta\) are scalars.
Note: No data should be moved to form the matrix transpose; that is, the matrix should always be stored in its untransposed form.

In the following two cases, no computation is performed and the subroutine returns after doing some parameter checking:
- All of the assumed-shape arrays have a size of zero.
- \(\alpha\) is zero and \(\beta\) is one.

See references [17 ], [30 ], [31 ], and [44 ].
\begin{tabular}{|c|c|}
\hline Table 120. Data Types \\
\hline\(\alpha, \beta, \boldsymbol{A}, \boldsymbol{C}\) & Subprogram \\
\hline Long-precision real & TRAN \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l} 
HPF & CALL TRAN (alpha, a, beta, \(c\) )
\end{tabular}

\section*{On Entry}
alpha
is the scalar \(\alpha\).
Type: required
Specified as: a number of the data type indicated in Table 120.
a
is the general matrix \(\boldsymbol{A}\).
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 120.
beta
is the scalar \(\beta\).
Type: required
Specified as: a number of the data type indicated in Table 120.
\(c\)
is the general matrix \(\boldsymbol{C}\). When \(\beta\) is zero, \(\boldsymbol{C}\) need not be set on input.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 115 on page 730.

\section*{On Return}
c
is the updated general matrix \(\boldsymbol{C}\), containing the results of the computation.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 120 on page 760.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- \(\operatorname{size}(c, 1)=\operatorname{size}(a, 2)\)
- \(\operatorname{size}(c, 2)=\operatorname{size}(a, 1)\)
2. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
3. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
4. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
5. The restrictions given in "Notes and Coding Rules" on page 334 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 335 also apply to this subroutine.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a\) or \(c\).
2. The process rank is not the same for \(a\) and \(c\).
3. The process rank is not 1 or 2 for \(a\) or \(c\).

Stage 2: The process grid is not the same for \(a\) and \(c\).
Stage 3: The data distribution is inconsistent for \(a\) and \(c\).
Stage 4: The shape of the assumed-shape arrays \(a\) and \(c\) is incompatible:
```

size(c,1) \not= size(a,2) or
size (c,2) \not= size (a,1)

```

Stage 5: The data distribution for \(a\) or \(c\) is unsupported.
Example: This example computes \(\boldsymbol{C}=\beta \boldsymbol{C}+\alpha \boldsymbol{A}^{\top}\). As in "Example" on page 337, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
!HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, C
CALL \(\operatorname{TRAN}(1.0 \mathrm{D} 0\), A , 1.0D0 , C )
Input: General \(8 \times 9\) matrix \(\boldsymbol{A}\) :
\(\left[\begin{array}{rrrrrrrrr}0.0 & -1.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 & 1.0 \\ 0.0 & 0.0 & -1.0 & -1.0 & 0.0 & 0.0 & 1.0 & 0.0 & 1.0 \\ 0.0 & 1.0 & 0.0 & -1.0 & 1.0 & 1.0 & 0.0 & 1.0 & 1.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ 1.0 & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & -1.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 1.0 \\ -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 1.0\end{array}\right]\)

General \(9 \times 8\) matrix \(\boldsymbol{C}\) :
\(\left[\begin{array}{rrrrrrrr}0.0 & 1.0 & 1.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 \\ 0.0 & -1.0 & 0.0 & -1.0 & 0.0 & -1.0 & 0.0 & 1.0 \\ 0.0 & 0.0 & 1.0 & 1.0 & 0.0 & 0.0 & -1.0 & 0.0 \\ 0.0 & -1.0 & 0.0 & 1.0 & -1.0 & -1.0 & 0.0 & 1.0 \\ -1.0 & 2.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ -1.0 & 3.0 & 0.0 & 0.0 & -1.0 & -1.0 & 0.0 & 0.0 \\ 0.0 & 4.0 & 1.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 1.0 & 5.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 1.0 & 1.0 & 1.0 & 1.0\end{array}\right]\)

Output: General \(9 \times 8\) matrix \(\boldsymbol{C}\) :
\[
\left[\begin{array}{rrrrrrrr}
0.0 & 1.0 & 1.0 & 5.0 & 7.0 & 8.0 & 8.0 & 8.0 \\
-1.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 1.0 \\
-1.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & -2.0 & 0.0 \\
0.0 & 0.0 & -1.0 & 0.0 & -1.0 & -1.0 & 0.0 & 1.0 \\
-1.0 & 2.0 & 0.0 & 1.0 & 0.0 & 1.0 & -1.0 & 0.0 \\
-1.0 & 4.0 & 0.0 & 1.0 & -1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 4.0 & 2.0 & 0.0 & 1.0 & 0.0 & 0.0 & -1.0 \\
1.0 & 6.0 & 0.0 & 1.0 & 0.0 & 0.0 & 1.0 & 0.0 \\
2.0 & 3.0 & 4.0 & 5.0 & 2.0 & 2.0 & 2.0 & 2.0
\end{array}\right]
\]

\section*{Chapter 14. Linear Algebraic Equations (HPF)}

This chapter describes the linear algebraic equation subroutines that can be called from an HPF program. These subroutines include a subset of the ScaLAPACK subroutines.

Note: These subroutines are designed to be consistent with the proposals for the Fortran 90 BLAS and the Fortran 90 LAPACK. (See references [30] and [31 ].) If these subroutines do not comply with any eventual proposal for HPF interfaces to the PBLAS and ScaLAPACK, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.

\section*{Overview of the Dense Linear Algebraic Equation Subroutines}

The dense linear algebraic equation subroutines provide solutions to linear systems of equations for real and complex general matrices and their transposes, and for positive definite real symmetric and complex Hermitian matrices.
\begin{tabular}{|l|l|l|}
\hline Table 121. List of Dense Linear Algebraic Equation Subroutines (HPF) & \\
\hline Descriptive Name & \begin{tabular}{l} 
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline General Matrix Factorization & GETRF & 766 \\
\hline General Matrix Solve & GETRS & 771 \\
\hline Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization & POTRF & 776 \\
\hline Positive Definite Real Symmetric or Complex Hermitian Matrix Solve & POTRS & 781 \\
\hline
\end{tabular}

\section*{Overview of the Banded Linear Algebraic Equation Subroutines}

The banded linear algebraic equation subroutines provide solutions to linear systems of equations for real positive definite symmetric band matrices, real general tridiagonal matrices, diagonally-dominant real general tridiagonal matrices, and real positive definite symmetric tridiagonal matrices.
\begin{tabular}{|l|l|l|}
\hline Table 122 (Page 1 of 2). List of Banded Linear Algebraic Equation Subroutines \\
\hline Descriptive Name & \begin{tabular}{l} 
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline Positive Definite Symmetric Band Matrix Factorization and Solve & PBSV & 787 \\
\hline Positive Definite Symmetric Band Matrix Factorization & PBTRF & 792 \\
\hline Positive Definite Symmetric Band Matrix Solve & PBTRS & 797 \\
\hline General Tridiagonal Matrix Factorization and Solve & GTSV & 802 \\
\hline General Tridiagonal Matrix Factorization & GTTRF & 807 \\
\hline General Tridiagonal Matrix Solve & GTTRS & 816 \\
\hline Diagonally-Dominant General Tridiagonal Matrix Factorization and Solve & DTSV & 802 \\
\hline Diagonally-Dominant General Tridiagonal Matrix Factorization & DTTRF & 807 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Table 122 (Page 2 of 2). List of Banded Linear Algebraic Equation Subroutines \\
\hline Descriptive Name & \begin{tabular}{l} 
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline Diagonally-Dominant General Tridiagonal Matrix Solve & DTTRS & 816 \\
\hline Positive Definite Symmetric Tridiagonal Matrix Factorization and Solve & PTSV & 824 \\
\hline Positive Definite Symmetric Tridiagonal Matrix Factorization & PTTRF & 829 \\
\hline Positive Definite Symmetric Tridiagonal Matrix Solve & PTTRS & 835 \\
\hline
\end{tabular}

\section*{Dense Linear Algebraic Equation Subroutines}

This section contains the dense linear algebraic equation subroutine descriptions.

\section*{GETRF-General Matrix Factorization}

This subroutine factors general matrix \(\boldsymbol{A}\) using Gaussian elimination with partial pivoting, ipiv, to compute the \(\boldsymbol{L} \boldsymbol{U}\) factorization of \(\boldsymbol{A}\).

On output, the transformed matrix \(\boldsymbol{A}\) contains \(\boldsymbol{U}\) in the upper triangle (if size \((a, 1) \geq\) size \((a, 2)\) ) or upper trapezoid (if size \((a, 1)<\operatorname{size}(a, 2)\) ) and \(L\) the strict lower triangle (if size \((a, 1) \leq \operatorname{size}(a, 2)\) ) or lower trapezoid (if size \((a, 1)>\operatorname{size}(a, 2)\) ). ipiv contains the pivots representing permutation \(P\), such that \(A=P L U\).

To solve the system of equations with any number of right-hand sides, follow the call to this subroutine with one or more calls to GETRS.

If any of the assumed-shape arrays have a size of zero, no computation is performed, and the subroutine returns after doing some parameter checking. See references [16], [18 ], [22 ], [36 ], and [37].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|l|}{ Table 123. Data Types } \\
\hline \(\boldsymbol{A}\) & ipiv & Subroutine \\
\hline Long-precision real & Integer & GETRF \\
\hline Long-precision complex & Integer & GETRF \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL GETRF (a, ipiv) \\
CALL GETRF (a, ipiv, info)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the general matrix \(\boldsymbol{A}\), used in the system of equations.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 123.
ipiv
See On Return.
info
See On Return.
On Return
a
is the updated general matrix \(\boldsymbol{A}\), containing the results of the factorization.
Type: required
Returned as: an assumed-shape array with shape (:,: ), containing numbers of the data type indicated in Table 123.
ipiv
is the vector ipiv, containing the pivot indices.
The elements of ipiv must be replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of ipiv is aligned with every column of A:
!HPF\$ ALIGN IPIV(:) WITH A(:,*)

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 123 on page 766.
info
has the following meaning, when info is present:
If info \(=0\), matrix \(\boldsymbol{A}\) is not singular, and the factorization completed normally.
If info \(>0\), matrix \(\boldsymbol{A}\) is singular; that is, one or more columns of \(L\) and the corresponding diagonal of \(\boldsymbol{U}\) contain all zeros. All columns of \(L\) are checked. info is set equal to \(i\), the first column of \(\boldsymbol{L}\) with a corresponding \(\boldsymbol{U}=0\) diagonal element, encountered at position ( \(i, i\) ) in \(\boldsymbol{A}\). The factorization is completed; however, if you call GETRS with these factors, results are unpredictable.
When info is not present and matrix \(\boldsymbol{A}\) is singular, the information for the above computational error is issued in an error message, and your program is terminated.

\section*{Type: optional}

Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is: \(\operatorname{size}(a, 1)=\operatorname{size}(i p v t)\).
If you plan to call GETRS, then additionally size \((a, 1)=\operatorname{size}(a, 2)\).
2. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
3. The \(\boldsymbol{A}\) and ipiv input to GETRS must be the same as for the corresponding output arguments for GETRF.
4. The way this subroutine handles singularity differs from ScaLAPACK. This subroutine uses the info argument to provide information about the singularity of \(\boldsymbol{A}\), like ScaLAPACK, but also provides an error message.
5. On both input and output, matrix \(\boldsymbol{A}\) conforms to ScaLAPACK format.
6. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
7. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vector and matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
8. The restrictions given in "Notes and Coding Rules" on page 347 also apply to this subroutine.
9. For information about optimizing performance in this subroutine, see "Performance Considerations" on page 348.

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 349 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument, your program terminates as a result of the computational error.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for a or ipiv.
2. The process rank is not the same for a and ipiv.
3. The process rank is not 1 or 2 for a or ipiv.

Stage 2: The process grid is not the same for a and ipiv.
Stage 3: The data distribution is unsupported for a.

\section*{Stage 4}
1. The row block size for a and the block size for ipiv are incompatible.
2. The data distribution is unsupported for ipiv.

Stage 5: The shape of the assumed-shape arrays for a and ipiv is incompatible: \(\operatorname{size}(a, 1) \neq \operatorname{size}(\) ipiv \()\)

Stage 6: The abstract process row indices for a and ipiv are incompatible.
Stage 7: The data distribution for \(a\) is unsupported.
Example 1: This example factors a \(9 \times 9\) real general matrix. As in "Example 1" on page 350, array data is block-cyclically distributed using a \(2 \times 2\) process grid, with ipiv being replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of ipiv is aligned with every column of \(\boldsymbol{A}\).
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ ALIGN IPIV(:) WITH A(:,*)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A

```

CALL GETRF ( A , IPIV )
-or-
CALL GETRF ( A , IPIV , INFO )
Input: General \(9 \times 9\) matrix \(\boldsymbol{A}\) :
\(\left[\begin{array}{lllllllll}1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 & 2.4 & 2.6 \\ 1.2 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 & 2.4 \\ 1.4 & 1.2 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 \\ 1.6 & 1.4 & 1.2 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 \\ 1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 \\ 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 1.2 & 1.4 & 1.6 \\ 2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 1.2 & 1.4 \\ 2.4 & 2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 1.2 \\ 2.6 & 2.4 & 2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0\end{array}\right]\)

Output: General \(9 \times 9\) transformed matrix \(\mathbf{A}\) :
\(\left[\begin{array}{rrrrrrrrr}2.6 & 2.4 & 2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 \\ 0.4 & 0.3 & 0.6 & 0.8 & 1.1 & 1.4 & 1.7 & 1.9 & 2.2 \\ 0.5 & -0.4 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 & 2.4 & 2.8 \\ 0.5 & -0.3 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 & 2.4 \\ 0.6 & -0.3 & 0.0 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 \\ 0.7 & -0.2 & 0.0 & 0.0 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6 \\ 0.8 & -0.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 & 0.8 & 1.2 \\ 0.8 & -0.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 & 0.8 \\ 0.9 & -0.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4\end{array}\right]\)

\section*{Vector ipiv of size 9:}
\(\left[\begin{array}{l}9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9\end{array}\right]\)
info \(=0\) (if info is present)
Example 2: This example factors a \(9 \times 9\) complex matrix.
As in "Example 2" on page 353, array data is block-cyclically distributed using a \(2 \times 2\) process grid, with ipiv being replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of ipiv is aligned with every column of \(\boldsymbol{A}\).
```

!HPF\$ PROCESSORS PROC (2,2)
!HPF\$ ALIGN IPIV(:) WITH A(:,*)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A

```

CALL GETRF ( A , IPIV )
-or-
CALL GETRF ( A , IPIV , INFO )
Input: General \(9 \times 9\) matrix \(\boldsymbol{A}\) :
\(\left[\begin{array}{ccccccccc}(2.0,1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) & (4.0,-1.0) & (4.4,-1.0) & (4.8,-1.0) & (5.2,-1.0) \\ (2.4,1.0) & (2.0,1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) & (4.0,-1.0) & (4.4,-1.0) & (4.8,-1.0) \\ (2.8,1.0) & (2.4,1.0) & (2.0,1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) & (4.0,-1.0) & (4.4,-1.0) \\ (3.2,1.0) & (2.8,1.0) & (2.4,1.0) & (2.0,1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) & (4.0,-1.0) \\ (3.6,1.0) & (3.2,1.0) & (2.8,1.0) & (2.4,1.0) & (2.0,1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) \\ (4.0,1.0) & (3.6,1.0) & (3.2,1.0) & (2.8,1.0) & (2.4,1.0) & (2.0,1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) \\ (4.4,1.0) & (4.0,1.0) & (3.6,1.0) & (3.2,1.0) & (2.8,1.0) & (2.4,1.0) & (2.0,1.0) & (2.4,-1.0) & (2.8,-1.0) \\ (4.8,1.0) & (4.4,1.0) & (4.0,1.0) & (3.6,1.0) & (3.2,1.0) & (2.8,1.0) & (2.4,1.0) & (2.0,1.0) & (2.4,-1.0) \\ (5.2,1.0) & (4.8,1.0) & (4.4,1.0) & (4.0,1.0) & (3.6,1.0) & (3.2,1.0) & (2.8,1.0) & (2.4,1.0) & (2.0,1.0)\end{array}\right]\)

Output: General \(9 \times 9\) transformed matrix \(\boldsymbol{A}\) :

\section*{GETRF}
\(\left[\begin{array}{rrrrrrrrl}(5.2,1.0) & (4.8,1.0) & (4.4,1.0) & (4.0,1.0) & (3.6,1.0) & (3.2,1.0) & (2.8,1.0) & (2.4,1.0) & (2.0,1.0) \\ (0.4,0.1) & (0.6,-2.0) & (1.1,-1.9) & (1.7,-1.9) & (2.3,-1.8) & (2.8,-1.8) & (3.4,-1.7) & (3.9,-1.7) & (4.5,-1.6) \\ (0.5,0.1) & (0.0,-0.1) & (0.6,-1.9) & (1.2,-1.8) & (1.8,-1.7) & (2.5,-1.6) & (3.1,-1.5) & (3.7,-1.4) & (4.3,-1.3) \\ (0.6,0.1) & (0.0,-0.1) & (-0.1,-0.1) & (0.7,-1.9) & (1.3,-1.7) & (2.0,-1.6) & (2.7,-1.5) & (3.4,-1.4) & (4.0,-1.2) \\ (0.6,0.1) & (0.0,-0.1) & (-0.1,-0.1) & (-0.1,0.0) & (0.7,-1.9) & (1.5,-1.7) & (2.2,-1.6) & (2.9,-1.5) & (3.7,-1.3) \\ (0.7,0.1) & (0.0,-0.1) & (0.0,0.0) & (-0.1,0.0) & (-0.1,0.0) & (0.8,-1.9) & (1.6,-1.8) & (2.4,-1.6) & (3.2,-1.5) \\ (0.8,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.8,-1.9) & (1.7,-1.8) & (2.5,-1.8) \\ (0.9,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.8,-2.0) & (1.7,-1.9) \\ (0.9,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.8,-2.0)\end{array}\right]\)

\section*{Vector ipiv of size 9:}
\(\left[\begin{array}{l}9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9\end{array}\right]\)
\[
\text { info }=0 \text { (if info is present) }
\]

\section*{GETRS-General Matrix Solve}

GETRS solves one of the following systems of equations for multiple right-hand sides:
\[
\begin{aligned}
& \text { 1. } A X=B \\
& \text { 2. } A^{\top} X=B \\
& \text { 3. } A^{H} X=B
\end{aligned}
\]

In the formulas above:
\(\boldsymbol{A}\) is the square general matrix containing the \(\boldsymbol{L} \boldsymbol{U}\) factorization.
\(\boldsymbol{B}\) is the general matrix containing the right-hand sides in its columns. \(\boldsymbol{X}\) represents the general matrix \(\boldsymbol{B}\), containing the solution vectors in its columns.

This subroutine uses the results of the factorization of matrix \(\boldsymbol{A}\), produced by a preceding call to GETRF. For details on the factorization, see "GETRF-General Matrix Factorization" on page 766.

If any of the assumed-shape arrays have a size of zero, no computation is performed, and the subroutine returns after doing some parameter checking. See references [16], [18 ], [22 ], [36 ], and [37].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{ Table 124. Data Types } \\
\hline \(\boldsymbol{A}, \boldsymbol{B}\) & ipiv & Subroutine \\
\hline Long-precision real & Integer & GETRS \\
\hline Long-precision complex & Integer & GETRS \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL GETRS \((a\), ipiv, \(b)\) \\
CALL GETRS \((a\), ipiv, \(b\), transa, info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the general matrix \(\boldsymbol{A}\), containing the factorization of matrix \(\boldsymbol{A}\) produced by a preceding call to GETRF.

\section*{Type: required}

Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 124, where size \((a, 1)=\operatorname{size}(a, 2)\).
ipiv
is the vector ipiv, containing the pivoting indices produced on a preceding call to GETRF.
The elements of ipiv must be replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of ipiv is aligned with every column of A:
!HPF\$ ALIGN IPIV(:) WITH A(:,*)
Type: required

\section*{GETRS}

Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 124.
\(b\)
is the general matrix \(\boldsymbol{B}\), containing the right-hand sides of the system.
Type: required
Specified as: an assumed-shape array with shape (:,: ), containing numbers of the data type indicated in Table 124 on page 771.
transa
indicates the form of matrix \(\boldsymbol{A}\) to use in the computation, where:
If transa \(=\) ' N ', \(\boldsymbol{A}\) is used in the computation, resulting in solution 1.
If transa \(={ }^{\prime} \mathrm{T}^{\prime}, \boldsymbol{A}^{\top}\) is used in the computation, resulting in solution 2.
If transa \(=\) ' \(\mathrm{C}^{\prime}, \boldsymbol{A}^{\mathrm{H}}\) is used in the computation, resulting in solution 3.
Type: optional
Default: transa \(=\) ' \({ }^{\prime}\) '
Specified as: a single character; transa = ' \(\mathrm{N}^{\prime}\), ' \(\mathrm{T}^{\prime}\), or ' \(\mathrm{C}^{\prime}\).
info
See On Return.

\section*{On Return}
b
is the updated matrix \(\boldsymbol{B}\), containing the solution vectors.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 124 on page 771.
info
indicates that a successful computation occurred.
Type: optional
Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is: \(\operatorname{size}(a, 1)=\operatorname{size}(a, 2)=\operatorname{size}(b, 1)=\operatorname{size}(\) ipiv \()\).
2. This subroutine accepts lowercase letters for the transa argument.
3. When using real data, if you specify ' \(C\) ' for the transa argument, it is interpreted as though you specified ' T '.
4. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
5. The \(\boldsymbol{A}\) and ipiv input to GETRS must be the same as for the corresponding output arguments for GETRF.
6. On both input and output, matrices \(\boldsymbol{A}\) and \(\boldsymbol{B}\) conform to ScaLAPACK format.
7. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
8. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify
any data distribution for your vector and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
9. The restrictions given in "Notes and Coding Rules" on page 360 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 361 also apply to this subroutine.

Computational Errors: None
Note: If the factorization performed by GETRF failed because of a singular matrix \(\boldsymbol{A}\), the results returned by GETRS are unpredictable. For details, see the info output argument for GETRF.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a, b\), or ipiv.
2. The process rank is not the same for \(a, b\), and ipiv.
3. The process rank is not 1 or 2 for \(a, b\), or ipiv.

Stage 2: The process grid is not the same for \(a, b\), and ipiv.
Stage 3: The data distribution is unsupported for \(a\) and \(b\).

\section*{Stage 4}
1. The row block sizes for \(a\) and \(b\) and the block size for ipiv are incompatible.
2. The data distribution is unsupported for ipiv.

\section*{Stage 5}
1. The shape of the assumed-shape arrays for \(a, b\), and ipiv is incompatible:
```

size(a,1) \not= size(a,2) or
size(a,1) }\not=\operatorname{size}(b,1)\mathrm{ or
size(a,1) \not= size(ipiv)

```
2. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)

Stage 6: The abstract process row indices for \(a, b\), and ipiv are incompatible.
Stage 7: The data distribution for \(a\) or \(b\) is unsupported.
Example 1: This example solves the real system \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\) with 5 right-hand sides. The input ipiv vector and transformed matrix \(\boldsymbol{A}\) are the output from "Example 1" on page 768.

An array section is specified for argument \(b\), resulting in the computation using a submatrix \(\boldsymbol{B}\) starting at row 1 and column 2 in the array.

As in "Example 1" on page 363, array data is block-cyclically distributed using a \(2 \times 2\) process grid, with ipiv being replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of ipiv is aligned with every column of \(\boldsymbol{A}\).
```

!HPF\$ PROCESSORS PROC (2,2)
!HPF\$ ALIGN IPIV(:) WITH A(:,*)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B
CALL GETRS(A , IPIV , B(1:9,2:6))
-or-
CALL GETRS(A , IPIV , B(1:9,2:6) , 'N' , INFO)

```

Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{B}\). Following is the \(9 \times 5\) submatrix \(\boldsymbol{B}\), starting at row 1 and column 2 in the \(9 \times 6\) array:
\[
\left[\begin{array}{llllll}
. & 93.0 & 186.0 & 279.0 & 372.0 & 465.0 \\
. & 84.4 & 168.8 & 253.2 & 337.6 & 422.0 \\
. & 76.6 & 153.2 & 229.8 & 306.4 & 383.0 \\
. & 70.0 & 140.0 & 210.0 & 280.0 & 350.0 \\
. & 65.0 & 130.0 & 195.0 & 260.0 & 325.0 \\
. & 62.0 & 124.0 & 186.0 & 248.0 & 310.0 \\
. & 61.4 & 122.8 & 184.2 & 245.6 & 307.0 \\
. & 63.6 & 127.2 & 190.8 & 254.4 & 318.0 \\
. & 69.0 & 138.0 & 207.0 & 276.0 & 345.0
\end{array}\right]
\]

Output: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{B}\). Following is the \(9 \times 5\) submatrix \(\boldsymbol{B}\), starting at row 1 and column 2 in the \(9 \times 6\) array:
\(\left[\begin{array}{rrrrrr} & & & & & \\ \text {. } & 2.0 & 2.0 & 3.0 & 4.0 & 5.0 \\ \text {. } & 2.0 & 4.0 & 6.0 & 8.0 & 10.0 \\ \text {. } & 4.0 & 6.0 & 9.0 & 12.0 & 15.0 \\ \text {. } & 5.0 & 10.0 & 12.0 & 16.0 & 20.0 \\ \text {. } & 6.0 & 12.0 & 18.0 & 24.0 & 25.0 \\ \text {. } & 7.0 & 14.0 & 21.0 & 28.0 & 35.0 \\ \text {. } & 8.0 & 16.0 & 24.0 & 32.0 & 40.0 \\ \text {. } & 9.0 & 18.0 & 27.0 & 36.0 & 45.0\end{array}\right]\)
info \(=0\) (if info is present)
Example 2: This example solves the complex system \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\) with 5 right-hand sides. The input ipiv vector and transformed matrix \(\boldsymbol{A}\) are the output from "Example 2" on page 769.

An array section is specified for argument \(b\), resulting in the computation using a submatrix \(\boldsymbol{B}\) starting at row 1 and column 2 in the array.

As in "Example 2" on page 366, array data is block-cyclically distributed using a \(2 \times 2\) process grid, with ipiv being replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of ipiv is aligned with every column of \(\boldsymbol{A}\).
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ ALIGN IPIV(:) WITH A(:,*)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B
CALL GETRS(A , IPIV , B(1:9,2:6))
-or-
CALL GETRS(A , IPIV , B(1:9,2:6) , 'N' , INFO)

```

Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{B}\). Following is the \(9 \times 5\) submatrix \(\boldsymbol{B}\), starting at row 1 and column 2 in the \(9 \times 6\) array:
\(\left[\begin{array}{rrrrrr}\cdot & (193.0,-10.6) & (200.0,21.8) & (207.0,54.2) & (214.0,86.6) & (221.0,119.0) \\ \cdot & (173.8,-9.4) & (178.8,20.2) & (183.8,49.8) & (188.8,79.4) & (193.8,109.0) \\ \cdot & (156.2,-5.4) & (159.2,22.2) & (162.2,49.8) & (165.2,77.4) & (168.2,105.0) \\ \cdot & (141.0,11.4) & (142.0,27.8) & (143.0,54.2) & (144.0,80.6) & (145.0,107.0) \\ \cdot & (129.0,11.0) & (128.0,37.0) & (127.0,63.0) & (126.0,89.0) & (125.0,115.0) \\ \cdot & (121.0,23.4) & (118.0,49.8) & (115.0,76.2) & (112.0,102.6) & (109.0,129.0) \\ \cdot & (117.8,38.6) & (112.8,66.2) & (107.8,93.8) & (102.8,121.4) & (97.8,149.0) \\ \cdot & (120.2,56.6) & (113.2,86.2) & (106.2,115.8) & (99.2,145.4) & (92.2,175.0) \\ \cdot & (129.0,77.4) & (120.0,109.8) & (111.0,142.2) & (102.0,174.6) & (93.0,207.0)\end{array}\right]\)

Output: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{B}\). Following is the \(9 \times 5\) submatrix \(\boldsymbol{B}\), starting at row 1 and column 2 in the \(9 \times 6\) array:
\[
\begin{aligned}
& {\left[\begin{array}{llllll} 
& (1.0,1.0) & (1.0,2.0) & (1.0,3.0) & (1.0,4.0) & (1.0,5.0) \\
\cdot & (2.0,1.0) & (2.0,2.0) & (2.0,3.0) & (2.0,4.0) & (2.0,5.0) \\
\cdot & (3.0,1.0) & (3.0,2.0) & (3.0,3.0) & (3.0,4.0) & (3.0,5.0) \\
\cdot & (4.0,1.0) & (4.0,2.0) & (4.0,3.0) & (4.0,4.0) & (4.0,5.0) \\
\cdot & (5.0,1.0) & (5.0,2.0) & (5.0,3.0) & (5.0,4.0) & (5.0,5.0) \\
\cdot & (6.0,1.0) & (6.0,2.0) & (6.0,3.0) & (6.0,4.0) & (6.0,5.0) \\
\cdot & (7.0,1.0) & (7.0,2.0) & (7.0,3.0) & (7.0,4.0) & (7.0,5.0) \\
\cdot & (8.0,1.0) & (8.0,2.0) & (8.0,3.0) & (8.0,4.0) & (8.0,5.0) \\
\cdot & (9.0,1.0) & (9.0,2.0) & (9.0,3.0) & (9.0,4.0) & (9.0,5.0)
\end{array}\right]} \\
& \text { info }=0 \text { (if info is present) }
\end{aligned}
\]

\section*{POTRF—Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization}

This subroutine uses Cholesky factorization. It factors a positive definite real symmetric matrix \(\boldsymbol{A}\) into one of the following forms:
\(\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{\top}\) if \(\boldsymbol{A}\) is lower triangular.
\(\boldsymbol{A}=\boldsymbol{U} \boldsymbol{U} \boldsymbol{U}\) if \(\boldsymbol{A}\) is upper triangular.
It factors a positive definite complex Hermitian matrix \(\boldsymbol{A}\) into one of the following forms:
\(\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{\mathrm{H}}\) if \(\boldsymbol{A}\) is lower triangular.
\(\boldsymbol{A}=\boldsymbol{U} \boldsymbol{H} \boldsymbol{U}\) if \(\boldsymbol{A}\) is upper triangular.
In the formulas above:
\(\boldsymbol{A}\) is the positive definite real symmetric or complex Hermitian matrix to be factored.
\(L\) is a lower triangular matrix.
\(\boldsymbol{U}\) is an upper triangular matrix.
To solve the system of equations with any number of right-hand sides, follow the call to this subroutine with one or more calls to POTRS.

If the assumed-shape array has a size of zero, no computation is performed, and the subroutine returns after doing some parameter checking. See references [16], [18 ], [22 ], [36], and [37 ].

Table 125. Data Types
\begin{tabular}{|c|c|}
\hline \(\boldsymbol{A}\) & Subroutine \\
\hline Long-precision real & POTRF \\
\hline Long-precision complex & POTRF \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL POTRF (a, uplo) \\
CALL POTRF (a, uplo, info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the real symmetric or complex Hermitian matrix \(\boldsymbol{A}\), used in the system of equations, where:

If uplo \(=\) ' U ', the array contains the upper triangle of the symmetric matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.

If uplo \(=\) ' L ', the array contains the lower triangle of the symmetric matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.

\section*{Type: required}

Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 125, where size \((a, 1)=\operatorname{size}(a, 2)\).
uplo
indicates whether the upper or lower triangular part of the real symmetric or complex Hermitian submatrix \(\boldsymbol{A}\) is referenced, where:
If uplo = 'U', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
info
See On Return.

\section*{On Return}
a
is the updated matrix \(\boldsymbol{A}\), containing the results of the factorization.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 125 on page 776.
info
has the following meaning, when info is present:

If info \(=0\), real symmetric or complex Hermitian matrix \(\boldsymbol{A}\) is positive definite, and the factorization completed normally.

If info \(>0\), the leading minor of order \(k\) of the real symmetric or complex hermitian matrix \(\boldsymbol{A}\) is not positive definite. info is set equal to \(k\), where the leading minor was encountered at position \((k, k)\) in \(\boldsymbol{A}\). The factorization is not completed. \(\boldsymbol{A}\) is overwritten with the partial factors.

When info is not present and matrix \(\boldsymbol{A}\) is not positive definite, the information for the above computational error is issued in an error message, and your program is terminated.

\section*{Type: optional}

Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. The assumed-shape array must have the exact size required for the computation, that is: \(\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\).
2. This subroutine accepts lowercase letters for the uplo argument.
3. The imaginary parts of the diagonal elements of the complex Hermitian matrix \(\boldsymbol{A}\) are assumed to be zero, so you do not have to set these values. On output, they are set to zero.
4. The \(\boldsymbol{A}\) input to POTRS must be the same as for the corresponding output argument for POTRF.
5. The way this subroutine handles nonpositive definiteness differs from ScaLAPACK. This subroutine uses the info argument to provide information about the nonpositive definiteness of \(\boldsymbol{A}\), like ScaLAPACK, but also provides an error message.
6. On both input and output, matrix \(\boldsymbol{A}\) conforms to ScaLAPACK format.
7. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
8. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
9. The restrictions given in "Notes and Coding Rules" on page 371 also apply to this subroutine.
10. For information about optimizing performance in this subroutine, see "Performance Considerations" on page 348.

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 373 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument, your program terminates as a result of the computational error.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for a.
2. The process rank is not 1 or 2 for a.

Stage 2: The data distribution is inconsistent for a.
Stage 3: The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)

Stage 4: The data distribution for \(a\) is unsupported.
Example 1: This example factors a \(9 \times 9\) positive definite real symmetric matrix. As in "Example 1" on page 374, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A

```
```

CALL POTRF(A , 'L')
-or-
CALL POTRF(A , 'L' , INFO)

```

Input: Real symmetric matrix \(\boldsymbol{A}\) of order 9:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1.0 & & . & & . & . & . & & \\
\hline 1.0 & 2.0 & & & . & . & & & \\
\hline 1.0 & 2.0 & 3.0 & & - & . & & & \\
\hline 1.0 & 2.0 & 3.0 & 4.0 & . & & & & \\
\hline 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & & & & \\
\hline 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & & & \\
\hline 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & & \\
\hline 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & \\
\hline 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 \\
\hline
\end{tabular}

Output: Real symmetric matrix \(\boldsymbol{A}\) of order 9:
\(\left[\begin{array}{ccccccccc}1.0 & . & . & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & . \\ 1.0 & 1.0 & 1.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0\end{array}\right]\)
info \(=0\) (if info is present)
Example 2: This example factors a \(9 \times 9\) positive definite complex Hermitian matrix.

As in "Example 2" on page 376, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
! HPF \(\$\) PROCESSORS PROC \((2,2)\)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A
CALL POTRF ( A , 'L' )
-or-
CALL POTRF ( A , 'L' , INFO )
Input: Complex Hermitian matrix \(\boldsymbol{A}\) of order 9:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (18.0, . ) & - ) & - & - & - & - & - & - & \\
\hline (1.0, 1.0) & (18.0, . ) & - & - & . & - & - & - & \\
\hline (1.0, 1.0) & (3.0, 1.0) & (18.0, . ) & - & & - & - & - & \\
\hline (1.0, 1.0) & \((3.0,1.0)\) & (5.0, 1.0) & (18.0, . ) & - & - & - & - & \\
\hline (1.0, 1.0) & (3.0, 1.0) & (5.0, 1.0) & (7.0, 1.0) & (18.0, . ) & (18.0, ) & . & - & - \\
\hline (1.0, 1.0) & \((3.0,1.0)\) & \((5.0,1.0)\) & (7.0, 1.0) & (9.0, 1.0) & (18.0, . ) & - & . & . \\
\hline \((1.0,1.0)\) & (3.0, 1.0) & (5.0, 1.0) & (7.0, 1.0) & (9.0, 1.0) & (11.0, 1.0) & \((18.0, ~\). & - ) & . \\
\hline (1.0, 1.0) & (3.0, 1.0) & \((5.0,1.0)\) & (7.0, 1.0) & \((9.0,1.0)\) & (11.0, 1.0) & (13.0, 1.0) & (18.0, . ) & - \\
\hline (1.0, 1.0) & (3.0, 1.0) & (5.0, 1.0) & (7.0, 1.0) & (9.0, 1.0) & (11.0, 1.0) & (13.0, 1.0) & (15.0, 1.0) & (18.0, . ) \\
\hline
\end{tabular}

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(\boldsymbol{A}\) are assumed to be zero, so you do not have to set these values.

Output: Complex Hermitian matrix \(\boldsymbol{A}\) of order 9:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline (4.2, 0.0) & . & - & - & - & - & - & - & . \\
\hline (0.24, 0.24) & (4.2, 0.0) & - & - & - & - & . & & \\
\hline (0.24, 0.24) & (0.68, 0.24) & (4.2, 0.0) & - & - & & - & - & \\
\hline (0.24, 0.24) & (0.68, 0.24) & (1.1, 0.24) & (4.0, 0.0) & & - & - & - & - \\
\hline (0.24, 0.24) & (0.68, 0.24) & (1.1, 0.24) & \((1.3,0.25)\) & \((3.8,0.0)\) & . & - & - & . \\
\hline (0.24, 0.24) & (0.68, 0.24) & (1.1, 0.24) & \((1.3,0.25)\) & (1.4, 0.26) & (3.5, 0.0) & . & - & \\
\hline (0.24, 0.24) & (0.68, 0.24) & (1.1, 0.24) & \((1.3,0.25)\) & (1.4, 0.26) & (1.5, 0.28) & (3.2, 0.0) & - & - \\
\hline (0.24, 0.24) & (0.68, 0.24) & (1.1, 0.24) & \((1.3,0.25)\) & (1.4, 0.26) & \((1.5,0.28)\) & (1.6, 0.32) & (2.7, 0.0) & - \\
\hline (0.24, 0.24) & (0.68, 0.24) & (1.1, 0.24) & \((1.3,0.25)\) & (1.4, 0.26) & \((1.5,0.28)\) & (1.6, 0.32) & (1.6, 0.37) & (2.2, 0.0) \\
\hline
\end{tabular}

Note: On output, the imaginary parts of the diagonal elements of the matrix are set to zero.
info \(=0\) (if info is present)

\section*{POTRS—Positive Definite Real Symmetric or Complex Hermitian Matrix Solve}

This subroutine solves the following systems of equations for multiple right-hand sides:
\[
A X=B
\]
where, in the formula above:
\(\boldsymbol{A}\) is the positive definite real symmetric or complex Hermitian matrix factored by Cholesky factorization.
\(\boldsymbol{B}\) is the general matrix \(\boldsymbol{B}\), containing the right-hand sides in its columns.
\(\boldsymbol{X}\) represents the general matrix \(\boldsymbol{B}\), containing the solution vectors in its columns.

This subroutine uses the results of the factorization of matrix \(\boldsymbol{A}\), produced by a preceding call to POTRF. For details on the factorization, see "POTRF-Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization" on page 776.

If any of the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking. See references [16], [18 ], [22 ], [36 ], and [37].
\begin{tabular}{|c|c|}
\hline Table 126. Data Types \\
\hline \(\boldsymbol{A}, \boldsymbol{B}\) & Subroutine \\
\hline Long-precision real & POTRS \\
\hline Long-precision complex & POTRS \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l} 
HPF & \begin{tabular}{l} 
CALL POTRS \((a, b\), uplo \()\) \\
CALL POTRS \((a, b\), uplo, info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the real symmetric or complex Hermitian matrix \(\boldsymbol{A}\), containing the factorization of matrix \(\boldsymbol{A}\) produced by a preceding call to POTRF, where:
If uplo = ' U ', the array contains the upper triangle of the symmetric matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.
If uplo \(=\) ' L ', the array contains the lower triangle of the symmetric matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 126.
b
is the general matrix \(\boldsymbol{B}\), containing the right-hand sides of the system.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 126.
uplo
indicates whether the upper or lower triangular part of the real symmetric or complex Hermitian submatrix \(\boldsymbol{A}\) is referenced, where:

If uplo = ' U ', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
info
See On Return.

\section*{On Return}
b
is the updated matrix \(\boldsymbol{B}\), containing the solution vectors.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 126 on page 781.
info
indicates that a successful computation occurred.
Type: optional
Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is: \(\operatorname{size}(a, 1)=\operatorname{size}(a, 2)=\operatorname{size}(b, 1)\).
2. This subroutine accepts lowercase letters for the uplo argument.
3. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
4. The \(\boldsymbol{A}\) input to POTRS must be the same as for the corresponding output argument for POTRF.
5. On both input and output, matrices \(\boldsymbol{A}\) and \(\boldsymbol{B}\) conform to ScaLAPACK format.
6. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
7. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
8. The restrictions given in "Notes and Coding Rules" on page 382 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 383 also apply to this subroutine.

Computational Errors: None
Note: If the factorization performed by POTRF failed because of a nonpositive definite matrix \(\boldsymbol{A}\), the results returned by POTRS are unpredictable. For details, see the info output argument for POTRF.

Input-Argument Errors
Stage 1
1. The rank of the ultimate align target is greater than 2 for \(a\) or \(b\).
2. The process rank is not the same for \(a\) and \(b\).
3. The process rank is not 1 or 2 for \(a\) or \(b\).

Stage 2: The process grid is not the same for \(a\) and \(b\).
Stage 3: The data distribution is inconsistent for \(a\) and \(b\).

\section*{Stage 4}
1. The shape of the assumed-shape arrays for \(a\) and \(b\) is incompatible:
a. \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\) or
b. \(\operatorname{size}(a, 1) \neq \operatorname{size}(b, 1)\)
2. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)

Stage 5: The data distribution for \(a\) or \(b\) is unsupported.
Example 1: This example solves the positive definite real symmetric system \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\) with 5 right-hand sides. The transformed matrix \(\boldsymbol{A}\) is the output from "Example 1" on page 778.

An array section is specified for argument \(b\), resulting in the computation using a submatrix \(\boldsymbol{B}\) starting at row 1 and column 2 in the array.

As in "Example 1" on page 385, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B
CALL POTRS(A , B(1:9,2:6) , 'L')
-or-
CALL POTRS(A , B(1:9,2:6) , 'L' , INFO)

```

Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{B}\). Following is the \(9 \times 5\) submatrix \(\boldsymbol{B}\), starting at row 1 and column 2 in the \(9 \times 6\) array:
\(\left[\begin{array}{rrrrrr}\text {. } & 18.0 & 27.0 & 36.0 & 45.0 & 9.0 \\ \text { - } & 34.0 & 51.0 & 68.0 & 85.0 & 17.0 \\ \text { - } & 48.0 & 72.0 & 96.0 & 120.0 & 24.0 \\ \text { - } & 60.0 & 90.0 & 120.0 & 150.0 & 30.0 \\ \text { - } & 70.0 & 105.0 & 140.0 & 175.0 & 35.0 \\ \text { - } & 78.0 & 117.0 & 156.0 & 195.0 & 39.0 \\ \text { - } & 88.0 & 126.0 & 168.0 & 210.0 & 42.0 \\ \text { - } & 90.0 & 135.0 & 176.0 & 220.0 & 44.0 \\ & & & & & \end{array}\right]\)

\section*{POTRS}

Output: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{B}\). Following is the \(9 \times 5\) submatrix \(\boldsymbol{B}\), starting at row 1 and column 2 in the \(9 \times 6\) array:
\[
\left[\begin{array}{llllll}
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0 \\
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0 \\
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0 \\
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0 \\
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0 \\
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0 \\
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0 \\
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0 \\
\cdot & 2.0 & 3.0 & 4.0 & 5.0 & 1.0
\end{array}\right]
\]
info \(=0\) (if info is present)
Example 2: This example solves the positive definite complex Hermitian system \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\) with 5 right-hand sides. The transformed matrix \(\boldsymbol{A}\) is the output from "Example 2" on page 779.

An array section is specified for argument \(b\), resulting in the computation using a submatrix \(\boldsymbol{B}\) starting at row 1 and column 2 in the array.

As in "Example 2" on page 387, array data is block-cyclically distributed using a \(2 \times 2\) process grid.
! HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, B
```

CALL POTRS(A , B(1:9,2:6) , 'L')
-or-
CALL POTRS(A , B(1:9,2:6) , 'L' , INFO)

```

Input: Only a portion of the data structure is used-that is, submatrix \(\boldsymbol{B}\). Following is the \(9 \times 5\) submatrix \(\boldsymbol{B}\), starting at row 1 and column 2 in the \(9 \times 6\) array:
\(\left[\begin{array}{crrrrrr}. & (60.0,10.0) & (86.0,2.0) & (112.0, & -6.0) & (138.0,-14.0) & (34.0,18.0) \\ \cdot & (86.0,28.0) & (126.0,22.0) & (166.0,16.0) & (206.0,10.0) & (46.0,34.0) \\ \cdot & (108.0,44.0) & (160.0,40.0) & (212.0, & 36.0) & (264.0,32.0) & (56.0,48.0) \\ \cdot & (126.0,58.0) & (188.0,56.0) & (250.0, & 54.0) & (312.0,52.0) & (64.0,60.0) \\ \cdot & (140.0,70.0) & (210.0,70.0) & (280.0, & 70.0) & (350.0,70.0) & (70.0,70.0) \\ \cdot & (150.0,80.0) & (226.0,82.0) & (302.0, & 84.0) & (378.0,86.0) & (74.0,78.0) \\ \cdot & (156.0,88.0) & (236.0,92.0) & (316.0,96.0) & (396.0,100.0) & (76.0,84.0) \\ \cdot & (158.0,94.0) & (240.0,100.0) & (322.0,106.0) & (404.0,112.0) & (76.0,88.0) \\ \cdot & (156.0,98.0) & (238.0,106.0) & (320.0,114.0) & (402.0,122.0) & (74.0,90.0)\end{array}\right]\)

Output: Only a portion of the data structure is used-that is, submatrix B. Following is the \(9 \times 5\) submatrix \(\boldsymbol{B}\), starting at row 1 and column 2 in the \(9 \times 6\) array:
\[
\begin{aligned}
& {\left[\begin{array}{llllllll}
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0) \\
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0) \\
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0) \\
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0) \\
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0) \\
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0) \\
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0) \\
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0) \\
\cdot & (2.0,1.0) & (3.0,1.0) & (4.0,1.0) & (5.0,1.0) & (1.0,1.0)
\end{array}\right]} \\
& \text { info =0 (if info is present) }
\end{aligned}
\]

\section*{Banded Linear Algebraic Equation Subroutines}

This section contains the banded linear algebraic equation subroutine descriptions.

\section*{PBSV—Positive Definite Symmetric Band Matrix Factorization and Solve}

This subroutine solves the following system of equations for multiple right-hand sides:
\[
A X=B
\]
where, in the formula above:
\(\boldsymbol{A}\) is the positive definite symmetric band matrix, factored by Cholesky factorization.
\(\boldsymbol{B}\) is the general matrix containing the right-hand sides in its columns.
\(\boldsymbol{X}\) represents the general matrix \(\boldsymbol{B}\), containing the output solution vectors in its columns.

If any of the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [23 ], [2 ], [16 ], [18 ], [22], [36 ], and [37 ].
\begin{tabular}{|c|c|}
\hline Table 127. Data Types \\
\hline \(\boldsymbol{A}, \boldsymbol{B}\) & Subroutine \\
\hline Long-precision real & PBSV \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l}
\(\operatorname{CALL}\) PBSV \((a, b\), uplo \()\) \\
\(\operatorname{CALL}\) PBSV \((a, b\), uplo, info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the positive definite symmetric band matrix \(\boldsymbol{A}\) with half bandwidth \(k\), where \(k=\operatorname{size}(a, 1)-1\), to be factored. Matrix \(\boldsymbol{A}\) is stored in upper- or lower-band-packed storage mode, where:

If uplo = 'U', the array contains the upper triangle of the symmetric band matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.

If uplo \(=\) ' L ', the array contains the lower triangle of the symmetric band matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 127.
On output array A is overwritten; that is, the original input is not preserved.
b
is the general matrix \(\boldsymbol{B}\), containing the multiple right-hand sides of the system.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 127.
uplo
indicates whether the upper or lower triangular part of the matrix \(\boldsymbol{A}\) is referenced, where:
If uplo = ' U ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
info
See On Return.

\section*{On Return}
a
is overwritten; that is, the original input is not preserved. This subroutine overwrites data in positions that do not contain the positive definite symmetric band matrix \(\boldsymbol{A}\) stored in upper- or lower-band-packed storage mode.
b
is the updated matrix \(\boldsymbol{B}\), containing the solution vectors.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 127 on page 787.
info
has the following meaning, when info is present:

If info \(=0\), matrix \(\boldsymbol{A}\) is positive definite, and the factorization completed normally.
If info \(>0\), the leading minor of order \(i\) of the matrix \(\boldsymbol{A}\) is not positive definite. info is set equal to \(i\), where the first leading minor was encountered at position \((i, i)\) in \(\boldsymbol{A}\). The results contained in matrix \(\boldsymbol{A}\) are not defined.

When info is not present and matrix \(\boldsymbol{A}\) is not positive definite, the information for the above computational error is issued in an error message, and your program is terminated.

\section*{Type: optional}

Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is: \(\operatorname{size}(a, 2)=\operatorname{size}(b, 1)\). Also, in this subroutine, the half bandwidth \(k=\operatorname{size}(a, 1)-1\).
2. For performances reasons, it is suggested that you specify uplo = 'L'. For information on how bandwidth affects performance, see [2].
3. The assumed-shape arrays must have no common elements; otherwise results are unpredictable.
4. This subroutine accepts lowercase letters for the uplo argument.
5. The band matrix \(\boldsymbol{A}\) must be positive definite. If \(\boldsymbol{A}\) is not positive definite, this subroutine uses the info argument to provide information about \(\boldsymbol{A}\) and issues
an error message. This differs from ScaLAPACK, which only uses the info argument to provide information about \(\boldsymbol{A}\).
6. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
7. The global positive definite symmetric band matrix \(\boldsymbol{A}\) must be stored in upperor lower-band-packed storage mode. For details, see the section on symmetric matrices in "Matrices" on page 40.
Matrix \(\boldsymbol{A}\) must be distributed over a one-dimensional process grid, using block-column data distribution. For more information on using block-column data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
Matrix \(\boldsymbol{B}\) must be distributed over a one-dimensional process grid, using block-row data distribution. For more information on using block-row data distribution, see the section on block distributing a general matrix containing the right-hand sides in "Matrices" on page 40.
Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
8. The restrictions given in "Notes and Coding Rules" on page 397 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 398 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument, your program terminates as a result of the computational error.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(a\) or \(b\).
2. The process rank is not 1 for \(a\) or \(b\).

\section*{Stage 2}
1. The process grid is not the same for \(a\) and \(b\).
2. \(a\) is not distributed ( \({ }^{*}, \mathrm{BLOCK}\) ).
3. \(b\) is not distributed (BLOCK,*).

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(a\) and \(b\) is incompatible: \(\operatorname{size}(a, 2) \neq\) size \((b, 1)\)
2. The column block size for \(a\) and the row block size for \(b\) are not equal.
3. The abstract process indices for \(a\) and \(b\) are not equal.
4. The data distribution for \(a\) or \(b\) is unsupported.

Example: This example shows a factorization of the positive definite symmetric band matrix \(\boldsymbol{A}\) of order 9 with a half bandwidth of 7:
\[
\left[\begin{array}{lllllllll}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\
1.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 1.0 \\
1.0 & 2.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 2.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 3.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & 5.0 & 5.0 & 4.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & 6.0 & 5.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & 6.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 7.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0
\end{array}\right]
\]

Matrix \(\boldsymbol{A}\) is stored in lower-band-packed storage mode:
\[
\left[\begin{array}{ccccccccc}
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 8.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & . \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & . & . \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & . & . & . \\
1.0 & 2.0 & 3.0 & 4.0 & 4.0 & . & . & . & . \\
1.0 & 2.0 & 3.0 & 3.0 & . & . & . & . & . \\
1.0 & 2.0 & 2.0 & . & . & . & . & . & . \\
1.0 & 1.0 & . & . & . & . & . & . & .
\end{array}\right]
\]
where "." means you do not have to store a value in that position in the local array. However, these storage positions are required and are overwritten during the computation.

As in "Example" on page 400, array data is block distributed over 3 processes.
Note: On output, the matrix \(\boldsymbol{A}\) is overwritten by this subroutine.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (*,BLOCK) ONTO PROC :: A
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
CALL PBSV(A , B , 'L')
-or-
CALL PBSV(A , B , 'L' , INFO=INFO)

```

Input: Matrix \(\boldsymbol{A}\), stored in an \(8 \times 9\) array:
\(\left[\begin{array}{ccccccccc}1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 8.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & . & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 4.0 & . & . & . & . \\ 1.0 & 2.0 & 3.0 & 3.0 & . & . & . & . & . \\ 1.0 & 2.0 & 2.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & .\end{array}\right]\)

Rectangular \(9 \times 3\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrr}8.0 & 36.0 & 44.0 \\ 16.0 & 80.0 & 80.0 \\ 23.0 & 122.0 & 108.0 \\ 29.0 & 161.0 & 129.0 \\ 34.0 & 196.0 & 144.0 \\ 38.0 & 226.0 & 154.0 \\ 41.0 & 250.0 & 160.0 \\ 43.0 & 267.0 & 163.0 \\ 36.0 & 240.0 & 120.0\end{array}\right]\)

Output: Rectangular \(9 \times 3\) matrix \(B\) :
\(\left[\begin{array}{lll}1.0 & 1.0 & 9.0 \\ 1.0 & 2.0 & 8.0 \\ 1.0 & 3.0 & 7.0 \\ 1.0 & 4.0 & 6.0 \\ 1.0 & 5.0 & 5.0 \\ 1.0 & 6.0 & 4.0 \\ 1.0 & 7.0 & 3.0 \\ 1.0 & 8.0 & 2.0 \\ 1.0 & 9.0 & 1.0\end{array}\right]\)
info \(=0\) (if info is present)

\section*{PBTRF—Positive Definite Symmetric Band Matrix Factorization}

This subroutine uses Cholesky factorization to factor a positive definite symmetric band matrix \(\boldsymbol{A}\), stored in upper- or lower-band-packed storage mode, into one of the following forms:
\(\boldsymbol{A}=\boldsymbol{U} \boldsymbol{U} \boldsymbol{U}\) if \(\boldsymbol{A}\) is upper triangular.
\(\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{\top}\) if \(\boldsymbol{A}\) is lower triangular.
where, in the formulas above:
\(\boldsymbol{A}\) is the positive definite symmetric band matrix to be factored.
\(\boldsymbol{U}\) is an upper triangular matrix.
\(\boldsymbol{L}\) is a lower triangular matrix.
To solve the system of equations with multiple right-hand sides, follow the call to this subroutine with one of more calls to PBTRS. The output from this factorization subroutine should be used only as input to PBTRS.

If any of the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [23 ], [2 ], [16 ], [18 ], [22], [36 ], and [37 ].
\begin{tabular}{|c|c|}
\hline Table 128. Data Types \\
\hline \(\boldsymbol{A}\), af & Subroutine \\
\hline Long-precision real & PBTRF \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL PBTRF (a, af, uplo) \\
CALL PBTRF (a, af, uplo, info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the positive definite symmetric band matrix \(\boldsymbol{A}\) with half bandwidth \(k\), where \(k=\operatorname{size}(a, 1)-1\), to be factored. Matrix \(\boldsymbol{A}\) is stored in upper- or lower-band-packed storage mode, where:
If uplo = 'U', the array contains the upper triangle of the symmetric band matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.

If uplo = 'L', the array contains the lower triangle of the symmetric band matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 128.
On output array A is overwritten; that is, the original input is not preserved.
af
is a reserved output area.
Type: required
Specified as: for migration purposes, you should specify a one-dimensional long-precision assumed-shape array with shape (:), where:
size \((a f) \geq\)
number_of_processors() [(ceiling\{size(a,2) / number_of_processors()\}
\(+(2)(k))(k)]\)
uplo
indicates whether the upper or lower triangular part of the matrix \(\boldsymbol{A}\) is
referenced, where:
If uplo \(=\) ' \(U\) ', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
info
See On Return.

\section*{On Return}
a
is the updated matrix \(\boldsymbol{A}\), containing the results of the factorization, where:
If uplo \(=\) ' \(U\) ', the array contains the results of the factorization of the symmetric band matrix \(\boldsymbol{A}\) in its upper triangle. The remaining elements stored in the array are overwritten by this subroutine.

If uplo \(=\) ' L ', the array contains the results of the factorization of the symmetric band matrix \(\boldsymbol{A}\) in its lower triangle. The remaining elements stored in the array are overwritten by this subroutine.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 128 on page 792.
af
is a reserved output area.
info
has the following meaning, when info is present:

If info \(=0\), matrix \(\boldsymbol{A}\) is positive definite, and the factorization completed normally.

If info \(>0\), the leading minor of order \(i\) of the matrix \(\boldsymbol{A}\) is not positive definite. info is set equal to \(i\), where the first leading minor was encountered at position \((i, i)\) in \(\boldsymbol{A}\). The results contained in matrix \(\boldsymbol{A}\) are not defined.

When info is not present and matrix \(\boldsymbol{A}\) is not positive definite, the information for the above computational error is issued in an error message, and your program is terminated.

Type: optional
Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. In this subroutine, the half bandwidth \(k=\operatorname{size}(a, 1)-1\).
2. For performances reasons, it is suggested that you specify uplo = 'L'. For information on how bandwidth affects performance, see [2].
3. The assumed-shape arrays must have no common elements; otherwise results are unpredictable.
4. This subroutine accepts lowercase letters for the uplo argument.
5. The output from this factorization subroutine should be used only as input to the solve subroutine PBTRS.

The data specified for input argument uplo must be the same for both PBTRF and PBTRS.

The matrix \(\boldsymbol{A}\) and af input to PBTRS must be the same as the corresponding output arguments for PBTRF.
6. The matrix \(\boldsymbol{A}\) must remain unchanged between calls to PBTRF and PBTRS. This subroutine overwrites data in positions that do not contain the positive definite symmetric band matrix \(\boldsymbol{A}\) stored in upper- or lower-band-packed storage mode.
7. The band matrix \(\boldsymbol{A}\) must be positive definite. If \(\boldsymbol{A}\) is not positive definite, this subroutine uses the info argument to provide information about \(\boldsymbol{A}\) and issues an error message. This differs from ScaLAPACK, which only uses the info argument to provide information about \(\boldsymbol{A}\).
8. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
9. The global positive definite symmetric band matrix \(\boldsymbol{A}\) must be stored in upperor lower-band-packed storage mode. For details, see the section on symmetric matrices in "Matrices" on page 40.

Matrix \(\boldsymbol{A}\) must be distributed over a one-dimensional process grid, using block-column data distribution. For more information on using block-column data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.

Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vector and matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
10. The restrictions given in "Notes and Coding Rules" on page 409 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 410 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument, your program terminates as a result of the computational error.

Input-Argument Errors

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for a or af.
2. The process rank is not 1 for a or af.

\section*{Stage 2}
1. The process grid is not the same for \(a\) and \(a f\).
2. \(a\) is not distributed ( \({ }^{*}, \mathrm{BLOCK}\) ).
3. \(a f\) is not distributed (BLOCK).

Stage 3: The data distribution for \(a\) is unsupported.
Example: This example shows a factorization of the positive definite symmetric band matrix \(\boldsymbol{A}\) of order 9 with a half bandwidth of 7 :
\(\left[\begin{array}{lllllllll}1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\ 1.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 1.0 \\ 1.0 & 2.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 2.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 3.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & 5.0 & 5.0 & 4.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & 6.0 & 5.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & 6.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 7.0 \\ 0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0\end{array}\right]\)

Matrix \(\boldsymbol{A}\) is stored in lower-band-packed storage mode:
\(\left[\begin{array}{ccccccccc}1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 8.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & . & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 4.0 & . & . & . & . \\ 1.0 & 2.0 & 3.0 & 3.0 & . & . & . & . & . \\ 1.0 & 2.0 & 2.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & .\end{array}\right]\)
where "." means you do not have to store a value in that position in the local array. However, these storage positions are required and are overwritten during the computation.

As in "Example" on page 411, array data is block distributed over 3 processes.

\section*{Notes:}
1. Matrix \(\boldsymbol{A}\), output from PBTRF, must be passed, unchanged, to the solve subroutine PBTRS.
2. The af argument is reserved and not shown in this example.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (*,BLOCK) ONTO PROC :: A
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: AF
CALL PBTRF(A , AF , 'L')
-or-
CALL PBTRF(A , AF , 'L' , INFO=INFO)
Input: Matrix A, stored in an 8×9 array:
$\left[\begin{array}{ccccccccc}1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 8.0 \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & . & . & . \\ 1.0 & 2.0 & 3.0 & 4.0 & 4.0 & . & . & . & . \\ 1.0 & 2.0 & 3.0 & 3.0 & . & . & . & . & . \\ 1.0 & 2.0 & 2.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & .\end{array}\right]$

```

Output: Matrix A, stored in an \(8 \times 9\) array:
\(\left[\begin{array}{ccccccccc}1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . & . \\ 1.0 & 1.0 & 1.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & .\end{array}\right]\)
info \(=0\) (if info is present)

\section*{PBTRS—Positive Definite Symmetric Band Matrix Solve}

This subroutine solves the following system of equations for multiple right-hand sides:
\[
A X=B
\]
where, in the formula above:
\(\boldsymbol{A}\) is the positive definite symmetric band matrix, factored by Cholesky
factorization.
\(\boldsymbol{B}\) is the general matrix containing the right-hand sides in its columns.
\(\boldsymbol{X}\) represents the general matrix \(\boldsymbol{B}\), containing the output solution vectors in its
columns.

This subroutine uses the results of the factorization of matrix \(\boldsymbol{A}\), produced by a preceding call to PBTRF. The output from PBTRF should be used only as input to this solve subroutine.

If any of the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [23 ], [2 ], [16 ], [18 ], [22], [36 ], and [37 ].
\begin{tabular}{|c|c|}
\hline Table 129. Data Types \\
\hline \(\boldsymbol{A}, \boldsymbol{B}\), af & Subroutine \\
\hline Long-precision real & PBTRS \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL PBTRS \((a, b, a f\), uplo \()\) \\
CALL PBTRS \((a, b, a f\), uplo, info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the positive definite symmetric band matrix \(\boldsymbol{A}\) with half bandwidth \(k\), where \(k=\operatorname{size}(a, 1)-1\), containing the factorization of matrix \(\boldsymbol{A}\) produced by a preceding call to PBTRF. Matrix \(\boldsymbol{A}\) is stored in upper- or lower-band-packed storage mode, where:

If uplo \(=\) ' U ', the array contains the results of the factorization of the symmetric band matrix \(\boldsymbol{A}\) in its upper triangle.

If uplo = ' L ', the array contains the results of the factorization of the symmetric band matrix \(\boldsymbol{A}\) in its lower triangle.

\section*{Type: required}

Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 129.
b
is the general matrix \(\boldsymbol{B}\), containing the multiple right-hand sides of the system.
Type: required

Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 129.
af
is a reserved area.

\section*{Type: required}

Specified as: for migration purposes, you should specify a one-dimensional long-precision assumed-shape array with shape (:), where:
\[
\operatorname{size}(a f) \geq
\]
number_of_processors() [(ceiling\{size(a,2) / number_of_processors()\}
\(+(2)(k))(k)]\)
uplo
indicates whether the upper or lower triangular part of the matrix \(\boldsymbol{A}\) is
referenced, where:
If uplo = 'U', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
info
See On Return.

\section*{On Return}
b
is the updated matrix \(\boldsymbol{B}\), containing the solution vectors.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 129 on page 797.
info
indicates that a successful computation occurred.

\section*{Type: optional}

Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is: \(\operatorname{size}(a, 2)=\operatorname{size}(b, 1)\). Also, in this subroutine, the half bandwidth \(k=\operatorname{size}(a, 1)-1\).
2. For performances reasons, it is suggested that you specify uplo = 'L'. For information on how bandwidth affects performance, see [2].
3. The assumed-shape arrays must have no common elements; otherwise results are unpredictable.
4. This subroutine accepts lowercase letters for the uplo argument.
5. The output from the factorization subroutine PBTRF should be used only as input to this solve subroutine.
The data specified for input argument uplo must be the same for both PBTRF and PBTRS.

The matrix \(\boldsymbol{A}\) and af input to PBTRS must be the same as the corresponding output arguments for PBTRF.
6. The matrix \(\boldsymbol{A}\) must remain unchanged between calls to PBTRF and PBTRS. This subroutine overwrites data in positions that do not contain the positive definite symmetric band matrix \(\boldsymbol{A}\) stored in upper- or lower-band-packed storage mode.
7. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
8. The global positive definite symmetric band matrix \(\boldsymbol{A}\) must be stored in upperor lower-band-packed storage mode. For details, see the section on symmetric matrices in "Matrices" on page 40.

Matrix \(\boldsymbol{A}\) must be distributed over a one-dimensional process grid, using block-column data distribution. For more information on using block-column data distribution, see "Specifying Block-Cyclically-Distributed Matrices for the Banded Linear Algebraic Equations" on page 26.
Matrix \(\boldsymbol{B}\) must be distributed over a one-dimensional process grid, using block-row data distribution. For more information on using block-row data distribution, see the section on block distributing a general matrix containing the right-hand sides in "Matrices" on page 40.
Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vector and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
9. The restrictions given in "Notes and Coding Rules" on page 420 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 422 also apply to this subroutine.

Computational Errors: None
Note: If the factorization performed by PBTRF failed because of a nonpositive definite matrix \(\boldsymbol{A}\), the results returned by this subroutine are unpredictable. For details, see the info output argument for PBTRF.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(a, b\), or af.
2. The process rank is not 1 for \(a, b\), or af.

\section*{Stage 2}
1. The process grid is not the same for \(a, b\), and \(a f\).
2. \(a\) is not distributed ( \({ }^{*}\),BLOCK).
3. \(b\) is not distributed (BLOCK,*).
4. af is not distributed (BLOCK).

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(a\) and \(b\) is incompatible: size \((a, 2) \neq\) size \((b, 1)\)
2. The column block size for \(a\) and the row block size for \(b\) are not equal.
3. The abstract process indices for \(a\) and \(b\) are not equal.
4. The data distribution for \(a\) or \(b\) is unsupported.

Example: This example solves the system \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\), where matrix \(\boldsymbol{A}\) is the same matrix factored in "Example" on page 795 for PBTRF.

As in "Example" on page 423, array data is block distributed over 3 processes.

\section*{Notes:}
1. Matrix \(\boldsymbol{A}\), output from PBTRF, must be passed, unchanged, to the solve subroutine PBTRS.
2. The af argument, output from PBTRF, must be passed, unchanged, to the solve subroutine PBTRS.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (*,BLOCK) ONTO PROC :: A
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: AF
CALL PBTRS(A , B , AF , 'L')
-or-
CALL PBTRS(A , B , AF , 'L' , INFO=INFO)

```

Input: Matrix \(\boldsymbol{A}\), stored in an \(8 \times 9\) array:
\(\left[\begin{array}{ccccccccc}1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . \\ 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . & . \\ 1.0 & 1.0 & 1.0 & . & . & . & . & . & . \\ 1.0 & 1.0 & . & . & . & . & . & . & .\end{array}\right]\)

Rectangular \(9 \times 3\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrr}8.0 & 36.0 & 44.0 \\ 16.0 & 80.0 & 80.0 \\ 23.0 & 122.0 & 108.0 \\ 29.0 & 161.0 & 129.0 \\ 34.0 & 196.0 & 144.0 \\ 38.0 & 226.0 & 154.0 \\ 41.0 & 250.0 & 160.0 \\ 43.0 & 267.0 & 163.0 \\ 36.0 & 240.0 & 120.0\end{array}\right]\)

Output: Rectangular \(9 \times 3\) matrix \(\mathbf{B}\) :
```

 [1.0 1.0 9.0
 1.0
 1.0
 1.0}4.
 1.0}55.0 5.0
 1.0
 1.0
 1.0
 1.0
 info = 0 (if info is present)

```

\section*{GTSV and DTSV—General Tridiagonal Matrix Factorization and Solve}

GTSV solves the tridiagonal systems of linear equations, \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\), using Gaussian elimination with partial pivoting for the general tridiagonal matrix \(\boldsymbol{A}\) stored in tridiagonal storage mode.

DTSV solves the tridiagonal systems of linear equations, \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\), using Gaussian elimination for the diagonally dominant general tridiagonal matrix \(\boldsymbol{A}\) stored in tridiagonal storage mode.

In these subroutines:
\(\boldsymbol{A}\) is the square general tridiagonal matrix.
\(\boldsymbol{B}\) is the general matrix containing the right-hand sides in its columns.
\(\boldsymbol{X}\) represents the general matrix \(\boldsymbol{B}\), containing the output solution vectors in its columns.

If any of the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [51 ], [16 ], [18 ], [22 ], [36], and [37 ].
\begin{tabular}{|c|c|}
\hline Table 130. Data Types \\
\hline \(\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d u}, \boldsymbol{B}\) & Subroutine \\
\hline Long-precision real & GTSV and DTSV \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l} 
HPF & CALL GTSV | DTSV (dl, d, du, b) \\
& CALL GTSV | DTSV (dl, d, du, b, info)
\end{tabular}

On Entry
\(d l\)
is the vector \(\boldsymbol{d l}\), containing the subdiagonal of the general tridiagonal matrix \(\boldsymbol{A}\) in elements 2 through size \((d)\) ).

Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 130.
On output, DL is overwritten; that is, the original input is not preserved.
\(d\)
is the vector \(\boldsymbol{d}\), containing the main diagonal of the general tridiagonal matrix \(\boldsymbol{A}\) in elements 1 through size \((d)\).
Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 130.
On output, D is overwritten; that is, the original input is not preserved.
\(d u\)
is the vector \(d u\), containing the superdiagonal of the general tridiagonal matrix \(\boldsymbol{A}\) in elements 1 through size \((d u)-1\).

\section*{Type: required}

Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 130 on page 802.
On output, DU is overwritten; that is, the original input is not preserved.
is the general matrix \(\boldsymbol{B}\), containing the multiple right-hand sides of the system.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 130 on page 802.
info
See On Return.

\section*{On Return}
dl
is overwritten; that is, the original input is not preserved.
\(d\)
is overwritten; that is, the original input is not preserved.
\(d u\)
is overwritten; that is, the original input is not preserved.
b
is the updated matrix \(\boldsymbol{B}\), containing the solution vectors.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 130 on page 802.
info
is the vector info of length equal to the number_of_processors(), where, if you are running on the \(j\)-th process, then info has the following meaning, when info is present:

If info \(_{j}=0\) for all \(j\), the factorization completed normally.
Note: For DTSV, if the input matrix \(\boldsymbol{A}\) is not diagonally dominant, the subroutine may still complete the factorization; however, results are unpredictable.

If \(1 \leq\) info \(_{j} \leq\) number_of_processors() for any \(j\), the portion of global submatrix
A stored on process info -1 and factored locally, is singular or reducible (for GTSV), or not diagonally dominant (for DTSV). The magnitude of a pivot element was zero or too small.

If info \(_{j}>\) number_of_processors() for any \(j\), the portion of global submatrix \(\boldsymbol{A}\) stored on process info-_number_of_processors()-1 representing interactions with other processes, is singular or reducible (for GTSV), or not diagonally dominant (for DTSV). The magnitude of a pivot element was zero or too small.

If info \(_{j}>0\) for any \(j\), the factorization is completed; however, the results are unpredictable.

All elements of info will have the same value.
When info is not present or size(info) \(=0\), and matrix \(\boldsymbol{A}\) is singular or reducible (for GTSV) or not diagonally dominant (for DTSV), then the information for the above computational error is issued in an error message, and your program is terminated.

\section*{Type: optional}

Returned as: an assumed-shape array with shape (:), containing fullword integers, where info \(_{j} \geq 0\) for \(j=1\)...number_of_processors().

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is: \(\operatorname{size}(d l)=\operatorname{size}(d)=\operatorname{size}(d u)=\operatorname{size}(b, 1)\).
2. The assumed-shape arrays must have no common elements; otherwise results are unpredictable.
3. For GTSV, the general tridiagonal matrix \(\boldsymbol{A}\) must be non-singular and irreducible. For DTSV, the general tridiagonal matrix \(\boldsymbol{A}\) must be diagonally dominant to ensure numerical accuracy because no pivoting is performed. These subroutines use the info argument to provide information about \(\boldsymbol{A}\), like ScaLAPACK. However, these subroutines also issue an error message, which differs from ScaLAPACK.
4. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
5. The general tridiagonal matrix \(\boldsymbol{A}\) must be stored in tridiagonal storage mode. For details, see the section on tridiagonal matrices in "Matrices" on page 40.

Block data distribution is required for all array data, except the array for info, which requires cyclic data distribution. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
6. The restrictions given in "Notes and Coding Rules" on page 434 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 436 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument or if size(info) \(=0\), your program terminates as a result of the computational error.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(d l, d, d u, b\), or info (if info is present).
2. The process rank is not 1 for \(d l, d, d u, b\), or info (if info is present).

\section*{Stage 2}
1. The data distribution is inconsistent for \(d l, d\), and \(d u\).
2. info is present and:
a. The data distribution is unsupported for info.
b. info is not distributed (CYCLIC).
c. The vector for info is replicated.
3. The process grid is not the same for \(d l\), \(d\), and \(d u\).
4. \(b\) is not distributed (BLOCK,*).
5. \(d l\), \(d\), or \(d u\) is not distributed (BLOCK).
6. The vector for \(d l, d\), or \(d u\) is replicated.

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(d l, d, d u\), and \(b\) is incompatible:
a. \(\operatorname{size}(d) \neq \operatorname{size}(b, 1)\) or
b. \(\operatorname{size}(d) \neq \operatorname{size}(b, 1)\) or
c. \(\operatorname{size}(d u) \neq \operatorname{size}(b, 1)\)
2. The block sizes for \(d l, d, d u\), and \(b\) are incompatible.
3. The abstract process indices for \(d l, d\), \(d u\), and \(b\) are incompatible.
4. The data distribution for \(d l, d\), or \(d u\) is unsupported.

Example 1: This example shows a factorization of the general tridiagonal matrix \(\boldsymbol{A}\), of order 12, where matrix \(\boldsymbol{A}\) is stored in tridiagonal storage mode:
\(\left[\begin{array}{llllllllllll}2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0\end{array}\right]\)

As in "Example" on page 438, array data is block distributed over 3 processes.
Note: On output, vectors \(\boldsymbol{d} \boldsymbol{l}, \boldsymbol{d}\), and \(\boldsymbol{d u}\) are overwritten by this subroutine.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B

```
CALL GTSV( DL , D , DU , B ) -or- CALL DTSV( DL , D , DU , B )
    -or-
!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
!HPF\$ DISTRIBUTE (CYCLIC) ONTO PROC :: INFO

CALL GTSV( DL , D , DU , B , INFO ) -or- CALL DTSV( DL , D , DU , B , INFO )

Input: Vector dl of size 12:
\[
\left[\begin{array}{llllllllllll}
. & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0
\end{array}\right]
\]

Vector d of size 12:
\[
\left[\begin{array}{llllllllllll}
2.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0
\end{array}\right]
\]

Vector \(\boldsymbol{d u}\) of size 12:
\[
\left[\begin{array}{llllllllllll}
2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & .
\end{array}\right]
\]

Rectangular \(12 \times 3\) matrix \(B\) :
\(\left[\begin{array}{rrr}46.0 & 6.0 & 4.0 \\ 65.0 & 13.0 & 6.0 \\ 59.0 & 19.0 & 6.0 \\ 53.0 & 25.0 & 6.0 \\ 47.0 & 31.0 & 6.0 \\ 41.0 & 37.0 & 6.0 \\ 35.0 & 43.0 & 6.0 \\ 29.0 & 49.0 & 6.0 \\ 23.0 & 55.0 & 6.0 \\ 17.0 & 61.0 & 6.0 \\ 11.0 & 67.0 & 6.0 \\ 5.0 & 47.0 & 4.0\end{array}\right]\)

Output: Rectangular \(12 \times 3\) matrix \(B\) :
\(\left[\begin{array}{rrr}12.0 & 1.0 & 1.0 \\ 11.0 & 2.0 & 1.0 \\ 10.0 & 3.0 & 1.0 \\ 9.0 & 4.0 & 1.0 \\ 8.0 & 5.0 & 1.0 \\ 7.0 & 6.0 & 1.0 \\ 6.0 & 7.0 & 1.0 \\ 5.0 & 8.0 & 1.0 \\ 4.0 & 9.0 & 1.0 \\ 3.0 & 10.0 & 1.0 \\ 2.0 & 11.0 & 1.0 \\ 1.0 & 12.0 & 1.0\end{array}\right]\)

Vector info of size 3: (if info is present)
\[
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]

\section*{GTTRF and DTTRF-General Tridiagonal Matrix Factorization}

GTTRF factors the general tridiagonal matrix \(\boldsymbol{A}\), stored in tridiagonal storage mode, using Gaussian elimination with partial pivoting.

DTTRF factors the diagonally dominant general tridiagonal matrix \(\boldsymbol{A}\), stored in tridiagonal storage mode, using Gaussian elimination.

In these subroutines, \(\boldsymbol{A}\) is a square general tridiagonal matrix.
To solve a tridiagonal system of linear equations with multiple right-hand sides, follow the call to GTTRF or DTTRF with one or more calls to GTTRS or DTTRS, respectively. The output from these factorization subroutines should be used only as input to the solve subroutines GTTRS and DTTRS, respectively.

If the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [51 ], [16 ], [18 ], [22 ], [36], and [37 ].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|l|}{ Table 131. Data Types } \\
\hline dl, \(\boldsymbol{d}, \boldsymbol{d u}, \boldsymbol{d u 2}\), af & ipiv & Subroutine \\
\hline Long-precision real & Integer & GTTRF and DTTRF \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL GTTRF (dl, d, du, du2, ipiv, af) \\
CALL GTTRF (dl, d, du, du2, ipiv, af, info)
\end{tabular} \\
\hline HPF & \begin{tabular}{l} 
CALL DTTRF (dl, d, du, af) \\
CALL DTTRF (dl, d, du, af, info)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
dl
is the vector \(\boldsymbol{d l}\), containing the subdiagonal of the general tridiagonal matrix \(\boldsymbol{A}\) in elements 2 through size \((d)\) ).

Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131.

On output, DL is overwritten; that is, the original input is not preserved.
\(d\)
is the vector \(\boldsymbol{d}\), containing the main diagonal of the general tridiagonal matrix \(\boldsymbol{A}\) in elements 1 through size( \(d\) ).
Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131.
On output, D is overwritten; that is, the original input is not preserved.
du
is the vector \(\mathbf{d u}\), containing the superdiagonal of the general tridiagonal matrix \(\boldsymbol{A}\) in elements 1 through size(du)-1.
Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131 on page 807.
On output, DU is overwritten; that is, the original input is not preserved.
du2
See On Return.
ipiv
See On Return.
af
See On Return.
info
See On Return.

\section*{On Return}
dl
is the updated vector \(\boldsymbol{d l}\), containing part of the factorization.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131 on page 807.
On output, DL is overwritten; that is, the original input is not preserved.
d
is the updated vector \(\boldsymbol{d}\), containing part of the factorization.
Type: required
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131 on page 807.

On output, D is overwritten; that is, the original input is not preserved.
du
is the updated vector \(d u\), containing part of the factorization.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131 on page 807.

On output, DU is overwritten; that is, the original input is not preserved.
du2
is the vector du2, containing part of the factorization.
Type: required (GTTRF); not present (DTTRF)
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131 on page 807.
is the vector ipiv, containing the pivot information needed by GTTRS.
Type: required (GTTRF); not present (DTTRF)

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131 on page 807.
is a work area used by these subroutines and contains part of the factorization.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 131 on page 807, where:
```

For GTTRF:
size(af) \geq
number_of_processors() { (12)(number_of_processors())
+ 3 (ceiling(size(dl) / number_of_processors())) }

```
    For DTTRF:
    size \((a f) \geq\)
        number_of_processors() \{ (12)(number_of_processors())
        + 2 (ceiling(size(d) / number_of_processors())) \}
info
is the vector info of length equal to the number_of_processors(), where, if you are running on the \(j\)-th process, then info has the following meaning, when info is present:
If info \(_{j}=0\) for all \(j\), the factorization completed normally.
Note: For DTTRF, if the input matrix \(\boldsymbol{A}\) is not diagonally dominant, the subroutine may still complete the factorization; however, results are unpredictable.

If \(1 \leq\) info \(_{j} \leq\) number_of_processors() for any \(j\), the portion of global submatrix \(\boldsymbol{A}\) stored on process info- 1 and factored locally, is singular or reducible (for GTTRF), or not diagonally dominant (for DTTRF). The magnitude of a pivot element was zero or too small.

If info \(_{j}>\) number_of_processors() for any \(j\), the portion of global submatrix \(\boldsymbol{A}\) stored on process info,_number_of_processors()-1 representing interactions with other processes, is singular or reducible (for GTTRF), or not diagonally dominant (for DTTRF). The magnitude of a pivot element was zero or too small.

If info \(_{j}>0\) for any \(j\), the factorization is completed; however, if you call GTTRS/DTTRS with these factors, the results are unpredictable.

All elements of info will have the same value.
When info is not present or size(info) \(=0\), and matrix \(\boldsymbol{A}\) is singular or reducible (for GTTRF) or not diagonally dominant (for DTTRF), then the information for the above computational error is issued in an error message, and your program is terminated.

\section*{Type: optional}

Returned as: an assumed-shape array with shape (:), containing fullword integers, where info \(_{j} \geq 0\) for \(j=1\)...number_of_processors().

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- For GTTRF: \(\operatorname{size}(d)=\operatorname{size}(d)=\operatorname{size}(d u)=\operatorname{size}(d u 2)=\operatorname{size}(\) ipi \()\)
- For DTTRF: \(\operatorname{size}(d)=\operatorname{size}(d)=\operatorname{size}(d u)\)
2. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
3. The output from these factorization subroutines should be used only as input to the solve subroutines GTTRS and DTTRS, respectively.
The factored matrix \(\boldsymbol{A}\) is stored in an internal format that depends on the number of processes.
The vectors for \(\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d} \boldsymbol{u}, \boldsymbol{d u 2}\), ipiv, and af input to GTTRS must be the same as the corresponding output arguments for GTTRF.
The vectors for \(\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d} \boldsymbol{u}\), and af input to DTTRS must be the same as the corresponding output arguments for DTTRF.
4. For GTTRF, the general tridiagonal matrix \(\boldsymbol{A}\) must be non-singular and irreducible. For DTTRF, the general tridiagonal matrix \(\boldsymbol{A}\) must be diagonally dominant to ensure numerical accuracy because no pivoting is performed. These subroutines use the info argument to provide information about \(\boldsymbol{A}\), like ScaLAPACK. However, these subroutines also issue an error message, which differs from ScaLAPACK.
5. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
6. The general tridiagonal matrix \(\boldsymbol{A}\) must be stored in tridiagonal storage mode. For details, see the section on general tridiagonal matrices in "Matrices" on page 40.

Block data distribution is required for all array data, except the array for info, which requires cyclic data distribution. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
7. The restrictions given in "Notes and Coding Rules" on page 450 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 451 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument or if size(info)=0, your program terminates as a result of the computational error.

Input-Argument Errors for GTTRF

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(d l, d, d u\), \(d u 2\), ipiv, or info (if info is present).
2. The process rank is not 1 for \(d l, d, d u, d u 2\), ipiv, or info (if info is present).

\section*{Stage 2}
1. The data distribution is inconsistent for \(d l, d, d u, d u 2\), and ipiv.
2. info is present and:
a. The data distribution is unsupported for info.
b. info is not distributed (CYCLIC).
c. The vector for info is replicated.
3. The process grid is not the same for \(d l, d, d u\), du2, and ipiv.
4. \(d l, d, d u, d u 2\), or ipiv is not distributed (BLOCK).
5. The vector for \(d l, d, d u\), or \(d u 2\) is replicated.

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(d l, d, d u\), du2, and ipiv is incompatible:
a. size(d') \(\neq\) size(ipiv) or
b. \(\operatorname{size}(d) \neq \operatorname{size}(\) ipiv \()\) or
c. size \((d u) \neq\) size(ipiv) or
d. size(du2) \(\neq \operatorname{size}(\) ipiv \()\)
2. The block sizes for \(d l, d, d u, d u 2\), and ipiv are incompatible.
3. The abstract process indices for \(d l, d, d u, d u 2\), and ipiv are incompatible.
4. The data distribution for \(d l, d, d u\), \(d u 2\), or ipiv is unsupported.

\section*{Input-Argument Errors for DTTRF}

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(d l\), \(d\), \(d u\), or info (if info is present).
2. The process rank is not 1 for \(d l, d\), \(d u\), or info (if info is present).

\section*{Stage 2}
1. The data distribution is inconsistent for \(d l\), \(d\), and \(d u\).
2. info is present and:
a. The data distribution is unsupported for info.
b. info is not distributed (CYCLIC).
c. The vector for info is replicated.
3. The process grid is not the same for \(d l, d\), and \(d u\).
4. \(d l\), \(d\), or \(d u\) is not distributed (BLOCK).

5 . The vector for \(d l, d\), or \(d u\) is replicated.

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(d l, d\), and \(d u\) is incompatible:
a. size \((d) \neq \operatorname{size}(d u)\) or
b. \(\operatorname{size}(d) \neq \operatorname{size}(d u)\)
2. The block sizes for \(d l\), \(d\), and \(d u\) are incompatible.
3. The abstract process indices for \(d l, d\), and \(d u\) are incompatible.
4. The data distribution for \(d l\), \(d\), or \(d u\) is unsupported.

Example 1: This example shows a factorization of the general tridiagonal matrix \(\boldsymbol{A}\), of order 12, where matrix \(\boldsymbol{A}\) is stored in tridiagonal storage mode:
\(\left[\begin{array}{llllllllllll}2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0 & 2.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 3.0\end{array}\right]\)

As in "Example 1" on page 453, array data is block distributed over 3 processes.

\section*{Notes:}
1. The vectors \(\boldsymbol{d l}, \boldsymbol{d}\), and \(\boldsymbol{d u}\), output from GTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine GTTRS.
2. The contents of vectors du2 and af, output from GTTRF, is not shown. These vectors are passed, unchanged, to the solve subroutine GTTRS.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU, DU2, IPIV, AF
CALL GTTRF(DL , D , DU , DU2 , IPIV , AF)
-or-
!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU, DU2, IPIV, AF
!HPF\$ DISTRIBUTE (CYCLIC) ONTO PROC :: INFO
CALL GTTRF(DL , D , DU , DU2 , IPIV , AF , INFO)
Input: Vector dl of size 12:

```
\(\left[\begin{array}{c} \\ .0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0\end{array}\right]\)

Vector \(\boldsymbol{d}\) of size 12 :
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

Vector du of size 12:
\(\left[\begin{array}{c}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ .\end{array}\right]\)

Output: Vector dl of size 12:
\(\left[\begin{array}{l} \\ 0.5 \\ 0.5 \\ 0.5 \\ 1.0 \\ 0.33 \\ 0.43 \\ 0.47 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0\end{array}\right]\)

Vector \(\boldsymbol{d}\) of size 12 :
\(\left[\begin{array}{l}0.5 \\ 0.5 \\ 0.5 \\ 2.0 \\ 0.33 \\ 0.43 \\ 0.47 \\ 2.07 \\ 2.07 \\ 0.47 \\ 0.43 \\ 0.33\end{array}\right]\)

Vector du of size 12 :
\(\left[\begin{array}{l}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 0.93 \\ 0.86 \\ 0.67 \\ .\end{array}\right]\)

Vector ipiv of size 12:
\(\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\)

Vector info of size 3: (if info is present)
\(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)

Example 2: This example shows a factorization of the diagonally dominant general tridiagonal matrix \(\boldsymbol{A}\), of order 12, where matrix \(\boldsymbol{A}\) is stored in tridiagonal storage mode.

Matrix \(\boldsymbol{A}\) and the input and/or output values for \(d l, d\), \(d u\), and info in this example are the same as shown for "Example 1" on page 811.

As in "Example 2" on page 460, array data is block distributed over 3 processes.

\section*{Notes:}
1. The vectors \(\boldsymbol{d l}\), \(\boldsymbol{d}\), and \(\boldsymbol{d} \boldsymbol{u}\), output from DTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine DTTRS.
2. The contents of vector af, output from DTTRF, is not shown. This vector is passed, unchanged, to the solve subroutine DTTRS.
!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU, AF
CALL DTTRF ( DL , D , DU , AF )
-or-
!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU, AF !HPF\$ DISTRIBUTE (CYCLIC) ONTO PROC :: INFO

CALL DTTRF ( DL , D , DU , AF , INFO )

\section*{GTTRS and DTTRS—General Tridiagonal Matrix Solve}

These subroutines solve the following systems of equations for multiple right-hand sides:
\[
\text { 1. } A X=B
\]

GTTRS solves the tridiagonal systems of linear equations, using Gaussian elimination with partial pivoting for the general tridiagonal matrix \(\boldsymbol{A}\) stored in tridiagonal storage mode.

DTTRS solves the tridiagonal systems of linear equations, using Gaussian elimination for the diagonally dominant general tridiagonal matrix \(\boldsymbol{A}\) stored in tridiagonal storage mode.

In these subroutines:
\(\boldsymbol{A}\) is the factored square general tridiagonal matrix.
\(\boldsymbol{B}\) is the general matrix containing the right-hand sides in its columns.
\(\boldsymbol{X}\) represents the general matrix \(\boldsymbol{B}\), containing the output solution vectors in its columns.

These subroutines use the results of the factorization of matrix \(\boldsymbol{A}\), produced by a preceding call to GTTRF or DTTRF, respectively. The output from these factorization subroutines should be used only as input to the solve subroutines GTTRS and DTTRS, respectively.

If any of the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [51 ], [16 ], [18 ], [22 ], [36], and [37 ].
\begin{tabular}{|c|c|c|}
\hline Table 132. Data Types \\
\hline \(\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d} \boldsymbol{u}, \boldsymbol{d} \mathbf{d} 2, \boldsymbol{B}\), af & ipiv & Subroutine \\
\hline Long-precision real & Integer & GTTRS and DTTRS \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL GTTRS (dl, \(d, d u, d u 2\), ipiv, \(b\), af \()\) \\
CALL GTTRS (dl, d, du, du2, ipiv, b, af, transa, info)
\end{tabular} \\
\hline HPF & \begin{tabular}{l} 
CALL DTTRS ( \(d l, d, d u, b, a f)\) \\
CALL DTTRS (dl, \(d, d u, b\), af, transa, info \()\)
\end{tabular} \\
\hline
\end{tabular}

On Entry
dl
is the updated vector dl, containing part of the factorization, produced by a preceding call to GTTRF or DTTRF.

Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 132.
\(d\)
is the updated vector \(\boldsymbol{d}\), containing part of the factorization, produced by a preceding call to GTTRF or DTTRF.

Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 132 on page 816.
\(d u\)
is the updated vector \(\boldsymbol{d u}\), containing part of the factorization, produced by a preceding call to GTTRF or DTTRF.
Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 132 on page 816.
du2
is the vector du2, containing part of the factorization, produced by a preceding call to GTTRF.

Type: required (GTTRS); not present (DTTRS)
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 132 on page 816.
ipiv
is the vector ipiv, containing the pivot information produced by a preceding call to GTTRF.

Type: required (GTTRS); not present (DTTRS)
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 132 on page 816.
b
is the general matrix \(B\), containing the multiple right-hand sides of the system.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 132 on page 816.
af
is a work area used by these subroutines and contains part of the factorization, produced by a preceding call to GTTRF or DTTRF.

Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 132 on page 816, where:

\section*{For GTTRS:}
\(\operatorname{size}(a f) \geq\)
number_of_processors() \{ (12)(number_of_processors()) + 3 (ceiling(size( \((d) /\) number_of_processors()))) \}
```

For DTTRS:
size(af) \geq
number_of_processors() { (12)(number_of_processors())
+ 2 (ceiling(size(dl) / number_of_processors())) }
indicates matrix A}\mathrm{ is used in the computation, resulting in solution 1.
Type: optional

```
transa

Default: transa = ' N '
Specified as: a single character; transa = ' N '. info

See On Return.

\section*{On Return}
b
is the updated matrix \(\boldsymbol{B}\), containing the solution vectors.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 132 on page 816.
info
is the vector info of length equal to the number_of_processors(). info is set to zero, indicating that a successful computation occurred on each process.
Type: optional
Returned as: an assumed-shape array with shape (:), containing fullword integers.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- For GTTRS: \(\operatorname{size}(d)=\operatorname{size}(d)=\operatorname{size}(d u)=\) \(\operatorname{size}(d u 2)=\operatorname{size}(i p i v)=\operatorname{size}(b, 1)\)
- For DTTRS: \(\operatorname{size}(d)=\operatorname{size}(d)=\operatorname{size}(d u)=\operatorname{size}(b, 1)\)
2. The assumed-shape arrays must have no common elements; otherwise results are unpredictable.
3. The subroutine accepts lowercase letters for the transa argument.
4. The output from the factorization subroutines GTTRF and DTTRF should be used only as input to the solve subroutines GTTRS and DTTRS, respectively.
The factored matrix \(\boldsymbol{A}\) is stored in an internal format that depends on the number of processes.
The vectors for dl, d, du, du2, ipiv, and af input to GTTRS must be the same as the corresponding output arguments for GTTRF.
The vectors for \(\boldsymbol{d l}, \boldsymbol{d}, \boldsymbol{d u}\), and af input to DTTRS must be the same as the corresponding output arguments for DTTRF.
5. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
6. The general tridiagonal matrix \(\boldsymbol{A}\) must be stored in tridiagonal storage mode. For details, see the section on general tridiagonal matrices in "Matrices" on page 40.
Block data distribution is required for all array data, except the array for info, which requires cyclic data distribution. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives,
see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
7. The restrictions given in "Notes and Coding Rules" on page 469 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 470 also apply to this subroutine.

Computational Errors: None
Note: If the factorization performed by GTTRF or DTTRF failed because of a singular or reducible matrix \(\boldsymbol{A}\) (for GTTRF) or not diagonally dominant matrix \(\boldsymbol{A}\) (for DTTRF), the results returned by this subroutine are unpredictable. For details, see the info output argument for GTTRF or DTTRF.

Input-Argument Errors for GTTRS

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(d l, d\), \(d u\), du2, ipiv, \(b\), or info (if info is present).
2. The process rank is not 1 for \(d l, d, d u\), du2, ipiv, \(b\), or info (if info is present).

\section*{Stage 2}
1. The data distribution is inconsistent for \(d l, d, d u, d u 2\), and ipiv.
2. info is present and:
a. The data distribution is unsupported for info.
b. info is not distributed (CYCLIC).
c. The vector for info is replicated.
3. The process grid is not the same for \(d l, d, d u, d u 2\), and ipiv.
4. \(b\) is not distributed (BLOCK,*).
5. \(d l\), \(d, d u\), \(d u 2\), or ipiv is not distributed (BLOCK).
6. The vector for \(d l, d, d u\), or \(d u 2\) is replicated.

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(d l, d, d u, d u 2, i p i v\), and \(b\) is incompatible:
a. \(\operatorname{size}(d) \neq \operatorname{size}(b, 1)\) or
b. \(\operatorname{size}(d) \neq \operatorname{size}(b, 1)\) or
c. \(\operatorname{size}(d u) \neq \operatorname{size}(b, 1)\) or
d. \(\operatorname{size}(d u 2) \neq \operatorname{size}(b, 1)\)
e. \(\operatorname{size}(\) ipiv \() \neq \operatorname{size}(b, 1)\)
2. The block sizes for \(d l, d, d u\), du2, ipiv, and \(b\) are incompatible.
3. The abstract process indices for \(d l, d, d u, d u 2\), ipiv, and \(b\) are incompatible.
4. The data distribution for \(d l, d, d u, d u 2\), or ipiv is unsupported.

\section*{Input-Argument Errors for DTTRS}

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(d l, d, d u, b\), or info (if info is present).
2. The process rank is not 1 for \(d l, d, d u, b\), or info (if info is present).

\section*{GTTRS and DTTRS}

\section*{Stage 2}
1. The data distribution is inconsistent for \(d l, d\), and \(d u\).
2. info is present and:
a. The data distribution is unsupported for info.
b. info is not distributed (CYCLIC).
c. The vector for info is replicated.
3. The process grid is not the same for \(d l\), \(d\), and \(d u\).
4. \(b\) is not distributed (BLOCK,*).
5. \(d l\), \(d\), or \(d u\) is not distributed (BLOCK).

6 . The vector for \(d l\), \(d\), or \(d u\) is replicated.

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(d l, d, d u\), and \(b\) is incompatible:
a. \(\operatorname{size}(d) \neq \operatorname{size}(b, 1)\) or
b. \(\operatorname{size}(d) \neq \operatorname{size}(b, 1)\) or
c. \(\operatorname{size}(d u) \neq \operatorname{size}(b, 1)\)
2. The block sizes for \(d l, d, d u\), and \(b\) are incompatible.
3. The abstract process indices for \(d l, d, d u\), and \(b\) are incompatible.
4. The data distribution for \(d l, d\), or \(d u\) is unsupported.

Example 1: This example shows how to solve the system \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\), where matrix \(\boldsymbol{A}\) is the same matrix factored in "Example 1" on page 811 for GTTRF.

As in "Example 1" on page 473, array data is block distributed over 3 processes.

\section*{Notes:}
1. The vectors \(\boldsymbol{d l}, \boldsymbol{d}\), and \(\boldsymbol{d} \mathbf{u}\), output from GTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine GTTRS.
2. The contents of vectors du2 and af, output from GTTRF, is not shown. These vectors are passed, unchanged, to the solve subroutine GTTRS.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU, DU2, IPIV, AF
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
CALL GTTRS(DL , D , DU , DU2 , IPIV , B , AF)
-or-
!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU, DU2, IPIV, AF
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
!HPF\$ DISTRIBUTE (CYCLIC) ONTO PROC :: INFO
CALL GTTRS(DL , D , DU , DU2 , IPIV , B , AF , TRANSA='N' , INFO=INFO)

```

Input: Vector dl of size 12:
\(\left[\begin{array}{l} \\ 0.5 \\ 0.5 \\ 0.5 \\ 1.0 \\ 0.33 \\ 0.43 \\ 0.47 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0\end{array}\right]\)

Vector d of size 12:
\(\left[\begin{array}{l}0.5 \\ 0.5 \\ 0.5 \\ 2.0 \\ 0.33 \\ 0.43 \\ 0.47 \\ 2.07 \\ 2.07 \\ 0.47 \\ 0.43 \\ 0.33\end{array}\right]\)

Vector du of size 12 :
\(\left[\begin{array}{l}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 0.93 \\ 0.86 \\ 0.67 \\ .\end{array}\right]\)

Vector ipiv of size 12:

\section*{GTTRS and DTTRS}
\(\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\)

Rectangular \(12 \times 3\) matrix \(B\) :
\(\left[\begin{array}{rrr}46.0 & 6.0 & 4.0 \\ 65.0 & 13.0 & 6.0 \\ 59.0 & 19.0 & 6.0 \\ 53.0 & 25.0 & 6.0 \\ 47.0 & 31.0 & 6.0 \\ 41.0 & 37.0 & 6.0 \\ 35.0 & 43.0 & 6.0 \\ 29.0 & 49.0 & 6.0 \\ 23.0 & 55.0 & 6.0 \\ 17.0 & 61.0 & 6.0 \\ 11.0 & 67.0 & 6.0 \\ 5.0 & 47.0 & 4.0\end{array}\right]\)

Output: Rectangular \(12 \times 3\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrr}12.0 & 1.0 & 1.0 \\ 11.0 & 2.0 & 1.0 \\ 10.0 & 3.0 & 1.0 \\ 9.0 & 4.0 & 1.0 \\ 8.0 & 5.0 & 1.0 \\ 7.0 & 6.0 & 1.0 \\ 6.0 & 7.0 & 1.0 \\ 5.0 & 8.0 & 1.0 \\ 4.0 & 9.0 & 1.0 \\ 3.0 & 10.0 & 1.0 \\ 2.0 & 11.0 & 1.0 \\ 1.0 & 12.0 & 1.0\end{array}\right]\)

Vector info of size 3: (if info is present)
\(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)

Example 2: This example shows how to solve the system \(\boldsymbol{A X}=\boldsymbol{B}\), where matrix \(\boldsymbol{A}\) is the same matrix factored in "Example 2" on page 815 for DTTRF.

The input and/or output values for \(d l, d, d u, b\), transa, and info in this example are the same as shown for "Example 1" on page 820.

As in "Example 2" on page 479, array data is block distributed over 3 processes.

\section*{Notes:}
1. The vectors \(\boldsymbol{d l}, \boldsymbol{d}\), and \(\boldsymbol{d} \boldsymbol{u}\), output from DTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine DTTRS.
2. The contents of vector af, output from DTTRF, is not shown. This vector is passed, unchanged, to the solve subroutine DTTRS.
```

!HPF\$ PROCESSORS PROC(3)

```
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU, AF
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
CALL DTTRS( DL , D , DU , B , AF )
    -or-
!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: DL, D, DU, AF
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
!HPF\$ DISTRIBUTE (CYCLIC) ONTO PROC :: INFO

CALL DTTRS( DL , D , DU , B , AF , TRANSA='N' , INFO=INFO )

\section*{PTSV—Positive Definite Symmetric Tridiagonal Matrix Factorization and Solve}

This subroutine solves the tridiagonal systems of linear equations, \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\), where the positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\) is stored in parallel-symmetric-tridiagonal storage mode. In this description:
\(\boldsymbol{A}\) is the positive definite symmetric tridiagonal matrix.
\(\boldsymbol{B}\) is the general matrix containing the right-hand sides in its columns.
\(\boldsymbol{X}\) represents the general matrix \(\boldsymbol{B}\), containing the output solution vectors in its columns.

If any of the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [51 ], [16 ], [18 ], [22 ], [36], and [37 ].
\begin{tabular}{|c|c|}
\hline Table 133. Data Types \\
\hline \(\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{B}\) & Subroutine \\
\hline Long-precision real & PTSV \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l}
\(\operatorname{CALL} \operatorname{PTSV}(d, e, b)\) \\
\(\operatorname{CALL} \operatorname{PTSV}(d, e, b\), info \()\)
\end{tabular} \\
\hline
\end{tabular}

On Entry
d
is the vector \(\boldsymbol{d}\), containing the main diagonal of the positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\) in elements 1 through size(d).

\section*{Type: required}

Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 133.

On output, D is overwritten; that is, the original input is not preserved.
\(e\)
is the vector \(\boldsymbol{e}\), containing the off-diagonal of the positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\) in elements 1 through size(e)-1.
Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 133.
On output, E is overwritten; that is, the original input is not preserved.
b
is the general matrix \(\boldsymbol{B}\), containing the multiple right-hand sides of the system.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 133.
info
See On Return.

\section*{On Return}
\(d\)
is overwritten; that is, the original input is not preserved.
e
is overwritten; that is, the original input is not preserved.
b
is the updated matrix \(\boldsymbol{B}\), containing the solution vectors.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 133 on page 824.
is the vector info of length equal to the number_of_processors(), where, if you are running on the \(j\)-th process, then info \(_{j}\) has the following meaning, when info is present:

If info \(_{j}=0\) for all \(j\), matrix \(\boldsymbol{A}\) is positive definite, and the factorization completed normally.
If \(1 \leq\) info \(_{j} \leq\) number_of_processors() for any \(j\), the portion of global submatrix A stored on process info-1 and factored locally, is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.

If info \(_{j}>\) number_of_processors() for any \(j\), the portion of global submatrix \(\boldsymbol{A}\) stored on process info,_number_of_processors()-1 representing interactions with other processes, is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.
If info \(_{j}>0\) for any \(j\), the results of the computation are unpredictable.
All elements of info will have the same value.
When info is not present or size(info) \(=0\), and matrix \(\boldsymbol{A}\) is not positive definite, then the information for the above computational error is issued in an error message, and your program is terminated.

\section*{Type: optional}

Returned as: an assumed-shape array with shape (:), containing fullword integers, where info \(_{j} \geq 0\) for \(j=1\)...number_of_processors().

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is: \(\operatorname{size}(d)=\operatorname{size}(e)=\operatorname{size}(b, 1)\).
2. The assumed-shape arrays must have no common elements; otherwise results are unpredictable.
3. The symmetric tridiagonal matrix \(\boldsymbol{A}\) must be positive definite. This subroutine uses the info argument to provide information about \(\boldsymbol{A}\), like ScaLAPACK. However, this subroutine also issues an error message, which differs from ScaLAPACK.
4. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
5. The positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\) must be stored in parallel-symmetric-tridiagonal storage mode. For details, see the section on tridiagonal matrices in "Matrices" on page 40.
Block data distribution is required for all array data, except the array for info, which requires cyclic data distribution. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
6. The restrictions given in "Notes and Coding Rules" on page 487 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 488 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument or if size(info) \(=0\), your program terminates as a result of the computational error.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(d, e, b\), or info (if info is present).
2. The process rank is not 1 for \(d, e, b\), or info (if info is present).

\section*{Stage 2}
1. The data distribution is inconsistent for \(d\) and \(e\).
2. info is present and:
a. The data distribution is unsupported for info.
b. info is not distributed (CYCLIC).
c. The vector for info is replicated.
3. The process grid is not the same for \(d\) and \(e\).
4. \(b\) is not distributed (BLOCK,*).
5. \(d\) or \(e\) is not distributed (BLOCK).

6 . The vector for \(d\) or \(e\) is replicated.

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(d, e\), and \(b\) is incompatible:
a. size \((d) \neq \operatorname{size}(b, 1)\) or
b. \(\operatorname{size}(e) \neq \operatorname{size}(b, 1)\)
2. The block sizes for \(d, e\), and \(b\) are incompatible.
3. The abstract process indices for \(d, e\), and \(b\) are incompatible.
4. The data distribution for \(d\) or \(e\) is unsupported.

Example 1: This example shows a factorization of the positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\), of order 12 , where matrix \(\boldsymbol{A}\) is stored in parallel-symmetric-tridiagonal storage mode:
\(\left[\begin{array}{llllllllllll}4.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0\end{array}\right]\)

As in "Example" on page 490, array data is block distributed over 3 processes.
Note: On output, vectors \(\boldsymbol{d}\) and \(\boldsymbol{e}\) are overwritten by this subroutine.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: D, E
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
CALL PTSV(D , E , B)
-or-
!HPF\$ PROCESSORS PROC(3)

```
CALL PTSV ( D , E , B , INFO )

Input: Vector d of size 12:
\[
\left[\begin{array}{llllllllllll}
4.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0
\end{array}\right]
\]

Vector \(\boldsymbol{e}\) of size 12:
\[
\left[\begin{array}{llllllllllll}
2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & .
\end{array}\right]
\]

Rectangular \(12 \times 3\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrr}70.0 & 8.0 & 6.0 \\ 99.0 & 18.0 & 9.0 \\ 90.0 & 27.0 & 9.0 \\ 81.0 & 36.0 & 9.0 \\ 72.0 & 45.0 & 9.0 \\ 63.0 & 54.0 & 9.0 \\ 54.0 & 63.0 & 9.0 \\ 45.0 & 72.0 & 9.0 \\ 36.0 & 81.0 & 9.0 \\ 27.0 & 90.0 & 9.0 \\ 18.0 & 99.0 & 9.0 \\ 9.0 & 82.0 & 7.0\end{array}\right]\)

Output: Rectangular \(12 \times 3\) matrix \(\mathbf{B}\) :
\(\left[\begin{array}{rrr}12.0 & 1.0 & 1.0 \\ 11.0 & 2.0 & 1.0 \\ 10.0 & 3.0 & 1.0 \\ 9.0 & 4.0 & 1.0 \\ 8.0 & 5.0 & 1.0 \\ 7.0 & 6.0 & 1.0 \\ 6.0 & 7.0 & 1.0 \\ 5.0 & 8.0 & 1.0 \\ 4.0 & 9.0 & 1.0 \\ 3.0 & 10.0 & 1.0 \\ 2.0 & 11.0 & 1.0 \\ 1.0 & 12.0 & 1.0\end{array}\right]\)

Vector info of size 3: (if info is present) \(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)

\section*{PTTRF—Positive Definite Symmetric Tridiagonal Matrix Factorization}

This subroutine factors the positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\), stored in parallel-symmetric-tridiagonal storage mode.

To solve a tridiagonal system of linear equations with multiple right-hand sides, follow the call to PTTRF with one or more calls to PTTRS, respectively. The output from these factorization subroutines should be used only as input to the solve subroutines PTTRS, respectively.

If the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [51 ], [16 ], [18 ], [22 ], [36], and [37 ].
\begin{tabular}{|c|c|}
\hline Table 134. Data Types \\
\hline \(\boldsymbol{d}, \boldsymbol{e}\), af & Subroutine \\
\hline Long-precision real & PTTRF \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l}
\(\operatorname{CALL} \operatorname{PTTRF}(d, e\), af \()\) \\
\(\operatorname{CALL} \operatorname{PTTRF}(d, e, a f\), info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
d
is the vector \(\boldsymbol{d}\), containing the main diagonal of the tridiagonal matrix \(\boldsymbol{A}\) in elements 1 through size(d).

Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 134.
On output, D is overwritten; that is, the original input is not preserved.
\(e\)
is the vector \(\boldsymbol{e}\), containing the off-diagonal of the positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\) in elements 1 through size(e)-1.
Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 134.
On output, E is overwritten; that is, the original input is not preserved.
af
See On Return.
info
See On Return.
On Return
\(d\)
is the updated vector \(\boldsymbol{d}\), containing part of the factorization.
Type: required
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 134 on page 829.
On output, D is overwritten; that is, the original input is not preserved.
\(e\)
is the updated vector \(\boldsymbol{e}\), containing part of the factorization.
Type: required
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 134 on page 829.

On output, E is overwritten; that is, the original input is not preserved.
af
is a work area used by these subroutines and contains part of the factorization.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 134 on page 829, where: size \((a f) \geq\)
number_of_processors() \{ (12)(number_of_processors())
+ 3 (ceiling(size(e) / number_of_processors())) \}
info
is the vector info of length equal to the number_of_processors(), where, if you are running on the \(j\)-th process, then info has the following meaning, when info is present:

If info \(_{j}=0\) for all \(j\), matrix \(\boldsymbol{A}\) is positive definite, and the factorization completed normally.

If \(1 \leq\) info \(_{j} \leq\) number_of_processors() for any \(j\), the portion of global submatrix \(\boldsymbol{A}\) stored on process info- -1 and factored locally, is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.

If info \(_{j}>\) number_of_processors() for any \(j\), the portion of global submatrix \(\boldsymbol{A}\) stored on process info_-number_of_processors()-1 representing interactions with other processes, is not positive definite. A pivot element whose value is less than or equal to a small positive number was detected.

If info \(_{j}>0\) for any \(j\), the factorization is completed; however, if you call PTTRS with these factors, the results are unpredictable.
All elements of info will have the same value.
When info is not present or size(info) \(=0\) and matrix \(\boldsymbol{A}\) is not positive definite, then the information for the above computational error is issued in an error message, and your program is terminated.

\section*{Type: optional}

Returned as: an assumed-shape array with shape (:), containing fullword integers, where info \(_{j} \geq 0\) for \(j=1\)...number_of_processors().

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
\[
\operatorname{size}(d)=\operatorname{size}(e)
\]
2. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
3. The output from this factorization subroutine should be used only as input to the solve subroutine PTTRS.
The factored matrix \(\boldsymbol{A}\) is stored in an internal format that depends on the number of processes.

The vectors for \(\boldsymbol{d}, \boldsymbol{e}\), and af input to PTTRS must be the same as the corresponding output arguments for PTTRF.
4. The symmetric tridiagonal matrix \(\boldsymbol{A}\) must be positive definite. This subroutine uses the info argument to provide information about \(\boldsymbol{A}\), like ScaLAPACK. However, these subroutines also issue an error message, which differs from ScaLAPACK.
5. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
6. The positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\) must be stored in parallel-symmetric-tridiagonal storage mode. For details, see the section on tridiagonal matrices in "Matrices" on page 40.

Block data distribution is required for all array data, except the array for info, which requires cyclic data distribution. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
7. The restrictions given in "Notes and Coding Rules" on page 500 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 502 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument or if size(info) \(=0\), your program terminates as a result of the computational error.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(d\), e, or info (if info is present).
2. The process rank is not 1 for \(d\), \(e\), or info (if info is present).

\section*{Stage 2}
1. The data distribution is inconsistent for \(d\) and \(e\).
2. info is present and:
a. The data distribution is unsupported for info.
b. info is not distributed (CYCLIC).
c. The vector for info is replicated.
3. The process grid is not the same for \(d\) and \(e\).
4. \(d\) or \(e\) is not distributed (BLOCK).
5. The vector for \(d\) or \(e\) is replicated.

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(d\) and \(e\) is incompatible: size(d) \(\neq \operatorname{size}(\mathrm{e})\)
2. The block sizes for \(d\) and \(e\) are incompatible.
3. The abstract process indices for \(d\) and \(e\) are incompatible.
4. The data distribution for \(d\) or \(e\) is unsupported.

Example 1: This example shows a factorization of the positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\), of order 12 , where matrix \(\boldsymbol{A}\) is stored in parallel-symmetric-tridiagonal storage mode:
\(\left[\begin{array}{llllllllllll}4.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0 & 2.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 5.0\end{array}\right]\)

As in "Example" on page 503, array data is block distributed over 3 processes.

\section*{Notes:}
1. The vectors, \(\boldsymbol{d}\) and \(\boldsymbol{e}\), output from PTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine PTTRS.
2. The contents of vector af, output from PTTRF, is not shown. This vector is passed, unchanged, to the solve subroutine PTTRS.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: D, E, AF
CALL PTTRF(D , E , AF)
-or-
!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: D, E, AF
!HPF\$ DISTRIBUTE (CYCLIC) ONTO PROC :: INFO
CALL PTTRF(D , E , AF , INFO)
Input: Vector d of size 12:

```
\(\left[\begin{array}{l}4.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0\end{array}\right]\)

Vector \(\boldsymbol{e}\) of size 12:
\(\left[\begin{array}{c}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ .\end{array}\right]\)

Output: Vector \(\boldsymbol{d}\) of size 12:
\(\left[\begin{array}{c}.25 \\ .25 \\ .25 \\ 4.0 \\ .20 \\ .24 \\ .25 \\ 4.01 \\ 4.01 \\ .25 \\ .24 \\ .20\end{array}\right]\)

Vector \(\boldsymbol{e}\) of size 12 :

\section*{PTTRF}
\(\left[\begin{array}{c}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ .49 \\ .48 \\ .40 \\ .\end{array}\right]\)

Vector info of size 3: (if info is present)
\(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)

\section*{PTTRS—Positive Definite Symmetric Tridiagonal Matrix Solve}

This subroutine solves the following systems of equations for multiple right-hand sides:
\[
\text { 1. } A X=B
\]

PTTRS solves the tridiagonal systems of linear equations, where the positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\) is stored in parallel-symmetric-tridiagonal storage mode, where:
\(\boldsymbol{A}\) is the factored positive definite symmetric tridiagonal matrix. \(\boldsymbol{B}\) is the general matrix containing the right-hand sides in its columns.
\(\boldsymbol{X}\) represents the general matrix \(\boldsymbol{B}\), containing the output solution vectors in its columns.

This subroutine uses the results of the factorization of matrix \(\boldsymbol{A}\), produced by a preceding call to PTTRF. The output from these factorization subroutines should be used only as input to the solve subroutines PTTRS.

If any of the assumed-shape arrays have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [51 ], [16 ], [18 ], [22 ], [36], and [37 ].
\begin{tabular}{|c|c|}
\hline Table 135. Data Types \\
\hline \(\boldsymbol{d}, \boldsymbol{e}, \boldsymbol{B}\), af & Subroutine \\
\hline Long-precision real & PTTRS \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL PTTRS \((d, e, b, a f)\) \\
\(\operatorname{CALL} \operatorname{PTTRS}(d, e, b, a f\), info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
d
is the updated vector \(\boldsymbol{d}\), containing part of the factorization, produced by a preceding call to PTTRF.

Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 135.
\(e\)
is the updated vector \(\boldsymbol{e}\), containing part of the factorization, produced by a preceding call to PTTRF.
Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 135.
b
is the general matrix \(\boldsymbol{B}\), containing the multiple right-hand sides of the system.
Type: required

Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 135.
is a work area used by these subroutines and contains part of the factorization, produced by a preceding call to PTTRF.
Type: required
Specified as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 135 on page 835, where:
size(af) \(\geq\)
number_of_processors() \{ (12)(number_of_processors())
+ 3 (ceiling(size(e) / number_of_processors())) \}
info
See On Return.

\section*{On Return}
b
is the updated matrix \(\boldsymbol{B}\), containing the solution vectors.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 135 on page 835.
info
is the vector info of length equal to the number_of_processors(). info is set to zero, indicating that a successful computation occurred on each process.
Type: optional
Returned as: an assumed-shape array with shape (:), containing fullword integers.

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
\[
\operatorname{size}(d)=\operatorname{size}(e)=\operatorname{size}(b, 1)
\]
2. The assumed-shape arrays must have no common elements; otherwise results are unpredictable.
3. The output from the factorization subroutine PTTRF should be used only as input to the solve subroutine PTTRS.

The factored matrix \(\boldsymbol{A}\) is stored in an internal format that depends on the number of processes.
The vectors for \(\boldsymbol{d}, \boldsymbol{e}\), and af input to PTTRS must be the same as the corresponding output arguments for PTTRF.
4. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
5. The positive definite symmetric tridiagonal matrix \(\boldsymbol{A}\) must be stored in parallel-symmetric-tridiagonal storage mode. For details, see the section on tridiagonal matrices in "Matrices" on page 40.
Block data distribution is required for all array data, except the array for info, which requires cyclic data distribution. Because data directives are included in
the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 10 on page 109.
6. The restrictions given in "Notes and Coding Rules" on page 516 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 517 also apply to this subroutine.

Computational Errors: None
Note: If the factorization performed by PTTRF failed because of a nonpositive definite matrix \(\boldsymbol{A}\), the results returned by this subroutine are unpredictable. For details, see the info output argument for PTTRF.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is not 1 for \(d, e, b\), or info (if info is present).
2. The process rank is not 1 for \(d, e, b\), or info (if info is present).

\section*{Stage 2}
1. The data distribution is inconsistent for \(d\) and \(e\).
2. info is present and:
a. The data distribution is unsupported for info.
b. info is not distributed (CYCLIC).
c. The vector for info is replicated.
3. The process grid is not the same for \(d\) and \(e\).
4. \(b\) is not distributed (BLOCK,*).
5. \(d\) or \(e\) is not distributed (BLOCK).
6. The vector for \(d\) or \(e\) is replicated.

\section*{Stage 3}
1. The shape of the assumed-shape arrays for \(d, e\), and \(b\) is incompatible:
a. \(\operatorname{size}(d) \neq \operatorname{size}(b, 1)\) or
b. \(\operatorname{size}(e) \neq \operatorname{size}(b, 1)\)
2. The block sizes for \(d\), \(e\), and \(b\) are incompatible.
3. The abstract process indices for \(d\), \(e\), and \(b\) are incompatible.
4. The data distribution for \(d\) or \(e\) is unsupported.

Example 1: This example shows how to solve the system \(\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}\), where matrix \(\boldsymbol{A}\) is the same matrix factored in "Example 1" on page 832 for PTTRF.

As in "Example" on page 520, array data is block distributed over 3 processes.

\section*{Notes:}
1. The vectors \(\boldsymbol{d}\) and \(\boldsymbol{e}\) output from PTTRF, are stored in an internal format that depends on the number of processes. These vectors are passed, unchanged, to the solve subroutine PTTRS.
2. The contents of vector af output from PTTRF, is not shown. This vector is passed, unchanged, to the solve subroutine PTTRS.
```

!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: D, E, AF
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
CALL PTTRS(D , E , B , AF)
-or-
!HPF\$ PROCESSORS PROC(3)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: D, E, AF
!HPF\$ DISTRIBUTE (BLOCK,*) ONTO PROC :: B
!HPF\$ DISTRIBUTE (CYCLIC) ONTO PROC :: INFO
CALL PTTRS(D , E , B , AF , INFO=INFO)
Input: Vector d of size 12:

```
    .25
    . 25
    . 25
    4.0
    . 20
    . 24
    .25
    4.01
    4.01
        .25
        . 24
        . 20

Vector \(\boldsymbol{e}\) of size 12:
\(\left[\begin{array}{c}2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ .49 \\ .48 \\ .40 \\ .\end{array}\right]\)

Rectangular \(12 \times 3\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrr}70.0 & 8.0 & 6.0 \\ 99.0 & 18.0 & 9.0 \\ 90.0 & 27.0 & 9.0 \\ 81.0 & 36.0 & 9.0 \\ 72.0 & 45.0 & 9.0 \\ 63.0 & 54.0 & 9.0 \\ 54.0 & 63.0 & 9.0 \\ 45.0 & 72.0 & 9.0 \\ 36.0 & 81.0 & 9.0 \\ 27.0 & 90.0 & 9.0 \\ 18.0 & 99.0 & 9.0 \\ 5.0 & 82.0 & 7.0\end{array}\right]\)

Output: Rectangular \(12 \times 3\) matrix \(\boldsymbol{B}\) :
\(\left[\begin{array}{rrr}12.0 & 1.0 & 1.0 \\ 11.0 & 2.0 & 1.0 \\ 10.0 & 3.0 & 1.0 \\ 9.0 & 4.0 & 1.0 \\ 8.0 & 5.0 & 1.0 \\ 7.0 & 6.0 & 1.0 \\ 6.0 & 7.0 & 1.0 \\ 5.0 & 8.0 & 1.0 \\ 4.0 & 9.0 & 1.0 \\ 3.0 & 10.0 & 1.0 \\ 2.0 & 11.0 & 1.0 \\ 1.0 & 12.0 & 1.0\end{array}\right]\)

Vector info of size 3: (if info is present) \(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\)

\section*{Chapter 15. Eigensystem Analysis and Singular Value Analysis (HPF)}

This chapter describes the eigensystem analysis and singular value analysis subroutines that can be called from an HPF program.

\section*{Overview of the Eigensystem Analysis and Singular Value Analysis} Subroutines

The eigensystem analysis and singular value analysis subroutines include a subset of the ScaLAPACK subroutines.

Note: These subroutines are designed to be consistent with the proposals for the Fortran 90 BLAS and the Fortran 90 LAPACK. (See references [30] and [31 ].) If these subroutines do not comply with any eventual proposal for HPF interfaces to the PBLAS and ScaLAPACK, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.
\begin{tabular}{|l|l|l|}
\hline Table 136. List of Eigensystem Analysis and Singular Value Analysis Subroutines (HPF) \\
\hline Descriptive Name & \begin{tabular}{l} 
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline \begin{tabular}{l} 
Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric \\
Matrix
\end{tabular} & SYEVX & 843 \\
\hline Reduce a Real Symmetric Matrix to Tridiagonal Form & SYTRD & 854 \\
\hline Reduce a General Matrix to Upper Hessenberg Form & GEHRD & 860 \\
\hline Reduce a General Matrix to Bidiagonal Form & GEBRD & 865 \\
\hline
\end{tabular}

\section*{Eigensystem Analysis and Singular Value Analysis Subroutines}

This section contains the eigensystem analysis subroutine descriptions.

\section*{SYEVX—Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix}

This subroutine computes selected eigenvalues and, optionally, the eigenvectors of a real symmetric matrix \(\boldsymbol{A}\). Eigenvalues and eigenvectors can be selected by specifying a range of values or a range of indices for the eigenvalues.

The eigenvalue computation performed by this subroutine depends on which of the \(v l\), vu, il, and iu arguments you specify:

Case 1: If \(v l, v u\), \(i l, i u\) are all not present, all eigenvalues are found.
Case 2: If \(v /\) and \(v u\) are present and \(i l\) and \(i u\) not present, then all eigenvalues in the interval \([v /, v u]\) are found.

Case 3: If il or iu, or both, are present and \(v /\) and \(v u\) are not present, then the \(i\) i-th through iu-th eigenvalues are found.

Any other combination of \(v l, v u\), \(i l\), iu being present or not present is considered an input-argument error.

If the assumed-shape arrays for \(\boldsymbol{A}\) and \(\boldsymbol{w}\) have a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [13 ], [21 ], [31 ], [41 ], [24], [25 ], and [26 ].
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 137. Data Types} \\
\hline A, vl, vu, abstol, orfac, Z, w, gap & ifail, iclustr & Subroutine \\
\hline Long-precision real & Integer & SYEVX \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|c|c|c|}
\hline HPF & Case 1 & \begin{tabular}{l}
CALL SYEVX (a, w, uplo) \\
CALL SYEVX (a, w, uplo, abstol=, \(m=, n z=\), orfac=, \(z=\), ifail=, iclustr=, gap=, iclustrsz=, info=)
\end{tabular} \\
\hline HPF & Case 2 & \begin{tabular}{l}
CALL SYEVX ( \(a, w\), uplo, \(v /=, v u=\) ) \\
CALL SYEVX (a, w, uplo, vl=, vu=, abstol=, \(m=, n z=\), orfac=, \(z=\), ifail=, iclustr=, gap=, iclustrsz=, info=)
\end{tabular} \\
\hline HPF & Case 3 & \begin{tabular}{l}
CALL SYEVX ( \(a, w\), uplo, \(i l=, i u=\) ) \\
CALL SYEVX ( \(a, w\), uplo, \(i l=, i u=\), abstol=, \(m=, n z=\), orfac=, \(z=\), ifail=, iclustr=, gap=, iclustrsz=, info=)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the symmetric matrix \(\boldsymbol{A}\), where:
If uplo \(=\) ' \(U\) ', the array contains the upper triangle of the symmetric matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.

If uplo \(=\) ' L ', the array contains the lower triangle of the symmetric matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.

Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 137 on page 843, where size \((a, 1)=\operatorname{size}(a, 2)\). w

See On Return.
uplo
indicates whether the upper or lower triangular part of the symmetric matrix \(\boldsymbol{A}\) is referenced, where:
If uplo = 'U', the upper triangular part is referenced.
If uplo = ' L ', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo \(=\) ' \(U\) ' or ' L '.
v/
has the following meaning:
If \(v /\) and \(v u\) are present and il and \(i u\) are not present, then \(v /\) is the lower bound of the interval to be searched for eigenvalues.

Type: optional
Default: none
Specified as: a number of the data type indicated in Table 137 on page 843;
\(v l<v u\).
vu
has the following meaning:
If \(v l\) and \(v u\) are present and il and \(i u\) are not present, then \(v u\) is the upper bound of the interval to be searched for eigenvalues.
Type: optional
Default: none
Specified as: a number of the data type indicated in Table 137 on page 843;
\(v l<v u\).
il
has the following meaning:
If il is present and \(v /\) and \(v u\) are not present, then il is the index (from smallest to largest) of the smallest eigenvalue to be returned.
Type: optional
Default: il = 1
Specified as: a fullword integer; il \(\geq 1\).
iu
has the following meaning:
If \(i u\) is present and \(v /\) and \(v u\) are not present, then \(i u\) is the index (from smallest to largest) of the largest eigenvalue to be returned.
Type: optional
Default: iu = size(a,1)
Specified as: a fullword integer; \(\min (i l, \operatorname{size}(a, 1)) \leq i u \leq \operatorname{size}(a, 1)\).
abstol
is the absolute tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to:
abstol+ \(\varepsilon(\max (|a|,|b|))\)
where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon(\operatorname{norm}(\boldsymbol{T})\) is used in its place, where \(\operatorname{norm}(\boldsymbol{T})\) is the 1 -norm of the tridiagonal matrix obtained by reducing \(\boldsymbol{A}\) to tridiagonal form. For most problems, this is the appropriate level of accuracy to request.
For certain strongly graded matrices, greater accuracy can be obtained in very small eigenvalues by setting abstol to a very small positive number. However, if abstol is less than:
\[
\sqrt{u n f l}
\]
where unfl is the underflow threshold, then:
\[
\sqrt{u n f l}
\]
is used in its place.
Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold-that is, (2)(unf).
If \(z\) is present, then setting abstol to unfl, the underflow threshold, yields the most orthogonal eigenvectors.

\section*{Note:}
- \(\varepsilon\) is approximately \(0.222044604925031308 \mathrm{E}-15\)
- unfl is approximately \(0.222507385850720138 \mathrm{E}-307\)
- \(\sqrt{u n f l}\) is approximately \(0.149166814624004135 \mathrm{E}-153\)

\section*{Type: optional}

Default: abstol \(=\varepsilon(\operatorname{norm}(\boldsymbol{T}))\)
Specified as: a number of the data type indicated in Table 137 on page 843.
\(m\)
See On Return.
\(n z\)
See On Return.
orfac
specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within:
\[
\text { ortol }=(\text { orfac })(\operatorname{norm}(\boldsymbol{A}))
\]
of each other (where norm \((\boldsymbol{A})\) is the 1 -norm of \(\boldsymbol{A}\) ) are to be reorthogonalized.

However, if the workspace is insufficient (see iclustrsz), ortol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process.
If orfac is zero, no reorthogonalization is done.
If orfac is less than zero, a default value of \(10^{-3}\) is used.
Type: optional
Default: orfac \(=10^{-3}\)
Specified as: a number of the data type indicated in Table 137 on page 843.
See On Return.
ifail
See On Return.
iclustr
See On Return.
gap
See On Return.
iclustrsz
is the variable used to calculate how much additional workspace to use for the eigenvector computation.
The computed eigenvectors may not be orthogonal if the minimum workspace is used and ortol is too small; therefore, if you want to guarantee orthogonality (at the cost of potentially compromising performance), set iclustrsz, then the following additional workspace is used to compute the eigenvectors:
(iclustrsz-1)(size(a,1))
where iclustrsz is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
\[
\left\{w_{k}, \ldots, w_{k+i c l u s t r s z-1} \mid w_{j+1} \leq w_{j}+\operatorname{orfac}(2)(\operatorname{norm}(\boldsymbol{A}))\right\}
\]

If the workspace is too small to guarantee orthogonality, this subroutine attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.

Relationship between workspace, orthogonality, and performance:
- If iclustrsz is:
\[
\text { iclustrsz } \geq \operatorname{size}(a, 1) / \sqrt{\text { number_of_processors }()}
\]
then providing enough space to compute all the eigenvectors orthogonally causes serious degradation in performance. In the limit (iclustrsz \(=\operatorname{size}(a, 1)-1)\), performance may be no better than using one process.
- If iclustrsz is:
\[
\text { iclustrsz }=\operatorname{size}(a, 1) / \sqrt{\text { number_of_processors }()}
\]
then reorthogonalizing all eigenvectors increases the total execution time by a factor of 2 or more.
- If iclustrsz is:
iclustrsz \(>\operatorname{size}(a, 1) / \sqrt{\text { number_of_processors }()}\)
then execution time grows as the square of the cluster size, assuming all other factors remain equal and there is enough workspace. Less workspace means less reorthogonalization, but faster execution.

\section*{Type: optional}

Default: iclustrsz = 1
Specified as: a fullword integer; iclustrsz >0.
info
See On Return.

\section*{On Return}
a
is the symmetric matrix \(\boldsymbol{A}\), where:
If uplo = ' U ', the upper triangle and diagonal of the symmetric matrix \(\boldsymbol{A}\) are overwritten; that is, the original input is not preserved.
If uplo \(=\) ' L ', the lower triangle and diagonal of the symmetric matrix \(\boldsymbol{A}\) are overwritten; that is, the original input is not preserved.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 137 on page 843.
w
On normal exit (see info), it is the vector \(\boldsymbol{w}\), containing the selected eigenvalues in ascending order in the first \(m\) elements of \(\boldsymbol{w}\).

A copy of \(\boldsymbol{w}\) is aligned with every element of \(\boldsymbol{A}\) :
!HPF\$ ALIGN W(*) WITH A(*,*)
Type: required
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 137 on page 843, where size \((w)=\operatorname{size}(a, 1)\).
is the number of eigenvalues found.
Type: optional
Returned as: a fullword integer; \(0 \leq m \leq \operatorname{size}(a, 1)\).
\(n z\)
has the following meaning:
If \(z\) is not present, then \(n z\) is ignored.
If \(z\) is present, then \(n z\) is the number of eigenvectors computed-that is, the number of columns of \(\boldsymbol{Z}\) used in the computation. On output, \(n z=m\), unless there is insufficient space and this subroutine is not able to detect it before starting the computation.

Note: This subroutine is able to detect insufficient space without computation, unless \(v /\) and \(v u\) are present and eigenvalues are being selected by specifying a range of values.
To get all the eigenvectors requested, you must supply sufficient space to hold the eigenvectors in \(\boldsymbol{Z}\) and sufficient workspace to compute them must be available.

Type: optional
Returned as: a fullword integer; \(0 \leq n z \leq m\).
is the general matrix \(\boldsymbol{Z}\). On normal exit (see info), the first \(m\) columns of the matrix \(\boldsymbol{Z}\) contain the orthonormal eigenvectors of the symmetric matrix \(\boldsymbol{A}\), corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of the general matrix \(\boldsymbol{Z}\) contains the last approximation to the eigenvector, and the index of the eigenvector is returned in ifail, if ifail is present.
Type: optional
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 137 on page 843, where \(\operatorname{size}(z, 1)=\operatorname{size}(a, 1)\) and \(\operatorname{size}(z, 2)=\operatorname{size}(a, 2)\).
ifail
has the following meaning:
If \(z\) is not present, then ifail is ignored.
If \(z\) is present, it is vector ifail, where:
- If there is a normal exit (see info), the first \(m\) elements of ifail are zero.
- If there is an error exit (where one or more eigenvectors failed to converge-see info), ifail contains the indices of the eigenvectors that failed to converge.

A copy of ifail is aligned with every element of \(\boldsymbol{A}\) :
!HPF\$ ALIGN IFAIL(*) WITH A(*,*)

\section*{Type: optional}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 137 on page 843; \(0 \leq\) ifail \(_{i} \leq \operatorname{size}(a, 1)\), where size(ifai) \(=\operatorname{size}(a, 1)\).
iclustr
has the following meaning:
If \(z\) is not present, then iclustr is ignored.
If \(z\) is present, it is vector iclustr, containing the indices of the eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace. Eigenvectors corresponding to clusters of eigenvalues indexed iclustr \(2_{2 i-1}\) to iclustr \({ }_{2 i}\) could not be reorthogonalized due to lack of workspace. Hence, the eigenvectors corresponding to these clusters may not be orthogonal.
iclustr is a zero-terminated vector; that is, the last element of iclustr is set to zero. Assuming that \(k\) is the number of clusters, then:
\[
\text { iclustr }_{2 k} \neq 0 \text { and iclustr }{ }_{2 k+1}=0
\]

A copy of iclustr is aligned with every element of \(\boldsymbol{A}\) :
! HPF\$ ALIGN ICLUSTR(*) WITH A(*,*)
Type: optional
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 137 on page 843; \(0 \leq i_{c}\) custr \(_{i} \leq \operatorname{size}(a, 1)\), where size(iclustr) = (2)(number_of_processors()). gap
has the following meaning:
If \(z\) is not present, then gap is ignored.
If \(z\) is present, it is vector gap, containing the gap between the eigenvalues whose eigenvectors could not be reorthogonalized. The values in this vector correspond to the clusters indicated by iclustr. As a result, the dot product between the eigenvectors corresponding to the \(i\)-th cluster may be as high as \(((C)(\operatorname{size}(a, 1))) /\) gap \(_{i}\), where \(C\) is a small constant.

A copy of gap is aligned with every element of \(\boldsymbol{A}\) :
!HPF\$ ALIGN GAP(*) WITH A(*,*)

\section*{Type: optional}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 137 on page 843, where
size \((g a p)=\) (number_of_processors()).
info
has the following meaning, when info is present:

If info \(=0\), then no input-argument errors or computational errors occurred. This indicates a normal exit.

Note: One use of info in ScaLAPACK is to identify whether input-argument errors occurred. Because Parallel ESSL terminates the application if input-argument errors occur, the setting of info is irrelevant for these errors.

If info \(>0\), then one or more of the following computational errors occurred and the appropriate error messages were issued, indicating an error exit, where:
- If \(\bmod (\) info, 2\() \neq 0\), then one or more eigenvectors failed to converge. Their indices are stored in ifail, if ifail is present. (Ensure that abstol \(=(2)\) (unfl).)
- If \(\bmod (i n f o / 2,2) \neq 0\), then the eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in iclustr, if iclustr is present.
- If \(\bmod (i n f o / 4,2) \neq 0\), then all the eigenvectors between \(v /\) and \(v u\) could not be computed because of insufficient space. The number of eigenvectors computed is returned in \(n z\), if \(n z\) is present.
- If \(\bmod (\) info/8, 2\() \neq 0\), then one of more eigenvalues were not computed. (Ensure that abstol \(=(2)(\) unfl \()\).)

When info is not present and a computational error occurs, the information for the computational error is issued in an error message, and your program is terminated.

\section*{Type: optional}

Returned as: a fullword integer; info \(\geq 0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- \(\operatorname{size}(a, 1)=\operatorname{size}(a, 2)=\operatorname{size}(w)\)
- If \(z\) is present:
\(-\operatorname{size}(z, 1)=\operatorname{size}(a, 1)\)
\(-\operatorname{size}(z, 2)=\operatorname{size}(a, 2)\)
- If ifail and \(z\) are present, size(ifai) \(=\operatorname{size}(a, 1)\)
- If iclustr and \(z\) are present, size(iclustr) \(=(2)\) (number_of_processors())
- If gap and \(z\) are present, size(gap) = (number_of_processors())
2. This subroutine accepts lowercase letters for the uplo argument.
3. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
4. Eigenvectors associated with tightly clustered eigenvalues may not be orthogonal.
5. Eigenvectors that are on different processes are not reorthogonalized. For details, see the argument description for iclustrsz.
6. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
7. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrices, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
8. The restrictions given in "Notes and Coding Rules" on page 611 also apply to this subroutine.
9. An example of the use of this subroutine in a thermal diffusion application program is shown in Appendix B. See "Program Main (HPF)" on page 944.

Function: This subroutine computes selected eigenvalues and, optionally, the eigenvectors of a real symmetric matrix \(\boldsymbol{A}\). Eigenvalues and eigenvectors can be selected by specifying a range of values or a range of indices for the eigenvalues. The computation involves the following steps:
1. Reduce the real symmetric matrix \(\boldsymbol{A}\) to real symmetric tridiagonal form.
2. Compute the requested eigenvalues of the real symmetric tridiagonal matrix using bisection.
3. If requested, compute the eigenvectors of the real symmetric tridiagonal matrix using inverse iteration, and then back transform the eigenvectors to obtain the eigenvectors of the real symmetric matrix \(\boldsymbol{A}\).

Error Conditions: HPF-specific errors are listed below. All errors listed in "Error Conditions" on page 613 also apply to this subroutine; however, for computational errors, if you do not specify the optional info argument, your program terminates as a result of the computational error.

Note: If a computational error occurs, information is stored in ifail, iclustr, and \(n z\) only if these arguments are present.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. It is not possible to determine the type of eigenvalue computation to perform-that is, one of the following valid combinations of \(v l, v u, i l\), and \(i u\) did not occur:
- \(v l\), \(v u, i l\), iu are all not present (all eigenvalues are found).
- \(v /\) and \(v u\) are present and \(i l\) and \(i u\) not present (all eigenvalues in the interval [ \(v l, v u]\) are found).
- il or iu, or both, are present and \(v /\) and \(v u\) are not present (the il-th through \(i u\)-th eigenvalues are found).
2. iclustrsz is present and iclustrsz \(<1\).

\section*{Stage 2}
1. The rank of the ultimate align target is greater than 2 for \(a\).
2. The process rank is not 1 or 2 for a.
3. \(z\) is present and:
a. The rank of the ultimate align target is greater than 2 for \(z\).
b. The process rank is not 1 or 2 for \(z\).
c. The process rank is not the same for \(a\) and \(z\).

Stage 3: \(z\) is present, and the process grid is not the same for \(a\) and \(z\).

\section*{Stage 4}
1. \(z\) is present, and the data distribution is inconsistent for \(a\) and \(z\).
2. \(z\) is not present, and the data distribution is unsupported for a.

Stage 5: \(w\) is not replicated and collapsed.

\section*{Stage 6}
1. \(z\) is present, and the shape of the assumed-shape arrays \(a, z\), and \(w\) is incompatible:
a. \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\) or
b. \(\operatorname{size}(a, 1) \neq \operatorname{size}(w)\) or
c. \(\operatorname{size}(a, 1) \neq \operatorname{size}(z, 1)\) or
d. \(\operatorname{size}(z, 2) \neq \operatorname{size}(a, 2)\)
2. \(z\) is not present, and the shape of the assumed-shape arrays \(a\) and \(w\) is incompatible:
a. \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\) or
b. \(\operatorname{size}(a, 1) \neq \operatorname{size}(w)\)
3. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)

Stage 7: z and the optional arrays, indicated below, are present, and:
1. ifail is not replicated and collapsed.
2. The shape of the assumed-shape arrays for a and ifail is incompatible: size \((a, 1) \neq\) size(ifai).
3. iclustr is not replicated and collapsed.
4. The shape of the assumed-shape array for iclustr is invalid: size(iclustr, 1 ) \(\neq(2)\) (number_of_processors()).
5. gap is not replicated and collapsed.
6. The shape of the assumed-shape array for gap is invalid: size \((g a p, 1) \neq\) (number_of_processors()).

\section*{Stage 8}
1. The data distribution for \(a\) is unsupported.
2. \(z\) is present, and the data distribution for \(z\) is unsupported.

Example: This example shows how to find all the eigenvalues and eigenvectors of a real symmetric matrix \(\boldsymbol{A}\) of order 4. As in "Example" on page 616, array data for \(\boldsymbol{A}\) and \(\boldsymbol{Z}\) is block-cyclically distributed using a \(2 \times 2\) process grid, with a copy of vectors \(\boldsymbol{w}\), ifail, iclustr, and gap each being aligned with every element of \(\boldsymbol{A}\).
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ ALIGN W(*) WITH A(*,*)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, Z
CALL SYEVX(A , W , 'U', Z=Z)
-or-
!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ ALIGN W(*) WITH A(*,*)
!HPF\$ ALIGN IFAIL(*) WITH A(*,*)
!HPF\$ ALIGN ICLUSTR(*) WITH A(*,*)
!HPF\$ ALIGN GAP(*) WITH A(*,*)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A, Z
CALL SYEVX(A, W, 'U', ABSTOL=-1.0D0, M=M, NZ=NZ, ORFAC=-1.0D0, Z=Z,
IFAIL=IFAIL, ICLUSTR=ICLUSTR, GAP=GAP, ICLUSTRSZ=1, INFO=INFO)

```

Input: Symmetric matrix \(\boldsymbol{A}\) of order 4:
\[
\left[\begin{array}{cccc}
5.0 & 4.0 & 1.0 & 1.0 \\
\cdot & 5.0 & 1.0 & 1.0 \\
\cdot & \cdot & 4.0 & 2.0 \\
\cdot & \cdot & \cdot & 4.0
\end{array}\right]
\]

Output: The upper triangle, including the diagonal, of the symmetric matrix \(\boldsymbol{A}\) is overwritten; that is, the original input is not preserved.
\(m=4\) (if \(m\) is present)
\(n z=4\) (if \(n z\) is present)
Vector \(\boldsymbol{w}\) of length 4:
\[
\boldsymbol{w}=(1.00,2.00,5.00,10.00)
\]

General matrix \(\boldsymbol{Z}\) of order 4:
\(\left[\begin{array}{rrrr}0.7071 & 0.0000 & -0.3162 & -0.6325 \\ -0.7071 & 0.0000 & -0.3162 & -0.6325 \\ 0.0000 & -0.7071 & 0.6325 & -0.3162 \\ 0.0000 & 0.7071 & 0.6325 & -0.3162\end{array}\right]\)

Vector ifail of length 4: (if ifail is present)
\[
\text { ifail }=(0,0,0,0)
\]

Vector iclustr of length \(8(=(2)\) (number_of_processors())): (if iclustr is present) iclustr \(=(0,0,0,0,0,0,0,0)\)

Vector gap of length 4 (= number_of_processors()): (if gap is present) gap \(=(-1.0,-1.0,-1.0,-1.0)\)
info \(=0\) (if info is present)

\section*{SYTRD—Reduce a Real Symmetric Matrix to Tridiagonal Form}

This subroutine reduces a real symmetric matrix \(\boldsymbol{A}\) to symmetric tridiagonal form \(\boldsymbol{T}\) by an orthogonal similarity transformation:
\[
T=Q^{\top} A Q
\]

If the assumed-shape array for \(\boldsymbol{A}\) has a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [13 ], [21 ], [31 ], and [41 ].
\begin{tabular}{|c|c|}
\hline Table 138. Data Types \\
\hline \(\boldsymbol{A}, \boldsymbol{d}, \boldsymbol{e}, \tau\) & Subroutine \\
\hline Long-precision real & SYTRD \\
\hline
\end{tabular}

\section*{Syntax}
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL SYTRD \((a, d, e\), tau, uplo \()\) \\
CALL SYTRD ( \(a, d, e\), tau, uplo, info \()\)
\end{tabular} \\
\hline
\end{tabular}

On Entry
a
is the symmetric matrix \(\boldsymbol{A}\), where:
If uplo = ' U ', the array contains the upper triangle of the symmetric matrix \(\boldsymbol{A}\) in its upper triangle, and its strictly lower triangular part is not referenced.

If uplo \(=\) ' L ', the array contains the lower triangle of the symmetric matrix \(\boldsymbol{A}\) in its lower triangle, and its strictly upper triangular part is not referenced.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 138, where size \((a, 1)=\operatorname{size}(a, 2)\).
d
See On Return.
\(e\)
See On Return.
tau
See On Return.
uplo
indicates whether the upper or lower triangular part of the symmetric matrix \(\boldsymbol{A}\) is referenced, where:

If uplo = 'U', the upper triangular part is referenced.
If uplo = 'L', the lower triangular part is referenced.
Type: required
Specified as: a single character; uplo = 'U' or 'L'.
info
See On Return.

\section*{On Return}
a
is the updated symmetric matrix \(\boldsymbol{A}\), containing the results of the computation, where:

If uplo = ' U ', the diagonal and first superdiagonal of \(\boldsymbol{A}\) are overwritten by the corresponding elements of the tridiagonal matrix \(\boldsymbol{T}\). The elements above the first superdiagonal, with \(\tau\), represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of elementary reflectors.

If uplo = 'L', the diagonal and first subdiagonal of \(\boldsymbol{A}\) are overwritten by the corresponding elements of the tridiagonal matrix \(\boldsymbol{T}\). The elements below the first subdiagonal, with \(\tau\), represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of elementary reflectors.

See "Function" on page 856, for more information.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 138 on page 854.
\(d\)
is the updated vector \(\boldsymbol{d}\), containing the diagonal elements of the tridiagonal matrix \(\boldsymbol{T}\).
The elements of \(\boldsymbol{d}\) must be replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\boldsymbol{d}\) is aligned with every row of \(\boldsymbol{A}\) :
!HPF\$ ALIGN D(:) WITH A(*,:)

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 138 on page 854, where size \((d)=\operatorname{size}(a, 1)\).
is the updated vector \(\boldsymbol{e}\), containing the off-diagonal elements of the tridiagonal matrix \(\boldsymbol{T}\), where:

If uplo \(=\) ' U ', then \(\boldsymbol{e}_{1}=0\) and \(\boldsymbol{e}_{2 \text { :size(e) }}\) contains the superdiagonal elements of the tridiagonal matrix \(\boldsymbol{T}\).

If uplo \(=\) 'L', then \(\boldsymbol{e}_{1: \text { size(e)-1 }}\) contains the subdiagonal elements of the tridiagonal matrix \(\boldsymbol{T}\), and \(\boldsymbol{e}_{\text {size }(e)}=0\).
The elements of \(\boldsymbol{e}\) must be replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\boldsymbol{e}\) is aligned with every row of \(\boldsymbol{A}\) :
!HPF\$ ALIGN E(:) WITH A(*,:)

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 138 on page 854, where \(\operatorname{size}(e)=\operatorname{size}(a, 1)\). tau
is the updated vector \(\tau\), containing the scalar factors of the elementary reflectors, where:
If uplo \(=\) ' U ', then \(\tau_{1}=0\) and \(\tau_{2: \text { :size(tau) }}\) contains the scalar factors of the elementary reflectors.
If uplo \(=\) ' L ', then \(\tau_{1: \text { size }}\) (tau) -1 contains the scalar factors of the elementary reflectors and \(\tau_{\text {size(tau) }}=0\)

The elements of \(\tau\) must be replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\tau\) is aligned with every row of \(\boldsymbol{A}\) :
```

!HPF\$ ALIGN TAU(:) WITH A(*,:)

```

Type: required
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 138 on page 854, where size \((\operatorname{tau})=\operatorname{size}(a, 1)\). info
indicates that a successful computation occurred.
Type: optional
Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
\(\operatorname{size}(a, 1)=\operatorname{size}(a, 2)=\operatorname{size}(d)=\operatorname{size}(e)=\operatorname{size}(\operatorname{tau})\)
2. This subroutine accepts lowercase letters for the uplo argument.
3. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
4. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
5. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vectors and matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
6. The restrictions given in "Notes and Coding Rules" on page 623 also apply to this subroutine.

Function: This subroutine reduces a real symmetric matrix \(\boldsymbol{A}\) to symmetric tridiagonal form \(\boldsymbol{T}\) by an orthogonal similarity transformation:

where:
- \(\boldsymbol{A}\) is a symmetric matrix, where \(n=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
- Matrix \(\boldsymbol{Q}\) represents the following:
- For uplo = ' U ', the matrix \(\boldsymbol{Q}\) is the product of elementary reflectors: \(\boldsymbol{Q}=\boldsymbol{H}_{n-1} \ldots \boldsymbol{H}_{2} \boldsymbol{H}_{1}\), where:

For each \(i: \boldsymbol{H}_{i}=\boldsymbol{I}-\boldsymbol{\tau} \boldsymbol{v} \boldsymbol{v}^{\top}\)
\(\tau\) is a real scalar
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{i+1: n}=0\) and \(\boldsymbol{v}_{i}=1\)
\(\boldsymbol{v}_{1: i-1}\) is stored on return in submatrix \(\boldsymbol{A}_{1: i-1, i+1}\)
\(\tau\) is stored on return in \(\tau_{i}\)
\(I\) is the identity matrix

If uplo \(=\) ' U ', then the following example shows the contents of \(\boldsymbol{A}\) on return with \(n=5\) :
\[
\left[\begin{array}{ccccc}
d & e & v_{2} & v_{3} & v_{4} \\
\cdot & d & e & v_{3} & v_{4} \\
\cdot & \cdot & d & e & v_{4} \\
\cdot & \cdot & \cdot & d & e \\
\cdot & \cdot & \cdot & \cdot & d
\end{array}\right]
\]
where:
\(d\) represents the diagonal elements of \(\boldsymbol{T}\)
\(e\) represents the superdiagonal elements of \(\boldsymbol{T}\)
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i}\).
- For uplo = 'L', the matrix \(\boldsymbol{Q}\) is the product of elementary reflectors: \(\boldsymbol{Q}=\boldsymbol{H}_{1} \boldsymbol{H}_{2} \ldots \boldsymbol{H}_{n-1}\),
where:
For each i: \(\boldsymbol{H}_{i}=\boldsymbol{I}-\boldsymbol{\tau} \boldsymbol{v} \boldsymbol{v}^{\top}\)
\(\tau\) is a real scalar
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{1: i}=0\) and \(\boldsymbol{v}_{i+1}=1\).
\(\boldsymbol{v}_{i+2: n}\) is stored on return in submatrix \(\boldsymbol{A}_{i+2: n, i}\)
\(\tau\) is stored on return in \(\tau_{i}\)
\(I\) is the identity matrix.

If uplo \(=\) ' L ', then the following example shows the contents of \(\boldsymbol{A}\) on return with \(n=5\) :
\[
\left[\begin{array}{lllll}
d & \cdot & \cdot & \cdot & \cdot \\
e & d & \cdot & \cdot & \cdot \\
v_{1} & e & d & \cdot & \cdot \\
v_{1} & v_{2} & e & d & \cdot \\
v_{1} & v_{2} & v_{3} & e & d
\end{array}\right]
\]
where:
\(d\) represents the diagonal elements of \(\boldsymbol{T}\) \(e\) represents the subdiagonal elements of \(\boldsymbol{T}\)
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i}\).

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 625 also apply to this subroutine.

Input-Argument Errors
Stage 1
1. The rank of the ultimate align target is greater than 2 for \(a, d\), \(e\), or tau.
2. The process rank is not the same for \(a, d, e\), and tau.
3. The process rank is not 1 or 2 for \(a, d, e\), or tau.

Stage 2: The process grid is not the same for \(a, d, e\), and tau.
Stage 3: The data distribution is unsupported for a.
Stage 4: The data distribution is unsupported for \(d, e\), or tau.

\section*{Stage 5}
1. The shape of the assumed-shape arrays \(a, d, e\), and tau is incompatible:
a. \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\) or
b. size \((a, 2) \neq \operatorname{size}(d)\) or
c. \(\operatorname{size}(d) \neq \operatorname{size}(e)\) or
d. \(\operatorname{size}(e) \neq \operatorname{size}(t a u)\)
2. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)
3. The column block size for \(a\) and the block sizes for \(d\), \(e\), and tau are incompatible.

\section*{Stage 6}
1. The abstract process column indices for \(a, d, e\), and tau are incompatible.
2. The data distribution for \(a\) is unsupported.

Example: This example shows the reduction of a symmetric matrix of order 4 to symmetric tridiagonal form. As in "Example" on page 626, array data for \(\boldsymbol{A}\) is block-cyclically distributed using a \(2 \times 2\) process grid, with \(\boldsymbol{d}, \boldsymbol{e}\), and \(\tau\) replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\boldsymbol{d}\), \(e\), and tau is aligned with every row of \(\boldsymbol{A}\).
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ ALIGN D(:) WITH A(*,:)
!HPF\$ ALIGN E(:) WITH A(*,:)
!HPF\$ ALIGN TAU(:) WITH A(*,:)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A
CALL SYTRD(A , D , E , TAU , 'U')
-or-
CALL SYTRD(A , D , E , TAU , 'U' , INFO)
Input: Symmetric matrix \boldsymbol{A} of order 4:

```
\(\left[\begin{array}{cccc}5.0 & 4.0 & 1.0 & 1.0 \\ \cdot & 5.0 & 1.0 & 1.0 \\ \cdot & \cdot & 4.0 & 2.0 \\ \cdot & \cdot & \cdot & 4.0\end{array}\right]\)

Output: Symmetric matrix \(\boldsymbol{A}\) of order 4:
\(\left[\begin{array}{cccr}1.00 & 0.00 & 0.41 & 0.22 \\ \cdot & 6.00 & 2.83 & 0.22 \\ \cdot & \cdot & 7.00 & -2.45 \\ \cdot & \cdot & \cdot & 4.00\end{array}\right]\)

Vector \(\boldsymbol{d}\) of length 4:
\[
\left[\begin{array}{llll}
1.00 & 6.00 & 7.00 & 4.00
\end{array}\right]
\]

Vector \(\boldsymbol{e}\) of length 4:
\[
\left[\begin{array}{llll}
0.00 & 0.00 & 2.83 & -2.45
\end{array}\right]
\]

Vector \(\tau\) of length 4:
\[
\left[\begin{array}{llll}
0.00 & 0.00 & 1.71 & 1.82
\end{array}\right]
\]
info \(=0\) (if info is present)

\section*{GEHRD—Reduce a General Matrix to Upper Hessenberg Form}

This subroutine reduces a real general matrix \(\boldsymbol{A}\) to upper Hessenberg form \(\boldsymbol{H}\) by an orthogonal similarity transformation:
\[
H=Q^{\top} A Q
\]
where \(\boldsymbol{A}\) represents the general submatrix \(\boldsymbol{A}_{\text {ilo:ihi, ilo:ihi }} \tau_{1 \text { :ilo-1 }}\) and
If the assumed-shape array \(\boldsymbol{A}\) has a size of zero, no computation is performed and the subroutine returns after doing some error checking. Then, if ihi = ilo, the subroutine returns after doing some parameter checking and setting \(\tau_{\text {ihisize(tau) }}\) to zero.

See references [13 ], [21 ], [31 ], and [41 ].
\begin{tabular}{|c|c|}
\hline Table 139. Data Types \\
\hline \(\boldsymbol{A}, \tau\) & Subroutine \\
\hline Long-precision real & GEHRD \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL GEHRD ( \(a\), tau \()\) \\
CALL GEHRD ( \(a\), tau, ilo, ihi, info \()\)
\end{tabular} \\
\hline
\end{tabular}

On Entry
a
is the general matrix \(\boldsymbol{A}\).
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 139, where size \((a, 1)=\) size \((a, 2)\).
tau
See On Return.
ilo
lower range of the rows or columns in the general submatrix \(\boldsymbol{A}\) used in the computation.
Type: optional
Default: ilo = 1
Specified as: a fullword integer; \(1 \leq i l o \leq \max (1, \operatorname{size}(a, 1))\).
ihi
upper range of the rows or columns in the general submatrix \(\boldsymbol{A}\) used in the computation.
Type: optional
Default: ihi = size \((a, 1)\)
Specified as: a fullword integer; min(ilo, size \((a, 1)) \leq i h i \leq \operatorname{size}(a, 1)\).
info
See On Return.

\section*{On Return}
a
is the general matrix \(\boldsymbol{A}\), containing the results of the computation.
The upper triangle and the first subdiagonal of \(\boldsymbol{A}\) are overwritten by the corresponding elements of the upper Hessenberg matrix \(\boldsymbol{H}\). The elements below the first subdiagonal, with \(\tau\), represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of elementary reflectors.

See "Function" on page 862, for more information.
Type: required
Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 139 on page 860.
tau
is the updated vector \(\tau\), where:
- \(\tau_{i l o: i h i-1}\) contains the scalar factors of the elementary reflectors.
- \(\tau_{1 \text { :ilo-1 }}\) are set to zero.
- \(\tau_{\text {ihi:size }(t a u)}\) are set to zero.

The elements of \(\tau\) must be replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\tau\) is aligned with every row of \(\boldsymbol{A}\) :
!HPF\$ ALIGN TAU(:) WITH A(*,:)

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 139 on page 860, where \(\operatorname{size}(t a u)=\max (\operatorname{size}(a, 1)-1,0)\).
info
indicates that a successful computation occurred.
Type: optional
Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- \(\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
- \(\operatorname{size}(t a u)=\max (\operatorname{size}(a, 1)-1,0)\)
2. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
3. On entry, \(\boldsymbol{A}\) must already be:
- Upper triangular in rows (1:ilo-1) and (ihi+1:size(a,1))
- Upper triangular in columns (1:ilo-1) and (ihi+1:size(a,2))

If this is not the case, do one of the following:
- Do not specify the ilo and ihi arguments.
- Set ilo = 1 and ihi = size(a,1).

If you specify the ilo and ihi arguments, then:
- If size \((a, 1)=0\), set \(i l o=1\) and \(i h i=0\).
- If size \((a, 1)>0\), set \(1 \leq i l o \leq i h i \leq \operatorname{size}(a, 1)\).
4. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
5. Block-cyclic data distribution is required for your array data. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vector and matrix, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
6. The restrictions given in "Notes and Coding Rules" on page 633 also apply to this subroutine.

Function: This subroutine reduces a real general matrix \(\boldsymbol{A}\) to upper Hessenberg form \(\boldsymbol{H}\) by an orthogonal similarity transformation:
\[
H=Q^{\top} A Q
\]
where:
- \(\boldsymbol{A}\) represents the general submatrix \(\boldsymbol{A}_{\text {ilo:ihi; ilo:ihi; }}\) where \(n=\operatorname{size}(a, 1)=\operatorname{size}(a, 2)\)
- Matrix \(\boldsymbol{Q}\) is represented as a product of (ihi-ilo) elementary reflectors:
\(\boldsymbol{Q}=\boldsymbol{H}_{i l o} \boldsymbol{H}_{i l o+1} \ldots \boldsymbol{H}_{i h i-1}\)
where:
For each i: \(\boldsymbol{H}_{i}=\boldsymbol{I}-\boldsymbol{\tau} \boldsymbol{v \boldsymbol { v } ^ { \top }}\)
\(\tau\) is a real scalar
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{1: i}=0, \boldsymbol{v}_{i+1}=1\), and \(\boldsymbol{v}_{i h i+1: n}=0\)
\(\boldsymbol{v}_{i+2: \text { ihi }}\) is stored on return in \(\boldsymbol{A}_{i+i l o+1 \text { :ihi, ilo+i-1 }}\)
\(\tau\) is stored on return in \(\tau_{\text {i+ilo-1 }}\)
\(I\) is the identity matrix

The following example shows the contents of the general submatrix \(\boldsymbol{A}\), within a matrix of order 7 , on entry with ilo \(=2\) and \(i h i=6\) :
\[
\left[\begin{array}{ccccccc}
a & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot & a & a & a & a & a & a \\
\cdot \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & a
\end{array}\right]
\]

Following is the general submatrix \(\boldsymbol{A}\) on return:
\(\left[\begin{array}{lllllll}a & a & h & h & h & h & a \\ \cdot & a & h & h & h & h & a \\ \cdot & h & h & h & h & h & h \\ \cdot & v_{2} & h & h & h & h & h \\ \cdot & v_{2} & v_{3} & h & h & h & h \\ \cdot & v_{2} & v_{3} & v_{4} & h & h & h \\ \cdot & \cdot & \cdot & \cdot & . & a\end{array}\right]\)
where:
a represents an element of the original submatrix \(\boldsymbol{A}\).
\(h\) represents a updated element of the upper Hessenberg matrix \(\boldsymbol{H}\).
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i O+i-1}\).
Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 635 also apply to this subroutine.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a\) or tau.
2. The process rank is not the same for \(a\) and tau.
3. The process rank is not 1 or 2 for \(a\) or tau.

Stage 2: The process grid is not the same for a and tau.
Stage 3: The data distribution is unsupported for a.
Stage 4: The data distribution is unsupported for tau.

\section*{Stage 5}
1. The shape of the assumed-shape arrays \(a\) and tau is incompatible:
a. \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\) or
b. size \((t a u) \neq \max (\operatorname{size}(a, 1)-1,0)\)
2. The shape of the assumed-shape array for \(a\) is invalid: \(\operatorname{size}(a, 1) \neq \operatorname{size}(a, 2)\)
3. size \((\operatorname{tau}) \neq 0\), and the column block size for \(a\) and the block size for tau are incompatible.

\section*{Stage 6}
1. ilo is present, and ilo \(<1\) or ilo \(>\max (1, \operatorname{size}(a, 1))\).
2. ihi is present, and \(i h i<\min (i l o, \operatorname{size}(a, 1))\) or ihi \(>\operatorname{size}(a, 1)\)

\section*{Stage 7}
1. size \((\operatorname{tau}) \neq 0\), and the abstract process column indices for \(a\) and tau are incompatible.
2. The data distribution for \(a\) is unsupported.

Example: This example shows the reduction of a general matrix of order 3 to upper Hessenberg form. As in "Example" on page 636, array data for \(\boldsymbol{A}\) is block-cyclically distributed using a \(2 \times 2\) process grid, with \(\tau\) replicated across each
element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of tau is aligned with every row of \(\boldsymbol{A}\).
!HPF\$ PROCESSORS PROC \((2,2)\)
!HPF\$ ALIGN TAU(:) WITH A(*,:)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A
CALL GEHRD ( A , TAU )
-or-
CALL GEHRD ( A , TAU , 1, 3, INFO )
Input: General matrix \(\boldsymbol{A}\) of order 3:
\[
\left[\begin{array}{rrr}
33.0 & 16.0 & 72.0 \\
-24.0 & -10.0 & -57.0 \\
-8.0 & -4.0 & -17.0
\end{array}\right]
\]

Output: General matrix \(\boldsymbol{A}\) of order 3:
\(\left[\begin{array}{rrr}33.00 & -37.95 & 63.25 \\ 25.30 & -29.00 & 53.00 \\ 0.16 & 0.00 & 2.00\end{array}\right]\)

Vector \(\tau\) of length 2:
\[
\begin{aligned}
& {\left[\begin{array}{ll}
1.95 & 0.00
\end{array}\right]} \\
& \text { info }=0 \text { (if info is present) }
\end{aligned}
\]

\section*{GEBRD—Reduce a General Matrix to Bidiagonal Form}

This subroutine reduces a real general matrix \(\boldsymbol{A}\) to upper or lower bidiagonal form \(\boldsymbol{B}\) by an orthogonal transformation:
\[
B=Q^{\top} A P
\]
where:
- If \(\operatorname{size}(a, 1) \geq \operatorname{size}(a, 2)\), then \(\boldsymbol{B}\) is upper bidiagonal.
- If \(\operatorname{size}(a, 1)<\operatorname{size}(a, 2)\), then \(\boldsymbol{B}\) is lower bidiagonal.

If the assumed-shape array for \(\boldsymbol{A}\) has a size of zero, no computation is performed and the subroutine returns after doing some parameter checking.

See references [13 ], [21 ], [31 ], and [41 ].
\begin{tabular}{|c|c|}
\hline Table 140. Data Types \\
\hline \(\boldsymbol{A}, \boldsymbol{d}, \boldsymbol{e}, \tau_{q}, \tau_{p}\) & Subroutine \\
\hline Long-precision real & GEBRD \\
\hline
\end{tabular}

Syntax
\begin{tabular}{|l|l|}
\hline HPF & \begin{tabular}{l} 
CALL GEBRD \((a, d, e\), tauq, taup \()\) \\
CALL GEBRD ( \(a, d, e\), tauq, taup, info \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
a
is the general matrix \(\boldsymbol{A}\).
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 140.
d
See On Return.
\(e\)
See On Return.
tauq
See On Return.
taup
See On Return.
info
See On Return.

\section*{On Return}
a
is the updated general matrix \(\boldsymbol{A}\), containing the results of the computation, where:
- If size \((a, 1) \geq \operatorname{size}(a, 2)\), the diagonal and first superdiagonal of \(\boldsymbol{A}\) are overwritten by the corresponding elements of the upper bidiagonal matrix \(\boldsymbol{B}\). The elements below the diagonal, with \(\tau_{q}\), represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of elementary reflectors. The elements above the
first superdiagonal, with \(\tau_{p}\), represent the orthogonal matrix \(\boldsymbol{P}\) as a product of elementary reflectors.
- If \(\operatorname{size}(a, 1)<\operatorname{size}(a, 2)\), the diagonal and first subdiagonal of \(\boldsymbol{A}\) are overwritten by the corresponding elements of the lower bidiagonal matrix \(\boldsymbol{B}\). The elements below the first subdiagonal, with \(\tau_{q}\), represent the orthogonal matrix \(\boldsymbol{Q}\) as a product of elementary reflectors. The elements above the diagonal, with \(\tau_{p}\), represent the orthogonal matrix \(\boldsymbol{P}\) as a product of elementary reflectors.

See "Function" on page 868, for more information.

\section*{Type: required}

Returned as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 140 on page 865.
is the updated vector \(\boldsymbol{d}\), where:
- If \(\operatorname{size}(a, 1) \geq \operatorname{size}(a, 2)\), then \(\boldsymbol{d}\) contains the diagonal elements of the bidiagonal matrix \(\boldsymbol{B}\).

The elements of \(\boldsymbol{d}\) must be replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\boldsymbol{d}\) is aligned with every row of A:
!HPF\$ ALIGN D(:) WITH A(*,:)
- If \(\operatorname{size}(a, 1)<\operatorname{size}(a, 2)\), then \(\boldsymbol{d}\) contains the diagonal elements of the bidiagonal matrix \(\boldsymbol{B}\).

The elements of \(\boldsymbol{d}\) must be replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of \(\boldsymbol{d}\) is aligned with every column of
A:
!HPF\$ ALIGN D(:) WITH A(:,*)
Type: required
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 140 on page 865, where
\(\operatorname{size}(d)=\min (\operatorname{size}(a, 1), \operatorname{size}(a, 2))\).
\(e\)
is the updated vector \(\boldsymbol{e}\), where:
- If \(\operatorname{size}(a, 1) \geq \operatorname{size}(a, 2)\), then \(\boldsymbol{e}\) contains the superdiagonal elements of the bidiagonal matrix \(\boldsymbol{B}\).

The elements of e must be replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of \(\boldsymbol{e}\) is aligned with every column of A:
!HPF\$ ALIGN E(:) WITH A(:,*)
- If \(\operatorname{size}(a, 1)<\operatorname{size}(a, 2)\), then \(\boldsymbol{e}\) contains the subdiagonal elements of the bidiagonal matrix \(\boldsymbol{B}\).

The elements of \(\boldsymbol{e}\) must be replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\boldsymbol{e}\) is aligned with every row of A:
!HPF\$ ALIGN E(:) WITH A(*,:)

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 140 on page 865, where \(\operatorname{size}(e)=\max (\min (\operatorname{size}(a, 1), \operatorname{size}(a, 2))-1,0)\).
tauq
is the updated matrix \(\tau_{q}\), containing the scalar factors of the elementary reflectors which represent the orthogonal matrix \(\boldsymbol{Q}\). See "Function" on page 868 for more details.
The elements of \(\tau_{q}\) must be replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\tau_{q}\) is aligned with every row of \(\boldsymbol{A}\) :
!HPF\$ ALIGN TAUQ(:) WITH A(*,:)

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 140 on page 865, where \(\operatorname{size}(\operatorname{tauq})=\min (\operatorname{size}(a, 1), \operatorname{size}(a, 2))\).
taup
is the updated matrix \(\tau_{p}\), containing the scalar factors of the elementary reflectors which represent the orthogonal matrix \(\boldsymbol{P}\). See "Function" on page 868 for more details.

The elements of \(\tau_{p}\) must be replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of \(\tau_{p}\) is aligned with every column of \(\boldsymbol{A}\) :
!HPF\$ ALIGN TAUP(:) WITH A(:,*)

\section*{Type: required}

Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 140 on page 865, where
size \((\) taup \()=\min (\operatorname{size}(a, 1)\), size \((a, 2))\).
info
indicates that a successful computation occurred.
Type: optional
Returned as: a fullword integer; info \(=0\).

\section*{Notes and Coding Rules}
1. The assumed-shape arrays must have the exact size required for the computation, that is:
- \(\operatorname{size}(d)=\min (\operatorname{size}(a, 1), \operatorname{size}(a, 2))\)
- \(\operatorname{size}(e)=\max (\min (\operatorname{size}(a, 1)\), size \((a, 2))-1,0)\)
- \(\operatorname{size}(\operatorname{tauq})=\min (\operatorname{size}(a, 1), \operatorname{size}(a, 2))\)
- \(\operatorname{size}(\) taup \()=\min (\operatorname{size}(a, 1), \operatorname{size}(a, 2))\)
2. Data directives for this subroutine cannot be included in the interface module PESSL_HPF, because the alignment requirements for \(d\) and \(e\) depend on the size of the matrix \(\boldsymbol{A}\); therefore, you must code the data directives for all the assumed-shape arrays explicitly in your program according to the rules described above.

Block-cyclic data distribution is required for your array data. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79. For a sample program including directives, see Figure 9 on page 108.
3. The assumed-shape arrays must have no common elements; otherwise, results are unpredictable.
4. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
5. The restrictions given in "Notes and Coding Rules" on page 645 also apply to this subroutine.

Function: This subroutine reduces a real general matrix \(\boldsymbol{A}\) to upper or lower bidiagonal form \(\boldsymbol{B}\) by an orthogonal transformation:
\[
B=Q^{\top} A P
\]
where:
- \(\boldsymbol{A}\) is a general matrix, where \(m=\operatorname{size}(a, 1)\) and \(n=\operatorname{size}(a, 2)\).
- If \(m \geq n\), then \(\boldsymbol{B}\) is upper bidiagonal, and matrices \(\boldsymbol{Q}\) and \(\boldsymbol{P}\) are represented as the product of elementary reflectors:
\[
\begin{array}{lllll}
\boldsymbol{Q}=\boldsymbol{H}_{1} & \boldsymbol{H}_{2} & \boldsymbol{H}_{n} \\
\boldsymbol{P}=\boldsymbol{G}_{1} & \boldsymbol{G}_{2} & \ldots & \boldsymbol{G}_{n-1}
\end{array}
\]
where:
For each i: \(\boldsymbol{H}_{\boldsymbol{i}}=\boldsymbol{I}-\boldsymbol{\tau}_{q} \boldsymbol{V} \boldsymbol{V}^{\top}\)
For each \(i: \boldsymbol{G}_{\boldsymbol{i}}=\boldsymbol{I}-\tau_{p} \boldsymbol{u} \boldsymbol{u}^{\top}\)
\(\tau_{q}\) and \(\tau_{p}\) are real scalars, where:
\[
\tau_{q} \text { is stored on return in } \tau_{q_{i}}
\]
\[
\tau_{p} \text { is stored on return in } \tau_{p_{i}}
\]
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{1: i-1}=0\) and \(\boldsymbol{v}_{i}=1\)
\(\boldsymbol{v}_{i+1: m}\) is stored on return in submatrix \(\boldsymbol{A}_{i+1: m, i}\) \(\boldsymbol{u}\) is a real vector with \(\boldsymbol{u}_{1: i}=0\) and \(\boldsymbol{u}_{i+1}=1\) \(\boldsymbol{u}_{i+2: n}\) is stored on return in submatrix \(\boldsymbol{A}_{i, i+2: n}\) \(I\) is the identity matrix

The following example shows the contents of \(\boldsymbol{A}\) on return with \(m=6\) and \(n=5\) :
\[
\left[\begin{array}{lllll}
d & e & u_{1} & u_{1} & u_{1} \\
v_{1} & d & e & u_{2} & u_{2} \\
v_{1} & v_{2} & d & e & u_{3} \\
v_{1} & v_{2} & v_{3} & d & e \\
v_{1} & v_{2} & v_{3} & v_{4} & d \\
v_{1} & v_{2} & v_{3} & v_{4} & v_{5}
\end{array}\right]
\]
where:
\(d\) represents the diagonal elements of \(\boldsymbol{B}\)
\(e\) represents the off-diagonal elements of \(\boldsymbol{B}\)
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{\boldsymbol{i}}\). \(u_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{G}_{i}\).
- If \(m<n\), then \(\boldsymbol{B}\) is lower bidiagonal, and matrices \(\boldsymbol{Q}\) and \(\boldsymbol{P}\) are represented as the product of elementary reflectors:
\[
\begin{aligned}
& \boldsymbol{Q}=\boldsymbol{H}_{1} \boldsymbol{H}_{2} \ldots \boldsymbol{H}_{m-1} \\
& \boldsymbol{P}=\boldsymbol{G}_{1} \boldsymbol{G}_{2} \ldots \boldsymbol{G}_{m}
\end{aligned}
\]
where:
For each \(i: \boldsymbol{H}_{i}=\boldsymbol{I}-\boldsymbol{\tau}_{q} \boldsymbol{V} \boldsymbol{V}^{\boldsymbol{\top}}\)
For each \(i\) : \(\boldsymbol{G}_{i}=\boldsymbol{I}-\tau_{p} \boldsymbol{u} \boldsymbol{u}^{\top}\)
\(\tau_{q}\) and \(\tau_{p}\) are real scalars, where:
\[
\begin{aligned}
& \tau_{q} \text { is stored on return in } \tau_{q_{i}} \\
& \tau_{p} \text { is stored on return in } \tau_{p_{i}}
\end{aligned}
\]
\(\boldsymbol{v}\) is a real vector with \(\boldsymbol{v}_{1: i}=0\) and \(\boldsymbol{v}_{i+1}=1\)
\(\boldsymbol{v}_{i+2: m}\) is stored on return in submatrix \(\boldsymbol{A}_{i+2: m, i}\)
\(\boldsymbol{u}\) is a real vector with \(\boldsymbol{u}_{1: i-1}=0\) and \(\boldsymbol{u}_{i}=1\)
\(\boldsymbol{u}_{i+1: n}\) is stored on return in submatrix \(\boldsymbol{A}_{i, i+1: n}\)
\(I\) is the identity matrix

The following example shows the contents of \(\boldsymbol{A}\) on return with \(m=5\) and \(n=6\) :
\[
\left[\begin{array}{cccccc}
d & u_{1} & u_{1} & u_{1} & u_{1} & u_{1} \\
e & d & u_{2} & u_{2} & u_{2} & u_{2} \\
v_{1} & e & d & u_{3} & u_{3} & u_{3} \\
v_{1} & v_{2} & e & d & u_{4} & u_{4} \\
v_{1} & v_{2} & v_{3} & e & d & u_{5}
\end{array}\right]
\]
where:
\(d\) represents the diagonal elements of \(\boldsymbol{B}\)
e represents the off-diagonal elements of \(\boldsymbol{B}\)
\(v_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{H}_{i}\).
\(u_{i}\) represents the corresponding elements of the vector defining \(\boldsymbol{G}_{i}\).
Error Conditions: HPF-specific errors are listed below. The input-argument errors and computational errors listed in "Error Conditions" on page 648 also apply to this subroutine.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 2 for \(a, d\), e, tauq, or taup.
2. The process rank is not the same for \(a, d\), e, tauq, and taup.
3. The process rank is not 1 or 2 for \(a, d\), e, tauq, or taup.

Stage 2: The process grid is not the same for a, \(d\), e, tauq, and taup.
Stage 3: The data distribution is unsupported for a.

Stage 4: The data distribution is unsupported for \(d, e\), tauq, or taup.

\section*{Stage 5}
1. The shape of the assumed-shape arrays \(a, d, e\), tauq, and taup is incompatible:
a. \(\operatorname{size}(d) \neq \min (\operatorname{size}(a, 1)\), size \((a, 2))\) or
b. \(\operatorname{size}(e) \neq \max (\min (\operatorname{size}(a, 1)\), \(\operatorname{size}(a, 2))-1,0)\) or
c. \(\operatorname{size}(\) tauq \() \neq \min (\operatorname{size}(a, 1)\), size \((a, 2))\) or
d. \(\operatorname{size}(\operatorname{taup}) \neq \min (\operatorname{size}(a, 1), \operatorname{size}(a, 2))\)
2. The block sizes for \(d\), \(e\) (if \(\operatorname{size}(e) \neq 0\) ), tauq, and taup are incompatible with the corresponding row or column block size of \(a\).

\section*{Stage 6}
1. The abstract process indices for \(a, d, e\) (if \(\operatorname{size}(e) \neq 0\) ), tauq, and taup are incompatible.
2. The data distribution for \(a\) is unsupported.

Example: This example shows the reduction of a general matrix of order 4 by 3 to bidiagonal form. As in "Example" on page 649, array data for \(\boldsymbol{A}\) is block-cyclically distributed using a \(2 \times 2\) process grid, with:
- \(\tau_{q}\) and \(\boldsymbol{d}\) replicated across each element of the corresponding column of \(\boldsymbol{A}\); that is, a copy of \(\tau_{q}\) and \(\boldsymbol{d}\) is aligned with every row of \(\boldsymbol{A}\).
- \(\tau_{p}\) and \(\boldsymbol{e}\) replicated across each element of the corresponding row of \(\boldsymbol{A}\); that is, a copy of \(\tau_{p}\) and \(\boldsymbol{e}\) is aligned with every column of \(\boldsymbol{A}\).
```

!HPF\$ PROCESSORS PROC(2,2)
!HPF\$ ALIGN D(:) WITH A(*,:)
!HPF\$ ALIGN E(:) WITH A(:,*)
!HPF\$ ALIGN TAUQ(:) WITH A(*,:)
!HPF\$ ALIGN TAUP(:) WITH A(:,*)
!HPF\$ DISTRIBUTE (CYCLIC, CYCLIC) ONTO PROC :: A

```
```

CALL GEBRD(A , D , E , TAUQ , TAUP)
-or-
CALL GEbrd(A , D , E , TAUQ , TAUP , INFO)

```

Input: General matrix \(\boldsymbol{A}\) of order \(4 \times 3\) :
\(\left[\begin{array}{rrr}10.0 & 5.0 & 9.0 \\ 2.0 & 16.0 & 10.0 \\ 3.0 & 7.0 & 21.0 \\ 4.0 & 8.0 & 12.0\end{array}\right]\)

Output: General matrix \(\boldsymbol{A}\) of order \(4 \times 3\) :
\(\left[\begin{array}{rrr}-11.36 & 22.80 & 0.56 \\ 0.09 & 23.32 & 1.67 \\ 0.14 & 0.46 & -9.68 \\ 0.19 & 0.22 & 0.08\end{array}\right]\)

Vector \(\boldsymbol{d}\) of length 3:
\[
\left[\begin{array}{lll}
-11.36 & 23.32 & -9.68
\end{array}\right]
\]

Vector \(\boldsymbol{e}\) of length 2:
\[
\begin{array}{r}
22.80 \\
1.67
\end{array}
\]

Vector \(\tau_{q}\) of length 3 :
\[
\left[\begin{array}{lll}
1.88 & 1.59 & 1.99
\end{array}\right]
\]

Vector \(\tau_{p}\) of length 3 :
\(\left[\begin{array}{l}1.52 \\ 0.00 \\ 0.00\end{array}\right]\)
info \(=0\) (if info is present)

\section*{GEBRD}

\section*{Chapter 16. Fourier Transforms (HPF)}

This chapter describes the Fourier Transforms subroutines that can be called from an HPF program.

\section*{Overview of the Fourier Transforms Subroutines}

The Fourier transform subroutines perform mixed-radix transforms of in two and three dimensions. These subroutines are available in short- and long-precision versions. See references [1] and [3].
\begin{tabular}{|l|l|l|}
\hline Table 141. List of Fourier Transform Subroutines (HPF) & \begin{tabular}{l} 
Short- and \\
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline Descriptive Name & FFT & 876 \\
\hline Fourier Transforms in Two Dimensions & FFT & 884 \\
\hline Fourier Transforms in Three Dimensions & & \\
\hline
\end{tabular}

\section*{Acceptable Lengths for the Transforms}

Use the following formula to determine acceptable transform lengths:
\[
n=\left(2^{h}\right)\left(3^{\prime}\right)(5)\left(7^{k}\right)\left(11^{m}\right) \quad \text { for } n \leq 37748736
\]
where:
\(h=1,2, \ldots, 25\)
\(i=0,1,2\)
\(j, k, m=0,1\)
Figure 13 on page 874 lists all the acceptable values for transform lengths in the Fourier transform subroutines.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 \\
\hline 20 & 22 & 24 & 28 & 30 & 32 & 36 & 40 & 42 \\
\hline 44 & 48 & 56 & 60 & 64 & 66 & 70 & 72 & 80 \\
\hline 84 & 88 & 90 & 96 & 110 & 112 & 120 & 126 & 128 \\
\hline 132 & 140 & 144 & 154 & 160 & 168 & 176 & 180 & 192 \\
\hline 198 & 210 & 220 & 224 & 240 & 252 & 256 & 264 & 280 \\
\hline 288 & 308 & 320 & 330 & 336 & 352 & 360 & 384 & 396 \\
\hline 420 & 440 & 448 & 462 & 480 & 504 & 512 & 528 & 560 \\
\hline 576 & 616 & 630 & 640 & 660 & 672 & 704 & 720 & 768 \\
\hline 770 & 792 & 840 & 880 & 896 & 924 & 960 & 990 & 1008 \\
\hline 1024 & 1056 & 1120 & 1152 & 1232 & 1260 & 1280 & 1320 & 1344 \\
\hline 1386 & 1408 & 1440 & 1536 & 1540 & 1584 & 1680 & 1760 & 1792 \\
\hline 1848 & 1920 & 1980 & 2016 & 2048 & 2112 & 2240 & 2304 & 2310 \\
\hline 2464 & 2520 & 2560 & 2640 & 2688 & 2772 & 2816 & 2880 & 3072 \\
\hline 3080 & 3168 & 3360 & 3520 & 3584 & 3696 & 3840 & 3960 & 4032 \\
\hline 4096 & 4224 & 4480 & 4608 & 4620 & 4928 & 5040 & 5120 & 5280 \\
\hline 5376 & 5544 & 5632 & 5760 & 6144 & 6160 & 6336 & 6720 & 6930 \\
\hline 7040 & 7168 & 7392 & 7680 & 7920 & 8064 & 8192 & 8448 & 8960 \\
\hline 9216 & 9240 & 9856 & 10080 & 10240 & 10560 & 10752 & 11088 & 11264 \\
\hline 11520 & 12288 & 12320 & 12672 & 13440 & 13860 & 14080 & 14336 & 14784 \\
\hline 15360 & 15840 & 16128 & 16384 & 16896 & 17920 & 18432 & 18480 & 19712 \\
\hline 20160 & 20480 & 21120 & 21504 & 22176 & 22528 & 23040 & 24576 & 24640 \\
\hline 25344 & 26880 & 27720 & 28160 & 28672 & 29568 & 30720 & 31680 & 32256 \\
\hline 32768 & 33792 & 35840 & 36864 & 36960 & 39424 & 40320 & 40960 & 42240 \\
\hline 43008 & 44352 & 45056 & 46080 & 49152 & 49280 & 50688 & 53760 & 55440 \\
\hline 56320 & 57344 & 59136 & 61440 & 63360 & 64512 & 65536 & 67584 & 71680 \\
\hline 73728 & 73920 & 78848 & 80640 & 81920 & 84480 & 86016 & 88704 & 90112 \\
\hline 92160 & 98304 & 98560 & 101376 & 107520 & 110880 & 112640 & 114688 & 118272 \\
\hline 122880 & 126720 & 129024 & 131072 & 135168 & 143360 & 147456 & 147840 & 157696 \\
\hline 161280 & 163840 & 168960 & 172032 & 177408 & 180224 & 184320 & 196608 & 197120 \\
\hline 202752 & 215040 & 221760 & 225280 & 229376 & 236544 & 245760 & 253440 & 258048 \\
\hline 262144 & 270336 & 286720 & 294912 & 295680 & 315392 & 322560 & 327680 & 337920 \\
\hline 344064 & 354816 & 360448 & 368640 & 393216 & 394240 & 405504 & 430080 & 443520 \\
\hline 450560 & 458752 & 473088 & 491520 & 506880 & 516096 & 524288 & 540672 & 573440 \\
\hline 589824 & 591360 & 630784 & 645120 & 655360 & 675840 & 688128 & 709632 & 720896 \\
\hline 737280 & 786432 & 788480 & 811008 & 860160 & 887040 & 901120 & 917504 & 946176 \\
\hline 983040 & 1013760 & 1032192 & 1048576 & 1081344 & 1146880 & 1179648 & 1182720 & 1261568 \\
\hline 1290240 & 1310720 & 1351680 & 1376256 & 1419264 & 1441792 & 1474560 & 1572864 & 1576960 \\
\hline 1622016 & 1720320 & 1774080 & 1802240 & 1835008 & 1892352 & 1966080 & 2027520 & 2064384 \\
\hline 2097152 & 2162688 & 2293760 & 2359296 & 2365440 & 2523136 & 2580480 & 2621440 & 2703360 \\
\hline 2752512 & 2838528 & 2883584 & 2949120 & 3145728 & 3153920 & 3244032 & 3440640 & 3548160 \\
\hline 3604480 & 3670016 & 3784704 & 3932160 & 4055040 & 4128768 & 4194304 & 4325376 & 4587520 \\
\hline 4718592 & 4730880 & 5046272 & 5160960 & 5242880 & 5406720 & 5505024 & 5677056 & 5767168 \\
\hline 5898240 & 6291456 & 6307840 & 6488064 & 6881280 & 7096320 & 7208960 & 7340032 & 7569408 \\
\hline 7864320 & 8110080 & 8257536 & 8388608 & 8650752 & 9175040 & 9437184 & 9461760 & 10092544 \\
\hline 10321920 & 10485760 & 10813440 & 11010048 & 11354112 & 11534336 & 11796480 & 12582912 & 12615680 \\
\hline 12976128 & 13762560 & 14192640 & 14417920 & 14680064 & 15138816 & 15728640 & 16220160 & 16515072 \\
\hline 16777216 & 17301504 & 18350080 & 18874368 & 18923520 & 20185088 & 20643840 & 20971520 & 21626880 \\
\hline 22020096 & 22708224 & 23068672 & 23592960 & 25165824 & 25231360 & 25952256 & 27525120 & 28385280 \\
\hline 28835840 & 29360128 & 30277632 & 31457280 & 32440320 & 33030144 & 33554432 & 34603008 & 36700160 \\
\hline 37748736 & & & & & & & & \\
\hline
\end{tabular}

Figure 13. Table of Acceptable Lengths for the Transforms

\section*{Fourier Transforms Subroutines}

This section contains the Fourier transform subroutine descriptions.

\section*{FFT—Fourier Transforms in Two Dimensions}

These subroutines compute the mixed-radix two-dimensional discrete Fourier transform of short- or long-precision data:
\[
y_{k 1, k 2}=\text { scale } \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} x_{j 1, j 2} W_{n 1}^{(\text {Isign }) j 1 k 1} W_{n 2}^{(\text {Isign }) j 2 k 2}
\]
for:
\[
\begin{aligned}
& k 1=0,1, \ldots, n 1-1 \\
& k 2=0,1, \ldots, n 2-1
\end{aligned}
\]
where:
\[
\begin{aligned}
& W_{n 1}=e^{-2 \pi(\sqrt{-1}) / n 1} \\
& W_{n 2}=e^{-2 \pi(\sqrt{-1}) / n 2}
\end{aligned}
\]
and where:
\(x_{j 1, j 2}\) are elements of array X .
\(y_{k 1, k 2}\) are elements of array \(Y\).
Isign is + or - (determined by argument isign).
scale is a scalar value.
For scale \(=1\) and isign being positive, you obtain the discrete Fourier transform. For scale \(=1 /((n 1)(n 2))\) and isign being negative, you obtain the inverse Fourier transform.

See references [1] and [3].
\(\left.\left.\begin{array}{|c|c|c|}\hline \text { Table } 142 \text { (Page 1 of 2). Data Types and Sizes for } X \text { and } Y \\ \hline \begin{array}{c}\text { Short- and Long-Precision } \\ \text { Data Types }\end{array} & \begin{array}{c}\text { Size of Assumed-Shaped } \\ \text { Array X }\end{array} & \text { Size of Assumed-Shaped Array Y } \\ \hline \begin{array}{c}\text { Case 1: } \\ \text { Complex-to-Complex }\end{array} & n 1 \times n 2 & n 2 \times n 1 \text { (output is stored in transposed } \\ \text { format) }\end{array}\right] \begin{array}{c}n 1 \times n 2 \text { (output is stored in normal format) } \\ \text { If transpose is not specified, see the } \\ \text { transpose argument and its default description } \\ \text { to find out how the output is stored. }\end{array}\right]\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{4}{|c|}{ Table 142 (Page 2 of 2). Data Types and Sizes for \(X\) and \(Y\)} \\
\hline \begin{tabular}{c} 
Short- and Long-Precision \\
Data Types
\end{tabular} & \begin{tabular}{c} 
Size of Assumed-Shaped \\
Array \(\mathbf{X}\)
\end{tabular} & Size of Assumed-Shaped Array \(\mathbf{Y}\) \\
\hline † This array is stored in FFT-packed storage mode. \\
Notes for All Cases: \\
1. \(n 1\) and \(n 2\) must be fullword integers that are less than or equal to 37748736 , and must be one of the \\
values listed in Figure 13 on page 874 . \\
2. For Cases 1 and 2: \\
\(n 1=\operatorname{size}(x, 1)\) \\
\(n 2=\operatorname{size}(x, 2)\) \\
For Case 3 : \\
\(n 1=2(\operatorname{size}(x, 2))\) \\
\(n 2=\operatorname{size}(x, 1)\)
\end{tabular}

Syntax
\begin{tabular}{|l|l|l|}
\hline HPF & Case 1 & \begin{tabular}{l}
\(\operatorname{CALL~FFT~}(x)\) \\
\(\operatorname{CALL~FFT~}(x, y\), transpose, isign, scale \()\)
\end{tabular} \\
\hline HPF & Cases 2 and 3 & \begin{tabular}{l}
\(\operatorname{CALLFFT}(x, y)\) \\
\\
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
\(x\)
is the array X containing the two-dimensional data to be transformed.
Type: required
Specified as: an assumed-shape array with shape (:,:), containing numbers of the data type indicated in Table 142 on page 876. This array must be aligned on a doubleword boundary.
\(y\)
See On Return.
transpose
has the following meaning:
- If \(y\) is specified, array \(Y\) contains the results of the computation, where:

If transpose \(=\) ' \(\mathrm{T}^{\prime}\), \(y\) is returned in transposed form; that is, \(y\) has dimensions \(n 2 \times n 1\).

If transpose \(=\) ' N ',\(y\) is returned in normal form; that is, \(y\) has dimensions \(n 1 \times n 2\).
- For case 1 , if \(y\) is not specified, array \(X\) contains the result of the computation, where:
If transpose \(={ }^{\prime} \mathrm{T}^{\prime}, x\) is returned in transposed form; that is, \(x\) has dimensions \(n 2 \times n 1\).
If transpose \(=\) ' N ', \(x\) is returned in normal form; that is, \(x\) has dimensions \(n 1 \times n 2\).

Type: optional (case 1); not present (cases 2 and 3 )
Default:
For case 1, if transpose is not present, the subroutine returns the output in transposed form if the output array has a shape which is the transpose of the shape of the input array X. Otherwise, the output is returned in normal form, as follows:
- \(n 1=n 2\), the output array is stored in transposed form and has dimensions \(n 2 \times n 1\)
- \(n 1 \neq n 2\) and the output array has dimensions \(n 2 \times n 1\), the output array is stored in transposed form.
- \(n 1 \neq n 2\) and the output array has dimensions \(n 1 \times n 2\), the output array is stored in normal form.

Specified as: a single character; transpose \(=\) ' T ' or ' N '.
isign
controls the direction of the transform, determining the sign, isign, of the exponent of \(W_{n}\), where:

If isign = positive value, Isign \(=+\) (transforming time to frequency).
If isign \(=\) negative value, Isign \(=-\) (transforming frequency to time).
Type: optional
Default: isign is a positive value.
Specified as: a fullword integer; where isign > 0 or isign < 0 .
scale
is the scaling constant scale.
Type: optional
Default: scale has the following value, where:
- If isign is a positive value or is not specified, scale \(=1\).
- If isign is negative, scale \(=1 /((n 1)(n 2))\).

Specified as: a number of the data type indicated in Table 142 on page 876, where scale \(>0.0\) or scale \(<0.0\).

\section*{On Return}
\(x\)
can only be returned in the complex-to-complex subroutines (case 1) and has the following meaning:
- If \(y\) is specified, array \(Y\) contains the results of the computation and \(x\) is not returned.
- If \(y\) is not specified, array \(X\) contains the result of the computation, where:

If transpose \(=\) ' \(\mathrm{T}^{\prime}, x\) is returned in transposed form; that is, \(x\) has dimensions \(n 2 \times n 1\). In this case, \(n 1\) must equal \(n 2\).
If transpose \(=\) ' N ', \(x\) is returned in normal form; that is \(x\) has dimensions \(n 1 \times n 2\).

In this case, output overwrites input.

Returned as: an assumed-shape array with shape (:,:), containing the numbers of the data type indicated in Table 142 on page 876. This array must be aligned on a doubleword boundary.
has the following meaning:
- If \(y\) is specified, array \(Y\) contains the results of the computation, where:

If transpose \(={ }^{\prime} T\) ', \(y\) is returned in transposed form; that is, \(y\) has dimensions \(n 2 \times n 1\).
If transpose \(=\) ' N ', \(y\) is returned in normal form; that is \(y\) has dimensions \(n 1 \times n 2\)

In this case, \(X\) and \(Y\) must have no common elements; otherwise, results are unpredictable.
- For case 1 , if \(y\) is not specified, array \(X\) contains the result of the computation.

Type: optional (case 1); required (cases 2 and 3 )
Default: Array X contains the result of the computation.
Returned as: an assumed-shape array with shape (:,:), containing the numbers of the data type indicated in Table 142 on page 876. This array must be aligned on a doubleword boundary.

\section*{Notes and Coding Rules}
1. All subroutines accept lowercase letters for the transpose argument.
2. The \(x, y\), and scale arguments must be of the same precision.
3. The assumed shape arrays must have no common elements; otherwise, results are unpredictable.
4. If the output array does not have the correct shape for storing the transformed data, an error message is issued and the application program is terminated. However, this error check occurs before the problem size is verified to consist of only valid transform lengths. This means that if you correct the shape and rerun the program, you may still receive an additional error message if the values for the problem size are not valid transform lengths.
5. An example of the use of this subroutine in a thermal diffusion application program is shown in Appendix B. See subroutine fourier in "Module Fourier (HPF)" on page 954.
6. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
7. Block-column data distribution is required for your array data. In general, distributing your data evenly provides the best work load balance among the processes and allows the use of the most efficient collective communication. However, for your specific problem size and number of processes available, experimentation is necessary to achieve optimal performance.
Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your sequences, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Sequences (Fourier Transform)" on page 81. For a sample program including directives, see Figure 10 on page 109.
8. The restrictions given in "Notes and Coding Rules" on page 659, "Notes and Coding Rules" on page 665, and "Notes and Coding Rules" on page 671 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 659, "Error Conditions" on page 666, and "Error Conditions" on page 672 also apply to these subroutines.

Input-Argument Errors for Case 1

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 1 for \(x\) or \(y\).
2. The process rank is not the same for \(x\) and \(y\).
3. The process rank is not 1 for \(x\) or \(y\).

\section*{Stage 2}
1. The process grid is not the same for \(x\) and \(y\).
2. The data distribution is unsupported for \(x\) or \(y\).

\section*{Stage 3}
1. transpose is present and transpose \(\neq \mathrm{N}^{\prime}\) ' or ' T '

\section*{Stage 4}
1. If transpose \(=\) ' \(T\) ' and \(y\) is present and the shape of \(y\) is not \(n 2 \times n 1\).
2. If transpose \(=\) ' N ' and \(y\) is present and the shape of \(y\) is not \(n 1 \times n 2\).
3. If \(y\) is not present (which means \(x\) contains the result of the computation) and transpose \(=' \mathrm{~T}\) ' and \(n 1 \neq n 2\).

Input-Argument Errors for Cases 2 and 3

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 1 for \(x\) or \(y\).
2. The process rank is not the same for \(x\) and \(y\).
3. The process rank is not 1 for \(x\) or \(y\).

\section*{Stage 2}
1. The process grid is not the same for \(x\) and \(y\).
2. The data distribution is unsupported for \(x\) or \(y\).

\section*{Stage 3}
1. The shape of the assumed-shape arrays \(x\) and \(y\) are incompatible, as follows:

For case 2:
\[
\begin{aligned}
& 2(\operatorname{size}(y, 2)) \neq n 1 \text { or } \\
& \operatorname{size}(y, 1) \neq n 2
\end{aligned}
\]

For case 3:
```

size(y,2) \not= n2 or

```
\(\operatorname{size}(y, 1) \neq n 1\)

Example 1: This example shows how to compute a complex-to-complex, two-dimensional transform. As in "Example 1" on page 659, the array data is block-column distributed using a one-dimensional process grid with two processes. Array \(Y\) is returned in transposed form. The arrays are declared as follows:
```

COMPLEX*16 X(0:7,0:5), Y(0:5,0:7)
REAL*8 SCALE
Input
!HPF\$ PROCESSORS PROC(2)
!HPF\$ DISTRIBUTE (*, BLOCK) ONTO PROC :: X, Y
CALL FFT(X , Y , ISIGN=-1)
-or-
CALL FFT(X , Y , TRANSPOSE='T' , ISIGN=-1 , SCALE=1.0D0/48.0D0)
Matrix X of order 8×6 :

```
\(\left[\begin{array}{rrrrrr}(48.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0)\end{array}\right]\)

Output: Matrix for \(\boldsymbol{Y}\) :
\(\left[\begin{array}{llllllll}(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0)\end{array}\right]\)

Example 2: This example shows how to compute a real-to-complex, two-dimensional transform. As in "Example" on page 666, the array data is block-column distributed using a one-dimensional process grid with two processes. The arrays are declared as follows:
```

REAL*8 X (0:11,0:3)
COMPLEX*16 Y(0:6,0:3)
REAL*8 SCALE
Input
!HPF\$ PROCESSORS PROC(2)
!HPF\$ DISTRIBUTE (*, BLOCK) ONTO PROC :: X, Y
CALL FFT(X(0:7,0:3) , Y(0:3,0:3))
-or-
CALL FFT(X(0:7,0:3) , Y(0:3,0:3) , ISIGN=1 , SCALE=1.0D0)

```

Matrix \(\boldsymbol{X}\) of order \(8 \times 4\) :
\[
\left[\begin{array}{cccc}
1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . \\
. & . & . & . \\
. & . & . & . \\
. & . & . & .
\end{array}\right]
\]

Output: The following matrix \(\boldsymbol{Y}\) is returned in transposed form and stored in FFT-packed storage mode:
\(\left[\begin{array}{cccc}(1.0,1.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,1.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot\end{array}\right]\)

Example 3: This example shows how to compute a complex-to-real, two-dimensional transform. As in "Example" on page 672, the array data is block-column distributed using a one-dimensional process grid with two processes. The arrays are declared as follows:
```

COMPLEX*16 X(0:6,0:3)
REAL*8 Y(0:11,0:3)
REAL*8 SCALE
Input
!HPF\$ PROCESSORS PROC(2)
!HPF\$ DISTRIBUTE (*, BLOCK) ONTO PROC :: X, Y
CALL FFT(X(0:3,0:3) , Y(0:7,0:3) ISIGN=-1)
-or-
CALL FFT(X(0:3,0:3) , Y(0:7,0:3) , ISIGN=-1 , SCALE=1.0D0/32.0D0)

```

The following matrix \(\boldsymbol{X}\) is stored in FFT-packed storage mode:
\(\left[\begin{array}{cccc}(1.0,1.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,1.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot\end{array}\right]\)

Output: Matrix \(\boldsymbol{Y}\) :
\(\left[\begin{array}{cccc}1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ . & . & . & . \\ . & . & . & . \\ . & . & . & . \\ . & . & . & .\end{array}\right]\)

\section*{FFT-Fourier Transforms in Three Dimensions}

These subroutines compute the mixed-radix three-dimensional discrete Fourier transform of short- or long-precision data:
\[
y_{k 1, k 2, k 3}=\text { scale } \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1, j 2, j 3} W_{n 1}^{(\text {Isign)j} 1 k 1} W_{n 2}^{(\text {Isignjj2k2 }} W_{n 3}^{(\text {Isign)j} 3 k 3}
\]
for:
\[
\begin{aligned}
& k 1=0,1, \ldots, n 1-1 \\
& k 2=0,1, \ldots, n 2-1 \\
& k 3=0,1, \ldots, n 3-1
\end{aligned}
\]
where:
\[
\begin{aligned}
& W_{n 1}=e^{-2 \pi(\sqrt{-1}) / n 1} \\
& W_{n 2}=e^{-2 \pi(\sqrt{-1}) / n 2} \\
& W_{n 3}=e^{-2 \pi(\sqrt{-1}) / n 3}
\end{aligned}
\]
and where:
\(x_{j 1, j, 23}\) are elements of array \(X\).
\(y_{k 1, k 2, k 3}\) are elements of array \(Y\).
Isign is + or - (determined by argument isign). scale is a scalar value.

For scale \(=1\) and isign being positive, you obtain the discrete Fourier transform. For scale \(=1 /((n 1)(n 2)(n 3))\) and isign being negative, you obtain the inverse Fourier transform.

See references [1] and [3].
\(\left.\left.\begin{array}{|c|c|c|}\hline \text { Table 143 (Page 1 of 2). Data Types and Sizes for } X \text { and } Y \\
\hline \begin{array}{c}\text { Short- and Long-Precision } \\
\text { Data Types }\end{array} & \begin{array}{c}\text { Size of Assumed-Shaped } \\
\text { Array X }\end{array} & \text { Size of Assumed-Shaped Array Y } \\
\hline \begin{array}{c}\text { Case 1: } \\
\text { Complex-to-Complex }\end{array} & n 1 \times n 2 \times n 3 & n 3 \times n 2 \times n 1 \text { (output is stored in transposed } \\
\text { format) }\end{array}\right] \begin{array}{c}n 1 \times n 2 \times n 3 \text { (output is stored in normal } \\
\text { format) } \\
\text { If transpose is not specified, see the } \\
\text { transpose argument and its default description } \\
\text { to find out how the output is stored. }\end{array}\right] |\)\begin{tabular}{cc}
\(n 3 \times n 2 \times n 1 / 2 \dagger\) \\
\hline \begin{tabular}{c} 
Case 2: \\
Real-to-Complex \\
Case 3: \\
Complex-to-Real
\end{tabular} & \(n 3 \times n 2 \times n 1 / 2 \dagger\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Table 143 (Page 2 of 2). Data Types and Sizes for \(X\) and \(Y\)} \\
\hline \begin{tabular}{c} 
Short- and Long-Precision \\
Data Types
\end{tabular} & \begin{tabular}{c} 
Size of Assumed-Shaped \\
Array \(\mathbf{X}\)
\end{tabular} & Size of Assumed-Shaped Array Y \\
\hline
\end{tabular}
\(\dagger\) This array is stored in FFT-packed storage mode.

\section*{Notes for All Cases:}
1. n1, n2, n3 must be fullword integers that are less than or equal to 37748736 , and must be one of the values listed in Figure 13 on page 874.
2. For cases 1 and 2 :
\[
\begin{aligned}
& n 1=\operatorname{size}(x, 1) \\
& n 2=\operatorname{size}(x, 2) \\
& n 3=\operatorname{size}(x, 3)
\end{aligned}
\]

For case 3:
\[
\begin{aligned}
n 1 & =2(\operatorname{size}(x, 3)) \\
n 2 & =\operatorname{size}(x, 2) \\
n 3 & =\operatorname{size}(x, 1)
\end{aligned}
\]
3. scale is a short- or long-precision real number that must be of the same precision as both \(x\) and \(y\).

\section*{Syntax}
\begin{tabular}{|l|l|l|}
\hline HPF & Case 1 & \begin{tabular}{l}
\(\operatorname{CALL~FFT~}(x)\) \\
\(\operatorname{CALL~FFT~}(x, y\), transpose, isign, scale, \()\)
\end{tabular} \\
\hline HPF & Cases 2 and 3 & \begin{tabular}{l}
\(\operatorname{CALLFFT}(x, y)\) \\
\(\operatorname{CALLFFT}(x, y\), isign, scale \()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Entry}
\(x\)
is the array \(X\) containing the three-dimensional data to be transformed.
Type: required
Specified as: an assumed-shape array with shape (:,:,: ), containing numbers of the data type indicated in Table 143 on page 884 . This array must be aligned on a doubleword boundary.
\(y\)
See On Return.
transpose
has the following meaning:
- If \(y\) is specified, array \(Y\) contains the result of the computation, where:

If transpose \(={ }^{\prime} T^{\prime}\), \(y\) is returned in transposed form; that is, \(y\) has dimensions \(n 3 \times n 2 \times n 1\)
If transpose \(=\) ' N ', \(y\) is returned in normal form; that is, \(y\) has dimensions \(n 1 \times n 2 \times n 3\).
- For case 1, if \(y\) is not specified, array \(X\) contains the result of the computation, where:
If transpose \(={ }^{\prime} T^{\prime}\), \(x\) is returned in transposed form; that is, \(x\) has dimensions \(n 3 \times n 2 \times n 1\).

If transpose \(=\) ' \(\mathrm{N}^{\prime}, x\) is returned in normal form; that is, \(x\) has dimensions \(n 1 \times n 2 \times n 3\).

Type: optional (case 1); not present (cases 2 and 3)
Default:
For case 1, if transpose is not present, the subroutine returns the output in transposed form if the output array has a shape which is the transpose of the shape of the input array \(X\). Otherwise, the output is returned in normal form, as follows:
- \(n 1=n 3\), the output array is stored in transposed form and has dimensions \(n 3 \times n 2 \times n 1\)
- \(n 1 \neq n 3\) and the output array has dimensions \(n 3 \times n 2 \times n 1\), the output array is stored in transposed form.
- \(n 1 \neq n 3\) and the output array has dimensions \(n 1 \times n 2 \times n 3\), the output array is stored in normal form.

Specified as: a single character; transpose \(={ }^{\prime} \mathrm{T}^{\prime}\) or \({ }^{\prime} \mathrm{N}\) '.
isign
controls the direction of the transform, determining the sign, isign, of the exponent of \(W_{n}\), where:

If isign \(=\) positive value, Isign \(=+\) (transforming time to frequency).
If isign \(=\) negative value, Isign \(=-\) (transforming frequency to time).
Type: optional
Default: isign is a positive value.
Specified as: a fullword integer; where isign > 0 or isign \(<0\).
scale
is the scaling constant scale.
Type: optional
Default: scale has the following value, where:
- If isign is a positive value or is not specified, scale \(=1\).
- If isign is negative, scale \(=1 /((n 1)(n 2)(n 3))\).

Specified as: a number of the data type indicated in Table 143 on page 884, where scale \(>0.0\) or scale \(<0.0\).

\section*{On Return}
\(x\)
can only be returned in the complex-to-complex subroutines (case 1) and has the following meaning:
- If \(y\) is specified, array \(Y\) contains the result of the computation and \(x\) is not returned.
- If \(y\) is not specified, array \(X\) contains the result of the computation, where:

If transpose \(={ }^{\prime} \mathrm{T}^{\prime}, x\) is returned in transposed form; that is, \(x\) has dimensions \(n 3 \times n 2 \times n 1\). In this case, \(n 1\) must equal \(n 3\).

If transpose \(=\) ' N ', \(x\) is returned in normal form; that is, \(x\) has dimensions \(n 1 \times n 2 \times n 3\).

In this case, output overwrites input.
Returned as: an assumed-shape array with shape (:,:,:), containing numbers of the data type indicated in Table 143 on page 884. This array must be aligned on a doubleword boundary. \(y\)
has the following meaning:
- If \(y\) is specified, array \(Y\) contains the results of the computation, where:

If transpose \(=\) ' \(\mathrm{T}^{\prime}\) ' \(y\) is returned in transposed form; that is, \(y\) has
dimensions n3 \(\times n 2 \times n 1\)
If transpose \(=\) ' N ', \(y\) is returned in normal form; that is, \(y\) has dimensions \(n 1 \times n 2 \times n 3\)

In this case, \(X\) and \(Y\) must have no common elements; otherwise, results are unpredictable.
- For case 1 , if \(y\) is not specified, array \(X\) contains the result of the computation.

Type: optional (case 1); required (cases 2 and 3)
Default: Array X contains the result of the computation. This array must be aligned on a doubleword boundary.

Returned as: an assumed-shape array with shape (:,:,:), containing the numbers of the data type indicated in Table 143 on page 884. This array must be aligned on a doubleword boundary.

\section*{Notes and Coding Rules}
1. All subroutines accept lowercase letters for the transpose argument.
2. The \(x, y\), and scale arguments must be of the same precision.
3. The assumed shape arrays must have no common elements; otherwise, results are unpredictable.
4. If the output array does not have the correct shape for storing the transformed data, an error message is issued and the application program is terminated. However, this error check occurs before the problem size is verified to consist of only valid transform lengths. This means that if you correct the shape and rerun the program, you may still receive an additional error message if the values for the problem size are not valid transform lengths.
5. An example of the use of this subroutine in a thermal diffusion application program is shown in Appendix B. See subroutine fourier in "Module Fourier (HPF)" on page 954.
6. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
7. Block-column data distribution is required for your array data. In general, distributing your data evenly provides the best work load balance among the processes and allows the use of the most efficient collective communication. However, for your specific problem size and number of processes available, experimentation is necessary to achieve optimal performance.

Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your sequences, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Sequences (Fourier Transform)" on page 81. For a sample program including directives, see Figure 10 on page 109.
8. The restrictions given in "Notes and Coding Rules" on page 678, "Notes and Coding Rules" on page 687, and "Notes and Coding Rules" on page 694 also apply to this subroutine.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 678, "Error Conditions" on page 687, and "Error Conditions" on page 694 also apply to these subroutines.

Input-Argument Errors for Case 1

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 1 for \(x\) or \(y\).
2. The process rank is not the same for \(x\) and \(y\).
3. The process rank is not 1 for \(x\) or \(y\).

\section*{Stage 2}
1. The process grid is not the same for \(x\) and \(y\).
2. The data distribution is unsupported for \(x\) or \(y\).

\section*{Stage 3}
1. transpose is present and transpose \(\neq{ }^{\prime} \mathrm{N}^{\prime}\) or \({ }^{\prime} \mathrm{T}^{\prime}\)

\section*{Stage 4}
1. If transpose \(=\) ' \(T\) ' and \(y\) is present and the shape of \(y\) is not \(n 3 \times n 2 \times n 1\).
2. If transpose \(=\) ' N ' and \(y\) is present and the shape of \(y\) is not \(n 1 \times n 2 \times n 3\).
3. If \(y\) is not present (which means \(x\) contains the result of the computation) and transpose \(=\) ' \(T\) ' and \(n 1 \neq n 3\).

Input-Argument Errors for Cases 2 and 3

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 1 for \(x\) or \(y\).
2. The process rank is not the same for \(x\) and \(y\).
3. The process rank is not 1 for \(x\) or \(y\).

\section*{Stage 2}
1. The process grid is not the same for \(x\) and \(y\).
2. The data distribution is unsupported for \(x\) or \(y\).

\section*{Stage 3}
1. The shape of the assumed-shape arrays \(x\) and \(y\) are incompatible, as follows:

For case 2 :
\[
\begin{aligned}
& 2(\operatorname{size}(y, 3)) \neq n 1 \text { or } \\
& \operatorname{size}(y, 2) \neq n 2 \text { or } \\
& \operatorname{size}(y, 1) \neq n 3
\end{aligned}
\]

\section*{For case 3:}
\[
\begin{aligned}
& \operatorname{size}(y, 3) \neq n 3 \text { or } \\
& \operatorname{size}(y, 2) \neq n 2 \text { or } \\
& \operatorname{size}(y, 1)) \neq n 1
\end{aligned}
\]

Example 1: This example shows how to compute a complex-to-complex, three-dimensional transform. As in "Example" on page 672, the array data is block-plane distributed using a one-dimensional process grid with two processes. The arrays are declared as follows:
```

COMPLEX*16 X(0:3,0:3,0:1)
COMPLEX*16 Y(0:3,0:3,0:1)
REAL*8 SCALE
Input
!HPF\$ PROCESSORS PROC(2)
!HPF\$ DISTRIBUTE (*, *, BLOCK) ONTO PROC :: X, Y
CALL FFT(X , Y)
-or-
CALL FFT(X , Y , TRANSPOSE='N', ISIGN=1 , SCALE=1.0D0)

```

Following is matrix \(\boldsymbol{X}\) in two planes:

\section*{Plane 0:}
\(\left[\begin{array}{llll}(1.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0)\end{array}\right]\)

\section*{Plane 1:}
\(\left[\begin{array}{llll}(0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0) \\ (0.0,0.0) & (0.0,0.0) & (0.0,0.0) & (0.0,0.0)\end{array}\right]\)

Output: Following is matrix \(\boldsymbol{Y}\) :
Plane 0:
\(\left[\begin{array}{llll}(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0)\end{array}\right]\)

\section*{Plane 1:}
\(\left[\begin{array}{llll}(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0)\end{array}\right]\)

Example 2: This example shows how to compute a real-to-complex, three-dimensional transform. As in "Example" on page 688, the array data is block-plane distributed using a one-dimensional process grid with two processes. The arrays are declared as follows:
```

REAL*8 X(0:8,0:3,0:3)
COMPLEX*16 Y(0:4,0:3,0:1)
REAL*8 SCALE
Input
!HPF\$ PROCESSORS PROC(2)
!HPF\$ DISTRIBUTE (*, *, BLOCK) ONTO PROC :: X, Y
CALL FFT(X(0:3,0:3,0:3) , Y(0:3,0:3,0:1))
-or-
CALL FFT(X(0:3,0:3,0:3) , Y(0:3,0:3,0:1) , ISIGN=1 , SCALE=1.0D0)

```

Following is matrix \(\boldsymbol{X}\) in four planes:

\section*{Plane 0 :}
\[
\left[\begin{array}{cccc}
1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . \\
. & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
\]

Plane 1:
\(\left[\begin{array}{cccc}0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ \cdot & \cdot & \cdot & \cdot \\ . & \cdot & \cdot & \cdot \\ . & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot\end{array}\right]\)

\section*{Plane 2:}
\(\left[\begin{array}{cccc}0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ . & . & \cdot & \cdot \\ . & . & . & . \\ . & . & . & . \\ . & \cdot & \cdot & . \\ . & \cdot & \cdot & \cdot\end{array}\right]\)

\section*{Plane 3:}
\[
\left[\begin{array}{cccc}
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . \\
. & . & . & . \\
. & . & . & . \\
. & . & . & .
\end{array}\right]
\]

Output: The following matrix \(\boldsymbol{Y}\) is returned in transposed form and stored in FFT-packed storage mode:

\section*{Plane 0:}
\(\left[\begin{array}{cccc}(1.0,1.0) & (1.0,0.0) & (1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ (1.0,1.0) & (1.0,0.0) & (1.0,1.0) & (1.0,0.0) \\ (1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\ \cdot & \cdot & \cdot & \cdot\end{array}\right]\)

\section*{Plane 1:}
\[
\left[\begin{array}{cccc}
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
\]

Example 3: This example shows how to compute a complex-to-real, three-dimensional transform. As in "Example" on page 695, the array data is block-plane distributed using a one-dimensional process grid with two processes. Array \(Y\) is returned in transposed form. The arrays are declared as follows:
```

COMPLEX*16 X(0:4,0:3,0:1)
REAL*8 Y(0:8,0:3,0:3)
REAL*8 SCALE
Input:

```
```

!HPF\$ PROCESSORS PROC(2)
!HPF\$ DISTRIBUTE (*, *, BLOCK) ONTO PROC :: X, Y
CALL FFT(X(0:3,0:3,0:1) , Y(0:3,0:3,0:3) , ISIGN=-1)
-or-
CALL FFT(X(0:3,0:3:0:1) , Y(0:3,0:3,0:3) , ISIGN=-1 , SCALE=1.0D0/64.0D0)

```

The following matrix \(\boldsymbol{X}\) is stored in FFT-packed storage mode:

\section*{Plane 0:}
\[
\left[\begin{array}{cccc}
(1.0,1.0) & (1.0,0.0) & (1.0,1.0) & (1.0,0.0) \\
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
(1.0,1.0) & (1.0,0.0) & (1.0,1.0) & (1.0,0.0) \\
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
\]

Plane 1:
\[
\left[\begin{array}{cccc}
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
(1.0,0.0) & (1.0,0.0) & (1.0,0.0) & (1.0,0.0) \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
\]

Output: The following matrix \(\boldsymbol{Y}\) is returned:
Plane 0:
\[
\left[\begin{array}{cccc}
1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . \\
. & . & . & . \\
. & . & . & . \\
. & . & . & .
\end{array}\right]
\]

Plane 1:
\(\left[\begin{array}{cccc}0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ . & . & . & . \\ . & . & . & . \\ . & . & . & . \\ . & . & . & .\end{array}\right]\)

Plane 2:
\(\left[\begin{array}{cccc}0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ . & . & . & . \\ . & . & . & . \\ . & . & . & . \\ . & . & . & .\end{array}\right]\)

Plane 3:
\[
\left[\begin{array}{cccc}
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . \\
. & \cdot & . & \cdot \\
. & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]
\]

\section*{Chapter 17. Random Number Generation (HPF)}

This chapter describes the random number generation subroutine that can be called from an HPF program.

\section*{Overview of the Random Number Generation Subroutine}

The random number generation subroutine generates uniformly distributed random numbers.
\begin{tabular}{|l|l|l|}
\hline Table 144. List of Random Number Generation Subroutine (HPF) & \begin{tabular}{l} 
Long-Precision \\
Subroutine
\end{tabular} & Page \\
\hline Descriptive Name & URNG & 897 \\
\hline Uniform Random Number Generator & \\
\hline
\end{tabular}

\section*{Random Number Generation Subroutine}

This section contains the random number generation subroutine.

\section*{URNG—Uniform Random Number Generator}

This subroutine generates a vector \(\boldsymbol{x}\) of uniform pseudo-random numbers in the ranges \((0,1)\) or \((-1,1)\), depending on the iopt argument. The random numbers are generated using the multiplicative congruential method with a user-specified seed, as follows:
\[
\begin{aligned}
s_{i} & =\left(a\left(s_{i-1}\right)\right) \bmod (m)=\left(a s_{0}\right) \bmod (m) \\
x_{i} & =s / m \text { if } \text { iopt }=0 \\
x_{i} & =(2 s / m)-1 \quad \text { if iopt }=1 \\
& \text { for } i=1,2, \ldots, n
\end{aligned}
\]
where:
\(s_{0}\) is the initial seed provided by the caller.
\(s_{i}\) for \(i=1, n\) is a random sequence.
\(x_{i}\) for \(i=1, n\) are the random numbers.
\(a=44485709377909.0\)
\(m=2.0^{48}\)
\(n=\operatorname{size}(x)=\) number of random numbers to be generated.
If the assumed-shape array has a size of zero, no computation is performed, the subroutine returns, and the initial seed is unchanged.

The process rank must be one for the array data in this subroutine; that is, given \(n p\) processes, you must use a \(1 \times n p\) or \(n p \times 1\) process grid. In addition, the array data must be evenly distributed across all processes, using block distribution.

Note: This differs from the message-passing version of this subroutine, PDURNG, which supports block-cyclic data distribution.

See references [8 ], [41 ], [42 ], [47 ], [48], [49 ], and [50 ].
\begin{tabular}{|c|c|}
\hline Table 145. Data Types \\
\hline \(\boldsymbol{x}\), seed & Subroutine \\
\hline Long-precision real & URNG \\
\hline
\end{tabular}

\section*{Syntax}
```

HPF CALL URNG (seed, x) CALL URNG (seed, x, iopt)

```

\section*{On Entry}
seed
is the initial value \(s_{0}\) used to generate the random numbers.
Type: required
Specified as: a number of the data type indicated in Table 145. You should specify seed to be an odd, whole number; otherwise, this subroutine sets it to an odd, whole number and continues with the computation. The value of seed must be \(1.0 \leq\) seed \(<2.048\).
\(x\)
See On Return.
iopt
indicates the range of uniform random numbers to generate, where:
If iopt \(=0\), the range is \((0,1)\).
If iopt \(=1\), the range is \((-1,1)\).
Type: optional
Default: iopt \(=0\)
Specified as: a fullword integer; iopt \(=0\) or 1 .

\section*{On Return}
seed
is the new seed that is to be used to generate additional random numbers in subsequent invocations of this subroutine, having a value of seed \(=\left(a^{n} s_{0}\right)\) \(\bmod (m)\).
Type: required
Returned as: a number of the data type indicated in Table 145 on page 897. It is an odd, whole number, where \(1.0 \leq\) seed \(<2.048\).
\(x\)
is the vector \(\boldsymbol{x}\), containing the uniform pseudo-random numbers, where:
If iopt \(=0\), they are in the range \((0,1)\).
If iopt \(=1\), they are in the range \((-1,1)\).
Type: required
Returned as: an assumed-shape array with shape (:), containing numbers of the data type indicated in Table 145 on page 897, where size \((x) \bmod (n p)=0\).

\section*{Notes and Coding Rules}
1. To generate more than (231-1) random numbers, you should make multiple calls to this subroutine.
2. For details on how to set up and code your HPF program using Parallel ESSL, see "Coding Your HPF Program" on page 105
3. Block data distribution is required for your array data, where the array data is evenly distributed across all processes. Because data directives are included in the interface module PESSL_HPF, you can specify any data distribution for your vector, and the XL HPF compiler will, if necessary, redistribute the data prior to calling this subroutine. For how to code your HPF directives, see "Distributing Data in an HPF Program" on page 79.

Error Conditions: HPF-specific errors are listed below. Resource and input-argument errors listed in "Error Conditions" on page 703 also apply to this subroutine.

\section*{Input-Argument Errors}

\section*{Stage 1}
1. The rank of the ultimate align target is greater than 1 for \(x\).
2. The process rank is not 1 for \(x\).

Stage 2: The vector for \(x\) is replicated.

Stage 3: The size of the assumed-shape array for \(x\) is invalid-that is, it is not a multiple of the product of the blocksize and the number of processes.

Example: This example generates 30 random numbers in vector \(\boldsymbol{x}\). The array data is block distributed, evenly, over 5 processes, unlike the array data in "Example" on page 703 which is block-cyclically distributed.
```

!HPF\$ PROCESSORS PROC(5)
!HPF\$ DISTRIBUTE (BLOCK) ONTO PROC :: X

```

CALL URNG( SEED , X )
-or-
CALL URNG ( SEED , X , IOPT=0 )
Input: SEED \(=31415926535897.0\)
Output: SEED \(=\left(a^{30} S_{0}\right) \bmod (m)=6316434292705.0\)
Vector \(\boldsymbol{x}\) :
0.683821516135299845
0.058874407800946215
0.391855250856924187
0.755994653022330709
0.557764301423606668
0.001333801764989317
0.056855932753212101
0.331063036202269956
0.347339794409027292
0.649429020370863697
0.386144876217390021
0.457224855098420591
0.892518134165118937
0.074548748224632532
0.912379366805073033
0.112809499110515077
0.857547605095465570
0.756480901897081282
0.046993364463578046
0.889457684002341153
0.167775766106718294
0.504952722600595649
0.999725924546471134
0.696269487398215148
0.671896598019703362
0.271472156040264423
0.566418406688985243
0.464684865759100063
0.982442539763031419
0.022440482512937620

\section*{Part 4. Appendixes}

\section*{Appendix A. BLACS Quick Reference Guide}

This quick reference guide shows the Fortran calling sequences for the BLACS subroutines, which are included with Parallel ESSL.

If you are coding your program in C or C++, you must pass the BLACS arguments by reference to the Parallel ESSL subroutine. See "Initializing the BLACS" on page 87 for sample \(C\) and \(C++\) calling sequences that show arguments passed by reference.

To receive a complete copy of the BLACS User's Guide send email to netlib@ornl.gov and in the mail message type: send blacs_ug.ps from blacs.

See reference [52].
Notes:
1. In the calling sequences, an underlined argument indicates it is an output argument.
2. In the subroutine names, GE indicates general rectangular matrix and TR indicates trapezoidal matrix.

\section*{BLACS Initialization Subroutines}
```

CALL BLACS_PINFO (mypnum, nprocs)
CALL BLACS_SETUP (mypnum, nprocs)
CALL BLACS_GET (icontxt, what, val)
CALL BLACS_SET (icontxt, what, val)
CALL BLACS_GRIDINIT (icontxt, order, nprow, npcol)
CALL BLACS_GRIDMAP (icontxt, usermap, Idumap, nprow, npco)

```

\section*{BLACS Deallocating Resources Subroutines}

CALL BLACS_FREEBUFF (icontxt, wait)
CALL BLACS_GRIDEXIT (icontxt)
CALL BLACS_ABORT (icontxt, errornum)
CALL BLACS_EXIT (doneflag)

\section*{BLACS Sending Subroutines}
\begin{tabular}{|l|l|}
\hline CALL SGESD2D \| DGESD2D \| CGESD2D \| ZGESD2D \| IGESD2D (icontxt, m, n, a, Ida, rdest, cdest) \\
\hline CALL SGEBS2D \| DGEBS2D \| CGEBS2D \| ZGEBS2D \| IGEBS2D (icontxt, scope, top, m, n, a, Ida) \\
\hline CALL STRSD2D \| DTRSD2D \| CTRSD2D \| ZTRSD2D \| ITRSD2D (icontxt, uplo, diag, m, n, a, Ida rdest, cdest) \\
\hline CALL STRBS2D \| DTRBS2D \| CTRBS2D \| ZTRBS2D \| ITRBS2D (icontxt, scope, top, uplo, diag, m, n, a, Ida) \\
\hline
\end{tabular}

\section*{BLACS Receiving Subroutines}


\section*{BLACS Global Operation Subroutines}
\begin{tabular}{|c|c|}
\hline Absolute Maximum Value of a General Matrix & CALL SGAMX2D | DGAMX2D | CGAMX2D | ZGAMX2D | IGAMX2D (icontxt, scope, top, m, n, a, Ida, ra, ca, rcflag, rdest, cdest) \\
\hline Absolute Minimum Value of a General Matrix & CALL SGAMN2D | DGAMN2D | CGAMN2D | ZGAMN2D | IGAMN2D (icontxt, scope, top, m, n, a a, Ida, ra, ca, rcflag, rdest, cdest) \\
\hline Sum of the Elements of a General Matrix & CALL SGSUM2D | DGSUM2D | CGSUM2D | ZGSUM2D | IGSUM2D (icontxt, scope, top, \(m\), \(n\), \(\underline{a}\), Ida, rdest, cdest) \\
\hline
\end{tabular}

\section*{BLACS Informational and Miscellaneous Subroutines}

Note: BLACS_PNUM returns an integer.
```

CALL BLACS_GRIDINFO (icontxt, nprow, npcol, myprow, mypco)
ipnum = BLACS_PNUM (icontxt, prow, pco)
CALL BLACS_PCOORD (icontxt, pnum, prow, pco)
CALL BLACS_BARRIER (icontxt, scope)

```

\section*{Data Types}

This section shows the type of data for each BLACS argument.
\begin{tabular}{|l|l|}
\hline Data Type & Argument \\
\hline Character & diag, order, scope, top, and uplo \\
\hline Integer & \begin{tabular}{l} 
A(LDA, *), BLACS_PNUM, CA (*), cdest, csrc, doneflag, errornum, icontxt, KBRID, \\
KBSID, KRECVID, KSENDID, Ida, Idumap, m, mypcol, mypnum, myprow, n, npcol, \\
nprocs, nprow, ntasks, pcol, pnum, prow, RA (*), rcflag, rdest, rsrc, TIDS(*), \\
USERMAP(LDUMAP,NPCOL), VAL(*), wait, what
\end{tabular} \\
\hline Short-precision real & \(\mathrm{A}(\mathrm{LDA}, *)\) \\
\hline Long-precision real & \(\mathrm{A}(\mathrm{LDA}, *)\), DCPUTIME00, DWALLTIME00 \\
\hline Short-precision complex & \(\mathrm{A}(\mathrm{LDA}, *)\) \\
\hline Long-precision complex & \(\mathrm{A}(\mathrm{LDA}, *)\) \\
\hline
\end{tabular}

\section*{Argument Options}
1. order = 'Row-major' or 'Column-major'

The default is row-major natural ordering.
2. uplo = 'Upper triangular' or 'Lower triangular'
3. diag = 'Nonunit triangular' or 'Unit triangular'
4. scope = 'All', 'Row', or 'Column'
5. For broadcast topologies, top = '', 'I', 'D', 'H', 'S', 'F', 'M', 'T', '1', '2', '3', '4', '5', '6' '7', '8', or '9'

For global topologies, top = '', 'H', 'F', 'T', '1', '2', '3', '4', '5', '6' '7', '8', or '9'

In the MPI implementation of the BLACS for Parallel ESSL for AIX, the broadcast and global topology arguments are ignored. In all cases, the equivalent MPI collective communication subroutine is used.

\section*{Appendix B. Sample Programs}

This appendix contains information about sample programs provided with the Parallel ESSL product.

\section*{Sample Programs and Utilities Provided with Parallel ESSL}

A variety of sample programs are shipped with the Parallel ESSL product in the following directories:
- /usr/lpp/pessl.rte.common/example/c
- /usr/lpp/pessl.rte.common/example/fortran
- /usr/lpp/pessl.rte.common/example/hpf

For file names and installation procedures, see the Parallel ESSL Installation Memo.

The sample programs include:
- A diffusion calculation example program, which is discussed at length later in this chapter. Three different versions of this sample program, in C, Fortran, and HPF, are provided.
- Three sample message passing programs, image.f, pdgexmp.f, and simple.f, plus utilities in a utility library. These are provided in the Fortran directory, along with a makefile. More information regarding these programs and utilities is provided in the file
/usr/lpp/pessl.rte.common/example/fortran/examples.readme. Following is a description of their functions:
- The image program demonstrates the use of the complex to real Fourier transform subroutines and calculates a correlation between two images.
- The pdgexmp program is a simple performance program, allowing you to vary the processor size and shape, as well as the block size, to gauge their effect on the performance of solutions to linear equations.
- The final program, simple.f, is an example program showing how to set up and use the sample utilities.
- The sample utility library consists of a set of Fortran 90 routines implementing commonly-used message passing functions. This example subroutine library provides you with a simplified interface to some very commonly-used message passing routines, including:
- Library initialization:
initutils
exitutils
- Scatter operation:
scatter

BLACS initialization and initialization of library variables. This must be the first routine called in order to use the remainder of the library. Performs a BLACS grid exit and marks the library as uninitialized.

Scatter a matrix on a single node to a distributed matrix.
- Gather operation:
\[
\text { gather } \quad \text { Gather a matrix onto a single node from a }
\] distributed matrix.
- Nearest neighbor communication:
\begin{tabular}{ll} 
sendnorthborder & \begin{tabular}{l} 
Sends top row of each block to north processor. \\
sendwestborder \\
Sends first column of each block to west \\
processor.
\end{tabular} \\
sendsouthborder & \begin{tabular}{l} 
Sends last row of each block to south processor. \\
sendeastborder \\
Sends last column of each block to east
\end{tabular} \\
rcvnorthborder & \begin{tabular}{l} 
processor. \\
Receives last row of each block from north \\
processor.
\end{tabular} \\
rcvwestborder & \begin{tabular}{l} 
Receives last column of each block from west \\
processor. \\
Receives top row of each block from south
\end{tabular} \\
rcvsouthborder & \begin{tabular}{l} 
processor. \\
Receives first column of each block from east
\end{tabular} \\
rcveastborder & \begin{tabular}{l} 
processor.
\end{tabular}
\end{tabular}
- Array creation and descriptor vector initialization:
create_array Allocates memory for array and initializes array descriptor.
- Global-to-local mapping routines:
\begin{tabular}{ll} 
g2| & Creates global to local index arrays. \\
l 2 g & Creates local to global index arrays. \\
number_row_blocks & Returns number of local row blocks in an array. \\
number_col_blocks & Returns number of local column blocks in an \\
& \begin{tabular}{l} 
array.
\end{tabular} \\
last_row_block_size & Returns size of last local row block in an array. \\
last_col_block_size & Returns size of last local column block an in \\
& array.
\end{tabular}
- Three sample message passing programs using the sparse linear algebraic equations subroutines plus some utility programs. These programs are discussed in "Sample Sparse Linear Algebraic Equations Programs" on page 963. They are provided in the Fortran directory along with a makefile. More information regarding these programs and utilities is provided in the file /usr/lpp/pessl.rte.common/example/fortran/examples.readme.

\section*{Sample Thermal Diffusion Programs}

Both a message passing Fortran 90 sample program and an HPF sample program are presented in this section, along with the commands for processing them in a parallel processing environment. The sample programs, solving a thermal diffusion problem, use vectors and matrices distributed across a one-dimensional process grid and call Level 2 PBLAS, Eigensystem analysis, and Fourier transform subroutines.

A copy of these sample programs, plus an equivalent C program, are provided with the Parallel ESSL product. For file names and installation procedures, see the Parallel ESSL Installation Memo.

Following is a table of contents for this section, along with a description of each section for both the message passing Fortran 90 sample program and the HPF sample program.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Table 146 (Page 1 of 2). Table of Contents for the Sample Thermal Diffusion Programs} \\
\hline Contents & Page (Message Passing) & Page (HPF) \\
\hline Thermal Diffusion Discussion Paper: A technical description of the problem to be solved. & 910 & 910 \\
\hline Program main: Finds the cooling rate for a specified set of points in an anisotropic rectangular beam, immersed in a constant heat bath with a temperature of zero. & 914 & 944 \\
\hline Module parameters: Defines system wide parameters and the index structure used to help map global indices to local indices. & 920 & 950 \\
\hline \begin{tabular}{l}
Module diffusion: Assigns problem parameters and initial data. \\
Subroutine init_diffusion: Initializes the problem size, the number of output points, the functional form of the diffusion constant, and the initial temperature distribution. \\
Subroutine init_temp: Returns the initial temperature of the bar at a particular point. \\
Subroutine diff_coef: Returns the value of the thermal diffusion coefficient at an arbitrary point.
\end{tabular} & 921 & 950 \\
\hline \begin{tabular}{l}
Module fourier: Represents both the diffusion operator and the temperature profile in a sine function basis. \\
Subroutine get_diffusion_matrix: Obtains the matrix representation of the diffusion operator in a sine function basis. \\
Subroutine expand_temp_profile: Obtains the expansion coefficients of the initial temperature profile in a sine function expansion. \\
Subroutine factor_nodes: Obtains the powers of prime factorization of the number of nodes, failing if the factorization is not compatible with FFT supported transform lengths. \\
Subroutine min_power2: Obtains the smallest number which is a power of 2 and greater than or equal to the input argument.
\end{tabular} & 925 & 954 \\
\hline \begin{tabular}{l}
Module scale: Initializes the communications and provides a few communication utility routines. \\
Subroutine initialize_scale: Initializes BLACS and calculates a block size. Subroutine initialize_rarray: Allocates space for a real array and creates the associated descriptor array and index array. \\
Subroutine initialize_carray: Allocates space for a complex array and creates the associated descriptor array and index array. \\
Subroutine clocal_to_rglobal: Gathers the real parts of the local portions of the block-cyclically-distributed complex array to generate the corresponding global matrix. \\
Subroutine rlocal_to_rglobal: Gathers the local portions of the block-cyclically-distributed real array to generate the corresponding global matrix.
\end{tabular} & 933 & - \\
\hline Input Data: Sample input data in namelist format, used by subroutine init_diffusion in module diffusion. & 960 & 960 \\
\hline Output Data: Sample output data, based on the sample input data, issued at the end of program main. & 960 & 960 \\
\hline Makefile: The makefile used to build the thermal diffusion program. & 1005 & 1009 \\
\hline
\end{tabular}

Table 146 (Page 2 of 2). Table of Contents for the Sample Thermal Diffusion Programs
\begin{tabular}{|l|l|l|}
\hline Contents & \begin{tabular}{l} 
Page \\
(Message \\
Passing)
\end{tabular} & Page (HPF) \\
\hline Run Script: The script file used to execute the thermal diffusion program. & 1009 & 1009 \\
\hline
\end{tabular}

\section*{Thermal Diffusion Discussion Paper}

The objective of the diffusion program is to solve for the temperature of a beam at any point and at any time, given an initial temperature distribution. The following assumptions are made concerning the beam and its properties:
- The beam has the dimensions \(I_{x}, I_{y}\), and \(I_{z}\), where \(I_{z} \gg I_{x}\) and \(I_{z} \gg I_{y}\).
- The thermal diffusion coefficient is a function of only:
\(\bar{x}\) and \(\bar{y}\)

That is, the physical properties of the beam do not depend on the direction:
\[
\bar{z}
\]

Note: The bar over a variable indicates it has dimension; whereas, the unbarred form is dimensionless.
- The beam is immersed in a zero degree heat bath.

The general diffusion equation is given by:
\[
\begin{equation*}
\frac{\partial}{\partial \bar{t}} T(\bar{x}, \bar{y}, \bar{z}, \bar{t})=\nabla \cdot \bar{D} \nabla T(\bar{x}, \bar{y}, \bar{z}, \bar{t}) \tag{1}
\end{equation*}
\]
where:
\(\bar{D}\)
is the position-dependent diffusion coefficient. Equation 1 may be rewritten, ignoring the \(z\) dimension, using the following dimensionless variables:
\[
\begin{aligned}
& x=\frac{\pi \bar{x}}{l_{x}} \\
& y=\frac{\pi \bar{y}}{l_{y}} \\
& D=\frac{\bar{D}}{D_{r}} \\
& t=\frac{l_{x}^{2} \bar{t}}{\pi^{2} D_{r}}
\end{aligned}
\]
as follows:
\[
\begin{equation*}
\frac{\partial}{\partial t} T(x, y, t)=\left(\frac{\partial}{\partial x} D \frac{\partial}{\partial x}+\frac{\partial}{\partial y} l_{r}^{2} D \frac{\partial}{\partial y}\right) T(x, y, t) \tag{2}
\end{equation*}
\]
where \(D_{r}\) is a reference diffusion constant, and \(I_{r}\) is the beam dimension ratio \(I_{x} / I_{y}\). This equation is subject to the initial and boundary conditions given by:
\[
\begin{aligned}
& T(x, y, 0)=T_{0}(x, y) \\
& T(0, y, t)=T(x, 0, t)=T(\pi, y, t)=T(x, \pi, t)=0
\end{aligned}
\]

In the program, the initial condition \(T_{0}(x, y)\), the diffusion coefficient \(D(x, y)\), and the ratio \(I_{r}\) are determined in the initialization subroutine init_diffusion. \(n_{x}\) and \(n_{y}\), defined later, are also initialized here. Equation 2 is solved by representing the operators in a sine function basis and solving the resulting matrix equations. We begin by expanding \(T\) in sine functions, as follows:
\[
\begin{equation*}
T(x, y, t)=\frac{2}{\pi} \sum_{k^{\prime}=1}^{\infty} \sum_{j^{\prime}=1}^{\infty} a_{k^{\prime} j^{\prime}}(t) \sin \left(k^{\prime} x\right) \sin \left(j^{\prime} y\right) \tag{3}
\end{equation*}
\]

The initial set of expansion coefficients \(a_{k j}(0)\) are determined from the initial temperature profile by:
\[
\begin{equation*}
a_{k j}(0)=\frac{2}{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \sin (k x) \sin (j y) T_{0}(x, y) d x d y \tag{4}
\end{equation*}
\]
where the orthogonality of the sine functions has been used. If we extend the range of \(T\) from \(\pi\) to \(2 \pi\), as an odd function, equation 4 can be written in terms of a discrete Fourier transform:
\[
\begin{equation*}
a_{k j}(0)=\frac{-1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} e^{-i k x-i j y} T_{0}(x, y) d x d y \tag{5}
\end{equation*}
\]
\(a_{k j}(0)\) is calculated in the program in the subroutine expand_temp_profile, with the actual temperatures calculated in the function init_temp. The subroutine call to DCFT2 performs the Fourier transform, and the results are stored in the array A. Substitute equation 3 into equation 2 , multiply by \((2 / \pi) \sin (k x) \sin (j y)\) and integrate over \(x\) and \(y\) to obtain:
\[
\begin{equation*}
\frac{\partial a_{k j}(t)}{\partial t}=-\sum_{k^{\prime}=1}^{\infty} \sum_{j^{\prime}=1}^{\infty} F_{k j ; k^{\prime} j^{\prime}} a_{k^{\prime} j^{\prime}}(t) \tag{6}
\end{equation*}
\]
where:
\[
\begin{equation*}
F_{k j ; k^{\prime} j^{\prime}}=\frac{-4}{\pi^{2}} \int_{0}^{\pi} \int_{0}^{\pi} \sin (k x) \sin (j y) D_{o p} \sin \left(k^{\prime} x\right) \sin \left(j^{\prime} y\right) d x d y \tag{7}
\end{equation*}
\]
and:
\[
\begin{equation*}
D_{o p}=\left(\frac{\partial}{\partial x} D \frac{\partial}{\partial x}+\frac{\partial}{\partial y} l_{r}^{2} D \frac{\partial}{\partial y}\right) \tag{8}
\end{equation*}
\]

Note that \(\sin (k x) \sin \left(k^{\prime} x\right)\) and \(\sin (j y) \sin \left(j^{\prime} y\right)\) are even functions about \(\pi\). Therefore, if we define \(D(2 \pi-x, y)=D(x, y)\) and \(D(x, 2 \pi-y)=D(x, y)\), where \(0 \leq x \leq \pi\) and \(0 \leq y \leq \pi\), the limits on the integral in equation 7 may be extended to \(2 \pi\) :
\[
\begin{equation*}
F_{k j ; k^{\prime} j^{\prime}}=\frac{-1}{\pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left(k k^{\prime} D \cos (k x) \cos \left(k^{\prime} x\right) \sin (j y) \sin \left(j^{\prime} y\right)+l_{r}^{2} j j^{\prime} D \cos (j y) \cos \left(j^{\prime} y\right) \sin (k x) \sin \left(k^{\prime} x\right)\right) d x d y \tag{9}
\end{equation*}
\]

Equation 9 may be further reduced to sums of Fourier transforms using the identities:
```

$\cos (k x) \cos \left(k^{\prime} x\right)=(1 / 2)\left(\cos \left(\left(k-k^{\prime}\right) x\right)+\cos \left(\left(k+k^{\prime}\right) x\right)\right)$
$\sin (k x) \sin \left(k^{\prime} x\right)=(1 / 2)\left(\cos \left(\left(k-k^{\prime}\right) x\right)-\cos \left(\left(k+k^{\prime}\right) x\right)\right)$
$\sin (k x)=(i / 2)\left(e^{i k x}-e^{-i k x}\right)$
$\cos (k x)=(1 / 2)\left(e^{i k x}+e^{-i k x}\right)$

```

Substituting these identities into equation 9, we have:
\[
\begin{equation*}
F_{k j ; k^{\prime} j^{\prime}}=\left(k k^{\prime}+l_{r}^{2} j j^{\prime}\right)\left(\widetilde{D}_{k^{-} j^{-}}-\widetilde{D}_{k^{+} j^{+}}\right)+\left(k k^{\prime}-l_{r}^{2} j j^{\prime}\right)\left(\widetilde{D}_{k^{+} j^{-}}-\widetilde{D}_{k^{-} j^{+}}\right) \tag{10}
\end{equation*}
\]
where:
\[
\begin{aligned}
& k^{+}=k+k^{\prime} \\
& k^{-}=\left|k-k^{\prime}\right| \\
& j^{+}=j^{\prime}+j^{\prime} \\
& j^{-}=\left|j-j^{\prime}\right|
\end{aligned}
\]
and where:
\[
\widetilde{D}_{k j}=-\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{2 \pi} D e^{-i k x} e^{-i j y} d x d y
\]

Equation 10 is the simplest form for the matrix elements of the diffusion operator, and these elements are calculated in the subroutine get_diffusion_matrix. The diffusion coefficient is evaluated with the function diff_coef. The Parallel ESSL Fourier transform subroutine PDCFT2, called in subroutine get_diffusion_matrix, is used to determine the following elements:
\[
\widetilde{D}_{k j}
\]
which are stored in the array DF. Because DF is an array which is block cyclically distributed among the nodes and each node requires elements of DF not locally available, this array is collected to the global array DFG on each node. The array DFG is subsequently used to calculate the matrix \(F\). Now that we have determined the matrix elements of equation 6 , we must truncate it in order to solve it. This may be done by truncating the \(k\) summation at \(n_{x}\) and the \(j\) summation at \(n_{y}\). The dual indices may be collapsed into a single index 1 by:
\[
I=(j-1) n_{x}+k
\]

The \(j\) and \(k\) indices can similarly be recovered from the 1 index by:
\[
\begin{aligned}
& j=\left((l-1) / n_{x}\right)+1 \\
& k=\bmod \left(l-1, n_{x}\right)+1
\end{aligned}
\]

Rewriting the truncated equation 6, we have:
\[
\begin{equation*}
\frac{\partial a_{t}(t)}{\partial t}=-\sum_{l^{\prime}=1}^{n_{x} n_{y}} F_{l ; l^{\prime}} a_{l^{\prime}}(t) \tag{11}
\end{equation*}
\]

Equation 11 has the general solution:
\[
\begin{equation*}
a_{l}(t)=\sum_{l^{\prime}=1}^{n_{x} n_{y}} e^{-\lambda_{l} t} B_{l l^{\prime}}\left[\sum_{m=1} B_{m l^{\prime}} a_{m}(0)\right] \tag{12}
\end{equation*}
\]
where \(\lambda\) is the eigenvalue vector and \(B\) is the matrix of eigenvectors of the matrix \(F\). The eigenvectors \(B\) and eigenvalues \(\lambda\) correspond to the arrays \(B\) and LAMBDA in the program. These eigenvalues and eigenvectors are determined with the Parallel ESSL subroutine PDSYEVX. The inner sum:
\[
\sum_{m=1} B_{m l^{\prime}} a_{m}(0)
\]
corresponds to the array AB, with ABT containing the extra factor of:
\[
e^{-\lambda_{l} t}
\]

Also, \(a_{\Omega}(t)\) is represented by the array \(X\), which is reused for each solution time.
Each of these matrix multiplications are done using the Parallel ESSL subroutine PDGEMV. The final solution is obtained by summing over the expansion coefficients:
\[
\begin{equation*}
T(x, y, t)=\sum_{k=1}^{n_{x}} \sum_{j=1}^{n_{y}} \sin (k x) \sin (j y) a_{k j}(t) \tag{13}
\end{equation*}
\]

The final temperature array is TEMP in the program, with the indices into the array corresponding to specific values of \(x, y\), and \(t\).

\section*{Program Main (Message Passing)}
program main
```

Purpose, to find the cooling rate for a specified set of
points in an anisotropic rectangular beam, immersed in a constant
heat bath with a temperature of 0.
Routines called:
expand_temp_profile
get_diffusion_matrix
igamx2d
init_diffusion
initialize_rarray
initialize_scale
pdgemv
pdsyevx
rlocal_to_rglobal
use parameters
use scale
use diffusion
use fourier
implicit none
integer :: n, ix, jx, iy, jy, k, i, j, stat, it, ib, ig
integer :: num_errors, lwork, ilwork
integer, allocatable :: iwork(:)
real(long), allocatable :: work(:)
a contains the sine expansion coefficients of the initial
temperature profile.
b contains the eigenvectors of the diffusion operator in the
sine function basis.
ab contains the initial temperature profile expanded in the
eigenvectors of the diffusion operator.
f contains the matrix elements of the diffusion operation in
sine function basis.
lambda contains the eigenvalues of the diffusion operator.

```
```

df contains the Fourier transform of the diffusion coefficient function.

```
```

real(long), allocatable :: lambda(:), xg(:,:)

```
real(long), allocatable :: lambda(:), xg(:,:)
real(long), allocatable :: gap(:)
real(long), allocatable :: gap(:)
real(long) :: dum
real(long) :: dum
real(long), pointer :: f(:,:), b(:,:), a(:,:)
real(long), pointer :: f(:,:), b(:,:), a(:,:)
type (g_index), pointer :: f_i, b_i, a_i
type (g_index), pointer :: f_i, b_i, a_i
integer :: f_d(DESC_DIM), b_d
integer :: f_d(DESC_DIM), b_d
real(long), pointer :: x(:,:), ab(:,:), abt(:,:)
real(long), pointer :: x(:,:), ab(:,:), abt(:,:)
type (g_index), pointer :: x_i, ab_i, abt_i
type (g_index), pointer :: x_i, ab_i, abt_i
integer :: x_d(DESC_DIM), ab_d(DESC_DIM), abt_d(DESC_DIM)
integer :: x_d(DESC_DIM), ab_d(DESC_DIM), abt_d(DESC_DIM)
real(long), allocatable :: xsines(:,:), ysines(:,:), temp(:,:)
real(long), allocatable :: xsines(:,:), ysines(:,:), temp(:,:)
integer, allocatable :: ifail(:), iclustr(:)
integer, allocatable :: ifail(:), iclustr(:)
integer :: biga_index, num_eigvalues, num_vectors, info
integer :: biga_index, num_eigvalues, num_vectors, info
Read in the problem size, initialize the problem dimensions, choose functional form for the spatially dependent heat diffusion coefficients, choose functional form of initial temperature distribution and choose the number of points, in both space and time, of the solution to print out.
call init_diffusion
num_errors \(=0\)
Read in how many sine functions to include in both the \(x\) and \(y\) directions.
Because we need to get the Fourier coefficients of the sums and differences of the indices, we need to include twice as many Fourier coefficients as the number of sine expansion coefficients. Also, because the top and bottom halves of the Fourier transform are identical, an artifact of artificially extending the diffusion coefficient function and the initial temperature distribution, we need to double the number of Fourier coefficients again. Finally, the extra sum of one comes from the fact that the sine function expansion starts a 1 and the Fourier expansion starts at 0.
\(n\) is the order of the diffusion operator equation.
\(n=\) dif_nx * dif_ny
Initialize BLACS and calculate default block sizes.
call initialize_scale(n, biga_index)
Allocate room for the eigenvalues of diffusion operator.
allocate( lambda(n), stat=stat)
```

```
    if( stat .ne. 0) num_errors = num_errors + 1
```

Allocate room for sines of x and y coordinates.

```
    allocate( xsines(dif_npts, dif_nx) , stat=stat )
    if( stat .ne. 0) num_errors = num_errors + 1
    allocate( ysines(dif_npts, dif_ny) , stat=stat )
    if( stat .ne. 0) num_errors = num_errors + 1
```

Allocate room for temperature history at selected points.
allocate(temp(dif_npts, dif_ntemps) , stat=stat) if(stat .ne. 0) num_errors = num_errors + 1

Allocate room for global temperature profile expansion vector at time t.
allocate ($x g(1, n)$, stat=stat) if(stat .ne. 0) num_errors = num_errors + 1
cal1 igamx2d(sc_icontext, 'A',' ',1,1,num_errors,1,-1,-1,-1,
\&
if(num_errors .gt. 0) then if(sc_iam .eq. 0) then
write(*,*) 'Error in allocating arrays in main' call blacs_abort(sc_icontext, 1) endif
endif

A call to expand_temp_profile returns the sine expansion coefficients of the initial temperature profile.

Get matrices.
Diffusion operator matrix.
call initialize_rarray(f, f_d, f_i, n, n, biga_index)
Eigenvectors of diffusion operator matrix. call initialize_rarray(b, b_d, b_i, n, n, biga_index)

Initial temperature profile, in row vector.
call initialize_rarray(a, a_d, a_i, 1, n, biga_index)
! Initial temperature profile, in eigenfunction basis, in row vector. call initialize_rarray(ab, ab_d, ab_i, 1, n, biga_index)
! Temperature profile, at time t, in eigenfunction basis, in row vector. call initialize_rarray(abt, abt_d, abt_i, 1, n, biga_index)
! Temperarure profile in at time t in sine expansion basis, in row vector. call initialize_rarray (x, x_d, x_i, 1, n, biga_index)

```
!
! Represent initial temperature in sine function expansion.
!
!
Here, we are calculating the initial set of coefficients
in the sine function expansion as given in equations 3 and 4 of
the discussion paper
    The call to get_diffusion_matrix returns the diffusion
    operator in the sine function basis.
    call get_diffusion_matrix(f,f_i,f_d)
    This last call determines the matrix elements defined by equation 10
    in the discussion paper.
    Here we precalculate the sine functions, sin(kx) and sin(jy) used
    in equation 13 of the discussion paper.
    These sine functions are only evaluated at the points x and y for
    which the solution is evaluated.
        do i = 1, dif_nx
            do j = 1, dif_npts
                xsines(j,i) = sqrt(2.d0/pi) * sin( i * dif_x(j))
            enddo
        enddo
        do i = 1, dif_ny
            do j = 1, dif_npts
                ysines(j,i) = sqrt(2.d0/pi) * sin( i * dif_y(j))
            enddo
        enddo
    Allocate arrays for eigenvalue decomposition.
    allocate( ifail(n), stat=stat)
    if( stat .ne. 0) num_errors = num_errors + 1
    allocate( iclustr(n), stat=stat)
    if( stat .ne. 0) num_errors = num_errors + 1
        allocate( gap(sc_nno\overline{des), stat=sta}t)
        if( stat .ne. 0) num_errors = num_errors + 1
!
! Allocate scratch space for the symetric eigenvector solver.
    lwork = 20*n + max( 5*n, n*(n+ sc_nnodes-1)/sc_nnodes )
    & + n*( ( n+ sc_nnodes-1)/sc_nnodes) + 2*f_\overline{d}(M\mp@subsup{B}{-}{\prime}) * f_d(MB_)
    ilwork = 2*n + max((3*n+1+sc_nnodes),max(4*n,14))
```

```
            allocate( work(lwork) , stat=stat )
            if( stat .ne. 0) num_errors = num_errors + 1
            allocate( iwork(ilwork) , stat=stat )
            if( stat .ne. 0) num_errors = num_errors + 1
!
    Test to see if we had any allocation errors.
            cal1 igamx2d(sc_icontext,'A',' ',1,1,num_errors,1,-1,-1,-1,
        &
            if( num_errors .gt. 0 ) then
        if( sc_iam .eq. 0 ) then
            write(*,*) 'Error in allocating arrays for pdsyevx in ',
                                    'main'
                call blacs_abort(sc_icontext, 1)
            endif
            endif
            do i = 1, sc_nnodes
        gap(i) = \overline{0. d0}
    enddo
    do i = 1, n
        ifail(i) = 0
        iclustr(i) = 0
    enddo
!
! The call to pdsyevx will find both the eigenvalues and eigenvectors
! of the diffusion matrix operator f. The eigenvalues will be stored in
the vector lambda and the corresponding eigenvectors will be stored in
the matrix b. The f and b matrices in the program correspond to the
F and B matrices in equations 11 and 12 in the
discussion paper.
    cal1 pdsyevx('V','A','U',n,f,1,1,f_d,-1.d30,1.d30,0,n,
    & 0.d0,num_eigvalues,num_vectors,lambda,1.d-5,b,1,1,b_d,
    work, lwork, iwork, ilwork, ifail, iclustr, gap, info)
    if( sc_iam .eq. 0) then
        if( info .ne. 0 ) then
            write(*,*) ' info is ', info
            call blacs_abort(sc_icontext, 1)
        endif
    endif
    Multiply the transpose of the eigenvector matrix, b, with the sine
    expansion of the initial temperature profile, a, to obtain the
    initial temperature profile in terms of the eigenfuctions of the
    diffusion operator.
    call pdgemv('T', n, n, 1.d0, b, 1, 1, b_d, a, 1, 1, a_d, 1,
&
&
                0.d0, ab, 1, 1, ab_d, 1)
!
! This first matrix multiplication, yielding the matrix ab,
corresponds to the inner summation in equation 10
```

```
of the discussion paper.
Calculate temperature profile for each time step.
    do it = 1, dif_ntemps
        i = 0
        do ib = 1, ab_i%num_col_blks
            do ig = ab_\overline{i}%scb(\overline{ib}), -ab_i%ecb(ib)
                    i = i + 
                    abt(1,i) = exp( -lambda(ig) * it * dif_delta_t) * ab(1,i)
            enddo
        enddo
```

abt now has the expansion of the temperature profile in terms of the
eigenvectors of the diffusion operator.
Multiply the eigenvector matrix with abt to give the sine function
expansion of the temperature profile at time t, x.
call pdgemv('N', n, n, 1.d0, b, 1, 1, b_d, abt, 1, 1, abt_d,
\&
$\left.1,0 . d 0, x, 1,1, x _d, 1\right)$
This last sum corresponds to the outer sum of equation 12 , where the
time dependent expansion coefficients a\{sub 1\}(t) are stored in the
temporary array x in the program.
Gather all of the local pieces of the array x to the array $x g$.
call rlocal_to_rglobal (x, x_d, xg)
do $k=1$, dif_npts
$\operatorname{temp}(\mathrm{k}, \mathrm{it})=0 . \mathrm{d} 0$
enddo
do iy = 1, dif_ny
do $i x=1$, díf_nx
$i=(i y-1) \bar{*} d i f _n x+i x$
do $k=1$, dif_npts
temp(k,it) $=$ temp(k,it) $+\operatorname{xsines}(k, i x)$ * ysines(k,iy)
* $\mathrm{xg}(1, \mathrm{i})$
enddo
enddo
enddo
This last do loop corresponds to the double summation in equation
13 of the discussion paper.
enddo ! end of time loop
and points.
!

```
    if( sc_iam .eq. 0 ) then ! if I am node 0
        write(*,*) ' point # X Y'
    do i = 1, dif_npts
        write(*,'(2x, i6, 2x, 2f11.4)') i, dif_x(i), dif_y(i)
    enddo
    write(*,*)
    do k = 1, dif_npts, 6
        write(*,*)
        write(*,'(30X,'Points'')')
        write(*,'('' TIME '',6(5x,''#'', i4))') (i, i=k, k+5)
        do i = 1, dif_ntemps
            write(*,'(7f10.5)') i*dif_delta_t,
                                    (temp(j,i),j=k,min(k+5,dif_npts))
        enddo
    enddo
endif
deallocate(xg)
deallocate(xsines)
deallocate(ysines)
deallocate(lambda)
deallocate(temp)
deallocate( ifail)
deallocate( iclustr)
deallocate( gap)
stop
end
```

 \&
 \&

Module Parameters (Message Passing)

module parameters

```
Purpose: Define system wide parameters and index structure
            used to help map global indices to local indices.
        implicit none
        public
        integer, parameter :: long=8, short=4
        real(long), parameter :: pi = 3.141592653589793d0
        real(long), parameter :: twopi = 2.d0*pi
        type g_index
        integer :: num_row_blks, num_col_blks
        integer, pointer :: srb(:), scb(:), erb(:), ecb(:)
        end type g_index
The g_index type was created for convenience
    components:
        num_row_blks: number of block repetitions over matrix rows.
        num_col_blks: number of block repetitions over matrix columns.
        srb: global row index at start of a block
            corresponding local index is ( block # -1) * mb
            where mb is the number of rows in the block.
        scb: global column index at start of a block
```

 ecb: last global column index in the block.
 public g_index
 end module parameters

Module Diffusion (Message Passing)

module diffusion

Purpose: Assign problem parameters and initial data.
Routines called:
none
use parameters
use scale
implicit none
private
!
! Make all entities private by default.
! Have all public entities have the prefix dif_.
The following are the publicly available routines.
public init_diffusion, init_temp, diff_coef
The following are publicly available variables.
real, public :: dif_ly_ratio
integer, public :: dif_nx, dif_ny, dif_npts, dif_ntemps
real(long), public :: \bar{d} if delta_t
real(long), public, allocatable ${ }^{-}:$: dif_x(:), dif_y(:)
dif_ly_ratio is the ratio of the x and y lengths of the beam.
dif_nx is the number of sine expansion coefficients to use
in the x direction.
dif_ny is the number of sine expansion coefficients to use
in the y direction.
dif_delta_t is the size of the time step to be display on output.
dif_ntemps is the total number of temperatures to display per point.
dif_npts is the total number of points to output.
dif_x is the x coordinates of the points.
dif_y is the y coordinates of the points.
Private variables
integer :: init_f=1, diff_f=1
! init_f chooses the functional form of initial distribution of temperature.

```
! diff_f chooses the functional form for spatially dependent head diffusion
! coefficient.
            contains
!*********************************************************************************!
!* *!
!* Module routine init_diffusion *!
!* *!
!* Purpose: Initialize problem size, number of output point and *!
!* functional form of diffusion constant and initial temperature *!
!* distribution *!
!* *!
!*********************************************************************************!
    subroutine init_diffusion
    namelist /input/ ly_ratio, delta_t, numx, numy, nx, ny, numt,
        &
            integer :: numx=5, numy = 5, nx=\overline{7}, ny=7, numt=20
            real(long) :: ly ratio=1.d0, delta t=0.1
            real(long) :: de\}x, del
            integer :: i, j, ij
            logical :: ex
!================================================================================== !
! Start of executable code !
            inquire ( file='diffus.naml', exist=ex)
            if( ex ) then
                    open( 10, file='diffus.naml', action='read')
                    read( 10, input)
                    close(10)
            endif
            dif_ly_ratio = ly_ratio
            dif npts = numx*numy
            dif_delta_t = delta_t
            dif_ntemps = numt
            dif_nx = nx
            dif_ny = ny
            allocate( dif_x(numx*numy) )
            allocate( dif_y(numy*numx) )
!
! Assign a simple linear array of points.
!
    delx = PI/ ( numx + 1.d0)
    dely = PI/ ( numy + 1.d0)
    do i = 1, numx
            do j = 1, numy
                    ij = numx*(j-1) + i
                    dif x(ij) = delx* i
            dif_y(ij) = dely * j
            enddo
    enddo
    return
    end subroutine init_diffusion
!*********************************************************************************!
!*
!* Module routine init_temp *!
```

```
!*
!* Purpose: Return the initial temperature of the bar at a particular
        point
!*
!**********************************************************************************!
    function init_temp(x, y)
    Arguments:
        x: real*8 (in), x coordinate
        y: real*8 (in), y coordinate
    Function return:
    init_temp: real*8 (out), initial temperature at (x,y)
        real(long), intent(in) :: x, y
        real(long) :: init_temp
    The problem has been scaled to go from 0 to pi in both the x
        and y directions. To calculate the expansion coefficients, we
        define the function to be odd about pi and use the range 0 < x < 2*pi
Local variables.
    integer :: isign
    real(long) :: x1, y1
!
    isign = 1
    x1 = x
    if( x .gt. pi ) then
        isign = -isign
        x1 = twopi - x
    endif
    y1 = y
    if( y .gt. pi ) then
        isign = -isign
        y1 = twopi - y
    endif
!
! Choose very simple temperature profile cases.
!
    select case (init_f)
        case (1)
            init temp = isign*(x1*(pi-x1))*y1*(pi-y1)
        case (2)
            init_temp = isign*(x1*(pi-x1))*y1*(pi-y1)*yl
        case (3)
            init_temp = isign*(x1*(pi-x1))*y1*(pi-y1)*x1
        case (4)
            init_temp = isign*(x1*(pi-x1))*y1*(pi-y1)*x1*y1
        case (5)
            init_temp = isign*(x1*(pi-x1))*yl*(pi-y1)
        case (6)
            init_temp = isign*(xl*(pi-xl))**2 *yl*(pi-y1)
        case (7)
            init_temp = isign*(x1*(pi-x1))*(y1*(pi-y1))**2
        case default
            init_temp = isign*sin(x1)*sin(y1)
        end select
```

return
end function init_temp

```
!*******************************************************************************
!* *!
!* Module routine diff_coef *!
!* *!
!* Purpose: Return the value of the thermal diffusion coefficient at *!
!* an arbitrary point *!
!* *!
!*********************************************************************************
    function diff_coef(x, y)
    Arguments:
        x: real*8 (in), x coordinate
        y: real*8 (in), y coordinate
    Function return:
        diff_coef: real*8 (out), diffusion coefficient at (x,y)
            real(long), intent(in) :: x, y
            real(long) :: diff_coef
! The problem has been scaled to go from 0 to pi in both the x
! and y directions. To simplify the matrix element calculations,
we define the function to be even about pi.
!
! Local variables.
    real(long) :: x1, y1
!=================================================================================\!
! Start of executable code. !
    x1 = x
    if( x .gt. pi ) x1 = twopi - x
    y1 = y
    if( y .gt. pi ) y1 = twopi - y
!
! Choose very simple diffusion coefficient cases.
!
    select case (diff_f)
        case (1)
            diff_coef = . 5d0 + (x1 + y1) / (2 * twopi)
            case (\overline{2)}
                diff_coef = ((1.d0 + x1)*(pi - x1 + 1.d0)*(y1 + pi))/ 3*pi
            case (\overline{3}
            diff_coef = (y1 + pi) * pi/((pi + x1) * (2* pi - x1))
        case default
            diff_coef = 1.d0
            end select
        return
        end function diff_coef
        end module diffusion
```


Module Fourier (Message Passing)

module fourier

Purpose: To represent both the diffusion operator and
the temperature profile in a sine function basis.
Routines called:
blacs_abort
clocal_to_rglobal
dcft2
igamx2d
initialize_carray
initialize_scale
pdcft2
use parameters
use scale
use diffusion
implicit none
private
!
! all entities private by default
external pdcft2
publicly available routines
public expand_temp_profile, get_diffusion_matrix
public g_index
!
publicly available variables
private variables
integer :: pn_fac(5) = 5*0 ! prime factors of number of nodes
nnodes $=2 * * p n_{-} f a c(1) * 3 * * p n_{_} f a c(2) * 5 * * p n _f a c(3) *$
$7 * * p n _f a c(4)$ * $11 * * p n _f a c(5)$
private routines
private minpower2, factor_nodes
contains

!* *!
!* Module routine get_diffusion_matrix *!
!* *!
!* Purpose: To obtain the matrix representation of the diffusion *!
!* operator in a sine function basis *!
!* *!
! **)
subroutine get_diffusion_matrix(f,f_i, f_d)
!
! Arguments:

```
f: real*8,dimension(:,:),(out), local part of the global matrix
                containing the diffusion operator in sine function basis.
    f_d: integer*4, dimension(:),(in), array descriptor for f.
    f_i: g_type, (in), g_type structure for f, see parameter.f.
    real(long), intent(out) :: f(:,:)
    integer, intent(in) :: f_d(DESC_DIM)
    type (g_index), intent(in) :: f_i
Local variables
    df contains the diffusion coefficient before the call to pdcft2.
    df contains the Fourier transpose of diffusion coefficients after the call.
    dfg contains the entire Fourier transpose of df on each node.
        complex(long), pointer :: df(:,:)
        type (g_index), pointer :: df_i
        integer :: df_d(DESC_DIM)
        real(long), allocatable :: dfg(:,:)
    ixi and iyi are arrays which, given a global index,
    return the x and y offsets. Recall that the large arrays
    are 4 dimensional arrays collapsed into 2 dimensions,
    where i = (ix-1)*dif_ny + iy.
        integer, allocatable :: ixi(:), iyi(:)
        real(long) :: scale_f
        integer :: nx, ny, ix, iy, ixp, iyp, istat, nerrs
        integer :: ixdiff, iydiff, num_errors
        integer :: naux1, naux2, i, j, factor1, factor2, idum
        integer :: ib, jb, il, jl
    ip is a support array for pdcft2.
        integer :: ip(40)
        integer :: blk_index
!
    Fourier transform of diffusion coefficient function
        nerrs=0
            call factor nodes()
            factor1 = 3**pn_fac(2) * 5**pn_fac(3) * 7**pn_fac(4) *
                        11**pn_fac(5)
        &
!
Here we are trying to find the smallest number which is evenly
divisible by the number of processes and is larger than 4*(n+1).
factor2 = (4*(dif_nx+1) + factor1 -1)/factor1
nx = minpower2( factor2,idum) * factor1
factor2 = (4*(dif_ny+1) + factor1 -1)/factor1
ny = minpower2( factor2,idum) * factor1
scale_f = 1.d0/ real (nx*ny, long)
```

```
!
Get storage for diffusion array.
!
call initialize_scale(ny, blk_index)
    call initialize_carray(df, df_d, df_i, nx, ny,
    &
    blk_index)
    Here, we initialize the local part of the global array df, which
    contains the value of the diffusion coefficient function, evenly
    evaluated between (0, 2*pi). We do a two dimensional Fourier
    transform on the data. Because the size of this array is so small,
    nx by ny, and ultimately we have to transfer the whole array to
    each node, it would probably be more efficient to do the calculation
    locally on each node.
    Get the value of the diffusion coefficient function at
    the necessary points.
    This loop can be simplified considerably. Because blocks of the
    array are column-distributed with the block size equal to the number
    of columns divided by the number of processes, there is only a single
    column block. Also, because the processes are distributed in a 1 x np
    arrangement, the local row index will equal the global row index.
    However, the loop is perfectly general for other process arrangements
    and is correct for this particular case.
    j1 = 0
    do jb = 1, df_i%num_col_blks ! loop over the number of column blocks
        do j = df_i%scb(jb), df_i%ecb(jb)
                            ! loop over columns in block
                            ! j is a global index
        j1 = jl + 1 ! jl is local array column index
        il = 0
        do ib = 1, df_i%num_row_blks ! loop over the number of row blocks
            do i = df_i%srb(i\overline{b}), -df_i%erb(ib)
                                    ! loop over rows in block
                                    ! i is a global index
                    il = il + 1 ! il is local array row index
                    df(il,jl) = diff_coef((twopi*(i-1))/nx,
                                    &
    &
                                    (twopi*(j-1))/ny)
            enddo
        enddo
        enddo
    enddo
This last loop just determined the diffusion coefficient at evenly
spaced points along the x and y coordinates.
Do the Fourier transform.
    do i= 1,40
    ip(i) = 0
```

```
            enddo
! Store the array in normal mode overwriting the original array.
    ip(1) = 1
    ip(2) = 1
! Because the size of the 2d Fourier transform is nx by ny, which is much
smaller than the size of the eigenvalue problem, this could probably
be done serially on each node more quickly.
    call pdcft2(df, df, nx, ny, 1,scale_f, sc_icontext, ip)
    df now has the Fourier coefficients for the diffusion coefficient
    function, which correspond to the D(tilde)(sub ij) given in the
    discussion paper.
    Because each process will need most of the Fourier transformed diffusion
    coefficients, it is useful to broadcast all parts of this matrix
    to each process.
    First allocate the index arrays.
    num_errors=0
    allōcate(ixi(dif_nx*dif_ny), stat=istat)
    if( istat .ne. 0-) num e
    allocate(iyi(dif_nx*dif_ny), stat=istat)
    if( istat .ne. 0 ) num_errors = num_errors + 1
! Allocate array for holding global Fourier transform.
    allocate(dfg(nx,ny), stat = istat)
    if( istat .ne. 0 ) num_errors = num_errors + 1
    call igamx2d(sc_icontext,'A',' ',1,1,num_errors,1,-1,-1,-1,
    &
    & -1,-1)
    if( num_errors .gt. 0 ) then
        if( sc_iam .eq. 0 ) then
            write(*,*) 'Error in allocating scratch arrays in ',
                                    'get_diffusion_matrix'
                call blacs_abort(sc_iconte\overline{x}t, 1)
            endif
        endif
    call clocal_to_rglobal( df, df_d, dfg )
    Here df contains only local portions of the global array, while
    dfg contains the entire global array.
!
Now load up the diffusion operator
    f(ix,iy;ix',iy').
    Here we transform the 4d matrix into the 2d matrix where
        i = (iy-1)* dif_nx + ix + 1
    and
        j = (iy'-1)* dif_nx + ix' + 1.
```

```
! First calculate the index arrays.
!
    do ix = 1, dif_nx
        do iy = 1, dif_ny
                i = (iy-1)* dif_nx + ix
                ixi(i) = ix
                iyi(i) = iy
            enddo
        enddo
!
! This final loop loads the matrix elements up for F as given in
! equation 10.
!
    j1 = 0
    do jb = 1, f_i%num_col_blks ! loop over the number of column blocks
        do j = f_i % scb(jb}),\mp@subsup{\overline{f}}{-}{}\textrm{i}%\textrm{ecb}(jb
                                    ! loōp over columns in block
                                    ! j is a global index
        j1 = j1 + 1 ! jl is local array column index
        iyp = iyi(j)
        ixp = ixi(j)
        il = 0
        do ib = 1, f_i%num_row_blks ! loop over the number of row blocks
            do i = f_i%srb(i\overline{b}), \overline{f_i%erb(ib)}
                                    ! loop over rows in block
                            ! i is a global index
            il = il + 1 ! il is local array row index
            iy = iyi(i)
                ix = ixi(i)
                ixdiff = iabs(ix-ixp) + 1
                iydiff = iabs(iy-iyp) + 1
                f(il,jl) = ( ( ix*ixp + iy*iyp*dif_ly_ratio ) * &
    &
                    (dfg(ixdiff, iydiff) - dfg(ix + 
                    + ( ix*ixp - iy*iyp*dif_ly_ratio ) *
                        (dfg(ix+ixp+1,iydiff ) - dfg(ixdiff,iy+iyp+1)))
                enddo
            enddo
        enddo
        enddo
        deallocate(dfg)
        deallocate(ixi)
        deallocate(iyi)
!
! We should add routines to free df.
    return
    end subroutine get_diffusion_matrix
```

! **
!* *!
!* Module routine expand_temp_profile *!
!* *!
!* Purpose: To obtain the expansion coefficients of the initial *!
!* temperature profile in a sine function expansion *!

```
!*
!********************************************************************************!
        subroutine expand_temp_profile(a,a_i,a_d)
    Arguments:
            a: real*8,dimension(:,:),(out), local part of the global matrix,
                    containing the sine coefficients for initial
                    temperature distribution.
    a_d: integer*4, dimension(:),(in), array descriptor for a.
    a_i: g_type, (in), g_type structure for a, see parameter.f.
        real(long), intent(out) :: a(:,:)
        integer, intent(in) :: a_d(DESC_DIM)
        type (g_index), intent(in) :: a_i
! Local variables
        complex(long), allocatable :: atmp(:,:)
        real(long), allocatable :: aux1(:), aux2(:)
        integer :: i,j, nx, ny, istat, naux1, naux2, nerrs, j1
        integer :: idum, jb, jx, jy
        real(long) :: x, y, scale_f
    Calculate the minimum power of 2 to hold twice the number of
    Fourier coefficients as sine coefficients. The top half of the
        Fourier coefficients will equal minus the bottom half because
        we are forcing the temperature profile to be odd.
        nx = minpower2( 2*(dif_nx+1), idum)
        ny = minpower2( 2*(dif_ny+1), idum)
        scale_f = -twopi / real( nx*ny,long)
        nerrs = 0
!
! Temperature profile allocation.
        allocate(atmp(nx,ny), stat=istat )
        if( istat .ne. 0 ) nerrs = nerrs + 1
!
!
        naux1 = 40000 + 2.28*( nx + ny)
        naux2 = 20000 + 66*( 256 + 2*max(nx , ny))
!
! Allocate work storage.
    allocate(aux1(naux1), stat=istat)
    if( istat .ne. 0 ) nerrs = nerrs + 1
    allocate(aux2(naux2), stat=istat)
    if( istat .ne. 0 ) nerrs = nerrs + 1
    Check for allocation errors.
    cal1 igamx2d(sc_icontext,'A',' ',1,1,nerrs,1,-1,-1,-1,-1,-1)
    if( nerrs .gt. 0 ) then
        if( sc_iam .eq. 0 ) then
            write(*,*) 'Error in allocating scratch arrays in ',
                        'expand_temp_profile'
            call blacs_abort(sc_icontext, 1)
        endif
```

endif

```
!
!
!
! atmp contains the initial temperature profile T(sub 0)(x,y) as used
in equation 5 in the discussion paper.
do i = 1, nx
    do j = 1, ny
        atmp(i,j) = init_temp((twopi*(i-1))/nx, (twopi*(j-1))/ny)
    enddo
enddo
Do the 2d Fourier transform of atmp.
First initialize.
The 2d Fourier transform can be done in parallel, however it
is such a small part of the problem, it is probably faster to do
it serially on each node.
Note that we could have used DSINF to obtain these expansion coefficients
as well.
        call dcft2(1,atmp,1,nx,atmp,1,nx,nx,ny,1,scale_f ,aux1,naux1,
                    aux2,naux2 )
            call dcft2(0,atmp,1,nx,atmp,1,nx,nx,ny,1,scale_f ,aux1,naux1,
\&
                    aux2,naux2 )
!
! The calls to dcft2 calculated the dual Fourier transform as
defined by equation 5 in the discussion paper.
!
This final loop is to load only those portions of the global array
corresponding to the local portion of that array for this process.
j1 = 0
do jb = 1, a i%num col blks ! loop over all column blocks
    do j = a_i%scb(jb), a_i%ecb(jb) ! j is global index
            jx = mod(j-1, dif_nx) + 2
            jy = (j-1) / dif_nx + 2
            jl = jl + 1
            a(1,jl) = real(atmp(jx,jy),long)
        enddo
enddo
deallocate(atmp)
deallocate(aux1)
deallocate(aux2)
return
end subroutine expand_temp_profile
```

```
!*******************************************************************************
!* *!
!* Module routine factor_nodes *!
!* *!
!* Purpose: To obtain the powers of prime factorization of the number *!
nodes, failing if the factorization is not compatible with *!
FFT supported transform lengths *!
!* *!
!*****************************************************************************!
    subroutine factor_nodes()
    Arguments: None
    Local variables
        integer n1, n2, 12
    Determine the prime factorization of nnodes, which must
        be of the form 2**n * 3**m * 5**i * 7**j * 11**k
        where m cannot be greater than 2 and i, j, and k cannot
        be greater than 1
        n2 = sc_nnodes
        n1 = n2/11
        if( n1*11 .eq. n2) then
            pn_fac(5) = 1
            n2 = n1
        endif
        n1 = n2/7
        if( n1*7 .eq. n2) then
            pn_fac(4) = 1
            n2 = n1
        endif
        n1 = n2/5
        if( n1*5 .eq. n2) then
        pn_fac(3) = 1
        n2 = n1
    endif
    n1 = n2/3
    if( n1*3 .eq. n2) then
        if ( (n1/3)*3 .eq. n1 ) then
            pn_fac(2) = 2
            n2 = n1/3
        else
            pn_fac(2) = 1
            n2 = n1
        endif
        endif
        n1 = minpower2(n2,12)
        pn_fac(1) = 12
        if( n1 .ne. n2) then
            if( sc_iam .eq. 0) then
                write(*,*) 'Invalid number of nodes, it must have the form:'
                write(*,*) '2**n * 3**m * 5**i * 7**j * 11**k, where '
                write(*,*) ' n >= 0, 0<=m<=2 and 0<= i,j,k <=1 '
```

```
            write(*,*) ' choose a power of 2 for best performance'
            call blacs_abort(sc_icontext,1)
            endif
        endif
        end subroutine factor_nodes
```


!* *!
!* Module function minpower2 *!
!* *!
!* Purpose: To obtain the smallest number which is a power of 2 and *!
greater than or equal to the input argument *!
!* *!
! ***)
function minpower2($n, \log 2 n)$
Arguments:
n : integer*4, (in), input number
$\log 2 n$: integer*4, (out), \log base 2 of the function result
Function return:
minpower2: integer*4 (out), smallest number, which is a power of 2
and greater than or equal to n.
integer n, minpower2, $\log 2 n$
!
Local variables.
integer m, i
$\mathrm{m}=\mathrm{n}$
if($n<0$) write(*,*) ' n cannot be negative'
powerloop: do $i=1$, bit_size(n)
$\mathrm{m}=\mathrm{m} / 2$
if(m .eq. 0) exit powerloop
enddo powerloop
if ($2 * *(i-1)$.ne. n) then
if($2 * * i<0$) write(*,*) 'n too large'
$\log 2 n=1$
minpower2 = 2**i
else
$\log 2 n=i-1$
minpower2 $=n$
endif
return
end function minpower2
end module fourier

Module Scale (Message Passing)

```
        module scale
    Purpose: To initialize the communications and provide a few
            communication utility routines.
    Routines called:
        blacs_abort
        blacs_get
        blacs_gridinfo
        blacs_gridinit
        blacs_pinfo
        dgebr2d
        dgebs2d
        numroc
            use parameters
            implicit none
            external numroc
    All variables private by default.
        private
    Publicly accessible routines follow.
        public initialize_scale
        public initialize_rarray, initialize_carray
        public clocal_to_rglobal, rlocal_to_rglobal
        public g_index
    Public variables follow.
        integer, public :: sc_icontext, sc_iam, sc_nnodes
    Private variables follow.
    MAXBLOCK is the maximum block size. Here it is set to a very
            large number to force an equal noncyclic block distribution
            for the FFTs.
        integer, public, parameter :: MAXBLOCK=50000
        integer, public, parameter :: MAX_SC_INDEX=10
        integer, public, parameter :: DESC_DIM=9
        integer, public, parameter :: DTYPE_=1
        integer, public, parameter :: CTXT_=2
        integer, public, parameter :: M_=3
        integer, public, parameter :: N_=4
        integer, public, parameter :: MB_=5
        integer, public, parameter :: NB_=6
        integer, public, parameter :: RSRC_=7
        integer, public, parameter :: CSRC_=8
        integer, public, parameter :: LLD_=9
        integer :: numroc
        integer :: nprow, npcol, myrow, mycol
```

!

```
The block sizes for a given array size are indexed in the
nblock, mblock and nsize arrays so that, for a given array size,
the block size calculation is done only once and exactly the same
block sizes are returned for any particular array size.
!
The number of different array sizes is limited by the fixed
dimension of the arrays nblock, mblock and nsize.
integer :: icontext, iam, nnodes
integer, save :: sc_indx=0
integer, parameter :: rsrc=0, csrc=0
logical, save :: initialized = .false.
!
All of the manipulation of the PESSL and SP variables will be
done in this module and held privately.
    contains
!*********************************************************************************
!* *!
!* Module routine initialize_scale *!
!* *!
!* Purpose: Initialize blacs and calculate a block size *!
!* *!
!***********************************************************************************!
    subroutine initialize_scale (n, index)
    Arguments:
        n: integer*4 (in), matrix or vector size.
        index: integer*4 (out), index into an array of block sizes.
                Provides a mechanism for creating similar descriptor arrays.
    This routine assigns the block size based on a given
    n and returns an index, so that multiple arrays can be created with
    compatible block sizes.
    integer n, index
    integer npc, npr, i
    if ( .not. initialized ) then
        call blacs_pinfo( iam, nnodes )
        sc_iam = iam
        sc_nnodes = nnodes
    Get the number of nodes.
    The Fourier transform routines require that the processors
        be laid out in a 1 by nnodes arrangement.
    nprow = 1
    npcol = nnodes
```

```
                cal1 blacs_get(0,0,icontext)
                sc_icontext = icontext
                cal1 blacs_gridinit( icontext, 'R', nprow, npcol)
                sc_icontext = icontext
                cal1 blacs_gridinfo( icontext, npr, npc, myrow, mycol)
            Check that the system is gridded as expected.
                if( npr .ne. nprow .or. npc .ne. npcol) then
                    if( iam .eq. 0) then
                        write(*,*) 'number of processor rows and columns'
                        write(*,*) 'incorrect ', nprow, npr, npcol, npc
                        call blacs_abort(icontext,1)
                        endif
                endif
                initialized = .true.
            endif
    If we have already calculated a block size based on estimated
    array size, return the index for that block size.
    do i = 1, sc_indx
            if( n .eq. nsize(i)) then
                index = i
                return
            endif
        enddo
!
! Compute a block size.
    sc_indx = sc_indx + 1
    if ( sc_indx .GT. MAX_SC_INDEX ) then
        if( iam .eq. 0 ) thèn
            write(*,*) 'Used more than the maximum number of '
            write(*,*) 'indices in initialize_scale, Maximum is ',
                MAX_SC_INDEX
            call blacs_abort(icontext,1)
            endif
        endif
    index = sc_indx
    nsize(index) = n
!
! Always choose a square block with a maximum dimension of MAXBLOCK.
!
    if( ( n ) / nnodes .gt. MAXBLOCK ) then
        mblock(index) = MAXBLOCK
    else
        mblock(index) = (n ) / nnodes
    endif
    if( mblock(index) .lt. 1 ) then
        if( iam .eq. 0 ) then
            write(*,*) 'problem size too small for number of nodes'
            write(*,*) 'try increasing the nx and ny'
```

```
            write(*,*) n, nnodes
            cal1 blacs_abort(sc_icontext, 1)
            endif
        endif
        nblock(index) = mblock(index)
        return
        end subroutine initialize_scale
```

!
! This routine is provided to allocate dynamically the space
needed for the local part of a global array and initialize the
associated array descriptor. It also returns array-useful
indices to do local to global index conversion.
initialize_rarray => real array initialization.
initialize_carray => complex array initialization.
! **
!* *!
!* Module routine initialize_rarray *!
!* *!
!* Purpose: Allocate space for a real array and create associated *!
!* descriptor array and index array *!
!* *!
! **)
subroutine initialize_rarray(array, desc_array,
\&
index_array, m, n, blk_index)
Arguments:
array: pointer to real*8 (out), pointer to real array, initialized.
desc_array: integer*4 (out), empty descriptor array, initialized.
index_array: g_index (out), pointer to g_index structure,
see parameter.f, initialized.
m : integer*4 (out), scalar number of rows in global array.
n : integer*4 (out), scalar number of columns in global array.
blk_index: integer*4 (in), index into array of block sizes to use
for initializing the descriptor array.
integer, intent(out) :: desc_array(DESC_DIM)
integer, intent(in) :: m, n, blk_index
type (g_index), pointer :: index_array
real(long), pointer :: array(:,:)
! Local variables
integer :: irows, icols, istat, i, j
integer :: start_row_block, start_col_block
integer : : mb, n̄ \bar{b}, num_mb, num_nb
!
! Check to see if the block sizes were already calculated.
if (blk_index .lt.1 .or. blk_index .gt. sc_indx) then
if(iam .eq. 0) then
write(*,*) 'No initialization done for index ', blk_index
call blacs_abort(icontext, 1)

```
        endif
    endif
    mb = mblock(blk_index)
    nb = nblock(blk_index)
    irows = numroc( m, mb, myrow, rsrc, nprow )
    icols = numroc( n, nb, mycol, csrc, npcol )
    allocate(array(max(irows,1),max(icols,1)), stat=istat)
    if ( istat .ne. 0) then
    write(*,*) 'allocate failed in initialize_array'
    call blacs_abort(icontext,1)
endif
Calculate the number of row and column blocks.
!
!
    start_row_block = mod( nprow + myrow - rsrc , nprow )
    start_col_block = mod( npcol + mycol - csrc , npcol )
    do i = 1, index_array%num_row_blks
        index_array%srbb(i) = (start_row_block + (i - 1)*nprow) *
&
    num_mb = ( (irows + mb -1)/ mb )
    num_nb = ( (icols + nb -1)/ nb )
    allocate (index_array)
    index_array%num_row_blks = num_mb
    index_array%num_col_blks = num_nb
    allocate(index_array%srb(num_mb))
    allocate(index_array%erb(num_mb))
    allocate(index_array%scb(num_nb))
    allocate(index_array%ecb(num_nb))
    desc_array(DTYPE_) = 1
    desc_array(M_) = m
    desc_array(N_) = n
    desc_array(M\overline{B}})=m\mp@code{mb
    desc_array(NB_) = nb
    desc_array(RSRC_) = rsrc
    desc_array(CSRC_) = csrc
    desc_array(CTXT_) = icontext
    desc_array(LLD_) = max(irows,1)
        index_array%erb(i) = index_array%srb(i) + mb - 1
    enddo
    index_array%erb(num_mb) = mod(irows-1,mb) +
&
                index_array%srb(num_mb)
    do i = 1, index_array%num_col_blks
        index_array%scb(i) = (start_col_block + (i - 1)*npcol) *
&
                                nb + 1
        index_array%ecb(i) = index_array%scb(i) + nb - 1
enddo
index_array%ecb(num_nb) = mod(icols-1,nb) +
```

\&
end subroutine initialize rarray

```
! Complex array initialization.
!
!*****************************************************************************)
!* *!
!* Module routine initialize_carray *!
!* *!
!* Purpose: Allocate space for a complex array and create associated *!
!* descriptor array and index array *!
!* *!
!*******************************************************************************!
    subroutine initialize_carray( array, desc_array,
&
index_array, m, n, blk_index)
Arguments:
array: pointer to complex (out), pointer to real array, initialized.
desc_array: integer*4 (out), empty descriptor array, initialized.
index_array: g_index (out), pointer to g_index structure,
                    see parameter.f, initialized.
    m: integer*4 (out), scalar number of rows in global array.
    n: integer*4 (out), scalar number of columns in global array.
    blk_index: integer*4 (in), index into array of block sizes to use
                    for initializing the descriptor array.
    integer desc_array(DESC_DIM), m, n, blk_index
    type (g_index),pointer :: index_array
    complex(long), pointer :: array(:,:)
! Local variables
    integer :: irows, icols, istat, i, j
    integer :: start_row_block, start_col_block
    integer :: mb, nb, num_mb, num_nb
    Check to see if the block sizes were already calculated.
    if ( blk_index .lt.1 .or. blk_index .gt. sc_indx ) then
        if( iam .eq. 0 ) then
            write(*,*) 'No initialization done for index ', blk_index
            call blacs_abort(icontext, 1)
        endif
    endif
    mb = mblock(blk index)
    nb = nblock(blk_index)
    irows = numroc( m, mb, myrow, rsrc, nprow )
    icols = numroc( n, nb, mycol, csrc, npcol )
    allocate(array(max(irows,1),max(icols,1)), stat=istat)
    if ( istat .ne. 0) then
        write(*,*) 'allocate failed in initialize_array'
        cal1 blacs_abort(icontext,1)
```

endif

Calculate the number of row and column blocks.

```
    num_mb = ( (irows + mb -1)/ mb )
    num_nb = ( (icols + nb -1)/ nb )
    allocate(index_array, stat=istat)
    if ( istat .ne. 0) then
    write(*,*) 'allocate failed in initialize_array'
    call blacs_abort(icontext,1)
endif
    index_array%num_row_blks = num_mb
    index_array%num_col_blks = num_nb
    allocate(index array%srb(num mb))
    allocate(index_array%erb(num_mb))
    allocate(index_array%scb(num_nb))
    allocate(index_array%ecb(num_nb))
    desc_array(DTYPE_) = 1
    desc_array(M_) = m
    desc_array(N_) = n
    desc_array(MB_) = mb
    desc_array(NB_) = nb
    desc_array(RSRC_) = rsrc
    desc_array(CSRC_) = csrc
    desc_array(CTXT_) = icontext
    desc_array(LLD_) = max(irows,1)
    start_row_block = mod( nprow + myrow - rsrc , nprow )
    start_col_block = mod( npcol + mycol - csrc , npcol )
    do i = 1, index_array%num_row_blks
        index_array%srb(i) = (start_row_block + (i - 1)*nprow) *
            mb+1
        index_array%erb(i) = index_array%srb(i) + mb - 1
    enddo
    index_array%erb(num_mb) = mod(irows-1,mb) +
        index_array%srb(num_mb)
    do i = 1, index_array%num_col_blks
        index_array%scb(i) = (start_col_block + (i - 1)*npcol) *
            nb + 1
        index_array%ecb(i) = index_array%scb(i) + nb - 1
    enddo
    index_array%ecb(num_nb) = mod(icols-1,nb) +
                                    index_array%scb(num_nb)
end subroutine initialize_carray
```

```
!
!*******************************************************************************!
!* *!
!* Module routine clocal_to_rglobal *!
!* *!
!* Purpose: Take the real parts of the local portions of a complex matrix *!
!* and distribute them globally to each node *!
!* *!
!*******************************************************************************!
    subroutine clocal_to_rglobal(a,a_d,a_glob)
    Arguments:
        a: complex*16, dimension(:,:), is the local part of a
                global complex array.
            a_d: integer*4, array descriptor for a.
            a_glob: real*8, dimension(:,:), entire matrix A on each node.
                complex(long), intent(in) :: a(:,:)
                integer, intent(in) :: a_d(DESC_DIM)
                real(long), intent(out) :: a_glob(:,:)
!
! Local variables.
!
        integer :: nrow_blks, ncol_blks, ib, jb, ibl, jbl, i, j
        integer :: m, n, nb, mb, i\overline{g},jg, lda, il, jl, prow, pcol
        integer :: iarow, iacol, ni, nj
!
! m is number of rows in global matrix.
! n is number of columns in global matrix.
! mb and nb are rows and columns in each block.
! prow and pcol are the processor row and column containing a block.
! ib, jb, ibl, jbl are global and local block indices.
! il, jl, ig, jg are local and global matrix indices.
!
!
!
! Start of executable code.
!
!========================================================================
!
! Determine the total number of row and column blocks.
    m = a_d(M_)
    n = a_d(N_)
    mb = \overline{a_d (产B_)}
    nb = a_d(NB_)
    iarow = a_d(RSRC_)
    iacol = a_d(CSRC_)
    nrow_blks = ( m + mb -1 )/ mb
    ncol_blks = ( n + nb - 1 )/ nb
!
! Determine leading dimension of global array.
    1da = size(a_glob, dim=1)
```

```
!
Loop over all of the blocks.
!
!
! Loop over column blocks, determining both local and global j indices.
    jg = jb * nb + 1
    nj = nb
    if (jb .eq. ncol_blks - 1) nj = mod( n - 1, nb) + 1
    jbl = ( jb + iacol ) / npcol - (mycol + iacol) / npcol
    jl = jbl * nb + 1
    pcol = mod((jb + iacol), npcol )
    do ib = 0, nrow_blks - 1
!
! Loop over row blocks, determining both local and global i indices.
            ig = ib * mb + 1
            ni = mb
            if (ib .eq. nrow_blks - 1) ni = mod( m - 1, mb) + 1
            ibl = ( ib + iarow ) / nprow - (myrow + iarow) /nprow
            il = ibl * mb + 1
            prow = mod((ib + iarow), nprow )
    Determine if this block is on my processor.
            if( prow .eq. myrow .and. pcol .eq. mycol) then
    Block is on my processor.
    using Fortran 90 array language this is
        a_glob(ig:ig+ni-1,jg:jg+nj-1) = a(il:il+ni-1:jl+nj-1)
            do j = 1, nj
                do i = 1, ni
                    a_glob( ig+i-1, jg+j-1 ) = a( il+i-1, j1+j-1)
                enddo
            enddo
            cal1 dgebs2d(icontext,'ALL',' ',ni,nj,a_glob(ig,jg),lda)
            else
    Block is on somebody elses processor.
            call dgebr2d(icontext,'ALL',' ',ni,nj,a_glob(ig,jg),
                    lda, prow, pcol)
            endif
        enddo
        enddo
        return
        end subroutine clocal_to_rglobal
!*********************************************************************************!
!* *!
!* Module routine rlocal_to_rglobal *!
!* *!
!* Purpose: Take the local portions of a real matrix *!
```

```
!* and distribute them globally to each node *!
!* *!
!*****************************************************************************!
                subroutine rlocal_to_rglobal(a,a_d,a_glob)
    Arguments:
    a: real*8, dimension(:,:), is the local part of a global real array.
    a_d: integer*4, array descriptor for a.
    a_glob: real*8, dimension(:,:), entire matrix A on each node.
    Input arguments.
        real(long), intent(in) :: a(:,:)
        integer, intent(in) :: a_d(DESC_DIM)
        real(long), intent(out) :: a_glob(:,:)
        Local variables.
        integer :: nrow_blks, ncol_blks, ib, jb, ibl, jbl, i, j
        integer :: m, n, nb, mb, ig, jg, lda, il, jl, prow, pcol
        integer :: iarow, iacol, ni, nj
    m is number of rows in global matrix.
    n is number of columns in global matrix.
    mb}\mathrm{ and nb are rows and columns in each block.
    prow and pcol are the processor row and column containing a block.
    ib, jb, ibl, jbl are global and local block indices.
    il, jl, ig, jg are local and global matrix indices.
    Start of executable code.
! ======================================================================
!
! Determine the total number of row and column blocks.
    m = a_d(M_)
    n = a_d(N_)
    mb = a d(MB )
    nb = a_d(NB_)
    iarow = a_d(RSRC_)
    iacol = a_d(CSRC_)
    nrow_blks = ( m + mb -1 )/ mb
    ncol_blks = ( n + nb - 1 )/ nb
!
! Determine leading dimension of global array.
    lda = size(a_glob, dim=1)
!
Loop over all of the blocks.
    do jb = 0, ncol_blks - 1
!
! Loop over column blocks, determining both local and global j indices
        jg = jb * nb + 1
```

```
        nj = nb
        if (jb .eq. ncol_blks - 1) nj = mod( n - 1, nb) + 1
        jbl = ( jb + iacol ) / npcol - (mycol + iacol) / npcol
        jl = jbl * nb + 1
        pcol = mod((jb + iacol), npcol )
        do ib = 0, nrow_blks - 1
!
! Loop over row blocks, determining both local and global i indices.
    ig = ib * mb + 1
    ni = mb
    if (ib .eq. nrow_blks - 1) ni = mod(m - 1, mb) + 1
    ibl = ( ib + iarow ) / nprow - (myrow + iarow) /nprow
    il = ibl * mb + 1
    prow = mod((ib + iarow), nprow )
    Determine if this block is on my processor.
    if( prow .eq. myrow .and. pcol .eq. mycol) then
    Block is on my processor.
        do j = 1, nj
            do i = 1, ni
                        a_glob( ig+i-1, jg+j-1 ) = a( il+i-1, jl+j-1)
                    enddo
            enddo
            cal1 dgebs2d(icontext,'ALL',' ',ni,nj,a_glob(ig,jg),1da)
        else
    Block is on somebody elses processor.
            cal1 dgebr2d(icontext,'ALL',' ',ni,nj,a_glob(ig,jg),
    &
        endif
            enddo
        enddo
        return
        end subroutine rlocal_to_rglobal
        end module scale
```

 \&

Program Main (HPF)

program main

```
Purpose, to find the cooling rate for a specified set of
points in an anisotropic rectangular beam, immersed in a constant
heat bath with a temperature of 0.
Routines called:
    expand_temp_profile
    get_diffusion_matrix
        use parameters
```

use diffusion
use fourier
use pessl_hpf
implicit none
integer :: n, ix, jx, iy, jy, k, i, j, stat, it, ij
integer :: num_errors
a contains the sine expansion coefficients of the initial temperature profile.
b contains the eigenvectors of the diffusion operator in the sine function basis.
ab contains the initial temperature profile expanded in the eigenvectors of the diffusion operator.
f contains the matrix elements of the diffusion operation in sine function basis.
lambda contains the eigenvalues of the diffusion operator.
df contains the Fourier transform of the diffusion coefficient function.

```
```

real(long) :: t1, t2, delx, dely

```
real(long) :: t1, t2, delx, dely
integer :: j1, j2
integer :: j1, j2
real(long), allocatable :: dif_x(:), dif_y(:)
real(long), allocatable :: dif_x(:), dif_y(:)
real(long), allocatable :: lamb\overline{da(:)}
real(long), allocatable :: lamb\overline{da(:)}
real(long), allocatable :: gap(:)
real(long), allocatable :: gap(:)
real(long), allocatable :: f(:,:), b(:,:), a(:), a_rep(:)
real(long), allocatable :: f(:,:), b(:,:), a(:), a_rep(:)
real(long), allocatable :: x(:,:), ab(:), abt(:,:)
real(long), allocatable :: x(:,:), ab(:), abt(:,:)
real(long), allocatable :: xsines(:,:), ysines(:,:), temp(:,:)
real(long), allocatable :: xsines(:,:), ysines(:,:), temp(:,:)
integer :: biga_index, num_eigvalues, num_vectors
integer :: biga_index, num_eigvalues, num_vectors
! HPF directives, we will only use descriptive mapping except in main !HPF\$ DISTRIBUTE (*,BLOCK) :: f, b, x, abt, temp !HPF\$ DISTRIBUTE (BLOCK) : : a, ab
! lambda is a replicated array.
!
! Read in the problem size, initialize the problem dimensions, ! choose functional form for the spatially dependent heat diffusion ! coefficients, choose funtional form of initial temperature distribution ! and choose the number of points, in both space and time, of the solution ! to print out.
```

call init_diffusion

```
call init_diffusion
    allocate(-dif_x(dif_numx*dif_numy) )
    allocate( dif_y(dif_numy*dif_numx) )
!
Assign a simple linear array of points.
```

```
delx = PI/ ( dif_numx + 1.d0)
```

delx = PI/ (dif_numx + 1.d0)
dely = PI/ (dif_numy + 1.d0)
dely = PI/ (dif_numy + 1.d0)
do i = 1, dif_numx
do i = 1, dif_numx
do j = 1, dif_numy
do j = 1, dif_numy
ij = dif_numx*(j-1) + i
ij = dif_numx*(j-1) + i
dif_x(ij)}= delx* i
dif_x(ij)}= delx* i
dif_y(ij) = dely * j
dif_y(ij) = dely * j
enddo

```
    enddo
```

```
enddo
num_errors = 0
Read in how many sine functions to include in both the \(x\) and \(y\) directions.
Because we need to get the Fourier coefficients of the sums and differences of the indices, we need to include twice as many Fourier coefficients as the number of sine expansion coefficients. Also, because the top and bottom halves of the Fourier transform are identical, an artifact of artificially extending the diffusion coefficient function and the initial temperature distribution, we need to double the number of Fourier coefficients again. Finally, the extra sum of one comes from the fact that the sine function expansion starts a 1 and the Fourier expansion starts at 0.
\(n\) is the order of the diffusion operator equation. \(n=\) dif_nx * dif_ny
Allocate room for the eigenvalues of diffusion operator.
allocate( lambda(n), stat=stat)
if( stat .ne. 0) num_errors = num_errors + 1
allocate( \(a(n)\), stat=stat)
if( stat .ne. 0) num_errors = num_errors + 1
allocate( \(a b(n)\), stat=stat)
if( stat .ne. 0) num_errors \(=\) num_errors +1
allocate( a_rep(n), stat=stat) if( stat .ne. 0) num_errors = num_errors + 1
Allocate room for sines of \(x\) and \(y\) coordinates.
allocate( xsines(dif_npts, dif_nx) , stat=stat )
if( stat .ne. 0) num_errors = num_errors + 1
allocate( ysines(dif_npts, dif_ny) , stat=stat ) if( stat .ne. 0) num_errors = num_errors + 1
Allocate room for temperature history at selected points.
allocate( temp(dif_npts, dif_ntemps) , stat=stat ) if( stat .ne. 0) num_errors = num_errors + 1
allocate( \(f(n, n)\), stat=stat )
if( stat .ne. 0) num_errors = num_errors + 1
allocate( \(b(n, n)\), stat=stat )
if( stat .ne. 0) num_errors = num_errors +1
```

```
        allocate( abt(n,dif_ntemps) , stat=stat )
        if( stat .ne. 0) num_errors = num_errors + 1
        allocate( x(n,dif_ntemps) , stat=stat )
        if( stat .ne. 0) num_errors = num_errors + 1
            Allocate room for global temperature profile expansion vector at time t.
        if( num_errors .gt. 0 ) then
        write(*,*) 'Error in allocating arrays in main'
        stop
        endif
Represent initial temperature in sine function expansion.
    call expand_temp_profile(a)
    a_rep = a
Here, we are calculating the initial set of coefficients
in the sine function expansion as given in equations 3 and 4 of
the discussion paper
    The call to get_diffusion_matrix returns the diffusion
    operator in the sine function basis.
    call get_diffusion_matrix(f)
This last call determines the matrix elements defined by equation 10
in the discussion paper.
    Here we precalculate the sine functions, sin(kx) and sin(jy) used
    in equation 13 of the discussion paper.
    These sine functions are only evaluated at the points x and y for
    which the solution is evaluated.
    do i = 1, dif_nx
        do j = 1, díf_npts
            t1 = i*dif_
            xsines(j,i)}= sqrt(2.d0/pi) * dsin(t1
        enddo
    enddo
```

```
            do i = 1, dif_ny
```

 do i = 1, dif_ny
 do j = 1, díf_npts
 do j = 1, díf_npts
 t2 = i*dif_y (j)
 t2 = i*dif_y (j)
 ysines(j,i)= sqrt(2.d0/pi) * dsin(t2)
 ysines(j,i)= sqrt(2.d0/pi) * dsin(t2)
 enddo
 enddo
 enddo
 enddo
 Test to see if we had any allocation errors.
 Test to see if we had any allocation errors.
 if(num_errors .gt. 0) then
 if(num_errors .gt. 0) then
 write(*,*) 'Error in allocating arrays for syevx in main'
 write(*,*) 'Error in allocating arrays for syevx in main'
 stop
 stop
 endif
 endif
 !
! The call to syevx will find both the eigenvalues and eigenvectors
! The call to syevx will find both the eigenvalues and eigenvectors
! of the diffusion matrix operator f. The eigenvalues will be stored in
! of the diffusion matrix operator f. The eigenvalues will be stored in
! the vector lambda and the corresponding eigenvectors will be stored in
! the vector lambda and the corresponding eigenvectors will be stored in
! the matrix b. The f and b matrices in the program correspond to the
! the matrix b. The f and b matrices in the program correspond to the
! F and B matrices in equations }11\mathrm{ and }12\mathrm{ in the
! F and B matrices in equations }11\mathrm{ and }12\mathrm{ in the
! discussion paper.
! discussion paper.
call syevx(f,lambda,'u', z=b)
call syevx(f,lambda,'u', z=b)
Multiply the transpose of the eigenvector matrix, b, with the sine
Multiply the transpose of the eigenvector matrix, b, with the sine
expansion of the initial temperature profile, a, to obtain the
expansion of the initial temperature profile, a, to obtain the
initial temperature profile in terms of the eigenfunctions of the
initial temperature profile in terms of the eigenfunctions of the
diffusion operator.
diffusion operator.
ab(:) = 0.d0
ab(:) = 0.d0
do i = 1, n
do i = 1, n
do j = 1, n
do j = 1, n
ab(i) = b(j,i)*a_rep(j) + ab(i)
ab(i) = b(j,i)*a_rep(j) + ab(i)
enddo
enddo
enddo
enddo
This first matrix multiplication, yielding the matrix ab,
This first matrix multiplication, yielding the matrix ab,
corresponds to the inner summation in equation 10
corresponds to the inner summation in equation 10
of the discussion paper.
of the discussion paper.
Calculate temperature profile for each time step.
Calculate temperature profile for each time step.
do it = 1, dif_ntemps
do it = 1, dif_ntemps
i = 0
i = 0
do i = 1, n
do i = 1, n
abt(i,it) = exp(-lambda(i) *it*dif_delta_t) * ab(i)
abt(i,it) = exp(-lambda(i) *it*dif_delta_t) * ab(i)
enddo
enddo
enddo
enddo
!
! abt now has the expansion of the temperature profile in terms of the

```
! abt now has the expansion of the temperature profile in terms of the
```

```
    eigenvectors of the diffusion operator.
    Multiply the eigenvector matrix with abt to give the sine function
    expansion of the temperature profile at time t, x.
    cal1 gemm(1.d0,b,abt,0.d0,x,'N','N')
    This last sum corresponds to the outer sum of equation 12, where the
time dependent expansion coefficients a{sub l}(t) are stored in the
temporary array x in the program.
```

 do it \(=1\), dif_ntemps
 do \(k=1\), dif_npts
 \(\operatorname{temp}(\mathrm{k}, \mathrm{it})^{-}=0 . \mathrm{d} 0\)
 enddo
 enddo
 do it \(=1\), dif_ntemps
 do \(i=1\), dif_nx*dif_ny
 \(i y=(i-1) /\) dif_nx \(_{-1}\)
 ix \(=\bmod \left(i-1, d i f _n x\right)+1\)
 do \(k=1\), dif_npts
 \(\operatorname{temp}(k, i t)=\operatorname{temp}(k, i t)+x \operatorname{sines}(k, i x) * \operatorname{ysines}(k, i y)\)
 * \(x(i, i t)\)
 enddo
 enddo
 enddo
 This last do loop corresponds to the double summation in equation
13 of the discussion paper.
Here, we are just writing out the temperatures at the selected times
and points.
write(*,*) ' point \# X'
do $\mathrm{i}=1$, dif_npts
write(*,'(2x, i6, 2x, 2f11.4)') i, dif_x(i), dif_y(i)
enddo
write(*,*)
do $k=1$, dif_npts, 6
write(*,*)
write(*,'(30x,''Points'')')
write(*,'('' TIME '',6(5x,''\#'', i4))') (i, $i=k, k+5)$
do $\mathrm{i}=1$, dif_ntemps
write(*,'(7f10.5)') i*dif_delta_t,
($\left.\operatorname{temp}(j, i), j=k, \bar{m} i n\left(k+5, d i f _n p t s\right)\right)$
enddo

Module Parameters (HPF)

module parameters
!

```
! Purpose: Define system wide parameters and pessl structure.
```

!

```
implicit none
public
integer, parameter :: long=8, short=4
real(long), parameter :: pi = 3.141592653589793d0
real(long), parameter :: twopi = 2.d0*pi
```

 end module parameters

Module Diffusion (HPF)

module diffusion
$!$
Purpose: Assign problem parameters and initial data.
!
Routines called:
none
use parameters
implicit none
private
!
! Make all entities private by default.
! Have all public entities have the prefix dif_.
The following are the publicly available routines.
public init_diffusion, init_temp, diff_coef
$!$
The following are publicly available variables.
real, public :: dif ly_ratio
integer, public :: dif_nx, dif_ny, dif_npts, dif_ntemps
integer, public :: dif_numx, dif_numy


```
dif_numy = numy
return
end subroutine init_diffusion
```

```
!*********************************************************************************!
!* *!
!* Module routine init_temp *!
!* *!
!* Purpose: Return the initial temperature of the bar at a particular *!
!* point *!
!* *!
!**********************************************************************************!
    function init_temp(x, y)
    Arguments:
        x: real*8 (in), x coordinate
        y: real*8 (in), y coordinate
        Function return:
        init_temp: real*8 (out), initial temperature at (x,y)
        real(long), intent(in) :: x, y
        real(long) :: init_temp
        The problem has been scaled to go from 0 to pi in both the x
        and y directions. To calculate the expansion coefficients, we
        define the function to be odd about pi and use the range 0 < x < 2*pi
    Local variables.
    integer :: isign
    real(long) :: x1, y1
!
    isign = 1
    x1 = x
    if( x .gt. pi ) then
        isign = -isign
        xl = twopi - x
            endif
            y1 = y
            if( y .gt. pi ) then
                isign = -isign
            y1 = twopi - y
            endif
!
! Choose very simple temperature profile cases.
    select case (init_f)
        case (1)
            init_temp = isign*(x1*(pi-x1))*y1*(pi-y1)
        case (2)
            init_temp = isign*(x1*(pi-x1))*y1*(pi-y1)*y1
        case (3)
            init_temp = isign*(x1*(pi-x1))*y1*(pi-y1)*x1
        case (4)
            init_temp = isign*(x1*(pi-x1))*y1*(pi-y1)*x1*y1
        case (5)
            init_temp = isign*(x1*(pi-x1))*y1*(pi-y1)
```

```
    case (6)
    init_temp = isign*(x1*(pi-x1))**2 *y1*(pi-y1)
    case (7)
    init temp = isign*(x1*(pi-x1))*(y1*(pi-y1))**2
    case default
    init_temp = isign*sin(x1)*sin(y1)
end select
return
end function init_temp
```

```
!*******************************************************************************
!* *!
!* Module routine diff_coef *!
!* *!
!* Purpose: Return the value of the thermal diffusion coefficient at *!
!* an arbitrary point *!
!* *!
!*********************************************************************************!
    function diff_coef(x, y)
    Arguments:
        x: real*8 (in), x coordinate
        y: real*8 (in), y coordinate
    Function return:
        diff_coef: real*8 (out), diffusion coefficient at (x,y)
        real(long), intent(in) :: x, y
        real(long) :: diff_coef
    The problem has been scaled to go from 0 to pi in both the x
        and y directions. To simplify the matrix element calculations,
        we define the function to be even about pi.
! Local variables.
    real(long) :: x1, y1
!==================================================================================\
! Start of executable code.
    x1 = x
    if( x .gt. pi ) x1 = twopi - x
    yl = y
    if( y .gt. pi ) yl = twopi - y
!
! Choose very simple diffusion coefficient cases.
!
    select case (diff_f)
        case (1)
            diff_coef = . 5d0 + (x1 + y1) / (2 * twopi)
        case (2)
            diff_coef = ((1.d0 + x1)*(pi - x1 + 1.d0)*(y1 + pi))/ 3*pi
            case (\overline{3})
            diff_coef = (y1 + pi) * pi/((pi + x1) * (2* pi - x1))
            case default
                diff_coef = 1.d0
```

```
            end select
        return
        end function diff_coef
        end module diffusion
```


Module Fourier (HPF)

```
        module fourier
    !
    Purpose: To represent both the diffusion operator and
                the temperature profile in a sine function basis.
    Routines called:
        fft
        use parameters
        use diffusion
        use pessl_hpf
        use hpf_l\overline{ibrary}
        implicī
        private
        all entities private by default
    publicly available routines
        public expand_temp_profile, get_diffusion_matrix
    publicly available variables
    private variables
        integer :: pn_fac(5) = 5*0 ! prime factors of number of nodes
        nnodes = 2**pn_fac(1) * 3**pn_fac(2) * 5**pn_fac(3) *
                        7**pn_fac(4) * 11**pn_fac(5)
    private routines
        private minpower2, factor_nodes
        contains
!******************************************************************************!
!* *!
!* Module routine get_diffusion_matrix *!
!* *!
!* Purpose: To obtain the matrix representation of the diffusion *!
!*
!* *!
!*****************************************************************************!
        subroutine get_diffusion_matrix(f)
!
! Arguments:
```

```
    f: real*8,dimension(:,:),(out), local part of the global matrix
                containing the diffusion operator in sine function basis.
    real(long), intent(out) :: f(:,:)
!HPF$ DISTRIBUTE *(*,BLOCK) :: f
! Local variables
df contains the diffusion coefficient before the call to fft.
    df contains the Fourier transpose of diffusion coefficients after the call.
        complex(long), allocatable :: df(:,:)
!HPF$ DISTRIBUTE (*,BLOCK) :: df
!
ixi and iyi are arrays which, given a global index,
return the x and y offsets. Recall that the large arrays
are 4 dimensional arrays collapsed into 2 dimensions,
where i = (ix-1)*dif_ny + iy.
integer, allocatable :: ixi(:), iyi(:)
real(long) :: scale_f
integer :: nx, ny, ix, iy, ixp, iyp, istat
integer :: ixdiff, iydiff, num_errors
integer :: naux1, naux2, i, j, factor1, factor2, idum
integer :: pn_fac(5) ! prime factors of number of nodes
!
! Fourier transform of diffusion coefficient function
```

```
pn_fac = 0
```

pn_fac = 0
cal1 factor_nodes(pn_fac)
cal1 factor_nodes(pn_fac)
factor1 = 3**pn_fac(2) * 5**pn_fac(3) * 7**pn_fac(4) *
\&
11**pn_fac(5)
!
Here we are trying to find the smallest number which is evenly
divisible by the number of processes and is larger than 4*(n+1).
factor2 = (4*(dif_nx+1) + factor1 -1)/factor1
nx = minpower2(factor2,idum) * factor1
factor2 = (4*(dif_ny+1) + factor1 -1)/factor1
ny = minpower2(factor2,idum) * factor1
scale_f = 1.d0/ real(nx*ny, long)
!
Get storage for diffusion array.
allocate(df(nx,ny))
Here, we initialize the local part of the global array df, which contains the value of the diffusion coefficient function, evenly evaluated between (0, 2*pi). We do a two dimensional Fourier transform on the data. Because the size of this array is so small, $n x$ by ny, and ultimately we have to transfer the whole array to each node, it would probably be more efficient to do the calculation locally on each node.

```
```

! Get the value of the diffusion coefficient function at
! the necessary points.
!
do j = 1, ny
do i =1, nx
df(i,j) = diff_coef((twopi*(i-1))/nx,(twopi*(j-1))/ny)
enddo
enddo
This last loop just determined the diffusion coefficient at evenly
spaced points along the x and y coordinates.
!
!
Do the Fourier transform.
call fft(df,scale=scale_f,transpose='N')
df now has the Fourier coefficients for the diffusion coefficient
function, which correspond to the D(tilde)(sub ij) given in the
discussion paper.
First allocate the index arrays.
num_errors=0
allōcate(ixi(dif_nx*dif_ny), stat=istat)
if(istat .ne. 0) num_errors = num_errors + 1
allocate(iyi(dif_nx*dif_ny), stat=is
if(istat .ne. 0-) num_errors = num_errors + 1
Now load up the diffusion operator
f(ix,iy;ix',iy').
Here we transform the 4d matrix into the 2d matrix where
i = (iy-1)* dif_nx + ix + 1
and
j = (iy'-1)* dif_nx + ix' + 1.
First calculate the index arrays.
do ix = 1, dif_nx
do iy = 1, dif_ny
i = (iy-1)* \
ixi(i) = ix
iyi(i) = iy
enddo
enddo
!
! This final loop loads the matrix elements up for F as given in
! equation 10.
do j = 1, dif_nx*dif_ny
iyp = iyi(j)

```
```

 ixp = ixi(j)
 do i = 1, dif_nx*dif_ny
 iy = iyi(i)
 ix = ixi(i)
 ixdiff = iabs(ix-ixp) + 1
 iydiff = iabs(iy-iyp) + 1
 f(i,j) = ((ix*ixp + iy*iyp*dif_ly_ratio) *
 real(df(ixdiff, iydiff) - df(ix+ixp+1,iy+iyp+1)) &
 + (ix*ixp - iy*iyp*dif_ly_ratio) *
 real(df(ix+ixp+1,iydiff) - d\overline{f}(ixdiff,iy+iyp+1)))
 enddo
 enddo
deallocate(df)
deallocate(ixi)
deallocate(iyi)
return
end subroutine get_diffusion_matrix

```
```

!**!
!*
!* Module routine expand temp profile *!
!* *!
!* Purpose: To obtain the expansion coefficients of the initial *!
!* temperature profile in a sine function expansion *!
!* *!
!***!
subroutine expand_temp_profile(a)
Arguments:
a: real*8,dimension(:),(out), local part of the global matrix,
containing the sine coefficients for initial
temperature distribution.
real(long), intent(out) :: a(:)
!HPF\$ DISTRIBUTE *(BLOCK) :: a
! Local variables
complex(long), allocatable :: atmp(:,:)
!HPF\$ DISTRIBUTE (*,BLOCK) :: atmp
integer :: i,j, nx, ny, istat, naux1, naux2
integer :: idum, jb, jx, jy
real(long) :: x, y, scale_f
Calculate the minimum power of 2 to hold twice the number of
Fourier coefficients as sine coefficients. The top half of the
Fourier coefficients will equal minus the bottom half because
we are forcing the temperature profile to be odd.
nx = minpower2(2*(dif_nx+1), idum)
ny = minpower2(2*(dif_ny+1), idum)
scale_f = -twopi / real(nx*ny,long)
!
! Temperature profile allocation.
allocate(atmp(nx,ny), stat=istat)

```
```

 if(istat .ne. 0) then
 write(*,*) 'allocation failure in expand_temp_profile'
 stop
 endif
 !
do i = 1, nx
do j = 1, ny
atmp(i,j) = init_temp((twopi*(i-1))/nx, (twopi*(j-1))/ny)
enddo
enddo
Do the 2d Fourier transform of atmp.
call fft(atmp,scale=scale_f,transpose='N')
!
! The calls to fft calculated the dual Fourier transform as
! defined by equation 5 in the discussion paper.
!
!
This final loop is to load only those portions of the global array
corresponding to the local portion of that array for this processor.
!
do j = 1, dif_nx* dif_ny
!**
!* *!
!* Module routine factor_nodes *!
!* * *!
!* Purpose: To obtain the powers of prime factorization of the number *!
!* nodes, failing if the factorization is not compatible with *!
!* FFT supported transform lengths *!
!* *!
!**
subroutine factor_nodes(pn_fac)
Arguments:
integer :: pn_fac(:)
!
! Local variables
integer n1, n2, 12
Determine the prime factorization of nnodes, which must
be of the form 2**n * 3**m * 5**i * 7**j * 11**k
where 0<= m <=2, 0 <= i <= 1, 0 <= j <= 1, 0 <= k <= 1,
and 0> n >= 25.

```
```

n2 = number_of_processors()
$n 1=n 2 / 11$
if(n1*11 .eq. n2) then
$p n f a c(5)=1$
$n 2=n 1$
endif
$n 1=n 2 / 7$
if(n1*7 .eq. n2) then
pn_fac(4) = 1
$n 2^{-}=n 1$
endif
$n 1=n 2 / 5$
if(n1*5 .eq. n2) then
pn_fac(3) = 1
n2 = n1
endif
$n 1=n 2 / 3$
if(n1*3 .eq. n2) then
if ((n1/3)*3 .eq. n1) then
pn_fac(2) = 2
n2 = n1/3
else
pn fac(2) $=1$
$n 2=n 1$
endif
endif
n1 = minpower2 $(\mathrm{n} 2,12)$
pn_fac(1) = 12
if(n1 .ne. n2) then
write (*,*) 'Invalid number of nodes, it must have the form:'
write(*,*) ' $2 * * n * 3 * * m * 5 * * j * 7 * * j * 11 * * k$, where '
write(*,*) ' n >= 0, $0<=m<=2$ and $0<=\mathrm{i}, \mathrm{j}, \mathrm{k}<=1$ '
write(*,*) ' choose a power of 2 for best performance'
stop
endif
end subroutine factor_nodes

```
```

!***!
!*
Module function minpower2
Purpose: To obtain the smallest number which is a power of 2 and
greater than or equal to the input argument *!*!
!*
!*
!**!
function minpower2(n, log2n)
!
Arguments:
n: integer*4, (in), input number
log2n: integer*4, (out), log base 2 of the function result
Function return:
minpower2: integer*4 (out), smallest number, which is a power of 2

```
```

!
and greater than or equal to n.
integer n, minpower2, log2n
!
Local variables.
integer m, i
m=n
if(n < 0) write(*,*) 'n cannot be negative'
powerloop: do i= 1, bit_size(n)
m = m / 2
if(m .eq. 0) exit powerloop
enddo powerloop
if (2**(i-1) .ne. n) then
if(2**i < 0) write(*,*) 'n too large'
log2n = i
minpower2 = 2**i
else
log2n = i-1
minpower2 = n
endif
return
end function minpower2
end module fourier

```

\section*{Input Data}
\&input
ly_ratio \(=1.0\), delta_t \(=.1, n x=15\), ny \(=15\), numx \(=5\), numy \(=5\), numt \(=20\), init_f=1, diff_f \(=3\)
/

\section*{Output Data}
\begin{tabular}{lccc}
\(0:\) & point \(\#\) & \(X\) & \(Y\) \\
\(0:\) & 1 & 0.5236 & 0.5236 \\
\(0:\) & 2 & 1.0472 & 0.5236 \\
\(0:\) & 3 & 1.5708 & 0.5236 \\
\(0:\) & 4 & 2.0944 & 0.5236 \\
\(0:\) & 5 & 2.6180 & 0.5236 \\
\(0:\) & 6 & 0.5236 & 1.0472 \\
\(0:\) & 7 & 1.0472 & 1.0472 \\
\(0:\) & 8 & 1.5708 & 1.0472 \\
\(0:\) & 9 & 2.0944 & 1.0472 \\
\(0:\) & 10 & 2.6180 & 1.0472 \\
\(0:\) & 11 & 0.5236 & 1.5708 \\
\(0:\) & 12 & 1.0472 & 1.5708 \\
\(0:\) & 13 & 1.5708 & 1.5708 \\
\(0:\) & 14 & 2.0944 & 1.5708 \\
\(0:\) & 15 & 2.6180 & 1.5708 \\
\(0:\) & 16 & 0.5236 & 2.0944 \\
\(0:\) & 17 & 1.0472 & 2.0944 \\
\(0:\) & 18 & 1.5708 & 2.0944 \\
\(0:\) & 19 & 2.0944 & 2.0944 \\
\(0:\) & 20 & 2.6180 & 2.0944 \\
\(0:\) & 21 & 0.5236 & 2.6180 \\
\(0:\) & 22 & 1.0472 & 2.6180
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0 : & 23 & 1.5708 & \multicolumn{2}{|l|}{2.6180} & & & \\
\hline 0 : & 24 & 2.0944 & \multicolumn{2}{|l|}{2.6180} & & & \\
\hline 0 : & 25 & 2.6180 & \multicolumn{2}{|l|}{2.6180} & & & \\
\hline 0 & & & & & & & \\
\hline \multicolumn{8}{|l|}{0 :} \\
\hline 0 : & \multicolumn{7}{|c|}{Points} \\
\hline 0 : & TIME & \# 1 & \# 2 & \# 3 & \# 4 & \# & \# 6 \\
\hline 0 : & 0.10000 & 1.62046 & 2.69937 & 3.06225 & 2.69937 & 1.62046 & 2.58264 \\
\hline 0 : & 0.20000 & 1.41067 & 2.41366 & 2.76175 & 2.41366 & 1.41067 & 2.24055 \\
\hline 0 : & 0.30000 & 1.23798 & 2.15271 & 2.48036 & 2.15271 & 1.23798 & 1.95718 \\
\hline 0 : & 0.40000 & 1.09075 & 1.91572 & 2.21798 & 1.91572 & 1.09075 & 1.71506 \\
\hline 0 : & 0.50000 & 0.96250 & 1.70103 & 1.97560 & 1.70103 & 0.96250 & 1.50484 \\
\hline 0 : & 0.60000 & 0.84945 & 1.50710 & 1.75384 & 1.50710 & 0.84945 & 1.32086 \\
\hline 0 : & 0.70000 & 0.74925 & 1.33257 & 1.55266 & 1.33257 & 0.74925 & 1.15925 \\
\hline 0 : & 0.80000 & 0.66027 & 1.17611 & 1.37141 & 1.17611 & 0.66027 & 1.01707 \\
\hline 0 : & 0.90000 & 0.58127 & 1.03638 & 1.20907 & 1.03638 & 0.58127 & 0.89197 \\
\hline 0 : & 1.00000 & 0.51121 & 0.91203 & 1.06432 & 0.91203 & 0.51121 & 0.78192 \\
\hline 0 : & 1.10000 & 0.44919 & 0.80169 & 0.93574 & 0.80169 & 0.44919 & 0.68518 \\
\hline 0 : & 1.20000 & 0.39438 & 0.70404 & 0.82187 & 0.70404 & 0.39438 & 0.60020 \\
\hline 0 : & 1.30000 & 0.34601 & 0.61781 & 0.72126 & 0.61781 & 0.34601 & 0.52560 \\
\hline 0 : & 1.40000 & 0.30340 & 0.54179 & 0.63255 & 0.54179 & 0.30340 & 0.46016 \\
\hline 0 : & 1.50000 & 0.26591 & 0.47487 & 0.55444 & 0.47487 & 0.26591 & 0.40277 \\
\hline 0 : & 1.60000 & 0.23295 & 0.41604 & 0.48576 & 0.41604 & 0.23295 & 0.35247 \\
\hline 0 : & 1.70000 & 0.20401 & 0.36436 & 0.42543 & 0.36436 & 0.20401 & 0.30841 \\
\hline 0 : & 1.80000 & 0.17861 & 0.31901 & 0.37249 & 0.31901 & 0.17861 & 0.26982 \\
\hline 0 : & 1.90000 & 0.15634 & 0.27924 & 0.32605 & 0.27924 & 0.15634 & 0.23604 \\
\hline 0 : & 2.00000 & 0.13682 & 0.24438 & 0.28535 & 0.24438 & 0.13682 & 0.20647 \\
\hline \multicolumn{8}{|l|}{0 :} \\
\hline 0 : & \multicolumn{7}{|c|}{Points} \\
\hline 0 : & TIME & \# 7 & \# 8 & \# 9 & \# 10 & \# 11 & \# 12 \\
\hline 0 : & 0.10000 & 4.31793 & 4.90301 & 4.31793 & 2.58264 & 2.85249 & 4.78806 \\
\hline 0 : & 0.20000 & 3.84769 & 4.40918 & 3.84769 & 2.24055 & 2.43863 & 4.20461 \\
\hline 0 : & 0.30000 & 3.41303 & 3.93800 & 3.41303 & 1.95718 & 2.10266 & 3.67816 \\
\hline 0 : & 0.40000 & 3.01815 & 3.49799 & 3.01815 & 1.71506 & 1.82146 & 3.21228 \\
\hline 0 : & 0.50000 & 2.66276 & 3.09466 & 2.66276 & 1.50484 & 1.58234 & 2.80362 \\
\hline 0 : & 0.60000 & 2.34497 & 2.72994 & 2.34497 & 1.32086 & 1.37711 & 2.44657 \\
\hline 0 : & 0.70000 & 2.06219 & 2.40319 & 2.06219 & 1.15925 & 1.19994 & 2.13515 \\
\hline 0 : & 0.80000 & 1.81149 & 2.11234 & 1.81149 & 1.01707 & 1.04644 & 1.86371 \\
\hline 0 : & 0.90000 & 1.58985 & 1.85460 & 1.58985 & 0.89197 & 0.91312 & 1.62712 \\
\hline 0 : & 1.00000 & 1.39435 & 1.62693 & 1.39435 & 0.78192 & 0.79712 & 1.42087 \\
\hline 0 : & 1.10000 & 1.22220 & 1.42626 & 1.22220 & 0.68518 & 0.69609 & 1.24100 \\
\hline 0 : & 1.20000 & 1.07081 & 1.24971 & 1.07081 & 0.60020 & 0.60802 & 1.08410 \\
\hline 0 : & 1.30000 & 0.93783 & 1.09457 & 0.93783 & 0.52560 & 0.53119 & 0.94718 \\
\hline 0 : & 1.40000 & 0.82111 & 0.95838 & 0.82111 & 0.46016 & 0.46415 & 0.82766 \\
\hline 0 : & 1.50000 & 0.71874 & 0.83892 & 0.71874 & 0.40277 & 0.40561 & 0.72330 \\
\hline 0 : & 1.60000 & 0.62901 & 0.73420 & 0.62901 & 0.35247 & 0.35450 & 0.63215 \\
\hline 0 : & 1.70000 & 0.55039 & 0.64244 & 0.55039 & 0.30841 & 0.30985 & 0.55254 \\
\hline 0 : & 1.80000 & 0.48154 & 0.56208 & 0.48154 & 0.26982 & 0.27084 & 0.48298 \\
\hline 0 : & 1.90000 & 0.42125 & 0.49171 & 0.42125 & 0.23604 & 0.23676 & 0.42220 \\
\hline 0 : & 2.00000 & 0.36848 & 0.43011 & 0.36848 & 0.20647 & 0.20697 & 0.36908 \\
\hline \multicolumn{8}{|l|}{0 :} \\
\hline 0 : & & & & ints & & & \\
\hline 0 : & TIME & \# 13 & \# 14 & \# 15 & \# 16 & \# 17 & \# 18 \\
\hline 0 : & 0.10000 & 5.44297 & 4.78806 & 2.85249 & 2.45333 & 4.13480 & 4.70628 \\
\hline 0 : & 0.20000 & 4.82635 & 4.20461 & 2.43863 & 2.04155 & 3.53366 & 4.06306 \\
\hline 0 : & 0.30000 & 4.25037 & 3.67816 & 2.10266 & 1.72459 & 3.02543 & 3.50098 \\
\hline 0 : & 0.40000 & 3.72711 & 3.21228 & 1.82146 & 1.47101 & 2.59910 & 3.01855 \\
\hline 0 : & 0.50000 & 3.26069 & 2.80362 & 1.58234 & 1.26277 & 2.23988 & 2.60657 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0: & 0.60000 & 2.84936 & 2.44657 & 1.37711 & 1.08877 & 1.93538 & 2.25472 \\
\hline 0: & 0.70000 & 2.48867 & 2.13515 & 1.19994 & 0.94166 & 1.67587 & 1.95359 \\
\hline 0 : & 0.80000 & 2.17330 & 1.86371 & 1.04644 & 0.81630 & 1.45370 & 1.69519 \\
\hline 0: & 0.90000 & 1.89793 & 1.62712 & 0.91312 & 0.70885 & 1.26279 & 1.47284 \\
\hline 0: & 1.00000 & 1.65761 & 1.42087 & 0.79712 & 0.61636 & 1.09824 & 1.28104 \\
\hline 0: & 1.10000 & 1.44792 & 1.24100 & 0.69609 & 0.53650 & 0.95604 & 1.11524 \\
\hline 0: & 1.20000 & 1.26492 & 1.08410 & 0.60802 & 0.46739 & 0.83291 & 0.97163 \\
\hline 0: & 1.30000 & 1.10520 & 0.94718 & 0.53119 & 0.40745 & 0.72611 & 0.84705 \\
\hline 0: & 1.40000 & 0.96575 & 0.82766 & 0.46415 & 0.35539 & 0.63334 & 0.73883 \\
\hline 0: & 1.50000 & 0.84399 & 0.72330 & 0.40561 & 0.31012 & 0.55266 & 0.64471 \\
\hline 0: & 1.60000 & 0.73764 & 0.63215 & 0.35450 & 0.27071 & 0.48243 & 0.56279 \\
\hline 0: & 1.70000 & 0.64474 & 0.55254 & 0.30985 & 0.23638 & 0.42125 & 0.49142 \\
\hline 0: & 1.80000 & 0.56358 & 0.48298 & 0.27084 & 0.20646 & 0.36792 & 0.42920 \\
\hline 0: & 1.90000 & 0.49265 & 0.42220 & 0.23676 & 0.18036 & 0.32140 & 0.37493 \\
\hline 0: & 2.00000 & 0.43067 & 0.36908 & 0.20697 & 0.15758 & 0.28081 & 0.32758 \\
\hline 0: & & & & & & & \\
\hline 0: & \multicolumn{7}{|c|}{Points} \\
\hline 0: & TIME & \# 19 & \# 20 & \# 21 & \# 22 & \# 23 & \# 24 \\
\hline 0: & 0.10000 & 4.13480 & 2.45333 & 1.42982 & 2.41948 & 2.75758 & 2.41948 \\
\hline 0: & 0.20000 & 3.53366 & 2.04155 & 1.14813 & 1.99356 & 2.29549 & 1.99356 \\
\hline 0: & 0.30000 & 3.02543 & 1.72459 & 0.95015 & 1.67033 & 1.93488 & 1.67033 \\
\hline 0: & 0.40000 & 2.59910 & 1.47101 & 0.79960 & 1.41458 & 1.64393 & 1.41458 \\
\hline 0: & 0.50000 & 2.23988 & 1.26277 & 0.67989 & 1.20679 & 1.40486 & 1.20679 \\
\hline 0: & 0.60000 & 1.93538 & 1.08877 & 0.58206 & 1.03495 & 1.20593 & 1.03495 \\
\hline 0: & 0.70000 & 1.67587 & 0.94166 & 0.50068 & 0.89108 & 1.03879 & 0.89108 \\
\hline 0: & 0.80000 & 1.45370 & 0.81630 & 0.43217 & 0.76952 & 0.89732 & 0.76952 \\
\hline 0: & 0.90000 & 1.26279 & 0.70885 & 0.37401 & 0.66612 & 0.77685 & 0.66612 \\
\hline 0: & 1.00000 & 1.09824 & 0.61636 & 0.32432 & 0.57769 & 0.67376 & 0.57769 \\
\hline 0: & 1.10000 & 0.95604 & 0.53650 & 0.28168 & 0.50176 & 0.58522 & 0.50176 \\
\hline 0: & 1.20000 & 0.83291 & 0.46739 & 0.24495 & 0.43633 & 0.50892 & 0.43633 \\
\hline 0: & 1.30000 & 0.72611 & 0.40745 & 0.21322 & 0.37981 & 0.44300 & 0.37981 \\
\hline 0: & 1.40000 & 0.63334 & 0.35539 & 0.18576 & 0.33088 & 0.38592 & 0.33088 \\
\hline 0: & 1.50000 & 0.55266 & 0.31012 & 0.16193 & 0.28844 & 0.33642 & 0.28844 \\
\hline 0: & 1.60000 & 0.48243 & 0.27071 & 0.14124 & 0.25158 & 0.29343 & 0.25158 \\
\hline 0: & 1.70000 & 0.42125 & 0.23638 & 0.12325 & 0.21953 & 0.25604 & 0.21953 \\
\hline 0: & 1.80000 & 0.36792 & 0.20646 & 0.10759 & 0.19163 & 0.22350 & 0.19163 \\
\hline 0: & 1.90000 & 0.32140 & 0.18036 & 0.09395 & 0.16733 & 0.19516 & 0.16733 \\
\hline 0: & 2.00000 & 0.28081 & 0.15758 & 0.08205 & 0.14614 & 0.17045 & 0.14614 \\
\hline 0: & & & & & & & \\
\hline 0: & \multicolumn{7}{|c|}{Points} \\
\hline 0: & TIME & \# 25 & \# 26 & \# 27 & \# 28 & \# 29 & \# 30 \\
\hline 0: & 0.10000 & 1.42982 & & & & & \\
\hline 0: & 0.20000 & 1.14813 & & & & & \\
\hline 0: & 0.30000 & 0.95015 & & & & & \\
\hline 0: & 0.40000 & 0.79960 & & & & & \\
\hline 0: & 0.50000 & 0.67989 & & & & & \\
\hline 0: & 0.60000 & 0.58206 & & & & & \\
\hline 0: & 0.70000 & 0.50068 & & & & & \\
\hline 0: & 0.80000 & 0.43217 & & & & & \\
\hline 0: & 0.90000 & 0.37401 & & & & & \\
\hline 0: & 1.00000 & 0.32432 & & & & & \\
\hline 0: & 1.10000 & 0.28168 & & & & & \\
\hline 0: & 1.20000 & 0.24495 & & & & & \\
\hline 0: & 1.30000 & 0.21322 & & & & & \\
\hline 0: & 1.40000 & 0.18576 & & & & & \\
\hline 0: & 1.50000 & 0.16193 & & & & & \\
\hline 0: & 1.60000 & 0.14124 & & & & & \\
\hline 0: & 1.70000 & 0.12325 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\(0:\) & 1.80000 & 0.10759 \\
\(0:\) & 1.90000 & 0.09395 \\
\(0:\) & 2.00000 & 0.08205
\end{tabular}

\section*{Sample Sparse Linear Algebraic Equations Programs}

This section contains the message passing sample programs and utilities that use the Fortran 90 and Fortran 77 sparse linear algebraic equations subroutines. You can use the makefile shown in "Makefile (Message Passing)" on page 1005 to build these sample programs. A copy of these programs and the makefile are provided with the Parallel ESSL product. For file names and installation procedures, see the Parallel ESSL Installation Memo.

The following list describes these sample programs and their utilities:
- The Fortran 90 and Fortran 77 sample programs shown in "Fortran 90 Sample Sparse Program" on page 964 and "Fortran 77 Sample Sparse Program" on page 974 , respectively, solve a sparse linear system based on the discretization of the same elliptic partial differential equation:
\[
-b_{1} \frac{\partial^{2}(u)}{\partial x^{2}}-b_{2} \frac{\partial^{2}(u)}{\partial y^{2}}-b_{3} \frac{\partial^{2}(u)}{\partial z^{2}}-a_{1} \frac{\partial(u)}{\partial x}-a_{2} \frac{\partial(u)}{\partial y}-a_{3} \frac{\partial(u)}{\partial z}+a_{4} u=0
\]
with the Dirichlet boundary conditions on the unit cube, that is, \(0 \leq x, y, z \leq 1\). The equation is discretized with finite differences and uniform stepsize, where the resulting discrete equation is:
\[
\begin{aligned}
& u(x, y, z)\left(2 b_{1}+2 b_{2}+2 b_{3}+a_{1}+a_{2}+a_{3}\right)+u(x-1, y, z)\left(-b_{1}-a_{1}\right)+u(x, y-1, z)\left(-b_{2}-a_{2}\right) \\
& +u(x, y, z-1)\left(-b_{3}-a_{3}\right)-u(x+1, y, z) b_{1}-u(x, y+1, z) b_{2}-u(x, y, z+1)\left(b_{3}\right)\left(1 / h^{2}\right)
\end{aligned}
\]

This elliptic partial differential equation is similar to an example problem discussed in [43].
In these sample programs the index space of the discretized computational domain is first numbered sequentially in a standard way. Then, the corresponding vector is distributed using block data distribution, which is implemented using the subroutine shown in "PART_BLOCK (Block Data Distribution)" on page 992.
Boundary conditions are set in a very simple way, by adding equations of the form: \(u(x, y, z)=r h s(x, y, z)\)
From the command line, you can specify the number of gridpoints along the edges of the unit cube, the iterative solution method, the preconditioner and the stopping criterion to be used.
- The Fortran 90 sample program shown in "Fortran 90 Sample Sparse Program (using the Harwell-Boeing exchange format)" on page 985 shows how to build and solve a sparse linear system with the coefficient matrices read from external storage, using the Harwell-Boeing exchange format. Details on the Harwell-Boeing exchange format and sample matrices are available from http://math.nist.gov/MatrixMarket/.

From the command line, you can specify a file containing the input matrix, an iterative method and preconditioner, and a data distribution to be used.
This sample program uses the following subroutines:
- One of the following data distribution subroutines:
- PART_BLOCK, which implements a block data distribution
- PARTBCYC, which implements a block-cyclic data distribution
- PARTRAND, which implements a random data distribution
(These subroutines are documented in "Sample PARTS Subroutine" on page 992.)
- READ_MAT, a serial module, reads a matrix in Harwell-Boeing format from a file (see "The READ_MAT Subroutine" on page 996)
- MAT_DIST, a utility module, scatters a sparse matrix across a process grid according to a user-specified data distribution (see "The MAT_DIST Subroutine" on page 1000)
- DESYM, a utility subroutine, takes a matrix stored in symmetric format (that is, stores only the upper or lower triangle) and converts it into full storage format, assuming storage-by-rows representation. (see "The DESYM Subroutine" on page 1004)

Note: The performance of the iterative methods depends heavily on the choice of data distribution. The random data distribution is usually not a good choice. It is provided to serve as a template to help you implement a graph partitioning data distribution, which you can do by substituting the call to the random number generator in the PARTRAND initialization routine with a call to a graph partitioning package. The data distributions based on graph partitioning and/or physical considerations usually give the best performance; in general, experimentation is required to determine the best data distribution for your particular application.

\section*{Fortran 90 Sample Sparse Program}
```

@process free(f90) init(f90ptr) nosave
!
! This sample program shows how to build and solve a sparse linear
! system using the subroutines in the sparse section of Parallel
! ESSL. The matrix and RHS are generated
! in parallel, so that there is no serial bottleneck.
!
! The program solves a linear system based on the partial differential
! equation
b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ----- - ------ - ----- - ------ - ------ + a4 u
dxdx dydy dzdz dx dy dz
= 0
with Dirichlet boundary conditions on the unit cube
0<=x,y,z<=1

```
```

The equation is discretized with finite differences and uniform stepsize;
the resulting discrete equation is
(u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
+u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3)*(1/h**2)
In this sample program the index space of the discretized
computational domain is first numbered sequentially in a standard way,
then the corresponding vector is distributed according to an HPF BLOCK
distribution directive.
Boundary conditions are set in a very simple way, by adding
equations of the form
u(x,y,z) = rhs(x,y,z)
Program PDE90
USE F90SPARSE
Implicit none
INTERFACE PART_BLOCK
!user defined subroutine.....
SUBROUTINE PART_BLOCK(GLOBAL_INDX,N,NP,PV,NV)
IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N,NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
END SUBROUTINE PART_BLOCK
END INTERFACE
! Input parameters
Character*10 :: CMETHD, PREC
Integer :: IDIM, IRET
! Miscellaneous
Integer, Parameter :: IZERO=0, IONE=1
Character, PARAMETER :: ORDER='R'
INTEGER :: IARGC
REAL(KIND(1.D0)), PARAMETER :: DZERO = 0.D0, ONE = 1.D0
REAL(KIND(1.D0)) :: TIMEF, T1, T2, TPREC, TSOLVE, T3, T4
EXTERNAL TIMEF
! Sparse Matrix and preconditioner
TYPE(D_SPMAT) :: A
TYPE(D_PRECN) :: APRC
! Descriptor
TYPE(DESC_TYPE) :: DESC_A
! Dense Matrices
REAL(KIND(1.d0)), POINTER :: B(:), X(:)
! BLACS parameters
INTEGER :: nprow, npcol, icontxt, iam, np, myprow, mypcol
! Solver parameters
INTEGER :: ITER, ITMAX,IERR,ITRACE, METHD,IPREC, ISTOPC,\&
\& IPARM(20)
REAL(KIND(1.D0)) :: ERR, EPS, RPARM(20)

```
```

! Other variables
INTEGER :: I,INFO
INTEGER :: INTERNAL, M,II
! Initialize BLACS
CALL BLACS_PINFO(IAM, NP)
CALL BLACS_GET(IZERO, IZERO, ICONTXT)
! Rectangular Grid, P x 1
CALL BLACS GRIDINIT(ICONTXT, ORDER, NP, IONE)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
!
! Get parameters
!
CALL GET_PARMS(ICONTXT,CMETHD,PREC,IDIM,ISTOPC,ITMAX,ITRACE)
!
! Allocate and fill in the coefficient matrix, RHS and initial guess
!
CALL BLACS_BARRIER(ICONTXT,'A11')
T1 = TIMEF()
CALL CREATE MATRIX(PART_BLOCK,IDIM,A,B,X,DESC_A,ICONTXT)
T2 = TIMEF() - T1
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) Write(6,*) 'Matrix creation Time : ',T2/1.D3
!
! Prepare the preconditioner.
!
SELECT CASE (PREC)
CASE ('ILU')
IPREC = 2
CASE ('DIAGSC')
IPREC = 1
CASE ('NONE')
IPREC = 0
CASE DEFAULT
WRITE(0,*) 'Unknown preconditioner'
CALL BLACS_ABORT(ICONTXT,-1)
END SELECT
CALL BLACS_BARRIER(ICONTXT,'Al1')
T1 = TIMEF()
CALL PSPGPR(IPREC,A,APRC,DESC_A,INFO=IRET)
TPREC = TIMEF()-T1
CALL DGAMX2D(icontxt,'A',' ',IONE, IONE,TPREC,IONE,t1,t1,-1,-1,-1)
IF (IAM.EQ.0) WRITE(6,*) 'Preconditioner Time : ',TPREC/1.D3
IF (IRET.NE.0) THEN
WRITE(0,*) 'Error on preconditioner',IRET
CALL BLACS_ABORT(ICONTXT,-1)
STOP

```
```

END IF
!
! Iterative method parameters
!
IF (CMETHD(1:6).EQ.'CGSTAB') Then
METHD = 1
ELSE IF (CMETHD(1:3).EQ.'CGS') Then
METHD = 2
ELSE IF (CMETHD(1:5).EQ.'TFQMR') THEN
METHD = 3
ELSE
WRITE(0,*) 'Unknown method '
CALL BLACS_ABORT(ICONTXT,-1)
END IF
EPS = 1.D-9
IPARM = 0
RPARM = 0.D0
IPARM(1) = METHD
IPARM(2) = ISTOPC
IPARM(3) = ITMAX
IPARM(4) = ITRACE
RPARM(1) = EPS
CALL BLACS_BARRIER(ICONTXT,'A11')
T1 = TIMEF()
CALL PSPGIS(A,B,X,APRC,DESC_A,\&
\& IPARM=IPARM,RPARM=RPA}RM,INFO=IERR
CALL BLACS_BARRIER(ICONTXT,'A11')
T2 = TIMEF() - T1
ITER = IPARM(5)
ERR = RPARM(2)
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Time to Solve Matrix : ',T2/1.D3
WRITE(6,*) 'Time per iteration : ',T2/(ITER*1.D3)
WRITE(6,*) 'Number of iterations : ',ITER
WRITE(6,*) 'Error on exit : ',ERR
WRITE(6,*) 'INFO on exit : ',IERR
END IF
!
! Cleanup storage and exit
!
CALL PGEFREE(B,DESC_A)
CALL PGEFREE(X,DESC_A)
CALL PSPFREE(APRC,DESC_A)
CALL PSPFREE(A,DESC_A)
CALL PADFREE(DESC_A)
CALL BLACS_GRIDEXIT(ICONTXT)
CALL BLACS_EXIT(0)
STOP
CONTAINS

```
```

!
Subroutine to allocate and fill in the coefficient matrix and
the RHS.
!
SUBROUTINE CREATE_MATRIX(PARTS,IDIM,A,B,T,DESC_A,ICONTXT)
Discretize the partial diferential equation
b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)

- ----- - ------ ------ - ---- - ------ - ----- + a4 u
dxdx dydy dzdz dx dy dz
= 0
boundary condition: Dirichlet
0< x,y,z<1
u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
+u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3
USE F90SPARSE
Implicit None
INTEGER :: IDIM
INTERFACE PART_BLOCK
SUBROUTINE PARTS(GLOBAL_INDX,N,P,PV,NV)
IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, P
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
END SUBROUTINE PARTS
END INTERFACE
Real(Kind(1.D0)), Pointer :: B(:),T(:)
Type (DESC_TYPE) :: DESC_A
Integer - :: ICON\overline{TXT}
Type(D_SPMAT) :: A
Real(Kind(1.d0)) :: ZT(10),GLOB_X,GLOB_Y,GLOB_Z
Integer :: M,N,NNZ,GLOB_ROW,J
Type (D_SPMAT) :: ROW_MAT
Integer :: X,Y,Z,COUNTER,IA,I,INDX_OWNER
INTEGER :: NPROW,NPCOL,MYPROW,MYPCOL
Integer :: ELEMENT
INTEGER :: INFO, NV, INV
INTEGER, ALLOCATABLE :: PRV(:)
! deltah dimension of each grid cell
! deltat discretization time
Real(Kind(1.D0)) :: DELTAH
Real(Kind(1.d0)),Parameter :: RHS=0.d0,0NE=1.d0,ZERO=0.d0
Real(Kind(1.d0)) :: TIMEF, T1, T2, TINS
external timef
! common area
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
DELTAH = 1.D0/(IDIM-1)
! Initialize array descriptor and sparse matrix storage. Provide an
! estimate of the number of non zeroes

```
```

M = IDIM*IDIM*IDIM
N = M
NNZ = (N*7)/(NPROW*NPCOL)
Cal1 PADALL(N,PARTS,DESC_A,ICONTXT)
Call PSPALL(A,DESC_A,NNZ=NNZ)
! Define RHS from boundary conditions; also build initial guess
Call PGEALL(B,DESC_A)
Call PGEALL(T,DESC_A)
! We build an auxiliary matrix consisting of one row at a
! time
ROW_MAT%DESCRA(1:1) = 'G'
ROW-MAT%FIDA = 'CSR'
ALLOCATE(ROW_MAT%AS(20))
ALLOCATE(ROW_MAT%IA1(20))
ALLOCATE(ROW_MAT%IA2(20))
ALLOCATE(PRV(NPROW))
ROW_MAT%IA2 (1)=1
TINS = 0.D0
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = TIMEF()
! Loop over rows belonging to current process in a BLOCK
! distribution.
DO GLOB_ROW = 1,N
CALL PARTS(GLOB_ROW,N,NPROW,PRV,NV)
DO INV = 1,NV
INDX_OWNER = PRV(INV)
IF (INDX_OWNER == MYPROW) THEN
! Local matrix pointer
ELEMENT=1
! Compute gridpoint Coordinates
IF (MOD(GLOB_ROW,(IDIM*IDIM)).EQ.0) THEN
X = GLOB_ROW/(IDIM*IDIM)
ELSE
X = GLOB_ROW/(IDIM*IDIM)+1
ENDIF
IF (MOD((GLOB_ROW-(X-1)*IDIM*IDIM),IDIM).EQ.0) THEN
Y = (GLOB_R_ROW-(X-1)*IDIM*IDIM)/IDIM
ELSE
Y = (GLOB_ROW-(X-1)*IDIM*IDIM)/IDIM+1
ENDIF
Z = GLOB_ROW-(X-1)*IDIM*IDIM-(Y-1)*IDIM
! GLOB_X, GLOB_Y, GLOB_X coordinates
GLOB_X=X*DELTAH
GLOB_
GLOB_Z-Z*DELTAH
! Check on boundary points
IF (X.EQ.1) THEN
ROW_MAT%AS (ELEMENT) =ONE
ROW_MAT%IA1 (ELEMENT) = (X-1) *IDIM *IDIM + (Y-1) *IDIM + (Z)
ELEMENT=ELEMENT+1
ELSE IF (Y.EQ.1) THEN
ROW_MAT%AS (ELEMENT) =ONE

```
```

 ROW_MAT%IA1(ELEMENT) = (X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
 ELEMENT=ELEMENT+1
 ELSE IF (Z.EQ.1) THEN
ROW MAT%AS (ELEMENT) =ONE
ROW_MAT%IA1(ELEMENT) = (X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE IF (X.EQ.IDIM) THEN
ROW_MAT%AS(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT) =(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE IF (Y.EQ.IDIM) THEN
ROW_MAT%AS(ELEMENT) =ONE
ROW_MAT%IA1(ELEMENT) = (X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE IF (Z.EQ.IDIM) THEN
ROW_MAT%AS(ELEMENT)=ONE
ROW_MAT%IA1(ELEMENT) = (X-1)*IDIM*IDIM + (Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ELSE
! Internal point: build discretization
!
! Term depending on (x-1,y,z)
!
ROW_MAT%AS(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z) \&
\& -A1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%AS(ELEMENT) = ROW_MAT%AS(ELEMENT)/(DELTAH*\&
\& DELTAH)
ROW_MAT%IA1(ELEMENT) = (X-2)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
! Term depending on (x,y-1,z)
ROW_MAT%AS(ELEMENT)=-B2(GLOB_X,GLOB_Y,GLOB_Z) \&
\& -A2(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%AS(ELEMENT) = \overline{ROW_MAT%AS(ELEMENT)/(DELTAH*\&}
\& DELTAH)
ROW_MAT%IA1(ELEMENT) = (X-1)*IDIM*IDIM+(Y-2)*IDIM+(Z)
ELEMENT=ELEMENT+1
! Term depending on (x,y,z-1)
ROW_MAT%AS(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z) \&
\& -A3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%AS(ELEMENT) = \overline{ROW_MAT%AS (ELEMENT)/(DELTAH*\&}
\& DELTAH)
ROW_MAT%IA1(ELEMENT) = (X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z-1)
ELEMENT=ELEMENT+1
! Term depending on (x,y,z)
ROW_MAT%AS(ELEMENT)=2*B1(GLOB_X,GLOB_Y,GLOB_Z)\&
\& +2*B2(GLOB_X,GLOB_Y,GLOB_Z)\&
\& +2*B3(GLOB_X,GLOB_Y,GLOB_Z)\&
\& +A1(GLOB_X,GLOB_Y,GLOB_Z)\&
\& +A2(GLOB_X,GLOB_Y,GLOB_Z)\&
\& +A3(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT%AS(ELEMENT) = ROW_MAT%AS(ELEMENT)/(DELTAH*\&
\& DELTAH)
ROW_MAT%IA1(ELEMENT) =(X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
! Term depending on (x,y,z+1)
ROW_MAT%AS(ELEMENT)=-B1(GLOB_X,GLOB_Y,GLOB_Z)
ROW_MAT %AS(ELEMENT) = ROW_MAT
\& DELTAH)

```
```

 ROW_MAT%IA1(ELEMENT) = (X-1) *IDIM*IDIM + (Y-1)*IDIM + (Z+1)
 ELEMENT=ELEMENT+1
 ! Term depending on (x,y+1,z)
 ROW MAT%AS (ELEMENT) =-B2 (GLOB X,GLOB Y,GLOB Z)
 ROW_MAT%AS(ELEMENT) = ROW_MAT%AS(ELEMENT)/(DELTAH*&
 & DELTAH)
 ROW_MAT%IA1(ELEMENT) = (X-1)*IDIM*IDIM+ (Y)*IDIM+(Z)
 ELEMENT=ELEMENT+1
 ! Term depending on (x+1,y,z)
 ROW_MAT%AS(ELEMENT)=-B3(GLOB_X,GLOB_Y,GLOB_Z)
 ROW-MAT}%\mathrm{ AS (ELEMENT) = ROW_MAT}%AS(ELEMENT)/\overline{(DELTAH*&
 & DELTAH)
 ROW_MAT%IA1(ELEMENT) = (X)*IDIM*IDIM+(Y-1)*IDIM+(Z)
 ELEMENT=ELEMENT+1
 ENDIF
 ROW_MAT%M=1
 ROW_MAT%N=N
 ROW_MAT%IA2 (2)=ELEMENT
 ! I\overline{A}== GLOBAL ROW INDEX
 IA}=(\textrm{X}-1)*IDIM*IDIM+(Y-1)*IDIM+(Z
 T3 = TIMEF()
 CALL PSPINS(A,IA,1,ROW_MAT,DESC_A)
 TINS = TINS + (TIMEF()-T3)
 ! Build RHS
 IF (X==1) THEN
 GLOB_Y=(Y-IDIM/2)*DELTAH
 GLOB_Z=(Z-IDIM/2)*DELTAH
 ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)
 ELSE IF ((Y==1).OR.(Y==IDIM).OR.(Z==1).OR.(Z==IDIM)) THEN
 GLOB_X=3*(X-1)*DELTAH
 GLOB_Y=(Y-IDIM/2)*DELTAH
 GLOB_Z=(Z-IDIM/2)*DELTAH
 ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)
 ELSE
 ZT(1) = 0.D0
 ENDIF
 CALL PGEINS(B,ZT(1:1),DESC_A,IA)
 ZT(1)=0.D0
 CALL PGEINS(T,ZT(1:1),DESC_A,IA)
 END IF
 END DO
 END DO
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = TIMEF()
IF (MYPROW.EQ.0) THEN
WRITE(0,*) ' pspins time',TINS/1.D3
WRITE(0,*) ' Insert time',(T2-T1)/1.D3
ENDIF
DEALLOCATE(ROW_MAT%AS,ROW_MAT%IA1,ROW_MAT%IA2)
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = TIMEF\overline{()}
CALL PSPASB(A,DESC_A,INFO=INFO,DUPFLAG=0,MTYPE='GEN ')

```
```

 CALL BLACS_BARRIER(ICONTXT,'ALL')
 T2 = TIMEF\overline{()}
 IF (MYPROW.EQ.0) THEN
 WRITE(0,*) ' Assembly time',(T2-T1)/1.D3
 ENDIF
 CALL PGEASB(B,DESC_A)
 CALL PGEASB(T,DESC_A)
 RETURN
 END SUBROUTINE CREATE_MATRIX
!
! Functions parameterizing the differential equation
!
FUNCTION A1(X,Y,Z)
REAL(KIND(1.D0)) :: A1
REAL(KIND(1.D0)) :: X,Y,Z
A1=1.D0
END FUNCTION A1
FUNCTION A2(X,Y,Z)
REAL(KIND(1.D0)) :: A2
REAL(KIND(1.D0)) :: X,Y,Z
A2=2.D1*Y
END FUNCTION A2
FUNCTION A3(X,Y,Z)
REAL(KIND(1.D0)) :: A3
REAL(KIND(1.DO)) :: X,Y,Z
A3=1.D0
END FUNCTION A3
FUNCTION A4(X,Y,Z)
REAL(KIND(1.D0)) :: A4
REAL(KIND(1.D0)) : : X,Y,Z
A4=1.D0
END FUNCTION A4
FUNCTION B1(X,Y,Z)
REAL(KIND(1.D0)) :: B1
REAL(KIND(1.D0)) :: X,Y,Z
B1=1.D0
END FUNCTION B1
FUNCTION B2(X,Y,Z)
REAL(KIND(1.D0)) :: B2
REAL(KIND(1.DO)) :: X,Y,Z
B2=1.D0
END FUNCTION B2
FUNCTION B3(X,Y,Z)
REAL(KIND(1.D0)) :: B3
REAL(KIND(1.D0)) :: X,Y,Z
B3=1.D0
END FUNCTION B3
!
! Get iteration parameters from the command line
!
SUBROUTINE GET_PARMS(ICONTXT,CMETHD,PREC,IDIM,ISTOPC,ITMAX,ITRACE)
integer :: icontxt
Character*10 :: CMETHD, PREC
Integer :: IDIM, IRET, ISTOPC,ITMAX,ITRACE
Character*40 :: CHARBUF

```
```

INTEGER :: IARGC, NPROW, NPCOL, MYPROW, MYPCOL
EXTERNAL IARGC
INTEGER :: INTBUF(10), IP
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW==0) THEN
! Read command line parameters
IP=IARGC()
IF (IARGC().GE.3) THEN
CALL GETARG(1,CHARBUF)
READ(CHARBUF,*) CMETHD
CALL GETARG(2,CHARBUF)
READ(CHARBUF,*) PREC
! Convert strings in array
DO I = 1, LEN(CMETHD)
INTBUF(I) = IACHAR(CMETHD(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(PREC)
INTBUF(I) = IACHAR(PREC(I:I))
END DO
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
CALL GETARG(3,CHARBUF)
READ(CHARBUF,*) IDIM
IF (IARGC().GE.4) THEN
CALL GETARG(4,CHARBUF)
READ(CHARBUF,*) ISTOPC
ELSE
ISTOPC=1
ENDIF
IF (IARGC().GE.5) THEN
CALL GETARG(5,CHARBUF)
READ(CHARBUF,*) ITMAX
ELSE
ITMAX=500
ENDIF
IF (IARGC().GE.6) THEN
CALL GETARG(6,CHARBUF)
READ(CHARBUF,*) ITRACE
ELSE
ITRACE=0
ENDIF
! Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',1,1,IDIM,1)
CALL IGEBS2D(ICONTXT,'ALL',' ',1,1,ISTOPC,1)
CALL IGEBS2D(ICONTXT,'ALL',' ',1,1,ITMAX,1)
CALL IGEBS2D(ICONTXT,'ALL',' ',1,1,ITRACE,1)
WRITE(6,*)'Solving matrix: ELL1'
WRITE(6,*)'on grid',IDIM,'x',IDIM,'x',IDIM
WRITE(6,*)' with BLOCK data distribution, NP=',Np,\&
\& ' Preconditioner=',PREC,\&
\& ' Iterative methd=',CMETHD

```
```

 ELSE
 ! Wrong number of parameter, print an error message and exit
 CALL PR USAGE(0)
 CALL BLĀCS_ABORT(ICONTXT,-1)
 STOP 1
 ENDIF
 ELSE
 ! Receive Parameters
 CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
 DO I = 1, 10
 CMETHD(I:I) = ACHAR(INTBUF(I))
 END DO
 CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
 DO I = 1, 10
 PREC(I:I) = ACHAR(INTBUF(I))
 END DO
 CALL IGEBR2D(ICONTXT,'ALL',' ',1,1,IDIM,1,0,0)
 CALL IGEBR2D(ICONTXT,'ALL',' ',1,1,ISTOPC,1,0,0)
 CALL IGEBR2D(ICONTXT,'ALL',' ',1,1,ITMAX,1,0,0)
 CALL IGEBR2D(ICONTXT,'ALL',' ',1,1,ITRACE,1,0,0)
 END IF
 RETURN
 END SUBROUTINE GET_PARMS
!
Print an error message
!
SUBROUTINE PR_USAGE(IOUT)
INTEGER :: IOUT
WRITE(IOUT,*)'Incorrect parameter(s) found'
WRITE(IOUT,*)' Usage: pde90 methd prec dim \&
\&[istop itmax itrace]'
WRITE(IOUT,*)' Where:'
WRITE(IOUT,*)' methd: CGSTAB TFQMR CGS'
WRITE(IOUT,*)' prec : ILU DIAGSC NONE'
WRITE(IOUT,*)' dim number of points along each axis'
WRITE(IOUT,*)' the size of the resulting linear '
WRITE(IOUT,*)' system is dim**3'
WRITE(IOUT,*)' istop Stopping criterion 1, 2 or 3 [1] '
WRITE(IOUT,*)' itmax Maximum number of iterations [500]
WRITE(IOUT,*)' itrace 0 (no tracing, default) or '
WRITE(IOUT,*)' >= 0 do tracing every ITRACE'
WRITE(IOUT,*)' iterations '
END SUBROUTINE PR_USAGE

```

END PROGRAM PDE90

\section*{Fortran 77 Sample Sparse Program}
```

C
C This sample program shows how to build and solve a sparse linear
C system using the subroutines in the sparse section of Parallel
C ESSL. The matrix and RHS are generated
C in parallel, so that there is no serial bottleneck.
C
C The program solves a linear system based on the partial differential equation
C
C b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
C - ------ - ------ - ------ ----- - ------ - ------ + a4 u
C dxdx dydy dzdz dx dy dz
C
C = 0
C
C with Dirichlet boundary conditions on the unit cube
C
C 0<=x,y,z<=1
C
C The equation is discretized with finite differences and uniform stepsize;
C the resulting discrete equation is
C
C (u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
C + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3)*(1/h**2)
C
C
C In this sample program the index space of the discretized
C computational domain is first numbered sequentially in a standard way,
C then the corresponding vector is distributed according to an HPF BLOCK
C distribution directive.
C
C Boundary conditions are set in a very simple way, by adding
C equations of the form
C
C u(x,y,z) = rhs(x,y,z)
C
C
Program PDE77
USE F90SPARSE
Implicit none
EXTERNAL PART_BLOCK
C Input parameters
Character*10 :: CMETHD, PREC
Integer :: IDIM
C Miscellaneous
Integer, Parameter :: IZER0=0, IONE=1
Character, PARAMETER :: ORDER='R'
REAL(KIND(1.D0)), POINTER :: B_COL(:), X_COL(:)
INTEGER :: NR, NNZ\overline{,IRCODE, N}NZ1, NRHS
REAL(KIND(1.D0)), PARAMETER :: DZERO = 0.D0, ONE = 1.D0
REAL(KIND(1.D0)) :: TIMEF, T1, T2, TPREC, TSOLVE, T3, T4
REAL(KIND(1.D0)), POINTER :: DWORK(:)
EXTERNAL TIMEF
LOGICAL, PARAMETER :: UPDATE=.TRUE., NOUPDATE=.FALSE.
C Sparse Matrices
REAL(8), POINTER :: AS(:), PRCS(:)
INTEGER, POINTER :: DESC_A(:), IA1(:), IA2(:)

```
```

 INTEGER :: INFOA(30)
 C Dense Matrices
REAL(KIND(1.D0)), POINTER :: B(:), X(:)
INTEGER :: LB, LX, LDV, LDV1,IRET
INTERFACE
SUBROUTINE CREATE_MTRX_ELL1_BLOCK(PARTS,IDIM,
AS,IA1,IA2, INFOA , B , T, DESC_A,ICONTXT)
Implicit None
external parts
Integer :: IDIM
Real(Kind(1.D0)),Pointer :: B(:), T(:), AS(:)
integer :: infoa(30)
INTEGER, POINTER :: DESC_A(:), IA1(:),IA2(:)
Integer :: ICONTXT
end SUBROUTINE CREATE_MTRX_ELL1_BLOCK
END INTERFACE
C Communications data structure
C BLACS parameters
INTEGER :: nprow, npcol, icontxt, iam, np, myprow,
+ mypcol
C Solver parameters
Integer :: iter, itmax,ierr,itrace, methd,iprec,
+ istopc, iparm(20)
real(kind(1.d0)) :: err, eps, rparm(20)
C Other variables
Integer :: i,info
INTEGER :: INTERNAL, M,ii,nnzero
C Initialize BLACS
CALL BLACS_PINFO(IAM, NP)
CALL BLACS_GET(IZERO, IZERO, ICONTXT)
C Rectangular Grid, Np x 1
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NP, IONE)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
C
C Get parameters
C
CALL GET_PARMS(ICONTXT,CMETHD,PREC,IDIM,ISTOPC,ITMAX,ITRACE)
C
C Allocate and fill in the coefficient matrix and the RHS
C
CALL BLACS_BARRIER(ICONTXT,'A11')
T1 = TIMEF()
CALL CREATE_MTRX_ELL1_BLOCK(PART_BLOCK,IDIM,
+ AS,IA1,I\overline{A}2,IN\overline{F}OA,B,X,X,DESC_A,I\overline{CONTXT)}
T2 = TIMEF() - T1
CALL DGAMX2D(ICONTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)

```

IF (IAM.EQ.0) Write(6,*) 'Matrix creation Time : ',T2/1.D3
```

 LB = SIZE(B)
 LX = SIZE(X)
 LDV = DESC A(5)
 LDV1 = DESC_A(6)
 NNZ = SIZE(AS)
 NNZ1 = SIZE(IA1)
 ALLOCATE(PRCS(2*NNZ+LDV+LDV1+31),STAT=IRCODE)
 IF (IRCODE /= 0) THEN
 WRITE(0,*) 'Allocation error'
 CALL BLACS_ABORT(ICONTXT,-1)
 STOP
 ENDIF
 C
C Prepare the preconditioning data structure
C
SELECT CASE (PREC)
CASE ('ILU')
IPREC = 2
CASE ('DIAGSC')
IPREC = 1
CASE ('NONE')
IPREC = 0
CASE DEFAULT
WRITE(0,*) 'Unknown preconditioner'
CALL BLACS_ABORT(ICONTXT,-1)
END SELECT
CALL BLACS_BARRIER(ICONTXT,'A11')
T1 = TIMEF()
CALL PDSPGPR(IPREC,AS,IA1,IA2,INFOA,PRCS,SIZE(PRCS),DESC_A,IRET)
TPREC = TIMEF()-T1
CALL DGAMX2D(icontxt,'A',' ',IONE, IONE,TPREC,IONE,t1,t1,-1,-1,-1)
IF (IAM.EQ.0) WRITE(6,*) 'Preconditioner Time : ',TPREC/1.D3
if (iret.ne.0) then
write(0,*) 'Error on preconditioner',iret
call blacs_abort(icontxt,-1)
stop
endif
C
C Iteration parameters
C
IF (CMETHD(1:6).EQ.'CGSTAB') Then
METHD = 1
ELSE IF (CMETHD(1:3).EQ.'CGS') Then
METHD = 2
ELSE IF (CMETHD(1:5).EQ.'TFQMR') THEN
METHD = 3
ELSE
WRITE(0,*) 'Unknown method '
CALL BLACS_ABORT(ICONTXT,-1)

```
```

 END IF
 EPS = 1.D-9
 IPARM = 0
 RPARM = 0.D0
 IPARM(1) = METHD
 IPARM(2) = ISTOPC
 IPARM(3) = ITMAX
 IPARM(4) = ITRACE
 RPARM(1) = EPS
 NRHS = 1
 CALL BLACS_BARRIER(ICONTXT,'A11')
 T1 = TIMEF()
 CALL PDSPGIS(AS,IA1,IA2,INFOA,NRHS,B,LB,X,LX,PRCS,
 + DESC_A,IPARM,RPARM,INFO)
 CALL BLÄCS BARRIER(ICONTXT,'A11')
 TSOLVE = TIMEF() - T1
 ERR = RPARM(2)
 ITER = IPARM(5)
 IF (IAM.EQ.0) THEN
 WRITE(6,*) 'Time to Solve Matrix : ',TSOLVE/1.D3
 WRITE(6,*) 'Time per iteration : ',TSOLVE/(1.D3*ITER)
 WRITE(6,*) 'Number of iterations : ',ITER
 WRITE(6,*) 'Error on exit : ',ERR
 WRITE(6,*) 'INFO on exit:',INFO
 END IF
 CALL BLACS_GRIDEXIT(ICONTXT)
 CALL BLACS_EXIT(0)
 STOP
 END
 C
C Print an error message
C
SUBROUTINE PR_USAGE(IOUT)
INTEGER :: IOUT
WRITE(IOUT,*)'Incorrect parameter(s) found'
WRITE(IOUT,*)

+ ' Usage: pde77 methd prec dim [istopc itmax itrace]'
WRITE(IOUT,*)' Where:'
WRITE(IOUT,*)' methd: CGSTAB TFQMR CGS'
WRITE(IOUT,*)' prec : ILU DIAGSC NONE'
WRITE(IOUT,*)' dim number of points along each axis'
WRITE(IOUT,*)' the size of the resulting linear '
WRITE(IOUT,*)' system is dim**3'
WRITE(IOUT,*)' istopc Stopping criterion 1 2 or 3 [1] '
WRITE(IOUT,*)' itmax Maximum number of iterations [500]'
WRITE(IOUT,*)' itrace 0 (no tracing, default) or '
WRITE(IOUT,*)' >= 0 do tracing every ITRACE'
WRITE(IOUT,*)' iterations '
RETURN

```
```

 END
 C
C Functions parameterizing the differential equation
C
FUNCTION A1(X,Y,Z)
REAL(KIND(1.D0)) :: A1
REAL(KIND(1.DO)) :: X,Y,Z
A1=1.D0
END
FUNCTION A2(X,Y,Z)
REAL(KIND(1.D0)) :: A2
REAL(KIND(1.D0)) :: X,Y,Z
A2=2.D1*Y
END
FUNCTION A3(X,Y,Z)
REAL(KIND(1.D0)) :: A3
REAL(KIND(1.D0)) :: X,Y,Z
A3=1.D0
END
FUNCTION A4(X,Y,Z)
REAL(KIND(1.D0)) :: A4
REAL(KIND(1.D0)) :: X,Y,Z
A4=1.D0
END
FUNCTION B1(X,Y,Z)
REAL(KIND(1.D0)) :: B1
REAL(KIND(1.D0)) :: X,Y,Z
B1=1.D0
END
FUNCTION B2(X,Y,Z)
REAL(KIND(1.D0)) :: B2
REAL(KIND(1.D0)) :: X,Y,Z
B2=1.D0
END
FUNCTION B3(X,Y,Z)
REAL(KIND(1.D0)) :: B3
REAL(KIND(1.D0)) :: X,Y,Z
B3=1.D0
END
C
C Subroutine to allocate and fill in the coefficient matrix and
C the RHS.
C
SUBROUTINE CREATE_MTRX_ELL1_BLOCK(PARTS,IDIM,
+ AS,IA1,IA2,INFO}A,B,\overline{T},DES\overline{C}_A,ICONTXT
C
C the equation generated is:
C b1 d d (u) b2 d d (u) b3 d d (u) a1 d (u)) a2 d (u))) a3d (u)) a4 u
C - ----- - ----- - ------ - ----- - ------ -------- +
C dx dx dy dy dz dz dx dy dy
C
C =g(x,y,z)
C where g is the RHS extracted from exact solution:
C f(x,y,z)=10.d0*X*Y*Z*(1-X)*(1-Y)*(1-Z)*EXP (X**4.5)
C boundary condition: Dirichlet
C 0< x,y,z<1

```
```

C discretized with finite differences; the discrete equation is
C u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
C + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3
C !!this matrix is non symmetric
USE F90SPARSE
EXTERNAL PARTS
Implicit None
Integer :: IDIM
Real(Kind(1.D0)),Pointer :: B(:), T(:), AS(:)
integer :: infoa(20)
INTEGER, POINTER :: DESC_A(:), IA1(:),IA2(:)
Integer :: ICONTXT
Real(Kind(1.d0)) :: ZT(10),GLOB_X,GLOB_Y,GLOB_Z,
+ ras(20)
Integer :: M,N,NNZ,glob_row,nr,j
integer :: ria1(20),ria2(20),rinfoa(30)
Real(Kind(1.D0)),POINTER :: SOL(:)
real(kind(1.d0)), external :: a1,a2,a3,b1,b2,b3
Integer :: X,Y,Z,COUNTER,IA,I,NPROW,NPCOL,MYPROW
+ ,MYPCOL,DOMAIN_INDEX
Integer :: BOUND_COND_0YZ, BOUND_COND_1YZ,
+ BOUND_COND_X0Z , BOUND_COND_X1Z , BOUND_COND_XY0 ,
+ BOUND_COND_XY1,MP,ELEMENT,LDSCA,IRCODE, NNZ1
REAL(KIN\overline{D}}(1.\overline{D}\overline{0})) :: DELTA
INTEGER :: GAP,INFO
integer :: prv(64), indx_owner, nv,inv
C deltah dimension of each grid cell
C deltat discretization time
Real(Kind(1.d0)),Parameter :: RHS=0.d0,ONE=1.d0,ZERO=0.d0
Real(Kind(1.d0)) :: TIMEF, T1, T2,t3, TINS
external timef
C common area
INTEGER DIM_BLOCK, NPROC
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
NPROC = NPROW*NPCOL
DELTAH=1.D0/(IDIM-1)
M = IDIM*IDIM*IDIM
N = M
LDSCA = 3*N+31+3*NPROC
DIM_BLOCK=(N+NPROC-1)/NPROC
NNZ = MAX(2,(N*7)/(NPROC))
NNZ1 = MAX(2,(N*9)/(NPROC))+MAX(1,DIM_BLOCK)
ALLOCATE(DESC_A(LDSCA),AS(NNZ), IA1(NNZ̄1),

+ IA2(NNZ1),STAT=IRCODE)
IF (IRCODE /= 0) THEN
WRITE(0,*) 'Allocation error in CREATE'
CALL BLACS_ABORT(ICONTXT,-1)
STOP
ENDIF
INFOA(1) = NNZ
INFOA(2) = NNZ1
INFOA(3) = NNZ1

```
```

 DESC_A(11) = LDSCA
 CALL PADINIT(N,PARTS,DESC_A,ICONTXT)
 NR = DESC_A(5)
 ALLOCATE(B(NR),T(NR),STAT=IRCODE)
 IF (IRCODE /= 0) THEN
 WRITE(0,*) 'Allocation error in CREATE'
 CALL BLACS_ABORT(ICONTXT,-1)
 STOP
 ENDIF
CALL PDSPINIT(AS,IA1,IA2,INFOA,DESC_A)
C
C We build an auxiliary matrix consisting of one row at a
C time in CSR mode
C
RINFOA(4) = 1
RINFOA(5) = 1
RINFOA(6) = 1
RINFOA(7) = N
GAP = 1
RIA2(1)=1
TINS = 0.D0
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = TIMEF()
C Loop over all rows which belongs to me; we have a BLOCK
C distribution !!
DO GLOB_ROW = 1, N
CALL-PARTS(GLOB_ROW,N,NPROW,PRV,NV)
DO INV = 1, NV
INDX OWNER = PRV(INV)
IF (INDX_OWNER == MYPROW) THEN
ELEMENT=1
C GLOB_X, GLOB_Y, GLOB_X coordinates in current measure unit
C Compute Point Coordinates
IF (MOD(GLOB_ROW,(IDIM*IDIM)).EQ.0) THEN
X = GLOB_ROW/(IDIM*IDIM)
ELSE
X = GLOB_ROW/(IDIM*IDIM)+1
ENDIF
IF (MOD((GLOB_ROW-(X-1)*IDIM*IDIM),IDIM).EQ.0) THEN
Y = (GLOB_-\overline{ROW}-(X-1)*IDIM*IDIM)/IDIM
ELSE
Y = (GLOB_ROW-(X-1)*IDIM*IDIM)/IDIM+1
ENDIF
Z = GLOB_ROW-(X-1)*IDIM*IDIM-(Y-1)*IDIM
GLOB_X=X*DELTAH
GLOB_Y=Y*DELTAH
GLOB_Z=Z*DELTAH
IF (\overline{X.EQ.1) THEN}
RAS (ELEMENT) = ONE
RIA1(ELEMENT) = (X-1)*IDIM*IDIM + (Y-1)*IDIM + (Z)
ELEMENT=ELEMENT+1

```

```

C
! (x+1,y,z)
RAS(ELEMENT) =-B3(GLOB_X,GLOB_Y,GLOB Z)
RAS(ELEMENT) = RAS(ELEMENT)/(DELTAH*DELTAH)
RIA1 (ELEMENT) = (X)*IDIM*IDIM+(Y-1)*IDIM+(Z)
ELEMENT=ELEMENT+1
ENDIF
RIA2(2) = ELEMENT
RINFOA(1) = 20
RINFOA(2) = 20
RINFOA(3) = 20
RINFOA(4) = 1
RINFOA(5) = 1
RINFOA(6) = 1
C IA== GLOBAL ROW INDEX
IA = (X-1)*IDIM*IDIM+(Y-1)*IDIM+(Z)
T3 = TIMEF()
CALL PDSPINS(AS,IA1,IA2,INFOA,DESC_A,
IA,1,RAS,RIA1,RIA2,RINF0A)
TINS = TINS + (TIMEF()-T3)
C Build RHS
IF (X==1) THEN
GLOB_Y=(Y-IDIM/2)*DELTAH
GLOB_Z=(Z-IDIM/2)*DELTAH
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)
ELSE IF ((Y==1).OR.(}\overline{Y}==IDIM).O\overline{R}.(Z==1).OR.(Z==IDIM)) THE
GLOB_X=3*(X-1)*DELTAH
GLOB_Y=(Y-IDIM/2)*DELTAH
GLOB_Z=(Z-IDIM/2)*DELTAH
ZT(1) = EXP(-GLOB_Y**2-GLOB_Z**2)*EXP(-GLOB_X)
ELSE
ZT(1) = 0.D0
ENDIF
CALL PDGEINS(1,B,NR,IA,1,1,1,ZT,1,DESC_A)
ZT(1) = 0.D0
CALL PDGEINS(1,T,NR,IA,1,1,1,ZT,1,DESC_A)
ENDIF
ENDDO
ENDDO
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = TIMEF()
IF (MYPROW.EQ.0) THEN
WRITE(0,*) ' pspins time',TINS/1.D3
WRITE(0,*) ' Insert time',(T2-T1)/1.D3
ENDIF
CALL BLACS_BARRIER(ICONTXT,'ALL')
T1 = TIMEF()
CALL PDSPASB(AS,IA1,IA2,INFOA,DESC_A,

+ 'GEN ','DEF ',0,INFO)
CALL BLACS_BARRIER(ICONTXT,'ALL')
T2 = TIMEF()

```
```

 IF (MYPROW.EQ.0) THEN
 WRITE(0,*) ' Assembly time',(T2-T1)/1.D3
 ENDIF
 CALL PDGEASB(1,B,NR,DESC_A)
 CALL PDGEASB(1,T,NR,DESC_A)
 RETURN
 END
 C
C Get iteration parameters from the command line
C
SUBROUTINE GET_PARMS(ICONTXT,CMETHD,PREC,IDIM,
+ ISTOPC,ITMAX,ITRACE)
integer :: icontxt
Character*10 :: CMETHD, PREC
Integer :: IDIM, IRET, ISTOPC,ITMAX,ITRACE
Character*40 :: CHARBUF
INTEGER :: IARGC, NPROW, NPCOL, MYPROW, MYPCOL
EXTERNAL IARGC
INTEGER :: INTBUF(10), IP
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW==0) THEN
C Read command line parameters
IP=IARGC()
IF (IARGC().GE.3) THEN
CALL GETARG(1,CHARBUF)
READ(CHARBUF,*) CMETHD
CALL GETARG(2,CHARBUF)
READ(CHARBUF,*) PREC
C Convert strings in array
DO I = 1, LEN(CMETHD)
INTBUF(I) = IACHAR(CMETHD(I:I))
END DO
C Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
DO I = 1, LEN(PREC)
INTBUF(I) = IACHAR(PREC(I:I))
END DO
C Broadcast parameters to all processors
CALL IGEBS2D(ICONTXT,'ALL',' ',10,1,INTBUF,10)
CALL GETARG(3,CHARBUF)
READ(CHARBUF,*) IDIM
IF (IARGC().GE.4) THEN
CALL GETARG(4,CHARBUF)
READ(CHARBUF,*) ISTOPC
ELSE
ISTOPC=1
ENDIF
IF (IARGC().GE.5) THEN
CALL GETARG(5,CHARBUF)
READ(CHARBUF,*) ITMAX
ELSE
ITMAX=500

```
```

 ENDIF
 IF (IARGC().GE.6) THEN
 CALL GETARG(6,CHARBUF)
 READ(CHARBUF,*) ITRACE
 ELSE
 ITRACE=0
 ENDIF
 C Broadcast parameters to all processors
 CALL IGEBS2D(ICONTXT,'ALL',' ',1,1,IDIM,1)
 CALL IGEBS2D(ICONTXT,'ALL',' ',1,1,ISTOPC,1)
 CALL IGEBS2D(ICONTXT,'ALL',' ',1,1,ITMAX,1)
 CALL IGEBS2D(ICONTXT,'ALL',' ',1,1,ITRACE,1)
 WRITE(6,*)'Solving matrix: ELL1'
 WRITE(6,*)'on grid',IDIM,'x',IDIM,'x',IDIM
 WRITE(6,*)' with BLOCK data distribution, NP=',Np,
 + (' Preconditioner=',PREC,
 ELSE
 C Wrong number of parameter, print an error message and exit
 CALL PR_USAGE(0)
 CALL BLACS_ABORT(ICONTXT,-1)
 STOP 1
 ENDIF
 ELSE
 C Receive Parameters
 CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
 DO I = 1, 10
 CMETHD(I:I) = ACHAR(INTBUF(I))
 END DO
 CALL IGEBR2D(ICONTXT,'ALL',' ',10,1,INTBUF,10,0,0)
 DO I = 1, 10
 PREC(I:I) = ACHAR(INTBUF(I))
 END DO
 CALL IGEBR2D(ICONTXT,'ALL',' ',1,1,IDIM,1,0,0)
 CALL IGEBR2D(ICONTXT,'ALL',' ',1,1,ISTOPC,1,0,0)
 CALL IGEBR2D(ICONTXT,'ALL',' ',1,1,ITMAX,1,0,0)
 CALL IGEBR2D(ICONTXT,'ALL',' ',1,1,ITRACE,1,0,0)
 END IF
 RETURN
    ```

END
Fortran 90 Sample Sparse Program (using the Harwell-Boeing exchange format)
```

@PROCESS FREE(F90) INIT(F90PTR)
!
! This sample program shows how to build and solve a sparse linear
! system using the subroutines in the sparse section of Parallel
! ESSL; the matrices are read from file using the Harwell-Boeing
! exchange format. Details on the format and sample matrices are
! available from
! http://math.nist.gov/MatrixMarket/
! The user can choose between different data distribution strategies.
! These are equivalents to the HPF BLOCK and CYCLIC(N) distributions;
! they do not take into account the sparsity pattern of the input
! matrix.
!
PROGRAM HB_SAMPLE
USE F90SPARSE
USE MAT_DIST
USE REA\overline{D MAT}
USE PARTRAND
USE PARTBCYC
IMPLICIT NONE
! Input parameters
CHARACTER*40 :: CMETHD, PREC, MTRX_FILE
CHARACTER*80 :: CHARBUF
DOUBLE PRECISION DDOT
EXTERNAL DDOT
EXTERNAL PART_BLOCK
INTEGER, PARAMETER :: IZERO=0, IONE=1
CHARACTER, PARAMETER :: ORDER='R'
REAL(KIND(1.D0)), POINTER,SAVE :: B_COL(:), X_COL(:), R_COL(:), \&
\& B_COL_GLOB(:), X_COL_GLOB(:), R_COL_GLOB(:), B_GLOB(:,:)
INTEGER :: IARGGC
Real(Kind(1.d0)), Parameter :: Dzero = 0.d0, One = 1.d0
Real(Kind(1.d0)) :: TIMEF, T1, T2, TPREC, R_AMAX, B_AMAX,bb(1,1)
integer :: nrhs, nrow, nx1, nx2
External IARGC, TIMEF
integer bsze,overlap
common/part/bsze,overlap
! Sparse Matrices
TYPE(D_SPMAT) :: A, AUX_A
TYPE(D_PRECN) :: APRC
! Dense Matrices
REAL(KIND(1.D0)), POINTER :: AUX_B(:,:), AUX1(:), AUX2(:)
! Communications data structure
TYPE(DESC_TYPE) :: DESC_A
! BLACS parameters
INTEGER :: NPROW, NPCOL, ICTXT, IAM, NP, MYPROW, MYPCOL
! Solver paramters
INTEGER :: ITER, ITMAX, IERR, ITRACE, IRCODE, IPART,\&
\& IPREC, METHD, ISTOPC

```
```

REAL(KIND(1.D0)) :: ERR, EPS
integer iparm(20)
real(kind(1.d0)) rparm(20)
! Other variables
INTEGER :: I,INFO,J
INTEGER :: INTERNAL, M,II,NNZERO
! common area
INTEGER M_PROBLEM, NPROC
! Initialize BLACS
CALL BLACS_PINFO(IAM,NP)
CALL BLACS_GET(IZERO, IZERO, ICTXT)
! Rectangular Grid, Np x 1
CALL BLACS_GRIDINIT(ICTXT, ORDER, NP, IONE)
CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYPROW, MYPCOL)
!
! Get parameters
!
CALL GET_PARMS(ICTXT,MTRX_FILE,CMETHD,PREC,\&
\& IPART,ISTOPC,ITMAX,
CALL BLACS_BARRIER(ICTXT,'A')
T1 = TIMEF()
! Read the input matrix to be processed and (possibly) the RHS
IF (IAM == 0) THEN
CALL READMAT(MTRX_FILE, AUX_A, ICTXT,B=AUX_B)
M_PROBLEM = AUX_A%M
CĀLL IGEBS2D(IC\overline{TXT,'A',' ',1,1,M_PROBLEM,1)}
IF (SIZE(AUX_B,1).EQ.M_PROBLEM) T}HE
! If any RHS were present, broadcast the first one
NRHS = 1
CALL IGEBS2D(ICTXT,'A',' ',1,1,NRHS,1)
CALL DGEBS2D(ICTXT,'A',' ',M_PROBLEM,1,AUX_B(:,1),M_PROBLEM)
ELSE
NRHS = 0
CALL IGEBS2D(ICTXT,'A',' ',1,1,NRHS,1)
ENDIF
ELSE
CALL IGEBR2D(ICTXT,'A',' ',1,1,M_PROBLEM,1,0,0)
CALL IGEBR2D(ICTXT,'A',' ',1,1,NRHS,1,0,0)
IF (NRHS.EQ.1) THEN
ALLOCATE(AUX_B(M_PROBLEM,1), STAT=IRCODE)
IF (IRCODE /= 0)
WRITE(0,*) 'Memory allocation failure in HB_SAMPLE'
CALL BLACS_ABORT(ICTXT,-1)
STOP
ENDIF
CALL DGEBR2D(ICTXT,'A',' ',M_PROBLEM,1,AUX_B,M_PROBLEM,0,0)
ENDIF
END IF
IF (NRHS.EQ.1) THEN
B_COL_GLOB =>AUX_B(:,1)
ELSE

```
```

 ALLOCATE(AUX_B(M_PROBLEM,1), STAT=IRCODE)
 B_COL_GLOB =>AUX_B(:,1)
 I\overline{F}}(\textrm{I}AM==0) THE
 DO I=1, M PROBLEM
 B_COL_-GLOB(I) = REAL(I)*2.0/REAL(M_PROBLEM)
 ENDDO
 ENDIF
 ENDIF
NPROC = NPROW
! Switch over different partition types
IF (IPART > 0) THEN
WRITE(6,*) 'Partition type: CYCLIC(NB)'
CALL SET_NB(IPART,0,0,ICTXT)
CALL MATDIST(AUX_A, A, PART_BCYC, ICTXT, \&
\& DESC_A,B_COL_GLOB,B_COL)
ELSE
SELECT CASE (IPART)
CASE (0)
WRITE(6,*) 'Partition type: BLOCK'
CALL MATDIST(AUX_A, A, PART_BLOCK, ICTXT, \&
\& DESC_A,B_COL_GLOB,B_COL)
CASE (-1)
WRITE(6,*) 'Partition type: RANDOM'
IF (IAM==0) THEN
CALL BUILD_RNDPART(AUX_A,NP)
ENDIF
CALL DISTR_RNDPART(0,0,ICTXT)
CALL MATDIST(AUX_A, A, PART_RAND, ICTXT, \&
\& DESC_A,B_COL_GLOB,B_COL)
CASE DEFAULT
WRITE(6,*) 'Partition type: BLOCK'
CALL MATDIST(AUX A, A, PART BLOCK, ICTXT, \&
\& DESC_A,B_\overline{COL_GLOB,B_\overline{COL)}}\mathbf{O}=(
END SELECT
ENDIF
CALL PGEALL(X_COL,DESC_A)
CALL PGEASB(X_COL,DESC_A)
T2 = TIMEF() - T1
CALL DGAMX2D(ICTXT, 'A', ' ', IONE, IONE, T2, IONE,\&
\& T1, T1, -1, -1, -1)
IF (IAM.EQ.0) THEN
WRITE(6,*) 'Time to Read and Partition Matrix : ',T2/1.D3
END IF
!
! Prepare the preconditioning matrix. Note the availability
! of optional parameters
!
IF (PREC(1:3) == 'ILU') THEN
IPREC = 2
ELSE IF (PREC(1:6) == 'DIAGSC') THEN

```

IPREC = 1
```

ELSE IF (PREC(1:4) == 'NONE') THEN

```
    IPREC = 0
ELSE
    WRITE(0,*) 'Unknown preconditioner'
    CALL BLACS_ABORT (ICTXT,-1)
END IF
CALL BLACS_BARRIER(ICTXT, 'A')
\(\mathrm{T} 1=\operatorname{TIMEF} \overline{()}\)
CALL PSPGPR (IPREC,A,APRC,DESC_A,INFO=INFO)
TPREC \(=\) TIMEF ( \()-\mathrm{T} 1\)
CALL DGAMX2D(ICTXT,'A',' ',IONE, IONE,TPREC,IONE,T1,T1,-1,-1,-1)
IF (IAM.EQ.0) WRITE \((6, *)\) 'Preconditioner Time : ',TPREC/1.D3
IF (INFO /= 0) THEN
    WRITE (0,*) 'Error in preconditioner :', INFO
    CALL BLACS_ABORT (ICTXT,-1)
    STOP
END IF
IPARM \(=0\)
RPARM \(=0 . D 0\)
EPS = 1.D-8
\(\operatorname{RPARM}(1)=\mathrm{EPS}\)
IPARM(2) = ISTOPC
IPARM(3) = ITMAX
IPARM(4) = ITRACE
IF (CMETHD(1:6).EQ.'CGSTAB') Then
    \(\operatorname{IPARM}(1)=1\)
ELSE IF (CMETHD(1:3).EQ.'CGS') THEN
    \(\operatorname{IPARM}(1)=2\)
ELSE IF (CMETHD(1:5).EQ.'TFQMR') THEN
    IPARM (1) \(=3\)
ELSE
    WRITE (0,*) 'Unknown method '
    CALL BLACS_ABORT(ICTXT,-1)
END IF
CALL BLACS_BARRIER(ICTXT, 'A11')
T1 = TIMEF ()
CALL PSPGIS(A,B_COL,X_COL,APRC,DESC_A,\&
    \& IPARM=IPARM, RPARM=RPARM, INFO=IERR)
CALL BLACS_BARRIER(ICTXT, 'A11')
\(\mathrm{T} 2=\operatorname{TIMEF} \overline{( })-\mathrm{T} 1\)
CALL DGAMX2D(ICTXT,'A',' ',IONE, IONE,T2,IONE,T1,T1,-1,-1,-1)
ITER=IPARM(5)
ERR = RPARM(2)
IF (IAM.EQ.0) THEN
    WRITE \(6, *\) ) 'methd iprec istopc : ',METHD, IPREC, ISTOPC
    WRITE \((6, *)\) 'Number of iterations : ',ITER
    WRITE \((6, *)\) 'Time to Solve Matrix : ', T2/1.D3
    WRITE \((6, *)\) 'Time per iteration : ',T2/(1.D3*ITER)
    WRITE (6,*) 'Error on exit : ',ERR
END IF
```

 CALL PGEFREE(B_COL, DESC_A)
 CALL PGEFREE(X_COL, DESC_A)
 CALL PSPFREE(A, DESC_A)
 CALL PSPFREE(APRC, DE\overline{SC_A)}
 CALL PADFREE(DESC A)
 CALL BLACS_GRIDEXITT(ICTXT)
 CALL BLACS_EXIT(0)
 CONTAINS
!
! Get iteration parameters from the command line
!
SUBROUTINE GET_PARMS(ICONTXT,MTRX_FILE,CMETHD,PREC,IPART,\&
\& ISTOPC,ITMAX,ITRACE)
integer :: icontxt
Character*40 :: CMETHD, PREC, MTRX_FILE
Integer :: IRET, ISTOPC,ITMAX,ITRACE,IPART
Character*40 :: CHARBUF
INTEGER :: IARGC, NPROW, NPCOL, MYPROW, MYPCOL
EXTERNAL IARGC
INTEGER :: INPARMS(20), IP
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW==0) THEN
! Read Input Parameters
IF (IARGC().GE.3) THEN
CALL GETARG(1,CHARBUF)
READ(CHARBUF,*) MTRX_FILE
CALL GETARG(2,CHARBUF)
READ(CHARBUF,*) CMETHD
CALL GETARG(3,CHARBUF)
READ(CHARBUF,*) PREC
IF (IARGC().GE.4) THEN
CALL GETARG(4,CHARBUF)
READ(CHARBUF,*) IPART
ELSE
IPART = 0
ENDIF
IF (IARGC().GE.5) THEN
CALL GETARG(5,CHARBUF)
READ(CHARBUF,*) ITMAX
ELSE
ITMAX = 500
ENDIF
IF (IARGC().GE.6) THEN
CALL GETARG(6,CHARBUF)
READ(CHARBUF,*) ISTOPC
ELSE
ISTOPC = 1
ENDIF
IF (IARGC().GE.7) THEN
CALL GETARG(7,CHARBUF)
READ(CHARBUF,*) ITRACE
ELSE
ITRACE = 0
ENDIF

```
```

 ! Convert strings to integers
 DO I = 1, 20
 INPARMS(I) = IACHAR(MTRX_FILE(I:I))
 END DO
 ! Broadcast parameters to all processors
 CALL IGEBS2D(ICTXT,'A',' ',20,1,INPARMS,20)
 ! Convert strings in array
 DO I = 1, 20
 INPARMS(I) = IACHAR(CMETHD(I:I))
 END DO
 ! Broadcast parameters to all processors
 CALL IGEBS2D(ICTXT,'A',' ',20,1,INPARMS,20)
 DO I = 1, 20
 INPARMS(I) = IACHAR(PREC(I:I))
 END DO
 ! Broadcast parameters to all processors
 CALL IGEBS2D(ICTXT,'A',' ',20,1,INPARMS,20)
 ! Broadcast parameters to all processors
 CALL IGEBS2D(ICTXT,'A',' ',1,1,IPART,1)
 CALL IGEBS2D(ICTXT,'A',' ',1,1,ITMAX,1)
 CALL IGEBS2D(ICTXT,'A',' ',1,1,ISTOPC,1)
 CALL IGEBS2D(ICTXT,'A',' ',1,1,ITRACE,1)
 ELSE
 CALL PR_USAGE(0)
 CALL BLACS_ABORT(ICTXT,-1)
 STOP 1
 END IF
 ELSE
! Receive Parameters
CALL IGEBR2D(ICTXT,'A',' ',20,1,INPARMS,20,0,0)
DO I = 1, 20
MTRX_FILE(I:I) = ACHAR(INPARMS(I))
END DO
CALL IGEBR2D(ICTXT,'A',' ',20,1,INPARMS,20,0,0)
DO I = 1, 20
CMETHD(I:I) = ACHAR(INPARMS(I))
END DO
CALL IGEBR2D(ICTXT,'A',' ',20,1,INPARMS,20,0,0)
DO I = 1, 20
PREC(I:I) = ACHAR(INPARMS(I))
END DO
CALL IGEBR2D(ICTXT,'A',' ',1,1,IPART,1,0,0)
CALL IGEBR2D(ICTXT,'A',' ',1,1,ITMAX,1,0,0)
CALL IGEBR2D(ICTXT,'A',' ',1,1,ISTOPC,1,0,0)
CALL IGEBR2D(ICTXT,'A',' ',1,1,ITRACE,1,0,0)
END IF
END SUBROUTINE GET_PARMS
SUBROUTINE PR_USAGE
INTEGER IOUT

```
```

 WRITE(IOUT, *) ' Number of parameters is incorrect!'
 WRITE(IOUT, *) ' Use: hb_sample mtrx_file methd prec [ptype &
 &itmax istopc itrace]'
 WRITE(IOUT, *) ' Where:'
 WRITE(IOUT, *) ' mtrx_file is stored in HB format'
 WRITE(IOUT, *) ' meth\overline{d may be: CGSTAB CGS TFQMR'}
 WRITE(IOUT, *) ' prec may be: ILU DIAGSC NONE'
 WRITE(IOUT, *) ' ptype Partition strategy default 0'
 WRITE(IOUT, *) ' >0: CYCLIC(ptype)
 WRITE(IOUT, *) ' 0: BLOCK partition
 WRITE(IOUT, *) ' -1: Random partition
 WRITE(IOUT, *) ' itmax Max iterations [500]
 WRITE(IOUT, *) ' istopc Stopping criterion [1]
 WRITE(IOUT, *) ' itrace 0 (no tracing, default) or '
 WRITE(IOUT, *) ' >= 0 do tracing every ITRACE'
 WRITE(IOUT, *) ' iterations '
 END SUBROUTINE PR_USAGE
END PROGRAM HB_SAMPLE

```

\section*{Sample PARTS Subroutine}

This section shows sample parts programs.

\section*{PART_BLOCK (Block Data Distribution)}

C
C User defined function corresponding to an HPF BLOCK partition
C
    SUBROUTINE PART_BLOCK(GLOBAL_INDX,N,NP,PV,NV)

IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
INTEGER :: DIM_BLOCK
REAL(8), PARAMETER :: PC=0.0D0
REAL(8) :: DDIFF
INTEGER :: IB1, IB2, IPV
DIM_BLOCK \(=(N+N P-1) / N P\)
NV = 1
PV(NV) = (GLOBAL_INDX - 1) / DIM_BLOCK
IPV = PV(1)
IB1 = IPV * DIM_BLOCK + 1
IB2 = (IPV+1) * DIM_BLOCK
DDIFF = DBLE(ABS(GLOBAL_INDX-IB1))/DBLE(DIM_BLOCK)
IF (DDIFF < PC/2) THEN
C
C Overlap at the beginning of a block, with the previous proc
C
IF (IPV>0) THEN
\(N V=N V+1\)
\(P V(N V)=I P V-1\)
ENDIF
ENDIF
```

 DDIFF = DBLE(ABS(GLOBAL_INDX-IB2))/DBLE(DIM_BLOCK)
 IF (DDIFF < PC/2) THEN
 C
C Overlap at the end of a block, with the next proc
C
IF (IPV<(NP-1)) THEN
NV = NV + 1
PV(NV) = IPV + 1
ENDIF
ENDIF
RETURN
END

```

\section*{PARTBCYC (Block-Cyclic Data Distribution)}
@process free(f90)
MODULE PARTBCYC
PUBLIC PART_BCYC, SET_NB
PRIVATE
INTEGER, SAVE :: BLOCK_SIZE
CONTAINS
!
! User defined subroutine corresponding to an HPF CYCLIC(NB)
! data distribution
!
SUBROUTINE PART_BCYC(GLOBAL_INDX,N,NP,PV,NV)
IMPLICIT NONE

INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) : : NV
INTEGER, INTENT(OUT) :: PV(*)
NV = 1
PV (NV) \(=\) MOD \((((\) GLOBAL_INDX+BLOCK_SIZE-1)/BLOCK_SIZE)-1),NP)
RETURN
END SUBROUTINE PART_BCYC
SUBROUTINE SET_NB(NB, RROOT, CROOT, ICTXT)
INTEGER : : RROOT, CROOT, ICTXT
INTEGER : : N, MER, MEC, NPR, NPC
CALL BLACS_GRIDINFO(ICTXT,NPR,NPC,MER,MEC)
IF (.NOT. ((RROOT>=0).AND. (RROOT<NPR).AND.\&
\& (CROOT>=0).AND.(CROOT<NPC))) THEN
WRITE(0,*) 'Fatal error in SET_NB: invalid ROOT ',\&
\& 'coordinates
CALL BLACS_ABORT (ICTXT,-1)
RETURN
ENDIF
IF ((MER==RROOT).AND. (MEC==CROOT)) THEN
IF (NB < 1) THEN
WRITE(0,*) 'Fatal error in SET_NB: invalid NB'
CALL BLACS_ABORT(ICTXT,-1)

RETURN
ENDIF
CALL IGEBS2D(ICTXT,'A',' ', \(1,1, N B, 1\) )
ELSE
CALL IGEBR2D(ICTXT,'A',' ', 1,1, NB, 1, RROOT, CROOT)
ENDIF
BLOCK_SIZE = NB
RETURN
END SUBROUTINE SET_NB
END MODULE PARTBCYC
```

PARTRAND (Random Data Distribution)
@process free(f90) init(f90ptr)
!
! Purpose:
! Provide a set of subroutines to define a data distribution based on
! a random number generator.
! This partition does *not* generally give good performance; it may be
useful as a model to implement a graph partitioning based
distribution; to do this you need to alter the BUILD_RNDPART
subroutine to make it call your favorite graph partition subroutine
instead of the random number generator.
Subroutines:
BUILD_RNDPART(A,NPARTS): This subroutine will be called by the root
process to build define the data distribution mapping.
Input parameters:
TYPE(D_SPMAT) :: A The input matrix. The coefficients are
ignored; only the structure is used.
INTEGER :: NPARTS How many parts we are requiring to the
partition utility
DISTR_RNDPART(RROOT,CROOT,ICTXT): This subroutine will be called by
a\1 processes to distribute the information computed by the root
process, to be used subsequently.
PART_RAND : The subroutine to be passed to PESSL sparse library;
uses information prepared by the previous two subroutines.
!
MODULE PARTRAND
PUBLIC PART_RAND, BUILD_RNDPART, DISTR_RNDPART
PRIVATE
INTEGER, POINTER, SAVE :: RAND_VECT(:)
CONTAINS
SUBROUTINE PART_RAND(GLOBAL_INDX,N,NP,PV,NV)
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
IF (.NOT.ASSOCIATED(RAND_VECT)) THEN

```
```

 WRITE(0,*) 'Fatal error in PART_RAND: vector RAND_VECT ',&
 & 'not initialized'
 RETURN
 ENDIF
 IF ((GLOBAL_INDX<1).OR.(GLOBAL_INDX > SIZE(RAND_VECT))) THEN
 WRITE(0,*) 'Fatal error in PART_RAND: index GLOBAL_INDX ',&
 & 'outside RAND_VECT bounds'
 RETURN
 ENDIF
 NV = 1
 PV (NV) = RAND_VECT(GLOBAL_INDX)
 RETURN
 END SUBROUTINE PART_RAND
SUBROUTINE DISTR_RNDPART(RROOT, CROOT, ICTXT)
INTEGER :: RROOT, CROOT, ICTXT
INTEGER :: N, MER, MEC, NPR, NPC
CALL BLACS_GRIDINFO(ICTXT,NPR,NPC,MER,MEC)
IF (.NOT.((RROOT>=0).AND. (RROOT<NPR).AND.\&
\& (CROOT>=0).AND.(CROOT<NPC))) THEN
WRITE(0,*) 'Fatal error in DISTR_RNDPART: invalid ROOT ',\&
\& 'coordinates '
CALL BLACS_ABORT(ICTXT,-1)
RETURN
ENDIF
IF ((MER == RROOT) .AND.(MEC == CROOT)) THEN
IF (.NOT.ASSOCIATED(RAND_VECT)) THEN
WRITE(0,*) 'Fatal error in DISTR_RNDPART: vector RAND_VECT ',\&
\& 'not initialized'
CALL BLACS_ABORT(ICTXT,-1)
RETURN
ENDIF
N = SIZE(RAND_VECT)
CALL IGEBS2D(ICTXT,'A11',' ',1,1,N,1)
CALL IGEBS2D(ICTXT,'A11',' ',N,1,RAND_VECT,N)
ELSE
CALL IGEBR2D(ICTXT,'A11',' ',1,1,N,1,RR00T,CROOT)
IF (ASSOCIATED(RAND_VECT)) THEN
DEALLOCATE(RAND_VECT}
ENDIF
ALLOCATE(RAND_VECT(N),STAT=INFO)
IF (INFO /= 0) THEN
WRITE(0,*) 'Fatal error in DISTR_RNDPART: memory allocation ',\&
\& ' failure.'
RETURN
ENDIF
CALL IGEBR2D(ICTXT,'A11',' ',N,1,RAND_VECT,N,RROOT,CROOT)
ENDIF
RETURN
END SUBROUTINE DISTR_RNDPART

```
```

SUBROUTINE BUILD_RNDPART(A,NPARTS)
USE F90SPARSE
TYPE(D_SPMAT) :: A
INTEGER :
INTEGER :: N, I, IB, II
INTEGER, PARAMETER :: NB=512
REAL(KIND(1.D0)), PARAMETER :: SEED=12345.D0
REAL(KIND(1.D0)) :: XV(NB)
N= A%M
IF (ASSOCIATED(RAND_VECT)) THEN
DEALLOCATE(RAND_VECT)
ENDIF
ALLOCATE(RAND_VECT(N),STAT=INFO)
IF (INFO /= 0) THEN
WRITE(0,*) 'Fatal error in BUILD_RNDPART: memory allocation ',\&
\& ' failure.'
RETURN
ENDIF
IF (NPARTS.GT.1) THEN
DO I=1,N,NB
IB = MIN(N-I+1,NB)
CALL DURAND(SEED,IB,XV)
DO II=1, IB
RAND_VECT(I+II-1) = MIN(NPARTS-1,INT(XV(II)*NPARTS))
ENDDO
ENDDO
ELSE
DO I=1, N
RAND VECT(I) = 0
ENDDO
ENDIF
RETURN
END SUBROUTINE BUILD_RNDPART
END MODULE PARTRAND

```

\section*{The READ MAT Subroutine}
```

@PROCESS FREE(F90) INIT(F90PTR)
!
READ_MAT subroutine reads a matrix and its right hand sides,
all stored in a BCS format file. The B field is optional,.
Character :: filename*20
On Entry: name of file to be processed.
On Exit : unchanged.
Type(D_SPMAT) :: A
On Entry: fresh variable.
On Exit : will contain the global sparse matrix as follows:
A%AS for coefficient values
A%IA1 for column indices
A%IA2 for row pointers
A%M for number of global matrix rows
A%K for number of global matrix columns
Integer :: ICTXT
On Entry: BLACS context.
On Exit : unchanged.
Real(Kind(1.D0)), Pointer, Optional :: B(:,:)
On Entry: fresh variable.
On Exit: will contain right hand side(s).
Integer, Optional :: inroot
On Entry: Index of root processor (default: 0)
On Exit : unchanged.
Real(Kind(1.D0)), Pointer, Optional :: indwork(:)
On Entry/Exit: Double Precision Work Area.
Integer, Pointer, Optional :: iniwork()
On Entry/Exit: Integer Work Area.
!
MODULE READ_MAT
PUBLIC READMAT
CONTAINS
SUBROUTINE READMAT (FILENAME, A, ICTXT, B, INROOT,\&
\& INDWORK, INIWORK)
USE F90SPARSE
! Parameters
IMPLICIT NONE
REAL(KIND(1.D0)), POINTER, OPTIONAL :: B(:,:)
INTEGER :: ICTXT
TYPE(D_SPMAT) :: A
CHARACTER :: FILENAME*(*)
INTEGER, OPTIONAL :: INROOT
REAL(KIND(1.0D0)), POINTER, OPTIONAL :: INDWORK(:)
INTEGER, POINTER, OPTIONAL :: INIWORK(:)
! Local Variables
INTEGER, PARAMETER :: INFILE = 2
CHARACTER :: MXTYPE*3, KEY*8, TITLE*72,\&
\& INDFMT*16, PTRFMT*16, RHSFMT*20, VALFMT*20, RHSTYP

```
```

INTEGER :: INDCRD, PTRCRD, TOTCRD,\&
\& VALCRD, RHSCRD, NROW, NCOL, NNZERO, NELTVL, NRHS, NRHSIX
REAL(KIND(1.0D0)), POINTER :: AS_LOC(:), DWORK(:)
INTEGER, POINTER :: IA \overline{1_LOC(:), IA2_LOC(:), IWORK(:)}
INTEGER :: D_ALLOC, I_ALLOC, IRCODE, I,\&
\& J, LIWORK, LDWORK, ROOT, NPROW, NPCOL, MYPROW, MYPCOL
IF (PRESENT(INROOT)) THEN
ROOT = INROOT
ELSE
ROOT = 0
END IF
CALL BLACS_GRIDINFO(ICTXT, NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW == ROOT) THEN
WRITE(*, *) 'Start read_matrix'
! Open Input File
OPEN(INFILE,FILE=FILENAME, STATUS='OLD', ERR=901, ACTION="READ")
READ(INFILE,FMT='(A72,A8,/,5I14,/,A3,11X,4I14,/,2A16,2A20)',\&
\& END=902) TITLE, KEY, TOTCRD, PTRCRD,INDCRD, VALCRD,\&
\& RHSCRD, MXTYPE, NROW, NCOL, NNZERO, NELTVL,\&
\& PTRFMT, INDFMT, VALFMT, RHSFMT
A%M = NROW
A%N = NCOL
A%FIDA = 'CSR'
IF (RHSCRD>0) READ(INFILE, FMT='(A1,13X,2I14)',\&
\& END=902) RHSTYP, NRHS, NRHSIX
IF (MXTYPE == 'RUA') THEN
ALLOCATE(A%AS(NNZERO), A%IA1(NNZERO), A%IA2(NROW + 1),\&
\& STAT = IRCODE)
IF (IRCODE <> 0) GOTO 993
READ(INFILE,FMT=PTRFMT,END=902) (A%IA2(I), I=1,NROW+1)
READ(INFILE,FMT=INDFMT, END=902) (A%IA1(I), I=1,NNZERO)
READ(INFILE,FMT=VALFMT,END=902) (A%AS(I), I=1,NNZERO)
ELSE IF (MXTYPE == 'RSA') THEN
! We are generally working with non-symmetric matrices, so
! we de-symmetrize what we are about to read
ALLOCATE(A%AS(2*NNZERO) ,A%IA1 (2*NNZERO) ,\&
\& A%IA2(NROW+1),AS_LOC(2*NNZERO),\&
\& IA1_LOC(2*NNZERO),IA2_LOC(NROW+1),STAT=IRCODE)
IF (IRCODE <> 0) GOTO 993
READ(INFILE,FMT=PTRFMT, END=902) (IA2_LOC(I), I=1,NROW+1)
READ(INFILE,FMT=INDFMT,END=902) (IA1_LOC(I), I=1,NNZERO)
READ(INFILE,FMT=VALFMT,END=902) (AS_LOC(I), I=1,NNZERO)
LDWORK = MAX(NROW + 1, 2 * NNZERO)
IF (PRESENT(INDWORK)) THEN
IF (SIZE(INDWORK) >= LDWORK) THEN
DWORK => INDWORK
D_ALLOC = 0
ELSE
ALLOCATE(DWORK(LDWORK), STAT = IRCODE)

```
```

 D_ALLOC = 1
 END IF
 ELSE
 ALLOCATE(DWORK(LDWORK), STAT = IRCODE)
 D_ALLOC = 1
 END I
 IF (IRCODE <> 0) GOTO 993
 LIWORK = NROW + 1
 IF (PRESENT(INIWORK)) THEN
 IF (SIZE(INIWORK) >= LIWORK) THEN
 IWORK => INIWORK
 I_ALLOC = 0
 ELSE
 ALLOCATE(IWORK(LIWORK), STAT = IRCODE)
 I_ALLOC = 1
 END IF
 ELSE
 ALLOCATE(IWORK(LIWORK), STAT = IRCODE)
 I_ALLOC = 1
 END IF
 IF (IRCODE <> 0) GOTO 993
 ! After this call NNZERO contains the actual value for
 ! desymetrized matrix
 CALL DESYM(NROW, AS_LOC, IA1_LOC, IA2_LOC, A%AS, A%IA1,&
 & A%IA2, IWORK, DWORK, N}NZERO, 1)
 DEALLOCATE(AS_LOC, IA1_LOC, IA2_LOC)
 IF (D_ALLOC == 1) DEALLOCATE(DWORK)
 IF (I_ALLOC == 1) DEALLOCATE(IWORK)
 ELSE
 WRITE(0,*) 'READ_MATRIX: matrix type not yet supported'
 CALL BLACS_ABORT-
 END IF
 ! Read Right Hand Sides
 IF (PRESENT(B) .AND. (NRHS > 0)) THEN
 WRITE(0,*) 'Reading RHS'
 IF (RHSTYP == 'F') THEN
 ALLOCATE(B(NROW, NRHS), STAT = IRCODE)
 IF (IRCODE <> 0) GOTO 993
 READ(INFILE,FMT=RHSFMT, END=902) ((B(I,J), I=1,NROW),J=1,NRHS)
 ELSE !(RHSTYP <> 'F')
 WRITE(0,*) 'READ_MATRIX: unsupported RHS type'
 END IF
 END IF
 CLOSE(INFILE)
 WRITE(*,*) 'End READ_MATRIX'
 END IF
RETURN
! Open failed
901 WRITE(0,*) 'READ_MATRIX: Could not open file ',\&
\& INFILE,' for input'
CALL BLACS_ABORT(ICTXT, 1)

```
```

 ! Unexpected End of File
 902 WRITE(0,*) 'READ_MATRIX: Unexpected end of file ',INFILE,\&
\& ' during input'
CALL BLACS_ABORT(ICTXT, 1)
! Allocation Failed
993 WRITE(0,*) 'READ_MATRIX: Memory allocation failure'
CALL BLACS_ABORT(ICTXT, 1)

```

END SUBROUTINE READMAT
END MODULE READ_MAT

\section*{The MAT_DIST Subroutine}
```

@process free(f90) init(f90ptr)
MODULE MAT_DIST
PUBLIC MÄTDIST
CONTAINS
SUBROUTINE MATDIST (A_GLOB, A, PARTS, ICONTXT, DESC_A,\&
\& B_GLOB, B, INROOT)
!
An utility subroutine to distribute a matrix among processors
according to a user defined data distribution, using PESSL
sparse matrix subroutines.
Type(D_SPMAT) :: A_GLOB
On Entry: this contains the global sparse matrix as follows:
A%FIDA =='CSR'
A%AS for coefficient values
A%IA1 for column indices
A%IA2 for row pointers
A%M for number of global matrix rows
A%K for number of global matrix columns
On Exit : undefined, with unassociated pointers.
Type(D_SPMAT) :: A
On Entry: fresh variable.
On Exit : this will contain the local sparse matrix.
INTERFACE PARTS
!user passed subroutine.....
SUBROUTINE PARTS(GLOBAL_INDX,N,NP,PV,NV)
IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
END SUBROUTINE PARTS
END INTERFACE
On Entry: subroutine providing user defined data distribution.
For each GLOBAL_INDX the subroutine should return
the list PV of all processes owning the row with
that index; the list will contain NV entries.
Usually NV=1; if NV >1 then we have an overlap in the data
distribution.
Integer :: ICONTXT

```
```

On Entry: BLACS context.
On Exit : unchanged.
Type (DESC_TYPE) :: DESC_A
On Entry: fresh variable.
On Exit : the updated array descriptor
Real(Kind(1.D0)), Pointer, Optional :: B_GLOB(:)
On Entry: this contains right hand side.
On Exit :
Real(Kind(1.D0)), Pointer, Optional :: B(:)
On Entry: fresh variable.
On Exit : this will contain the local right hand side.
Integer, Optional :: inroot
On Entry: specifies processor holding A_GLOB. Default: 0
On Exit : unchanged.
Use F90SPARSE
Implicit None
! Parameters
Type(D_SPMAT) :: A_GLOB
Real(Kind(1.D0)), Pointer :: B_GLOB(:)
Integer :: I\overline{CONTXT}
Type(D_SPMAT) :: A
Real(Kind(1.D0)), Pointer :: B(:)
Type (DESC_TYPE) :: DESC_A
INTEGER, OPTIONAL :: INROOT
INTERFACE PARTS
!user passed subroutine.....
SUBROUTINE PARTS(GLOBAL_INDX,N,NP,PV,NV)
IMPLICIT NONE
INTEGER, INTENT(IN) :: GLOBAL_INDX, N, NP
INTEGER, INTENT(OUT) :: NV
INTEGER, INTENT(OUT) :: PV(*)
END SUBROUTINE PARTS
END INTERFACE
! Local variables
Integer :: NPROW, NPCOL, MYPROW, MYPCOL
Integer :: IRCODE, LENGTH_ROW, I_COUNT, J_COUNT,\&
\& K_COUNT, BLOCKDIM, ROOT, LIWORK, NROW,-NCOL, NNNZERO, NRHS,\&
\& I,J,K, LL, INFO
Integer, Pointer :: IWORK(:)
CHARACTER :: AFMT*5, atyp*5
Type(D_SPMAT) :: BLCK
! Executable statements

```
```

 IF (PRESENT(INROOT)) THEN
 ROOT = INROOT
 ELSE
 ROOT = 0
 END IF
 CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
 IF (MYPROW == ROOT) THEN
 ! Extract information from A_GLOB
 IF (A_GLOB%FIDA /= 'CSR') THEN
 WRITE(0,*) 'Unsupported input matrix format'
 CALL BLACS_ABORT(ICONTXT,-1)
 ENDIF
 NROW = A_GLOB %M
 NCOL = A-GLOB }%\textrm{N
 IF (NROW /= NCOL) THEN
 WRITE(0,*) 'A rectangular matrix ? ',NROW,NCOL
 CALL BLACS_ABORT(ICONTXT,-1)
 ENDIF
 NNZERO = Size(A_GLOB%AS)
 NRHS = 1
 ! Broadcast informations to other processors
 CALL IGEBS2D(ICONTXT, 'A', ' ', 1, 1, NROW, 1)
 CALL IGEBS2D(ICONTXT, 'A', ' ', 1, 1, NCOL, 1)
 CALL IGEBS2D(ICONTXT, 'A', ' ', 1, 1, NNZERO, 1)
 CALL IGEBS2D(ICONTXT, 'A', ' ', 1, 1, NRHS, 1)
 ELSE !(MYPROW <> root)
 ! Receive informations
 CALL IGEBR2D(ICONTXT, 'A', ' ', 1, 1, NROW, 1, ROOT, 0)
 CALL IGEBR2D(ICONTXT, 'A', ' ', 1, 1, NCOL, 1, ROOT, 0)
 CALL IGEBR2D(ICONTXT, 'A', ' ', 1, 1, NNZERO, 1, ROOT, 0)
 CALL IGEBR2D(ICONTXT, 'A', ' ', 1, 1, NRHS, 1, ROOT, 0)
 END IF
 ! Allocate integer work area
LIWORK = MAX(NPROW, NROW + NCOL)
ALLOCATE(IWORK(LIWORK), STAT = IRCODE)
IF (IRCODE <> 0) THEN
WRITE(0,*) 'MATDIST Allocation failed'
RETURN
ENDIF
IF (MYPROW == ROOT) THEN
WRITE (*, FMT = *) 'Start matdist'
ENDIF
CALL PADALL(NROW,PARTS,DESC_A,ICONTXT)
CALL PSPALL(A,DESC_A,NNZ=NNZERO/NPROW)
CALL PGEALL(B,DESC_A)
! Prepare the local
ALLOCATE(BLCK%AS(NCOL) ,BLCK%IA1(NCOL),BLCK%IA2 (2) ,STAT=IRCODE)
IF (IRCODE /= 0) THEN
WRITE(0,*) 'Error on allocating BLCK'
CALL BLACS_ABORT(ICONTXT,-1)

```

STOP
ENDIF
BLCK \({ }^{\circ} \mathrm{M}=1\)
BLCK \(\% \mathrm{~N}=\mathrm{NCOL}\)
BLCK\%FIDA \(=\) 'CSR'
Do I_COUNT = 1, NROW
CĀLL PARTS(I_COUNT,NROW,NPROW,IWORK, LENGTH_ROW)
! Here processors are counted 1..NPROW
DO J_COUNT = 1, LENGTH ROW
K_COUNT \(=\) IWORK (J_COUNT)
I \(\bar{F}\) (MYPROW \(==\) ROOT \(\overline{\text { }}\) ) THEN
BLCK\%IA2 (1) \(=1\)
BLCK \(\% \mathrm{IA} 2(2)=1\)
DO J = A_GLOB\%IA2 (I_COUNT), A_GLOB\%IA2 (I_COUNT+1)-1
BLCK \(\%\) AS (BLCK \(\%\) IA2 (2) ) \(=A_{-} G \bar{L} 0 B \% A S(J)\)
BLCK\%IA1 (BLCK\%IA2 (2)) = \(\overline{\mathrm{A}}-\mathrm{GLOB} \% \mathrm{IA1}(\mathrm{~J})\)
\(B L C K \% \mathrm{IA} 2(2)=\mathrm{BLCK} \% \mathrm{IA} 2(2)+1\)
ENDDO
\(\mathrm{LL}=\mathrm{BLCK} \% \mathrm{IA} 2(2)-1\)
IF (K_COUNT == MYPROW) THEN
BLCK\%INFOA(1) = LL
BLCK\%INFOA(2) = LL
BLCK\% \({ }^{\circ} \operatorname{INFOA}(3)=2\)
BLCK\% \(\operatorname{INFOA}(4)=1\)
BLCK\% \(\operatorname{INFOA}(5)=1\)
BLCK\% \(\operatorname{INFOA}(6)=1\)
CALL PSPINS(A, I_COUNT,1,BLCK,DESC_A)
CALL PGEINS(B,B_GLOB(I_COUNT:I_COUNT),DESC_A,I_COUNT)
ELSE
CALL IGESD2D (ICONTXT, 1,1, LL, 1, K_COUNT,0)
CALL IGESD2D (ICONTXT,LL, 1, BLCK \(\%\) İA1,LL, K_COUNT, 0 )
CALL DGESD2D (ICONTXT,LL, 1, BLCK \(\% A S, L L, K-\bar{C} O U N T, 0)\)
CALL DGESD2D(ICONTXT, 1,1,B_GLOB(I_COUNT̄),1,K_COUNT,0)
CALL IGERV2D (ICONTXT, 1,1, L̄ \(\left., 1, \mathrm{~K}_{-} \bar{O} \bar{O} N T, 0\right)\)
ENDIF
ELSE IF (MYPROW /= ROOT) THEN
IF (K_COUNT == MYPROW) THEN
CAL̄L IGERV2D (ICONTXT, \(1,1, \mathrm{LL}, 1\), ROOT , 0 )
BLCK \% IA2 (1) \(=1\)
BLCK \(\%\) IA2 (2) \(=\mathrm{LL}+1\)
CALL IGERV2D (ICONTXT, LL, 1, BLCK \(\%\) IA1, LL, ROOT, 0 )
CALL DGERV2D (ICONTXT,LL, 1,BLCK \(\%\) AS,LL, ROOT,0)
CALL DGERV2D(ICONTXT,1,1,B_GLOB(I_COUNT),1,ROOT,0)
CALL IGESD2D (ICONTXT, \(1,1, \operatorname{LL}, 1\), ROOT, 0\()\)
CALL PSPINS(A, I_COUNT,1,BLCK,DESC_A)
CALL PGEINS (B, B_GLOB(I_COUNT:I_COŪNT), DESC_A, I_COUNT)
ENDIF
ENDIF
END DO
END DO
! Default storage format for sparse matrix; we do not
! expect duplicated entries.
AFMT \(=\) 'DEF'
ATYP \(=\) 'GEN'
CALL PSPASB(A,DESC_A, INFO=INFO,MTYPE=ATYP,STOR=AFMT, DUPFLAG=2)
```

 CALL PGEASB(B,DESC_A)
 DEALLOCATE(BLCK%AS,BLCK%IA1,BLCK%IA2,IWORK)
 IF (MYPROW == root) Write (*, FMT = *) 'End matdist'
 RETURN
 END SUBROUTINE MATDIST
 END MODULE MAT_DIST

```

\section*{The DESYM Subroutine}
```

 SUBROUTINE DESYM(NROW,A,JA,IA,AS,JAS,IAS,IAW,WORK,NNZERO,
 + VALUE)
 IMPLICIT NONE
 C .. Scalar Arguments ..
INTEGER NROW,NNZERO,VALUE,INDEX
C .. Array Arguments ..
DOUBLE PRECISION A(*),AS(*),WORK(*)
INTEGER IA(*),IAS(*),JAS(*),JA(*),IAW(*)
C .. Local Scalars .
INTEGER I,IAW1,IAW2,IAWT,J,JPT,K,KPT,LDIM,COUNT,JS,BUFI
C REAL*8 BUF
C ..
DO I=1,NROW
IAW(I)=0
END DO
CCompute element belonging to each row in output matrix.....
DO I=1,NROW
DO J=IA(I),IA(I+1)-1
IAW(I)=IAW(I)+1
IF (JA(J).NE.I) IAW(JA(J))=IAW(JA(J))+1
END DO
END DO
IAS(1)=1
DO I=1,NROW
IAS(I+1)=IAS(I)+IAW(I)
IAW(I)=0
END DO
C
CComputing values array AS and column array indices JAS....
C
DO I=1,NROW
DO J=IA(I),IA(I+1)-1
IF (VALUE.NE.0) THEN
AS(IAS(I)+IAW(I))=A(J)
ENDIF
JAS(IAS(I)+IAW(I))=JA(J)
IAW(I)=IAW(I)+1
IF (I.NE.JA(J)) THEN
IF (VALUE.NE.0) THEN
AS(IAS(JA(J))+IAW(JA(J)))=A(J)

```
```

 ENDIF
 NNZERO=NNZERO+1
 JAS(IAS(JA(J))+IAW(JA(J)))=I
 IAW (JA(J))=IAW(JA(J))+1
 END IF
 END DO
 END DO
 CSorting output arrays by column index......
Cthe IAS index not must be modified.....
C
DO I=1,NROW
CALL ISORTX(JAS(IAS(I)),1,IAS(I+1)-IAS(I),IAW)
INDEX=IAS(I)-1
IF (VALUE.NE.0) THEN
DO J=1,IAS(I+1)-IAS(I)
WORK(J)=AS(IAW(J)+INDEX)
END DO
DO J=1,IAS(I+1)-IAS(I)
AS(J+INDEX)=WORK(J)
END DO
ENDIF
C
....column indices are already sorted by ISORTX...
ENDDO
RETURN
END

```

\section*{Sample Makefiles and Run Script}

You can use the message passing makefile and run script with the message passing sample thermal diffusion and sparse linear algebraic equations programs.

You can use the HPF makefile and run script with the HPF sample thermal diffusion programs.

\section*{Makefile (Message Passing)}
```


Makefile to build the diffusion program, sparse solver and utility routines

add rule for making mod files

.SUFFIXES: .mod

Compilers and such

CC=mpcc
FORT=mpxlf
LINK=mpxlf
LDFLAGS = -lblacs -lessl -lpess1 \$(LIB)
FCOPT = -03 -C -qsource -qxref -qattr \$(INCLUDE)

default for include and lib directories

```
```

INCLUDE=
LIB=

DISTRIBUTED DATA samples

OBJS list objects module used in the diffusion program

OBJS = main.o scalemod.o param.o diffusion.o fourier.o
BASEOBJS = broadcast.o create.o delete.o init.o scatter_gather.o \
pdata.o northsouth.o eastwest.o index.o
UTILOBJS = \$(BASEOBJS) cdata.o putilities.o
UTILLIB = libputils.a
LIBOBJS = \$(UTILLIB)(broadcast.o) \$(UTILLIB)(create.o) \
\$(UTILLIB)(delete.o) \$(UTILLIB)(init.o) \
\$(UTILLIB)(scatter_gather.o) \$(UTILLIB)(pdata.o) \
\$(UTILLIB)(northsouth.o) \$(UTILLIB)(eastwest.o) \
\$(UTILLIB)(index.o) \$(UTILLIB)(cdata.o) \
\$(UTILLIB)(putilities.o)
distribute: diffusion pdgexmp image simple

Rule for building diffusion program

power libraries

diffusion: \$(OBJS)
\$(LINK) -o diffusion \$(OBJS) -lpessl -1blacs -lessl

power2 libraries

\#diffusion: \$(OBJS)

\$(LINK) -o diffusion \$(OBJS) -1pesslp2 -1blacsp2 -lesslp2

pdgexmp: pdgexmp.o \$(UTILLIB)
\$(LINK) -o pdgexmp pdgexmp.o -L . -lputils \$(LDFLAGS)
image: image.o \$(UTILLIB)
\$(LINK) -o image image.o -L . -lputils \$(LDFLAGS)
simple: simple.o \$(UTILLIB)
\$(LINK) -o simple simple.o -L . -lputils \$(LDFLAGS)
\#rule to create the library
\$(UTILLIB): \$(LIBOBJS)
ar rv \$(UTILLIB) \$%

rules to create library objects

init.o: init.f pdata.o
xlf -c \$(FFLAGS) init.f
exchange.o: init.f pdata.o
xlf -c \$(FFLAGS) exchange.f

```
```

cdata.o: cdata.f pdata.o
xlf -c \$(FFLAGS) cdata.f
create.o: create.f pdata.o
xlf -c \$(FFLAGS) create.f
broadcast.o: broadcast.f pdata.o
xlf -c \$(FFLAGS) broadcast.f
delete.o: delete.f pdata.o
xlf -c \$(FFLAGS) delete.f
scatter_gather.o: scatter_gather.f pdata.o
xlf -c \$(FFLAGS) scatter_gather.f
putilities.o: putilities.f \$(BASEOBJS) cdata.o
xlf -c \$(FFLAGS) putilities.f
eastwest.o: eastwest.f pdata.o
xlf -c \$(FFLAGS) eastwest.f
northsouth.o: northsouth.f pdata.o
xlf -c \$(FFLAGS) northsouth.f
\$(UTILLIB) (broadcast.o): broadcast.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(create.o): create.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(delete.o): delete.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(init.o): init.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(scatter_gather.o): scatter_gather.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(pdata.o): pdata.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(northsouth.o): northsouth.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(eastwest.o): eastwest.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(index.o): index.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(cdata.o): cdata.o
ar rv \$(UTILLIB) \$%
\$(UTILLIB)(putilities.o): putilities.o
ar rv \$(UTILLIB) \$%

```
```


List of object module dependencies for distributed data sample.

main.o: main.f scalemod.o param.o diffusion.o fourier.o
diffusion.o: diffusion.f scalemod.o param.o
fourier.o: fourier.f diffusion.o scalemod.o param.o
scalemod.o: scalemod.f param.o
param.o: param.f
pdgexmp.o: pdgexmp.f \$(UTILLIB)
simple.o: simple.f \$(UTILLIB)
image.o: image.f \$(UTILLIB)

SPARSE MATRIX samples

HBOBJS and PARTOBJS list objects module used in the SPARSE programs.

HBOBJS=read_mat.o mat_dist.o desym.o
PARTOBJS= part_block.o partbcyc.o partrand.o
sparse: hb_sample pde90 pde77
pde90: pde90.o part_block.o
\$(LINK) \$(LDFLAGS) pde90.0 part_block.o -o pde90
pde77: pde77.o part_block.o
\$(LINK) \$(LDFLAGS) pde77.o part_block.o -o pde77
hb_sample: \$(HBOBJS) hb_sample.o \$(PARTOBJS)
\$(LINK) \$(LDFLAGS) hb_sample.o -o hb_sample \
\$(HBOBJS) \$(PARTOBJS)

List of object module dependencies for sparse matrix sample.

\$(HBOBJS) hb_sample.o: read_mat.mod mat_dist.mod part_bcyc.mod partrand.mod
part_bcyc.mod: partbcyc.o

Rule to clean executable and program

cleanall:
rm -f *.lst *.o *.mod diffusion core image pdgexmp simple hb_sample pde90 pde77 libputils.a

clean:
/bin/rm -f *.o *.mod *.lst

definitions for compiles

.f.mod:
\$(FORT) \$(INCLUDE) \$(FCOPT) -c \$<
.c.o:
\$(CC) \$(INCLUDE) \$(CCOPT) -c \$<
.f.o:
\$(FORT) \$(INCLUDE) \$(FCOPT) -c \$<

```

\section*{Makefile (HPF)}
```


Makefile to build the diffusion program.

OBJS list objects module used in the program

OBJS = main.o param.o diffusion.o fourier.o

For Power2 compilation

\#FFLAGS = -qreport=hpflist -C -0 -qarch=pwrx
FFLAGS = -qreport=hpflist -C -0

For Power2 libraries

\#LDFLAGS = -1blacsp2 -1pess1p2 -1pess1hpfp2 -1ess1p2
LDFLAGS = -1blacs -lpessl -lpesslhpf -less1

Default rule for compiling Fortran modules.

.f.o:
xlhpf -c \$(FFLAGS) \$<

Rule for building diffusion program

power libraries

diffusion: \$(OBJS)
xlhpf -o diffusion \$(OBJS) \$(LDFLAGS)

Rule to clean executable and program

clean:
rm -f *.o *.mod diffusion core

List of object module dependencies.

main.o: main.f param.o diffusion.o fourier.o
diffusion.o: diffusion.f param.o
fourier.o: fourier.f diffusion.o param.o
param.o: param.f

```

\section*{Run Script}
```

\#!/bin/ksh

USING THE FORTRAN EXAMPLE

Copy the files from /usr/lpp/pessl.rte.common/example/fortran to a directory that

is part of a shared file system (e.g. NFS mounted). You can not run

the program from a private file system.

You must have the same userid on the home node and each remote node.

You must have remote execution authority on all the nodes.

Invoke 'make'.

In run.script, edit EXAMP_PATH below to point to the working directory

which contains the files.


```
```


Invoke 'run.script'.

Script file to execute a sample program.

The first argument is the name of the sample to run

The remaining arguments are any needed to by the sample

Set the number of processor to be 8.

export MP_PROCS=8

Set the program to run in user space.

export MP_EUILIB=us

Use the high speed switch.

export MP_EUIDEVICE=css0

Use the poe resource manager.

export MP_RESD=yes

Use the resource pool 0, this may need to be changed

depending on installation defaults used.

export MP_RMP00L=0

Do not use a hostfile list.

export MP_HOSTFILE=NULL

Use low information output level.

export MP_INFOLEVEL=1

export MP_PGMMODEL=spmd

Standard output is not node ordered.

export MP_STDOUTMODE=unordered

Retry node allocation every 60 seconds.

export MP_RETRY=60

Retry node allocation five times.

export MP_RETRYCOUNT=5

export MP_CSS_INTERRUPT=yes

export MP_PULSE=0

Label standard io by processor number.

export MP_LABELIO=yes
poe \$*

```

\section*{Glossary}

This glossary defines terms and abbreviations used in this publication. If you do not find the term you are looking for, refer to the index portion of this book. This glossary includes terms and definitions from:
- IBM Dictionary of Computing, New York: McGraw Hill (1-800-2MC-GRAW), 1994.
- American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI). Copies may be purchased from the American National Standards Institute, 11 West 42nd Street, New York, New York 10036. Definitions are identified by the symbol (A) after the definition.
- Information Technology Vocabulary, developed by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions from published sections of these vocabularies are identified by the symbol (I) after the definition. Definitions taken from draft international standards, committee drafts, and working papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol ( T ) after the definition, indicating that final agreement has not yet been reached among the participating National Bodies of SC1.

IBM is grateful to the American National Standards Institute (ANSI) for permission to reprint its definitions from the American National Standard Vocabulary for Information Processing (Copyright 1970 by American National Standards Institute, Incorporated), which was prepared by Subcommittee X3K5 on Terminology and Gloassary of the American National Standards Committee X3. ANSI definitions are preceded by an asterisk (*).

\section*{A}
address. A character or group of characters that identifies a register, a device, a particular part of storage, or some other data source or destination.

AIX. Abbreviation for Advanced Interactive Executive, IBM's licensed version of the UNIX operating system. AIX is particularly suited to support technical computing applications, including high function graphics and floating point computations.

Amd. Berkely Software Distribution automount daemon.

APAR. Authorized Program Analysis Report. A report of a problem caused by a suspected defect in a current unaltered release of a program.
application. The use to which a data processing system is put; for example, a computational chemistry application, a signal processing application.
application data. The data that is produced using an application program.
argument. A parameter passed between a calling program and a SUBROUTINE subprogram, a FUNCTION subprogram, or a statement function.
array. An ordered set of data items identified by a single name.
array descriptor. Contains the information required to establish the mapping between a global data structure and its corresponding process and memory location.
array element. A data item in an array, identified by the array name followed by a subscript indicating its position in the array.
array name. The name of an ordered set of data items that make up an array.
assignment statement. A statement that assigns a value to a variable or array element. It is made up of a variable or array element, followed by an equal sign (=), followed by an expression. The variable, array element, or expression can be character, logical, or arithmetic. When the assignment statement is processed, the expression to the right of the equal sign replaces the value of the variable or array element to the left.

\section*{B}
bandwidth. The total available bit rate of a digital channel.

\section*{Basic Linear Algebra Communication Subprograms}
(BLACS). A standard set of public domain subroutines that perform message passing (communications) between processes.

Basic Linear Algebra Subprograms (BLAS). A standard set of public domain mathematical subroutines that perform linear algebra operations.

BLACS. Basic Linear Algebra Communication Subprograms.

BLAS. Basic Linear Algebra Subprograms.

\section*{C}
cache. A high-speed buffer.
character constant. A string of one or more alphanumeric characters enclosed in apostrophes. The delimiting apostrophes are not part of the value of the constant.
character expression. An expression in the form of a single character constant, variable, array element, substring, function reference, or another expression enclosed in parentheses. A character expression is always of type character.
character type. The data type for representing strings of alphanumeric characters; in storage, one byte is used for each character.
client. * (1) A function that requests services from a server, and makes them available to the user. * (2) A term used in an environment to identify a machine that uses the resources of the network.
cluster. A group of processors interconnected through a high speed network that can be used for high performance computing.
column-major order. A sequencing method used for storing multidimensional arrays according to the subscripts of the array elements. In this method the leftmost subscript position varies most rapidly and completes a full cycle before the next subscript position to the right is incremented.
CMI. Centralized Management Interface provides a series of SMIT menus and dialogues used for defining and querying the SP system configuration.
complex conjugate even data. Complex data that has its real part even and its imaginary part odd.
complex constant. An ordered pair of real or integer constants separated by a comma and enclosed in parentheses. The first real constant of the pair is the real part of the complex number; the second is the imaginary part.
complex type. The data type for representing an approximation of the value of a complex number. A data item of this type consists of an ordered pair of real data items separated by a comma and enclosed in parentheses. The first item represents the real part of the complex number; the second represents the imaginary part.
constant. An unvarying quantity. The four classes of constants specify numbers (arithmetic), truth values
(logical), character data (character), and hexadecimal data.

\section*{D}
daemon. A process, not associated with a particular user, that performs system-wide functions such as administration and control of networks, execution of time-dependent activities, line printer spooling, etc.
default. An alternative value, attribute, or option that is assumed when none has been specified.
dataless workstation. A workstation that has local disks which may be used for swap, tmp, and usr file systems.
data distribution. The method in which global data structures are divided among processes. Three types of data distribution are: cyclic, block-cyclic, and block distribution.
data type. The structural characteristics, features and properties of data that may be directly specified by a programming language; for example, integers, real numbers in Fortran; arrays in APL; linked lists in LISP; character string in SNOBOL.
decimation. The formation of a sequence containing every \(n\)-th element of another sequence.
dimension of an array. One of the subscript expression positions in a subscript for an array. In Fortran, an array may have from one to seven dimensions. Graphically, the first dimension is represented by the rows, the second by the columns, and the third by the planes. Contrast with rank. See also extent of a dimension.
direct access storage. A storage device in which the access time is in effect independent of the location of the data. (A)
diskless workstation. A computer workstation with its own processor, keyboard, graphics system and monitor but no local disk system. The system relies on disk resources which are found in the network either on a dedicated server or shared over the entire network resources.
divide-by-zero exception. The condition recognized by a processor that results from running a program that attempts to divide by zero.

DNS. Domain Name Server is a hierarchical name service which maps high level machine names to IP addresses.
double precision. Synonym for long-precision.

DWM. Diskless Workstation Manager is
operating-system software that initializes and maintains resources for diskless clients and diskless servers.

\section*{E}

Ethernet. Ethernet is the standard hardware for TCP/IP LANs in the UNIX marketplace. It is a 10 megabit per second baseband type network that uses the contention based CSMA/CD (collision detect) media access method.
expression. A notation that represents a value: a primary appearing alone, or combinations of primaries and operators. An expression can be arithmetic, character, logical, or relational.
extent of a dimension. The number of different integer values that may be represented by subscript expressions for a particular dimension in a subscript for an array.
external function. A function defined outside the program unit that refers to it. It may be referred to in a procedure subprogram or in the main program, but it must not refer to itself, either directly or indirectly. Contrast with statement function.

EXTRINSIC (HPF). Indicates that the procedure is HPF-conforming. Such a procedure is referred to as an HPF procedure. This is the default; any procedure that does not specify the EXTRINSIC attribute and is compiled with the -qhpf option is considered to be an HPF procedure.

EXTRINSIC (HPF_LOCAL). Indicates a procedure in HPF that is targeted to a single processor, with many copies executing on different processors. Such a procedure is referred to as a local procedure. The programming style in which many copies of the same program run on multiple processors is often referred to as SPMD (single program, multiple data.)

EXTRINSIC (HPF_SERIAL). Indicates a procedure in HPF that is targeted to a single processor, with only one instance of the procedure executing on only one processor. Such a procedure is referred to as a serial procedure. (Serial procedures are useful for code written in other languages or current XL Fortran programs that you do not wish to recode.)

\section*{F}
file. A set of related records treated as a unit, for example, in stock control, a file could consist of a set of invoices.
file server. A centrally located computer that acts as a storehouse of data and applications for numerous users of a local area network.
foreign host. Any host on the network other than the local host.

FTP. File transfer protocol.
function. In Fortran, a procedure that is invoked by referring to it in an expression and that supplies a value to the expression. The value supplied is the value of the function. See also external function, intrinsic function, and statement function. Contrast with subroutine.
function reference. A Fortran source program reference to an intrinsic function, to an external function, or to a statement function.

\section*{G}
general matrix. A matrix with no assumed special properties such as symmetry. Synonym for matrix.
global. (1) Pertaining to that which is defined in one subdivision of a computer program and used in at least one other subdivision of the computer program. (2) Pertaining to information available to more than one program or subroutine. (3) Contrast with local.

\section*{H}
home directory. The directory associated with an individual user.
host. A computer connected to a network, and providing an access method to that network. A host provides end-user services.
integer constant. A string of decimal digits containing no decimal point and expressing a whole number.
integer expression. An arithmetic expression whose values are of integer type.
integer type. An arithmetic data type capable of expressing the value of an integer. It can have a positive, negative, or 0 value. It must not include a decimal point.

Internet. The collection of worldwide networks and gateways which function as a single, cooperative virtual network.
internet address. A unique 32-bit address assigned to hosts connected to a TCP/IP network.
intrinsic function. A function, supplied by Fortran, that performs mathematical or character operations.

IP. Internet protocol.

\section*{K}
kernel. The core portion of the UNIX operating system which controls the resources of the CPU and allocates them to the users. The kernel is memory-resident, is said to run in "kernel mode" and is protected from user tampering by the hardware.

\section*{L}

LAN. Acronym for Local Area Network, a data network located on the user's premises in which serial transmission is used for direct data communication among data stations.
latency. The time interval between the instant at which an instruction control unit initiates a call for data transmission and the instant at which the actual transfer of data begins. Latency is related to the hardware characteristics of the system and to the different layers of software that are involved in initiating the task of packing and transmitting the data.
leading dimension. For a two-dimensional array, an increment used to find the starting point for the matrix elements in each successive column of the array.
local. Pertaining to that which is defined and used only in one subdivision of a computer program. Contrast with global.
local host. The computer to which a user's terminal is directly connected.
logical constant. A constant that can have one of two values: true or false. The form of these values in Fortran is: .TRUE. and .FALSE. respectively.
logical expression. A logical primary alone or a combination of logical primaries and logical operators. A logical expression can have one of two values: true or false.
logical type. The data type for data items that can have the value true or false and upon which logical operations such as .NOT. and .OR. can be performed. See also "data type."
long-precision. Real type of data of length 8. Contrast with single precision and short-precision.

\section*{M}
main program. In Fortran, a program unit, required for running, that can call other program units but cannot be called by them.
mainframe. A large computer to which other computers can be connected, so that they can share facilities that the large computer provides; for example, it could be a System/370 or System/390 computing system to which personal computers are attached, so that they can upload and download programs and data.
mask. To use a pattern of characters to control the retention or elimination of portions of another pattern of characters. (I)
matrix. A rectangular array of elements, arranged in rows and columns, that may be manipulated according to the rules of matrix algebra. (A) (I)
menu. A display of a list of available functions for selection by the user.
message passing. The method of communication among processor nodes operating in parallel with distributed memory.

MPI. A Message Passing Interface standard.
MPMD (Multiple Program - Multiple Data). A parallel programming model in which different, but related, programs are run on different sets of data.

\section*{N}
name. In Fortran, a string of up to six alphanumeric characters, the first of which must be alphabetic. Used to identify a constant, a variable, an array, a function, a subroutine, or a common block.
network. An interconnected group of nodes, lines, and terminals. A network provides the ability to transmit data to and receive data from other systems and users.

NFS. Network file system. NFS allows different systems (UNIX or non-UNIX), different architectures, or vendors connected to the same network, to access remote files in a LAN environment as though they were local files.
node. In a network, the point where one or more functional units interconnect transmission lines. A computer location defined in a network.
nodeid. The specific symbolic name assigned to a node during network definition.

\section*{0}
overflow exception. A condition caused by the result of an arithmetic operation having a magnitude that exceeds the largest possible number.

\section*{P}
parallel processing. A multiprocessor architecture which allows processes to be allocated to tightly coupled multiple processors in a cooperative processing environment, allowing concurrent execution of tasks.
parameter. * (1) A variable that is given a constant value for a specified application and that may denote the application. (2) An item in a menu for which the operator specifies a value or for which the system provides a value when the menu is interpreted. (3) A name in a procedure that is used to refer to an argument that is passed to the procedure. (4) A particular piece of information that a system or application program needs to process a request.
pipe. A UNIX utility allowing the output of one command to be the input of another. Represented by the \(\mid\) symbol. It is also referred to as filtering output.
port. (1) An endpoint for communication between devices, generally referring to physical connection. (2) A 16-bit number identifying a particular TCP or UDP resource within a given TCP/IP node.
primary. An irreducible unit of data; a single constant, variable, array element, function reference, or expression enclosed in parentheses.
process. * (1) A unique, finite course of events defined by it purpose or by its effect, achieved under defined conditions. * (2) Any operation or combination of operations on data. * (3) A function being performed or waiting to be performed. * (4) A program in operation. For example, a daemon is a system process that is always running on the system.
process grid. A way to view a parallel machine as a logical one- or two-dimensional rectangular grid of processes.
program exception. The condition recognized by a processor that results from running a program that improperly specifies or uses instructions, operands, or control information.
protocol. A set of semantic and syntactic rules that defines the behavior of functional units in achieving communication.

PTF. Program Temporary Fix. A temporary solution or by-pass of a problem diagnosed by IBM as resulting from a defect in a current unaltered release of the program. A report of a problem caused by a suspected defect in a current unaltered release of a program.

\section*{R}
rank. In Fortran, the number of dimensions of an array. It is zero for scalar.
real constant. A string of decimal digits that expresses a real number. A real constant must contain either a decimal point or a decimal exponent and may contain both. For example, the real constant \(0.36819 \mathrm{E}+2\) has the value +36.819 .
real type. An arithmetic data type, capable of approximating the value of a real number. It can have a positive, negative, or 0 value.
remote host. See foreign host.
row-major order. A sequencing method used for storing multidimensional arrays according to the subscripts of the array elements. In this method the rightmost subscript position varies most rapidly and completes a full cycle before the next subscript position to the left is incremented.

RISC. Reduced Instruction Set Computing (RISC), the technology for today's high performance personal computers and workstations, was invented in 1975.

\section*{S}
scalar. (1) A quantity characterized by a single number. (A) (I) (2) Contrast with vector.
scope. (1) The portion of a computer program within which the definition of a variable remains unchanged.
(2) In Appendix A on page 903, for the broadcast topologies and global operations, scope can equal 'all', 'row', or 'column'.
server. (1) A function that provides services for users. A machine may run client and server processes at the same time. (2) A machine that provides resources to the network. It provides a network service, such as disk storage and file transfer, or a program that uses such a service.

ScaLAPACK (Scalable Linear Algebra Package). A scalable linear algebra library for distributed memory concurrent computers. The library was jointly developed by the University of Tennessee, Knoxville, Oak Ridge National Laboratory, and the University of California, Berkeley.
shape of an array. The extents of all the dimensions of an array listed in order. For example, the shape of a three-dimensional array that has four rows, five columns, and three planes is \((4,5,3)\) or 4 by 5 by 3 .
shell. The shell is the primary user interface for the UNIX operating system. It serves as command language interpreter, programming language, and allows foreground and background processing. There are three different implementations of the shell concept: Bourne, C and Korn.
short-precision. Real type data of length 4. Contrast with double precision and long-precision.
single precision. Synonym for short-precision.
size of an array. The number of elements in an array. This is the product of the extents of its dimensions.

SMIT. The System Management Interface Toolkit is a set of menu driven utilities for AIX that provides functions such as transaction login, shell script creation, automatic updates of object data base, etc.

SMP. Symmetric Multi-Processing.
SPMD (Single Program - Multiple Data). A parallel programming model in which different processors execute the same program on different sets of data.
statement. The basic unit of a program, that specifies an action to be performed, or the nature and characteristics of the data to be processed, or information about the program itself. Statements fall into two broad classes: executable and nonexecutable.
statement function. A procedure specified by a single statement that is similar in form to an arithmetic, logical, or character assignment statement. The statement must appear after the specification statements and before the first executable statement. In the remainder of the program it can be referenced as a function. A statement function may be referred to only in the program unit in which it is defined. Contrast with external function.
statement label. A number of from one through five decimal digits that is used to identify a statement. Statement labels can be used to transfer control, to define the range of a DO, or to refer to a FORMAT statement.
statement number. See "statement label."
stride. The increment used to step through array storage to select the vector or matrix elements from the array.
subprogram. A program unit that is invoked by another program unit in the same program. In Fortran, a
subprogram has a FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first statement.
subscript. (1) A symbol that is associated with the name of a set to identify a particular subset or element. (A) (2) A subscript expression or set of subscript expressions, enclosed in parentheses and used with an array name to identify a particular array element.
subscript expression. An integer expression in a subscript whose value and position in the subscript determine the index number for the corresponding dimension in the referenced array.

System Administrator. The user who is responsible for setting up, modifying, and maintaining the computing system.

\section*{T}
tar. Tape ARchive, is a standard UNIX data archive utility for storing data on tape media.

TCP. Acronym for Transmission Control Protocol, a stream communication protocol that includes error recovery and flow control.

TCP/IP. Acronym for Transmission Control Protocol/Internet Protocol, a suite of protocols designed to allow communication between networks regardless of the technologies implemented in each network.

TeInet. Terminal Emulation Protocol, a TCP/IP application protocol that allows interactive access to foreign hosts.
thread. A thread is the element that is scheduled, and to which resources such as execution time, locks, and queues may be assigned. There may be one or more threads in a process, and each thread is executed by the operating system concurrently.
thread-safe. A subroutine which may be called from multiple threads of the same process simultaneously.
thread-tolerant. A library is thread-tolerant if it can be called from a single thread of a multithreaded application. However, multiple simultaneous calls to the thread-tolerant library from different threads of a single process causes unpredictable results.
transaction. An exchange between the user and the system. Each activity the system performs for the user is considered a transaction.
transfer. To send data from one place and to receive the data at another place. Synonymous with move.
transmission. * The sending of data from one place for reception elsewhere.
type declaration. The explicit specification of the type of a constant, variable, array, or function by use of an explicit type specification statement.

\section*{U}

UDP. User Datagram Protocol.
underflow exception. A condition caused by the result of an arithmetic operation having a magnitude less than the smallest possible nonzero number.

URL. Uniform Resource Locator.
user. Anyone who requires the services of a computing system.

\section*{V}
variable. (1) A quantity that can assume any of a given set of values. (A) (2) A data item, identified by a name, that is not a named constant, array, or array element, and that can assume different values at different times during program processing.
vector. A one-dimensional ordered collection of numbers.

\section*{W}
working directory. A collection of files to be manipulated by an FTP operation.
workstation. A workstation is a single-user, high-performance microcomputer (or even a minicomputer) which has been specialized in some way, usually for graphics output. Such a machine has a screen and a keyboard, but is also capable of extensive processing of your input before it is passed to the host. Likewise, the host's responses may be extensively processed before being passed along to your screen. A workstation may be intelligent enough to do much or all the processing itself.

\section*{X}

X Window System. A product developed at MIT that gives users windows into applications and processes not located only or specifically on their own console or computer system.

\section*{Bibliography}

This bibliography lists the publications that you may need to use with ESSL and describes how to obtain them.

\section*{References}

Text books and articles covering the mathematical aspects of ESSL are listed in this section, as well as several software libraries available from other companies. They are listed alphabetically as follows:
- Publications are listed by the author's name. IBM publications that include an order number, other than an IBM Technical Report can be ordered through the Subscription Library Services System (SLSS). The non-IBM publications listed here should be obtained through publishers, bookstores, or professional computing organizations.
- Software libraries are listed by their product name. Each reference includes the names, addresses, and phone numbers of the companies from which they can be obtained.

Each citation in the text of this book is shown as a number enclosed in square brackets. It indicates the number of the item listed in the bibliography. For example, reference [1] cites the first item listed below.
1. Agarwal, R. C.; Cooley, J. W. September 1987. "Vectorized Mixed Radix Discrete Fourier Transform Algorithms." IEEE Proceedings, Vol. 75-9:1283-1292.
2. Agarwal, R. C.; Gustavson, F.; Joshi, M.; Zubair, M. February 1995. "A Scalable Parallel Block Algorithm for Band Cholesky Factorization." SIAM Conference on Parallel Processing.
3. Agarwal, R. C.; Gustavson, F.; Zubair, M. May 1994. "An Efficient Parallel Algorithm for the Three-Dimensional FFT NAS Parallel Benchmark." Proceedings of IEEE SHPCC '94, 129-133.
4. Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; DuCroz, J.; Greenbaum, S.; Hammarling, A.; McKenney, S.; Ostrouchov, S.; Sorensen, D. 1995. "LAPACK User's Guide, Second Edition." SIAM, Philadelphia, Pa.
5. Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; DuCroz, J.; Greenbaum, S.; Hammarling, A.; McKenney, S.; Sorensen, D. May 1990. "LAPACK: A Portable Linear Algebra Library for High-Performance Computers." University of Tennessee, Technical Report CS-90-105.
6. Anderson, E.; Benzoni, A.; Dongarra, J.; Moulton, S.; Ostrouchov, S.; Tourancheau, B.; van de Geijn,
R. 1991. "Basic Linear Algebra Communication Subprograms." Sixth Distributed Memory Computing Conference Proceedings IEEE Computer Society Press.
7. Arioli, M.; Duff, I. S.; Ruiz, M. 1992. "Stopping Criteria for Iterative Solvers," SIAM Journal of Matrix Analysis Application, Vol. 13, pp. 138-144.
8. Bailey, D.; Barton, J.; Lasinski, T.; Simon, H.. 1991. "NAS Parallel Benchmarks." Report RNR-91-002, Revision 2. NASA Ames Research Center, Moffett Field, CA.
9. Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R; Romine, C.; van der Vorst, H. 1994. "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods," SIAM. Philadelphia, PA.
10. Blackford, L. S.; Choi, J.; Cleary, A.; D'Azevedo, E.; Demmel, J.; Dhillon, I.; Dongarra, J.; Hammarling, S.; Henry, G.; Petitet, A.; Stanley, K.; Walker, D.; Whaley, R. C. 1997. "ScaLAPACK Users' Guide," SIAM. Philadelphia, PA.
11. Brainerd, W. S.; Goldberg, C. H.; Adams, J. C. 1990. Programmer's Guide to Fortran 90 Intertext Publications and McGraw-Hill Book Company, New York, N.Y.
12. Cerioni, F.; Colajanni, M.; Filippone, S.; Maiolatesi, S. 1996. "A Proposal for Parallel Sparse BLAS," in Proceedings of PARA '96. Edited by J. Wasniewski, J. Dongarra, K. Madsen, and D. Olesen. Springer-Verlag Lecture Notes in Computer Science, No. 1184, pp. 166-175.
13. Choi, J.; Demmel, J.; Dhillon, I.; Dongarra, J. J.; Ostrouchov, L. S.; Petitet, A.; Walker, D.; Whaley, R. C.; Stanley, K. March 1995. "Installation Guide for ScaLAPACK," LAPACK Working Note 93 University of Tennessee, Technical Report CS-95-280.
14. Choi, J.; Dongarra, J. J.; Walker, D. W. 1994. "PB-BLAS: A Set of Parallel Block Basic Linear Algebra Subprograms," Technical Report ORNL/TM-12468 Oak Ridge National Laboratory, Mathematical Sciences Section, Oak Ridge, Tennessee.
15. Choi, J.; Dongarra, J. J.; Walker, D. W. 1994. "PB-BLAS: Reference Manual," Technical Report ORNL/TM-12469 Oak Ridge National Laboratory, Mathematical Sciences Section, Oak Ridge, Tennessee.
16. Choi, J.; Dongarra, J. J.; Ostrouchov, S.; Petitet, A. P.; Walker, D. W.; Whaley, R. C. September 1994. "The Design and Implementation of the

ScaLAPACK LU, QR, and Cholesky Factorization Routines," LAPACK Working Note 80 University of Tennessee, Technical Report CS-94-246.
17. Choi, J.; Dongarra, J. J.; Ostrouchov, S.; Petitet, A. P.; Walker, D. W.; Whaley, R. C. May 1995. "A Proposal for a Set of Parallel Basic Linear Algebra Subprograms," LAPACK Working Note 100 Soogsil University, University of Tennessee, and Oak Ridge National Laboratory.
18. Choi, J.; Dongarra, J. J.; Walker, D. W. 1994. "SCALAPACK Reference Manual I: Parallel Factorization Routines (LU, QR, and Cholesky)," Technical Report ORNL/TM-12471 Oak Ridge National Laboratory, Mathematical Sciences Section, Oak Ridge, Tennessee.
19. Choi, J.; Dongarra, J. J.; Walker, D. W. 1994. "SCALAPACK II: Parallel Reduction Routines (HRD, TRD, and BRD)," Technical Report ORNL/TM-12472 Oak Ridge National Laboratory, Mathematical Sciences Section, Oak Ridge, Tennessee.
20. Choi, J.; Dongarra, J. J.; Walker, D. W. 1994. "SCALAPACK Reference Manual II: Parallel Reduction Routines (HRD, TRD, and BRD)," Technical Report ORNL/TM-12473 Oak Ridge National Laboratory, Mathematical Sciences Section, Oak Ridge, Tennessee.
21. Choi, J.; Dongarra, J. J.; Walker, D. February 1995. "The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form," LAPACK Working Note 92 University of Tennessee, Technical Report CS-95-275.
22. Choi, J.; Dongarra, J. J.; Pozo, R.; Walker, D. 1992. "ScaLAPACK: A Scalable Linear Algebra Library for Distributed Memory Concurrent Computers." Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Computation (FRONTIERS '92) IEEE Computer Society Press.
23. Choi, J.; Dongarra, J. J.; Pozo, R.; Walker, D. November 1992. "ScaLAPACK: A Scalable Linear Algebra Library for Distributed Memory Concurrent Computers," University of Tennessee, Technical Report CS-92-181.
24. Demmel, J. W.; Dhillon, I.; Ren, H. March 1994. "On the correctness of Parallel Bisection in Floating Point," LAPACK Working Note 70 University of Tennessee, Technical Report CS-94-228.
25. Demmel, J. W.; Kahan, W. February 1988. "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," LAPACK Working Note 3 Argonne National Laboratory, MCS-TM-110.
26. Demmel, J. W.; Stanley, K. September 1994. "The Performance of Finding Eigenvalues and

Eigenvectors of Dense Symmetric Matrices on Distributed Floating Point," LAPACK Working Note 86 University of Tennessee, Technical Report CS-94-254.
27. Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Duff, I. March 1990. "A Set of Level 3 Basic Linear Algebra Subprograms." ACM Transactions on Mathematical Software, 16(1):1-17.
28. Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Hanson, R. J. March 1988. "An Extended Set of FORTRAN Basic Linear Algebra Subprograms." ACM Transactions on Mathematical Software, 14(1):1-17.
29. Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Hanson, R. J. March 1988. "Algorithm 656. An Extended Set of Basic Linear Algebra Subprograms: Model Implementation and Test Programs." ACM Transactions on Mathematical Software, 14(1):18-32.
30. Dongarra, J. J.; DuCroz, J.; Hammarling, S. 1996. "A Proposal for Fortran 90 BLAS," LAPACK Working Note University of Tennessee, Oak Ridge National Laboratory, and Numerical Algorithms Group Ltd.
31. Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Wasniewski, J.; Zemla, A. August 1995. "A Proposal for a Fortran 90 Interface for LAPACK," LAPACK Working Note 101 University of Tennessee, Numerical Algorithms Group Ltd., Technical University of Denmark, and Polish Academy of Sciences.
32. Dongarra, J. J.; van de Geijn, R. A. 1991. "Two Dimensional Basic Linear Algebra Communication Subprogram," LAPACK Working Note 37 University of Tennessee, Technical Report CS-91-138.
33. Dongarra, J. J.; van de Geijn, R. A.; Whaley, R. C. December 1993 and June 1994. A User's Guide to the BLACS, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
34. Dongarra, J. J.; Walker, D. 1993. "The Design of Linear Algebra Libraries for High Performance Computers," LAPACK Working Note 58 University of Tennessee, Technical Report CS-93-188.
35. Duff, I. S.; Marrone, M.; Radicati, G.; and Vittoli, C. March 1997. "Basic Linear Algebra Subprograms for Sparse Matrices: a User Level Interface." Technical Report RAL-TR-95-049, Department for Computation and Information, Atlas Centre, Rutherford Appleton Laboratory, Oxon OX11 0QX. (To appear in ACM Transactions on Mathematical Software.)
36. Filippone, S.; Sales, M. L. 1994. "Experiences in Numerical Software on IBM Distributed Memory Architectures." Parallel Scientific Computing

207-218. Edited by J. Dongarra and J. Wasnievski. Springer-Verlag, New York, Heidelberg, Berlin.
37. Golub, G. H.; Van Loan, C. F. 1990. Matrix Computations, John Hopkins University Press, Baltimore, Maryland.
38. Gropp, W.; Lusk, E.; Skjellum, A. 1994. Using MPI: Portable Parallel Programming with the Message Passing Interface. The MIT Press, Cambridge, MA; London, England. (This book is also orderable through SLSS by specifying publication number SR28-5757.)
39. Gupta, A.; Gustavson, F.; Joshi, M.; Toledo, S. June, 20, 1996. "The Design, Implementation, and Evaluation of a Banded Linear Solver for Distributed-Memory Parallel Computers." IBM Research Report RC 20481.
40. Gupta, A.; Gustavson, F.; Joshi, M.; Toledo, S. 1996. "The Design, Implementation, and Evaluation of a Banded Linear Solver for Distributed-Memory Parallel Computers." Applied Parallel Computing, Industrial Problems and Optimization. Edited by Dongarra, J.; Madsden, K.; Washniewski, J. Parallel Computing, Third International Workshop, PARA'96 Lyngby, Denmark, August 1996 Proceedings Lecture Notes in Computer Science, Springer-Verlag, 1996.
41. High Performance Fortran Language Specification High Performance Fortran Forum; November 10, 1994; Version 1.1.
42. Holian, B. L.; Percus, O. E.; Warnock, T. T.; Whitlock, P. A. August 1994. "Pseudorandom Number Generator for Massively Parallel Molecular-Dynamics Simulations." Physical Review E, 50(2).
43. Kelley, C. T. 1995. "Iterative Methods for Linear and Nonlinear Equations" SIAM. Philadelphia, PA.
44. Koelbel, C.; Loveman, D.; Schreiber, R.; Steele Jr., G.; Zosel, M. 1994. The High Performance Fortran Handbook. The MIT Press, Cambridge, MA; London, England.
45. Metcalf, M.; Reid, J. 1994. Fortran 90 Explained. Oxford University Press, U.S.A.
46. Message Passing Interface Forum, MPI: A Message Passing Interface Standard, Version 1.1. June 6, 1995. University of Tennessee, Knoxville, Tennessee. This document can be obtained at the URL, http://www.mcs.anl.gov/Projects/mpi/index.html
47. Percus, O. E.; Kalos, M. H. 1989. "Random Number Generators for MIMD Parallel Processors." Journal of Parallel and Distributed Computing, 6:477-497.
48. Percus, O. E.; Percus, J. K. July 1988. "Long Range Correlations in Linear Congruential

Generators." Journal of Computational Physics, 77(1).
49. Percus, O. E.; Percus, J. K. 1992. "An Expanded Set of Correlation Tests for Linear Congruential Random Number Generators." Combinatorics, Probability and Computing, 1:161-168.
50. Percus, O. E.; Percus, J. K. 1992. "Intrinsic Relations in the Structure of Linear Congruential Generators Modulo \(2 \beta\)." Statistics and Probability Letters, 15:381-383.
51. Sun, Xian-He; Zhang, Hong; Ni, Lionel M. March 1992. "Efficient Tridiagonal Solvers on Multicomputers." IEEE Transactions on Computers, Vol. 41, No. 3.
52. Whaley, R. Clint. May 1994. "Basic Linear Algebra Communication Subprograms: Analysis and Implementation Across Multiple Parallel Architectures," LAPACK Working Note 73 University of Tennessee, Technical Report CS-94-234.

\section*{Parallel ESSL Publications}

This section lists the publications for each major task that you perform when using the ESSL products.

You can order the full set of hardcopy publications for Parallel ESSL product through the Subscription Library Services System (SLSS) by specifying:
- The subject code 82
- The program number 5765-C41

You can also order individual hardcopy publications by specifying the individual order numbers. For example, to order a copy of the Parallel ESSL Version 2 Release 1.1 Guide and Reference, specify the order number SA22-7273. Contact your IBM Marketing Representative or Systems Engineer to order manuals through SLSS.

\section*{Evaluation and Planning}

ESSL Products General Information,
GC23-0529—provides detailed information helpful in evaluating and planning for all the ESSL products: Parallel ESSL, ESSL for AIX, and ESSL/370.

\section*{Installation}

Parallel ESSL Installation Memo, Gl10-0607—describes how to install Parallel ESSL on AIX. It is a packing list for the Parallel ESSL product when it is shipped. (One copy is delivered with each Parallel ESSL product.)

\section*{Application Programming}

Parallel ESSL Version 2 Guide and Reference, SA22-7273-contains guidance information for designing, coding, and running programs using Parallel ESSL. It contains complete reference information for coding calls to the subroutines. This manual is available in HTML and PostScript format on the Parallel ESSL product medium.

ESSL Version 3 Guide and Reference, SA22-7272-contains guidance information for designing, coding, and running programs using ESSL for AIX. It contains complete reference information for coding calls to the subroutines. It is also available in HTML and PostScript format on the ESSL for AIX product medium.

ESSL Version 2.2 Guide and Reference, SC23-0526-contains guidance information for designing, coding, and running programs using ESSL/370. It contains complete reference information for coding calls to the subroutines.

\section*{Related Publications}

The related publications listed below may be useful to you when using Parallel ESSL.

\section*{AIX for the IBM RS/6000}

IBM AIX Calls and Subroutines References for the IBM RS/6000, (all volumes) SC23-2198

\section*{AIX Version 4 Release 2 for the IBM RS/6000}

IBM AIX Version 4.1 and 4.2 Commands and Reference, (all volumes) SBOF-1851

IBM Version 4.1 and 4.2 General Programming Concepts: Writing and Debugging Programs, SC23-2533

IBM AIX Version 4.1 and 4.2 System Management Guide: Operating System and Devices, SC23-2525

\section*{AIX Version 4 Release 3 for the IBM RS/6000}

For the latest updates, visit the RS/6000 web site at: http://www.rs6000.ibm.com/resource/aix_resource/Pubs
| AIX Version 4.3 Commands and Reference, (all volumes) SBOF-1877

AIX Version 4.3 General Programming Concepts:Writing and Debugging Programs, SC23-4128

AIX Version 4.3 System Guide: Operating System and
Devices, SC23-4126

\section*{XL Fortran}

On the XL Fortran Version 5 Release 1.1 CD ROM and the XL High Performance Fortran Version 1 Release 3.1 tape, you may reference the following document available in both PostScript and HTML formats, which describes the changes for those releases: Changes to XL Fortran for AIX and XL High Performance Fortran for AIX

IBM XL Fortran for AIX User's Guide Version 5.1, SC09-2606

IBM XL Fortran for AIX Language Reference Version 5.1, SC09-2607

IBM Optimization and Tuning Guide for the XL Fortran, and XL C, SC09-1545

\section*{XL HPF}

IBM XL High Performance Fortran for AIX Version 1 Release 3 Language Reference and User's Guide, SC09-2631

\section*{Workstation Processors}

IBM RS/6000 POWERstation and POWERserver Hardware Technical Reference Information-General Architectures, SA23-2643

\section*{Parallel Environment Version 2}

IBM Parallel Environment for AIX: Hitchhiker's Guide, GC23-3895

IBM Parallel Environment for AIX: Installation Guide, GC28-1981

IBM Parallel Environment for AIX: Operation and Use, Volume 1, SC28-1979

IBM Parallel Environment for AIX: Operation and Use, Volume 2, SC28-1980

IBM Parallel Environment for AIX: MPI Programming and Subroutine Reference, GC23-3894

IBM Parallel Environment for AIX: MPL Programming and Subroutine Reference, GC23-3893

IBM Parallel Environment for AIX: Messages, GC28-1982

\section*{Parallel System Support Programs Version 2}

IBM Parallel System Support Programs for AIX: Administration Guide, GC23-3897

IBM Parallel System Support Programs for AIX: Installation and Migration Guide, GC23-3898

IBM Parallel System Support Programs for AIX: Diagnosis and Message Reference, GC23-3899

IBM Parallel System Support Programs for AIX: Command and Technical Reference, GC23-3900
| Parallel System Support Programs Version 3
| IBM Parallel System Support Programs for AIX:
| Administration Guide, SA22-7348
I IBM Parallel System Support Programs for AIX:
| Installation and Migration Guide, GA22-7347
| IBM Parallel System Support Programs for AIX:
| Diagnosis Guide, GA22-7350
IBM Parallel System Support Programs for AIX:
Message Reference, GA22-7350
| IBM Parallel System Support Programs for AIX:
| Command and Technical Reference, SA22-7351

\section*{Index}

\section*{A}
abbreviations xi
for product names xix
in the Glossary GLOS-1
interpreting math and programming \(x x\)
absolute value xi
notation xx
accuracy xi
of results 5
acronyms xi
associated with programming values \(x x\)
in the Glossary GLOS-1
product names xix
address notation xx
advantages of Parallel ESSL 3
algebra xi, 341, 763
See also Level 2 PBLAS
See also Level 3 PBLAS
See also linear algebraic equations
ANSI definitions in Glossary GLOS-1
APAR xi
definition of GLOS-1
application program outline
sparse (Fortran 77) 99
sparse (Fortran 90) 97
application programming, publication for BIB-4
architecture supported by Parallel ESSL 6
arguments xi
conventions used in the subroutine
descriptions xxiii
definition of GLOS-1
font for ESSL calling \(x x\)
list of Parallel ESSL input-argument errors 123, 154
array xi
definition of GLOS-1
element, definition of GLOS-1
name, definition GLOS-1
array descriptor 61,63
block 28
definition of GLOS-1
for block-cyclic 24
array descriptors, migrating to this release of Parallel ESSL 113
arrow notation, what it means \(x x\) assignment statement, definition of GLOS-1 attention messages, list of Parallel ESSL 121
audience of this book xiii

\section*{B}
background books BIB-1
band matrix, distributing 42
bibliography BIB-1
BLACS (Basic Linear Algebra Communication
Subprograms) xi
BLACS_EXIT 94
BLACS_GET 88
BLACS GRIDEXIT 94
BLACS_GRIDINFO 91
BLACS_GRIDINIT 89
BLACS_GRIDMAP 92
BLACS_PINFO 88
initializing in your program 87
quick reference 903
usage by Parallel ESSL 9
BLACS_EXIT 94
BLACS_GET 88
BLACS_GRIDEXIT 94
BLACS_GRIDINFO 91
BLACS_GRIDINIT 89
BLACS_GRIDMAP 92
BLACS_PINFO 88
BLAS (Basic Linear Algebra Subprograms) xi definition of GLOS-1
block column, distributing 40, 80
block distributing 26
block distribution, definition of 19
block row, distributing 40, 80
block size, suggested 83
block-cyclic distribution, definition of 19
bold letters, usage of \(x x\)
books BIB-1
See also publications

\section*{C}

C (C programming language) xi modifying procedures for using Parallel ESSL 102 Parallel ESSL header file 95
C++ (C++ programming language) xi
modifying procedures for using Parallel ESSL 103
Parallel ESSL header file 95
cache, definition of GLOS-1
calling sequence xi
syntax description xxii
ceiling notation and meaning \(x x\)
character constant, definition of GLOS-1
character data xi
conventions xx
character expression, definition of GLOS-1
character type, definition of GLOS-1
characters, special usage of \(x x\)
citations BIB-1
See also references, math background
coding your program xi
application program outline 96
optimal performance 83
restrictions for routine names 86
where to find more information 86, 105
column-major order, definition of GLOS-1
communication errors xi
list of messages for 151
overview 120
comparison of accuracy 5
compilers, required by Parallel ESSL 6
compiling your program xi
C programs 102
C++ programs 103
Fortran programs 101
HPF programs 110
complex conjugate even data, definition of GLOS-1
complex conjugate notation xx
complex constant, definition of GLOS-1
complex data xi
conventions xx
complex type, definition of GLOS-1
computational areas, overview 3
computational errors xi
differs from ESSL for AIX, how this 119
list of messages for 149
overview 119
conjugate notation xx
constant, definition of GLOS-1
continuation, convention for numerical data xx
conventions
for messages 121
mathematical and programming notations xx
scalar data xx
subroutine descriptions xxii
cosine notation xx
courier font usage \(x x\)
customer service, IBM 115
customer support, IBM 115
cyclic distribution, definition of 19

\section*{D}

D_SPMAT, derived data type 61
data xi
conventions for scalar data xx
data distribution
block 19
block-cyclic 19
cyclic 19
definition of \(x v i i, 19\)
data distribution (continued)
for an HPF program 79
general tridiagonal matrix
over one-dimensional process grid 45
matrix
over one-dimensional process grid 40, 80
over two-dimensional process grid 55, 81
random number generation subroutine 34,80
symmetric band matrix
over one-dimensional process grid 42
symmetric tridiagonal matrix
over one-dimensional process grid 49
techniques 19
three-dimensional sequences 72,82
two-dimensional sequences 67, 81
vectors
over one-dimensional process grid 31, 79
over two-dimensional process grid 34, 80
data structures, distributing across processes 17
data type, definition of GLOS-1
decimation, definition of GLOS-1
definitions of terms in the Glossary GLOS-1
derived data types
D_SPMAT 61
DESC_TYPE 61
DESC_TYPE, derived data type 61
descriptions, conventions used in the subroutine xxii
descriptors, migrating to this release of Parallel
ESSL 113
determinant xi
matrix notation xx
determining the number of rows or columns 711
diagnosis procedures xi
in your program 115
Parallel ESSL messages, list of 121
diagnostics 121
See also messages
dimensions of arrays xi
definition of GLOS-1
direct access storage xi
definition of GLOS-1
divide-by-zero exception, definition of GLOS-1
documentation BIB-1
See also publications
dot product \(x i\) notation xx
double precision, definition of GLOS-1
DTSV 802
DTTRF 807
DTTRS 816

\section*{E}
eigensystem analysis and singular value analysis subroutines
GEBRD 865
eigensystem analysis and singular value analysis
subroutines (continued)
GEHRD 860
overview 599, 841
PDGEBRD 640
PDGEHRD 630
PDSYEVX 601
PDSYTRD 619
SYEVX 843
SYTRD 854
element of a matrix notation \(x x\)
element of a vector notation xx
Engineering and Scientific Subroutine Library xix See also ESSL, Parallel (Parallel Engineering and Scientific Subroutine Library)
environment variable, PESSL_ERROR_SYNC 83, 117
error conditions, conventions used in the subroutine descriptions xxiii
error messages 121
See also messages
errors xi
communication errors 120
computational errors 119
ESSL for AIX error messages 121
input-argument errors 117
miscellaneous errors 121
MPI error messages 121
program exceptions on the workstations 117
resource errors 120
synchronization 117
types of errors that you can encounter 117
where to find more information on 115
ESSL for AIX error messages 121
ESSL, Parallel (Parallel Engineering and Scientific
Subroutine Library) xi
advantages of 3
choosing a library 83
coding your HPF program 105
coding your message passing program 86
communication errors 120
computational areas, overview 3
computational errors 119
diagnosis procedures 115
distributing your data across processes 17
dynamic linking versus static linking 101, 109
eigensystem analysis and singular value analysis
subroutines 599, 841
ESSL for AIX error messages 121
Fourier Transforms 653
Fourier Transforms (HPF) 873
functional capability 3
input-argument errors 117
installation requirements 8
introduction to 3
languages supported 6
Level 2 PBLAS 161

ESSL, Parallel (Parallel Engineering and Scientific Subroutine Library) (continued) Level 3 PBLAS 249
linear algebraic equations subroutines 341, 763
message conventions 121
messages, list of 121
miscellaneous errors 121
MPI error messages 121
name xix
number of subroutines in each area 3
ordering publications BIB-3
overview 3
overview of the subroutines 3
packaging characteristics 8
parallel processing subroutines on the workstations 3
PBLAS (HPF) 717
program exceptions on the workstations 117
program number for BIB-3
publications overview BIB-3
random number generation subroutine 895
random number generation subroutines 699
reference information conventions xxii
related publications BIB-4
resource errors 120
running your program (linking, load, and run) 100, 109
using error handling 115
utility subroutines 707
what's new for xxv
what is provided in \(x x i x\)
Euclidean norm notation xx
evaluation and planning, publications for BIB-3
examples, conventions used in the subroutine
descriptions xxiii
exception xi
See also program exception
exponential function notation xx
expression, definition of GLOS-1
expressions, special usage of \(x x\)
extent of a dimension, definition of GLOS-1
external function, definition of GLOS-1
extrinsic (hpf_local) GLOS-1
extrinsic (hpf_serial) GLOS-1
extrinsic (hpf) GLOS-1

\section*{F}
factoring xi
general matrix 345, 766
general tridiagonal matrix 427, 443, 802, 807
positive definite complex Hermitian matrix 369, 776
positive definite real symmetric matrix 369,776
positive definite symmetric band matrix 392, 405, 787, 792
positive definite symmetric tridiagonal matrix 480, 495, 824, 829

FFT 876, 884
FFT-packed storage mode 68,74
floor notation and meaning \(x x\)
fonts used in this book \(x x\)
Fortran xi
languages required by Parallel ESSL 6
modifying procedures for using Parallel ESSL 101 publications BIB-4
Fortran 90 sample program 907
Fourier transform xi
overview 653, 873
sequences, distributing data 66,81
three dimensions xi
complex 675, 884
complex-to-real 691, 884
real-to-complex 684, 884
two dimensions xi
complex 656, 876
complex-to-real 669, 876
real-to-complex 663, 876
Fourier transform subroutines
FFT 876, 884
PDCFT2 656
PDCFT3 675
PDCRFT2 669
PDCRFT3 691
PDRCFT2 663
PDRCFT3 684
PSCFT2 656
PSCFT3 675
PSCRFT2 669
PSCRFT3 691
PSRCFT2 663
PSRCFT3 684
Frobenius norm notation \(x x\)
full block matrix, distributing 40, 80
function xi
definition of GLOS-1
function reference, definition of GLOS-1
functional capability of the Parallel ESSL subroutines 3

\section*{G}

GEBRD 865
GEHRD 860
GEMM 719
General Information manual, ESSL BIB-3
general matrix, definition of GLOS-1
general tridiagonal matrix, distributing 45
generation of random numbers 699, 895
GETRF 766
GETRS 771
global data structures, definition of 17
Glossary GLOS-1
greek letters notation \(x x\)

GTSV 802
GTTRF 807
GTTRS 816
guide information 1
guidelines for handling problems 115
See also diagnosis procedures

\section*{H}
hardware xi
publications BIB-4
required for Parallel ESSL 6
header file, Parallel ESSL 95
how to use this book xv, xvii
HPF (High Performance Fortran) xi
distributing data 79
modifying procedures for using Parallel ESSL 110
publications BIB-4
running your program 109
HPF sample program 907
Hypertext Markup Language, required products 8
I
IBM publications BIB-3
See also publications
identity matrix notation xx
infinity notation \(x x\)
informational messages, for Parallel ESSL 121
input arguments, conventions used in the subroutine
descriptions xxiii
input-argument errors xi
differs from ESSL for AIX, how this 117
list of messages for 123, 154
overview 117
Install Memo, Parallel ESSL BIB-3
installation documentation, Install Memo BIB-3
int notation and meaning \(x x\)
integer constant, definition of GLOS-1
integer data xi
conventions \(x x\)
integer expression, definition of GLOS-1
integer type, definition of GLOS-1
intrinsic function, definition of GLOS-1
introduction to Parallel ESSL 3
inverse xi
matrix notation \(x x\)
IPESSL
IPESSL 709
ISO definitions in Glossary GLOS-1
italic font usage \(x x\)

L
languages supported by Parallel ESSL 6
\begin{tabular}{|c|c|}
\hline leading dimension for matrices xi & linear algebraic equation subroutines (continued) \\
\hline definition of GLOS-1 & PDGTTRS 461 \\
\hline letters, fonts of xx & PDPBSV 392 \\
\hline Level 2 PBLAS xi & PDPBTRF 405 \\
\hline overview 161 & PDPBTRS 415 \\
\hline Level 2 PBLAS subroutines & PDPOTRF 369 \\
\hline PDGEMV 163 & PDPOTRS 379 \\
\hline PDGER 193 & PDPTSV 480 \\
\hline PDSYMV 181 & PDPTTRF 495 \\
\hline PDSYR 205 & PDPTTRS 509 \\
\hline PDSYR2 215 & POTRF 776 \\
\hline PDTRMV 228 & POTRS 781 \\
\hline PDTRSV 239 & PTSV 824 \\
\hline Level 3 PBLAS xi & PTTRF 829 \\
\hline overview 249, 717 & PTTRS 835 \\
\hline Level 3 PBLAS subroutines & PZGETRF 345 \\
\hline GEMM 719 & PZGETRS 357 \\
\hline PDGEMM 251 & PZPOTRF 369 \\
\hline PDSYMM 269 & PZPOTRS 379 \\
\hline PDSYR2K 316 & sparse (Fortran 77) \\
\hline PDSYRK 305 & application program outline 99 \\
\hline PDTRAN 331 & overview 14, 342 \\
\hline PDTRMM 284 & PADINIT 566 \\
\hline PDTRSM 294 & PDGEASB 582 \\
\hline PZGEMM 251 & PDGEINS 575 \\
\hline SYMM 730 & PDSPASB 578 \\
\hline SYR2K 754 & PDSPGIS 587 \\
\hline SYRK 748 & PDSPGPR 584 \\
\hline TRAN 760 & PDSPINIT 568 \\
\hline TRMM 736 & PDSPINS 570 \\
\hline TRSM 742 & sparse (Fortran 90) \\
\hline level of Parallel ESSL, getting 709 & application program outline 97 \\
\hline library & overview 13, 342 \\
\hline choosing a Parallel ESSL library 83 & PADALL 526 \\
\hline overview 3 & PADFREE 556 \\
\hline linear algebra 341, 763 & PGEALL 530 \\
\hline See also linear algebraic equations & PGEASB 542 \\
\hline linear algebraic equation subroutines & PGEFREE 553 \\
\hline DTSV 802 & PGEINS 537 \\
\hline DTTRF 807 & PSPALL 528 \\
\hline DTTRS 816 & PSPASB 539 \\
\hline GETRF 766 & PSPFREE 554 \\
\hline GETRS 771 & PSPGIS 547 \\
\hline GTSV 802 & PSPGPR 544 \\
\hline GTTRF 807 & PSPINS 532 \\
\hline GTTRS 816 & linear algebraic equations xi \\
\hline PBSV 787 & overview 341,763 \\
\hline PBTRF 792 & linking your program xi \\
\hline PBTRS 797 & C programs 102 \\
\hline PDDTSV 427 & C++ programs 103 \\
\hline PDDTTRF 443 & dynamic versus static 101, 109 \\
\hline PDDTTRS 461 & Fortran programs 101 \\
\hline PDGETRF 345 & HPF programs 110 \\
\hline PDGETRS 357 & local arrays, definition of 17 \\
\hline PDGTSV 427 & LOCp() \\
\hline PDGTTRF 443 & for block xvii \\
\hline
\end{tabular}

LOCp() (continued)
for block-cyclic xvii, 25, 30
LOCq()
for block-cyclic xvii, 25, 30
logical constant, definition of GLOS-1
logical data xi conventions xx
logical expression, definition of GLOS-1
logical type, definition of GLOS-1
long precision xi
accuracy statement 5
definition of GLOS-1

\section*{M}
mailing list for ESSL customers 9
main program, definition of GLOS-1
mainframes xi
definition of GLOS-1
mask, definition of GLOS-1
math and programming notations xx
math background publications BIB-1
See also references, math background
mathematical expressions, conventions for xx
mathematical functions, overview 3
matrix xi, 341, 763
See also general matrix
array descriptor 24
block distributing a band matrix 26, 42
block distributing a general tridiagonal matrix 45
block distributing a tridiagonal matrix 26, 27
block-cyclically distributing a symmetric tridiagonal matrix 27, 49
definition of GLOS-1
font for xx
submatrix \(\mathrm{xx}, 25\)
matrix-matrix product xi
general matrices, their transposes, or their conjugate
transposes 251, 719
real symmetric matrix 269, 730
real triangular matrix \(284,294,736,742\)
matrix-vector product xi
general matrix or its transpose 163
real symmetric matrix 181
triangular matrix, its transpose, or its conjugate transpose 228
max notation and meaning xx
meanings of words in the Glossary GLOS-1
message passing sample program 907
messages xi
list of Parallel ESSL messages 123, 154
message conventions 121
migrating xi
array descriptors, for the new release of Parallel ESSL 113
your program, to the new release/mod of Parallel ESSL 113
min notation and meaning \(x x\)
miscellaneous errors xi
list of messages for 153
mod notation and meaning \(x x\)
modification level of Parallel ESSL, getting 709
modifying
C programs, for using Parallel ESSL 102
C++ programs, for using Parallel ESSL 103
Fortran programs, for using Parallel ESSL 101
HPF programs, for using Parallel ESSL 110
modulo notation xx
MPI error messages 121
multiplying xi
See also product
notation xx

\section*{N}
name usage restrictions 86
name, definition of GLOS-1
names of xi
eigensystem analysis and singular value analysis 599, 841
Fourier Transforms 653, 873
Level 2 PBLAS 161
Level 3 PBLAS 249
linear algebraic equations 341, 763
PBLAS 717
products and acronyms xix
random number generation 699, 895
utilities 707
National Language Support 116
NLS, National Language Support 116
norm notation xx
notations and conventions xx
notes, conventions used in the subroutine descriptions xxiii
number of subroutines in each area 3
numbers 15
See also random number generation
accuracy of computations 5
NUMROC 711
objectives for this manual xiii
one norm notation xx
one-dimensional data structures, distributing 31,34, 79, 80
online documentation BIB-4
required Hypertext Markup Language products 8
order numbers of the publications BIB-3
ordering IBM publications BIB-3
output xi
accuracy 5
\begin{tabular}{|c|c|}
\hline output arguments, conventions used in the subroutine & PDPTTRF 495 \\
\hline descriptions xxiii & PDPTTRS 509 \\
\hline overflow exception, definition of GLOS-1 & PDRCFT2 663 \\
\hline overview & PDRCFT3 684 \\
\hline of Parallel ESSL 3 & PDSPASB 578 \\
\hline of the documentation BIB-3 & PDSPGIS 587 \\
\hline & PDSPGPR 584 \\
\hline P & PDSPINIT 568 \\
\hline P & PDSPINS 570 \\
\hline PADALL 526 & PDSYEV 601 \\
\hline PADFREE 556 & PDSYMM 269 \\
\hline PADINIT 566 & PDSYMV 181 \\
\hline Parallel Environment xi & PDSYR 205 \\
\hline dynamic linking versus static linking when using & PDSYR2 215 \\
\hline Parallel ESSL 101, 109 & PDSYR2K 316 \\
\hline how used by Parallel ESSL 3 & PDSYRK 305 \\
\hline job processing procedures in 100, 109 & PDSYTRD 619 \\
\hline Parallel ESSL 121 & PDTRAN 331 \\
\hline See also ESSL, Parallel (Parallel Engineering and & PDTRMM 284 \\
\hline Scientific Subroutine Library) & PDTRMV 228 \\
\hline parallel processing xi & PDTRSM 294 \\
\hline introduction to 3 & PDTRSV 239 \\
\hline PARTS, user-supplied subroutine & PDURNG 701 \\
\hline coding 65 & PE xi \\
\hline designing 65 & See also Parallel Environment \\
\hline using in C programs 66 & performance xi \\
\hline using in C++ programs 66 & aspects of parallel processing on the workstations 3 \\
\hline PBSV 787 & coding tips for achieving optimal 83 \\
\hline PBTRF 792 & PESSL_ERROR_SYNC environment variable 83,117 \\
\hline PBTRS 797 & PGEALL \(530{ }^{-}\) \\
\hline PDCFT2 656 & PGEASB 542 \\
\hline PDCFT3 675 & PGEFREE 553 \\
\hline PDCRFT2 669 & PGEINS 537 \\
\hline PDCRFT3 691 & pi notation xx \\
\hline PDDTSV 427 & planning, publications for BIB-3 \\
\hline PDDTTRF 443 & PostScript file for the Parallel ESSL book 8 \\
\hline PDDTTRS 461 & POTRF 776 \\
\hline PDGEASB 582 & POTRS 781 \\
\hline PDGEBRD 640 & precision, short and long 5 \\
\hline PDGEHRD 630 & preconditioning a sparse matrix 544,584 \\
\hline PDGEINS 575 & primary, definition of GLOS-1 \\
\hline PDGEMM 251 & printing the Parallel ESSL book in PostScript 8 \\
\hline PDGEMV 163 & problems, handling 115 \\
\hline PDGER 193 & See also diagnosis procedures \\
\hline PDGETRF 345 & problems, IBM support for 115 \\
\hline PDGETRS 357 & procedures, job processing xi \\
\hline PDGTSV 427 & setting up your own AIX 100, 109 \\
\hline PDGTTRF 443 & process grid, definition of xvii, 17 \\
\hline PDGTTRS 461 & processing your program xi \\
\hline PDPBSV 392 & requirements for Parallel ESSL 6 \\
\hline PDPBTRF 405 & steps involved in 100, 109 \\
\hline PDPBTRS 415 & using parallel subroutines on the workstations 3 \\
\hline PDPOTRF 369 & product xi \\
\hline PDPOTRS 379 & matrix-matrix xi \\
\hline PDPTSV 480 & general matrices, their transposes, or their conjugate transposes 251,719 real symmetric matrix 269,730 \\
\hline
\end{tabular}
```

product (continued)
matrix-matrix (continued)
real triangular matrix 284, 294, 736, 742
matrix-vector xi
general matrix or its transpose 163
real symmetric matrix 181
triangular matrix, its transpose, or its conjugate
transpose 228
product names, acronyms for xix
product names, using xix
products, programming xi
required by Parallel ESSL, programming 6
required to use Hypertext Markup Language 8
program xi
coding for HPF programs }10
coding for message passing programs }8
communication errors }12
computational errors }11
distributing your data across processes 17
errors on the workstations }11
ESSL for AIX error messages 121
input-argument errors }11
miscellaneous errors }12
MPI error messages 121
resource errors }12
using error handling 115
program exceptions xi
definition of GLOS-1
description of Parallel ESSL on the workstations
related 117
program number for Parallel ESSL BIB-3
programming items, font for xx
programming products xi
required by Parallel ESSL 6
programming publications BIB-4
PSCFT2 656
PSCFT3 675
PSCRFT2 }66
PSCRFT3 691
PSPALL 528
PSPASB 539
PSPFREE 554
PSPGIS 547
PSPGPR 544
PSPINS }53
PSRCFT2 }66
PSRCFT3 684
PTF xi
definition of GLOS-1
getting the most recent level applied 709
PTSV 824
PTTRF }82
PTTRS 835
publications xi
list of Parallel ESSL BIB-3
math background BIB-1

```
```

results xi
accuracy 5
routine names 86
running your program xi
C programs }10
C++ programs 103
Fortran programs 101
HPF programs }11

```
```

S
sample programs
using Fortran 77 sparse subroutines 593, 975
using Fortran 90 sparse subroutines 558, 964, 986
sample programs, thermal diffusion 907
sample utilities 907
scalar data xi
conventions xx
scalar items, font for xx
scalar, definition of GLOS-1
scope, definition of xvii
sequences xi
three-dimensional, distributing 72, 82
two-dimensional, distributing 67,81
service, IBM }11
setting up, AIX procedures 100, 109
shape of an array, definition of GLOS-1
short precision xi
accuracy statement 5
definition of GLOS-1
SIGN notation and meaning xx
sin notation xx
single block matrix, distributing 40, 80
size notation xx
size of array xi
definition of GLOS-1
SLSS (Subscription Library Services System) BIB-3
softcopy book for Parallel ESSL, PostScript 8
software products
required by Hypertext Markup Language 8
required to view online information 8
software products required 6
solving xi
general matrix 357,771
general tridiagonal matrix 427, 461, 802,816
positive definite complex Hermitian matrix 379,781
positive definite real symmetric matrix 379,781
positive definite symmetric band matrix 392, 415,
787, }79
positive definite symmetric tridiagonal matrix 480,
509,824
sparse matrix 547,587
symmetric tridiagonal matrix 835
triangular matrix 239, 294, 742
sparse matrix, distributing 65

```
\begin{tabular}{|c|c|}
\hline subroutines, Parallel ESSL (continued) & subroutines, Parallel ESSL (continued) \\
\hline PDGEMV 163 & PTTRF 829 \\
\hline PDGER 193 & PTTRS 835 \\
\hline PDGETRF 345 & PZGEMM 251 \\
\hline PDGETRS 357 & PZGETRF 345 \\
\hline PDGTSV 427 & PZGETRS 357 \\
\hline PDGTTRF 443 & PZPOTRF 369 \\
\hline PDGTTRS 461 & PZPOTRS 379 \\
\hline PDPBSV 392 & SYEVX 843 \\
\hline PDPBTRF 405 & SYMM 730 \\
\hline PDPBTRS 415 & SYR2K 754 \\
\hline PDPOTRF 369 & SYRK 748 \\
\hline PDPOTRS 379 & SYTRD 854 \\
\hline PDPTSV 480 & TRAN 760 \\
\hline PDPTTRF 495 & TRMM 736 \\
\hline PDPTTRS 509 & TRSM 742 \\
\hline PDRCFT2 663 & URNG 897 \\
\hline PDRCFT3 684 & subscript expression, definition of GLOS-1 \\
\hline PDSPASB 578 & subscript notation, what it means xx \\
\hline PDSPGIS 587 & subscript, definition of GLOS-1 \\
\hline PDSPGPR 584 & summary reference for ESSL, online BIB-4 \\
\hline PDSPINIT 568 & summation notation xx \\
\hline PDSPINS 570 & superscript notation, what it means xx \\
\hline PDSYEVX 601 & support, IBM 115 \\
\hline PDSYMM 269 & SYEV 843 \\
\hline PDSYMV 181 & symbols, special usage of xx \\
\hline PDSYR 205 & SYMM 730 \\
\hline PDSYR2 215 & syntax, conventions used in the subroutine \\
\hline PDSYR2K 316 & descriptions xxii \\
\hline PDSYRK 305 & SYR2K 754 \\
\hline PDSYTRD 619 & SYRK 748 \\
\hline PDTRAN 331 & system software required 6 \\
\hline PDTRMM 284 & SYTRD 854 \\
\hline PDTRMV 228 & \\
\hline PDTRSM 294 & T \\
\hline PDTRSV 239 & \\
\hline PDURNG 701 & termination, program xi \\
\hline PGEALL 530 & communication errors 120 \\
\hline PGEASB 542 & computational errors 119 \\
\hline PGEFREE 553 & ESSL for AIX error messages 121 \\
\hline PGEINS 537 & input-argument errors 117 \\
\hline POTRF 776 & miscellaneous errors 121 \\
\hline POTRS 781 & MPI error messages 121 \\
\hline PSCFT2 656 & on the workstations 117 \\
\hline PSCFT3 675 & resource errors 120 \\
\hline PSCRFT2 669 & terminology in the Glossary GLOS-1 \\
\hline PSCRFT3 691 & terminology, names of products xix \\
\hline PSPALL 528 & textbooks cited BIB-1 \\
\hline PSPASB 539 & See also references, math background \\
\hline PSPFREE 554 & times notation, multiply xx \\
\hline PSPGIS 547 & TRAN 760 \\
\hline PSPGPR 544 & transpose xi \\
\hline PSPINS 532 & notation xx \\
\hline PSRCFT2 663 & of a matrix inverse notation \(x x\) \\
\hline PSRCFT3 684 & of a vector or matrix notation xx \\
\hline PTSV 824 & \\
\hline
\end{tabular}
```

transposing xi
tridiagonal matrix, distributing 49
TRMM }73
TRSM }74
two-dimensional data structures, distributing 40,55,
80,81
type declaration, definition of GLOS-1
type font usage xx

```

\section*{U}
```

underflow xi
definition of GLOS-1
uniformly distributed random numbers, generate 701,
897
URNG }89
user-supplied subroutine 65
users of ESSL xiii
using this book xv, xvii
utility subroutines xi
NUMROC }71
overview }70

```

\section*{V}
```

variable, definition of GLOS-1
vector xi
array descriptor 24
definition of GLOS-1
distributing data for 31, 79
font for xx
special form of submatrix $x x$
submatrix 25
version of Parallel ESSL, getting 709
versions of subroutines 3

```

\section*{W}
```

warnings xi
list of messages for 152
what's new for Parallel ESSL xxv
words in the Glossary GLOS-1
workstations xi
definition of GLOS-1
publications BIB-4
required for Parallel ESSL 6

```

\section*{X}
```

XL C and C++ xi
XL Fortran xi
publications BIB-4

```

\section*{Communicating Your Comments to IBM}

Parallel Engineering and Scientific
Subroutine Library for AIX
Guide and Reference
Publication No. SA22-7273-01
If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. However, the comments you send should pertain to only the information in this manual and the way in which the information is presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United States, you can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.
- If you prefer to send comments by mail, use the RCF at the back of this book.
- If you prefer to send comments by FAX, use this number:
- FAX: (International Access Code) \(+1+914+432-9405\)
- If you prefer to send comments electronically, use this network ID:
- IBM Mail Exchange: USIB6TC9 at IBMMAIL
- Internet e-mail: mhvrcfs@us.ibm.com
- World Wide Web: http://www.s390.ibm.com/os390

Make sure to include the following in your note:
- Title and publication number of this book
- Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your comments by phone.

\section*{Reader's Comments - We'd Like to Hear from You}

\section*{Parallel Engineering and Scientific \\ Subroutine Library for AIX \\ Guide and Reference \\ Publication No. SA22-7273-01}

You may use this form to communicate your comments about this publication, its organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Today's date: \(\qquad\)
What is your occupation?
Newsletter number of latest Technical Newsletter (if any) concerning this publication:
How did you use this publication?
\begin{tabular}{|c|c|c|c|}
\hline [ ] & As an introduction & [ ] & As a text (student) \\
\hline [ ] & As a reference manual & [ ] & As a text (instructor) \\
\hline [ ] & For another purpose (explain) & & \\
\hline
\end{tabular}

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications; specific errors and omissions.

Page Number: Comment:

\title{
BUSINESS REPLY MAIL
}

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK
POSTAGE WILL BE PAID BY ADDRESSEE
IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

\author{

}


Program Number: 5765-C41
Printed in the United States of America on recycled paper containing \(10 \%\) recovered post-consumer fiber.
```

