

IBM LoadLeveler for AIX IBM

Using and Administering
Version 2 Release 1

 SA22-7311-00

IBM LoadLeveler for AIX IBM

Using and Administering
Version 2 Release 1

 SA22-7311-00

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition, October 1998

This edition applies to Version 2 Release 1.0 of IBM LoadLeveler for AIX, program number 5765-D61, and to all subsequent releases
and modifications until otherwise indicated in new editions or Technical Newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400

 USA

FAX (United States and Canada): 1+914+432-9405
FAX (Other Countries): Your International Access Code+1+914+432-9405
IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB27BQ at IBMMAIL
Internet email: mhvrcfs@vnet.ibm.com
World Wide Web: http://www.rs6000.ibm.com

Please include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

Copyright International Business Machines Corporation 1998. All rights reserved. Note to U.S. Government Users —
Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.. Copyright 1986, 1987, 1988, 1989, 1990, 1991 by the Condor Design Team.

 Contents

Notices . vii
Trademarks and Service Marks . vii

Who Should Use This Book . ix

How this Book is Organized . xi
Typographic Conventions . xi

Related Information . xiii
Accessing This Book off the World Wide Web xiii
Accessing LoadLeveler Documentation Online xiii

LoadLeveler Man Pages . xiii

What's New in Version 2 . xv
Multiple User Space Tasks per Adapter . xv
Multiple Tasks per Job per Node . xv
Multiple Communication Protocols per Task . xv
National Language Support, Including New Documentation xv
Enhanced Checkpointing of Jobs . xv
New Scheduling Algorithm . xvi
New Command to Extract SDR Data . xvi
New Application Programming Interface . xvi
Command Enhancements . xvi
Graphical User Interface Enhancements . xvi
New Job Command Language Keywords . xvii
Administration File Changes . xvii
Configuration File Changes . xvii
New Environment Variable . xvii
Resource Manager Changes . xviii
Interactive Session Support Changes . xviii

Migration Considerations . xix
Resource Manager Functions Now in LoadLeveler xix
Keywords Supported for Parallel Jobs . xix
Migrating Your Existing Adapter Requirements Statements xix
Changes in LoadLeveler Command Output . xx
Changes in the LoadLeveler Release Directory xx
Changes in the GUI Resource File . xxi

Overview of LoadLeveler . 1

Chapter 1. What is LoadLeveler? . 3
How LoadLeveler Works . 4

Chapter 2. LoadLeveler Daemons and Job States 13
Daemons and Processes . 13
LoadLeveler Job States . 18

Using LoadLeveler . 21

 Contents iii

Chapter 3. Submitting and Managing Jobs 23
Building a Job Command File . 23
Submitting a Job Command File . 26
Managing Jobs . 27
A Simple Task Scenario Using Commands . 31
Additional Job Command File Examples . 33
Job Command File Keywords . 38

Chapter 4. Submitting and Managing Parallel Jobs 59
Supported Parallel Environments . 59
Keyword Considerations for Parallel Jobs . 59
Job Command File Examples . 60
Obtaining Status of Parallel Jobs . 64

Administering LoadLeveler . 67

Chapter 5. Administering and Configuring LoadLeveler 69
Overview . 69
Planning Considerations . 69
Quick Set Up . 71
Administering LoadLeveler . 72
Configuring LoadLeveler . 94
Keyword Summary . 124

Chapter 6. Administration Tasks for Parallel Jobs 135
Scheduling Considerations for Parallel Jobs 135
Setting Up to Allow Users to Submit Interactive POE Jobs 135
Setting Up to Allow Users to Submit PVM Jobs 136
Setting Up a Class for Parallel Jobs . 137
Setting Up a Parallel Master Node . 138

Chapter 7. Gathering Job Accounting Data 141
Collecting Job Resource Data on Serial and Parallel Jobs 141
Collecting Job Resource Data Based on Machines 141
Collecting Job Resource Data Based on Events 142
Collecting Job Resource Information Based on User Accounts 142
Collecting the Accounting Information and Storing it into Files 143
Accounting Reports . 143
Sample Job Accounting Scenario . 144

Chapter 8. Routing Jobs to NQS Machines 147
Setting Up the NQS Environment . 147
Designating Machines to Which Jobs Will be Routed 148
Sample Routing Jobs to NQS Machines Scenario 148
NQS Scripts . 151

Command Reference . 153

Chapter 9. LoadLeveler Commands . 155
Summary of LoadLeveler Commands . 155
llacctmrg - Collect machine history files . 156
llcancel - Cancel a Submitted Job . 158

iv Using and Administering LoadLeveler

llclass - Query Class Information . 160
llctl - Control LoadLeveler Daemons . 163
llextSDR - Extract adapter information from the SDR 167
llfavorjob - Reorder System Queue by Job . 171
llfavoruser - Reorder System Queue by User 173
llhold - Hold or Release a Submitted Job . 174
llinit - Initialize Machines in the LoadLeveler Cluster 177
llprio - Change the User Priority of Submitted Job Steps 179
llq - Query Job Status . 181
llstatus - Query Machine Status . 193
llsubmit - Submit a Job . 200
llsummary - Return Job Resource Information for Accounting 202

The LoadLeveler Graphical User Interface . 209

Chapter 10. Graphical User Interface Overview 211
Starting the Graphical User Interface . 211
Building and Submitting Jobs Using the Graphical User Interface 213
Customizing the Graphical User Interface . 228

The LoadLeveler Application Programming Interfaces 237

Chapter 11. LoadLeveler APIs . 239
Accounting API . 239
Serial Checkpointing API . 242
The Submit API . 243
Data Access API . 245
Parallel Job API . 263
Job Control API . 268
Query API . 273
User Exits . 277

Appendixes . 287

Appendix A. Troubleshooting . 289
Troubleshooting LoadLeveler . 289

Appendix B. Customer Case Studies . 301
Customer 1: Technical Computing at the Cornell Theory Center 301
Customer 2: Circuit Simulation . 312
Customer 3: High-Energy Physics . 315
Customer 4: Computer Chip Design . 317

Appendix C. Sample Files . 325
Sample Administration File . 325
Sample Configuration File . 329

Appendix D. Glossary . 335

Index . 339

 Contents v

vi Using and Administering LoadLeveler

 Notices

References in this publication to IBM* products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe on any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user’s
responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

Director of Licensing
 IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594

 USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 IBM Corporation
Mail Station P131
522 South Road
Poughkeepsie, NY 12601-5400

 USA
Attention: Information Request

Trademarks and Service Marks
The following terms are trademarks of the IBM Corporation in the United States
and/or other countries or both:

 AIX
 IBM
 LoadLeveler
 RISC System/6000

RISC System/6000 Scalable POWERparallel Systems

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

LoadLeveler incorporates Condor, which was developed at the University of
Wisconsin-Madison, and uses it with the permission of its authors.

 Notices vii

viii Using and Administering LoadLeveler

Who Should Use This Book

This manual is intended for those who are responsible for using and/or
administering LoadLeveler.

Tasks involved with using LoadLeveler include submitting parallel, serial, and
interactive jobs. Tasks involved with administering Loadleveler include:

� Setting up configuration and administration files

 � Maintaining LoadLeveler

� Setting up the distributed environment for allocating batch jobs.

Users and Administrators should be experienced with the UNIX** commands.
Administrators should be familiar with system management techniques such as
SMIT, used in the AIX* environment. Knowledge of networking and NFS** or AFS**
protocols is also helpful.

 Who Should Use This Book ix

x Using and Administering LoadLeveler

How this Book is Organized

This books contains the following sections:

� “Overview of LoadLeveler” on page 1 describes what LoadLeveler is and how it
works, and includes an explanation of the LoadLeveler daemons and
processes.

� “Using LoadLeveler” on page 21 describes how to submit both serial and
parallel jobs to LoadLeveler.

� “Administering LoadLeveler” on page 67 describes how to perform
administration tasks, such as configuring LoadLeveler, gathering accounting
data, and routing jobs to NQS.

� “Command Reference” on page 153 describes the LoadLeveler commands.

� “The LoadLeveler Graphical User Interface” on page 209 describes the
LoadLeveler graphical user interface.

� “The LoadLeveler Application Programming Interfaces” on page 237 describes
LoadLeveler's application programming interfaces.

� Appendix A, “Troubleshooting” on page 289 includes the following:
“Troubleshooting LoadLeveler” on page 289, Appendix B, “Customer Case
Studies” on page 301, and Appendix C, “Sample Files” on page 325.

A glossary and index are also included.

Users of LoadLeveler should, at a minimum, become familiar with “Overview of
LoadLeveler” on page 1 and “Using LoadLeveler” on page 21. Administrators
should, at a minimum, become familiar with “Administering LoadLeveler” on
page 67, and may find it helpful to read “Troubleshooting LoadLeveler” on
page 289.

 Typographic Conventions
This book uses the following typographic conventions:

 How this Book is Organized xi

Typographic Usage

Bold � Bold words or characters represent system elements that you must use literally, such as
commands, flags, and path names.

� Bold words also indicate the first use of a term included in the glossary.

Italic � Italic words or characters represent variable values that you must supply.

� Italics are also used for book titles and for general emphasis in text.

Constant width Examples and information that the system displays appear in constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means “or.”)

< > Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For
example, <Enter > refers to the key on your terminal or workstation that is labeled with the
word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more times.

<Ctrl- x> The notation <Ctrl- x> indicates a control character sequence. For example, <Ctrl-c > means
that you hold down the control key while pressing <c>.

xii Using and Administering LoadLeveler

 Related Information

In addition to this publication, the following books are also part of the LoadLeveler
library:

� Diagnosis and Messages Guide, GA22-7277-00

� Installation Memo, GI10-0642-00

Accessing This Book off the World Wide Web
You can view or download this book (in PDF format) from the World Wide Web
using the following URL:

http://www.rs6ððð.ibm.com/resource/aix_resource/sp_books/LoadLeveler

Accessing LoadLeveler Documentation Online
IBM ships on the product media manual pages, HTML files, and PDF files. In order
to use these files you must install the appropriate file sets. For more information,
see LoadLeveler Installation Memo, which is shipped on the product media.

To view the LoadLeveler books in HTML format, you need access to an HTML
document browser such as Netscape. Once you install the HTML files, an index to
the LoadLeveler books is found in /usr/lpp/loadL/html/index.html .

You can also view the LoadLeveler books from the SP Resource Center, which is
available under the Parallel Systems Support Programs (PSSP) or as a separately
installed program. You invoke the Resource Center from PSSP by entering
resource_center . To invoke the Resource Center from the product CD, see the
readme.txt file.

To view the LoadLeveler books in PDF format, you need access to the Adobe
Acrobat Reader 3.0.1. The Acrobat Reader is shipped with AIX Version 4.3 Bonus
Pack and is also freely available for downloading from the Adobe web site at URL
http://www.adobe.com .

LoadLeveler Man Pages
Manual (man) pages are available for all LoadLeveler commands. You can view the
man page for a command by entering man and the command name. For example:
man llquery .

The following man pages associated with LoadLeveler APIs (Application
Programming Interfaces) are also available to you. You can view these man pages
by entering man and the name of the man page. For example: man
LoadL_submitapi .

 Related Information xiii

Man Page Name What it Describes

LoadL_acctapi Accounting API

LoadL_ckptapi Serial checkpointing API

LoadL_dataapi Data Access API

LoadL_jobctlapi Job control API

LoadL_parallelapi Parallel job API

LoadL_queryapi Query API

LoadL_submitapi Submit API

xiv Using and Administering LoadLeveler

What's New in Version 2

The following is a list of new functions added for this release.

Multiple User Space Tasks per Adapter
LoadLeveler now supports running multiple user space tasks on an SP switch
adapter. A job step requests adapter resources using the network statement in the
job command language. See “Step 5: Specify Adapter Stanzas” on page 93 and
“network” on page 47 for more information.

Multiple Tasks per Job per Node
The new node , tasks_per_node , and total_tasks keywords in the job command
language allow you to run multiple tasks of a parallel job on the same node. See
“node” on page 48, “tasks_per_node” on page 55 and “total_tasks” on page 55 for
more information.

Multiple Communication Protocols per Task
LoadLeveler now allows a job step to request the network resources required for a
task to run both the Message Passing Interface (MPI) and the Low-level Application
Programming Interface (LAPI) communication protocols. See “network” on page 47
for more information.

National Language Support, Including New Documentation
LoadLeveler is now enabled for National Language Support (NLS). LoadLeveler
error messages (from commands and APIs) are externalized both in message
cataloges and the new LoadLeveler Diagnosis and Messages Guide.

Enhanced Checkpointing of Jobs
The existing support for checkpointing serial jobs has been enhanced as follows:

� LoadLeveler now continues to run the process of the job for which the
checkpoint is taken, rather than terminating the process and resuming it.

� LoadLeveler now supports checkpointing C++ programs. See “Step 13: Enable
Checkpointing” on page 113 for more information.

� LoadLeveler now supports the checkpointing of parallel jobs when you use the
new Parallel Environment (PE) parallel checkpointing API calls. See IBM
Parallel Environment for AIX: Operation and Use, Volume 1 for more
information.

 What's New in Version 2 xv

New Scheduling Algorithm
LoadLeveler now includes an additional scheduling algorithm, the Backfill
scheduler. This scheduler runs both serial and parallel jobs. However, the Backfill
scheduler is primarily meant for installations running parallel jobs. See “Choosing a
Scheduler” on page 97 for more information.

New Command to Extract SDR Data
The new llextSDR command allows you to extract information from the system
data repository (SDR) of an SP system. You can use this information in
LoadLeveler administration file stanzas.

See “llextSDR - Extract adapter information from the SDR” on page 167 for more
information.

New Application Programming Interface
The new data access API allows you to retrieve specific information associated with
LoadLeveler data objects.

See “Data Access API” on page 245 for more information.

 Command Enhancements
The llq command and the llstatus command now include options which allow you
to control the output these commands produce. The new options for both
commands are:

� -f, which allows you to query a list of available categories, and produces a
customized version of the standard command output.

� -r, which allows you to query a list of available categories, and produces a
“raw” version of the standard command output.

See “llq - Query Job Status” on page 181 and “llstatus - Query Machine Status” on
page 193 for more information.

Graphical User Interface Enhancements
The LoadLeveler Graphical User Interface (GUI):

� Displays the new output categories available through the llq and llstatus
commands.

� Contains additional resource fields which allow you to customize the headers
on the Jobs and Machines windows.

� Supports the new job command language keywords.

� Includes additional selection buttons which display configured LoadLeveler
features and pools.

xvi Using and Administering LoadLeveler

New Job Command Language Keywords
The following are new job command language keywords.

 � network

 � node

 � node_usage

 � tasks_per_node

 � total_tasks

See “Job Command File Keywords” on page 38 for more information.

Administration File Changes
The following are new functions added to the administration file:

� New adapter stanza: this new stanza allows you to configure and use adapters.
See “Step 5: Specify Adapter Stanzas” on page 93 for more information.

� New machine stanza keywords:

 – adapter_stanzas

 – pool_list

 – spacct_excluse_enable

 – machine_mode

See “Step 1: Specify Machine Stanzas” on page 73 for more information.

� New user, group, and/or class stanza keywords:

 – max_node

 – total_tasks

 – default_interactive_class

See “Step 2: Specify User Stanzas” on page 78 for more information.

� The new llextSDR command extracts information that you can use in
administration file stanzas. “llextSDR - Extract adapter information from the
SDR” on page 167 for more information.

Configuration File Changes
The SCHEDULER_TYPE keyword has been added to the configuration file. See
“Step 2: Define LoadLeveler Cluster Characteristics” on page 97 for more
information.

New Environment Variable
The new LOADL_INTERACTIVE_CLASS environment variable allows you to set
the name of the class to which an interactive parallel job is assigned. See the
description of the new default_interactive_class keyword in “Step 2: Specify User
Stanzas” on page 78 for more information.

 What's New in Version 2 xvii

Resource Manager Changes
LoadLeveler now incorporates functions which were previously part of the Parallel
System Support Programs (PSSP) Resource Manager. For more information, see
“Resource Manager Functions Now in LoadLeveler” on page xix.

Interactive Session Support Changes
The Interactive Session Support (ISS) function which was previously included with
LoadLeveler is now available as part of Interactive Network Dispatcher (IND)
Version 2. The ISS function in IND now allows various load measurements to be
combined to form a weighted average of the overall system load. The IND product
is a scaleable, load-balancing program appropriate for HTTP, FTP, and other
TCP-based servers. For more information, see Interactive Network Dispatcher
User's Guide, GC31-8496-02.

xviii Using and Administering LoadLeveler

 Migration Considerations

This section describes some differences between LoadLeveler 1.3.0 and
LoadLeveler 2.1.0. See the LoadLeveler Installation Memo for more information on
migration.

Resource Manager Functions Now in LoadLeveler
The following functions were previously part of the Parallel System Support
Programs (PSSP) Resource Manager and are now part of LoadLeveler.

Table 1. New LoadLeveler Functions Previously Part of the Resource Manager

Resource Manager Function LoadLeveler Function

Support for pools The pool_list keyword in the machine stanza.

Specifying batch, interactive, or general
use for nodes

The machine_mode keyword in the machine stanza.

Enabling SP exclusive use accounting for
parallel jobs

The sp_excluse_enable keyword in the machine stanza.

Controlling user logins LoadLeveler does not directly interact with the Login Control
Facility. LoadLeveler logs into nodes as root and switches to the
user's ID. root is never blocked on a node.

Providing node and adapter information for
SP nodes

The llextSDR extracts information from the SDR that you can use
in administration file stanzas.

Requesting dedicated use of nodes The node_usage keyword in the job command file.

Requesting dedicated use of adapters The usage operand on the network keyword in the job command
file.

Displaying job information with the
jm_status -j command

The llq command.

Displaying pool information with the
jm_status -P command

The llstatus -l command.

Also, the LoadLeveler rm_host keyword in the machine stanza is no longer
needed.

Keywords Supported for Parallel Jobs
LoadLeveler 2.1.0 includes a new scheduler, the Backfill scheduler, in addition to
the default scheduler which existed in LoadLeveler 1.3.0. See Table 4 on page 59
for a list of which keywords associated with parallel jobs are supported by each
scheduler.

Migrating Your Existing Adapter Requirements Statements
If you are running the Backfill scheduler with job_type=parallel , you should use the
2.1.0 network job command file keyword to request adapters. However, if you use
the 1.3.0 Adapter requirement in a job command file, the requirement is converted
to the 2.1.0 network statement. Only those requirement statements with one

 Migration Considerations xix

Adapter keyword and that use the “==” operator are converted; all other Adapter
requirements are not allowed.

Table 2 shows how the network type value in an Adapter requirement statement is
converted. The left column represents the network types you can request using the
Adapter requirement. The right hand column represents the resulting network
statement generated by LoadLeveler 2.1.0.

Note that any adapter name in a resulting network statement must be specified in
the administration file.

Table 2. How the Backfill Scheduler Handles the Adapter Requirement

Network Type Adapter Requirement Resulting network Statement

hps_ip css0,shared,IP

hps_user css0,shared,US

ethernet en0,shared,IP

fddi fi0,shared,IP

tokenring tr0,shared,IP

fcs fcs0,shared,IP

Changes in LoadLeveler Command Output
The following are changes in the output produced by LoadLeveler Version 2
Release 1 commands:

� The llq -l -x command output now includes task and node information for
parallel jobs. For more information, see “Results” on page 183.

� The llstatus -l command output includes the following changes:

– The order of the output fields displayed has changed.

– The first and last line of output has changed.

– Job classes are now grouped together and are followed by the number of
class instances. For example, small(2) POE(3) refers to two small class
jobs and three POE class jobs.

– The Adapter line now contains expanded information.

For more information, see “Results” on page 194.

Changes in the LoadLeveler Release Directory
The LoadLeveler release directory has changed as follows:

� /usr/lpp/LoadL/nfs is now /usr/lpp/LoadL/full .

� /usr/lpp/LoadL/nfs_so is now /usr/lpp/LoadL/so .

The LoadLeveler release directory is set by the RELEASE_DIR keyword in the
sample LoadLeveler configuration file and the sample program Makefiles.

xx Using and Administering LoadLeveler

Changes in the GUI Resource File
The following new resources have been added to Xloadl , the GUI resource file:

� New resources ending in _label allow you to specify the titles of the columns
on the Jobs and Machines windows.

� Additional resources ending in _len allow you to add new fields to the Jobs and
Machines windows and to specify the size of these fields.

� New resources are available for “widgets,” such as the Job Type cascading
menu, and the Nodes, Network, and PVM buttons and windows.

For more information, see /usr/lpp/LoadL/full/lib/Xloadl , the GUI resource file.

 Migration Considerations xxi

xxii Using and Administering LoadLeveler

Overview of LoadLeveler

 Overview of LoadLeveler 1

2 Using and Administering LoadLeveler

Chapter 1. What is LoadLeveler?

LoadLeveler is a job management system that allows users to run more jobs in less
time by matching their processing needs to available resources. LoadLeveler
serves as a job scheduler and provides a facility for building, submitting, and
processing jobs quickly and efficiently in a dynamic environment.

Figure 1 shows the different environments to which LoadLeveler can schedule jobs.
Together, these environments comprise the LoadLeveler cluster. An environment
can include heterogeneous clusters, dedicated nodes, and the RISC System/6000
Scalable POWERparallel System (SP).

LoadLeveler

IBM SP

NFS
AFS
DCE

NQS

IBM RS
System/6000

Submit-Only Machines

Figure 1. Example of a LoadLeveler Configuration

In addition, LoadLeveler can schedule jobs written for NQS to machines outside of
the LoadLeveler cluster for execution. As Figure 1 also illustrates, a LoadLeveler
cluster can include submit-only machines, which allow users to have access to a
limited number of LoadLeveler features. This type of machine is further discussed
in “Roles of Machines” on page 5.

 Chapter 1. What is LoadLeveler? 3

How LoadLeveler Works
This section describes how LoadLeveler works by introducing some basic job
scheduling concepts.

What Does a Network Job Management and Job Scheduling System
Do?

A network job management and job scheduling system, such as LoadLeveler, is a
software program that schedules and manages jobs that you submit to one or more
machines under its control. LoadLeveler accepts jobs that users submit and reviews
the job requirements. LoadLeveler then examines the machines under its control to
determine which machines are best suited to run each job.

 Jobs
LoadLeveler schedules your jobs on one or more machines for processing. The
definition of a job, in this context, is a set of job steps. For each job step, you can
specify a different executable. (The executable is the part of the job that gets
processed.) You can use LoadLeveler to submit jobs which are made up of one or
more job steps, where each job step depends upon the completion status of a
previous job step. For example, Figure 2 illustrates a stream of job steps:

Step 1
Copy data from tape

If exit status=x, initiate Step 2
If exit status=y, terminate

Step 2
Process data

If exit status=x, initiate Step 3
If exit status=y, terminate

Step 3
Format and print results

Terminate

exit status=x

exit status=x

exit status=y

exit status=y

Figure 2. LoadLeveler Job Steps

Each of these job steps is defined in a single job command file. A job command
file specifies the name of the job, as well as the job steps that you want to submit,
and can contain other LoadLeveler statements.

LoadLeveler tries to execute each of your job steps on a machine that has enough
resources to support executing and checkpointing each step. If your job command
file has multiple job steps, the job steps will not necessarily run on the same
machine, unless you explicitly request that they do.

You can submit batch jobs to LoadLeveler for scheduling. Batch jobs run in the
background and generally do not require any input from the user. Batch jobs can
either be serial or parallel. A serial job runs on a single machine, while a parallel
job – a job that was written using a parallel language Application Program Interface
(API) – is separated into multiple parts that can be processed simultaneously by
several machines.

4 Using and Administering LoadLeveler

Machines and Workstations
In order for LoadLeveler to schedule a job on a machine, the machine must be a
valid member of the LoadLeveler cluster. A cluster is the combination of all of the
different types of machines that use LoadLeveler. The following types of machines
can be in a LoadLeveler cluster:

� RISC System/6000 (and compatible hardware running AIX)
 � SP System

To make a machine a member of the LoadLeveler cluster, the administrator has to
install the LoadLeveler software onto the machine and identify the central manager
(described in “Roles of Machines”). Once the machine becomes a valid member of
the cluster, LoadLeveler can schedule jobs to the machine.

Roles of Machines: Each machine in the LoadLeveler cluster performs one or
more roles that make job scheduling possible. These roles are described below:

� Scheduling Machine: When a job is submitted, it gets placed in a queue
managed by a scheduling machine. This machine contacts another machine
that serves as the central manager for the entire LoadLeveler cluster. (This role
is described below). This scheduling machine asks the central manager to find
a machine that can run the job and keeps persistent information about the job.
Some scheduling machines are known as public scheduling machines, meaning
any LoadLeveler user can access them. These machines schedule jobs
submitted from submit-only machines, which are described below.

� Central Manager Machine: The role of the central manager is to examine the
job's requirements and find one or more machines in the LoadLeveler cluster
that will run the job. Once it finds the machine(s), it notifies the scheduling
machine.

� Executing Machine: The machine that runs the job is known as the executing
machine.

� Submitting Machine: This type of machine is known as a submit-only machine.
It participates in the LoadLeveler cluster on a limited basis. Although the name
implies that users of these machines can only submit jobs, they can also query
and cancel jobs. Users of these machines also have their own Graphical User
Interface (GUI) that provides them with the submit-only subset of functions. The
submit-only machine feature allows workstations that are not part of the
LoadLeveler cluster to submit jobs to the cluster.

Keep in mind that one machine can assume multiple roles.

Machine Availability: There may be times when some of the machines in the
LoadLeveler cluster are not available to process jobs. This may be when the
owners of the machines have decided to make them unavailable. This ability of
LoadLeveler to allow users to restrict the use of their machines provides flexibility
and control over the resources.

Machine owners can make their personal workstations available to other
LoadLeveler users in several ways. For example, you can specify that:

� The machine will always be available

� The machine will be available only between certain hours

� The machine will be available when the keyboard and mouse are not being
used interactively.

 Chapter 1. What is LoadLeveler? 5

Owners can also specify that their personal workstations will never be available to
other LoadLeveler users.

 LoadLeveler Daemons
This section lists the daemons that LoadLeveler uses to process jobs. For more
detailed information, see “Daemons and Processes” on page 13.

LoadL_master Referred to as the master daemon, this daemon manages all
LoadLeveler daemons on its machine. The master daemon
runs on all machines in the cluster.

LoadL_schedd Referred to as the schedd daemon, this daemon manages a
list of jobs submitted to the machine. The schedd daemon
runs on all scheduling machines in the cluster.

LoadL_startd Referred to as the startd daemon, this daemon accepts jobs
to be run on the machine where startd runs. The startd
daemon runs on all executing machines in the cluster.

LoadL_starter Spawned by the startd daemon, the starter process
manages a running job on the executing machine. The
starter process runs on all executing machines in the cluster.

LoadL_kbdd Referred to as the keyboard daemon, this daemon monitors
keyboard and mouse activity. The keyboard daemon runs on
all executing machines in the cluster.

LoadL_negotiator Referred to as the negotiator daemon, this daemon collects
job status and machine status from all machines in the
LoadLeveler cluster, and makes decisions on where the jobs
should be run. The negotiator daemon runs on the
LoadLeveler central manager machine.

How Does LoadLeveler Schedule Jobs to Run on Machines?
Once a user submits a job to LoadLeveler, LoadLeveler examines the job in order
to determine what resources it needs to run the job. Then, LoadLeveler determines
which machines in the LoadLeveler cluster are best suited to run the job. Once the
appropriate machine is found, LoadLeveler dispatches the job to the machines. To
provide this function, LoadLeveler uses the concept of queues.

A job queue is a list of jobs that are waiting to be processed. When a user submits
a job to LoadLeveler, the job enters into an internal database that resides on one of
the machines in the LoadLeveler cluster until it is ready to be dispatched to another
machine to be run, as shown in Figure 3 on page 7.

6 Using and Administering LoadLeveler

Figure 3. Job Queues

Once LoadLeveler examines the job to determine its required resources, the job is
dispatched to a machine to be processed. Arrows 2 and 3 indicate that the job can
be dispatched to either one machine or, in the case of parallel jobs, to multiple
machines. Once the job reaches the executing machine, the job runs.

Jobs do not necessarily get dispatched to machines in the cluster based upon a
first-come, first-serve basis. Instead, LoadLeveler examines the requirements and
characteristics of the job and the availability of machines and determines the best
time for the job to be dispatched.

LoadLeveler also uses the concept of job classes to schedule jobs to run on
machines. A job class is a classification to which a job can belong. For example,
short running jobs may belong to a job class called short_jobs. Similarly, jobs that
are only allowed to run on the weekends may belong to a class called weekend. The
system administrator can define these job classes and select the users that are
authorized to submit jobs of these classes. For more information, see “Step 3:
Specify Class Stanzas” on page 82.

You can specify which types of jobs will run on a machine by specifying the type(s)
of job classes the machine will support. For more information, see “Step 1: Specify
Machine Stanzas” on page 73.

LoadLeveler also examines a job's priority in order to determine when to schedule
the job on a machine. A priority of a job is used to determine its position among a
list of all jobs waiting to be dispatched. For more information on job priority, see
“Setting and Changing the Priority of a Job” on page 29.

The LoadLeveler Job Cycle
Figure 4 on page 8 illustrates the information flow through the LoadLeveler cluster:

 Chapter 1. What is LoadLeveler? 7

Figure 4. High-Level Job Flow

With LoadLeveler, there is a managing machine known as the central manager .
Also, there are machines that act as scheduling machines and machines that serve
as the executing machines. The arrows in Figure 4 illustrate the following:

� Arrow 1 indicates that a job has been submitted to LoadLeveler.

� Arrow 2 indicates that the scheduling machine contacts the central manager to
inform it that a job has been submitted and to find out if a machine exists that
matches the job requirements.

� Arrow 3 indicates that the central manager checks to determine if a machine
exists that is capable of running the job. Once a machine is found, the central
manager informs the scheduling machine which machine is available.

� Arrow 4 indicates that the scheduling machine contacts the executing machine
and provides it with information regarding the job.

Figure 4 is broken down into the following more detailed diagrams illustrating how
LoadLeveler processes a job.

1. Submit a LoadLeveler job:

8 Using and Administering LoadLeveler

1

2

3

Central ManagerSubmit
Job

negotiator daemon

schedd daemon

Jo
b

Scheduling
MachineJo

b
In

fo
rm

atio
n

List of
Submitted

Jobs

Figure 5. Job is Submitted to LoadLeveler

Figure 5 illustrates that the schedd daemon runs on the scheduling machine.
This machine can also have the startd daemon running on it. The negotiator
daemon resides on the central manager machine. The arrows in Figure 5
illustrate the following:

� Arrow 1 indicates that a job has been submitted to the scheduling machine.

� Arrow 2 indicates that the schedd daemon, on the scheduling machine,
stores all of the relevant job information on local disk.

� Arrow 3 indicates that the schedd daemon sends job description
information to the negotiator daemon.

2. Permit to run:

Central Manager

negotiator daemon

schedd daemon

Host

Perm
it to

Ru
n

4

Figure 6. LoadLeveler Authorizes the Job

In Figure 6, arrow 4 indicates that the negotiator daemon authorizes the
schedd daemon to begin taking steps to run the job. This authorization is called

 Chapter 1. What is LoadLeveler? 9

a permit to run. Once this is done, the job is considered Pending or Starting.
(See “LoadLeveler Job States” on page 18 for more information.)

3. Prepare to run:

Central Manager

negotiator daemon

schedd
daemon

startd
daemon

startd
daemon

Host Host

Start Local Job

Start Remote Job

5

5
Figure 7. LoadLeveler Prepares to Run the Job

In Figure 7, arrow 5 illustrates that the schedd daemon contacts the startd
daemon on the executing machine and requests that it start the job. The
executing machine can either be a local machine (the machine from which the
job was submitted) or a remote machine (another machine in the cluster).

 4. Initiate job:

Central Manager

negotiator daemon

schedd
daemon

startd
daemon

startd
daemon

Host

Host

starter starter

Job Info (remote)

66

7

7

8

Jo
b In

form
atio

n

(lo
cal)

Figure 8. LoadLeveler Starts the Job

The arrows in Figure 8 illustrate the following:

� The two arrows numbered 6 indicate that the startd daemon on the
executing machine, spawns a starter process and awaits more work.

10 Using and Administering LoadLeveler

� The two arrows numbered 7 indicate that the schedd daemon sends the
starter process the job information and the executable.

� Arrow 8 indicates that the schedd daemon notifies the negotiator daemon
that the job has been started and the negotiator daemon marks the job as
Running. (See “LoadLeveler Job States” on page 18 for more information.)

The starter forks and executes the user's job, and the starter parent waits for
the child to complete.

 5. Complete job:

starterstarter

Central Manager

negotiator daemon

schedd
daemon

schedd
daemon

startd
daemon

startd
daemon

Host Host

9

9 9

9

10

Exit Status (remote)

Exit Status (local)

Figure 9. LoadLeveler Completes the Job

The arrows in Figure 9 illustrate the following:

� The arrows numbered 9 indicate that when the job completes, the starter
process notifies the startd daemon, and the startd daemon notifies the
schedd daemon.

� Arrow 10 indicates that the schedd daemon examines the information it has
received and forwards it to the negotiator daemon.

 Chapter 1. What is LoadLeveler? 11

12 Using and Administering LoadLeveler

Chapter 2. LoadLeveler Daemons and Job States

This chapter presents a detailed explanation of LoadLeveler daemons and
processes. Included here is a description of job states, which are controlled by
certain daemons. See “LoadLeveler Job States” on page 18 for more information.

Daemons and Processes
This section presents a detailed explanation of LoadLeveler daemons and
processes. For more information on configuration file keywords mentioned in this
section, see “Configuring LoadLeveler” on page 94.

The master Daemon
The master daemon runs on every machine in the LoadLeveler cluster, except the
submit-only machine. The real and effective user ID of this daemon must be root.

The master daemon determines whether to start any other daemons by checking
the START_DAEMONS keyword in the global or local configuration file. If the
keyword is set to true , the daemons are started. If the keyword is set to false , the
master daemon terminates and generates a message.

On the machine designated as the central manager, the master runs the
negotiator daemon. The master also controls the central manager backup function.
The negotiator runs on either the primary or an alternate central manager. If a
central manager failure is detected, one of the alternate central managers becomes
the primary central manager by starting the negotiator.

The master daemon starts and if necessary, restarts all the LoadLeveler daemons
that the machine it resides on is configured to run. As part of its startup procedure,
this daemon executes the .llrc file (a dummy file is provided in the bin subdirectory
of the release directory). You can use this script to customize your local
configuration file, specifying what particular data is stored locally. This daemon also
runs the kbdd daemon, which monitors keyboard and mouse activity.

When the master daemon detects a failure on one of the daemons that it is
monitoring, it attempts to restart it. Because this daemon recognizes that certain
situations may prevent a daemon from running, it limits its restart attempts to the
number defined for the RESTARTS_PER_HOUR keyword in the configuration file.
If this limit is exceeded, the master aborts and all daemons are killed.

When a daemon must be restarted, the master sends mail to the administrator(s)
identified by the LOADL_ADMIN keyword in the configuration file. The mail
contains the name of the failing daemon, its termination status, and a section of the
daemon's most recent log file. If the master aborts after exceeding
RESTARTS_PER_HOUR, it will also send that mail before exiting.

The master daemon may perform the following actions in response to an llctl
command:

� Kill all daemons and exit
� Kill all daemons and execute a new master

 Chapter 2. LoadLeveler Daemons and Job States 13

� Re-run the .llrc file, reread the configuration files, stop or start daemons as
appropriate for the new configuration files

� Send drain request to startd and schedd
� Send flush request to startd and send result to caller
� Send suspend request to startd and send result to caller
� Send resume request to startd and schedd, and send result to caller

The schedd Daemon
The schedd daemon receives jobs sent by the llsubmit command and schedules
those jobs to machines selected by the negotiator daemon. The schedd daemon is
started, restarted, signalled, and stopped by the master daemon.

The schedd daemon can be in any one of the following states:

Available This machine is available to schedule jobs.

Draining The schedd daemon has been drained by the administrator but some
jobs are still running. The state of the machine remains Draining until
all running jobs complete. At that time, the machine status changes to
Drained.

Drained The schedd machine accepts no more jobs; jobs in the Starting or
Running state are allowed to continue running, and jobs in the Idle
state are drained, meaning they will not get dispatched.

Down The daemon is not running on this machine. The schedd daemon
enters this state when it has not reported its status to the negotiator.
This can occur when the machine is actually down, or because there
is a network failure.

The schedd daemon performs the following functions:

� Assigns new job ids when requested by the job submission process (for
example, by the llsubmit command).

� Receives new jobs from the llsubmit command. A new job is received as a job
object for each job step. A job object is the data structure in memory containing
all the information about a job step. The schedd forwards the job object to the
negotiator daemon as soon as it is received from the submit command.

� Maintains on disk copies of jobs submitted locally (on this machine) that are
either waiting or running on a remote (different) machine. The central manager
can use this information to reconstruct the job information in the event of a
failure. This information is also used for accounting purposes.

� Responds to directives sent by the administrator through the negotiator
daemon. The directives include:

– Run a job.
– Change the priority of a job.
– Remove a job.
– Hold or release a job.
– Send information about all jobs.

� Sends job events to the negotiator daemon when:

– schedd is restarting.
– A new series of job objects are arriving.
– A job is started.

14 Using and Administering LoadLeveler

– A job was rejected, completed, removed, or vacated. schedd determines
the status by examining the exit status returned by the startd.

� Communicates with the Parallel Operating Environment (POE) when you run a
POE job.

� Requests that a remote startd daemon kill a job.

� Handles the checkpoint file associated with the job, provided checkpointing has
been enabled. For more information, see “Step 13: Enable Checkpointing” on
page 113.

� Receives accounting information from startd.

The startd Daemon
The startd daemon monitors jobs and machine resources on the local machine and
forwards this information to the negotiator daemon. The startd also receives and
executes job requests originating from remote machines. The master daemon
starts, restarts, signals, and stops the startd daemon.

The startd daemon can be in any one of the following states:

Busy The maximum number of jobs are running on this machine.

Down The daemon is not running on this machine. The startd daemon
enters this state when it has not reported its status to the
negotiator. This can occur when the machine is actually down, or
because there is a network failure.

Drained The startd machine accepts no more jobs; and jobs already
running on the startd machine are allowed to complete.

Draining The startd daemon has been drained by the administrator but
some jobs are still running. The state of the machine remains
Draining until all running jobs complete. At that time, the machine
status changes to Drained.

Flush All jobs on this machine have been flushed. No new jobs are
accepted.

Idle The machine is not running any jobs.

None LoadLeveler is running on this machine, but no jobs can run here.

Reserved The resource manager has this machine reserved for use by
interactive jobs.

Running The machine is running one or more jobs and is capable of
running more.

Suspend All jobs on this machine have been suspended by the
administrator.

The startd deamon performs these functions:

� Runs a timeout procedure that includes building a snapshot of the state of the
machine that includes static and dynamic data. This timeout procedure is run at
the following times:

– After a job completes.
– According to the definition of the POLLING_FREQUENCY keyword in the

configuration file.

 Chapter 2. LoadLeveler Daemons and Job States 15

� Records the following information in LoadLeveler variables and sends the
information to the negotiator. These variables are described in “LoadLeveler
Variables” on page 122.

– State (of the startd daemon)
 – EnteredCurrentState
 – Memory
 – Disk
 – KeyboardIdle
 – Cpus
 – LoadAvg
 – Machine
 – Adapter
 – AvailableClasses

� Calculates the SUSPEND, RESUME, CONTINUE, and VACATE expressions.
These are described in “Step 7: Manage a Job's Status Using Control
Expressions” on page 105.

� Receives job requests from the schedd daemon to:

– Start a job
– Vacate a job

 – Cancel

When the schedd daemon tells the startd to start a job, the startd determines
whether its own state permits a new job to run:

� Receives requests from the master (via llctl) to do one of the following:

 – Drain
 – Flush
 – Suspend
 – Resume.

� For each request, startd marks its own new state, forwards its new state to the
negotiator daemon, and then performs the appropriate action for any jobs that
are active.

� Receives notification of keyboard and mouse activity from the kbdd daemon

� Periodically examines the process table for LoadLeveler jobs and accumulates
resources consumed by those jobs. This resource data is used to determine if
a job has exceeded its job limit and for recording in the history file.

� Send accounting information to schedd.

If: Then this happens:

Yes, it can start a
new job

The startd forks a starter process.

No, it cannot start
a new job

The startd rejects the request for one of the following reasons:

� Jobs have been suspended, flushed, or drained

� The job limit set for the MAX_STARTERS keyword has been
reached

� There are not enough classes available for the designated
job class

16 Using and Administering LoadLeveler

The starter Process
The startd daemon spawns a starter process after the schedd daemon tells the
startd to start a job. The starter process manages all the processes associated with
a job step. The starter process is responsible for running the job and reporting
status back to startd.

The starter process performs these functions:

� Processes the prolog and epilog programs as defined by the JOB_PROLOG
and JOB_EPILOG keywords in the configuration file. The job will not run if the
prolog program exits with a return code other than zero.

� Handles authentication. This includes:

– Authenticates AFS, if necessary
– Verifies that the submitting user is not root
– Verifies that the submitting user has access to the appropriate directories in

the local file system.

� Runs the job by forking a child process that runs with the user id and all groups
of the submitting user. The starter child creates a new process group of which
it is the process group leader, and executes the user's program or a shell. The
starter parent is responsible for detecting the termination of the starter child.
LoadLeveler does not monitor the children of the parent.

� Responds to vacate and suspend orders from the startd.

� Periodically generates a new checkpoint file, provided checkpointing has been
enabled, and sends it to the scheduling machine.

The negotiator Daemon
The negotiator daemon maintains status of each job and machine in the cluster
and responds to queries from the llstatus and llq commands. The negotiator
daemon runs on a single machine in the cluster (the central manager machine).
This daemon is started, restarted, signalled, and stopped by the master daemon.

The negotiator daemon receives status messages from each schedd and startd
daemon running in the cluster. The negotiator daemon tracks:

� Which schedd daemons are running
� Which startd daemons are running, and the status of each startd machine.

If the negotiator does not receive an update from any machine within the time
period defined by the MACHINE_UPDATE_INTERVAL keyword, it assumes that
machine is down and therefore the schedd and startd daemons are also down.

The negotiator also maintains in its memory several queues and tables which
determine where the job should run.

The negotiator performs the following functions:

� Receives and records job status changes from the schedd daemon.

� Schedules jobs based on a variety of scheduling criteria and policy options.
Once a job is selected, the negotiator contacts the schedd that originally
created the job.

� Handles requests to:

 – Set priorities

 Chapter 2. LoadLeveler Daemons and Job States 17

– Query about jobs
– Remove a job
– Hold or release a job
– Favor or unfavor a user or a job.

� Receives notification of schedd resets indicating that a schedd has restarted.

The kbdd Daemon
The kbdd daemon monitors keyboard and mouse activity. The kbdd daemon is
spawned by the master daemon if the X_RUNS_HERE keyword in the configuration
file is set to true .

The kbdd daemon notifies the startd daemon when it detects keyboard or mouse
activity; however, kbdd is not interrupt driven. It sleeps for the number of seconds
defined by the POLLING_FREQUENCY keyword in the LoadLeveler configuration
file, and then determines if X events, in the form of mouse or keyboard activity,
have occurred. For more information on the configuration file, see Chapter 5,
“Administering and Configuring LoadLeveler” on page 69.

LoadLeveler Job States
As LoadLeveler processes a job, the job moves into various states. Some states
are unique to specific daemons; for example, only the negotiator places a job in the
NotQueued state. For more information on daemons, see “Daemons and
Processes” on page 13. Possible job states are:

Completed The job has completed.

Deferred The job will not be assigned to a machine until a specified
date. This date may have been specified by the user in the
job command file, or may have been generated by the
negotiator because a parallel job did not accumulate enough
machines to run the job. (Only the negotiator places a job in
the Deferred state.)

Idle The job is being considered to run on a machine, though no
machine has been selected.

NotQueued The job is not being considered to run on a machine. A job
can enter this state because the associated schedd is down,
the user or group associated with the job is at its maximum
maxqueued or maxidle value, or because the job has a
dependency which cannot be determined. For more
information on these keywords, see “Controlling the Mix of
Idle and Running Jobs” on page 297. (Only the negotiator
places a job in the NotQueued state.)

Not Run The job will never be run because a dependency associated
with the job was found to be false.

Pending The job is in the process of starting on one or more
machines. (The negotiator indicates this state until the
schedd acknowleges that it has received the request to start
the job. Then the negotiator changes the state of the job to
Starting. The schedd indicates the Pending state until all
startd machines have acknowledged receipt of the start

18 Using and Administering LoadLeveler

request. The schedd then changes the state of the job to
Starting.)

Reject Pending The job did not start. Possible reasons why a job is rejected
are: job requirements were not met on the target machine, or
the user ID of the person running the job is not valid on the
target machine. After a job leaves the Reject Pending state, it
is moved into one of the following states: Idle, User Hold, or
Removed.

Removed The job was removed (cancelled), either by LoadLeveler or
by the user.

Remove Pending The job is in the process of being removed, but not all
associated machines have acknowledged the removal of the
job.

Running The job is running: the job was dispatched and has started
on the designated machine.

Starting The job is starting: the job was dispatched, was received by
the target machine, and LoadLeveler is setting up the
environment in which to run the job. For a parallel job,
LoadLeveler sets up the environment on all required nodes.
See the description of the “Pending” state for more
information on when the negotiator or the schedd daemon
moves a job into the Starting state.

System Hold The job has been put in system hold.

System User Hold The job has been put in system hold and user hold.

User Hold The job has been put in user hold.

Vacate The job started but did not complete. The negotiator will
reschedule the job (provided the job is allowed to be
rescheduled). Possible reasons why a job moves to the
Vacate state are: the machine where the job was running
was flushed, the VACATE expression in the configuration file
evaluated to True, or LoadLeveler detected a condition
indicating the job needed to be vacated. For more
information on the VACATE expression, see “Step 7: Manage
a Job's Status Using Control Expressions” on page 105.

You may also see other states that include “Pending,” such as Complete Pending
and Vacate Pending. These are intermediate, temporary states usually associated
with parallel jobs.

 Chapter 2. LoadLeveler Daemons and Job States 19

20 Using and Administering LoadLeveler

 Using LoadLeveler

 Using LoadLeveler 21

22 Using and Administering LoadLeveler

Chapter 3. Submitting and Managing Jobs

This chapter tells you how to submit jobs to LoadLeveler. In general, the
information in this chapter applies both to serial jobs and to parallel jobs. For more
specific information on parallel jobs, see Chapter 4, “Submitting and Managing
Parallel Jobs” on page 59

Many LoadLeveler actions, such as submitting a job, can be done in either of the
following ways:

� Using LoadLeveler commands. This method is discussed in this chapter.
� Using the LoadLeveler graphical user interface (GUI). This method is discussed

in “Building and Submitting Jobs Using the Graphical User Interface” on
page 213.

Building a Job Command File
Before you can submit a job or perform any other job related tasks, you need to
build a job command file. A job command file describes the job you want to submit,
and can include LoadLeveler keyword statements. For example, to specify a binary
to be executed, you can use the executable keyword, which is described later in
this section. To specify a shell script to be executed, the executable keyword can
be used; if it is not used, LoadLeveler assumes that the job command file itself is
the executable.

The job command file can include the following:

� LoadLeveler keyword statements: A keyword is a word that can appear in job
command files. A keyword statement is a statement that begins with a
LoadLeveler keyword. These keywords are described in “Job Command File
Keywords” on page 38.

� Comment statements: You can use comments to document your job command
files. You can add comment lines to the file as you would in a shell script.

� Shell command statements: If you use a shell script as the executable, the job
command file can include shell commands.

� LoadLeveler Variables: See “Job Command File Variables” on page 56 for
more information.

You can build a job command file either by using the Build a Job window on the
GUI or by using a text editor.

Job Command File Syntax
The following general rules apply to job command files.

� Keyword statements begin with # @. There can be any number of blanks
between the # and the @.

� Comments begin with #. Any line whose first non-blank character is a pound
sign (#) and is not a LoadLeveler keyword statement is regarded as a
comment.

 Chapter 3. Submitting and Managing Jobs 23

� Statement components are separated by blanks. You can use blanks before or
after other delimiters to improve readability but they are not required if another
delimiter is used.

� The back-slash (\) is the line continuation character. Note that the continued
line must not begin with # @. See Figure 15 on page 36 for an example of
using the back-slash.

� Keywords are not case sensitive. This means you can enter them in lower
case, upper case, or mixed case.

Serial Job Command File
Figure 10 is an example of a simple serial job command file which is run from the
current working directory. The job command file reads the input file, longjob.in1 ,
from the current working directory and writes standard output and standard error
files, longjob.out1 and longjob.err1 , respectively, to the current working directory.

The name of this job command file is file.cmd.
The input file is longjob.in1 and the error file is
longjob.err1. The queue statement marks the end of
the job step.
#
@ executable = longjob
@ input = longjob.in1
@ output = longjob.out1
@ error = longjob.err1
@ queue

Figure 10. Serial Job Command File

Using Multiple Steps in a Job Command File
To specify a stream of job steps, you need to list each job step in the job command
file. You must specify one queue statement for each job step. Also, the
executables for all job steps in the job command file must exist when you submit
the job. All information in the first step is inherited by all succeeding steps.

LoadLeveler treats all job steps as independent job steps unless you use the
dependency keyword. If you use the dependency keyword, LoadLeveler
determines whether a job step should run based upon the exit status of the
previously run job step.

For example, Figure 11 on page 25 contains two separate job steps. Notice that
step1 is the first job step to run and that step2 is a job step that runs only if step1
exits with the correct exit status.

24 Using and Administering LoadLeveler

This job command file lists two job steps called "step1"
and "step2". "step2" only runs if "step1" completes
with exit status = ð. Each job step requires a new
queue statement.
#
@ step_name = step1
@ executable = executable1
@ input = step1.in1
@ output = step1.out1
@ error = step2.err1
@ queue
@ dependency = (step1 == ð)
@ step_name = step2
@ executable = executable2
@ input = step2.in1
@ output = step2.out1
@ error = step2.err1
@ queue
#

Figure 11. Job Command File with Multiple Steps

In Figure 11, step1 is called the sustaining job step. step2 is called the
dependent job step because whether or not it begins to run is dependent upon the
exit status of step1. A single sustaining job step can have more than one
dependent job steps and a dependent job step can also have job steps dependent
upon it.

In Figure 11, each job step has its own executable , input , output , and error
statements. Your job steps can have their own separate statements, or they can
use those statements defined in a previous job step. For example, in Figure 12,
step2 uses the executable statement defined in step1:

This job command file uses only one executable for
both job steps.
#
@ step_name = step1
@ executable = executable1
@ input = step1.in1
@ output = step1.out1
@ error = step1.err1
@ queue
@ dependency = (step1 == ð)
@ step_name = step2
@ input = step2.in1
@ output = step2.out1
@ error = step2.err1
@ queue

Figure 12. Job Command File with Multiple Steps and One Executable

See “Additional Job Command File Examples” on page 33 for more information.

 Chapter 3. Submitting and Managing Jobs 25

Parallel Job Command File
In addition to building job command files to submit serial jobs, you can also build
job command files to submit parallel jobs. Before constructing parallel job command
files, consult your LoadLeveler system administrator to see if your installation is
configured for parallel batch job submission.

For more information on submitting parallel jobs, see Chapter 4, “Submitting and
Managing Parallel Jobs” on page 59

Submitting a Job Command File
After building a job command file, you can submit it for processing either to a
machine in the LoadLeveler cluster or one outside of the cluster. (See “Querying
Multiple LoadLeveler Clusters” on page 28 for information on submitting a job to a
machine outside the cluster.) You can submit a job command file either by using
the GUI or the llsubmit command.

When you submit a job, LoadLeveler assigns the job a three part identifier and also
sets environment variables for the job.

The identifier consists of the following:

� Machine name: the name of the machine that schedules the job. This is not
necessarily the name of the machine that runs the job.

� Job ID: an identifier given to a group of job steps that were initiated from the
same job command file. For example, if you created a job command file that
submitted the same program five times (using five queue statements) possibly
with different input and output, each program would have the same job ID.

� Step ID: an identifier that is unique for every job step in the job you submit. If a
job command file contains multiple job steps, every job step will have a unique
step ID but the same job ID.

LoadLeveler sets the following environment variables for the job:

LOADLBATCH Set to YES to indicate the job is running under
LoadLeveler.

LOADL_ACTIVE The LoadLeveler version.
LOADL_INTERACTIVE_CLASS The job class for interactive parallel jobs.
LOADL_JOB_NAME The three part job identifier.
LOADL_PID The process ID of the starter process.
LOADL_PROCESSOR_LIST A Blank-delimited list of hostnames allocated for

the step.
LOADL_STARTD_PORT The port number where the startd daemon runs.
LOADL_STEP_ACCT The account number of the job step owner.
LOADL_STEP_ARGS Any arguments passed by the job step.
LOADL_STEP_CLASS The job class for serial jobs.
LOADL_STEP_COMMAND The name of the executable (or the name of the

job command file if the job command file is the
executable).

LOADL_STEP_ERR The file used for standard error messages
(stderr).

LOADL_STEP_GROUP The UNIX group name of the job step owner.
LOADL_STEP_ID The job step ID.
LOADL_STEP_IN The file used for standard input (stdin).

26 Using and Administering LoadLeveler

LOADL_STEP_INITDIR The initial working directory.
LOADL_STEP_NAME The name of the job step.
LOADL_STEP_NICE The UNIX nice value of the job step. This value

is determined by the nice keyword in the class
stanza. For more information, see “Step 3:
Specify Class Stanzas” on page 82.

LOADL_STEP_OUT The file used for standard output (stdout).
LOADL_STEP_OWNER The job step owner.
LOADL_STEP_TYPE The job type (SERIAL, PARALLEL, PVM3, or

NQS)

For an example of submitting a job, see “Step 3: Submit a Job” on page 32.

Submitting a Job Command File to be Routed to NQS Machines: When
submitting a job command file to be routed to an NQS machine for processing, the
job command file must contain the shell script to be submitted to the NQS node.
NQS accepts only shell scripts; binaries are not allowed. All options in the
command file pertaining to scheduling are used by LoadLeveler to schedule the job.
When the job is dispatched to the node running the specified NQS class, the
LoadLeveler options pertaining to the runtime environment are converted to NQS
options and the job is submitted to the specified NQS queue. For more information
on submitting jobs to NQS, see Figure 31 on page 147 For more information on
the llsubmit command, see “llsubmit - Submit a Job” on page 200.

Submitting a Job Command File Using a Submit-Only Machine: You can
submit jobs from submit-only machines. Submit-only machines allow machines that
do not run LoadLeveler daemons to submit jobs to the cluster. You can submit a
job using either the submit-only version of the GUI or the llsubmit command.

To install submit-only LoadLeveler, follow the procedure in the LoadLeveler
Installation Memo, or consult the appropriate README file.

In addition to allowing you to submit jobs, the submit-only feature allows you to
cancel and query jobs from a submit-only machine.

 Managing Jobs
This sections tells you how to edit a job command file, query the status of a job,
place and release a hold on a job, cancel a job, change the priority of a job,
checkpoint a step, and display machine status.

Editing a Job Command File
After you build a job command file, you can edit it using the editor of your choice.
You may want to change the name of the executable or add or delete some
statements.

Querying the Status of a Job
Once you submit a job, you can query the status of the job to determine, for
example, if it is still in the queue or if it is running. You also receive other job status
related information such as the job ID and job owner. You can query the status of a
LoadLeveler job either by using the GUI or the llq command. For an example of
querying the status of a job, see “Step 4: Display the Status of a Job” on page 32.

 Chapter 3. Submitting and Managing Jobs 27

Querying the Status of a Job Running on an NQS Machine: If your job
command file was routed to an NQS machine for processing, you can obtain its
status by using either the GUI or the llq command. Keep in mind that a machine in
the LoadLeveler cluster monitors the NQS machine where your job is running. The
status you see on the GUI (or from llq) is generated by the machine in the
LoadLeveler cluster. Since LoadLeveler only checks the NQS machine for status
periodically, the status of the job on the NQS machine may change before
LoadLeveler has an opportunity to update the GUI. If this happens, NQS will notify
you, before LoadLeveler notifies you, regarding the status of the job.

Querying the Status of a Job Using a Submit-Only Machine: A submit-only
machine, in addition to allowing you to submit and cancel jobs, allows you to query
the status of jobs. You can query a job using either the submit-only version of the
GUI or by using the llq command. For information on llq , see “llq - Query Job
Status” on page 181.

Querying Multiple LoadLeveler Clusters
This section applies only to those installations having more than one LoadLeveler
cluster.

Using the LOADL_CONFIG environment variable, you can query, submit, or cancel
jobs in multiple LoadLeveler clusters. The LOADL_CONFIG environment variable
allows you to specify that the master configuration file be located in a directory
other than the home directory of the loadl user ID. The file that LOADL_CONFIG
points to must be in the /etc directory.

You need to set up your own master configuration file to point to the location of the
LoadLeveler user ID, group ID, and configuration files. By default, the location of
the master file is /etc/LoadL.cfg .

The following example explains how you can set up a machine to query multiple
clusters:

You can configure /etc/LoadL.cfg to point to the “default” configuration files, and
you can configure /etc/othercluster.cfg to point to the configuration files of another
cluster which the user can select.

For example, you can enter the following query command:

$ llq

The above command uses the configuration from /etc/LoadL.cfg (this is
determined by the LOADL_CONFIG environment variable). To send a query to the
scheduler defined in the configuration file of /etc/othercluster.cfg , enter:

$ env LOADL_CONFIG=/etc/othercluster.cfg llq

Note that the machine from which you issue the llq command is considered as a
submit-only machine by the other cluster.

28 Using and Administering LoadLeveler

Placing and Releasing a Hold on a Job
You may place a hold on a job and thereby cause the job to remain in the queue
until you release it.

There are two types of holds: a user hold and a system hold. Both you and your
LoadLeveler administrator can place and release a user hold on a job. Only a
LoadLeveler administrator, however, can place and release a system hold on a job.

You can place a hold on a job or release the hold either by using the GUI or the
llhold command. For examples of holding and releasing jobs, see “Step 6: Hold a
Job” on page 32 and “Step 7: Release a Hold on a Job” on page 33.

As a user or an administrator, you can also use the startdate keyword described in
“startdate” on page 54 to place a hold on a job. This keyword allows you to specify
when you want to run a job.

Cancelling a Job
You can cancel one of your jobs that is either running or waiting to run by using
either the GUI or the llcancel command. You can use llcancel to cancel
LoadLeveler jobs and jobs routed to NQS. Note that you can also cancel jobs from
a submit-only machine.

Checkpointing a Job
Checkpointing is a method of periodically saving the state of a job so that, if for
some reason, the job does not complete, it can be restarted from the saved state.
For a detailed explanation of checkpointing, see “Step 13: Enable Checkpointing”
on page 113.

Setting and Changing the Priority of a Job
LoadLeveler uses the priority of a job to determine its position among a list of all
jobs waiting to be dispatched. You can use the llprio command to change job
priorities. See “llprio - Change the User Priority of Submitted Job Steps” on
page 179 for more information. This section discusses the different types of
priorities and how LoadLeveler uses these priorities when considering jobs for
dispatch.

 User Priority
Every job has a user priority associated with it. This priority, which can be specified
by the user in the job command file, is a number between 0 and 100 inclusively. A
job with a higher priority runs before a job with a lower priority (when both jobs are
owned by the same user). The default user priority is 50. Note that this is not the
UNIX nice priority.

 System Priority
Every job has a system priority associated with it. This priority is specified in
LoadLeveler's configuration file using the SYSPRIO expression.

Understanding the SYSPRIO Expression: SYSPRIO is evaluated by
LoadLeveler to determine the overall system priority of a job. A system priority
value is assigned when the negotiator adds the new job to the queue of jobs
eligible for dispatch.

 Chapter 3. Submitting and Managing Jobs 29

The SYSPRIO expression can contain class, group, and user priorities, as shown in
the following example:

SYSPRIO : (ClassSysprio \ 1ðð) + (UserSysprio \ 1ð) + (GroupSysprio \ 1) - (QDate)

For more information on the system priority expression, including all the variable
you can use in this expression, see “Step 5: Prioritize the Queue Maintained by the
Negotiator” on page 102.

How Does a Job's Priority Affect Dispatching Order?
LoadLeveler schedules jobs based on the adjusted system priorty, which takes in
account both system priority and user priority. Jobs with a higher adjusted system
priority are scheduled ahead of jobs with a lower adjusted system priority. In
determining which jobs to run first, LoadLeveler does the following:

1. Assigns all jobs a SYSPRIO at job submission time.

2. Orders jobs first by SYSPRIO.

3. Assigns jobs belonging to the same user and the same class an adjusted
system priority, which takes all the system priorities and orders them by user
priority.

For example, Table 3 represents the priorities assigned to jobs submitted by two
users, Rich and Joe. Two of the jobs belong to Joe, and three belong to Rich. User
Joe has two jobs (Joe1 and Joe2) in Class A with SYSPRIOs of 9 and 8
respectively. Since Joe2 has the higher user priority (20), and because both of
Joe's jobs are in the same class, Joe2's priority is swapped with that of Joe1 when
the adjusted system priority is calculated. This results in Joe2 getting an adjusted
system priority of 9, and Joe1 getting an adjusted system priority of 8. Similarly, the
Class A jobs belonging to Rich (Rich1 and Rich3) also have their priorities
swapped. The priority of the job Rich2 does not change, since this job is in a
different class (Class B).

Table 3. How LoadLeveler Handles Job Priorities

Job User Priority

System
Priority
(SYSPRIO) Class

Adjusted
System
Priority

Rich1 50 10 A 6

Joe1 10 9 A 8

Joe2 20 8 A 9

Rich2 100 7 B 7

Rich3 90 6 A 10

Working with Machines
Throughout this book, the terms workstation, machine, and node refer to the
machines in your cluster. See “Machines and Workstations” on page 5 for
information on the roles these machines can play.

You can perform the following types of tasks related to machines:

� Display machine status: when you submit a job to a machine, the status of the
machine automatically appears in the Machines window on the GUI. This
window displays machine related information such as the names of the
machines running jobs, as well as the machine's architecture and operating

30 Using and Administering LoadLeveler

system. For detailed information on one or more machines in the cluster, you
can use the Details option on the Actions pull-down menu. This will provide you
with a detailed report that includes information such as the machine's state and
amount of installed memory.

For an example of displaying machine status, see “Step 8: Display the Status
of a Machine” on page 33.

� Display central manager: the LoadLeveler administrator designates one of the
machines in the LoadLeveler cluster as the central manager. When jobs are
submitted to any machine, the central manager is notified and decides where to
schedule the jobs. In addition, it keeps track of the status of machines in the
cluster and jobs in the system by communicating with each machine.
LoadLeveler uses this information to make the scheduling decisions and to
respond to queries.

Usually, the system administrator is more concerned about the location of the
central manager than the typical end user but you may also want to determine
its location. One reason why you might want to locate the central manager is if
you want to browse some configuration files that are stored on the same
machine as the central manager.

� Display public scheduling machines: public scheduling machines are machines
that participate in the scheduling of LoadLeveler jobs on behalf of users at
submit-only machines and users at other workstations that are not running the
schedd daemon. You can find out the names of all these machines in the
cluster.

Submit-only machines allow machines that are not part of the LoadLeveler
cluster to submit jobs to the cluster for processing.

A Simple Task Scenario Using Commands
The section presents a series of simple tasks which a user might perform using
commands. This section is meant for new users of LoadLeveler. More experienced
users may want to continue on to “Additional Job Command File Examples” on
page 33.

Step 1: Build a Job
Since you are not using the GUI, you have to build your job command file by using
a text editor to create a script file. Into the file enter the name of the executable,
other keywords designating such things as output locations for messages, and the
necessary LoadLeveler statements, as shown in Figure 13:

This job command file is called longjob.cmd. The
executable is called longjob, the input file is longjob.in,
the output file is longjob.out, and the error file is
longjob.err.
#
@ executable = longjob
@ input = longjob.in
@ output = longjob.out
@ error = longjob.err
@ queue

Figure 13. Building a Job Command File

 Chapter 3. Submitting and Managing Jobs 31

Step 2: Edit a Job
You can optionally edit the job command file you created in step 1.

Step 3: Submit a Job
To submit the job command file that you created in step 1, use the llsubmit
command:

llsubmit longjob.cmd

LoadLeveler responds by issuing a message similar to:

submit: The job "wizard.22" has been submitted.

where wizard is the name of the machine to which the job was submitted and 22 is
the job identifier (ID). You may want to record the identifier for future use (although
you can obtain this information later if necessary).

For more information on llsubmit , see “llsubmit - Submit a Job” on page 200

Step 4: Display the Status of a Job
To display the status of the job you just submitted, use the llq command. This
command returns information about all jobs in the LoadLeveler queue:

llq wizard.22

where wizard is the machine name to which you submitted the job, and 22 is the
job ID. You can also query this job using the command llq wizard.22.0 , where ð is
the step ID. For more information, see “llq - Query Job Status” on page 181.

Step 5: Change the Priorities of Jobs in the Queue
You can change the user priority of a job that is in the queue or one that is running.
This only affects jobs belonging to the same user and the same class. If you
change the priority of a job in the queue, the job's priority increases or decreases in
relation to your other jobs in the queue. If you change the priority of a job that is
running, it does not affect the job while it is running. It only affects the job if the job
re-enters the queue to be dispatched again. For more information, see “How Does
a Job's Priority Affect Dispatching Order?” on page 30.

To change the priority of a job, use the llprio command. To increase the priority of
the job you submitted by a value of 10, enter:

llprio +1ð wizard.22.ð

For more information, see “llprio - Change the User Priority of Submitted Job Steps”
on page 179.

Step 6: Hold a Job
To place a temporary hold on a job in a queue, use the llhold command. This
command only takes effect if jobs are in the Idle or NotQueued state. To place a
hold on wizard.22.ð, enter:

llhold wizard.22.ð

For more information, see “llhold - Hold or Release a Submitted Job” on page 174.

32 Using and Administering LoadLeveler

Step 7: Release a Hold on a Job
To release the hold you placed in step 6, use the llhold command:

llhold -r wizard.22.ð

For more information, see “llhold - Hold or Release a Submitted Job” on page 174.

Step 8: Display the Status of a Machine
To display the status of the machine to which you submitted a job, use the llstatus
command:

llstatus -l wizard

For more information, see “llstatus - Query Machine Status” on page 193.

Step 9: Cancel a Job
To cancel wizard.22.0, use the llcancel command:

llcancel wizard.22.ð

For more information, see “llcancel - Cancel a Submitted Job” on page 158.

Step 10: Find the Location of the Central Manager
Enter the llstatus command with the appropriate options to display the machine on
which the central manager is running. For more information, see “llstatus - Query
Machine Status” on page 193.

Step 11: Find the Location of the Public Scheduling Machines
Public scheduling machines are those machines that participate in the scheduling of
LoadLeveler jobs. The llstatus command can also be used to display the public
scheduling machines.

Additional Job Command File Examples
“Serial Job Command File” on page 24 gives you an example of a simple job
command file. This section contains examples of building and submitting more
complex job command files.

Example 1: Generating Multiple Jobs With Varying Outputs
To run a program several times, varying the initial conditions each time, you could
can multiple LoadLeveler scripts, each specifying a different input and output file as
described in Figure 15 on page 36. It would probably be more convenient to
prepare different input files and submit the job only once, letting LoadLeveler
generate the output files and do the multiple submissions for you.

Figure 14 on page 34 illustrates the following:

� You can refer to the LoadLeveler name of your job symbolically, using $(jobid)
and $(stepid) in the LoadLeveler script file.

� $(jobid) refers to the job identifier.

 Chapter 3. Submitting and Managing Jobs 33

� $(stepid) refers to the job step identifier and increases after each queue
command. Therefore, you only need to specify input, output, and error
statements once to have LoadLeveler name these files correctly.

Assume that you created five input files and each input file has different initial
conditions for the program. The names of the input files are in the form
longjob.in. x, where x is 0–4.

Submitting the LoadLeveler script shown in Figure 14 results in your program
running five times, each time with a different input file. LoadLeveler generates the
output file from the LoadLeveler job step IDs. This ensures that the results from
the different submissions are not merged.

@ executable = longjob
@ input = longjob.in.$(stepid)
@ output = longjob.out.$(jobid).$(stepid)
@ error = longjob.err.$(jobid).$(stepid)
@ queue
@ queue
@ queue
@ queue
@ queue

Figure 14. Job Command File with Varying input Statements

To submit the job, type the command:

llsubmit longjob.cmd

LoadLeveler responds by issuing the following:

submit: The job "ll6.23" with 5 job steps has been submitted.

The following table shows you the standard input files, standard output files, and
standard error files for the five job steps:

Job
Step Standard Input Standard Output Standard Error

ll6.23.0 longjob.in.0 longjob.out.23.0 longjob.err.23.0

ll6.23.1 longjob.in.1 longjob.out.23.1 longjob.err.23.1

ll6.23.2 longjob.in.2 longjob.out.23.2 longjob.err.23.2

ll6.23.3 longjob.in.3 longjob.out.23.3 longjob.err.23.3

ll6.23.4 longjob.in.4 longjob.out.23.4 longjob.err.23.4

Example 2: Using LoadLeveler Variables in a Job Command File
Figure 15 on page 36 shows how you can use LoadLeveler variables in a job
command file to assign different names to input and output files. This example
assumes the following:

� The name of the machine from which the job is submitted is lltest1

� The user's home directory is /u/rhclark and the current working directory is
/u/rhclark/OSL

� LoadLeveler assigns a value of 122 to $(jobid) .

34 Using and Administering LoadLeveler

In Job Step 0:

� LoadLeveler creates the subdirectories oslsslv_out and oslsslv_err if they do
not exist at the time the job step is started.

In Job Step 1:

� The character string ˜rhclark denotes the home directory of user rhclark in
input , output , error , and executable statements.

� The $(base_executable) variable is set to be the “base” portion of the
executable , which is oslsslv .

� The $(host) variable is equivalent to $(hostname) . Similarly, $(jobid) and
$(stepid) are equivalent to $(cluster) and $(process) , respectively.

In Job Step 2:

� This job step is executed only if the return codes from Step 0 and Step 1 are
both equal to zero.

� The initial working directory for Step 2 is explicitly specified.

 Chapter 3. Submitting and Managing Jobs 35

Job step ð ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.ð.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_ð_err
#
@ job_name = OSL
@ step_name = step_ð
@ executable = oslsslv
@ arguments = -maxmin=min -scale=yes -alg=dual
@ environment = OSL_ENV1=2ðððð; OSL_ENV2=5ððððð
@ requirements = (Arch == "R6ððð") && (OpSys == "AIX43")
@ input = testð1.mps.$(stepid)
@ output = $(executable)_out/$(host).$(jobid).$(stepid).out
@ error = $(executable)_err/$(host)_$(jobid)_$(stepid)_err
@ queue
#
Job step 1 ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.1.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_1_err
#
@ step_name = step_1
@ executable = ˜rhclark/$(job_name)/oslsslv
@ arguments = -maxmin=max -scale=no -alg=primal
@ environment = OSL_ENV1=6ðððð; OSL_ENV2=5ððððð; \
 OSL_ENV3=7ðððð; OSL_ENV4=8ððððð;
@ input = ˜rhclark/$(job_name)/testð1.mps.$(stepid)
@ output = ˜rhclark/$(job_name)/$(base_executable)_out/$(hostname).$(cluster).$(process).out
@ error = ˜rhclark/$(job_name)/$(base_executable)_err/$(hostname)_$(cluster)_$(process)_err
@ queue
#
Job step 2 ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.2.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_2_err
#
@ step_name = OSL
@ dependency = (step_ð == ð) && (step_1 == ð)
@ comment = oslsslv
@ initialdir = /u/rhclark/$(step_name)
@ arguments = -maxmin=min -scale=yes -alg=dual
@ environment = OSL_ENV1=3ððððð; OSL_ENV2=5ððððð
@ input = testð1.mps.$(stepid)
@ output = $(comment)_out/$(host).$(jobid).$(stepid).out
@ error = $(comment)_err/$(host)_$(jobid)_$(stepid)_err
@ queue

Figure 15. Using LoadLeveler Variables in a Job Command File

36 Using and Administering LoadLeveler

Example 3: Using the Job Command File as the Executable
The name of the sample script shown in Figure 16 on page 38 is run_spice_job .
This script illustrates the following:

� The script does not contain the executable keyword. When you do not use this
keyword, LoadLeveler assumes that the script is the executable. (Since the
name of the script is run_spice_job , you can add the executable =
run_spice_job statement to the script, but it is not necessary.)

� The job consists of four job steps (there are 4 queue statements). The
spice3f5 and spice2g6 programs are invoked at each job step using different
input data files:

– spice3f5: Input for this program is from the file spice3f5_input_ x where x
has a value of 0, 1, and 2 for job steps 0, 1, and 2, respectively. The name
of this file is passed as the first argument to the script. Standard output and
standard error data generated by spice3f5 are directed to the file
spice3f5_output_ x. The name of this file is passed as second argument to
the script. In job step 3, the names of the input and output files are
spice3f5_input_benchmark1 and spice3f5_output_benchmark1 ,
respectively.

– spice2g6: Input for this program is from the file spice2g6_input_ x.
Standard output and standard error data generated by spice2g6 together
with all other standard output and standard error data generated by this
script are directed to the files spice_test_output_ x and
spice_test_error_ x, respectively. In job step 3, the name of the input file is
spice2g6_input_benchmark1 . The standard output and standard error
files are spice_test_output_benchmark1 and
spice_test_error_benchmark1 .

All file names that are not fully qualified are relative to the initial working
directory /home/loadl/spice . LoadLeveler will send the job steps 0 and 1 of this
job to a machine for that has a real memory of 64 MB or more for execution.
Job step 2 most likely will be sent to a machine that has more that 128 MB of
real memory and has the ESSL library installed since these preferences have
been stated using the LoadLeveler preferences keyword. LoadLeveler will
send job step 3 to the machine ll5.pok.ibm.com for execution because of the
explicit requirement for this machine in the requirements statement.

 Chapter 3. Submitting and Managing Jobs 37

#!/bin/ksh
@ job_name = spice_test
@ account_no = 99999
@ class = small
@ arguments = spice3f5_input_$(stepid) spice3f5_output_$(stepid)
@ input = spice2g6_input_$(stepid)
@ output = $(job_name)_output_$(stepid)
@ error = $(job_name)_error_$(stepid)
@ initialdir = /home/loadl/spice
@ requirements = ((Arch == "R6ððð") && (OpSys == "AIX43") && (Memory > 64))
@ queue
@ queue
@ preferences = ((Memory > 128) && (Feature == "ESSL"))
@ queue
@ class = large
@ arguments = spice3f5_input_benchmark1 spice3f5_output_benchmark1
@ requirements = (Machine == "ll5.pok.ibm.com")
@ input = spice2g6_input_benchmark1
@ output = $(job_name)_output_benchmark1
@ error = $(job_name)_error_benchmark1
@ queue
OS_NAME=`uname`

case $OS_NAME in
 AIX)

echo "Running $OS_NAME version of spice3f5" > $2
AIX_bin/spice3f5 < $1 >> $2 2>&1
echo "Running $OS_NAME version of spice2g6"

 AIX_bin/spice2g6
 ;;
 \)

echo "spice3f5 for $OS_NAME is not available" > $2
echo "spice2g6 for $OS_NAME is not available"

 ;;
esac

Figure 16. Job Command File Used as the Executable

Job Command File Keywords
This section provides an alphabetical list of the keywords you can use in a
LoadLeveler script. It also provides examples of statements that use these
keywords. For most keywords, if you specify the keyword in a job step of a
multi-step job, its value is inherited by all proceeding job steps. Exceptions to this
are noted in the keyword description.

 account_no
Supports centralized accounting. Allows you to specify an account number to
associate with a job. This account number is stored with job resource information in
local and global history files. It may also be validated before LoadLeveler allows a
job to be submitted. For more information, see Chapter 7, “Gathering Job
Accounting Data” on page 141.

The syntax is:

38 Using and Administering LoadLeveler

account_no = string

where string is a text string that can consist of a combination of numbers and
letters. For example, if the job accounting group charges for job time based upon
the department to which you belong, your account number would be similar to:

account_no = dept34ca

 arguments
Specifies the list of arguments to pass to your program when your job runs.

The syntax is:

arguments = arg1 arg2 ...

For example, if your job requires the numbers 5, 8, 9 as input, your arguments
keyword would be similar to:

arguments = 5 8 9

 checkpoint
Specifies whether you want to checkpoint your program.

The syntax is:

checkpoint = user_initiated | system_initiated | no

Specify user_initiated if you want to determine when the checkpoint is taken. User
initiated checkpointing is available to both serial jobs and parallel POE jobs.
(Checkpointing is not supported for parallel PVM jobs.) Serial jobs must use the
LoadLeveler ckpt API call to request user initiated checkpointing. See “Serial
Checkpointing API” on page 242 for more information. POE jobs must use the
Parallel Environment (PE) parallel checkpointing API to enable user initiated
checkpointing. See IBM Parallel Environment for AIX: Operation and Use, Volume 1
for more information.

Specify system_initiated if you want LoadLeveler to automatically checkpoint your
program at preset intervals. System initiated checkpointing is available only to serial
jobs. To cause both user initiated and system initiated checkpoints to occur, specify
system_initiated and have your program use the appropriate ckpt API call.

Specify no if you do not want your program to be checkpointed. This is the default.

To restart a program for which a checkpoint file exists, you must set the
CHKPT_STATE environment variable to restart . For more information on
environment variables associated with checkpointing, see “Set the Appropriate
Environment Variables” on page 114. For information on setting environment
variables for a job, see “environment” on page 42. Note that it is not necessary to
set the restart job command language keyword for a checkpointing job. For more
information, see “restart” on page 53.

To use checkpointing, your program must be linked with the appropriate
LoadLeveler libraries. See “Ensure all User's Jobs are Linked to Checkpointing
Libraries” on page 116 for more information. For more detailed information on
checkpointing, see “Step 13: Enable Checkpointing” on page 113.

 Chapter 3. Submitting and Managing Jobs 39

 class
Specifies the name of a job class defined locally in your cluster. If not specified, the
default job class is assigned. You can use the llclass command to find out
information on job classes.

The syntax is:

class = name

For example, if you are allowed to submit jobs belonging to a class called
“largejobs”, your class keyword would look like the following:

class = largejobs

 comment
Specifies text describing characteristics or distinguishing features of the job.

 core_limit
Specifies the hard limit and/or soft limit for the size of a core file. This is a per
process limit.

The syntax is:

core_limit = hardlimit,softlimit

Some examples are:

core_limit = 125621,1ðkb
core_limit = 5621kb,5ðððk
core_limit = 2mb,1.5mb
core_limit = 2.5mw
core_limit = unlimited
core_limit = rlim_infinity
core_limit = copy

See “Limit Keywords” on page 84 for more information on the values and units you
can use with this keyword.

 cpu_limit
Specifies the hard limit and/or soft limit for the amount of CPU time that a
submitted job step can use. This is a per process limit.

The syntax is:

cpu_limit = hardlimit,softlimit

For example:

cpu_limit = 12:56:21,12:5ð:ðð
cpu_limit = 56:21.5
cpu_limit = 1:ð3,21
cpu_limit = unlimited
cpu_limit = rlim_infinity
cpu_limit = copy

See “Limit Keywords” on page 84 for more information on the values and units you
can use with this keyword.

40 Using and Administering LoadLeveler

 data_limit
Specifies the hard limit and/or soft limit for the size of the data segment to be used
by the job step. This is a per process limit.

The syntax is:

data_limit = hardlimit,softlimit

For example:

data_limit = ,125621
data_limit = 5621kb
data_limit = 2mb
data_limit = 2.5mw,2mb

See “Limit Keywords” on page 84 for more information on the values and units you
can use with this keyword.

 dependency
Specifies the dependencies between job steps. A job dependency, if used in a
given job step, must be explicitly specified for that step.

The syntax is:

dependency = expression

where the syntax for the expression is:

step_name operator value

where step_name (as described in “step_name” on page 54) must be a previously
defined job step and operator can be one of the following:

== equal to
!= not equal to
<= less than or equal to
>= greater than or equal to
< less than
> greater than
&& and
|| or

The value is usually a number which specifies the job return code to which the
step_name is set. It can also be one of the following LoadLeveler defined job step
return codes:

CC_NOTRUN The return code set by LoadLeveler for a job step which is not
run because the dependency is not met. The value of
CC_NOTRUN is 1002.

CC_REMOVED The return code set by LoadLeveler for a job step which is
removed from the system (because, for example, llcancel was
issued against the job step). The value of CC_REMOVED is
1001.

Examples: The following are examples of dependency statements:

Example 1: In the following example, the step that contains this dependency
statement will run if the return code from step 1 is zero:

 Chapter 3. Submitting and Managing Jobs 41

dependency = (step1 == ð)

Example 2: In the following example, step1 will run with the executable called
myprogram1 . Step2 will run only if LoadLeveler removes step1 from the system. If
step2 does run, the executable called myprogram2 gets run.

Beginning of step1
@ step_name = step1
@ executable = myprogram1
@ ...
@ queue
Beginning of step2
@ step_name = step2
@ dependency = step1 == CC_REMOVED
@ executable = myprogram2
@ ...
@ queue

Example 3: In the following example, step1 will run with the executable called
myprogram1 . Step2 will run if the return code of step1 equals zero. If the return
code of step1 does not equal zero, step2 does not get executed. If step2 is not run,
the dependency statement in step3 gets evaluated and it is determined that step2
did not run. Therefore, myprogram3 gets executed.

Beginning of step1
@ step_name = step1
@ executable = myprogram1
@ ...
@ queue
Beginning of step2
@ step_name = step2
@ dependency = step1 == ð
@ executable = myprogram2
@ ...
@ queue
Beginning of step3
@ step_name = step3
@ dependency = step2 == CC_NOTRUN
@ executable = myprogram3
@ ...
@ queue

Example 4: In the following example, the step that contains step2 returns a
non-negative value if successful. This step should take into account the fact that
LoadLeveler uses a value of 1001 for CC_REMOVED and 1002 for CC_NOTRUN.
This is done with the following dependency statement:

dependency = (step2 >= ð) && (step2 < CC_REMOVED)

 environment
Specifies your initial environment variables when your job step starts. Separate
environment specifications with semicolons. An environment specification may be
one of the following:

COPY_ALL Specifies that all the environment variables from your shell be
copied.

42 Using and Administering LoadLeveler

$var Specifies that the environment variable var be copied into the
environment of your job when LoadLeveler starts it.

!var Specifies that the environment variable var not be copied into the
environment of your job when LoadLeveler starts it. This is most
useful in conjunction with COPY_ALL.

var=value Specifies that the environment variable var be set to the value
“value” and copied into the environment of your job when
LoadLeveler starts it.

The syntax is:

environment = env1 ; env2 ; ...

For example:

environment = COPY_ALL; !env2;

 error
Specifies the name of the file to use as standard error (stderr) when your job step
runs. If you do no specify this keyword, the file /dev/null is used.

The syntax is:

error = filename

For example:

error = $(jobid).$(stepid).err

 executable
For serial jobs, executable identifies the name of the program to run. The program
can be a shell script or a binary. For parallel jobs, executable can be a shell script
or the following:

� For Parallel Operating Environment (POE) jobs – specifies the full path name of
the POE executable.

� For Parallel Virtual Machine (PVM) jobs – specifies the name of your parallel
job.

If you do not include this keyword and the job command file is a shell script,
LoadLeveler uses the script file as the executable.

The syntax is:

executable = name

Examples:

@ executable = a.out
@ executable = /usr/bin/poe (for POE jobs)
@ executable = my_parallel_job (for PVM jobs)

Note that the executable statement automatically sets the $(base_executable)
variable, which is the file name of the executable without the directory component.
See Figure 15 on page 36 for an example of using the $(base_executable)
variable.

 Chapter 3. Submitting and Managing Jobs 43

 file_limit
Specifies the hard limit and/or soft limit for the size of a file. This is a per process
limit.

The syntax is:

file_limit = hardlimit,softlimit

For example:

file_limit = 12ðmb,1ððmb

See “Limit Keywords” on page 84 for more information on the values and units you
can use with this keyword.

 group
Specifies the LoadLeveler group. If not specified, this defaults to the default group.
The syntax is:

group = group_name

For example:

group = my_group_name

 hold
Specifies whether you want to place a hold on your job step when you submit it.
There are three types of holds:

user Specifies user hold
system Specifies system hold
usersys Specifies user and system hold

The syntax is:

hold = user|system|usersys

For example, to put a user hold on a job, the keyword statement would be:

hold = user

To remove the hold on the job, you can use either the GUI or the llhold -r
command.

 image_size
Maximum virtual image size, in kilobytes, to which your program will grow during
execution. LoadLeveler tries to execute your job steps on a machine that has
enough resources to support executing and checkpointing your job step. If your job
command file has multiple job steps, the job steps will not necessarily run on the
same machine, unless you explicitly request that they do.

If you do not specify the image size of your job command file, the image size is that
of the executable. If you underestimate the image size of your job step, your job
step may crash due to the inability to acquire more address space. If you
overestimate the image size, LoadLeveler may have difficulty finding machines that
have the required resources.

The syntax is:

44 Using and Administering LoadLeveler

image_size = number

For example, to set an image size of 11 KB, the keyword statement would be:

image_size = 11

 initialdir
The path name of the directory to use as the initial working directory during
execution of the job step. If none is specified, the initial directory is the current
working directory at the time you submitted the job. File names mentioned in the
command file which do not begin with a / are relative to the initial directory. The
initial directory must exist on the submitting machine as well as on the machine
where the job runs.

The syntax is:

initialdir = pathname

For example:

initialdir = /var/home/mike/ll_work

 input
Specifies the name of the file to use as standard input (stdin) when your job step
runs. If not specified, the file /dev/null is used.

The syntax is:

input = filename

For example:

input = input.$(process)

 job_cpu_limit
Specifies the hard limit and/or soft limit for the CPU time to be used by all
processes of a job step. For example, if a job step forks to produce multiple
processes, the sum total of CPU consumed by all of the processes is added and
controlled by this limit.

The syntax is:

job_cpu_limit = hardlimit,softlimit

For example:

job_cpu_limit = 12:56,12:5ð

See “Limit Keywords” on page 84 for more information on the values and units you
can use with this keyword.

 job_name
Specifies the name of the job. This keyword must be specified in the first job step.
If it is specified in other job steps in the job command file, it is ignored. You can
name the job using any combination of letters and/or numbers.

The syntax is:

 Chapter 3. Submitting and Managing Jobs 45

job_name = job_name

For example:

job_name = my_first_job

The job_name only appears in the long reports of the llq , llstatus , and llsummary
commands, and in mail related to the job

 job_type
Specifies the type of job step to process. Valid entries are:

pvm3 For PVM jobs with a non-SP architecture.

parallel For other parallel jobs, including PVM 3.3.11+ (SP architecture).

serial For serial jobs. This is the default.

Note that when you specify job_type=pvm3 or job_type=serial , you cannot
specify the following keywords: node , tasks_per_node , total_tasks ,
network.LAPI , and network.MPI .

The syntax is:

job_type = string

For example:

job_type = pvm3

 max_processors
Specifies the maximum number of nodes requested for a parallel job, regardless of
the number of processors contained in the node.

This keyword is equivalent to the maximum value you specify on the new node
keyword. In any new job command files you create for non-PVM jobs, you should
use the node keyword to request nodes/processors. The max_processors
keyword should be used by existing job command files and new PVM job command
files. Note that if you specify in a job command file both the max_processors
keyword and the node keyword, the job is not submitted.

The syntax is:

max_processors = number

For example:

max_processors = 6

 min_processors
Specifies the minimum number of nodes requested for a parallel job, regardless of
the number of processors contained in the node.

This keyword is equivalent to the minimum value you specify on the new node
keyword. In any new job command files you create for non-PVM jobs, you should
use the node keyword to request nodes/processors. The min_processors
keyword should be used by existing job command files and new PVM job command

46 Using and Administering LoadLeveler

files. Note that if you specify in a job command file both the min_processors
keyword and the node keyword, the job is not submitted.

The syntax is:

min_processors = number

For example:

min_processors = 4

 network
Specifies communication protocols, adapters, and their characteristics. You need to
specify this keyword when you want a task of a parallel job step to request a
specific adapter that is defined in the LoadLeveler administration file. You do not
need to specify this keyword when you want a task to access a shared, default
adapter via TCP/IP. (A default adapter is an adapter whose name matches a
machine stanza name.)

Note that you cannot specify both the network statement and the Adapter
requirement (or the Adapter preference) in a job command file. Also, the value of
the network keyword applies only to the job step in which you specify the keyword.
(That is, this keyword in not inherited by other job steps.)

The syntax is:

network.protocol = network_type[,usage][,mode]

Where:

protocol Specifies the communication protocol(s) that are used with an
adapter, and can be the following:

MPI Specifies the Message Passing Interface. You can specify
in a job step both network.MPI and network.LAPI .

LAPI Specifies the Low-level Application Programming Interface.
You can specify in a job step both network.MPI and
network.LAPI .

PVM Specifies a Parallel Virtual Machine job. When you specify
in a job step network.PVM , you cannot specify any other
network statements in that job step. Also, the adapter
mode must be IP.

network_type Specifies either an adapter name or a network type. This field is
required. The possible values for adapter name are the names
associated with the interface cards installed on a node (for
example, en0, tk1, and css0). The possible values for network
type are installation-defined; the LoadLeveler administrator must
specify them in the adapter stanza of the LoadLeveler
administration file using the network_type keyword. For example,
an installation can define a network type of “switch” to identify
css0 adapters. For more information, see “Step 5: Specify
Adapter Stanzas” on page 93.

usage Specifies whether the adapter can be shared with tasks of other
job steps. Possible values are shared , which is the default, or
not_shared .

 Chapter 3. Submitting and Managing Jobs 47

mode Specifies the communication subsystem mode used by that the
communication protocol you specify, and can be either IP
(Internet Protocol), which is the default, or US (User Space). Note
that each instance of the US mode requested by a task running
on the SP switch requires an adapter window. For example, if a
task requests both the MPI and LAPI protocols such that both
protocol instances require US mode, two adapter windows will be
used. For more information on adapter windows, see Parallel
System Support Programs for AIX Administration Guide .

Example 1: To use the MPI protocol with an SP switch adapter in User Space
mode without sharing the adapter, enter the following:

network.MPI = cssð,not_shared,US

Example 2: To use the MPI protocol with a shared SP switch adapter in IP mode,
enter the following:

network.MPI = cssð,IP

Because a shared adapter is the default, you do not need to specify shared .

Note that LoadLeveler can ensure that an adapter is dedicated (not shared) if you
request the adapter in US mode, since any user who requests a user space
adapter must do so using the network statement. However, if you request a
dedicated adapter in IP mode, the adapter will only be dedicated if all other
LoadLeveler users who request this adapter do so using the network statement.

 node
Specifies the minimum and maximum number of nodes requested by a job step.
You must specify at least one of these values. The value of the node keyword
applies only to the job step in which you specify the keyword. (That is, this keyword
in not inherited by other job steps.)

The syntax is:

node = [min][,max]

Where:

min Specifies the minimum number of nodes requested by the job step. The
default is 1.

max Specifies the maximum number of nodes requested by the job step. The
default is the min value of this keyword. The maximum number of nodes a
job step can request is limited by the max_node keyword in the
administration file (provided this keyword is specified). That is, the
maximum must be less than or equal to any max_node value specified in
a user, group, or class stanza.

For example, to specify a range of six to twelve nodes, enter the following:

node = 6,12

To specify a maximum of seventeen nodes, enter the following:

 node = ,17

48 Using and Administering LoadLeveler

When you use the node keyword together with the total_tasks keyword, the min
and max values you specify on the node keyword must be equal, or you must
specify only one value. For example:

node = 6
total_tasks = 12

For information of specifying the number of tasks you want to run on a node, see
“tasks_per_node” on page 55 and “total_tasks” on page 55.

 node_usage
Specifies whether this job step shares nodes with other job steps.

The syntax is:

node_usage = shared | not_shared

Where:

shared Specifies that nodes can be shared with other tasks of other job
steps. This is the default.

not_shared Specifies that nodes are not shared: no other job steps are scheduled
on this node.

 notification
Specifies when the user specified in the notify_user keyword is sent mail. The
syntax is:

notification = always|error|start|never|complete

Where:

always Notify the user when the job begins, ends, or if it incurs error
conditions.

error Notify the user only if the job fails.

start Notify the user only when the job begins.

never Never notify the user.

complete Notify the user only when the job ends. This is the default.

For example, if you want to be notified with mail only when your job step
completes, your notification keyword would be:

notification = complete

When a LoadLeveler job ends, you may receive UNIX mail notification indicating
the job exit status. For example, you could get the following mail message:

Your LoadLeveler job
myjob1
exited with status 4.

The return code 4 is from the user's job. LoadLeveler retrieves the return code and
returns it in the mail message, but it is not a LoadLeveler return code.

 Chapter 3. Submitting and Managing Jobs 49

 notify_user
Specifies the user to whom mail is sent based on the notification keyword. The
default is the submitting user and the submitting machine.

The syntax is:

notify_user = userID

For example, if you are the job step owner but you want a co-worker whose name
and user ID is bob , to receive mail regarding the job step, your notify keyword
would be:

notify_user = bob

 output
Specifies the name of the file to use as standard output (stdout) when your job step
runs. If not specified, the file /dev/null is used.

The syntax is:

output = filename

For example:

output = out.$(jobid)

 parallel_path
Specifies the path that should be used when starting a PVM 3.3 slave process.
This is used for PVM 3.3 only and is translated into the ep keyword as defined in
the PVM 3.3 hosts file.

For example:

parallel_path = /home/userid/cmds/pvm3/$PVM_ARCH:$PVM_ROOT/lib/$PVM_ARCH

The parallel_path statement above has two components, separated by a colon.
The first component points to the location of the user's programs. The second
component points to the location of the pvmgs routine – required if the job uses
PVM 3.3 group support – assuming PVM 3.3 is installed “normally”. Note that your
installation must install PVM 3.3 to include group support in order for you to use
group support within LoadLeveler. $PVM_ARCH will be replaced by the architecture
of the machine, as defined by PVM 3.3. This will specify the path to be searched
for executables when the user's job issues a pvm_spawn() command.

$PVM_ARCH, and $PVM_ROOT are PVM environment variables. For more
information, see the appropriate PVM 3.3 documentation.

 preferences
Specifies the characteristics that you prefer be available on the machine that
executes the job steps. LoadLeveler attempts to run the job steps on machines that
meet your preferences. If such a machine is not available, LoadLeveler will then
assign machines which meet only your requirements.

The values you can specify in a preferences statement are the same values you
can specify in a requirements statement, with the exception of the Adapter
requirement. See “requirements” on page 51 for more information.

50 Using and Administering LoadLeveler

The syntax is:

preferences = Boolean_expression

Some examples are::

preferences = (Memory <=16) && (Arch == "R6ððð")

preferences = Memory >= 64

 queue
Places one copy of the job step in the queue. This statement is required. The
queue statement essentially marks the end of the job step. Note that you can
specify statements between queue statements.

The syntax is:

queue

 requirements
Specifies the requirements which a machine in the LoadLeveler cluster must meet
to execute any job steps. You can specify multiple requirements on a single
requirements statement.

The syntax is:

requirements = Boolean_expression

When strings are used as part of a Boolean expression that must be enclosed in
double quotes. Sample requirement statements are included following the
descriptions of the supported requirements.

The requirements supported are:

Adapter Specifies the pre-defined type of network you want to use to run a
parallel job step. In any new job command files you create, you
should use the network keyword to request adapters and types of
networks. The Adapter requirement is provided for compatibility with
Version 1.3 job command files. Note that you cannot specify both the
Adapter requirement (or preference) and the network statement in a
job command file.

The pre-defined network types are:

hps_ip Refers to an SP switch in IP mode.

hps_us Refers to an SP switch in user space mode. If the switch
in user mode is requested by the job, no other jobs
using the switch in user mode will be allowed on nodes
running that job.

ethernet Refers to Ethernet.

fddi Refers to Fiber Distributed Data Interface (FDDI).

tokenring Refers to Token Ring.

fcs Refers to Fiber Channel Standards.

 Chapter 3. Submitting and Managing Jobs 51

Note that LoadLeveler converts the above network types to the
network statement. For more information, see “Migrating Your
Existing Adapter Requirements Statements” on page xix.

Arch Specifies the machine architecture on which you want your job step to
run. It describes the particular kind of UNIX platform for which your
executable has been compiled. The default is the architecture of the
submitting machine.

Disk Specifies the amount of disk space in kilobytes you believe is required
in the LoadLeveler execute directory to run the job step.

Feature Specifies the name of a feature defined on a machine where you want
your job step to run. Be sure to specify a feature in the same way in
which the feature is specified in the machine stanza of the
administration file. To find out what features are available, use the
llstatus command.

LL_Version Specifies the LoadLeveler version, in dotted decimal format, on which
you want your job step to run. For example, LoadLeveler Version 2
Release 1 (with no modification levels) is written as 2.1.0.0.

Machine Specifies the name(s) of machines on which you want the job step to
run. Be sure to specify a machine in the same way in which it is
specified in the machine configuration file.

Memory Specifies the amount of physical memory required in megabytes in the
machine where you want your job step to run.

OpSys Specifies the operating system on the machine where you want your
job step to run. It describes the particular kind of UNIX platform for
which your executable has been compiled. The default is the
operating system of the submitting machine. The executable must be
compiled on a machine that matches these requirements.

Pool Specifies the number of a pool where you want your job step to run.

Example 1: To specify a memory requirement and a machine architecture
requirement, enter:

requirements = (Memory >=16) && (Arch == "R6ððð")

Example 2: To specify that your job requires multiple machines for a parallel job,
enter:

requirements = (Machine == { "ll6" "ll5" "llð" })

Example 3: You can set a machine equal to a job step name. This means that
you want the job step to run on the same machine on which the previous job step
ran. For example::

requirements = (Machine == machine.step_name)

where step_name is a step name previously defined in the job command file. The
use of Machine == machine. step_name is limited to serial jobs.

For example:

52 Using and Administering LoadLeveler

@ step_name = step1
@ executable = c1
@ output = $(executable).$(jobid).$(step_name).out
@ queue
@ step_name = step2
@ dependency = (step1 == ð)
@ requirements = (Machine == machine.step1)
@ executable = c2
@ output = $(executable).$(jobid).$(step_name).out
@ queue

Example 4: To specify a requirement for an SP switch adapter in IP mode, enter:

requirements = (Adapter == "hps_ip")

Example 5: To specify a requirement for a specific pool number, enter:

requirements = (Pool == 7)

Example 6: To specify a requirement that the job runs on LoadLeveler Version 2
Release 1 or any follow-on release, enter:

requirements = (LL_Version >= "2.1")

Note that the statement requirements = (LL_Version == "2.1") matches only the
value 2.1.0.0.

 restart
Specifies whether LoadLeveler considers a job “restartable.” The syntax is:

restart = yes|no

If restart=yes , which is the default, and the job is vacated from its executing
machine before completing, the central manager requeues the job. It can start
running again when a machine on which it can run becomes available. If
restart=no , a vacated job is cancelled rather than requeued.

Note that this keyword is different from the restart state associated with
checkpointing jobs. This state tells LoadLeveler to restart a job from an existing
checkpoint file. (Checkpoint jobs are always considered “restartable.”) For more
information, see “Set the Appropriate Environment Variables” on page 114.

 rss_limit
Specifies the hard limit and/or soft limit for the resident set size.

The syntax is:

rss_limit = hardlimit,softlimit

For example:

rss_limit=12ð,1ðð

Because no units are specified in the above example, bytes are assumed. See
“Limit Keywords” on page 84 for more information on the values and units you can
use with this keyword.

 Chapter 3. Submitting and Managing Jobs 53

 shell
Specifies the name of the shell to use for the job step. If not specified, the shell
used in the owner's password file entry is used. If none is specified, the /bin/sh is
used.

The syntax is:

shell = name

For example, if you wanted to use the Korn shell, the shell keyword would be:

shell = /bin/ksh

 stack_limit
Specifies the hard limit and/or soft limit for the size of the stack that is created.

The syntax is:

stack_limit = hardlimit,softlimit

For example:

stack_limit = 12ð,1ðð

Because no units are specified in the above example, bytes are assumed. See
“Limit Keywords” on page 84 for more information on the values and units you can
use with this keyword.

 startdate
Specifies when you want to run the job step. If not specified, the current date and
time are used.

The syntax is:

startdate = date time

date is expressed as MM/DD/YY, and time is expressed as HH:mm(:ss).

For example, if you want the job to run on August 28th, 1999 at 1:30 PM, issue:

startdate = ð8/28/99 13:3ð

If you specify a start date that is in the future, your job is kept in the Deferred state
until that start date.

 step_name
Specifies the name of the job step. You can name the job step using any
combination of letters, numbers, underscores (_) and periods (.). You cannot,
however, name it T or F, or use a number in the first position of the step name.
The step name you use must be unique and can be used only once. If you don't
specify a step name, by default the first job step is named the character string "0",
the second is named the character string "1", and so on.

The syntax is:

step_name = step_name

For example:

54 Using and Administering LoadLeveler

step_name = step_3

 tasks_per_node
Specifies the number of tasks of a parallel job you want to run per node. Use this
keyword in conjunction with the node keyword. The value you specify on the node
keyword can be a range or a single value.

The maximum number of tasks a job step can request is limited by the total_tasks
keyword in the administration file (provided this keyword is specified). That is, the
maximum must be less than any total_tasks value specified in a user, group, or
class stanza.

The value of the tasks_per_node keyword applies only to the job step in which
you specify the keyword. (That is, this keyword is not inherited by other job steps.)

Also, you cannot specify both the tasks_per_node keyword and the total_tasks
keyword within a job step.

The syntax is:

tasks_per_node = number

Where number is the number of tasks you want to run per node. The default is one
task per node.

For example, to specify a range of seven to 14 nodes, with four tasks running on
each node, enter the following:

node = 7,14
tasks_per_node = 4

The above job step runs 28 to 56 tasks, depending on the number of nodes
allocated to the job step.

 total_tasks
Specifies the total number of tasks of a parallel job you want to run on all available
nodes. Use this keyword in conjunction with the node keyword. The value you
specify on the node keyword must be a single value rather than a range of values.

The maximum number of tasks a job step can request is limited by the total_tasks
keyword in the administration file (provided this keyword is specified). That is, the
maximum must be less than any total_tasks value specified in a user, group, or
class stanza.

The value of the total_tasks keyword applies only to the job step in which you
specify the keyword. (That is, this keyword is not inherited by other job steps.)

Also, you cannot specify both the total_tasks keyword and the tasks_per_node
keyword within a job step.

The syntax is:

total_tasks = number

Where number is the total number of tasks you want to run.

 Chapter 3. Submitting and Managing Jobs 55

For example, to run two tasks on each of 12 available nodes for a total of 24 tasks,
enter the following:

node = 12
total_tasks = 24

If you specify an unequal distribution of tasks per node, LoadLeveler allocates the
tasks on the nodes in a round-robin fashion. For example, if you have three nodes
and five tasks, two tasks run on the first two nodes and one task runs on the third
node.

 user_priority
Sets the initial priority of your job step. Priority only affects your job steps. It orders
job steps you submitted with respect to other job steps submitted by you, not with
respect to job steps submitted by other users.

The syntax is:

user_priority = number

where number is a number between 0 and 100, inclusive. A higher number
indicates the job step will be selected before a job step with a lower number. The
default priority is 50. Note that this is not the UNIX nice priority.

This priority guarantees the order the jobs are considered for dispatch. It does not
guarantee the order in which they will run.

 wall_clock_limit
Sets the hard limit and/or soft limit for the elapsed time for which a job can run. In
computing the elapsed time for a job, LoadLeveler considers the start time to be
the time the job is dispatched.

If you are running the LoadLeveler Backfill scheduler, either users must set a wall
clock limit in their job command file or the administrator must define a wall clock
limit value for the class to which a job is assigned. In most cases, this wall clock
limit value should not be unlimited . For more information, see “Choosing a
Scheduler” on page 97.

The syntax is:

wall_clock_limit = hardlimit,softlimit

An example is:

wall_clock_limit = 5:ðð,4:3ð

See “Limit Keywords” on page 84 for more information on the values and units you
can use with this keyword.

Job Command File Variables
LoadLeveler has several variables you can use in a job command file. These
variables are useful for distinguishing between output and error files.

You can refer to variables in mixed case, but you must specify them using the
following syntax:

$(variable_name)

56 Using and Administering LoadLeveler

The following variables are available to you:

$(host) The hostname of the machine from which the job was submitted. In a
job command file, the $(host) variable and the $(hostname) variable
are equivalent.

$(domain) The domain of the host from which the job was submitted.

$(jobid) The sequential number assigned to this job by the submitting
machine. The $(jobid) variable and the $(cluster) variable are
equivalent.

$(stepid) The sequential number assigned to this job step when multiple queue
statements are used with the job command file. The $(stepid) variable
and the $(process) variable are equivalent.

In addition, the following keywords are also available as variables. However, you
must define them in the job command file. These keywords are described in detail
in “Job Command File Keywords” on page 38.

 $(executable)
 $(class)
 $(comment)
 $(job_name)
 $(step_name)

Note that for the $(comment) variable, the keyword definition must be a single
string with no blanks. Also, the executable statement automatically sets the
$(base_executable) variable, which is the file name of the executable without the
directory component. See Figure 15 on page 36 for an example of using the
$(base_executable) variable.

 Example 1
The following job command file creates an output file called stance.78.out , where
stance is the host and 78 is the jobid.

@ executable = my_job
@ arguments = 5
@ output = $(host).$(jobid).out
@ queue

 Example 2
The following job command file creates an output file called
computel.step1.March05 .

@ comment = Marchð5
@ job_name = computel
@ step_name = step1
@ executable = my_job
@ output = $(job_name).$(step_name).$(comment)
@ queue

 Chapter 3. Submitting and Managing Jobs 57

58 Using and Administering LoadLeveler

Chapter 4. Submitting and Managing Parallel Jobs

This chapter tells you how to submit and manage parallel jobs. For information on
setting up and planning for parallel jobs, see Chapter 6, “Administration Tasks for
Parallel Jobs” on page 135.

Supported Parallel Environments
LoadLeveler allows you to schedule parallel batch jobs that have been written using
the following:

� IBM Parallel Environment Library* (POE/MPI/LAPI) 2.4.0
� Parallel Virtual Machine (PVM) 3.3 (RS6K architecture)
� Parallel Virtual Machine (PVM) 3.3.11+ (SP2MPI architecture)

Note that for parallel batch jobs, LoadLeveler no longer interacts with the PSSP
Resource Manager, since all Resource Manager function has been incorporated
into LoadLeveler. For more information, see “Resource Manager Functions Now in
LoadLeveler” on page xix.

Keyword Considerations for Parallel Jobs
Several LoadLeveler job command language keywords are associated with parallel
jobs. Whether a keyword is appropriate is dependent upon the type of job and the
type of LoadLeveler scheduler you are running.

Table 4 shows you the parallel keywords supported by the LoadLeveler Backfill
scheduler, based on the type of job you are running.

Table 5 shows you the parallel keywords supported by the default LoadLeveler
scheduler, based on the type of job you are running.

Table 4. Parallel Keywords Supported by the Backfill Scheduler

job_type=parallel job_type=pvm3

 network
 node
 node_usage
 tasks_per_node
 total_tasks

All keywords supported for
job_type=pvm3 (supported for
compatibility reasons)

 Adapter requirement
 max_processors
 min_processors
 network
 parallel_path

Table 5. Parallel Keywords Supported by the Default Scheduler

job_type=parallel job_type=pvm3

 max_processors
 min_processors
 Adapter requirement

 max_processors
 min_processors
 parallel_path
 Adapter requirement

 Chapter 4. Submitting and Managing Parallel Jobs 59

These keywords are used in the examples in this chapter, and are described in
more detail in “Job Command File Keywords” on page 38.

If you disable the default LoadLeveler scheduler to run an external scheduler, see
“Usage Notes” on page 272 for an explanation of which keywords are supported.

Job Command File Examples
This section contains sample job command files for the following parallel
environments:

� IBM AIX Parallel Operating Environment (POE) 2.4.0
� Parallel Virtual Machine (PVM) 3.3 (RS6K architecture)
� Parallel Virtual Machine (PVM) 3.3.11+ (SP2MPI architecture)

 POE 2.4.0
Figure 17 is a sample job command file for POE 2.4.0.

#
@ job_type = parallel
@ environment = COPY_ALL
@ output = poe.out
@ error = poe.error
@ node = 8,1ð
@ tasks_per_node = 2
@ network.LAPI = switch,shared,US
@ network.MPI = switch,shared,US
@ wall_clock_limit = 6ð
@ executable = /usr/bin/poe
@ arguments = /u/richc/My_POE_program -euilib "us"
@ class = POE
@ queue

Figure 17. POE 2.4.0 Job Command File – Multiple Tasks Per Node

Figure 17 shows the following:

� The total number of nodes requested is a minimum of eight and a maximum of
10 (node=8,10). Two tasks run on each node (tasks_per_node=2). Thus the
total number of tasks can range from 16 to 20.

� Each task of the job can run using the LAPI protocol in US mode with an SP
switch adapter (network.LAPI=switch,shared,US), and/or using the MPI
protocol in US mode with an HPS adapter (network.MPI=switch,shared,US).
Note that “switch” is an installation-defined network type which is used for css0
adapters in these examples.

� The maximum run time allowed for the job is 60 seconds
(wall_clock_limit=60).

Figure 18 on page 61 is a second sample job command file for POE 2.4.0.

60 Using and Administering LoadLeveler

#
@ job_type = parallel
@ input = poe.in.1
@ output = poe.out.1
@ error = poe.err
@ node = 2,8
@ network.MPI = switch,shared,IP
@ wall_clock_limit = 6ð
@ class = POE
@ queue
/usr/bin/poe /u/richc/my_POE_setup_program -infolevel 2
/usr/bin/poe /u/richc/my_POE_main_program -infolevel 2

Figure 18. POE Sample Job Command File – Invoking POE Twice

Figure 18 shows the following:

� POE is invoked twice, via my_POE_setup_program and
my_POE_main_program .

� The job requests a minimum of two nodes and a maximum of eight nodes
(node=2,8).

� The job by default runs one task per node.

� The job uses the MPI protocol with an SP switch adapter in IP mode
(network.MPI=switch,shared,IP).

� The maximum run time allowed for the job is 60 seconds
(wall_clock_limit=60).

PVM 3.3 (Non-SP)
Figure 19 shows a sample job command file for PVM 3.3 (RS6K architecture).
Before using PVM, users should contact their administrator to determine which
PVM architecture has been installed.

@ executable = my_PVM_program
@ job_type = pvm3
@ parallel_path = /home/LL_userid/cmds/pvm3/$PVM_ARCH:$PVM_ROOT/lib/$PVM_ARCH
@ class = PVM3
@ requirements = (Pool == 4)
@ output = my_PVM_program.$(cluster).$(process).out
@ error = my_PVM_program.$(cluster).$(process).err
@ min_processors = 8
@ max_processors = 1ð
@ queue

Figure 19. Sample PVM 3.3 Job Command File

Note the following requirements for PVM 3.3 (RS6K architecture) jobs:

� The job must have job_type = pvm3 .

� You must specify the parallel executable as the executable.

 Chapter 4. Submitting and Managing Parallel Jobs 61

PVM 3.3.11+ (SP2MPI architecture)
Figure 20 shows a sample job command file for PVM 3.3.11+ (SP2MPI
architecture). Before using PVM, users should contact their administrator to
determine which PVM architecture has been installed. The SP2MPI architecture
version should be used when users require that their jobs run in user space.

@ job_type = parallel
@ class = PVM3
@ requirements = (Adapter == "hps_us")
@ output = my_PVM_program.$(cluster).$(process).out
@ error = my_PVM_program.$(cluster).$(process).err
@ node = 3,3
@ queue

Set PVM daemon and starter path dictated by LoadLeveler administrator
starter_path=/home/userid/loadl/pvm3/bin/SP2MPI
daemon_path=/home/userid/loadl/pvm3/lib/SP2MPI

Export "MP_EUILIB" before starting PVM3 (default is "ip")
export MP_EUILIB=us
echo MP_EUILIB=$MP_EUILIB

Clean up old PVM log and daemon files belonging to user
filelog=/tmp/pvml.`id | awk -F'=' '{print $2}' | awk -F'(' '{print $1}'`
filedaemon=/tmp/pvmd.`id | awk -F'=' '{print $2}' | awk -F'(' '{print $1}'`
rm -f $filelog > /dev/null
rm -f $filedaemon > /dev/null

Start PVM daemon in background
$daemon_path/pvmd3 &
echo "pvm background pid=$!"
echo "Sleep 2 seconds"
sleep 2
echo "PVM daemon started"

Start parallel executable
llnode_cnt= echo "$LOADL_PROCESSOR_LIST" | awk '{print NF}'
actual_cnt=`expr "$llnode_cnt" - 1`
$starter_path/starter -n $actual_cnt /home/userid/my_PVM_program
echo "Parallel executable starting"

Check processes running and halt PVM daemon
echo "ps -a" | /home/userid/loadl/pvm3/lib/SP2MPI/pvm
echo "Halt PVM daemon"
echo "halt" | /home/userid/loadl/pvm3/lib/SP2MPI/pvm
wait
echo "PVM daemon completed"

Figure 20. Sample PVM 3.3.11+ (SP2MPI Architecture) Job Command File

Note the following requirements for PVM 3.3.11+ (SP2MPI architecture) jobs:

� The job must have job_type = parallel .

� You must specify one more processor then you actually need to run the parallel
job. PVM spawns an additional task to relay messages to and from the PVM
daemon. Parallel tasks cannot communicate with PVM daemon directly. The

62 Using and Administering LoadLeveler

additional task will be spawned on the last processor in the
LOADL_PROCESSOR_LIST. For more information on this environment variable
set by LoadLeveler see “Obtaining Allocated Host Names” on page 64.

� You must use the PVM daemon and starter path dictated by the LoadLeveler
administrator. The parallel_path keyword is ignored.

� You must export MP_EUILIB as us when running in user space over the
switch. MP_PROCS, MP_RMPOOL and MP_HOSTFILE are ignored when
running under LoadLeveler.

� You should clean up any temporary PVM log or daemon files before starting
the PVM daemon.

� You must start the PVM daemon in the job script, and you must start it in the
background ($daemon_path/pvmd3 &).

� You must compile your parallel program following the PVM guidelines for PVM
3.3.11+ (SP2MPI architecture).

� You must start the parallel executable through the PVM starter program. The
PVM starter program has no relationship to the LoadLeveler starter daemon.

� You must specify the parallel executable as an argument to the PVM starter
program.

� You must specify the actual number of parallel tasks to the PVM starter
program. This number must be one less then the number of processors
allocated through LoadLeveler.

� You must halt the PVM daemon when the PVM starter program completes.

� You can invoke the PVM starter program only once.

Sequence of Events in a PVM 3.3.11 + Job
This example demonstrates the sequence of events that occur when you submit the
sample job command file shown in Figure 20 on page 62.

Figure 21 on page 64 illustrates the following:

� From the job command file, (1) the PVM daemon, pvmd3, and (2) the PVM
starter are started under the LoadLeveler starter. The PVM starter tells the
PVM daemon to start two tasks (my_PVM_program).

� (3) The PVM daemon starts the POE Partition Manager, which in turn (4) starts
the POE daemons, (represented as pvmd2) on all three nodes.

� (5) The POE daemons (pvmd2) start the parallel tasks, my_PVM_program , on
all nodes under the LoadLeveler starter. The last parallel task,
my_PVM_program on Node 3, is the additional task which relays messages
between the PVM daemon and the parallel tasks.

 Chapter 4. Submitting and Managing Parallel Jobs 63

LoadL_starter

LoadL_starter LoadL_starter

pvmd3

poe

pmdv2

pmdv2 pmdv2

PVM starter

my_PVM_program

my_PVM_program my_PVM_program

Master Node 1

Node 2 Node 3

1
2

3

4

4 4

5 5

Figure 21. Sequence of Events in a PVM 3.3.11+ Job

Obtaining Status of Parallel Jobs
Both end users and LoadLeveler administrators can obtain status of parallel jobs in
the same way as they obtain status of serial jobs – either by using the llq
command or by viewing the Jobs window on the graphical user interface (GUI). By
issuing llq -l , or by using the Job Details selection in the GUI, users get a list of
machines allocated to the parallel job. See “llq - Query Job Status” on page 181 for
sample output from an llq -l command issued to query a parallel job.

Also, administrators can create a class for parallel jobs. Users can check the status
of their parallel jobs by specifying this class in the Class field on the Jobs window
of the GUI.

Obtaining Allocated Host Names
llq -l output includes information on allocated host names. Another way to obtain
the allocated host names is with the LOADL_PROCESSOR_LIST environment
variable, which you can use from a shell script in your job command file as shown
in Figure 22 on page 65.

64 Using and Administering LoadLeveler

This example uses LOADL_PROCESSOR_LIST to perform a remote copy of a
local file to all of the nodes, and then invokes POE. Note that the processor list
contains an entry for each task running on a node. If two tasks are running on a
node, LOADL_PROCESSOR_LIST will contain two instances of the host name
where the tasks are running. The example in Figure 22 removes any duplicate
entries.

Note that LOADL_PROCESSOR_LIST is set by LoadLeveler, not by the user.

#!/bin/ksh
@ output = my_POE_program.$(cluster).$(process).out
@ error = my_POE_program.$(cluster).$(process).err
@ class = POE
@ job_type = parallel
@ node = 8,12
@ network.MPI = cssð,shared,US
@ queue

tmp_file="/tmp/node_list"
rm -f $tmp_file

Copy each entry in the list to a new line in a file so
that duplicate entries can be removed.
for node in $LOADL_PROCESSOR_LIST
 do

echo $node >> $tmp_file
 done

Sort the file removing duplicate entries and save list in variable
nodelist= `sort -u /tmp/node_list`

for node in $nodelist
 do

rcp localfile $node:/home/userid
 done

rm -f $tmp_file

/usr/bin/poe /home/userid/my_POE_program

Figure 22. Using LOADL_PROCESSOR_LIST in a Shell Script

 Chapter 4. Submitting and Managing Parallel Jobs 65

66 Using and Administering LoadLeveler

 Administering LoadLeveler

 Administering LoadLeveler 67

68 Using and Administering LoadLeveler

Chapter 5. Administering and Configuring LoadLeveler

This chapter tells you how to administer and configure LoadLeveler. In general, the
information in this chapter applies to both serial and parallel jobs. For more specific
information on parallel jobs, see Chapter 6, “Administration Tasks for Parallel Jobs”
on page 135.

 Overview
After installing LoadLeveler, you need to customize it by modifying both the
administration file and the configuration file. The administration file optionally lists
and defines the machines in the LoadLeveler cluster and the characteristics of
classes, users, and groups. The configuration file contains many parameters that
you can set or modify that will control how LoadLeveler operates.

In order to easily manage LoadLeveler, you should have only one administration file
and one global configuration file, centrally located on a machine in the LoadLeveler
cluster. Every other machine in the cluster must be able to read the administration
and configuration file that are located on the central machine. LoadLeveler does not
prevent you from having multiple copies of administration files but you need to be
sure to update all the copies whenever you make a change to one. Having only
one administration file prevents any confusion.

You can, however, have multiple local configuration files that specify information
specific to individual machines. For more information on the global and local
configuration files, refer to “Configuring LoadLeveler” on page 94.

Before working with these two files, you should read the following planning
considerations to help you decide how to modify the files.

 Planning Considerations
Node availability

Some workstation owners might agree to accept LoadLeveler jobs only
when they are not using the workstation themselves. Using LoadLeveler
keywords, these workstations can be configured to be available at
designated times only.

Common name space
To run jobs on any machine in the LoadLeveler cluster, a user needs
the same uid (the system ID number for a user) and gid (the system ID
number for a group) on every machine in the cluster. The term cluster
refers to all machines mentioned in the configuration file.

For example, if there are two machines in your LoadLeveler cluster,
machine_1 and machine_2, user john must have the same user ID and
login group ID in the /etc/passwd file on both machines. If user john
has user ID 1234 and login group ID 100 on machine_1, then user john
must have the same user ID and login group ID in /etc/passwd on
machine_2. This ensures that the getuid system call returns the same
user ID on both systems. (This allows a job to run with the same group
ID and user ID of the person who submitted the job.)

 Chapter 5. Administering and Configuring LoadLeveler 69

If you do not have a user ID on one machine, your jobs will not run on
that machine. Also, many commands, such as llq , will not work correctly
if a user does not have a user ID on the central manager machine.

However, there are cases where you may choose to not give a user a
login ID on a particular machine. For example, a user does not need an
ID on every submit-only machine; the user only needs to be able to
submit jobs from at least one such machine. Also, you may choose to
restrict a user's access to a schedd machine that is not a public
scheduler; again, the user only needs access to at least one schedd
machine.

Performance
You should keep the log , spool , and execute directories in a local file
system in order to maximize performance. Also, to measure the
performance of your network, consider using one of the available
products, such as Toolbox/6000.

Management
Managing distributed software systems is a primary concern for all
system administrators. Allowing users to share filesystems to obtain a
single, network-wide image, is one way to make managing LoadLeveler
easier.

Resource Handling
Some nodes in the LoadLeveler cluster might have special software
installed that users might need to run their jobs successfully. You should
configure LoadLeveler to distinguish those nodes from other nodes
using, for example, machine features.

Where to Begin?
Setting up LoadLeveler involves defining machines, users, and how they interact, in
such a way that LoadLeveler is able to run jobs quickly and efficiently. If you have
a good deal of experience in system administration and job scheduling, you should
begin by reading “Expert.” If you are relatively new to job scheduling tasks, begin
by reading “Intermediate or Beginner”

No matter what your level of experience, it will prove worthwhile to read all the
information in this chapter at some point to help you optimize LoadLeveler's
performance.

Intermediate or Beginner
If you are experienced in UNIX system administration but are unfamiliar with job
scheduling systems or your experience is limited, you may want to start with the
section “Administration File Structure and Syntax” on page 72 and read to the end
of this chapter. This section provides a relatively slow, step-by-step approach to
administering LoadLeveler. If you would rather start up LoadLeveler quickly using
mostly default characteristics, follow the procedures in “Quick Set Up” on page 71

 Expert
If you are very familiar with UNIX system administration and job scheduling, and
have some idea how you want to distribute your workload, go to “Quick Set Up” on
page 71. Each step in this short procedure refers you to a detailed discussion of
the task at hand. The sample configuration and administration files included in the

70 Using and Administering LoadLeveler

samples subdirectory (and shown in Appendix C, “Sample Files” on page 325) also
provide assistance.

If you plan to run interactive jobs using the Parallel Operating Environment (POE)
running under LoadLeveler, see “Setting Up to Allow Users to Submit Interactive
POE Jobs” on page 135.

Quick Set Up
If you are very familiar with UNIX system administration and job scheduling, follow
the steps listed in this section to get LoadLeveler up and running on your network
quickly in a default configuration. For this set up, it is recommended that you use
loadl as the LoadLeveler user ID. Afterward, you can fine tune your configuration
for greater efficiency when you become more familiar with the details of
LoadLeveler.

1. Ensure that the installation procedure has completed successfully and that the
configuration file, LoadL_config , exists in LoadLeveler's home directory or in
the directory specified in /etc/LoadL.cfg (if this file exists). See “Configuring
LoadLeveler” on page 94 for more information.

2. Identify yourself as the LoadLeveler administrator in the LoadL_config file
using the LOADL_ADMIN keyword. The syntax of this keyword follows:

LOADL_ADMIN = list of user names (required)
where list of user names is a blank-delimited list of those individuals who
will have administrative authority.

Refer to “Step 1: Define LoadLeveler Administrators” on page 96 for more
information.

3. Define a machine to act as the LoadLeveler central manager by coding one
machine stanza as follows in the administration file, which is called
LoadL_admin . (Replace machinename with the actual name of the machine.)

machinename: type = machine
central_manager = true

Do not specify more than one machine as the central manager. Also, if during
installation, you ran llinit with the -cm flag, the central manager is already
defined in the LoadL_admin file because the llinit command takes parameters
you entered and updates the administration and configuration files. See “Step
1: Specify Machine Stanzas” on page 73 for more information.

4. Issue the following command for each machine to be included in the
LoadLeveler cluster. (Replace hostname with the actual name of the machine.)

llctl -h hostname start

Issue this command for the central manager machine first. See “llctl - Control
LoadLeveler Daemons” on page 163 for more information.

You can also issue the following command to start LoadLeveler on all
machines beginning with the central manager. Before you issue this command,
make sure all the machines are listed in the administration file. This command
only affects machines that are defined in the administration file.

llctl -g start

 Chapter 5. Administering and Configuring LoadLeveler 71

llctl uses rsh or remsh to start LoadLeveler on the target machine. Therefore, the
administrator using llctl must have rsh authority on the target machine.

 Administering LoadLeveler
This section explains how to perform administration tasks, and includes a
step-by-step approach to administering LoadLeveler in “Customizing the
Administration File” on page 73.

Administration File Structure and Syntax
The administration file is called LoadL_admin and it lists and defines the machine,
user, class, group, and adapter stanzas.

Machine stanza Defines the roles that the machines in the LoadLeveler cluster
play. See “Step 1: Specify Machine Stanzas” on page 73 for
more information.

User stanza Defines LoadLeveler users and their characteristics. See “Step
2: Specify User Stanzas” on page 78 for more information.

Class stanza Defines the characteristics of the job classes. See “Step 3:
Specify Class Stanzas” on page 82 for more information.

Group stanza Defines the characteristics of a collection of users that form a
LoadLeveler group. See “Step 4: Specify Group Stanzas” on
page 90 for more information.

Adapter stanza Defines the network adapters available on the machines in the
LoadLeveler cluster. See “Step 5: Specify Adapter Stanzas” on
page 93 for more information.

Stanzas have the following general format:

label: type = type_of_stanza
keyword1 = value1
keyword2 = value2
 ...

Figure 23. Format of Administration File Stanzas

The following is a simple example of an administration file illustrating several
stanzas:

72 Using and Administering LoadLeveler

machine_a: type = machine
central_manager = true # defines this machine as the central manager
adapter_stanzas = adapter_a # identifies an adapter stanza

class_a: type = class
priority = 5ð # priority of this class

user_a: type = user
priority = 5ð # priority of this user

group_a: type = group
priority = 5ð # priority of this group

adapter_a: type = adapter
adapter_name = enð #defines an adapter

Figure 24. Sample Administration File Stanzas

The characteristics of a stanza are:

� Every stanza has a label associated with it. The label specifies the name you
give to the stanza.

� Every stanza has a type field that specifies it as a user, class, machine, group,
or adapter stanza.

� New line characters are ignored. This means that separate parts of a stanza
may be included on the same line. However, it is not recommended to have
parts of a stanza cross line boundaries.

� White space is ignored, other than to delimit keyword identifiers. This eliminates
confusion between tabs and spaces at the beginning of lines.

� A cross-hatch sign (#) identifies a comment and may appear anywhere on the
line. All characters following this sign on that line are ignored.

� Multiple stanzas of the same label are allowed, but only the first label is used.

� Default stanzas specify the default values for any keywords which are not
otherwise specified. Each stanza type can have an associated default stanza. A
default stanza must appear in the administration file ahead of any specific
stanza entries of the same type. For example, a default class stanza must
appear ahead of any specific class stanzas you enter.

Customizing the Administration File
You can add as many stanzas as you would like to the administration file. This
section tells you how to modify this file in a step-by-step manner. You do not have
to perform the steps in the order that they appear here.

Step 1: Specify Machine Stanzas
The information in a machine stanza defines the characteristics of that machine.
You do not have to specify a machine stanza for every machine in the LoadLeveler
cluster but you must have one machine stanza for the machine that will serve as
the central manager.

If you do not specify a machine stanza for a machine in the cluster, the machine
and the central manager still communicate and jobs are scheduled on the machine

 Chapter 5. Administering and Configuring LoadLeveler 73

but the machine is assigned the default values specified in the default machine
stanza. If there is no default stanza, the machine is assigned default values set by
LoadLeveler.

Any machine name used in the stanza must be a name which can be resolved to
an IP address. This name is referred to as an interface name because the name
can be used for a program to interface with the machine. Generally, interface
names match the machine name, but they do not have to.

By default, LoadLeveler will append the DNS domain name to the end of any
machine name without a domain name appended before resolving its address. If
you specify a machine name without a domain name appended to it and you do not
want LoadLeveler to append the DNS domain name to it, specify the name using a
trailing period. You may have a need to specify machine names in this way if you
are running a cluster with more than one nameserving technique. For example, if
you are using a DNS nameserver and running NIS, you may have some machine
names which are resolved by NIS which you do not want LoadLeveler to append
DNS names to. In situations such as this, you also want to specify name_server
keyword in your machine stanzas.

Under the following conditions, you must have a machine stanza for the machine in
question:

� If you set the MACHINE_AUTHENTICATE keyword to true in the configuration
file, then you must create a machine stanza for each node that LoadLeveler
includes in the cluster.

� If the machine's hostname (the name of the machine returned by the UNIX
hostname command) does not match an interface name. In this case, you must
specify the interface name as the machine stanza name and specify the
machine's hostname using the alias keyword.

� If the machine's hostname does match an interface name but not the correct
interface name.

Machine stanzas take the following format. Default values for keywords appear in
bold:

label: type = machine
adapter_stanzas = stanza_list
alias = machine_name
central_manager = true | false | alt
cpu_speed_scale = true | false
machine_mode = batch | interactive | general
master_node_exclusive = true | false
max_jobs_scheduled = number
name_server = list
pvm_root = pathname
pool_list = pool_numbers
schedd_host = true | false
spacct_excluse_enable = true | false
speed = number
submit_only = true | false

Figure 25. Format of a Machine Stanza

74 Using and Administering LoadLeveler

You can specify the following keywords in a machine stanza:

adapter_stanzas = stanza_list
where stanza_list is a blank-delimited list of one or more adapter stanza names
which specify adapters available on this machine. All adapter stanzas you
define must be specified on this keyword.

alias = machine_name
where machine_name is a blank-delimited list of one or more machine names.
Depending upon your network configurations, you may need to add alias
keywords for machines that have multiple interfaces.

Note: In general, if your cluster is configured with machine hostnames which
match the hostnames corresponding to the IP address configured for the LAN
adapters which LoadLeveler is expected to use, you will not have to specify the
alias keyword. For example, if all of the machines in your cluster are configured
like this sample machine, you should not have to specify the alias keyword.

Machine porsche.kgn.ibm.com

� The hostname command returns porsche.kgn.ibm.com.

� The Ethernet adapter address 129.40.8.20 resolves to hostname
porsche.kgn.ibm.com.

However, if any machine in your cluster is configured like either of the following
two sample machines, then you will have to specify the alias keyword for those
machines:

 1. Machine yugo.kgn.ibm.com

� The hostname command returns yugo.kgn.ibm.com.

� The Ethernet adapter address 129.40.8.21 resolves to hostname
chevy.kgn.ibm.com.

� No adapter address resolves to yugo.

You need to code the machine stanza as:

chevy: type = machine
alias = yugo

 2. Machine rover.kgn.ibm.com

� The hostname command returns rover.kgn.ibm.com.

� The FDDI adapter address 129.40.9.22 resolves to hostname
rover.kgn.ibm.com.

� The Ethernet adapter address 129.40.8.22 resolves to hostname
bmw.kgn.ibm.com.

� No route exists via the FDDI adapter to the clusters central manager
machine.

� A route exists from this machine to the central manager via the
Ethernet adapter.

You need to code the machine stanza as:

bmw: type = machine
alias = rover

 Chapter 5. Administering and Configuring LoadLeveler 75

central_manager = true| false | alt
where true designates this machine as the LoadLeveler central manager host,
where the negotiator daemon runs. You must specify one and only one
machine stanza identifying the central manager. For example:

machine_a: type = machine
central_manager = true

false specifies that this machine is not the central manager.

alt specifies that this machine can serve as an alternate central manager in the
event that the primary central manager is not functioning. For more information
on recovering if the primary central manager is not operating, refer to “What
Happens if the Central Manager Isn't Operating?” on page 294. Submit-only
machines cannot have their machine stanzas set to this value.

If you are going to select machines to serve as alternate central managers, you
should look at the following keywords in the configuration file:

 � CENTRAL_MANAGER_HEARTBEAT_INTERVAL
 � CENTRAL_MANAGER_TIMEOUT

For information on setting these keywords, see “Step 9: Specify Alternate
Central Managers” on page 108

cpu_speed_scale = true| false
where true specifies that CPU time (which is used, for example, in setting
limits, in accounting information, and reported by the llq -x command), is in
normalized units for each machine. false specifies that CPU time is in native
units for each machine. For an example of using this keyword to normalize
accounting information, see “Task 5: Specifying Machines and Their Weights”
on page 146.

machine_mode = batch | interactive | general
Specifies the type of job this machine can run. Where:

batch Specifies this machine can run only batch jobs.

interactive Specifies this machine can run only interactive jobs. Only POE is
currently enabled to run interactively.

general Specifies this machine can run both batch jobs and interactive
jobs.

master_node_exclusive = true| false
where true specifies that this machine is used only as a master node for
parallel jobs.

max_jobs_scheduled = number
where number is the maximum number of jobs submitted from this scheduling
(schedd) machine that can run (or start running) in the LoadLeveler cluster at
one time. If number of jobs are already running, no other jobs submitted from
this machine will run, even if resources are available in the LoadLeveler cluster.
When one of the running jobs completes, any waiting jobs then become eligible
to be run. The default is -1, which means there is no maximum.

name_server = list
where list is a blank-delimited list of character strings that is used to specify
which nameserver(s) are used for the machine. Valid strings are DNS, NIS, and
LOCAL. LoadLeveler uses the list to determine when to append a DNS domain

76 Using and Administering LoadLeveler

name for machine names specified in LoadLeveler commands issued from the
machine described in this stanza.

If DNS is specified alone, LoadLeveler will always append the DNS domain
name to machine names specified in LoadLeveler commands. If NIS or LOCAL
is specified, LoadLeveler will never append a DNS domain name to machine
names specified in LoadLeveler commands. If DNS is specified with either NIS
or LOCAL, LoadLeveler will always look up the name in the administration file
to determine whether to append a DNS domain name. If the name is specified
with a trailing period, it doesn't append the domain name.

pvm_root = pathname
Where pathname specifies the location of the directory in which PVM is
installed. The default pathname is /u/loadl/pvm3 .

pool_list = pool_numbers
Where pool_numbers is a blank-delimited list of numbers identifying pools to
which the machine belongs. This keyword provides compatability with function
that was previously part of the Resource Manager.

schedd_host = true | false
where true designates this as a public scheduling machine, used to receive job
submissions from submit-only machines. Submit-only machines do not run
LoadLeveler jobs.

spacct_excluse_enable = true | false
Where true specifies that the accounting function on an SP system is informed
that a job step has exclusive use of this machine. Note that your SP system
must have exclusive user accounting enabled in order for this keyword to have
an effect. For more information on SP accounting, see Parallel System Support
Programs for AIX: Administration Guide, GC23-3899.

speed = number
where number is a floating point number that is used for machine scheduling
purposes in the MACHPRIO expression. For more information on machine
scheduling and the MACHPRIO expression, see “Step 6: Prioritize the Order of
Executing Machines Maintained by the Negotiator” on page 103. In addition,
the speed keyword is also used to define the weight associated with the
machine. This weight is used when gathering accounting data on a machine
basis. The default is 1.0.

The following example illustrates how the speed keyword can be used for
assigning weights to machines.

If your cluster consisted of five RISC System/6000 machines that you want to
have the same weight, you would not have to specify this keyword in the
administration file. By default, all machines would have a weight of 1.0. If,
however, you add an SP system to your cluster for parallel job processing, you
may want to update the local configuration file for each node of the SP system
to charge differently for resource consumption on those nodes. You would need
to set the speed keyword to something other than 1.0 to make the SP nodes
have a different weight.

For information on how the speed keyword can be used to schedule machines,
refer to “Step 6: Prioritize the Order of Executing Machines Maintained by the
Negotiator” on page 103

 Chapter 5. Administering and Configuring LoadLeveler 77

submit_only = true| false
where true designates this as a submit-only machine. If you set this keyword to
true , in the administration file set central_manager and schedd_host to false .

Examples of Machine Stanzas
Example 1: In this example, the machine is being defined as the central manager.

#
machine_a: type = machine
central_manager = true # central manager runs here

Example 2: This example sets up a submit-only node. Note that the submit-only
keyword is set to true:

#
machine_b: type = machine
central_manager = false # not the central manager
schedd_host = false # not a scheduling machine
submit_only = true # submit only machine
alias = machineb # interface name

Example 3: In the following example, machine_c is the central manager, has an
alias associated with it, and can run parallel PVM jobs:

#
machine_c: type = machine
central_manager = true # central manager runs here
schedd_host = true # defines a public scheduler
alias = brianne
pvm_root = /u/brianne/loadl/1.2.ð/aix32/pvm3

Step 2: Specify User Stanzas
The information specified in a user stanza defines the characteristics of that user.
You can have one user stanza for each user but this is not necessary. If an
individual user does not have their own user stanza, that user uses the defaults
defined in the default user stanza.

User stanzas take the following format:

label: type = user
account = list
default_class = list
default_group = group name
default_interactive_class = class name
maxidle = number
maxjobs = number
maxqueued = number
max_node = number
max_processors = number
priority = number
total_tasks = number

Figure 26. Format of a User Stanza

You can specify the following keywords in a user stanza:

78 Using and Administering LoadLeveler

account = list
where list is a blank-delimited list of account numbers that identifies the
account numbers a user may use when submitting jobs. The default is a null
list.

default_class = list
where list is a blank-delimited list of class names used for jobs which do not
include a class statement in the job command file. If you specify only one
default class name, this class is assigned to the job. If you specify a list of
default class names, LoadLeveler searches the list to find a class which
satisfies the resource limit requirements. If no class satisfies these
requirements, LoadLeveler rejects the job.

Suppose a job requests a CPU limit of 10 minutes. Also, suppose the default
class list is default_class = short long, where short is a class for jobs up to
five minutes in length and long is a class for jobs up to one hour in length.
LoadLeveler will select the long class for this job because the short class does
not have sufficient resources.

If no default_class is specified in the user stanza, or if there is no user stanza
at all, then jobs submitted without a class statement are assigned to the
default_class that appears in the default user stanza. If you do not define a
default_class , jobs are assigned to the class called No_Class .

default_group = group_name
where group_name is the default group assigned to jobs submitted by the user.
If a default_group statement does not appear in the user stanza, or if there is
no user stanza at all, then jobs submitted by the user without a group
statement are assigned to the default_group that appears in the default user
stanza. If you do not define a default_group , jobs are assigned to the group
called No_Group .

If you specify default_group = Unix_Group , LoadLeveler sets the user's
LoadLeveler group to his or her primary UNIX group (as defined in the
/etc/passwd file).

default_interactive_class = class_name
where class_name is the class to which an interactive job submitted by this
user is assigned if the user does not specify a class using the
LOADL_INTERACTIVE_CLASS environment variable. You can specify only
one default interactive class name.

If you do not set a default_interactive_class value in the user stanza, or if
there is no user stanza at all, then interactive jobs submitted without a class
statement are assigned to the default_interactive_class that appears in the
default user stanza. If you do not define a default_interactive_class ,
interactive jobs are assigned to the class called No_Class .

See “Example 2” on page 81 for more information on how LoadLeveler assigns
a default interactive class to jobs.

maxidle = number
where number is the maximum number of idle jobs this user can have in
queue. That is, number is the maximum number of jobs which the negotiator
will consider for dispatch for the user. Jobs above this maximum are placed in
the NotQueued state. This prevents individual users from dominating the
number of jobs that are either running or are being considered to run. If the
user stanza does not specify maxidle or if there is no user stanza at all, the

 Chapter 5. Administering and Configuring LoadLeveler 79

maximum number of jobs that can be simultaneously in queue for the user is
defined in the default stanza. If no value is found, or the limit found is -1, then
no limit is placed on the number of jobs that can be simultaneously idle for the
user.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 297

maxjobs = number
where number is the maximum number of jobs this user can run at any time. If
the user stanza does not specify maxjobs or if there is no user stanza at all,
the maximum jobs that can be simultaneously run by the user is defined in the
default stanza. The default is -1, which means no limit is placed on the number
of jobs that can simultaneously run for the user. Regardless of this limit, there
is no limit to the number of jobs a user can submit.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 297

maxqueued = number
where number is the maximum number of jobs allowed in the queue for this
user. This is the maximum number of jobs which can be either running or being
considered to be dispatched by the negotiator for that user. Jobs above this
maximum are placed in the NotQueued state. This prevents individual users
from dominating the number of jobs that are either running or are being
considered to run. If no maxqueued is specified in the user stanza, or if there
is no user stanza, the maximum number of jobs that can simultaneously be in
the queue is defined in the default stanza. The default is -1, which means that
no limit is placed on the number of jobs that can simultaneously be in the job
queue for that user. Regardless of this limit, there is no limit to the number of
jobs a user can submit.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 297

max_node = number
where number specifies the maximum number of nodes this user can request
for a parallel job in a job command file using the node keyword. The default is
-1, which means there is no limit.

max_processors = number
where number specifies the maximum number of processors this user can
request for a parallel job in a job command file using the max_processors
keyword. The default is -1, which means there is no limit.

priority = number
where number is a integer that specifies the priority for jobs submitted by the
user. The default is 0. The number specified for priority is referenced as
UserSysprio in the configuration file. UserSysprio can be used in the
assignment of job priorities. If the variable UserSysprio does not appear in the
SYSPRIO expression in the configuration file, the priority numbers for users
specified here in the administration file have no effect. See “Step 5: Prioritize
the Queue Maintained by the Negotiator” on page 102 for more information
about the UserSysprio keyword.

80 Using and Administering LoadLeveler

total_tasks = number
where number specifies the maximum number of tasks this user can request for
a parallel job in a job command file using the total_tasks keyword. The default
is -1, which means there is no limit.

Examples of User Stanzas
Example 1: In this example, user fred is being provided with a user stanza. His
jobs will have a user priority of 100. If he does not specify a job class in his job
command file, the default job class class_a will be used. In addition, he can have a
maximum of 15 jobs running at the same time.

Define user stanzas
fred: type = user
priority = 1ðð
default_class = class_a
maxjobs = 15

Example 2: This example explains how a default interactive class for a parallel job
is set by presenting a series of user stanzas and class stanzas. This example
assumes that users do not specify the LOADL_INTERACTIVE_CLASS environment
variable.

default: type =user
default_interactive_class = red
default_class = blue

carol: type = user
default_class = single double
default_interactive_class = ijobs

steve: type = user
default_class = single double

ijobs: type = class
wall_clock_limit = ð8:ðð:ðð

red: type = class
wall_clock_limit = 3ð:ðð

If the user Carol submits an interactive job, the job is assigned to the default
interactive class called ijobs . The job is assigned a wall clock limit of 8 hours. If the
user Steve submits an interactive job, the job is assigned to the red class from the
default user stanza. The job is assigned a wall clock limit of 30 minues.

Example 3: In this example, Jane's jobs have a user priority of 50, and if she
does not specify a job class in her job command file the default job class
small_jobs is used. This user stanza does not specify the maximum number of
jobs that Jane can run at the same time so this value defaults to the value defined
in the default stanza. Also, suppose Jane is a member of the primary UNIX group
“staff.” Jobs submitted by Jane will use the default LoadLeveler group “staff.” Lastly,
Jane can use three different account numbers.

 Chapter 5. Administering and Configuring LoadLeveler 81

Define user stanzas
jane: type = user
priority = 5ð
default_class = small_jobs
default_group = Unix_Group
account = dept1ð user3 user4

Step 3: Specify Class Stanzas
The information in a class stanza defines characteristics for that class. Class
stanzas are optional. Class stanzas take the following format. Default values for
keywords appear in bold.

label: type = class
admin= list
class_comment = "string"
exclude_groups = list
exclude_users = list
include_groups = list
include_users = list
master_node_requirement = true | false
maxjobs = number
max_node = number
max_processors = number
nice = value
NQS_class = true | false
NQS_submit = name
NQS_query = queue names
priority = number
total_tasks = number

core_limit = hardlimit,softlimit
cpu_limit = hardlimit,softlimit
data_limit = hardlimit,softlimit
file_limit = hardlimit,softlimit
job_cpu_limit = hardlimit,softlimit
rss_limit = hardlimit,softlimit
stack_limit = hardlimit,softlimit
wall_clock_limit = hardlimit,softlimit

Figure 27. Format of a Class Stanza

You can specify the following keywords in a class stanza:

admin = list
where list is a blank-delimited list of administrators for this class. These
administrators can hold, release, and cancel jobs in this class.

class_comment = "string"
where string is text characterizing the class. This information appears when the
user is building a job command file using the GUI and requests Choice
information on the classes to which he or she is authorized to submit jobs. The
length of the string cannot exceed 1024 characters.

exclude_groups = list
where list is a blank-delimited list of groups who are not allowed to submit jobs
of that class name. Do not specify both a list of included groups and a list of

82 Using and Administering LoadLeveler

excluded groups. Only one of these may be used for any class. The default is
that no groups are excluded.

exclude_users = list
where list is a blank-delimited list of users who are not permitted to submit jobs
of that class name. Do not specify both a list of included users and a list of
excluded users. Only one of these may be used for any class. The default is
that no users are excluded.

include_groups = list
where list is a blank-delimited list of groups who are allowed to submit jobs of
that class name. If provided, this list limits groups of that class to those on the
list. Do not specify both a list of included groups and a list of excluded groups.
Only one of these may be used for any class. The default is to include all
groups.

include_users = list
where list is a blank-delimited list of users who are permitted to submit jobs of
that class name. If provided, this list limits users of that class to those on the
list. Do not specify both a list of included users and a list of excluded users.
Only one of these may be used for any class. The default is to include all
users.

master_node_requirement = true|false
where true specifies that parallel jobs in this class require the master node
feature. For these jobs, LoadLeveler allocates the first node (called the
“master”) on a machine having the master_node_exclusive = true setting in
its machine stanza. If most or all of your parallel jobs require this feature, you
should consider placing the statement master_node_requirement = true in
your default class stanza. Then, for classes that do not require this feature, you
can use the statement master_node_requirement = false in their class
stanzas to override the default setting. One machine per class should have the
true setting; if more than one machine has this setting, normal scheduling
selection is performed.

maxjobs = number
where number is the maximum number of jobs that can run in this class. If the
class stanza does not specify maxjobs , or if there is no class stanza at all, the
maximum jobs that can be simultaneously run in this class is defined in the
default stanza. The default is -1, which means that no limit is placed on the
number of jobs a user can submit.

max_processors = number
where number specifies the maximum number of processors a user submitting
jobs to this class can request for a parallel job in a job command file using the
max_processors keyword. The default is -1 which means that there is no limit.

max_node = number
where number specifies the maximum number of nodes a user submitting jobs
in this class can request for a parallel job in a job command file using the node
keyword. The default is -1, which means there is no limit.

nice = value
where value is the amount by which the current UNIX nice value is
incremented. The nice value is one factor in a job's run priority. The lower the
number, the higher the run priority. If two jobs are running on a machine, the
nice value determines the percentage of the CPU allocated to each job.

 Chapter 5. Administering and Configuring LoadLeveler 83

This value ranges from -20 to 20. Values out of this range are placed at the top
(or bottom) of the range. For example, if your current nice value is 15, and you
specify nice = 1ð, the resulting value is 20 (the upper limit) rather than 25. The
default is 0.

For more information, consult the appropriate UNIX documentaion.

NQS_class = true|false
When true , any job submitted to this class will be routed to an NQS machine.

NQS_submit = name
where name is the name of the NQS pipe queue to which the job will be
routed. When the job is dispatched to LoadLeveler, LoadLeveler will invoke the
qsub command using the name of this queue. There is no default.

NQS_query = queue names
where queue names is a blank-delimited list of queue names (including host
names if necessary) to be used with the qstat command to monitor the job and
with the qdel command to cancel the job. There is no default.

For more information on routing jobs to machines running NQS, refer to
Figure 31 on page 147

priority = number
where number is an integer that specifies the priority for jobs in this class. The
default is 0. The number specified for priority is referenced as ClassSysprio in
the configuration file. You can use ClassSysprio when assigning job priorities.
If the variable ClassSysprio does not appear in the SYSPRIO expression, then
the priority specified here in the administration file is ignored. See “Step 5:
Prioritize the Queue Maintained by the Negotiator” on page 102 for more
information about the ClassSysprio keyword.

total_tasks = number
where number specifies the maximum number of tasks a user submitting jobs
in this class can request for a parallel job in a job command file using the
total_tasks keyword. The default is -1, which means there is no limit.

 Limit Keywords
The class stanza includes the following limit keywords, which allow you to control
the amount of resources used by a job step or a job process.

Table 6. Types of Limit Keywords

Limit How It Is Enforced

core_limit Per process

cpu_limit Per process

data_limit Per process

file_limit Per process

job_cpu_limit Per job step

rss_limit Per process

stack_limit Per process

wall_clock_limit Per job step

84 Using and Administering LoadLeveler

Individual keywords are described in “Specifying Limits in the Class Stanza” on
page 87. The following section gives you a general overview of limits.

Overview of Limits: A limit is the amount of a resource that a job step or a
process is allowed to use. (A process is a dispatchable unit of work.) A job step
may be made up of several processes.

Limits include both a hard limit and a soft limit . When a hard limit is exceeded,
the job is usually terminated. When a soft limit is exceeded, the job is usually given
a chance to perform some recovery actions. For more information, see “Exceeding
Limits.”

Limits are enforced either per process or per job step, depending on the type of
limit. For parallel jobs steps, which consist of multiple tasks running on multiple
machines, limits are enforced on a per task basis.

For example, a common limit is the cpu_limit , which limits the amount of CPU time
a single process can use. If you set cpu_limit to five hours and you have a job
step that forks five processes, each process can use up to five hours of CPU time,
for a total of 25 CPU hours. Another limit that controls the amount of CPU used is
job_cpu_limit . This is the total amount of CPU that the entire serial job step can
use. If you impose a job_cpu_limit of five hours, the entire job step (made up of all
five processes) cannot consume more than five CPU hours.

You can specify limits in either the class stanza of the administration file or in the
job command file. For a per process limit, the limit you set in the administration file
overrides the system limit (also called the machine limit).

Exceeding Limits: Process limits are enforced by the operating system. Job step
limits are enforced by LoadLeveler.

Exceeding Job Step Limits: When a hard limit is exceeded LoadLeveler sends a
non-trappable signal to the process (except in the case of a parallel job). When a
soft limit is exceeded, LoadLeveler sends a trappable signal to the process. The
following chart summarizes the actions that occur when a job step limit is
exceeded:

On systems that do not support SIGXCPU, LoadLeveler does not distinguish
between hard and soft limits. When a soft limit is reached on these platforms,
LoadLeveler issues a SIGKILL.

Table 7. Exceeding Job Step Limits

Type of Job When a Soft Limit is Exceeded
When a Hard Limit is
Exceeded

Serial SIGXCPU or SIGKILL issued SIGKILL issued

Parallel
(non-PVM)

SIGXCPU issued to both the
user program and to the parallel
daemon

SIGTERM issued

PVM SIGXCPU issued to the user
prgram

pvm_halt invoked to shut down
PVM

 Chapter 5. Administering and Configuring LoadLeveler 85

Exceeding Per Process Limits: For per process limits, what happens when your
job reaches and exceeds either the soft limit or the hard limit depends on the
operating system you are using.

Note that when a job forks a process which exceeds a per process limit, such as
the CPU limit, the operating system (and not LoadLeveler) terminates the process
by issuing a SIGXCPU. As a result, you will not see an entry in the LoadLeveler
logs indicating that the process exceeded the limit. The job will complete with a 0
return code. LoadLeveler can only report the status of any processes it has started.

If you need more specific information, refer to your operating system
documentation.

Syntax: The syntax for setting a limit is

limit_type = hardlimit,softlimit

For example:

core_limit = 12ðkb,1ððkb

To specify only a hard limit, you can enter, for example:

core_limit = 12ðkb

To specify only a soft limit, you can enter, for example:

core_limit = ,1ððkb

In a keyword statement, you cannot have any blanks between the numerical value
(100 in the above example) and the units (kb). Also, you cannot have any blanks to
the left or right of the comma when you define a limit in a job command file.

For limit keywords that refer to a data limit — such as data_limit , core_limit ,
file_limit , stack_limit , and rss_limit — the hard limit and the soft limit are
expressed as:

integer[.fraction][units]

where integer and fraction represent numerical strings of up to eight characters.
units can be:

b bytes
w words
kb kilobytes (2 10 bytes)
kw kilowords (2 10 words)
mb megabytes (2 20 bytes)
mw megawords (2 20 words)
gb gigabytes (2 30 bytes)
gw gigawords (2 30 words)

If no units are specified, bytes are assumed.

For limit keywords that refer to a time limit — such as cpu_limit , job_cpu_limit ,
and wall_clock_limit — the hard limit and the soft limit are expressed as:

[[hours:]minutes:]seconds[.fraction]

Fractions are rounded to seconds.

86 Using and Administering LoadLeveler

You can use the following character strings with all limit keywords:

rlim_infinity Represents the largest positive number.
unlimited Has same effect as rlim_infinity .
copy Uses the limit currently active when the job is submitted.

See Table 8 for more information on specifying limits.

Table 8. Setting limits

If the hard limit: Then the:

Is set in both the class stanza and the job
command file

Smaller of the two limits is taken into consideration. If the smaller
limit is the job limit, the job limit is then compared with the user
limit set on the machine that runs the job. The smaller of these
two values is used. If the limit used is the class limit, the class limit
is used without being compared to the machine limit.

Is not set in either the class stanza or the
job command file

User per process limit set on the machine that runs the job is
used.

Is set in the job command file and is less
than its respective job soft limit

The job is not submitted.

Is set in the class stanza and is less than
its respective class stanza soft limit

Soft limit is adjusted downward to equal the hard limit.

Is specified in the job command file Hard limit must be greater than or equal to the specified soft limit
and less than or equal to the limit set by the administrator in the
class stanza of the administration file.

Note: If the per process limit is not defined in the administration
file and the hard limit defined by the user in the job command file
is greater than the limit on the executing machine, then the hard
limit is set to the machine limit.

Specifying Limits in the Class Stanza: You can specify the following limit
keywords:

core_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the size of a core file.

Examples:

core_limit = unlimited
core_limit = 3ðmb

For more information, see “Overview of Limits” on page 85

cpu_limit = hardlimit,softlimit
Specifies hard limit and/or soft limit for the CPU time to be used by each
individual process of a job step. For example, if you impose a cpu_limit of five
hours and you have a job step composed of five processes, each process can
consume five CPU hours; the entire job step can therefore consume 25 total
hours of CPU.

Examples:

 Chapter 5. Administering and Configuring LoadLeveler 87

cpu_limit = 12:56:21 # hardlimit = 12 hours 56 minutes 21 seconds
cpu_limit = 56:ðð,5ð:ðð # hardlimit = 56 minutes ð seconds
softlimit = 5ð minutes ð seconds
cpu_limit = 1:ð3 # hardlimit = 1 minute 3 seconds
cpu_limit = unlimited # hardlimit = 2,147,483,647 seconds
(X'7FFFFFFF')
cpu_limit = rlim_infinity # hardlimit = 2,147,483,647 seconds
(X'7FFFFFFF')
cpu_limit = copy # current CPU hardlimit value on the
submitting machine.

For more information, see “Overview of Limits” on page 85

data_limit = hardlimit,softlimit
Specifies hard limit and/or soft limit for the data segment to be used by each
process of the submitted job.

Examples:

data_limit = 125621 # hardlimit = 125621 bytes
data_limit = 5621kb # hardlimit = 5621 kilobytes
data_limit = 2mb # hardlimit = 2 megabytes
data_limit = 2.5mw # hardlimit = 2.5 megawords
data_limit = unlimited # hardlimit = 2,147,483,647 bytes
(X'7FFFFFF')
data_limit = rlim_infinity # hardlimit = 2,147,483,647 bytes
(X'7FFFFFF')
data_limit = copy # copy data hardlimit value from submitting
machine.

For more information, see “Overview of Limits” on page 85.

file_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the size of a file. For more
information, see “Overview of Limits” on page 85.

job_cpu_limit = hardlimit,softlimit
Specifies the maximum total CPU time to be used by all processes of a job
step. That is, if a job step forks to produce multiple processes, the sum total of
CPU consumed by all of the processes is added and controlled by this limit.

For example:

job_cpu_limit = 1ðððð

For more information on this keyword, see the JOB_LIMIT_POLICY keyword in
Chapter 7, “Gathering Job Accounting Data” on page 141. For more general
information on limits, see “Overview of Limits” on page 85.

rss_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the resident size. For more
information, see “Overview of Limits” on page 85.

stack_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the size of a stack. For more
information, see “Overview of Limits” on page 85.

wall_clock_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the elapsed time for which a job can
run. Note that LoadLeveler uses the time the negotiator daemon dispatches the
job as the start time of the job. When a job is checkpointed, vacated, and then

88 Using and Administering LoadLeveler

restarted, the wall_clock_limit is not adjusted to account for the amount of
time that elapsed before the checkpoint occured. This keyword is not
supported for NQS jobs. Also, if the startd daemon terminates abnormally with
running jobs, any wall clock limits are not supported when the daemon is
restarted.

If you are running the Backfill scheduler, you must set a wall clock limit either in
the job command file or in a class stanza (for the class associated with the job
you submit). LoadLeveler administrators should consider setting a default wall
clock limit in a default class stanza. For more information on setting a wall clock
limit when using the Backfill scheduler, see “Choosing a Scheduler” on
page 97.

For more general information on limits, see “Overview of Limits” on page 85.

Examples of Class Stanzas
Example 1: Creating a Class that Excludes Certain Users:

class_a: type=class # class that excludes users
priority=1ð # ClassSysprio
exclude_users=green judy # Excluded users

Example 2: Creating a Class for Small-Size Jobs:

small: type=class # class for small jobs
priority=8ð # ClassSysprio (max=1ðð)
cpu_limit=ðð:ð2:ðð # 2 minute limit
data_limit=3ðmb # max 3ð MB data segment
core_limit=1ðmb # max 1ð MB core file
file_limit=5ðmb # max file size 5ð MB
stack_limit=1ðmb # max stack size 1ð MB
rss_limit=35mb # max resident set size 35 MB
include_users = bob sally # authorized users

Example 3: Creating a Class for Medium-Size Jobs:

medium: type=class # class for medium jobs
priority=7ð # ClassSysprio
cpu_limit=ðð:1ð:ðð # 1ð minute run time limit
data_limit=8ðmb,6ðmb # max 8ð MB data segment

min 6ð MB data segment
core_limit=3ðmb # max 3ð MB core file
file_limit=8ðmb # max file size 8ð MB
stack_limit=3ðmb # max stack size 3ð MB
rss_limit=1ððmb # max resident set size 1ðð MB
job_cpu_limit=18ðð,12ðð # hard limit is 3ð minutes,

soft limit is 2ð minutes

Example 4: Creating a Class for Large-Size Jobs:

 Chapter 5. Administering and Configuring LoadLeveler 89

large: type=class # class for large jobs
priority=6ð # ClassSysprio
cpu_limit=ðð:1ð:ðð # 1ð minute run time limit
data_limit=12ðmb # max 12ð MB data segment
core_limit=3ðmb # max 3ð MB core file
file_limit=12ðmb # max file size 12ð MB
stack_limit=unlimited # unlimited stack size
rss_limit=15ðmb # max resident set size 15ð MB
job_cpu_limit = 36ðð,27ðð # hard limit 6ð minutes

soft limit 45 minutes
wall_clock_limit=12:ðð:ðð,11:59:55 # hard limit is 12 hours

Example 5: Creating a Class to Route Jobs to NQS Machines:

nqs: type=class # class for NQS jobs
NQS_class=true
NQS_submit=pipe_queue # NQS pipe queue name
NQS_query=one two three # list of queue names

You can use the class names in control expressions in both the global and local
configuration file.

Example 6: Creating a Class for PVM Jobs:

PVM3: type=class # class for PVM jobs
priority=6ð # ClassSysprio (max=1ðð)
max_processors=15 # maximum number of processors

Example 7: Creating a Class for Master Node Machines:

sp-6hr-sp: type=class # class for master node machines
priority=5ð # ClassSysprio (max=1ðð)
cpu_limit = ð6:ðð:ðð # 6 hour limit
job_cpu_limit = ð6:ðð:ðð # hard limit is 6 hours
core_limit = lmb # max 1MB core file
master_node_requirement = true # master node definition

Step 4: Specify Group Stanzas
LoadLeveler groups are another way of granting control to the system
administrator. Although a LoadLeveler group is independent from a UNIX group,
you can configure a LoadLeveler group to have the same users as a UNIX group
by using the include_users keyword, which is explained in this section.

The information specified in a group stanza defines the characteristics of that
group. Group stanzas are optional and take the following format:

90 Using and Administering LoadLeveler

label: type = group
admin = list
exclude_users = list
include_users = list
maxidle = number
maxjobs = number
maxqueued = number
max_node = number
max_processors = number
priority = number
total_tasks = number

Figure 28. Format of a Group Stanza

You can specify the following keywords in a group stanza:

admin = list
where list is a blank-delimited list of administrators for this group. These
administrators can hold, release, and cancel jobs submitted by users in the
group.

exclude_users = list
where list is a blank-delimited list of users that do not belong to the group. Do
not specify both a list of included users and a list of excluded users. Only one
of these may be used for any group. The default is that no users will be
excluded.

include_users = list
where list is a blank-delimited list of users that belong to the group. If provided,
this list limits users of that group to those on the list. Do not specify both a list
of included users and a list of excluded users. Only one of these can be used
for any group. The default is that all users are included.

maxidle = number
where number is the maximum number of idle jobs this group can have in
queue. That is, number is the maximum number of jobs which the negotiator
will consider for dispatch for this group. Jobs above this maximum are placed in
the NotQueued state. This prevents groups from flooding the job queue. If the
group stanza does not specify maxidle or if there is no group stanza at all, the
maximum number of jobs that can be simultaneously in queue for the group is
defined in the default stanza. The default is -1, which means that no limit is
placed on the number of jobs that can be simultaneously idle for the group.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 297.

maxjobs = number
where number is a maximum number of jobs this group can run at any time. If
the group stanza does not specify the maxjobs or if there is no group stanza at
all, the maximum number of jobs that can be simultaneously run the group is
defined in the default stanza. The default is -1, which means that no limit is
placed on the number of jobs that can be simultaneously run for the group.
Regardless of the limit set to running jobs, there is no limit to the number of
jobs that a group can submit.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 297.

 Chapter 5. Administering and Configuring LoadLeveler 91

maxqueued = number
where number is the maximum number of jobs allowed in the queue for this
group. This prevents groups from flooding the job queue. Jobs above this
maximum are placed in the NotQueued state. If no maxqueued is specified in
the group stanza, or if there is no group stanza, the maximum number of jobs
that can simultaneously be in the queue is defined in the default stanza. The
default is -1, which means that no limit is placed on the number of jobs that can
simultaneously be in the job queue for that group. Regardless of the limit set
to the number of jobs queued, there is no limit to the number of jobs a group
can submit.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 297.

max_node = number
where number specifies the maximum number of nodes a user can request for
a parallel job in a job command file using the node keyword. The default is -1,
which means there is no limit.

max_processors = number
where number specifies the maximum number of processors a user can
request for a parallel job in a job command file using the max_processors
keyword. The default is -1, which means there is no limit.

priority = number
where number is an integer that specifies the job priority for jobs associated
with this group. The higher priority numbers result in a better job dispatch order.
If the group stanza does not specify a priority or if there is no priority at all, the
priority is defined in the default group stanza. The default priority is 0. The
number specified for priority is referenced as GroupSysprio in the
configuration file. GroupSysprio can be used in the assignment of job
priorities. If the variable GroupSysprio does not appear in the SYSPRIO
expression in the configuration file, the priority numbers for group specified in
the administration file have no effect. See “Step 5: Prioritize the Queue
Maintained by the Negotiator” on page 102 for more information about the
GroupSysprio keyword.

total_tasks = number
where number specifies the maximum number of tasks a user specifying this
group can request for a parallel job in a job command file using the total_tasks
keyword. The default is -1, which means there is no limit.

Examples of Group Stanzas
Example 1: In this example, the group name is department_a . The jobs issued
by users belonging to this group will have a priority of 80. There are three members
in this group.

Define group stanzas
department_a: type = group
priority = 8ð
include_users = susann holly fran

Example 2: In this example, the group called great_lakes has five members and
these user's jobs have a priority of 100:

92 Using and Administering LoadLeveler

Define group stanzas
great_lakes: type = group
priority = 1ðð
include_users = huron ontario michigan erie superior

Step 5: Specify Adapter Stanzas
An adapter stanza identifies network adapters that are available on the machines in
the LoadLeveler cluster. Adapter stanzas are optional. You need to specify an
adapter stanza when you want LoadLeveler jobs to be able to request a specific
adapter. You do not need to specify an adapter stanza when you want LoadLeveler
jobs to access a shared, default adapter via TCP/IP.

Note the following when using an adapter stanza:

� An adapter stanza is required for each adapter stanza name you specify on the
adapter_stanzas keyword of the machine stanza.

� The adapter_name , interface_address , and interface_name keywords are
required. For an SP switch adapter, the switch_node_number keyword is also
required.

For information on creating adapter stanzas for an SP system, see “llextSDR -
Extract adapter information from the SDR” on page 167.

An adapter stanza has the following format:

label: type = adapter
adapter_name = name
interface_address = IP_address
interface_name = name
network_type = type
switch_node_number = integer

Figure 29. Format of an Adapter Stanza

You can specify the following keywords in an adapter stanza:

adapter_name = string
Where string is the name used to refer to a particular interface card installed on
the node. Some examples are en0, tk1, and css0. This keyword defines the
adapters a user can specify in a job command file using the network keyword.
This keyword is required.

interface_address = string
Where string is the IP address by which the adapter is known to other nodes in
the network. For example: 7.14.21.28. This keyword is required.

interface_name = string
Where string is the name by which the adapter is known by other nodes in the
network. This keyword is required.

network_type = string
Where string specifies the type of network that the adapter supports (for
example, Ethernet). This is an administrator defined name. This keyword
defines the types of networks a user can specify in a job command file using
the network keyword.

 Chapter 5. Administering and Configuring LoadLeveler 93

switch_node_number = integer
Where integer specifies the node on which the SP switch adapter is installed.
This keyword is required for SP switch adapters. Its value is defined in the
switch_node_number field in the Node class in the SDR. This value must match
the value in the /spdata/sys1/st/switch_node_number file of the Parallel
System Support Programs (PSSP).

Example of an Adapter Stanza
Example 1: Specifying an SP Switch Adapter: In the following example, the
adapter stanza called “sp01sw.ibm.com” specifies an SP switch adapter. Note that
sp01sw.ibm.com is also specified on the adapter_stanzas keyword of the machine
stanza for the “yugo” machine.

 yugo: type=machine
adapter_stanzas = spð1sw.ibm.com

 ...

spð1sw.ibm.com: type = adapter
adapter_name = cssð
interface_address = 12.148.44.218
interface_name = spð1sw.ibm.com
network_type = switch
switch_node_number = 7

 Configuring LoadLeveler
One of your main tasks as system administrator is to configure LoadLeveler. To
configure LoadLeveler, you need to know what the configuration information is and
where it is located. Configuration information includes the following:

� The LoadLeveler user ID and group ID
� The configuration directory
� The global configuration file

LoadLeveler sets up the following default values for the configuration information:

� loadl is the LoadLeveler user ID and the LoadLeveler group ID. LoadLeveler
daemons run under this user ID in order to perform file I/O, and many
LoadLeveler files are owned by this user ID.

� The home directory of loadl is the configuration directory.
� LoadL_config is the name of the configuration file.

You can run your installation with these default values, or you can change any or
all of them. To override the defaults, you must update the following keywords in the
/etc/LoadL.cfg file:

LoadLUserid Specifies the LoadLeveler user ID.
LoadLGroupid Specifies the LoadLeveler group ID.
LoadLConfig Specifies the full path name of the configuration file.

Note that if you change the LoadLeveler user ID to something other than loadl , you
will have to make sure your configuration files are owned by this ID.

You can also override the /etc/LoadL.cfg file. For an example of when you might
want to do this, see “Querying Multiple LoadLeveler Clusters” on page 28.

94 Using and Administering LoadLeveler

The Configuration Files
By taking a look at the configuration files that come with LoadLeveler, you will find
that there are many parameters that you can set. In most cases, you will only have
to modify a few of these parameters. In some cases, though, depending upon the
LoadLeveler nodes, network connection, and hardware availability, you may need
to modify additional parameters. This chapter describes these configuration files
and the parameters you can set.

Configuring LoadLeveler involves modifying the configuration files that specify the
terms under which LoadLeveler can use machines. There are two types of
configuration files:

� Global Configuration File: This file by default is called the LoadL_config file
and it contains configuration information common to all nodes in the
LoadLeveler cluster.

� Local Configuration File: This file is generally called LoadL_config.local
(although it is possible for you to rename it). This file contains specific
configuration information for an individual node. The LoadL_config.local file is
in the same format as LoadL_config and the information in this file overrides
any information specified in LoadL_config . It is an optional file that you use to
modify information on a local machine. Its full pathname is specified in the
LoadL_config file by using the LOCAL_CONFIG keyword. See “Step 10:
Specify Where Files and Directories are Located” on page 109 for more
information. “Customizing the Global and Local Configuration Files” on page 96
describes how to tailor this file to suit your needs. Appendix C, “Sample Files”
on page 325 contains a sample configuration file.

Configuration File Structure and Syntax
The information in both the LoadL_config and the LoadL_config.local files is in
the form of a statement. These statements are made up of keywords and values.
There are three types of configuration file keywords:

� Keywords, described in “Customizing the Global and Local Configuration Files”
on page 96 and in “Step 14: Specify Additional Configuration File Keywords”
on page 118

� User-defined variables, described in “User-Defined Variables” on page 121
� LoadLeveler variables, described in “LoadLeveler Variables” on page 122

Configuration file statements take one of the following formats:

keyword=value
keyword:value

Statements in the form keyword=value are used primarily to customize an
environment. Statements in the form keyword:value are used by LoadLeveler to
characterize the machine and are known as part of the machine description. Every
machine in LoadLeveler has its own machine description which is read by the
central manager when LoadLeveler is started.

To continue configuration file statements, use the back-slash character (\).

In the configuration file, comments must be on a separate line from keyword
statements.

You can use the following types of constants and operators in the configuration file.

 Chapter 5. Administering and Configuring LoadLeveler 95

Numerical and Alphabetical Constants
Constants may be represented as:

 � Boolean expressions
 � Signed integers
� Floating point values
� Strings enclosed in double quotes (" ").

 Mathematical Operators
You can use the following C operators. The operators are listed in order of
precedence. All of these operators are evaluated from left to right:

 !
 * /
 - +

< <= > >=
 == !=
 &&
 ||

Customizing the Global and Local Configuration Files
This section presents a step-by-step approach to configuring LoadLeveler. You do
not have to perform the steps in the order that they appear here. Other keywords
which are not specifically mentioned in any of these steps are discussed in “Step
14: Specify Additional Configuration File Keywords” on page 118

Step 1: Define LoadLeveler Administrators
Specify the following keyword:

LOADL_ADMIN = list of user names (required)
where list of user names is a blank-delimited list of those individuals who will
have administrative authority. These users are able to invoke the
administrator-only commands such as llctl , llfavorjob , and llfavoruser . They
can also invoke the administrator-only GUI functions. For more information, see
“Administrative Uses for the Graphical User Interface” on page 231

LoadLeveler administrators also receive mail describing problems that are
encountered by the master daemon.

An administrator on a machine is granted administrative privileges on that
machine. It does not grant him administrative privileges on other machines. To
be an administrator on all machines in the LoadLeveler cluster either specify
your user ID in the global configuration file with no entries in the local
configuration file or specify your userid in every local configuration file that
exists in the LoadLeveler cluster.

For example, to grant administrative authority to users bob and mary, enter the
following in the configuration file:

LOADL_ADMIN = bob mary

96 Using and Administering LoadLeveler

Step 2: Define LoadLeveler Cluster Characteristics
You can use the following keywords to define the characteristics of the LoadLeveler
cluster:

CUSTOM_METRIC = number
Specifies a machine's relative priority to run jobs. This is an an arbitrary
number which you can use in the MACHPRIO expression. If you specify neither
CUSTOM_METRIC nor CUSTOM_METRIC_COMMAND, CUSTOM_METRIC =
1 is assumed. For more information, see “Step 6: Prioritize the Order of
Executing Machines Maintained by the Negotiator” on page 103.

CUSTOM_METRIC_COMMAND = command
Specifies an executable and any required arguments. The exit code of this
command is assigned to CUSTOM_METRIC. If this command does not exit
normally, CUSTOM_METRIC is assigned a value of 1. This command is forked
every (POLLING_FREQUENCY * POLLS_PER_UPDATE) period.

MACHINE_AUTHENTICATE = true|false
Specifies whether machine validation is performed. When set to true ,
LoadLeveler only accepts connections from machines specified in the
administration file. When set to false , LoadLeveler accepts connections from
any machine.

When set to true , every communication between LoadLeveler processes will
verify that the sending process is running on a machine which is identified via a
machine stanza in the administration file. The validation is done by capturing
the address of the sending machine when the accept function call is issued to
accept a connection. The gethostbyaddr function is called to translate the
address to a name, and the name is matched with the list derived from the
administration file.

Choosing a Scheduler: This section discusses the types of schedulers that are
available under LoadLeveler, and the keywords you use to define these schedulers.

� The default LoadLeveler scheduler. This scheduler runs both serial and parallel
jobs, but is primarily meant for serial jobs. It efficiently uses CPU time by
scheduling jobs on what otherwise would be idle nodes (and workstations). It
does not require that users set a wall clock limit. Also, this scheduler starts,
suspends, and resumes jobs based on workload. The default scheduler uses a
reservation method to schedule parallel jobs. A possible drawback to the
reservation method occurs when LoadLeveler tries to schedule a job requiring a
large number of nodes. As LoadLeveler reserves nodes for the job, the
reserved nodes will be idle for a period of time. Also, if the job cannot
accumulate all the nodes it needs to run, the job may not get dispatched.

See “Keyword Considerations for Parallel Jobs” on page 59 for information on
which keywords associated with parallel jobs are supported by the default
scheduler.

� The Backfill scheduler. This scheduler runs both serial and parallel jobs, but is
primarily meant for parallel jobs. This scheduler is able to determine the latest
time that the highest priority job in queue will run. In other words, the starting of
the highest priority job is never delayed. Also, it has a backfill capability when
scheduling jobs that are short in duration or require a small number of nodes.
That is, the Backfill scheduler schedules small jobs while waiting for the start
time of any large job requiring many nodes.

 Chapter 5. Administering and Configuring LoadLeveler 97

The Backfill scheduler supports:

– The scheduling of multiple tasks per node.

– The scheduling of multiple user space tasks per adapter.

The above functions are not supported by the default LoadLeveler scheduler.

Note the following when using the Backfill scheduler:

– To use this scheduler, either users must set a wall clock limit in their job
command file or the administrator must define a wall clock limit value for
the class to which a job is assigned. In most cases, this wall clock limit
value should not be unlimited , since this setting may cause jobs requiring
a large number of nodes to not be scheduled when the system is heavily
loaded.

– You should use only the default settings for the START expression and the
other job control functions described in “Step 7: Manage a Job's Status
Using Control Expressions” on page 105. The default settings are specified
in “Sample Configuration File” on page 329. If you do not use these default
settings, jobs will still run but the scheduler will not be as efficient. For
example, the scheduler will not be able to guarantee a time at which the
highest priority job will run.

– You should configure any multiprocessor (SMP) nodes such that the
number of jobs that can run on a node (determined by the
MAX_STARTERS keyword) is always less than or equal to the number of
processors on the node.

– Due to the characteristics of the Backfill algorithm, in some cases this
scheduler may not honor the MACHPRIO statement. For more information
on MACHPRIO, see “Step 6: Prioritize the Order of Executing Machines
Maintained by the Negotiator” on page 103.

See “Keyword Considerations for Parallel Jobs” on page 59 for information on
which keywords associated with parallel jobs are supported by the Backfill
scheduler.

� The job control API. This API allows you to enable an external scheduler, such
as the Extensible Argonne Scheduling sYstem (EASY). The API is intended for
installations that want to create a scheduling algorithm for parallel jobs based
on site-specific requirements. This API provides a time-based (rather than an
event-based) interface. That is, your application must use the API to poll
LoadLeveler at specific times for machine and job information. Also, some
LoadLeveler functions are not available when you use this API. For more
information, see “Job Control API” on page 268.

Use the following keywords to define your scheduler:

SCHEDULER_API = YES|NO
where YES disables the default LoadLeveler scheduling algorithm. Specifying
YES implies you will use the job control API to communicate to LoadLeveler
scheduling decisions made by an external scheduler. For more information, see
“Job Control API” on page 268.

Specify NO to run the default LoadLeveler scheduler.

SCHEDULER_TYPE = BACKFILL
where BACKFILL specifies the LoadLeveler Backfill scheduler. Note that when
you specify this keyword:

98 Using and Administering LoadLeveler

� You override the SCHEDULER_API keyword (if it is used).

� You should use only the default settings for the START expression and the
other job control expressions described in “Step 7: Manage a Job's Status
Using Control Expressions” on page 105.

Step 3: Define LoadLeveler Machine Characteristics
You can use the following keywords to define the characteristics of machines in the
LoadLeveler cluster:

ARCH = string (required)
Indicates the standard architecture of the system. The architecture you specify
here must be specified in the same format in the requirements and
preferences statements in job command files. The administrator defines the
character string for each architecture.

For example, to define a machine as a RISC System/6000, the keyword would
look like:

ARCH = RS6ððð

Class = { "class1" "class2" ... } | { "No_Class " }
where "class1" "class2" ... is a blank delimited list of class names. This
keyword determines whether a machine will accept jobs of a certain job class.
For parallel jobs, you must define a class for each task you want to run on a
node.

You can specify a default_class in the default user stanza of the
administration file to set a default class. If you don't, jobs will be assigned the
class called No_Class .

In order for a LoadLeveler job to run on a machine, the machine must have a
vacancy for the class of that job. If the machine is configured for only one
No_Class job and a LoadLeveler job is already running there, then no further
LoadLeveler jobs are started on that machine until the current job completes.

You can have a maximum of 1024 characters in the class statement. You
cannot use allclasses as a class name, since this is a reserved LoadLeveler
keyword.

You can assign multiple classes to the same machine by specifying the classes
in the LoadLeveler configuration file (called LoadL_config) or in the local
configuration file (called LoadL_config.local). The classes, themselves, should
be defined in the administration file. See “Setting Up a Single Machine To Have
Multiple Job Classes” on page 299 and “Step 3: Specify Class Stanzas” on
page 82 for more information on classes.

Defining Classes – Examples

Example 1: This example defines the default class:

Class = { "No_Class" }

This is the default. The machine will only run one LoadLeveler job at a time that
has either defaulted to, or explicitly requested class No_Class . A LoadLeveler job
with class CPU_bound , for example, would not be eligible to run here. Only one
LoadLeveler job at a time will run on the machine.

 Chapter 5. Administering and Configuring LoadLeveler 99

Example 2: This example specifies multiple classes. The machine will only run
jobs that have either defaulted to or explicitly requested class No_Class . A
maximum of two LoadLeveler jobs are permitted to run simultaneously on the
machine if the MAX_STARTERS keyword is not specified. See “Step 4: Specify
How Many Jobs a Machine Can Run” on page 101 for more information on
MAX_STARTERS .

Class = { "No_Class" "No_Class" }

Example 3: This example specifies multiple classes. The machine will only run a
maximum of four LoadLeveler jobs that have either defaulted to, or explicitly
requested No_Class , Small , Medium , or Large class. A LoadLeveler job with class
IO_bound , for example, would not be eligible to run here.

Class = { "No_Class" "Small" "Medium" "Large" }

Example 4: This example specifies multiple classes. The machine will run only
LoadLeveler jobs that have explicitly requested class B or D. Up to three
LoadLeveler jobs may run simultaneously: two of class B and one of class D. A
LoadLeveler job with class No_Class , for example, would not be eligible to run
here.

Class = { "B" "B" "D" }

Feature = {"string" ...}
where string is the (optional) characteristic to use to match jobs with machines.

You can specify unique characteristics for any machine using this keyword.
When evaluating job submissions, LoadLeveler compares any required features
specified in the job command file to those specified using this keyword. You
can have a maximum of 1024 characters in the feature statement.

For example, if a machine has licenses for installed products ABC and XYZ, in
the local configuration file you can enter the following:

Feature = {"abc" "xyz"}

When submitting a job that requires both of these products, you should enter
the following in your job command file:

requirements = (Feature == "abc") && (Feature == "xyz")

START_DAEMONS = true| false
Specifies whether to start the LoadLeveler daemons on the node. When true ,
the daemons are started.

In most cases, you will probably want to set this keyword to true . An example
of why this keyword would be set to false is if you want to run the daemons on
most of the machines in the cluster but some individual users with their own
local configuration files do not want their machines to run the daemons. The
individual users would modify their local configuration files and set this keyword
to false . Because the global configuration file has the keyword set to true , their
individual machines would still be able to participate in the LoadLeveler cluster.

Also, to define the machine as strictly a submit-only machine, set this keyword
to false . For more information, see the submit-only section on page 77.

SCHEDD_RUNS_HERE = true| false
Specifies whether the schedd daemon runs on the host. If you do not want to
run the schedd daemon, specify false .

100 Using and Administering LoadLeveler

To define the machine as an executing machine only, set this keyword to false .
For more information, see the submit-only section on page 77.

STARTD_RUNS_HERE = true| false
Specifies whether the startd daemon runs on the host. If you do not want to run
the startd daemon, specify false .

X_RUNS_HERE = true| false
Set X_RUNS_HERE to true if you want to start the keyboard daemon.

Step 4: Specify How Many Jobs a Machine Can Run
To specify how many jobs a machine can run, you need to take into consideration
both the MAX_STARTERS keyword, which is described in this section, and the
Class statement, which is mentioned here and described in more detail in “Step 3:
Define LoadLeveler Machine Characteristics” on page 99

The syntax for MAX_STARTERS is:

MAX_STARTERS = number
where number specifies the maximum number of tasks that can run
simultaneously on a machine. In this case, a task can be a serial job step, a
parallel task, or an instance of the PVM daemon (PVMD). If not specified, the
default is the number of elements in the Class statement. MAX_STARTERS
defines the number of initiators on the machine (the number of tasks that can
be initiated from a startd).

For example, if the configuration file contains these statements:

Class = { "A" "B" "B" "C"}
MAX_STARTERS = 2

the machine can run a maximum of two LoadLeveler jobs simultaneously. The
possible combinations of LoadLeveler jobs are:

� A and B
� A and C
� B and B
� B and C
� Only A, or only B, or only C

If this keyword is specified in conjunction with a Class statement, the maximum
number of jobs that can be run is equal to the lower of the two numbers. For
example, if:

MAX_STARTERS = 2
Class = { "class_a" }

then the maximum number of job steps that can be run is one (the Class statement
above defines one class).

If you specify MAX_STARTERS keyword without specifying a Class statement, by
default one class still exists (called No_Class). Therefore, the maximum number of
jobs that can be run when you do not specify a Class statement is one.

If this keyword is not defined in either the global configuration file or the local
configuration file, the maximum number of jobs that the machine can run is equal to
the number of classes in the Class statement.

 Chapter 5. Administering and Configuring LoadLeveler 101

Step 5: Prioritize the Queue Maintained by the Negotiator
Each job submitted to LoadLeveler is assigned a system priority number, based on
the evaluation of the SYSPRIO keyword expression in the configuration file of the
central manager. The LoadLeveler system priority number is assigned when the
central manager adds the new job to the queue of jobs eligible for dispatch. Once
assigned, the system priority number for a job is never changed (unless jobs for a
user swap their SYSPRIO, or
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL is not zero). Jobs
assigned higher SYSPRIO numbers are considered for dispatch before jobs with
lower numbers. See “How Does a Job's Priority Affect Dispatching Order?” on
page 30 for more information on job priorities.

You can use the following keywords to define the SYSPRIO expression:

ClassSysprio The priority for the class of the job step, defined in the class
stanza in the administration file. The default is 0.

GroupQueuedJobs The number of job steps associated with a LoadLeveler
group which are either running or queued. (That is, job steps
which are in one of these states: Running, Starting, Pending,
or Idle.)

GroupRunningJobs The number of job steps for the LoadLeveler group which are
in one of these states: Running, Starting, or Pending.

GroupSysprio The priority for the group of the job step, defined in the group
stanza in the administration file. The default is 0.

GroupTotalJobs The total number of job steps associated with this
LoadLeveler group. Total job steps are all job steps reported
by the llq command.

QDate The difference in the UNIX date when the job step enters the
queue and the UNIX date when the negotiator starts up.

UserPrio The user-defined priority of the job step, specified in the job
command file with the user_priority keyword. The default is
0.

UserQueuedJobs The number of job steps either running or queued for the
user. (That is, job steps which are in one of these states:
Running, Starting, Pending, or Idle.)

UserRunningJobs The number of job step steps for the user which are in one of
these states: Running, Starting, or Pending.

UserSysprio The priority of the user who submitted the job step, defined in
the user stanza in the administration file. The default is 0.

UserTotalJobs The total number of job steps associated with this user. Total
job steps are all job steps reported by the llq command.

Usage Notes for the SYSPRIO Keyword

� The SYSPRIO keyword is valid only on the machine where the central manager
is running. Using this keyword in a local configuration file has no effect.

� It is recommended that you do not use UserPrio in the SYSPRIO expression,
since user jobs are already ordered by UserPrio .

102 Using and Administering LoadLeveler

� You can use the UserRunningJobs , GroupRunningJobs , UserQueuedJobs ,
GroupQueuedJobs , UserQueuedJobs , GroupQueuedJobs UserTotalJobs ,
and GroupTotalJobs parameters to prioritize the queue based on current
usage. You should also set
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL so that the priorities
are adjusted according to current usage rather than usage only at submission
time.

Using the SYSPRIO Keyword – Examples

Example 1: This example creates a FIFO job queue based on submission time:

SYSPRIO : ð - (QDate)

Example 2: This example accounts for Class, User, and Group system priorities:

SYSPRIO : (ClassSysprio \ 1ðð) + (UserSysprio \ 1ð) + (GroupSysprio \ 1) - (QDate)

Example 3: This example orders the queue based on the number of jobs a user is
currently running. The user who has the fewest jobs running is first in the queue.
You should set NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL in
conjunction with this SYSPRIO expression.

SYSPRIO : ð - UserRunningJobs

Step 6: Prioritize the Order of Executing Machines Maintained by
the Negotiator
Each executing machine is assigned a machine priority number, based on the
evaluation of the MACHPRIO keyword expression in the configuration file of the
central manager. The LoadLeveler machine priority number is updated every time
the central manager updates its machine data. Machines assigned higher
MACHPRIO numbers are considered to run jobs before machines with lower
numbers. For example, a machine with a MACHPRIO of 10 is considered to run a
job before a machine with a MACHPRIO of 5. Similarly, a machine with a
MACHPRIO of -2 would be considered to run a job before a machine with a
MACHPRIO of -3.

Note that the MACHPRIO keyword is valid only on the machine where the central
manager is running. Using this keyword in a local configuration file has no effect.

When you use a MACHPRIO expression that is based on load average, the
machine may be temporarily ordered later in the list immediately after a job is
scheduled to that machine. This is because the negotiator adds a compensating
factor to the startd machine's load average every time the negotiator assigns a job.
For more information, see the NEGOTIATOR_LOADAVG_INCREMENT keyword on
page 119.

You can use the following keywords in the MACHPRIO expression:

LoadAvg The Berkeley one-minute load average of the machine,
reported by startd.

Cpus The number of processors of the machine, reported by startd.

Speed The relative speed of the machine, defined in a machine
stanza in the administration file. The default is 1.

 Chapter 5. Administering and Configuring LoadLeveler 103

Memory The size of real memory in megabytes of the machine,
reported by startd.

VirtualMemory The size of available swap space in kilobytes of the machine,
reported by startd.

Disk The size of free disk space in kilobytes on the filesystem
where the executables reside.

CustomMetric Allows you to set a relative priority number for one or more
machines, based on the value of the CUSTOM_METRIC
keyword. (See “Example 4” for more information.)

MasterMachPriority A value that is equal to 1 for nodes which are master nodes
(those with master_node_exclusive = true); this value is
equal to 0 for nodes which are not master nodes. Assigning
a high priority to master nodes may help job scheduling
performance for parallel jobs which require master node
features.

Using the MACHPRIO Keyword – Examples

Example 1: This example orders machines by the Berkeley one-minute load
average.

MACHPRIO : ð - (LoadAvg)

Therefore, if LoadAvg equals .7, this example would read:

MACHPRIO : ð - (.7)

The MACHPRIO would evaluate to -.7.

Example 2: This example orders machines by the Berkeley one-minute load
average normalized for machine speed:

MACHPRIO : ð - (1ððð \ (LoadAvg / (Cpus \ Speed)))

Therefore, if LoadAvg equals .7, Cpus equals 1, and Speed equals 2, this
example would read:

MACHPRIO : ð - (1ððð \ (.7 / (1 \ 2)))

This example further evaluates to:

MACHPRIO : ð - (35ð)

The MACHPRIO would evaluate to -350.

Notice that if the speed of the machine were increased to 3, the equation would
read:

MACHPRIO : ð - (1ððð \ (.7 / (1 \ 3)))

The MACHPRIO would evaluate to approximately -233. Therefore, as the speed of
the machine increases, the MACHPRIO also increases.

Example 3: This example orders machines accounting for real memory and
available swap space (remembering that Memory is in Mbytes and VirtualMemory is
in Kbytes):

MACHPRIO : ð - (1ðððð \ (LoadAvg / (Cpus \ Speed))) +
(1ð \ Memory) + (VirtualMemory / 1ððð)

104 Using and Administering LoadLeveler

Example 4: This example sets a relative machine priority based on the value of
the CUSTOM_METRIC keyword.

MACHPRIO : CustomMetric

To do this, you must specify a value for the CUSTOM_METRIC keyword or the
CUSTOM_METRIC_COMMAND keyword in either the LoadL_config.local file of a
machine or in the global LoadL_config file. To assign the same relative priority to
all machines, specify the CUSTOM_METRIC keyword in the global configuration
file. For example:

CUSTOM_METRIC = 5

You can override this value for an individual machine by specifying a different value
in that machine's LoadL_config.local file.

Example 5: This example gives master nodes the highest priority:

MACHPRIO : (MasterMachPriority \ 1ðððð)

Step 7: Manage a Job's Status Using Control Expressions
You can control running jobs by using five control functions as Boolean expressions
in the configuration file. These functions are useful primarily for serial jobs. You
define the expressions, using normal C conventions, with the following functions:

 START
 SUSPEND
 CONTINUE
 VACATE
 KILL

The expressions are evaluated for each job running on a machine using both the
job and machine attributes. Some jobs running on a machine may be suspended
while others are allowed to continue.

The START expression is evaluated twice; once to see if the machine can accept
jobs to run and second to see if the specific job can be run on the machine. The
other expressions are evaluated after the jobs have been dispatched and in some
cases, already running.

When evaluating the START expression to determine if the machine can accept
jobs, Class != { "Z" } evaluates to true only if Z is not in the class definition. This
means that if two different classes are defined on a machine, Class != { "Z" }
(where Z is one of the defined classes) always evaluates to false when specified in
the START expression and, therefore, the machine will not be considered to start
jobs.

START: expression that evaluates to T or F (true or false)
Determines whether a machine can run a LoadLeveler job. When the
expression evaluates to T, LoadLeveler considers dispatching a job to the
machine.

When you use a START expression that is based on the CPU load average,
the negotiator may evaluate the expression as F even though the load average
indicates the machine is Idle. This is because the negotiator adds a
compensating factor to the startd machine's load average every time the

 Chapter 5. Administering and Configuring LoadLeveler 105

negotiator assigns a job. For more information, see the
NEGOTIATOR_LOADAVG_INCREMENT keyword on page 119.

SUSPEND: expression that evaluates to T or F (true or false)
Determines whether running jobs should be suspended. When T, LoadLeveler
temporarily suspends jobs currently running on the machine. Suspended
LoadLeveler jobs will either be continued or vacated. This keyword is not
supported for parallel jobs.

CONTINUE: expression that evaluates to T or F (true or false)
Determines whether suspended jobs should continue execution. When T,
suspended LoadLeveler jobs resume execution on the machine.

VACATE: expression that evaluates to T or F (true or false)
Determines whether suspended jobs should be vacated. When T, suspended
LoadLeveler jobs are removed from the machine and placed back into the
queue (provided you specify restart=yes in the job command file). If a
checkpoint was taken, the job restarts from the checkpoint. Otherwise, the job
restarts from the beginning.

KILL: expression that evaluates to T or F (true or false)
Determines whether or not vacated jobs should be killed and replaced in the
queue. It is used to remove a job that is taking too long to vacate. When T,
vacated LoadLeveler jobs are removed from the machine with no attempt to
take checkpoints.

Typically, machine load average, keyboard activity, time intervals, and job class are
used within these various expressions to dynamically control job execution.

How Control Expressions Affect Jobs: After LoadLeveler selects a job for
execution, the job can be in any of several states. Figure 30 on page 107 shows
how the control expressions can affect the state a job is in. The rectangles
represent job or daemon states, and the diamonds represent the control
expressions.

106 Using and Administering LoadLeveler

Idle

Completed START
F

T

T

T

T

T

F

F

F
F

SUSPEND

CONTINUE

VACATE

KILL

Running

Suspended

Vacating

Figure 30. How Control Expressions Affect Jobs

Criteria used to determine when a LoadLeveler job will enter Start, Suspend,
Continue, Vacate, and Kill states are defined in the LoadLeveler configuration files
and may be different for each machine in the cluster. They may be modified to
meet local requirements.

Step 8: Define Job Accounting
LoadLeveler provides accounting information on completed LoadLeveler jobs. For
detailed information on this function, refer to Chapter 7, “Gathering Job Accounting
Data” on page 141

The following keywords allow you to control accounting functions:

ACCT = flag
The available flags are:

A_ON Turns accounting data recording on. If specified
without the A_DETAIL flag, the following is
recorded:

� The total amount of CPU time consumed by
the entire job

� The maximum memory consumption of all
tasks (or nodes).

A_OFF Turns accounting data recording off. This is the
default.

A_VALIDATE Turns account validation on.

 Chapter 5. Administering and Configuring LoadLeveler 107

A_DETAIL Enables extended accounting. Using this flag
causes LoadLeveler to record detail resource
consumption by machine and by events for each
job step. This flag also enables the -x flag of the
llq command, permitting users to view resource
consumption for active jobs.

For example:

ACCT = A_ON A_DETAIL

This example specifies that accounting should be turned on and that extended
accounting data should be collected and that the -x flag of the llq command be
enabled.

ACCT_VALIDATION = $(BIN/llacctval (optional)
Keyword used to identify the executable that is called to perform account
validation. You can replace the llacctval executable with your own validation
program by specifying your program in this keyword.

GLOBAL_HISTORY = $(SPOOL) (optional)
Keyword used to identify the directory that will contain the global history files
produced by llacctmrg command when no directory is specified as a command
argument.

For example, the following section of the configuration file specifies that the
accounting function is turned on. It also identifies the module used to perform
account validation and the directory containing the global history files:

ACCT = A_ON A_VALIDATE
ACCT_VALIDATION = $(BIN)/llacctval
GLOBAL_HISTORY = $(SPOOL)

Step 9: Specify Alternate Central Managers
In one of your machine stanzas specified in the administration file, you specified
that the machine would serve as the central manager. It is possible for some
problem to cause this central manager to become unusable such as network
communication or software or hardware failures. In such cases, the other machines
in the LoadLeveler cluster believe that the central manager machine is no longer
operating. To remedy this situation, you can assign one or more alternate central
managers in the machine stanza to take control.

The following machine stanza example defines the machine deep_blue as an
alternate central manager:

#
deep_blue: type=machine
central_manager = alt

If the primary central manager fails, the alternate central manager then becomes
the central manager. The alternate central manager is chosen based upon the
order in which its respective machine stanza appears in the administration file.

When an alternate becomes the central manager, jobs will not be lost, but it may
take a few minutes for all of the machines in the cluster to check in with the new
central manager. As a result, job status queries may be incorrect for a short time.

108 Using and Administering LoadLeveler

When you define alternate central managers, you should set the following keywords
in the configuration file:

CENTRAL_MANAGER_HEARTBEAT_INTERVAL = number
where number is the amount of time in seconds that defines how frequently
primary and alternate central managers communicate with each other.

The default is 300 seconds or 5 minutes.

CENTRAL_MANAGER_TIMEOUT = number
where number is the number of heartbeat intervals that an alternate central
manager will wait without hearing from the primary central manager before
declaring that the primary central manager is not operating.

The default is 6.

In the following example, the alternate central manager will wait for 30 intervals,
where each interval is 45 seconds:

Set a 45 second interval
CENTRAL_MANAGER_HEARTBEAT_INTERVAL = 45
Set the number of intervals to wait
CENTRAL_MANAGER_TIMEOUT = 3ð

For more information on central manager backup, refer to “What Happens if the
Central Manager Isn't Operating?” on page 294

Step 10: Specify Where Files and Directories are Located
The configuration file provided with LoadLeveler specifies default locations for all of
the files and directories. You can modify their locations using the following
keywords. Keep in mind that the LoadLeveler installation process installs files in
these directories and these files may be periodically cleaned up. Therefore, you
should not keep any files that do not belong to LoadLeveler in these directories.

 Chapter 5. Administering and Configuring LoadLeveler 109

To specify the location
of the: Specify these keywords:

Administration File ADMIN_FILE = pathname (required)
points to the administration file containing user, class, group, machine, and
adapter stanzas. For example,

ADMIN_FILE = $(tilde)/admin_file

Local Configuration File LOCAL_CONFIG = pathname
defines the pathname of the optional local configuration file containing
information specific to a node in the LoadLeveler network. If you are using a
distributed file system like NFS, some examples are:

LOCAL_CONFIG = $(tilde)/$(host).LoadL_config.local
LOCAL_CONFIG = $(tilde)/LoadL_config.$(host).$(domain)
LOCAL_CONFIG = $(tilde)/LoadL_config.local.$(hostname)

If you are using a local file system, an example is:

LOCAL_CONFIG = /var/LoadL/LoadL_config.local

See “LoadLeveler Variables” on page 122 for information about the tilde , host ,
and domain variables.

Local Directory The following subdirectories reside in the local directory. It is possible that the local
directory and LoadLeveler's home directory are the same.

EXECUTE = local directory/execute (required)
defines the local directory to store the executables of jobs submitted by other
machines.

LOG = local directory/log (required)
defines the local directory to store log files. It is not necessary to keep all the log
files created by the various LoadLeveler daemons and programs in one directory
but you will probably find it convenient.

SPOOL = local directory/spool (required)
Defines the local directory where LoadLeveler keeps the local job queue and
checkpoint files, as well as:

HISTORY = $(SPOOL)/history (required)
defines the pathname where a file containing the history of local
LoadLeveler jobs is kept.

Release Directory RELEASEDIR = release directory (required)
defines the directory where all the LoadLeveler software resides. The following
subdirectories are created during installation and they reside in the release
directory. You can change their locations.

BIN = $(RELEASEDIR)/bin (required)
defines the directory where LoadLeveler binaries are kept.

LIB = $(RELEASEDIR)/lib (required)
defines the directory where LoadLeveler libraries are kept.

NQS_DIR = NQS directory (optional)
defines the directory where NQS commands qsub , qstat , and qdel reside. The
default is /usr/bin .

110 Using and Administering LoadLeveler

Step 11: Record and Control Log Files
The LoadLeveler daemons and processes keep log files according to the
specifications in the configuration file. A number of keywords are used to describe
where LoadLeveler maintains the logs and how much information is recorded in
each log. These keywords, shown in Table 9, are repeated in similar form to
specify the pathname of the log file, its maximum length, and the debug flags to be
used.

“Controlling Debugging Output” on page 112 describes the events that can be
reported through logging controls.

Table 9. Log Control Statements

Daemon/
Process

Log File (required)

(See note 1)

Max Length (required)

(See note 2)

Debug Control (required)

(See note 4)

Master MASTER_LOG = path MAX_MASTER_LOG = bytes MASTER_DEBUG = flags

Schedd SCHEDD_LOG = path MAX_SCHEDD_LOG = bytes SCHEDD_DEBUG = flags

Startd STARTD_LOG = path MAX_STARTD_LOG = bytes STARTD_DEBUG = flags

Starter STARTER_LOG = path MAX_STARTER_LOG = bytes STARTER_DEBUG = flags

Negotiator NEGOTIATOR_LOG = path MAX_NEGOTIATOR_LOG = bytes NEGOTIATOR_DEBUG = flags

Kbdd KBDD_LOG = path MAX_KBDD_LOG = bytes KBDD_DEBUG = flags

Notes:

1. When coding the path for the log files, it is not necessary that all LoadLeveler
daemons keep their log files in the same directory, however, you will probably
find it a convenient arrangement.

2. There is a maximum length, in bytes, beyond which the various log files cannot
grow. Each file is allowed to grow to the specified length and is then saved to
an .old file. The .old files are overwritten each time the log is saved, thus the
maximum space devoted to logging for any one program will be twice the
maximum length of its log file. The default length is 64KB.

You can also specify that the log file be started anew with every invocation of
the daemon by setting the TRUNC statement to true as follows:

TRUNC_MASTER_LOG_ON_OPEN = true|false
TRUNC_STARTD_LOG_ON_OPEN = true|false
TRUNC_SCHEDD_LOG_ON_OPEN = true|false
TRUNC_KBDD_LOG_ON_OPEN = true|false
TRUNC_STARTER_LOG_ON_OPEN = true|false
TRUNC_NEGOTIATOR_LOG_ON_OPEN = true|false

3. LoadLeveler creates temporary log files used by the starter daemon. These
files are used for synchronization purposes. When a job starts, a
StarterLog. pid file is created. When the job ends, this file is appended to the
StarterLog file.

4. Normally, only those who are installing or debugging LoadLeveler will need to
use the debug flags, described in “Controlling Debugging Output” on page 112
The default error logging, obtained by leaving the right side of the debug
control statement null, will be sufficient for most installations.

 Chapter 5. Administering and Configuring LoadLeveler 111

Controlling Debugging Output: You can control the level of debugging output
logged by LoadLeveler programs. The following flags are presented here for your
information, though they are used primarily by IBM personnel for debugging
purposes:

D_ACCOUNT Logs accounting information about processes. If used, it may
slow down the network.

D_CKPT Logs various steps in the checkpointing process. Logs calls to
read and write by the xdr routines.

D_DAEMON Logs information regarding basic daemon set up and operation,
including information on the communication between daemons.

D_DBX Bypasses certain signal settings to permit debugging of the
processes as they execute in certain critical regions.

D_EXPR Logs steps in parsing and evaluating control expressions.
D_FULLDEBUG Logs details about most actions performed by each daemon but

doesn't log as much activity as setting all the flags.
D_JOB Logs job requirements and preferences when making decisions

regarding whether a particular job should run on a particular
machine.

D_LOAD Displays the load average on the startd machine.
D_MACHINE Logs machine control functions and variables when making

decisions regarding starting, suspending, resuming, and
aborting remote jobs.

D_NEGOTIATE Displays the process of looking for a job to run in the
negotiator. It only pertains to this daemon.

D_NQS Provides more information regarding the processing of NQS
files.

D_PROC Logs information about jobs being started remotely such as the
number of bytes fetched and stored for each job.

D_STANZAS Displays internal information about the parsing of the
administration file.

D_SCHEDD Displays how the schedd works internally.
D_STARTD Displays how the startd works internally.
D_STARTER Displays how the starter works internally.
D_THREAD Displays the ID of the thread producing the log message. The

thread ID is displayed immediately following the date and time.
This flag is useful for debugging threaded daemons.

D_XDR Logs information regarding External Data Representation (XDR)
communication protocols.

For example,

SCHEDD_DEBUG = D_CKPT D_XDR

causes the scheduler to log information about checkpointing user jobs and
exchange xdr messages with other LoadLeveler daemons. These flags will primarily
be of interest to LoadLeveler implementers and debuggers.

Step 12: Define Network Characteristics
A port number is an integer that specifies the port number to use to connect to the
specified daemon. You can define these port numbers in the configuration file or
the /etc/services file or you can accept the defaults. LoadLeveler first looks in the
configuration file for these port numbers. If the port number is in the configuration
file and is valid, this value is used. If it is an invalid value, the default value is used.

112 Using and Administering LoadLeveler

If LoadLeveler does not find the value in the configuration file, it looks in the
/etc/services file. If the value is not found in this file, the default is used.

The configuration file keywords associated with port numbers are the following:

CLIENT_TIMEOUT = number
where number specifies the maximum time, in seconds, that a LoadLeveler
daemon waits for a response over TCP/IP from a process. If the waiting time
exceeds the specified amount, the daemon tries again to communicate with the
process. The default is 30 seconds. In general, you should use this default
setting unless you are experiencing delays due to an excessively loaded
network. If so, you should try increasing this value. CLIENT_TIMEOUT is used
by all LoadLeveler daemons.

MASTER_STREAM_PORT = port number
The default is 9616.

NEGOTIATOR_STREAM_PORT = port number
The default is 9614.

SCHEDD_STREAM_PORT = port number
The default is 9605.

STARTD_STREAM_PORT = port number
The default is 9611.

COLLECTOR_DGRAM_PORT = port number
The default is 9613. This keyword is used by the negotiator daemon.

STARTD_DGRAM_PORT = port number
The default is 9615.

MASTER_DGRAM_PORT = port number
The default is 9617.

As stated earlier, if LoadLeveler does not find the value in the configuration file, it
looks in the /etc/services file. If the value is not found in this file, the default is
used. The following is an example of this file illustrating the port numbers:

LoadL_master 9616/tcp # Master port number for stream port
LoadL_negotiator 9614/tcp # Negotiator port number
LoadL_schedd 96ð5/tcp # Schedd port number for stream port
LoadL_startd 9611/tcp # Startd port number for stream port
LoadL_negotiator 9613/udp # Negotiator port number for dgram port
LoadL_startd 9615/udp # Startd port number for dgram port
LoadL_master 9617/udp # Master port number for dgram port

Step 13: Enable Checkpointing
This section tells you how to set up checkpointing for jobs. For more information on
the job command file keywords mentioned here, see “Job Command File
Keywords” on page 38. To enable checkpointing for parallel jobs, you must use the
APIs provided with the Parallel Environment (PE) program. For information on
parallel checkpointing, see IBM Parallel Environment for AIX:Operation and Use,
Volume 1.

Checkpointing is a method of periodically saving the state of a job so that if the job
does not complete it can be restarted from the saved state. You can checkpoint
both serial and parallel jobs.

 Chapter 5. Administering and Configuring LoadLeveler 113

You can specify the following types of checkpointing:

user initiated The user's application program determines when the
checkpoint is taken. This type of checkpointing is available to
both serial and parallel jobs.

system initiated The checkpoint is taken at administrator-defined intervals. This
type of checkpointing is available only to serial jobs.

At checkpoint time, a checkpoint file is created, by default, on the executing
machine and stored on the scheduling machine. You can control where the file is
created and stored by using the CHKPT_FILE and CHKPT_DIR environment
variables, which are described in “Set the Appropriate Environment Variables.” The
checkpoint file contains the program's data segment, stack, heap, register contents,
signal state and the states of the open files at the time of the checkpoint. The
checkpoint file is often much larger in size than the executable.

When a job is vacated, the most recent checkpoint file taken before the job was
vacated is used to restart the job when it is scheduled to run on a new machine.
Note that a vacating job may be killed by LoadLeveler if the job takes too long to
write its checkpoint file. This occurs only when a job is vacated by the executing
machine after the job's VACATE expression evaluates to TRUE. See “Step 7:
Manage a Job's Status Using Control Expressions” on page 105 for more
information on the VACATE and KILL expressions.

If the executing machine fails, then when the machine restarts LoadLeveler
reschedules the job, which restores its state from the most recent checkpoint file.
LoadLeveler waits for the original executing machine to restart before scheduling
the job to run on another machine in order to ensure that only one copy of the job
will run.

Planning Considerations for Checkpointing Jobs
Review the following guidelines before you submit a checkpointing job:

Set the Appropriate Environment Variables: This section discusses the
CHKPT_STATE, CHKPT_FILE, and CHKPT_DIR environment variables.

The CHKPT_STATE environment variable allows you to enable and disable
checkpointing. CHKPT_STATE can be set to the following:

enable Enables checkpointing.

restart Restarts the executable from an existing checkpoint file.

If you set checkpoint=no in your job command file, no checkpoints are taken,
regardless of the value of the CHKPT_STATE environment variable. See
“checkpoint” on page 39 for more information.

The CHKPT_FILE and CHKPT_DIR environment variables help you manage your
checkpoint files. For parallel jobs, you must specify at least one of these variables
in order to designate the location of the checkpoint file. For serial jobs, if you do not
specify either of these variables, LoadLeveler manages your checkpoint files.
LoadLeveler stores the checkpoint file in its working directories and deletes the file
as soon as the job terminates (that is, when the job exits the LoadLeveler system.)
If your job terminates abnormally, there is no checkpoint file from which

114 Using and Administering LoadLeveler

LoadLeveler can restart the job. When you resubmit the job, it will start running
from the beginning.

To avoid this problem, use CHKPT_FILE and CHKPT_DIR to control where your
checkpoint file is stored. CHKPT_DIR specifies the directory where it is stored, and
CHKPT_FILE specifies the checkpoint file name. (You can use just CHKPT_FILE
provided you specify a full path name. Also, you can use just CHKPT_DIR; in this
case the checkpoint file is copied to the directory you specify with a file name of
executable.chkpt .) You can use these variables to have your checkpoint file written
to a the file system of your choice. This allows you to resubmit your job and have it
restart from the last checkpoint file, since the file will not be erased if your job is
terminated. If your job completes normally, the checkpoint library deletes all
checkpoint files associated with the job.

Note that two or more job steps running at the same time cannot both write to the
same checkpoint file, since the file will be corrupted.

See “How to Checkpoint a Job” on page 117 for more information.

Plan for Jobs that You Will Migrate: If you plan to migrate jobs (restart jobs on
a different node or set of nodes), you should understand the difference between
writing checkpoint files to a local file system (such as JFS) versus a global file
system (such as AFS or GPFS). The CHKPT_DIR and CHKPT_FILE environment
variables allow you to write to either type of file system. If you are using a local file
system, you must first move the checkpoint file(s) to the target node(s) before
resubmitting the job. Then you must ensure that the job runs on those specific
nodes. If you are using a global file system, the checkpointing may take longer, but
there is no additional work required to migrate the job.

Reserve Adequate Disk Space in the Execute Directory: A checkpoint file
requires a significant amount of disk space. Your job may fail if the directory where
the checkpoint file is written does not have adequate space. For serial jobs, the
directory must be able to contain two checkpoint files. For parallel jobs, the
directory must be able to contain 2*n checkpoint files, where n is the number of
tasks. You can make an accurate size estimate only after you've run your job and
noticed the size of the checkpoint file that is created. LoadLeveler attempts to
reserve enough disk space for the checkpoint file when the job is started.
However, only you can ensure that enough space is available.

Set your Checkpoint File Size to the Maximum: To make sure that your job is
not prevented from writing a checkpoint file due to system limits, assign your job to
a job class that has its file creation limit set to the maximum (unlimited). In the
administration file, set up a class stanza for checkpointing jobs with the following
entry:

file_limit = unlimited,unlimited

This statement specifies that there is no limit on the maximum size of a file that
your program can create.

Checkpoint Programs Whose States are Simple to Checkpoint and Recreate:
For some processes, it is impossible to obtain or recreate the state of the process.
For this reason, you should only checkpoint programs whose states are simple to
checkpoint and recreate. A program that is long-running, computation-intensive, and
does not fork any processes is an example of a job well suited for checkpointing.

 Chapter 5. Administering and Configuring LoadLeveler 115

Avoid Using Certain System Services in Checkpointed Jobs: In order to
prevent unpredictable results from occurring, checkpointing jobs should not use the
following system services:

 � Threads
 � Shared libraries
 � Dynamic loading
� Shared memory (such as pfork and shmget)
� IPC (sockets, pipes, semaphores, and message queues)

 � Memory-mapped files
� Fork and exec system calls

 � Device I/O
 � File locks
� Set/get user or group IDs and process IDs
� Open system calls from inside a signal handler
� Time and timer services
� Administrative calls (for example, DCE security, audit, and swapqry)
� 64 bit addressing

Another limitation of checkpointing jobs is file I/O. Since individual write calls are
not traced, the file recovery scheme requires that all I/O operations, when repeated,
must yield the same result. A job that opens all files as read only can be
checkpointed. A job that writes to a file and then reads the data back may also be
checkpointed. An example of I/O that could cause unpredictable results is reading,
writing, and then reading again the same area of a file.

Choose a Supported Compiler: Compile your program with one of the following
supported compilers:

� For FORTRAN: xlf 5.1.1 or later releases

� For C and C++: xlC 3.6.x, or Visual Age C, C++ (VAC++) 4.1

Ensure all User's Jobs are Linked to Checkpointing Libraries: All serial
checkpointing programs must be linked with the LoadLeveler libraries libchkrst.a
and chkrst_wrap.o . To ensure your checkpointing jobs are linked correctly,
compile your programs using the compile scripts found in the bin subdirectory of
the LoadLeveler release directory. These compile scripts are as follows:

crxlc (for use with C)
crxlC (for use with C++)
crxlf (for use with FORTRAN)

In all these scripts, be sure to substitute all occurrences of “RELEASEDIR” with the
location of the LoadLeveler release directory.

C Syntax

crxlc executable [args] source_file

Where:

executable Is your checkpointable binary.

args Is one or more arguments you supply to the compiler (xlc -c).

source_file Is your C source code.

Some examples are:

116 Using and Administering LoadLeveler

crxlc myprog myprog.c
crxlc myprog -qlanglvl=extended myprog.c

CC++ Syntax

crxlC executable [args] source_file

Where:

executable Is your checkpointable binary.

args Is one or more arguments you supply to the compiler (xlC -c).

source_file Is your C++ source code.

Some examples are:

crxlC myprog myprog.C
crxlC myprog -qlanglvl=extended myprog.C

FORTRAN Syntax

crxlf executable [args] source_file

Where:

executable Is your checkpointable binary.

args Is one or more arguments you supply to the compiler (xlf -c).

source_file Is your FORTRAN source code.

Some examples are:

crxlf myprog myprog.f
crxlf myprog -qintlog -qfullpath myprog.f

How to Checkpoint a Job
There are several ways to checkpoint a job. To determine which type of
checkpointing is appropriate for your situation, refer to the following table:

To specify that: Do this:

Your serial job
determines when the
checkpoint occurs

Add the following option to your job command file:

checkpoint = user_initiated

You can also select this option on the Build a Job window of the GUI.

User initiated checkpointing is available to FORTRAN, C, and C++ programs which
call the ckpt serial checkpointing API. See “Serial Checkpointing API” on page 242
for more information.

 Chapter 5. Administering and Configuring LoadLeveler 117

To specify that: Do this:

LoadLeveler
automatically checkpoints
your serial job.

Add the following option to your job command file:

checkpoint = system_initiated

You can also select this option on the Build a Job window of the GUI.

For this type of checkpointing to work, system administrators must set two keywords
in the configuration file to specify how often LoadLeveler would take a checkpoint of
the job. These two keywords are:

MIN_CKPT_INTERVAL = number MAX_CKPT_INTERVAL = number
where number specifies a period, in seconds, between checkpoints taken for
running jobs. The time between checkpoints will be increased after each
checkpoint within these limits as follows:

� The first checkpoint is taken after a period of time equal to the
MIN_CKPT_INTERVAL has passed.

� The second checkpoint is taken after LoadLeveler waits twice as long
(MIN_CKPT_INTERVAL X 2)

� The third checkpoint is taken after LoadLeveler waits twice as long again
(MIN_CKPT_INTERVAL X 4) before taking the third checkpoint.

LoadLeveler continues to double this period until the value of
MAX_CKPT_INTERVAL has been reached, where it stays for the remainder of
the job.

A minimum value of 900 (15 minutes) and a maximum value of 7200 (2 hours)
are the defaults.

You can set these keyword values globally in the global configuration file so that all
machines in the cluster have the same value, or you can specify a different value for
each machine by modifying the local configuration files.

To enable both user initiated and system initiated checkpointing for a job, specify
checkpoint=system_initiated in your job command file, and code the ckpt API call
in your program.

System initiated checkpointing is not available to parallel jobs.

LoadLeveler restarts your
executable from an
existing checkpoint file
when you submit the job.

Pass the CHKPT_STATE environment variable using the LoadLeveler environment
keyword in your job command file. For more information, see “environment” on
page 42. You must also set the CHKPT_DIR and/or CHKPT_FILE environment
variables.

Your job not be
checkpointed

Add the following option to your job command file:

checkpoint = no

You can also select this option on the Build a Job window of the GUI. This option is
the default.

Step 14: Specify Additional Configuration File Keywords
This section describes keywords that were not mentioned in the previous
configuration steps. Unless your installation has special requirements for any of
these keywords, you can use them with their default settings.

Note: For the keywords listed below which have a number as the value on the
right side of the equal sign, that number must be a numerical value and
cannot be an arithmetic expression.

118 Using and Administering LoadLeveler

ACTION_ON_MAX_REJECT = HOLD | SYSHOLD | CANCEL
Specifies the state in which jobs are placed when their rejection count has
reached the value of the MAX_JOB_REJECT keyword. HOLD specifies that
jobs are placed in User Hold status; SYSHOLD specifies that jobs are placed in
System Hold status; CANCEL specifies that jobs are canceled. The default is
HOLD. When a job is rejected, LoadLeveler sends a mail message stating why
the job was rejected.

AFS_GETNEWTOKEN = myprog
where myprog is an administrator supplied program that, for example, can be
used to refresh an AFS token. The default is to not run a program.

For more information, see “Handling an AFS Token” on page 278

DCE_AUTHENTICATION_PAIR = program1, program2
Where program1 and program2 are LoadLeveler or installation supplied
programs that are used to authenticate DCE security credentials. program1
obtains a handle (an opaque credentials object), at the time the job is
submitted, which is used to authenticate to DCE. program2 is the path name of
a LoadLeveler or an installation supplied program that uses the handle
obtained by program1 to authenticate to DCE before starting the job on the
executing machine(s).

You must specify this keyword in order to enable DCE authentication. To use
LoadLeveler's default DCE authentication method, specify the following:

DCE_AUTHENTICATION_PAIR = $(BIN)/llgetdce, $(BIN)/llsetdce

To use your own DCE authentication method, substitute your own programs
into the keyword definition. For more information, see “Handling DCE Security
Credentials” on page 277.

MACHINE_UPDATE_INTERVAL = number
where number specifies the time period, in seconds, during which machines
must report to the central manager. Machines that do not report in this number
of seconds are considered down. The default is 300 seconds.

MAX_JOB_REJECT = number
where number specifies the number of times a job can be rejected before it is
removed (cancelled) or put in User Hold or System Hold status. That is, a
rejected job is redispatched until the MAX_JOB_REJECT value is reached.
The default is -1, meaning a job is redispatched an unlimited number of times.
A job that cannot run for various reasons (such as a uid mismatch, unavailable
resources, or wrong permissions) on one machine will be rejected on that
machine, and LoadLeveler will attempt to run the job on another machine. A
value of 0 means that if the job is rejected, it is immediately removed. (For
related information, see the NEGOTIATOR_REJECT_DEFER keyword in this
section.)

MOUSE_DEVICE = filename
where filename specifies the mouse device file. This keyword only applies to
Solaris machines and is used by the startd daemon when monitoring X events.
The directory /dev is assumed. The default is mouse .

NEGOTIATOR_INTERVAL = number
where number specifies the interval, in seconds, at which the negotiator
daemon negotiates with machines that are available to run jobs. This daemon

 Chapter 5. Administering and Configuring LoadLeveler 119

also negotiates with machines whenever job states or machine states change.
The default is 30 seconds.

NEGOTIATOR_LOADAVG_INCREMENT
where number specifies the value the negotiator adds to the startd machine's
load average whenever a job in the Pending state is queued on that machine.
This value is used to compensate for the increased load caused by starting
another job. The default value is .5.

NEGOTIATOR_PARALLEL_DEFER = number
where number specifies the amount of time in seconds that defines how long a
job stays out of the queue after it fails to get the correct number of processors.
This keyword applies only to the default LoadLeveler scheduler. This keyword
must be greater than the NEGOTIATOR_INTERVAL . value; if it is not, the
default is used. The default, set internally by LoadLeveler, is
NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_PARALLEL_HOLD = number
where number specifies the amount of time in seconds that defines how long a
job is given to accumulate processors. This keyword applies only to the default
LoadLeveler scheduler. This keyword must be greater than the
NEGOTIATOR_INTERVAL value; if it is not, the default is used. The default,
set internally by LoadLeveler, is NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = number
where number specifies the amount of time in seconds between calculation of
the SYSPRIO values for waiting jobs. The default is 120 seconds.
Recalculating the priority can be CPU-intensive; specifying low values for the
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL keyword may lead to a
heavy CPU load on the negotiator if a large number of jobs are running or
waiting for resources. A value of 0 means the SYSPRIO values are not
recalculated.

You can use this keyword to base the order in which jobs are run on the
current number of running, queued, or total jobs for a user or a group. For
more information, see “Step 5: Prioritize the Queue Maintained by the
Negotiator” on page 102

NEGOTIATOR_REJECT_DEFER = number
where number specifies the amount of time in seconds the negotiator waits
before it considers scheduling a job to a machine that recently rejected the job.
The default is 120 seconds. (For related information, see the
MAX_JOB_REJECT keyword in this section.)

NEGOTIATOR_REMOVE_COMPLETED = number
where number is the amount of time in seconds that you want the negotiator to
keep information regarding completed and removed jobs so that you can query
this information using the llq command. The default is 0 seconds.

NEGOTIATOR_RESCAN_QUEUE = number
where number specifies the amount of time in seconds that defines how long
the negotiator waits to rescan the job queue for machines which have
bypassed jobs which could not run due to conditions which may change over
time. This keyword must be greater than the NEGOTIATOR_INTERVAL value;
if it is not, the default is used. The default is 900 seconds.

120 Using and Administering LoadLeveler

OBITUARY_LOG_LENGTH = number
where number specifies the number of lines from the end of the file that are
appended to the mail message. The master daemon mails this log to the
LoadLeveler administrators when one of the daemons dies. The default is 25.

POLLING_FREQUENCY = number
where number specifies the frequency, in seconds, with which the startd
daemon evaluates the load on the local machine and decides whether to
suspend, resume, or abort jobs. This is also the minimum interval at which the
kbdd daemon reports keyboard or mouse activity to the startd daemon. A value
of 5 is the default.

POLLS_PER_UPDATE = number
where number specifies how often, in POLLING_FREQUENCY intervals, startd
daemon updates the central manager. Due to the communication overhead, it
is impractical to do this with the frequency defined by the
POLLING_FREQUENCY keyword. Therefore, the startd daemon only updates
the central manager every nth (where n is the number specified for
POLLS_PER_UPDATE) local update. Change POLLS_PER_UPDATE when
changing the POLLING_FREQUENCY . The default is 6.

PUBLISH_OBITUARIES = true| false
where true specifies that the master daemon sends mail to the administrator(s),
identified by LOADL_ADMIN keyword, when any of the daemons it manages
dies abnormally.

RESTARTS_PER_HOUR = number
where number specifies how many times the master daemon attempts to restart
a daemon that dies abnormally. Because one or more of the daemons may be
unable to run due to a permanent error, the master only attempts
$(RESTARTS_PER_HOUR) restarts within a 60 minute period. Failing that, it
sends mail to the administrator(s) identified by the LOADL_ADMIN keyword
and exits. The default is 12.

SCHEDD_INTERVAL = number
where number specifies the interval, in seconds, at which the schedd daemon
checks the local job queue and updates the negotiator daemon. The default is
60 seconds.

 User-Defined Variables
This type of variable, which is generally created and defined by the user, can be
named using any combination of letters and numbers. A user-defined variable is set
equal to values, where the value defines conditions, names files, or sets numeric
values. For example, you can create a variable named MY_MACHINE and set it
equal to the name of your machine named iron as follows:

MY_MACHINE = iron.ore.met.com

You can then identify the keyword using a dollar sign ($) and parentheses. For
example, the literal $(MY_MACHINE) following the definition in the previous
example results in the automatic substitution of iron.ore.met.com in place of
$(MY_MACHINE).

User-defined definitions may contain references, enclosed in parentheses, to
previously defined keywords. Therefore:

 Chapter 5. Administering and Configuring LoadLeveler 121

A = xxx
C = $(A)

is a valid expression and the resulting value of C is xxx. Note that C is actually
bound to A, not to its value, so that

A = xxx
C = $(A)
A = yyy

is also legal and the resulting value of C is yyy.

The sample configuration file shipped with the product defines and uses some
“user-defined” variables. See Appendix C, “Sample Files” on page 325 for more
information.

 LoadLeveler Variables
The LoadLeveler product includes variables that you can use in the configuration
file. LoadLeveler variables are evaluated by the LoadLeveler daemons at various
stages. They do not require you to use any special characters (such as a
parenthesis or a dollar sign) to identify them.

LoadLeveler provides the following variables that you can use in your configuration
file statements. For examples of using these variables, see Appendix C, “Sample
Files” on page 325.

Arch
indicates the system architecture. Note that Arch is a special case of a
LoadLeveler variable called a machine variable. You specify a machine variable
using the the following format:

variable : $(value)

Cpus
the number of CPU's installed.

CurrentTime
the UNIX date ; the current system time, in seconds, since January 1, 1970, as
returned by the time() function.

CurrentTime
sets a relative machine priority.

Disk
the free disk space in kilobytes on the file system where the executables for the
LoadLeveler jobs assigned to this machine are stored. This refers to the file
system that is defined by the execute keyword.

domain or domainname
dynamically indicates the official name of the domain of the current host
machine where the program is running. Whenever a machine name can be
specified or one is assumed, a domain name is assigned if none is present.

EnteredCurrentState
the value of CurrentTime when the current state (START, SUSPEND, etc) was
entered.

122 Using and Administering LoadLeveler

host or hostname
dynamically indicates the official name of the host machine where the program
is running. host returns the machine name without the domain name;
hostname returns the machine and the domain.

KeyboardIdle
the number of seconds since the keyboard or mouse was last used. It also
includes any telnet or interactive activity from any remote machine.

LoadAvg
The Berkely one-minute load average, a measure of the CPU load on the
system. The load average is the average of the number of processes ready to
run or waiting for disk I/O to complete. The load average does not map to CPU
time.

Machine
indicates the name of the current machine. Note that Machine is a special case
of a LoadLeveler variable called a machine variable. See the description of the
Arch variable for more information.

Memory
the physical memory installed on the machine in megabytes.

MasterMachPrio
a value that is equal to 1 for nodes which are master nodes, and is equal to 0
otherwise.

OpSys
indicates the operating system on the host where the program is running. This
value is automatically determined and need not be defined in the configuration
file. Note that OpSys is a special case of a LoadLeveler variable called a
machine variable. See the description of the Arch variable for more
information.

QDate
the difference in seconds between when LoadLeveler (specifically the
negotiator daemon) comes up and when the job is submitted using llsubmit.

QDate
the relative speed of a machine.

State
the state of the startd daemon.

tilde
the home directory for the LoadLeveler userid.

UserPrio
the user defined priority of the job. The priority ranges from 0 to 100, with
higher numbers corresponding to greater priority.

VirtualMemory
the size of available swap space on the machine in kilobytes.

Time: You can use the following time variables in the START, SUSPEND,
CONTINUE, VACATE, and KILL expressions. If you use these variables in the
START expression and you are operating across multiple time zones, unexpected
results may occur. This is because the negotiator daemon evaluates the START
expressions and this evaluation is done in the time zone in which the negotiator

 Chapter 5. Administering and Configuring LoadLeveler 123

resides. Your executing machine also evaluates the START expression and if your
executing machine is in a different time zone, the results you may receive may be
inconsistent. To prevent this inconsistency from occurring, ensure that both your
negotiator daemon and your executing machine are in the same time zone.

tm_hour
the number of hours since midnight (0-23).

tm_min
number of minutes after the hour (0-59).

tm_sec
number of seconds after the minute (0-59).

tm_isdst
Daylight Savings Time flag: positive when in effect, zero when not in effect,
negative when information is unavailable. For example, to start jobs between
5PM and 8AM during the month of October, factoring in an adjustment for
Daylight Savings Time, you can issue:

START: (tm_mon == 9) && (tm_hour < 8) && (tm_hour > 17) && (tm_isdst = 1)

 Date:

tm_mday
the number of the day of the month (1-31).

tm_wday
number of days since Sunday (0-6).

tm_yday
number of days since January 1 (0-365).

tm_mon
number of months since January (0-11).

tm_year
the number of years since 1900 (0-9999).

 Keyword Summary
This section contains summaries keywords you can use in the administration file
and those you can use in the configuration file.

Administration File Keywords
The following table contains a brief description of the keywords you can use in the
administration file. For more information on a specific keyword, see the section and
page number referenced in the “For Details” column.

Admin. File Keyword Stanza(s) Brief Description For Details

account User, Group A list of account numbers available to a
user submitting jobs.

“Step 2: Specify User
Stanzas” on page 78

adapter_name Adapter Specifies the name the operating
system uses to refer to an interface
card installed on a node (such as en0).

“Step 5: Specify Adapter
Stanzas” on page 93

124 Using and Administering LoadLeveler

Admin. File Keyword Stanza(s) Brief Description For Details

adapter_stanzas Machine A list of adapter stanza names that
define the adapters on a machine
which can be requested.

“Step 1: Specify Machine
Stanzas” on page 73

admin Group, Class A list of administrators for a group or
class.

“Step 3: Specify Class
Stanzas” on page 82

alias Machine Lists one or more alias names to
associate with the machine name.

“Step 1: Specify Machine
Stanzas” on page 73

central_manager Machine When true , this designates the
machine as the LoadLeveler central
manager.

“Step 1: Specify Machine
Stanzas” on page 73

class_comment Class Text characterizing the class “Step 3: Specify Class
Stanzas” on page 82

core_limit Class Specifies the hard limit and/or soft limit
for the size of a core file a job can
create.

“Limit Keywords” on page 84

cpu_limit Class Specifies the hard limit and/or soft limit
for the CPU time a job can use.

“Limit Keywords” on page 84

cpu_speed_scale Machine Determines whether CPU time is
normalized according to machine
speed.

“Step 1: Specify Machine
Stanzas” on page 73

data_limit Class Specifies the hard limit and/or soft limit
for the size of a data segment a job
can use.

“Limit Keywords” on page 84

default_class User A class name that is the default value
assigned to jobs submitted by users for
which no class statement appears.

“Step 2: Specify User
Stanzas” on page 78

default_group User A group name to which the user
belongs.

“Step 2: Specify User
Stanzas” on page 78

default_interactive__class User A class to which interactive jobs are
assigned for jobs submitted by users
who do not specify a class using
LOADL_INTERACTIVE_CLASS.

“Step 2: Specify User
Stanzas” on page 78

exclude_groups Class A list of groups names identifying those
who cannot submit jobs of a particular
class.

“Step 3: Specify Class
Stanzas” on page 82

exclude_users Class, Group A list of user names identifying those
who cannot submit jobs of a particular
class or who are not members of the
group.

“Step 3: Specify Class
Stanzas” on page 82

file_limit Class Specifies the hard limit and/or soft limit
for the size of a file that a job can
create.

“Limit Keywords” on page 84

include_groups Class A list of groups names identifying those
who can submit jobs of a particular
class.

“Step 3: Specify Class
Stanzas” on page 82

include_users Class, Group A list of user names identifying those
who can submit jobs of a particular
class or who do belong to the group.

“Step 3: Specify Class
Stanzas” on page 82

interface_address Adapter Specifies the IP address by which the
adapter is known to other nodes in the
network.

“Step 5: Specify Adapter
Stanzas” on page 93

interface_name Adapter Specifies the name by which the
adapter is known to other nodes in the
network.

“Step 5: Specify Adapter
Stanzas” on page 93

 Chapter 5. Administering and Configuring LoadLeveler 125

Admin. File Keyword Stanza(s) Brief Description For Details

job_cpu_limit Class Specifies the hard limit and/or soft limit
for the amount of CPU time an
individual job step can use per
processor.

“Limit Keywords” on page 84

machine_mode Machine Specifies the type of jobs this machine
can run (batch, interactive, or both).

“Step 1: Specify Machine
Stanzas” on page 73

master_node_exclusive Machine When true , this machine is used only
as a master node for parallel jobs.

“Step 1: Specify Machine
Stanzas” on page 73

master_node_requirement Class When true , jobs in this class have the
requirement that they run on a master
node having the
master_node_exclusive setting.

“Step 3: Specify Class
Stanzas” on page 82

maxidle User, Group Maximum number of idle jobs this user
or group can have simultaneously.

“Step 2: Specify User
Stanzas” on page 78

maxjobs User, Class,
Group

Maximum number of jobs this user,
class, or group can have running
simultaneously.

“Step 2: Specify User
Stanzas” on page 78

max_jobs_scheduled Machine The maximum number of jobs that this
machine can run.

“Step 1: Specify Machine
Stanzas” on page 73

max_node User, Class,
Group

The maximum number of nodes a user
can request for a parallel job.

“Step 2: Specify User
Stanzas” on page 78

max_processors User, Class,
Group

The maximum number of processors a
user can request for a parallel job.

“Step 2: Specify User
Stanzas” on page 78

maxqueued Group, User The maximum number of jobs a single
group or user can have queued at the
same time.

“Step 2: Specify User
Stanzas” on page 78

name_server Machine A list of nameservers used for a
machine.

“Step 1: Specify Machine
Stanzas” on page 73

network_type Adapter The type of network the adapter
supports (for example, Ethernet). This
is an administrator defined name.

“Step 5: Specify Adapter
Stanzas” on page 93

nice Class Increments the nice value of a job. “Step 3: Specify Class
Stanzas” on page 82

NQS_class Class When true , any job submitted to this
class is routed to an NQS machine.

“Step 3: Specify Class
Stanzas” on page 82

NQS_query Class A list of queue names to use to monitor
and cancel jobs.

“Step 3: Specify Class
Stanzas” on page 82

NQS_submit Class A name that identifies the name of the
NQS pipe queue to which the job will
be routed.

“Step 3: Specify Class
Stanzas” on page 82

pool_list Machine Specifies a list of pool numbers to
which the machine belongs.

“Step 1: Specify Machine
Stanzas” on page 73

priority User, Class,
Group

A number that identifies the priority of
the appropriate user, class, or group.

“Step 2: Specify User
Stanzas” on page 78

pvm_root Machine A directory in which PVM 3.3 is
installed.

“Step 1: Specify Machine
Stanzas” on page 73

rss_limit Class Specifies the hard limit and/or soft limit
for the resident set size for a job.

“Limit Keywords” on page 84

schedd_host Machine When true , this machine is used to
help submit-only machines access
LoadLeveler hosts that run LoadLeveler
jobs.

“Step 1: Specify Machine
Stanzas” on page 73

126 Using and Administering LoadLeveler

Admin. File Keyword Stanza(s) Brief Description For Details

spacct_excluse_enable Machine Specifies whether the SP accounting
function is informed whenever this
machine is being used exclusively by a
particular job.

“Step 1: Specify Machine
Stanzas” on page 73

speed Machine The weight associated with the
machine.

“Step 1: Specify Machine
Stanzas” on page 73

stack_limit Class Specifies the hard limit and/or soft limit
for the size of a stack.

“Limit Keywords” on page 84

submit_only Machine When true , designates this as a
submit-only machine.

“Step 1: Specify Machine
Stanzas” on page 73

switch_node_number Adapter The node on which the SP switch
adapter is installed.

“Step 5: Specify Adapter
Stanzas” on page 93

total_tasks User, Class,
Group

The maximum number of tasks a user
can request for a parallel job.

“Step 2: Specify User
Stanzas” on page 78

type All The type of stanza. “Administering LoadLeveler”
on page 72

wall_clock_limit Class Specifies the hard limit and/or soft limit
for the amount of elapsed time for
which a job can run.

“Limit Keywords” on page 84

Configuration File Keywords and LoadLeveler Variables
The following tables contain a brief description of the keywords you can use in the
configuration file. The term configuration file keywords refers to keywords,
user-defined variables, and LoadLeveler variables. A summary table is provided for
each of the three types of configuration file keywords.

 Keywords
The following table serves only as a reference. For more information on a specific
keyword, see the section and page number referenced in the “For Details” column.

Configuration File Keyword Brief Description For Details

ACCT Turns the accounting function on (or
off).

“Step 8: Define Job
Accounting” on
page 107

ACCT_VALIDATION The module called to perform account
validation.

“Step 8: Define Job
Accounting” on
page 107

ACTION_ON_MAX_REJECT Specifies whether a job is cancelled or
put in User Hold or System Hold status
when the job exceeds the
MAX_JOB_REJECT value.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

ADMIN_FILE Points to the administration file
containing user, class, and machine list
stanzas.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

AFS_GETNEWTOKEN A filter which can be used to renew an
AFS token.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

ARCH The standard architecture of the
system.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 99

 Chapter 5. Administering and Configuring LoadLeveler 127

Configuration File Keyword Brief Description For Details

BIN The directory where LoadLeveler
binaries are kept.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

CENTRAL_MANAGER_HEARTBEAT_INTERVAL The amount of time in seconds that
defines how frequently primary and
alternate central manager communicate
with each other.

“Step 9: Specify
Alternate Central
Managers” on page 108

CENTRAL_MANAGER_TIMEOUT The number of heartbeat intervals that
an alternate central manager will wait
before declaring that the primary
central manager is not operating.

“Step 9: Specify
Alternate Central
Managers” on page 108

Class The class of jobs that can run on the
machine.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 99

CLIENT_TIMEOUT The maximum time, in seconds, that a
daemon waits to respond to a process
over TCP/IP.

“Step 12: Define
Network Characteristics”
on page 112

COLLECTOR_DGRAM_PORT The port number used when connecting
to a daemon.

“Step 12: Define
Network Characteristics”
on page 112

CONTINUE Continue expression. Determines if a
job should continue.

“Step 7: Manage a Job's
Status Using Control
Expressions” on
page 105

CUSTOM_METRIC A machine's relative priority to run jobs. “Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 97

CUSTOM_METRIC_COMMAND An executable whose exit code is value
is assigned to CUSTOM_METRIC.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 97

DCE_AUTHENTICATION_PAIR A pair of installation supplied programs
that are used to authenticate DCE
security credentials.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

EXECUTE The local directory to store the
executable checkpoints of jobs
submitted by other machines.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

Feature A string specifying unique
characteristics of a machine.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 99

GLOBAL_HISTORY The directory containing the global
history files.

“Step 8: Define Job
Accounting” on
page 107

HISTORY The pathname of the history file for
local LoadLeveler jobs.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

JOB_ACCT_Q_POLICY The amount of time in seconds that
determines how often the startd
daemon updates the schedd daemon
with accounting data of running jobs.

Chapter 7, “Gathering
Job Accounting Data” on
page 141

JOB_EPILOG Pathname of the epilog program. “Writing Prolog and
Epilog Programs” on
page 280

128 Using and Administering LoadLeveler

Configuration File Keyword Brief Description For Details

JOB_LIMIT_POLICY The amount of time in seconds that
LoadLeveler checks to see if
job_cpu_limit has been exceeded.

Chapter 7, “Gathering
Job Accounting Data” on
page 141

JOB_PROLOG Pathname of the prolog program. “Writing Prolog and
Epilog Programs” on
page 280

JOB_USER_EPILOG Pathname of the user epilog program. “Writing Prolog and
Epilog Programs” on
page 280

JOB_USER_PROLOG Pathname of the user prolog program. “Writing Prolog and
Epilog Programs” on
page 280

KBDD KBDD expression. Location of kbdd
executable (Loadl_kbdd).

“LoadLeveler Daemons”
on page 6

KILL Kill expression. Determines if vacated
jobs should be killed.

“Step 7: Manage a Job's
Status Using Control
Expressions” on
page 105

LIB The directory where LoadLeveler
libraries are kept.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

LOADL_ADMIN List of LoadLeveler administrators. “Step 1: Define
LoadLeveler
Administrators” on
page 96

LOCAL_CONFIG Pathname of the optional local
configuration file containing information
specific to a node in the LoadLeveler
network.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

LOG Local directory for storing log files. “Step 10: Specify Where
Files and Directories are
Located” on page 109

MACHINE_AUTHENTICATE Specifies whether machine validation is
performed.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 97

MACHINE_UPDATE_INTERVAL The time, in seconds, during which
machines must report to the central
manager.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

MACHPRIO Machine priority expression “Step 6: Prioritize the
Order of Executing
Machines Maintained by
the Negotiator” on
page 103

MAIL Name of a local mail program used to
override default mail notification.

“Using Your Own Mail
Program” on page 279

MASTER Location of the master executable
(LoadL_master).

“LoadLeveler Daemons”
on page 6

MASTER_DGRAM_PORT The port number used when connecting
to the daemon.

“Step 12: Define
Network Characteristics”
on page 112

MASTER_STREAM_PORT The port number to used when
connecting to the daemon.

“Step 12: Define
Network Characteristics”
on page 112

 Chapter 5. Administering and Configuring LoadLeveler 129

Configuration File Keyword Brief Description For Details

MAX_CKPT_INTERVAL The maximum number of seconds
between checkpoints for running jobs.

“Step 13: Enable
Checkpointing” on
page 113

MAX_JOB_REJECT The number of times a job is rejected
before it is cancelled or put in User
Hold or System Hold status.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

MAX_STARTERS The maximum number of jobs that can
run simultaneously.

“Step 4: Specify How
Many Jobs a Machine
Can Run” on page 101

MIN_CKPT_INTERVAL The minimum number of seconds
between checkpoints for running jobs.

“Step 13: Enable
Checkpointing” on
page 113

NEGOTIATOR Location of the negotiator executable
(LoadL_negotiator).

“LoadLeveler Daemons”
on page 6

NEGOTIATOR_INTERVAL The time interval, in seconds, at which
the negotiator daemon updates the
status of jobs in the LoadLeveler
cluster and negotiates with machines
that are available to run jobs.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

NEGOTIATOR_LOADAVG_INCREMENT The factor added to the startd
machine's load average to compenstate
for the increased load caused by
starting another machine.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

NEGOTIATOR_PARALLEL_DEFER The length of time that a job is given to
accumulate processors.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

NEGOTIATOR_PARALLEL_HOLD The length of time a job attempts to
collect machines before releasing them.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL The amount of time in seconds
between calculation of the SYSPRIO
values for waiting jobs.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

NEGOTIATOR_REJECT_DEFER The amount of time in seconds the
negotiator waits before it considers
scheduling a job to a machine that
recently rejected the job.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

NEGOTIATOR_REMOVE_COMPLETED The amount of time the negotiator
keeps information on completed and
removed jobs.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

NEGOTIATOR_RESCAN_QUEUE The amont of time the negotiator waits
to rescan the job queue for machines
that temporarily have non-runnable
jobs.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

NEGOTIATOR_STREAM_PORT The port number used when connecting
to the daemon.

“Step 12: Define
Network Characteristics”
on page 112

NQS_DIR The directory where NQS commands
reside.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

OBITUARY_LOG_LENGTH The number of lines from the ned of
the file that are appended to the
Master_Log.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

130 Using and Administering LoadLeveler

Configuration File Keyword Brief Description For Details

POLLING_FREQUENCY The frequency in seconds the startd
daemon uses to evaluate the load on
the local machine and to decide
whether to suspend, resume, or abort
jobs.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

POLLS_PER_UPDATE The frequency, in
POLLING_FREQUENCY intervals, with
which the startd daemon updates the
central manager.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

PUBLISH_OBITUARIES When true , specifies that the master
daemon sends mail to the
administrator(s) when any daemon it
manages dies abnormally.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

RELEASEDIR The directory where all the LoadLeveler
software resides.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

RESTARTS_PER_HOUR The number of times the master
daemon attempts to restart a daemon
that dies abnormally.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

SCHEDD Location of the schedd executable
(LoadL_schedd).

“LoadLeveler Daemons”
on page 6

SCHEDD_INTERVAL Specifies the interval, in seconds, at
which the schedd daemon checks the
local job queue.

“Step 14: Specify
Additional Configuration
File Keywords” on
page 118

SCHEDD_RUNS_HERE Specifies whether this daemon will run
on the host.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 99

SCHEDD_STREAM_PORT The port number used when connecting
to the daemon.

“Step 12: Define
Network Characteristics”
on page 112

SCHEDULER_API When YES, disables the native
LoadLeveler scheduling algorithm.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 97

SCHEDULER_TYPE Specifies the LoadLeveler Backfill
scheduling algorithm.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 97

SPOOL The local directory where LoadLeveler
keeps the local job queue and
checkpoint files.

“Step 10: Specify Where
Files and Directories are
Located” on page 109

START Start expression. Determines if a
machine can run a job.

“Step 7: Manage a Job's
Status Using Control
Expressions” on
page 105

STARTD Location of the startd executable
(LoadL_startd).

“LoadLeveler Daemons”
on page 6

STARTER Location of the starter executable
(LoadL_starter).

“LoadLeveler Daemons”
on page 6

STARTD_RUNS_HERE Specifies whether this daemon will run
on the host.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 99

 Chapter 5. Administering and Configuring LoadLeveler 131

Configuration File Keyword Brief Description For Details

START_DAEMONS Specifies whether to start the daemons
on the machine.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 99

STARTD_DGRAM_PORT The port number used when connecting
to the daemon.

“Step 12: Define
Network Characteristics”
on page 112

STARTD_STREAM_PORT The port number used when connecting
to the daemon.

“Step 12: Define
Network Characteristics”
on page 112

SUBMIT_FILTER The program you want to run to filter a
job script when the job is submitted.

“Filtering a Job Script”
on page 279

SUSPEND Suspend expresson. Determines if a
job should be suspended.

“Step 7: Manage a Job's
Status Using Control
Expressions” on
page 105

SYSPRIO System priority expression. “Step 5: Prioritize the
Queue Maintained by
the Negotiator” on
page 102

TRUNC_KBDD_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 11: Record and
Control Log Files” on
page 111

TRUNC_MASTER_LOG_ON_OPEN When true , specifies the log file is re
started with every invocation of the
daemon.

“Step 11: Record and
Control Log Files” on
page 111

TRUNC_NEGOTIATOR_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 11: Record and
Control Log Files” on
page 111

TRUNC_SCHEDD_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 11: Record and
Control Log Files” on
page 111

TRUNC_STARTD_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 11: Record and
Control Log Files” on
page 111

TRUNC_STARTER_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 11: Record and
Control Log Files” on
page 111

VACATE The vacate expression. Determines
whether suspended jobs should be
vacated.

“Step 7: Manage a Job's
Status Using Control
Expressions” on
page 105

X_RUNS_HERE When true , specifies you want to start
the keyboard daemon (unles you are
running on Sun machine or an HP
machine).

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 99

 User-Defined Keywords
The following table serves only as a reference. These keywords are described in
more detail in “User-Defined Variables” on page 121.

Keyword Brief Description

BackgroundLoad Defines the variable BackgroundLoad and assigns to it a floating point constant. This might be
used as a noise factor indicating no activity.

132 Using and Administering LoadLeveler

Keyword Brief Description

CPU_Busy Defines the variable CPU_Busy and reassigns to it at each evaluation the Boolean value True or
False, depending on whether the Berkeley one-minute load average is equal to or greater than the
saturation level of 1.5.

CPU_Idle Defines the variable CPU_Idle and reassigns to it at each evaluation the Boolean value True or
False, depending on whether the Berkeley one-minute load average is equal or less than 0.7.

HighLoad Is a keyword that the user can define to use as a saturation level at which no further jobs should
be started.

HOUR Defines the variable HOUR and assigns to it a constant integer value.

JobLoad Defines the variable JobLoad which defines the load on the machine caused by running the job.

KeyboardBusy Defines the variable KeyboardBusy and reassigns to it at each evaluation the Boolean value True
or False, depending on whether the keyboard and mouse have been idle for fifteen minutes.

LowLoad Defines the variable LowLoad and assigns to it the value of BackgroundLoad . This might be
used as a restart level at which jobs can be started again and assumes only running 1 job on the
machine.

mail Specifies a local program you want to use in place of the LoadLeveler default mail notification
method.

MINUTE Defines the variable MINUTE and assigns to it a constant integer value.

StateTimer Defines the variable StateTimer and reassigns to it at each evaluation the number of seconds
since the current state was entered.

 LoadLeveler Variables
The following table serves only as a reference. For more information on a specific
keyword, see the section and page number referenced in the “For Details” column.

Keyword Brief Description For Details

Arch Standard architecture of the system. “LoadLeveler Variables” on page 122

ClassSysprio Job priority for the class. “Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

Cpus Number of CPU's installed. “LoadLeveler Variables” on page 122

CurrentTime The UNIX date that includes the current system time,
in seconds, since January 1, 1970.

“LoadLeveler Variables” on page 122

CustomMetric The relative machine priority. “LoadLeveler Variables” on page 122

Disk Free disk in megabytes on the filesystem where
checkpoints are stored.

“LoadLeveler Variables” on page 122

domain or domainname Dynamically indicates the domain name of the current
host machine where the program is running.

“LoadLeveler Variables” on page 122

EnteredCurrentState Value of CurrentTime when the current state was
entered.

“LoadLeveler Variables” on page 122

GroupQueuedJobs The number of jobs either running or queued for the
LoadLeveler group.

“Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

GroupRunningJobs The number of jobs currently running for the
LoadLeveler group.

“Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

GroupSysprio The job priority for the group. “Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

GroupTotalJobs The total number of jobs associated with the
LoadLeveler group.

“Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

 Chapter 5. Administering and Configuring LoadLeveler 133

Keyword Brief Description For Details

host or hostname Dynamically indicates the name of the host machine
where the program is running.

“LoadLeveler Variables” on page 122

KeyboardIdle Number of seconds since the keyboard or mouse was
last used.

“LoadLeveler Variables” on page 122

LoadAvg Berkeley one-minute load average. “LoadLeveler Variables” on page 122

Machine Name of the current machine. “LoadLeveler Variables” on page 122

MasterMachPrio A value that is 1 for master nodes and is 0 otherwise. “LoadLeveler Variables” on page 122

Memory Physical memory installed on the machine in
megabytes.

“LoadLeveler Variables” on page 122

OpSys Indicates the operating system on the host where the
program is running.

“LoadLeveler Variables” on page 122

QDate Difference in seconds between when the negotiator
starts up and when the job is submitted.

“LoadLeveler Variables” on page 122

Speed The relative machine speed. “LoadLeveler Variables” on page 122

State State of the startd. Can be None, Busy, Running, Idle,
Suspend, Flush, or Drain.

“LoadLeveler Variables” on page 122

tilde Dynamically defines the pathname of the LoadLeveler
home directory.

“LoadLeveler Variables” on page 122

tm_hour Number of hours since midnight (0-23). “LoadLeveler Variables” on page 122

tm_isdst Daylight Savings Time flag: positive when in effect,
zero when not in effect, negative when information is
unavailable.

“LoadLeveler Variables” on page 122

tm_mday Number of the day of the month (1-31). “LoadLeveler Variables” on page 122

tm_min Number of minutes after the hour (0-59). “LoadLeveler Variables” on page 122

tm_mon Number of months since January (0-11). “LoadLeveler Variables” on page 122

tm_sec Number of seconds after the minute (0-59). “LoadLeveler Variables” on page 122

tm_wday Number of days since Sunday (0-6). “LoadLeveler Variables” on page 122

tm_yday Number of days since January 1 (0-365). “LoadLeveler Variables” on page 122

tm_year Number of years since 1900 (0-99). “LoadLeveler Variables” on page 122

UserPrio User defined priority of a job. “Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

UserQueuedJobs The number of jobs either running or queued for the
user.

“Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

UserRunningJobs The number of jobs currently running for the user. “Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

UserSysprio The priority of the user who submitted the job. “Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

UserTotalJobs The total number of jobs associated with the this user. “Step 5: Prioritize the Queue
Maintained by the Negotiator” on
page 102

VirtualMemory The size of the available swap space on the machine
in kilobytes.

“LoadLeveler Variables” on page 122

134 Using and Administering LoadLeveler

Chapter 6. Administration Tasks for Parallel Jobs

This chapter describes administration tasks that apply to parallel jobs. For more
general information on administering and configuring LoadLeveler, see Chapter 5,
“Administering and Configuring LoadLeveler” on page 69. For information on
submitting parallel jobs, see Chapter 4, “Submitting and Managing Parallel Jobs”
on page 59.

Scheduling Considerations for Parallel Jobs
For parallel jobs, the LoadLeveler Backfill scheduler makes the most efficient use of
your resources. This scheduler runs both serial and parallel jobs, but is primarily
meant for installations running parallel jobs.

Also, The Backfill scheduler supports:

� Multiple tasks per node.

� Multiple user space tasks per adapter.

You specify the Backfill scheduler using the SCHEDULER_TYPE keyword. For
more information on this keyword, and for information on other schedulers you can
run, see “Choosing a Scheduler” on page 97.

Setting Up to Allow Users to Submit Interactive POE Jobs
Follow the steps in this section to set up your system so that users can submit
interactive POE jobs to LoadLeveler.

1. Make sure that you have installed LoadLeveler and defined LoadLeveler
administrators. See “Quick Set Up” on page 71 for information on defining
LoadLeveler administrators.

2. Run the llextSDR command to extract node and adapter information from the
SDR. See “llextSDR - Extract adapter information from the SDR” on page 167
for information on using this command.

3. Incorporate the appropriate node and adapter information into your LoadLeveler
administration file stanzas.

For example, the following output represents two adapter stanzas and their
corresponding machine stanza:

 Chapter 6. Administration Tasks for Parallel Jobs 135

k1ðnð9.ppd.pok.ibm.com: type = adapter
 adapter_name = enð
 network_type = ethernet
 interface_address = 9.114.51.73
 interface_name = k1ðnð9.ppd.pok.ibm.com

k1ðsnð9.ppd.pok.ibm.com: type = adapter
 adapter_name = cssð
 network_type = switch
 interface_address = 9.114.51.137
 interface_name = k1ðsnð9.ppd.pok.ibm.com
 switch_node_number = 8

k1ðnð9.ppd.pok.ibm.com: type=machine
 adapter_stanzas = k1ðnð9.ppd.pok.ibm.com k1ðsnð9.ppd.pok.ibm.com
 spacct_exclusive_enable = true

4. Define a machine to act as the LoadLeveler central manager. See “Quick Set
Up” on page 71 for more information.

5. Define your scheduler to be the LoadLeveler Backfill scheduler by setting
SCHEDULER_TYPE = BACKFILL in the LoadLeveler configuration file. See
“Choosing a Scheduler” on page 97 for more information.

6. Consider setting up a class stanza for your interactive POE jobs. See “Setting
Up a Class for Parallel Jobs” on page 137 for more information. Define this
class to be your default class for interactive jobs by specifying this class name
on the default_interactive_class keyword. See “Step 2: Specify User Stanzas”
on page 78 for more information.

7. Configure optional functions, including:

� Setting up pools: you can organize nodes into pools by using the pool_list
keyword in the machine stanza. See “Step 1: Specify Machine Stanzas” on
page 73 for more information.

� Specifying batch, interactive, or general use for nodes: you can use the
machine_mode keyword in the machine stanza to specify the type of jobs
that can run on a node.

� Enabling SP exclusive use accounting: you can specify that the accounting
function on an SP system is informed that a job step has exclusive use of a
machine by setting spacct_exclusive_enable = true in the machine stanza
(as shown in the previous example).

See “Step 1: Specify Machine Stanzas” on page 73 for more information
on these keywords.

8. Start LoadLeveler using the llctl command. See “Quick Set Up” on page 71 for
more information.

Setting Up to Allow Users to Submit PVM Jobs
If users will be submitting PVM jobs, your installation must first obtain and install
PVM. PVM is a public domain package distributed through electronic mail by Oak
Ridge National Labs. To obtain information on PVM, issue the following:

echo "send index from pvm3" | mail netlib@ornl.gov

136 Using and Administering LoadLeveler

For RS6K architecture PVM, LoadLeveler expects to find PVM installed in
˜loadl/pvm3 . You can override this using the pvm_root entry in the machine
stanza. The value of pvm_root is used to set the environment variable
$(PVM_ROOT) which PVM requires. For example:

gallifrey: type = machine
central_manager = true
schedd_host = true
alias = drwho
pvm_root = /home/userid/loadl/1.2.ð/aix32/pvm3

For PVM 3.3.11+ (that is, SP2MPI architecture), LoadLeveler does not expect to
find PVM installed in ˜loadl/pvm3 . PVM 3.3.11+ must be installed in a directory
accessable to and executable by all nodes in the LoadLeveler cluster.
Administrators must communicate the location of this directory to their users.

Running PVM requires that each user be allowed to run only one instance of PVM
per machine. In order to ensure that LoadLeveler does not attempt to start more
than one PVM job per machine, you can set up a class for PVM jobs. To do this,
you need to add a class stanza to your administration file and a class statement to
your configuration file. The following is an example of a PVM class stanza that you
can add to your administration file:

PVM3: type = class
max_node = 15 # max of 15 processors per user per job

The following is an example of statements that you can add to your configuration
file:

MAX_STARTERS = 2
Class = {"ClassA" "ClassA" "PVM3" }

This combination of the MAX_STARTERS keyword and the Class keyword allows
two jobs of Class A or one job of Class A and one of class PVM3 to start. Limiting
PVM jobs by using a class where MAX_STARTERS is greater than 1 is only a
policy. The user can still submit a PVM job to Class A. Note also that setting
MAX_STARTERS=1 would enforce a policy of one job per machine.

See “Common Set Up Problems with Parallel Jobs” on page 291 for more
information.

Restrictions and Limitations for PVM Jobs
For PVM 3.3, dynamic allocation and de-allocation of parallel machines are not
supported.

Setting Up a Class for Parallel Jobs
To define the characteristics of parallel jobs run by your installation you should set
up a class stanza in the administration file and define a class (on the Class
statement in the configuration file) for each task you want to run on a node.

Suppose your installation plans to submit long-running parallel jobs, and you want
to define the following characteristics:

� Only certain users can submit these jobs

� Jobs have a 30 hour run time limit

 Chapter 6. Administration Tasks for Parallel Jobs 137

� A job can request a maximum of 60 nodes and 120 total tasks

� Jobs will have a relatively low run priority

The following is a sample class stanza for long-running parallel jobs which takes
into account the above characteristics:

 long_parallel: type=class
wall_clock_limit = 18ðð
include_users = jack queen king ace
priority = 5ð
total_tasks = 12ð
max_node = 6ð
maxjobs = 2

Note the following about this class stanza:

� The wall_clock_limit=1800 keyword sets a wall clock limit of 1800 seconds
(30 hours) for jobs in this class.

� The include_users keyword allows four users to submit jobs in this class.

� The priority keyword sets a relative priority of 50 for jobs in this class.

� The total_tasks keyword specifies that a user can request up to 120 total tasks
for a job in this class.

� The max_node keyword specifies that a user can request up to 60 nodes for a
job in this class.

� The maxjobs keyword specifies that a maximum of two jobs in this class can
run simultaneously.

Suppose users need to submit job command files containing the following
statements:

node = 3ð
tasks_per_node = 4

You must code the Class statement such that at least 30 nodes have four or more
long_parallel classes defined. That is, the configuration file for each of these nodes
must include the following statement:

Class = { "long_parallel" "long_parallel" "long_parallel" "long_parallel" }

Setting Up a Parallel Master Node
LoadLeveler allows you to define a parallel master node which LoadLeveler will
select as the first node for a job submitted to a particular class. To set up a parallel
master node, code the following keywords in the class stanza and the machine
stanza of the administration file:

MACHINE STANZA: (optional)
mach1: type = machine
master_node_exclusive = true

CLASS STANZA: (optional)
pmv3: type = class
master_node_requirement = true

138 Using and Administering LoadLeveler

master_node_requirement = true forces all parallel jobs in this class to use, as
their first node, a machine with the master_node_exclusive = true setting. For
more information of these keywords, see “Step 1: Specify Machine Stanzas” on
page 73 and “Step 3: Specify Class Stanzas” on page 82.

 Chapter 6. Administration Tasks for Parallel Jobs 139

140 Using and Administering LoadLeveler

Chapter 7. Gathering Job Accounting Data

Your organization may have a policy of charging users or groups of users for the
amount of resources that their jobs consume. You can do this using LoadLeveler's
accounting feature. Using this feature, you can produce accounting reports that
contain job resource information for completed serial and parallel jobs. You can
also view job resource information on jobs that are continuing to run.

Collecting Job Resource Data on Serial and Parallel Jobs
Information on completed serial and parallel jobs is gathered using the UNIX wait3
system call. Information on non-completed serial and parallel jobs is gathered in a
platform-dependent manner by examining data from the UNIX process.

Accounting information on a completed serial job is determined by accumulating
resources consumed by that job on the machine(s) that ran the job. Similarly,
accounting information on completed parallel jobs is gathered by accumulating
resources used on all of the nodes that ran the job.

You can also view resource consumption information on serial and parallel jobs that
are still running by specifying the -x option of the llq command. In order to enable
llq -x , you should specify the following keywords in the configuration file:

ACCT = A_ON A_DETAIL
Turns accounting data recording on. For more information on this keyword, see
“Step 8: Define Job Accounting” on page 107.

JOB_ACCT_Q_POLICY = number
where number is the amount of time in seconds that determines how often the
startd daemon updates the schedd daemon with accounting data of running
jobs. This controls the accuracy of the llq -x command. The default is 300
seconds.

JOB_LIMIT_POLICY = number
where number is an amount of time in seconds. The smaller of
JOB_LIMIT_POLICY and JOB_ACCT_Q_POLICY is used to control how often
the startd daemon collects resource consumption data on running jobs, and
how often the job_cpu_limit is checked. The default for JOB_LIMIT_POLICY
is POLLING_FREQUENCY multiplied by POLLS_PER_UPDATE .

Collecting Job Resource Data Based on Machines
LoadLeveler can collect job resource usage information for every machine on which
a job may run. A job may run on more than one machine because it is a parallel
job or because the job is vacated from one machine and rescheduled to another
machine.

To enable recording of resources by machine, you need to specify ACCT = A_ON
A_DETAIL in the configuration file.

The machine's speed is part of the data collected. With this information, an
installation can develop a charge back program which can charge more or less for
resources consumed by a job on different machines. For more information on a

 Chapter 7. Gathering Job Accounting Data 141

machine's speed, refer to the machine stanza information. See “Step 1: Specify
Machine Stanzas” on page 73.

Collecting Job Resource Data Based on Events
In addition to collecting job resource information based upon machines used, you
can gather this information based upon an event or time that you specify. For
example, you may want to collect accounting information at the end of every work
shift or at the end of every week or month. To collect accounting information on all
machines in this manner, use the llctl command with the capture parameter:

llctl -g capture eventname

eventname is any string of continuous characters (no white space is allowed) that
defines the event about which you are collecting accounting data. For example, if
you were collecting accounting data on the graveyard work shift, your command
could be:

llctl -g capture graveyard

This command allows you to obtain a snapshot of the resources consumed by
active jobs up to and including the moment when you issued the command. If you
want to capture this type of information on a regular basis, you can set up a
crontab entry to invoke this command regularly. For example:

sample crontab for accounting
shift crontab 94/8/5
#
Set up three shifts, first, second, and graveyard shift.
Crontab entries indicate the end of shift.
#
#M H d m day command
#
ðð ð8 \ \ \ /u/loadl/bin/llctl -g capture graveyard
ðð 16 \ \ \ /u/loadl/bin/llctl -g capture first
ðð ðð \ \ \ /u/loadl/bin/llctl -g capture second

For more information on the llctl command, refer to “llctl - Control LoadLeveler
Daemons” on page 163. For more information on the collection of accounting
records, see “llq - Query Job Status” on page 181.

Collecting Job Resource Information Based on User Accounts
If your installation is interested in keeping track of resources used on an account
basis, you can require all users to specify an account number in their job command
files. They can specify this account number with the account_no keyword which is
explained in detail in “Job Command File Keywords” on page 38.

LoadLeveler validates this account number by comparing it against a list of account
numbers specified for the user in the user stanza in the administration file.

Account validation is under the control of the ACCT keyword in the configuration
file. The routine which performs the validation is called llacctval . You can supply
your own validation routine by specifying the ACCT_VALIDATION keyword in the
configuration file. The following are passed as character string arguments to the
validation routine:

142 Using and Administering LoadLeveler

 � User name

� User's login group name

� Account number specified on the Job

� Blank separated list of account numbers obtained from the user's stanza in the
administration file.

The account validation routine must exit with a return code of zero if the validation
succeeds. If it fails, the return code is a non-zero number.

Collecting the Accounting Information and Storing it into Files
LoadLeveler stores the accounting information that it collects in a file called history
in the spool directory of the machine that initially scheduled this job, the schedd
machine. Data on parallel jobs are also stored in the history files.

Resource information collected on the LoadLeveler job is constrained by the
capabilities of the wait3 system call. Information for processes which fork child
processes will include data for those child processes as long as the parent process
waits for the child process to terminate. Complete data may not be collected for
jobs which are not composed of simple parent/child processes. For example, if you
have a LoadLeveler job which invokes an rsh command to execute a function on
another machine, the resources consumed on the other machine will not be
collected as part of the LoadLeveler accounting data.

LoadLeveler accounting uses the following types of files:

� The local history file which is local to each schedd machine is where job
resource information is first recorded. These files are usually named history and
are located in the spool directory of each schedd machine, but you may specify
an alternate name with the HISTORY keyword in either the global or local
configuration file. For more information, refer to the “Step 8: Define Job
Accounting” on page 107.

� The global history file is a combination of the history files from some or all of
the machines in the LoadLeveler cluster merged together. The command
llacctmrg is used to collect files together into a global file. As the files are
collected from each machine, the local history file for that machine is reset to
contain no data. The file is named globalhist.YYYYMMDDHHmm. You may
specify the directory in which to place the file when you invoke the llacctmrg
command or you can specify the directory with the GLOBAL_HISTORY
keyword in the configuration file. The default value set up in the sample
configuration file is the local spool directory:

GLOBAL_HISTORY = $(SPOOL) (optional)

 Accounting Reports
You can produce three types of reports using either the local or global history file.
These reports are called the short, long, and extended versions. As their names
imply, the short version of the report is a brief listing of the resources used by
LoadLeveler jobs. The long version provides more comprehensive detail with
summarized resource usage and the extended version of the report provides the

 Chapter 7. Gathering Job Accounting Data 143

comprehensive detail with detailed resource usage. If you do not specify a report
type, you will receive the default short version.

The short report displays the number of jobs along with the total CPU usage
according to user, class, group, and account number. The extended version of the
report displays all of the data collected for every job. See the llsummary
command, “llsummary - Return Job Resource Information for Accounting” on
page 202, for examples of the short and extended versions of the report.

For information on the accounting Application Programming Interfaces, refer to
Chapter 11, “LoadLeveler APIs” on page 239.

Sample Job Accounting Scenario
The following sample scenario walks you through the process of collecting account
data. You can perform all of the steps or just the ones that apply to your situation.

Task 1: Update the Configuration File
Edit the configuration file according to the following table:

Edit this keyword: To:

GLOBAL_HISTORY Specify a directory in which to place the global history
files.

ACCT Turn accounting and account validation on and off and
specify detailed accounting.

ACCT_VALIDATION Specify the account validation routine.

Note: See “Step 8: Define Job Accounting” on page 107 for more information on these
keywords.

Task 2: Merge Multiple Files Collected From Each Machine Into One
File

You can accomplish this step using either the llacctmrg command or the graphical
user interface:

� Using llacctmrg : See “llacctmrg - Collect machine history files” on page 156
for the syntax of this command.

� Using the graphical user Interface:

Select A machine from the Machines window

Select Admin → Collect Account Data... from the Machines window.

M A window appears prompting you to enter a directory name
where the file will be placed. If no directory is specified, the
directory specified with the GLOBAL_HISTORY keyword in the
global configuration file is the default directory.

Press OK

M The window closes and you return to the main window.

144 Using and Administering LoadLeveler

Task 3: Report Job Information on all the Jobs in the History File
You can accomplish this step using either the llsummary command or the
graphical user interface:

� Using llsummary : see “llsummary - Return Job Resource Information for
Accounting” on page 202 for the syntax of this command.

� Using the graphical user interface:

Select Admin → Create Account Report... from the Machines
window.

Note : If you want to receive an extended accounting report,
select the extended cascading button.

M A window appears prompting you to enter the following
information:

– A short, long, or extended version of the output. The short
version is the default version.

– Start and end date ranges for the report. If no date is
specified, the default is to report all of the data in the report.

– The name of the input data file.

– The name of the output data file.

Press OK

M The window closes and you return to the main window. The
report appears in the Messages window if no output data file
was specified.

Task 4: Using Account Numbers and Setting Up Account Validation
1. Specify the following keyword in the user stanza in the administration file:

account = list
where list is a blank delimited list of account numbers a user may use
when submitting jobs.

2. Instruct users to associate an account number with their job:

� Using the job command file: add the account_no keyword to the job
command file. See “Job Command File Keywords” on page 38 for details.

� Using the graphical user interface:

Select File → Build a Job from the main window.

M The Build a Job window appears.

Type the account number in the account_no field on the Build a
Job window.

Press OK

M The window closes and you return to the main window.

3. Specify the ACCT_VALIDATION keyword in the configuration file that identifies
the module that will be called to perform account validation. The default
module is called llacctval . You can replace this module with your installation's
own accounting routine by specifying a new module with this keyword.

 Chapter 7. Gathering Job Accounting Data 145

Task 5: Specifying Machines and Their Weights
To specify weights to associate with machines, specify the following keyword in a
machine's machine stanza in the administration file:

speed = number
where number defines the weight associated with a particular machine. The
higher numbers correspond with a greater weight. The default weight is 1.0.

Also, if you have in your cluster machines of differing speeds and you want
LoadLeveler accounting information to be normalized for these differences, specify
cpu_speed_scale=true in each machine's respective machine stanza.

For example, suppose you have a cluster of two machines, called A and B, where
Machine B is three times as fast as Machine A. Machine A has speed=1.0 , and
Machine B has speed=3.0 . Suppose a job runs for 12 CPU seconds on Machine A.
The same job runs for 4 CPU seconds on Machine B. When you specify
cpu_speed_scale=true , the accounting information collected on Machine B for that
job shows the normalized value of 12 CPU seconds rather than the actual 4 CPU
seconds.

146 Using and Administering LoadLeveler

Chapter 8. Routing Jobs to NQS Machines

Users can submit NQS scripts to LoadLeveler and have them routed to a machine
outside of the LoadLeveler cluster that runs NQS. LoadLeveler supports COSMIC
NQS version 2.0 and other versions of NQS that support the same commands and
options and produce similar output for those commands.

The following diagram illustrates a typical environment that allows users to have
their jobs routed to machines outside of LoadLeveler for processing:

LoadLeveler & NQS

LoadLeveler Pool

Central Manager

Submitting Machine NQS

LoadLeveler
LoadLeveler

B

CA

D

Jo
b

N
Q

S P
ip

e
 Q

u
e

u
e

Figure 31. Environment illustrating jobs being routed to NQS machines.

As the diagram illustrates, machines A, B, and C, are members of the LoadLeveler
cluster. Machine A has the central manager running on it and machine B has both
LoadLeveler and NQS running on it. Machine C is a third member of the cluster.
Machine D is outside of the cluster and is running NQS.

When a user submits a job to LoadLeveler, machine A, that runs the central
manager, schedules the job to machine B. LoadLeveler running on machine B
routes the job to machine D using NQS. Keep this diagram in mind as you continue
to read this chapter.

Setting Up the NQS Environment
Setting up the NQS environment involves the following:

� Install NQS on each node that an NQS class is defined. In the previous
diagram, this is machine B.

� Create an NQS pipe queue on the LoadLeveler machine whose destination is
the NQS batch queue on the machine designated to run the NQS jobs.

 Chapter 8. Routing Jobs to NQS Machines 147

In the previous diagram, you would create the NQS pipe queue on machine B.

� Create an NQS batch queue on the machine designated to run the NQS jobs.
In the previous diagram, this is machine D.

Designating Machines to Which Jobs Will be Routed
To designate a machine to which your jobs will be routed, follow these steps:

1. Set up a special class in the LoadL_admin file by adding the following class
definitions to the file:

NQS_class = true | false
When this flag is set to true , any job submitted to this class will be routed
to an NQS machine.

NQS_submit = name
The name of the NQS pipe queue to which the job will be routed. When the
job is dispatched by LoadLeveler, LoadLeveler will invoke the qsub
command using the name of the this queue.

NQS_query = queue names
A blank delimited list of queue names (including host names if necessary)
to be used with the qstat command to monitor the job and qdel to cancel
the job.

You can set up multiple classes to access different machines.

2. Modify the local configuration file on the machines that you want to accept this
class of jobs.

3. Add the NQS_DIR keyword to the LoadL_config file:

NQS_DIR = NQS directory
defines the directory where NQS commands qsub , qstat , and qdel reside.
The default is /usr/bin .

Sample Routing Jobs to NQS Machines Scenario
The following example walks you through the process of setting up your
environment to route jobs to machines that run NQS.

Assume Figure 31 on page 147 depicts your environment. You have three
machines in the cluster named A, B, and C. Outside of the cluster, you have
machine D running NQS.

Task 1: Modify the Administration File
After setting up your NQS environment, modify the LoadL_admin file by defining
the class NQS including the following stanzas:

NQS:
type = class
NQS_class = true
NQS_submit = pipe_a
NQS_query = queue@chevy.kgn.ibm.com

148 Using and Administering LoadLeveler

Task 2: Modify the Configuration File
Modify the LoadL_config.local on the machine(s) that you want to accept this
class of jobs. In this example, you would modify machine B's LoadL_config.local
file. To do this, add a class statement similar to:

CLASS = {"NQS" "a" "b"}

where NQS is the name of the class of jobs that will be routed to the machines that
run NQS, and a and b are names of additional classes.

Task 3: Submit the Jobs
After you perform the previous tasks, users can route their jobs to machines
running NQS using the llsubmit command. The job command file must specify the
class keyword. For example:

class = NQS

The job command file must also contain the shell script to be submitted to the NQS
node. NQS accepts only shell scripts, binaries are not allowed. All options in the
command file pertaining to scheduling the job will be used by LoadLeveler to
schedule the job. When the job is dispatched to the node running the specified
NQS class, the LoadLeveler options pertaining to the runtime environment are
converted to NQS options and the job is submitted to the specified NQS queue.

LoadLeveler command file options are used as follows:

arguments error message generated and job not submitted

checkpoint error message generated and job not submitted

class used only for LoadLeveler scheduling

core_limit converted to -lc option

cpu_limit converted to -lt option

data_limit converted to -ld option

environment if COPY_ALL is specified, the option is converted to -x,
otherwise error message generated and job not submitted

error converted to -e

executable error message generated and job not submitted

file_limit converted to -lf option

hold used only for LoadLeveler scheduling

image_size error message generated and job not submitted

initialdir error message generated and job not submitted

input error message generated and job not submitted

notification If the option specified is

always converted to -mband -me options

error converted to -me option

start converted to -mb option

never ignored

complete converted to -me option

 Chapter 8. Routing Jobs to NQS Machines 149

notify_user converted to -mu option

output converted to -o option

preferences used only for LoadLeveler scheduling

queue places one copy of job in the LoadLeveler queue

requirements used only for LoadLeveler scheduling

restart If the option specified is

yes ignored

no converted to -nr option

rss_limit converted to -lw option

shell converted to -s option

stack_limit converted to -ls option

start_date used only for LoadLeveler scheduling

user_priority used only for LoadLeveler scheduling

Users can also submit an NQS script. In this case, any NQS options in the script
are used to schedule the job and once dispatched by LoadLeveler, the file is sent
to NQS unmodified.

LoadLeveler schedules these jobs the same as it schedules other jobs. When the
job is dispatched, LoadLeveler determines whether or not it is running in an NQS
class. If it is, an NQS command qsub is issued.

LoadLeveler monitors the job by periodically invoking a qstat command. A qstat
command is first issued for the pipe queue on the local host. If the request id is not
found, a qstat is issued for each queue listed in the NQS_query class keyword. If
the request id is still not found, starter marks the job as complete.

When a job is sent to an NQS class, llsubmit saves the following environment
variables:

 � HOME
 � LOGNAME
 � MAIL
 � PATH
 � SHELL
 � TZ
 � USER

When LoadLeveler dispatches the job, these environment variables are installed so
that they are available to qsub . llsubmit also saves the name of the current
directory (pwd) and the current value of the user file create mask (umask).

Task 4: Obtain Status of NQS Jobs
Users can obtain status of NQS jobs in the same way as they obtain status of
LoadLeveler jobs - either by using the llq command or by viewing the Jobs window
on the graphical user interface. The users can identify the NQS jobs by the class
field on the Jobs window.

150 Using and Administering LoadLeveler

LoadLeveler monitors the job until qstat shows the job is no longer in any specified
queue.

NQS does not provide job accounting. Therefore, the only accounting information
LoadLeveler will have is the total time for the job.

LoadLeveler will not send mail when the job completes. The LoadLeveler
notification option is translated to the appropriate NQS flag (me or mb) and NQS
will send the mail.

Task 5: Cancel NQS Jobs
Users can cancel NQS jobs using the LoadLeveler llcancel command. All they
need to know is the LoadLeveler job id for the NQS job. Once they submit their
request to cancel the job, LoadLeveler forwards their request to the appropriate
node and a qdel will be issued for the job for the queue listed in the the
NQS_submit and NQS_query keywords.

 NQS Scripts
Scripts originally written for NQS that contain NQS options are acceptable to
LoadLeveler. The options are mapped as closely as possible to the features
provided by LoadLeveler, but the exact function is not always available. NQS
options map to LoadLeveler as follows:

a startdate
e error
ke ignored
ko ignored
lc core_limit
ld data_limit
lf file_limit
lm rss_limit
lM ignored
ln ignored
ls stack_limit
lt cpu_limit
lT ignored
lv ignored
lw ignored
mb notification (always)
me notification (complete)
mu notify_user
nr restart = no
o output
p user_priority
q class
r ignored
re ignored
ro ignored
s shell
x environment = copyall
z suppresses messages but not mail

 Chapter 8. Routing Jobs to NQS Machines 151

152 Using and Administering LoadLeveler

 Command Reference

 Command Reference 153

154 Using and Administering LoadLeveler

 Chapter 9. LoadLeveler Commands

LoadLeveler provides two types of commands: those that are available to all users
of LoadLeveler, and those that are reserved for LoadLeveler administrators.
(Administrators are identified by the LOADL_ADMIN keyword in the configuration
file.)

The administrator commands can operate on the entire LoadLeveler job queue and
all machines configured. The user commands mainly affect those jobs submitted by
that user. Some commands, such as llhold , include options that can only be
performed by an administrator.

Summary of LoadLeveler Commands
The following table summarizes the LoadLeveler commands:

Command Description Who Can Issue?
For More
Information

llacctmrg Collects all individual machine history files together into a
single file.

Administrators See page 156

llcancel Cancels a submitted job. Users and
Administrators

See page 158

llclass Returns information about LoadLeveler classes. Users and
Administrators

See page 160

llctl Controls daemons on one or more machines in the
LoadLeveler cluster.

Administrators See page 163

llextSDR Extracts adapter information from the system data repository
(SDR).

Users and
Administrators

See page 167

llfavorjob Raises one or more jobs to the highest priority, or restores
original priority.

Administrators See page 171

llfavoruser Raises job(s) submitted by one or more users to the highest
priority, or restores original priority.

Administrators See page 173

llhold Holds or releases a hold on a job. Users and
Administrators

See page 174

llinit Initializes a new machine as a member of the LoadLeveler
cluster.

Administrators See page 177

llprio Changes the user priority of a submitted job step. Users and
Administrators

See page 179

llq Queries the status of LoadLeveler jobs. Users and
Administrators

See page 181

llstatus Queries the status of LoadLeveler machines. Users and
Administrators

See page 193

llsubmit Submits a job. Users and
Administrators

See page 200

llsummary Returns resource information on completed jobs. Administrators See page 202

 Chapter 9. LoadLeveler Commands 155

 llacctmrg

llacctmrg - Collect machine history files

 Purpose
Collects individual machine history files together into a single file specified as a
parameter.

 Syntax
llacctmrg [-?] [-H] [-v] [-h hostlist] [-d directory]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service
level, service level date, and operating system used to build the
command.

-h hostlist Specifies a blank delimited list of machines from which to collect
data. The default is all machines in the LoadLeveler cluster.

-d directory Specifies the directory to hold the new global history file. If not
specified, the directory specified in the GLOBAL_HISTORY
keyword in the configuration file is used.

 Description
This command by default collects data from all the machines identified in the
administration file. To override the default, specify a machine or a list of machines
using the -h flag.

When the llacctmrg command ends, accounting information is stored in a file
called globalhist. YYYYMMDDHHmm. Information such as the amount of
resources consumed by the job and other job-related data is stored in this file. In
this file:

YYYY indicates the year
MM indicates the month
DD indicates the day
HH indicates the hour
mm indicates the minute.

You can use this file as input to the llsummary command. For example, if you
created the file globalhist.199808301050 , you can issue llsummary
globalhist.199808301050 to record information on all machines.

Data on processes which fork child processes will be included in the file only if the
parent process waits for the child process to end. Therefore, complete data may
not be collected for jobs which are not composed of simple parent/child processes.
For example, if a LoadLeveler job invokes an rsh command to execute some
function on another machine, the resources consumed on the other machine will
not be collected as part of the accounting data.

156 Using and Administering LoadLeveler

 llacctmrg

 Examples
The following example collects data from machines named mars and pluto.

llacctmrg -h mars pluto

The following example collects data from the machine named mars and places the
data in an existing directory called merge .

llacctmrg -h mars -d merge

 Results
The following shows a sample system response from the llacctmrg -h mars -d
merge command.

llacctmrg: History transferred successfully from mars (1ðð8ð bytes)

 Chapter 9. LoadLeveler Commands 157

 llcancel

llcancel - Cancel a Submitted Job

 Purpose
Cancels one or more jobs from the LoadLeveler queue.

 Syntax
llcancel [-?] [-H] [-v] [-q] [-u userlist] [-h hostlist] [joblist]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service
level, service level date, and operating system used to build the
command.

-q Specifies quiet mode: print no messages other than error
messages.

-u userlist Is a blank-delimited list of users. When used with the -h option,
only the user's jobs monitored on the machines in the hostlist are
cancelled. When used alone, only the user's jobs monitored by
the machine issuing the command are cancelled.

-h hostlist Is a blank-delimited list of machine names. All jobs monitored on
machines in this list are cancelled. When issued with the -u
option, the userlist is used to further select jobs for cancellation.

joblist Is a blank-delimited list of jobs of the form host.jobid.stepid
where:

� host is the name of the machine to which the job was
submitted (delimited by dot). The default is the local machine.

� jobid is the job ID assigned to the job when it was submitted
using the llsubmit command. The jobid is required.

� stepid (delimited by dot) is the step ID assigned to the job
when it was submitted using the llsubmit command. The
default is to include all steps of the job.

The -u or -h flags override the host.jobid.stepid parameters.

When the -h flag is specified by a non-administrator, all jobs submitted from the
machines in hostlist by the user issuing the command are cancelled.

When the -h flag is specified by an administrator, all jobs submitted by the
administrator are canceled, unless the -u is also specified, in which case all jobs
both submitted by users in userlist and monitored on machines in hostlist are
cancelled.

Group administrators and class administrators are considered normal users unless
they are also LoadLeveler administrators.

158 Using and Administering LoadLeveler

 llcancel

 Description
When you issue llcancel , the command is sent to the negotiator. You should then
use the llq command to verify your job was cancelled. A job state of RM
(Removed) indicates the job was cancelled. A job state of RP (Remove Pending)
indicates the job is in the process of being cancelled.

When cancelling a job from a submit-only machine, you must specify the machine
name that scheduled the job. For example, if you submitted the job from machine
A, a submit-only machine, and machine B, a scheduling machine, scheduled the
job to run, you must specify machine B's name in the cancel command. If machine
A and B are in different sub-domains, you must specify the fully-qualified name of
the job in the cancel command. You can use the llq -l command to determine the
fully-qualified name of the job.

 Examples
This example cancels the job step 3 that is part of the job 18 that is scheduled by
the machine named bronze:

llcancel bronze.18.3

This example cancels all the job steps that are a part of job 8 that are scheduled by
the machine named gold.

llcancel gold.8

 Results
The following shows a sample system response for the llcancel gold.8 command.

llcancel: Cancel command has been sent to the central manager.

 Chapter 9. LoadLeveler Commands 159

 llclass

llclass - Query Class Information

 Purpose
Returns information about classes.

 Syntax
llclass [-?] [-H] [-v] [-l] [classlist]

 Flags
-? Provides a short usage message.

-H Provides entended help information.

-v Outputs the name of the command, release number, service
level, service level date, and operating system used to build the
command.

-l Specifies that a long listing be generated for each class for which
status is requested. If -l is not specified, then the standard listing
is generated.

classlist Is a blank-delimited list of classes for which you are requesting
status. If no classlist is specified, all classes are queried.

If you have more than a few classes configured for LoadLeveler, consider
redirecting the output to a file when you use the -l flag.

 Examples
This example generates a long listing for classes named silver and gold.

llclass -l silver gold

 Results
The Standard Listing: . The standard listing is generated when you do not specify
-l with the llclass command. The following is sample output from the llclass silver
command, where there are five silver classes configured in the cluster, with one
silver class job currently running.

à ð
Name MaxJobCPU MaxProcCPU Free Max Description

d+hh:mm:ss d+hh:mm:ss Slots Slots

silver ð+ðð:3ð:ðð ð+ðð:1ð:ðð 4 5 silver grade jobs
á ñ

The standard listing includes the following fields:

MaxJobCPU The CPU limit for all the processes in a job of this class. For a
parallel job, this is the CPU limit for all processes in a task.

MaxProcCPU The CPU limit for processes in this class.

Free Slots The number of free slots (available classes) on this machine.

Max Slots The total number of slots (configured classes) on this cluster.

160 Using and Administering LoadLeveler

 llclass

Description The description of this class.

The Long Listing: The long listing is generated when you specify the -l option on
the llclass command. The following is sample output from the llclass -l silver
command, where there are five silver classes configured in the cluster, with one
silver class job currently running.

à ð
=============== Class silver ==========
 Name: silver
 priority: 5ð
 admin: brownap
 NQS_class: F
 NQS_submit:
 NQS_query:
 max_processors: 1
 max_jobs: 3

class_comment: silver grade jobs
 wall_clock_limit: ð+ðð:6ð:ðð, -1
 job_cpu_limit: ð+ðð:3ð:ðð, -1
 cpu_limit: ð+ðð:1ð:ðð, -1

data_limit: -1, -1
core_limit: -1, -1
file_limit: -1, -1
stack_limit: -1, -1
rss_limit: -1, -1

 nice: 15
 free: 4
 maximum: 5

á ñ

The long listing includes these fields:

Name The name of the class

Priority The system priority of this class relative to other classes.

admin The list of administrators of this class.

NQS_class Indicates whether this class is a gateway for an NQS system.

NQS_submit The NQS queue where the job will be submitted.

NQS_query The NQS queues to query where the job has been dispatched.

max_processors The maximum number of processors than can be used for
parallel jobs.

max_jobs The maximum number of jobs the class can run at any time.

class_comment The text supplied by the administrator describing this class.

wall_clock_limit The hard and soft wall clock limits (the elapsed time for which
the job can run).

job_cpu_limit The hard and soft CPU limits for all processes in a job of this
class.

cpu_limit The hard and soft CPU limits for all processes in this class.

data_limit The hard and soft limits for the data area used for processes in
this class.

core_limit The hard and soft core size limits.

file_limit The hard and soft file size limits.

 Chapter 9. LoadLeveler Commands 161

 llclass

stack_limit The hard and soft stack size limits.

rss_limit The hard and soft rss size limits.

nice The nice value of jobs in this class.

free The number of classes available to new jobs.

maximum The total number of configured classes in this cluster.

 Related Information
Each machine periodically updates the central manager with a snapshot of its
environment. Since the information returned by llclass is a collection of these
snapshots, all taken at varying times, the total picture may not be completely
consistent.

162 Using and Administering LoadLeveler

 llctl

llctl - Control LoadLeveler Daemons

 Purpose
Controls LoadLeveler daemons on all members of the LoadLeveler cluster.

 Syntax
llctl [-?] [-H] [-v] [-q] [-g | -h host] keyword

 Flags
-? Provides a short usage message.

-H Provides entended help information.

-v Outputs the name of the command, release number, service level,
service level date, and operating system used to build the
command.

-q Specifies quiet mode: print no messages other than error
messages.

-g Indicates that the command should apply globally to all machines in
the administration file.

-h host Indicates that the command should apply to only this machine in the
LoadLeveler cluster. If neither -h nor -g is specified, the default is
the machine on which the llctl command is issued.

keyword Must be specified after all flags and can be the following:

recycle
Stops all LoadLeveler daemons and restarts them.

reconfig
Forces all daemons to reread the configuration files.

start
Starts the LoadLeveler daemons on the specified machine. You must have
rsh privileges to start LoadLeveler on a remote machine.

stop
Stops the LoadLeveler daemons on the specified machine.

purge list_of_machines
Forces a schedd to delete any queued transaction to the machines in the
list_of_machines. If all jobs on the listed machines have completed, and
there are no messages pending to that machine, this option is not
necessary.

This option is intended for recovery and cleanup after a machine has
permanently crashed or was inadvertantly removed from the LoadLeveler
cluster before all activity on it was quiesced. Do not use this option unless
the specified list_of_machines are guaranteed not to return to the
LoadLeveler cluster.

 Chapter 9. LoadLeveler Commands 163

 llctl

If you need to return the machine to the cluster later, you must clear all
files from the spool and execute directory of the machine which was
deleted.

drain [schedd|startd [classlist |allclasses]]
When you issue drain with no options, the following happens: (1) no more
LoadLeveler jobs can begin running on this machine, and (2) no more
LoadLeveler jobs can be submitted through this machine. When you issue
drain schedd , the following happens: (1) the schedd machine accepts no
more LoadLeveler jobs for submission, (2) jobs in the Starting or Running
state in the schedd queue are allowed to continue running, and (3) jobs in
the Idle state in the schedd queue are drained, meaning they will not get
dispatched. When you issue drain startd , the following happens: (1) the
startd machine accepts no more LoadLeveler jobs to be run, and (2) jobs
already running on the startd machine are allowed to complete. When you
issue drain startd classlist, the classes you specify which are available on
the startd machine are drained (made unavailable). When you issue drain
startd allclasses , all available classes on the startd machine are drained.

flush
Terminates running jobs on this machine and sends them back, in the Idle
state, to the negotiator to await redispatch (provided restart=yes in the job
command file). No new jobs are sent to this machine until resume is
issued. Forces a checkpoint if jobs are enabled for checkpointing.
However, the checkpoint gets cancelled if it does not complete within a five
minute period.

suspend
Suspends all jobs on this machine. This is not supported for parallel jobs.

resume [schedd|startd [classlist |allclasses]]
When you issue resume with no options, job submission and job execution
on this machine is resumed. When you issue resume schedd , the schedd
machine resumes the submission of jobs. When you issue resume startd ,
the startd machine resumes the execution of jobs. When you issue
resume startd classlist, the startd machine resumes the execution of those
job classes you specify which are also configured (defined on the
machine). When you issue resume startd allclasses , the startd machine
resumes the execution of all configured classes.

version
Displays version and release data at the screen.

capture eventname
Captures accounting data for all jobs running on the designated machines.
eventname is the name you associate with the data, and must be a
character string containing no blanks. For more information, see “Collecting
Job Resource Data Based on Events” on page 142.

 Description
This command sends a message to the master daemon on the target machine
requesting that action be taken on the members of the LoadLeveler cluster. Note
the following when using this command:

� After you make changes to the configuration files for a running cluster, be sure
to issue llctl reconfig . This command causes the LoadLeveler daemons to

164 Using and Administering LoadLeveler

 llctl

reread the configuration files, and prevents problems that can occur when the
LoadLeveler commands are using a new configuration while the daemons are
using an old configuration.

� The llctl drain startd classlist command drains classes on the startd machine,
and the startd daemon remains operational. If you reconfigure the daemon, the
draining of classes remains in effect. However, if the startd goes down and is
brought up again (either by the master daemon or by a LoadLeveler
administrator), the startd daemon is configured according to the global or local
configuration file in effect, and therefore the draining of classes is lost.

Draining all the classes on a startd machine is not equivalent to draining the
startd machine. When you drain all the classes, the startd enters the Idle state.
When you drain the startd, the startd enters the Drained state. Similarly,
resuming all the classes on a startd machine is not equivalent to resuming the
startd machine.

� If a parallel job is running on a machine that receives the llctl recycle
command, or the llctl stop and llctl start commands, the running job is
terminated. You can restart the job by resubmitting the job or by specifying the
restart=yes option in the job command file.

If a serial job is running on a machine that receives the llctl recycle command,
or the llctl stop and llctl start commands, the running job is terminated. You
can restart the job by resubmitting the job or by enabling checkpointing and
specifying the restart=yes option in the job command file.

� If you find that the llctl -g start command or the llctl -g * command is taking a
long time to complete, you should consider using the SP dsh command to
send llctl commands to multiple nodes in a parallel fashion. For more
information on dsh , see IBM RS/6000 Scalable POWERparallel Systems:
Administration Guide, (SH26-2486).

 Examples
This example stops LoadLeveler on the machine named iron:

llctl -h iron stop

This example starts the LoadLeveler daemons on all members of the LoadLeveler
cluster, starting with the central manager, as defined in the machine stanzas of the
administration file:

llctl -g start

This example causes the LoadLeveler daemons on machine iron to re-read the
configuration files, which may contain new configuration information for the iron
machine:

llctl -h iron reconfig

For the next three examples, suppose the classes small, medium, and large are
available on the machine called iron.

This example drains the classes medium and large on the machine named iron.

llctl -h iron drain startd medium large

This example drains the classes medium and large on all machines.

llctl -g drain medium large

 Chapter 9. LoadLeveler Commands 165

 llctl

This example resumes the classes medium and large on the machine named iron.

llctl -h iron resume startd medium large

This example illustrates how to capture accounting information on a work shift
called day on the machine iron:

llctl -h iron capture day

You can capture accounting information on all the machines in the LoadLeveler
cluster by using the -g option, or you can collect accounting information on the local
machine by simply issuing the following:

llctl capture day

Capturing information on the local machine is the default. For more information, see
“Collecting Job Resource Data Based on Events” on page 142.

Assume the machine earth has crashed while running jobs. Its hard disk needs to
be replaced. You try to cancel the jobs that were running on that machine. The
schedd marks the job Remove Pending until it gets confirmation from earth that the
jobs were removed. Since earth will be reinstalled, you need to inform schedd that
it should not wait for confirmation.

Assume the schedd is named mars, and the running jobs are named mars.1.0 and
mars.1.1. First you want to tell the negotiator to remove the jobs:

llcancel mars.1.ð
llcancel mars.1.1

Next, tell the schedd not to wait for confirmation from earth before marking the jobs
removed.

llctl -h mars purge earth

 Results
The following shows the result of the llctl -h mars purge earth command.

llctl: Sent purge command to host mars

166 Using and Administering LoadLeveler

 llextSDR

llextSDR - Extract adapter information from the SDR

 Purpose
Extracts adapter information from the system data repository (SDR) and creates
adapter and machine stanzas for each node in an RS/6000 SP partition. You can
use the information in these stanzas in the LoadLeveler administration file. This
command writes the stanzas to standard output.

 Syntax
llextSDR [-?] [-H] [-v] [-a adapter]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level,
service level date, and operating system used to build the
command.

-a adapter Specifies that the interface name of the given adapter on each node
is used as the label (machine stanza name) of the generated
machine stanza. If you do not specify an adapter, the label used is
the initial_hostname field of the Node class in the SDR.

 Description
This command is available to users and administrators.

In the SDR, the Node class contains an entry for each node in the SP partition. The
Adapter class contains an entry for each adapter configured on a node. This
command extracts the information in the Adapter class and creates an adapter
stanza. This command also creates a machine stanza which identifies the node and
the adapters attached to the node. The generated machine stanza also includes the
spacct_excluse_enable keyword, whose value is obtained from the
spacct_excluse_enable attribute in the SP class of the SDR. For more information
on adapter stanzas, see “Step 5: Specify Adapter Stanzas” on page 93. For more
information on machine stanzas, see “Step 1: Specify Machine Stanzas” on
page 73.

The partition for which information is extracted is either the default partition or that
specified with the SP_NAME environment variable. For the control workstation, the
default partition is the default system partition. For an SP node, the default
partition is the partition to which the node belongs.

You must issue this command on a machine with the ssp.clients file set installed. If
you issue this command from a non-SP workstation, you must set SP_NAME to the
IP address of the appropriate SDR instance for the partition.

 Chapter 9. LoadLeveler Commands 167

 llextSDR

 Examples
The following example creates adapter and machine stanzas for all nodes in a
partition:

llextSDR

The following example creates machine stanzas with each node's css0 interface
name as the label.

llextSDR -a cssð

 Results
You may need to alter or add information to the stanzas produced by this command
when you incorporate the stanzas into the administration file. For example,
administrators may want to have each network_type field use a value that reflects
the type of nodes installed on the network. Users will need to know the values used
for network_type so that they can specify an appropriate value in their job
command files.

Also, the output of this command includes fully-qualified machine names. If your
existing administration file uses short names, you may need to change either the
command output or your existing administration file so that you use either all
fully-qualified names or all short names.

The following shows sample output for the llextSDR command, where the default
partition is k4s. This sample output shows the first two nodes in the partition.

168 Using and Administering LoadLeveler

 llextSDR

k4inst.ppd.pok.ibm.com: type = machine
 adapter_stanzas = k4nð1.ppd.pok.ibm.com k4snð1.ppd.pok.ibm.com
 k4inst.ppd.pok.ibm.com
 spacct_excluse_enable = true

k4nð1.ppd.pok.ibm.com: type = adapter
 adapter_name = en1
 network_type = ethernet
 interface_address = 9.114.45.65
 interface_name = k4nð1.ppd.pok.ibm.com

k4snð1.ppd.pok.ibm.com: type = adapter
 adapter_name = cssð
 network_type = switch
 interface_address = 9.114.45.129
 interface_name = k4snð1.ppd.pok.ibm.com
 switch_node_number = ð

k4inst.ppd.pok.ibm.com: type = adapter
 adapter_name = enð
 network_type = ethernet
 interface_address = 9.114.45.1
 interface_name = k4inst.ppd.pok.ibm.com

k4nð3.ppd.pok.ibm.com: type = machine
 adapter_stanzas = k4snð3.ppd.pok.ibm.com k4nð3.ppd.pok.ibm.com
 spacct_excluse_enable = true

k4snð3.ppd.pok.ibm.com: type = adapter
 adapter_name = cssð
 network_type = switch
 interface_address = 9.114.45.131
 interface_name = k4snð3.ppd.pok.ibm.com
 switch_node_number = 2

k4nð3.ppd.pok.ibm.com: type = adapter
 adapter_name = enð
 network_type = ethernet
 interface_address = 9.114.45.67
 interface_name = k4nð3.ppd.pok.ibm.com
 .
 .
 .

The following shows sample output for the llextSDR -a css0 command for a single
node.

 Chapter 9. LoadLeveler Commands 169

 llextSDR

k1ðsnð9.ppd.pok.ibm.com: type = machine
 adapter_stanzas = k1ðsnð9.ppd.pok.ibm.com k1ðnð9.ppd.pok.ibm.com
 spacct_excluse_enable = true

k1ðsnð9.ppd.pok.ibm.com: type = adapter
 adapter_name = cssð
 network_type = switch
 interface_address = 9.114.51.137
 interface_name = k1ðsnð9.ppd.pok.ibm.com
 switch_node_number = 8

k1ðnð9.ppd.pok.ibm.com: type = adapter
 adapter_name = enð
 network_type = ethernet
 interface_address = 9.114.51,73
 interface_name = k1ðnð9.ppd.pok.ibm.com

170 Using and Administering LoadLeveler

 llfavorjob

llfavorjob - Reorder System Queue by Job

 Purpose
Sets specified jobs to a higher system priority than all jobs that are not favored.
This command also unfavors previously favored job(s), restoring the original priority,
when you specify the -u flag.

 Syntax
llfavorjob [-?] [-H] [-v] [-q] [-u] joblist

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service
level, service level date, and operating system used to build the
command.

-q Specifies quiet mode: print no messages other than error
messages.

-u Unfavors previously favored jobs, requeuing them according to
their original priority levels.

joblist Is a blank-delimited list of jobs of the form host.jobid.stepid
where:

� host is the name of the machine to which the job was
submitted (delimited by dot). The default is the local machine.

� jobid is the job ID assigned to the job by LoadLeveler when it
was submitted using the llsubmit command. jobid is required.

� stepid (delimited by dot) Is the job step ID assigned to the job
by LoadLeveler when it was submitted using the llsubmit
command. The default is to include all members of the job.

 Description
If this command is issued against jobs that are already running, it has no effect. If
the job vacates, however, and returns to the queue, the job gets re-ordered with the
new priority.

If more than one job is affected by this command, then the jobs are ordered by the
sysprio expression and are scanned before the not favored jobs. However, favored
jobs which do not match the job requirements with available machines may run
after not favored jobs. This command remains in effect until reversed with the -u
option.

 Chapter 9. LoadLeveler Commands 171

 llfavorjob

 Examples
This example assigns jobs 12.4 on the machine iron and 8.2 on zinc the highest
priorities in the system, with the jobs ordered by the sysprio expression.

llfavorjob iron.12.4 zinc.8.2

This example unfavors jobs 12.4 on the machine iron and 8.2 on the machine zinc.

llfavorjob -u iron.12.4 zinc.8.2

172 Using and Administering LoadLeveler

 llfavoruser

llfavoruser - Reorder System Queue by User

 Purpose
Sets a user's job(s) to the highest priority in the system, regardless of the current
setting of the job priority. Jobs already running are not affected. This command also
unfavors the user's job(s), restoring the original priority, when you specify the -u
flag.

 Syntax
llfavoruser [-?] [-H] [-v] [-q] [-u] userlist

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level,
service level date, and operating system used to build the
command.

-q Specifies quiet mode: print no messages other than error
messages.

-u Unfavors previously favored users, reordering their job(s) according
to their original priority level(s). If -u is not specified, the user's
job(s) are favored.

userlist Is a blank-delimited list of users whose jobs are given the highest
priority. If -u is specified, userlist jobs are unfavored.

 Description
This command affects your current and future jobs until you remove the favor.

When the central manager daemon is restarted, any favor applied to users is
revoked.

The user's jobs still remain ordered by user priority (which may cause jobs for the
user to swap sysprio). If more than one user is affected by this command, the jobs
of favored users are ordered by sysprio and are scanned before the jobs of not
favored users. However, jobs of favored users which do not match job
requirements with available machines may run after jobs of not favored users.

 Examples
This example grants highest priority to all queued jobs submitted by users ellen
and fred according to the sysprio expression.

llfavoruser ellen fred

This example unfavors all queued jobs submitted by users ellen and fred.

llfavoruser -u ellen fred

 Chapter 9. LoadLeveler Commands 173

 llhold

llhold - Hold or Release a Submitted Job

 Purpose
Places jobs in user hold or system hold and releases jobs from both types of hold.
Users can only move their own jobs into and out of user hold. Only LoadLeveler
administrators can move jobs into and release them from system hold.

 Syntax
llhold [-?] [-H] [-v] [-q] [-s] [-r] [-u userlist] [-h hostlist] [joblist]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level,
service level date, and operating system used to build the
command.

-q Specifies quiet mode: print no messages other than error
messages.

-s Puts job(s) in system hold. Only a LoadLeveler administrator can
use this option.

If neither -s nor -r is specified, LoadLeveler puts the job(s) in user
hold.

-r Releases a job from hold. A job in user hold is released unless it is
also in system hold, where it remains. A job in system hold is
released unless it is also in user hold, where it remains.

Only a LoadLeveler administrator can release jobs from system
hold. Only an administrator or the owner of a job can release it from
user hold.

If neither -s nor -r is specified, LoadLeveler puts the job(s) in user
hold.

-u userlist Is a blank-delimited list of users. When used with the -h option, only
the user's jobs monitored on the machines in the hostlist are held or
released. When used alone, only the user's jobs monitored on the
schedd machine are held or released.

-h hostlist Is a blank-delimited list of machine names. All jobs monitored on
machines in this list are held or released. When issued with the -u
option, the userlist is used to further select jobs for holding or
releasing.

When issued by a non-administrator, this option only acts upon jobs
that user has submitted to the machines in hostlist.

When issued by an administrator, all jobs monitored on the
machines are acted upon unless the -u option is also used. In that
case, the userlist is also part of the selection process, and only jobs
both submitted by users in userlist and monitored on the machines
in the hostlist are acted upon.

174 Using and Administering LoadLeveler

 llhold

joblist Is a blank-delimited list of jobs of the form host.jobid.stepid where:

� host is the name of the machine to which the job was submitted
(delimited by dot). The default is the local machine.

If the job was submitted from a submit-only machine, this is the
name of the schedd machine that sent the job to the negotiator.

� jobid is the job ID assigned to the job when it was submitted
using the llsubmit command. jobid is required.

� stepid (delimited by dot) is the step ID assigned to the job by
LoadLeveler when it was submitted using the llsubmit
command. The default is to include all steps of the job.

 Description
This command does not affect a job step that is running unless the job step
attempts to enter the Idle state. At this point, the job step is placed in the Hold
state.

To ensure a job is released from both system hold and user hold, the administrator
must issue the command with -r specified to release it from system hold. The
administrator or the submitting user can reissue the command to release the job
from user hold.

This command will fail if:

� a non-administrator attempts to move a job into or out of system hold.

� a non-administrator attempts to move a job submitted by someone else into or
out of user hold.

 Examples
This example places job 23, job step 0 and job 19, job step 1 on hold.

llhold 23.ð 19.1

This example releases job 23, job step 0, job 19, job step 1, and job 20, job step 3
fron a hold state.

llhold -r 23.ð 19.1 2ð.3

This example places all jobs from users abe, barbara, and carol2 in system hold.

llhold -s -u abe barbara carol2

This example releases from a hold state all jobs on machines bronze, iron, and
steel.

llhold -r -h bronze iron steel

This example releases from a hold state all jobs on machines bronze, iron, and
steel that smith submitted.

llhold -r -u smith -h bronze iron steel

 Chapter 9. LoadLeveler Commands 175

 llhold

 Results
The following shows a sample system response for the llhold -r -h bronze
command.

llhold: Hold command has been sent to the central manager.

176 Using and Administering LoadLeveler

 llinit

llinit - Initialize Machines in the LoadLeveler Cluster

 Purpose
Initializes a new machine as a member of the LoadLeveler hardware resource
cluster

 Syntax
llinit [-?] [-H] [-q] [-prompt] [-local pathname] [-release pathname] [-cm machine]
[-debug]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-q Specifies quiet mode: print no messages other than error
messages.

-prompt Prompts or leads you through a set of questions that help
you to complete the llinit command.

-local pathname Where pathname is the local directory on which to create the
spool, execute, and log sub-directories. The default, if this
flag is not used, is the home directory.

There must be a unique local directory for each LoadLeveler
cluster member.

-release pathname Where pathname is the release directory, where the
LoadLeveler bin, lib, man, include, and samples
subdirectories are located. The default, if this flag is not
used, is the /usr/lpp/LoadL/full directory.

-cm machine Where machine is the central manager machine, where the
negotiator daemon runs.

-debug Displays a large amount of messages, tracing the path
through llinit during execution. This is intended for
debugging purposes only.

 Description
This command runs once on each machine during the installation process. It must
be run by the user ID you have defined as the LoadLeveler user ID. The log, spool,
and execute directories are created with the correct modes and ownerships. The
LoadLeveler configuration and administration files, LoadL_config and
LoadL_admin , respectively, are copied from LoadLeveler's release directory to
LoadLeveler's home directory. The local configuration file, LoadL_config.local , is
copied from LoadLeveler's release directory to LoadLeveler's local directory.

llinit initializes a new machine as a member of the LoadLeveler resource cluster by
doing the following:

� Creates the following LoadLeveler subdirectories with the given permissions:

spool subdirectory, with permissions set to 700.

 Chapter 9. LoadLeveler Commands 177

 llinit

execute subdirectory, with permissions set to 1777.
log subdirectory, with permissions set to 775.

� Copies the LoadL_config and LoadL_admin files from the release directory
samples subdirectory into the loadl home directory.

� Copies the LoadL_config.local file from the release directory samples
subdirectory into the local directory.

� Creates symbolic links from the loadl home directory to the spool, execute, and
log subdirectories and the LoadL_config.local file in the local directory (if
home and local directories are not identical).

� Creates symbolic links from the home directory to the bin, lib, man, samples,
and include subdirectories in the release directory.

� Updates the LoadL_config with the release directory name.

� Updates the LoadL_admin with the central manager machine name.

Before running llinit ensure that your HOME environment variable is set to
LoadLeveler's home directory. To run llinit you must have:

� Write privileges in the LoadLeveler home directory
� Write privileges in the LoadLeveler release directory
� Write privileges in the LoadLeveler local directory.

 Examples
The following example initializes a machine, assigning /var/loadl as the local
directory, /usr/lpp/LoadL/full as the release directory, and the machine named
bronze as the central manager.

llinit -local /var/loadl -release /usr/lpp/LoadL/full -cm bronze

 Results
The following is sample output from this command:

llinit -local /home/ll_admin -release /usr/lpp/LoadL/full -cm mars

llinit: creating directory "/home/ll_admin/spool"
llinit: creating directory "/home/ll_admin/log"
llinit: creating directory "/home/ll_admin/execute"
llinit: set permission "7ðð" on "/home/ll_admin/spool"
llinit: set permission "775" on "/home/ll_admin/log"
llinit: set permission "1777" on "/home/ll_admin/execute"
llinit: creating file "/home/ll_admin/LoadL_admin"
llinit: creating file "/home/ll_admin/LoadL_config"
llinit: creating file "/home/ll_admin/LoadL_config.local"
llinit: editing file /home/ll_admin/LoadL_config
llinit: editing file /home/ll_admin/LoadL_admin
llinit: creating symbolic link "/home/ll_admin/bin -> /usr/lpp/LoadL/full/bin"
llinit: creating symbolic link "/home/ll_admin/lib -> /usr/lpp/LoadL/full/lib"
llinit: creating symbolic link "/home/ll_admin/man -> /usr/lpp/LoadL/full/man"
llinit: creating symbolic link "/home/ll_admin/samples -> /usr/lpp/LoadL/full/samples"
llinit: creating symbolic link "/home/ll_admin/include -> /usr/lpp/LoadL/full/include"
llinit: program complete.

178 Using and Administering LoadLeveler

 llprio

llprio - Change the User Priority of Submitted Job Steps

 Purpose
Changes the user priority of one or more job steps in the LoadLeveler queue. You
can adjust the priority by supplying a + (plus) or − (minus) immediately followed by
an integer value. llprio does not affect a job step that is running, even if its priority
is lower than other jobs steps, unless the job step goes into the Idle state.

 Syntax
llprio [-?] [-H] [-v] [-q] [+integer | −integer | -p priority] joblist

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service
level, service level date, and operating system used to build the
command.

-q Specifies quiet mode: print no messages other than error
messages.

+ | − integer Operates on the current priority of the job step, making it higher
(closer to execution) or lower (further from execution) by adding
or subtracting the value of integer.

-p priority Is the new absolute value for priority. The valid range is 0–100
(inclusive) where 0 is the lowest possible priority and 100 is
highest.

joblist Is a blank-delimited list of jobs of the form host.jobid.stepid
where:

� host is the name of the machine to which the job step was
submitted (delimited by dot). The default is the local machine.

If the job step was submitted from a submit-only machine, this
is the name of the machine where the schedd daemon that
sent the job to the negotiator resides.

� jobid is the job ID assigned to the job when it was submitted
using the llsubmit command. jobid is required.

� stepid (delimited by dot) is the job step ID assigned to the job
when it was submitted using the llsubmit command.

 Description
The user priority of a job step ranges from 0 to 100 inclusively, with higher numbers
corresponding to greater priority. The default priority is 50. Only the owner of a job
step or the LoadLeveler administrator can change the priority of that job step. Note
that the priority is not the UNIX nice priority.

Priority changes resulting in a value less than 0 become 0.

 Chapter 9. LoadLeveler Commands 179

 llprio

Priority changes resulting in a value greater than 100 become 100.

Any change to a job step's priority applied by a user is relative only to that user's
other job steps in the same class. If you have three job steps enqueued, you can
reorder those three job steps with llprio but the result does not affect job steps
submitted by other users, regardless of their priority and position in the queue.

See “Setting and Changing the Priority of a Job” on page 29 for more information.

 Examples
This example raises the priority of job 4, job step 1 submitted to machine bronze by
a value of 25.

llprio +25 bronze.4.1

This example sets the priority of job 18, job step 4 submitted to machine silver to
100, the highest possible value.

llprio -p 1ðð silver.18.4

 Results
The following shows a sample system response for the llprio -p 100 silver.18.4
command.

llprio: Priority command has been sent to the central manager.

180 Using and Administering LoadLeveler

 llq

llq - Query Job Status

 Purpose
Returns information about jobs that have been dispatched.

 Syntax
llq [-?] [-H] [-v] [-x] [-s] [-l] [joblist] [-u userlist] [-h hostlist] [-c classlist]
[-f category_list] [-r category_list]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service
level, service level date, and operating system used to build the
command.

-x Provides extended information about the selected job. If the -x
flag is used with the -r, -s, or -f flag, an error message is
generated.

CPU usage and other resource consumption information on active
jobs can only be reported using the -x flag if the LoadLeveler
administrator has enabled it by specifying A_ON and A_DETAIL
for the ACCT keyword in the LoadLeveler configuration file.

Normally, llq connects with the central manager to obtain job
information. When you specify -x, llq connects to the schedd
machine that received the specified job to get extended job
information.

When specified without -l, CPU usage for active jobs is reported
in the short format. Using -x can produce a very long report and
can cause excess network traffic.

-s Provides information on why a selected list of jobs remain in the
NotQueued, Idle or Deferred state. Along with this flag, users
must specify a list of jobs. The user can also optionally supply a
list of machines to be considered when determining why the
job(s) cannot run. If a list of machines is not provided, the default
is the list of machines in the LoadLeveler cluster. For each job,
llq determines why the job remains in one of the given states
instead of Running.

-l Specifies that a long listing be generated for each job for which
status is requested. Detailed information can only be displayed for
jobs belonging to the user issuing the llq command. If status is
requested for a job which does not belong to the user, an error
message is generated and no further output is displayed.
Administrators can always display detailed information about any
job. Fields included in the long listing are shown in “Results” on
page 183. Only the owner of a job and the administrator can use
this option.

 Chapter 9. LoadLeveler Commands 181

 llq

If -l is not specified, then the standard listing is generated as
shown in “Results” on page 183.

joblist Is a blank-delimited list of jobs of the form host.jobid.stepid
where:

� host is the name of the machine to which the job was
submitted (delimited by dot). The default is the local machine.

If the job was submitted from a submit-only machine, this is
the name of the machine where the schedd daemon that sent
the job to the negotiator resides.

� jobid is the job id assigned to the job when it was submitted
using the llsubmit command.

� stepid (delimited by dot) Is the step id assigned to the job
when it was submitted using the llsubmit command. The
default is to include all members of the cluster.

-u userlist Is a blank-delimited list of users. When used with the -h option,
only the user's jobs monitored on the machines in the hostlist are
queried. When used alone, only the user's jobs monitored on the
schedd machine are queried.

-h hostlist Is a blank-delimited list of machines. If the -s flag is not specified,
all jobs monitored on machines in this list are queried. If the -s
flag is specified, the list of machines is considered when
determining why a job remains in Idle state. When issued with the
-u option, the userlist is used to further select jobs for querying.

-c classlist Is a blank-delimited list of classes. When used with -h, only those
jobs monitored on the machines in the hostlist are queried.

-f category_list Is a blank-delimited list of categories you want to query. Each
category you specify must be preceded by a percent sign. The
category_list cannot contain duplicate entries. This flag allows you
to create a customized version of the standard llq listing. You
cannot use this flag with the -l flag. The output fields produced by
this flag all have a fixed length. The output is displayed in the
order in which you specify the categories. category_list can be
one or more of the following:

%a Account number
%c Class
%cc Completion code
%dc Completion date
%dd Dispatch Date
%dh Hold date
%dq Queue date
%gl LoadLeveler group
%gu UNIX group
%h Host (First hostname if more than one is allocated to the job)
%id Step ID
%is Virtual image size
%jn Job name
%jt Job type

182 Using and Administering LoadLeveler

 llq

%nh Number of hosts allocated to the job
%o Job owner
%p User priority
%sn Step name
%st Status

-r category_list Is a blank-delimited list of formats (categories) you want to query.
Each category you specify must be preceded by a percent sign.
The category_list cannot contain duplicate entries. This flag
allows you to create a customized version of the standard llq
listing. You cannot use this flag with the -l flag. The output
produced by this flag is considered raw, in that the fields can be
variable in length. Output fields are separated by an exclamation
point (!). The output is displayed in the order in which you specify
the formats. category_list can be one or more of the formats
listed under the -f flag.

If the -u or -h options are not specified, and if no jobid is specified, then all jobs are
queried.

The -u and -h options override the jobid parameters.

 Examples
This example generates a long listing for job 8, job step 2 submitted to machine
gold.

llq -l gold.8.2

This example generates a standard listing for all job steps of job name 12
submitted to the local machine.

llq 12

 Results
In this section, the term “job step” refers to either a serial job step or a parallel task.

Standard Listing: The standard listing is generated when you do not specify the -l
option with the llq command. The following is sample output from the llq -h mars
command, where the machine mars has two jobs running and one job waiting.

à ð
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
mars.498.ð brownap 5/2ð 11:31 R 1ðð silver mars
mars.499.ð brownap 5/2ð 11:31 R 5ð No_Class mars
mars.5ð1.ð brownap 5/2ð 11:31 I 5ð silver

3 job steps in queue, 1 waiting, ð pending, 2 running, ð held.
á ñ

The standard listing includes the following fields:

Id job identifier presented as host.jobid.stepid. The job ID may be
shortened if the job ID is a name which would be too long to fit into
the standard format. The name is shortened by removing the
domain name from the host portion of the job ID. In this case, a

 Chapter 9. LoadLeveler Commands 183

 llq

dash (-) is added to the shortened name to indicate that it was
shortened. To see the full job ID run llq with the -l flag.

Owner userid of the job submitter.

Submitted date and time of job submission.

ST current job status (state). Job status can be:

C Completed
CA Cancelled
CP Complete Pending
D Deferred
H User Hold
HS User Hold and System Hold
I Idle
NR Not Run
NQ Not Queued
P Pending
R Running
RM Removed
RP Remove Pending
S System Hold
ST Starting
SX Submission Error
TX Terminated
V Vacated
VP Vacate Pending
X Rejected
XP Reject Pending

For a detailed explanation of job states, see “LoadLeveler Job States” on
page 18.

PRI user priority of the job, where the values are defined with the
user_priority keyword in the job command file or changed by the
llprio command. See “llprio - Change the User Priority of Submitted
Job Steps” on page 179

Class job class.

Running On if running, the machine the job is running on. This is blank when the
job is not running. For parallel jobs, only the first machine is shown.

Customized, Formatted Standard Listing: A customized and formatted standard
listing is generated when you specify llq with the -f flag. The following is sample
output from this command:

llq -f %id %c %dq %dd %gl %h

à ð
Step Id Class Queue Date Disp. Date LL Group Running On
----------------- ---------- ----------- ----------- ---------- ---------------
ll6.2.ð No_Class ð4/ð8 ð9:19 ð4/ð8 ð9:21 No_Group ll6.pok.ibm.com
ll6.1.ð No_Class ð4/ð8 ð9:19 ð4/ð8 ð9:21 No_Group ll6.pok.ibm.com
ll6.3.ð No_Class ð4/ð8 ð9:19 ð4/ð8 ð9:21 No_Group ll5.pok.ibm.com

3 job steps in queue, ð waiting, ð pending, 3 running, ð held
á ñ

184 Using and Administering LoadLeveler

 llq

Customized, Unformatted Standard Listing: A customized and unformatted (raw)
standard listing is generated when you specify llq with the -r flag. Output fields are
separated by an exclamation point (!). The following is sample output from this
command:

llq -r %id %c %dq %dd %gl %h

à ð
ll6.pok.ibm.com.2.ð!No_Class!ð4/ð8 ð9:19!ð4/ð8 ð9:21!No_Group!ll6.pok.ibm.com
ll6.pok.ibm.com.1.ð!No_Class!ð4/ð8 ð9:19!ð4/ð8 ð9:21!No_Group!ll6.pok.ibm.com
ll6.pok.ibm.com.3.ð!No_Class!ð4/ð8 ð9:19!ð4/ð8 ð9:21!No_Group!ll5.pok.ibm.com

á ñ

The Long Listing: The long listing is generated when you specify the -l option with
the llq command. This section contains sample output for two llq commands: one
querying a serial job and one querying a parallel job. Following the sample output
is an explanation of all possible fields displayed by the llq command.

The following is sample output for the llq -l command for the serial job
“ll6.pok.ibm.com.2.”

 Chapter 9. LoadLeveler Commands 185

 llq

à ð
=============== Job Step ll6.pok.ibm.com.2.ð ===============

Job Step Id: ll6.pok.ibm.com.2.ð
Job Name: ll6.pok.ibm.com.2
Step Name: ltest1

Structure Version: 9
 Owner: loadl

Queue Date: Wed Apr 8 ð9:19:21 1998
 Status: Running

Dispatch Time: Wed Apr 8 ð9:21:4ð 1998
 Completion Date:
 Completion Code:

User Priority: 5ð
 user_sysprio: ð
 class_sysprio: 3ð
 group_sysprio: ð

System Priority: -1116
 q_sysprio: -1116
 Notifications: Complete
 Virtual Image Size: 1 kilobytes
 Checkpoint:
 Restart: yes

Hold Job Until:
 Cmd: c_test1.cmd
 Args:
 Env:
 In: /dev/null
 Out: c_test1_cmd.ll6.2.ð.out
 Err: c_test1_cmd.ll6.2.ð.err
Initial Working Dir: /home/loadl/TEST_DIR
 Dependency:

Requirements: ((Arch == "R6ððð") && (OpSys == "AIX43"))
 Preferences:

Step Type: Serial
 Min Processors:
 Max Processors:

Allocated Host: ll6.pok.ibm.com
Submitting host: ll6.pok.ibm.com

Notify User: loadl@ll6.pok.ibm.com
 Shell: /bin/ksh
LoadLeveler Group: No_Group

 Class: No_Class
Cpu Hard Limit: -1
Cpu Soft Limit: -1
Data Hard Limit: -1
Data Soft Limit: -1
Core Hard Limit: -1
Core Soft Limit: -1
File Hard Limit: -1
File Soft Limit: -1
Stack Hard Limit: -1
Stack Soft Limit: -1
Rss Hard Limit: -1
Rss Soft Limit: -1

Step Cpu Hard Limit: -1
Step Cpu Soft Limit: -1
Wall Clk Hard Limit: 3ððð seconds
Wall Clk Soft Limit: -1
 Comment:
 Account:

Unix Group: loadl
 User Space Windows: ð

NQS Submit Queue:
NQS Query Queues:

á ñ

The following is sample output for the llq -l -x k10n10.3.0 command, where
k10n10.3.0 is a parallel job.

186 Using and Administering LoadLeveler

 llq

à ð
=============== Job Step k1ðn1ð.ppd.pok.ibm.com.3.ð ===============

Job Step Id: k1ðn1ð.ppd.pok.ibm.com.3.ð
Job Name: k1ðn1ð.ppd.pok.ibm.com.3
Step Name: ð

Structure Version: 9
 Owner: richc

Queue Date: Wed Apr 8 13:33:1ð 1998
 Status: Running
 Dispatch Time:
 Start Time:
 Completion Date:
 Completion Code:

User Priority: 5ð
 user_sysprio: ð
 class_sysprio: ð
 group_sysprio: ð

System Priority: ð
 q_sysprio: ð
 Notifications: Always
 Virtual Image Size: 5ð6 kilobytes
 Checkpoint:
 Restart: yes

Hold Job Until:
 Env:
 In: /dev/null
 Out: mpi.out
 Err: mpi.err
Initial Working Dir: /u/richc/sp/mpi
 Dependency:

Step Type: General Parallel
Submitting host: k1ðn1ð.ppd.pok.ibm.com

Notify User: richc@k1ðn1ð.ppd.pok.ibm.com
 Shell: /bin/ksh
LoadLeveler Group: No_Group

 Class: No_Class
Cpu Hard Limit: -1
Cpu Soft Limit: -1
Data Hard Limit: -1
Data Soft Limit: -1
Core Hard Limit: -1
Core Soft Limit: -1
File Hard Limit: -1
File Soft Limit: -1
Stack Hard Limit: -1
Stack Soft Limit: -1
Rss Hard Limit: -1
Rss Soft Limit: -1

Step Cpu Hard Limit: -1
Step Cpu Soft Limit: -1
Wall Clk Hard Limit: 6ððð seconds
Wall Clk Soft Limit: 5965 seconds
 Comment:
 Account:

Unix Group: usr
NQS Submit Queue:
NQS Query Queues:

Negotiator Messages:
á ñ

 Chapter 9. LoadLeveler Commands 187

 llq

à ð
--------------- Detail for k1ðn1ð.ppd.pok.ibm.com.3.ð ---------------

Running Host: k1ðnð9.ppd.pok.ibm.com
Machine Speed: 1.ðððððð

Starter User Time: ð+ðð:ðð:ðð.17ðððð
Starter System Time: ð+ðð:ðð:ðð.3ððððð
 Starter Total Time: ð+ðð:ðð:ðð.47ðððð

Starter maxrss: 1256
Starter ixrss: 5628
Starter idrss: 9552
Starter isrss: ð
Starter minflt: 793
Starter majflt: 1ð
Starter nswap: ð

Starter inblock: ð
Starter oublock: ð
Starter msgsnd: ð
Starter msgrcv: ð

Starter nsignals: ð
Starter nvcsw: 399
Starter nivcsw: 31
Step User Time: ð+ðð:ðð:ðð.4ðððð

Step System Time: ð+ðð:ðð:ðð.4ðððð
Step Total Time: ð+ðð:ðð:ðð.8ðððð

Step maxrss: 96ð
Step ixrss: 212ð
Step idrss: 2436
Step isrss: ð
Step minflt: 273
Step majflt: 12
Step nswap: ð

Step inblock: ð
Step oublock: ð
Step msgsnd: ð
Step msgrcv: ð

Step nsignals: ð
Step nvcsw: ð
Step nivcsw: ð

Node

 Name :
 Requirements :
 Preferences :
 Node minimum : 2
 Node maximum : 2
 Node actual : 2

Allocated Hosts : k1ðnð9.ppd.pok.ibm.com:RUNNING:cssð(ð,MPI,us),
 cssð(1,MPI,us)
 + k1ðn1ð.ppd.pok.ibm.com:RUNNING:cssð(ð,MPI,us),
 cssð(1,MPI,us)

á ñ

188 Using and Administering LoadLeveler

 llq

à ð
 Master Task

 Executable : /u/richc/sp/poe/poe.musppa
Exec Args : /u/richc/sp/mpi/fvt_mpi -v 131ð72 -euilib us -ilevel 6

-labelio yes -pmdlog yes
Num Task Inst: 1
Task Instance: k1ðnð9:-1

 Task

Num Task Inst: 4
Task Instance: k1ðnð9:ð:cssð(ð,MPI,us)
Task Instance: k1ðnð9:1:cssð(1,MPI,us)
Task Instance: k1ðn1ð:2:cssð(ð,MPI,us)
Task Instance: k1ðn1ð:3:cssð(1,MPI,us)

á ñ

The long listing includes these fields:

Job Step ID job step identifier.

Job Name name of the job.

Step Name name of the job step

Structure Version internal version identifier.

Owner userid of the job submitter.

Queue Date date and time job was received by LoadLeveler.

Status status (state) of the job. Job status can be:

 Cancelled
 Completed
 Complete Pending
 Deferred
 Idle
 Not Queued
 Not Run
 Pending
 Rejected
 Reject Pending
 Removed
 Remove Pending
 Running
 Starting
 Submission Error
 System Hold

System and User Hold
 Terminated
 User Hold
 Vacated
 Vacate Pending

For a detailed explanation of these job states, see “LoadLeveler Job States” on
page 18.

Dispatch Time the time the job was dispatched.

 Chapter 9. LoadLeveler Commands 189

 llq

Completion Date date and time job completed or exited.

Completion Code the status returned by the wait3 UNIX system call.

User Priority priority of the job, as specified by the user in the job
command, or changed by the llprio command.

user_sysprio user system priority of the job, where the value is defined
in the administration file.

class_sysprio class priority of the job, where the value is defined in the
administration files.

group_sysprio group priority of the job, where the value is defined in the
administration files.

System Priority overall system priority of the job, where the value is
defined by the SYSPRIO expression in the configuration
file.

q_sysprio adjusted system priority of the job (See “How Does a Job's
Priority Affect Dispatching Order?” on page 30.)

Notifications notification status for the job, where:

always
indicates notification is sent through the mail for all four
notification categories below.

complete
indicates notification is sent through the mail only when
the job completes.

error
indicates notification is sent through the mail only when
the job terminates abnormally.

never
indicates notification is never sent.

start
indicates notification is sent through the mail only when
starting or restarting the job.

Virtual Image Size of the executable that was submitted.

Checkpoint checkpoint status (yes or no)

Restart restart status (yes or no)

Hold Job Until job is deferred until this date and time.

Cmd name of the executable that was submitted.

Args arguments that were passed to the executable.

Env environment variables to be set before executable runs.
Appears only when the -x option is specified.

In file to be used for stdin.

Out file to be used for stdout.

Err file to be used for stderr.

190 Using and Administering LoadLeveler

 llq

Init Working Directory
directory from which the job is run. The relative directory
from which the stdio files are accessed, if appropriate.

Dependency job requirements as specified when the job was submitted.

Requirements job requirements as specified when the job was submitted.

Preferences job preferences as specified when the job was submitted.

Job Type type of job (serial or parallel).

Min Processors minimum number of processors needed for this job.

Max Processors maximum number of processors needed for this job.

Allocated Hosts the machines that have been allocated for this job.

Submitting Host name of machine to which job is submitted the job.

Notify User user to be notified by mail of job status.

Shell shell to be used when job is run.

LL_Group the LoadLeveler group associated with the job.

Class job class as specified when job was submitted.

CPU Hard Limit CPU hard limit as specified when job was submitted.

CPU Soft Limit CPU soft limit as specified when job was submitted.

Data Hard Limit Data hard limit as specified when job was submitted.

Data Soft Limit Data soft limit as specified when job was submitted.

Core Hard Limit Core hard limit as specified when job was submitted.

Core Soft Limit Core soft limit as specified when job was submitted.

File Hard Limit File hard limits as specified when job was submitted.

File Soft Limit File soft limit as specified when job was submitted.

Stack Hard Limit Stack hard limit as specified when job was submitted.

Stack Soft Limit Stack soft limit as specified when job was submitted.

Rss Hard Limit RSS hard limit as specified when job was submitted.

Rss Soft Limit RSS soft limit as specified when job was submitted.

Job Cpu Hard Limit Job CPU hard limit as specified when job was submitted.

Job Cpu Soft Limit Job CPU soft limit as specified when job was submitted.

Wall Clock Hard Limit Wall clock hard limit as specified when job was submitted.

Wall Clock Soft Limit Wall clock soft limit as specified when job was submitted.

NQS Submit Queue The name of the NQS pipe queue to which the NQS job
will be routed.

NQS Query Queue The NQS queue names you can use to monitor the job.

Comment The comment specified in the job command file.

Account account number specified in the job command file.

UNIX Group effective UNIX group name.

 Chapter 9. LoadLeveler Commands 191

 llq

Negotiator Messages informational message for jobs in the Idle or NotQueued
state.

Other fields displayed when issuing llq -x -l are:

maxrss maximum resident set size utilized.

ixrss amount of shared memory used.

idrss amount of unshared memory used.

isrss Integral unshared stack used.

minflt # Page faults (re-claimed).

majflt # Page faults (I/O required).

nswap # times swapped out.

inblock # times file system performed input.

oublock # times file system performed output.

msgsnd # of IPC messages sent.

msgrcv # of IPC messages received.

nsignals # of signals delivered.

nvcsw # of context switches due to voluntarily giving up
processor.

nivcsw # of involuntary context switches.

Other fields displayed for parallel jobs are:

Allocated Hosts allocated hostname information in the format
hostname:task status:adapter usage. The adapter usage
information is in the format adapter name(adapter
window ID,network protocol,mode).

Task Instance task instance information in the format hostname:task
ID:adapter usage. The adapter usage information is in
the format adapter name(adapter window ID,network
protocol,mode).

192 Using and Administering LoadLeveler

 llstatus

llstatus - Query Machine Status

 Purpose
Returns status information about machines in the LoadLeveler cluster. It does not
provide status on any NQS machine.

 Syntax
llstatus [-?] [-H] [-v] [-l] [-f category_list] [-r category_list] [hostlist]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service
level, service level date, and operating system used to build the
command.

-l Specifies that a long listing be generated for each machine for
which status is requested. If -l is not specified, the standard list,
described below, is generated.

-f category_list Is a blank-delimited list of categories you want to query. Each
category you specify must be preceded by a percent sign. The
category_list cannot contain duplicate entries. This flag allows you
to create a customized version of the standard llstatus listing.
The output fields produced by this flag all have a fixed length.
The output is displayed in the order in which you specify the
categories. category_list can be one or more of the following:

%a Hardware architecture
%act Number of jobs dispatched by the schedd on this machine
%cm Custom Metric value
%cpu Number of CPUs on this machine
%d Available disk space in the LoadLeveler execute directory
%i Number of seconds since last keyboard or mouse activity
%inq Number of jobs in queue that were scheduled from this machine
%l Berkeley one-minute load average
%m Physical memory on this machine
%mt Maximum number of tasks that can run simultaneously on this machine
%n Machine name
%o Operating system on this machine
%r Number of jobs running on this machine
%sca Availability of the schedd daemon
%scs State of the schedd daemon
%sta Availability of the startd daemon
%sts State of the startd daemon
%v Available swap space of this machine

-r category_list Is a blank-delimited list of categories you want to query. Each
category you specify must be preceded by a percent sign. The
category_list cannot contain duplicate entries. This flag allows you

 Chapter 9. LoadLeveler Commands 193

 llstatus

to create a customized version of the standard llstatus listing.
The output produced by this flag is considered raw, in that the
fields can be variable in length. The output is displayed in the
order in which you specify the formats. Output fields are
separated by an exclamation point (!). category_list can be one or
more of the categpries listed under the -f flag.

hostlist Is a blank-delimited list of machines for which status is requested.

 Description
If no hostlist is specified, all machines are queried.

If you have more than a few machines configured for LoadLeveler, consider
redirecting the output to a file when using the -l flag.

Each machine periodically updates the central manager with a snapshot of its
situation. Since the information returned by using llstatus is a collection of such
snapshots, all taken at varying times, the total picture may not be completely
consistent.

 Examples
This example requests a long status listing for machines named silver and gold.

llstatus -l silver gold

 Results
In this section, the term “job step” refers to either a serial job step or a parallel task.

The Standard Listing: The standard listing is generated when you do not specify
the -l option with the llstatus command. The following is sample output from the
llstatus command, where there are two nodes in the cluster.

à ð
Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys
k1ðnð9.ppd.pok.ibm.com Avail 3 3 Run 1 2.72 ð R6ððð AIX43
k1ðn12.ppd.pok.ibm.com Avail ð ð Idle ð ð.ðð 365 R6ððð AIX43

R6ððð/AIX43 2 machines 3 jobs 1 running
Total Machines 2 machines 3 jobs 1 running

The Central Manager is defined on k1ðnð9.ppd.pok.ibm.com

All machines on the machine_list are present.
á ñ

The standard listing includes the following fields:

Name hostname of the machine.

Schedd state of the schedd daemon, which can be one of the following:

 Down
 Drned (Drained)
 Drning (Draining)
 Avail (Available)

For a detailed explanation of these states, see “The schedd Daemon” on page 14.

194 Using and Administering LoadLeveler

 llstatus

InQ number of job steps in the queue that were scheduled from this
machine.

Act number of job steps that the schedd has dispatched.

Startd state of the startd daemon, which can be:

 Busy
 Down
 Drned (Drained)
 Drning (Draining)
 Flush
 Idle
 None
 Resrvd (Reserved)
 Run (Running)
 Suspnd (Suspend)

For a detailed explanation of these states, see “The startd Daemon” on page 15.

Run number of job steps running on this machine.

LdAvg Berkeley one-minute load average on this machine.

Idle number of seconds since keyboard or mouse activity in a login
session was detected. Highest number displayed is 9999.

Arch hardware architecture of machine as listed in configuration file.

OpSys operating system on this machine.

Customized, Formatted Standard Listing: A customized and formatted standard
listing is generated when you specify llstatus with the -f option. The following is
sample output from this command:

llstatus -f %n %scs %inq %m %v %sts %l %o

à ð
Name Schedd InQ Memory FreeVMemory Startd LdAvg OpSys
ll5.pok.ibm.com Avail ð 128 227ð8 Run ð.23 AIX43
ll6.pok.ibm.com Avail 3 224 16732 Run ð.51 AIX43

R6ððð/AIX43 2 machines 3 jobs 3 running
Total Machines 2 machines 3 jobs 3 running

The Central Manager is defined on ll5.pok.ibm.com

All machines on the machine_list are present.
á ñ

Customized, Unformatted Standard Listing: A customized and unformatted (raw)
standard listing is generated when you specify llstatus with the -r flag. Output
fields are separated by an exclamation point (!). The following is sample output
from this command:

llstatus -r %n %scs %inq %m %v %sts %l %o

à ð
ll5.pok.ibm.com!Avail!ð!128!22688!Running!ð.14!AIX43
ll6.pok.ibm.com!Avail!3!224!16668!Running!ð.37!AIX43

á ñ

 Chapter 9. LoadLeveler Commands 195

 llstatus

The Long Listing: The long listing is generated when you specify the -l option with
the llstatus command. Following the sample output is an explanation of all possible
fields displayed by the llstatus command.

The following is sample output from the llstatus -l ll6 command:

à ð
==
Name = ll6.pok.ibm.com
Machine = ll6.pok.ibm.com
Arch = R6ððð
OpSys = AIX43
SYSPRIO = (ð - QDate)
MACHPRIO = (ð - LoadAvg)
VirtualMemory = 1664ð
Disk = 23ððð
KeyboardIdle = 6ðð
Tmp = 48868
LoadAvg = ð.3ð2991
ConfiguredClasses = No_Class(2) osl(1) small(2) medium(1) POE(2)
AvailableClasses = No_Class(ð) osl(1) small(2) medium(1) POE(2)
DrainingClasses =
DrainedClasses =
Pool = 1
Adapter = cssð(tb3mx,llx5,9.114.16.155,26,4)
Feature =
Max_Starters = 2
Memory = 224
ConfigTimeStamp = Wed Apr 8 ð9:ð5:36 1998
Cpus = 1
Speed = 1.ðððððð
Subnet = 9.117.17
MasterMachPriority = ð.ðððððð
CustomMetric = 1
StartdAvail = 1
State = Running
EnteredCurrentState = Wed Apr 8 ð9:46:33 1998
START = T
SUSPEND = F
CONTINUE = T
VACATE = F
KILL = F
Machine Mode = general
Running = 2
ScheddAvail = 1
ScheddState = Avail
ScheddRunning = 3
Pending = ð
Starting = ð
Idle = ð
Unexpanded = ð
Held = ð
Removed = ð
RemovedPending = ð
Completed = ð
TotalJobs = 3
TimeStamp = Wed Apr 8 ð9:47:45 1998

á ñ

The long listing includes these fields:

Name hostname of the machine.

Running number of job steps running on this machine.

ScheddAvail flag indicating if machine is running a schedd daemon
(0=no, 1=yes).

196 Using and Administering LoadLeveler

 llstatus

StartdAvail flag indicating if machine is running a startd daemon
(0=no, 1=yes).

State state of the startd daemon, which can be:

 Busy
 Down
 Drain
 Flush
 Idle
 None
 Reserved
 Running
 Suspend

For a detailed explanation of these states, see “The startd Daemon” on page 15.

OpSys operating system on this machine.

Arch hardware architecture of machine as listed in configuration
file.

Machine fully qualified name of the machine.

START the expression, defined following C conventions in the
configuration file, that evaluates to true or false (T/F). This
determines whether jobs can be started on this machine.

SUSPEND the expression, defined following C conventions in the
configuration file, that evaluates to true or false (T/F). This
determines whether running jobs should be suspended on
this machine.

CONTINUE the expression, defined following C conventions in the
configuration file, that evaluates to true or false (T/F). This
determines whether suspended jobs are continued on this
machine.

VACATE the expression, defined following C conventions in the
configuration file, that evaluates to true or false (T/F). This
determines whether suspended jobs are vacated on this
machine.

KILL the expression, defined following C conventions in the
configuration file, that evaluates to true or false (T/F). This
determines whether running jobs should be killed on this
machine.

SYSPRIO actual expression that determines overall system priority of
the job, defined in the configuration file.

MACHPRIO actual expression that determines machine priority, defined
in the configuration file.

Machine Mode the type of job this machine can run. This can be: batch,
interactive, or general.

Virtual Memory available swap space, in kilobytes, on this machine.

Entered Current State date and time when machine state was set.

 Chapter 9. LoadLeveler Commands 197

 llstatus

Disk available space, in kilobytes (less 512KB) in LoadLeveler's
execute directory on this machine.

Keyboard Idle number of seconds since last keyboard or mouse activity.

LoadAvg Berkely one-minute load average on machine.

AvailableClasses set of currently available classes.

DrainingClasses set of names of classes which are currently being drained
on this machine.

DrainedClasses set of names of classes which have been drained on this
machine and are therefore unavailable.

ConfiguredClasses set of all classes supported on this machine, both those in
use and those not in use, as defined in the configuration
file.

Pool the identifier of the pool where this startd machine is
located.

Adapter network adapter information associated with this machine.
The format of this information is adapter
name(network_type, interface_name, interface_address,
switch_node_number, max_adapter_window). These fields
are defined in the adapter stanza in the administration file.

Feature set of all features on this machine.

Memory physical memory, in megabytes, on this machine.

Max_Starters maximum number of job steps that can run simultaneously
on this machine.

Config Time Stamp date and time of last (re)configuration.

Cpus number of CPUs on this machine.

Speed speed associated with the machine.

MasterMachPriority machine priority for the parallel master node.

Subnet TCP/IP subnet that this machine resides on.

CustomMetric number that indicates the order of the machines for
scheduling purposes.

ScheddRunning number of job steps submitted to this machine that are
running somewhere in the LoadLeveler cluster.

Pending number of job steps in this state on this schedd machine.

Starting number of job steps in this state on this schedd machine.

Idle number of job steps in this state on this schedd machine.

Unexpanded number of job steps in this state on this schedd machine.

Held number of job steps in this state on this schedd machine.

Removed number of job steps in this state on this schedd machine.

Remove Pending number of job steps in this state on this schedd machine.

Completed number of job steps in this state on this schedd machine.

198 Using and Administering LoadLeveler

 llstatus

Total Jobs number of total job steps submitted to this schedd
machine.

ScheddState state of the schedd on this schedd machine.

time stamp date and time the central manager last received a status
update from this schedd machine.

 Chapter 9. LoadLeveler Commands 199

 llsubmit

llsubmit - Submit a Job

 Purpose
Submits a job to LoadLeveler to be dispatched based upon job requirements in the
job command file.

You can submit both LoadLeveler jobs and NQS jobs. To submit NQS jobs, the job
command file must contain the shell script to be submitted to the NQS node.

 Syntax
llsubmit [-?] [-H] [-v] [-q] [-n] [cmdfile | –]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level,
service level date, and operating system used to build the
command.

-q Specifies quiet mode: print no messages other than error
messages.

-n Compiles the job command file, including checking for syntax errors,
but does not submit it.

cmdfile Is the name of the job command file containing LoadLeveler
commands.

– Specifies that LoadLeveler commands that would normally be in the
job command file are read from stdin. When entry is complete,
press Ctrl-D to end the input.

 Related Information
� Users with uid or gid equal to 0 are not allowed to issue the llsubmit

command.

� When a LoadLeveler job ends, you may receive UNIX mail notification
indicating the job exit status. For example, you could get the following mail
message:

Your LoadLeveler job
myjob1
exited with status 139.

The return code 139 is from the user's job, and is not a LoadLeveler return
code.

� For information on writing a program to filter job scripts when they are
submitted, see “Filtering a Job Script” on page 279.

200 Using and Administering LoadLeveler

 llsubmit

 Examples
In this example, a job command file named qtrlyrun.cmd is submitted.

llsubmit qtrlyrun.cmd

 Results
The following shows the results of the llsubmit qtrlyrun.cmd command issued
from the machine earth :

llsubmit: The job "earth.5ð5" has been submitted.

Note that 5ð5 is the job ID generated by LoadLeveler.

 Chapter 9. LoadLeveler Commands 201

 llsummary

llsummary - Return Job Resource Information for Accounting

 Purpose
Returns job resource information on completed jobs for accounting purposes.

 Syntax
llsummary [-?] [-H] [-v] [-x] [-l] [-s MM/DD/YY to MM/DD/YY] [-e MM/DD/YY to
MM/DD/YY] [-u user] [-c class] [-g group] [-G unixgroup] [-a allocated] [-r report] [-j
host.jobid] [-d section] [filename]

 Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service
level, service level date, and operating system used to build the
command.

-x Provides extended information. Using -x can produce a very
long report. This option is meaningful only when used with the
-l option. You must enable the recording of accounting data in
order to collect information with the -x flag. To do this, specify
ACCT=A_ON A_DETAIL in your LoadL_config file.

-l Specifies that the long form of output is displayed.

-s Specifies a range for the start date (queue date) for accounting
data to be included in this report. The format for entering the
date is either MM/DD/YY (where MM is month, DD is day, and
YY is year), or is a string of digits representing the number of
seconds since 1970. The default is to include all the data in the
report.

-e Specifies a range for the end date (completion date) for
accounting data to be included in this report. The format for
entering the date is either MM/DD/YY (where MM is month, DD
is day, and YY is year), or is a string of digits representing the
number of seconds since 1970. The default is to include all the
data in the report.

-u user Specifies the user ID for whom accounting data is reported.

-c class Specifies the class for which accounting data is reported.

-g group Specifies the LoadLeveler group for which accounting data
reported is reported.

-G unixgroup Specifies the UNIX group for which accounting data is reported.

-a allocated Specifies the hostname that was allocated to run the job. You
can specify the allocated host in short or long form.

202 Using and Administering LoadLeveler

 llsummary

-r report Specifies the report type. You can choose one or more of the
following reports:

resource Provides CPU usage for all submitted jobs, including those
that did not run. This is the default.

avgthroughput Provides average queue time, run time, and CPU time for
jobs that ran for at least some period of time.

maxthroughput Provides maximum queue time, run time, and CPU time for
jobs that ran for at least some period of time.

minthroughput Provides minimum queue time, run time, and CPU time for
jobs that ran for at least some period of time.

throughput Selects all throughput reports.

numeric Reports CPU times in seconds rather than hours, minutes,
and seconds

You must enable the recording of accounting data in order to generate any of the
four throughput reports. To do this, specify ACCT=A_ON A_DETAIL in your
LoadL_config file.

-d section Specifies the category (data section) for which you want to
generate a report. You can specify one or more of the
following: user , group , unixgroup , class , account , day ,
week , month , jobid , jobname , allocated .

-j host.jobid The job for which accounting data is reported. host is the name
of the machine to which the job was submitted. The default is
the local machine. jobid is the job ID assigned to the job when
it was submitted using the llsubmit command. The entire
host.jobid string is required.

filename The file containing the accounting data. If not specified, the
default is the local history file on the machine from which the
command was issued. You can use the llacctmrg command to
produce such a file.

 Examples
The following example requests summary reports (standard listing) of all the jobs
submitted on your machine between the days of September 12, 1999 and October
12, 1999:

llsummary -s ð9/12/99 to 1ð/12/99

 Results
The Standard Listing: The standard listing is generated when you do not specify
-l. -r, or -d with llsummary . This sample report includes summaries of the following
data:

� Number of jobs, Total CPU usage, per user.
� Number of jobs, Total CPU usage, per class.
� Number of jobs, Total CPU usage, per group.
� Number of jobs, Total CPU usage, per account number.

 Chapter 9. LoadLeveler Commands 203

 llsummary

The following is an example of the standard listing:

à ð
Name Jobs Steps Job Cpu Starter Cpu Leverage

krystal 15 36 ð+ðð:ð9:5ð ð+ðð:ðð:1ð 59.ð
 lixin3 18 54 ð+ðð:ð8:28 ð+ðð:ðð:16 31.8

TOTAL 33 9ð ð+ðð:18:18 ð+ðð:ðð:27 4ð.7

Class Jobs Steps Job Cpu Starter Cpu Leverage
 small 9 21 ð+ðð:ð1:ð3 ð+ðð:ðð:ð6 1ð.5

large 12 36 ð+ðð:13:45 ð+ðð:ðð:11 75.ð
osl2 3 9 ð+ðð:ðð:27 ð+ðð:ðð:ð2 13.5

No_Class 9 24 ð+ðð:ð3:ð1 ð+ðð:ðð:ð6 3ð.2
TOTAL 33 9ð ð+ðð:18:18 ð+ðð:ðð:27 4ð.7

Group Jobs Steps Job Cpu Starter Cpu Leverage
No_Group 12 3ð ð+ðð:ð9:32 ð+ðð:ðð:ð9 63.6
chemistry 7 18 ð+ðð:ð4:5ð ð+ðð:ðð:ð5 58.ð

engineering 14 42 ð+ðð:ð3:56 ð+ðð:ðð:12 19.7
TOTAL 33 9ð ð+ðð:18:18 ð+ðð:ðð:27 4ð.7

Account Jobs Steps Job Cpu Starter Cpu Leverage
33333 16 39 ð+ðð:ð5:54 ð+ðð:ðð:11 32.2
22222 15 45 ð+ðð:12:ð5 ð+ðð:ðð:13 55.8

 99999 2 6 ð+ðð:ðð:18 ð+ðð:ðð:ð1 18.ð
TOTAL 33 9ð ð+ðð:18:18 ð+ðð:ðð:27 4ð.7

á ñ

The standard listing includes the following fields:

Name User ID submitting jobs.

Class Class specified or defaulted for the jobs.

Group User's login group.

Account Account number specified for the jobs.

Jobs Count of the total number of jobs submitted by this user, class,
group, or account.

Steps Count of the total number of job steps submitted by this user,
class, group, or account.

Job CPU Total CPU time consumed by user's jobs.

Starter CPU Total CPU time consumed by LoadLeveler starter processes on
behalf of the user jobs.

Leverage Ratio of job CPU to starter CPU.

The -r Listing: The following is sample output from the llsummary -r throughput
command. Only the user output is shown; the class, group, and account lines are
not shown.

204 Using and Administering LoadLeveler

 llsummary

à ð
 Name Jobs Steps AvgQueueTime AvgRealTime AvgCPUTime
loadl 1 4 ð+ðð:ðð:ð3 ð+ðð:ð5:27 ð+ðð:ð5:17
user1 2 6 ð+ðð:ð3:ð5 ð+ðð:ð3:45 ð+ðð:ð3:ð4
ALL 3 1ð ð+ðð:ð1:52 ð+ðð:ð4:26 ð+ðð:ð3:58

 Name Jobs Steps MinQueueTime MinRealTime MinCPUTime
loadl 1 4 ð+ðð:ðð:ð1 ð+ðð:ð2:49 ð+ðð:ð2:44
user1 2 6 ð+ðð:ð2:ð2 ð+ðð:ð3:43 ð+ðð:ð3:ð2
ALL 3 1ð ð+ðð:ðð:ð1 ð+ðð:ð2:49 ð+ðð:ð2:44

 Name Jobs Steps MaxQueueTime MaxRealTime MaxCPUTime
loadl 1 4 ð+ðð:ðð:ð6 ð+ðð:12:58 ð+ðð:12:37
user1 2 6 ð+ðð:ð6:21 ð+ðð:ð3:48 ð+ðð:ð3:ð7
ALL 3 1ð ð+ðð:ð6:21 ð+ðð:12:58 ð+ðð:12:37

á ñ

The -r listing includes the following fields:

AvgQueueTime Average amount of time the job spent queued before running for
this user, class, group, or account.

AvgRealTime Average amount of accumulated wall clock time for jobs
associated with this user, class, group, or account.

AvgCPUTime Average amount of accumulated CPU time for jobs associated
with this user, class, group, or account.

MinQueueTime Time of the job that spent the least amount of time in queue
before running for this user, class, group, or account.

MinRealTime Time of the job with the least amount of wall clock time for this
user, class, group, or account.

MinCPUime Time of the job with the least amount of CPU time for this user,
class, group, or account.

The MaxQueueTime, MaxRealTime, and MaxCPUTime fields display the time of
the job with the greatest amount of queue, wall clock, and CPU time, respectively.
The ALL line for the Average listing displays the average time for all users, classes,
groups, and accounts. The ALL line for the Minimum listing displays the time of the
job with the least amount of time for all users, classes, groups, and accounts. The
ALL line for the Maximum listing displays the time of the job with the greatest
amount of time for all users, classes, groups, and accounts.

The Long Listing: When you specify the -x option in conjunction with the -l option
on the llsummary command, the long report resembles the following:

 Chapter 9. LoadLeveler Commands 205

 llsummary

à ð
================== Job ll1.kgn.ibm.com 772 =================

Job Id: ll1.kgn.ibm.com 772
Job Name: ll1.kgn.ibm.com.772

Structure Version: 14ð
 Owner: anton
 Unix_group: staff

Submitting Host: ll1.kgn.ibm.com
Submitting Userid: 17212

 Submitting Groupid: 1ðð
Number of Steps: 1

----------------- Step ll1.kgn.ibm.com 772.ð -----------------
Job Step Id: ll1.kgn.ibm.com 772.ð
Step Name: c_test
Queue Date: Wed Sep 6 ð9:43:38 CDT 1998

Job Step Dependency:
 Status: Completed

Completion Date: Wed Sep 6 1ð:27:23 CDT 1998
Completion Code: ð

Start Count: 1
User Priority: 5ð

 user_sysprio: ð
 class_sysprio: ð
 group_sysprio: ð
 Notifications: Complete
 Virtual Image Size: 19 kilobytes
 Checkpoint: no
 Restart: yes

Hold Job Until:
 Cmd: job1.cmd
 Args:

Env: LOADL_CORESIZE = 1ð24
 In: /dev/null
 Out: job1.ll1.772.ð.out
 Err: job1.ll1.772.ð.err
Initial Working Dir: /u/jeffli/regress

Requirements: (Arch == "R6ððð") && (OpSys == "AIX43")
 Preferences:

Step Type: Serial
 Min Processors:
 Max Processors:

Allocated Host: ll1.kgn.ibm.com
Notify User: anton@ll1.kgn.ibm.com

 Shell: /bin/ksh
LoadLeveler Group: No_Group

 Class: No_Class
Cpu Hard Limit: 3ðð seconds
Cpu Soft Limit: 1ðð seconds
Data Hard Limit: 262144ððð bytes
Data Soft Limit: 23ð68672ð bytes
Core Hard Limit: 262144ððð bytes
Core Soft Limit: -1
File Hard Limit: 262144ððð bytes
File Soft Limit: 23ð68672ð bytes
Stack Hard Limit: 262144ððð bytes
Stack Soft Limit: -1
Rss Hard Limit: 262144ððð bytes
Rss Soft Limit: -1

Step Cpu Hard Limit: 4ðð seconds
Step Cpu Soft Limit: 2ðð seconds
Wall Clk Hard Limit: 6ðð seconds
Wall Clk Soft Limit: 3ðð seconds

á ñ

206 Using and Administering LoadLeveler

 llsummary

à ð
 Comment:
 Account:

NQS Submit Queue:
NQS Query Queues:
Job Tracking Exit:
Job Tracking Args:

--------------- Detail for ll1.kgn.ibm.com.772.ð ------
Running Host: ll1.kgn.ibm.com
Machine Speed: 1.ðððððð

 Event: System
Event Name: completed

Time of Event: Wed Sep 6 1ð:27:23 CDT 1998
Starter User Time: ð+ðð:ðð:ðð.24ðððð

Starter System Time: ð+ðð:ðð:ðð.39ðððð
 Starter Total Time: ð+ðð:ðð:ðð.63ðððð

Starter maxrss: 828
Starter ixrss: 8388
Starter idrss: 6896
Starter isrss: ð
Starter minflt: 2ð2
Starter majflt: ð
Starter nswap: ð

Starter inblock: ð
Starter oublock: ð
Starter msgsnd: 12
Starter msgrcv: 11

Starter nsignals: 1
Starter nvcsw: 79
Starter nivcsw: ð
Step User Time: ð+ðð:ðð:ðð.81ðððð

Step System Time: ð+ðð:ðð:ð1.5ððððð
Step Total Time: ð+ðð:ðð:ð2.31ðððð

Step maxrss: 712
Step ixrss: 1554ð
Step idrss: 14296
Step isrss: ð
Step minflt: 1443
Step majflt: ð
Step nswap: ð

Step inblock: ð
Step oublock: ð
Step msgsnd: 5
Step msgrcv: 4

Step nsignals: 14
Step nvcsw: 7ð
Step nivcsw: ð

á ñ

For an explanation of these fields, see the description of the output fields for the
long listing of the llq command.

 Chapter 9. LoadLeveler Commands 207

 llsummary

208 Using and Administering LoadLeveler

The LoadLeveler Graphical User Interface

 The LoadLeveler Graphical User Interface 209

210 Using and Administering LoadLeveler

Chapter 10. Graphical User Interface Overview

This chapter provides some introductory information on the LoadLeveler graphical
user interface (GUI). This section provides neither complete nor detailed
instructions on using either the LoadLeveler GUI or any other graphical user
interface. If this is the first time you are using a Motif-based GUI, you should refer
to the appropriate Motif documentation for general GUI information.

This chapter also discusses how to customize your graphical user interface by
modifying the Xloadl and Xloadl_so files and provides a discussion of the
skel.cmd file.

Note that LoadLeveler provides an installation with two types of graphical user
interfaces. One interface is for LoadLeveler users whose machines are interacting
fully with LoadLeveler. The second interface is available to users whose machines
are only participating on a limited basis. This second type of machine is called a
submit-only machine.

Starting the Graphical User Interface
To start the GUI, check your PATH variable to ensure that it is pointing to the
LoadLeveler binaries. Also, check to see that your DISPLAY variable is set to your
display. Then, type one of the following to start the GUI in the background:

xloadl_so & (if you are running a submit-only machine)
xloadl & (for all other users)

 Specifying Options
In general, you can specify GUI options in any of the following ways:

� Within the GUI using menu selections

� On the xloadl (or xloadl_so) command line. Enter xloadl -h or xloadl_so -h to
see a list of the available options.

� In the Xloadl file. See “Customizing the Graphical User Interface” on page 228
for more information.

The LoadLeveler Main Window
LoadLeveler's main window has three sub-windows, titled Jobs, Machines, and
Messages, as shown in Figure 32 on page 212. Each of these sub-windows has
its own menu bar.

 Chapter 10. Graphical User Interface Overview 211

Figure 32. Main Window of the LoadLeveler GUI

The menu bar on the Jobs window relates to actions you can perform on jobs. The
menu bar on the Machines window relates to actions you can perform on
machines. Similarly, the menu bar on the Messages window displays actions you
can perform related to LoadLeveler generated messages.

When you select an item from a menu bar, a pull-down menu appears. You can
select an item from the pull-down menu to carry out an action or to bring up
another pull-down menu originating from the first one.

212 Using and Administering LoadLeveler

Getting Help Using the Graphical User Interface
You can get help when using the GUI by pressing the Help key. This key is
function key 1 (F1) on most keyboards. To receive help on specific parts of the
LoadLeveler GUI, place the cursor over the area or field on which you want help
and press F1. A help screen appears describing that area. You can also get help
by using the Help pulldown menu and the Help push buttons available in pop-up
windows.

Before you invoke the GUI, make sure your PATH statement includes the directory
containing the LoadLeveler executable. Otherwise, some GUI functions may not
work correctly.

Differences Between LoadLeveler's Graphical User Interface and Other
Graphical User Interfaces

LoadLeveler's GUI contains many items common to other GUIs. There are,
however, some differences that you should be aware of. These differences are:

� Accelerators or mnemonics do not appear on the menu bars.
� Submerged windows do not necessarily rise to the top when refreshed.

Building and Submitting Jobs Using the Graphical User Interface
This chapter explains how to build and submit a job to LoadLeveler using the GUI.
In addition, you will learn how to perform other job related tasks. You can
accomplish these same tasks by using the LoadLeveler commands. For information
on these commands, refer to “Command Reference” on page 153.

This manual presents step-by-step instructions for performing tasks. For each step
in a task, a user action and a system response to the action are included. User
actions appear in uppercase boldface type, for example SELECT. The system
response to an action follows a M. For example:

M The main window appears.

An action is sometimes represented by itself. For example:

SELECT OK

Other actions can require a selection or decision. Selection and decision actions
are presented in tables.

Selection tables list all possible selections in the left column of the table. The
following is an example of a selection table:

Decision tables present a question or series of questions before indicating the
action. The following is an example of a decision table:

To Do This

Submit a job Refer to “Step 3: Submit a Job Command File” on
page 222

Cancel a job Refer to “Step 9: Cancel a Job” on page 224

 Chapter 10. Graphical User Interface Overview 213

Selections from a menu bar are indicated with an →. For example, if a menu bar
included an option called Actions and Actions included an option called Cancel ,
the instructions would read:

SELECT Actions → Cancel

Did the job you submitted complete processing?

Yes Submit another job.

No Check the status of the job.

Task Scenario Using the Graphical User Interface
The tasks described in this chapter are those that you, as a user might be
interested in accomplishing and are presented in a typical step-by-step scenario.
You do not have to follow the steps shown here and may perform certain tasks
before others without any difficulty. Some tasks must be performed prior to others
in order for succeeding tasks to work. For example, you cannot submit a job if you
do not have a job command file that you built using either the GUI or an editor.

Step 1: Build a Parallel Job
From the Jobs window:

SELECT File → Build a Job → Parallel

M The dialog box shown in Figure 33 on page 215 appears:

214 Using and Administering LoadLeveler

Figure 33. LoadLeveler Build a Job Window

Complete those fields for which you want to override what is currently
specified in your skel.cmd defaults file. A sample skel.cmd file is found
in /usr/LoadL/full/samples . You can update this file to define defaults
for your site, and then update the *skelfile resource in Xloadl to point to
your new skel.cmd file. If you want a personal defaults file, copy

 Chapter 10. Graphical User Interface Overview 215

skel.cmd to one of your directories, edit the file, and update the
*skelfile resource in .Xdefaults .

Field Input

Executable Name of the program to run. It must be an executable file.

Optional. If omitted, the command file is executed as if it were a shell script.

Arguments Parameters to pass to the program.

Required only if the executable requires them.

Stdin Filename to use as standard input (stdin) by the program.

Optional. The default is /dev/null .

Stdout Filename to use as standard output (stdout) by the program.

Optional. The default is /dev/null .

Stderr Filename to use as standard error (stderr) by the program.

Optional. The default is /dev/null .

Initialdir Initial directory. LoadLeveler changes to this directory before running the job.

Optional. The default is your current working directory.

Notify User User id of person to notify regarding status of submitted job.

Optional. The default is your userid.

StartDate Month, day, and year in the format mm/dd/yy. The job will not start before this date.

Optional. The default is to run the job as soon as possible.

StartTime Hour, minute, second in the format hh:mm:ss. The job will not start before this time.

Optional. The default is to run the job as soon as possible.

If you specify StartTime but not StartDate, the default StartDate is the current day. If you specify
StartDate but not StartTime, the default StartTime is 00:00:00. This means that the job will start as
soon as possible on the specified date.

Priority Number between 0 and 100, inclusive.

Optional. The default is 50.

This is the user priority. For more information on this priority, refer to “Setting and Changing the
Priority of a Job” on page 29.

Image size Number in kilobytes that reflects the maximum size you expect your program to grow to as it runs.

Optional.

Class Class type. The job will only run on machines that support the specified class type. Your system
administrator defines the class types.

Optional. You can press the Choices button to get a list of available classes. Press the Details button
under the class list to verify your permissions.

Hold Hold status of the submitted job. Permitted values are:

user user hold
system system hold (only valid for LoadLeveler administrators)
usersys user and system hold (only valid for LoadLeveler administrators)

Optional. The default is a no-hold state. You can press the choice button to get a list of available
hold types.

Account Number Number associated with the job. For use with the llacctmrg and llsummary commands for acquiring
job accounting data.

Optional. Required only if the ACCT keyword is set to A_VALIDATE in the configuration file.

Environment Specifies your initial environment variables when your job starts. Separate environment specifications
with semicolons.

Optional.

Shell The name of the shell to use for the job.

Optional. If not specified, the shell used in the owner's password file entry is used. If none is
specified, /bin/sh is used.

216 Using and Administering LoadLeveler

Field Input

Group The LoadLeveler group name to which the job belongs.

Optional.

Step Name The name of this job step.

Optional.

Node Usage How the node is used. Permitted values are:

shared The node can be shared with other tasks of other job steps. This is the default.
not shared The node cannot be shared.

Optional

Dependency A Boolean expression defining the relationship between the job steps.

Optional.

Comments Comments associated with the job. These comments help to distinguish one job from another job.

Optional.

Note: The fields that appear in this table are what you see when viewing the Build a Job window. The text in these fields does
not necessarily correspond with the keywords listed in “Job Command File Keywords” on page 38.

See “Job Command File Keywords” on page 38 for information on the
defaults associated with these keywords.

SELECT a Job Type if you want to change the job type you selected on the Build
A Job cascading window.

Your choices are:

Serial Specifies a serial job.
Parallel Specifies a non-PVM parallel job.
PVM Specifies a PVM parallel job.

Note that the job type you select affects the choices that are active on
the Build A Job window.

SELECT a Notification option

Your choices are:

Always Notify you when the job starts, completes, and if it
incurs errors.

Complete Notify you when the job completes. This is the
default option as initially defined in the skel.cmd
file.

Error Notify you if the job cannot run because of an
error.

Never Do not notify you.
Start Notify you when the job starts.

SELECT a Checkpoint option.

Your choices are:

No Do not checkpoint the job. This is the default.
User Yes, checkpoint the job at intervals you

determine. See “checkpoint” on page 39 for more
information.

System Yes, checkpoint the job at intervals determined by
LoadLeveler. See “checkpoint” on page 39 for
more information.

 Chapter 10. Graphical User Interface Overview 217

SELECT a Restart option

Your choices are:

No Do not restart the job.
Yes Yes, restart the job from an existing checkpoint

file when you submit the job.

SELECT Nodes (available when the job type is parallel)

M The Nodes dialog box appears.

Complete those fields for which you want to specify node information for
a job type of parallel. Defaults are used for those fields that you leave
blank.

Field Input

Min # of Nodes Minimum number of nodes required for running the parallel job.

Optional. The default is one.

Max # of Nodes Maximum number of nodes required for running the parallel job.

Optional. The default is the minimum number of nodes.

Tasks per Node The number of tasks of the parallel job you want to run per node. For more information, see
“tasks_per_node” on page 55.

Optional.

Total Tasks The total number of tasks of the parallel job you want to run on all available nodes. For more
information, see “total_tasks” on page 55.

Optional. The default is one.

SELECT Network (available when the job type is parallel)

M The Network dialog box appears.

Complete those fields for which you want to specify network information.

Field Input

MPI/LAPI Choose one, both, or none of these boxes to specify the MPI (Message Passing Interface)
protocol, the (LAPI Low-level Application Programming Interface) protocol, both protocols, or
neither protocol.

Optional.

Adapter/Network Select an adapter name or a network type from the list.

Required for each protocol you select.

Adapter Usage Specifies that the adapter is either shared or not shared.

Optional. The default is shared.

Communication Mode Specifies the mode in which an SP switch adapter is used, and can be either IP (internet
Protocol) or US (User Space).

Optional. The default is IP.

SELECT Requirements

M The Requirements dialog box appears.

Complete those fields for which you want to specify requirements.
Defaults are used for those fields that you leave blank. LoadLeveler
dispatches your job only to one of those machines with resources that
matches the requirements you specify.

218 Using and Administering LoadLeveler

Field Input

Architecture* Machine type. The job will not run on any other machine type.

Optional. The default is the architecture of your current machine.

Operating System* Operating system. The job will not run on any other operating system.

Optional. The default is the operating system of your current machine.

Disk Amount of disk space in the execute directory. The job will only run on a machine with at least this
much disk space.

Optional. The default is defined in your local configuration file.

Memory Amount of memory. The job will only run on a machine with at least this much memory.

Optional. The default is defined in your local configuration file.

Machine(s) Machine name(s). The job will only run on the specified machines.

Optional

Feature(s) Features. The job will only run on machines with specified features.

Optional

LoadLeveler Version Specifies the version of LoadLeveler, in dotted decimal format, on the machine where you want the
job to run. For example: 2.1.0.0 specifies that your job will run on a machine running LoadLeveler
Version 2.1.0.0 or higher.

Optional

Pool Specifies the number associated with the pool you want to use. All available pools listed in the
administration file appear as choices. The default is to select nodes from any pool.

Requirement Requirements. The job will only run if these requirements are met.

Note:

If you enter a resource that is not available, you will NOT receive a message. LoadLeveler holds your job in the Idle
state until the resource becomes available. Therefore, ensure the spelling of your entry is correct. You can issue llq -s
jobID to find out if you have a job for which requirements were not met.

*If you do not specify an architecture or operating system, LoadLeveler assumes that your job can run only on your machine's
architecture and operating system. If your job is not a shell script that can be run successfully on any platform, you should
specify a required architecture and operating system.

SELECT Close to return to the Build a Job dialog box.

SELECT Preferences

M The Preferences dialog box appears.

This dialog box is similar to the Requirements dialog box, with the
exception of the Adapter choice, which is not supported as a
Preference. Complete the fields for those parameters that you want to
specify. These parameters are not binding. For any preferences that you
specify, LoadLeveler attempts to find a machine that matches these
preferences along with your requirements. If it cannot find the machine,
LoadLeveler chooses the first machine that matches the requirements.

SELECT Close to return to the Build a Job dialog box.

SELECT Limits

M The Limits dialog box appears.

Complete the fields for those limits that you want to impose upon your
job. If you type copy in any field, the limits in effect on the submit
machine are used. If you leave any field blank, the default limits in effect
for your userid on the machine that runs the job are used.

 Chapter 10. Graphical User Interface Overview 219

Field Input

CPU Limit Maximum amount of CPU time that the submitted job can use. Express the amount as:

[hours:[minutes:][seconds][.fraction]

For example, 12:56:21 is 12 hours, 56 minutes, and 21 seconds.

Optional

Data Limit Maximum amount of the data segment that the submitted job can use. Express the amount as:

integer[.fraction][units]

where integer and fraction represent strings of up to eight digits.

Optional

Core Limit Maximum size of a core file.

Optional

RSS Limit Maximum size of the resident set size. It is the largest amount of physical memory a user's process
can allocate.

Optional

File Limit Maximum size of a file that is created.

Optional

Stack Limit Maximum size of the stack.

Optional

Job CPU Limit Maximum amount of CPU a single job step can use per processor.

Optional

Wall Clock Limit Maximum amount of elapsed time for which a job can run.

Optional

SELECT PVM to select a PVM job.

M The PVM dialog box appears.

Complete those fields for which you want to specify requirements.
Defaults are used for those fields that you leave blank.

Field Input

Min # of Processors Minimum number of processors required for running the PVM job.

Optional. The default is one.

Max # of Processors Maximum number of processors required for running the PVM job.

Optional. The default is one.

Parallel Path The directory that defines where the PVM3 executables are located.

PVM Specifies that an adapter is used for this PVM job.

Adapter/Network Select an adapter name or a network type from the list.

Required.

Adapter Usage Specifies that the adapter is either shared or not shared.

Optional. The default is shared.

SELECT Close to return to the Build a Job dialog box.

220 Using and Administering LoadLeveler

Step 2: Edit the Job Command File
There are several ways that you can edit the job command file that you just built:

1. Using the Jobs window:

SELECT File → Submit a Job

M The Submit a Job dialog box appears.

SELECT the job file you want to edit from the file column.

SELECT Edit

M Your job command file appears in a window. You can use any
editor to edit the job command file. The default editor is specified in
your .Xdefaults file.

If you have an icon manager, an icon may appear. An icon manager
is a program that creates a graphic symbol, displayed on a screen,
that you can point to with a device such as a mouse in order to
select a particular function or application. Select this icon to view
your job command file.

2. Using the Tools Edit pulldown menus on the Build a Job window:

Using the Edit pulldown menu, you can modify the job command file. Your
choices appear in the following table:

To Select

Add a step to the job command file Add a Step

Delete a step from the job command file Delete a Step

Clear the fields in the Build a Job window Clear Fields

Select defaults to use in the fields Set Field Defaults

Note: Other options include Go to Next Step, Go to Previous Step, and Go to Last Step that allow you to edit various steps in
the job command file.

Using the Tools pulldown menu, you can modify the job command file. Your
choices appear in the following table:

To Select

Name the job Set Job Name

Open a window where you can enter a script file Append Script

Fill in the fields using another file Restore from File

View the job command file in a window View Entire Job

Determine which step you are viewing What is step #

Start a new job command file Start a new job

 Chapter 10. Graphical User Interface Overview 221

If you already submitted your job, go to “Step 4: Display, Refresh and Obtain Job
Status.” Otherwise, go to “Step 3: Submit a Job Command File.”

To Do This

Save the information you
entered into a file which you
can submit later

SELECT Save

M A window appears prompting you to enter a job
filename.

ENTER a job filename in the text entry field.

SELECT OK

M The window closes and the information you
entered is saved in the file you specified.

Submit the program
immediately and discard the
information you entered

ELECT Submit

GO TO Step 4

Step 3: Submit a Job Command File
After building a job command file, you can submit it to one or more machines for
processing. In addition to scripts with LoadLeveler keywords, you can also submit
scripts that contain NQS options. You cannot, however, in this release of
LoadLeveler, combine NQS and LoadLeveler options.

To submit a job, from the Jobs window:

SELECT File → Submit a Job

M The Submit a Job dialog box appears.

SELECT the job file that you want to submit from the file column.

You can also use the filter field and the directories column to select the
file or you can type in the file name in the text entry field.

SELECT Submit

M The job is submitted for processing.

You can now submit another job or you can press Close to exit the
window.

Go to the next step.

Step 4: Display, Refresh and Obtain Job Status
When you submit a job, the status of the job is automatically displayed in the Jobs
window. You can update or refresh this status using the Jobs window and selecting
one of the following:

� Refresh → Refresh Jobs

� Refresh → Refresh All .

To change how often the amount of time should pass before the jobs window is
automatically refreshed, use the Jobs window.

SELECT Refresh → Set Auto Refresh

M A window appears.

TYPE IN a value for the number of seconds to pass before the Jobs window is
updated.

Automatic refresh can be expensive in terms of network usage and CPU

222 Using and Administering LoadLeveler

cycles. You should specify a refresh interval of 120 seconds or more for
normal use.

SELECT OK

M The window closes and the value you specified takes effect.

To receive detailed information on a job:

SELECT Actions → Extended Status to receive additional information on the
job. Selecting this option is the same as typing llq -x command.

You can also get information in the following way:

SELECT Actions → Extended Details

Selecting this option is the same as typing llq -x -l command. You can
also double click on the job in the Jobs window to get details on the job.

Note: Obtaining extended status or details on multiple jobs can be
expensive in terms of network usage and CPU cycles.

SELECT Actions → Job Status

You can also use the llq -s command to determine why a submitted job
remains in the Idle or Deferred state.

For more information on these states, see “llq - Query Job Status” on page 181.

Go to the next step.

Step 5: Sort the Jobs Window
You can specify up to two sorting options for the Jobs window. The options you
specify determine the order in which the jobs appear in the Jobs window.

From the Jobs window:

Action Select Sort → Type of Sort

Sort jobs by the machine from which they were submitted Sort by Submitting
Machine →

[Primary|Secondary]

Sort by owner Sort by Owner → [Primary|Secondary]

Sort by the time the jobs were submitted Sort by Submission Time
→

[Primary|Secondary]

Sort by the state of the job Sort by State → [Primary|Secondary]

Sort jobs by their user priority (last job listed runs first) Sort by Priority → [Primary|Secondary]

Sort by the class of the job Sort by Class → [Primary|Secondary]

Sort by the group associated with the job Sort by Group → [Primary|Secondary]

Sort by the machine running the job Sort by Running Machine
→

[Primary|Secondary]

Sort by dispatch order Sort by Dispatch Order → [Primary|Secondary]

Not specify a sort No Sort [Primary|Secondary]

Each sorting option contains a cascading window which allows you to select this
option as either a Primary or Secondary sorting option. For example, suppose you
select Sort by Owner as the primary sorting option and Sort by Class as the
secondary sorting option. The Jobs window is sorted by owner and, within each
owner, by class.

 Chapter 10. Graphical User Interface Overview 223

Go to the next step.

Step 6: Change Priorities of Jobs in a Queue
If your job has not yet begun to run and is still in the queue, you can change the
priority of the job in relation to your other jobs in the queue that belong to the same
class. This only affects the user priority of the job. For more information on this
priority, refer to “Setting and Changing the Priority of a Job” on page 29. Only the
owner of a job or the LoadLeveler administrator can change the priority of a job.

From the Jobs window:

SELECT a job by clicking on it with the mouse

SELECT Actions → Priority

M A window appears.

TYPE IN a number between 0 and 100, inclusive, to indicate a new priority.

SELECT OK

M The window closes and the priority of your job changes.

Go to the next step.

Step 7: Hold a Job
Only the owner of a job or the LoadLeveler administrator can place a hold on a job.

From the Jobs window:

SELECT the job you want to hold by clicking on it with the mouse

SELECT Actions → Hold

M The job is put on hold and its status changes in the Jobs window.

Go to the next step.

Step 8: Release a Hold on a Job
Only the owner of a job or the LoadLeveler administrator can release a hold on a
job.

From the Jobs window:

SELECT the job you want to release by clicking on it with the mouse

SELECT Actions → Release from Hold

M The job is released from hold and its status is updated in the Jobs
window.

Go to the next step.

Step 9: Cancel a Job
Only the owner of a job or the LoadLeveler administrator can cancel a job.

From the Jobs window:

SELECT the job you want to cancel by clicking on it with the mouse

224 Using and Administering LoadLeveler

SELECT Actions → Cancel

M A warning dialog box appears prompting you to confirm your
cancellation request. Once you confirm your request, LoadLeveler
cancels the job and the job information disappears from the Jobs
window.

Go to the next step.

Step 10: Display and Refresh Machine Status
The status of the machines is automatically displayed in the Machines window. You
can update or refresh this status using the Machines window and selecting one of
the following:

� Refresh → Refresh Machines

� Refresh → Refresh All .

To specify an amount of time to pass before the Machines window is automatically
refreshed, from the Machines window:

SELECT Refresh → Set Auto Refresh

M A window appears.

TYPE IN a value for the number of seconds to pass before the Machines window
is updated.

Automatic refresh can be expensive in terms of network usage and CPU
cycles. You should specify a refresh interval of 120 seconds or more for
normal use.

SELECT OK

M The window closes and the value you specified takes effect.

Go to the next step.

Step 11: Sort the Machines Window
You can specify up to two sorting options for the Machines window. The options
you specify determine the order in which machines appear in the window.

From the Machines window:

Action Select Sort → Sort Type

Sort by machine name Sort by Name → [Primary|Secondary]

Sort by schedd state Sort by Schedd → [Primary|Secondary]

Sort by total number of jobs scheduled Sort by InQ → [Primary|Secondary]

Sort by number of running jobs scheduled by this machine Sort by Act → [Primary|Secondary]

Sort by startd state Sort by Startd → [Primary|Secondary]

Sort by the number of jobs running on this machine Sort by Run → [Primary|Secondary]

Sort by load average Sort by LdAvg → [Primary|Secondary]

Sort by keyboard idle time Sort by Idle → [Primary|Secondary]

Sort by hardware architecture Sort by Arch → [Primary|Secondary]

Sort by operating system type Sort by OpSys → [Primary|Secondary]

Not specify a sort No Sort [Primary|Secondary]

 Chapter 10. Graphical User Interface Overview 225

Each sorting option contains a cascading window which allows you to select this
option as either a Primary or Secondary sorting option. For example, suppose you
select Sort by Arch as the primary sorting option and Sort by Name as the
secondary sorting option. The Machines window is sorted by by hardware
architecture, and within each architecture type, by machine name.

Go to the next step.

Step 12: Find the Location of the Central Manager
The LoadLeveler administrator designates one of the nodes in the LoadLeveler
cluster as the central manager. When jobs are submitted at any node, the central
manager is notified and decides where to schedule the jobs. In addition, it keeps
track of the status of machines in the cluster and the jobs in the system by
communicating with each node. LoadLeveler uses this information to make the
scheduling decisions and to respond to queries.

To find the location of the central manager, from the Machines window:

SELECT Actions → Find Central Manager

M A message appears in the message window declaring on which
machine the central manager is located.

Go to the next step.

Step 13: Find the Location of the Public Scheduling Machines
Public scheduling machines are those machines that participate in the scheduling of
LoadLeveler jobs on behalf of the submit-only machines.

To get a list of these machines in your cluster, use the Machines window:

SELECT Actions → Find Public Scheduler

M A message appears displaying the names of these machines.

Go to the next step.

Step 14: Specify Which Jobs Appear in the Jobs Window
Normally, only your jobs appear in the Jobs window. You can, however, specify
which jobs you want to appear by using the Select pull-down menu on the Jobs
window.

226 Using and Administering LoadLeveler

Select Select → Show Selection to show the selection parameters.

Go to the next step.

To Display Select Select →

All jobs in the queue All

All jobs belonging to a specific user (or users) By User

M A window appears
prompting you to enter the
user IDs whose jobs you want
to view.

All jobs submitted to a specific machine (or machines) By Machine

M A window appears
prompting you to enter the
machine names on which the
jobs you want to view are
running.

All jobs belonging to a specific group (or groups) By Group

M A window appears
prompting you to enter the
LoadLeveler group names to
which the jobs you want to
view belong.

All jobs having a particular ID By Job Id

A dialog box prompts you to
enter the id of the job you
want to appear. This ID
appears in the left column of
the Jobs window. Type in the
ID and press OK.

Note:

When you choose By User, By Machines, or By Group, you can use a UNIX regular
expression enclosed in parentheses. For example, you can enter (^k10) to display all
machines beginning with the characters “k10”.

Step 15: Specify Which Machines Appear in Machines Window
You can specify which machines will appear in the Machines window. The default is
to view all of the machines in the LoadLeveler pool.

From the Machines window:

 Chapter 10. Graphical User Interface Overview 227

Select Select → Show Selection to show the selection parameters.

Go to the next step.

To Select Select →

View all of the machines All

View machines by operating system by OpSys

M A window appears
prompting you to enter the
operating system of those
machines you want to view.

View machines by hardware architecture by Arch

M A window appears
prompting you to enter the
hardware architecture of
those machines you want to
view.

View machines by state by State

M A cascading pulldown
menu appears prompting you
to select the state of the
machines that you want to
view.

Step 16: Save LoadLeveler Messages in a File
Normally, all the messages that LoadLeveler generates appear in the Messages
window. If you would also like to have these messages written to a file, use the
Messages window.

SELECT Actions → Start logging to a file

M A window appears prompting you to enter a filename in which to log
the messages.

TYPE IN the filename in the text entry field.

SELECT OK

M The window closes.

Customizing the Graphical User Interface
You can customize the GUI to suit your needs by overriding the default settings of
the LoadLeveler resource variables. For example, you can set the color, initial size,
and location of the main window.

This section tells you how to customize the GUI by modifying either (or both) of the
following files:

Xloadl for fully participating machines

Xloadl_so for submit-only machines

If the system administrator has set up these resource files, the files are located in
the /usr/lib/X11/app-defaults directory. Otherwise, the files are located in the lib
directory of the LoadLeveler release directory. This is /usr/lpp/LoadL/full/lib and
/usr/lpp/LoadL/so/lib , respectively. These files contain the default values for the

228 Using and Administering LoadLeveler

graphical user interface. This section discusses the syntax of these files, and gives
you an overview of some of the resources you can modify.

An administrator with root authority can make changes to the resources for the
entire installation by editing the Xloadl file. Any user can make local changes by
placing the resource names with their new values in the user's .Xdefaults file.

Syntax of an Xloadl File
� Comments begin with !
� Resource variables may begin with *
� Colons follow resource variables
� Resource variable values follow colons.

Modifying Windows and Buttons
All of the windows and buttons that are part of the GUI have certain characteristics
in common. For example, they all have a foreground and background color, as well
as a size and a location. Each one of these characteristics is represented by a
resource variable. For example, the foreground characteristic is represented by the
resource variable foreground . In addition, every resource variable has a value
associated with it. The values of the resource variable foreground are a range of
colors.

Before customizing a window, you need to locate the resource variables associated
with the desired window. To do this, search for the window identifier in your Xloadl
file. The following table lists the windows and their respective identifiers:

The following table lists the resource variables for all the windows and the buttons
along with a description of each resource variable. Use the information in this table
to modify your graphical user interface by changing the values of desired resource
variables. The values of these resource variables depend upon Motif requirements.

Table 10. Window Indentifiers in the Xloadl File

Window Identifier

Jobs job_status

Machines machine_status

Messages message_area

Build a Job builder

Submit a Job submit

Requirements requirements

Preferences preferences

Limits limits

Account Report Data reporter

Nodes nodes

Network network

PVM pvm

Script script

 Chapter 10. Graphical User Interface Overview 229

Resource Variable Description

geometry The location of the object

foreground The foreground color of the object

background The background color of the object

width The width of the object

height The height of the object

labelString The text associated with the object

Creating Your Own Pulldown Menus
You can add a pulldown menu to both the Jobs window and the Machines window.

To add a pulldown menu to the Jobs window, in the Xloadl file:

1. Set userJobPulldown to True

2. Set userJob.labelString to the name of your menu.

3. Fill in the appropriate information for your first menu item, userJob_Option1

4. To define more menu items, fill in the appropriate information for
userJob_Option2 , userJob_Option3 , and so on. You can define up to ten
menu items.

For more information, refer to the comments in the Xloadl file.

To add a pulldown menu to the Machines window, in the Xloadl file:

1. Set userMachinePulldown to True

2. Set userMachine.labelString to the name of your menu.

3. Fill in the appropriate information for your first menu item,
userMachine_Option1

4. To define more menu items, fill in the appropriate information for
userMachine_Option2 , userMachine_Option3 , and so on. You can define up
to ten menu items.

Example – Creating a New Pulldown
Suppose you want to create a new menu bar item containing a selection which
executes the ping command against a machine you select on the Machines
window.

\userJobPulldown: True
\userJob.labelString: Commands
\userJob.Option1: True
\userJob.Option1_command: ping -c1
\userJob_Option1.labelString: ping
\userJob_Option1_parameter: True
\userJob_Option1_output: Window

Figure 34. Creating a New Pulldown Menu

The Xloadl definitions shown in the Figure 34 create a menu bar item called
“Commands”. The first item in the Commands pulldown menu is called “ping”.

230 Using and Administering LoadLeveler

When you select this item, the command ping -c1 is executed, with the machine
you selected on the Machines window passed to this command. Your output is
displayed in an informational window.

For more information, refer to the comments in the Xloadl file.

Customizing Fields on the Jobs Window and the Machines Window
You can control which fields are displayed and which fields are not displayed on
the Jobs window and the Machine window by changing the Xloadl file. Look in the
Xloadl file for “Resources for specifying lengths of fields displayed in the Jobs and
Machines windows”.

In most cases, you can remove a field from a window by setting its associated
resource value to 0. To remove the Arch field from the Machines window, enter the
following:

\mach_arch_len : ð

Note that the Job ID and Machine Name fields must always be displayed and
therefore cannot be set to 0.

All fields have a minimum length value. If you specify a smaller value, the minimum
is used.

Modifying Help Panels
Help panels have the same characteristics as all of the windows plus a few unique
ones:

Resource Variable Values Description

help*work_area.width Any integer* The width of the help panel.

help*work_area.height Any integer* The height of the help panel.

help*scrollHorizontal [true|false] The default is
False.

Sets the scrolling option on or off.

help*wordWrap [true|false] The default is
True.

Sets word wrapping on or off.

Note:

* The work area and height depend upon your screen limitations.

Administrative Uses for the Graphical User Interface
The end user can perform many tasks more efficiently and faster using the
graphical user interface (GUI) but there are certain tasks that end users cannot
perform unless they have the proper authority. If you are defined as a LoadLeveler
administrator in the LoadLeveler configuration file then you are immediately granted
administrative authority and can perform the administrative tasks discussed in this
section. To find out how to grant someone administrative authority, see “Step 1:
Define LoadLeveler Administrators” on page 96.

You can access LoadLeveler administrative commands using the Admin pulldown
menu on both the Jobs window and the Machines window of the GUI. The Admin
pulldown menu on the Jobs window corresponds to the command options available

 Chapter 10. Graphical User Interface Overview 231

in the llhold , llfavoruser , and llfavorjob commands. The Admin pulldown menu
on the Machines window corresponds to the command options available in the llctl
command.

The main window of the GUI, as shown in Figure 32 on page 212, has three
sub-windows: one for job status with pull-down menus for job-related commands,
one for machine status with pull-down menus for machine-related commands, and
one for messages and logs. There are a variety of facilities available that allow you
to sort and select the items displayed.

Job Related Administrative Actions
You access the administrative commands that act on jobs through the Admin
pulldown menu in the Jobs window of the GUI.

You can perform the following tasks with this menu:

Favor Users Allows you to favor users. This means that you can select
one or more users whose jobs you want to move up in the
job queue. This corresponds to the llfavoruser command.

Select Admin from the Jobs window

Select Favor User

MThe Order by User window appears.

Type in the name of the user for whom you want to favor
their jobs.

Press OK

Unfavor Users Allows you to unfavor users. This means that you want to
unfavor the user's jobs which you previously favored. This
corresponds to the llfavoruser command.

Select Admin from the Jobs window

Select Unfavor User

MThe Order by User window appears.

Type in the name of the user for whom you want to
unfavor their jobs.

Press OK

Favor Jobs Allows you to select a job that you want to favor. This
corresponds to the llfavorjob command.

Select one or more jobs from the Jobs window

Select Admin from the Jobs window

Select Favor Jobs

MThe selected jobs are favored.

Press OK

Unfavor Jobs Allows you select a job that you want to unfavor. This
corresponds to the llfavorjob command.

Select one or more jobs from the Jobs window

232 Using and Administering LoadLeveler

Select Admin from the Jobs window

Select Unfavor Jobs

MUnfavors the jobs that you previously selected.

Syshold Allows you to place a system hold on a job. This corresponds
to the llhold command.

Select a job from the Jobs window

Select Admin pulldown menu from the Jobs window

Select Syshold to place a system hold on the job.

Release From Hold Allows you to release the system hold on a job. This
corresponds to the llhold command.

Select a job from the Jobs window

Select Admin pulldown menu from the Jobs window

Select Release From Hold to release the system hold
on the job.

Machine Related Administrative Actions
You access the administrative commands that act on machines using the Admin
pulldown menu in the Machines window of the GUI.

Using the GUI pulldown menu, you can perform the tasks described in this section.

Start All Starts LoadLeveler on all machines listed in machine stanzas
beginning with the central manager. Use this option when
specifying alternate central managers.

Select Admin from the Machines window.

Select Start All

Start LoadLeveler Allows you to start LoadLeveler on selected machines.

Select one or more machines on which you want to start
LoadLeveler.

Select Admin from the Machines window.

Select Start LoadLeveler

Stop LoadLeveler Allows you to stop LoadLeveler on selected machines.

Select on or more machines on which you want to stop
LoadLeveler.

Select Admin from the Machines window.

Select Stop LoadLeveler .

Stop All Stops LoadLeveler on all machines listed in machine
stanzas. Use this option when specifying alternate central
managers.

Select Admin from the Machines window.

Select Stop All

 Chapter 10. Graphical User Interface Overview 233

reconfig forces all daemons to reread the configuration files.

Select the machine on which you want to operate. To
reconfigure this xloadl session, choose reconfig
but do not select a machine.

Select Admin from the Machines window.

Select reconfig .

recycle stops all LoadLeveler daemons and restarts them.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select recycle .

drain allows no more LoadLeveler jobs to begin running on this
machine but it does allow running jobs to complete.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select drain .

A cascading menu allows you to select either
daemons , schedd , startd , or startd by class . If
you select daemons , both machines will be
drained. If you select schedd , only the schedd on
the selected machine will be drained. If you select
startd , only the startd on the selected machine
will be drained. If you select startd by class , a
window appears which allows you to select
classes to be started.

flush terminates running jobs on this host and sends them back to
the system queue to await redispatch. No new jobs are
redispatched to this machine until resume is issued. Forces
a checkpoint if jobs are enabled for checkpointing.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select flush .

suspend suspends all jobs on this host.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select suspend .

resume resumes all jobs on this machine.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select resume .

A cascading menu allows you to select either
daemons , schedd , startd , or startd by class . If

234 Using and Administering LoadLeveler

you select daemons , both machines will be
resumed. If you select schedd , only the schedd
on the selected machine will be resumed. If you
select startd , only the startd on the selected
machine will be resumed. If you select startd by
class , a window appears which allows you to
select classes to be resumed.

Capture Data collects information on the machines selected.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select Capture Data .

Collect Account Data collects accounting data on the machines selected.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select Collect Account Data .

A window appears prompting you to enter the
name of the directory in which you want the
collected data stored.

Create Account Report creates an accounting report for you.

Select Admin → Create Account Report...

Note : If you want to receive an extended
accounting report, select the extended cascading
button.

A window appears prompting you to enter the
following information:

� A short, long, or extended version of the
output. The short version is the default.

� The user ID

� The class name

� The LoadL (LoadLeveler) group name

� The UNIX group name

� The Allocated host

� The job ID

� The report Type

 � The section

� A start and end date for the report. If no date
is specified, the default is to report all of the
data in the report.

� The name of the input data file.

� The name of the output data file. This is the
same as stdout.

 Chapter 10. Graphical User Interface Overview 235

Press OK

The window closes and you return to the main
window. The report appears in the Messages
window if no output data file was specified.

version displays version and release data for LoadLeveler on the
machines selected in an information window.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select version .

236 Using and Administering LoadLeveler

The LoadLeveler Application Programming Interfaces

 The LoadLeveler Application Programming Interfaces 237

238 Using and Administering LoadLeveler

 Chapter 11. LoadLeveler APIs

LoadLeveler provides several Application Programming Interfaces (API) that you
can use. LoadLeveler's APIs are interfaces that allow application programs written
by customers to interact with the LoadLeveler environment by using specific data or
functions that are a part of LoadLeveler. These interfaces can be subroutines within
a library or installation exits. This chapter also describes configuration file keywords
required to enable these APIs.

This chapter discusses the following:

 � “Accounting API.”

� “Serial Checkpointing API” on page 242.

� “The Submit API” on page 243.

� “Data Access API” on page 245.

� “Parallel Job API” on page 263.

� “Job Control API” on page 268.

� “Query API” on page 273.

� “User Exits” on page 277.

The header file llapi.h defines all of the API data structures and subroutines. This
file is located in the include subdirectory of the LoadLeveler release directory. You
must include this file when you call any API subroutine.

The library libllapi.a is a shared library containing all of the LoadLeveler API
subroutines. This library is located in the lib subdirectory of the LoadLeveler
release directory.

Attention: These APIs are not thread safe; They should not be linked to by a
threaded application.

 Accounting API
LoadLeveler provides two subroutines for accounting: one for account validation
and one for extracting accounting data.

Account Validation Subroutine
LoadLeveler provides the llacctval executable to perform account validation.

 Purpose
llacctval compares the account number a user specifies in a job command file with
the account numbers defined for that user in the LoadLeveler administration file. If
the account numbers match, llacctval returns a value of zero. Otherwise, it returns
a non-zero value.

 Chapter 11. LoadLeveler APIs 239

 Syntax
program user_name user_group user_acct# acct1 acct2 ...

 Parameters
program

Is the name of the program that performs the account validation. The default is
llacctval . The name you specify here must match the value specified on the
ACCT_VALIDATION keyword. in the configuration file.

user_name
Is the name of the user whose account number you want to validate.

user_group
Is the login group name of the user.

user_acct#
Is the account number specified by the user in the job command file.

acct1 acct2 ...
Are the account numbers obtained from the user stanza in the LoadLeveler
administration file.

 Description
llacctval is invoked from within the llsubmit command. If the return code is
non-zero, llsubmit does not submit the job.

You can replace llacctval with your own accounting user exit (see below).

To enable account validation, you must specify the following keyword in the
configuration file:

ACCT = A_VALIDATE

To use your own accounting exit, specify the following keyword in the configuration
file:

ACCT_VALIDATION = pathname

where pathname is the name of your accounting exit.

 Return Values
If the validation succeeds, the exit status must be zero. If it does not succeed, the
exit status must be a non-zero number.

Report Generation Subroutine
LoadLeveler provides the GetHistory subroutine to generate accounting reports.

 Purpose
GetHistory processes local or global LoadLeveler history files.

 Library
LoadLeveler API library libllapi.a

240 Using and Administering LoadLeveler

 Syntax
#include "llapi.h"

int GetHistory(char \filename, int (\func (LL_job \), int version);

 Parameters
filename

Specifies the name of the history file.

(*func (LL_job *)
Specifies the user-supplied function you want to call to process each history
record. The function must return an integer and must accept as input a pointer
to the LL_job structure. The LL_job structure is defined in the llapi.h file.

version
Specifies the version of the history record you want to create.
LL_JOB_VERSION in the llapi.h file creates an LL_job history record.

 Description
GetHistory opens the history file you specify, reads one LL_job accounting record,
and calls a user-supplied routine, passing to the routine the address of an LL_job
structure. GetHistory processes all history records one at a time and then closes
the file. Any user can call this subroutine.

The user-supplied function must include the following files:

#include sys/resource.h
#include sys/types.h
#include sys/time.h

The ll_event_usage structure is part of the LL_job structure and contains the
following LoadLeveler defined data:

int event
Specifies the event identifier. This is an integer whose value is one of the
following:

1 Represents a LoadLeveler-generated event.
2 Represents an installation-generated event.

char * name
Specifies a character string identifying the event. This can be one of the
following:

� An installation generated string that uses the command llctl capture
eventname.

� LoadLeveler-generated strings, which can be the following:

 started
 checkpoint
 vacated
 completed
 rejected
 removed

 Chapter 11. LoadLeveler APIs 241

 Return Values
GetHistory returns a zero when successful.

 Error Values
GetHistory returns -1 to indicate that the version is not supported or that an error
occurred opening the history file.

 Examples
Makefiles and examples which use this API are located in the samples/llphist
subdirectory of the release directory. The examples include the executable llpjob ,
which invokes GetHistory to print every record in the history file. In order to
compile llpjob , the sample Makefile must update the RELEASE_DIR field to
represent the current LoadLeveler release directory. The syntax for llpjob is:

 llpjob history_file

Where history_file is a local or global history file.

Serial Checkpointing API
This section describes ckpt , the subroutine used for user-initiated checkpointing of
serial jobs. “Step 13: Enable Checkpointing” on page 113 describes how to
checkpoint your jobs in various ways including system-initiated and user-initiated.
For information of checkpointing parallel jobs, see IBM Parallel Environment for
AIX: Operation and Use, Volume 1 .

 ckpt Subroutine

 Purpose
Specify the ckpt subroutine in a FORTRAN, C, or C++ program to activate
user-initiated checkpointing. Whenever this subroutine is invoked, a checkpoint of
the program is taken.

 C++ Syntax
extern "C"{void ckpt();}

 C Syntax
 void ckpt();

 FORTRAN Syntax
 call ckpt()

 Related Information
FORTRAN, C, and C++ programs can be compiled with the crxlf, crxlc, and crxlC
programs, respectively. These programs are found in the bin subdirectory of the
LoadLeveler release directory. See “Ensure all User's Jobs are Linked to
Checkpointing Libraries” on page 116 for information on using these compile
programs.

242 Using and Administering LoadLeveler

The Submit API
This API allows you to submit jobs to LoadLeveler. The submit API consists of the
llsubmit subroutine, the llfree_job_info subroutine, and the monitor program.

 llsubmit Subroutine
llsubmit is both the name of a LoadLeveler command used to submit jobs as well
as the subroutine described here.

 Purpose
The llsubmit subroutine submits jobs to LoadLeveler for scheduling.

 Syntax
int llsubmit (char \job_cmd_file, char \monitor_program,
char \monitor_arg, LL_job \job_info, int job_version);

 Parameters
job_cmd_file

Is a pointer to a string containing the name of the job command file.

monitor_program
Is a pointer to a string containing the name of the monitor program to be
invoked when the state of the job is changed. It is set to NULL if a monitoring
program is not provided.

monitor_arg
Is a pointer to a string which is stored in the job object and is passed to the
monitor program. The maximum length of the string is 1023 bytes. If the length
exceeds this value, it is truncated to 1023 bytes. The string is set to NULL if an
argument is not provided.

job_info
Is a pointer to a structure defined in the llapi.h header file. No fields are
required to be filled in. Upon return, the structure will contain the number of job
steps in the job command file and a pointer to an array of pointers to
information about each job step. Space for the array and the job step
information is allocated by llsubmit . The caller should free this space using
the llfree_job_info subroutine.

job_version
Is an integer indicating the version of llsubmit being used. This argument
should be set to LL_JOB_VERSION which is defined in the llapi.h include file.

 Description
LoadLeveler must be installed and configured correctly on the machine on which
the submit application is run.

The uid and gid in effect when llsubmit is invoked is the uid and gid used when
the job is run.

 Chapter 11. LoadLeveler APIs 243

 Return Values
0 The job was submitted.

 Error Values
-1 The job was not submitted. Error messages are written to stderr.

 llfree_job_info Subroutine

 Purpose
llfree_job_info frees space for the array and the job step information used by
llsubmit .

 Syntax
void llfree_job_info(LL_job \job_info, int job_version);

 Parameters
job_info

Is a pointer to a LL_job structure. Upon return, the space pointed to by the
step_list variable and the space associated with the LL_job step structures
pointed to by the step_list array are freed. All fields in the LL_job structure are
set to zero.

job_version
Is an integer indicating the version of llfree_job_info being used. This
argument should be set to LL_JOB_VERSION which is defined in the llapi.h
header file.

The Monitor Program

 Purpose
You can create a monitor program that monitors jobs submitted using the llsubmit
subroutine. The schedd daemon invokes this monitor program if the
monitor_program argument to llsubmit is not null. The monitor program is
invoked each time a job step changes state. This means that the monitor program
will be informed when the job step is started, completed, vacated, removed, or
rejected.

 Syntax
monitor_program job_id user_arg state exit_status

 Parameters
monitor_program

Is the name of the program supplied in the monitor_program argument passed
to the llsubmit function.

job_id
Is the full ID for the job step.

user_arg
The string supplied to the monitor_arg argument that is passed to the llsubmit
function.

244 Using and Administering LoadLeveler

state
Is the current state of the job step. Possible values for the state are:

JOB_STARTED
The job step has started.

JOB_COMPLETED
The job step has completed.

JOB_VACATED
The job step has been vacated. The job step will be rescheduled if the job
step is restartable or if it is checkpointable.

JOB_REJECTED
A startd daemon has rejected the job. The job will be rescheduled to
another machine if possible.

JOB_REMOVED
The job step was cancelled or could not be started.

JOB_NOTRUN
The job step cannot be run because a dependency cannot be met.

exit_status
Is the exit status from the job step. The argument is meaningful only if the state
is JOB_COMPLETED.

Data Access API
This API gives you access to LoadLeveler objects and allows you to retrieve
specific data from the objects. You can use this API to query the negotiator
daemon for information about its current set of jobs and machines. The Data
Access API consists of the following subroutines: Ll_query , ll_set_request ,
ll_reset_request , ll_get_objs , ll_get_data , ll_next_obj , ll_free_objs , and
ll_deallocate .

Using the Data Access API
To use this API, you need to call the data access subroutines in the following order:

� Call ll_query to initialize the query object. See “ll_query Subroutine” on
page 246 for more information.

� Call ll_set_request to filter the objects you want to query. See “ll_set_request
Subroutine” on page 246 for more information.

– Call ll_get_objs to retrieve a list of objects from a LoadLeveler daemon.
See “ll_get_objs Subroutine” on page 249 for more information.

- Call ll_get_data to retrieve specific data from an object. See
“ll_get_data Subroutine” on page 257 for more information.

– Call ll_next_obj to retrieve the next object in the list. See “ll_next_obj
Subroutine” on page 259 for more information.

� Call ll_free_objs to free the list of objects you received. See “ll_free_objs
Subroutine” on page 259 for more information.

� Call ll_deallocate to end the query. See “ll_deallocate Subroutine” on
page 260 for more information.

 Chapter 11. LoadLeveler APIs 245

To see code that uses these subroutines, refer to “Examples of Using the Data
Access API” on page 261. For more information on LoadLeveler objects, see
“Understanding the LoadLeveler Job Object Model” on page 251.

 ll_query Subroutine

 Purpose
The ll_query subroutine initializes the query object and defines the type of query
you want to perform. The LL_element created and the corresponding data returned
by this function is determined by the query_type you select.

 Library
LoadLeveler API library libllapi.a

 Syntax
#include "llapi.h"

LL_element \ ll_query(enum QueryType query_type);

 Parameters
query_type

Can be JOBS (to query job information) or MACHINES (to query machine
information).

 Description
query_type is the input field for this subroutine.

This subroutine is used in conjunction with other data access subroutines to query
information about job and machine objects. You must call ll_query prior to using
the other data access subroutines.

 Return Values
This subroutine returns a pointer to an LL_element object. The pointer is used by
subsequent data access subroutine calls.

 Error Values
NULL The subroutine was unable to create the appropriate pointer.

 Related Information
Subroutines: ll_get_data , ll_set_request , ll_reset_request , ll_get_objs ,
ll_free_objs , ll_next_obj , ll_deallocate .

 ll_set_request Subroutine

 Purpose
The ll_set_request subroutine determines the data requested during a subsequent
ll_get_objs call to query specific objects. You can filter your queries based on the
query_type, object_filter, and data_filter you select.

246 Using and Administering LoadLeveler

 Library
LoadLeveler API library libllapi.a

 Syntax
#include "llapi.h"

int ll_set_request(LL_element \query_element,QueryFlags query_flags,
char \\object_filter,DataFilter data_filter);

 Parameters
query_element

Is a pointer to the LL_element returned by the ll_query subroutine.

query_flags
When query_type (in ll_query) is JOBS, query_flags can be the following:

QUERY_ALL Query all jobs.
QUERY_JOBID Query by job ID.
QUERY_STEPID Query by step ID.
QUERY_USER Query by user ID.
QUERY_GROUP Query by LoadLeveler group.
QUERY_CLASS Query by LoadLeveler class.
QUERY_HOSTS Query by machine name.

When query_type (in ll_query) is MACHINES, query_flags can be the following:

QUERY_ALL Query all machines.
QUERY_HOST Query by machine names.

object_filter
Specifies search criteria. The value you specify for object_filter is related to the
value you specify for query_flags:

� If you specify QUERY_ALL, you do not need an object_filter.

� If you specify QUERY_JOBID, the object_filter must contain a list of job IDs
(in the form schedd_host.cluster.).

� If you specify QUERY_STEPID, the object_filter must contain a list of step
IDs (in the form schedd_host.cluster.step).

� If you specify QUERY_USER, the object_filter must contain a list of user
IDs.

� If you specify QUERY_CLASS, the object_filter must contain a list of
LoadLeveler class names.

� If you specify QUERY_GROUP, the object_filter must contain a list of
LoadLeveler group names.

� If you specify QUERY_HOST, the object_filter must contain a list of
LoadLeveler machine names.

data_filter
Filters the data returned from the object you query. The value you specify for
data_filter is related to the value you specify for query_type:

� If you specify JOBS, data_filter can be ALL_DATA (the default), which
returns the entire object, or Q_LINE, which returns the same information

 Chapter 11. LoadLeveler APIs 247

returned by the llq -f flag. For more information, see “llq - Query Job
Status” on page 181.

� If you specify MACHINES, data_filter can be ALL_DATA (the default),
which returns the entire object, or STATUS_LINE, which returns the same
information returned by the llstatus -f flag. For more information, see
“llstatus - Query Machine Status” on page 193.

 Description
query_element, query_flags, object_filter, and data_filter are the input fields for this
subroutine.

You can request a combination of object filters by calling ll_set_request more than
once. When you do this, the query flags you specify are or-ed together. The
following are valid combinations of object filters:

� QUERY_JOBID and QUERY_STEPID. The result is the union of both queries.

� QUERY_HOST and QUERY_USER. The result is the intersection of both
queries.

� QUERY_HOST and QUERY_CLASS. The result is the intersection of both
queries.

� QUERY_HOST and QUERY_GROUP. The result is the intersection of both
queries.

That is, to query jobs owned by certain users and on a specific machines, issue
ll_set_request first with QUERY_USER and the appropriate user IDs, and then
issue it again with QUERY_HOST and the appropriate host names.

For example, suppose you issue ll_set_request with a user ID list of anton and
meg, and then issue it again with a host list of k10n10 and k10n11. The objects
returned are all of the jobs on k10n10 and k10n11 which belong to anton or meg.

Note that if you use two consecutive calls with the same flag, the second call will
replace the previous call.

Also, you should not use the QUERY_ALL flag in combination with any other flag,
since QUERY_ALL will replace any existing requests.

 Return Values
This subroutine returns a zero to indicate success.

 Error Values
-1 You specified an invalid query_element.
-2 You specified an invalid query_flag.
-3 You specified an invalid object_filter.
-4 You specified an invalid data_filter.
-5 A system error occurred.

248 Using and Administering LoadLeveler

 Related Information
Subroutines: ll_get_data , ll_query , ll_reset_request , ll_get_objs , ll_free_objs ,
ll_next_obj , ll_deallocate .

 ll_reset_request Subroutine

 Purpose
The ll_reset_request subroutine resets the request data to NULL for the
query_element you specify.

 Library
LoadLeveler API library libllapi.a

 Syntax
#include "llapi.h"

int ll_reset_request(LL_element \query_element);

 Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

 Description
query_element is the input field for this subroutine.

This subroutine is used in conjunction with ll_set_request to change the data
requested with the ll_get_objs subroutine.

 Return Values
This subroutine returns a zero to indicate success.

 Error Values
-1 The subroutine was unable to reset the appropriate data.

 Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_free_objs ,
ll_next_obj , ll_deallocate .

 ll_get_objs Subroutine

 Purpose
The ll_get_objs subroutine sends a query request to the daemon you specify along
with the request data you specified in the ll_set_request subroutine. ll_get_objs
receives a list of objects matching the request.

 Library
LoadLeveler API library libllapi.a

 Chapter 11. LoadLeveler APIs 249

 Syntax
#include "llapi.h"

LL_element \ ll_get_objs(LL_element \query_element,LL_Daemon query_daemon,
char \hostname,int \number_of_objs,int \error_code);

 Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

query_daemon
Specifies the LoadLeveler daemon you want to query. The following indicates
which daemons respond to which query flags. When query_type (in ll_query) is
JOBS, the query_flags (in ll_set_request) listed in the lefthand column are
responded to by the daemons listed in the righthand column:

QUERY_ALL negotiator and schedd
QUERY_JOBID negotiator and schedd
QUERY_STEPID negotiator
QUERY_USER negotiator
QUERY_GROUP negotiator
QUERY_CLASS negotiator
QUERY_HOST negotiator

When query_type (in ll_query) is MACHINES, the query_flags (in
ll_set_request) listed in the lefthand column are responded to by the daemons
listed in the righthand column:

QUERY_ALL negotiator and schedd
QUERY_HOST negotiator

hostname
Specifies the host name where the daemon is queried. If you specify NULL, the
daemon on the local machine is queried. To contact the negotiator daemon,
you do not need to specify a hostname.

number_of_objs
Is a pointer to an integer representing the number of objects received from the
daemon.

error_code
Is a pointer to an integer representing the error code issued when the function
returns a NULL value. See “Error Values” on page 251.

 Description
query_element, query_daemon, and hostname are the input fields for this
subroutine. number_of_objs and error_code are output fields.

Each LoadLeveler daemon returns only the objects that it knows about.

 Return Values
This subroutine returns a pointer to the first object in the list. You must use the
ll_next_obj subroutine to access the next object in the list.

250 Using and Administering LoadLeveler

 Error Values
This subroutine a NULL to indicate failure. The error_code parameter is set to one
of the following:

-1 You specified an invalid query_element.
-2 You specified an invalid query_daemon.
-3 The API could not resolve the hostname.
-4 You set an invalid request type for the specified daemon.
-5 A system error occurred.
-6 No objects exist matching your request.
-7 An internal error occurred.

 Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_free_objs ,
ll_next_obj , ll_deallocate .

Understanding the LoadLeveler Job Object Model
The ll_get_data subroutine of the data access API allows you to access the
LoadLeveler job model. The LoadLeveler job model consists of objects that have
attributes and connections to other objects. An attribute is a characteristic of the
object and generally has a primitive data type (such as integer, float, or character).
The job name, submission time and job priority are examples of attributes.

Objects are connected to one or more other objects via relationships. An object can
be connected to other objects through more than one relationship, or through the
same relationship. For example, A Job object is connected to a Credential object
and to Step objects through two different relationships. A Job object can be
connected to more than one Step object through the same relationship of “having a
Step.” When an object is connected through different relationships, different
specifications are used to retrieve the appropriate object.

When an object is connected to more than one object through the same
relationship, there are Count, GetFirst and GetNext specifications associated with
the relationship. The Count operation returns the number of connections. You must
use the GetFirst operation to initialize access to the first such connected object.
You must use the GetNext operation to get the remaining objects in succession.
You can not use GetNext after the last object has been retrieved.

You can use the ll_get_data subroutine to access both attributes and connected
objects. See “ll_get_data Subroutine” on page 257 for more information.

The root of the job model is the Job object, as shown in Figure 35 on page 252.
The job is queried for information about the number of steps it contains and the
time it was submitted. The job is connected to a single Credential object and one or
more Step objects. Elements for these objects can be obtained from the job.

You can query the Credential object to obtain the ID and group of the submitter of
the job.

The Step object represents one executable unit of the job (all the tasks that are
executed together). It contains information about the execution state of the step,
messages generated during execution of the step, the number of nodes in the step,
the number of unique machines the step is running on, the time the step was
dispatched, the execution priority of the step, the unique identifier given to the step

 Chapter 11. LoadLeveler APIs 251

by LoadLeveler, the class of the step and the number of processes running for the
step (task instances). The Step is connected to one or more Switch Table objects,
one or more Machine objects and one or more Node objects. The list of Machines
represents all of the hosts where one or more nodes of the step are running. If two
or more nodes are running on the same host, the Machine object for the host
occurs only once in the step's Machine list. The Step object is connected to one
Switch Table object for each of the protocols (MPI and/or LAPI) used by the Step.
Finally, the Step is connected to one or more Node objects.

Each Node object manages a set of executables that share common requirements
and preferences. The Node can be queried for the number of tasks it manages,
and is connected to one or more Task objects.

Task

Node

Step
0..n

1..n

1..n

1..n

1..n

Credential

Job

Switch Table

Machine

Figure 35. LoadLeveler Job Object Model

252 Using and Administering LoadLeveler

The Task object represents one or more copies of the same executable. The Task
object can be queried for the executable, the executable arguments, and the
number of instances of the executable.

Table 11 describes the specifications and elements available when you use the
ll_get_data subroutine. Each specification name describes the object you need to
specify and the attribute returned. For example, the specification
LL_JobGetFirstStep includes the object you need to specify (LL_Job) and the value
returned (GetFirstStep).

This table is sorted alphabetically by object; within each object the specifications
are also sorted alphabetically.

Table 11 (Page 1 of 5). Specifications for ll_get_data Subroutine

Specification Object
Resulting Data
Type Description

LL_CredentialGid Credential int* A pointer to an integer containing the
UNIX gid of the user submitting the job.

LL_CredentialGroupName Credential char* A pointer to a string containing the
UNIX group name of the user
submitting the job.

LL_CredentialUid Credential int* A pointer to an integer containing the
UNIX uid of the person submitting the
job.

LL_CredentialUserName Credential char* A pointer to a string containing the user
ID of the user submitting the job.

LL_JobCredential Job LL_element* A pointer to the element associated
with the job the credential.

LL_JobGetFirstStep Job LL_element* A pointer to the element associated
with the first step of the job, to be used
in subsequent ll_get_data calls.

LL_JobGetNextStep Job LL_element* A pointer to the element associated
with the next step.

LL_JobName Job char* A pointer to a character string
containing the job name.

LL_JobStepCount Job int* A pointer to an integer indicating the
number of steps connected to the job.

LL_JobStepType Job int* A pointer to an integer indicating the
type of job, which can be
INTERACTIVE_JOB or BATCH_JOB.

LL_JobSubmitHost Job char* A pointer to a character string
containing the name of the host
machine from which the job was
submitted.

LL_JobSubmitTime Job time_t* A pointer to the time_t structure
indicating when the job was submitted.

LL_MachineAdapterList Machine char** A pointer to an array containing the list
of adapters associated with the
machine. The array ends with a NULL
string.

LL_MachineArchitecture Machine char* A pointer to a string containing the
machine architecture.

LL_MachineAvailableClassList Machine char** A pointer to an array containing the
currently available job classes defined
on the machine. The array ends with a
NULL string.

 Chapter 11. LoadLeveler APIs 253

Table 11 (Page 2 of 5). Specifications for ll_get_data Subroutine

Specification Object
Resulting Data
Type Description

LL_MachineConfiguredClassList Machine char** A pointer to an array containing the
initiators on the machine. The array
ends with a NULL string.

LL_MachineCPUs Machine int* A pointer to an integer containing the
number of CPUs on the machine.

LL_MachineDisk Machine int* A pointer to an integer indicating the
disk space in KBs on the machine.

LL_MachineFeatureList Machine char** A pointer to an array containing the
features defined on the machine. The
array ends with a NULL string.

LL_MachineKbddIdle Machine int* A pointer to an integer indicating the
number of seconds since the kbdd
daemon detected keyboard mouse
activity.

LL_MachineLoadAverage Machine double* A pointer to a double containing the
load average on the machine.

LL_MachineMaxTasks Machine int* A pointer to an integer indicating the
maximum number of tasks this
machine can run at one time.

LL_MachineMachineMode Machine char* A pointer to a string containing the
configured machine mode.

LL_MachineName Machine char* A pointer to a string containing the
machine name.

LL_MachineOperatingSystem Machine char* A pointer to a string containing the
operating system on the machine.

LL_MachinePoolList Machine int** A pointer to an array indicating the pool
numbers to which this machine
belongs. The array ends with a NULL
string.

LL_MachineRealMemory Machine int* A pointer to an integer indicating the
physical memory on the machine.

LL_MachineSpeed Machine double* A pointer to a double containing the
configured speed of the machine.

LL_MachineStartdRunningJobs Machine int* A pointer to an integer containing the
number of running jobs known by the
startdd daemon.

LL_MachineStartdState Machine char* A pointer to a string containing the
state of the startdd daemon.

LL_MachineStepList Machine char** A pointer to an array containing the
steps running on the machine. The
array ends with a NULL string.

LL_MachineTimeStamp Machine time_t* A pointer to a time_t structure
indicating the time the machine last
reported to the negotiator.

LL_MachineVirtualMemory Machine int* A pointer to an integer indicating the
virtual memory in KBs on the machine.

LL_NodeGetFirstTask Node LL_element* A pointer to the element associated
with the first task for this node.

LL_NodeGetNextTask Node LL_element* A pointer to the element associated
with the next task for this node.

LL_NodeMinInstances Node int* A pointer to an integer indicating the
minimum number of machines
requested.

254 Using and Administering LoadLeveler

Table 11 (Page 3 of 5). Specifications for ll_get_data Subroutine

Specification Object
Resulting Data
Type Description

LL_NodeMaxInstances Node int* A pointer to an integer indicating the
maximum number of machines
requested.

LL_NodeRequirements Node char* A pointer to a string containing the
node requirements.

LL_NodeTaskCount Node int* A pointer to an integer indicating the
number of tasks running on the node.

LL_StepAccountNumber Step char* A pointer to a string indicating the
account number specified by the user
submitting the job.

LL_StepAdapterUsage Step int* A pointer to an integer indicating the
adapter usage specified by the user,
which can be SHARED or
NOT_SHARED.

LL_StepComment Step char* A pointer to a string indicating the
comment specified by the user
submitting the job.

LL_StepCompletionCode Step int* A pointer to an integer indicating the
completion code of the step.

LL_StepCompletionDate Step time_t* A pointer to a time_t structure
indicating the completion date of the
step.

LL_StepCoreLimitHard Step int* A pointer to an integer indicating the
core hard limit set by the user in the
core_limit keyword.

LL_StepCoreLimitSoft Step int* A pointer to an integer indicating the
core soft limit set by the user in the
core_limit keyword.

LL_StepCpuLimitHard Step int* A pointer to an integer indicating the
CPU hard limit set by the user in the
cpu_limit keyword.

LL_StepCpuLimitSoft Step int* A pointer to an integer indicating the
CPU soft limit set by the user in the
cpu_limit keyword.

LL_StepCpuStepLimitHard Step int* A pointer to an integer indicating the
CPU step hard limit set by the user in
the job_cpu_limit keyword.

LL_StepCpuStepLimitSoft Step int* A pointer to an integer indicating the
CPU step soft limit set by the user in
the job_cpu_limit keyword.

LL_StepDataLimitHard Step int* A pointer to an integer indicating the
data hard limit set by the user in the
data_limit keyword.

LL_StepDataLimitSoft Step int* A pointer to an integer indicating the
data soft limit set by the user in the
data_limit keyword.

LL_StepDispatchTime Step time_t* A pointer to a time_t structure
indicating the time the negotiator
dispatched the job.

LL_StepEnvironment Step char* A pointer to a string containing the
environment variables set by the user
in the executable.

 Chapter 11. LoadLeveler APIs 255

Table 11 (Page 4 of 5). Specifications for ll_get_data Subroutine

Specification Object
Resulting Data
Type Description

LL_StepErrorFile Step char* A pointer to a string containing the
standard error file name used by the
executable.

LL_StepExecSize Step int* A pointer to an integer indicating the
executable size.

LL_StepFileLimitHard Step int* A pointer to an integer indicating the
file hard limit set by the user in the
file_limit keyword.

LL_StepFileLimitSoft Step int* A pointer to an integer indicating the
file soft limit set by the user in the
file_limit keyword.

LL_StepGetFirstMachine Step LL_element* A pointer to the element associated
with the first machine in the step.

LL_StepGetFirstNode Step LL_element* A pointer to the element associated
with the first node of the step.

LL_StepGetMasterTask Step LL_element* A pointer to the element associated
with the master task of the step.

LL_StepGetNextMachine Step LL_element* A pointer to the element associated
with the next machine of the step.

LL_StepGetNextNode Step LL_element* A pointer to the element associated
with the next node of the step.

LL_StepID Step char* A pointer to a string containing the ID
of the step.

LL_StepImageSize Step int* A pointer to an integer indicating the
image size of the executable.

LL_StepInputFile Step char* A pointer to a string containing the
standard input file name used by the
executable.

LL_StepIwd Step char* A pointer to a string containing the
initial working directory name used by
the executable.

LL_StepJobClass Step char* A pointer to a string containing the
class of the step.

LL_StepMachineCount Step int* A pointer to an integer indicating the
number of machines assigned to the
step.

LL_StepName Step char* A pointer to a string containing the
name of the step.

LL_StepNodeCount Step int* A pointer to an integer indicating the
number of node objects associated with
the step.

LL_StepNodeUsage Step int* A pointer to an integer indicating the
node usage specified by the user,
which can be SHARED or
NOT_SHARED.

LL_StepOutputFile Step char* A pointer to a character string
containing the standard output file
name used by the executable.

LL_StepPriority Step int* A pointer to an integer indicating the
priority of the step.

LL_StepRssLimitHard Step int* A pointer to an integer indicating the
RSS hard limit set by the user in the
rss_limit keyword.

256 Using and Administering LoadLeveler

Table 11 (Page 5 of 5). Specifications for ll_get_data Subroutine

Specification Object
Resulting Data
Type Description

LL_StepRssLimitSoft Step int* A pointer to an integer indicating the
RSS soft limit set by the user in the
rss_limit keyword.

LL_StepShell Step char* A pointer to a character string
containing the shell name used by the
executable.

LL_StepStackLimitHard Step int* A pointer to an integer indicating the
stack hard limit set by the user in the
stack_limit keyword.

LL_StepStackLimitSoft Step int* A pointer to an integer indicating the
stack soft limit set by the user in the
stack_limit keyword.

LL_StepStartCount Step int* A pointer to an integer indicating the
number of times the step has been
started.

LL_StepStartDate Step time_t* A pointer to a time_t structure
indicating the value the user specified
in the startdate keyword.

LL_StepState Step int* A pointer to an integer indicating the
state of the Step (Idle, Pending,
Starting, etc.) The value returned is in
the StepState enum.

LL_StepTaskInstanceCount Step int* A pointer to an integer indicating the
number of task instances in the step.

LL_StepWallClockLimitHard Step int* A pointer to an integer indicating the
wall clock hard limit set by the user in
the wall_clock_limit keyword.

LL_StepWallClockLimitSoft Step int* A pointer to an integer indicating the
wall clock soft limit set by the user in
the wall_clock_limit keyword.

LL_TaskExecutable Task char* A pointer to a string containing the
name of the executable.

LL_TaskExecutableArguments Task char* A pointer to a string containing the
arguments passed by the user in the
executable.

LL_TaskIsMaster Task int* A pointer to an integer indicating
whether this is the master task.

 ll_get_data Subroutine
Before you use this subroutine, make sure you are familiar with “Understanding the
LoadLeveler Job Object Model” on page 251.

 Purpose
The ll_get_data subroutine returns data from a valid LL_element .

 Chapter 11. LoadLeveler APIs 257

 Library
LoadLeveler API library libllapi.a

 Syntax
 #include "llapi.h"

int ll_get_data(LL_element \element, enum LLAPI_Specification specification,
 void\ resulting_data_type);

 Parameters
object

Is a pointer to the LL_element returned by the ll_get_objs subroutine or by
the ll_get_data subroutine. For example: Job, Machine, Step, etc.

specification
Specifies the data field within the data object you want to read.

resulting_data_type
Is a pointer to where you want the data stored.

 Description
object and specification are input fields, while resulting_data_type is an output field.

The ll_get_data subroutine of the data access API allows you to access
LoadLeveler objects. The parameters of ll_get_data are a LoadLeveler object
(LL_element), a specification that indicates what information about the object is
being requested, and a pointer to the area where the information being requested
should be stored.

If the specification indicates an attribute of the element that is passed in, the result
pointer must be the address of a variable of the appropriate type. The type returned
by each specification is found in Table 11 on page 253. If the specification queries
the connection to another object, the returned value is of type LL_element . You
can use a subsequent ll_get_data call to query information about the new object.

The data type char* and any arrays of type int or char must be freed by the caller.

LL_element pointers cannot be freed by the caller

 Return Values
This subroutine returns a zero to indicate success.

 Error Values
-1 You specified an invalid object.
-2 You specified an invalid LLAPI_Specification.

 Related Information
Subroutines: ll_query , ll_set_request , ll_reset_request , ll_get_objs , lL_next_obj ,
ll_free_objs , ll_deallocate .

258 Using and Administering LoadLeveler

 ll_next_obj Subroutine

 Purpose
The ll_next_obj subroutine returns the next object in the query_element list you
specify.

 Library
LoadLeveler API library libllapi.a

 Syntax
#include "llapi.h"

LL_element \ ll_next_obj(LL_element \query_element);

 Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

 Description
query_element is the input field for this subroutine.

Use this subroutine in conjunction with the ll_get_objs subroutine to “loop” through
the list of objects queried.

 Return Values
This subroutine returns a pointer to the next object in the list.

 Error Values
NULL Indicates an error or the end of the list of objects.

 Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_free_objs ,
ll_deallocate .

 ll_free_objs Subroutine

 Purpose
The ll_free_objs subroutine frees all of the LL_element objects in the
query_element list that were obtained by the ll_get_objs subroutine. You must free
the query_element by using the ll_deallocate subroutine.

 Library
LoadLeveler API library libllapi.a

 Syntax
#include "llapi.h"

int ll_free_objs(LL_element \query_element);

 Chapter 11. LoadLeveler APIs 259

 Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

 Description
query_element is the input field for this subroutine.

 Return Values
This subroutine returns a zero to indicate success.

 Error Values
-1 You specified an invalid query_element.

 Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_reset_request ,
ll_free_objs .

 ll_deallocate Subroutine

 Purpose
The ll_deallocate subroutine deallocates the query_element allocated by the
ll_query subroutine.

 Library
LoadLeveler API library libllapi.a

 Syntax
#include "llapi.h"

int ll_deallocate(LL_element \query_element);

 Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

 Description
query_element is the input field for this subroutine.

 Return Values
This subroutine returns a zero to indicate success.

 Error Values
-1 You specified an invalid query_element.

 Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_reset_request ,
ll_next_obj , ll_free_objs .

260 Using and Administering LoadLeveler

Examples of Using the Data Access API
Example 1: The following example obtains a list of current job objects from the
negotiator and then prints the step ID and the name of the first allocated host.

#include "llapi.h"

main(int argc,char \argv[])
{
LL_element \queryObject=NULL, \job=NULL;
int rc, num, err, state;
LL_element \step=NULL, \machine = NULL;
char \id=NULL, \name=NULL;

/\ Initialize the query for jobs \/
queryObject = ll_query(JOBS);

/\ I want to query all jobs \/
rc = ll_set_request(queryObject,QUERY_ALL,NULL,NULL);

/\ Request the objects from the Negotiator daemon \/
job = ll_get_objs(queryObject,LL_CM,NULL,&num,&err);

/\ Did we get a list of objects ? \/
if (job == NULL) {

printf(" ll_get_objs returned a NULL object.\n");
printf(" err = %d\n",err);

 }
 else {

/\ Loop through the list and process \/
printf(" RESULT: number of jobs in list = %d\n",num);

 while(job) {
rc = ll_get_data(job,LL_JobGetFirstStep, &step);
while (step) {

rc = ll_get_data(step,LL_StepID, &id);
rc = ll_get_data(step,LL_StepState,&state);
printf(" RESULT: step id: %s\n",id);
if (state == STATE_RUNNING) {

rc = ll_get_data(step,LL_StepGetFirstMachine, &machine);
rc = ll_get_data(machine,LL_MachineName, &name);

printf(" Running on 1st assigned host: %s.\n",name);
 free(name);
 }
 else
 printf(" Not Running.\n");
 free(id);
 rc=ll_get_data(job,LL_JobGetNextStep,&step);
 }

job = ll_next_obj(queryObject);
 }
 }

/\ free objects obtained from Negotiator \/
rc = ll_free_objs(queryObject);

/\ free query element \/
rc = ll_deallocate(queryObject);

}

Example 2: The following example queries all jobs running under the class “small”
from the host k10n04:

 Chapter 11. LoadLeveler APIs 261

main(int argc,char \argv[])
{
LL_element \queryObject=NULL, \jobObject=NULL;
int rc, num, err;
LL_element \step=NULL, \cred=NULL, \machine=NULL;

 char \class_list[1];
 char \host_list[1];
char \id=NULL, \name=NULL;

/\ Initialize the query for jobs \/
queryObject = ll_query(JOBS);

/\ Query all jobs on host k1ðnð4 submitted to class "small" \/
class_list[ð] = (char \)malloc(1ð\sizeof(char \));

 strcpy(class_list[ð],"small");
rc = ll_set_request(queryObject,QUERY_CLASS,class_list,ALL_DATA);
host_list[ð] = (char \)malloc(1ð\sizeof(char \));

 strcpy(host_list[ð],"k1ðnð4");
rc = ll_set_request(queryObject,QUERY_HOST,host_list,ALL_DATA);

/\ Request the objects from the Negotiator daemon \/
jobObject = ll_get_objs(queryObject,LL_CM,NULL,&num,&err);

/\ Did we get a list of objects ? \/
if (jobObject == NULL) {

printf(" ll_get_objs returned a NULL object.\n");
printf(" err = %d\n",err);

 }
 else {

/\ Loop through the list and process \/
 while(jobObject) {

printf(" RESULT: number of jobs in list = %d\n",num);
 if(ll_get_data(jobObject,LL_JobCredential, &cred)){

printf("Couldn't get credential object.\n");
 }
 else {

if(!ll_get_data(cred,LL_CredentialUserName, &name)==ð) {
printf("The owner of this job is %s\n",name);

 free(name);
 }
 else {

printf("Couldn't get user name.\n");
 }
 }

if (ll_get_data(jobObject,LL_JobGetFirstStep, &step)==ð) {
while (step) {

if(!ll_get_data(step,LL_StepID, &id)) {
printf(" RESULT: step id: %s\n",id);

 }
 ll_get_data(jobObject,LL_JobGetNextStep,&step);
 }
 }
 else {

printf("No step associated with Job. Error !!\n");
 exit(1);
 }

jobObject = ll_next_obj(queryObject);
 }
 }

/\ free objects obtained from Negotiator \/
rc = ll_free_objs(queryObject);
/\ free query element \/
rc = ll_deallocate(queryObject);

 }

262 Using and Administering LoadLeveler

Example 3: The following example queries information about the hosts k10n11 and
k10n06:

#include "llapi.h"

main(int argc,char \argv[])
{
LL_element \queryObject=NULL, \machine=NULL;
int rc, num, err;

 char \\host_list;
char \state, \name;

/\ Initialize the query for machines \/
queryObject = ll_query(MACHINES);

/\ I want to query two specific hostnames \/
host_list = (char \\)malloc(2\sizeof(char \));

 host_list[ð]=strdup("k1ðn11");
 host_list[1]=strdup("k1ðnð6");

rc = ll_set_request(queryObject,QUERY_HOST,host_list,NULL);

/\ Request the objects from the Negotiator daemon \/
machine = ll_get_objs(queryObject,LL_CM,NULL,&num,&err);

/\ Did we get a list of objects ? \/
if (machine == NULL) {

printf(" ll_get_objs returned a NULL object.\n");
printf(" err = %d\n",err);

 }
 else {

/\ Loop through the list and process \/
printf(" RESULT: number of machines in list = %d\n",num);

 while(machine) {
rc = ll_get_data(machine,LL_MachineName,&name);
if (!rc) {

printf("machine name: %s\n",name);
 free(name);
 }

rc = ll_get_data(machine,LL_MachineStartdState,&state);
if (!rc) {

printf("startd state: %s\n",state);
 free(state);
 }

machine = ll_next_obj(queryObject);
 }
 }

/\ free objects obtained from Negotiator \/
rc = ll_free_objs(queryObject);

/\ free query element \/
rc = ll_deallocate(queryObject);

 }

Parallel Job API
If you are using any of the parallel operating environments already supported by
LoadLeveler, you do not have to use the parallel API. However, if you have another
application environment that you want to use, you need to use the subroutines
described here to interface with LoadLeveler.

 Chapter 11. LoadLeveler APIs 263

The parallel job API consists of two subroutines. ll_get_hostlist acquires the list of
LoadLeveler selected parallel nodes, and ll_start_host starts the parallel task
under the LoadLeveler starter.

The following section describes how parallel job submission works. Understanding
this will help you to better understand the parallel API.

Interaction Between LoadLeveler and the Parallel API
This API does not give you access to any new LoadLeveler Version 2 Release 1.0
functions.

Program applications which use the parallel APIs to interface with LoadLeveler are
supported under a job type called parallel . When a user submits a job specifying
the keyword job_type equal to parallel, the LoadLeveler API job control flow is as
follows:

The negotiator selects nodes based on the resources you request. Once the nodes
have been obtained, the negotiator contacts the schedd to start the job. The
schedd marks the job pending and contacts the affected startds to start their starter
processes.

One machine becomes the Master Starter . The Master Starter is one of the
selected parallel nodes. After all starters are started and have completed
inititialization, the Master Starter starts the executable specified in the job command
file. The executable referred to as the Parallel Master uses this API to start tasks
on remote nodes. A LOADLBATCH environment variable is set to YES so that the
Parallel Master can distinguish between callers.

The Parallel Master must:

� Obtain the machine list through the ll_get_hostlist API.

� Start a task on all allocated machines through the ll_start_host API. It is
mandatory that one and only one task be started on each machine. Each task
is considered a Parallel Slave. Acquiring the task name, path and arguments is
the responsibility of the Parallel Master. The user may pass this information
through the arguments or environment keywords in the job command file.

When the Parallel Master starts, the job is marked Running. Once the Parallel
Master and all tasks exit, the job is marked Complete.

 Termination Paths
The Parallel Master is expected to cleanup and exit when:

� All of the Parallel Slaves have exited.

� A negative value is returned by either the ll_get_hostlist or ll_start_host
subroutine.

� A SIGCONT, followed by a SIGTERM, is received. Reasons for this include:

– LoadLeveler receives a job cancel

– LoadLeveler receives a stop LoadLeveler daemons command

The SIGTERM is also sent to all parallel tasks.

� A SIGCONT, followed by a SIGUSR1, is received. Reasons for this include:

264 Using and Administering LoadLeveler

– The Parallel Master receives a VACATE or FLUSH request.

The SIGUSR1 is also sent to all parallel tasks.

A SIGKILL is issued to any process which does not exit within two minutes of
receiving a termination signal.

 ll_get_hostlist Subroutine

 Purpose
This subroutine obtains a list of machines from the Master Starter machine so that
the Parallel Master can start the Parallel Slaves. The Parallel Master is the
LoadLeveler executable specified in the job command file and the Parallel Slaves
are the processes started by the Parallel Master through the ll_start_host API.

 Library
LoadLeveler API library libllapi.a

 Syntax
int ll_get_hostlist(struct JM_JOB_INFO\ jobinfo);

 Parameters
jobinfo is a pointer to the JM_JOB_INFO structure defined in llapi.h . No fields are
required to be filled in. ll_get_hostlist allocates storage for an array of
JM_NODE_INFO structures and returns the pointer in the jm_min_node_info
pointer. It is the caller's responsibility to free this storage.

struct JM_JOB_INFO {
int jm_request_type;
char jm_job_description[5ð];
enum JM_ADAPTER_TYPE jm_adapter_type;
int jm_css_authentication;
int jm_min_num_nodes;
struct JM_NODE_INFO \jm_min_node_info;
};
struct JM_NODE_INFO {
char jm_node_name [MAXHOSTNAMELEN];
char jm_node_address [5ð];
int jm_switch_node_number;
int jm_pool_id;
int jm_cpu_usage;
int jm_adapter_usage;
int jm_num_virtual_tasks;
int \jm_virtual_task_ids;
enum JM_RETURN_CODE jm_return_code;
};

The following data is filled in for the JM_JOB_INFO structure:

jm_min_num_nodes
Is the number of elements in the array of JM_NODE_INFO structures. It is the
number of hosts allocated to a job.

 Chapter 11. LoadLeveler APIs 265

jm_min_node_info
Is the pointer to the array of JM_NODE_INFO structures. The first entry in this
array describes the node which is mapped to task 0. The second entry is
mapped to task 1, and so on.

The following data is filled in for each JM_NODE_INFO structure:

jm_node_name
Is the name of the node.

jm_node_address
Is the address corresponding to the adapter requested.

jm_switch_node_number
Is the relative node number set only for job running on the SP switch adapter.
For all other jobs it is set to -1.

 Description
The Parallel Master must:

� Issue error messages as appropriate.

� Exit when ll_get_hostlist returns with a negative return value. The Parallel
Master exit status is included in the job mail returned to the user.

 Return Values
This subroutine returns a zero to indicate success.

 Error Values
-2 Cannot get LoadLeveler step ID from environment.

-5 Cannot make socket. This means that the UNIX stream socket could not be
created. This socket is needed to establish communications with the starter
for both of the API's functions.

-6 Cannot connect to host.

-8 Cannot get hostlist.

 ll_start_host Subroutine

 Purpose
This subroutine starts a task on a selected machine.

 Library
LoadLeveler API library libllapi.a

 Syntax
int ll_start_host(char \host, char \start_cmd);

 Parameters
host

Is the name of the node on which you want to start the task.

start_cmd
Is the actual command to execute on the node, including flags and arguments.

266 Using and Administering LoadLeveler

 Description
This function must be invoked for all the machines returned from the
ll_get_hostlist subroutine once and only once by the Parallel Master. Acquiring the
start_cmd is the responsibility of the Parallel Master. The user may pass this
information through the arguments or environment keywords in the job command
file.

The Parallel Master must:

� Issue error messages as appropriate.

� Exit when ll_start_host returns a negative value. The Parallel Master exit
status is included in the job mail returned to the user.

 Return Values
This subroutine returns an integer greater than one to indicate the socket
connected to the Parallel Slave's standard I/O (stdio)

 Error Values
-2 Cannot get LoadLeveler step ID from environment

-4 Nameserver cannot resolve host

-6 Cannot connect to host

-7 Cannot send PASS_OPEN_SOCKET command to remote startd

-9 The command you specified failed.

 Examples
A sample program called para_api.c is provided in the samples/llpara subdirectory
of the release directory, usually /usr/lpp/LoadL/full .

In order to run this example, you need to do the following:

1. Copy the sample Makefile and the sample program called para_api.c to your
home directory.

2. Update the startCmd variable in para_api.c to reflect your home directory
versus /usr/lpp/LoadL/full/samples/llpara . For example:

char \startCmd = "/home/user/para_api -s";

3. Issue make to create the executable para_api .

4. Update your job command file as follows:

#!/bin/ksh
@ initialdir = /home/user
@ executable = para_api
@ output = para_api.$(cluster).$(process).out
@ error = para_api.$(cluster).$(process).err
@ job_type = parallel
@ min_processors = 2
@ max_processors = 2
@ queue

5. Submit the job command file to LoadLeveler.

 Chapter 11. LoadLeveler APIs 267

The syntax to invoke the Parallel Master is:

 para_api

The syntax to invoke the Parallel Slave is:

 para_api -s

The Parallel Master does the following:

� Acquires the hostlist through the ll_get_hostlist API and prints out the
returned fields.

� Starts a Parallel Slave task by executing the command specified in the
StartCmd variable on all hosts returned in the hostlist.

� Acquires the socket connected to the Parallel Slave's standard I/O (stdio).

� Writes a command over the socket to verify stdin.

� Reads acknowledgments over the socket to verify stderr and stdout.

� Prints out host names and acknowledgments.

 Example output follows:

num_nodes=2

name=host1.kgn.ibm.com address=9.115.8.162 switch_number=-1

name=host2.kgn.ibm.com address=9.115.8.164 switch_number=-1

Connected to host1.kgn.ibm.com at sock 3
Received acko "8ððð" and acke "1ðððð" from host ð

Connected to host2.kgn.ibm.com at sock 4
Received acko "8ðð1" and acke "1ððð1" from host 1

<Master Exiting>

The Parallel Slave does the following:

� Reads command from stdin.
� Writes acknowledgment to stdout and stderr.

Job Control API
This API allows you to disable the default LoadLeveler scheduling algorithm and
“plug in” an external scheduler. The job control API consists of two subroutines,
ll_start_job and ll_terminate_job , and uses the SCHEDULER_API LoadLeveler
configuration file keyword. This API is available to LoadLeveler administrators and
to users.

To use the job control API, you must specify the following keyword in the global
LoadLeveler configuration file:

SCHEDULER_API = YES

Specifying YES disables the default LoadLeveler scheduling algorithm. When you
disable the default LoadLeveler scheduler, jobs do not start unless requested to do
so by the job control API.

268 Using and Administering LoadLeveler

You can toggle between the default LoadLeveler scheduler and an external
scheduler in the following ways. If you are running the default LoadLeveler
scheduler, you can switch to an external scheduler by doing the following:

1. In the configuration file, set SCHEDULER_API = YES
2. On the central manager machine, issue the llctl command with the reconfig

option

If you are running an external scheduler, you can re-enable the LoadLeveler
scheduling algorithm by doing the following:

1. In the configuration file, set SCHEDULER_API = NO
2. On the central manager machine, issue the llctl command with the reconfig

option

Note that the scheduling API automatically connects to an alternate central
manager if the API cannot contact the primary central manager.

An example of an external scheduler you can use is the Extensible Argonne
Scheduling sYstem (EASY), developed by Argonne National Laboratory and
available as public domain code.

You should use this API in conjuction with the query API, which collects information
regarding which machines are available and which jobs need to be scheduled. See
“Query API” on page 273 for more information.

 ll_start_job Subroutine

 Purpose
This subroutine tells the LoadLeveler negotiator to start a job on the specified
nodes.

 Library
LoadLeveler API library libllapi.a

 Syntax
 #include "llapi.h"

int ll_start_job(LL_start_job_info \ptr);

 Parameters
ptr Specifies the pointer to the LL_start_job_info structure that was allocated by

the caller. The LL_start_job_info members are:

int version_num
Represents the version number of the LL_start_job_info structure. Should
be set to LL_PROC_VERSION

LL_STEP_ID StepId
Represents the step ID of the job step to be started.

char ** nodeList
Is a pointer to an array of node names where the job will be started. The
first member of the array is the parallel master node. The array must be
ended with a NULL.

 Chapter 11. LoadLeveler APIs 269

 Description
You must set SCHEDULER_API = YES in the global configuration file to use this
subroutine.

Only jobs steps currently in the Idle state are started.

Only processes having the LoadLeveler administrator user ID can invoke this
subroutine.

An external scheduler uses this subroutine in conjunction with the ll_get_nodes
and ll_get_jobs subroutines of the query API. The query API returns information
about which machines are avialable for scheduling and which jobs are currently in
the job queue waiting to be scheduled.

 Return Values
This subroutines return a value of zero to indicate the start job request was
accepted by the negotiator. However, a return code of zero does not necessarily
imply the job started. You can use the llq command to verify the job started.
Otherwise, this subroutine returns an integer value defined in the llapi.h file.

 Error Values
-1 There is an error in the input parameter.

-2 The subroutine cannot connect to the central manager.

-4 An error occurred reading parameters from the administration or the
configuration file.

-5 The negotiator cannot find the specified StepId in the negotiator job queue.

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a
LoadLeveler administrator.

-8 The job object version number is incorrect.

-9 The StepId is not in the Idle state.

-10 One of the nodes specified is not available to run the job.

-11 One of the nodes specified does not have an available initiator for the class
of the job.

-12 For one of the nodes specified, the requirements statement does not satisfy
the job requirements.

-13 The number of nodes specified was less than the minimum or more than the
maximum requested by the job.

-14 The LoadLeveler default scheduler is enabled; that is,
SCHEDULING_API=NO .

-15 The same node was specified twice in ll_start_job nodeList.

270 Using and Administering LoadLeveler

 Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory. The examples include the executable
sch_api , which invokes the query API and the job control API to start the second
job in the list received from ll_get_jobs on two nodes. You should submit at least
two jobs prior to running the sample. To compile sch_api , copy the sample to a
writeable directory and update the RELEASE_DIR field to represent the current
LoadLeveler release directory.

 Related Information
Subroutines: ll_get_jobs , ll_terminate_job , ll_get_nodes

 ll_terminate_job Subroutine

 Purpose
This subroutine tells the negotiator to cancel the specified job step.

 Library
LoadLeveler API library libllapi.a

 Syntax
 #include "llapi.h"

int ll_terminate_job(LL_terminate_job_info \ptr);

 Parameters
ptr Specifies the pointer to the LL_start_terminate_info structure that was

allocated by the caller. The LL_terminate_job_info members are:

int version_num
Represents the version number of the LL_terminate_job_info structure.
Should be set to LL_PROC_VERSION

LL_STEP_ID StepId
Represents the step ID of the job step to be started.

 Description
You do not need to disable the default LoadLeveler scheduler in order to use this
subroutine.

Only processes having the LoadLeveler administrator user ID can invoke this
subroutine.

An external scheduler uses this subroutine in conjunction with the ll_get_job
subroutine (of the job control API) and ll_start_jobs subroutine (of the query API).

 Return Values
This subroutine returns a value of zero when successful, to indicate the terminate
job request was accepted by the negotiator. However, a return code of zero does
not necessarily imply the negotiator cancelled the job. Use the llq command to
verify the job was cancelled. Otherwise, this subroutine returns an integer value
defined in the llapi.h file.

 Chapter 11. LoadLeveler APIs 271

 Error Values
-1 There is an error in the input parameter.

-4 An error occurred reading parameters from the administration or the
configuration file.

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a
LoadLeveler administrator or you are not the user who submitted the job.

-8 The job object version number is incorrect.

 Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory. The examples include the executable
sch_api , which invokes the query API and the job control API to terminate the first
job reported by the ll_get_jobs subroutine. You should submit at least two jobs
prior to running the sample. To compile sch_api , copy the sample to a writeable
directory and update the RELEASE_DIR field to represent the current LoadLeveler
release directory.

 Related Information
Subroutines: ll_get_jobs , ll_start_job , ll_get_nodes

 Usage Notes
It is important to know how LoadLeveler keywords and commands behave when
you disable the default LoadLeveler scheduling algorithm. LoadLeveler scheduling
keywords and commands fall into the following categories:

� Keywords not involved in scheduling decisions are unchanged.

� Keywords kept in the job object or in the machine which are used by the
LoadLeveler default scheduler have their values maintained as before and
passed to the query API.

� Keywords used only by the LoadLeveler default scheduler have no effect.

The following sections discuss some specific keywords and commands and how
they behave when you disable the default LoadLeveler scheduling algorithm.

Job Command File Keywords
class – This value is provided by the query APIs. Machines chosen by
ll_start_job must have the class of the job available or the request will be
rejected.
dependency – Supported as before. Job objects for which dependency cannot
be evaluated (because a previous step has not run) are maintained in the
NotQueued state, and attempts to start them via ll_start_job will result in an
error. If the dependency is met, ll_start_job can start the proc.
hold – ll_start_job cannot start a job that is in Hold status.
min_processors – ll_start_job must specify at least this number of
processors.
max_processors – ll_start_job must specify no more than this number of
processors.
preferences – Passed to the query API.

272 Using and Administering LoadLeveler

requirements – ll_start_job returns an error if the machine(s) specified do not
match the requirements of the job. This includes Disk and Virtual Memory
requirements.
startdate – The job remains in the Deferred state until the startdate specified
in the job is reached. ll_start_job cannot start a job in the Deferred state.
user_priority – Used in calculating the system priority (as described in “How
Does a Job's Priority Affect Dispatching Order?” on page 30). The system
priority assigned to the job is available through the query API. No other control
of the order in which jobs are run is enforced.

Administration File Keywords
master_node_exclusive is ignored.
master_node_requirement is ignored.
maxidle is supported.
maxjobs is ignored.
maxqueued is supported.
max_jobs_scheduled is ignored.
priority is used to calculate the system priority (where appropriate).
speed is available through the query API.

Configuration File Keywords
MACHPRIO is calculated but is not used.
SYSPRIO is calulated and available to the query API.
MAX_STARTERS is calculated, and if starting the job causes this value to be
exceeded, ll_start_job returns an error.
NEGOTIATOR_PARALLEL_DEFER is ignored.
NEGOTIATOR_PARALLEL_HOLD is ignored.
NEGOTIATOR_RESCAN_QUEUE is ignored.
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL works as before. Set
this value to 0 if you do not want the SYSPRIOs of job objects recalulated.

 Query API
This API provides information about the jobs and machines in the LoadLeveler
cluster. You can use this in conjuction with the job control API, since the job control
API requires you to know which machines are available and which jobs need to be
scheduled. See “Job Control API” on page 268 for more information.

The query API consists of the following subroutines: ll_get_jobs , ll_free_jobs ,
ll_get_nodes , and ll_free_nodes .

 ll_get_jobs Subroutine

 Purpose
This subroutine, available to any user, returns information about all jobs in the
LoadLeveler job queue.

 Chapter 11. LoadLeveler APIs 273

 Library
LoadLeveler API library libllapi.a

 Syntax
 #include "llapi.h"

int ll_get_jobs(LL_get_jobs_info \);

 Parameters
ptr Specifies the pointer to the LL_get_jobs_info structure that was allocated by

the caller. The LL_get_jobs_info members are:

int version_num
Represents the version number of the LL_start_job_info structure. This
should be set to LL_PROC_VERSION.

int numJobs
Represents the number of entries in the array.

LL_job ** JobList
Represents the pointer to an array of LL_job structures. The LL_job
structure is defined in llapi.h .

 Description
The LL_get_jobs_info structure contains an array of LL_job structures indicating
each job in the LoadLeveler system.

Some job information, such as the start time of the job, is not available to this API.
(It is recommended that you use the dispatch time, which is available, in place of
the start time.) Also, some accounting information is not available to this API.

 Return Values
This subroutines returns a value of zero when successful. Otherwise, it returns an
integer value defined in the llapi.h file.

 Error Values
-1 There is an error in the input parameter.

-2 The API cannot connect to the central manager.

-3 The API cannot allocate memory.

-4 A configuration error occurred.

 Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory.

 Related Information
Subroutines: ll_free_jobs , ll_free_nodes , ll_get_nodes

274 Using and Administering LoadLeveler

 ll_free_jobs Subroutine

 Purpose
This subroutine, available to any user, frees storage that was allocated by
ll_get_jobs .

 Library
LoadLeveler API library libllapi.a

 Syntax
 #include "llapi.h"

int ll_free_jobs(LL_get_jobs_info \ptr);

 Parameters
ptr Specifies the address of the LL_get_jobs_info structure to be freed.

 Description
This subroutine frees the storage pointed to by the LL_get_jobs_info pointer.

 Return Values
This subroutines returns a value of zero when successful. Otherwise, it returns an
integer value defined in the llapi.h file.

 Error Values
-8 The version_num member of the LL_get_jobs_info structure did not match

the current version.

 Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory.

 Related Information
Subroutines: ll_get_jobs , ll_free_nodes , ll_get_nodes

 ll_get_nodes Subroutine

 Purpose
This subroutine, available to any user, returns information about all of nodes known
by the negotiator daemon.

 Library
LoadLeveler API library libllapi.a

 Syntax
 #include "llapi.h"

int ll_get_nodes(LL_get_nodes_info \ptr);

 Chapter 11. LoadLeveler APIs 275

 Parameters
ptr Specifies the pointer to the LL_get_nodes_info structure that was allocated by

the caller. The LL_get_nodes_info members are:

int version_num
Represents the version number of the LL_start_job_info structure.

int numNodes
Represents the number of entries in the NodeList array.

LL_node ** NodeList
Represents the pointer to an array of LL_node structures. The LL_node
structure is defined in llapi.h .

 Description
The LL_get_node_info structure contains an array of LL_job structures indicating
each node in the LoadLeveler system.

 Return Values
This subroutines returns a value of zero when successful. Otherwise, it returns an
integer value defined in the llapi.h file.

 Error Values
-1 There is an error in the input parameter.

-2 The API cannot connect to the central manager.

-3 The API cannot allocate memory.

-4 A configuration error occurred.

 Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory.

 Related Information
Subroutines: ll_free_jobs , ll_free_nodes , ll_get_jobs

 ll_free_nodes Subroutine

 Purpose
This subroutine, available to any user, frees storage that was allocated by
ll_get_nodes .

 Library
LoadLeveler API library libllapi.a

 Syntax
 #include "llapi.h"

int ll_nodes_jobs(LL_get_nodes_info \ptr);

276 Using and Administering LoadLeveler

 Parameters
ptr Specifies the address of the LL_get_nodes_info structure to be freed.

 Description
This subroutine frees the storage pointed to by the LL_get_nodes_info pointer.

 Return Values
This subroutines returns a value of zero when successful. Otherwise, it returns an
integer value defined in the llapi.h file.

 Error Values
-8 The version_num member of the LL_get_jobs_info structure did not match

the current version.

 Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory.

 Related Information
Subroutines: ll_get_jobs , ll_free_nodes , ll_get_nodes

 User Exits
This section discusses separate user exits for the following:

� Handling DCE security credentials

� Handling an AFS token

� Filtering a job script

� Overriding the default mail notification method

Handling DCE Security Credentials
You can write a pair of programs to override the default LoadLeveler DCE
authentication method. To enable the programs, use the following keyword in your
configuration file:

DCE_AUTHENTICATION_PAIR = program1, program2
Where program1 and program2 are LoadLeveler or installation supplied
programs that are used to authenticate DCE security credentials. program1
obtains a handle (an opaque credentials object), at the time the job is
submitted, which is used to authenticate to DCE. program2 is the path name of
a LoadLeveler or an installation supplied program that uses the handle
obtained by program1 to authenticate to DCE before starting the job on the
executing machine(s).

An example of a credentials object is a character string containing the DCE
principle name and a password. program1 writes the following to standard output:

� The length of the handle to follow

 � The handle

If program1 encounters errors, it writes error messages to standard error.

 Chapter 11. LoadLeveler APIs 277

program2 receives the following as standard input:

� The length of the handle to follow

� The same handle written by program1

program2 writes the following to standard output:

� The length of the login context to follow

� An exportable DCE login context, which is the idl_byte array produced from the
sec_login_export_context DCE API call. For more information, see the DCE
Security Services API chapter in the Distributed Computing Environment for AIX
Application Development Reference.

� A character string suitable for assigning to the KRB5CCNAME environment
variable This string represents the location of the credentials cache established
in order for program2 to export the DCE login context.

If program2 encounters errors, it writes error messages to standard error. The
parent process, the LoadLeveler starter process, writes those messages to the
starter log.

 Usage Notes
If you are using DCE on AIX 4.3, you need the proper DCE credentials for the
existing authentication method in order to run a command or function that uses
rshell (rsh). Otherwise, the rshell command may fail. You can use the lsauthent
command to determine the authentication method. If lsauthent indicates that DCE
authentication is in use, you must log in to DCE wth the dce_login command to
obtain the proper credentials.

LoadLeveler commands that run rshell include llctl version and llctl start .

For examples of programs that enable DCE security credentials, see the
/samples/lldce subdirectory in the release directory.

Handling an AFS Token
You can write a program, run by the scheduler, to refresh an AFS token when a job
is started. To invoke the program, use the following keyword in your configuration
file:

AFS_GETNEWTOKEN = myprog
where myprog is a filter that receives the AFS authentication information on
standard input and writes the new information to standard output. The filter is
run when the job is scheduled to run and can be used to refresh a token which
expired when the job was queued.

Before running the program, LoadLeveler sets up standard input and standard
output as pipes between the program and LoadLeveler. LoadLeveler also sets up
the following environment variables:

LOADL_STEP_OWNER The owner (UNIX user name) of the job

LOADL_STEP_COMMAND The name of the command the user's job step
invokes.

LOADL_STEP_CLASS The class this job step will run.

278 Using and Administering LoadLeveler

LOADL_STEP_ID The step identifier, generated by LoadLeveler.

LOADL_JOB_CPU_LIMIT The number of CPU seconds the job is limited to.

LOADL_WALL_LIMIT The number of wall clock seconds the job is
limited to.

LoadLeveler writes the following current AFS credentials, in order, over the
standard input pipe:

The ktc_principal structure indicating the service.
The ktc_principal structure indicating the client.
The ktc_token structure containing the credentials.

The ktc_principal structure is defined in the AFS header file afs_rxkad.h . The
ktc_token structure is defined in the AFS header file afs_auth.h .

LoadLeveler expects to read these same structures in the same order from the
standard output pipe, except these should be refreshed credentials produced by the
user exit.

The user exit can modify the passed credentials (to extend their lifetime) and pass
them back, or it can obtain new credentials. LoadLeveler takes whatever is returned
and uses it to authenticate the user prior to starting the user's job.

Filtering a Job Script
You can write a program to filter a job script when the job is submitted. This
program can, for example, modify defaults or perform site specific verification of
parameters. To invoke the program, specify the following keyword in your
configuration file:

SUBMIT_FILTER = myprog
where myprog is called with the job file as the standard input. The standard
output is submitted to LoadLeveler. If the program returns with a non-zero exit
code, the job submission is cancelled.

The following environment variables are set when the program is invoked:

LOADL_ACTIVE LoadLeveler version
LOADL_STEP_COMMAND Job command file name
LOADL_STEP_ID The job identifier, generated by LoadLeveler
LOADL_STEP_OWNER The owner (UNIX user name) of the job

Using Your Own Mail Program
You can write a program to override the LoadLeveler default mail notification
method. You can use this program to, for example, display your own messages to
users when a job completes, or to automate tasks such as sending error messages
to a network manager.

The syntax for the program is the same as it is for standard UNIX mail programs;
the command is called with a list of users as arguments, and the mail message is
taken from standard input. This syntax is as follows:

MAIL = program
where program specifies the path name of a local program you want to use.

 Chapter 11. LoadLeveler APIs 279

Writing Prolog and Epilog Programs
An administrator can write prolog and epilog user exits that can run before and
after a LoadLeveler job runs, respectively.

Prolog and epilog programs fall into two categories: those that run as the
LoadLeveler user ID, and those that run in a user's environment.

To specify prolog and epilog programs, specify the following keywords in the
configuration file:

JOB_PROLOG = pathname
where pathname is the full path name of the prolog program. This program
runs under the LoadLeveler user ID.

JOB_EPILOG = pathname
where pathname is the full path name of the epilog program. This program runs
under the LoadLeveler user ID.

JOB_USER_PROLOG = pathname
where pathname is the full path name of the user prolog program. This
program runs under the user's environment.

JOB_USER_EPILOG = pathname
where pathname is the full path name of the user epilog program. This
program runs under the user's environment.

A user environment prolog or epilog runs with AFS and/or DCE authentification (if
either is installed and enabled). For security reasons, you must code these
programs on the machines where the job runs and on the machine that schedules
the job. If you do not define a value for these keywords, the user enviroment prolog
and epilog settings on the executing machine are ignored.

The user environment prolog and epilog can set environment variables for the job
by sending information to standard output in the following format:

env id = value

Where:

id Is the name of the environment variable

value Is the value (setting) of the environment variable

For example, the user environment prolog below sets the environment variable
STAGE_HOST for the job:

#!/bin/sh
echo env STAGE_HOST=shd22

 Prolog Programs
The prolog program is invoked by the starter process. Once the starter process
invokes the prolog program, the program obtains information about the job from
environment variables.

 Syntax

prolog_program

280 Using and Administering LoadLeveler

Where prolog_program is the name of the prolog program as defined in the
JOB_PROLOG keyword.

No arguments are passed to the program but several environment variables are
set. These environment variables are described in “Submitting a Job Command
File” on page 26.

The real and effective user ID of the prolog process is the LoadLeveler user ID. If
the prolog program requires root authority, the administrator must write a secure C
or perl program to perform the desired actions. You should not use shell scripts
with set uid permissions, since these scripts may make your system susceptible to
security problems.

Return Code Values:

0 The job will begin.

If the prolog program is killed, the job does not begin and a message is written to
the starter log.

Sample Prolog Programs:

Sample of a Prolog Program for Korn Shell:

 Chapter 11. LoadLeveler APIs 281

#!/bin/ksh
#
Set up environment
set -a
. /etc/environment
. ˜/.profile
export PATH="$PATH:/loctools/lladmin/bin"
export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_JOB_ID.prolog"
#
Do set up based upon job step class
#
case $LOADL_STEP_CLASS in

A OSL job is about to run, make sure the osl filesystem is
mounted. If status is negative then filesystem cannot be
mounted and the job step should not run.

 "OSL")
mount_osl_files >> $LOG

if [status = ð]
 then EXIT_CODE=1
 else
 EXIT_CODE=ð
 fi
 ;;
A simulation job is about to run, simulation data has to
be made available to the job. The status from copy script must
be zero or job step cannot run.
"sim")

copy_sim_data >> $LOG
if [status = ð]
 then EXIT_CODE=ð
 else
 EXIT_CODE=1
 fi
 ;;
All other job will require free space in /tmp, make sure
enough space is available.
\)

check_tmp >> $LOG
 EXIT_CODE=$?
 ;;
esac
The job step will run only if EXIT_CODE == ð
exit $EXIT_CODE

Sample of a Prolog Program for C Shell:

282 Using and Administering LoadLeveler

#!/bin/csh
#
Set up environment
source /u/loadl/.login
#
setenv PATH "${PATH}:/loctools/lladmin/bin"
setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_JOB_ID}.prolog"
#
Do set up based upon job step class
#
switch ($LOADL_STEP_CLASS)

A OSL job is about to run, make sure the osl filesystem is
mounted. If status is negative then filesystem cannot be
mounted and the job step should not run.

 case "OSL":
mount_osl_files >> $LOG
if ($status < ð) then
set EXIT_CODE = 1

 else
set EXIT_CODE = ð

 endif
 breaksw
A simulation job is about to run, simulation data has to
be made available to the job. The status from copy script must
be zero or job step cannot run.
case "sim":

copy_sim_data >> $LOG
if ($status == ð) then
set EXIT_CODE = ð

 else
set EXIT_CODE = 1

 endif
 breaksw
All other job will require free space in /tmp, make sure
enough space is available.
default:

check_tmp >> $LOG
set EXIT_CODE = $status

 breaksw
endsw

The job step will run only if EXIT_CODE == ð
exit $EXIT_CODE

 Epilog Programs
The installation defined epilog program is invoked after a job step has completed.
The purpose of the epilog program is to perform any required clean up such as
unmounting file systems, removing files, and copying results. The exit status of both
the prolog program and the job step is set in environment variables.

 Syntax

epilog_program

Where epilog_program is the name of the epilog program as defined in the
JOB_EPILOG keyword.

 Chapter 11. LoadLeveler APIs 283

No arguments are passed to the program but several environment variables are
set. These environment variables are described in “Submitting a Job Command
File” on page 26.

Note: To interpret the exit status of the prolog program and the job step, convert
the string to an integer and use the structures found in the sys/wait.h file.

Sample Epilog Programs:

Sample of an Epilog Program for Korn Shell:

284 Using and Administering LoadLeveler

#!/bin/ksh
#
Set up environment
set -a
. /etc/environment
. ˜/.profile
export PATH="$PATH:/loctools/lladmin/bin"
export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_JOB_ID.epilog"
#
if [[-z $LOADL_PROLOG_EXIT_CODE]]
then
echo "Prolog did not run" >> $LOG
else
echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG
fi
#
if [[-z $LOADL_USER_PROLOG_EXIT_CODE]]
 then

echo "User environment prolog did not run" >> $LOG
 else

echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG
fi
#
if [[-z $LOADL_JOB_STEP_EXIT_CODE]]
 then

echo "Job step did not run" >> $LOG
 else

echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG
fi
#
#
Do clean up based upon job step class
#
case $LOADL_STEP_CLASS in
A OSL job just ran, unmount the filesystem.

 "OSL")
umount_osl_files >> $LOG

 ;;
A simulation job just ran, remove input files.
Copy results if simulation was successful (second argument
contains exit status from job step).

 "sim")
rm_sim_data >> $LOG
if [$2 = ð]
then copy_sim_results >> $LOG

 fi
 ;;
Clean up /tmp
\)
clean_tmp >> $LOG

 ;;
esac

Sample of an Epilog Program for C Shell:

 Chapter 11. LoadLeveler APIs 285

#!/bin/csh
#
Set up environment
source /u/loadl/.login
#
setenv PATH "${PATH}:/loctools/lladmin/bin"
setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_JOB_ID}.prolog"
#
if (${?LOADL_PROLOG_EXIT_CODE}) then
echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG
else
echo "Prolog did not run" >> $LOG
endif
#
if (${?LOADL_USER_PROLOG_EXIT_CODE}) then

echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG
 else

echo "User environment prolog did not run" >> $LOG
endif
#
if (${?LOADL_JOB_STEP_EXIT_CODE}) then

echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG
 else

echo "Job step did not run" >> $LOG
endif
#
Do clean up based upon job step class
#
switch ($LOADL_STEP_CLASS)
A OSL job just ran, unmount the filesystem.

 case "OSL":
umount_osl_files >> $LOG

 breaksw
A simulation job just ran, remove input files.
Copy results if simulation was successful (second argument
contains exit status from job step).
case "sim":
rm_sim_data >> $LOG
if ($argv{2} == ð) then
copy_sim_results >> $LOG

 endif
 breaksw
Clean up /tmp
default:
clean_tmp >> $LOG

 breaksw
endsw

286 Using and Administering LoadLeveler

 Appendixes

 Appendixes 287

288 Using and Administering LoadLeveler

 Appendix A. Troubleshooting

 Troubleshooting LoadLeveler
This chapter is divided into the following sections:

� “Frequently Asked Questions,” which contains answers to questions frequently
asked by LoadLeveler customers. This section focuses on answers that may
help you get out of problem situations. The questions and answers are
organized into the following categories:

– Jobs submitted to LoadLeveler do not run. See “Why Won't My Job
Run?” for more information.

– One or more of your machines goes down. See “What Happens to
Running Jobs When a Machine Goes Down?” on page 292 for more
information.

– The central manager is not operating. See “What Happens if the Central
Manager Isn't Operating?” on page 294 for more information.

– Miscellaneous questions. See “Other Questions” on page 295 for more
information.

� “Helpful Hints” on page 296, which contains tips on running LoadLeveler,
including some productivity aids.

� “Getting Help from IBM” on page 300, which tells you how to contact IBM for
assistance.

It is helpful to create error logs when you are diagnosing a problem. See to “Step
11: Record and Control Log Files” on page 111 for information on setting up error
logs.

Frequently Asked Questions
This section contains answers to questions frequently asked by LoadLeveler
customers.

Why Won't My Job Run?
If you submitted your job and it is in the LoadLeveler queue but has not run, issue
llq -s first to help diagnose the problem. If you need more help diagnosing the
problem, refer to the following table:

 Appendix A. Troubleshooting 289

Why Your Job May Not Be
Running: Possible Soulution

Job requires specific
machine, operating system,
or other resource.

� Does the resource exist in the LoadLeveler cluster? If yes, wait until it becomes available.

Check the GUI to compare the job requirements to the machine details, especially Arch ,
OpSys , and Class . Ensure that the spelling and capitalization matches.

Job requires specific job
class

� Is the class defined in the administration file? Use llclass to determine this. If yes,
� Is there a machine in the cluster that supports that class? If yes, you need to wait until the

machine becomes available to run your job.

The maximum number of
jobs are already running on
all the eligible machines

Wait until one of the machines finishes a job before scheduling your job.

The start expression
evaluates to false.

Examine the configuration files (both LoadL_config and LoadL_config.local) to determine the
START control function expression used by LoadLeveler to start a job. As a problem
determination measure, set the START and SUSPEND values, as shown in this example:

START: T
SUSPEND: F

The priority of your job is
lower than the priority of
other jobs.

You cannot affect the system priority given to this job by the negotiator daemon but you can try
to change your user priority to move this job ahead of other jobs you previously submitted
using the llprio command or the GUI.

The information the central
manager has about
machines and jobs may not
be current.

Wait a few minutes for the central manager to be updated and then the job may be dispatched.
This time limit (a few minutes) depends upon the polling frequency and polls per update set in
the LoadL_config file. The default polling frequency is five minutes.

You do not have the same
user ID on all the machines
in the cluster.

To run jobs on any machine in the cluster, you have to have the same user ID and the same
uid number on every machine in the pool. If you do not have a userid on one machine, your
jobs will not be scheduled to that machine.

You can use the llq command to query the status of your job or the llstatus
command to query the status of machines in the cluster. Refer to Chapter 9,
“LoadLeveler Commands” on page 155 for information on these commands.

Why Won't My Parallel Job Run?
If you submitted your parallel job and it is in the LoadLeveler queue but has not
run, issue llq -s first to help diagnose the problem. If issuing this command does
not help, refer to the previous table and to the following table for more information:

290 Using and Administering LoadLeveler

Why Your Job May Not Be
Running Possible Solution

The minimum number of
processors requested by your job
is not available.

Sufficient resources must be available. Specifying a smaller number of processors may
help if your job can run with fewer resources.

The pool in your requirements
statement specifies a pool which
is invalid or not available.

The specified pool must be valid and available.

The adapter specified in the
requirements statement or the
network statement identifies an
adapter which is invalid or not
available.

The specified adapter must be valid and available.

PVM3 is not installed PVM3 must be installed on any machine you wish to use for pvm. The PVM3 system itself
is not supplied with LoadLeveler.

You are already running a PVM3
job on one of the LoadLeveler
machines.

PVM3 restrictions prevent a user from running more than one pvm daemon per user per
machine. If you want to run pvm3 jobs on LoadLeveler, you must not run any pvm3 jobs
outside of LoadLeveler control on any machine being managed by LoadLeveler.

The parallel_path keyword in
your job command file is
incorrect.

Use parallel_path to inform LoadLeveler where binaries that run your pvm tasks are for
the pvm_spawn() command. If this is incorrect, the job may not run.

The pvm_root keyword in the
administration file is incorrect.

This keyword corresponds to the pvm ep keyword and is required to tell LoadLeveler
where the pvm system is installed.

The file /tmp/pvmd. userid exists
on some LoadLeveler machine
but no PVM jobs are running.

If PVM3 exits unexpectedly, it will not properly clean up after itself. Although LoadLeveler
attempts to clean up after pvm, some situations are ambiguous and you may have to
remove this file yourself. Check all the systems specified as being capable of running
PVM3, and remove this file if it exists.

Common Set Up Problems with Parallel Jobs: This section presents a list of
common problems found in setting up parallel jobs:

� If jobs appear to remain in a Pending or Starting state: check that the
nameserver is consistent. Compare results of host machine_name and host
IP_address

 � For POE:

– Specify the POE partition manager as the executable. Do not specify the
parallel job as the executable.

– Pass the parallel job as an argument to POE.
– The parallel job must exist and must be specified as a full path name.
– If the job runs in user space, specify the flag -euilib us .
– Specify the correct adapter (when needed).
– Specify a POE job only once in the job command file.
– Compile only with the supported level of POE.
– Specify only parallel as the job_type.

 � For PVM:

– Specify the parallel job as the executable. Do not specify PVM as the
executable.

– Compile only with the supported level of PVM.
– Specify only pvm3 as the job_type.

PVM Problem Determination: If LoadLeveler is to manage PVM jobs on a
machine for a user, that user should not attempt to run PVM jobs on that machine
outside of LoadLeveler control. Because of PVM restrictions, only a single PVM
daemon per user per machine is permitted. If a user tries to run PVM jobs without

 Appendix A. Troubleshooting 291

using LoadLeveler and LoadLeveler later attempts to start a job for that user on the
same machine, LoadLeveler may not be able to start PVM for the job. This will
cause the LoadLeveler job to be cancelled.

If a PVM job submitted through LoadLeveler is rejected, it is probably because
PVM was not correctly terminated the last time it ran on the rejecting machine.
LoadLeveler attempts to handle this by making sure that it cleans up PVM jobs
when they complete, but remember that you may need to clean up after the job
yourself. If a machine refuses to start a PVM job, check the following:

� See if there is a process with the name pvmd running on the machine in
question under the id of the user whose job will not start. Stop the process by
issuing:

ps -ef | grep pvmd
kill -TERM pid

Do not use either of the following variations to stop the daemon because this
will prevent pvmd from cleaning up and jobs will still not start:

kill -9 pid
kill -KILL pid

� If there is no pvmd process running, see if there is a file called /tmp/pvmd.
userid, where userid is the ID of the user whose job will not start. If the file
exists, remove it.

Why Won't My Submit-Only Job Run?
If a job you submitted from a submit-only machine does not run, verify that you
have defined the following statements in the machine stanza of the administration
file of the submit-only machine:

submit_only = true
schedd_host = false
central_manager = false

For other submit-only requirements, see the submit-only section on page 77.

Why Does a Job Stay in the Pending (or Starting) State?
If a job appears to stay in the Pending or Starting state, it is possible the job is
continually being dispatched and rejected. Check the setting of the
MAX_JOB_REJECT keyword. If it is set to the default, -1, the job will be rejected
an unlimited number of times. Try resetting this keyword to some finite number.
Also, check the setting of the ACTION_ON_MAX_REJECT keyword. These
keywords are described in “Step 14: Specify Additional Configuration File
Keywords” on page 118.

What Happens to Running Jobs When a Machine Goes Down?
Both the startd daemon and the schedd daemon maintain persistent states of all
jobs. Both daemons use a specific protocol to ensure that the state of all jobs is
consistent across LoadLeveler. In the event of a failure, the state can be recovered.
Neither the schedd nor the startd daemon discard the job state information until it is
passed onto and accepted by another daemon in the process.

292 Using and Administering LoadLeveler

If Then

The network goes down but the
machines are still running

If the network goes down but the machines are still running, when
LoadLeveler is restarted, it looks for all jobs that were marked running
when it went down. On the machine where the job is running, the startd
daemon searches for the job and if it can verify that the job is still running,
it continues to manage the job through completion. On the machine where
schedd is running, schedd queues a transaction to the startd to
re-establish the state of the job. This transaction stays queued until the
state is established. Until that time, LoadLeveler assumes the state is the
same as when the system went down.

The network partitions or goes
down.

All transactions are left queued until the recipient has acknowledged them.
Critical transactions such as those between the schedd and startd are
recorded on disk. This ensures complete delivery of messages and
prevents incorrect decisions based on incomplete state information.

The machine with startd goes
down.

Because job state is maintained on disk in startd, when LoadLeveler is
restarted it can forward correct status to the rest of LoadLeveler. In the
case of total machine failure, this is usually "JOB VACATED", which
causes the job to be restarted elsewhere. In the case that only
LoadLeveler failed, it is often possible to "find" the job if it is still running
and resume management of it. In this case LoadLeveler sends JOB
RUNNING to the schedd and central manager, thereby permitting the job
to run to completion.

The central manager machine
goes down.

All machines in the cluster send current status to the central manager on a
regular basis. When the central manager restarts, it queries each machine
that checks in, requesting the entire queue from each machine. Over the
period of a few minutes the central manager restores itself to the state it
was in before the failure. Each schedd is responsible for maintaining the
correct state of each job as it progressed while the central manager is
down. Therefore, it is guaranteed that the central manager will correctly
rebuild itself.

All jobs started when the central manager was down will continue to run
and complete normally with no loss of information. Users may continue to
submit jobs. These new jobs will be forwarded correctly when the central
manager is restarted.

The schedd machine goes down When schedd starts up again, it reads the queue of jobs and for every job
which was in some sort of active state (i.e. PENDING, STARTING,
RUNNING), it queries the machine where it is marked active.

The running machine is required to return current status of the job. If the
job completed while schedd was down, JOB COMPLETE is returned with
exit status and accounting information. If the job is running, JOB
RUNNING is returned. If the job was vacated, JOB VACATED is returned.
Because these messages are left queued until delivery is confirmed, no
job will be lost or incorrectly dispatched due to schedd failure.

During the time the schedd is down, the central manager will not be able
to start new jobs that were submitted to that schedd

The llsubmit machine goes down schedd gets its own copy of the executable so it does not matter if the
llsubmit machine goes down.

Why Does llstatus Indicate that a Machine is Down when llq Indicates a Job is
Running on The Machine?: If a machine fails while a job is running on the
machine, the central manager does not change the status of any job on the
machine. When the machine comes back up the central manager will be updated.

 Appendix A. Troubleshooting 293

What Happens if the Central Manager Isn't Operating?
In one of your machine stanzas specified in the administration file, you specified a
machine to serve as the central manager. It is possible for some problem to cause
this central manager to become unusable such as network communication or
software or hardware failures. In such cases, the other machines in the
LoadLeveler cluster believe that the central manager machine is no longer
operating. If you assigned one or more alternate central managers in the machine
stanza, a new central manager will take control. The alternate central manager is
chosen based upon the order in which its respective machine stanza appears in the
administration file.

Once an alternate central manager takes control, it starts up its negotiator daemon
and notifies all of the other machines in the LoadLeveler cluster that a new central
manager has been selected. The following diagram illustrates how a machine can
become the alternate central manager:

Primary
Central

Manager
Z

Alternate
Central

Manager
A

Machine
B

Machine
C

Machine
D

Figure 36. When the Primary Central Manager is Unavailable

The diagram illustrates that Machine Z is the primary central manager but Machine
A took control of the LoadLeveler cluster by becoming the alternate central
manager. Machine A remains in control as the alternate central manager until
either:

� The primary central manager, Machine Z, resumes operation. In this case,
Machine Z notifies Machine A that it is operating again and, therefore, Machine
A terminates its negotiator daemon.

� Machine A also loses contact with the remaining machines in the pool. In this
case, another machine authorized to serve as an alternate central manager
takes control. Note that Machine A may remain as its own central manager.

The following diagram illustrates how multiple central managers can function within
the same LoadLeveler pool:

294 Using and Administering LoadLeveler

Primary
Central

Manager
Z

Alternate
Central

Manager
C

Machine
A

Machine
B

Machine
E

Machine
D

Figure 37. Multiple Central Managers

In this diagram, the primary central manager is serving Machines A and B. Due to
some network failure, Machines C, D, and E have lost contact with the primary
central manager machine and, therefore, Machine C which is authorized to serve
as an alternate central manager, assumes that role. Machine C remains as the
alternate central manager until either:

� The primary central manager is able to contact Machines C, D, and E. In this
case, the primary central manager notifies the alternate central managers that it
is operating again and, therefore, Machine C terminates its negotiator daemon.
The negotiator daemon running on the primary central manager machine is
refreshed to discard any old job status information and to pick up the new job
status information from the newly re-joined machines.

� Machine C loses contact with Machines D and E. In this case, if machine D or
E is authorized to act as an alternate central manager, it assumes that role.
Otherwise, there will be no central manager serving these machines. Note that
Machine C remains as its own central manager.

While LoadLeveler can handle this situation of two concurrent central managers
without any loss of integrity, some installations may find administering it somewhat
confusing. To avoid any confusion, you should specify all primary and alternate
central managers on the same LAN segment.

For information on selecting alternate central managers, refer to “Step 1: Specify
Machine Stanzas” on page 73

 Other Questions
Why do I have to setuid = 0?: The master daemon starts the startd daemon and
the startd daemon starts the starter process. The starter process runs the job. The
job needs to be run by the userid of the submitter. You either have to have a
separate master daemon running for every ID on the system or the master daemon
has to be able to su to every userid and the only user ID that can su any other
userid is root .

 Appendix A. Troubleshooting 295

Why Doesn't LoadLeveler Execute my .profile or .login Script?: When you
submit a batch job to LoadLeveler, the operating system will execute your .profile
script before executing the batch job if your login shell is the Korn shell. On the
other hand, if your login shell is the Bourne shell, on most operating systems
(including AIX), the .profile script is not executed. Similarly, if your login shell is the
C shell then AIX will execute your .login script before executing your LoadLeveler
batch job but some other variants of UNIX may not invoke this script.

The reason for this discrepancy is due to the interactions of the shells and the
operating system. To understand the nature of the problem, examine the following
C program that attempts to open a login Korn shell and execute the "ls" command:

#include <stdio.h>
main()
{
execl("/bin/ksh","-","-c","ls",NULL);
}

UNIX documentations in general (SunOS, HP-UX, AIX, IRIX) give the impression
that if the second argument is "-" then you get a login shell regardless of whether
the first argument is /bin/ksh or /bin/csh or /bin/sh. In practice, this is not the case.
Whether you get a login shell or not is implementation dependent and varies
depending upon the UNIX version you are using. On AIX you get a login shell for
/bin/ksh and /bin/csh but not the Bourne shell.

If your login shell is the Bourne shell and you would like the operating system to
execute your .profile script before starting your batch job, add the following
statement to your job command file:

@ shell = /bin/ksh

LoadLeveler will open a login Korn shell to start your batch job which may be a
shell script of any type (Bourne shell, C shell, or Korn shell) or just a simple
executable.

 Helpful Hints
This section contains tips on running LoadLeveler, including some productivity aids.

Hints for Running Jobs
Determining When Your Job Started and Stopped: By reading the notification
mail you receive after submitting a job, you can determine the time the job was
submitted, started, and stopped. Suppose you submit a job and receive the
following mail when the job finishes:

Submitted at: Sun Apr 3ð 11:4ð:41 1996
Started at: Sun Apr 3ð 11:45:ðð 1996
Exited at: Sun Apr 3ð 12:49:1ð 1996

Real Time: ð ð1:ð8:29
Job Step User Time: ð ðð:3ð:15
Job Step System Time: ð ðð:12:55
Total Job Step Time: ð ðð:43:1ð

Starter User Time: ð ðð:ðð:ðð
Starter System Time: ð ðð:ðð:ðð
Total Starter Time: ð ðð:ðð:ðð

296 Using and Administering LoadLeveler

This mail tells you the following:

Submitted at The time you issued the llsubmit command or the time
you submitted the job with the graphical user interface.

Started at The time the starter process executed the job.

Exited at The actual time your job completed.

Real Time The wall clock time from submit to completion.

Job Step User Time The CPU time the job consumed executing in user
space.

Job Step System Time The CPU time the system (AIX) consumed on behalf of
the job.

Total Job Step Time The sum of the two fields above.

Starter User Time The CPU time consumed by the LoadLeveler starter
process for this job, executing in user space. Time
consumed by the starter process is the only LoadLeveler
overhead which can be directly attributed to a user's job.

Starter System Time The CPU time the system (AIX) consumed on behalf of
the LoadLeveler starter process running for this job.

Total Starter Time The sum of the two fields above.

You can also get the starting time by issing llsummary -l -x and then issuing awk
`/Date|Event/ ` against the resulting file. For this to work, you must have ACCT =
A_ON A_DETAIL set in the LoadL_config file.

Running Jobs at a Specific Time of Day: Using a machine's local configuration
file, you can set up the machine to run jobs at a certain time of day (sometimes
called an execution window). The following coding in the local configuration file runs
jobs between 5:00 PM and 8:00AM daily, and suspends jobs the rest of the day:

START: (tm_day >= 17ðð) || (tm_day <= ð8ðð)
SUSPEND: (tm_day > ð8ðð) && (tm_day < 17ðð)
CONTINUE: (tm_day >= 17ðð) || (tm_day <= ð8ðð)

Controlling the Mix of Idle and Running Jobs: Three keywords determine the
mix of idle and running jobs for a user. By a running job, we mean a job that is in
one of the following states: Running, Pending, or Starting. These keywords, which
are described in detail in “Step 2: Specify User Stanzas” on page 78, are:

maxqueued
Controls the number of jobs in any of these states: Idle, Running, Pending, or
Starting.

maxjobs
Controls the number of jobs in any of these states: Running, Pending, or
Starting; thus it controls a subset of what maxqueued controls. maxjobs
effectively controls the number of jobs in the Running state, since Pending and
Starting are usually temporary states.

maxidle
Controls the number of jobs in any of these states: Idle, Pending, or Starting;
thus it controls a subset of what maxqueued controls. maxidle effectively

 Appendix A. Troubleshooting 297

controls the number of jobs in the Idle state, since Pending and Starting are
usually temporary states.

What Happens When You Submit a Job: For a user's job to be allowed into the
job queue, the total of other jobs (in the Idle, Pending, Starting and Running states)
for that user must be less than the maxqueued value for that user. Also, the total
idle jobs (those in the Idle, Pending, and Starting states) must be less than the
maxidle value for the user. If either of these constraints are at the maximum, the
job is placed in the Not Queued state until one of the other jobs changes state. If
the user is at the maxqueued limit, a job must complete, be cancelled, or be held
before the new job can enter the queue. If the user is at the maxidle limit, a job
must start running, be cancelled, or be held before the new job can enter the
queue.

Once a job is in the queue, the job is not taken out of queue unless the user places
a hold on the job, the job completes, or the job is cancelled. (An exception to this,
when you are running the default LoadLeveler scheduler, is parallel jobs which do
not accumulate sufficient machines in a given time period. These jobs are moved to
the Deferred state, meaning they must vie for the queue when their Deferred period
expires.)

Once a job is in the queue, the job will run unless the maxjobs limit for the user is
at a maximum.

Note the following restrictions for using these keywords:

� If maxqueued is greater than (maxjobs + maxidle), the maxqueued value will
never be reached.

� If either maxjobs or maxidle is greater than maxqueued , then maxqueued
will be the only restriction in effect, since maxjobs and maxidle will never be
reached.

Sending Output from Several Job Steps to One Output File: You can use
dependencies in your job command file to send the output from many job steps to
the same output file. For example:

298 Using and Administering LoadLeveler

@ step_name = step1
@ executable = ssba.job
@ output = ssba.tmp
@ ...
@ queue
#
@ step_name = append1
@ dependency = (step1 != CC_REMOVED)
@ executable = append.ksh
@ output = /dev/null
@ queue
@
@ step_name = step2
@ dependency = (append1 == ð)
@ executable = ssba.job
@ output = ssba.tmp
@ ...
@ queue
@
@ step_name = append2
@ dependency = (step2 != CC_REMOVED)
@ executable = append.ksh
@ output = /dev/null
@ queue
#
...

Then, the file append.ksh could contain the line cat ssba.tmp >> ssba.log . All
your output will reside in ssba.log . (Your dependecies can look for different return
values, depending on what you need to accomplish.)

You can achieve the same result from within ssba.job by appending your output to
an output file rather than writing it to stdout . Then your output statement for each
step would be /dev/null and you wouldn't need the append steps.

Hints for Using Machines
Setting Up a Single Machine To Have Multiple Job Classes: You can define a
machine to have multiple job classes which are active at different times. For
example, suppose you want a machine to run jobs of Class A any time, and you
want the same machine to run Class B jobs between 6 p.m. and 8 a.m.

You can combine the Class keyword with a user-defined macro (called Off_shift in
this example).

For example:

Off_Shift = ((tm_hour >= 18) || (tm_hour < 8))

Then define your START statement:

START : (Class == "A") || ((Class == "B") && $(Off_Shift))

Make sure you have the parenthesis around the Off_Shift macro, since the logical
OR has a lower precedence than the logical AND in the START statement.

Also, to take weekends into account, code the following statements. Remember
that Saturday is day 6 and Sunday is day 0.

 Appendix A. Troubleshooting 299

Off_Shift = ((tm_wday == 6) || (tm_wday == ð) || (tm_hour >=18) \
|| (tm_hour < 8))

Prime_Shift = ((tm_wday != 6) && (tm_wday != ð) && (tm_hour >= 8) \
&& (tm_hour < 18))

Reporting the Load Average on Machines: You can use the /usr/bin/rup
command to report the load average on a machine. The rup machine_name
command gives you a report that looks similar to the following:

localhost up 23 days, 1ð:25, load average: 1.72, 1.ð5, 1.17

You can use this command to report the load average of your local machine or of
remote machines. Another command, /usr/bin/uptime , returns the load average
information for only your local host.

History Files and schedd
The schedd daemon writes to the spool/history file only when a job is completed or
removed. Therefore, you can delete the history file and restart schedd even when
some jobs are scheduled to run on other hosts.

However, you should clean up the spool/job_queue.dir and spool/job_queue.pag
files only when no jobs are being scheduled on the machine.

You should not delete these files if there are any jobs in the job queue that are
being scheduled from this machine (for example, jobs with names such as
thismachine.clusterno.jobno).

Getting Help from IBM
Should you require help from IBM in resolving a LoadLeveler problem, you can get
assistance by calling IBM Support. Before you call, be sure you have the following
information:

1. Your access code (customer number).

2. The LoadLeveler product number (5765-D61).

3. The name and version of the operating system you are using.

4. A telephone number where you can be reached.

In addition, issue the following command:

 llctl version

This command will provide you with code level information. Provide this information
to the IBM representative.

The number for IBM support in the United States is 1-800-IBM-4YOU (426-4968).

The Facsimile number is 800-2IBM-FAX (2426-329).

300 Using and Administering LoadLeveler

Appendix B. Customer Case Studies

This chapter gives you an overview, including configuration information, of some
LoadLeveler customers. These profiles are meant to highlight how customers in
different industries use LoadLeveler.

Note that all of these configurations apply to Version 1 Release 3 of the default
LoadLeveler scheduler unless otherwise noted.

Customer 1: Technical Computing at the Cornell Theory Center
The Cornell Theory Center (CTC) of Cornell University provides a high-performance
computing environment to advance and facilitate research and education.

 System Configuration
The CTC runs a 160-node SP with 16 wide nodes and 144 thin nodes. The SP
nodes include two interactive nodes and two submit-only nodes. The majority of the
other SP nodes run batch jobs. The LoadLeveler central manager runs on a
workstation outside of the SP. Also, two other non-SP workstations act as schedd
hosts.

 LoadLeveler Configuration
The CTC runs parallel jobs by disabling the default LoadLeveler scheduler
SCHEDULER_API=YES) and running an external scheduler. The CTC has
developed this scheduler to meet the needs of its users.

The following figures represent sections of the CTC's LoadL_admin file. Note that
not all nodes are shown here.

###
DEFAULTS FOR MACHINE, CLASS, USER, AND GROUP STANZAS:
Remove initial # (comment), and edit to suit.
###
default: type = machine

central_manager = false # default not central manager
schedd_host = false # default not a public scheduler
submit_only = false # default not a submit-only machine
pvm_root = /usr/local/app/pvm3 # default pvm3 directory
rm_host = true # default is parallel SP2 node

speed = 1 # default machine speed
cpu_speed_scale = false # scale cpu limits by speed

default: type = class # default class stanza
priority = ð # default ClassSysprio
max_processors = -1 # default max processors for class (no

 Appendix B. Customer Case Studies 301

default: type = user # default user stanza
priority = ð # default UserSysprio

default_class = DSI # default class
default_group = No_Group # default group = No_Group (not

 # optional)
maxjobs = -1 # default maximum jobs user is allowed

to run simultaneously (no limit)
maxqueued = -1 # default maximum jobs user is allowed

on system queue (no limit). does not
limit jobs submitted.

default: type = group # default group stanza
priority = ð # default GroupSysprio
maxjobs = -1 # default maximum jobs group is allowed

to run simultaneously (no limit)
maxqueued = -1 # default maximum jobs group is allowed

on system queue (no limit). does not
limit jobs submitted.

###
MACHINE STANZAS:
These are the machine stanzas; the first machine is defined as
the central manager. mach1:, mach2:, etc. are machine name labels -
revise these placeholder labels with the names of the machines in the
pool, and specify any schedd_host and submit_only keywords and values
(true or false), if required.
###

spscheduler is a 43P running EASY-LL and the Central Manager
spscheduler.tc.cornell.edu: type = machine

central_manager = true
 rm_host =false

ctc1 and ctc2 are two 43P's running as dedicated SchedDs
ctc1.tc.cornell.edu: type = machine

schedd_host = true

ctc2.tc.cornell.edu: type = machine
schedd_host = true

Submit only node for Sweb server
arms.tc.cornell.edu: type = machine

submit_only = true

302 Using and Administering LoadLeveler

#
Nodes of the SP2
#
Rack 1
#
PIOFS name server, HiPPi router, Switch & JMD primary
#rð1nð1.tc.cornell.edu: type = machine
alias = rð1nð1-css
rð1nð2 & rð1nð5 are interactive nodes
rð1nð3.tc.cornell.edu: type = machine

alias = rð1nð3-css
submit_only = true

rð1nð5.tc.cornell.edu: type = machine
alias = rð1nð5-css
submit_only = true

rð1nð7.tc.cornell.edu: type = machine
alias = rð1nð7-css

rð1nð9.tc.cornell.edu: type = machine
alias = rð1nð9-css

rð1n11.tc.cornell.edu: type = machine
alias = rð1n11-css

rð1n13.tc.cornell.edu: type = machine
alias = rð1n13-css

rð1n15.tc.cornell.edu: type = machine
alias = rð1n15-css

#
Rack 2
#
HPSS/PIOFS backup
#rð2nð1.tc.cornell.edu: type = machine
alias = rð2nð1-css
rð2nð3, rð2nð5, rð2nð7, rð2nð9 are splong nodes
rð2nð3.tc.cornell.edu: type = machine

alias = rð2nð3-css
submit_only = true

rð2nð5.tc.cornell.edu: type = machine
alias = rð2nð5-css
submit_only = true

rð2nð7.tc.cornell.edu: type = machine
alias = rð2nð7-css
submit_only = true

rð2nð9.tc.cornell.edu: type = machine
alias = rð2nð9-css
submit_only = true

VIS node
#rð2n11.tc.cornell.edu: type = machine
alias = rð2n11-css
rð2n13.tc.cornell.edu: type = machine

alias = rð2n13-css
rð2n15.tc.cornell.edu: type = machine

alias = rð2n15-css

 Appendix B. Customer Case Studies 303

#
Rack 3
#
rð3nð1.tc.cornell.edu: type = machine

alias = rð3nð1-css
rð3nð2.tc.cornell.edu: type = machine

alias = rð3nð2-css
rð3nð3.tc.cornell.edu: type = machine

alias = rð3nð3-css
rð3nð4.tc.cornell.edu: type = machine

alias = rð3nð4-css
rð3nð5.tc.cornell.edu: type = machine

alias = rð3nð5-css
rð3nð6.tc.cornell.edu: type = machine

alias = rð3nð6-css
rð3nð7.tc.cornell.edu: type = machine

alias = rð3nð7-css
rð3nð8.tc.cornell.edu: type = machine

alias = rð3nð8-css
rð3nð9.tc.cornell.edu: type = machine

alias = rð3nð9-css
rð3n1ð.tc.cornell.edu: type = machine

alias = rð3n1ð-css
rð3n11.tc.cornell.edu: type = machine

alias = rð3n11-css
rð3n12.tc.cornell.edu: type = machine

alias = rð3n12-css
rð3n13.tc.cornell.edu: type = machine

alias = rð3n13-css
rð3n14.tc.cornell.edu: type = machine

alias = rð3n14-css
rð3n15.tc.cornell.edu: type = machine

alias = rð3n15-css
ATM/FDDI routing node
#rð3n16.tc.cornell.edu: type = machine
alias = rð3n16-css

304 Using and Administering LoadLeveler

#
Rack 4
#
rð4nð1.tc.cornell.edu: type = machine

alias = rð4nð1-css
rð4nð2.tc.cornell.edu: type = machine

alias = rð4nð2-css
rð4nð3.tc.cornell.edu: type = machine

alias = rð4nð3-css
rð4nð4.tc.cornell.edu: type = machine

alias = rð4nð4-css
rð4nð5.tc.cornell.edu: type = machine

alias = rð4nð5-css
rð4nð6.tc.cornell.edu: type = machine

alias = rð4nð6-css
rð4nð7.tc.cornell.edu: type = machine

alias = rð4nð7-css
rð4nð8.tc.cornell.edu: type = machine

alias = rð4nð8-css
rð4nð9.tc.cornell.edu: type = machine

alias = rð4nð9-css
rð4n1ð.tc.cornell.edu: type = machine

alias = rð4n1ð-css
rð4n11.tc.cornell.edu: type = machine

alias = rð4n11-css
rð4n12 - r14n16 HPSS nodes
#rð4n12.tc.cornell.edu: type = machine
alias = rð4n12-css
#rð4n13.tc.cornell.edu: type = machine
alias = rð4n13-css
#rð4n14.tc.cornell.edu: type = machine
alias = rð4n14-css
#rð4n15.tc.cornell.edu: type = machine
alias = rð4n15-css
#rð4n16.tc.cornell.edu: type = machine
alias = rð4n16-css
#
###
CLASS STANZAS: (optional)
These are sample class stanzas; small, medium, large, and nqs are sample
labels for job classes - revise these labels and specify attributes
to each class.
###
DSI: type = class

piofs: type = class
###

The following represents the CTC's LoadL_config file.

 Appendix B. Customer Case Studies 305

#
Machine Description
#
ARCH = R6ððð

#
Specify LoadLeveler Administrators here:
#
LOADL_ADMIN = loadl admin1 admin2 admin3 admin4

#
Default to starting LoadLeveler daemons when requested
#
START_DAEMONS = TRUE

#
Machine authentication
#
If TRUE, only connections from machines in the ADMIN_LIST are accepted.
If FALSE, connections from any machine are accepted. Default if not
specified is FALSE.
#
MACHINE_AUTHENTICATE = FALSE

#
Specify which daemons run on each node
#
SCHEDD_RUNS_HERE = False
STARTD_RUNS_HERE = True

#
Specify information for backup central manager
#
CENTRAL_MANAGER_HEARTBEAT_INTERVAL = 3ðð
CENTRAL_MANAGER_TIMEOUT = 6

306 Using and Administering LoadLeveler

#
Specify pathnames
#
RELEASEDIR = /usr/lpp/LoadL/nfs
LOCAL_CONFIG = $(tilde)/local/configs/LoadL_config.$(host)
ADMIN_FILE = $(tilde)/LoadL_admin
LOG = /var/loadl/log
SPOOL = /var/loadl/spool
EXECUTE = /var/loadl/execute
HISTORY = $(SPOOL)/history
BIN = $(RELEASEDIR)/bin
LIB = $(RELEASEDIR)/lib
ETC = $(RELEASEDIR)/etc
#
Specify port numbers
#
COLLECTOR_STREAM_PORT = 9612
MASTER_STREAM_PORT = 9616
NEGOTIATOR_STREAM_PORT = 9614
SCHEDD_STREAM_PORT = 96ð5
STARTD_STREAM_PORT = 9611
COLLECTOR_DGRAM_PORT = 9613
STARTD_DGRAM_PORT = 9615
MASTER_DGRAM_PORT = 9617
SCHEDULER_API = YES
SCHEDULER_PORT = 9624

#
Specify accounting controls
#
ACCT = A_ON
ACCT_VALIDATION = $(BIN)/llacctval
GLOBAL_HISTORY = $(SPOOL)

#
Specify prolog and epilog path names
#
JOB_PROLOG = $(ETC)/llprolog
JOB_EPILOG = $(ETC)/llepilog
JOB_USER_PROLOG = $(ETC)/ll_user_prolog
JOB_USER_EPILOG = $(ETC)/ll_user_epilog
#
#
Refresh AFS token program.
#
AFS_GETNEWTOKEN = $(ETC)/tokenreviveclient

 Appendix B. Customer Case Studies 307

#
Customized mail delivery program.
#
MAIL =

#
Customized submit (job command file) filter program.
#
SUBMIT_FILTER =

#
Specify checkpointing intervals
#
MIN_CKPT_INTERVAL = 9ðð
MAX_CKPT_INTERVAL = 72ðð

LoadL_KeyboardD Macros
#
KBDD = $(BIN)/LoadL_kbdd
KBDD_LOG = $(LOG)/KbdLog
MAX_KBDD_LOG = 64ððð
KBDD_DEBUG =

#
Specify whether to start the keyboard daemon
#

X_RUNS_HERE = False

#
Specify whether to use X server XGetIdleTime() protocol extension
#

USE_X_IDLE_EXTENSION = False

#
LoadL_StartD Macros
#
STARTD = $(BIN)/LoadL_startd
STARTD_LOG = $(LOG)/StartLog
MAX_STARTD_LOG = 5ðððððð
#STARTD_DEBUG = D_STARTD D_FULLDEBUG D_THREAD
STARTD_DEBUG = D_FULLDEBUG
POLLING_FREQUENCY = 1ð
POLLS_PER_UPDATE = 24
JOB_LIMIT_POLICY = 24ð
JOB_ACCT_Q_POLICY = 36ðð

#
LoadL_SchedD Macros
#
SCHEDD = $(BIN)/LoadL_schedd
SCHEDD_LOG = $(LOG)/SchedLog
MAX_SCHEDD_LOG = 5ðððððð
SCHEDD_DEBUG = D_SCHEDD
SCHEDD_INTERVAL = 18ð

CLIENT_TIMEOUT = 3ðð

308 Using and Administering LoadLeveler

#
Negotiator Macros
#
NEGOTIATOR = $(BIN)/LoadL_negotiator
NEGOTIATOR_DEBUG = D_FULLDEBUG D_ALWAYS D_NEGOTIATE
NEGOTIATOR_LOG = $(LOG)/NegotiatorLog
MAX_NEGOTIATOR_LOG = 5ðððððð
NEGOTIATOR_INTERVAL = 6ð
MACHINE_UPDATE_INTERVAL = 6ðð
NEGOTIATOR_PARALLEL_DEFER = 18ðð
NEGOTIATOR_PARALLEL_HOLD = 3ðð
NEGOTIATOR_REDRIVE_PENDING = 18ðð
NEGOTIATOR_RESCAN_QUEUE = 18ð
NEGOTIATOR_REMOVE_COMPLETED = ð

#
Sets the interval between recalculation of the SYSPRIO values
for all the jobs in the queue
#
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = ð

#
Starter Macros
#
STARTER = $(BIN)/LoadL_starter
STARTER_DEBUG = D_FULLDEBUG
STARTER_LOG = $(LOG)/StarterLog
MAX_STARTER_LOG = 5ððððð

#
LoadL_Master Macros
#
MASTER = $(BIN)/LoadL_master
MASTER_LOG = $(LOG)/MasterLog
MASTER_DEBUG = D_FULLDEBUG
MAX_MASTER_LOG = 64ððð
RESTARTS_PER_HOUR = 12
PUBLISH_OBITUARIES = TRUE
OBITUARY_LOG_LENGTH = 25

#
Specify whether log files are truncated when opened
#
TRUNC_MASTER_LOG_ON_OPEN = False
TRUNC_STARTD_LOG_ON_OPEN = False
TRUNC_SCHEDD_LOG_ON_OPEN = False
TRUNC_KBDD_LOG_ON_OPEN = False
TRUNC_STARTER_LOG_ON_OPEN = False
TRUNC_COLLECTOR_LOG_ON_OPEN = False
TRUNC_NEGOTIATOR_LOG_ON_OPEN = False

 Appendix B. Customer Case Studies 309

NQS Directory
#
#
For users of NQS resources:
Specify the directory containing qsub, qstat, qdel
#
NQS_DIR = /usr/bin

#
Specify Custom metric keywords
#
CUSTOM_METRIC =
CUSTOM_METRIC_COMMAND = $(ETC)/sw_chip_number
#
Machine control expressions and macros
#

OpSys : $(OPSYS)
Arch : $(ARCH)
Machine : $(HOST).$(DOMAIN)

#
Expressions used to control starting and stopping of foreign jobs
#
MINUTE = 6ð
HOUR = (6ð \ $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)

BackgroundLoad = ð.7
HighLoad = 1.5
StartIdleTime = 15 \ $(MINUTE)
ContinueIdleTime = 5 \ $(MINUTE)
MaxSuspendTime = 1ð \ $(MINUTE)
MaxVacateTime = 1ð \ $(MINUTE)

KeyboardBusy= KeyboardIdle < $(POLLING_FREQUENCY)
CPU_Idle = LoadAvg <= $(BackgroundLoad)
CPU_Busy = LoadAvg >= $(HighLoad)
START : $(CPU_Idle) && KeyboardIdle > $(StartIdleTime)
SUSPEND : $(CPU_Busy) || $(KeyboardBusy)
CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)
VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : $(StateTimer) > $(MaxVacateTime)

START : T
SUSPEND : F
CONTINUE : T
VACATE : F
KILL : F

310 Using and Administering LoadLeveler

#
Expressions used to prioritize job queue
#
Values which can be part of the SYSPRIO expression are:
#
QDate Job submission time
UserPrio User priority
UserSysprio System priority value based on userid (from the user
list file with default of ð)
ClassSysprio System priority value based on job class (from the class
list file with default of ð)
UserRunningProcs Number of jobs running for the user
GroupRunningProcs Number of jobs running for the group
#
The following expression is an example.
#
#SYSPRIO: (ClassSysprio \ 1ðð) + (UserSysprio \ 1ð) + (GroupSysprio \ 1)- (QDate
)
#
The following (default) expression for SYSPRIO creates a FIFO job queue.
#
SYSPRIO: (ClassSysprio \ 1ðð) - (QDate)

#
Expressions used to prioritize machines
#
The following example orders machines by the load average
normalized for machine speed:
#
#MACHPRIO: ð - (1ððð \ (LoadAvg / (Cpus \ Speed)))
#
The following (default) expression for MACHPRIO orders
machines by load average.
#
#MACHPRIO: ð - (LoadAvg) + (MasterMachPriority \ 1ðððð)
The following expression for MACHPRIO orders
machines by increasing ammount of memory and
decreasing node number.
#
MACHPRIO: ð - (1ðð \ Memory) + CustomMetric + (MasterMachPriority \ 1ðððð)

#
The MAX_JOB_REJECT value determines how many times a job can be
rejected before it is canceled or put on hold. The default value
is -1, which indicates no limit to the number of times a job can be
rejected.

#
MAX_JOB_REJECT = ð
#
When ACTION_ON_MAX_REJECT is HOLD, jobs will be put on user hold
when the number of rejects reaches the MAX_JOB_REJECT value. When
ACTION_ON_MAX_REJECT is CANCEL, jobs will be canceled when the
number of rejects reaches the MAX_JOB_REJECT value. The default
value is HOLD.
#
ACTION_ON_MAX_REJECT = CANCEL

 Appendix B. Customer Case Studies 311

Customer 2: Circuit Simulation
This customer performs CPU-intensive work in the area of circuit simulation using
Electronic Design Automation (EDA).

 System Configuration
The customer has 752 batch servers; 209 are dedicated to run LoadLeveler jobs 24
hours a day (the central manager is excluded). The rest are used by LoadLeveler
when they are not in use by their respective owners.

The LoadLeveler administrators control all the 173 dedicated machines. That
means that users cannot get onto these systems without submitting a LoadLeveler
job. 117 of the dedicated machines are public schedulers. The user machines are
submit-only machines, and users do not have access to their root password. If a
user needs root access to his or her machine, he or she is allowed alternate root
access only; he or she cannot get global root access to all the machines on site.
(Site administrators use a common global root password.)

This site runs over 31,000 jobs per week and about 2,800 CPU days of resource
utilization. The central manager is a RISC/System 6000 model 370 with 128MB of
RAM. The batch machines are generally 80 percent busy. The central manager is
about 35 percent to 70 percent busy. The central manager does not run any jobs, it
just manages. All of the LoadLeveler machines run one job at a time. (That is,
MAX_STARTERS=1 .)

This customer sees some machines in a down state occassionally. The
administrator feels the CPU on these machines are too busy to get a time slice to
report its state to the central manager. However, this down state does not cause
any problem for this customer.

117 public schedulers are subset of our 173 dedicated machines and are listed in
the admin file.

 LoadLeveler Configuration
The following figures represent sections of this customer's LoadL_admin file for
dedicated machines. Notice the default stanza. Also, every machine in the
LoadLeveler cluster is listed in this file.

312 Using and Administering LoadLeveler

#===#
type = machine default stanza
#===#

default: type = machine # defaults for machine stanzas
central_manager = false # no central manager on machine
schedd_host = true # public schedd on machine
#===#
Central Manager
#===#

mips1: type = machine # PRIMARY server - MANAGER 37ð 128M 3.2.5
central_manager = true # runs negotiator
#===#
Primary Servers
#===#

beast1ðð: type = machine
PRIMARY C=a/b/o/s2/t2 . . 55ð 128M 3.2.5
beast1ð1: type = machine
PRIMARY C=a/b/b1/b4/c/o/r/s/t F . 55ð 128M 3.2.5
beast1ð2: type = machine
PRIMARY C=a F . 55ð 128M 3.2.5
beast1ð3: type = machine
PRIMARY C=a . . 55ð 128M 3.2.5

Later in the Loadl_admin file , user machines are defined. Notice the default
stanza.

#===#

default: type = machine # defaults for machine stanzas
central_manager = false # no central manager on machine
schedd_host = false # no public schedd on machine
#===#

agni: type = machine
SECONDARY server - rmkohn 55ð 64M 3.2.5
akama: type = machine
SECONDARY server - poulter 365 64M 3.2.5
alaska: type = machine
SECONDARY server - jcahill 34ð 64M 3.2.5
alcor: type = machine
SECONDARY server - drolson 34ð 64M 3.2.5

The following represents a local configuration file for a dedicated, public scheduler
machine:

 Appendix B. Customer Case Studies 313

PRIMARY LoadL SERVER ==> mips27
#
this loadl.config.local is tuned for a machine that is part of a compute
farm. Interactive users are discouraged.
#
Run up to one jobs at a time.
#
Always start a job if there is a class available.
#
Never suspend a job.
#
Since jobs never get suspended they never get vacated or killed.
#

SCHEDD_RUNS_HERE = True
STARTD_RUNS_HERE = True

Class = { "a" "b" "b1" "b4" "c" "k" "r" "s" "t" }
Feature = { "PRI" }

MAX_STARTERS = 1

POLLING_FREQUENCY = 3ð
POLLS_PER_UPDATE = 15

START : T
SUSPEND : F

START_DAEMONS = True
X_RUNS_HERE = False

The following represents a local configuration file for a user's machine.

314 Using and Administering LoadLeveler

SECONDARY SERVER ==> common
#
This loadl_config.local is tuned to be "nice" to a workstation owner
who permits loadl jobs on his system but wants good response whenever
he is doing his own work.
#
Run only one LoadLeveler job at a time.
#
Check the keyboard for activity every five seconds.
#
#
Suspend a job if the load average exceeds 1.4
#
Continue a job when keyboard again goes idle for 1ð minutes and the load
average is <.5

SCHEDD_RUNS_HERE = False
STARTD_RUNS_HERE = True

Class = { "a" "b" "b1" "b4" "c" "o" "r" "s" "t" }
MAX_STARTERS = 1

START : $(FirstShift_KB9999) && $(StartS1) || ($(Off_Shift) ||
$(Week_End)) && $(Mach_Idle_S)
SUSPEND : $(CPU_Busy) || $(KeyboardBusy)
CONTINUE : $(Mach_Idle_C)
VACATE : ((Class == "a") && $(Vacate_A)) || ($(Vacate_ClassesB)
&& $(Vacate_B)) || $(Vacate_X)
KILL : $(Kill_Job)

START_DAEMONS = True
X_RUNS_HERE = True

 Customer 3: High-Energy Physics
This scientific customer provides experimental facilities for physicists from its 17
member states and for visiting scientists from throughout the world. The computing
requirements of these users vary from mail and text processing to heavy batch and
parallel processing.

 System Configuration
Their processor is an SP2 using RISC System/6000 nodes linked by an internal
high-speed network with a centrally managed software environment. The nodes are
functionally divided into four groups of 16 each for different types of work:
interactive logins, sequential job batch processing, parallel job batch processing
and data, and tape and network services.

This customer uses AFS heavily. It provides the single system image for users'
home directories and the files common to their experiments. Many software
products are served directly out of AFS using symbolic links.

LoadLeveler provides this customer with the following facilities:

� Interactive load balancing of users across nodes on the SP2 and other UNIX
services on site.

 Appendix B. Customer Case Studies 315

� Batch services for serial compute jobs.

� Scheduling for parallel applications.

LoadLeveler Batch Configuration
The batch configuration is designed to maximize short job turnaround while allowing
the heavy CPU jobs to get good usage of the resources available.

The basic configuration uses a range of classes – short, medium, long and
verylong – with a range of maximum job CPU times of from five minutes to six
days. An additional class, night, provides off-peak and weekend computing time on
the interactive areas of the SP2 during periods of low demand. Access to this class
is limited to specific users.

Users in different experiments are defined in LoadLeveler groups which provide
associated queue priorities. This allows groups with a large computing budget to be
given higher priorities. An automated procedure calculates each group's resource
utilization over the last month and adjusts their priorities accordingly. This ensures
a fair allocation of CPU time among the groups.

LoadLeveler Interactive Configuration
This customer uses the Interactive Session Support facility to provide a name
servier which returns the least loaded node according to a site defined metric. This
allows a user to be given the least loaded operational node when he or she logs in.

This metric is based on the number of logged in users, with some weight given to
those using Xstations. Every few minutes, the system is scanned to evaluate the
following:

Xterminals\3 + Telnet\2 + Process

Where:

� Xterminals is the number of users logged in from an Xstation

� Telnet is the number logged in via telnet or rlogin

� Process is the number of users who have processes running.

This metric tries to balance users across the system while providing some factor for
their likely future utilization. A metric based on the CPU load average is too
dependent on the current load to provide good balancing.

The metric can also be set to return a low priority if the file /etc/iss.nologin exists.
This allows the administrator to drain the interactive use of a node if there is
scheduled system maintenance. When the maintenance is completed, the file can
be removed and the metric will return the correct value for the node. Users will
therefore see an improved availability, since they will not be given a node that is
about to shutdown.

316 Using and Administering LoadLeveler

 Processor Configuration
The processors are configured as follows:

� parallel nodes support a mixture of short, medium, long, and verylong classes.

� batch nodes support the same class mix as parallel. Additional paging space is
available on these nodes to provide multiple jobs running per node.

� interactive nodes support the night class only. The night class only allows jobs
to start after 6 PM and before midnight during the week and anytime on
weekends. A maximum CPU time of 8 hours ensures that the jobs are finished
when the prime shift starts. This is configured using LoadLeveler's START
expression:

Is_Weekend = (tm_wday==ð || tm_wday==6)
Is_Start_Night_Time = (tm_hour>18)

START: $(Is_Start_Night_Time) || $(Is_Weekend)

Customer 4: Computer Chip Design
This customer uses EDA to perform work in the area of computer chip design.

 System Configuration
The customer has seven clusters of RISC/System 6000 machines. The largest
cluster has 530 machines; the smallest cluster has 87 machines. The total number
of machines at this installation is over 1200.

 Interactive Configuration
This customer has defined two configuration files for interactive work: one for
standard workstations and one for large interactive servers. These files are meant
to be tailored to machines of differing processing power.

Standard Workstation Configuration
#==#
Description: LoadL_config.local for Standard Workstations (<37ð Class)
#==#
Need 2x Paging Space to Real Memory (minimum) For Worst Case Of One
Suspended and One Foreground Running Job.
\) All Jobs (btv,lp) Suspend on LoadAvg or Keyboard/Mouse Movement.
#==#
Class defines the permissable classes, MAX_STARTERS defines the max
total jobs to be permitted.
#==#
Class = { "btv" "lp" }
MAX_STARTERS = 1
#==#
The next definitions are used in the expressions below to regulate the
conditions under which jobs get started, suspended, and evicted.
All times are specified in units of seconds.
#==#
BackgroundLoad = ð.8
HighLoad = 1.6
StartIdleTime = 9ðð
ContinueIdleTime = 9ðð

 Appendix B. Customer Case Studies 317

#==#
LoadAvg is an internal variable whose value is the (Berkeley) load average
of the machine.
#
CPU_Idle - No LoadL job running, or One job just finishing.
CPU_Busy - One LoadL job running, second job (Foreground or Batch)
starting up.
CPU_Max - Two LoadL jobs running.
#==#
CPU_Idle = (LoadAvg <= $(BackgroundLoad))
CPU_Busy = (LoadAvg >= $(HighLoad))

#==#
This defines a boolean "KeyboardBusy" whose value is TRUE if the keyboard
or mouse has been used since loadl last checked. Thus if POLLING_FREQUENCY
is 5 seconds, KeyboardBusy is TRUE if anybody has used the kbd or mouse in
the last 5 seconds.
#==#
KeyboardBusy = KeyboardIdle < $(POLLING_FREQUENCY)

#==#
This statement indicates when a job should be started on this machine
#==#
Weekend = ((tm_wday >= 6) || (tm_wday < 1))
Day = ((tm_hour >= 7) && (tm_hour < 18))
Night = ((tm_hour >= 18) || (tm_hour < 4))
Inactive = ((KeyboardIdle > $(StartIdleTime)) && $(CPU_Idle))

HP = ((Class == "btv"))
LP = (($(Weekend) || $(Night)))

START : (($(HP) || $(LP)) && $(Inactive))

#==#
The SUSPEND statement here says that a job should be suspended but not
killed if:
LoadAvg >= 1.6 Or KeyboardIdle < 5
#==#
SUSPEND : ($(CPU_Busy) || $(KeyboardBusy))

#==#
This CONTINUE statement indicates that a suspended job should be continued
if the cpu goes idle and the keyboard/mouse has not been used for the last
15 minutes.
#==#
CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)

#==#
Jobs in the SUSPEND state are never killed, after 6ð minutes they are
relocated to a different machine if possible.
#==#
MaxSuspendTime = 6ð \ $(MINUTE)
VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : F

318 Using and Administering LoadLeveler

#==#
If you set START_DAEMONS to False loadl can never start on this machine.
For example you may want to stop loadl for a couple days for maintenance
and make sure no procedure automatically restarts it.
#==#
START_DAEMONS = True

#==#
Set the maximum size each of the logs can reach before wrapping.
#==#
MAX_SCHEDD_LOG = 128ððð
MAX_COLLECTOR_LOG = 128ððð
MAX_STARTD_LOG = 128ððð
MAX_SHADOW_LOG = 128ððð
MAX_KBDD_LOG = 128ððð

Large Interactive Server Configuration
#==#
Description: LoadL_config.local for Interactive Large Servers (58ð-59ð Class)

#==#
Need 3x Real Memory To Paging Space (minimum) For Worst Case Of Two
Suspended and One Foreground Running Job.
\) All Jobs (btv,lp) Suspend on LoadAvg or Keyboard/Mouse Movement.
\) Real Memory >= 192meg.
#==#

#==#
Class defines the permissable classes, MAX_STARTERS defines the max
total jobs to be permitted.
#==#
Class = { "btv" "lp" }
MAX_STARTERS = 2

#==#
The next definitions are used in the expressions below to regulate the
conditions under which jobs get started, suspended, and evicted.
#
All times are specified in units of seconds.
#==#
BackgroundLoad = ð.8
LowLoad = 1.ð
HighLoad = 1.6
MaxLoad = 2.ð
StartIdleTime = 9ðð
ContinueIdleTime = 9ðð

 Appendix B. Customer Case Studies 319

#==#
LoadAvg is an internal variable whose value is the (Berkeley) load average
of the machine.
#
CPU_Idle - No LoadL job running, or One job just finishing.
CPU_Busy - One LoadL job running, second job (Foreground or Batch)
starting up.
CPU_Max - Two LoadL jobs running.
#==#
CPU_Idle = (LoadAvg <= $(BackgroundLoad))
CPU_Run = (LoadAvg <= $(LowLoad))
CPU_Busy = (LoadAvg >= $(HighLoad))
CPU_Max = (LoadAvg >= $(MaxLoad))

#==#
This defines a boolean "KeyboardBusy" whose value is TRUE if the keyboard
or mouse has been used since loadl last checked. Thus if POLLING_FREQUENCY
is 5 seconds, KeyboardBusy is TRUE if anybody has used the kbd or mouse in
the last 5 seconds.
#==#
KeyboardBusy = KeyboardIdle < $(POLLING_FREQUENCY)
#==#
This statement indicates when a job should be started on this machine
#==#
Weekend = ((tm_wday >= 6) || (tm_wday < 1))
Day = ((tm_hour >= 7) && (tm_hour < 18))
Night = ((tm_hour >= 18) || (tm_hour < 4))
Inactive1 = ((KeyboardIdle > $(StartIdleTime)))
Inactive2 = ((KeyboardIdle > $(ContinueIdleTime)))

HP = ((Class == "btv"))
LP = ((Class == "lp") && $(CPU_Idle))

START : (($(HP) || $(LP)) && $(Inactive1))

#==#
The SUSPEND statement here says that a job should be suspended but not
killed if:
KeyboardIdle < 5 Or
lp Class And LoadAvg >= 1.6 Or
btv Class And LoadAvg >= 2.ð
#==#
SUSPEND : (((Class == "lp") && $(CPU_Busy)) || \
((Class == "btv") && $(CPU_Max)) || \
($(KeyboardBusy)))

#==#
This CONTINUE statement indicates that a suspended job should be continued
if:
lp Class And LoadAvg <= ð.8 And KeyboardIdle > 15 min Or
btv Class And LoadAvg <= 1.ð And KeyboardIdle > 15 min
#==#
CONTINUE : (((Class == "lp") && $(CPU_Idle) && $(Inactive2)) || \
((Class == "btv") && $(CPU_Run) && $(Inactive2)))

320 Using and Administering LoadLeveler

#==#
Jobs in the SUSPEND state are never killed, after 6ð minutes they are
relocated to a different box if possible.
#==#
MaxSuspendTime = 6ð \ $(MINUTE)
VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : F

#==#
If you set START_DAEMONS to False loadl can never start on this machine.
For example you may want to stop loadl for a couple days for maintenance
and make sure no procedure automatically restarts it.
#==#
START_DAEMONS = True

#==#
Set the maximum size each of the logs can reach before wrapping.
#==#
MAX_SCHEDD_LOG = 128ððð
MAX_COLLECTOR_LOG = 128ððð
MAX_STARTD_LOG = 128ððð
MAX_SHADOW_LOG = 128ððð
MAX_KBDD_LOG = 128ððð

 Batch Configuration
The following configuration file defines dedicated batch machines. Notice, however,
that jobs in the lp class will suspend when a machine becomes too busy. So in this
sense, the machines are not fully dedicated.

 Appendix B. Customer Case Studies 321

#==#
Description: LoadL_config.local for Large Batch Servers (58ð - 59ð Class)
#==#
Need 3x Real Memory To Paging Space (minimum) For Worst Case Of One
Suspended and Two Foreground Running Job.
\) High Priority Jobs (btv) Never Suspend.
\) Job Suspension (lp) Based on LoadAvg Only.
\) Real Memory >= 192meg.
#==#

#==#
Class defines the permissable classes, MAX_STARTERS defines the max
total jobs to be permitted.
#==#
Class = { "btv" "lp" }
MAX_STARTERS = 2

#==#
The next definitions are used in the expressions below to regulate the
conditions under which jobs get started, suspended, and evicted.
#
All times are specified in units of seconds.
#==#
BackgroundLoad = ð.5
HighLoad = 1.6
StartIdleTime = 9ðð
ContinueIdleTime = 9ðð

#==#
LoadAvg is an internal variable whose value is the (Berkeley) load average
of the machine.
#
CPU_Idle - No LoadL job running, or One job just finishing.
CPU_Busy - One LoadL job running, second job (Foreground or Batch)
starting up.
CPU_Max - Two LoadL jobs running.
#==#
CPU_Idle = (LoadAvg <= $(BackgroundLoad))
CPU_Busy = (LoadAvg >= $(HighLoad))

322 Using and Administering LoadLeveler

#==#
This defines a boolean "KeyboardBusy" whose value is TRUE if the keyboard
or mouse has been used since loadl last checked. Thus if POLLING_FREQUENCY
is 5 seconds, KeyboardBusy is TRUE if anybody has used the kbd or mouse in
the last 5 seconds.
#==#
KeyboardBusy = KeyboardIdle < $(POLLING_FREQUENCY)

#==#
This statement indicates when a job should be started on this machine
#==#
HP = ((Class == "btv"))
LP = ((Class == "lp") && $(CPU_Idle))

START : ($(HP) || $(LP))

#==#
The SUSPEND statement here says that a "lp" job should be suspended but not
killed if a high priority job starts up or a foreground job causes the
Loadavg to be greater than CPU_Busy (1.6).
#==#
SUSPEND : (Class == "lp") && $(CPU_Busy)

#==#
This CONTINUE statement indicates that a suspended job should be continued
if the cpu goes idle and the keyboard/mouse has not been used for the last
15 minutes.
#==#
CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)

#==#
Jobs in the SUSPEND state are never killed, after 6ð minutes they are
relocated to a different box if possible.
#==#
MaxSuspendTime = 6ð \ $(MINUTE)
VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : F

#==#
If you set START_DAEMONS to False loadl can never start on this machine.
For example you may want to stop loadl for a couple days for maintenance
and make sure no procedure automatically restarts it.
#==#
START_DAEMONS = True

#==#
Set the maximum size each of the logs can reach before wrapping.
#==#
MAX_SCHEDD_LOG = 128ððð
MAX_COLLECTOR_LOG = 128ððð
MAX_STARTD_LOG = 128ððð
MAX_SHADOW_LOG = 128ððð
MAX_KBDD_LOG = 128ððð

 Appendix B. Customer Case Studies 323

Configuration for a Machine That Schedules (But Doesn't Run) Jobs
The following statements define a machine that schedules jobs but does not run
jobs. Notice that the schedd daemon is never forced to not run.

#
This loadl local configuration file is set up to make a machine a
submitter only.
#
No jobs are allowed to run on this system.
#
MAX_STARTERS = ð

START : F
#
If you set START_DAEMONS to False loadl can never start on this machine.
For example you may want to stop loadl for a couple days for maintenance
and make sure no procedure automatically restarts it.
#
START_DAEMONS = True

324 Using and Administering LoadLeveler

 Appendix C. Sample Files

This appendix contains sample configuration and administration files. These files,
as well as other sample files, are located in the directory called
/usr/lpp/LoadL/full/samples .

Sample Administration File
The following is a sample LoadL_admin file.

\\\
LoadL_admin file: Remove comments and edit this file to suit your
installation. This file consists of machine, class, user, group, and
adapter stanzas. Each stanza has defaults, as specified in a "defaults:"
section. Default stanzas are used to set values for fields which are
not specified. Class, user, group, and adapter stanzas are optional.
Refer to "Using and Adminmistering LoadLeveler" for detailed information
on keywords and their associated values. Also, see LoadL_admin.1 in the
˜loadl/samples directory for sample stanzas.
###
DEFAULTS FOR MACHINE, CLASS, USER, AND GROUP STANZAS:
Remove initial # (comment), and edit to suit.
#
default: type = machine
central_manager = false # default not central manager
schedd_host = false # default not a public scheduler
submit_only = false # default not a submit-only machine
speed = 1 # default machine speed
cpu_speed_scale = false # scale cpu limits by speed
default: type = class # default class stanza
priority = ð # default ClassSysprio
max_processors = -1 # default max processors for class (no limit)

default: type = user # default user stanza
priority = ð # default UserSysprio
default_class = No_Class # default class = No_Class (not optional)
default_group = No_Group # default group = No_Group (not optional)
maxjobs = -1 # default maximum jobs user is allowed

to run simultaneously (no limit)
maxqueued = -1 # default maximum jobs user is allowed

on system queue (no limit). does not
limit jobs submitted.

default: type = group # default group stanza
priority = ð # default GroupSysprio
maxjobs = -1 # default maximum jobs group is allowed

to run simultaneously (no limit)
maxqueued = -1 # default maximum jobs group is allowed

on system queue (no limit). does not
limit jobs submitted.

 Appendix C. Sample Files 325

###
MACHINE STANZAS:
These are the machine stanzas; the first machine is defined as
the central manager. mach1:, mach2:, etc. are machine name labels -
revise these placeholder labels with the names of the machines in the
pool, and specify any schedd_host and submit_only keywords and values
(true or false), if required.
###
CENTRALMANAGER: type = machine central_manager = true
#
mach1: type = machine
schedd_host = true
#
mach2: type = machine
schedd_host = true
#
mach3: type = machine
schedd_host = true
cpu_speed_scale = true
speed = 1ð
#
mach4: type = machine
adapter_stanzas = k1ðnð1_enð k1ðnð1_css
#
mach5: type = machine
adapter_stanzas = k1ðnð5_enð k1ðnð5_css
pool_list = 5
spacct_excluse_enable = True
machine_mode = batch
#
mach6: type = machine
#
mach7: type = machine
submit_only = true
#
mach8: type = machine
submit_only = true
etc: type = machine
#
###
ADAPTER STANZAS: (optional)
These are sample adapter stanzas;
revise labels and attributes for the adapters on your machines.
###
#
#k1ðnð1_enð: type = adapter
interface_name = k1ðnð1
adapter_name = enð
network_type = ethernet
#
#k1ðnð1_css: type = adapter
interface_name = k1ðsnð1
adapter_name = cssð
network_type = css
switch_node_number = ð
interface_address = 9.114.51.129

326 Using and Administering LoadLeveler

#
#k1ðnð5_enð: type = adapter
interface_name = k1ðnð5
adapter_name = enð
network_type = ethernet
#
#k1ðnð5_css: type = adapter
interface_name = k1ðsnð5
adapter_name = cssð
network_type = css
switch_node_number = 4
interface_address = 9.114.51.133
###
CLASS STANZAS: (optional) These are sample class stanzas; small, medium,
large, very large, parallel and nqs are sample labels for job classes.
Revise these labels and specify attributes for each class.
###
#small: type = class # class for small jobs
priority = 1ðð # ClassSysprio
include_users=<userlist> # only these users can submit

jobs of this class
exclude_users=<userlist> # only these cannot submit
include_groups=<grouplist>
exclude_groups=<grouplist>
admin = <userlist>
nice = <nice value>
cpu_limit = ðð:15:ðð # 15 minute run time limit
data_limit = <size>
core_limit = <size>
file_limit = <size>
stack_limit = <size>
rss_limit = <size>
#
#medium: type = class # class for medium jobs
priority = 6ð # ClassSysprio
cpu_limit= ð2:ðð:ðð # 2 hour run time limit
#large: type = class # class for large jobs
priority = 2ð # ClassSysprio
cpu_limit = 24:ðð:ðð # 24 hour run time limit
nice = -1ð # Set nice value
#verylong: type = class
class_comment = "verylong queue"
nice = 19
priority = ð
cpu_limit = 3ððð:ðð:ðð
job_cpu_limit = 31ðð:ðð:ðð
#
#parallel: type = class
class_comment = "restricted access"
include_users = tbel ghtc3 hrrcr bjac3 japost roethl
priority = ð
cpu_limit = unlimited
job_cpu_limit = unlimited
wall_clock_limit = 1:ðð,ðð:45 # Needed for Backfill scheduler
total_tasks = 2
max_nodes = 2

 Appendix C. Sample Files 327

#
#nqs: type = class # class for nqs jobs
NQS_class = true # will be routed to NQS
NQS_submit = nqs_pipe_q_name # name of pipe queue
NQS_query = q_name1@host1 q_name2@host2 ... # names of queues
###
GROUP STANZAS: (optional)
These are sample group stanzas; group1, group2 are sample labels
for groups - revise these labels and specify attributes to each group.
###
#group1: type = group
priority = 8ð
maxjobs = 4ð
maxqueued = 8ð
admin = user1 user2
max_processors = 8
#
total_tasks = 2
max_nodes = 2

#group2: type = group
priority = 5ð
maxjobs = 2ð
maxqueued = 4ð

###
USER STANZAS: (optional, default user stanza not optional)
These are sample user stanzas; user1, user2, user3 are sample labels
for users - revise these labels and specify attributes to each user.
###
user1: type = user
priority = 8ð
default_class = small
default_group = group1
maxjobs = 2ð
maxqueued = 4ð
#
user2: type = user
priority = 5ð
default_class = medium long verylong
default_group = Unix_Group
maxjobs = 1ð
maxqueued = 2ð
#
user3: type = user
priority = 1ð
maxjobs = 5
maxqueued = 1ð
total_tasks = 2
max_nodes = 2
##

328 Using and Administering LoadLeveler

Sample Configuration File
The following is a sample LoadL_config file.

#
Machine Description
#
ARCH = R6ððð
#
Specify LoadLeveler Administrators here:
#
LOADL_ADMIN = loadl admin1
#
Default to starting LoadLeveler daemons when requested
#
START_DAEMONS = TRUE
#
Machine authentication
#
If TRUE, only connections from machines in the ADMIN_LIST are accepted.
If FALSE, connections from any machine are accepted. Default if not
specified is FALSE.
#
MACHINE_AUTHENTICATE = FALSE
#
Specify which daemons run on each node
#
SCHEDD_RUNS_HERE = True
STARTD_RUNS_HERE = True
#
Specify information for backup central manager
#
CENTRAL_MANAGER_HEARTBEAT_INTERVAL = 3ðð
CENTRAL_MANAGER_TIMEOUT = 6
#
Specify pathnames
#
RELEASEDIR = $(tilde)
LOCAL_CONFIG = $(tilde)/LoadL_config.local
ADMIN_FILE = $(tilde)/LoadL_admin
LOG = $(tilde)/log
SPOOL = $(tilde)/spool
EXECUTE = $(tilde)/execute
HISTORY = $(SPOOL)/history
BIN = $(RELEASEDIR)/bin
LIB = $(RELEASEDIR)/lib
#
Specify port numbers
#
MASTER_STREAM_PORT = 9616
NEGOTIATOR_STREAM_PORT = 9614
SCHEDD_STREAM_PORT = 96ð5
STARTD_STREAM_PORT = 9611
COLLECTOR_DGRAM_PORT = 9613
STARTD_DGRAM_PORT = 9615
MASTER_DGRAM_PORT = 9617

 Appendix C. Sample Files 329

#
Turn on/off the internal LoadLeveler scheduling algorithm
Default is on
#
For Backfill scheduler
SCHEDULER_API = NO
SCHEDULER_TYPE = BACKFILL

For default scheduler
SCHEDULER_API = NO
SCHEDULER_TYPE =
For external scheduler
SCHEDULER_API = YES
SCHEDULER_TYPE =
#
Specify accounting controls
#
ACCT = A_OFF
ACCT_VALIDATION = $(BIN)/llacctval
GLOBAL_HISTORY = $(SPOOL)
#
Specify prolog and epilog path names
#
JOB_PROLOG =
JOB_EPILOG =
JOB_USER_PROLOG =
JOB_USER_EPILOG =
#
Refresh AFS token program.
#
AFS_GETNEWTOKEN =
#
Customized mail delivery program.
#
MAIL =
#
Customized submit (job command file) filter program.
#
SUBMIT_FILTER =
#
Specify checkpointing intervals
#
MIN_CKPT_INTERVAL = 9ðð
MAX_CKPT_INTERVAL = 72ðð
LoadL_KeyboardD Macros
#
KBDD = $(BIN)/LoadL_kbdd
KBDD_LOG = $(LOG)/KbdLog
MAX_KBDD_LOG = 64ððð
KBDD_DEBUG =

330 Using and Administering LoadLeveler

#
Specify whether to start the keyboard daemon
#
X_RUNS_HERE = True
#
LoadL_Startd Macros
#
STARTD = $(BIN)/LoadL_startd
STARTD_LOG = $(LOG)/StartLog
MAX_STARTD_LOG = 64ððð
STARTD_DEBUG =
POLLING_FREQUENCY = 5
POLLS_PER_UPDATE = 24
JOB_LIMIT_POLICY = 12ð
JOB_ACCT_Q_POLICY = 3ðð
#
#
LoadL_Schedd Macros
#
SCHEDD = $(BIN)/LoadL_schedd
SCHEDD_LOG = $(LOG)/SchedLog
MAX_SCHEDD_LOG = 64ððð
SCHEDD_DEBUG =
SCHEDD_INTERVAL = 12ð
#
CLIENT_TIMEOUT = 3ð
#
Negotiator Macros
#
NEGOTIATOR = $(BIN)/LoadL_negotiator
NEGOTIATOR_DEBUG =
NEGOTIATOR_LOG = $(LOG)/NegotiatorLog
MAX_NEGOTIATOR_LOG = 64ððð
NEGOTIATOR_INTERVAL = 6ð
MACHINE_UPDATE_INTERVAL = 3ðð
NEGOTIATOR_PARALLEL_DEFER = 3ðð
NEGOTIATOR_PARALLEL_HOLD = 3ðð
NEGOTIATOR_REDRIVE_PENDING = 9ð
NEGOTIATOR_RESCAN_QUEUE = 9ð
NEGOTIATOR_REMOVE_COMPLETED = ð

 Appendix C. Sample Files 331

#
Sets the interval between recalculation of the SYSPRIO values
for all the jobs in the queue
#
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = ð
#
Starter Macros
#
STARTER = $(BIN)/LoadL_starter
STARTER_DEBUG =
STARTER_LOG = $(LOG)/StarterLog
MAX_STARTER_LOG = 64ððð
#
LoadL_Master Macros
#
MASTER = $(BIN)/LoadL_master
MASTER_LOG = $(LOG)/MasterLog
MASTER_DEBUG =
MAX_MASTER_LOG = 64ððð
RESTARTS_PER_HOUR = 12
PUBLISH_OBITUARIES = TRUE
OBITUARY_LOG_LENGTH = 25
#
Specify whether log files are truncated when opened
#
TRUNC_MASTER_LOG_ON_OPEN = False
TRUNC_STARTD_LOG_ON_OPEN = False
TRUNC_SCHEDD_LOG_ON_OPEN = False
TRUNC_KBDD_LOG_ON_OPEN = False
TRUNC_STARTER_LOG_ON_OPEN = False
TRUNC_NEGOTIATOR_LOG_ON_OPEN = False
#
NQS Directory
#
For users of NQS resources:
Specify the directory containing qsub, qstat, qdel
#
NQS_DIR = /usr/bin
#
Specify machine's relative priority to run jobs
#
CUSTOM_METRIC =
CUSTOM_METRIC_COMMAND =
#
Machine control expressions and macros
#
OpSys : "$(OPSYS)"
Arch : "$(ARCH)"
Machine : "$(HOST).$(DOMAIN)"

332 Using and Administering LoadLeveler

#
Expressions used to control starting and stopping of foreign jobs
#
MINUTE = 6ð
HOUR = (6ð \ $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)
BackgroundLoad = ð.7
HighLoad = 1.5
StartIdleTime = 15 \ $(MINUTE)
ContinueIdleTime = 5 \ $(MINUTE)
MaxSuspendTime = 1ð \ $(MINUTE)
MaxVacateTime = 1ð \ $(MINUTE)
#
KeyboardBusy = KeyboardIdle < $(POLLING_FREQUENCY)
CPU_Idle = LoadAvg <= $(BackgroundLoad)
CPU_Busy = LoadAvg >= $(HighLoad)
#
Refer to LoadL_config man page for an explanation of these control
expressions
#
START : $(CPU_Idle) && KeyboardIdle > $(StartIdleTime)
SUSPEND : $(CPU_Busy) || $(KeyboardBusy)
CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)
VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : $(StateTimer) > $(MaxVacateTime)
#
START : T
SUSPEND : F
CONTINUE : T
VACATE : F
KILL : F
#
Expressions used to prioritize job queue
The following expression is an example.
#
#SYSPRIO: (ClassSysprio \ 1ðð) + (UserSysprio \ 1ð) + (GroupSysprio \ 1)- (QDate)
#
The following (default) expression for SYSPRIO creates a FIFO job queue.
#
SYSPRIO: ð - (QDate)
#
Expressions used to prioritize machines
#
The following example orders machines by the load average
normalized for machine speed:

 Appendix C. Sample Files 333

#
#MACHPRIO: ð - (1ððð \ (LoadAvg / (Cpus \ Speed)))
#
The following (default) expression for MACHPRIO orders
machines by load average.
#
MACHPRIO: ð - (LoadAvg)
#
The MAX_JOB_REJECT value determines how many times a job can be
rejected before it is canceled or put on hold. The default is -1,
which indicates no limit to the number of times a job can be rejected.
#
MAX_JOB_REJECT = -1
#
When ACTION_ON_MAX_REJECT is HOLD, jobs will be put on user hold
when the number of rejects reaches the MAX_JOB_REJECT value. When
ACTION_ON_MAX_REJECT is CANCEL, jobs will be canceled when the
number of rejects reaches the MAX_JOB_REJECT value. The default
value is HOLD.
#
ACTION_ON_MAX_REJECT = HOLD
#
To enable LoadLeveler to support DCE security credential passing,
uncomment the following keyword. An installation can provide its
own executables to pass or establish DCE security credentials for
a LoadLeveler job by replacing the executables specified by the
following keyword.
#
#DCE_AUTHENTICATION_PAIR = $(BIN)/llgetdce, $(BIN)/llsetdce

334 Using and Administering LoadLeveler

 Appendix D. Glossary

This section contains some of the terms that are commonly used in the
LoadLeveler books and in this book in particular.

IBM is grateful to the American National Standards Institute (ANSI) for permission
to reprint its definitions from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American National Standards Institute,
Incorporated), which was prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards Committee X3. ANSI definitions are
preceded by an asterisk (*).

Other definitions in this glossary are taken from IBM Vocabulary for Data
Processing, Telecommunications, and Office Systems (GC20-1699), IBM
DATABASE 2 Application Programming Guide for TSO Users (SC26-4081), and
Internetworking With TCP/IP, Principles, Protocols, and Architecture, by Douglas
Comer, Copyright 1988 by Prentice Hall, Incorporated

A

AFS. Andrew File System.

AIX. Abbreviation for Advanced Interactive Executive, IBM's licensed version of
the UNIX operating system. AIX is particularly suited to support technical computing
applications, including high function graphics and floating point computations.

Authentication . The process of validating the identity of a user or server.

Authorization . The process of obtaining permission to perform specific actions.

B

Berkeley Load Average . The average number of processes on the operating
system's ready to run queue.

C

C. A general purpose programming language. It was formalized by ANSI
standards committee for the C language (X3J11) in 1984 and by Uniforum in 1983.

client . *(1) A function that requests services from a server, and makes them
available to the user. *(2) An address space in MVS that is using TCP/IP services.
*(3) A term used in an environment to identify a machine that uses the resources of
the network.

cluster . (1) A group of processors interconnected through a high speed network
that can be used for high performance computing. (2) A group of jobs submitted
from the same job command file. (3)A set of machines with something in common
between them. This commonality could be that they are all backed up by one
machine or they are all in the LoadLeveler administration file.

 Appendix D. Glossary 335

D

daemon . A process, not associated with a particular user, that performs
system-wide functions such as administration and control of networks, execution of
time-dependent activities, line printer spooling, and so on.

datagram . A protocal known as the User Datagram Protocol (UDP). It is an
internet standard protocol that allows an application program on one machine to
send a datagram to an application program on another machine. UDP uses the
Internet Protocol to deliver datagrams. Conceptually, the important difference
between UDP and IP is that UDP messages include a protocol port number,
allowing the sender to distinguish among multiple destinations (application
programs) on the remote machines. In practice, UDP also includes a checksum
over the data being sent.

DCE. Distributed Computing Environment.

default . An alternative value, attribute, or option that is assumed when none has
been specified.

DFS. Distributed File System. A subset of the IBM Distributed Computing
Environment.

H

host . A computer connected to a network, and providing an access method to that
network. A host provides end-user services.

M

menu . A display of a list of available functions for selection by the user.

Motif . The UNIX industry's standard user interface, originally developed by the
Open Systems Foundation. Motif is based on the X-Window system and is a
Presentation Manager look-alike. Motif is available for all IBM AIX workstations.

N

network . An interconnected group of nodes, lines, and terminals. A network
provides the ability to transmit data to and receive data from other systems and
users.

NFS. Network File System.

node . In a network, the point where one or more functional units interconnect
transmission lines. A computer location defined in a network.

NQS. Network Queueing System.

336 Using and Administering LoadLeveler

P

parameter . *(1) A variable that is given a constant value for a specified application
and that may denote the application. *(2) An item in a menu for which the operator
specifies a value or for which the system provides a value when the menu is
interpreted. *(3) A name in a procedure that is used to refer to an argument that is
passed to the procedure. *(4) A particular piece of information that a system or
application program needs to process a request.

process . *(1) A unique, finite course of events defined by its purpose or by its
effect, achieved under defined conditions. *(2) Any operation or combination of
operations on data. *(3) A function being performed or waiting to be performed. *(4)
A program in operation. For example, a daemon is a system process that is always
running on the system.

S

SDR. Abbreviation for System Data Repository. A repository of system information
describing SP hardware and operating characteristics.

server . (1) A function that provides services for users. A machine may run client
and server processes at the same time. (2) A machine that provides resources to
the network. It provides a network service, such as disk storage and file transfer, or
a program that uses such a service.

shell . The shell is the primary user interface for the UNIX operating system. It
serves as command language interpreter, programming language, and allows
foreground and background processing. There are three different implementations
of the shell concept: Bourne, C and Korn.

stream . An internet standard transport level protocol that provides the reliable, full
duplex, stream service on which many application protocols depend. TCP allows a
process on one machine to send a stream of data to a process on another. It is
connection-oriented in the sense that before transmitting data, participants must
establish a connection. Software implementing TCP usually resides in the operating
system and uses the IP protocol to transmit information across the Internet. It is
possible to terminate (shut down) one direction of flow across a TCP connection,
leaving a one-way (simplex) connection. The Internet protocol suite is often referred
to as TCP/IP because TCP is one of the two most fundamental protocols.

System Administrator . The user who is responsible for setting up, modifying, and
maintaining LoadLeveler.

U

user . Anyone who is using LoadLeveler.

 Appendix D. Glossary 337

W

working directory . All files without a fully qualified path name are relative to this
directory.

workstation . *(1) A configuration of input/output equipment at which an operator
works. *(2) A terminal or microcomputer, usually one that is connected to a
mainframe or to a network, at which a user can perform applications.

338 Using and Administering LoadLeveler

 Index

Special Characters
/etc/LoadL.cfg file 28, 94
/etc/services file 112
.llrc script 13

A
account 78, 79
account_no 38
accounting

API 239
collecting data 141
in job command file 38
llacctmrg command 156
llsummary command 202
reports 143

ACCT 107
ACCT_VALIDATION 108, 240
ACTION_ON_MAX_REJECT 119
adapter

dedicated 48
shared 48
specifying in job command file 47, 51

adapter information
extracting from SDR 167

adapter stanza keywords
adapter_name 93
interface_address 93
interface_name 93
network_type 93
switch_node_number 94

adapter stanzas
examples 94
format 93

adapter_name 93
adapter_stanzas 74, 75
admin keyword 82, 91
ADMIN_FILE 110
administering LoadLeveler

administration file 69
LoadL_admin file 72
overview 69
stanzas 73

administration file
keywords 124
sample 325
structure and syntax 72

administrators 71, 96
AFS authentication 119
AFS authentication user exit 278

AFS token handling 278
AFS_GETNEWTOKEN 119
alias 74, 75
alternate central manager 108
application programming interfaces

accessing LoadLeveler objects 245
accounting 239
checkpointing serial jobs 242
job control 268
querying jobs and machines 273
running parallel jobs 263
scheduling 268
submitting jobs 243

Arch
requirement in job command file 52
variable 122

ARCH configuration file keyword 99
arguments 39

B
Backfill scheduler 97
BIN 110
building jobs

using a job command file 23
using the GUI 214

C
cancelling jobs

using llcancel 33
using the GUI 224

central manager 5, 33, 74, 108, 226, 293
central_manager keyword 76
CENTRAL_MANAGER_HEARTBEAT_INTERVAL 109
CENTRAL_MANAGER_TIMEOUT 109
changing job priority

example 32
using llprio 179
using the GUI 224

checkpoint keyword 39
checkpointing

API for serial jobs 242
environment variables 114
planning considerations 114
system initiated 39, 113
user initiated 39, 113

CHKPT_DIR 114
CHKPT_FILE 114
CHKPT_STATE 114
choice button 217

 Index 339

ckpt subroutine 242
class

defining for a machine 99
keyword 99

in job command file 40
multiple job classes 299
querying class information 160
stanzas

examples 89
format 82

class stanza keywords
admin 82
class_comment 82
core_limit 87
cpu_limit 87
data_limit 88
exclude_groups 82
exclude_users 83
file_limit 88
include_groups 83
include_users 83
master_node_requirement 83
max_node 83
max_processors 83
maxjobs 83
nice value keyword 83
NQS_class 84
NQS_query 84
NQS_submit 84
priority 84
rss_limit 88
stack_limit 88
total_tasks 84
wall_clock_limit 88

class_comment 82
ClassSysprio 102
CLIENT_TIMEOUT 113
cluster

definition 3
querying multiple clusters 28
submitting jobs to multiple clusters 28

COLLECTOR_DGRAM_PORT 113
commands 155
comment 40
common name space 69
completed job state 18
configuration file

keywords 127
sample 329
structure and syntax 95

configuring LoadLeveler
global configuration file 95
LoadLeveler user ID 95
local configuration file 95

CONTINUE expression 106

control functions 105
copy 87
core_limit 40, 82, 87
cpu_limit 40, 82, 87
cpu_speed_scale 74, 76, 146
Cpus

using with MACHPRIO 103
variable 122

CurrentTime 122
CUSTOM_METRIC 97
CUSTOM_METRIC_COMMAND 97
customizing 95
CustomMetric 104, 122

D
daemons

kbdd 18
master 13
negotiator 17
schedd 14
startd 15

data access
API 245

data_limit 41, 82, 88
DCE security user exit 119, 277
DCE_AUTHENTICATION_PAIR 119
debugging

controlling output 111
dedicated adapters 47
default LoadLeveler scheduler 97
default_class 78, 79
default_group 78, 79
default_interactive_class 78, 79
deferred job state 18
dependency 41, 298
diagnosing problems 289
Disk

requirement in job command file 52
using with MACHPRIO 104
variable 122

displaying job status
using the command llq 32
using the GUI 222

displaying machine status
public submit machines 226
using llstatus 33
using the GUI 225

domain 122

E
editing jobs 27, 221
EnteredCurrentState 122
environment 42

340 Using and Administering LoadLeveler

environment variables 26
epilog programs 280
error keyword 43
exclude_groups 82
exclude_users 82, 83, 91
executable 25, 37, 43
EXECUTE 110
executing machine 5
execution window for jobs 297
exit status 49, 200
expressions

CONTINUE 105
KILL 105
START 105
SUSPEND 105
VACATE 105

extended accounting report 144
external scheduler 97, 268

F
favor jobs 232

llfavorjob command 171
favor users 232

llfavoruser command 173
feature

configuration file keyword 100
requirement in job command file 52

file_limit 44, 82, 88
filtering a job script 279

G
GetHistory 144
GetHistory subroutine 241
GLOBAL_HISTORY 108, 143
graphical user interface

customizing 228
overview 211
starting 211
tasks 214
Xloadl 211, 228
Xloadl_so 211, 228

group 44
default 79
UNIX 79

group stanza keywords
admin 91
exclude_users 91
include_users 91
max_node 92
max_processors 92
maxidle 91
maxjobs 91
maxqueued 91
priority 92

group stanza keywords (continued)
total_tasks 92

group stanzas
examples 92
format 90

GroupQueuedJobs 102
GroupRunningJobs 102
GroupSysprio 102
GroupTotalJobs 102
GUI (see graphical user interface) 232

H
help

calling IBM 300
in the GUI 213

hints for running LoadLeveler 296
HISTORY 110
history file 300
hold 44
holding jobs

using llhold 29, 32
using the GUI 224

host 122
hostname 122

I
idle job state 18
image_size 44
include_groups 82, 83
include_users 82, 83, 91
initialdir 45
initiators 101
input 45
interactive jobs

planning considerations 135
interface_address 93
interface_address keyword 93
interface_name 93
interface_name keyword 93

J
job

accounting 141
building a job command file 23, 214
cancelling 29, 224
class name 40
diagnosing problems with 289, 290, 292
editing 27, 221
environment variables 26
exit status 49, 200
filter 279
holding 29, 224
interactive 135

 Index 341

job (continued)
parallel 59, 290
priority 29, 80, 84, 92, 179, 224
releasing a hold 224
running 296
samples 31
serial 23
states 18
status 27, 181, 184, 222
submit-only 292
submitting 23, 26, 222

job command file
example 24, 33, 34, 37
syntax 23

job object 14
JOB_ACCT_Q_POLICY 141
job_cpu_limit 45, 82
JOB_EPILOG 280
JOB_LIMIT_POLICY 141
job_name 45
JOB_PROLOG 280
job_type 46
JOB_USER_EPILOG 280
JOB_USER_PROLOG 280

K
kbdd daemon 18
KeyboardIdle 123
keywords

adapter stanza 93
administration file 73, 124
class stanza 82
configuration file 95, 96, 121, 127

LoadLeveler variables 122, 133
user-defined 132

group stanza 91
job command file 38, 57
machine stanza 74
reserved 124
user stanza 78

KILL expression 106

L
LAPI 47
LIB 110
libckpt.a 118
libllapi.a 239
libload.a 118
limits 87
LL_Version

requirement in job command file 52
llacctmrg 156
llapi.h 239

llcancel 158
llclass 160
llctl 163
llextSDR 167
llfavorjob 171
llfavoruser 173
llhold 174
llinit 177
llprio 179
llq 181
llstatus 193
llsubmit (command) 200
llsubmit (subroutine) 243
llsummary 202
load average 300
LoadAvg

using with MACHPRIO 103
variable 123

loadl user ID 94, 95
LoadL_admin file 72, 301, 312, 325
LOADL_ADMIN keyword 96
LOADL_CONFIG 28
LoadL_config file 95, 329
LoadL_config.local file 95, 313, 317
LOADL_INTERACTIVE_CLASS 26, 79
LOADL_PROCESSOR_LIST 65
LOADLBATCH 26
LoadLeveler user ID 94
LoadLeveler variables 122

Arch 122
Cpus 122
CurrentTime 122
CustomMetric 122
Disk 122
domain 122
EnteredCurrentState 122
host 122
in a job command file 56
KeyboardIdle 123
LoadAvg 123
MasterMachPrio 123
Memory 123
OpSys 123
QDate 123
Speed 123
state 123
tilde 123
UserPrio 123
VirtualMemory 123

LOCAL_CONFIG 110
LOG 110
log files 110

KBDD_LOG 111
MASTER_LOG 111
MAX_KBDD_LOG 111
MAX_NEGOTIATOR_LOG 111

342 Using and Administering LoadLeveler

log files (continued)
MAX_STARTER_LOG 111
NEGOTIATOR_LOG 111
SCHEDD_LOG 111
STARTD_LOG 111
STARTER_LOG 111

M
Machine

requirement in job command file 52
machine stanza keywords

adapter_stanzas 75
alias 75
central_manager 76
cpu_speed_scale 76, 146
machine_mode 76
master_node_exclusive 76
max_jobs_scheduled 76
name_server 76
pool_list 77
pvm_root 77
schedd_host 77
spacct_excluse_enable 77
speed 77
submit_only 77

machine stanzas
examples 78
format 73

machine status 193
MACHINE_AUTHENTICATE 97
machine_mode 74, 76
MACHINE_UPDATE_INTERVAL 119
MAIL keyword 279
mail program 279
master daemon 13
master node 138
MASTER_DGRAM_PORT 113
master_node_exclusive 76
master_node_requirement 83
MASTER_STREAM_PORT 113
MasterMachPrio

variable 123
MasterMachPriority 104
MAX_CKPT_INTERVAL 118
MAX_JOB_REJECT 119
max_jobs_scheduled 74, 76
max_node 78, 80, 82, 83, 91, 92
max_processors 46, 78, 80, 82, 91, 92
MAX_STARTERS 99, 101
maxidle 78, 79, 91, 297
maxjobs 78, 80, 82, 83, 91, 297
maxqueued 78, 80, 91, 297
Memory

requirement in job command file 52
using with MACHPRIO 103

Memory (continued)
variable 123

menu bar 211
messages 228
migration considerations xix
MIN_CKPT_INTERVAL 118
min_processors 46
monitor program 244
MOUSE_DEVICE 119
MPI 47

N
name_server 74, 76
negotiator daemon

definition 6
description 17
job states 18
keywords 119

NEGOTIATOR_INTERVAL 119
NEGOTIATOR_LOADAVG_INCREMENT 120
NEGOTIATOR_PARALLEL_DEFER 120
NEGOTIATOR_PARALLEL_HOLD 120
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL 120
NEGOTIATOR_REJECT_DEFER 120
NEGOTIATOR_REMOVE_COMPLETED 120
NEGOTIATOR_RESCAN_QUEUE 120
NEGOTIATOR_STREAM_PORT 113
network 47
network_type 93
network_type keyword 93
nice value 82, 83
node keyword 48
node_usage 49
notification 49
notify_user 50
NotQueued job state 18
NQS

options 149
routing jobs to NQS machines 147

NQS jobs
cancelling 151
obtaining status 150
submitting 149

NQS scripts 151
NQS_class 82, 148
NQS_DIR 110, 148
NQS_query 82, 148
NQS_submit 82, 148

O
OBITUARY_LOG_LENGTH 120
online information xiii
operators 96

 Index 343

OpSys
requirement in job command file 52
variable 123

output 50, 298

P
parallel jobs 137

administration 135
API 263
checklist 291
Class keyword 137
class stanza 137
job command file examples 60
master node 138
overview 59
scheduling considerations 135
supported keywords 135

parallel_path 50
pending job state 18, 292
performance 70
POE

job command file 60
planning considerations 135

POLLING_FREQUENCY 121
POLLS_PER_UPDATE 121
Pool

requirement in job command file 52
pool_list 74, 77
port numbers 112
preferences 50
priority 29
priority (of jobs)

keyword in class stanza 84
keyword in group stanza 92
keyword in user stanza 80
system priority 29
user priority 29, 80, 179

productivity aids 296
prolog programs 280
public scheduling machines 5, 31, 33
PUBLISH_OBITUARIES 121
pull-down menus 212
PVM 47

job command file 61, 62
planning considerations 136
restrictions 137

pvm_root 74, 77

Q
QDate 102, 123
query a job

llq command 181
using the GUI 223

query API 273
querying class information

llclass command 160
querying multiple clusters 28
questions and answers 289
queue 51

R
reject pending job state 19
release from hold 233
RELEASEDIR 110
remove pending job state 19
requirements 51
restart 53
RESTARTS_PER_HOUR 121
rlim_infinity 87
rss_limit 53, 82, 88
running jobs at a specific time of day 297

S
schedd daemon 14, 292
schedd_host 74, 77
SCHEDD_INTERVAL 121
SCHEDD_RUNS_HERE 100
SCHEDD_STREAM_PORT 113
SCHEDULER_API 98
SCHEDULER_TYPE 98
schedulers

API 268
Backfill 97
choosing 97
default 97
external 97, 268
job control API 98
supported keywords 59

scheduling considerations for parallel jobs 135
scheduling machine 5
SDR

extracting information from 167
serial checkpointing

ckpt subroutine 242
serial job command files 24
service numbers 112
shell 54, 217
short report, accounting 144
signals 264
spacct_excluse_enable 74, 77
speed 74, 77, 103, 123, 146
SPOOL

log 110
stack_limit 54, 82, 88
stanzas

adapter 93
class 82

344 Using and Administering LoadLeveler

stanzas (continued)
default 73
label 73
machine 73
type 73
user 73

START expression 105
start LoadLeveler 233
START_DAEMONS 100
startd daemon 15
STARTD_DGRAM_PORT 113
STARTD_RUNS_HERE 101
STARTD_STREAM_PORT 113
startdate 54
starter process 17
state 123
states of a job 18
status 193, 200
step_name 54
stop LoadLeveler 233
submit-only machine

cancelling jobs from 29
definition 3
keywords 77
master daemon interaction 13
querying jobs from 28
querying multiple clusters 28
schedd daemon interaction 14
submitting jobs from 27
troubleshooting 292
types 5

SUBMIT_FILTER 279
submit_only keyword 74, 77
submitting jobs

across multiple clusters 28
using a job command file 26
using an API 243
using llsubmit 32
using llsubmit command 200
using the GUI 222

support services 300
SUSPEND expression 106
switch_node_number 93
switch_node_number keyword 94
syshold 233
SYSPRIO 29, 102
system initiated checkpointing 39, 113
system priority 29

T
tasks_per_node 55
TCP/IP service and port numbers 112
tilde 123
tm_hour 124

tm_isdst 124
tm_mday 124
tm_min 124
tm_mon 124
tm_sec 124
tm_wday 124
tm_yday 124
tm_year 124
total_tasks 55, 78, 80, 82, 84, 91, 92
troubleshooting 289
TRUNC_KBDD_LOG_ON_OPEN 111
TRUNC_MASTER_LOG_ON_OPEN 111
TRUNC_NEGOTIATOR_LOG_ON_OPEN 111
TRUNC_SCHEDD_LOG_ON_OPEN 111
TRUNC_STARTD_LOG_ON_OPEN 111
TRUNC_STARTER_LOG_ON_OPEN 111

U
unfavor jobs 232
unfavor users 232
UNIX group 79
user exits 277
user initiated checkpointing 39, 113
user name 69
user priority 29
user stanza keywords

account 79
default_class 79
default_group 79
default_interactive_class 79
max_node 80
max_processors 80
maxidle 79
maxjobs 80
maxqueued 80
priority 78
total_tasks 80

user stanzas
examples 81
format 73

user-defined variables 121
user_priority 56
UserPrio 102, 123
UserQueuedJobs 102
UserRunningJobs 102
UserSysprio 102
UserTotalJobs 102

V
VACATE expression 106
vacate job state 19
variables

configuration file
user-defined 121

 Index 345

variables (continued)
user-defined 121, 122

VirtualMemory
using with MACHPRIO 104
variable 123

W
wall_clock_limit 56, 82, 88
world wide web information xiii

X
X_RUNS_HERE 101
Xloadl 211, 228
Xloadl_so 211, 228

346 Using and Administering LoadLeveler

Communicating Your Comments to IBM

IBM LoadLeveler for AIX
Using and Administering
Version 2 Release 1

Publication No. SA22-7311-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBMLink (United States customers only): S390VM(MHVRCFS)
– IBM Mail Exchange: USIB6TC9 at IBMMAIL

 – Internet: mhvrcfs@vnet.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

IBM LoadLeveler for AIX
Using and Administering
Version 2 Release 1

Publication No. SA22-7311-00

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SA22-7311-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 SOUTH ROAD
POUGHKEEPSIE NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SA22-7311-00

IBM

Program Number: 5765-D61

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7311-ðð

