Engineering and Scientific

## General Information

Engineering and Scientific

## General Information

Notes!
Special Notices are included in "Special Notices" on page v.

## Seventh Edition (October 1999)

This major revision replaces GC23-0529-05 and renders it obsolete. This edition applies to the following:

- IBM ${ }^{*}$ Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for Advanced Interactive Executive (AIX*), program number 5765-C41
- IBM Engineering and Scientific Subroutine Library for AIX (ESSL), program number 5765-C42
- IBM Engineering and Scientific Subroutine Library: Vector and Scalar/370 (ESSL/370), program number 5688-226

Order IBM publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below.

IBM welcomes your comments. A form for reader's comments appears at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America
FAX (United States \& Canada): 1+914+432-9405
FAX (Other Countries):
Your International Access Code $+1+914+432-9405$
IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.rs6000.ibm.com
If you would like a reply, be sure to include your name, address, telephone number, or FAX number.
Make sure to include the following in your comment or note:

- Title and order number of this book
- Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

## Contents

Special Notices ..... v
Engineering and Scientific Subroutine Library (ESSL)—Designed to Meet Your Application Needs ..... 1
Your Choice of Libraries ..... 2
Easy to Use ..... 4
ESSL Internet Resources ..... 5
Wide Range of Mathematical Functions ..... 6
Parallel ESSL ..... 11
Highlights of Parallel ESSL ..... 11
High Performance of Parallel ESSL ..... 12
Installation and Customization Requirements ..... 17
Online Documentation Requirements ..... 17
Ordering Parallel ESSL ..... 18
ESSL for AIX ..... 19
Highlights of ESSL for AIX ..... 19
High Performance of ESSL for AIX ..... 19
Migration Considerations ..... 21
Product Requirements ..... 22
Installation and Customization Requirements ..... 23
Online Documentation Requirements ..... 23
Ordering ESSL for AIX ..... 24
ESSL/370 ..... 25
Highlights for ESSL/370 ..... 25
High Performance of ESSL/370 ..... 25
Migration Considerations ..... 26
Product Requirements ..... 26
Installation and Customization Requirements ..... 28
Online Documentation Requirements ..... 28
Ordering ESSL/370 ..... 29
Parallel ESSL Subroutines (Message Passing and HPF) ..... 31
Level 2 PBLAS ..... 31
Level 3 PBLAS ..... 32
Linear Algebraic Equations ..... 32
Eigensystem Analysis and Singular Value Analysis ..... 34
Fourier Transforms ..... 34
Random Number Generation ..... 35
Utilities ..... 35
ESSL for AIX Subroutines ..... 37
Linear Algebra Subprograms ..... 37
Matrix Operations ..... 40
Linear Algebraic Equations ..... 40
Eigensystems Analysis ..... 42
Fourier Transforms, Convolutions and Correlations, and Related Computations ..... 43
Sorting and Searching ..... 44
Interpolation ..... 44
Numerical Quadrature ..... 44
Random Number Generation ..... 44
Utilities ..... 45
ESSL/370 Subroutines ..... 47
Linear Algebra Subprograms ..... 47
Matrix Operations ..... 49
Linear Algebraic Equations ..... 50
Eigensystems Analysis ..... 52
Fourier Transforms, Convolutions and Correlations, and Related Computations ..... 52
Sorting and Searching ..... 53
Interpolation ..... 53
Numerical Quadrature ..... 54
Random Number Generation ..... 54
Parallel Processing Subroutines ..... 54
Utilities ..... 54

## Special Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's products, programs, or service may be used. Any functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property rights or other legally protectible rights may be used instead of the IBM product, program, or service. Evaluation and verification of operation in conjunction with other products, programs, or services, except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license information regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan
Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of fee.

Trademarks: The following terms, denoted by an asterisk (*), are trademarks of the IBM Corporation in the United States or other countries or both:

AD/Cycle
AIX
BookManager
Enterprise System/3090
Enterprise System/9000
ES/3090
ES/9000
IBM
IBMLink
MVS

MVS/ESA
MVS/XA
PowerPC Architecture
POWER2 Architecture
RS/6000
SP
System/370
System/390
Virtual Machine/Enterprise Systems Architecture VM/ESA

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service marks of others.

Acknowledgement: The Parallel Basic Linear Algebra Subprograms (BLAS), Linear Algebra Equations, and Eigensystem Analysis and Singular Value Analysis routines in Parallel ESSL are based on the Scalable Linear Algebra Package (ScaLAPACK) public domain offering. ScaLAPACK is a scalable linear algebra
library for distributed memory concurrent computers. The library was jointly developed by the University of Tennessee, Knoxville, Oak Ridge National Laboratory, and the University of California, Berkeley, and is available from Professor Dongarra, Computer Science Department, the University of Tennessee.

Abbreviated Names: The abbreviated names used in this book are defined below.

| Short Name | Full Name |
| :--- | :--- |
| AIX | Advanced Interactive Executive |
| BLACS | Basic Linear Algebra Communication Subprograms |
| BLAS | Basic Linear Algebra Subprograms |
| CBIPO | MVS Custom-Built Installation Process Offering |
| CMS | Conversational monitor system |
| ESSL | Engineering and Scientific Subroutine Library for AIX |
| ESSL/370 | Engineering and Scientific Subroutine Library: Vector and <br> Scalar/370 |
| FDDI | Fiber Distributed Data Interface |
| HPF | High Performance Fortran |
| HTML | Hypertext Markup Language |
| ICA | Intercompilation analysis |
| IP | Internet Protocol |
| IVP | Installation Verification Programs |
| LAPACK | Linear Algebra Package |
| LAPI | Low-level Application Programming Interface |
| MPI | Message Passing Interface |
| MPL | Message Passing Library |
| PE | Parallel Environment |
| PBLAS | Parallel Basic Linear Algebra Subprograms |
| POWER, PowerPC, <br> POWER2, and POWER3 <br> processors | RS/6000 processors |
| PSSP | Parallel System Support Programs |
| ScaLAPACK | Scalable Linear Algebra Package |
| SDO | System delivery offering |
| SFS | Shared file systems |
| SMP | Symmetric Multi-Processing |
| SPMD | Single Program Multiple Data |
| SMP/E | System Modification Program Extended |
| TLB | User Space |
| US | Virtual Machine |
| VM | Staged/Extended |
| VMSES/E |  |


| Short Name | Full Name |
| :--- | :--- |
| VSE | Virtual Storage Extended |

About This Book: This Engineering and Scientific Subroutine Library Products General Information manual is intended to help the customer evaluate IBM Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for AIX, IBM Engineering and Scientific Subroutine Library for AIX, and IBM Engineering and Scientific Subroutine Library: Vector and Scalar/370. It contains high-level information about these products, which is helpful in making your purchasing decision.

In this document: Parallel ESSL refers to IBM Parallel Engineering and Scientific Subroutine Library for AIX. ESSL refers to IBM Engineering and Scientific Subroutine Library for AIX. ESSL/370 refers to IBM Engineering and Scientific Subroutine Library: Vector and Scalar/370.

MPI refers to the Message Passing Interface provided by Parallel Environment (PE).

# Engineering and Scientific Subroutine Library (ESSL)—Designed to Meet Your Application Needs 

The family of ESSL products consists of:

- Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) for Advanced Interactive Executive (AIX), program number 5765-C41
- Engineering and Scientific Subroutine Library (ESSL) for AIX, program number 5765-C42
- Engineering and Scientific Subroutine Library: Vector and Scalar/370 (ESSL/370), program number 5688-226

These products are state-of-the-art collections of mathematical subroutines that provide a wide range of mathematical functions for many different scientific and engineering applications.

Parallel ESSL offers mathematical subroutines in six computational areas (listed on page 6) that run on the following platforms:

- IBM RS/6000 SP*
- Clusters of IBM RS/6000* workstations

ESSL offers mathematical subroutines in nine computational areas (listed on page 7) that run on the following platforms:

- IBM RS/6000 POWER, POWER3, PowerPC, Symmetric Multi-Processing (SMP) PowerPC, and POWER2 Processors.
- IBM RS/6000 SP (serial mode only)

ESSL/370 offers mathematical subroutines in nine computational areas (listed on page 7) that run on the following platforms:

- IBM Enterprise System/3090* (ES/3090*) Vector Facility.
- IBM Enterprise System/9000* (ES/9000*) Vector Facility.
- IBM System/370* and System/390* Scalar Processors.

ESSL/370 also offers a group of subroutines that run in a parallel processing environment on the mainframes.

You can use these subroutine libraries to develop and enable many different types of scientific and engineering applications. New applications can be designed and developed to take full advantage of all the capabilities of ESSL. Existing applications can be enabled by replacing comparable subroutines and in-line code with calls to ESSL subroutines. Some of the types of applications that can take advantage of the ESSL capabilities are:

Structural Analysis Time Series Analysis<br>Computational Chemistry<br>Fluid Dynamics Analysis<br>Seismic Analysis<br>Reservoir Modeling<br>Computational Techniques<br>Mathematical Analysis<br>Dynamic Systems Simulation<br>Nuclear Engineering

$$
\text { Quantitative Analysis } \quad \text { Electronic Circuit Design }
$$

The Parallel ESSL subroutines can be called from application programs written in Fortran, High Performance Fortran (HPF), C, and C++. Parallel ESSL runs under the AIX operating system. On the RS/6000 SP, Parallel System Support Programs (PSSP) is also required.

The ESSL subroutines can be called from application programs written in Fortran, $\mathrm{C}, \mathrm{C}++$, and $\mathrm{PL} / \mathrm{I}$. ESSL runs under the AIX operating system.

The ESSL/370 subroutines can be called from application programs written in Fortran, C, PL/I, APL2, and System/370 assembler language. ESSL/370 runs under the Multiple Virtual Storage (MVS*) and the Virtual Machine/Enterprise Systems Architecture* (VM/ESA*) operating systems.

## Your Choice of Libraries

This section describes the subroutine libraries available to you.

## IBM Parallel Engineering and Scientific Subroutine Library for AIX—Program Number 5765-C41

Parallel ESSL is a scalable mathematical subroutine library that supports parallel processing applications on the IBM RS/6000 SP Systems and clusters of IBM RS/6000 workstations. Parallel ESSL supports the Single Program Multiple Data (SPMD) programming model using either the Message Passing Interface (MPI) signal handling library or the MPI threaded library. Parallel ESSL provides these run-time libraries:

- The Parallel ESSL SMP Library is provided for use with the Parallel ESSL message passing subroutines and the PE MPI threaded library. You may run single or multithreaded applications on all types of nodes; however, you cannot simultaneously call Parallel ESSL from multiple threads. Use this Parallel ESSL library if you are using both PE MPI and the Communications Low-level Application Programming Interface (LAPI). The SMP library is for use on RS/6000 POWER and PowerPC (for example, POWER3 SMP Thin, Wide, or High Nodes) processors.
- The Parallel ESSL Thread-Tolerant POWER2 Library is provided for use with the Parallel ESSL message passing subroutines and the MPI threaded library. You may run single or multithreaded applications on POWER2 nodes; however, you cannot simultaneously call Parallel ESSL from multiple threads. Use this library if you are using both MPI and the Communications Low-level Application Programming Interface (LAPI). The Thread-Tolerant POWER2 library is tuned for the RS/6000 POWER2 processors.
- The Parallel ESSL POWER Library are provided for use with the Parallel ESSL message-passing and HPF subroutines, and the MPI signal handling library. The POWER libraries are tuned for the RS/6000 POWER and PowerPC processors.
- The Parallel ESSL POWER2 Library are provided for use with the Parallel ESSL message-passing and HPF subroutines, and the MPI signal handling library. The POWER2 libraries are tuned for the RS/6000 POWER2 processors.

It provides subroutines in six major areas of mathematical computation using high-performance algorithms.

Parallel ESSL provides distinct libraries for AIX 4.2.1 and AIX 4.3.2:

- The AIX 4.2.1 Parallel ESSL Thread-Tolerant POWER2 Library and the Parallel ESSL SMP Library were built using the pthreads draft 7 library supplied on AIX 4.2.1.
- The AIX 4.3.2 Parallel ESSL Thread-Tolerant POWER2 Library and the Parallel ESSL SMP Library were built using the pthreads library that conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.


## IBM Engineering and Scientific Subroutine Library for AIX— Program Number 5765-C42

ESSL performs computations using high-performance algorithms. ESSL provides these run-time libraries:

- The ESSL SMP Library provides thread-safe versions of the ESSL subroutines for use on the RS/6000 SMP (for example, 604e or 630) processors. In addition, a subset of these subroutines are multithreaded versions; that is, they support the shared memory parallel processing programming model. You do not have to change your existing application programs that call ESSL to take advantage of the increased performance of the SMP processors. You can simply re-link your existing programs. For a list of the multithreaded subroutines in the ESSL SMP Library, see the ESSL Version 3 Guide and Reference.
- The ESSL Thread-Safe Library provides thread-safe versions of the ESSL subroutines for use on all RS/6000 processors. You may use this library to develop your own multithreaded applications.
- The ESSL Thread-Safe POWER2 Library provides thread-safe versions of the ESSL subroutines and is tuned for the POWER2 uniprocessors. You may use this library to develop your own multithreaded applications.
- The ESSL POWER Library is tuned for the RS/6000 POWER, POWER3, and PowerPC processors.
- The ESSL POWER2 Library is tuned for the RS/6000 POWER2 processors.

All libraries are designed to provide high levels of performance for numerically intensive computing jobs on these respective processors. All versions provide mathematically equivalent results. Most of the subroutine calls are compatible with those of the ESSL/370 product.

The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP Library support both 32 -bit environment and 64-bit environment applications.

ESSL for AIX provides distinct libraries for AIX 4.2.1 and AIX 4.3.2:

- The AIX 4.2.1 ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2 Library, and the ESSL SMP Library were built using the pthreads draft 7 library supplied on AIX 4.2.1.
- The AIX 4.3.2 ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2 Library, and the ESSL SMP Library were built using the pthreads library that conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.


## IBM Engineering and Scientific Subroutine Library: Vector and Scalar/370—Program Number 5688-226

ESSL/370 provides both vector and scalar versions of all the subroutines in the Vector Library and the Scalar Library, respectively. The two versions provide mathematically equivalent results.

- The ESSL/370 Vector Library is designed to provide high levels of performance for numerically intensive computing jobs on the Vector Facilities, running under the MVS and VM/ESA operating systems. ESSL subroutines perform computations using high-performance algorithms that are generally coded in System/370 assembler language and are tuned to specific operating characteristics of the processors with Vector Facilities.

The Vector Library provides eight parallel processing subroutines designed to further reduce job turnaround time by splitting up the computations of a subroutine call and performing them in parallel on multiprocessors.

- The ESSL/370 Scalar Library is designed to support numerically intensive computing jobs on the scalar processors, running under the MVS and VM/ESA operating systems. In addition, by providing subroutine calls completely compatible with those of the Vector Library, applications developed in a scalar environment can be run in a production vector environment without recompilation. (Relinkage is required, however.)

The parallel processing subroutines are also provided in the Scalar Library.

## Easy to Use

The ESSL products have been designed for ease of use. For example,

- All products have an easy-to-use call interface and informative error-handling capabilities.
- The ESSL products are compatible with public domain subroutine libraries such as Basic Linear Algebra Subprograms (BLAS), Scalable Linear Algebra Package (ScaLAPACK), and Parallel Basic Linear Algebra Subprograms (PBLAS), making it easy to migrate from these libraries to an ESSL product.
- Parallel ESSL supports XL High Performance Fortran (HPF). XL HPF provides a way to easily develop parallel software with the SPMD programming model on your RS/6000 SP or cluster configuration. The XL HPF compiler, guided by HPF directives in your source code, handles the distribution of data and communication between programs on multiple processes.
- ESSL for AIX enables you to obtain high performance on the PowerPC SMP processors without requiring extensive knowledge of parallelization techniques.
- The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP Library support a 64-bit environment. For complete details, see the ESSL Version 3 Guide and Reference.
- The printed and softcopy documentation allows for quick retrieval of information.
For Parallel ESSL and ESSL for AIX, online documentation available on the product media can be displayed using a common Hypertext Markup Language (HTML) document browser (such as Netscape Navigator).

PostScript files of the ESSL Version 3 Guide and Reference and the Parallel ESSL Version 2 Guide and Reference are also provided on the product media for your convenience.
For ESSL/370, online documentation can be displayed using BookManager*.

- ESSL/370 enables you to obtain high performance on the mainframe processors with Vector Facilities without requiring extensive knowledge of the Vector Facility or of vectorization and parallelization techniques.
- A VS FORTRAN intercompilation analysis (ICA) file is provided.

This enables you to diagnose inconsistencies in your ESSL/370 call statements in your VS FORTRAN program at compile time. Using the ICA compiler option may save you time in debugging large, complex VS FORTRAN programs.

## ESSL Internet Resources

This section describes how you can use the ESSL resources available over the Internet.

## Obtaining Documentation

The product documentation is available in Portable Document Format (PDF) and HTML format at the IBM RS/6000 Web site at:
http://www.rs6000.ibm.com/resource/aix_resource/sp_books

## Accessing ESSL's Home Pages

The following home pages contain information on Parallel ESSL and ESSL:

- For Parallel ESSL, use:
http://www.rs6000.ibm.com/software/sp_products/esslpara.html
- For ESSL for AIX, use:
http://www.rs6000.ibm.com/software/Apps/essl.html


## Getting on the ESSL Mailing List

Information concerning ESSL's home pages and other home pages available for the RS/6000 family of products, plus late breaking information about ESSL, can be obtained by being placed on the ESSL mailing list. In addition, users on the mailing list will receive information about new ESSL function and may receive customer satisfaction surveys and requirements surveys to provide feedback to ESSL Development on the product and user requirements.

You can be placed on the mailing list by sending a request to either of the following, asking to be placed on the ESSL mailing list:

International Business Machines Corporation
ESSL Development
Department LQJA / MS P963
522 South Rd.
Poughkeepsie, N.Y. 12601-5400
e-mail: essl@us.ibm.com
Note: You should send us e-mail if you would like to be withdrawn from the ESSL mailing list.

When requesting to be placed on the mailing list or asking any questions, please provide the following information:

- Your name
- The name of your company
- Your mailing address
- Your Internet address
- Your phone number


## Wide Range of Mathematical Functions

The ESSL libraries provide a variety of complex mathematical functions for many different scientific and engineering applications.

## Parallel ESSL Subroutines (Message Passing and HPF)

The Parallel ESSL mathematical subroutines cover the following areas:

- Level 2 PBLAS
- Level 3 PBLAS
- Linear Algebraic Equations
- Eigensystem Analysis and Singular Value Analysis
- Fourier Transforms
- Random Number Generation
- Utilities

Parallel ESSL subroutines are available in long-precision versions. The Fourier transform subroutines also include short-precision versions.

Level 2 PBLAS include a subset of the standard set of distributed memory parallel versions of the Level 2 BLAS.

Level 3 PBLAS include a subset of the standard set of distributed memory parallel versions of the Level 3 BLAS.

Linear Algebraic Equations Subroutines consist of dense, banded, and sparse subroutines, and include a subset of the ScaLAPACK subroutines.

- Dense Linear Algebraic Equations Subroutines provide solutions to linear systems of equations for real and complex general matrices and their transposes, and for positive definite real symmetric and complex Hermitian matrices.
- Banded Linear Algebraic Equations Subroutines provide solutions to linear systems of equations for real positive definite symmetric band matrices, real general tridiagonal matrices, diagonally-dominant real general tridiagonal matrices, and real positive definite tridiagonal matrices.
- Sparse Linear Algebraic Equations Subroutines and their utility subroutines provide iterative solutions to linear systems of equations for real general sparse matrices.

Eigensystem Analysis and Singular Value Analysis Subroutines provide solutions to the algebraic eigensystem analysis problem for real symmetric matrices and the ability to reduce real symmetric and real general matrices to condensed form. These subroutines include a subset of the ScaLAPACK subroutines.

Fourier Transform Subroutines perform mixed-radix transforms in two and three dimensions.

Random Number Generation Subroutine generates uniformly distributed random numbers.

Utility Subroutines perform general service functions, rather than mathematical computations.

## ESSL for AIX and ESSL/370 Subroutines

The ESSL for AIX and ESSL/370 mathematical subroutines cover the following areas:

- Linear Algebra Subprograms
- Matrix Operations
- Linear Algebraic Equations
- Eigensystem Analysis
- Fourier Transforms, Convolutions and Correlations, and Related Computations
- Sorting and Searching
- Interpolation
- Numerical Quadrature
- Random Number Generation
- ESSL/370 Parallel Processing
- Utilities

Several versions of most subroutines are provided, depending on the type of data you are processing. These may include a short- and long-precision real version, a short- and long-precision complex version, and an integer version.

Linear Algebra Subprograms consist of vector-scalar, sparse vector-scalar, matrix-vector, and sparse matrix-vector linear algebra subprograms.

- Vector-Scalar Linear Algebra Subprograms include a subset of the standard set of Level 1 BLAS and subroutines for other commonly used computations. Both real and complex versions of the subprograms are provided.
- Sparse Vector-Scalar Linear Algebra Subprograms operate on sparse vectors; only the nonzero elements of the vectors need to be stored. These subprograms provide functions similar to those of the vector-scalar subprograms and represent a subset of the sparse extensions to the Level 1 BLAS. Both real and complex versions of the subprograms are provided.
- Matrix-Vector Linear Algebra Subprograms operate on a higher-level data structure, matrix-vector rather than vector-scalar, using optimized algorithms to improve performance. These subprograms represent a subset of the Level 2 BLAS. Both real and complex versions of the subprograms are provided.
- Sparse Matrix-Vector Linear Algebra Subprograms operate on sparse matrices; only the nonzero elements of the matrix need to be stored. These subprograms provide functions similar to those of the matrix-vector subprograms.

Matrix Operations Subroutines include Level 3 BLAS, as well as the commonly used matrix operations: addition, subtraction, multiplication, and transposition.

Linear Algebraic Equations Subroutines consist of dense, banded, sparse, and linear least squares subroutines.

- Dense Linear Algebraic Equations Subroutines provide solutions to linear systems of equations for real and complex general matrices and their transposes, positive definite real symmetric and complex Hermitian matrices, and triangular matrices. Some of these subroutines correspond to the Level 2 and Level 3 BLAS.
- Banded Linear Algebraic Equations Subroutines provide solutions to linear systems of equations for real general band matrices, real positive definite symmetric band matrices, real or complex general tridiagonal matrices, real positive definite symmetric tridiagonal matrices, and real or complex triangular band matrices.
- Sparse Linear Algebraic Equations Subroutines provide direct and iterative solutions to linear systems of equations, both for general sparse matrices and their transposes and for sparse symmetric matrices.
- Linear Least Squares Subroutines provide least squares solutions to linear systems of equations for real general matrices. Two methods are provided: one that uses a singular value decomposition and another that uses a QR decomposition with column pivoting.

Eigensystem Analysis Subroutines provide solutions to the algebraic eigensystem analysis problem $\boldsymbol{A z}=w \boldsymbol{z}$ and the generalized eigensystem analysis problem $\boldsymbol{A z}=w \boldsymbol{Z z}$. These subroutines give you several options for computing eigenvalues or eigenvalues and eigenvectors.

## Fourier Transform, Convolution and Correlation, and Related Computation Subroutines are as follows:

- Fourier Transform Subroutines perform mixed-radix transforms in one, two, and three dimensions.
- Convolution and Correlation Subroutines offer a choice between Fourier methods or direct methods. The Fourier-method subroutines contain a high-performance mixed-radix capability. Also, several direct-method subroutines provide decimated output.
- Related Computation Subroutines can be used in general signal processing applications. They are similar to those provided on the IBM 3838 Array Processor; however, the ESSL subroutines generally solve a wider range of problems.

Sorting and Searching Subroutines operate on three types of data: integer, short-precision real, and long-precision real. The sorting subroutines perform a sort
with or without index designations. The searching subroutines perform either a binary or a sequential search.

Interpolation Subroutines provide capabilities for polynomial interpolation, local polynomial interpolation, and both one- and two-dimensional cubic spline interpolation.

Numerical Quadrature Subroutines provide one-dimensional methods for integrating a tabulated function and a user-supplied function over a finite, semi-infinite, or infinite region of integration by Gaussian quadrature methods. They also provide a two-dimensional quadrature capability within a rectangular boundary.

Random Number Generation Subroutines generate uniformly or normally distributed random numbers.

ESSL/370 Parallel Processing Subroutines enable you to run your application programs in a mainframe parallel processing environment. If you have multiple mainframe processors available, these subroutines may significantly improve your turnaround time.

Utility Subroutines perform general service functions, rather than mathematical computations.

## Parallel ESSL

The following sections describe key aspects of Parallel ESSL, as well as how to order it.

## Highlights of Parallel ESSL

- Parallel ESSL provides these run-time libraries:
- The Parallel ESSL SMP Library is provided for use with the Parallel ESSL message passing subroutines and the MPI threaded library. You may run single or multithreaded applications on all types of nodes; however, you cannot simultaneously call Parallel ESSL from multiple threads. Use this Parallel ESSL library if you are using both MPI and the Communications Low-level Application Programming Interface (LAPI). The SMP library is for use on RS/6000 POWER and PowerPC (for example, POWER3 SMP Thin, Wide, or High Nodes) processors.
- The Parallel ESSL Thread-Tolerant POWER2 Library is provided for use with the Parallel ESSL message passing subroutines and the MPI threaded library. You may run single or multithreaded applications on POWER2 nodes; however, you cannot simultaneously call Parallel ESSL from multiple threads. Use this library if you are using both MPI and the Communications Low-level Application Programming Interface (LAPI). The Thread-Tolerant POWER2 library is tuned for the RS/6000 POWER2 processors.
- The Parallel ESSL POWER Libraries are provided for use with the Parallel ESSL message passing and HPF subroutines, and the MPI signal handling library. The POWER libraries are tuned for the RS/6000 POWER and PowerPC processors.
- The Parallel ESSL POWER2 Libraries are provided for use with the Parallel ESSL message-passing and HPF subroutines, and the MPI signal handling library. The POWER2 libraries are tuned for the RS/6000 POWER2 processors.
- Parallel processing subroutines (distributed memory versions) provided in key math areas:
- Subset of Level 2 and Level 3 Parallel BLAS (PBLAS)
- Linear Algebraic Equations
- Subset of ScaLAPACK (dense and banded)
- Sparse subroutines and their utilities
- Subset of ScaLAPACK Eigensystem Analysis and Singular Value Analysis
- Fourier transforms
- Uniform random number generation

For a list of subroutines, refer to "Parallel ESSL Subroutines (Message Passing and HPF)" on page 31.

- Supports the IBM RS/6000 SP and clusters of IBM RS/6000 workstations
- Includes the Basic Linear Algebra Communication Subprograms (BLACS) which provides ease of use for message passing.
- Supports the SPMD programming model:
- Uses the ESSL subroutines for computations on each processor node
- Uses the Parallel Environment (PE) MPI signal handling or threaded libraries for communication:
- US—High Performance Switch, SP Switch
- IP—Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI), High Performance Switch, SP Switch
- Callable from application programs written in Fortran, C, C ++, and HPF.
- Provides an environment variable, PESSL_ERROR_SYNC, which allows you to disable error handling synchronization. This may allow you to improve the performance of production-level code.


## High Performance of Parallel ESSL

Performance has been the primary objective in the design of the Parallel ESSL subroutines. To achieve this performance goal, the Parallel ESSL subroutines use state-of-the-art algorithms tailored to specific operational characteristics of the hardware. In addition, Parallel ESSL leverages the high performance provided by ESSL, for processor computations.

## Choosing a Parallel ESSL Library

The Parallel ESSL library you may use depends on:

1. Your choice of MPI library.
2. The type of nodes you are running on.

The MPI library you choose, is dependent upon the following:

- If you are using the Parallel ESSL message-passing subroutines, you may use either the MPI signal handling library or the MPI threaded library.
- If you are an HPF user, you may only use the MPI signal handling library.
- If you are using LAPI, you may only use the MPI threaded library.


## XL HPF and Parallel ESSL

XL HPF allows you to easily develop parallel software using the SPMD programming model. The XL HPF compiler, guided by HPF directives in your source code, handles the distribution of data and communication between programs on multiple processes. The HPF directives make developing an HPF program that calls Parallel ESSL easier than developing a message passing program that calls Parallel ESSL. However, the performance obtained when using a Parallel ESSL HPF subroutine is less than that obtained when using a Parallel ESSL message passing subroutine because there is a certain amount of overhead involved in supporting the extrinsic hpf_local interface.

Because the XL HPF compiler only supports CYCLIC(N) in the interface blocks for extrinsic hpf_local subroutines, a redistribution of data occurs whenever a Level 3

PBLAS, Dense Linear Algebraic Equations, Eigensystem Analysis or Singular Value Analysis subroutine is called. Also, data may be copied locally because the extrinsic hpf_local subroutines require the use of assumed-shape arrays while the Parallel ESSL message passing subroutines use assumed-size arrays.

## Parallel ESSL Techniques

The following techniques are used by most subroutines to optimize performance:

- Minimizing the impact of communications by exchanging larger blocks of data
- Blocking data to match the processor cache size

The design of Parallel ESSL gives you the ability to directly influence performance through the selection of process grid size and block sizes for the distribution of data. While developing and tuning your applications you can select the optimum parameters to suit your problem size. Guidelines for optimum performance and tuning tips are described below:

- Number and types of processors (such as, POWER Thin, POWER2 Thin, POWER3 Wide, POWER Wide)
Choosing the number of processors depends primarily on the problem size. It is reasonable to increase the number of processors, if the global problem size increases sufficiently to keep the amount of local data per process at a reasonable size. If, however, using more processes, such as 17 rather than 16, causes you to use a one-dimensional grid rather than a two-dimensional grid, performance may be degraded. See the next item.
- Shape of process grid

For most subroutines, using a two dimensional (square or as close to square as possible) grid is suggested. For example, if sixteen processors were used, define a 4 by 4 process grid. For exceptions to this rule, see the subroutine descriptions in the reference section of the Parallel ESSL Version 2 Guide and Reference.

- Block size(s) in the Message Passing subroutines

The optimal block size in your message passing program depends on the underlying node computations, load balancing, communications, system buffering requirements, problem size, and dimension and shape of the process grid.

- PESSL_HPF module for the HPF subroutines

For all HPF subroutines, except GEBRD, data directives are included in the interface module PESSL_HPF; therefore, you can specify any data distribution for your vectors, matrices, and sequences, because the XL HPF compiler will, if necessary, redistribute the data prior to calling the HPF Parallel ESSL subroutine. Data directives for GEBRD cannot be included in the PESSL_HPF module, because the alignment requirements for some of the vectors depend on the size of the matrix.

When using cyclic distribution in your HPF program, you can only specify CYCLIC(1) data distributions. However, the performance of the Level 3 PBLAS, Dense Linear Algebraic Equations, and Eigensystems Analysis and Singular Value Analysis subroutines is improved if a CYCLIC(N) data distribution is used. To accomplish this, PESSL_HPF contains CYCLIC(N) data directives for a two-dimensional process grid in the interface for these subroutines.

There are CYCLIC(1) directives for a two-dimensional process grid in the interfaces in PESSL_HPF for the Level 2 PBLAS.
There are BLOCK data directives for a one-dimensional process grid in the interfaces in PESSL_HPF for the Banded Linear Algebraic Equations, Fourier transform and Random Number Generation subroutines.

For more information about the Parallel ESSL HPF module, see the Parallel ESSL Version 2 Guide and Reference.

- If you are using the MPI threaded library for a single message-passing thread, specify MP_SINGLE_THREAD=yes to minimize thread overhead.
- You should be able to improve performance of production-level code by using the PESSL_ERROR_SYNC environment variable to disable error synchronization.

The choices made from the above list generally depend on the specific parallel routine being called. For specific performance information, see the Parallel ESSL home page at:
http://www.rs6000.ibm.com/software/sp_products/essipara.html.

## Informative Error Handling in Parallel ESSL

Parallel ESSL features informative and flexible error handling. Exception handling is tailored to the type of error. The Parallel ESSL input-argument checking strategy exceeds the standards defined by existing subroutine library packages. Parallel ESSL checks the validity of the input arguments, and if any of these arguments are invalid, issues an appropriate error message. In addition, Parallel ESSL also provides increased useability by providing a single, comprehensive message when all processors detect the same input argument error.

## Migration Considerations

This section summarizes the impact of migrating to Parallel ESSL.
Migrating From Parallel ESSL Version 2.1.1 to Parallel ESSL 2.1.2: The format of the output from PDDTTRF and DTTRF has changed. Therefore, the factorization and solve must be performed using Parallel ESSL Version 2 Release 1.2.

Banded Linear Algebraic Equation subroutines PDPBSV, PDGTSV, PDDTSV and PDPTSV have been modified for the case where N is greater than zero and NRHS is zero so that the matrix is factored. Previously, this was a quick return condition and the matrix was not factored. For all other subroutines, no changes to your application programs are required if you are migrating from Parallel ESSL Version 2 Release 1.1 to Parallel ESSL Version 2 Release 1.2.

Migrating From Parallel ESSL Version 2 to Parallel ESSL 2.1.1: The calling sequences for the subroutines in Parallel ESSL Version 2 Release 1 and Parallel ESSL Version 2 Release 1.1 products are identical.

Parallel ESSL provides distinct libraries for AIX 4.2.1 and AIX 4.3.2:

- For AIX 4.2.1, the Parallel ESSL Thread-Tolerant POWER2 Library and the Parallel ESSL SMP Library were built using the pthreads draft 7 supplied on AIX 4.2.1. This is the same as Parallel ESSL 2.1.
- For AIX 4.3.2, the Parallel ESSL Thread-Tolerant POWER2 Library and the Parallel ESSL SMP Library were built using the pthreads library that conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.

Applications built using Parallel ESSL 2.1 will continue to run with Parallel ESSL 2.1.1.

## Migrating From Parallel ESSL Version 1 to Parallel ESSL Version 2: All

 application programs previously migrated to accommodate the new array descriptor, can run unchanged with Parallel ESSL Version 2 Release 1. However, if you were dependent upon the PESSL_DESC_TYPE environment variable, you must change the array descriptors as defined in the Parallel ESSL Version 2 Guide and Reference.Subroutines with the option of dynamic allocation have been updated to be consistent with ScaLAPACK 1.5. You do not need to update your application programs unless you choose to exploit the new capability. For more information, see the Parallel ESSL Version 2 Guide and Reference.

The message-passing and HPF tridiagonal subroutines have been updated to be consistent with ScaLAPACK 1.5. If Parallel ESSL detects a computational error, the value returned in info is the process number where the error occurred. Previously, the index of the pivot where the matrix failed was returned in info. For the message-passing tridiagonal subroutines, the scope of info is now global. You do not have to make any modifications to your existing programs that call these subroutines. For more information, see the appropriate subroutine descriptions in the Parallel ESSL Version 2 Guide and Reference.

Migrating from ScaLAPACK 1.5 to Parallel ESSL Version 2.1.2: If you are currently using the ScaLAPACK 1.5 offerings from the Oak Ridge National Laboratory, Parallel ESSL Version 2.1.2 uses compatible calling sequences with this version of ScaLAPACK. For details, see the Parallel ESSL Version 2 Guide and Reference.

Migrating from a Commercial Parallel Library to Parallel ESSL: Migrating from a commercial parallel library, such as CMSSL, requires at least a partial, if not substantial, redesign of the application.

Where to find Details on Migration: Complete details on migration are given in the "Migrating Your Programs" chapter in the Parallel ESSL Guide and Reference.

## Product Requirements

This section describes the hardware, operating systems, and software products you need when using Parallel ESSL.

## Hardware for Parallel ESSL

Parallel ESSL runs on IBM RS/6000 SP and clusters of RS/6000 workstations supported by the operating systems listed under "Operating Systems for Parallel ESSL" on page 16.

## Operating Systems for Parallel ESSL

Parallel ESSL for AIX is supported in the following operating system environments:

- AIX Version 4.2.1 or later modification levels of AIX Version 4.2 (program number 5765-655 or 5765-C34)

On the SP, you also need the following along with AIX:

- Parallel System Support Programs (PSSP) for AIX, Version 2.3 or later modification levels (program number 5765-529)
- Any additional AIX 4.2.1 PTFs required for running on the SP
- AIX Version 4.3.2 or later modification levels of AIX Version 4.3 (program number 5765-C34)
On the SP, you also need the following along with AIX:
- PSSP for AIX, Version 3.1 or later modification levels (program number 5765-D51)
- Any additional AIX 4.3.2 PTFs required for running on the SP

Software Products Required for Parallel ESSL
Parallel ESSL runs with the software products shown in Table 1.
ESSL for AIX must be ordered separately.

Table 1 (Page 1 of 2). Software Products Required for Use with Parallel ESSL

| For Compiling | For Linking, Loading, or Running |
| :---: | :---: |
| XL Fortran for AIX, Version 5.1.1 or later (program number 5808-AAR part number 04L2110) -or- <br> IBM C, C++ compilers Version 3.6.41 -or- <br> C for AIX, Version 4.4 or later (program number 5765-C64 with part number 31L0497 with feature 0002) | XL Fortran Run-time Environment for AIX, Version <br> 5.1.1 or later (program number 5808-AAR part number 04L2123) -or- <br> XL High Performance Fortran Run-time Environment for AIX, Version 1.3.1 or later (program number 5765-612) -and- <br> Parallel Environment for AIX, Version 2.4 or later (program number 5765-543) on AIX 4.3.2 -or- <br> Parallel Environment for AIX, Version 2.3 (program number 5765-543 and APAR IX72055) on AIX 4.2.1 -and- <br> ESSL for AIX, Version 3.1 .2 (program number 5765-C42) -and- <br> C libraries² |
| XL High Performance Fortran for AIX, Version 1.3.1 or later (program number 5765-613)3,4 | XL High Performance Fortran Run-Time Environment for AIX, Version 1.3.1 or later (program number 5765-612) ${ }^{1}$-and- <br> Parallel Environment for AIX, Version 2.4 or later (program number 5765-543) on AIX 4.3.2 -or- <br> Parallel Environment for AIX, Version 2.3 (program number 5765-543 and APAR IX72055) on AIX 4.2.1 -and- <br> ESSL for AIX, Version 3.1 .2 (program number 5765-C42) -and- <br> C libraries ${ }^{2}$ |

Table 1 (Page 2 of 2). Software Products Required for Use with Parallel ESSL

| For Compiling | For Linking, Loading, or Running |
| :--- | :--- |
| 1 Available as a component of the VisualAge C ++ Professional for AIX, Version 4, product. If using Parallel |  |
| Environment 2.3 commands to compile with C++ Version 3.6, PE requires APAR IX76163. |  |
| 2 AIX includes the C libraries and math libraries in the Application Development Toolkit. |  |
| 3 XL HPF for AIX is only needed when you call Parallel ESSL HPF subroutines. |  |
| 4 If using Parallel Environment 2.3 commands to compile non-HPF programs with XL HPF, PE requires APAR |  |
| IX80634. |  |

## Thread Safety

Parallel ESSL is not thread safe; however, Parallel ESSL is thread-tolerant and can therefore be called from a single thread of a multithreaded application. Multiple simultaneous calls to Parallel ESSL from different threads of a single process causes unpredictable results.

For more information on thread programming concepts, see the IBM AIX Version 4 General Programming Concepts: Writing and Debugging Programs.

## Installation and Customization Requirements

Parallel ESSL is distributed on an 4-millimeter cartridge or a 8-millimeter cartridge. The Parallel ESSL Version 2 Installation Memo, Gl10-0607 provides the detailed information you need to install Parallel ESSL on AIX.

The Parallel ESSL product is packaged in accordance with the AIX guidelines. The product can be installed using the smit command, as described in the IBM Parallel System Support Programs for AIX: Administration Guide. The product can be installed on multiple nodes using the dsh command, as described in the IBM Parallel System Support Programs for AIX: Administration Guide and the installp command, as described in the IBM AIX Version 4 Commands Reference.

## Online Documentation Requirements

The Parallel ESSL Version 2 Guide and Reference is available in PostScript and HTML on the product media.

To view the online publications shipped on the product media, you need the following:

- Access to a common HTML document browser (such as Netscape Navigator).
- The location of the HTML index file provided with the file sets. Contact your system administrator or installer for this location.

The Parallel ESSL Guide and Reference Version 2 is available in PDF and HTML format at the IBM RS/6000 Web site at:
http://www.rs6000.ibm.com/resource/aix_resource/sp_books.

To view the Parallel ESSL PDF publication, you need to access the Adobe Acrobat Reader 3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely available for downloading from th Adobe Web site at:
http://www.adobe.com

## Ordering Parallel ESSL

You can order Parallel ESSL from your IBM Marketing Representative, or by:

- calling 1-800-IBM-CALL (1-800-426-2255)
- using the IBM Web site at:
http://www.ibm.com/shop/
Ask for:
- IBM Parallel Engineering and Scientific Subroutine Library for AIX (program number 5765-C41)


## Parallel ESSL Product Package

The Parallel ESSL package provides:

- Parallel ESSL libraries
- Parallel ESSL header file for C and C++
- Parallel ESSL modules
- Installation Verification Programs
- Parallel ESSL Documentation
- Softcopy:
- Parallel ESSL Version 2 Guide and Reference, HTML files.
- Print-on-Demand:
- Parallel ESSL Version 2 Guide and Reference, PostScript file.
- Printed:
- Parallel ESSL Version 2 Licensed Information, GA22-7303
- Parallel ESSL Proof of Entitlement
- Parallel ESSL Version 2 Installation Memo, Gl10-0607
- Parallel ESSL Memo to New Users, Gl10-0606

The printed publication of the Parallel ESSL Version 2 Guide and Reference, SA22-7273, is not automatically shipped with your product order. To order this publication:

- Use feature number 7008 to obtain a free initial copy.
- Use feature number 8025 to obtain additional copies for a fee.


## ESSL for AIX

The following sections describe key aspects of the ESSL for AIX product, as well as how to order it.

## Highlights of ESSL for AIX

- ESSL provides these run-time libraries:
- The ESSL SMP Library provides thread-safe versions of the ESSL subroutines for use on the RS/6000 SMP (for example, 604e or 630) processors. In addition, a subset of these subroutines are multithreaded versions; that is, they support the shared memory parallel processing programming model. You do not have to change your existing application programs that call ESSL to take advantage of the increased performance of the SMP processors. You can simply re-link your existing application programs. For a list of the multithreaded subroutines in the ESSL SMP Library, see the ESSL Version 3 Guide and Reference.
- The ESSL Thread-Safe Library provides thread-safe versions of the ESSL subroutines for use on all RS/6000 processors. You may use this library to develop your own multithreaded applications.
- The ESSL Thread-Safe POWER2 Library provides thread-safe versions of the ESSL subroutines tuned for the RS/6000 POWER2 uniprocessors. You may use this library to develop your own multithreaded applications.
- The ESSL POWER Library is tuned for the RS/6000 POWER, POWER3, and PowerPC uniprocessors.
- The ESSL POWER2 Library is tuned for the RS/6000 POWER2 uniprocessors.

All libraries are designed to provide high levels of performance for numerically intensive computing jobs on these respective processors. All versions provide mathematically equivalent results.

The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP Library support both 32-bit environment and 64-bit environment applications. For complete details, see the ESSL Guide and Reference Version 3 Release 1.1, available on the RS/6000 Web site.

- Callable from Fortran, C, C++, and PL/I programs.
- For a list of ESSL subroutines see "ESSL for AIX Subroutines" on page 37.


## High Performance of ESSL for AIX

Algorithms: The ESSL subroutines have been designed to provide high performance. To achieve this performance, the subroutines use state-of-the-art algorithms tailored to specific operational characteristics of the hardware, such as cache size, Translation Lookaside Buffer (TLB) size, and page size.

Most subroutines use the following techniques to optimize performance:

- Managing the cache and TLB efficiently so the hit ratios are maximized; that is, data is blocked so it stays in the cache or TLB for its computation.
- Accessing data stored contiguously-that is, using stride-1 computations.
- Exploiting the large number of available floating-point registers.
- Using algorithms that minimize paging.
- On the PowerPC SMP processor:
- The ESSL SMP Library is designed to exploit the processing power and shared memory of the SMP processor. In addition, a subset of the ESSL SMP subroutines have been coded to take advantage of increased performance from multithreaded (parallel) programming techniques. For a list of the multithreaded subroutines in the ESSL SMP Library, see the ESSL Version 3 Guide and Reference. Many of the other ESSL SMP subroutines make one or more calls to multithreaded subroutines, and also benefit from increased performance.
- Choosing the number of threads depends on the problem size, the specific subroutine being called, and the number of physical processors you are running on. To achieve optimal performance, experimentation is necessary; however, picking the number of threads equal to the number of online processors generally provides good performance in most cases. In a some cases, performance may increase if you choose the number of threads to be less than the number of online processors.
You should use the the XL Fortran XLSMPOPTS environment variable to specify the number of threads you want to create.
- On the POWER processor:
- Using algorithms that balance floating-point operations with loads in the innermost loop.
- Using algorithms that minimize stores in the innermost loops.
- Structuring the ESSL subroutines so, where applicable, the compiled code uses the Multiply-Add instructions. Neglecting overhead, these instructions perform two floating-point operations per cycle.
- On the POWER3 processor:
- Structuring the ESSL subroutines so, where applicable, the compiled code fully utilizes the dual floating-point execution units. Because two Multiply-Add instructions can be executed each cycle, neglecting overhead, this allows four floating-point operations per cycle to be performed.
- Structuring the ESSL subroutines so, where applicable, the compiled code takes full advantage of the hardware data prefetching.
- On the POWER2 processor:
- Structuring the ESSL subroutines so, where applicable, the compiled code fully utilizes the dual fixed-point and floating-point execution units. Because two Multiply-Add instructions can be executed each cycle, neglecting overhead, this allows four floating-point operations per cycle to be performed.
- Structuring the ESSL subroutines so, where applicable, the compiled code uses the POWER2 Load and Store Floating Point Quad instructions. For example, in one cycle, two Load Floating Point Quad instructions can be
executed. Neglecting overhead, this allows four doublewords to be loaded per cycle.


#### Abstract

Mathematical Techniques: All areas of ESSL use state-of-the-art mathematical techniques to achieve high performance. For example, the matrix-vector linear algebra subprograms operate on a higher-level data structure, matrix-vector rather than vector-scalar. As a result, they optimize performance directly for your program and indirectly through those ESSL subroutines using them.


For specific performance information, see the ESSL home page at:
http://www.rs6000.ibm.com/software/Apps/essl.html.

## Migration Considerations

This section summarizes the impact of migrating to ESSL.
Migrating From ESSL Version 3 Release 1.1 to ESSL Version 3 Release 1.2: The calling sequences for the subroutines in the ESSL Version 3 Release 1.1 and the ESSL Version 3 Release 1.2 product are identical. No changes to your application programs are required if you are migrating from ESSL Version 3 Release 1.1 to Essl Version 3 Release 1.2.

Migrating From ESSL Version 3 to ESSL Version 3 Release 1.1: The calling sequences for the subroutines in the ESSL Version 3 Release 1 and the ESSL Version 3 Release 1.1 product are identical.

Distinct Libraries are provided provided for AIX 4.2.1 and AIX 4.3.2:

- For AIX 4.2.1, the ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2 Library, and the ESSL SMP Library were built using the pthreads draft 7 supplied on AIX 4.2.1. This is the same as ESSL 3.1.
- For AIX 4.3.1, the ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2 Library, and the ESSL SMP Library were built using the pthreads library that conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.

Applications built using ESSL 3.1 will continue to run with ESSL 3.1.1.
If you are migrating to a 64-bit environment you may need to make changes to your calls to ERRSET.

Migrating From ESSL Version 2 to ESSL Version 3: The calling sequences for the subroutines in the ESSL Version 2 and ESSL Version 3 product are identical. This includes the new ESSL SMP and Thread-Safe Libraries that are included in the ESSL Version 3 product. You do not have to change your existing application programs that call ESSL when migrating to the ESSL Version 3 product. You must, however, re-link your application program.

ESSL messages have been reformatted and are now in a message catalog. Some input-argument and computational error message numbers were changed to attention message numbers. The old message numbers can still be used when
calling ERRSET, however, you should migrate to the new message numbers. For details, see the ESSL Version 3 Guide and Reference. For the _GEF and _GEFCD subroutines, the first column of the matrix $L$ with the corresponding $\boldsymbol{U}_{\mathrm{ii}}=0$ diagonal element is identified in a computational error message. Previously, the last column was identified. You do not have to make any modifications to your existing application programs that call these subroutines.

Migrating from LAPACK: ESSL contains a few subroutines that conform to the LAPACK interface, see Appendix B in the ESSL Version 3 Guide and Reference. If you are using these subroutines, no coding changes are needed to migrate to ESSL.

Additionally, you may be interested in using the Call Conversion Interface (CCI) that is available with LAPACK. The CCI substitutes a call to an ESSL subroutine in place of an LAPACK subroutine whenever an ESSL subroutine provides either functional or near-functional equivalence. Using the CCI allows LAPACK users to obtain the optimized performance of ESSL for an additional subset of LAPACK subroutines. For details, see Call Conversion Interface (CCI) for LAPACK/ESSL, LAPACK Working Note 82, Department of Computer Science University of Tennessee, Knoxville, Tennessee. (You can download this document from: http://www.netlib.org/lapack/lawns/lawn82.ps.)

Migrating Between ESSL/370 and ESSL Version 3: The ESSL calling sequences are predominantly compatible with the ESSL/370 calling sequences; therefore, most ESSL mainframe application programs can be easily ported to and from the IBM RS/6000 system.

Where to Find Details on Migration: Complete details on migration are given in the "Migrating Your Programs" chapter of the ESSL Version 3 Guide and Reference manual.

## Product Requirements

This section describes the hardware and and software products you need when using ESSL.

## Hardware for ESSL

ESSL runs on the IBM RS/6000 processors supported by the AIX operating systems listed under "Operating Systems for ESSL."

64-bit applications require 64-bit hardware.

## Operating Systems for ESSL

ESSL is supported in the following operating system environments:

- AIX Version 4.2.1 or later modification levels of AIX Version 4.2 (product number 5765-655 or 5765-C34)
- AIX Version 4.3.2 or later modification levels (product number 5765-C34)


## Software Products Required for ESSL

ESSL runs with the software products shown below.

| Table 2. Software Products Required for Use with ESSL |  |
| :--- | :--- |
| For Compiling | For Linking, Loading, or Running |
| XL Fortran for AIX, Version 5.1.1 or later (program | XL Fortran Run-Time Environment for AIX, Version |
| number 5808-AAR part number 04L2110) -or- | 5.1 .1 or later (program number 5808-AAR part number |
| XL High Performance Fortran for AIX, Version 1.3.1 or | 04L2123) -or- |
| later (program number 5765-613) -or- | XL High Performance Fortran Run-Time Environment |
| IBM C, C++ compilers Version 3.6.41 -or- | for AIX, Version 1.3.1 or later (program number |
| C for AIX, Version 4.4 or later (program number | $5765-612$ - -and- |
| 5765-C64 part number 31Lo497 with feature number | C libraries² |
| 0002) -or- |  |
| PL/I Set for AIX, Version 1.1 or later (program number |  |
| $5765-549$ ) |  |
| 1 Available as a component of the VisualAge C ++ Professional for AIX, Version 4, product. |  |
| 2 The AIX Version 4 product includes the C libraries and math libraries in the Application Development Toolkit. |  |

## Thread Safety

ESSL provides thread-safe versions of the ESSL subroutines for use on all RS/6000 processors. For more information, see the ESSL Version 3 Guide and Reference.

For more information on thread programming concepts, see the IBM AIX Version 4 General Programming Concepts: Writing and Debugging Programs.

## Installation and Customization Requirements

ESSL: The ESSL licensed program is distributed on a 4-millimeter or an 8-millimeter cartridge. The ESSL Version 3 Installation Memo, Gl10-0604, provides the detailed information you need to install ESSL on AIX.

The ESSL product is packaged in accordance to the AIX guidelines, as described in the IBM AIX Version 4 General Programming Concepts: Writing and Debugging Programs. The product can be installed using the smit command, as described in the IBM AIX Version 4 System Management Guide: Operating System and Devices,.

## Online Documentation Requirements

The ESSL Version 3 Guide and Reference is available in PostScript and HTML on the product media.

To view the online publications shipped on the product media, you need the following:

- Access to a common HTML document browser (such as Netscape Navigator).
- The location of the HTML index file provided with the file sets. Contact your system administrator or installer for this location.

The ESSL Guide and Reference Version 3 is available in PDF and HTML format at the IBM RS/6000 Web site at:
http://www.rs6000.ibm.com/resource/aix_resource/sp_books.
To view the ESSL PDF publication, you need to access the Adobe Acrobat Reader 3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely available for downloading from th Adobe Web site at:
http://www.adobe.com

## Ordering ESSL for AIX

You can order ESSL from your IBM Marketing Representative, or by:

- calling 1-800-IBM-CALL (1-800-426-2255)
- using the IBM Web site at:
http://www.ibm.com/shop/
Ask for the ESSL product:
- IBM Engineering and Scientific Subroutine Library for AIX (program number 5765-C42)


## ESSL Product Package

## Each ESSL product package provides:

- ESSL libraries
- ESSL header file for $C$ and $C++$
- ESSL modules
- Installation Verification Programs
- ESSL for AIX Documentation
- Softcopy:
- ESSL Version 3 Guide and Reference, HTML files.
- Print-on-Demand:
- ESSL Version 3 Guide and Reference, SA22-7272, PostScript file.
- Printed:
- ESSL Version 3 Licensed Information, GA22-7302
- ESSL Proof of Entitlement
- ESSL Version 3 Installation Memo, Gl10-0604
- ESSL Memo to New User's, Gl10-0603

The printed publication of the ESSL Version 3 Guide and Reference is not automatically shipped with your product order. To order this publication:

- Use feature number 7013 to obtain a free initial copy.
- Use feature number 8032 to obtain additional copies for a fee.


## ESSL/370

The following sections describe key aspects of the ESSL/370 product, as well as how to order it.

## Highlights for ESSL/370

- Provides both vector and scalar versions of all subroutines, including eight parallel processing subroutines:
- ESSL/370 Vector Library provides high levels of performance for numerically intensive computing jobs on the IBM ES/3090 and ES/9000 Vector Facilities
- ESSL/370 Scalar Library supports numerically intensive computing jobs running on System/370 and System/390 scalar processors
- ESSL/370 runs under the MVS and VM/ESA operating systems.
- ESSL/370 subroutines can be called from applications written in Fortran, C, PL/I, APL2, and System/370 assembler language.
- The online version of the ESSL Version 2 Guide Reference contains most of the information in the ESSL Version 2 Guide Reference, SC23-0526 manual. For ESSL/370, the online book is provided as a BookManager book, available on the IBM Online Library Omnibus Editions for MVS, Virtual Machine (VM), and OS/390.
- For a list of subroutines, refer to "ESSL for AIX Subroutines" on page 37.


## High Performance of ESSL/370

Algorithms: The ESSL/370 vector subroutines have been designed to provide high performance. To achieve this performance, the vector subroutines use state-of-the-art algorithms tailored to specific operational characteristics of the hardware, such as cache size, vector section size, number of vector registers available, page size, and Translation Lookaside Buffer (TLB) size.

Most subroutines use the following techniques to optimize performance:

- Managing (multilevel) cache and TLB efficiently so the hit ratios are maximized; that is, data is blocked so it stays in the cache or TLB for its computation.
- Accessing data stored contiguously-that is, using stride-1 computations for both real and complex arithmetic.
- Performing operations using vector registers, minimizing loads and stores.
- Sectioning array data into blocks of optimal size for the vector section size.
- Performing fewer load and store operations for short-precision data by using long-precision instructions.
- Using algorithms that minimize paging.

The ESSL/370 parallel processing subroutines have also been designed to provide faster processing, making the best possible use of the number of processors available. To achieve this performance, the parallel processing subroutines use algorithms tailored to each parallel processing environment.

Machine Instructions: Most of the key ESSL/370 subroutines are implemented in System/370 assembler language, using the most efficient machine instructions. These instructions allow the algorithms to be fine tuned to achieve very high performance on the Vector Facility. For example, wherever possible, ESSL/370 chooses those machine instructions that double the floating-point operation rate. These instructions, neglecting overhead, perform two floating-point operations per cycle.

Mathematical Techniques: All areas of ESSL/370 use state-of-the-art mathematical techniques to achieve high performance. For example, the matrix-vector linear algebra subprograms operate on a higher-level data structure, matrix-vector rather than vector-scalar. As a result, they optimize performance directly for your program and indirectly through those ESSL/370 subroutines using them.

## Migration Considerations

This section summarizes the impact of migrating from the previous release of ESSL to the new release. It also tells where to find detailed information.

From ESSL Version 2 Release 1 to ESSL Version 2 Release 2: Most application programs that run using ESSL Version 2 Release 1 can be run unchanged with ESSL Version 2 Release 2.

Where to Find Details on Migration: Complete details on migration are given in the following sections in the ESSL Version 2 Guide Reference manual, SC23-0526, which is provided with the ESSL product package:

- New and changed items for the new release are listed in the "What's New for This Release" section.
- Details on updates to your application programs for the new release are described in the "Migrating Your Program" chapter.
- Migration information from all previous editions of the ESSL Version 2 Guide Reference manual, SC23-0526, is accumulated in "Appendix C."


## Product Requirements

This section describes the hardware, operating systems, and software products you need when using ESSL/370.

## Hardware for ESSL/370

ESSL/370 runs on the mainframe processors supported by the operating systems listed under "Operating Systems for ESSL/370." The ESSL/370 Vector Library subroutines require that the Vector Facility be installed. The ESSL/370 Scalar Library subroutines run on any IBM System/370 or System/390 processor.

## Operating Systems for ESSL/370

The ESSL/370 Vector Library is supported in the following operating system environments:

- MVS/ESA*: MVS/SP Version 5.1 .0 or later (JES2: program number 5655-068)
- MVS/ESA MVS/SP Version 4.1.0 or later (JES3: program number 5695-048 or JES2: program number 5695-047)
- MVS/ESA: MVS/SP Version 3.1.0 or later (JES3: program number 5685-002 or JES2: program number 5685-001)
- MVS/XA*: MVS/SP Version 2.2.1 or later (JES3: program number 5665-291) or Version 2.2.0 or later (JES2: program number 5740-XC6)
- VM/ESA (program number 5684-112) Version 1.1.1 or later, plus applicable PTFs for VM/ESA, listed in the Engineering and Scientific Subroutine Library Version 2 Program Directory for use with VM.

The ESSL/370 Scalar Library is supported in the same environments as the ESSL/370 Vector Library, listed above, in addition to:

- VM/ESA (program number 5684-112) Version 1.1.5 370 Feature, plus applicable PTFs for VM/ESA, listed in the Engineering and Scientific Subroutine Library Version 2 Program Directory for use with VM.


## Software Products Required for ESSL/370

The ESSL/370 Vector Library and Scalar Library subroutines run with the software products shown below.

| Table 3 (Page 1 of 2). Software Products Required for Use with ESSL/370 |  |
| :--- | :--- |
| For Compiling, Assembling, or Interpreting |  |
| MVS and VM Operating Systems |  |
| VS FORTRAN Version 2.1 or later (program number | VS FORTRAN Version 2.5 Library or later (program |
| 5668-806 or 5688-087) -or- | number 5668-805, 5668-806, or 5688-087)1 |
| VS FORTRAN Version 1.3 or later (program number |  |
| 5748-F03) -or- |  |
| IBM High Level Assembler/MVS \& VM \& Virtual |  |
| Storage Extended (VSE) Release 1 or later (program |  |
| number 5696-234) |  |
| AD/Cycle* C/370 Compiler Version 1.2 (program | IBM C/370 Version 2.2 Library (program number |
| number 5688-216) | 5688-188) -and- |
|  | VS FORTRAN Version 2.5 Library or later (program |
|  | number 5668-805, 5668-806, or 5688-087)3 |


| For Compiling, Assembling, or Interpreting | For Linking, Loading, or Running |
| :---: | :---: |
| OS PL/I Compiler Version 2.2 or later (program number 5668-909 or 5668-910) | OS PL/I Version 2.2 Library or later (program number 5668-909, 5668-910, or 5668-911) -and- <br> VS FORTRAN Version 2.5 Library or later (program number 5668-805, 5668-806, or 5688-087) ${ }^{3}$ |
| APL2 Version 1.3 (program number 5668-899)2 ${ }^{2}$-orAPL2 Version 2.1 (program number 5688-228)² | VS FORTRAN Version 2.5 Library or later (program number 5668-805, 5668-806, or 5688-087) |
| 1 In this environment, the ESSL parallel subroutines use the VS FORTRAN Multitasking Facility (MTF) or the VS FORTRAN Parallel Feature (PF). <br> 2 The Numerical Quadrature subroutines (_GLNQ, _GLNQ2, _GLGQ, _GHMQ, and _GRAQ), the Parallel Processing subroutines, and the Utility Subroutine (EINFO) cannot be called from APL2 programs. <br> 3 In this environment, the ESSL parallel subroutines use the VS FORTRAN Multitasking Facility (MTF) on MVS and run in uniprocessing mode on VM. |  |

## Installation and Customization Requirements

The ESSL/370 licensed program is distributed on a 9-track magnetic tape (6250) or a 3480 cartridge. The Engineering and Scientific Subroutine Library Version 2 Program Directory for each operating system provides the detailed information you need to install ESSL/370.

The ESSL/370 MVS product is packaged in System Modification Program Extended (SMP/E) format and can be installed using SMP/E. The product is also available through the MVS Custom-Built Installation Process Offering (CBIPO).

The ESSL/370 VM product is installable using Virtual Machine Serviceability Enhancements Staged/Extended (VMSES/E). The product is also available through the VM/ESA system delivery offering (SDO). The product is installable on conversational monitor system (CMS) minidisks or CMS shared file systems (SFS).

For customization of ESSL/370 in the MVS and VM environments, an assembler is required.

## Online Documentation Requirements

If you have the following software product, along with the hardware to support it, you can view the online version of the ESSL Version 2 Guide Reference on your display:

- BookManager 2.1 READ product, installed on any of the operating systems supported by BookManager

For ESSL/370, the files for the BookManager book are available on the IBM Online Library Omnibus Editions listed in the next section. You must order at least one of the libraries, which you or your system support group installs. (See "Ordering ESSL/370" on page 29).

## Ordering ESSL/370

You can order ESSL/370, as well as an IBM Online Library Omnibus Edition, from your IBM Marketing Representative, or by:

- calling 1-800-IBM-CALL (1-800-426-2255)
- using the IBM Web site at:
http://www.ibm.com/shop/
Ask for the ESSL/370 product:
- IBM Engineering and Scientific Subroutine Library: Vector and Scalar/370 (program number 5688-226)


## ESSL/370 Product Package

Each ESSL/370 product package provides:

- ESSL libraries
- NAMES file for APL2
- ESSL header file for C
- ICA file
- IVPs
- ESSL/370 Documentation
- Softcopy:

For ESSL/370, the online version of the ESSL Version 2 Guide Reference is available as a BookManager book on the IBM Online Library Omnibus Editions listed below. The online version contains most of the information that is in the manual. Ask for the appropriate library:

- MVS: SK2T-0710 (CD-ROM)
- VM: SK2T-2067 (CD-ROM)
- OS/390: SK2T-6700 (CD-ROM)
- Printed:
- ESSL Version 2 Licensed Program Specifications, GC23-0528
- ESSL Version 2 Guide Reference, SC23-0526
- Engineering and Scientific Subroutine Library Version 2 Program Directory

Additional copies of the printed manuals can be ordered separately.

## Parallel ESSL Subroutines (Message Passing and HPF)

This chapter includes a complete list of the subroutines offered in Parallel ESSL.
The subroutines are grouped by mathematical area, where:
$\Phi \quad$ A capital phi indicates the subroutines that are new for Parallel ESSL Version 2 Release 1.2.

The message passing subroutine names are distinguished by a prefix based on the following letters:

P for Parallel ESSL message passing subroutines (first letter)
S for short-precision real
D for long-precision real
Z for long-precision complex

## Notes:

1. The message passing Level 2 PBLAS, Level 3 PBLAS, Dense and Banded Linear Algebraic Equations, and Eigensystem Analysis and Singular Value Analysis subroutines were designed in accordance with the proposed ScaLAPACK standard. If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.
2. The HPF PBLAS, Dense and Banded Linear Algebraic Equations, and Eigensystem Analysis and Singular Value Analysis subroutines were designed to be consistent with the proposals for the Fortran 90 BLAS and the Fortran 90 Linear Algebra Package (LAPACK). If these subroutines do not comply with any eventual proposal for HPF interfaces to the PBLAS and ScaLAPACK, IBM will consider updating them to do so. If IBM updates these subroutines, the update could require modifications of the calling application program.

Following is a complete list of the subroutines offered in Parallel ESSL.

## Level 2 PBLAS

| Matrix-Vector Product for a General Matrix or Its Transpose | PDGEMV <br>  <br>  <br> PZGEMV $\Phi$ |
| :--- | :--- |
| GEMM |  |


| Rank-Two Update of a Real Symmetric or a Complex | PDSYR2 <br> Hermitian Matrix <br>  <br> PZHER2 $\Phi$ |
| :--- | :--- |
| SYR2K* |  |

## Level 3 PBLAS

| Matrix-Matrix Product for a General Matrix or Its Transpose or Its Conjugate Transpose | PDGEMM PZGEMM GEMM |
| :---: | :---: |
| Matrix-Matrix Product Where One Matrix is Real Symmetric or Complex Hermitian | PDSYMM PZSYMM ${ }^{\Phi}$ PZHEMM ${ }^{\Phi}$ SYMM* |
| Triangular Matrix-Matrix Product | PDTRMM PZTRMM ${ }^{\Phi}$ TRMM* |
| Solution of Triangular System of Equations with Multiple Right-hand Sides | PDTRSM <br> PZTRSM ${ }^{\Phi}$ <br> TRSM* |
| Rank-K Update of a Real Symmetric or a Complex Hermitian Matrix | PDSYRK <br> PZSYRK ${ }^{\Phi}$ <br> PZHERK ${ }^{\Phi}$ <br> SYRK* |
| Rank-2K Update of a Real Symmetric or a Complex Hermitian Matrix | PDSYR2K <br> PZSYR2K ${ }^{\text { }}$ <br> PZHER2K ${ }^{\Phi}$ <br> SYR2K* |
| Matrix Transpose for a General Matrix | PDTRAN <br> PZTRANU $\Phi$ <br> PZTRANC ${ }^{\Phi}$ <br> TRAN* |

* Only long-precision real data types are supported.


## Linear Algebraic Equations

## Dense Linear Algebraic Equations

| General Matrix Factorization and Solve | PDGESV $\Phi$ |
| :--- | :--- |
| General Matrix Factorization | PZGESV $\Phi$ |
|  | PDGETRF |
|  | PZGETRF |
|  | GETRF |


| General Matrix Solve | PDGETRS |
| :--- | :--- |
|  | PZGETRS |
|  | GETRS |
| Positive Definite Real Symmetric or Complex Hermitian | PDPOSV $\Phi$ |
| Matrix Factorization and Solve | PZPOSV $\Phi$ |
| Positive Definite Real Symmetric or Complex Hermitian | PDPOTRF |
| Matrix Factorization | PZPOTRF |
|  | POTRF |
| Positive Definite Real Symmetric or Complex Hermitian | PDPOTRS |
| Matrix Solve | PZPOTRS |
|  | POTRS |

## Banded Linear Algebraic Equations

Positive Definite Symmetric Band Matrix Factorization and Solve

| Positive Definite Symmetric Band Matrix Factorization | PDPBTRF |
| :--- | :--- |
|  | PBTRF |


| Positive Definite Symmetric Band Matrix Solve | PDPBTRS |
| :--- | :--- |
|  | PBTRS |


| General Tridiagonal Matrix Factorization and Solve | PDGTSV |
| :--- | :--- |
|  | GTSV |


| General Tridiagonal Matrix Factorization | PDGTTRF |
| :--- | :--- |
|  | GTTRF |

General Tridiagonal Matrix Solve PDGTTRS
Diagonally-Dominant General Tridiagonal Matrix PDDTSV
Factorization and Solve DTSV

Diagonally-Dominant General Tridiagonal Matrix PDDTTRF Factorization
Diagonally-Dominant General Tridiagonal Matrix Solve

Positive Definite Symmetric Tridiagonal Matrix Factorization and Solve

Positive Definite Symmetric Tridiagonal Matrix Factorization
DTTRF
PDDTTRS DTTRS

PDPTSV
PTSV
PDPTTRF
PTTRF
Positive Definite Symmetric Tridiagonal Matrix Solve PDPTTRS
PTTRS

## Fortran 90 Sparse Linear Algebraic Equations and Utilities

| Allocates Space for an Array Descriptor for a General | PADALL |
| :--- | :--- |
| Sparse Matrix | PSPALL |
| Allocates Space for a General Sparse Matrix | PGEALL |
| Allocates Space for a Dense Vector | PSPINS |
| Inserts Local Data into a General Sparse Matrix | PGEINS |
| Inserts Local Data into a Dense Vector | PSPASB |
| Assembles a General Sparse Matrix | PGEASB |


| Preconditioner for a General Sparse Matrix | PSPGPR |
| :--- | :--- |
| Iterative Linear System Solver for a General Sparse Matrix | PSPGIS |
| Deallocates Space for a Dense Vector | PGEFREE |
| Deallocates Space for a General Sparse Matrix | PSPFREE |
| Deallocates Space for an Array Descriptor for a General <br> Sparse Matrix | PADFREE |

## Fortran 77 Sparse Linear Algebraic Equations and Utilities

Initializes an Array Descriptor for a General Sparse Matrix PADINIT
Initializes a General Sparse Matrix PDSPINIT
Inserts Local Data into a General Sparse Matrix PDSPINS
Assembles a General Sparse Matrix PDSPASB
Assembles a Dense Vector PDGEASB

Preconditioner for a General Sparse Matrix PDSPGPR
Iterative Linear System Solver for a General Sparse Matrix PDSPGIS

## Eigensystem Analysis and Singular Value Analysis

| Selected Eigenvalues and, Optionally, the Eigenvectors of a | PDSYEVX |
| :--- | :--- |
| Real Symmetric Matrix | SYEVX |
| Reduce a Real Symmetric Matrix to Tridiagonal Form | PDSYTRD <br> SYTRD |
| Reduce a General Matrix to Upper Hessenberg Form | PDGEHRD <br>  <br> Reduce a General Matrix to Bidiagonal Form |
|  | GEHRD |
|  | PDGEBRD |
| GEBRD |  |

## Fourier Transforms

| Complex Fourier Transform in Two | PSCFT2 | PDCFT2 | FFT |
| :--- | :--- | :--- | :--- |
| Dimensions |  |  |  |
| Real-to-Complex Fourier Transform in Two <br> Dimensions <br> Complex-to-Real Fourier Transform in Two <br> Dimensions <br> Complex Fourier Transform in Three | PSRCFT2 | PDRCFT2 | FFT |
| Dimensions <br> Real-to-Complex Fourier Transform in Three <br> Dimensions <br> Complex-to-Real Fourier Transform in Three | PSRCFT3 | PDCRFT2 | FFT |
| Dimensions | PSCRFT3 | PDCFT3 | FFT |

## Random Number Generation

Uniform Random Number Generator<br>PDURNG<br>URNG

## Utilities

Determine the Level of Parallel ESSL Installed on Your
System

| Compute the Number of Rows or Columns of a |
| :--- |
| Block-Cyclically Distributed Matrix Contained in a Process |

Block-Cyclically Distributed Matrix Contained in a Process

36 ESSL Products General Information

## ESSL for AIX Subroutines

This chapter includes a complete list of the subroutines offered in ESSL Version 3 Release 1.

The subroutines are grouped by mathematical area, where:

- A box indicates the subroutines that correspond to Level 1 BLAS.
- A diamond indicates the subroutines that correspond to Level 2 BLAS.

4 A left arrowhead indicates the subroutines that correspond to Level 3 BLAS.
$\ddagger \quad$ A double dagger indicates the subroutines that correspond to LAPACK.
§ A section indicates the subroutines that are provided for migration from earlier releases of ESSL and are not intended for use in new programs.

Both short- and long-precision real versions of the subroutines are provided in most areas of ESSL. In some areas, short- and long-precision complex versions are also provided, and, occasionally, an integer version is provided. The subroutine names are distinguished by a one-, two-, or three-letter prefix based on the following letters:

S for short-precision real
D for long-precision real
C for short-precision complex
Z for long-precision complex
I for integer
Some of the linear algebra subprograms, matrix operations subroutines, and linear algebraic equation subroutines were designed in accordance with the Level 1, Level 2, and Level 3 BLAS, and LAPACK de facto standard. If these subprograms do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subprograms, the updates could require modifications of the calling application program.

## Linear Algebra Subprograms

## Vector-Scalar Linear Algebra Subprograms

| Position of the First or Last Occurrence of the Vector | ISAMAX' | IDAMAX' |
| :---: | :---: | :---: |
| Element Having the Largest Magnitude | ICAMAX' | IZAMAX |
| Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value | ISAMIN | IDAMIN |
| Position of the First or Last Occurrence of the Vector Element Having Maximum Value | ISMAX | IDMAX |
| Position of the First or Last Occurrence of the Vector Element Having Minimum Value | ISMIN | IDMIN |
| Sum of the Magnitudes of the Elements in a Vector | SASUM | DASUMי |
|  | SCASUM• | DZASUM• |


| Multiply a Vector X by a Scalar, Add to a Vector Y, and | SAXPY• | DAXPY• |
| :---: | :---: | :---: |
| Store in the Vector Y | CAXPY: | ZAXPY• |
| Copy a Vector | SCOPY• | DCOPY• |
|  | CCOPY• | ZCOPY• |
| Dot Product of Two Vectors | SDOT• | DDOT• |
|  | CDOTU• | ZDOTU• |
|  | CDOTC• | ZDOTC• |
| Compute SAXPY or DAXPY N Times | SNAXPY | DNAXPY |
| Compute Special Dot Products N Times | SNDOT | DNDOT |
| Euclidean Length of a Vector with Scaling of Input to Avoid | SNRM2' | DNRM2• |
| Destructive Underflow and Overflow | SCNRM2• | DZNRM2' |
| Euclidean Length of a Vector with No Scaling of Input | SNORM2 | DNORM2 |
|  | CNORM2 | ZNORM2 |
| Construct a Givens Plane Rotation | SROTG• | DROTG• |
|  | CROTG• | ZROTG* |
| Apply a Plane Rotation | SROT• | DROT• |
|  | CROT• | ZROT• |
|  | CSROT• | ZDROT• |
| Multiply a Vector X by a Scalar and Store in the Vector X | SSCAL• | DSCAL• |
|  | CSCAL' | ZSCAL• |
|  | CSSCAL' | ZDSCAL' |
| Interchange the Elements of Two Vectors | SSWAP• | DSWAP! |
|  | CSWAP• | ZSWAP• |
| Add a Vector X to a Vector Y and Store in a Vector Z | SVEA | DVEA |
|  | CVEA | ZVEA |
| Subtract a Vector Y from a Vector X and Store in a Vector | SVES | DVES |
| Z | CVES | ZVES |
| Multiply a Vector X by a Vector Y and Store in a Vector Z | SVEM | DVEM |
|  | CVEM | ZVEM |
| Multiply a Vector X by a Scalar and Store in a Vector Y | SYAX | DYAX |
|  | CYAX | ZYAX |
|  | CSYAX | ZDYAX |
| Multiply a Vector X by a Scalar, Add to a Vector Y, and | SZAXPY | DZAXPY |
| Store in a Vector Z | CZAXPY | ZZAXPY |

## Sparse Vector-Scalar Linear Algebra Subprograms

Scatter the Elements of a Sparse Vector X in
Compressed-Vector Storage Mode into Specified Elements
of a Sparse Vector Y in Full-Vector Storage Mode
Gather Specified Elements of a Sparse Vector Y in
Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode
Gather Specified Elements of Sparse Vector Y in
Full-Vector Mode into Sparse Vector X in
Compressed-Vector Mode, and Zero the Same Specified
Elements of Y
Multiply a Sparse Vector X in Compressed-Vector Storage
Mode by a Scalar, Add to a Sparse Vector Y in Full-Vector
Storage Mode, and Store in the Vector Y

| SSCTR | DSCTR |
| :--- | :--- |
| CSCTR | ZSCTR |
|  |  |
| SGTHR | DGTHR |
| CGTHR | ZGTHR |
|  |  |
| SGTHRZ | DGTHRZ |
| CGTHRZ | ZGTHRZ |
|  |  |
| SAXPYI | DAXPYI |
| CAXPYI | ZAXPYI |

Dot Product of a Sparse Vector X in Compressed-Vector
Storage Mode and a Sparse Vector Y in Full-Vector
Storage Mode

| SDOTI | DDOTI |
| :--- | :--- |
| CDOTCI | ZDOTCI |
| CDOTUI | ZDOTUI |

## Matrix-Vector Linear Algebra Subprograms

| Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose | SGEMV* | DGEMV |
| :---: | :---: | :---: |
|  | CGEMV* | ZGEMV |
|  | SGEMX§ | DGEMX§ |
|  | SGEMTX§ | DGEMTX§ |
| Rank-One Update of a General Matrix | SGER* | DGER* |
|  | CGERU* | ZGERU* |
|  | CGERC* | ZGERC* |
| Matrix-Vector Product for a Real Symmetric or Complex | SSPMV | DSPMV |
| Hermitian Matrix | CHPMV* | ZHPMV |
|  | SSYMV | DSYMV |
|  | CHEMV* | ZHEMV |
|  | SSLMX§ | DSLMX§ |
| Rank-One Update of a Real Symmetric or Complex | SSPR* | DSPR* |
| Hermitian Matrix | CHPR* | ZHPR* |
|  | SSYR | DSYR* |
|  | CHER* | ZHER* |
|  | SSLR1§ | DSLR1§ |
| Rank-Two Update of a Real Symmetric or Complex | SSPR2* | DSPR2* |
| Hermitian Matrix | CHPR2* | ZHPR2* |
|  | SSYR2* | DSYR2* |
|  | CHER2* | ZHER2* |
|  | SSLR2§ | DSLR2§ |
| Matrix-Vector Product for a General Band Matrix, Its | SGBMV | DGBMV |
| Transpose, or Its Conjugate Transpose | CGBMV | ZGBMV |
| Matrix-Vector Product for a Real Symmetric or Complex | SSBMV | DSBMV |
| Hermitian Band Matrix | CHBMV* | ZHBMV |
| Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its Conjugate Transpose | STRMV | DTRMV |
|  | CTRMV* | ZTRMV |
|  | STPMV | DTPMV* |
|  | CTPMV | ZTPMV |
| Matrix-Vector Product for a Triangular Band Matrix, Its | STBMV* | DTBMV |
| Transpose, or Its Conjugate Transpose | CTBMV* | ZTBMV |

## Sparse Matrix-Vector Linear Algebra Subprograms

| Matrix-Vector Product for a Sparse Matrix in | DSMMX |
| :--- | :---: |
| Compressed-Matrix Storage Mode |  |
| Transpose a Sparse Matrix in Compressed-Matrix Storage | DSMTM |
| Mode |  |
| Matrix-Vector Product for a Sparse Matrix or Its Transpose <br> in Compressed-Diagonal Storage Mode | DSDMX |

## Matrix Operations

| Matrix Addition for General Matrices or Their Transposes | SGEADD | DGEADD |
| :---: | :---: | :---: |
|  | CGEADD | ZGEADD |
| Matrix Subtraction for General Matrices or Their Transposes | SGESUB | DGESUB |
|  | CGESUB | ZGESUB |
| Matrix Multiplication for General Matrices, Their | SGEMUL | DGEMUL |
| Transposes, or Conjugate Transposes | CGEMUL | ZGEMUL |
|  |  | DGEMLP§ |
| Matrix Multiplication for General Matrices, Their | SGEMMS | DGEMMS |
| Transposes, or Conjugate Transposes Using Winograd's Variation of Strassen's Algorithm | CGEMMS | ZGEMMS |
| Combined Matrix Multiplication and Addition for General | SGEMM 4 | DGEMM 4 |
| Matrices, Their Transposes, or Conjugate Transposes | CGEMM ${ }^{\text {d }}$ | ZGEMM ${ }^{\text {¢ }}$ |
| Matrix-Matrix Product Where One Matrix is Real or | SSYMM | DSYMM |
| Complex Symmetric or Complex Hermitian | CSYMM | ZSYMM ${ }^{\text {- }}$ |
|  | CHEMM 4 | ZHEMM 4 |
| Triangular Matrix-Matrix Product | STRMM ${ }^{-}$ | DTRMM ${ }^{\text {- }}$ |
|  | CTRMM | ZTRMM |
| Rank-K Update of a Real or Complex Symmetric or a | SSYRK ${ }^{\text {- }}$ | DSYRK ${ }^{\text {d }}$ |
| Complex Hermitian Matrix | CSYRK | ZSYRK |
|  | CHERK | ZHERK |
| Rank-2K Update of a Real or Complex Symmetric or a | SSYR2K | DSYR2K |
| Complex Hermitian Matrix | CSYR2K4 | ZSYR2K」 |
|  | CHER2K• | ZHER2K ${ }^{\text {d }}$ |
| General Matrix Transpose (In-Place) | SGETMI | DGETMI |
|  | CGETMI | ZGETMI |
| General Matrix Transpose (Out-of-Place) | SGETMO | DGETMO |
|  | CGETMO | ZGETMO |

## Linear Algebraic Equations

## Dense Linear Algebraic Equations

| General Matrix Factorization | SGEF | DGEF |
| :---: | :---: | :---: |
|  | CGEF | ZGEF |
|  | SGETRF\# | DGETRF $\ddagger$ |
|  | CGETRF $\ddagger$ | ZGETRF $\ddagger$ |
|  |  | DGEFP§ |
| General Matrix, Its Transpose, or Its Conjugate Transpose | SGES | DGES |
| Solve | CGES | ZGES |
| General Matrix, Its Transpose, or Its Conjugate Transpose | SGESM | DGESM |
| Multiple Right-Hand Side Solve | CGESM | ZGESM |
|  | SGETRS $\ddagger$ | DGETRS $\ddagger$ |
|  | CGETRS $\ddagger$ | ZGETRS $\ddagger$ |
| General Matrix Factorization, Condition Number Reciprocal, and Determinant | SGEFCD | DGEFCD |


| Positive Definite Real Symmetric or Complex Hermitian | SPPF | DPPF |
| :--- | :--- | :--- |
| Matrix Factorization | SPOF | DPOF |
|  | CPOF | ZPOF |
|  |  | DPPFP§ |
| Positive Definite Real Symmetric Matrix Solve | SPPS | DPPS |
| Positive Definite Real Symmetric or Complex Hermitian | SPOSM | DPOSM |
| Matrix Multiple Right-Hand Side Solve | CPOSM | ZPOSM |
| Positive Definite Real Symmetric Matrix Factorization, | SPPFCD | DPPFCD |
| Condition Number Reciprocal, and Determinant | SPOFCD | DPOFCD |
| General Matrix Inverse, Condition Number Reciprocal, and | SGEICD | DGEICD |
| Determinant |  |  |
| Positive Definite Real Symmetric Matrix Inverse, Condition | SPPICD | DPPICD |
| Number Reciprocal, and Determinant | SPOICD | DPOICD |
| Solution of a Triangular System of Equations with a Single | STRSV | DTRSV |
| Right-Hand Side | CTRSV | ZTRSV |
|  | STPSV | DTPSV |
|  | CTPSV | ZTPSV |
| Solution of Triangular Systems of Equations with Multiple | STRSM | DTRSM |
| Right-Hand Sides | CTRSM | ZTRSM |
| Triangular Matrix Inverse |  | STRI |

## Banded Linear Algebraic Equations

| General Band Matrix Factorization | SGBF | DGBF |
| :--- | :--- | :--- |
| General Band Matrix Solve | SGBS | DGBS |
| Positive Definite Symmetric Band Matrix Factorization | SPBF | DPBF |
|  | SPBCHF | DPBCHF |
| Positive Definite Symmetric Band Matrix Solve | SPBS | DPBS |
|  | SPBCHS | DPBCHS |
| General Tridiagonal Matrix Factorization | SGTF | DGTF |
| General Tridiagonal Matrix Solve | SGTS | DGTS |
| General Tridiagonal Matrix Combined Factorization and | SGTNP | DGTNP |
| Solve with No Pivoting | CGTNP | ZGTNP |
| General Tridiagonal Matrix Factorization with No Pivoting | SGTNPF | DGTNPF |
|  | CGTNPF | ZGTNPF |
| General Tridiagonal Matrix Solve with No Pivoting | SGTNPS | DGTNPS |
|  | CGTNPS | ZGTNPS |
| Positive Definite Symmetric Tridiagonal Matrix Factorization | SPTF | DPTF |
| Positive Definite Symmetric Tridiagonal Matrix Solve | SPTS | DPTS |
| Triangular Band Equation Solve | STBSV | DTBSV |

## Sparse Linear Algebraic Equations

| General Sparse Matrix Factorization Using Storage by | DGSF |
| :--- | :--- |
| Indices, Rows, or Columns |  |
| General Sparse Matrix or Its Transpose Solve Using | DGSS |
| Storage by Indices, Rows, or Columns |  |
| General Sparse Matrix or Its Transpose Factorization, <br> Determinant, and Solve Using Skyline Storage Mode <br> Symmetric Sparse Matrix Factorization, Determinant, and <br> Solve Using Skyline Storage Mode <br> Iterative Linear System Solver for a General or Symmetric | DGKFS |
| Sparse Matrix Stored by Rows | DSKFS |
| Sparse Positive Definite or Negative Definite Symmetric <br> Matrix Iterative Solve Using Compressed-Matrix Storage | DSMCG§ |
| Mode |  |
| Sparse Positive Definite or Negative Definite Symmetric <br> Matrix Iterative Solve Using Compressed-Diagonal Storage <br> Mode <br> General Sparse Matrix Iterative Solve Using <br> Compressed-Matrix Storage Mode <br> General Sparse Matrix Iterative Solve Using <br> Compressed-Diagonal Storage Mode | DSDCG |

## Linear Least Squares

| Singular Value Decomposition for a General Matrix | SGESVF | DGESVF |
| :--- | :--- | :--- |
| Linear Least Squares Solutions for a General Matrix Using | SGESVS | DGESVS |
| the Singular Value Decomposition |  |  |
| Linear Least Squares Solution for a General Matrix Using a <br> QR Decomposition with Column Pivoting | SGELLS | DGELLS |

## Eigensystems Analysis

| Eigenvalues and, Optionally, All or Selected Eigenvectors of | SGEEV <br> CGEEV | DGEEV <br> ZGEEV |
| :--- | :--- | :--- |
| Eigeneral Matrix | CGElues and, Optionally, the Eigenvectors of a Real | SSPEV | DSPEV

## Fourier Transforms, Convolutions and Correlations, and Related Computations

## Fourier Transforms

| Complex Fourier Transform | SCFT | DCFT |
| :--- | :--- | :--- |
|  | SCFTP§ |  |
| Real-to-Complex Fourier Transform | SRCFT | DRCFT |
| Complex-to-Real Fourier Transform | SCRFT | DCRFT |
| Cosine Transform | SCOSF | DCOSF |
|  | SCOSFT§ |  |
| Sine Transform | SSINF | DSINF |
| Complex Fourier Transform in Two Dimensions | SCFT2 | DCFT2 |
| Real-to-Complex Fourier Transform in Two Dimensions | SRCFT2 | DRCFT2 |
| Complex-to-Real Fourier Transform in Two Dimensions | SCRFT2 | DCRFT2 |
| Complex Fourier Transform in Three Dimensions | SCFT3 | DCFT3 |
|  | SCFT3P§ |  |
| Real-to-Complex Fourier Transform in Three Dimensions | SRCFT3 | DRCFT3 |
| Complex-to-Real Fourier Transform in Three Dimensions | SCRFT3 | DCRFT3 |

## Convolutions and Correlations

Convolution or Correlation of One Sequence with One or | SCON§ |
| :--- |
| More Sequences | SCOR§

Convolution or Correlation of One Sequence with Another SCOND
Sequence Using a Direct Method SCORD

Convolution or Correlation of One Sequence with One or SCONF
More Sequences Using the Mixed-Radix Fourier Method SCORF
Convolution or Correlation with Decimated Output Using a SDCON
DDCON Direct Method

Autocorrelation of One or More Sequences
SDCOR

Autocorrelation of One or More Sequences Using the SACORF Mixed-Radix Fourier Method

## Related Computations

| Polynomial Evaluation | SPOLY | DPOLY |
| :--- | :--- | :--- |
| I-th Zero Crossing | SIZC | DIZC |
| Time-Varying Recursive Filter | STREC | DTREC |
| Quadratic Interpolation | SQINT | DQINT |
| Wiener-Levinson Filter Coefficients | SWLEV | DWLEV |
|  | CWLEV | ZWLEV |

## Sorting and Searching

| Sort the Elements of a Sequence | SSORT ISORT | DSORT |
| :---: | :---: | :---: |
| Sort the Elements of a Sequence and Note the Original Element Positions | SSORTX <br> ISORTX | DSORTX |
| Sort the Element of a Sequence Using a Stable Sort and Note the Original Element Positions | SSORTS ISORTS | DSORTS |
| Binary Search for Elements of a Sequence $X$ in a Sorted Sequence $Y$ | SBSRCH IBSRCH | DBSRCH |
| Sequential Search for Elements of a Sequence $X$ in the Sequence Y | $\begin{aligned} & \text { SSSRCH } \\ & \text { ISSRCH } \end{aligned}$ | DSSRCH |

## Interpolation

| Polynomial Interpolation | SPINT | DPINT |
| :--- | :--- | :--- |
| Local Polynomial Interpolation | STPINT | DTPINT |
| Cubic Spline Interpolation | SCSINT | DCSINT |
| Two-Dimensional Cubic Spline Interpolation | SCSIN2 | DCSIN2 |

## Numerical Quadrature

| Numerical Quadrature Performed on a Set of Points | SPTNQ | DPTNQ |
| :--- | :--- | :--- |
| Numerical Quadrature Performed on a Function Using <br> Gauss-Legendre Quadrature | SGLNQ | DGLNQ |
| Numerical Quadrature Performed on a Function Over a <br> Rectangle Using Two-Dimensional Gauss-Legendre <br> Quadrature | SGLNQ2 | DGLNQ2 |
| Numerical Quadrature Performed on a Function Using <br> Gauss-Laguerre Quadrature <br> Numerical Quadrature Performed on a Function Using <br> Gauss-Rational Quadrature <br> Numerical Quadrature Performed on a Function Using <br> Gauss-Hermite Quadrature | SGLGQ | DGLGQ |

## Random Number Generation

| Generate a Vector of Uniformly Distributed Random | SURAND | DURAND |
| :--- | :--- | :--- |
| Numbers |  |  |
| Generate a Vector of Normally Distributed Random <br> Numbers | SNRAND | DNRAND |
| Generate a Vector of Long Period Uniformly Distributed <br> Random Numbers | SURXOR | DURXOR |

## Utilities

| ESSL Error Information-Handler Routine | EINFO |
| :--- | :--- |
| ESSL ERRSAV Subroutine for the Workstations | ERRSAV |
| ESSL ERRSET Subroutine for the Workstations | ERRSET |
| ESSL ERRSTR Subroutine for the Workstations | ERRSTR |
| Set the Vector Section Size (VSS) for the ESSL/370 Scalar <br> Library <br> Set the Extended Vector Operations Indicator for the <br> ESSL/370 Scalar Library | IVSSET§ |
| Determine the Level of ESSL Installed |  |
| Determine the Stride Value for Optimal Performance in <br> Specified Fourier Transform Subroutines <br> Convert a Sparse Matrix from Storage-by-Rows to <br> Compressed-Matrix Storage Mode <br> For a General Sparse Matrix, Convert Between <br> Diagonal-Out and Profile-In Skyline Storage Mode <br> For a Symmetric Sparse Matrix, Convert Between <br> Diagonal-Out and Profile-In Skyline Storage Mode | STRIDE |

## ESSL/370 Subroutines

This chapter includes a complete list of the subroutines offered in ESSL Version 2 Release 2.

The subroutines are grouped by mathematical area, where:
$\Phi \quad$ A capital phi indicates the subroutines that are new for ESSL Version 2 Release 2.

- A box indicates the subroutines that correspond to Level 1 BLAS.
- A diamond indicates the subroutines that correspond to Level 2 BLAS.

4 A left arrowhead indicates the subroutines that correspond to Level 3 BLAS.

Both short- and long-precision real versions of the subroutines are provided in most areas of ESSL. In some areas, short- and long-precision complex versions are also provided, and, occasionally, an integer version is provided. The subroutine names are distinguished by a one-, two-, or three-letter prefix based on the following letters:

S for short-precision real
D for long-precision real
C for short-precision complex
Z for long-precision complex
I for integer

## Linear Algebra Subprograms

## Vector-Scalar Linear Algebra Subprograms

| Position of the First or Last Occurrence of the Vector | ISAMAX' | IDAMAX' |
| :---: | :---: | :---: |
| Element Having the Largest Magnitude | ICAMAX' | IZAMAX' |
| Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value | ISAMIN | IDAMIN |
| Position of the First or Last Occurrence of the Vector Element Having Maximum Value | ISMAX | IDMAX |
| Position of the First or Last Occurrence of the Vector Element Having Minimum Value | ISMIN | IDMIN |
| Sum of the Magnitudes of the Elements in a Vector | SASUM ${ }^{-1}$ SCASUM• | DASUM• <br> DZASUM• |
| Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y | SAXPY CAXPY• | DAXPY ZAXPY• |
| Copy a Vector | SCOPY. CCOPY | $\begin{aligned} & \text { DCOPYः } \\ & \text { ZCOPY } \end{aligned}$ |
| Dot Product of Two Vectors | $\begin{aligned} & \text { SDOT: } \\ & \text { CDOTU• } \\ & \text { CDOTC } \end{aligned}$ | $\begin{aligned} & \text { DDOT• } \\ & \text { ZDOTU• } \\ & \text { ZDOTC• } \end{aligned}$ |
| Compute SAXPY or DAXPY N Times | SNAXPY | DNAXPY |


| Compute Special Dot Products N Times | SNDOT | DNDOT |
| :---: | :---: | :---: |
| Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow | SNRM2• SCNRM2• | DNRM2• DZNRM2• |
| Euclidean Length of a Vector with No Scaling of Input | SNORM2 CNORM2 | DNORM2 ZNORM2 |
| Construct a Givens Plane Rotation | SROTG• CROTG• | DROTG• <br> ZROTG |
| Apply a Plane Rotation | SROT• <br> CROT• <br> CSROT• | $\begin{aligned} & \text { DROT• } \\ & \text { ZROT• } \\ & \text { ZDROT• } \end{aligned}$ |
| Multiply a Vector X by a Scalar and Store in the Vector X | $\begin{aligned} & \text { SSCAL" } \\ & \text { CSCAL" } \\ & \text { CSSCAL• } \end{aligned}$ | $\begin{aligned} & \text { DSCAL" } \\ & \text { ZSCAL" } \\ & \text { ZDSCAL• } \end{aligned}$ |
| Interchange the Elements of Two Vectors | SSWAP: CSWAP• | DSWAP: ZSWAP: |
| Add a Vector X to a Vector Y and Store in a Vector Z | SVEA CVEA | $\begin{aligned} & \text { DVEA } \\ & \text { ZVEA } \end{aligned}$ |
| Subtract a Vector $Y$ from a Vector $X$ and Store in a Vector Z | SVES <br> CVES | $\begin{aligned} & \text { DVES } \\ & \text { ZVES } \end{aligned}$ |
| Multiply a Vector X by a Vector Y and Store in a Vector Z | SVEM <br> CVEM | $\begin{aligned} & \text { DVEM } \\ & \text { ZVEM } \end{aligned}$ |
| Multiply a Vector X by a Scalar and Store in a Vector Y | SYAX CYAX CSYAX | $\begin{aligned} & \text { DYAX } \\ & \text { ZYAX } \\ & \text { ZDYAX } \end{aligned}$ |
| Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z | SZAXPY <br> CZAXPY | DZAXPY <br> ZZAXPY |

## Sparse Vector-Scalar Linear Algebra Subprograms

Scatter the Elements of a Sparse Vector X in
Compressed-Vector Storage Mode into Specified Elements
of a Sparse Vector Y in Full-Vector Storage Mode
Gather Specified Elements of a Sparse Vector Y in
Full-Vector Storage Mode into a Sparse Vector X in
Compressed-Vector Storage Mode
Gather Specified Elements of Sparse Vector Y in
Full-Vector Mode into Sparse Vector X in
Compressed-Vector Mode, and Zero the Same Specified
Elements of Y
Multiply a Sparse Vector X in Compressed-Vector Storage
Mode by a Scalar, Add to a Sparse Vector Y in Full-Vector
Storage Mode, and Store in the Vector Y
Dot Product of a Sparse Vector X in Compressed-Vector
Storage Mode and a Sparse Vector Y in Full-Vector
Storage Mode

| SSCTR | DSCTR |
| :--- | :--- |
| CSCTR | ZSCTR |
|  |  |
| SGTHR | DGTHR |
| CGTHR | ZGTHR |
|  |  |
| SGTHRZ | DGTHRZ |
| CGTHRZ | ZGTHRZ |
|  |  |
| SAXPYI | DAXPYI |
| CAXPYI | ZAXPYI |
|  |  |
| SDOTI | DDOTI |
| CDOTCI | ZDOTCI |
| CDOTUI | ZDOTUI |

## Matrix-Vector Linear Algebra Subprograms

| Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose | SGEMV <br> CGEMV <br> SGEMX <br> SGEMTX | DGEMV <br> ZGEMV <br> DGEMX <br> DGEMTX |
| :---: | :---: | :---: |
| Rank-One Update of a General Matrix | SGER <br> CGERU* <br> CGERC | DGER* ZGERU* ZGERC |
| Matrix-Vector Product for a Real Symmetric or Complex Hermitian Matrix | SSPMV <br> CHPMV <br> SSYMV <br> CHEMV <br> SSLMX | DSPMV <br> ZHPMV <br> DSYMV <br> ZHEMV <br> DSLMX |
| Rank-One Update of a Real Symmetric or Complex Hermitian Matrix | SSPR* <br> CHPR* SSYR* <br> CHER* <br> SSLR1 | DSPR* <br> ZHPR* <br> DSYR* <br> ZHER* <br> DSLR1 |
| Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix | SSPR2• <br> CHPR2* <br> SSYR2• <br> CHER2* <br> SSLR2 | DSPR2• <br> ZHPR2• <br> DSYR2• <br> ZHER2* <br> DSLR2 |
| Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose | SGBMV <br> CGBMV | $\begin{aligned} & \text { DGBMV } \\ & \text { ZGBMV } \end{aligned}$ |
| Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix | SSBMV. CHBMV | $\begin{aligned} & \text { DSBMV } \\ & \text { ZHBMV } \end{aligned}$ |
| Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its Conjugate Transpose | STRMV <br> CTRMV <br> STPMV <br> CTPMV | DTRMV ZTRMV DTPMV ZTPMV |
| Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose | STBMV CTBMV | DTBMV ZTBMV |

## Sparse Matrix-Vector Linear Algebra Subprograms

| Matrix-Vector Product for a Sparse Matrix in | DSMMX |
| :--- | :---: |
| Compressed-Matrix Storage Mode |  |
| Transpose a Sparse Matrix in Compressed-Matrix Storage <br> Mode | DSMTM |
| Matrix-Vector Product for a Sparse Matrix or Its Transpose <br> in Compressed-Diagonal Storage Mode | DSDMX | in Compressed-Diagonal Storage Mode

## Matrix Operations

| Matrix Addition for General Matrices or Their Transposes | SGEADD | DGEADD |
| :--- | :--- | :--- |
|  | CGEADD | ZGEADD |
| Matrix Subtraction for General Matrices or Their Transposes | SGESUB | DGESUB |
|  | CGESUB | ZGESUB |
| Matrix Multiplication for General Matrices, Their | SGEMUL | DGEMUL |
| Transposes, or Conjugate Transposes | CGEMUL | ZGEMUL |


| Matrix Multiplication for General Matrices，Their | SGEMMS | DGEMMS |
| :---: | :---: | :---: |
| Transposes，or Conjugate Transposes Using Winograd＇s Variation of Strassen＇s Algorithm | CGEMMS | ZGEMMS |
| Combined Matrix Multiplication and Addition for General Matrices，Their Transposes，or Conjugate Transposes | SGEMM ${ }^{-}$ CGEMM ${ }^{4}$ | DGEMM ${ }^{-}$ ZGEMM |
| Matrix－Matrix Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian | SSYMM ${ }^{4}$ CSYMM CHEMM 4 | DSYMM ${ }^{4}$ ZSYMM ZHEMM ${ }^{4}$ |
| Triangular Matrix－Matrix Product | STRMM CTRMM | DTRMM ZTRMM |
| Rank－K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix | $\begin{aligned} & \text { SSYRK」 } \\ & \text { CSYRK } \\ & \text { CHERK } \end{aligned}$ | $\begin{aligned} & \text { DSYRK」 } \\ & \text { ZSYRK } \\ & \text { ZHERK」 } \end{aligned}$ |
| Rank－2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix | SSYR2K－ CSYR2K CHER2K | $\begin{aligned} & \text { DSYR2K• } \\ & \text { ZSYR2K } \\ & \text { ZHER2K• } \end{aligned}$ |
| General Matrix Transpose（In－Place） | SGETMI CGETMI | $\begin{aligned} & \text { DGETMI } \\ & \text { ZGETMI } \end{aligned}$ |
| General Matrix Transpose（Out－of－Place） | SGETMO CGETMO | DGETMO ZGETMO |

## Linear Algebraic Equations

## Dense Linear Algebraic Equations

| General Matrix Factorization | SGEF | DGEF |
| :--- | :--- | :--- |
|  | CGEF | ZGEF |
| General Matrix or Its Transpose Solve | SGES | DGES |
|  | CGES | ZGES |
| General Matrix，Its Transpose，or Its Conjugate Transpose | SGESM | DGESM |
| Multiple Right－Hand Side Solve | CGESM | ZGESM |
| General Matrix Factorization，Condition Number Reciprocal， | SGEFCD | DGEFCD |
| and Determinant |  |  |
| Positive Definite Real Symmetric or Complex Hermitian | SPPF | DPPF |
| Matrix Factorization | SPOF | DPOF |
|  | CPOF | ZPOF |
| Positive Definite Real Symmetric Matrix Solve | SPPS | DPPS |
| Positive Definite Real Symmetric or Complex Hermitian | SPOSM | DPOSM |
| Matrix Multiple Right－Hand Side Solve | CPOSM | ZPOSM |
| Positive Definite Real Symmetric Matrix Factorization， | SPPFCD | DPPFCD |
| Condition Number Reciprocal，and Determinant | SPOFCD | DPOFCD |
| General Matrix Inverse，Condition Number Reciprocal，and | SGEICD | DGEICD |
| Determinant |  |  |
| Positive Definite Real Symmetric Matrix Inverse，Condition | SPPICD | DPPICD |
| Number Reciprocal，and Determinant | SPOICD | DPOICD |
| Solution of a Triangular System of Equations with a Single | STRSV | DTRSV |
| Right－Hand Side | CTRSV | ZTRSV |
|  | STPSV | DTPSV |
|  | CTPSV | ZTPSV |

Solution of Triangular Systems of Equations with Multiple Right-Hand Sides
Triangular Matrix Inverse

## Banded Linear Algebraic Equations

General Band Matrix Factorization
General Band Matrix Solve
Positive Definite Symmetric Band Matrix Factorization

Positive Definite Symmetric Band Matrix Solve

General Tridiagonal Matrix Factorization
General Tridiagonal Matrix Solve
General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting

General Tridiagonal Matrix Factorization with No Pivoting

General Tridiagonal Matrix Solve with No Pivoting

Positive Definite Symmetric Tridiagonal Matrix Factorization
Positive Definite Symmetric Tridiagonal Matrix Solve
Triangular Band Equation Solve

## Sparse Linear Algebraic Equations

| General Sparse Matrix Factorization Using Storage by | DGSF |
| :--- | :---: |
| Indices, Rows, or Columns |  |
| General Sparse Matrix or Its Transpose Solve Using |  |
| Storage by Indices, Rows, or Columns | DGSS |
| General Sparse Matrix or Its Transpose Factorization, <br> Determinant, and Solve Using Skyline Storage Mode <br> Symmetric Sparse Matrix Factorization, Determinant, and <br> Solve Using Skyline Storage Mode | DGKFS |
| Iterative Linear System Solver for a General or Symmetric <br> Sparse Matrix Stored by Rows <br> Sparse Positive Definite or Negative Definite Symmetric <br> Matrix Iterative Solve Using Compressed-Matrix Storage <br> Mode | DSRIS |
| Sparse Positive Definite or Negative Definite Symmetric <br> Matrix Iterative Solve Using Compressed-Diagonal Storage <br> Mode <br> General Sparse Matrix Iterative Solve Using <br> Compressed-Matrix Storage Mode <br> General Sparse Matrix Iterative Solve Using <br> Compressed-Diagonal Storage Mode | DSDCG |

DGBF
SGBS DGBS
SPBF DPBF
SPBCHF ${ }^{\text {DPBCHF }}$
SPBS DPBS
SPBCHS ${ }^{\Phi}$ DPBCHS ${ }^{\Phi}$

SGTF DGTF

## SGTS DGTS

SGTNP $\Phi$ DGTNP $\Phi$
CGTNP $\Phi$ ZGTNPథ
SGTNPF DGTNPF
CGTNPF ZGTNPF
SGTNPS DGTNPS
CGTNPS ZGTNPS
SPTF DPTF
SPTS DPTS

STBSV ${ }^{\text {DTBSV }}$ CTBSV $\Phi$ - ZTBSV $\Phi$

## Linear Least Squares

| Singular Value Decomposition for a General Matrix | SGESVF | DGESVF |
| :--- | :--- | :--- |
| Linear Least Squares Solutions for a General Matrix Using <br> the Singular Value Decomposition | SGESVS | DGESVS |
| Linear Least Squares Solution for a General Matrix Using a SGELLS | DGELLS |  |
| QR Decomposition with Column Pivoting |  |  |

## Eigensystems Analysis

| Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix | $\begin{aligned} & \text { SGEEV } \\ & \text { CGEEV } \end{aligned}$ | $\begin{aligned} & \text { DGEEV } \\ & \text { ZGEEV } \end{aligned}$ |
| :---: | :---: | :---: |
| Eigenvalues and, Optionally, the Eigenvectors of a Real | SSPEV | DSPEV |
| Symmetric Matrix or a Complex Hermitian Matrix | CHPEV | ZHPEV |
| Extreme Eigenvalues and, Optionally, the Eigenvectors of a | SSPSV | DSPSV |
| Real Symmetric Matrix or a Complex Hermitian Matrix | CHPSV | ZHPSV |
| Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, $A z=w B z$, where $A$ and $B$ Are Real General Matrices | SGEGV | DGEGV |
| Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, Az = wBz, where A Is Real Symmetric and B Is Real Symmetric Positive Definite | SSYGV | DSYGV |

## Fourier Transforms, Convolutions and Correlations, and Related Computations

## Fourier Transforms

| Complex Fourier Transform | SCFT | DCFT |
| :--- | :--- | :--- |
| Real-to-Complex Fourier Transform | SRCFT | DRCFT |
| Complex-to-Real Fourier Transform | SCRFT | DCRFT |
| Cosine Transform | SCOSF $\Phi$ | DCOSF $\Phi$ |
| SCOSFT |  |  |
| Sine Transform | SSINF $\Phi$ | DSINF $\Phi$ |
| Complex Fourier Transform in Two Dimensions | SCFT2 | DCFT2 |
| Real-to-Complex Fourier Transform in Two Dimensions | SRCFT2 | DRCFT2 |
| Complex-to-Real Fourier Transform in Two Dimensions | SCRFT2 | DCRFT2 |
| Complex Fourier Transform in Three Dimensions | SCFT3 | DCFT3 |
| Real-to-Complex Fourier Transform in Three Dimensions | SRCFT3 | DRCFT3 |
| Complex-to-Real Fourier Transform in Three Dimensions | SCRFT3 | DCRFT3 |

## Convolutions and Correlations

| Convolution or Correlation of One Sequence with One or | SCON |  |
| :--- | :--- | :--- |
| More Sequences | SCOR |  |
| Convolution or Correlation of One Sequence with Another | SCOND |  |
| Sequence Using a Direct Method | SCORD |  |
| Convolution or Correlation of One Sequence with One or | SCONF |  |
| More Sequences Using the Mixed-Radix Fourier Method | SCORF |  |
| Convolution or Correlation with Decimated Output Using a | SDCON | DDCON |
| Direct Method | SDCOR | DDCOR |
| Autocorrelation of One or More Sequences | SACOR |  |
| Autocorrelation of One or More Sequences Using the | SACORF |  |

## Related Computations

| Polynomial Evaluation | SPOLY | DPOLY |
| :--- | :--- | :--- |
| I-th Zero Crossing | SIZC | DIZC |
| Time-Varying Recursive Filter | STREC | DTREC |
| Quadratic Interpolation | SQINT | DQINT |
| Wiener-Levinson Filter Coefficients | SWLEV | DWLEV |

## Sorting and Searching

| Sort the Elements of a Sequence | SSORT ISORT | DSORT |
| :---: | :---: | :---: |
| Sort the Elements of a Sequence and Note the Original Element Positions | $\begin{aligned} & \text { SSORTX } \\ & \text { ISORTX } \end{aligned}$ | DSORTX |
| Sort the Element of a Sequence Using a Stable Sort and Note the Original Element Positions | SSORTS ISORTS | DSORTS |
| Binary Search for Elements of a Sequence $X$ in a Sorted Sequence Y | SBSRCH IBSRCH | DBSRCH |
| Sequential Search for Elements of a Sequence $X$ in the Sequence Y | $\begin{aligned} & \text { SSSRCH } \\ & \text { ISSRCH } \end{aligned}$ | DSSRCH |

## Interpolation

| Polynomial Interpolation | SPINT | DPINT |
| :--- | :--- | :--- |
| Local Polynomial Interpolation | STPINT | DTPINT |
| Cubic Spline Interpolation | SCSINT | DCSINT |
| Two-Dimensional Cubic Spline Interpolation | SCSIN2 | DCSIN2 |

## Numerical Quadrature

| Numerical Quadrature Performed on a Set of Points | SPTNQ | DPTNQ |
| :--- | :--- | :--- |
| Numerical Quadrature Performed on a Function Using <br> Gauss-Legendre Quadrature | SGLNQ | DGLNQ |
| Numerical Quadrature Performed on a Function Over a <br> Rectangle Using Two-Dimensional Gauss-Legendre <br> Quadrature | SGLNQ2 | DGLNQ2 |
| Numerical Quadrature Performed on a Function Using <br> Gauss-Laguerre Quadrature | SGLGQ | DGLGQ |
| Numerical Quadrature Performed on a Function Using <br> Gauss-Rational Quadrature <br> Numerical Quadrature Performed on a Function Using <br> Gauss-Hermite Quadrature | SGRAQ | DGRAQ |

## Random Number Generation

| Generate a Vector of Uniformly Distributed Random | SURAND | DURAND |
| :--- | :--- | :--- |
| Numbers |  |  |
| Generate a Vector of Normally Distributed Random <br> Numbers | SNRAND | DNRAND |
| Generate a Vector of Long Period Uniformly Distributed <br> Random Numbers | SURXOR | DURXOR |

## Parallel Processing Subroutines

| Matrix Multiplication for General Matrices or Their | DGEMLP |
| :--- | :--- |
| Transposes | DGEFP |
| General Matrix Factorization | DPPFP |
| Positive Definite Symmetric Matrix Factorization | DGKFSP |
| General Sparse Matrix or Its Transpose Factorization, <br> Determinant, and Solve Using Skyline Storage Mode <br> Symmetric Sparse Matrix Factorization, Determinant, and <br> Solve Using Skyline Storage Mode | DSKFSP |
| Complex Fourier Transform | SCFTP |
| Complex Fourier Transform in Two Dimensions | SCFT2P |
| Complex Fourier Transform in Three Dimensions | SCFT3P |

## Utilities

| ESSL Error Information-Handler Routine | EINFO |
| :--- | :--- |
| ESSL ERRSAV Subroutine for the Workstations | ERRSAV |
| ESSL ERRSET Subroutine for the Workstations | ERRSET |
| ESSL ERRSTR Subroutine for the Workstations | ERRSTR |
| Set the Vector Section Size (VSS) for the ESSL/370 Scalar | IVSSET |
| Library |  |


| Set the Extended Vector Operations Indicator for the | IEVOPS |
| :--- | :---: |
| ESSL/370 Scalar Library |  |
| Determine the Level of ESSL Installed on Your System | IESSL $\Phi$ |
| Determine the Stride Value for Optimal Performance in <br> Specified Fourier Transform Subroutines <br> Convert a Sparse Matrix from Storage-by-Rows to <br> Compressed-Matrix Storage Mode | STRIDE |
| For a General Sparse Matrix, Convert Between |  |
| Diagonal-Out and Profile-In Skyline Storage Mode | DSRSM |
| For a Symmetric Sparse Matrix, Convert Between <br> Diagonal-Out and Profile-In Skyline Storage Mode | DGKTRN |

# Communicating Your Comments to IBM 

Engineering and Scientific
Subroutine Library Products
General Information
Publication No. GC23-0529-06
If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. However, the comments you send should pertain to only the information in this manual and the way in which the information is presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United States, you can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.

- If you prefer to send comments by mail, use the RCF at the back of this book.
- If you prefer to send comments by FAX, use this number:
- FAX: (International Access Code)+1+914+432-9405
- If you prefer to send comments electronically, use one of these network IDs:
- IBM Mail Exchange: USIB6TC9 at IBMMAIL
- Internet e-mail: mhvrcfs@us.ibm.com

Make sure to include the following in your note:

- Title and publication number of this book
- Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your comments by phone.

## Reader's Comments - We'd Like to Hear from You

## Engineering and Scientific

Subroutine Library Products
General Information
Publication No. GC23-0529-06
You may use this form to communicate your comments about this publication, its organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Today's date: $\qquad$
What is your occupation?
Newsletter number of latest Technical Newsletter (if any) concerning this publication:
How did you use this publication?

| $[~] ~$ | As an introduction | $[$ ] | As a text (student) |
| :--- | :--- | :--- | :--- |
| $[~]$ | As a reference manual | $[$ ] | As a text (instructor) |
| $[~] ~$ | For another purpose (explain) |  |  |

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications; specific errors and omissions.

Page Number: Comment:



## 

Program Number: 5765-C41, 5765-C42, and 5688-226
Printed in the United States of America on recycled paper containing 10\% recovered post-consumer fiber.


