

IBM Parallel Environment for AIX IBM

Hitchhiker's Guide
Version 2 Release 4

 GC23-3895-03

IBM Parallel Environment for AIX IBM

Hitchhiker's Guide
Version 2 Release 4

 GC23-3895-03

 Note!

Note! Before using this information and the product it supports, be sure to read the general information under “Notices” on
page vii.

| Third Edition, October 1998

This edition applies to Version 2, Release 4, Modification 0 of the IBM IBM Parallel Environment for AIX (5765-543), and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, N.Y. 12601-5400
United States of America

FAX (United States and Canada): 1+914+432-9405
FAX (Other Countries):

Your International Access Code +1+914+432-9405

| IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL

| Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.rs6000.ibm.com (select Parallel Computing)

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

Permission to copy without fee all or part of MPI: A Message Passing Interface Standard, Version 1.1 Message Passing Interface
Forum is granted, provided the University of Tennessee copyright notice and the title of the document appear, and notice is given
that copying is by permission of the University of Tennessee. 1993, 1995 University of Tennessee, Knoxville, Tennessee.

 Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii

Trademarks . ix

About This Book . xi

The Place for This Book in the Grand Scheme of Life, the Universe, and
Everything... . xiii

What's All This? . xiii
What You Should Have While You Read this Book xiv
Typographic Conventions . xv
Encyclopedia Galactica . xv

IBM Parallel Environment for AIX Publications xv
Related IBM Publications . xvi
Related Non-IBM Publications . xvi

National Language Support . xvii
Accessing Online Information . xvii

| Online Information Resources . xvii
| Getting the Books and the Examples Online xviii

Chapter 1. Hitching a Lift on the Vogon Constructor Ship 1
What's the IBM Parallel Environment for AIX? . 1

What's the Parallel Operating Environment? 2
| What's New in PE 2.4? . 2

Before You Start . 4
Running POE . 8
Who's In Control (SP Users Only)? . 15

Chapter 2. The Answer is 42 . 25
Message Passing . 26
Data Decomposition . 26

Functional Decomposition . 35
Duplication Versus Redundancy . 38
Protocols Supported . 39

| Checkpointing and Restarting a Parallel Program 41
| Limitations . 41
| How Checkpointing Works . 41

Chapter 3. Don't Panic . 43
Messages . 43

Message Catalog Errors . 43
Finding PE Messages . 44
Logging POE Errors to a File . 44
Message Format . 44
Diagnosing Problems Using the Install Verification Program 45

Can't Compile a Parallel Program . 45
Can't Start a Parallel Job . 45
Can't Execute a Parallel Program . 47
The Program Runs But... 49

The Parallel Debugger is Your Friend . 49

 Copyright IBM Corp. 1996, 1998 iii

It Core Dumps . 50
No Output at All . 55
It Hangs . 56
Using the VT Displays . 61
Let's Attach the Debugger . 63
Other Hangups . 70
Bad Output . 70
Debugging and Threads . 71

Keeping an Eye on Progress . 72

Chapter 4. So Long And Thanks For All The Fish 75
Tuning the Performance of a Parallel Application 75
How Much Communication is Enough? . 76
Tuning the Performance of Threaded Programs 80
Why is this so slow? . 81

Profile it . 82
Parallelize it . 86
Wrong answer! . 88
Here's the Fix! . 93
It's Still Not Fast Enough! . 95

Tuning Summary . 97

Chapter 5. Babel fish . 99
Point-to-Point Communication . 99

SEND (Non-Blocking) . 99
RECEIVE (Non-Blocking) . 99
SEND (Blocking) . 99
RECEIVE (Blocking) . 100
SEND/RECEIVE (Blocking) . 100
STATUS . 100
WAIT . 100
TASK_SET . 100
TASK_QUERY . 101
ENVIRON . 101
STOPALL . 102
PACK . 102
UNPACK . 102
VSEND (Blocking) . 102
VRECV (Blocking) . 102
PROBE . 103

Collective Communications . 103
BROADCAST . 103
COMBINE . 103
CONCAT . 103
GATHER . 103
INDEX . 104
PREFIX . 104
REDUCE . 104
SCATTER . 104
SHIFT . 104
SYNC . 105
GETLABEL . 105
GETMEMBERS . 105
GETRANK . 105

iv IBM PE for AIX V2R4.0: Hitchhiker's Guide

GETSIZE . 105
GETTASKID . 106
GROUP . 106
PARTITION . 106

Reduction Functions . 106
User-Defined Reduction Functions . 107

Global Variables and Constants . 107
Last Error Code . 107
Wildcards . 107

General Notes . 108
Task Indentifiers . 108
Message Length . 108
Creating MPI Objects . 108
Using Wildcard Receives . 108
Reduction Functions . 109
Error Handling . 109
Mixing MPL and MPI Functions in the Same Application 109
Before and After Using MPI Functions . 110
Using Message Passing Handlers . 110

Appendix A. A Sample Program to Illustrate Messages 111
Figuring Out What All of This Means . 113

Appendix B. MPI Safety . 115
Safe MPI Coding Practices . 115

What's a Safe Program? . 115
Safety and Threaded Programs . 115
Some General Hints and Tips . 116
Order . 116
Progress . 117
Fairness . 118
Resource Limitations . 118

Appendix C. Installation Verification Program Summary 121
Steps Performed by the POE Installation Verification Program 121

Appendix D. Parallel Environment Internals 123
What Happens When I Compile My Applications? 123
How Do My Applications Start? . 124
How Does POE Talk to the Nodes? . 124
How are Signals Handled? . 124
What Happens When My Application Ends? 124

Glossary of Terms and Abbreviations . 127

Index . 135

 Contents v

vi IBM PE for AIX V2R4.0: Hitchhiker's Guide

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Copyright IBM Corp. 1996, 1998 vii

viii IBM PE for AIX V2R4.0: Hitchhiker's Guide

 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries, or both:

 � AIX

 � IBM

 � LoadLeveler

 � POWERparallel

 � RISC System/6000

 � RS/6000

 � SP

| Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
| Microsoft Corporation in the United States and/or other countries.

| PC Direct is a registered trademark of Ziff Communications Company and is used
| by IBM Corporation under license.

| UNIX is a registered trademark in the United States and/or other countries licensed
| exclusively through X/Open Company Limited.

| Other company, product and service names may be trademarks or service marks of
| others.

Some of the references and quotes herein are from the The Hitchhiker's Guide to
the Galaxy, by Douglas Adams, used by permission. 1986 by Douglas Adams.

Some of the references and quotes herein are from MPI: A Message-Passing
Interface Standard, Version 1.1 Message Passing Interface Forum, June 6, 1995.
Permission to copy MPI: A Message-Passing Interface Standard, Version 1.1
Message Passing Interface Forum, is granted, provided the University of
Tennessee copyright notice and the title of the document appear, and notice is
given that copying is by permission of the University of Tennessee. 1993, 1995
University of Tennessee, Knoxville, Tennessee.

| Some of the references and quotes herein are from MPI-2: Extensions to the
| Message-Passing Interface, Version 2.0 Message Passing Interface Forum, July
| 18, 1997. Permission to copy MPI-2: Extensions to the Message-Passing Interface,
| Version 2.0 Message Passing Interface Forum, is granted, provided the University
| of Tennessee copyright notice and the title of the document appear, and notice is
| given that copying is by permission of the University of Tennessee. 1995, 1996,
| 1997 University of Tennessee, Knoxville, Tennessee.

 Copyright IBM Corp. 1996, 1998 ix

x IBM PE for AIX V2R4.0: Hitchhiker's Guide

About This Book

This book provides suggestions and guidance for using the IBM Parallel
Environment for AIX program product, version 2.4.0, to develop and run Fortran
and C parallel applications. To make this book a little easier to read, the name IBM
Parallel Environment for AIX has been abbreviated to PE throughout.

In this book, you will find information on basic parallel programming concepts and
the Message Passing Interface (MPI) standard. You will also find information about
the application development tools that are provided by PE such as the Parallel
Operating Environment, Visualization Tool, and Parallel Debugger.

This book has been written with references and allusions to The Hitchhiker's Guide
to the Galaxy, by Douglas Adams. If you are not familiar with the book, the basic
premise is an all-encompassing guidebook to the entire galaxy. While we don't
have such grandiose aspirations for this book, we do expect it to assist you in
finding your way around the IBM Parallel Environment for AIX.

 Copyright IBM Corp. 1996, 1998 xi

xii IBM PE for AIX V2R4.0: Hitchhiker's Guide

The Place for This Book in the Grand Scheme of Life, the
Universe, and Everything...

If you are new to either message passing parallel programming or to the IBM
Parallel Environment for AIX, you should find one or more sections of this book
useful. To make the best use of this book, you should be familiar with:

� The AIX operating system
� One or more of the supported programming languages (Fortran or C)
� Basic parallel programming concepts.

This book is not intended to provide comprehensive coverage of the topics above,
nor is it intended to tell you everything there is to know about the PE program
product. If you need more information on any of these topics, the publications listed
in “Encyclopedia Galactica” on page xv may be of some help.

On the other hand, if you're beyond the novice level in one or more of the topics
covered in this book, you may want to skip over the associated sections. In this
case, you can refer to “Encyclopedia Galactica” on page xv for publications that
might cover these topics in more depth.

What's All This?
In The Hitchhiker's Guide to the Galaxy, a novel by Douglas Adams, there are
many situations and states that are similar to those experienced by a person that is
becoming familiar with PE. That's why we fashioned this book after Mr.
Adams's....the parallels were obvious. We decided to include these references to
make reading this book a little more pleasant. We hope you enjoy it. If not, please
let us know by submitting the Readers' Comment form at the back of this manual,
or by sending us comments electronically (see the Edition Notice on page ii for
directions on how to do this). Since The Hitchhiker's Guide to the Galaxy material
in this book is not technical in nature, we will not open customer-reported APARs
(Authorized Program Analysis Reports) related to it.

The chapter titles in this book are taken directly from references within The
Hitchhiker's Guide to the Galaxy For those unfamiliar with Mr. Adams' work, or if
our references are less than obvious, the objective of each chapter is described
below (so you don't think we've all gone completely mad).

� Chapter 1, “Hitching a Lift on the Vogon Constructor Ship” on page 1
familiarizes you with the Parallel Operating Environment (POE). The
Hitchhiker's Guide to the Galaxy begins with Arthur Dent, earthman and main
character, being suddenly swept aboard an alien space ship; the Vogon
Constructor Ship. Once on board the ship, Arthur is completely bewildered, the
way you must feel right now if you're completely new to the IBM Parallel
Environment for AIX and don't have any idea where to start.

� Chapter 2, “The Answer is 42” on page 25 covers parallelization techniques
and discusses their advantages and disadvantages. The Hitchhiker's Guide to
the Galaxy tells us that the galaxy's biggest supercomputer was asked to come
up with an answer to the ultimate question of Life, the Universe, and
Everything. The answer was 42. The problem is that once the characters in the
book have the answer, they realize they don't know what the question is. We've

 Copyright IBM Corp. 1996, 1998 xiii

used this title for the chapter that discusses how you take a working serial
program (you know the answer is the serial algorithm) and create a parallel
program that gives the same answer (you need to determine what the parallel
constructs are to implement the algorithm).

� Chapter 3, “Don't Panic” on page 43 outlines the possible causes for a
parallel application to fail to execute correctly, and how the tools available with
the IBM Parallel Environment for AIX can be used to identify and correct
problems. What do you do when your parallel program doesn't work right...and
how many different ways are there for it not to work right? As The Hitchhiker's
Guide to the Galaxy advises us, Don't Panic .

� Chapter 4, “So Long And Thanks For All The Fish” on page 75 discusses
some of the ways you can optimize the performance of your parallel program.
In The Hitchhiker's Guide to the Galaxy, we learn that dolphins are the most
intelligent life form on Earth. So long and thanks for all the fish is their
departing message to mankind as they leave Earth. We're not leaving earth,
but we'll leave you with some parting hints on tuning the performance of your
program.

� Chapter 5, “Babel fish” on page 99 helps you understand how to translate
your MPL parallel program into a program that conforms to the MPI standard.
In The Hitchhiker's Guide to the Galaxy the Babel Fish is a tiny fish that, when
inserted into your ear, can make any language understandable to you. It would
be nice if we could give you a Babel Fish to migrate your MPL applications to
MPI, but that technology is still a few billion years away.

� Appendix A, “A Sample Program to Illustrate Messages” on page 111
provides a sample program, run with the maximum level of error messages. It
points out the various types of messages you can expect, and tells you what
they mean.

� Appendix B, “MPI Safety” on page 115 provides you with some general
guidelines for creating safe parallel MPI programs.

� Appendix C, “Installation Verification Program Summary” on page 121
describes how the POE Installation Verification Program, helps you determine if
your system was properly installed.

� Appendix D, “Parallel Environment Internals” on page 123 provides some
additional information about how the IBM Parallel Environment for AIX (PE)
works, with respect to the user's application.

The purpose of this book is to get you started creating parallel programs with PE.
Once you've mastered these initial concepts, you'll need to know more about how
PE. works. For information on the Parallel Operating Environment (POE), see IBM
Parallel Environment for AIX: Operation and Use, Vol. 1 For information on PE
tools, see IBM Parallel Environment for AIX: Operation and Use, Vol. 2.

What You Should Have While You Read this Book
Although you can get some basic information by reading this book by itself, you'll
get a lot more out of it if you use it during an actual parallel session. To do this,
you'll need one of the following:

| � A workstation with PE, version 2.4.0, installed.

| � A cluster of workstations with PE, version 2.4.0, installed.

xiv IBM PE for AIX V2R4.0: Hitchhiker's Guide

| � An IBM RS/6000 SP (SP) machine with PE, version 2.4.0, installed.

| The PE code samples in this book are available from the IBM RS/6000 SP World
| Wide Web site. These will also be useful as you go through this book. See
| “Getting the Books and the Examples Online” on page xviii for information on
| accessing them from the World Wide Web.

It's probably a good idea to get the PE and other IBM manuals listed in
“Encyclopedia Galactica” before you start. Depending on your level of expertise,
you may want to look at one or more of the other books listed in “Encyclopedia
Galactica” as well.

 Typographic Conventions
This book uses the following typographic conventions:

| In addition to the highlighting conventions, this manual uses the following
| conventions when describing how to perform tasks. User actions appear in
| uppercase boldface type. For example, if the action is to enter the tool command,
| this manual presents the instruction as:

| ENTER tool

| The symbol “Á” indicates the system response to an action. So the system's
| response to entering the tool command would read:

| Á The Tool Main Window opens.

Typographic Usage

Bold Bold words or characters represent system elements that you must use
literally, such as commands, flags, and path names.

Italic � Italic words or characters represent variable values that you must
supply.

� Italics are also used for book titles and for general emphasis in text.

Constant
width

Examples and information that the system displays appear in constant
width typeface.

<Ctrl- x> The notation <Ctrl- x> indicates a control character sequence. For
example, <Ctrl-c > means that you hold down the control key while
pressing <c>.

 Encyclopedia Galactica

IBM Parallel Environment for AIX Publications
� IBM Parallel Environment for AIX: Installation Guide, (GC28-1981)

� IBM Parallel Environment for AIX: Hitchhiker's Guide, (GC23-3895)

� IBM Parallel Environment for AIX: Operation and Use, Vol. 1, (SC28-1979)

| � IBM Parallel Environment for AIX: Operation and Use, Vol. 2, (SC28-1980)

| – Part 1: Debugging and Visualizing

| – Part 2: Profiling

 The Place for This Book in the Grand Scheme of Life, the Universe, and Everything... xv

� IBM Parallel Environment for AIX: MPI Programming and Subroutine
Reference, (GC23-3894)

� IBM Parallel Environment for AIX: Messages, (GC28-1982)

� IBM Parallel Environment for AIX: Licensed Program Specifications,
(GC23-3896)

As an alternative to ordering the individual books, you can use SBOF-8588 to order
the entire IBM Parallel Environment for AIX library

Related IBM Publications
� IBM Parallel Environment for AIX: MPL Programming and Subroutine

Reference, (GC23-3893)

� IBM AIX Performance Monitoring and Tuning Guide, (SC23-2365)

� AIX for RISC System/6000: Optimization and Tuning Guide for Fortran, C and
C++, (SC09-1705)

� IBM XL Fortran Compiler for AIX: Users Guide, (SC09-1610)

� IBM XL Fortran Compiler for AIX: Language Reference, (SC09-1611)

� C Set ++ for AIX/6000: C++ Language Reference, (SC09-1606)

� C Set ++ for AIX/6000: C Language Reference, (SC09-1730)

� C Set ++ for AIX/6000: Standard Class Library Reference, (SC09-1604)

� C Set ++ for AIX/6000: User's Guide, (SC09-1605)

Related Non-IBM Publications
� Message Passing Interface Forum, MPI: A Message-Passing Interface

Standard, Version 1.1 University of Tennessee, Knoxville, Tennessee, June 6,
1995.

� Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing
Interface, Version 2.0 University of Tennessee, Knoxville, Tennessee, July 18,
1997.

� Almasi, G., Gottlieb, A. Highly Parallel Computing Benjamin-Cummings
Publishing Company, Inc., 1989.

� Foster, I., Designing and Building Parallel Programs Adison Wesley, 1995.

� Gropp, W., Lusk, E., Skjellum, A. Using MPI The MIT Press, 1994.

� Bergmark, D., Pottle, M. Optimization and Parallelization of a Commodity Trade
Model for the SP1. Cornell Theory Center, Cornell University, June, 1994.

� Pfister, Gregory, F., In Search of Clusters Prentice Hall, 1995.

� Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. MPI: The
Complete Reference The MIT Press, 1996.

� Spiegel, Murray, R., Vector Analysis McGraw-Hill, 1959.

xvi IBM PE for AIX V2R4.0: Hitchhiker's Guide

National Language Support
For National Language Support (NLS), all PE components and tools display
messages located in externalized message catalogs. English versions of the
message catalogs are shipped with the PE program product, but your site may be
using its own translated message catalogs. The AIX environment variable
NLSPATH is used by the various PE components to find the appropriate message
catalog. NLSPATH specifies a list of directories to search for message catalogs.
The directories are searched, in the order listed, to locate the message catalog. In
resolving the path to the message catalog, NLSPATH is affected by the values of
the environment variables LC_MESSAGES and LANG . If you get an error saying
that a message catalog is not found, and want the default message catalog:

ENTER export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following
directories:

 � /usr/lib/nls/msg/C
 � /usr/lib/nls/msg/En_US
 � /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG . For
additional information on NLS and message catalogs, see IBM Parallel Environment
for AIX: Messages and IBM AIX Version 4 General Programming Concepts: Writing
and Debugging Programs.

Accessing Online Information
| In order to use the PE man pages or access the PE online (HTML) publications,
| the ppe.pedocs file set must first be installed. To view the PE online publications,
| you also need access to an HTML document browser such as Netscape. An index
| to the HTML files that are provided with the ppe.pedocs file set is installed in the
| /usr/lpp/ppe.pedocs/html directory.

| Online Information Resources
| If you have a question about the SP, PSSP, or a related product, the following
| online information resources make it easy to find the information:

| � Access the new SP Resource Center by issuing the command:
| /usr/lpp/ssp/bin/resource_center . Note that the ssp.resctr fileset must be
| installed before you can do this.

| If you have the Resource Center on CD ROM, see the readme.txt file for
| information on how to run it.

| � Access the RS/6000 Web Site at: http://www.rs6000.ibm.com .

 The Place for This Book in the Grand Scheme of Life, the Universe, and Everything... xvii

| Getting the Books and the Examples Online
| All of the PE books are available in Portable Document Format (PDF). They are
| included on the product media (tape or CD ROM), and are part of the ppe.pedocs
| file set. If you have a question about the location of the PE softcopy books, see
| your System Administrator.

| To view the PE PDF publications, you need access to the Adobe Acrobat Reader
| 3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is
| also freely available for downloading from the Adobe web site at URL
| http://www.adobe.com .

| As stated above, you can also view or download the PE books from the IBM
| RS/6000 web site at http://www.rs6000.ibm.com . The serial and parallel programs
| that you find in this book are also available from the IBM RS/6000 web site. At the
| time this manual was published, the full path was
| http://www.rs6000.ibm.com/resource/aix_resource/sp_books. However, note
| that the structure of the RS/6000 web site can change over time.

xviii IBM PE for AIX V2R4.0: Hitchhiker's Guide

Chapter 1. Hitching a Lift on the Vogon Constructor Ship

The Hitchhiker's Guide to the Galaxy begins with Arthur Dent, earthman and main
character, being suddenly swept aboard an alien spaceship from his garden. Once
on the ship, Arthur is totally bewildered by his new surroundings. Fortunately, Ford
Prefect, Arthur's earth companion (who, as Arthur recently discovered, is actually
an alien from a planet somewhere in the Betelguese system), is there to explain
what's going on.

Just as Arthur had to get used to his new environment when he first left earth, this
chapter will help you get used to the new environment you're in; the IBM Parallel
Environment for AIX (PE). It covers:

| � The IBM Parallel Environment for AIX

| � The Parallel Operating Environment

| � Starting the POE

| � Running simple commands

| � Experimenting with parameters and environment variables

| � Using a host list file versus a job management system (LoadLeveler or the
| Resource Manager) for requesting processor nodes

| � Compiling and running a simple parallel application

| � Some simple environment setup and debugging tips.

This book contains many examples and illustrates various commands and
programs as well as the output you get as a result of running them. When looking
at these examples, please keep in mind that the output you see on your system
may not exactly match what's printed in the book, due to the differences between
your system and ours. We've included them here just to give you a basic idea of
what happens.

| The sample programs, as they appear in this book, are also provided in source
| format from the IBM RS/6000 World Wide Web site (as described in “Getting the
| Books and the Examples Online” on page xviii). If you intend to write or use any of
| the sample programs, it would be best if you obtained the examples from the web
| site rather than copying them from the book. Because of formatting and other
| restrictions in publishing code examples, some of what you see here may not be
| syntactically correct. On the other hand, the source code on the web site will work
| (we paid big bucks to someone to make sure they did).

If you're unfamiliar with the terms in this chapter, the “Glossary of Terms and
Abbreviations” on page 127 may be of some help.

What's the IBM Parallel Environment for AIX?
The IBM Parallel Environment for AIX (PE) software lets you develop, debug,
analyze, tune, and execute parallel applications, written in Fortran, C, and C++,
quickly and efficiently. PE conforms to existing standards like UNIX and MPI. The
PE runs on either an IBM RS/6000 SP (SP) machine, or an AIX workstation cluster.

PE consists of:

 Copyright IBM Corp. 1996, 1998 1

� The Parallel Operating Environment (POE), for submitting and managing jobs.

� Message passing libraries (MPL and MPI), for communication among the tasks
that make up a parallel program.

� Parallel debuggers, for debugging parallel programs.

� The Visualization Tool (VT), for examining the communication and performance
characteristics of a parallel program.

� Parallel utilities, for easing file manipulation.

� Xprofiler, for analyzing a parallel application's performance.

What's the Parallel Operating Environment?
The purpose of the Parallel Operating Environment (POE) is to allow you to
develop and execute your parallel applications across multiple processors, called
nodes . When using POE, there is a single node (a workstation) called the home
node that manages interactions with users.

POE transparently manages the allocation of remote nodes, where your parallel
application actually runs. It also handles the various requests and communication
between the home node and the remote nodes via the underlying network.

This approach eases the transition from serial to parallel programming by hiding the
differences, and allowing you to continue using standard AIX tools and techniques.
You have to tell POE what remote nodes to use (more on that in a moment), but
once you have, POE does the rest.

When we say processor node, we're talking about a physical entity or location that's
defined to the network. It can be a standalone machine, or a processor node within
an IBM RS/6000 SP (SP) frame. From POE's point of view, a node is a node...it
doesn't make much difference.

If you're using an SMP system, it's important to know that although an SMP node
has more than one processing unit, it is still considered, and referred to as, a
processor node.

| What's New in PE 2.4?

| AIX 4.3 Support
| With PE 2.4, POE supports user programs developed with AIX 4.3. It also supports
| programs developed with AIX 4.2, intended for execution on AIX 4.3.

| Parallel Checkpoint/Restart
| This release of PE provides a mechanism for temporarily saving the state of a
| parallel program at a specific point (checkpointing), and then later restarting it from
| the saved state. When a program is checkpointed, the checkpointing function
| captures the state of the application as well as all data, and saves it in a file. When
| the program is restarted, the restart function retrieves the application information
| from the file it saved, and the program then starts running again from the place at
| which it was saved.

2 IBM PE for AIX V2R4.0: Hitchhiker's Guide

| Enhanced Job Management Function
| In earlier releases of PE, POE relied on the SP Resource Manager for performing
| job management functions. These functions included keeping track of which nodes
| were available or allocated and loading the switch tables for programs performing
| User Space communications. LoadLeveler, which had only been used for batch job
| submissions in the past, is now replacing the Resource Manager as the job
| management system for PE. One notable effect of this change is that LoadLeveler
| now allows you to run more than one User Space task per node.

| MPI I/O
| With PE 2.4, the MPI library now includes support for a subset of MPI I/O,
| described by Chapter 9 of the MPI-2 document; MPI-2: Extensions to the
| Message-Passing Interface, Version 2.0. MPI-I/O provides a common programming
| interface, improving the portability of code that involves parallel I/O.

| 1024 Task Support
| This release of PE supports a maximum of 1024 tasks per User Space MPI/LAPI
| job, as opposed to the previous release, which supported a maximum of 512 tasks.
| For jobs using the IP version of the MPI library, PE supports a maximum of 2048
| tasks.

| Enhanced Compiler Support
| In this release, POE now supports the following compilers:

| � Fortan Version 5

| � C

| � C++

| � xlhpf

| Message Queue Facility
| The pedb debugger now includes a message queue facility. Part of the pedb
| debugger interface, the message queue viewing feature can help you debug
| Message Passing Interface (MPI) applications by showing internal message request
| queue information. With this feature, you can view:

| � A summary of the number of active messages for each task in the application.
| You can select criteria for the summary information based on message type
| and source, destination, and tag filters.

| � Message queue information for a specific task.

| � Detailed information about a specific message.

| Xprofiler Enhancements
| This release includes a variety of enhancements to Xprofiler, including:

| � Save Configuration and Load Configuration options for saving the names of
| functions, currently in the display, and reloading them later in order to
| reconstruct the function call tree.

| � An Undo option that lets you undo operations that involve adding or removing
| nodes or arcs from the function call tree.

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 3

Before You Start
Before getting underway, you should check to see that the items covered in this
section have been addressed.

 Installation
Whoever installed POE (this was probably your System Administrator but may have
been you or someone else) should verify that it was installed successfully by
running the Installation Verification Program (IVP). The IVP, which verifies
installation for both threaded and non-threaded environments, is discussed briefly in
Appendix C, “Installation Verification Program Summary” on page 121, and is
covered in more detail in IBM Parallel Environment for AIX: Installation Guide.

The IVP tests to see if POE is able to:

� Establish a remote execution environment

� Compile and execute your program

� Initialize the IP message passing environment.

� Check that both the signal-handling and threaded versions of the MPI library
are operable.

The instructions for verifying that the PE Visualization Tool (VT) was installed
correctly are in IBM Parallel Environment for AIX: Installation Guide.

 Access
Before you can run your job, you must first have access to the compute resources
in your system. Here are some things to think about:

� You must have the same user ID on the home node and each remote node on
which you will be running your parallel application.

� POE won't allow you to run your application as root.

| Note that if you're using LoadLeveler to submit POE jobs, it is LoadLeveler, not
| POE that handles user authorization. As a result, if you are using LoadLeveler to
| submit jobs, the following sections on user authorization do not apply to you, and
| you can skip ahead to “Job Management” on page 6.

| POE, when running without LoadLeveler, allows two types of user authorization:

1. AIX-based user authorization, using entries in /etc/hosts.equiv or .rhosts files.
This is the default POE user authorization method.

2. DFS/DCE-based user authorization, using DCE credentials. If you plan to run
POE jobs in a DFS environment, you must use DFS/DCE-based user
authorization.

The type of user authorization is controlled by the MP_AUTH environment variable.
The valid values are AIX (the default) or DFS.

The system administrator can also define the value for MP_AUTH in the
/etc/poe.limits file. If MP_AUTH is specified in /etc/poe.limits , POE overrides the
value of the MP_AUTH environment variable if it's different.

4 IBM PE for AIX V2R4.0: Hitchhiker's Guide

AIX-Based User Authorization
You must have remote execution authority on all the nodes in the system that you
will use for parallel execution. You system administrator should:

� Authorize both the home node machine and your user name (or machine
names) in the /etc/hosts.equiv file on each remote node.

or

� Set up a .rhosts file in the home directory of your user ID for each node that
you want to use. The contents of each .rhosts file can be either the explicit IP
address of the home node, or the home node name. For more information
about .rhosts files see the IBM Parallel Environment for AIX: Installation Guide.

/etc/hosts.equiv is checked first, and if the home node and user/machine name
don't appear there, it then looks to .rhosts .

You can verify that you have remote execution authority by running a remote shell
from the workstation where you intend to submit parallel jobs. For example, to test
whether you have remote execution authority on 202r1n10, try the following
command:

$ rsh <2ð2r1n1ð> hostname

The response to this should be the remote host name. If it isn't the remote host
name, or the command cannot run, you'll have to see your system administrator.
Issue this command for every remote host on which you plan to have POE execute
your job.

Refer to IBM Parallel Environment for AIX: Installation Guide for more detailed
information.

DFS/DCE-Based User Authorization
If you plan to run POE on a system with the Distributed File System (DFS), you
need to perform some additional steps in order to enable POE to run with DFS.

DFS requires you to have a set of DCE credentials which manage the files to which
you have access. Since POE needs access to your DCE credentials, you need to
provide them to POE:

1. Do a dce_login . This enables your credentials through DCE (ensures that you
are properly authenticated to DCE).

| 2. Propagate your credentials to the nodes on which you plan to run your POE
| jobs. Use the poeauth command to do this. poeauth copies the credentials
| from task 0, using a host list file or job management system. The first node in
| the host list or pool must be the node from which you did the dce_login (and is
| where the credentials exist).

| poeauth is actually a POE application program that is used to copy the DCE
| credentials. As a result, before you attempt to run poeauth on a DFS system,
| you need to make your current working directory a non-DFS directory (for
| example, /tmp). Otherwise, you may encounter errors running poeauth which
| are related to POE's access of DFS directories.

Keep in mind that each node in your system, on which parallel jobs may run,
requires the DFS/DCE credentials. As a result, it's wise to use the poeauth

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 5

command with a host list file or pool that contains every node on which you might
want to run your jobs later.

DCE credentials are maintained on a per user basis, so each user will need to
invoke poeauth themselves in order to copy the credentials files. The credentials
remain in effect on all nodes to which they were copied until they expire (at which
time you will need to copy them using poeauth again).

For more information on running in a DFS environment and the poeauth command,
refer to IBM Parallel Environment for AIX: Operation and Use, Vol. 1.

| Job Management
| In earlier releases of PE, POE relied on the SP Resource Manager for performing
| job management functions. These functions included keeping track of which nodes
| were available or allocated, and loading the switch tables for programs performing
| User Space communications. LoadLeveler, which had only been used for batch job
| submissions in the past, is now replacing the Resource Manager as the job
| management system for PE.

| Parallel jobs, whose tasks will run in a partition consisting of nodes at either the
| PSSP 2.3 or 2.4 level will be limited to using the Resource Manager for job
| management (PSSP 2.3 and 2.4 did not support LoadLeveler). However, these jobs
| will be unable to exploit the new functionality under LoadLeveler, most notably the
| ability to run a maximum of four User Space jobs per node. In this case, the
| Resource Manager is indicated when the the PSSP SP_NAME environment
| variable is set to the name of that partition's control workstation.

| Differences Between LoadLeveler and the Resource Manager: LoadLeveler
| and the Resource Manager differ in the following ways:

| � Pool Specifications

| � Host List File Entries

| � Semantics of Usage

| � New LoadLeveler Options

| Pool Specification: With the Resource Manager, pools were specified with a pool
| number. With LoadLeveler, pools may be specified with a number or a name.

| Host List File Entries: With the Resource Manager, pools could be specified on a
| per-node basis in a host list file, or on a per-job basis with the MP_RMPOOL
| environment variable, by setting the MP_CPU_USE or MP_ADAPTER_USE
| environment variables. With LoadLeveler, you cannot specify CPU or adapter
| usage in a host list file. If you try it, you will see a message indicating the
| specifications are being ignored. If you use a host list file, you will need to use the
| MP_CPU_USE and MP_ADAPTER_USE environment variables to specify the
| desired usage. Note also that these settings will continue to be in effect if you use
| the MP_RMPOOL environment variable later on.

| When specifying pools in a host list file, for a job run under LoadLeveler, each entry
| must be for the same pool. In other words, all parallel tasks must run on nodes in
| the same pool. If a host list file for a LoadLeveler job contains more than one pool,
| the job will terminate.

6 IBM PE for AIX V2R4.0: Hitchhiker's Guide

| Semantics of Usage: With the Resource Manager, specifying dedicated adapter
| usage or unique CPU usage prevented any other task from using that resource.
| Under LoadLeveler, this specification only prevents tasks of other parallel jobs from
| using the resource; tasks from the same parallel job are able to use the resource.

| New LoadLeveler Options: The following environment variables are only valid for
| jobs that will run under LoadLeveler:

| System administrators may use the MP_USE_LL keyword in the /etc/poe.limits file
| to indicate that only parallel jobs that are run under LoadLeveler are allowed on a
| particular node.

| MP_MSG_API| Used to indicate whether the parallel tasks of a job will be
| using MPI, LAPI, or both for message passing
| communication.

| MP_NODES| Used to indicate the number of physical nodes on which the
| tasks of a parallel job should be run.

| MP_TASK_PER_NODE| Used to indicate the number of tasks to be run on each of the
| physical nodes.

Host List File
One way to tell POE where to run your program is by using a host list file. The host
list file is generally in your current working directory, but you can move it anywhere
you like by specifying certain parameters. This file can be given any name, but the
default name is host.list. Many people use host.list as the name to avoid having to
specify another parameter (as we'll discuss later). This file contains one of two
different kinds of information; node names or pool numbers (note that if you are
using LoadLeveler, a pool can also be designated by a string). When using the
Resource Manager, your host list file cannot contain a mixture of node names and
pool numbers (or strings), so you must specify one or the other.

Node names refer to the hosts on which parallel jobs may be run. They may be
specified as Domain Names (as long as those Domain Names can be resolved
from the workstation where you submit the job) or as Internet addresses. Each host
goes on a separate line in the host list file.

Here's an example of a host list file that specifies the node names on which four
tasks will run:

2ð2r1n1ð.hpssl.kgn.ibm.com
2ð2r1n11.hpssl.kgn.ibm.com
2ð2r1nð9.hpssl.kgn.ibm.com
2ð2r1n12.hpssl.kgn.ibm.com

| Pools are groups of nodes that are known to the job management system you are
| using (LoadLeveler or Resource Manager). If you're using LoadLeveler, the pool is
| identified by either a number or a string. In general, the system administrator
| defines the pools and then tells particular groups of people which pool to use. If
| you're using the Resource Manager, the pool is identified by a number. Pools are
| entered in the host list file with an at (@) sign, followed by the pool number (for
| instance, @1 or @mypool).

| Here's an example of a host list file that specifies pool numbers. Four tasks will
| run; two on nodes in pool 10 and two on nodes in pool 11. Note that if you're using

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 7

| LoadLeveler, the pools specified in the host list file must all be the same (all tasks
| must use the same pool). If you're using the Resource Manager, on the other hand,
| the host list file may contain different pools, as in the example below.

| @1ð
| @1ð
| @11
| @11

 Running POE
Once you've checked all the items in “Before You Start” on page 4, you're ready to
run the Parallel Operating Environment. At this point, you can view POE as a way
to run commands and programs on multiple nodes from a single point. It is
important to remember that these commands and programs are really running on
the remote nodes, and if you ask POE to do something on a remote node,
everything necessary to do that thing must be available on that remote node. More
on this in a moment.

Note that there are two ways to influence the way your parallel program is
executed; with environment variables or command-line option flags. You can set
environment variables at the beginning of your session to influence each program
that you execute. You could also get the same effect by specifying the related
command-line flag when you invoke POE, but its influence only lasts for that
particular program execution. For the most part, this book shows you how to use
the command-line option flags to influence the way your program executes.
“Running POE with Environment Variables” on page 11 gives you some high-level
information, but you may also want to refer to IBM Parallel Environment for AIX:
Operation and Use, Vol. 1 to learn more about using environment variables.

| One more thing. In the following sections, we show you how to run POE by
| requesting nodes via a host list file. Note, however, that you may also request
| nodes via LoadLeveler or the Resource Manager . LoadLeveler and the Resource
| Manager are covered in more detail in “Who's In Control (SP Users Only)?” on
| page 15.

Some Examples of Running POE
The poe command enables you to load and execute programs on remote nodes.
The syntax is:

poe [program] [options]

When you invoke poe , it allocates processor nodes for each task and initializes the
local environment. It then loads your program and reproduces your local shell
environment on each processor node. POE also passes the user program
arguments to each remote node.

The simplest thing to do with POE is to run an AIX command. When you try these
examples on your system, use a host list file that contains the node names (as
opposed to a pool number). The reason for this will be discussed a little later.
These examples also assume at least a four-node parallel environment. If you have
more than four nodes, feel free to use more. If you have fewer than four nodes, it's
okay to duplicate lines. This example assumes your file is called host.list, and is in
the directory from which you're submitting the parallel job. If either of these
conditions are not true, POE will not find the host list file unless you use the
-hostfile option (covered later....one thing at a time!).

8 IBM PE for AIX V2R4.0: Hitchhiker's Guide

The -procs 4 option tells POE to run this command on four nodes. It will use the
first four in the host list file.

$ poe hostname -procs 4

2ð2r1n1ð.hpssl.kgn.ibm.com
2ð2r1n11.hpssl.kgn.ibm.com
2ð2r1nð9.hpssl.kgn.ibm.com
2ð2r1n12.hpssl.kgn.ibm.com

What you see is the output from the hostname command run on each of the
remote nodes. POE has taken care of submitting the command to each node,
collecting the standard output and standard error from each remote node, and
sending it back to your workstation. One thing that you don't see is which task is
responsible for each line of output. In a simple example like this, it isn't that
important but if you had many lines of output from each node, you'd want to know
which task was responsible for each line of output. To do that, you use the -labelio
option:

$ poe hostname -procs 4 -labelio yes

1:2ð2r1n1ð.hpssl.kgn.ibm.com
2:2ð2r1n11.hpssl.kgn.ibm.com
ð:2ð2r1nð9.hpssl.kgn.ibm.com
3:2ð2r1n12.hpssl.kgn.ibm.com

This time, notice how each line starts with a number and a colon? Notice also that
the numbering started at 0 (zero). The number is the task id that the line of output
came from (it is also the line number in the host list file that identifies the host
which generated this output). Now we can use this parameter to identify lines from
a command that generates more output.

Try this command:

$ poe cat /etc/motd -procs 2 -labelio yes

You should see something similar to this:

ð:\\\
ð:\ \
ð:\ Welcome to IBM AIX Version 4.3 on peð3.kgn.ibm.com \
ð:\ \
ð:\\\
ð:\ \
ð:\ Message of the Day: Never drink more than 3 Pan \
ð:\ Galactic Gargle Blasters unless you are a 5ð ton maga \
ð:\ elephant with nemona. \
ð:\ \
1:\\\
1:\ \
1:\ Welcome to IBM AIX Version 4.3 on peð4.kgn.ibm.com \
1:\ \
1:\\\
1:\ \
1:\ \
1:\ Message of the Day: Never drink more than 3 Pan \
1:\ Galactic Gargle Blasters unless you are a 5ð ton maga \
1:\ elephant with nemona. \

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 9

1:\ \
1:\ \
1:\\\
ð:\ \
ð:\ \
ð:\ \
ð:\\\

The cat command is listing the contents of the file /etc/motd on each of the remote
nodes. But notice how the output from each of the remote nodes is intermingled?
This is because as soon as a buffer is full on the remote node, POE sends it back
to your workstation for display (in case you had any doubts that these commands
were really being executed in parallel). The result is the jumbled mess that can be
difficult to interpret. Fortunately, we can ask POE to clear things up with the
-stdoutmode parameter.

Try this command:

$ poe cat /etc/motd -procs 2 -labelio yes -stdoutmode ordered

You should see something similar to this:

ð:\\\
ð:\ \
ð:\ Welcome to IBM AIX Version 4.3 on peð3.kgn.ibm.com \
ð:\ \
ð:\\\
ð:\ \
ð:\ \
ð:\ Message of the Day: Never drink more than 3 Pan \
ð:\ Galactic Gargle Blasters unless you are a 5ð ton maga \
ð:\ elephant with nemona. \
ð:\ \
ð:\ \
ð:\\\
1:\\\
1:\ \
1:\ Welcome to IBM AIX Version 4.3 on peð4.kgn.ibm.com \
1:\ \
1:\\\
1:\ \
1:\ \
1:\ Message of the Day: Never drink more than 3 Pan \
1:\ Galactic Gargle Blasters unless you are a 5ð ton maga \
1:\ elephant with nemona. \
1:\ \
1:\ \
1:\\\

This time, POE holds onto all the output until the jobs either finish or POE itself
runs out of space. If the jobs finish, POE displays the output from each remote
node together. If POE runs out of space, it prints everything, and then starts a new
page of output. You get less of a sense of the parallel nature of your program, but
it's easier to understand. Note that the -stdoutmode option consumes a significant
amount of system resources, which may affect performance.

10 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Running POE with Environment Variables
By the way, if you're getting tired of typing the same command line options over
and over again, you can set them as environment variables so you don't have to
put them on the command line. The environment variable names are the same as
the command line option names (without the leading dash), but they start with MP_,
all in upper case. For example, the environment variable name for the -procs
option is MP_PROCS, and for the -labelio option it's MP_LABELIO . If we set these
two variables like this:

$ export MP_PROCS=2
$ export MP_LABELIO=yes

we can then run our /etc/motd program with two processes and labeled output,
without specifying either with the poe command.

Try this command;

$ poe cat /etc/motd -stdoutmode ordered

You should see something similar to this:

ð:\\\
ð:\ \
ð:\ Welcome to IBM AIX Version 4.3 on peð3.kgn.ibm.com \
ð:\ \
ð:\\\
ð:\ \
ð:\ \
ð:\ Message of the Day: Never drink more than 3 Pan \
ð:\ Galactic Gargle Blasters unless you are a 5ð ton maga \
ð:\ elephant with nemona. \
ð:\ \
ð:\ \
ð:\\\
1:\\\
1:\ \
1:\ Welcome to IBM AIX Version 4.3 on peð3.kgn.ibm.com \
1:\ \
1:\\\
1:\ \
1:\ \
ð:\ Message of the Day: Never drink more than 3 Pan \
ð:\ Galactic Gargle Blasters unless you are a 5ð ton maga \
ð:\ elephant with nemona. \
1:\ \
1:\ \
1:\\\

In the example above, notice how the program ran with two processes, and the
output was labeled?

Now, just so you can see that your environment variable setting lasts for the
duration of your session, try running the command below, without specifying the
number of processes or labeled I/O.

$ poe hostname

ð:2ð2r1nð9.hpssl.kgn.ibm.com
1:2ð2r1n1ð.hpssl.kgn.ibm.com

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 11

Notice how the program still ran with two processes and you got labeled output?

Now let's try overriding the environment variables we just set. To do this, we'll use
command line options when we run POE. Try running the following command:

$ poe hostname -procs 4 -labelio no

2ð2r1nð9.hpssl.kgn.ibm.com
2ð2r1n12.hpssl.kgn.ibm.com
2ð2r1n11.hpssl.kgn.ibm.com
2ð2r1n1ð.hpssl.kgn.ibm.com

This time, notice how the program ran with four processes and the output wasn't
labeled? No matter what the environment variables have been set to, you can
always override them when you run POE.

To show that this was a temporary override of the environment variable settings, try
running the following command again, without specifying any command line
options.

$ poe hostname

ð:2ð2r1nð9.hpssl.kgn.ibm.com
1:2ð2r1n1ð.hpssl.kgn.ibm.com

Once again, the program ran with two processes and the output was labeled.

Compiling (a Little Vogon Poetry)
All this is fine, but you probably have your own programs that you want to
(eventually) run in parallel. We're going to talk in a little more detail in Chapter 2,
“The Answer is 42” on page 25 about creating parallel programs, but right now
we'll cover compiling a program for POE. Almost any Fortran, C or C++ program
can be compiled for execution under POE.

According to The Hitchhiker's Guide to the Galaxy Vogon poetry is the third worst
in the Universe. In fact, it's so bad that the Vogons subjected Arthur Dent and Ford
Prefect to a poetry reading as a form of torture. Some people may think that
compiling a parallel program is just as painful as Vogon poetry, but as you'll see,
it's really quite simple.

Before compiling, you should verify that:

� POE is installed on your system

� You are authorized to use POE

� A Fortran or C Compiler is installed on your system.

See IBM Parallel Environment for AIX: MPI Programming and Subroutine
Reference for information on compilation restrictions for POE.

To show you how compiling works, we've selected the Hello World program. Here it
is in C:

12 IBM PE for AIX V2R4.0: Hitchhiker's Guide

/\\
\
\ Hello World C Example
\
\ To compile:
\ mpcc -o hello_world_c hello_world.c
\
\\/
#include<stdlib.h>
#include<stdio.h>
/\ Basic program to demonstrate compilation and execution techniques \/
int main()
{
printf("Hello, World!\n");
return(ð);
}

And here it is in Fortran:

c\\\
c\
c\ Hello World Fortran Example
c\
c\ To compile:
c\ mpxlf -o hello_world_f hello_world.f
c\
c\\\
c --
c Basic program to demonstrate compilation and execution techniques
c --
c program hello

implicit none
write(6,\)'Hello, World!'

stop
end

To compile these programs, you just invoke the appropriate compiler script:

$ mpcc -o hello_world_c hello_world.c

$ mpxlf -o hello_world_f hello_world.f
\\ main === End of Compilation 1 ===
15ð1-51ð Compilation successful for file hello_world.f.

mpcc , mpCC , and mpxlf are POE scripts that link the parallel libraries that allow
your programs to run in parallel. mpcc , mpCC , and mpxlf are for compiling
non-threaded programs. Just as there is a version of the cc command called cc_r ,
that's used for threaded programs, there is also a script called mpcc_r (and also
mpxlf_r and mpCC_r) for compiling threaded message passing programs.
mpcc_r generates thread-aware code by linking in the threaded version of MPI,
including the threaded VT and POE utility libraries. These threaded libraries are
located in the same subdirectory as the non-threaded libraries.

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 13

All the compiler scripts accept all the same options that the non-parallel compilers
do, as well as some options specific to POE. For a complete list of all
parallel-specific compilation options, see IBM Parallel Environment for AIX:
Operation and Use, Vol. 1.

Running the mpcc , mpCC , mpxlf , mpcc_r , mpCC_r , or mpxlf_r script, as we've
shown you, creates an executable version of your source program that takes
advantage of POE. However, before POE can run your program, you need to make
sure it's accessible on each remote node. You can do this by either copying it
there, or by mounting the file system that your program is in to each remote node.

Here's the output of the C program (threaded or non-threaded):

$ poe hello_world_c -procs 4

Hello, World!
Hello, World!
Hello, World!
Hello, World!

And here's the output of the Fortran program:

$ poe hello_world_f -procs 4

Hello, World!
Hello, World!
Hello, World!
Hello, World!

Figure 1. Output from mpcc/mpxlf

 POE Options
There are a number of options (command line flags) that you may want to specify
when invoking POE. These options are covered in full detail in IBM Parallel
Environment for AIX: Operation and Use, Vol. 1 but here are the ones you'll most
likely need to be familiar with at this stage.

-procs: When you set -procs , you're telling POE how many tasks your program
will run. You can also set the MP_PROCS environment variable to do this (-procs
can be used to temporarily override it).

-hostfile or -hfile: The default host list file used by POE to allocate nodes is
called host.list. You can specify a file other than host.list by setting the -hostfile or
-hfile options when invoking POE. You can also set the MP_HOSTFILE
environment variable to do this (-hostfile and -hfile can be used to temporarily
override it).

-labelio: You can set the -labelio option when invoking POE so that the output
from the parallel tasks of your program are labeled by task id. This becomes
especially useful when you're running a parallel program and your output is
unordered. With labeled output, you can easily determine which task returns which
message.

You can also set the MP_LABELIO environment variable to do this (-labelio can
be used to temporarily override it).

14 IBM PE for AIX V2R4.0: Hitchhiker's Guide

-infolevel or -ilevel: You can use the -infolevel or -ilevel options to specify the
level of messages you want from POE. There are different levels of informational,
warning, and error messages, plus several debugging levels. Note that the
-infolevel option consumes a significant amount of system resources. Use it with
care. You can also set the MP_INFOLEVEL environment variable to do this
(-infolevel and -ilevel can be used to temporarily override it).

-pmdlog: The -pmdlog option lets you specify that diagnostic messages should
be logged to a file in /tmp each of the remote nodes of your partition. These
diagnostic logs are particularly useful for isolating the cause of abnormal
termination. Note that the -infolevel option consumes a significant amount of
system resources. Use it with care. You can also set the MP_PMDLOG
environment variable to do this (-pmdlog can be used to temporarily override it).

-stdoutmode: The -stdoutmode option lets you specify how you wa nt the
output data from each task in your program to be displayed. When you set this
option to ordered, the output data from each parallel task is written to its own
buffer, and later, all buffers are flushed, in task order, to STDOUT. We showed
you how this works in some of the examples in this section. Note that using the
-infolevel option consumes a significant amount of system resources. Use it with
care. You can also set the MP_STDOUTMODE environment variable to do this
(-stdoutmode can be used to temporarily override i t).

Who's In Control (SP Users Only)?
So far, we've explicitly specified to POE the set of nodes on which to run our
parallel application. We did this by creating a list of hosts in a file called host.list, in
the directory from which we submitted the parallel job. In the absence of any other
instructions, POE selected host names out of this file until it had as many as the
number of processes we told POE to use (with the -procs option).

| Another way to tell POE which hosts to use is with a job management system
| (LoadLeveler or the Resource Manager) . LoadLeveler can be used to manage jobs
| on a networked cluster of RS/6000 workstations, which may or may not include
| nodes of an IBM RS/6000 SP. If you're using LoadLeveler to manage your jobs,
| skip ahead to “Using LoadLeveler to Manage Your Jobs” on page 16 . The
| Resource Manager, on the other hand, is only used to manage jobs on an IBM
| RS/6000 SP (running PSSP 2.3 or 2.4). If you're using the Resource Manager on
| an SP, skip ahead to “Using the Resource Manager to Manage Your Jobs” on
| page 16. If you don't know what you're using to manage your jobs, check with your
| system administrator.

| For information on indicating whether you are using the Resource Manager or
| LoadLeveler to specify hosts, see IBM Parallel Environment for AIX: Operation and
| Use, Vol. 1.

Note that this section discusses only the basics of node allocation; it doesn't
address performance considerations. See IBM Parallel Environment for AIX:
Operation and Use, Vol. 1 for information on maximizing your program's
performance.

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 15

| Managing Your Jobs
| Using LoadLeveler to Manage Your Jobs: LoadLeveler is also used to allocate
| nodes, one job at a time. This is necessary if your parallel application is
| communicating directly over the SP Switch. With the -euilib command line option
| (or the MP_EUILIB environment variable), you can specify how you want to do
| message passing. This option lets you specify the message passing subsystem
| library implementation, IP or User Space (US), that you wish to use. See IBM
| Parallel Environment for AIX: Operation and Use, Vol. 1 for more information. With
| LoadLeveler, you can also dedicate the parallel nodes to a single job, so there's no
| conflict or contention for resources. LoadLeveler allocates nodes from either the
| host list file, or from a predefined pool, which the System Administrator usually sets
| up.

| Using the Resource Manager to Manage Your Jobs: The Resource Manager is
| used to allocate nodes, one job at a time, on an RS/6000 SP (running PSSP 2.3 or
| 2.4 only). This is necessary if your parallel application is communicating directly
| over the SP Switch. With the -euilib command line option (or the MP_EUILIB
| environment variable), you can specify how you want to do message passing. This
| option lets you specify the message passing subsystem library implementation, IP
| or User Space (US), that you wish to use. See IBM Parallel Environment for AIX:
| Operation and Use, Vol. 1 for more information. It's also a convenient mechanism
| for dedicating the parallel nodes to a single job, so there's no conflict or contention
| for resources. The Resource Manager allocates nodes from either the host list file,
| or from a predefined pool, which the System Administrator usually sets up.

| How Are Your SP Nodes Allocated?: So how do you know who's allocating the
| nodes and where they're being allocated from? First of all, you must always have a
| host list file (or use the MP_RMPOOL environment variable or -rmpool command
| line option). As we've already mentioned, the default for the host list file is a file
| named host.list in the directory from which the job is submitted. This default may be
| overridden by the -hostfile command line option or the MP_HOSTFILE
| environment variable. For example, the following command:

| $ poe hostname -procs 4 -hostfile $HOME/myHosts

| would use a file called myHosts , located in the home directory. If the value of the
| -hostfile parameter does not start with a slash (/), it is taken as relative to the
| current directory. If the value starts with a slash (/), it is taken as a fully-qualified file
| name.

| A System Administrator defines pools differently, depending on whether you will be
| using LoadLeveler or the Resource Manager to submit jobs. For specific examples
| of how a System Administrator defines pools, see IBM LoadLeveler for AIX: Using
| and Administering (SA22-7311). Note, however, that there's another way to
| designate the pool on which you want your program to run. If myHosts didn't
| contain any pool numbers, you could use the:

| � MP_RMPOOL environment variable can be set to a number or string. This
| setting would last for the duration of your session.

| � -rmpool command line option to specify a pool number (with the Resource
| Manager) or string (with LoadLeveler) when you invoke your program. Note
| that this option would override the MP_RMPOOL environment variable.

| Note: If a host list file is used, it will override anything you specify with the
| MP_RMPOOL environment variable or the -rmpool command line option.

16 IBM PE for AIX V2R4.0: Hitchhiker's Guide

| You must set MP_HOSTFILE or -hostfile to NULL in order for
| MP_RMPOOL or -rmpool to work.

| For more information about the MP_RMPOOL environment variable or the -rmpool
| command line option, see IBM Parallel Environment for AIX: Operation and Use,
| Vol. 1

| If the myHosts file contains actual host names, but you want to use the SP Switch
| directly for communication, the job management system (LoadLeveler or Resource
| Manager) will only allocate the nodes that are listed in myHosts . The job
| management system you're using (LoadLeveler or the Resource Manager) keeps
| track of which parallel jobs are using the switch. When using LoadLeveler, more
| than one job at a time may use the switch, so LoadLeveler makes sure that only
| the allowed number of tasks actually use it. If the host list file contains actual host
| names, but you don't want to use the SP Switch directly for communication, POE
| allocates the nodes from those listed in the host list file.

| When using the Resource Manager only one parallel job at a time can use the
| switch directly, and the Resource Manager will make sure that a node is allocated
| to only one job at a time.

| As we said before, you can't have both host names and pool IDs in the same host
| list file.

| Your program executes exactly the same way, regardless of whether POE or the
| job management system (LoadLeveler or Resource Manager) allocated the nodes.
| In the following example, the host list file contains a pool number which causes the
| job management system to allocate nodes. However, the output is identical to
| Figure 1 on page 14, where POE allocated the nodes from the host list file.

| $ poe hello_world_c -procs 4 -hostfile pool.list

| Hello, World!
| Hello, World!
| Hello, World!
| Hello, World!

| So, if the output looks the same, regardless of how your nodes are allocated, how
| do you skeptics know whether the LoadLeveler or Resource Manager were really
| used? Well, POE knows a lot that it ordinarily doesn't tell you. If you coax it with
| the -infolevel option, POE will tell you more than you ever wanted to know. Read
| on...

Getting a Little More Information
| You can control the level of messages you get from POE as your program
| executes by using the -infolevel option of POE. The default setting is 1 (normal),
| which says that warning and error messages from POE will be written to STDERR.
| However, you can use this option to get more information about how your program
| executes. For example, with -infolevel set to 2, you see a couple of different
| things. First, you'll see a message that says POE has connected to the job
| management system you're using (LoadLeveler or the Resource Manager:).
| Following that, you'll see messages that indicate which nodes the job management
| system passed back to POE for use.

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 17

For a description of the various -infolevel settings, see IBM Parallel Environment
for AIX: Operation and Use, Vol. 1

Here's the Hello World program again:

$ poe hello_world_c -procs 2 -hostfile pool.list -labelio yes -infolevel 2

| You should see output similar to the following:

| INFO: ðð31-364 Contacting LoadLeveler to set and query information
| for interactive job
| INFO: ðð31-119 Host k54nð5.ppd.pok.ibm.com allocated for task ð
| INFO: ðð31-119 Host k54nð1.ppd.pok.ibm.com allocated for task 1
| ð:INFO: ðð31-724 Executing program: <hello_world_c>
| 1:INFO: ðð31-724 Executing program: <hello_world_c>
| ð:Hello, World!
| 1:Hello, World!
| ð:INFO: ðð31-3ð6 pm_atexit: pm_exit_value is ð.
| 1:INFO: ðð31-3ð6 pm_atexit: pm_exit_value is ð.
| INFO: ðð31-656 I/O file STDOUT closed by task ð
| INFO: ðð31-656 I/O file STDERR closed by task ð
| INFO: ðð31-251 task ð exited: rc=ð
| INFO: ðð31-656 I/O file STDOUT closed by task 1
| INFO: ðð31-656 I/O file STDERR closed by task 1
| INFO: ðð31-251 task 1 exited: rc=ð
| INFO: ðð31-639 Exit status from pm_respond = ð

With -infolevel set to 2, you also see messages from each node that indicate the
executable they're running and what the return code from the executable is. In the
example above, you can differentiate between the -infolevel messages that come
from POE itself and the messages that come from the remote nodes, because the
remote nodes are prefixed with their task ID. If we didn't set -infolevel , we would
see only the output of the executable (Hello World!, in the example above),
interspersed with POE output from remote nodes.

With -infolevel set to 3, you get even more information. In the following example,
we use the host list file that contains host names again (as opposed to a Pool ID),
when we invoke POE.

Look at the output, below. In this case, POE tells us that it's opening the host list
file, the nodes it found in the file (along with their Internet addresses), the
parameters to the executable being run, and the values of some of the POE
parameters.

$ poe hello_world_c -procs 2 -hostfile pool.list -labelio yes -infolevel 3

| You should see output similar to the following:

| INFO: DEBUG_LEVEL changed from ð to 1
| D1<L1>: Open of file ./pool.list successful
| D1<L1>: mp_euilib = ip
| D1<L1>: task ð 5 1
| D1<L1>: extended 1 5 1
| D1<L1>: node allocation strategy = 2
| INFO: ðð31-364 Contacting LoadLeveler to set and query information for interact
| ive job
| D1<L1>: Job Command String:
| #@ job_type = parallel
| #@ environment = COPY_ALL

18 IBM PE for AIX V2R4.0: Hitchhiker's Guide

| #@ requirements = (Pool == 1)
| #@ node = 2
| #@ total_tasks = 2
| #@ node_usage = not_shared
| #@ network.mpi = enð,not_shared,ip
| #@ class = Inter_Class
| #@ queue
| INFO: ðð31-119 Host k54nð5.ppd.pok.ibm.com allocated for task ð
| INFO: ðð31-119 Host k54nð8.ppd.pok.ibm.com allocated for task 1
| D1<L1>: Spawning /etc/pmdv2 on all nodes
| D1<L1>: Socket file descriptor for task ð (k54nð5.ppd.pok.ibm.com) is 6
| D1<L1>: Socket file descriptor for task 1 (k54nð8.ppd.pok.ibm.com) is 7
| D1<L1>: Jobid = 9ðð549356
| ð:INFO: ðð31-724 Executing program: <hello_world_c>
| 1:INFO: ðð31-724 Executing program: <hello_world_c>
| ð:INFO: DEBUG_LEVEL changed from ð to 1
| ð:D1<L1>: mp_euilib is <ip>
| ð:D1<L1>: Executing _mp_init_msg_passing() from mp_main()...
| ð:D1<L1>: cssAdapterType is <1>
| 1:INFO: DEBUG_LEVEL changed from ð to 1
| 1:D1<L1>: mp_euilib is <ip>
| 1:D1<L1>: Executing _mp_init_msg_passing() from mp_main()...
| 1:D1<L1>: cssAdapterType is <1>
| D1<L1>: init_data for task ð: <129.4ð.148.69:38ð85>
| D1<L1>: init_data for task 1: <129.4ð.148.72:38272>
| ð:D1<L1>: mp_css_interrupt is <ð>
| ð:D1<L1>: About to call mpci_connect
| 1:D1<L1>: mp_css_interrupt is <ð>
| 1:D1<L1>: About to call mpci_connect
| 1:D1<L1>: Elapsed time for mpci_connect: ð seconds
| 1:D1<L1>: _css_init: adapter address = ðððððððð
| 1:
| 1:D1<L1>: _css_init: rc from HPSOclk_init is ð
| 1:
| 1:D1<L1>: About to call _ccl_init
| ð:D1<L1>: Elapsed time for mpci_connect: ð seconds
| ð:D1<L1>: _css_init: adapter address = ðððððððð
| ð:
| 1:D1<L1>: Elapsed time for _ccl_init: ð seconds
| ð:D1<L1>: _css_init: rc from HPSOclk_init is 1
| ð:
| ð:D1<L1>: About to call _ccl_init
| ð:D1<L1>: Elapsed time for _ccl_init: ð seconds
| ð:Hello, World!
| 1:Hello, World!
| 1:INFO: ðð31-3ð6 pm_atexit: pm_exit_value is ð.
| ð:INFO: ðð31-3ð6 pm_atexit: pm_exit_value is ð.
| INFO: ðð31-656 I/O file STDOUT closed by task ð
| INFO: ðð31-656 I/O file STDOUT closed by task 1
| D1<L1>: Accounting data from task 1 for source 1:
| D1<L1>: Accounting data from task ð for source ð:
| INFO: ðð31-656 I/O file STDERR closed by task 1
| INFO: ðð31-656 I/O file STDERR closed by task ð
| INFO: ðð31-251 task 1 exited: rc=ð
| INFO: ðð31-251 task ð exited: rc=ð
| D1<L1>: All remote tasks have exited: maxx_errcode = ð
| INFO: ðð31-639 Exit status from pm_respond = ð
| D1<L1>: Maximum return code from user = ð

The -infolevel messages give you more information about what's happening on the
home node, but if you want to see what's happening on the remote nodes, you
need to use the -pmdlog option. If you set -pmdlog to a value of yes, a log is

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 19

written to each of the remote nodes that tells you what POE did while running each
task.

If you issue the following command, a file is written in /tmp , of each remote node,
called mplog. pid.taskid,

$ poe hello_world -procs 4 -pmdlog yes

If -infolevel is set high enough, the process number will be displayed in the output.
If you don't know what the process number is, it's probably the most recent log file.
If you're sharing the node with other POE users, the process number will be one of
the most recent log files (but you own the file, so you should be able to tell).

Here's a sample log file:

AIX Parallel Environment pmd2 version @(#) 95/ð6/22 1ð: 53: 26
The ID of this process is 14734
The hostname of this node is k6nð5.ppd.pok.ibm.com
The taskid of this task is ð
HOMENAME: k6nð5.ppd.pok.ibm.com
USERID: 1ð63
USERNAME: vt
GROUPID: 1
GROUPNAME: staff
PWD: /u/vt/hughes
PRIORITY: ð
NPROCS: 2
PMDLOG: 1
NEWJOB: ð
PDBX: ð
AFSTOKEN: 5765-144 AIX Parallel Environment
LIBPATH: /usr/lpp/ppe.poe/lib: /usr/lpp/ppe.poe/lib/ip: /usr/lib
ENVC recv'd
envc: 23
envc is 23
env[ð] = _=/bin/poe
env[1] = LANG=En_US
env[2] = LOGIN=vt
env[3] = NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
env[4] = PATH=/bin: /usr/bin: /etc: /usr/ucb: /usr/sbin: /usr/bin/X11: .:
env[5rb; = LC__FASTMSG=true
env[6] = LOGNAME=vt
env[7] = MAIL=/usr/spool/mail/vt
env[8] = LOCPATH=/usr/lib/nls/loc
env[9] = USER=vt
env[1ð] = AUTHSTATE=compat
env[11] = SHELL=/bin/ksh
env[12] = ODMDIR=/etc/objrepos
env[13] = HOME=/u/vt
env[14] = TERM=aixterm
env[15] = MAILMSG=[YOU HAVE NEW MAIL]
env[16] = PWD=/u/vt/hughes
env[17] = TZ=EST5EDT
env[18] = A__z=! LOGNAME
env[19] = MP_PROCS=2
env[2ð] = MP_HOSTFILE=host.list.k6
env[21] = MP_INFOLEVEL=2
env[22] = MP_PMDLOG=YES
Initial data msg received and parsed
Info level = 2
User validation complete
About to do user root chk

20 IBM PE for AIX V2R4.0: Hitchhiker's Guide

User root check complete
SSM_PARA_NODE_DATA msg recv'd
ð: 129.4ð.84.69: k6nð5.ppd.pok.ibm.com: -1
1: 129.4ð.84.7ð: k6nð6.ppd.pok.ibm.com: -1

node map parsed
newjob is ð.
msg read, type is 13
string = <JOBID 8ð4194891
hello_world_c >
SSM_CMD_STR recv'd
JOBID id 8ð4194891
command string is <hello_world_c >
pm_putargs: argc = 1, k = 1
SSM_CMD_STR parsed
child pipes created
child: pipes successfully duped
child: MP_CHILD = ð
partition id is <31>
child: after initgroups (\group_struct).gr_gid = 1ðð
child: after initgroups (\group_struct).gr_name = 1
fork completed
parent: my child's pid is 15248
attach data sent
pmd child: core limit is 1ð48576, hard limit is 2147483647
pmd child: rss limit is 33554432, hard limit is 2147483647
pmd child: stack limit is 33554432, hard limit is 2147483647
pmd child: data segment limit is 134217728, hard limit is 2147483647
pmd child: cpu time limit is 2147483647, hard limit is 2147483647
pmd child: file size limit is 1ð73741312, hard limit is 1ð73741312
child: (\group_struct).gr_gid = 1
child: (\group_struct).gr_name = staff
child: userid, groupid and cwd set!
child: current directory is /u/vt/hughes
child: about to start the user's program
child: argument list:
argv[ð] = hello_world_c
argv[1] (in hex) = ð
child: environment:
env[ð] = _=/bin/poe
env[1] = LANG=En_US
env[2] = LOGIN=vt
env[3] = NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat
env[4] = PATH=/bin: /usr/bin: /etc: /usr/ucb: /usr/sbin: /usr/bin/X11: .:
env[5] = LC__FASTMSG=true
env[6] = LOGNAME=vt
env[7] = MAIL=/usr/spool/mail/vt
env[8] = LOCPATH=/usr/lib/nls/loc
env[9] = USER=vt
env[1ð] = AUTHSTATE=compat
env[11] = SHELL=/bin/ksh
env[12] = ODMDIR=/etc/objrepos
env[13] = HOME=/u/vt
env[14] = TERM=aixterm
env[15] = MAILMSG=[YOU HAVE NEW MAIL]
env[16] = PWD=/u/vt/hughes
env[17] = TZ=EST5EDT
env[18] = A__z=! LOGNAME
env[19] = MP_PROCS=2
env[2ð] = MP_HOSTFILE=host.list.k6
env[21] = MP_INFOLEVEL=2
env[22] = MP_PMDLOG=YES
child: LIBPATH = /usr/lpp/ppe.poe/lib:/usr/lpp/ppe.poe/lib/ip:/usr/lib
select: rc = 1
pulse is on, curr_time is 8ð418ð935, send_time is ð, select time is 6ðð

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 21

pulse sent at 8ð418ð935
count = 51 on stderr
pmd parent: STDERR read OK:
STDERR: INFO: ðð31-724 Executing program: <hello_world_c>
select: rc = 1
pulse is on, curr_time is 8ð418ð935, send_time is 8ð418ð935, select
time is 6ðð
SSM type = 34
STDIN:
select: rc = 1
pulse is on, curr_time is 8ð418ð935, send_time is 8ð418ð935,
select time is 6ðð
pmd parent: cntl pipe read OK:
pmd parent: type: 26, srce: ð, dest: -2, bytes: 6
parent: SSM_CHILD_PID: 15248
select: rc = 1
pulse is on, curr_time is 8ð418ð935, send_time is 8ð418ð935,
select time is 6ðð
pmd parent: cntl pipe read OK:
pmd parent: type: 23, srce: ð, dest: -1, bytes: 18
select: rc = 1
pulse is on, curr_time is 8ð418ð935, send_time is 8ð418ð935,
select time is 6ðð
SSM type = 29
STDIN: 129.4ð.84.69:1257
129.4ð.84.7ð:1213
select: rc = 1
pulse is on, curr_time is 8ð418ð935, send_time is 8ð418ð935,
select time is 6ðð
pmd parent: cntl pipe read OK:
pmd parent: type: 44, srce: ð, dest: -1, bytes: 2
select: rc = 1
pulse is on, curr_time is 8ð418ð935, send_time is 8ð418ð935,
select time is 6ðð
SSM type = 3
STDIN:
select: rc = 1
pulse is on, curr_time is 8ð418ð936, send_time is 8ð418ð935,
select time is 6ðð
pmd parent: STDOUT read OK
STDOUT: Hello, World!
select: rc = 1
pulse is on, curr_time is 8ð418ð936, send_time is 8ð418ð935,
select time is 599
count = 65 on stderr
pmd parent: STDERR read OK:
STDERR: INFO: ðð33-3ð75 VT Node Tracing completed. Node merge beginning
select: rc = 1
pulse is on, curr_time is 8ð418ð936, send_time is 8ð418ð935,
select time is 599
count = 47 on stderr
pmd parent: STDERR read OK:
STDERR: INFO: ðð31-3ð6 pm_atexit: pm_exit_value is ð.
select: rc = 1
pulse is on, curr_time is 8ð418ð936, send_time is 8ð418ð935,
select time is 599
pmd parent: cntl pipe read OK:
pmd parent: type: 17, srce: ð, dest: -1, bytes: 2
select: rc = 1
pulse is on, curr_time is 8ð418ð936, send_time is 8ð418ð935,
select time is 599
SSM type = 5
STDIN: 5
select: rc = 1

22 IBM PE for AIX V2R4.0: Hitchhiker's Guide

pulse is on, curr_time is 8ð418ð936, send_time is 8ð418ð935,
select time is 599
in pmd signal handler
wait status is ðððððððð
exiting child pid = 15248
err_data is ð
select: rc = 2
pulse is on, curr_time is 8ð418ð936, send_time is 8ð418ð935,
select time is 599
count = ð on stderr
child exited and all pipes closed
err_data is ð
pmd_exit reached!, exit code is ð

Appendix A, “A Sample Program to Illustrate Messages” on page 111 includes an
example of setting -infolevel to 6, and explains the important lines of output.

 Chapter 1. Hitching a Lift on the Vogon Constructor Ship 23

24 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Chapter 2. The Answer is 42

If you're familiar with message passing parallel programming, and you're completely
familiar with message passing protocols, then you already know the answer is 42,
and you can skip ahead to Chapter 3, “Don't Panic” on page 43 for a discussion
on using the IBM Parallel Environment for AIX tools. If you're familiar with message
passing parallel programming, (or if you can just say that five times really fast), but
you would like to know more about the IBM Parallel Environment for AIX message
passing protocols, look at the information in “Protocols Supported” on page 39
before skipping ahead to the next chapter.

For the rest of us, this section discusses some of the techniques for creating a
parallel program, using message passing, as well as the various advantages and
pitfalls associated with each.

This chapter is not intended to be an in-depth tutorial on writing parallel programs.
Instead, it's more of an introduction to basic message passing parallel concepts; it
provides just enough information to help you understand the material covered in
this book. If you want more information about parallel programming concepts, you
may find some of the books listed in “Related Non-IBM Publications” on page xvi
helpful.

Good. Now that we've gotten rid of the know-it-alls that skipped to the next section,
we can reveal the answer to the question of creating a successful parallel program.
No, the answer isn't really 42. That was just a ploy to get everyone else out of our
hair. The answer is to start with a working sequential program. Complex sequential
programs are difficult enough to get working correctly, without also having to worry
about the additional complexity introduced by parallelism and message passing.
The bottom line is that it's easier to convert a working serial program to parallel,
than it is to create a parallel program from scratch. As you become proficient at
creating parallel programs, you'll develop an awareness of which sequential
techniques translate better into parallel implementations, and you can then make a
point of using these techniques in your sequential programs. In this chapter, you'll
find information on some of the fundamentals of creating parallel programs.

There are two common techniques for turning a sequential program into a parallel
program; data decomposition and functional decomposition. Data decomposition
has to do with distributing the data that the program is processing among the
parallel tasks. Each task does roughly the same thing but on a different set of data.
With functional decomposition, the function that the application is performing is
distributed among the tasks. Each task operates on the same data but does
something different. Most parallel programs don't use data decomposition or
functional decomposition exclusively, but rather a mixture of the two, weighted more
toward one type or the other. One way to implement either form of decomposition is
through the use of message passing.

 Copyright IBM Corp. 1996, 1998 25

 Message Passing
The message passing model of communication is typically used in distributed
memory systems, where each processor node owns private memory, and is linked
by an interconnection network. In the case of the SP, its switch provides the
interconnection network needed for high-speed exchange of messages. With
message passing, each task operates exclusively in a private environment, but
must cooperate with other tasks in order to interact. In this situation, tasks must
exchange messages in order to interact with one another.

The challenge of the message passing model is in reducing message traffic over
the interconnection network while ensuring that the correct and updated values of
the passed data are promptly available to the tasks when required. Optimizing
message traffic is one way of boosting performance.

Synchronization is the act of forcing events to occur at the same time or in a
certain order, while taking into account the logical dependence and the order of
precedence among the tasks. The message passing model can be described as
self-synchronizing because the mechanism of sending and receiving messages
involves implicit synchronization points. To put it another way, a message can't be
received if it has not already been sent.

 Data Decomposition
 A good technique for parallelizing a sequential application is to look for loops
where each iteration does not depend on any prior iteration (this is also a
prerequisite for either unrolling or eliminating loops). An example of a loop that has
dependencies on prior iterations is the loop for computing the Factorial series. The
value calculated by each iteration depends on the value resulting from the previous
pass. If each iteration of a loop does not depend on a previous iteration, the data
being processed can be processed in parallel, with two or more iterations being
performed simultaneously.

| The C program example below includes a loop with independent iterations. This
| example doesn't include the routines for computing the coefficient and determinant
| because they are not part of the parallelization at this point. Note also that this
| example is incomplete; you can get the entire program by following the directions in
| “Getting the Books and the Examples Online” on page xviii.

26 IBM PE for AIX V2R4.0: Hitchhiker's Guide

/\\\
\
\ Matrix Inversion Program - serial version
\
\ To compile:
\ cc -o inverse_serial inverse_serial.c
\
\\\/

#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<errno.h>

float determinant(float \\matrix,
 int size,

int \ used_rows,
int \ used_cols,

 int depth);
float coefficient(float \\matrix,int size, int row, int col);
void print_matrix(FILE \ fptr,float \\ mat,int rows, int cols);
float test_data[8][8] = {

{4.ð, 2.ð, 4.ð, 5.ð, 4.ð, -2.ð, 4.ð, 5.ð},
{4.ð, 2.ð, 4.ð, 5.ð, 3.ð, 9.ð, 12.ð, 1.ð },
{3.ð, 9.ð, -13.ð, 15.ð, 3.ð, 9.ð, 12.ð, 15.ð},
{3.ð, 9.ð, 12.ð, 15.ð, 4.ð, 2.ð, 7.ð, 5.ð },
{2.ð, 4.ð, -11.ð, 1ð.ð, 2.ð, 4.ð, 11.ð, 1ð.ð },
{2.ð, 4.ð, 11.ð, 1ð.ð, 3.ð, -5.ð, 12.ð, 15.ð },
{1.ð, -2.ð, 4.ð, 1ð.ð, 3.ð, 9.ð, -12.ð, 15.ð } ,
{1.ð, 2.ð, 4.ð, 1ð.ð, 2.ð, -4.ð, -11.ð, 1ð.ð } ,

 };
#define ROWS 8

int main(int argc, char \\argv)
{

 float \\matrix;
 float \\inverse;
 int rows,i,j;
 float determ;
int \ used_rows, \ used_cols;

rows = ROWS;

/\ Allocate markers to record rows and columns to be skipped \/
/\ during determinant calculation \/
used_rows = (int \) malloc(rows\sizeof(\used_rows));
used_cols = (int \) malloc(rows\sizeof(\used_cols));

/\ Allocate working copy of matrix and initialize it from static copy \/
 matrix = (float \\) malloc(rows\sizeof(\matrix));
inverse = (float \\) malloc(rows\sizeof(\inverse));

 for(i=ð;i<rows;i++)
 {

matrix[i] = (float \) malloc(rows\sizeof(\\matrix));
inverse[i] = (float \) malloc(rows\sizeof(\\inverse));

 for(j=ð;j<rows;j++)
matrix[i][j] = test_data[i][j];

 Chapter 2. The Answer is 42 27

 }

/\ Compute and print determinant \/
printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);
 determ=determinant(matrix,rows,used_rows,used_cols,ð);
 printf("\nis %f\n",determ);
 fflush(stdout);
 assert(determ!=ð);

 for(i=ð;i<rows;i++)
 {
 for(j=ð;j<rows;j++)
 {

inverse[j][i] = coefficient(matrix,rows,i,j)/determ;
 }
 }

printf("The inverse is\n\n");
 print_matrix(stdout,inverse,rows,rows);

 return ð;
}

Before we talk about parallelizing the algorithm, let's look at what's necessary to
create the program with the IBM Parallel Environment for AIX. The example below
shows the same program, but it's now aware of PE. You do this by using three
calls in the beginning of the routine, and one at the end.

The first of these calls (MPI_Init) initializes the MPI environment and the last call
(MPI_Finalize) closes the environment. MPI_Comm_size sets the variable tasks to
the total number of parallel tasks running this application, and MPI_Comm_rank
sets me to the task ID of the particular instance of the parallel code that invoked it.

Note: MPI_Comm_size actually gets the size of the communicator you pass in
and MPI_COMM_WORLD is a pre-defined communicator that includes
everybody. For more information about these calls, IBM Parallel
Environment for AIX: MPI Programming and Subroutine Reference or other
MPI publications may be of some help. See “Encyclopedia Galactica” on
page xv.

28 IBM PE for AIX V2R4.0: Hitchhiker's Guide

/\\
\
\ Matrix Inversion Program - serial version enabled for parallel environment
\
\ To compile:
\ mpcc -g -o inverse_parallel_enabled inverse_parallel_enabled.c
\
\\/

#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<errno.h>
#include<mpi.h>

float determinant(float \\matrix,int size, int \ used_rows, int \ used_cols,
 int depth);
float coefficient(float \\matrix,int size, int row, int col);
void print_matrix(FILE \ fptr,float \\ mat,int rows, int cols);
float test_data[8][8] = {

{4.ð, 2.ð, 4.ð, 5.ð, 4.ð, -2.ð, 4.ð, 5.ð},
{4.ð, 2.ð, 4.ð, 5.ð, 3.ð, 9.ð, 12.ð, 1.ð },
{3.ð, 9.ð, -13.ð, 15.ð, 3.ð, 9.ð, 12.ð, 15.ð},
{3.ð, 9.ð, 12.ð, 15.ð, 4.ð, 2.ð, 7.ð, 5.ð },
{2.ð, 4.ð, -11.ð, 1ð.ð, 2.ð, 4.ð, 11.ð, 1ð.ð },
{2.ð, 4.ð, 11.ð, 1ð.ð, 3.ð, -5.ð, 12.ð, 15.ð },
{1.ð, -2.ð, 4.ð, 1ð.ð, 3.ð, 9.ð, -12.ð, 15.ð } ,
{1.ð, 2.ð, 4.ð, 1ð.ð, 2.ð, -4.ð, -11.ð, 1ð.ð } ,

};
#define ROWS 8

int me, tasks, tag=ð;

int main(int argc, char \\argv)
{

 float \\matrix;
 float \\inverse;
 int rows,i,j;
 float determ;
int \ used_rows, \ used_cols;

MPI_Status status[ROWS]; /\ Status of messages \/
MPI_Request req[ROWS]; /\ Message IDs \/

MPI_Init(&argc,&argv); /\ Initialize MPI \/
MPI_Comm_size(MPI_COMM_WORLD,&tasks); /\ How many parallel tasks are there?\/
MPI_Comm_rank(MPI_COMM_WORLD,&me); /\ Who am I? \/

rows = ROWS;

/\ Allocate markers to record rows and columns to be skipped \/
/\ during determinant calculation \/
used_rows = (int \) malloc(rows\sizeof(\used_rows));
used_cols = (int \) malloc(rows\sizeof(\used_cols));

/\ Allocate working copy of matrix and initialize it from static copy \/
 matrix = (float \\) malloc(rows\sizeof(\matrix));

 Chapter 2. The Answer is 42 29

inverse = (float \\) malloc(rows\sizeof(\inverse));
 for(i=ð;i<rows;i++)
 {

matrix[i] = (float \) malloc(rows\sizeof(\\matrix));
inverse[i] = (float \) malloc(rows\sizeof(\\inverse));

 for(j=ð;j<rows;j++)
matrix[i][j] = test_data[i][j];

 }

/\ Compute and print determinant \/
printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);
 determ=determinant(matrix,rows,used_rows,used_cols,ð);
 printf("\nis %f\n",determ);
 fflush(stdout);

 for(i=ð;i<rows;i++)
 {
 for(j=ð;j<rows;j++)
 {

inverse[j][i] = coefficient(matrix,rows,i,j)/determ;
 }
 }

printf("The inverse is\n\n");
 print_matrix(stdout,inverse,rows,rows);

/\ Wait for all parallel tasks to get here, then quit \/
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Finalize();

 return ð;
}

float determinant(float \\matrix,int size, int \ used_rows, int \ used_cols,
 int depth)
 {

int col1, col2, row1, row2;
 int j,k;
 float total=ð;

int sign = 1;

/\ Find the first unused row \/
 for(row1=ð;row1<size;row1++)
 {
 for(k=ð;k<depth;k++)
 {
 if(row1==used_rows[k]) break;
 }

if(k>=depth) /\ this row is not used \/
 break;
 }
 assert(row1<size);

 if(depth==(size-2))
 {
/\ There are only 2 unused rows/columns left \/

30 IBM PE for AIX V2R4.0: Hitchhiker's Guide

/\ Find the second unused row \/
for(row2=row1+1;row2<size;row2++)
 {
 for(k=ð;k<depth;k++)
 {
 if(row2==used_rows[k]) break;
 }

if(k>=depth) /\ this row is not used \/
 break;
 }
assert(row2<size);

/\ Find the first unused column \/
for(col1=ð;col1<size;col1++)
 {
 for(k=ð;k<depth;k++)
 {
 if(col1==used_cols[k]) break;
 }

if(k>=depth) /\ this column is not used \/
 break;
 }
assert(col1<size);

/\ Find the second unused column \/
for(col2=col1+1;col2<size;col2++)
 {
 for(k=ð;k<depth;k++)
 {
 if(col2==used_cols[k]) break;
 }

if(k>=depth) /\ this column is not used \/
 break;
 }
assert(col2<size);

/\ Determinant = m11\m22-m12\m21 \/
return matrix[row1][col1]\matrix[row2][col2]
-matrix[row2][col1]\matrix[row1] [col2];
 }

/\ There are more than 2 rows/columns in the matrix being processed \/
/\ Compute the determinant as the sum of the product of each element \/
/\ in the first row and the determinant of the matrix with its row \/
/\ and column removed \/
total = ð;

used_rows[depth] = row1;
 for(col1=ð;col1<size;col1++)
 {
 for(k=ð;k<depth;k++)
 {
 if(col1==used_cols[k]) break;
 }

if(k<depth) /\ This column is used \/
 continue;

used_cols[depth] = col1;
total += sign\matrix[row1][col1]\determinant(matrix,size,

 Chapter 2. The Answer is 42 31

 used_rows,used_cols,depth+1);
 sign=(sign==1)?-1:1;
 }
 return total;
 }

void print_matrix(FILE \ fptr,float \\ mat,int rows, int cols)
{
 int i,j;
 for(i=ð;i<rows;i++)
 {
 for(j=ð;j<cols;j++)
 {
 fprintf(fptr,"%1ð.4f ",mat[i][j]);
 }
 fprintf(fptr,"\n");
 }
 fflush(fptr);
}

float coefficient(float \\matrix,int size, int row, int col)
{
 float coef;
int \ ur, \uc;

ur = malloc(size\sizeof(matrix));
uc = malloc(size\sizeof(matrix));

 ur[ð]=row;
 uc[ð]=col;
coef = (((row+col)%2)?-1:1)\determinant(matrix,size,ur,uc,1);

 return coef;
}

This particular example is pretty ridiculous because each parallel task is going to
determine the entire inverse matrix, and they're all going to print it out. As we saw
in the previous section, the output of all the tasks will be intermixed, so it will be
difficult to figure out what the answer really is.

A better approach is to figure out a way to distribute the work among several
parallel tasks and collect the results when they're done. In this example, the loop
that computes the elements of the inverse matrix simply goes through the elements
of the inverse matrix, computes the coefficient, and divides it by the determinant of
the matrix. Since there's no relationship between elements of the inverse matrix,
they can all be computed in parallel. Keep in mind that every communication call
has an associated cost, so you need to balance the benefit of parallelism with the
cost of communication. If we were to totally parallelize the inverse matrix element
computation, each element would be derived by a separate task. The cost of
collecting those individual values back into the inverse matrix would be significant,
and might outweigh the benefit of having reduced the computation cost and time by
running the job in parallel. So, instead, we're going to compute the elements of
each row in parallel, and send the values back, one row at a time. This way we
spread some of the communication overhead over several data values. In our case,
we'll execute loop 1 in parallel in this next example.

32 IBM PE for AIX V2R4.0: Hitchhiker's Guide

\\\
\
\ Matrix Inversion Program - First parallel implementation
\ To compile:
\ mpcc -g -o inverse_parallel inverse_parallel.c
\
\\\

#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<errno.h>
#include<mpi.h>
float determinant(float \\matrix,int size, int \ used_rows,

int \ used_cols, int depth);
float coefficient(float \\matrix,int size, int row, int col);
void print_matrix(FILE \ fptr,float \\ mat,int rows, int cols);

float test_data[8][8] = {
{4.ð, 2.ð, 4.ð, 5.ð, 4.ð, -2.ð, 4.ð, 5.ð},
{4.ð, 2.ð, 4.ð, 5.ð, 3.ð, 9.ð, 12.ð, 1.ð },
{3.ð, 9.ð, -13.ð, 15.ð, 3.ð, 9.ð, 12.ð, 15.ð},
{3.ð, 9.ð, 12.ð, 15.ð, 4.ð, 2.ð, 7.ð, 5.ð },
{2.ð, 4.ð, -11.ð, 1ð.ð, 2.ð, 4.ð, 11.ð, 1ð.ð },
{2.ð, 4.ð, 11.ð, 1ð.ð, 3.ð, -5.ð, 12.ð, 15.ð },
{1.ð, -2.ð, 4.ð, 1ð.ð, 3.ð, 9.ð, -12.ð, 15.ð },
{1.ð, 2.ð, 4.ð, 1ð.ð, 2.ð, -4.ð, -11.ð, 1ð.ð } ,

};
#define ROWS 8
int me, tasks, tag=ð;

int main(int argc, char \\argv)
{

 float \\matrix;
 float \\inverse;
 int rows,i,j;
 float determ;
int \ used_rows, \ used_cols;

MPI_Status status[ROWS]; /\ Status of messages \/
MPI_Request req[ROWS]; /\ Message IDs \/

 MPI_Init(&argc,&argv); /\ Initialize MPI \/
 MPI_Comm_size(MPI_COMM_WORLD,&tasks); /\ How many parallel tasks are there?\/
 MPI_Comm_rank(MPI_COMM_WORLD,&me); /\ Who am I? \/

rows = ROWS;

/\ We need exactly one task for each row of the matrix plus one task \/
/\ to act as coordinator. If we don't have this, the last task \/
/\ reports the error (so everybody doesn't put out the same message \/

 if(tasks!=rows+1)
 {
 if(me==tasks-1)
fprintf(stderr,"%d tasks required for this demo"
"(one more than the number of rows in matrix\n",rows+1)";

 Chapter 2. The Answer is 42 33

 exit(-1);
 }
/\ Allocate markers to record rows and columns to be skipped \/
/\ during determinant calculation \/
used_rows = (int \) malloc(rows\sizeof(\used_rows));
used_cols = (int \) malloc(rows\sizeof(\used_cols));

/\ Allocate working copy of matrix and initialize it from static copy \/
matrix = (float \\) malloc(rows\sizeof(\matrix));

 for(i=ð;i<rows;i++)
 {

matrix[i] = (float \) malloc(rows\sizeof(\\matrix));
 for(j=ð;j<rows;j++)

matrix[i][j] = test_data[i][j];
 }

/\ Everyone computes the determinant (to avoid message transmission) \/
 determ=determinant(matrix,rows,used_rows,used_cols,ð);

 if(me==tasks-1)
{/\ The last task acts as coordinator \/
inverse = (float\\) malloc(rows\sizeof(\inverse));

 for(i=ð;i<rows;i++)
 {

inverse[i] = (float \) malloc(rows\sizeof(\\inverse));
 }

/\ Print the determinant \/
printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);
 printf("\nis %f\n",determ);

/\ Collect the rows of the inverse matrix from the other tasks \/
/\ First, post a receive from each task into the appropriate row \/

 for(i=ð;i<rows;i++)
 }
 MPI_Irecv(inverse[i],rows,MPI_REAL,i,tag,MPI_COMM_WORLD,&(req[i]));
 }

/\ Then wait for all the receives to complete \/
 MPI_Waitall(rows,req,status);

printf("The inverse is\n\n");
 print_matrix(stdout,inverse,rows,rows);
 }
 else

{/\ All the other tasks compute a row of the inverse matrix \/
int dest = tasks-1;

 float \one_row;
int size = rows\sizeof(\one_row);

one_row = (float\) malloc(size);
 for(j=ð;j<rows;j++)
 {

one_row[j] = coefficient(matrix,rows,j,me)/determ;
 }

/\ Send the row back to the coordinator \/
 MPI_Send(one_row,rows,MPI_REAL,dest,tag,MPI_COMM_WORLD);
 }
/\ Wait for all parallel tasks to get here, then quit \/
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();

34 IBM PE for AIX V2R4.0: Hitchhiker's Guide

}
exit(ð);

 Functional Decomposition
 Parallel servers and data mining applications are examples of functional
decomposition. With functional decomposition, the function that the application is
performing is distributed among the tasks. Each task operates on the same data
but does something different. The sine series algorithm is also an example of
functional decomposition. With this algorithm, the work being done by each task is
trivial. The cost of distributing data to the parallel tasks could outweigh the value of
running the program in parallel, and parallelism would increase total time. Another
approach to parallelism is to invoke different functions, each of which processes all
of the data simultaneously. This is possible as long as the final or intermediate
results of any function are not required by another function. For example, searching
a matrix for the largest and smallest values as well as a specific value could be
done in parallel.

This is a simple example, but suppose the elements of the matrix were arrays of
polynomial coefficients, and the search involved actually evaluating different
polynomial equations using the same coefficients. In this case, it would make sense
to evaluate each equation separately.

On a simpler scale, let's look at the series for the sine function:

The serial approach to solving this problem is to loop through the number of terms
desired, accumulating the factorial value and the sine value. When the appropriate
number of terms has been computed, the loop exits. The following example does
exactly this. In this example, we have an array of values for which we want the
sine, and an outer loop would repeat this process for each element of the array.
Since we don't want to recompute the factorial each time, we need to allocate an
array to hold the factorial values and compute them outside the main loop.

 Chapter 2. The Answer is 42 35

/\\
\
\ Series Evaluation - serial version
\
\ To compile:
\ cc -o series_serial series_serial.c -lm
\
\\/

#include<stdlib.h>
#include<stdio.h>
#include<math.h>

double angle[] = { ð.ð, ð.1\M_PI, ð.2\M_PI, ð.3\M_PI, ð.4\M_PI,
ð.5\M_PI, ð.6\M_PI, ð.7\M_PI, ð.8\M_PI, ð.9\M_PI, M_PI };

#define TERMS 8

int main(int argc, char \\argv)
{
double divisor[TERMS], sine;
int a, t, angles = sizeof(angle)/sizeof(angle[ð]);

/\ Initialize denominators of series terms \/
divisor[ð] = 1;

 for(t=1;t<TERMS;t++)
 {

divisor[t] = -2\t\(2\t+1)\divisor[t-1];
 }

/\ Compute sine of each angle \/
 for(a=ð;a<angles;a++)
 {

sine = ð;
/\ Sum the terms of the series \/

 for(t=ð;t<TERMS;t++)
 {

sine += pow(angle[a],(2\t+1))/divisor[t];
 }

printf("sin(%lf) + %lf\n",angle[a],sine);
 }
}

In a parallel environment, we could assign each term to one task and just
accumulate the results on a separate node. In fact, that's what the following
example does.

36 IBM PE for AIX V2R4.0: Hitchhiker's Guide

/\\
\
\ Series Evaluation - parallel version
\
\ To compile:
\ mpcc -g -o series_parallel series_parallel.c -lm
\
\\/

#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<mpi.h>

double angle[] = { ð.ð, ð.1\M_PI, ð.2\M_PI, ð.3\M_PI, ð.4\M_PI,
ð.5\M_PI, ð.6\M_PI, ð.7\M_PI, ð.8\M_PI, ð.9\M_PI, M_PI };

int main(int argc, char \\argv)
{
double data, divisor, partial, sine;
int a, t, angles = sizeof(angle)/sizeof(angle[ð]);
int me, tasks, term;

MPI_Init(&argc,&argv); /\ Initialize MPI \/
MPI_Comm_size(MPI_COMM_WORLD,&tasks); /\ How many parallel tasks are there?\/
MPI_Comm_rank(MPI_COMM_WORLD,&me); /\ Who am I? \/

term = 2\me+1; /\ Each task computes a term \/
/\ Scan the factorial terms through the group members \/
/\ Each member will effectively multiply the product of \/
/\ the result of all previous members by its factorial \/
/\ term, resulting in the factorial up to that point \/

 if(me==ð)
data = 1.ð;

 else
data = -(term-1)\term;

 MPI_Scan(&data,&divisor,1,MPI_DOUBLE,MPI_PROD,MPI_COMM_WORLD);

/\ Compute sine of each angle \/
 for(a=ð;a<angles;a++)
 {

partial = pow(angle[a],term)/divisor;
/\ Pass all the partials back to task ð and \/
/\ accumulate them with the MPI_SUM operation \/

 MPI_Reduce(&partial,&sine,1,MPI_DOUBLE,MPI_SUM,ð,MPI_COMM_WORLD);
/\ The first task has the total value \/

 if(me==ð)
 {

printf("sin(%lf) + %lf\n",angle[a],sine);
 }
 }
 MPI_Finalize();
}

With this approach, each task i uses its position in the MPI_COMM_WORLD
communicator group to compute the value of one term. It first computes its working
value as 2i+1 and calculates the factorial of this value. Since (2i+1)! is (2i-1)! x 2i x

 Chapter 2. The Answer is 42 37

(2i+1), if each task could get the factorial value computed by the previous task, all it
would have to do is multiply it by 2i x (2i+1). Fortunately, MPI provides the
capability to do this with the MPI_Scan function. When MPI_Scan is invoked on
the first task in a communication group, the result is the input data to MPI_Scan .
When MPI_Scan is invoked on subsequent members of the group, the result is
obtained by invoking a function on the result of the previous member of the group
and its input data.

Note that the MPI standard, as documented in MPI: A Message-Passing Interface
Standard, Version 1.1, available from the University of Tennesee, does not specify
how the scan function is to be implemented, so a particular implementation does
not have to obtain the result from one task and pass it on to the next for
processing. This is, however, a convenient way of visualizing the scan function,
and the remainder of our discussion will assume this is happening.

In our example, the function invoked is the built-in multiplication function,
MPI_PROD. Task 0 (which is computing 1!) sets its result to 1. Task 2 is computing
3! which it obtains by multiplying 2 x 3 by 1! (the result of Task 0). Task 3 multiplies
3! (the result of Task 2) by 4 x 5 to get 5!. This continues until all the tasks have
computed their factorial values. The input data to the MPI_Scan calls is made
negative so the signs of the divisors will alternate between plus and minus.

Once the divisor for a term has been computed, the loop through all the angles (θ)
can be done. The partial term is computed as:

Then, MPI_Reduce is called which is similar to MPI_Scan except that instead of
calling a function on each task, the tasks send their raw data to Task 0, which
invokes the function on all data values. The function being invoked in the example
is MPI_SUM which just adds the data values from all of the tasks. Then, Task 0
prints out the result.

Duplication Versus Redundancy
In 32, each task goes through the process of allocating the matrix and copying the
initialization data into it. So why doesn't one task do this and send the result to all
the other tasks? This example has a trivial initialization process, but in a situation
where initialization requires complex time-consuming calculations, this question is
even more important.

In order to understand the answer to this question and, more importantly, be able to
apply the understanding to answering the question for other applications, you need
to stop and consider the application as a whole. If one task of a parallel application
takes on the role of initializer, two things happen. First, all of the other tasks must
wait for the initializer to complete (assuming that no work can be done until
initialization is completed). Second, some sort of communication must occur in
order to get the results of initialization distributed to all the other tasks. This not
only means that there's nothing for the other tasks to do while one task is doing the
initializing, there's also a cost associated with sending the results out. Although
replicating the initialization process on each of the parallel tasks seems like

38 IBM PE for AIX V2R4.0: Hitchhiker's Guide

unnecessary duplication, it allows the tasks to start processing more quickly
because they don't have to wait to receive the data.

So, should all initialization be done in parallel? Not necessarily. You have to keep
the big picture in mind when deciding. If the initialization is just computation and
setup based on input parameters, each parallel task can initialize independently.
Although this seems counter-intuitive at first, because the effort is redundant, for
the reasons given above, it's the right answer. Eventually you'll get used to it.
However, if initialization requires access to system resources that are shared by all
the parallel tasks (such as file systems and networks), having each task attempt to
obtain the resources will create contention in the system and hinder the initialization
process. In this case, it makes sense for one task to access the system resources
on behalf of the entire application. In fact, if multiple system resources are required,
you could have multiple tasks access each of the resources in parallel. Once the
data has been obtained from the resource, you need to decide whether to share
the raw data among the tasks and have each task process it, or have one task
perform the initialization processing and distribute the results to all the other tasks.
You can base this decision whether the amount of data increases or decreases
during the initialization processing. Of course, you want to transmit the smaller
amount.

So, the bottom line is that duplicating the same work on all the remote tasks (which
is not the same as redundancy, which implies something can be eliminated) is not
bad if:

� The work is inherently serial

� The work is parallel, but the cost of computation is less than the cost of
communication

� The work must be completed before tasks can proceed

� Communication can be avoided by having each task perform the same work.

 Protocols Supported
To perform data communication, the IBM Parallel Environment for AIX program
product interfaces with the Message Passing Subsystem, the communication
software that runs on the SP Switch adapters (if the SP Switch is available and
specified). The Message Passing Subsystem interfaces with a low level protocol,
running in the user space (User Space protocol), which offers a low-latency and
high-bandwidth communication path to user applications, running over the SP
system's SP Switch. The Message Passing Subsystem also interfaces with the IP
layer.

For optimal performance, PE uses the User Space (US) protocol as its default
communication path. However, PE also lets you run parallel applications that use
the IP interface of the Message Passing Subsystem.

| The User Space interface allows user applications to take full advantage of the SP
| Switch, and should be used whenever communication is a critical issue (for
| instance, when running a parallel application in a production environment). With
| LoadLeveler, the User Space interface can be used by more than one process per
| node at a given time. With the Resource Manager, this interface cannot be used by
| more than one process per node at a given time (this means that only one PE
| session can run on a set of nodes, and only one component of the parallel program
| can run on each node).

 Chapter 2. The Answer is 42 39

The IP interface doesn't perform as well with the Message Passing Subsystem as
the US interface does, but it supports multiple processes. This means that although
you are still restricted to one process per node, you can have multiple sessions,
each with one process. As a result, the IP interface can be used in development or
test environments, where more attention is paid to the correctness of the parallel
program than to its speed-up, and therefore, more users can work on the same
nodes at a given time.

In both cases, data exchange always occurs between processes, without involving
the POE Partition Manager daemon.

To Thread or Not to Thread -- Protocol Implications
If you are unfamiliar with POSIX threads, don't try to learn both threads and MPI all
at once. Get some experience writing and debugging serial multi-threaded
programs first, then tackle parallel multi-threaded programs.

The MPI library exists in both threaded and non-threaded versions. The
non-threaded library is included by the mpcc , mpCC , and mpxlf compiler scripts.
The non-threaded library is called the signal handling library because it uses AIX
signals to ensure that messages are transmitted. The threaded library is included
by the mpcc_r , mpCC_r , and mpxlf_r compiler scripts.

It is important to note that while a threaded program has more than one
independent instruction stream, all threads share the same address space, file, and
environment variables. In addition, all the threads in a threaded MPI program have
the same MPI communicators, data types, ranks, and so on.

In a threaded MPI program, the MPI_Init routine must be called before any thread
can make an MPI call, and all MPI calls must be completed before MPI_Finalize is
called. The principal difference between threaded libraries and non-threaded
libraries is that, in a threaded library, more than one blocking call may be in
progress at any given time.

The underlying communication subsystem provides thread-dispatching, so that all
blocking messages are given a chance to run when a message completes.

Note that the underlying communication subsystem provides a thread-safe
message passing environment, but only one SMP processor at a time is actually
copying the data between memory and the adapter.

| The signal handling library has registered signal handlers for SIGALRM, SIGPIPE,
| (User Space only), and SIGIO. The threaded library creates the following service
| threads:

| � A thread that periodically wakes up and calls the message passing dispatcher.

| � A thread that handles interrupts generated by arriving packets.

| � Responder threads used to implement non-blocking collective communication
| calls and MPI I/O.

The service threads above are terminated when MPI_Finalize is called. These
threads are not available to end users, except, however, the packet interrupt thread
will call the signal handling function that is registered by the user to handle SIGIO,
if any.

40 IBM PE for AIX V2R4.0: Hitchhiker's Guide

| Checkpointing and Restarting a Parallel Program
| With the help of LoadLeveler, PE provides a mechanism for temporarily saving the
| state of a parallel program at a specific point (checkpointing), and then later
| restarting it from the saved state. When a program is checkpointed, the
| checkpointing function captures the state of the application as well as all data, and
| saves it in a file. When the program is restarted, the restart function retrieves the
| application information from the file it saved, and the program then starts running
| again from the place at which it was saved.

| Limitations
| When checkpointing a program, there are a few limitations you need to be aware
| of. You can only checkpoint POE and MPI applications that are submitted under
| LoadLeveler in batch mode; PE does not support checkpointing of interactive POE
| applications.

| It is important to note that since the checkpointing library is part of LoadLeveler,
| and only POE batch jobs submitted with LoadLeveler are supported, LoadLeveler is
| required for checkpointing parallel programs. For more information on checkpointing
| limitations, see IBM Parallel Environment for AIX: MPI Programming and
| Subroutine Reference or IBM LoadLeveler for AIX: Using and Administering
| (SA22-7311)

| How Checkpointing Works
| Checkpointing occurs when an application calls the PE function mp_chkpt() in
| each task. Note that a program that calls mp_chkpt() must first be compiled with
| one of the POE checkpoint compile scripts (mpcc_chkpt , mpCC_chkpt , or
| mpxlf_chkpt). Before you submit the application, you first need to set the
| MP_CHECKDIR and MP_CHECKFILE POE environment variables to define the
| path name of the checkpoint file.

| During checkpoint processing, each task executes the application, up to the point of
| the mp_chkpt() function call. At that point, the state and program data is written to
| the checkpoint file, which you defined with the MP_CHECKDIR and
| MP_CHECKFILE environment variables. The tasks then continue to execute the
| application.

| When the application is restarted, the MP_CHECKDIR and MP_CHECKFILE POE
| environment variables point to the checkpoint file that was previously stopped. The
| application can be restarted on either the same or a different set of nodes, but the
| number of tasks must remain the same. When the restart function restarts a
| program, it retrieves the program state and data information from the checkpoint
| file. Note also that the restart function restores file pointers to the points at which
| the checkpoint occurred, but it does not restore the file content.

| Since large data files are often produced as a result of checkpointing a program,
| you need to consider the amount of available space in your filesystem. You should
| also consider the type of filesystem. Writing and reading checkpointing files may
| yield better performance on Journaled File Systems (JFS) or General Parallel File
| Systems (GPFS) than on Networked File Systems (NFS), Distributed File Systems
| (DFS), or Andrew File Systems (AFS).

 Chapter 2. The Answer is 42 41

42 IBM PE for AIX V2R4.0: Hitchhiker's Guide

 Chapter 3. Don't Panic

The Hitchhiker's Guide to the Galaxy revealed that 42 is what you get when you
multiply 6 by 9 (which explains why things keep going wrong). Now that we all
know that, we can discuss what to do in one of those situations when things go
wrong. What do you do when something goes wrong with your parallel program?
As the The Hitchhiker's Guide to the Galaxy tells us, Don't Panic! The IBM Parallel
Environment for AIX provides a variety of ways to identify and correct problems that
may arise when you're developing or executing your parallel program. This all
depends on where in the process the problem occurred and what the symptoms
are.

This chapter is probably more useful if you use it in conjunction with IBM Parallel
Environment for AIX: Operation and Use, Vol. 1 and IBM Parallel Environment for
AIX: Operation and Use, Vol. 2 so you might want to go find them, and keep them
on hand for reference.

| Note: The sample programs in this chapter are provided in full and are available
| from the IBM RS/6000 World Wide Web site. See “Getting the Books and
| the Examples Online” on page xviii for more information.

Before continuing, let's stop and think about the basic process of creating a parallel
program. Here are the steps, (which have been greatly abbreviated):

1. Create and compile program
 2. Start PE

3. Execute the program
4. Verify the output
5. Optimize the performance.

As with any process, problems can arise in any one of these steps, and different
tools are required to identify, analyze and correct the problem. Knowing the right
tool to use is the first step in fixing the problem. The remainder of this chapter tells
you about some of the common problems you might run into, and what to do when
they occur. The sections in this chapter are labeled according to the symptom you
might be experiencing.

 Messages

Message Catalog Errors
Messages are an important part of diagnosing problems, so it's essential that you
not only have access to them, but that they are at the correct level. In some cases,
you may get message catalog errors. This usually means that the message catalog
couldn't be located or loaded. Check that your NLSPATH environment variable
includes the path where the message catalog is located. Generally, the message
catalog will be in /usr/lib/nls/msg/C . The value of the NLSPATH environment
variable, including /usr/lib/nls/msg/%L/%N and the LANG environment variable, is
set to En_US. If the message catalogs are not in the proper place, or your
environment variables are not set properly, your System Administrator can probably
help you. There's really no point in going on until you can read the real error
messages!

 Copyright IBM Corp. 1996, 1998 43

The following are the IBM Parallel Environment for AIX message catalogs:

 � pepoe.cat
 � pempl.cat
 � pepdbx.cat
 � pedig.cat
 � pevt.cat
 � pedb.cat
 � poestat.cat
 � mpci_err.cat
 � xprofiler.cat

Finding PE Messages
There are a number of places that you can find PE messages:

� They are displayed on the home node when it's running POE (STDERR and
STDOUT).

� If you set either the MP_PMDLOG environment variable or the -pmdlog
command line option to yes, they are collected in the pmd log file of each task,
in /tmp (STDERR and STDOUT).

� They appear in the message area and pop-up windows of the parallel debugger
interface.

Logging POE Errors to a File
You can also specify that diagnostic messages be logged to a file in /tmp on each
of the remote nodes of your partition by using the MP_PMDLOG environment
variable. The log file is called /tmp/mplog. pid.taskid, where pid is the process id of
the Partition Manager daemon (pmd) that was started in response to the poe
command, and taskid is the task number. This file contains additional diagnostic
information about why the user connection wasn't made. If the file isn't there, then
pmd didn't start. Check the /etc/inetd.conf and /etc/services entries and the
executability of pmd for the root user ID again.

For more information about the MP_PMDLOG environment variable, see IBM
Parallel Environment for AIX: Operation and Use, Vol. 1.

 Message Format
 Knowing which component a message is associated with can be helpful, especially
when trying to resolve a problem. As a result, PE messages include prefixes that
identify the related component. The message identifiers for the PE components are
as follows.

0029-nnnn pdbx

0030-nnnn pedb

0031-nnnn Parallel Operating Environment

0031-A4nn Program Marker Array

0032-nnnn Message Passing Library

0033-1nnn Visualization Tool - Performance Monitor

0033-2nnn Visualization Tool - Trace Visualization

0033-3nnn Visualization Tool - Trace Collection

44 IBM PE for AIX V2R4.0: Hitchhiker's Guide

0033-4nnn Visualization Tool - Widget

2537-nnn Xprofiler X-Windows Performance Profiler

where:

� The first four digits (0029, 0030, 0031, 0032, 0033, 2537) identify the
component that issued the message.

� nnnn identifies the sequence of the message in the group.

For more information about PE messages, see IBM Parallel Environment for AIX:
Messages

Note that you might find it helpful to run POE, the parallel debugger, or the
Visualization Tool as you use this chapter.

Diagnosing Problems Using the Install Verification Program
The Installation Verification Program (IVP) can be a useful tool for diagnosing
problems. When you installed POE, you verified that everything turned out alright
by running the IVP. It verified that the:

� Location of the libraries was correct

 � Binaries existed

� Partition Manager daemon was executable

� POE files were in order

� Sample IVP programs (both non-threaded and threaded) compiled correctly.

The IVP can provide some important first clues when you experience a problem, so
you may want to rerun this program before you do anything else. For more
information on the IVP, see Appendix C, “Installation Verification Program
Summary” on page 121 or IBM Parallel Environment for AIX: Installation Guide

Can't Compile a Parallel Program
 Programs for the IBM Parallel Environment for AIX must be compiled with the
current release of mpxlf or mpcc , etc.. If the command you're trying to use cannot
be found, make sure the installation was successful and that your PATH
environment variable contains the path to the compiler scripts. These commands
call the Fortan, C, and C++ compilers respectively, so you also need to make sure
the underlying compiler is installed and accessible. Your System Administrator or
local AIX guru should be able to assist you in verifying these things.

Can't Start a Parallel Job
Once your program has been successfully compiled, you either invoke it directly or
start the Parallel Operating Environment (POE) and then submit the program to it.
In both cases, POE is started to establish communication with the parallel nodes.
Problems that can occur at this point include:

� POE doesn't start

or

� POE can't connect to the remote nodes.

 Chapter 3. Don't Panic 45

These problems can be caused by other problems on the home node (where you're
trying to submit the job), on the remote parallel nodes, or in the communication
subsystem that connects them. You need to make sure that all the things POE
expects to be set up really are. Here's what you do:

1. Make sure you can execute POE. If you're a Korn shell user, type:

$ whence poe

If you're a C shell user, type:

$ which poe

If the result is just the shell prompt, you don't have POE in your path. It might
mean that POE isn't installed, or that your path doesn't point to it. Check that
the file /usr/lpp/ppe.poe/bin/poe exists and is executable, and that your PATH
includes /usr/lpp/ppe.poe/bin .

 2. Type:

$ env | grep MP_

| Look at the settings of the environment variables beginning with MP_, (the POE
| environment variables). Check their values against what you expect, particularly
| MP_HOSTFILE (where the list of remote host names is to be found),
| MP_RESD (whether the a job management system is to be used to allocate
| remote hosts) and MP_RMPOOL (the pool from which job management system
| is to allocate remote hosts) values. If they're all unset, make sure you have a
| file named host.list in your current directory. This file must include the names
| of all the remote parallel hosts that can be used. There must be at least as
| many hosts available as the number of parallel processes you specified with
| the MP_PROCS environment variable.

 3. Type:

$ poe -procs 1

You should get the following message:

| ðð31-5ð3 Enter program name (or quit): _

If you do, POE has successfully loaded, established communication with the
first remote host in your host list file, validated your use of that remote host,
and is ready to go to work. If you type any AIX command, for example, date ,
hostname , or env , you should get a response when the command executes on
the remote host (like you would from rsh).

If you get some other set of messages, then the message text should give you
some idea of where to look. Some common situations include:

� Can't Connect with the Remote Host

The path to the remote host is unavailable. Check to make sure that you
are trying to connect to the host you think you are. If you are using
LoadLeveler or the Resource Manager to allocate nodes from a pool, you
may want to allocate nodes from a known list instead. ping the remote
hosts in the list to see if a path can be established to them. If it can, run
rsh remote_host date to verify that the remote host can be contacted and
recognizes the host from which you submitted the job, so it can send
results back to you.

46 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Check the /etc/services file on your home node, to make sure that the IBM
Parallel Environment for AIX service is defined. Check the /etc/services
and /etc/inetd.conf files on the remote host to make sure that the PE
service is defined, and that the Partition Manager Daemon (pmd) program
invoked by inetd on the remote node is executable.

� User Not Authorized on Remote Host

You need an ID on the remote host and your ID on the home host (the one
you are submitting the job from) must be authorized to run commands on
the remote hosts. You do this by placing a $HOME/.rhosts file on the
remote hosts that identify your home host and ID. Brush up on “Access” on
page 4 if you need to. Even if you have a $HOME/.rhosts file, make sure
you are not denied access the /etc/hosts.equiv file on the remote hosts.

In some installations, your home directory is a mounted file system on both
your home node and the remote host. On the SP, this mounted file system
is managed by AMD, the AutoMount Daemon. Occasionally, during user
verification, the AutoMount Daemon doesn't mount your home directory fast
enough, and pmd doesn't find your .rhosts file. Check with your System
Administrator...as long as you know he doesn't bite.

| Even if the remote host is actually the same machine as your home node,
| you still need an entry in the .rhosts file. Sorry, that's the way ruserok
| works.

 � Other Strangeness

On the home node, you can set or increase the MP_INFOLEVEL
environment variable (or use the -infolevel command line option) to get
more information out of POE while it is running. Although this won't give
you any more information about the error, or prevent it, it will give you an
idea of where POE was, and what it was trying to do when the error
occurred. A value of 6 will give you more information than you could ever
want. See Appendix A, “A Sample Program to Illustrate Messages” on
page 111 for an example of the output from this setting.

Can't Execute a Parallel Program
| Once POE can be started, you'll need to consider the problems that can arise in
| running a parallel program, specifically initializing the message passing subsystem.
| The way to eliminate this initialization as the source of POE startup problems is to
| run a program that does not use message passing. As discussed in “Running POE”
| on page 8, you can use POE to invoke any AIX command or serial program on
| remote nodes. If you can get an AIX command or simple program, like Hello,
| World!, to run under POE, but a parallel program doesn't, you can be pretty sure
| the problem is in the message passing subsystem. The message passing
| subsystem is the underlying implementation of the message passing calls used by
| a parallel program (in other words, an MPI_Send). POE code that's linked into your
| executable by the compiler script (mpcc , mpCC , mpxlf , mpcc_r , mpCC_r ,
| mpxlf_r) initializes the message passing subsystem.

The Parallel Operating Environment (POE) supports two distinct communication
subsystems, an IP-based system, and User Space optimized adapter support for
the SP Switch. The subsystem choice is normally made at run time, by environment
variables or command line options passed to POE. Use the IP subsystem for

 Chapter 3. Don't Panic 47

diagnosing initialization problems before worrying about the User Space (US)
subsystem. Select the IP subsystem by setting the environment variables:

$ export MP_EUILIB=ip
$ export MP_EUIDEVICE=enð

Use specific remote hosts in your host list file and don't use the Resource Manager
(set MP_RESD=no). If you don't have a small parallel program around, recompile
hello.c as follows:

$ mpcc -o hello_p hello.c

and make sure that the executable is loadable on the remote host that you are
using.

Type the following command, and then look at the messages on the console:

$ poe hello_p -procs 1 -infolevel 4

If the last message that you see looks like this:

Calling mpci_connect

and there are no further messages, there's an error in opening a UDP socket on
the remote host. Check to make sure that the IP address of the remote host is
correct, as reported in the informational messages printed out by POE, and perform
any other IP diagnostic procedures that you know of.

If you get

Hello, World!

then the communication subsystem has been successfully initialized on the one
node and things ought to be looking good. Just for kicks, make sure there are two
remote nodes in your host list file and try again with

$ poe hello_p -procs 2

If and when hello_p works with IP and device en0 (the Ethernet), try again with the
SP Switch.

| Suffice it to say that each SP node has one name that it is known by on the
| Ethernet LAN it is connected to and another name it is known by on the SP Switch.
| If the node name you use is not the proper name for the network device you
| specify, the connection will not be made. You can put the names in your host list
| file. Otherwise you will have to use LoadLeveler or the Resource Manager to locate
| the nodes.

For example,

$ export MP_RESD=yes
$ export MP_EUILIB=ip
$ export MP_EUIDEVICE=cssð
$ poe hello_p -procs 2 -ilevel 2

where css0 is the switch device name.

| Look at the console lines containing the string init_data . These identify the IP
| address that is actually being used for message passing (as opposed to the IP
| address that is used to connect the home node to the remote hosts.) If these aren't

48 IBM PE for AIX V2R4.0: Hitchhiker's Guide

| the switch IP addresses, check the LoadLeveler or Resource Manager configuration
| and the switch configuration .

| Once IP works, and you're on an SP machine, you can try message passing using
| the User Space device support. Note that while LoadLeveler allows you to run
| multiple tasks over the switch adapter while in User Space, the Resource Manager
| will not. If you're using the Resource Manager, User Space support is
| accomplished by dedicating the switch adapter on a remote host to one specific
| task. The Resource Manager controls which remote hosts are assigned to which
| users.

You can run hello_p with the User Space library by typing:

$ export MP_RESD=yes
$ export MP_EUILIB=us
$ export MP_EUIDEVICE=cssð
$ poe hello_p -procs 2 -ilevel 6

| The console log should inform you that you're using User Space support, and that
| LoadLeveler or the Resource Manager is allocating the nodes for you. This
| happens a little differently depending on whether you're using LoadLeveler or the
| Resource Manager to manage your jobs. LoadLeveler will tell you it can't allocate
| the requested nodes if someone else is already running on them and has
| requested dedicated use of the switch, or if User Space capacity has been
| exceeded. The Resource Manager, on the other hand, will tell you that it can't
| allocate the requested nodes if someone else is already running on them.

| So, what do you do now? You can try for other specific nodes, or you can ask
| LoadLeveler or the Resource Manager for non-specific nodes from a pool, but by
| this time, you're probably far enough along that we can just refer you to IBM
| Parallel Environment for AIX: Operation and Use, Vol. 1.

If you get a message that says POE can't load your program, and it mentions the
symbol pm_exit_value, you are not loading POE's modification of the C run-time
library. Make sure that the files /usr/lpp/ppe.poe/lib/libc.a and
/usr/lpp/ppe.poe/lib/libc_r.a exist, and that the library search path (composed from
MP_EUILIBPATH, MP_EUILIB, and your LIBPATH environment variable) finds
these versions.

The Program Runs But...
 Once you've gotten the parallel application running, it would be nice if you were
guaranteed that it would run correctly. Unfortunately, this is not the case. In some
cases, you may get no output at all, and your challenge is to figure out why not. In
other cases, you may get output that's just not correct and, again, you must figure
out why it isn't.

The Parallel Debugger is Your Friend
An important tool in analyzing your parallel program is the PE parallel debugger
(pedb or pdbx). In some situations, using the parallel debugger is no different than
using a debugger for a serial program. In others, however, the parallel nature of the
problem introduces some subtle and not-so-subtle differences which you should
understand in order to use the debugger efficiently. While debugging a serial
application, you can focus your attention on the single problem area. In a parallel

 Chapter 3. Don't Panic 49

application, not only must you shift your attention between the various parallel
tasks, you must also consider how the interaction among the tasks may be
affecting the problem.

The Simplest Problem
The simplest parallel program to debug is one where all the problems exist in a
single task. In this case, you can unhook all the other tasks from the debugger's
control and use the parallel debugger as if it were a serial debugger. However, in
addition to being the simplest case, it is also the most rare.

The Next Simplest Problem
The next simplest case is one where all the tasks are doing the same thing and
they all experience the problem that is being investigated. In this case, you can
apply the same debug commands to all the tasks, advance them in lockstep and
interrogate the state of each task before proceeding. In this situation, you need to
be sure to avoid debugging-introduced deadlocks. These are situations where the
debugger is trying to single-step a task past a blocking communication call, but the
debugger has not stepped the sender of the message past the point where the
message is sent. In these cases, control will not be returned to the debugger until
the message is received, but the message will not be sent until control returns to
the debugger. Get the picture?

OK, the Worst Problem
The most difficult situation to debug and also the most common is where not all the
tasks are doing the same thing and the problem spans two or more tasks. In these
situations, you have to be aware of the state of each task, and the interrelations
among tasks. You must ensure that blocking communication events either have
been or will be satisfied before stepping or continuing through them. This means
that the debugger has already executed the send for blocking receives, or the send
will occur at the same time (as observed by the debugger) as the receive.
Frequently, you may find that tracing back from an error state leads to a message
from a task that you were not paying attention to. In these situations, your only
choice may be to re-run the application and focus on the events leading up to the
send.

It Core Dumps
If your program creates a core dump, POE saves a copy of the core file so you can
debug it later. Unless you specify otherwise, POE saves the core file in the coredir
.taskid directory, under the current working directory, where taskid is the task
number. For example, if your current directory is /u/mickey , and your application
creates a core dump (segmentation fault) while running on the node that is task 4,
the core file will be located in /u/mickey/coredir.4 on that node.

You can control where POE saves the core file by using the -coredir POE
command line option or the MP_COREDIR environment variable.

Debugging Core Dumps
There are two ways you can use core dumps to find problems in your program.
After running the program, you can examine the resulting core file to see if you can
find the problem. Or, you can try to view your program state by catching it at the
point where the problem occurs.

50 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Examining Core Files: Before you can debug a core file, you first need to get
one. In our case, let's just generate it. The example we'll use is an MPI program in
which even-numbered tasks pass the answer to the meaning of life to
odd-numbered tasks. It's called bad_life.c , and here's what it looks like:

/\\\
\
\ bad_life program

\ To compile:
\ mpcc -g -o bad_life bad_life.c
\
\\\/

#include <stdio.h>
#include <mpi.h>

void main(int argc, char \argv[])
{
 int taskid;
 MPI_Status stat;

/\ Find out number of tasks/nodes. \/
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

if ((taskid % 2) ==)
 {

char \send_message = NULL;

send_message = (char \) malloc(1);
strcpy(send_message, "Forty Two");
MPI_Send(send_message, 1 , MPI_CHAR, taskid+1, ð,

 MPI_COMM_WORLD);
 free(send_message);
 } else
 {

char \recv_message = NULL;

MPI_Recv(recv_message, 1 , MPI_CHAR, taskid-1, ð,
 MPI_COMM_WORLD, &stat);

printf("The answer is %s\n", recv_message);
 free(recv_message);
 }

printf("Task %d complete.\n",taskid);
 MPI_Finalize();
 exit(ð);
}

We compiled bad_life.c with the following parameters:

$ mpcc -g bad_life.c -o bad_life

and when we run it, we get the following results:

 Chapter 3. Don't Panic 51

$ export MP_PROCS=4
$ export MP_LABELIO=yes
$ bad_life
ð:Task ð complete.
2:Task 2 complete.

ERROR: ðð31-25ð task 1: Segmentation fault
ERROR: ðð31-25ð task 3: Segmentation fault
ERROR: ðð31-25ð task ð: Terminated
ERROR: ðð31-25ð task 2: Terminated

As you can see, bad_life.c gets two segmentation faults which generates two core
files. If we list our current directory, we can indeed see two core files; one for task
1 and the other for task 3.

$ ls -lR core\
total 88
-rwxr-xr-x 1 hoov staff 8472 May ð2 ð9:14 bad_life
-rw-r--r-- 1 hoov staff 928 May ð2 ð9:13 bad_life.c
drwxr-xr-x 2 hoov staff 512 May ð2 ð9:ð1 coredir.1
drwxr-xr-x 2 hoov staff 512 May ð2 ð9:36 coredir.3
-rwxr-xr-x 1 hoov staff 84ðð May ð2 ð9:14 good_life
-rw-r--r-- 1 hoov staff 912 May ð2 ð9:13 good_life.c
-rw-r--r-- 1 hoov staff 72 May ð2 ð8:57 host.list
./coredir.1:
total 48
-rw-r--r-- 1 hoov staff 24427 May ð2 ð9:36 core

./coredir.3:
total 48
-rw-r--r-- 1 hoov staff 24427 May ð2 ð9:36 core

So, what do we do now? Let's run dbx on one of the core files to see if we can find
the problem. You run dbx like this:

$ dbx bad_life coredir.1/core

Type 'help' for help.
reading symbolic information ...
[using memory image in coredir.1/core]

Segmentation fault in moveeq.memcpy [/usr/lpp/ppe.poe/lib/ip/libmpci.a] at ðxdð55
b32ð
ðxdð55b32ð (memcpy+ðx1ð) 7cað1d2a stsx r5,rð,r3
(dbx)

Now, let's see where the program crashed and what its state was at that time. If we
issue the where command,

(dbx) where

we can see the program stack:

52 IBM PE for AIX V2R4.0: Hitchhiker's Guide

moveeq._moveeq() at ðxdð55b32ð
fmemcpy() at ðxdð5689ðð
cpfromdev() at ðxdð56791c
readdatafrompipe(??, ??, ??) at ðxdð558cð8
readfrompipe() at ðxdð562564
finishread(??) at ðxdð5571bc
kickpipes() at ðxdð556e64
mpci_recv() at ðxdð5662cc
_mpi_recv() at ðxdð5ð635c
MPI__Recv() at ðxdð5ð4fe8
main(argc = 1, argv = ðx2ff22cð8), line 32 in "bad_life.c"
(dbx)

The output of the where command shows that bad_life.c failed at line 32, so let's
look at line 32, like this:

(dbx) func main
(dbx) list 32

32 MPI_Recv(recv_message, 1ð, MPI_CHAR, taskid-1, ð,
 MPI_COMM_WORLD, &stat);

When we look at line 32 of bad_life.c , our first guess is that one of the parameters
being passed into MPI_Recv is bad. Let's look at some of these parameters to see
if we can find the source of the error:

(dbx) print recv_message
(nil)

| Ah ha! Our receive buffer has not been initialized and is NULL. The sample
| programs for this book include a solution called good_life.c . See “Getting the
| Books and the Examples Online” on page xviii for information on how to get the
| sample programs.

It's important to note that we compiled bad_life.c with the -g compile flag. This
gives us all the debugging information we need in order to view the entire program
state and to print program variables. In many cases, people don't compile their
programs with the -g flag, and they may even turn optimization on (-O), so there's
virtually no information to tell them what happened when their program executed. If
this is the case, you can still use dbx to look at only stack information, which allows
you to determine the function or subroutine that generated the core dump.

Viewing the Program State: If collecting core files is impractical, you can also try
catching the program at the segmentation fault. You do this by running the program
under the control of the debugger. The debugger gets control of the application at
the point of the segmentation fault, and this allows you to view your program state
at the point where the problem occurs.

In the following example, we'll use bad_life again, but we'll use pdbx instead of
dbx . Load bad_life.c under pdbx with the following command:

 Chapter 3. Don't Panic 53

$ pdbx bad_life

pdbx Version 2.1 -- Apr 3ð 1996 15:56:32

ð:reading symbolic information ...
1:reading symbolic information ...
2:reading symbolic information ...
3:reading symbolic information ...
1:[1] stopped in main at line 12
1: 12 char \send_message = NULL;
ð:[1] stopped in main at line 12
ð: 12 char \send_message = NULL;
3:[1] stopped in main at line 12
3: 12 char \send_message = NULL;
2:[1] stopped in main at line 12
2: 12 char \send_message = NULL;

ðð31-5ð4 Partition loaded ...

Next, let the program run to allow it to reach a segmentation fault.

pdbx(all) cont

ð:Task ð complete.
2:Task 2 complete.

 3:
3:Segmentation fault in @moveeq._moveeq [/usr/lpp/ppe.poe/lib/ip/libmpci.]a

 at ðxdð36c32ð
3:ðxdð36c32ð (memmove+ðx1ð) 7cað1d2a stsx r5,rð,r3

 1:
1:Segmentation fault in @moveeq._moveeq [/usr/lpp/ppe.poe/lib/ip/libmpci.a]

 at ðxdð55b32ð
1:ðxdð55b32ð (memcpy+ðx1ð) 7cað1d2a stsx r5,rð,r3

Once we get segmentation faults, we can focus our attention on one of the tasks
that failed. Let's look at task 1:

pdbx(all) on 1

By using the pdbx where command, we can see where the problem originated in
our source code:

pdbx(1) where

1:@moveeq.memcpy() at ðxdð55b32ð
1:fmemcpy() at ðxdð5689ðð
1:cpfromdev() at ðxdð56791c
1:readdatafrompipe(??, ??, ??) at ðxdð558cð8
1:readfrompipe() at ðxdð562564
1:finishread(??) at ðxdð5571bc
1:kickpipes() at ðxdð556e5ð
1:mpci_recv() at ðxdð5662fc
1:_mpi_recv() at ðxdð5ð635c
1:MPI__Recv() at ðxdð5ð4fe8
1:main(argc = 1, argv = ðx2ff22bfð), line 32 in "bad_life.c"

Now, let's move up the stack to function main :

pdbx(1) func main

54 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Next, we'll list line 32, which is where the problem is located:

pdbx(1) l 32

1: 32 MPI_Recv(recv_message, 1ð, MPI_CHAR, taskid-1, ð,
 MPI_COMM_WORLD, &stat);

Now that we're at line 32, we'll print the value of recv_message :

pdbx(1) p recv_message

 1:(nil)

As we can see, our program passes a bad parameter to MPI_RECV().

Both the techniques we've talked about so far help you find the location of the
problem in your code. The example we used makes it look easy, but in many cases
it won't be so simple. However, knowing where the problem occurred is valuable
information if you're forced to debug the problem interactively, so it's worth the time
and trouble to figure it out.

Core Dumps and Threaded Programs: If a task of a threaded program produces a
core file, the partial dump produced by default does not contain the stack and
status information for all threads, so it is of limited usefulness. You can request AIX
to produce a full core file, but such files are generally larger than permitted by user
limits (the communication subsystem alone generates more than 64 MB of core
information). As a result, if possible, use the attach capability of dbx , xldb , pdbx ,
or pedb to examine the task while it's still running.

No Output at All

Should There Be Output?
If you're getting no output from your program and you think you ought to be, the
first thing you should do is make sure you have enabled the program to send data
back to you. If the MP_STDOUTMODE environment variable is set to a number, it
is the number of the only task for which standard output will be displayed. If that
task does not generate standard output, you won't see any.

There Should Be Output
If MP_STDOUTMODE is set appropriately, the next step is to verify that the
program is actually doing something. Start by observing how the program
terminates (or fails to). It will do one of the following things:

� Terminate without generating output other than POE messages.

� Fail to terminate after a really long time, still without generating output.

In the first case, you should examine any messages you receive (since your
program is not generating any output, all of the messages will be coming from
POE).

In the second case, you will have to stop the program yourself (<Ctrl-c> should
work).

 Chapter 3. Don't Panic 55

One possible reason for lack of output could be that your program is terminating
abnormally before it can generate any. POE will report abnormal termination
conditions such as being killed, as well as non-zero return codes. Sometimes
these messages are obscured in the blur of other errata, so it's important to check
the messages carefully.

Figuring Out Return Codes: It's important to understand POE's interpretation of
return codes. If the exit code for a task is zero(0) or in the range of 2 to 127, then
POE will make that task wait until all tasks have exited. If the exit code is 1 or
greater than 128 (or less than 0), then POE will terminate the entire parallel job
abruptly (with a SIGTERM signal to each h task). In normal program execution, one
would expect to have each program go through exit (0) or STOP, and exit with an
exit code of 0. However, if a task encounters an error condition (for example, a full
file system), then it may exit unexpectedly. In these cases, the exit code is usually
set to -1, but if you have written error handlers which produce exit codes other than
1 or -1, then POE's termination algorithm may cause your program to hang
because one task has terminated abnormally, while the other tasks continue
processing (expecting the terminated task to participate).

If the POE messages indicate the job was killed (either because of some external
situation like low page space or because of POE's interpretation of the return
codes), it may be enough information to fix the problem. Otherwise, more analysis
is required.

 It Hangs
If you've gotten this far and the POE messages and the additional checking by the
message passing routines have been unable to shed any light on why your
program is not generating output, the next step is to figure out whether your
program is doing anything at all (besides not giving you output).

Let's Try Using the Visualization Tool
One way to do this is to run with Visualization Tool (VT) tracing enabled, and
examine the tracefile. To do this, compile your program with the -g flag and run the
program with the -tracelevel 9 command line option, or by setting the
MP_TRACELEVEL environment variable to 9.

When your program terminates (either on its own or via a <Ctrl-c> from you), you
will be left with a file called pgmname.trc in the directory from which you submitted
the parallel job. You can view this file with VT.

Let's look at the following example...it's got a bug in it.

/\\
\
\ Ray trace program with bug
\
\ To compile:
\ mpcc -g -o rtrace_bug rtrace_bug.c
\
\
\ Description:
\ This is a sample program that partitions N tasks into
\ two groups, a collect node and N - 1 compute nodes.
\ The responsibility of the collect node is to collect the data
\ generated by the compute nodes. The compute nodes send the
\ results of their work to the collect node for collection.

56 IBM PE for AIX V2R4.0: Hitchhiker's Guide

\
\ There is a bug in this code. Please do not fix it in this file!
\
\\/

#include <mpi.h>

#define PIXEL_WIDTH 5ð
#define PIXEL_HEIGHT 5ð

int First_Line = ð;
int Last_Line = ð;

void main(int argc, char \argv[])
{
 int numtask;
 int taskid;

/\ Find out number of tasks/nodes. \/
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtask);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

/\ Task ð is the coordinator and collects the processed pixels \/
/\ All the other tasks process the pixels \/
if (taskid == ð)

 collect_pixels(taskid, numtask);
 else
 compute_pixels(taskid, numtask);

printf("Task %d waiting to complete.\n", taskid);
/\ Wait for everybody to complete \/

 MPI_Barrier(MPI_COMM_WORLD);
printf("Task %d complete.\n",taskid);

 MPI_Finalize();
 exit();
}

/\ In a real implementation, this routine would process the pixel \/
/\ in some manner and send back the processed pixel along with its\/
/\ location. Since we're not processing the pixel, all we do is \/
/\ send back the location \/
compute_pixels(int taskid, int numtask)
{
 int section;
 int row, col;
 int pixel_data[2];
 MPI_Status stat;

printf("Compute #%d: checking in\n", taskid);

section = PIXEL_HEIGHT / (numtask -1);

First_Line = (taskid - 1) \ section;
 Last_Line = taskid \ section;

for (row = First_Line; row < Last_Line; row ++)
for (col = ð; col < PIXEL_WIDTH; col ++)

 {
pixel_data[ð] = row;
pixel_data[1] = col;
MPI_Send(pixel_data, 2, MPI_INT, ð, ð, MPI_COMM_WORLD);

 }
printf("Compute #%d: done sending. ", taskid);

 Chapter 3. Don't Panic 57

 return;
}

/\ This routine collects the pixels. In a real implementation, \/
/\ after receiving the pixel data, the routine would look at the\/
/\ location information that came back with the pixel and move \/
/\ the pixel into the appropriate place in the working buffer \/
/\ Since we aren't doing anything with the pixel data, we don't \/
/\ bother and each message overwrites the previous one \/
collect_pixels(int taskid, int numtask)
{
 int pixel_data[2];
 MPI_Status stat;
int mx = PIXEL_HEIGHT \ PIXEL_WIDTH;

printf("Control #%d: No. of nodes used is %d\n", taskid,numtask);
printf("Control: expect to receive %d messages\n", mx);

while (mx > ð)
 {

MPI_Recv(pixel_data, 2, MPI_INT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

 mx--;
 }
printf("Control node #%d: done receiving. ",taskid);

 return;
}

This example was taken from a ray tracing program that distributed a display buffer
out to server nodes. The intent is that each task, other than Task 0, takes an equal
number of full rows of the display buffer, processes the pixels in those rows, and
then sends the updated pixel values back to the client. In the real application, the
task would compute the new pixel value and send it as well, but in this example,
we're just just sending the row and column of the pixel. Because the client is
getting the row and column location of each pixel in the message, it doesn't care
which server each pixel comes from. The client is Task 0 and the servers are all
the other tasks in the parallel job.

This example has a functional bug in it. With a little bit of analysis, the bug is
probably easy to spot and you may be tempted to fix it right away. PLEASE DO
NOT!

When you run this program, you get the output shown below. Notice that we're
using the -g option when we compile the example. We're cheating a little because
we know there's going to be a problem, so we're compiling with debug information
turned on right away.

$ mpcc -g -o rtrace_bug rtrace_bug.c
$ rtrace_bug -procs 4 -labelio yes
1:Compute #1: checking in
ð:Control #ð: No. of nodes used is 4
1:Compute #1: done sending. Task 1 waiting to complete.
2:Compute #2: checking in
3:Compute #3: checking in
ð:Control: expect to receive 25ðð messages
2:Compute #2: done sending. Task 2 waiting to complete.
3:Compute #3: done sending. Task 3 waiting to complete.

^C
ERROR: ðð31-25ð task 1: Interrupt
ERROR: ðð31-25ð task 2: Interrupt

58 IBM PE for AIX V2R4.0: Hitchhiker's Guide

ERROR: ðð31-25ð task 3: Interrupt
ERROR: ðð31-25ð task ð: Interrupt

No matter how long you wait, the program will not terminate until you press
<Ctrl-c >.

So, we suspect the program is hanging somewhere. We know it starts executing
because we get some messages from it. It could be a logical hang or it could be a
communication hang. There are two ways you can approach this problem; by using
either VT or the attach feature of pedb (the PE ; parallel debugger). We'll start by
describing how to use VT.

Because we don't know what the problem is, we'll turn on full tracing with
-tracelevel 9 , as in the example below.

$ rtrace_bug -procs 4 -labelio yes -tracelevel 9
1:Compute #1: checking in
3:Compute #3: checking in
2:Compute #2: checking in
ð:Control #ð: No. of nodes used is 4
ð:Control: expect to receive 25ðð messages
2:Compute #2: done sending. Task 2 waiting to complete.
1:Compute #1: done sending. Task 1 waiting to complete.
3:Compute #3: done sending. Task 3 waiting to complete.

^C
ERROR: ðð31-25ð task ð: Interrupt
ERROR: ðð31-25ð task 3: Interrupt
ERROR: ðð31-25ð task 1: Interrupt
ERROR: ðð31-25ð task 2: Interrupt
$ ls -alt rtrace_bug.trc
-rw-r--r-- 1 vt staff 83944ð May 9 14:54 rtrace1.trc

When you run this example, make sure you press < Ctrl-c > as soon as the last
waiting to complete message is shown. Otherwise, the trace file will continue to
grow with kernel information, and it will make visualization more cumbersome. This
will create the trace file in the current directory with the name rtrace_bug.trc .

Now we can start VT with the command:

$ vt -tracefile rtrace_bug.trc

VT will start with the two screens shown in Figure 2 on page 60 and Figure 3 on
page 60 below. One is the VT Control Panel:

 Chapter 3. Don't Panic 59

Figure 2. VT Control Panel

The other is the VT View Selector:

Figure 3. VT View Selector

Hangs and Threaded Programs: Coordinating the threads in a task requires
careful locking and signaling. Deadlocks that occur because the program is waiting
on locks that haven't been released are common, in addition to the deadlock
possibilities that arise from improper use of the MPI messages passing calls.

60 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Using the VT Displays
 Since we don't know exactly what the problem is, we should look at
communication and kernel activity. Once VT has started, you should select the
Interprocessor Communication, Source Code, and System Summary displays from
the View Selector panel (Figure 3 on page 60). To do this, go to the VT View
Selector Panel. Locate the category labeled Communication/Program. Beneath that
category label is a toggle button labeled Interprocessor Communication.

PLACE the mouse cursor on the toggle button.

PRESS the left mouse button.

M The Interprocessor Communication display appears.

Next, locate the toggle button in the same category labeled Source Code and
select it in a similar manner. Finally, locate the System Summary toggle button in
the System category and select it. You may need to resize the System Summary to
make all four pie charts visible.

If you experience any problems with the Source Code display, it may be because
rtrace_bug was not compiled with the -g option, or because the source and
executable do not reside in the directory from which you started VT. Although, you
can use the -spath command line option of VT to specify paths for locating the
source code, for this example you should make sure that the source, executable,
and trace file all exist in the directory from which you are starting VT.

Using the VT Trace File to Locate Communication Problems
Since all we know is that the program appeared to hang, the best bet at this point
is to just play the trace file and watch for activity that appears to cease. Place the
mouse cursor over the Play button on the main control panel and press the left
mouse button to begin playback. This may take some time as VT attempts to play
the trace file back at the same speed it was captured. If you want to speed up
playback, you can use the mouse to drag the Replay Speed slider to the right.

You're looking for one of the following things to happen:

� One of the processes will go into a communication state on the Interprocessor
Communication display and remain there for the duration of the trace file.

or

� The Source Code display will show the processes stopped at a communication
call, but the Interprocessor Communication display will show the processes not
in a communication state.

or

� The Interprocessor Communication display will show fewer communication
events than you expected to see (possibly none at all!).

In the first case, a blocking communication call (for example, a Receive) has been
invoked by a process, but the call was never satisfied. This can happen if a
Blocking Receive, or a Wait on a Non-Blocking Receive is issued, and the
corresponding Send never occurs. In this case, the Source Code display can show
you where in the source code the blocked call occurred.

If the Interprocessor Communication display shows that the processes are not in a
communication state, and the Source Code display shows no activity for one or

 Chapter 3. Don't Panic 61

more processes, then the code is probably in a standard infinite loop. You can
deduce this because the Source Code display only tracks message passing calls.
Once the display shows a process at a communication call, the position of that
process will not change until another communication call is performed by that
process. If the Interprocessor Communication display shows that the process is no
longer in the communication call, you can conclude that the process has completed
the call but has not reached another call. If you expected the process to go on to
the next call, something in the non-communication code has prevented it from
doing so. In many cases, this will be an infinite loop or blocking in I/O (although
there are other legitimate causes as well, such as blocking while waiting on a
signal).

If the trace file shows less or different communication activity than you expected,
you should use the Reset button on the VT control panel to start the trace file from
the beginning and then step the trace file, one communication event at a time, until
you determine where the execution does something you didn't expect.

In each of these scenarios, you can use the VT Source Code display to locate the
area that appears to contain the problem, and use that knowledge to narrow the
focus of your debugging session.

Another cause for no activity in the trace file for a process, is failure of the network
connection to the node during execution. Normally, POE checks to make sure its
connections to all remote hosts are healthy by periodic message exchange (we call
it the POE pulse). If the network connection fails, the POE pulse will fail and POE
will time out, terminating the job. You can turn the pulse off by setting the
MP_PULSE environment variable to 0, but then you are responsible for detecting if
a remote host connection fails.

In our example, the trace file playback ends with the Interprocessor Communication
display and the Source Code display appearing as they do in Figure 4 and
Figure 5 on page 63.

The Interprocessor Communication display, below, shows that process 0 is in a
blocking receive. You can tell this by placing the mouse cursor over the box that
has the zero in it and pressing the left mouse button. The pop-up box that appears
will tell you so. The other three processes are in an MPI_Barrier state. What this
means is that process 0 is expecting more input, but the other processes are not
sending any.

Figure 4. Interprocessor Communication Display

62 IBM PE for AIX V2R4.0: Hitchhiker's Guide

The Source Code display, below, shows that Process 0 is at the MPI_Recv call in
collect_pixels . Process 0 will not leave this loop until the variable mx becomes 0.
The other processes are in the MPI_Barrier call that they make after
compute_pixels finishes. They have sent all the data they think they should, but
Process 0 is expecting more.

Figure 5. Source Code Display

Let's Attach the Debugger
After using VT, is seems to be clear that our program is hanging. Let's use the
debugger to find out why. The best way to diagnose this problem is to attach the
debugger directly to our POE job.

Start up POE and run rtrace_bug :

$ rtrace_bug -procs 4 -labelio yes

To attach the debugger, we first need to get the process id (pid) of the POE job.
You can do this with the AIX ps command:

 Chapter 3. Don't Panic 63

$ ps -ef | grep poe

smith 24152 2ð728 ð ð8:25:22 pts/ð ð:ðð poe

Next, we'll need to start the debugger in attach mode. Note that we can use either
the pdbx or the pedb debugger. In this next example, we'll use pedb , which we'll
start in attach mode by using the -a flag and the process identifier (pid) of the POE
job:

$ pedb -a 24152

After starting the debugger in attach mode, the pedb Attach Dialog window
appears:

Figure 6. Attach Dialog Window

The Attach Dialog Window contains a list of task numbers and other information
that describes the POE application. It provides information for each task in the
following fields:

Task The task number

IP The IP address of the node on which the task or application is
running

Node The name, if available, of the node on which the task or
application is running

PID The process identifier of the selected task

Program The name of the application and arguments, if any. These may be
different if your program is MPMD.

At the bottom of the window there are two buttons (other than Quit and Help):

Attach Causes the debugger to attach to the tasks that you selected. This
button remains grayed out until you make a selection.

Attach All Causes the debugger to attach to all the tasks listed in the
window. You don't have to select any specific tasks.

64 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Next, select the tasks to which you want to attach. You can either select all the
tasks by pressing the Attach All button, or you can select individual tasks, by
pressing the Attach button. In our example, since we don't know which task or set
of tasks is causing the problem, we'll attach to all the tasks by pressing the Attach
All button.

PLACE the mouse cursor on the Attach All button.

PRESS the left mouse button.

M The Attach Dialog window closes and the debugger main
window appears:

Figure 7. pedb Main Window

Since our code is hung in low level routines, the initial main window only provides
stack traces. To get additional information for a particular task, double click on the
highest line in the stack trace that has a line number and a file name associated
with it. This indicates that the source code is available.

For task 0, in our example, this line in the stack trace is:

collect_pixels(), line 1ð1 in rtrace_bug.c

Clicking on this line causes the local data to appear in the Local Data area and the
source file (the compute_pixels function) to appear in the Source File area. In the
source for compute_pixels , line 101 is highlighted. Note that the function name
and line number within the function your program last executed appears here. (in
this case, it was function MPI_Recv () on line 101).

 Chapter 3. Don't Panic 65

Figure 8. Getting Additional Information About a Task

PLACE the mouse cursor on the Task 0 label (not the box) in the Global
Data area.

PRESS the right mouse button.

M a pop-up menu appears.

SELECT the Show All option.

M All the global variables for this are tracked and displayed in the
window below the task button.

Repeat the steps above for each task.

66 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Now you can see that task 0 is stopped on an MPI_Recv() call. When we look at
the Local Data values, we find that mx is still set to 100, so task 0 thinks it's still
going to receive 100 messages. Now, lets look at what the other tasks are doing.

To get information on task 1, go to its stack window and double click on the highest
entry that includes a line number. In our example, this line is:

main(argc = 1, argv = ðx2ff22a74), line 43, in rtrace_bug.c

Task 1 has reached an MPI_Barrier() call. If we quickly check the other tasks, we
see that they have all reached this point as well. So....the problem is solved. Tasks
1 through 3 have completed sending messages, but task 0 is still expecting to
receive more. Task 0 was expecting 2500 messages but only got 2400, so it's still
waiting for 100 messages. Let's see how many messages each of the other tasks
are sending. To do this, we'll look at the global variables First_Line and Last_Line.
We can get the values of First_Line and Last_Line for each task by selecting
them in the Global Data area.

PLACE the mouse cursor over the desired task number label (not the box)
in the Global Data area.

PRESS the right mouse button.

M a pop-up menu appears.

SELECT the Show All option.

M The First_Line and Last_Line variables are tracked and
displayed in the window below the task button.

Repeat the steps above for each task.

Figure 9. Global Data Window

As you can see...

� Task 1 is processing lines 0 through 16
� Task 2 is processing lines 16 through 32
� Task 3 is processing lines 32 through 48.

So what happened to lines 48 and 49? Since each row is 50 pixels wide, and we're
missing 2 rows, that explains the 100 missing messages. As you've probably
already figured out, the division of the total number of lines by the number of tasks
is not integral, so we lose part of the result when it's converted back to an integer.
Where each task is supposed to be processing 16 and two-thirds lines, it's only
handling 16.

 Chapter 3. Don't Panic 67

Fix the Problem
So how do we fix this problem permanently? As we mentioned above, there are
many ways:

� We could have the last task always go to the last row as we did in the
debugger.

� We could have the program refuse to run unless the number of tasks are
evenly divisible by the number of pixels (a rather harsh solution).

� We could have tasks process the complete row when they have responsibility
for half or more of a row.

| In our case, since Task 1 was responsible for 16 and two thirds rows, it would
| process rows 0 through 16. Task 2 would process 17-33 and Task 3 would process
| 34-49. The way we're going to solve it is by creating blocks, with as many rows as
| there are servers. Each server is responsible for one row in each block (the offset
| of the row in the block is determined by the server's task number). The fixed code
| is shown in the following example. Note that this is only part of the program. You
| can access the entire program from the IBM RS/6000 World Wide Web site. See
| “Getting the Books and the Examples Online” on page xviii for more information.

/\\
\
\ Ray trace program with bug corrected
\
\ To compile:
\ mpcc -g -o rtrace_good rtrace_good.c
\
\
\ Description:
\ This is part of a sample program that partitions N tasks into
\ two groups, a collect node and N - 1 compute nodes.
\ The responsibility of the collect node is to collect the data
\ generated by the compute nodes. The compute nodes send the
\ results of their work to the collect node for collection.
\
\ The bug in the original code was due to the fact that each processing
\ task determined the rows to cover by dividing the total number of
\ rows by the number of processing tasks. If that division was not
\ integral, the number of pixels processed was less than the number of
\ pixels expected by the collection task and that task waited
\ indefinitely for more input.
\
\ The solution is to allocate the pixels among the processing tasks
\ in such a manner as to ensure that all pixels are processed.
\
\\/

compute_pixels(int taskid, int numtask)
{
 int offset;
 int row, col;
 int pixel_data[2];
 MPI_Status stat;

printf("Compute #%d: checking in\n", taskid);

First_Line = (taskid - 1);
/\ First n-1 rows are assigned \/
/\ to processing tasks \/

offset = numtask - 1;

68 IBM PE for AIX V2R4.0: Hitchhiker's Guide

/\ Each task skips over rows \/
/\ processed by other tasks \/

/\ Go through entire pixel buffer, jumping ahead by numtask-1 each time \/
for (row = First_Line; row < PIXEL_HEIGHT; row += offset)
for (col = ð; col < PIXEL_WIDTH; col ++)

 {
pixel_data[ð] = row;
pixel_data[1] = col;
MPI_Send(pixel_data, 2, MPI_INT, ð, ð, MPI_COMM_WORLD);

 }
printf("Compute #%d: done sending. ", taskid);

 return;
}

This program is the same as the original one except for the loop in
compute_pixels . Now, each task starts at a row determined by its task number
and jumps to the next block on each iteration of the loop. The loop is terminated
when the task jumps past the last row (which will be at different points when the
number of rows is not evenly divisible by the number of servers).

What's the Hangup?
The symptom of the problem in the rtrace_bug program was a hang. Hangs can
occur for the same reasons they occur in serial programs (in other words, loops
without exit conditions). They may also occur because of message passing
deadlocks or because of some subtle differences between the parallel and
sequential environments. The Visualization Tool (VT), of the IBM Parallel
Environment for AIX, can show you what's going on in the program when the hang
occurs, and this information can be used with the parallel debugger to identify the
specific cause of the hang.

However, sometimes analysis under the debugger indicates that the source of a
hang is a message that was never received, even though it's a valid one, and even
though it appears to have been sent. In these situations, the problem is probably
due to lost messages in the communication subsystem. This is especially true if the
lost message is intermittent or varies from run to run. This is either the program's
fault or the environment's fault. Before investigating the environment, you should
analyze the program's safety with respect to MPI. A safe MPI program is one that
does not depend on a particular implementation of MPI.

Although MPI specifies many details about the interface and behavior of
communication calls, it also leaves many implementation details unspecified (and it
doesn't just omit them, it specifies that they are unspecified.) This means that
certain uses of MPI may work correctly in one implementation and fail in another,
particularly in the area of how messages are buffered. An application may even
work with one set of data and fail with another in the same implementation of MPI.
This is because, when the program works, it has stayed within the limits of the
implementation. When it fails, it has exceeded the limits. Because the limits are
unspecified by MPI, both implementations are valid. MPI safety is discussed further
in Appendix B, “MPI Safety” on page 115.

Once you have verified that the application is MPI-safe, your only recourse is to
blame lost messages on the environment. If the communication path is IP, use the
standard network analysis tools to diagnose the problem. Look particularly at mbuf
usage. You can examine mbuf usage with the netstat command:

$ netstat -m

 Chapter 3. Don't Panic 69

If the mbuf line shows any failed allocations, you should increase the thewall value
of your network options. You can see your current setting with the no command:

$ no -a

The value presented for thewall is in K Byte s. You can use the no command to
change this value. For example,

$ no -o thewall=16384

sets thewall to 16 M Bytes.

Message passing between lots of remote hosts can tax the underlying IP system.
Make sure you look at all the remote nodes, not just the home node. Allow lots of
buffers. If the communication path is user space (US), you'll need to get your
system support people involved to isolate the problem.

 Other Hangups
One final cause for no output is a problem on the home node (POE is hung).
Normally, a hang is associated with the remote hosts waiting for each other, or for
a termination signal. POE running on the home node is alive and well, waiting
patiently for some action on the remote hosts. If you type <Ctrl-c> on the POE
console, you will be able to successfully interrupt and terminate the set of remote
hosts. See IBM Parallel Environment for AIX: Operation and Use, Vol. 1 for
information on the poekill command.

There are situations where POE itself can hang. Usually these are associated with
large volumes of input or output. Remember that POE normally gets standard
output from each node; if each task writes a large amount of data to standard
output, it may chew up the IP buffers on the machine running POE, causing it (and
all the other processes on that machine) to block and hang. The only way to know
that this is the problem is by seeing that the rest of the home node has hung. If you
think that POE is hung on the home node, your only solution may be to kill POE
there. Press <Ctrl-c > several times, or use the command kill -9 . At present, there
are only partial approaches to avoiding the problem; allocate lots of mbufs on the
home node, and don't make the send and receive buffers too large.

 Bad Output
 Bad output includes unexpected error messages. After all, who expects error
messages or bad results (results that are not correct).

 Error Messages
 The causes of error messages are tracked down and corrected in parallel
programs using techniques similar to those used for serial programs. One
difference, however, is that you need to identify which task is producing the
message, if it's not coming from all tasks. You can do this by setting the
MP_LABELIO environment variable to yes , or using the -labelio yes command line
parameter. Generally, the message will give you enough information to identify the
location of the problem.

You may also want to generate more error and warning messages by setting the
MP_EUIDEVELOP environment variable to yes . when you first start running a new
parallel application. This will give you more information about the things that the
message passing library considers errors or unsafe practices.

70 IBM PE for AIX V2R4.0: Hitchhiker's Guide

 Bad Results
 Bad results are tracked down and corrected in a parallel program in a fashion
similar to that used for serial programs. The process, as we saw in the previous
debugging exercise, can be more complicated because the processing and control
flow on one task may be affected by other tasks. In a serial program, you can
follow the exact sequence of instructions that were executed and observe the
values of all variables that affect the control flow. However, in a parallel program,
both the control flow and the data processing on a task may be affected by
messages sent from other tasks. For one thing, you may not have been watching
those other tasks. For another, the messages could have been sent a long time
ago, so it's very difficult to correlate a message that you receive with a particular
series of events.

Debugging and Threads
So far, we've talked about debugging normal old serial or parallel programs, but
you may want to debug a threaded program (or a program that uses threaded
libraries). If this is the case, there are a few things you should consider.

Before you do anything else, you first need to understand the environment you're
working in. You have the potential to create a multi-threaded application, using a
multi-threaded library, that consists of multiple distributed tasks. As a result, finding
and diagnosing bugs in this environment may require a different set of debugging
techniques that you're not used to using. Here are some things to remember.

When you attach to a running program, all the tasks you selected in your program
will be stopped at their current points of execution. Typically, you want to see the
current point of execution of your task. This stop point is the position of the
program counter, and may be in any one of the many threads that your program
may create OR any one of the threads that the MPI library creates. With
non-threaded programs it was adequate to just travel up the program stack until
you reached your application code (assuming you compiled your program with the
-g option). But with threaded programs, you now need to traverse across other
threads to get to your thread(s) and then up the program stack to view the current
point of execution of your code.

If you're using the threaded MPI library, the library itself will create a set of threads
to process message requests. When you attach to a program that uses the MPI
library, all of the threads associated with the POE job are stopped, including the
ones created and used by MPI.

It's important to note that to effectively debug your application, you must be aware
of how threads are dispatched. When a task is stopped, all threads are also
stopped. Each time you issue an execution command such as step over , step
into , step return , or continue , all the threads are released for execution until the
next stop (at which time they are stopped, even if they haven't completed their
work). This stop may be at a breakpoint you set or the result of a step. A single
step over an MPI routine may prevent the MPI library threads from completely
processing the message that is being exchanged.

For example, if you wanted to debug the transfer of a message from a send node
to a receiver node, you would step over an MPI_SEND() in your program on task 1,
switch to task 2, then step over the MPI_RECV() on task 2. Unless the MPI threads
on task 1 and 2 have the opportunity to process the message transfer, it will appear

 Chapter 3. Don't Panic 71

that the message was lost. Remember...the window of opportunity for the MPI
threads to process the message is brief, and is only open during the step over .
Otherwise, the threads will be stopped. Longer-running execution requests, of both
the sending and receiving nodes, allow the message to be processed and,
eventually, received.

For more information on debugging threaded and non-threaded MPI programs with
the PE debugging tools, (pdbx and pedb), see IBM Parallel Environment for AIX:
Operation and Use, Vol. 2, which provides more detailed information on how to
manage and display threads.

For more information on the threaded MPI library, see IBM Parallel Environment for
AIX: MPI Programming and Subroutine Reference.

Keeping an Eye on Progress
 Often, once a program is running correctly, you'd like to keep tabs on its progress.
Frequently, in a sequential program, this is done by printing to standard output.
However, if you remember from Chapter 1, standard output from all the tasks is
interleaved, and it is difficult to follow the progress of just one task. If you set the
MP_STDOUTMODE environment variable to ordered , you can't see how the
progress of one task relates to another. In addition, normal output is not a blocking
operation. This means that a task that writes a message will continue processing so
that by the time you see the message, the task is well beyond that point. This
makes it difficult to understand the true state of the parallel application, and it's
especially difficult to correlate the states of two tasks from their progress messages.
One way to synchronize the state of a parallel task with its output messages is to
use the Program Marker Array (pmarray).

Note: If you are unfamiliar with the Program Marker Array, you may find it helpful
to refer to IBM Parallel Environment for AIX: Operation and Use, Vol. 1 for
more information.

The Program Marker Array consists of two components: the display function,
pmarray , and the instrumentation call, mpc_marker . When pmarray is running, it
shows a display that looks like Figure 10, below.

Figure 10. Program Marker Array

Each row of colored squares is associated with one task, which can change the
color of any of the lights in its row with the mpc_marker call. The declaration
looks like this in Fortran:

MP_MARKER (INTEGER LIGHT, INTEGER COLOR, CHARACTER STRING)

And it looks like this in C:

72 IBM PE for AIX V2R4.0: Hitchhiker's Guide

void mpc_marker(int light, int color, char \str)

This call accepts two integer values and a character string. The first parameter,
light , controls which light in the pmarray is being modified. You can have up to 100
lights for each task. The second parameter, color , specifies the color to which you
are setting the light. There are 100 colors available. The third parameter is a string
of up to 80 characters that is a message shown in the text area of the pmarray
display.

Before you start the parallel application, you need to tell pmarray how many lights
to use, as well as how many tasks there will be. You do this with the
MP_PMLIGHTS and the MP_PROCS environment variables.

$ export MP_PROCS=4
$ export MP_PMLIGHTS=16

If the parallel application is started from an X-Windows environment where
pmarray is running, the output square of pmarray , for the task that made the call
in the position specified by the light parameter, changes to the color specified by
the color parameter. The character string is displayed in a text output region for the
task. In addition to providing a quick graphical representation of the progress of the
application, the output to pmarray is synchronized with the task that generates it.
The task will not proceed until it has been informed that the data has been sent to
pmarray . This gives you a much more current view of the state of each task.

The example below shows how pmarray can be used to track the progress of an
application. This program doesn't do anything useful, but there's an inner loop that's
executed 16 times, and an outer loop that is executed based on an input
parameter. On each pass through the inner loop, the mpc_marker call is made to
color each square in the task's pmarray row according to the color of the index for
the outer loop. On the first pass through the inner loop, each of the 16 squares will
be colored with color 0. On the second pass, they will be colored with color 1. On
each pass through the outer loop, the task will be delayed by the number of
seconds equal to its task number. Thus, task 0 will quickly finish but task 4 will take
a while to finish. The color of the squares for a task indicate how far they are
through the outer loop. The square that is actually changing color is the position in
the inner loop. In addition, a text message is updated on each pass through the
outer loop.

/\\
\
\ Demonstration of use of pmarray
\
\ To compile:
\ mpcc -g -o use_pmarray use_pmarray.c
\
\\/

#include<stdlib.h>
#include<stdio.h>
#include<mpi.h>
#include<time.h>

int main(int argc, char \\argv)
{
int i, j;
int inner_loops = 16, outer_loops;

 int me;
 char buffer[256];

 Chapter 3. Don't Panic 73

time_t start, now;

 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&me;);;

if(argc>1) outer_loops = atoi(argv[1]);
if(outer_loops<1) outer_loops = 16;

 for(i=ð;i<outer_loops;i++)
 {

/\ Create message that will be shown in pmarray text area \/
sprintf(buffer,"Task %d performing loop %d of %d",me,i,outer_loops);

 printf("%s\n",buffer);
 for(j=ð;j<inner_loops;j++)
 {

/\ pmarray light shows which outer loop we are in \/
/\ color of light shows which inner loop we are in \/
/\ text in buffer is created in outer loop \/

 mpc_marker(i,5\j,buffer);
 }

/\ Pause for a number of seconds determined by which \/
/\ task this is. sleep(me) cannot be used because \/
/\ underlying communication mechanism uses a regular \/
/\ timer interrupt that interrupts the sleep call \/
/\ Instead, we'll look at the time we start waiting \/
/\ and then loop until the difference between the \/
/\ time we started and the current time is equal to \/
/\ the task id \/

 time(&start);
 time(&now);
 while(difftime(now,start)<(double)me)
 {
 time(&now);
 }
 }
 MPI_Finalize();
 return ð;
}

Before running this example, you need to start pmarray , telling it how many lights
to use. You do this with the MP_PMLIGHTS environment variable.

In our example, if we wanted to run the program with eight outer loops, we would
set MP_PMLIGHTS to 8 before running the program.

Although it's not as freeform as print statements, or as extensible, pmarray allows
you to send three pieces of information (the light number, the color, and the text
string) back to the home node for presentation. It also ensures that the presentation
is synchronized as closely to the task state as possible. We recommend that if you
use pmarray for debugging, you define a consistent strategy for your application
and stick with it. For example, you may want to use color to indicate state
(initializing, active, disabled, terminated), and light number to indicate module or
subsystem. You can configure pmarray with as many lights as will fit on the
display.

74 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Chapter 4. So Long And Thanks For All The Fish

So far, we've talked about getting PE working, creating message passing parallel
programs, debugging problems and debugging parallel applications. When we get a
parallel program running so that it gives us the correct answer, we're done. Right?
Not necessarily. In this area parallel programs are just like sequential programs;
just because they give you the correct answer doesn't mean they're doing it in the
most efficient manner. For a program that's relatively short running or is run
infrequently, it may not matter how efficient it is. But for a program that consumes a
significant portion of your system resources, you need to make the best use of
those resources by tuning its performance.

In general, performance tuning can be a complicated task. The Hitchhiker's Guide
to the Galaxy tells us that dolphins were the most intelligent life form on the Earth.
When the Earth was being destroyed to make way for an Interstellar Bypass, it
seems fitting that the dolphins were the only species to leave the planet. Their
parting words, to a few select humans, were “So long and thanks for all the fish.”
The people that tune the performance of applications regard the original developers
of their code in much the same way (even if they, themselves, were the original
developers); they appreciate the working code, but now they've got more complex
things to do, that are significantly different than code development.

Tuning the Performance of a Parallel Application
There are two approaches to tuning the performance of a parallel application.

� You can tune a sequential program and then parallelize it.

With this approach, the process is the same as for any sequential program, and
you use the same tools; prof , gprof , and tprof . In this case, the parallelization
process must take performance into account, and should avoid anything that
adversely affects it.

� You can parallelize a sequential program and then tune the result.

With this approach, the individual parallel tasks are optimized together, taking
both algorithm and parallel performance into account simultaneously.

Note: It may not be possible to use some tools in a parallel environment in the
same way that they're used in a sequential environment. This may be
because the tool requires root authority and POE restricts the root ID from
running parallel jobs. Or, it may be because, when the tool is run in parallel,
each task attempts to write into the same files, thus corrupting the data.
tprof is an example of a tool that falls into both of these categories.

A report from Cornell University found that the performance results obtained by
these techniques yielded comparable results. The difference was in the tools that
were used in each of the approaches, and how they were used.

With either approach, you use the standard sequential tools in the traditional
manner. When an application is tuned and then parallelized, you need to observe
the communication performance, how it affects the performance of each of the
individual tasks, and how the tasks affect each other. For example, does one task
spend a lot of time waiting for messages from another? If so, perhaps the
workload needs to be rebalanced. Or if a task starts waiting for a message long

 Copyright IBM Corp. 1996, 1998 75

before it arrives, perhaps it could do more algorithmic processing before waiting for
the message. When an application is parallelized and then tuned, you need a way
to collect the performance data in a manner that includes both communication and
algorithmic information. That way, if the performance of a task needs to be
improved, you can decide between tuning the algorithm or tuning the
communication.

This section will not deal with standard algorithmic tuning techniques. Rather, we
will discuss some of the ways the PE can help you tune the parallel nature of your
application, regardless of the approach you take. To illustrate this, we'll use two
examples.

How Much Communication is Enough?
A significant factor that affects the performance of a parallel application is the
balance between communication and workload. In some cases, the workload is
unevenly distributed or is duplicated across multiple tasks. Ideally, you'd like perfect
balance among the tasks but doing so may require additional communication that
actually makes the performance worse. We discussed this briefly in “Duplication
Versus Redundancy” on page 38 when we said that sometimes it's better to have
all the tasks do the same thing rather than have one do it and try to send the
results to the rest.

| An example of where the decision is not so clear cut is the matrix inversion
| program in Chapter 2, “The Answer is 42” on page 25. We showed you how to
| start making the sequential program into a parallel one by distributing the element
| calculation once the determinant was found. What we didn't show you was how
| poor a start this actually is. Part of the program is shown below. You can access
| the complete program from the IBM RS/6000 World Wide Web site. See “Getting
| the Books and the Examples Online” on page xviii for more information.

\\\
\
\ Matrix Inversion Program - First parallel implementation
\
\ To compile:
\ mpcc -g -o inverse_parallel inverse_parallel.c
\
\\\
 {
/\ There are only 2 unused rows/columns left \/

/\ Find the second unused row \/
for(row2=row1+1;row2<size;row2++)
 {
 for(k=ð;k<depth;k++)
 {
 if(row2==used_rows[k]) break;
 }

if(k>=depth) /\ this row is not used \/
 break;
 }
assert(row2<size);

/\ Find the first unused column \/
for(col1=ð;col1<size;col1++)
 {
 for(k=ð;k<depth;k++)

76 IBM PE for AIX V2R4.0: Hitchhiker's Guide

 {
 if(col1==used_cols[k]) break;
 }

if(k>=depth) /\ this column is not used \/
 break;
 }
assert(col1<size);

/\ Find the second unused column \/
for(col2=col1+1;col2<size;col2++)
 {
 for(k=ð;k<depth;k++)
 {
 if(col2==used_cols[k]) break;
 }

if(k>=depth) /\ this column is not used \/
 break;
 }
assert(col2<size);

/\ Determinant = m11\m22-m12\m21 \/
return matrix[row1][col1]\matrix[row2][col2]-matrix
[row1][col2]\matrix[row2][col1];
 }

/\ There are more than 2 rows/columns in the matrix being processed \/
/\ Compute the determinant as the sum of the product of each element \/
/\ in the first row and the determinant of the matrix with its row \/
/\ and column removed \/
total = ð;

used_rows[depth] = row1;
 for(col1=ð;col1<size;col1++)
 {
 for(k=ð;k<depth;k++)
 {
 if(col1==used_cols[k]) break;
 }

if(k<depth) /\ This column is used -- skip it\/
 continue;

used_cols[depth] = col1;
total += sign\matrix[row1][col1]\determinant(matrix,size,used_rows,

 used_cols,depth+1);
 sign=(sign==1)?-1:1;
 }
 return total;

 }

void print_matrix(FILE \ fptr,float \\ mat,int rows, int cols)
{
 int i,j;
 for(i=ð;i<rows;i++)
 {
 for(j=ð;j<cols;j++)
 {
 fprintf(fptr,"%1ð.4f ",mat[i][j]);
 }
 fprintf(fptr,"\n");
 }
}

float coefficient(float \\matrix,int size, int row, int col)
{

 Chapter 4. So Long And Thanks For All The Fish 77

 float coef;
int \ ur, \uc;

ur = malloc(size\sizeof(matrix));
uc = malloc(size\sizeof(matrix));

 ur[ð]=row;
 uc[ð]=col;
coef = (((row+col)%2)?-1:1)\determinant(matrix,size,ur,uc,1);

 return coef;
}

To illustrate the problem, run the parallel matrix inversion program,
inverse_parallel.c with tracing turned on, and then run VT on the resulting trace
file.

$ mpcc -g -o inverse_parallel inverse_parallel.c
$ inverse_parallel -tracelevel 9 -procs 9
$ vt -tracefile inverse_parallel.trc

Select the Interprocessor Communication, Source Code, Message Matrix and the
System Summary displays and begin playing the trace file. You'll see a significant
amount of CPU activity, both kernel and user, with very little idle of wait time on the
System Summary display but no communication activity for a while. Finally, you'll
see messages send back to the last task as each server sends its results back. So
what's going on? Because VT only records source code location for message
library calls, we can't use it to locate where the time is being spent. However, we
can go back to gprof .

Recompile inverse_parallel.c with the -pg flag and re-run it. Run gprof on the
monitor files for tasks 0-7 (we know task 8 just collects the results so we aren't that
concerned with its performance).

$ mpcc -g -pg -o inverse_parallel inverse_parallel.c
$ inverse_parallel -tracelevel 9 -procs 9
$ gprof inverse_parallel gmon.out[ð-7]

% cumulative self self total
time seconds seconds calls ms/call ms/call name
8ð.3 9.81 9.81 72 136.25 136.25 .determinant [1]
8.8 1ð.89 1.ð8 .__mcount [5]
3.6 11.33 ð.44 .kickpipes [6]
ð.9 11.44 ð.11 .readsocket [7]
ð.ð 12.21 ð.ðð 64 ð.ðð 136.25 .coefficient [4]
ð.ð 12.21 ð.ðð 8 ð.ðð 1226.25 .main [2]

We see that we spend a lot of time in determinant , first to compute the
determinant for the entire matrix and then in computing the determinant as part of
computing the element values. That seems like a good place to start optimizing.

This algorithm computes the determinant of a matrix by using the determinants of
the submatrices formed by eliminating the first row and a column from the matrix.
The result of this recursion is that, eventually, the algorithm computes the
determinants of all the 2 by 2 matrices formed from the last two rows and each
combination of columns. This isn't so bad but the same 2 by 2 matrix formed in this
manner is computed n-2 times (once for each column except the 2 from which it is
formed) each time a determinant is computed and there are n*(n-1)/2 such
matrices. If the 2 by 2 matrix determinants can be captured and re-used, it would
provide some improvements.

78 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Not only is this a good approach for optimizing a sequential program, but
parallelism capitalizes on this approach as well. Because the 2 by 2 determinants
are independent, they can be computed in parallel and distributed among the tasks.
Each task can take one of the columns and compute the determinants for all the
matrices formed by that column and subsequent columns. Then the determinants
can be distributed among all the tasks and used to compute the inverse elements.

| The following example shows only the important parts of the program. You can
| access the complete program from the IBM RS/6000 World Wide Web site. See
| “Getting the Books and the Examples Online” on page xviii for more information.

Here's the call to partial determinant:

/\\
\
\ Matrix Inversion Program - First optimized parallel version
\
\ To compile:
\ mpcc -g -o inverse_parallel_fast inverse_parallel_fast.c
\
\\/

/\ Compute determinant of last two rows \/
pd = partial_determinant(matrix,rows);
/\ Everyone computes the determinant (to avoid message transmission) \/

 determ=determinant(matrix,rows,used_rows,used_cols,ð,pd);

And here's the partial determinant call:

}

/\ Compute the determinants of all 2x2 matrices created by combinations \/
/\ of columns of the bottom 2 rows \/
/\ partial_determinant[i] points to the first determinant of all the 2x2\/
/\ matricies formed by combinations with column i. There are n-i-1 \/
/\ such matricies (duplicates are eliminated) \/
float \\partial_determinant(float \\matrix,int size)
{
int col1, col2, row1=(size-2), row2=(size-1);

 int i,j,k;
 int terms=ð;
float \\partial_det, /\ pointers into the 2x2 determinants\/

/\ by column \/
 \buffer, /\ the 2x2 determinants \/
 \my_row; /\ the determinants computed by this \/
 /\ task \/
int \ recv_counts, \ recv_displacements; /\ the size and offsets for the \/

/\ determinants to be received from \/
/\ the other tasks \/

terms = (size-1)\(size)/2; /\ number of combinations of columns \/

/\ Allocate work areas for paritial determinants and message passing, \/
partial_det = (float \\) malloc((size-1)\sizeof(\partial_det));
buffer = (float \) malloc(terms\sizeof(buffer));
my_row = (float \) malloc((size-me-1)\sizeof(my_row));
recv_counts = (int \) malloc(tasks\sizeof(\recv_counts));
recv_displacements = (int \) malloc(tasks\sizeof(\recv_displacements));

/\ the tasks after the column size - 2 don't have to do anything \/
 for(i=tasks-1;i>size-2;i--)
 {
 recv_counts[i]=ð;

 Chapter 4. So Long And Thanks For All The Fish 79

 recv_displacements[i]=terms;
 }
/\ all the other tasks compute the determinants for combinations \/
/\ with its column \/

 terms--;
 for(i=size-2;i>=ð;i--)
 {
 partial_det[i]=&(buffer[terms]);
 recv_displacements[i]=terms;
 recv_counts[i]=size-i-1;
 terms-=(size-i);
 }
 for(j=ð;j<(size-me-1);j++)
 {
 my_row[j]=matrix[row1][me]\matrix[row2][me+j+1]
 -matrix[row1][me+j+1]\matrix[row2][me];
 }

/\ Now everybody sends their columns determinants to everybody else \/
/\ Even the tasks that did not compute determinants will get the \/
/\ results from everyone else (doesn't sound fair, does it?) \/

 MPI_Allgatherv(my_row,
 ((size-me-1)>ð)?(size-me-1):ð,
 MPI_REAL,
 buffernts,
 recv_displacements,
 MPI_REAL,MPI_COMM_WORLD);

/\ Free up the work area and return the array of pointers into the \/
 /\ determinants \/
 free(my_row);
 return partial_det;
}

Now when we look at the VT trace for this version of the program, we can see the
initial communication that occurs as the tasks cooperate in computing the partial
determinants. The question is whether the cost of the additional communication
offsets the advantage of computing the 2 by 2 determinants in parallel. In this
example, it may not be because the small message sizes (the largest is three times
the size of a float). Act) ipf:(compact)">s the matrix size increases, the cost of
computing the 2 by 2 determinants will increase with the square of n (the size of
the matrix) but the cost of computing the determinants in parallel will increase with
n (each additional dimension increases the work of each parallel task by only one
additional 2 by 2 matrix) so, eventually, the parallel benefit will offset the
communication cost.

Tuning the Performance of Threaded Programs
There are some things you need to consider when you want to get the maximum
performance out of your program.

� Two environment variables affect the overhead of an MPI call in the threaded
library:

 – MP_SINGLE_THREAD=[NO|YES]
 – MP_EUIDEVELOP=[NO|YES|DEB|NOC]

A program that has only one MPI communication thread may set the environment
variable MP_SINGLE_THREAD=YES before calling MPI_Init. This will avoid some
locking which is otherwise required to maintain consistent internal MPI state. The

80 IBM PE for AIX V2R4.0: Hitchhiker's Guide

program may have other threads that do computation or other work, as long as
they do not make MPI calls.

| The MP_EUIDEVELOP environment variable lets you control how much checking is
| done when you run your program. Eliminating checking altogether (setting
| MP_EUIDEVELOP to NOC) provides performance (latency) benefits, but may
| cause critical information to be unavailable if your executable hangs due to
| message passing errors. For more information on MP_EUIDEVELOP and other
| POE environment variables, see IBM Parallel Environment for AIX: Operation and
| Use, Vol. 1.

� Generally, on a uniprocessor, one should expect the performance of the signal
library to be somewhat better than the thread library, since the thread library
must make additional checks to insure thread safety (even if the user has only
one communication thread). On an SMP, it may be possible to realize overlap
of computation and communication using the thread library that is difficult if not
impossible to achieve with the signal library. In that case, a task may run faster
with the threaded library.

� Programs (threaded or non-threaded) that use the threaded MPI library can be
profiled by using the -pg flag on the compilation and linking step of the
program.

The profile results (gmon.out) will only contain a summary of the information
from all the threads per task together. Viewing the data using gprof or Xprofiler
is limited to only showing this summarized data on a per task basis, not per
thread.

For more information on profiling, see IBM Parallel Environment for AIX: Operation
and Use, Vol. 2.

For more information on MPI tracing and visualization using VT, see IBM Parallel
Environment for AIX: Operation and Use, Vol. 2. Support is included for thread safe
tracing within the threaded MPI library and limited visualization using VT.

Why is this so slow?
So, you've got a serial program and you want it to execute faster. In this situation,
it's best not to jump into parallelizing your program right away. Instead, you start by
tuning your serial algorithm.

The program we'll use in this next example approximates the two-dimensional
Laplace equation and, in our case, uses a 4-point stencil.

Our algorithm is very straight-forward; for each array element, we'll assign that
element the average of the four elements that are adjacent to it (except the rows
and columns that represent the boundary conditions of the problem).

Note: You may find it helpful to refer to In Search of Clusters by Gregory Phister
for more information on this problem and how to parallelize it. See “Related
Non-IBM Publications” on page xvi.

Note that the 4-point stencil program is central to this entire section, so you may
want to spend some time to understand how it works.

 Chapter 4. So Long And Thanks For All The Fish 81

The first step is to compile our serial program. However, before you do this, be
sure you have a copy of stencil.dat in your program directory, or run the init
program to generate one. Once we've done this, we can compile our serial program
with the xlf command:

$ xlf -O2 naive.f -o naive

Next, we need to run the program and collect some information to see how it
performs. You can use the UNIX time command to do this:

$ time naive

The following table shows the result:

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11m1.94s 1000x1000

Note: The figures in the table above, as well as the others in this section, provide
results that were gathered on an IBM RS/6000 SP. Your execution time
may vary, depending on the system you're using.

Looking at these results, we can see that there's some room for improvement,
especially if we scale the problem to a much larger array. So, how can we improve
the performance?

 Profile it
The first step in tuning our program is to find the areas within it that execute most
of the work. Locating these compute-intensive areas within our program lets us
focus on the areas that give us the most benefit from tuning. How do we find these
areas? The best way to find them is to profile your program.

When we profile our program, we need to compile it with the -pg flag to generate
profiling data, like this:

$ xlf -pg -O2 naive.f -o naive

The -pg flag compiles and links the executable so that when we run the program,
the performance data gets written to output.

Now that we've compiled our program with the -pg flag, let's run it again to see
what we get:

$ naive

This generates a file called gmon.out in the current working directory. We can look
at the contents of gmon.out with the Xprofiler profiling tool. To start Xprofiler, we'll
use the xprofiler command, like this:

$ xprofiler naive gmon.out

The Xprofiler main window appears, and in this window you'll see the function call
tree . The function call tree is a graphical representation of the functions within your
application and their inter-relationships. Each function is represented by a green,
solid-filled box called a function box. In simple terms, the larger this box, the
greater percentage of the total running time it consumes. So, the largest box
represents the function doing the most work. The calls between functions are

82 IBM PE for AIX V2R4.0: Hitchhiker's Guide

represented by blue arrows drawn between them call arcs. The arrowhead of the
call arc points to the function that is being called. The function boxes and call arcs
that belong to each library in your application appear within a fenced-in area called
a cluster box. For the purposes of this section, we'll remove the cluster boxes from
the display.

For more information on Xprofiler, see IBM Parallel Environment for AIX: Operation
and Use, Vol. 2.

PLACE the mouse cursor over the Filter menu.

CLICK the left mouse button

M The Filter menu appears.

SELECT the Remove All Library Calls option .

M The library calls disappear from the function call tree.

PLACE the mouse cursor over the Filter menu.

CLICK the left mouse button.

M The Filter menu appears.

SELECT the Uncluster Functions option.

M The functions expand to fill the screen.

Locate the largest function box in the function call tree. We can get the name of the
function by looking a little more closely at it:

PLACE the mouse cursor over the View menu.

M The View menu appears.

PLACE the mouse cursor over the Overview option.

CLICK the left mouse button.

M The Overview Window appears.

 Chapter 4. So Long And Thanks For All The Fish 83

Figure 11. figure caption

The Overview Window includes a light blue highlight area that lets you zoom in and
out of specific areas of the function call tree. To take a closer look at the largest
function of naive:

PLACE the mouse cursor over the lower left corner of the blue
highlight area. You know your cursor is over the corner
when the cursor icon changes to a right angle with an arrow
pointing into it.

PRESS and HOLD the left mouse button, and drag it diagonally upward and to
the right (toward the center of the sizing box) to shrink the
box. When it's about half its original size, release the mouse
button.

M The corresponding area of the function call tree, in the
main window, appears magnified.

If the largest function wasn't within the highlight area, it didn't get magnified. If this
was the case, you'll need to move the highlight area:

PLACE the left mouse button.

PRESS and HOLD the left mouse button.

DRAG the highlight area, using the mouse, and place it over the
largest function. Release the mouse button.

M The largest function appears magnified in the function call
tree.

84 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Just below the function is its name, so we can now see that most of the work is
being done in the compute_stencil() subroutine, so this is where we should focus
our attention.

It's important to note that the programming style you choose can influence your
program's performance just as much as the algorithm you use. In some cases, this
will be clear by looking at the data you collect when your program executes. In
other cases, you will know this from experience. There are many books that cover
the subject of code optimization, many of which are extremely complex. See
“Related IBM Publications” on page xvi.

As far as we're concerned, the goal here is not to use every optimization trick that's
ever been thought up. Instead, we should focus on some basic techniques that can
produce the biggest performance boost for the time and effort we spend.

The best way to begin is to look at our use of memory (including hardware data
cache) as well as what we're doing in the critical section of our code. So.....let's
look at our code:

iter_count = ð
1ðð CONTINUE
local_err = ð.ð
iter_count = iter_count + 1

DO i=1, m-2
DO j=1, n-2
old_value = stencil(i,j)

stencil(i,j) = (stencil(i-1, j) +
1 stencil(i+1, j) +
2 stencil(i ,j-1) +
3 stencil(i ,j+1)) / 4
local_err = MAX(local_err,ABS(old_value-stencil(i,j)))
END DO
END DO
IF(MOD(iter_count,1ðð).EQ.ð)PRINT \, iter_count, local_err
IF (close_enough.LT.local_err) GOTO 1ðð
PRINT \, "convergence reached after ", iter_count, " iterations."

By looking at the two DO loops above, we can see that our compute subroutine is
traversing our array first across rows, and then down columns. This program must
have been written by some alien being from the planet C because Fortran arrays
are stored in column major form rather than row major form.

The first improvement we should make is to reorder our loops so that they traverse
down columns rather than across rows. This should provide a reasonable
performance boost. Note that it's not always possible to change the order of loops;
it depends on the data referenced within the loop body. As long as the values used
in every loop iteration don't change when the loops are reordered, then it's safe to
change their order. In the example we just looked at, it was safe to reorder the
loops, so here's what the revised program looks like. Notice that all we did was
swap the order of the loops.

DO j=1, n-2
DO i=1, m-2
old_value = stencil(i,j)

 Chapter 4. So Long And Thanks For All The Fish 85

The second thing we should look at is the type of work that's being done in our
loop. If we look carefully, we'll notice that the MAX and ABS subroutines are called
in each iteration of the loop, so we should make sure these subroutines are
compiled inline. Because these subroutines are intrinsic to our Fortran compiler,
this is already done for us.

$ xlf -O2 reordered.f -o reordered

As before, we need to time our run, like this:

$ time reordered

And here are the results as compared to the original naive version:

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11m1.94s 1000x1000

reordered 1 (single processor) 5m35.38s 1000x1000

As you can see by the results, with just a small amount of analysis, we doubled
performance. And we haven't even considered parallelism yet. However, this still
isn't the performance that we want, especially for very large arrays (the CPU time is
good, but the elapsed time is not).

 Parallelize it
Now that we feel confident that our serial program is reasonably efficient, we
should look at ways to parallelize it. As we discussed in Chapter 2, “The Answer is
42” on page 25, there are many ways to parallelize a program, but the two most
commonly used techniques are functional decomposition and data decomposition.
We'll focus on data decomposition only.

OK, so how do I decompose my data? Let's start by dividing the work across the
processors. Each task will compute a section of an array, and each program will
solve

of the problem when using n processors.

Here's the algorithm we'll use:

� First, divide up the array space across each processor (each task will solve a
subset of the problem independently).

 � Second, loop:

– exchange shared array boundaries
– solve the problem on each sub array
– share a global max

until the global max is within the tolerance.

The section of code for our algorithm looks like this:

86 IBM PE for AIX V2R4.0: Hitchhiker's Guide

iter_count = ð
 1ðð CONTINUE

local_err = ð.ð
iter_count = iter_count + 1
CALL exchange(stencil, m, n)

DO j=1, n-2
DO i=1, m-2

old_value = stencil(i,j)

stencil(i,j) = (stencil(i-1, j) +
1 stencil(i+1, j) +
2 stencil(i ,j-1) +
3 stencil(i ,j+1)) / 4

local_err = MAX(local_err,ABS(old_value-stencil(i,j)))
 END DO
 END DO

CALL MPI_Allreduce(local_err, global_error, 1, MPI_Real,
1 MPI_Max, MPI_Comm_world, ierror)

IF(MOD(iter_count,1ðð).EQ.ð)PRINT \, iter_count, global_error
IF (close_enough.LT.global_error) GOTO 1ðð
PRINT \, "convergence reached after", iter_count, "iterations."

Now, let's compile our parallelized version:

$ mpxlf -ð2 chaotic.f -o chaotic

Next, let's run it and look at the results:

$ export MP_PROCS=4
$ export MP_LABELIO=yes
$ time poe chaotic

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11m1.94s 1000x1000

reordered 1 (single processor) 5m35.38s 1000x1000

chaotic 4 (processors) 2m4.58s 500x500

The results above show that we more than doubled performance by parallelizing
our program. So...we're done, right? Wrong! Since we divided up the work between
four processors, we expected our program to execute four times faster. Why
doesn't it? This could be due to one of several factors that tend to influence overall
performance:

� Message passing overhead
 � Load imbalance
 � Convergence rates

We'll look at some of these factors later. Right now we need to be asking ourselves
something more important; does the parallel program get the same answer?

The algorithm we chose gives us a correct answer, but as you will see, it doesn't
give us the same answer as our serial version. In practical applications, this may
be OK. In fact, it's very common for this to be acceptable in Gauss/Seidel chaotic

 Chapter 4. So Long And Thanks For All The Fish 87

relaxation. But what if it's not OK? How can we tell? What methods or tools can be
used to help us diagnose the problem and find a solution?

Let's take a look...

 Wrong answer!
We've now invested all this time and energy in parallelizing our program using
message passing, so why can't we get the same answer as the serial version of
the program? This is a problem that many people encounter when parallelizing
applications from serial code and can be the result of algorithmic differences,
program defects, or environment changes.

Both the serial and parallel versions of our program give correct answers based on
the problem description, but that doesn't mean they both can't compute different
answers! Let's examine the problem more closely by running the chaotic.f program
under the pedb debugger:

$ pedb chaotic

Figure 12. pedb main window

By looking at the main program, we can see that both versions of our program
(reorder.f and chaotic.f) read in the same data file as input. And after we initialize
our parallel environment, we can see that the compute_stencil subroutine
performs exactly the same step in order to average stencil cells.

Let's run each version under the control of the debugger to view and compare the
results of our arrays.

88 IBM PE for AIX V2R4.0: Hitchhiker's Guide

With this test, we will be looking at the upper left quadrant of the entire array. This
allows us to compare the array subset on task 0 of the parallel version with the
same subset on the serial version.

Here's the serial (reordered) array and parallel (chaotic) array stencils:

500

task0 task1

task2 task3

500

Chaotic

500

500

Reordered

Figure 13. Serial and Parallel Array Stencils

In chaotic.f , set a breakpoint within the call compute_stencil at line 168.

PLACE the mouse cursor on the line 168.

DOUBLE CLICK the left mouse button.

M The debugger sets a breakpoint at line 168. A stop marker
(drawn to look like a stop sign containing an exclamation
point) appears next to the line.

Figure 14. Setting Breakpoint

Note: After you do this, all tasks should have a breakpoint set at line at 168.

Continue to execute the program up to the breakpoints. The program counter
should now be positioned at line 168.

Next, we'll need to examine the array stencil. We can do this by exporting the array
to a file to compare answers.

First, select the variable stencil on task 0.

PLACE the mouse cursor over the stencil variable.

CLICK the left mouse button to highlight the selection.

 Chapter 4. So Long And Thanks For All The Fish 89

Figure 15. Variable List

Bring up the Variable Options menu.

CLICK the right mouse button.

M The Variable Options menu appears.

Figure 16. Variable Options Menu

SELECT Export to File

M The Export window appears.

90 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Figure 17. Export Window

We'll be exporting the subrange 0 through 500 in both dimensions.

Next, rename the file to be created to chaotic.hdf so that we'll be able to
differentiate our results from the two runs. Then, press the Export button to export
the array to an HDF file. Wait for the export to complete and then exit the
debugger.

As you can see, we now have a file called chaotic.hdf in our current working
directory.

Remember that our objective is to compare each of the results, so we should set
our number of processes to 1 and then run the reordered program in the same
way as we did with chaotic .

Note: Remember to only export array indices 0 through 500 in each dimension to
get a valid comparison. Also, remember to rename the output file to
reorder.hdf .

And now for something completely different...let's take a look at our HDF files using
IBM Visualization Data Explorer (this is a separate program product, available from
IBM). Here's what we see:

 Chapter 4. So Long And Thanks For All The Fish 91

Figure 18. Visualizing Reordered HDF File

Figure 19. Visualizing Chaotic HDF File

Well, they look the same, but how do we really know? To find out, we can look at
the reordered and chaotic raw data. They appear to be the same, but if we look
more closely, we can see some differences. Let's take a look at a section of row 2
in the raw data of each.

Here's the reordered data:

92 IBM PE for AIX V2R4.0: Hitchhiker's Guide

(row, col)
(2,31ð) (2,311) (2,312) (2,313) (2,314) (2,315)
9.481421 9.44ðð39 9.398ð28 9.355416 9.312231 9.2685ðð

(2,316) (2,317) (2,318) (2,319) (2,32ð) (2,321)
9.224252 9.179513 9.134314 9.ð88681 9.ð42644 8.99623ð

Here's the chaotic data:

(row, col)
(2,31ð) (2,311) (2,312) (2,313) (2,314) (2,315)
9.481421 9.44ðð39 9.398ð28 9.355416 9.312232 9.2685ð1

(2,316) (2,317) (2,318) (2,319) (2,32ð) (2,321)
9.224253 9.179514 9.134315 9.ð88682 9.ð42645 8.996231

After looking at the raw data, we see that our answers are definitely similar, but
different. Why? We can blame it on a couple of things, but it's mostly due to the
chaotic nature of our algorithm. If we look at how the average is being computed in
the serial version of our program, we can see that within each iteration of our loop,
two array cells are from the old iteration and two are from new ones.

New Stencil (i,j)

Old

Figure 20. How the average is computed in a 4-point stencil

Another factor is that the north and west borders contain old values at the
beginning of each new sweep for all tasks except the northwest corner. The serial
version would use new values in each of those quadrants instead of old values. In
the parallel version of our program, this is true for the interior array cells but not for
our shared boundaries. For more information, you may find In Search of Clusters
by Gregory F. Phister, helpful. See “Related Non-IBM Publications” on page xvi.

OK, now that we know why we get different answers, is there a fix?

Here's the Fix!
So, you've got a serial and parallel program that don't give you the same answers.
One way to fix this is to skew the processing of the global array. We skew the
processing of the array, computing the upper left process coordinate first, then each
successive diagonal to the lower right process coordinate. Each process sends the
east and south boundary to its neighboring task.

 Chapter 4. So Long And Thanks For All The Fish 93

task0 task1

task2 task3

1 2

2 3

Figure 21. Sequence of Array Calculation

The only thing we need to modify in our new program is the message passing
sequence. Prior to the compute_stencil() subroutine, each task receives boundary
cells from its north and west neighbors. Each task then sends its east and south
boundary cells to its neighbor. This guarantees that the array cells are averaged in
the same order as in our serial version.

Here's our modified (skewed) parallel program. It's called skewed.f .

iter_count = ð
 1ðð CONTINUE

local_err = ð.ð
iter_count = iter_count + 1
CALL exch_in(stencil, m, n)

DO j=1, n-2
DO i=1, m-2

old_value = stencil(i,j)

stencil(i,j) = (stencil(i-1, j) +
1 stencil(i+1, j) +
2 stencil(i ,j-1) +
3 stencil(i ,j+1)) / 4

local_err = MAX(local_err,ABS(old_value-stencil(i,j)))
 END DO
 END DO

CALL exch_out(stencil, m, n)
CALL MPI_Allreduce(local_err, global_error, 1, MPI_Real,

1 MPI_Max, MPI_Comm_world, ierror)

IF(MOD(iter_count,1ðð).EQ.ð)PRINT \, iter_count, global_error
IF (close_enough.LT.global_error) GOTO 1ðð
PRINT \, "convergence reached after", iter_count, "iterations."

Now let's run this new version and look at the results:

$ time poe skewed

94 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11m1.94s 1000x1000

reordered 1 (single processor) 5m35.38s 1000x1000

chaotic 4 (processors) 2m4.58s 500x500

skewed 4 (processors) 4m41.87s 500x500

If we do the same array comparison again we can see that we do indeed get the
same results. But, of course, nothing's that easy. By correcting the differences in
answers, we slowed down execution significantly, so the hidden cost here is time.
Hmm... now what do we do?

It's Still Not Fast Enough!
We've got the right answers now, but we still want our program to move faster, so
we're not done yet. Let's look at our new code to see what other techniques we can
use to speed up execution. We'll look at:

� Convergence rates (total number of iterations)
 � Load balance
 � Synchronization/communication time

Let's use VT to see how our program executes:

$ skewed -tracelevel 3

Note: We use trace level 3 to look at message passing traits.

$ vt skewed.trc

Figure 22. VT Space Time Diagram

By looking at the message passing, we can see some peculiar characteristics of
our program. For instance, notice that many of the processors waste time by
waiting for others to complete before they continue. These kinds of characteristics
lead us to the conclusion that we've introduced very poor load balancing across
tasks. One way to alleviate this problem is to allow some processors to work ahead
if they can deduce that another iteration will be necessary in order to find a
solution.

 Chapter 4. So Long And Thanks For All The Fish 95

If a task's individual max is large enough on one iteration to force the global max to
reiterate across the entire array, that task may continue on the next iteration when
its west and north boundaries are received.

To illustrate this, we'll use the pipelined.f program.

iter_count = ð
local_err = close_enough + 1

 1ðð CONTINUE
iter_count = iter_count + 1
CALL exch_in(stencil, m, n, local_err, global_err,

 1 iter_count, close_enough)

IF (MAX(global_err,local_err).GE.close_enough) THEN
local_err = ð.ð
DO j=1, n-2

DO i=1, m-2
old_val = stencil(i,j)

stencil(i,j) = (stencil(i-1, j) +
1 stencil(i+1, j) +
2 stencil(i ,j-1) +
3 stencil(i ,j+1)) / 4

local_err = MAX(local_err, ABS(old_val-stencil(i,j)))
 END DO
 END DO
 END IF

CALL exch_out(stencil, m, n, global_err, local_err)

IF(MOD(iter_count,1ðð).EQ.ð)PRINT \, iter_count, global_err
IF (MAX(global_err,local_err).GE.close_enough) GOTO 1ðð
PRINT \, "convergence reached after", iter_count, "iterations."

As you can see on the line:

IF(MAX(global_err,local_err).GE.close_enough) THEN

the program checks to see if the value of local_err is enough to allow this task to
continue on the next iteration.

Now that we've made these improvements to our program, we'll most likely see
improvement in our load balance as well.

Let's see how we affected our load balance by running our new code with tracing
turned on.

$ time poe pipelined

Our new code shows the following message passing graph:

96 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Figure 23. VT Displays

Now, let's run our new code to see how this new version fares.

$ time poe pipelined

Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11m1.94s 1000x1000

reordered 1 (single processor) 5m35.38ss 1000x1000

chaotic 4 (processors) 2m4.58s 500x500

skewed 4 (processors) 4m41.87s 500x500

pipelined 4 (processors) 2m7.42s 500x500

So, how did we do? Here are the final statistics:

� From the naive serial program to the reordered serial program there was a
speedup of 197%

� From the reordered serial program to the pipelined parallel program there was
a speedup of 263%

� From the naive serial program to the pipelined parallel program there was a
speedup of 519%

As you can see, we were able to significantly improve the performance of our
program and, at the same time, get a consistent, correct answer. And all we had
when we started was our serial program!

 Tuning Summary
As you've probably deduced, tuning the performance of a parallel application is no
easier than tuning the performance of a sequential application. If anything, the
parallel nature introduces another factor into the tuning equation. The approach the
IBM Parallel Environment for AIX has taken toward performance tuning is to
provide tools which give you the information necessary to perform the tuning.
We've given you the fish. Where you go from there is up to you.

 Chapter 4. So Long And Thanks For All The Fish 97

98 IBM PE for AIX V2R4.0: Hitchhiker's Guide

 Chapter 5. Babel fish

This chapter provides information that will help you translate your MPL parallel
program into a program that conforms to the MPI standard. In particular, it tells you
which MPI calls to substitute for the ones you use right now in MPL.

In The Hitchhiker's Guide to the Galaxy the Babel Fish is a tiny fish that, when
inserted into your ear, can make any language understandable to you. Well, it's not
quite that easy to translate a parallel program, but this chapter at least helps you
determine how to perform the equivalent or comparable function in MPI that you did
with MPL.

Note that the syntax in this section is in C unless we tell you otherwise. For the
corresponding Fortran MPI syntax, see IBM Parallel Environment for AIX: MPI
Programming and Subroutine Reference . For the corresponding Fortran MPL
syntax, see IBM Parallel Environment for AIX: MPL Programming and Subroutine
Reference . Another document that may be helpful is A Message-Passing Interface
Standard, Version 1.1 available from the University of Tennesee.

 Point-to-Point Communication

 SEND (Non-Blocking)

MPL/MPI Description

MPL mpc_send(&buf,msglen,dest,tag,&msgid)

MPI MPI_Isend(&buf,count,datatype,dest,tag,comm,&request)

 RECEIVE (Non-Blocking)

MPL/MPI Description

MPL mpc_recv(&buf,msglen,&source,&tag,&msgid)

MPI MPI_Irecv(&buf,count,datatype,source,tag,comm,&request)

 SEND (Blocking)

MPL/MPI Description

MPL mpc_bsend(&buf,msglen,dest,tag)

MPI MPI_Send(&buf,count,datatype,dest,tag,comm)

Note: Don't confuse MPI_Bsend with MPI_Send. MPI_Bsend is a BUFFERED send, not a BLOCKING send.

 Copyright IBM Corp. 1996, 1998 99

 RECEIVE (Blocking)

MPL/MPI Description

MPL mpc_brecv(&buf,msglen,&source,&tag,&nbytes)

MPI MPI_Recv(&buf,count,datatype,source,tag,comm,&status)

 SEND/RECEIVE (Blocking)

MPI/MPL Description

MPL mpc_bsendrecv(&sendbuf,sendlen,dest,tag,&recvbuf,recvlen,&source,&nbytes)

MPI MPI_Sendrecv(&sendbuf,sendcount,sendtype,dest,tag,&recvbuf,recvcount,recvtype,
source,tag,comm,&status)

 STATUS

MPI/MPL Description

MPL nbytes = mpc_status(msgid)

MPI MPI_Get_count(&status,MPI_BYTE,&nbytes)

 WAIT

MPI/MPL Description

MPL mpc_wait(&msgid,&nbytes)

MPI For a specific msgid:

 � MPI_Wait(&request,&status)

For msgid = DONTCARE:

 � MPI_Waitany(count,requests,&index,&status)
� The requests array must be maintained by the user.

For msgid = ALLMSG:

 � MPI_Waitall(count,requests,statuses)
� The requests array must be maintained by the user.

 TASK_SET

100 IBM PE for AIX V2R4.0: Hitchhiker's Guide

MPI/MPL Description

MPL mpc_task_set(nbuf,stype)

MPI Truncation Mode:

� No MPI equivalent. Can be simulated by setting the error handler to "return":

MPI_Errhandler_set(comm,MPI_ERRORS_RETURN);

and testing the return code for receives, waits for receives, etc.:

MPI_Error_class(rc,&class);
if(class != MPI_ERR_TRUNCATE)
{ (handle error) }

Develop/Run Mode:

� Enable DEVELOP mode by setting MP_EUIDEVELOP environment variable to
YES.

Buffer Mode:

 � Use MPI_Buffer_attach.

 TASK_QUERY

MPI/MPL Description

MPL mpc_task_query(nbuf,nelem,qtype)

MPI Truncation Mode:

� No MPI equivalent

Message Type Bounds:

lower bound = 0
upper bound: int *valptr;

 MPI_Attr_get(MPI_COMM_WORLD,MPI_TAG_UB,&valptr,&flag)
tag_up_bound = *valptr;

Wildcards:

ALLGRP (0) MPI_COMM_WORLD

DONTCARE (-1) MPI_ANY_SOURCE, MPI_ANY_TAG

ALLMSG (-2) No MPI equivalent - see mpc_wait

NULLTASK (-3) MPI_PROC_NULL

 ENVIRON

MPI/MPL Description

MPL mpc_environ(&numtask,&taskid)

MPI MPI_Comm_size(MPI_COMM_WORLD,&numtask)
MPI_Comm_rank(MPI_COMM_WORLD,&taskid)

 Chapter 5. Babel fish 101

 STOPALL

MPI/MPL Description

MPL mpc_stopall(errcode)

MPI MPI_Abort(comm,errcode)

 PACK

MPI/MPL Description

MPL mpc_pack(&inbuf,&outbuf,blklen,offset,blknum)

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)
position = 0;
outcount = (blknum-1)*offset + blklen;
MPI_Pack(&inbuf,blknum,datatype,&outbuf,outcount,&position,comm)

 UNPACK

MPI/MPL Description

MPL mpc_unpack(&inbuf,&outbuf,blklen,offset,blknum)

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)
position = 0;
insize = (blknum-1)*offset + blklen;
MPI_Unpack(&inbuf,insize,&position,&outbuf,blknum,datatype,comm)

 VSEND (Blocking)

MPI/MPL Description

MPL mpc_bvsend(&buf,blklen,offset,blknum,dest,tag)

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)
MPI_Send(&buf,blknum,datatype,dest,tag,comm)

 VRECV (Blocking)

MPI/MPL Description

MPL mpc_bvrecv(&buf,blklen,offset,blknum,&source,&tag,&nbytes)

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)
MPI_Recv(&buf,blknum,datatype,source,tag,comm,&status)

102 IBM PE for AIX V2R4.0: Hitchhiker's Guide

 PROBE

MPI/MPL Description

MPL mpc_probe(&source,&tag,&nbytes)

MPI MPI_Iprobe(source,tag,comm,&flag,&status)

Note: MPI also provides a blocking version of probe: MPI_Probe , which can be substituted for an MPL probe in
an infinite loop.

 Collective Communications

 BROADCAST

MPI/MPL Description

MPL mpc_bcast(&buf,msglen,root,gid)

MPI MPI_Bcast(&buf,count,datatype,root,comm)

 COMBINE

MPI/MPL Description

MPL mpc_combine(&sendbuf,&recvbuf,msglen,func,gid)

MPI MPI_Allreduce(&sendbuf,&recvbuf,count,datatype,op,comm)

Note: See “Reduction Functions” on page 106.

 CONCAT

MPI/MPL Description

MPL mpc_concat(&sendbuf,&recvbuf,blklen,gid)

MPI MPI_Allgather(&sendbuf,sendcount,sendtype,&recvbuf,recvcount,recvtype,comm)

 GATHER

MPI/MPL Description

MPL mpc_gather(&sendbuf,&recvbuf,blklen,root,gid)

MPI MPI_Gather(&sendbuf,count,datatype,&recvbuf,count,datatype,root,comm)

 Chapter 5. Babel fish 103

 INDEX

MPI/MPL Description

MPL mpc_index(&sendbuf,&recvbuf,blklen,gid)

MPI MPI_Alltoall(&sendbuf,count,datatype,&recvbuf,count,datatype,comm)

 PREFIX

MPI/MPL Description

MPL mpc_prefix(&sendbuf,&recvbuf,msglen,func,gid)

MPI MPI_Scan(&sendbuf,&recvbuf,count,datatype,op,comm)

Note: See “Reduction Functions” on page 106.

 REDUCE

MPI/MPL Description

MPL mpc_reduce(&sendbuf,&recvbuf,msglen,root,func,gid)

MPI MPI_Reduce(&sendbuf,&recvbuf,count,datatype,op,root,comm)

Note: See “Reduction Functions” on page 106.

 SCATTER

MPI/MPL Description

MPL mpc_scatter(&sendbuf,&recvbuf,blklen,root,gid)

MPI MPI_Scatter(&sendbuf,count,datatype,&recvbuf,count,datatype,root,comm)

 SHIFT

MPI/MPL Description

MPL mpc_shift(&sendbuf,&recvbuf,msglen,step,flag,gid)

MPI MPI_Cart_shift(comm,direction,step,&source,&dest)
MPI_Sendrecv(&sendbuf,count,datatype,dest,tag,&recvbuf,count,datatype,
source,tag,comm,&status);

Note: comm must be a communicator with a cartesian topology. See MPI_CART_CREATE in IBM Parallel
Environment for AIX: MPI Programming and Subroutine Reference

104 IBM PE for AIX V2R4.0: Hitchhiker's Guide

 SYNC

MPI/MPL Description

MPL mpc_sync(gid)

MPI MPI_Barrier(comm)

 GETLABEL

MPI/MPL Description

MPL mpc_getlabel(&label,gid)

MPI No MPI equivalent. Can be simulated by creating a label attribute key with
MPI_Keyval_create , attaching a label attribute to a communicator with
MPI_Attr_put , and retrieving it with MPI_Attr_get .

 GETMEMBERS

MPI/MPL Description

MPL mpc_getmembers(&glist,gid)

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)
MPI_Group_size(group_world,&gsize)
for(i=0;i<gsize;i++) ranks]i[= i;
MPI_Group_translate_ranks(group,gsize,&ranks,group_world,&glist)

 GETRANK

MPI/MPL Description

MPL mpc_getrank(&rank,taskid,gid)

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)
MPI_Group_translate_ranks(group_world,1,&taskid,group2,&rank)

 GETSIZE

MPI/MPL Description

MPL mpc_getsize(&gsize,gid)

MPI MPI_Group_size(group,&gsize)

 Chapter 5. Babel fish 105

 GETTASKID

MPI/MPL Description

MPL mpc_gettaskid(rank,&taskid,gid)

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)
MPI_Group_translate_ranks(group1,1,&rank,group_world,&taskid)

 GROUP

MPI/MPL Description

MPL mpc_group(gsize,&glist,label,&gid)

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)
MPI_Group_incl(group_world,gsize,&glist,&gid)

 PARTITION

MPI/MPL Description

MPL mpc_partition(parent_gid,key,label,&gid)

MPI MPI_Comm_split(comm,label,key,&newcomm)

 Reduction Functions

MPL
Function MPI Equivalent

i_vadd Operator : MPI_SUM
Datatype : MPI_INT, MPI_INTEGER

s_vadd Operator : MPI_SUM
Datatype : MPI_FLOAT, MPI_REAL

d_vadd Operator : MPI_SUM
Datatype : MPI_DOUBLE, MPI_DOUBLE_PRECISION

i_vmul Operator : MPI_PROD
Datatype : MPI_INT, MPI_INTEGER

s_vmul Operator : MPI_PROD
Datatype : MPI_FLOAT, MPI_REAL

d_vmul Operator : MPI_PROD
Datatype : MPI_DOUBLE, MPI_DOUBLE_PRECISION

i_vmax Operator : MPI_MAX
Datatype : MPI_INT, MPI_INTEGER

s_vmax Operator : MPI_MAX
Datatype : MPI_FLOAT, MPI_REAL

d_vmax Operator : MPI_MAX
Datatype : MPI_DOUBLE, MPI_DOUBLE_PRECISION

106 IBM PE for AIX V2R4.0: Hitchhiker's Guide

MPL
Function MPI Equivalent

i_vmin Operator : MPI_MIN
Datatype : MPI_INT, MPI_INTEGER

s_vmin Operator : MPI_MIN
Datatype : MPI_FLOAT, MPI_REAL

d_vmin Operator : MPI_MIN
Datatype : MPI_DOUBLE, MPI_DOUBLE_PRECISION

b_vand Operator : MPI_BAND
 Datatype : MPI_BYTE

b_vor Operator : MPI_BOR
 Datatype : MPI_BYTE

b_vxor Operator : MPI_BXOR
 Datatype : MPI_BYTE

l_vand Operator : MPI_LAND
 Datatype : MPI_BYTE

l_vor Operator : MPI_LOR
 Datatype : MPI_BYTE

Note: The count parameter can be computed as follows:

MPI_Type_size(datatype,&size)
count = msglen/size;

User-Defined Reduction Functions
MPL/MPI Description

MPL void func(&inbuf1,&inbuf2,&outbuf,&len)

Note that func is passed as an argument to the Collective
Communication Library (CCL) function.

MPI void func(&inbuf,&inoutbuf,&count,&datatype)
MPI_Op_create(func,commute,&op)

Note that op is passed as an argument to the CCL function.

Global Variables and Constants

Last Error Code
MPL/MPI Description

MPL mperrno

MPI No equivalent; error codes are returned by each function.

 Wildcards

 Chapter 5. Babel fish 107

MPL Wildcard MPI Equivalent

ALLGRP (0) MPI_COMM_WORLD

DONTCARE (-1) MPI_ANY_SOURCE, MPI_ANY_TAG

ALLMSG (-2) no MPI equivalent - see mpc_wait

NULLTASK (-3) MPI_PROC_NULL

 General Notes
This section provides some specific things to keep in mind when translating your
program from MPL to MPI.

 Task Indentifiers
In MPL, task identifiers such as src and dest are absolute task ids. In MPI, they are
ranks within a communicator group. For the communicator MPI_COMM_WORLD,
they are the same.

 Message Length
� In MPL, message lengths are expressed in bytes. In MPI, they are expressed

as count,datatype. Thus, a message consisting of ten 4-byte integers would be
coded as 40 in MPL, and as 10,MPI_INT or 10,MPI_INTEGER in MPI.

� For send and receive operations, MPL returned the message length in the
nbytes parameter. MPI returns this information in status. It can be accessed as
follows:

MPI_Get_count(&status,MPI_BYTE,&nbytes)

Creating MPI Objects
MPI Objects should be created as follows:

Object C Fortran

Communicators MPI_Comm commid integer commid

Groups MPI_Group groupid integer groupid

Requests MPI_Request requestid integer reqestid

Reduction Ops MPI_Op opid integer opid

Error Handlers MPI_Errhandler handlerid integer handlerid

Data Types MPI_Datatype typeid integer typeid

Attribute Keys int keyid integer keyid

Status MPI_Status status integer status(MPI_STATUS_SIZE)

Using Wildcard Receives
For wildcard receives, MPL backstuffed the actual source and message type into
the addresses of these parameters supplied with the receive call. In MPI, the actual
values are returned in the status parameter, and may be retrieved as follows.

For programs written in C:

108 IBM PE for AIX V2R4.0: Hitchhiker's Guide

source = status.MPI_SOURCE;
tag = status.MPI_TAG;

For programs written in Fortran:

source = status(MPI_SOURCE)
tag = status(MPI_TAG)

Also note the following for C applications. In MPL, the source and type parameters
were passed by reference, whereas in MPI, they are passed by value.

 Reduction Functions
In MPI, user-defined reduction functions can be defined as commutative or
non-commutative (see MPI_Op_create), whereas in MPL, all reduction functions
were assumed to be commutative. Reduction functions must be associative in both
MPL and MPI.

 Error Handling
In MPL, C functions provided return codes that could be checked to determine if an
error occurred, and Fortran functions printed error messages and terminated the
job. In MPI, the default for both C and Fortran is to print a message and terminate
the job. If return codes are desired, the error handler must be set as follows (per
communicator):

 MPI_Errhandler_set(comm,MPI_ERRORS_RETURN);

In Fortran, error codes are returned in the last parameter of each function, ierror.

Also, IBM's MPI implementation provides a third predefined error handler,
MPE_ERRORS_WARN, which prints a message and returns an error code without
terminating the job. In DEVELOP mode, messages are always printed.

Mixing MPL and MPI Functions in the Same Application
MPL and MPI functions can be used in the same application (using the
non-threaded library only), but the following rules must be followed:

� Messages sent by MPL must be received by MPL, and messages sent by MPI
must be received by MPI.

� For any given invocation of a CCL call, all applicable tasks must use the same
API: either MPL or MPI. It is illegal for some tasks to use MPL, and others to
use MPI.

� Objects are only meaningful to the API which generated them. For example, a
request ID that is returned by MPI_Isend cannot be used with mpc_wait . Also,
ALLGRP should not be used as a communicator, and MPI_COMM_WORLD
should not be used as an MPL group ID. Care should be taken not to carry
concepts from one API to the other.

The same DEVELOP MODE environment variable, MPI_EUIDEVELOP is used by
MPL and MPI. If it is set to YES, then DEVELOP MODE is turned on for both MPL
and MPI.

 Chapter 5. Babel fish 109

Before and After Using MPI Functions
All application programs that use MPI functions must call MPI_Init before calling
any other MPI function (except MPI_Initialized). All applications that use MPI
functions should call MPI_Finalize as the last MPI call they make. Failure to do
this may make the application non-portable.

If an application makes no MPI calls, then it is not necessary for it to call MPI_Init
or MPI_Finalize .

Using Message Passing Handlers
Only a subset of MPL message passing is allowed on handlers that are created by
the MPL Receive and Call function (mpc_rcvncall or MP_RCVNCALL). MPI calls
on these handlers are not supported.

110 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Appendix A. A Sample Program to Illustrate Messages

This appendix provides sample output for a program run under POE with the
maximum level of message reporting. It also points out the different types of
messages you can expect, and explains what they mean.

To set the level of messages that get reported when you run your program, you
can use the -infolevel (or -ilevel) option when you invoke POE, or the
MP_INFOLEVEL environment variable. Setting either of these to 6 gives you the
maximum number of diagnostic messages when you run your program. For more
information about setting the POE message level, see IBM Parallel Environment for
AIX: Operation and Use, Vol. 1.

Note that we're using numbered prefixes along the left-hand edge of the output you
see below as a way to refer to particular lines; they are not part of the output you'll
see when you run your program. For an explanation of the messages denoted by
these numbered prefixes, see “Figuring Out What All of This Means” on page 113.

The following command:

> poe hello_world_c -procs 2 -hostfile pool.list -infolevel 6

| produces the following output. Note that the Resource Manager was used in this
| example:

1 INFO: DEBUG_LEVEL changed from ð to 4
2 D1<L4>: Open of file pool.list successful
3 D1<L4>: mp_euilib = ip
4 D1<L4>: task ð 5 1
5 D1<L4>: extended 1 5 1
6 D1<L4>: node allocation strategy = 2
7 INFO: ðð31-69ð Connected to Resource Manager
8 INFO: ðð31-118 Pool 1 requested for task ð
9 INFO: ðð31-118 Pool 1 requested for task 1
1ð D1<L4>: Elapsed time for call to jm_allocate: ð seconds
11 INFO: ðð31-119 Host k1ðnð1.ppd.pok.ibm.com allocated for task ð
12 INFO: ðð31-119 Host k1ðnð2.ppd.pok.ibm.com allocated for task 1
13 D1<L4>: Requesting service pmv2
14 D1<L4>: Jobid = 8ð3755221
15 D4<L4>: Command args:<>
16 D1<L4>: Task ð pulse count is ð
17 D1<L4>: Task 1 pulse count is ð
18 D3<L4>: Message type 34 from source ð
19 D1<L4>: Task ð pulse count is 1
2ð D1<L4>: Task 1 pulse count is ð
21 D3<L4>: Message type 21 from source ð
22 ð: INFO: ðð31-724 Executing program: <hello_world_c>
23 D3<L4>: Message type 34 from source 1
24 D1<L4>: Task ð pulse count is 1
25 D1<L4>: Task 1 pulse count is 1
26 D3<L4>: Message type 21 from source ð
27 ð: INFO: DEBUG_LEVEL changed from ð to 4
28 ð: D1<L4>: mp_euilib is <ip>
29 ð: D1<L4>: mp_css_interrupt is <ð>
3ð D3<L4>: Message type 21 from source 1
31 1: INFO: ðð31-724 Executing program: <hello_world_c>
32 D3<L4>: Message type 21 from source ð
33 ð: D1<L4>: cssAdapterType is <1>
34 D3<L4>: Message type 21 from source 1

 Copyright IBM Corp. 1996, 1998 111

35 1: INFO: DEBUG_LEVEL changed from ð to 4
36 1: D1<L4>: mp_euilib is <ip>
37 1: D1<L4>: mp_css_interrupt is <ð>
38 1: D1<L4>: cssAdapterType is <1>
39 D3<L4>: Message type 23 from source ð
4ð D1<L4>: init_data for task ð: <129.4ð.161.65: 1675>
41 D3<L4>: Message type 23 from source 1
42 D1<L4>: init_data for task 1: <129.4ð.161.66: 1565>
43 D2<L4>: About to call pm_address
44 D2<L4>: Elapsed time for pm_address: ð seconds
45 D3<L4>: Message type 21 from source 1
46 1: D1<L4>: About to call mpci_connect
47 D3<L4>: Message type 21 from source ð
48 D3<L4>: Message type 21 from source 1
49 D3<L4>: Message type 21 from source ð
5ð D3<L4>: Message type 21 from source 1
51 D3<L4>: Message type 21 from source ð
52 D3<L4>: Message type 21 from source 1
53 D3<L4>: Message type 21 from source ð
54 D3<L4>: Message type 21 from source 1
55 D3<L4>: Message type 21 from source ð
56 D3<L4>: Message type 21 from source 1
57 D3<L4>: Message type 21 from source ð
58 D3<L4>: Message type 21 from source 1
59 D3<L4>: Message type 21 from source ð
6ð ð: D1<L4>: About to call mpci_connect
61 D3<L4>: Message type 21 from source 1
62 D3<L4>: Message type 21 from source ð
63 D3<L4>: Message type 21 from source 1
64 D3<L4>: Message type 21 from source ð
65 D3<L4>: Message type 21 from source 1
66 1: D1<L4>: Elapsed time for mpci_connect: 1 seconds
67 D3<L4>: Message type 21 from source ð
68 D3<L4>: Message type 44 from source 1
69 D3<L4>: Message type 21 from source ð
7ð D3<L4>: Message type 21 from source ð
71 ð: D1<L4>: Elapsed time for mpci_connect: ð seconds
72 D3<L4>: Message type 44 from source ð
73 D2<L4>: <C O N N E C T D A T A>
74 D2<L4>: Task Down Count Nodes
75 D2<L4>: ==== ========== =====
76 D2<L4>: ð ð
77 D2<L4>: 1 ð
78 D2<L4>: <E N D O F C O N N E C T D A T A>
79 D3<L4>: Message type 21 from source ð
8ð ð: D1<L4>: About to call _ccl_init
81 D3<L4>: Message type 21 from source 1
82 D3<L4>: Message type 21 from source 1
83 D3<L4>: Message type 21 from source 1
84 D3<L4>: Message type 21 from source 1
85 D3<L4>: Message type 21 from source 1
86 D3<L4>: Message type 21 from source 1
87 D3<L4>: Message type 21 from source 1
88 1: D1<L4>: About to call _ccl_init
89 D3<L4>: Message type 21 from source ð
9ð D3<L4>: Message type 21 from source 1
91 D3<L4>: Message type 21 from source ð
92 D3<L4>: Message type 21 from source ð
93 D3<L4>: Message type 21 from source 1
94 D3<L4>: Message type 21 from source ð
95 D3<L4>: Message type 21 from source 1
96 D3<L4>: Message type 21 from source ð
97 D3<L4>: Message type 21 from source 1
98 D3<L4>: Message type 21 from source ð

112 IBM PE for AIX V2R4.0: Hitchhiker's Guide

99 D3<L4>: Message type 21 from source 1
1ðð D3<L4>: Message type 21 from source ð
1ð1 D3<L4>: Message type 21 from source 1
1ð2 D3<L4>: Message type 21 from source ð
1ð3 D3<L4>: Message type 21 from source 1
1ð4 D3<L4>: Message type 21 from source ð
1ð5 ð: D1<L4>: Elapsed time for _ccl_init: ð seconds
1ð6 D3<L4>: Message type 21 from source 1
1ð7 D3<L4>: Message type 2ð from source ð
1ð8 ð: Hello, World!
1ð9 D3<L4>: Message type 21 from source 1
11ð 1: D1<L4>: Elapsed time for _ccl_init: ð seconds
111 D3<L4>: Message type 21 from source ð
112 ð: INFO: ðð33-3ð75 VT Node Tracing completed. Node merge beginning
113 D3<L4>: Message type 2ð from source 1
114 1: Hello, World!
115 D3<L4>: Message type 21 from source ð
116 ð: INFO: ðð31-3ð6 pm_atexit: pm_exit_value is ð.
117 D3<L4>: Message type 21 from source 1
118 1: INFO: ðð33-3ð75 VT Node Tracing completed. Node merge beginning
119 D3<L4>: Message type 17 from source ð
12ð D3<L4>: Message type 21 from source 1
121 1: INFO: ðð31-3ð6 pm_atexit: pm_exit_value is ð.
122 D3<L4>: Message type 17 from source 1
123 D3<L4>: Message type 22 from source ð
124 INFO: ðð31-656 I/O file STDOUT closed by task ð
125 D3<L4>: Message type 22 from source 1
126 INFO: ðð31-656 I/O file STDOUT closed by task 1
127 D3<L4>: Message type 15 from source ð
128 D1<L4>: Accounting data from task ð for source ð:
129 D3<L4>: Message type 15 from source 1
13ð D1<L4>: Accounting data from task 1 for source 1:
131 D3<L4>: Message type 22 from source ð
132 INFO: ðð31-656 I/O file STDERR closed by task ð
133 D3<L4>: Message type 22 from source 1
134 INFO: ðð31-656 I/O file STDERR closed by task 1
135 D3<L4>: Message type 1 from source ð
136 INFO: ðð31-251 task ð exited: rc=ð
137 D3<L4>: Message type 1 from source 1
138 INFO: ðð31-251 task 1 exited: rc=ð
139 D1<L4>: All remote tasks have exited: maxx_errcode = ð
14ð INFO: ðð31-639 Exit status from pm_respond = ð
141 D1<L4>: Maximum return code from user = ð
142 D2<L4>: In pm_exit... About to call pm_remote_shutdown
143 D2<L4>: Sending PMD_EXIT to task ð
144 D2<L4>: Sending PMD_EXIT to task 1
145 D2<L4>: Elapsed time for pm_remote_shutdown: ð seconds
146 D2<L4>: In pm_exit... About to call jm_disconnect
147 D2<L4>: Elapsed time for jm_disconnect: ð seconds
148 D2<L4>: In pm_exit... Calling exit with status = ð at Wed Jun 21 ð7: 15: ð7 19

Figuring Out What All of This Means
When you set -infolevel to 6, you get the full complement of diagnostic messages,
which we'll explain here.

The example above includes numbered prefixes along the left-hand edge of the
output so that we can refer to particular lines, and then tell you what they mean.
Remember, these prefixes are not part of your output. The table below points you
to the line number of the messages that are of most interest, and provides a short
explanation.

 Appendix A. A Sample Program to Illustrate Messages 113

Line(s) Message Description

7, 8, 9 Pool 1 was requested in host.list file, pool.list.

11-12 Names hosts that are used.

13 Indicates that service pmv2, from /etc/services is being used.

18 Message type 34 indicates pulse activity (the pulse mechanism
checked that each remote node was actively participating with
the home node).

21 Message type 21 indicates a STDERR message.

28 Indicates that the euilib message passing protocol was specified.

40, 42 String returned from _eui_init , which initializes mpci_libarary .

66, 71 Indicates initialization of mpci_library .

107, 108, 113, 114 Message type 20 shows STDOUT from your program.

116, 121 Indicates that the user's program has reached the exit handler.
The exit code is 14.

119, 122 Message type 17 indicates the tasks have requested to exit.

124, 126, 132, 134 Indicates that the user has closed the STDOUT and STDERR
pipes.

127, 129 Message type 15 indicates accounting data.

143-144 Indicates that the home node is sending an exit.

| 146-147| Indicates that the home node is disconnecting from the job
| management system.

114 IBM PE for AIX V2R4.0: Hitchhiker's Guide

 Appendix B. MPI Safety

This appendix provides information on creating a safe MPI program. Much of the
information presented here comes from MPI: A Message-Passing Interface
Standard, Version 1.1, available from the University of Tennesee.

Safe MPI Coding Practices

What's a Safe Program?
This is a hard question to answer. Many people consider a program to be safe if no
message buffering is required for the program to complete. In a program like this,
you should be able to replace all standard sends with synchronous sends, and the
program will still run correctly. This is considered to be a conservative programming
style, which provides good portability because program completion doesn't depend
on the amount of available buffer space.

| On the flip side, there are many programmers that prefer more flexibility and use an
| unsafe style that relies, at least somewhat, on buffering. In such cases, the use of
| standard send operations can provide the best compromise between performance
| and robustness. MPI attempts to supply sufficient buffering so that these programs
| will not result in deadlock. The buffered send mode can be used for programs that
| require more buffering, or in situations where you want more control. Since buffer
| overflow conditions are easier to diagnose than deadlock, this mode can also be
| used for debugging purposes.

Non-blocking message passing operations can be used to avoid the need for
buffering outgoing messages. This prevents deadlock situations due to a lack of
buffer space, and improves performance by allowing computation and
communication to overlap. It also avoids the overhead associated with allocating
buffers and copying messages into buffers.

Safety and Threaded Programs
| Message passing programs can hang or deadlock when one task waits for a
| message that is never sent, or when each task is waiting for the other to send or
| receive a message. Within a task, a similar situation can occur when one thread is
| waiting for another to release a lock on a shared resource, such as a piece of
| memory. If the waiting thread is holding a lock that is needed by the running thread,
| then both threads will deadlock while waiting for the same lock (mutex).

A more subtle problem occurs when two threads simultaneously access a shared
resource without a lock protocol. The result may be incorrect without any obvious
sign. For example, the following function is not thread-safe, because the thread
may be pre-empted after the variable c is updated, but before it is stored.

int c; /\ external, used by two threads \/
void update_it()
 {

c++; /\ this is not thread safe \/
 {

 Copyright IBM Corp. 1996, 1998 115

It is recommended that you don't write threaded message passing programs until
you are familiar with writing and debugging threaded, single-task programs.

Note: While the signal handling library (libmpi.a) supports both the MPI standard,
as well as MPL (the message passing interface provided by IBM before the
MPI standard was adopted), the threaded library (libmpi_r.a) supports only
the MPI standard.

Using Threaded Programs with Non-Thread-Safe Libraries
A threaded MPI program must meet the same criteria as any other threaded
program; it must avoid using non-thread-safe functions in more than one thread (for
example, strtok). In addition, it must use only thread-safe libraries, if library
functions are called on more than one thread. In AIX, not all the libraries are
thread-safe, so you should carefully examine how they are used in your program.

Linking with Libraries Built with libc.a
Compiling a threaded MPI program will cause the libc_r.a library to be used to
resolve all the calls to the standard C library. If your program links with a library
that has been built using the standard C library, it is still usable (assuming that it
provides the necessary logical thread safety) under the following conditions:

� The library has been built using a reference to the C library shared object. This
is the default, unless the -bnso flag was used to build it.

� The runtime library path resolves the file reference libc.a to the POE version of
libc_r.a

When your executable is loaded, the loader resolves shared library references
using the LIBPATH environment variable first, then the libpath string of the
executable itself. POE sets the LIBPATH variable to select the correct message
passing library (User Space or IP). The mpcc_r (as well as mpCC_r and mpxlf_r)
script sets the libpath string to:

/usr/lpp/ppe.poe/lib/threads:/usr/lpp/ppe.poe/lib: ...

so that POE versions of libc.a and libc_r.a will be used. If these libraries are not
available, you'll need to set LIBPATH to point to the ones you want to use.

Some General Hints and Tips
To ensure you have a truly MPI-based application, you need to conform to a few
basic rules of point-to-point communication. In this section, we'll alert you to some
of the things you need to pay attention to as you create your parallel program. Note
that most of the information in this section was taken from MPI: A Message
Passing Interface Standard, so you may want to refer to this document for more
information.

 Order
With MPI, it's important to know that messages are non-overtaking; the order of
sends must match the order of receives. Assume a sender sends two messages
(Message 1 and Message 2) in succession, to the same destination, and both
match the same receive. The receive operation will receive Message 1 before
Message 2. Likewise, if a receiver posts two receives (Receive 1 and Receive 2), in
succession, and both are looking for the same message, Receive 1 will receive the
message before Receive 2. Adhering to this rule ensures that sends are always
matched with receives.

116 IBM PE for AIX V2R4.0: Hitchhiker's Guide

If a process in your program has a single thread of execution, then the sends and
receives that occur follow a natural order. However, if a process has multiple
threads, the various threads may not execute their relative send operations in any
defined order. In this case, the messages can be received in any order.

| Order rules apply within each communicator. Weakly synchronized threads can
| each use independent communicators to avoid many order problems.

Here's an example of using non-overtaking messages. Note that the message sent
by the first send must be received by the first receive, and the message sent by the
second send must be received by the second receive.

CALL MPI_COMM_RANK(comm, rank ierr)
IF (rank.EQ.ð) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(buf1, count, MPI_REAL, ð, MPI_ANY_TAG, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, ð, tag, comm, status, ierr)

END IF

 Progress
If two processes initiate two matching sends and receives, at least one of the
operations (the send or the receive) will complete, regardless of other actions that
occur in the system. The send operation will complete unless its matching receive
has already been satisfied by another message, and has itself completed. Likewise,
the receive will complete unless its matching send message is claimed by another
matching receive that was posted at the same destination.

The following example shows two matching pairs that are intertwined in this
manner. Here's what happens:

1. Both processes invoke their first calls.

2. process 0's first send indicates buffered mode, which means it must complete,
even if there's no matching receive. Since the first receive posted by process 1
doesn't match, the send message gets copied into buffer space.

3. Next, process 0 posts its second send operation, which matches process 1's
first receive, and both operations complete.

4. process 1 then posts its second receive, which matches the buffered message,
so both complete.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.ð) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(buf1, count, MPI_REAL, ð, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, ð, tag1, comm, status, ierr)

END IF

 Appendix B. MPI Safety 117

 Fairness
MPI does not guarantee fairness in the way communications are handled, so it's
your responsibility to prevent starvation among the operations in your program.

So what might unfairness look like? An example might be a situation where a send
with a matching receive on another process doesn't complete because another
message, from a different process, overtakes the receive.

 Resource Limitations
| If a lack of resources prevents an MPI call from executing, errors may result.
| Pending send and receive operations consume a portion of your system resources.
| MPI attempts to use a minimal amount of resource for each pending send and
| receive, but buffer space is required for storing messages sent in either standard or
| buffered mode when no matching receive is available.

When a buffered send operation cannot complete because of a lack of buffer
space, the resulting error could cause your program to terminate abnormally. On
the other hand, a standard send operation that cannot complete because of a lack
of buffer space will merely block and wait for buffer space to become available or
for the matching receive to be posted. In some situations, this behavior is
preferable because it avoids the error condition associated with buffer overflow.

Sometimes a lack of buffer space can lead to deadlock. The program in the
example below will succeed even if no buffer space for data is available.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.ð) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(recvbuf, count, MPI_REAL, ð, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, ð, tag, comm, ierr)

END IF

In this next example, neither process will send until other the process sends first.
As a result, this program will always result in deadlock.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.ð) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE ! rank.EQ.1
CALL MPI_RECV(recvbuf, count, MPI_REAL, ð, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, ð, tag, comm, ierr)

END IF

The example below shows how message exchange relies on buffer space. The
message send by each process must be copied out before the send returns and
the receive starts. Consequently, at least one of the two messages sent needs to
be buffered in order for the program to complete. As a result, this program can
execute successfully only if the communication system can buffer at least the words
of data specified by count.

118 IBM PE for AIX V2R4.0: Hitchhiker's Guide

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.ð) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE ! rank.EQ.1
CALL MPI_SEND(sendbuf, count, MPI_REAL, ð, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, ð, tag, comm, status, ierr)

END IF

When standard send operations are used, deadlock can occur where both
processes are blocked because buffer space is not available. This is also true for
synchronous send operations. For buffered sends, if the required amount of buffer
space is not available, the program won't complete either, and instead of deadlock,
we'll have buffer overflow.

 Appendix B. MPI Safety 119

120 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Appendix C. Installation Verification Program Summary

The POE Installation Verification Program (IVP) is an ideal way to determine if your
system is set up, prior to running your applications. This appendix contains a
summary of what it does. For more detailed information, see IBM Parallel
Environment for AIX: Installation Guide.

Steps Performed by the POE Installation Verification Program
The POE Installation Verification Program is located in the
/usr/lpp/ppe.poe/samples/ipv directory, invoked by the ivp.script shell script. It
will check for the needed files and libraries, making sure everything is in order. It
will issue messages when it finds something wrong as well.

You need the following in order to run the ivp.script :

� a non-root userid properly authorized in /etc/hosts.equiv or the local .rhosts
file.

� access to a C compiler.

If the conditions above are true, the IVP does the following:

 1. Ensures that:

� MPI library /usr/lpp/ppe.poe/lib/ip/libmpci.a is there or linked for IBM
RS/6000 SP systems.

� MPI library /usr/lpp/ppe.poe/lib/ip/libmpci_r.a is there or linked for IBM
RS/6000 SP systems.

� MPI library /usr/lpp/ppe.poe/lib/us/libmpci.a is there or linked for IBM
RS/6000 SP systems.

� MPI library /usr/lpp/ppe.poe/lib/us/libmpci_r.a is there or linked for IBM
RS/6000 SP systems.

� poe , pmdv2 , mpcc , and mpcc_r are there, and are executable.

� mpcci and mpcc_r scripts are in the path.

� The file /etc/services contains an entry for pmv2 , the Partition Manager
daemon.

� The file /etc/inetd.conf contains an entry for pmv2 , and that the daemon it
points to is executable.

| 2. Creates a work directory in /tmp/ivp pid to compile and run sample programs.

Note: Note that pid is the process id.

� Compiles sample programs.

� Creates a host.list file with local host names listed twice.

� Runs sample programs using IP protocol to two tasks, using both threaded and
non-threaded libraries.

� Removes all files from /tmp , as well as the temporary directory.

� Checks for the dbx bos.adt.debug fileset, for parallel debuggers.

 Copyright IBM Corp. 1996, 1998 121

At the control workstation (or other home node):

LOGIN as a user other than root , and start ksh .

| ENTER export LANG=C .

ENTER the following:

 1. cd /usr/lpp/ppe.poe/samples/ivp

| 2. ./ivp.script

This runs an installation verification test that checks for successful execution of a
message passing program using two tasks on this node. The output should
resemble:

Verifying the location of the libraries
Verifying the existence of the Binaries
Partition Manager daemon /etc/pmdv2 is executable
POE files seem to be in order
Compiling the ivp sample program
Output files will be stored in directory /tmp/ivp1548ð
Creating host.list file for this node
Setting the required environment variables
Executing the parallel program with 2 tasks

POE IVP: running as task ð on node peð3
POE IVP: running as task 1 on node peð3
POE IVP: there are 2 tasks running
POE IVP: task 1 received <POE IVP Message Passing Text>
POE IVP: all messages sent

Parallel program ivp.out return code was ð

Executing the parallel program with 2 tasks, threaded library

POE IVP_r: running as task 1 on node peð3
POE IVP_r: running as task ð on node peð3
POE IVP_r: there are 2 tasks running
POE IVP_r: task 1 received <POE IVP Message Passing Text -
 Threaded Library>
POE IVP_r: all messages sent

Parallel program ivp_r.out return code was ð

If both tests return a return code of ð, POE IVP
 is successful. To test POWERparallel system message passing,
 run the tests in ../samples/poetest.bw and poetest.cast
 To test threaded message passing,
 run the tests in ../samples/threads
End of IVP test

If errors are encountered, your output contains messages that describe these
errors. You can correct the errors, and run the ivp.script again, if desired.

122 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Appendix D. Parallel Environment Internals

This appendix provides some additional information about how the IBM Parallel
Environment for AIX (PE) works, with respect to the user's application. Much of this
information is also explained in IBM Parallel Environment for AIX: MPI
Programming and Subroutine Reference.

What Happens When I Compile My Applications?
In order to run your program in parallel, you first need to compile your application
source code with one of the following scripts:

| 1. mpcc

| 2. mpcc_r

| 3. mpcc_chkpt

| 4. mpCC

| 5. mpCC_r

| 6. mpCC_chkpt

| 7. mpxlf

| 8. mpxlf_r

| 9. mpxlf_chkpt

To make sure the parallel execution works, these scripts add the following to your
application executable:

� POE initialization module, so POE can determine that all nodes can
communicate successfully, before giving control to the user application's main()
program.

� Signal handlers, for additional control in terminating the program during
Visualization Tool (VT) tracing, and enabling the handling of the process
termination signals. Appendix G of IBM Parallel Environment for AIX: MPI
Programming and Subroutine Reference explains the signals that are handled
in this manner.

� Replacement exit (), POE's own version of the exit () and atexit () functions, in
order to synchronize profiling and provide better synchronization upon exit.

The compile scripts dynamically link the Message Passing library interfaces in such
a way that the specific communication library that is used is determined when your
application executes.

If you create a static executable, the application executable and the message
passing libraries are statically bound together.

 Copyright IBM Corp. 1996, 1998 123

How Do My Applications Start?
Because POE adds its entry point to each application executable, user applications
do not need to be run under the poe command. When a parallel application is
invoked directly, as opposed to under the control of the poe command, POE is
started automatically. It then sets up the parallel execution environment and then
re-invokes the application on each of the remote nodes.

Serial applications can be run in parallel only using the poe command. However,
such applications cannot take advantage of the function and performance provided
with the Message Passing libraries.

How Does POE Talk to the Nodes?
A parallel job running under POE consists of a home node (where POE was
started) and n tasks, each running under the control of its own Partition Manager
daemon (pmd). When a parallel job is started, POE contacts the nodes assigned to
run the job (called remote nodes), and starts a pmd instance for each task. POE
sends environment information to the pmd daemon information for the parallel job
(including the name of the executable) and the pmd daemon spawns a process to
run the executable. The spawned process has standard I/O redirected to socket
connections back to the pmd daemon, so any output the application writes to
STDOUT or STERR is sent back to the pmd daemon. pmd, in turn, sends the
output back to POE via another socket connection and POE writes the output to its
STDOUT or STERR. Any input that POE receives on STDIN is delivered to the
remote tasks in a similar fashion.

The socket connections between POE and the pmd daemons are also used to
exchange control messages for providing task synchronization, exit status, and
signalling. These capabilities are available to control any parallel program run by
POE, and they don't depend on the Message Passing library.

How are Signals Handled?
POE installs signal handlers for most signals that cause program termination and
interrupts, in order to control and notify all tasks of the signal. POE will exit the
program normally with a code of (128 + signal). If the user installs a signal handler
for any of the signals POE supports, it should call the POE registered signal
handler if the process decides to terminate. Appendix G of IBM Parallel
Environment for AIX: MPI Programming and Subroutine Reference explains signal
handling in greater detail.

What Happens When My Application Ends?
POE returns exit status (a return code value between 0 and 255) on the home
node which reflects the composite exit status of the user application. There are
various conditions and values with specific meanings associated with exit status.
These are explained in Appendix G of IBM Parallel Environment for AIX: MPI
Programming and Subroutine Reference

In addition, if the POE job-step function is used, the job control mechanism is the
program's exit code. When the task exit code is 0 (zero) or in the range of 2 to 127,
the job-step will be continued. If the task exit code is 1 or greater than 127, POE

124 IBM PE for AIX V2R4.0: Hitchhiker's Guide

terminates the parallel job, as well as any remaining user programs in the job-step
list. Also, any POE infrastructure failure detected (such as failure to open pipes to
the child process) will terminate the parallel job as well as any remaining programs
in the job-step list.

 Appendix D. Parallel Environment Internals 125

126 IBM PE for AIX V2R4.0: Hitchhiker's Guide

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

� The Dictionary of Computing, New York:
McGraw-Hill, 1994.

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018. Definitions
are identified by the symbol (A) after the definition.

� The ANSI/EIA Standard - 440A: Fiber Optic
Terminology, copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

� The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

This section contains some of the terms that are
commonly used in the Parallel Environment books and
in this book in particular.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards
Committee X3. ANSI definitions are preceded by an
asterisk (*).

Other definitions in this glossary are taken from IBM
Vocabulary for Data Processing, Telecommunications,
and Office Systems (GC20-1699).

A
address . A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

AIX. Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

AIXwindows Environment/6000 . A graphical user
interface (GUI) for the RS/6000. It has the following
components:

� A graphical user interface and toolkit based on
OSF/Motif

� Enhanced X-Windows, an enhanced version of the
MIT X Window System

� Graphics Library (GL), a graphical interface library
for the applications programmer which is compatible
with Silicon Graphics' GL interface.

API. Application Programming Interface.

application . The use to which a data processing
system is put; for example, topayroll application, an
airline reservation application.

argument . A parameter passed between a calling
program and a called program or subprogram.

attribute . A named property of an entity.

B
bandwidth . The total available bit rate of a digital
channel.

blocking operation . An operation which does not
complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint . A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or to
a specified program.

broadcast operation . A communication operation in
which one processor sends (or broadcasts) a message
to all other processors.

 Copyright IBM Corp. 1996, 1998 127

buffer . A portion of storage used to hold input or
output data temporarily.

C
C. A general purpose programming language. It was
formalized by ANSI standards committee for the C
language in 1984 and by Uniforum in 1983.

C++. A general purpose programming language, based
on C, which includes extensions that support an
object-oriented programming paradigm. Extensions
include:

 � strong typing
� data abstraction and encapsulation
� polymorphism through function overloading and

templates
 � class inheritance.

call arc . The representation of a call between two
functions within the Xprofiler function call tree. It
appears as a solid line between the two functions. The
arrowhead indicates the direction of the call; the
function it points to is the one that receives the call. The
function making the call is known as the caller, while
the function receiving the call is known as the callee.

chaotic relaxation . An iterative relaxation method
which uses a combination of the Gauss-Seidel and
Jacobi-Seidel methods. The array of discrete values is
divided into sub-regions which can be operated on in
parallel. The sub-region boundaries are calculated using
Jacobi-Seidel, whereas the sub-region interiors are
calculated using Gauss-Seidel. See also Gauss-Seidel.

client . A function that requests services from a server,
and makes them available to the user.

cluster . A group of processors interconnected through
a high speed network that can be used for high
performance computing. It typically provides excellent
price/performance.

collective communication . A communication
operation which involves more than two processes or
tasks. Broadcasts, reductions, and the MPI_Allreduce
subroutine are all examples of collective communication
operations. All tasks in a communicator must
participate.

command alias . When using the PE command line
debugger, pdbx, you can create abbreviations for
existing commands using the pdbx alias command.
These abbreviations are know as command aliases.

Communication Subsystem (CSS) . A component of
the IBM AIX Parallel System Support Programs that
provides software support for the High Performance
Switch. It provides two protocols; IP (Internet Protocol)

for LAN based communication and US (user space) as
a message passing interface that is optimized for
performance over the switch. See also Internet
Protocol and User Space.

communicator . An MPI object that describes the
communication context and an associated group of
processes.

compile . To translate a source program into an
executable program.

condition . One of a set of specified values that a data
item can assume.

control workstation . A workstation attached to the
IBM RS/6000 SP that serves as a single point of control
allowing the administrator or operator to monitor and
manage the system using IBM AIX Parallel System
Support Programs.

core dump . A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault, or severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file . A file which preserves the state of a
program, usually just before a program is terminated for
an unexpected error. See also core dump.

current context . When using either of the PE parallel
debuggers, control of the parallel program and the
display of its data can be limited to a subset of the
tasks that belong to that program. This subset of tasks
is called the current context. You can set the current
context to be a single task, multiple tasks, or all the
tasks in the program.

D
data decomposition . A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating on
each part independently.

data parallelism . Refers to situations where parallel
tasks perform the same computation on different sets of
data.

dbx . A symbolic command line debugger that is often
provided with UNIX systems. The PE command line
debugger, pdbx , is based on the dbx debugger.

debugger . A debugger provides an environment in
which you can manually control the execution of a

128 IBM PE for AIX V2R4.0: Hitchhiker's Guide

program. It also provides the ability to display the
program's data and operation.

distributed shell (dsh) . An IBM AIX Parallel System
Support Programs command that lets you issue
commands to a group of hosts in parallel. See the IBM
RISC System/6000 Scalable POWERparallel Systems:
Command and Technical Reference (GC23-3900-00) for
details.

domain name . The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

E
Earth . Mostly harmless.

environment variable . 1. A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2. A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

event . An occurrence of significance to a task; for
example, the completion of an asynchronous operation
such as an input/output operation.

Ethernet . Ethernet is the standard hardware for
TCP/IP LANs in the UNIX marketplace. It is a 10
megabit per second baseband type network that uses
the contention based CSMA/CD (collision detect) media
access method.

executable . A program that has been link-edited and
therefore can be run in a processor.

execution . To perform the actions specified by a
program or a portion of a program.

expression . In programming languages, a language
construct for computing a value from one or more
operands.

F
fairness . A policy in which tasks, threads, or
processes must be allowed eventual access to a
resource for which they are competing. For example, if
multiple threads are simultaneously seeking a lock, then
no set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI. Fiber distributed data interface (100 Mbit/s fiber
optic LAN).

file system . In the AIX operating system, the
collection of files and file management structures on a
physical or logical mass storage device, such as a
diskette or minidisk.

fileset . 1) An individually installable option or update.
Options provide specific function while updates correct
an error in, or enhance, a previously installed product.
2) One or more separately installable, logically grouped
units in an installation package. See also Licensed
Program Product and package.

foreign host . See remote host.

Fortran . One of the oldest of the modern programming
languages, and the most popular language for scientific
and engineering computations. It's name is a
contraction of FORmula TRANslation. The two most
common Fortran versions are Fortran 77, originally
standardized in 1978, and Fortran 90. Fortran 77 is a
proper subset of Fortran 90.

forty-two (42) . 1) The answer to Life! The Universe!
And Everything! It was originally determined by the
great computer Deep Thought many millions of years
ago for a race of hyperintelligent pandimensional
beings. 2) The smallest whole number greater than
forty-one.

function call tree . A graphical representation of all the
functions and calls within an application, which appears
in the Xprofiler main window. The functions are
represented by green, solid-filled rectangles called
function boxes. The size and shape of each function
box indicates its CPU usage. Calls between functions
are represented by blue arrows, called call arcs, drawn
between the function boxes. See also call arcs.

function cycle . A chain of calls in which the first caller
is also the last to be called. A function that calls itself
recursively is not considered a function cycle.

functional decomposition . A method of dividing the
work in a program to exploit parallelism. One divides
the program into independent pieces of functionality
which are distributed to independent processors. This is
in contrast to data decomposition which distributes the
same work over different data to independent
processors.

functional parallelism . Refers to situations where
parallel tasks specialize in particular work.

G
Gauss-Seidel . An iterative relaxation method for
solving Laplace's equation. It calculates the general
solution by finding particular solutions to a set of
discrete points distributed throughout the area in
question. The values of the individual points are

 Glossary of Terms and Abbreviations 129

obtained by averaging the values of nearby points.
Gauss-Seidel differs from Jacobi-Seidel in that for the
i+1st iteration Jacobi-Seidel uses only values calculated
in the ith iteration. Gauss-Seidel uses a mixture of
values calculated in the ith and i+1st iterations.

global max . The maximum value across all
processors for a given variable. It is global in the sense
that it is global to the available processors.

global variable . A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

gprof . A UNIX command that produces an execution
profile of C, Pascal, Fortran, or COBOL programs. The
execution profile is in a textual and tabular format. It is
useful for identifying which routines use the most CPU
time. See the man page on gprof .

GUI (Graphical User Interface) . A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

H
High Performance Switch . The high-performance
message passing network, of the IBM RS/6000 SP(SP)
machine, that connects all processor nodes.

HIPPI. High performance parallel interface.

hook . hook is a pdbx command that allows you to
re-establish control over all task(s) in the current context
that were previously unhooked with this command.

home node . The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host . A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

host list file . A file that contains a list of host names,
and possibly other information, that was defined by the
application which reads it.

host name . The name used to uniquely identify any
computer on a network.

hot spot . A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when

one processor that seeks the resource blocks,
preventing many other processors from having it,
thereby forcing them to become idle.

I
IBM Parallel Environment for AIX . A program
product that provides an execution and development
environment for parallel Fortran, C, or C++ programs. It
also includes tools for debugging, profiling, and tuning
parallel programs.

installation image . A file or collection of files that are
required in order to install a software product on a
RS/6000 workstation or on SP system nodes. These
files are in a form that allows them to be installed or
removed with the AIX installp command. See also
fileset, Licensed Program Product, and package.

Internet . The collection of worldwide networks and
gateways which function as a single, cooperative virtual
network.

Internet Protocol (IP) . 1) The TCP/IP protocol that
provides packet delivery between the hardware and
user processes. 2) The High Performance Switch
library, provided with the IBM AIX Parallel System
Support Programs, that follows the IP protocol of
TCP/IP.

IP. See Internet Protocol.

J
Jacobi-Seidel . See Gauss-Seidel.

| job management system .

| The software you use to manage the jobs across your
| system, based on the availability and state of system
| resources.

K
Kerberos . A publicly available security and
authentication product that works with the IBM AIX
Parallel System Support Programs software to
authenticate the execution of remote commands.

kernel . The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in kernel mode (in other words, at higher
execution priority level than user mode) and is protected
from user tampering by the hardware.

130 IBM PE for AIX V2R4.0: Hitchhiker's Guide

L
Laplace's equation . A homogeneous partial
differential equation used to describe heat transfer,
electric fields, and many other applications.

The dimension-free version of Laplace's equation is:

The two-dimensional version of Laplace's equation may
be written as:

latency . The time interval between the instant at which
an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

Licensed Program Product (LPP) . A collection of
software packages, sold as a product, that customers
pay for to license. It can consist of packages and
filesets a customer would install. These packages and
filesets bear a copyright and are offered under the
terms and conditions of a licensing agreement. See also
fileset and package.

| LoadLeveler . A job management system that works
| with POE to allow users to run jobs and match
| processing needs with system resources, in order to
| better utilize the system.

local variable . A variable that is defined and used
only in one specified portion of a computer program.

loop unrolling . A program transformation which
makes multiple copies of the body of a loop, placing the
copies also within the body of the loop. The loop trip
count and index are adjusted appropriately so the new
loop computes the same values as the original. This
transformation makes it possible for a compiler to take
additional advantage of instruction pipelining, data
cache effects, and software pipelining.

See also optimization.

M
Marketing Division of the Sirius Cybernetics
Corporation . A bunch of mindless jerks who'll be the
first against the wall when the revolution comes. 1

menu . A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated.

message catalog . A file created using the AIX
Message Facility from a message source file that
contains application error and other messages, which
can later be translated into other languages without
having to recompile the application source code.

message passing . Refers to the process by which
parallel tasks explicitly exchange program data.

MIMD (Multiple Instruction Multiple Data) . A parallel
programming model in which different processors
perform different instructions on different sets of data.

MPMD (Multiple Program Multiple Data) . A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI. Message Passing Interface; a standardized API
for implementing the message passing model.

N
network . An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

node . (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
the IBM RS/6000 SP, a single location or workstation in
a network. An SP node is a physical entity (a
processor).

node ID . A string of unique characters that identifies
the node on a network.

nonblocking operation . An operation, such as
sending or receiving a message, which returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

1 The editors welcome applications from anyone interested in taking over the post of robotics correspondent (this is a joke...get it?).

 Glossary of Terms and Abbreviations 131

O
object code . The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory.

optimization . A not strictly accurate but widely used
term for program performance improvement, especially
for performance improvement done by a compiler or
other program translation software. An optimizing
compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

option flag . Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command line
options.

P
package . A number of filesets that have been
collected into a single installable image of program
products, or LPPs. Multiple filesets can be bundled
together for installing groups of software together. See
also fileset and Licensed Program Product.

parallelism . The degree to which parts of a program
may be concurrently executed.

parallelize . To convert a serial program for parallel
execution.

Parallel Operating Environment (POE) . An execution
environment that smooths the differences between
serial and parallel execution. It lets you submit and
manage parallel jobs. It is abbreviated and commonly
known as POE.

parameter . * (1) In Fortran, a symbol that is given a
constant value for a specified application. (2) An item in
a menu for which the operator specifies a value or for
which the system provides a value when the menu is
interpreted. (3) A name in a procedure that is used to
refer to an argument that is passed to the procedure.
(4) A particular piece of information that a system or
application program needs to process a request.

partition . (1) A fixed-size division of storage. (2) In
terms of the IBM RS/6000 SP, a logical definition of
nodes to be viewed as one system or domain. System

partitioning is a method of organizing the SP into
groups of nodes for testing or running different levels of
software of product environments.

Partition Manager . The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard
error (STDERR).

pdbx . pdbx is the parallel, symbolic command line
debugging facility of PE. pdbx is based on the dbx
debugger and has a similar interface.

PE. The IBM Parallel Environment for AIX program
product.

performance monitor . A utility which displays how
effectively a system is being used by programs.

POE. See Parallel Operating Environment.

pool . Groups of nodes on an SP that are known to the
Resource Manager, and are identified by a number.

point-to-point communication . A communication
operation which involves exactly two processes or
tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

procedure . (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of
related control statements that cause one or more
programs to be performed.

process . A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process's state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

The process is created via a fork () system call and
ends using an exit () system call. Between fork and
exit , the process is known to the system by a unique
process identifier (pid).

Each process has its own virtual memory space and
cannot access another process's memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

prof . A utility which produces an execution profile of
an application or program. It is useful to identifying
which routines use the most CPU time. See the man
page for prof .

132 IBM PE for AIX V2R4.0: Hitchhiker's Guide

profiling . The act of determining how much CPU time
is used by each function or subroutine in a program.
The histogram or table produced is called the execution
profile.

Program Marker Array . An X-Windows run time
monitor tool provided with Parallel Operating
Environment, used to provide immediate visual
feedback on a program's execution.

pthread . A thread that conforms to the POSIX
Threads Programming Model.

R
Ravenous Bugblatter Beast of Traal (RBBT) . A
creature so mind-bogglingly stupid that it thinks if you
can't see it, it can't see you. Ravenous Bugblatter
Beasts often make a very good meal for visiting tourists.

reduction operation . An operation, usually
mathematical, which reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

remote host . Any host on a network except the one at
which a particular operator is working.

remote shell (rsh) . A command supplied with both
AIX and the IBM AIX Parallel System Support Programs
that lets you issue commands on a remote host.

Report . In Xprofiler, a tabular listing of performance
data that is derived from the gmon.out files of an
application. There are five types of reports that are
generated by Xprofiler, and each one presents different
statistical information for an application.

| Resource Manager . A server that runs on one of the
| nodes of an IBM RS/6000 SP (SP) machine. It
| prevents parallel jobs from interfering with each other,
| and reports job-related node information.

RISC. Reduced Instruction Set Computing (RISC), the
technology for today's high performance personal
computers and workstations, was invented in 1975.

S
shell script . A sequence of commands that are to be
executed by a shell interpreter such as C shell, korn
shell, or Bourne shell. Script commands are stored in a
file in the same form as if they were typed at a terminal.

segmentation fault . A system-detected error, usually
caused by referencing an invalid memory address.

server . A functional unit that provides shared services
to workstations over a network; for example, a file
server, a print server, a mail server.

signal handling . A type of communication that is used
by message passing libraries. Signal handling involves
using AIX signals as an asynchronous way to move
data in and out of message buffers.

source line . A line of source code.

source code . The input to a compiler or assembler,
written in a source language. Contrast with object
code.

SP. IBM RS/6000 SP; a scalable system from two to
128 processor nodes, arranged in various physical
configurations, that provides a high powered computing
environment.

SPMD (Single Program Multiple Data) . A parallel
programming model in which different processors
execute the same program on different sets of data.

standard input (STDIN) . In the AIX operating system,
the primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command.

standard output (STDOUT) . In the AIX operating
system, the primary destination of data produced by a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command.

stencil . A pattern of memory references used for
averaging. A 4-point stencil in two dimensions for a
given array cell, x(i,j), uses the four adjacent cells,
x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine . (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in
a computer program. (3) A group of instructions that
can be part of another routine or can be called by
another program or routine.

synchronization . The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator . (1) The person at a computer
installation who designs, controls, and manages the use
of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

 Glossary of Terms and Abbreviations 133

System Data Repository . A component of the IBM
AIX Parallel System Support Programs software that
provides configuration management for the SP system.
It manages the storage and retrieval of system data
across the control workstation, file servers, and nodes.

System Status Array . An X-Windows run time monitor
tool, provided with the Parallel Operating Environment,
that lets you quickly survey the utilization of processor
nodes.

T
task . A unit of computation analogous to an AIX
process.

thread . A single, separately dispatchable, unit of
execution. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently.

tracing . In PE, the collection of data for the
Visualization Tool (VT). The program is traced by
collecting information about the execution of the
program in trace records. These records are then
accumulated into a trace file which a user visualizes
with VT.

tracepoint . Tracepoints are places in the program
that, when reached during execution, cause the
debugger to print information about the state of the
program.

trace record . In PE, a collection of information about a
specific event that occurred during the execution of your
program. For example, a trace record is created for
each send and receive operation that occurs in your
program (this is optional and may not be appropriate).
These records are then accumulated into a trace file
which allows the Visualization Tool to visually display
the communications patterns from the program.

U
unrolling loops . See loop unrolling.

US. See user space.

user . (1) A person who requires the services of a
computing system. (2) Any person or any thing that may
issue or receive commands and message to or from the
information processing system.

user space (US) . A version of the message passing
library that is optimized for direct access to the SP High
Performance Switch, that maximizes the performance
capabilities of the SP hardware.

utility program . A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine . A routine in general support of the
processes of a computer; for example, an input routine.

V
variable . (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose
value can be changed, while the program is running, by
referring to the name of the variable.

view . (1) In an information resource directory, the
combination of a variation name and revision number
that is used as a component of an access name or of a
descriptive name.

Visualization Tool . The PE Visualization Tool. This
tool uses information that is captured as your parallel
program executes, and presents a graphical display of
the program execution. For more information, see IBM
Parallel Environment for AIX: Operation and Use, Vol. 2

VT. See Visualization Tool.

X
X Window System . The UNIX industry's graphics
windowing standard that provides simultaneous views of
several executing programs or processes on high
resolution graphics displays.

xpdbx . This is the former name of the PE graphical
interface debugging facility, which is now called pedb .

Xprofiler . An AIX tool that is used to analyze the
performance of both serial and parallel applications, via
a graphical user interface. Xprofiler provides quick
access to the profiled data, so that the functions that
are the most CPU-intensive can be easily identified.

134 IBM PE for AIX V2R4.0: Hitchhiker's Guide

 Index

Special Characters
-coredir command 50
-euilib 16
-hostfile option 14
-ilevel option 15
-infolevel option 15, 17, 47, 111
-labelio option 9, 14
-pmdlog option 15
-procs option 9, 14
-rmpool 16
-stdoutmode option 10, 15
>mpxlf_chkpt 41

Numerics
4-point stencil 81
42, the answer to the meaning of life 43

A
access, to nodes 4
ALLMSG 108
allocation, node

host list file 16
Resource Manager 15, 17
SP Switch 15, 17

attach debugger option 63
attaching the debugger 63

B
b_vand 107
b_vor 107
b_vxor 107
babel fish xiv
bad output 70

bad results 71
error messages 70

bad results 71
Betelguese 1
BROADCAST 103

C
checkpoint compile scripts 41
checkpointing a program 41

environment variables 41
how it works 41
limitations 41

collective communications 103
BROADCAST 103
COMBINE 103

collective communications (continued)
CONCAT 103
GATHER 103
GETLABEL 105
GETMEMBERS 105
GETRANK 105
GETSIZE 105
GETTASKID 106
GROUP 106
INDEX 104
PARTITION 106
PREFIX 104
REDUCE 104
SCATTER 104
SHIFT 104
SYNC 105

COMBINE 103
common problems 43

bad output 70
can't compile a parallel program 45
can't connect with the remote host 46
can't execute a parallel program 47
can't start a parallel job 45
core dumps 50
no output 55
no output or bad output 49

compiler scripts 13, 123
for threaded and non-threaded programs 13

compiling 12
C example 12
examples 12
Fortran example 13
scripts 13, 123

CONCAT 103
constants, global 107
core dump 50
core dumps

threaded programs 55
core files 50
creating MPI objects 108

attribute keys 108
communicators 108
data types 108
error handlers 108
groups 108
reduction ops 108
requests 108
status 108

 Copyright IBM Corp. 1996, 1998 135

D
d_vadd 107
d_vmax 107
d_vmin 107
d_vmul 107
data decomposition 26
debugger, attaching to POE job 63
debugging

threaded programs 71
Dent, Arthur 1
DFS/DCE-based user authorization 5
DONTCARE 108

E
encyclopedia galactica xv
ENVIRON 101
environment variables

LANG 43
MP_COREDIR 50
MP_EUIDEVELOP 70
MP_EUILIB 16
MP_HOSTFILE 14, 16, 46
MP_INFOLEVEL 15, 47, 111
MP_LABELIO 11, 14, 70
MP_PMDLOG 15
MP_PMLIGHTS 73, 74
MP_PROCS 11, 14, 46, 73
MP_RESD 46, 48
MP_RMPOOL 16, 46
MP_STDOUTMODE 15, 55
MP_TRACELEVEL 56
NLSPATH 43
running POE with 11

error handling 109
error messages 70
errors

logging to a file 44

F
functional decomposition 35
functions, user-defined 107

G
GATHER 103
GETLABEL 105
GETMEMBERS 105
GETRANK 105
GETSIZE 105
GETTASKID 106
global variables and constants 107
GROUP 106

H
hangs 70

threaded programs 60
host list file 7, 16
host list file, examples 7

I
i_vadd 106
i_vmax 107
i_vmin 107
i_vmul 107
INDEX 104
inetd 47
initialization, how implemented 38
installation 4
Installation Verification Program (IVP) 4, 121
interstellar bypass 75

L
l_vand 107
l_vor 107
LANG 43
Laplace equation 81
last error code 107
LoadLeveler 1, 7, 8, 15, 16, 17, 39, 49

and User Space support 49
logging errors to a file 44
loops, unrolling 26

example 26

M
message length, MPL vs. MPI 108
message queue viewing 3
messages

and problem determination 43
finding 44
format 44
interpreted 113
level reported 17, 111
PE message catalog components 44
PE message catalog errors 43
types 113

MP_CHECKDIR 41
MP_CHECKFILE 41
mp_chkpt() 41
MP_COREDIR 50
MP_EUIDEVELOP 70
MP_EUILIB 16
MP_HOSTFILE 14, 16
MP_INFOLEVEL 15, 47, 111
MP_LABELIO 11, 14, 70
MP_PMDLOG 15

136 IBM PE for AIX V2R4.0: Hitchhiker's Guide

MP_PMLIGHTS 73, 74
MP_PROCS 11, 14
MP_RESD 48
MP_RMPOOL 16
MP_STDOUTMODE 55
MP_STOUTMODE 15
MP_TRACELEVEL 56
mpc_marker 72, 73
mpcc_chkpt 41
MPI objects, creating 108
MPI to MPL equivalents

ALLGRP 108
ALLMSG 108
DONTCARE 108
NULLTASK 108

MPI_COMM WORLD 37
MPI_Comm_rank 28
MPI_Comm_size 28
MPI_Finalize 28
MPI_Init 28
MPI_PROD 38
MPI_Reduce 38
MPI_Scan 38
MPI_SUM 38
MPL to MPI equivalents

b_vand 107
b_vor 107
b_vxor 107
BROADCAST 103
COMBINE 103
CONCAT 103
d_vadd 107
d_vmax 107
d_vmin 107
d_vmul 107
ENVIRON 101
GATHER 103
GETLABEL 105
GETMEMBERS 105
GETRANK 105
GETSIZE 105
GETTASKID 106
GROUP 106
i_vadd 106
i_vmax 107
i_vmin 107
i_vmul 107
INDEX 104
l_vand 107
l_vor 107
mperrno 107
PACK 102
PARTITION 106
PREFIX 104
PROBE 103
RECEIVE (Blocking) 100

MPL to MPI equivalents (continued)
RECEIVE (Non-Blocking) 99
REDUCE 104
s_vadd 106
s_vmax 107
s_vmin 107
s_vmul 107
SCATTER 104
SEND (Blocking) 99
SEND (Non-Blocking) 99
SEND/RECEIVE (Blocking) 100
SHIFT 104
STATUS 100
STOPALL 102
SYNC 105
TASK_QUERY 101
TASK_SET 100
UNPACK 102
VRECV 102
VSEND 102
WAIT 100

myhosts file 16

N
national language support xvii
NLSPATH 43
node allocation

host list file 16
Resource Manager 15, 17
SP Switch 15, 17

NULLTASK 108

O
options

-euilib 16
-hostfile 14
-ilevel 15
-infolevel 15, 17, 111
-labelio 14
-pmdlog 15
-procs 14
-rmpool 16
-stdoutmode 15

P
PACK 102
Parallel Operating Environment

-hostfile option 14
-ilevel option 15
-infolevel option 15, 17, 111
-labelio option 14
-pmdlog option 15
-procs option 14

 Index 137

Parallel Operating Environment (continued)
-stdoutmode option 15
communication with nodes 124
compiling programs 123
description 2
exit status 124
how it works 123
internals 123
options 14
running 8
running, examples 8
signal handling 124
starting applications 124

Parallel Operating Environment (POE), description 2
parallelizing program 86
PARTITION 106
Partition Manager Daemon 47
pmarray 72
POE

-euilib 16
-hostfile option 14
-ilevel option 15
-infolevel option 15, 17, 111
-labelio option 14
-pmdlog option 15
-proc option 14
-rmpool option 16
-stdoutmode option 15
communication with nodes 124
compiling programs 123
description 2
exit status 124
how it works 123
internals 123
options 14
running 8
running, examples 8
signal handling 124
starting applications 124

POE options 14
point-to-point communication 99

ENVIRON 101
PACK 102
PROBE 103
RECEIVE (Blocking) 100
RECEIVE (Non-Blocking) 99
SEND (Blocking) 99
SEND (Non-Blocking) 99
SEND/RECEIVE (Blocking) 100
STATUS 100
STOPALL 102
TASK_QUERY 101
TASK_SET 100
UNPACK 102
VRECV 102
VSEND 102

point-to-point communication (continued)
WAIT 100

Prefect, Ford 1
PREFIX 104
PROBE 103
problems, common

bad output 70
can't compile a parallel program 45
can't connect with the remote host 46
can't execute a parallel program 47
can't start a parallel job 45
core dumps 50
no output 55
no output or bad output 49

processor node, defined 2
profiling program 82
Program Marker Array

mpc_marker 72
pmarray 72
using 72

R
RECEIVE (Blocking) 100
RECEIVE (Non-Blocking) 99
REDUCE 104
reduction functions 106, 109

b_vand 107
b_vor 107
b_vxor 107
d_vadd 107
d_vmax 107
d_vmin 107
d_vmul 107
i_vadd 106
i_vmax 107
i_vmin 107
i_vmul 107
l_vand 107
l_vor 107
s_vadd 106
s_vmax 107
s_vmin 107
s_vmul 107

Resource Manager 1, 8, 15, 16, 17, 39, 49
and User Space support 49

restarting a program 41
running POE 8

running 8
with environment variables 11

S
s_vadd 106
s_vmax 107

138 IBM PE for AIX V2R4.0: Hitchhiker's Guide

s_vmin 107
s_vmul 107
safe coding practices 115, 117, 121

fairness 118
order 116
resource limitations 118
safe program, described 115

safety
MPI programs 69
threaded programs 115

sample program, to illustrate messages 111
SCATTER 104
SEND (Blocking) 99
SEND (Non-Blocking) 99
SEND/RECEIVE (Blocking) 100
SHIFT 104
sine series algorithm 35
SP Switch 47

and node allocation 16, 17
starting applications with POE 124
startup problems 47
STATUS 100
STOPALL 102
stopping a program 41
SYNC 105

T
task identifiers, MPL vs. MPI 108
TASK_QUERY 101
TASK_SET 100
threaded programs

core dumps 55
debugging 71
hangs 60
performance tuning 80
protocol implications 40
safety 115

trademarks ix
tuning

serial algorithm 81
threaded programs 80

U
UNPACK 102
unrolling loops 26

example 26
user authorization

DFS/DCE-based 5
user-defined functions 107

V
variables, global 107

Visualization Tool displays, using 61
Visualization Tool, for detecting hangs 69
vogon constructor ship xiii
VRECV 102
VSEND 102

W
WAIT 100
wildcard receives 108
wildcards 108
wildcards, MPL to MPI equivalents

ALLGRP 108
ALLMSG 108
DONTCARE 108
NULLTASK 108

X
Xprofiler 2, 3, 82

 Index 139

Communicating Your Comments to IBM

IBM Parallel Environment for AIX
Hitchhiker's Guide
Version 2 Release 4

Publication No. GC23-3895-03

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.s390.ibm.com/os390

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

IBM Parallel Environment for AIX
Hitchhiker's Guide
Version 2 Release 4

Publication No. GC23-3895-03

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
GC23-3895-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

GC23-3895-03

IBM

Program Number: 5765-543

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC23-3895-ð3

