
 

IBM Parallel Environment for AIX IBM

 

Operation and Use, Volume 1
Using the Parallel Operating Environment
Version 2 Release 4

 
 
 
 SC28-1979-02



 



IBM Parallel Environment for AIX IBM

Operation and Use, Volume 1
Using the Parallel Operating Environment
Version 2 Release 4

 
 
 
 SC28-1979-02



  
 

 Note! 

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

| Third Edition (October 1998)

| This edition applies to Version 2, Release 4 , Modification 0 of the IBM Parallel Environment for AIX (5765-543), and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, Department 55JA, Mail Station P384

522 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States and Canada: 1+914+432-9405 FAX (Other Countries)  Your International Access Code)+1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL

Internet e-mail: mhvrcf@vnet.ibm.com

World Wide Web: http://www.rs6000.ibm.com (select Parallel Computing)

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book

� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

| Copyright International Business Machines Corporation 1998 . All rights reserved. Note to U.S. Government Users — Documentation
related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with
IBM Corp.

 Copyright International Business Machines Corporation 1995, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.



  
 

 Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

About This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
Who Should Use This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
How This Book is Organized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

Overview of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
Typographic Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Related Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
IBM Parallel Environment for AIX Publications . . . . . . . . . . . . . . . . .  xii
Related IBM Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii
Related Non-IBM Publications . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

Setting POE Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . .  xiv
National Language Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiv
Accessing Online Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv

| Online Information Resources . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv
| Getting the Books Online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv

Chapter 1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
| What's New in PE 2.4? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
| AIX 4.3 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
| Parallel Checkpoint/Restart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
| Enhanced Job Management Function . . . . . . . . . . . . . . . . . . . . . . .  5
| MPI I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
| 1024 Task Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
| Enhanced Compiler Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
| Message Queue Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
| Xprofiler Enhancements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
| PE 2.4 Migration Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
| AIX Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
| Existing Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
| Existing Host List Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
| LAPI Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
| MPI and MPL Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
| Coexistence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
| Use of /usr/lib in LIBPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
| Compiler -ip and -us options . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
| VT trace files are incompatible . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
| SP_Name Environment Variable . . . . . . . . . . . . . . . . . . . . . . . . . .  8
| POSIX Threads Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
| 32/64 Bit Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Chapter 2. Executing Parallel Programs . . . . . . . . . . . . . . . . . . . . . .  9
Executing Parallel Programs Using POE . . . . . . . . . . . . . . . . . . . . . . .  9

Step 1: Compile the Program . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
Step 2: Copy Files to Individual Nodes . . . . . . . . . . . . . . . . . . . . . .  13
Step 3: Set Up the Execution Environment . . . . . . . . . . . . . . . . . . .  14
Step 4: Start X-Windows Analysis Tools . . . . . . . . . . . . . . . . . . . . .  34
Step 5: Invoke the Executable . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

 Copyright IBM Corp. 1995, 1998  iii



  
 

Controlling Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Specifying Develop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Making POE Wait for Processor Nodes . . . . . . . . . . . . . . . . . . . . .  43
Making POE Ignore Arguments . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Managing Standard Input, Output, and Error . . . . . . . . . . . . . . . . . .  44

| Checkpointing and Restarting Programs . . . . . . . . . . . . . . . . . . . . . .  51
| Restarting a Checkpointed Program . . . . . . . . . . . . . . . . . . . . . . .  52
| Checkpointing File Management . . . . . . . . . . . . . . . . . . . . . . . . .  52

Running POE within a Distributed File System . . . . . . . . . . . . . . . . . . .  53
Setting Up Your System to Run POE . . . . . . . . . . . . . . . . . . . . . .  53
Running the poeauth Command . . . . . . . . . . . . . . . . . . . . . . . . .  53
Checking for Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

Chapter 3. Managing POE Jobs . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Multi-Task Core File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Stopping a POE Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56
Cancelling and Killing a POE Job . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Detecting Remote Node Failures . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

| Considerations for Using the SP Switch . . . . . . . . . . . . . . . . . . . . . . .  57
| Scenarios for Allocating Nodes With LoadLeveler . . . . . . . . . . . . . . .  58
| Scenarios for Allocating Nodes With the Resource Manager . . . . . . . . .  61
| Submitting a Batch POE Job using IBM LoadLeveler . . . . . . . . . . . . . . .  65

Running Programs Under the C Shell . . . . . . . . . . . . . . . . . . . . . . . .  67
Using MP_CSS_INTERRUPT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Support for Performance Improvements . . . . . . . . . . . . . . . . . . . . . . .  71

Interrupt Mode Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
Rcvncall Improvements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Parallel File Copy Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72

Chapter 4. Monitoring Program Execution and System Activity . . . . . .  75
Using the Program Marker Array . . . . . . . . . . . . . . . . . . . . . . . . . . .  75

Step 1: Call PM Array Parallel Utility Functions . . . . . . . . . . . . . . . . .  76
Step 2: Compile the Program . . . . . . . . . . . . . . . . . . . . . . . . . . .  76
Step 3: Set the Number of Lights . . . . . . . . . . . . . . . . . . . . . . . . .  76
Step 4: Open the PM Array Window . . . . . . . . . . . . . . . . . . . . . . .  77
Step 5: Invoke the Program and Monitor its Execution . . . . . . . . . . . . .  77
Step 6: Close the PM Array Window . . . . . . . . . . . . . . . . . . . . . . .  78

Using the System Status Array . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78
Opening and Closing the System Status Array Window . . . . . . . . . . . .  80

Appendix A. Parallel Environment Commands . . . . . . . . . . . . . . . .  83
mcp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
mcpgath  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
mcpscat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
mpamddir  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
mpcc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

| mpcc_chkpt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
mpcc_r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
mpCC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

| mpCC_chkpt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
mpCC_r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
mprcp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
mpxlf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

| mpxlf_chkpt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

iv IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

mpxlf_r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
mpxlf90  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

| mpxlf90_chkpt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
mpxlf90_r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
pmarray  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
poe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
poeauth  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
poekill  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
poestat  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Appendix B. POE Environment Variables and Command-Line Flags . .  139

Glossary of Terms and Abbreviations . . . . . . . . . . . . . . . . . . . . .  147

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

  Contents v



  
 

vi IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594

USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road

Poughkeepsie, NY 12601-5400

USA

Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Copyright IBM Corp. 1995, 1998  vii



  
 

viii IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX 
AIX/6000 
IBM 
LoadLeveler  
Micro Channel  
RISC System/6000  
RS/6000 
POWERparallel  
SP 

Microsoft, Windows, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation.

PostScript is a trademark of Adobe Systems, Incorporated.

Motif is a trademark of Open Software Foundation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

 Copyright IBM Corp. 1995, 1998  ix



  
 

x IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

About This Book

This book describes the IBM Parallel Environment (PE) for AIX program product
and its Parallel Operating Environment (POE). It shows how to use POE's facilities
to compile, execute, and analyze parallel programs.

This book concentrates on the actual commands and how to use them, as opposed
to the writing of parallel programs. For this reason, you should use this book in
conjunction with IBM Parallel Environment for AIX: MPI Programming and
Subroutine Reference, (GC23-3894). New users should refer to IBM Parallel
Environment for AIX: Hitchhiker's Guide, (GC23-3895), for basic and introductory
information on PE.

| This book assumes that AIX Version 4.3.2 or later , X-Windows**, and the PE
software are already installed. It also assumes that you have been authorized to
run the Parallel Operating Environment (POE). The PE software is designed to run
on an IBM RS/6000 SP, an RS/6000 network cluster, or on a mixed system where
additional RS/6000 processors supplement an SP system. For complete information
on installing the PE software and setting up users, see IBM Parallel Environment

| for AIX: Installation, (GC28-1981). Also, see the appropriate AIX 4.3.2 or later
documentation listed in “Related Publications” on page xii.

Who Should Use This Book
This book is designed primarily for end users and application developers. It is also
intended for those who run parallel programs, and some of the information covered
should interest system administrators. Readers should have knowledge of the AIX
operating system and the X-Window system. Where necessary, this book provides
some background information relating to these areas. More commonly, this book
refers you to the appropriate documentation.

How This Book is Organized

Overview of Contents
This book contains the following information:

� Chapter 1, “Introduction” on page 1 is a quick overview of the PE program
product. It describes the various PE components, and how you might use each
in developing a parallel application program.

� Chapter 2, “Executing Parallel Programs” on page 9 describes how to compile
and execute parallel programs using the Parallel Operating Environment (POE).

� Chapter 3, “Managing POE Jobs” on page 55 includes information on
allocating nodes with the Resource Manager, IBM LoadLeveler support, and
the environment variables to use when running your applications.

� Chapter 4, “Monitoring Program Execution and System Activity” on page 75
describes the Program Marker Array which allows you to monitor program
execution online, and the System Status Array which allows you to monitor
system activity online.

 Copyright IBM Corp. 1995, 1998  xi



  
 

� Appendix A, “Parallel Environment Commands” on page 83 contains the
manual pages for the PE commands discussed throughout this book.

� Appendix B, “POE Environment Variables and Command-Line Flags” on
page 139 describes the environment variables you can set to influence the
execution of parallel programs and the operation of PE tools. This appendix
also describes the command-line flags associated with each of the environment
variables. When invoking a parallel program, you can use these flags to
override the value of an environment variable.

 Typographic Conventions
This book uses the following typographic conventions:

Type Style Used For

bold Bold  words or characters represent system elements that you must use literally,
such as command names, flag names, and path names.

Bold  words also indicate the first use of a term included in the glossary.

italic Italic words or characters represent variable values that you must supply.

Italics are also used for book titles and for general emphasis in text.

Constant width Examples and information that the system displays appear in constant width
typeface.

In addition to the highlighting conventions, this manual uses the following
conventions when describing how to perform tasks. User actions appear in
uppercase boldface type. For example, if the action is to enter the pedb  command,
this manual presents the instruction as:

ENTER pedb

The symbol “Á” indicates the system response to an action. So the system's
response to entering the pedb  command would read:

Á The pedb  main window opens.

 Related Publications

IBM Parallel Environment for AIX Publications
� IBM Parallel Environment for AIX: General Information, GC23-3906

� IBM Parallel Environment for AIX: Hitchhiker's Guide, GC23-3895

� IBM Parallel Environment for AIX: Installation, GC28-1981

� IBM Parallel Environment for AIX: Operation and Use, Volume 2, Tools
Reference, SC28-1980

� IBM Parallel Environment for AIX: MPI Programming and Subroutine
Reference, GC23-3894

� IBM Parallel Environment for AIX: MPL Programming and Subroutine
Reference, GC23-3893

� IBM Parallel Environment for AIX: Messages, GC28-1982

xii IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

� IBM Parallel Environment for AIX: Licensed Program Specifications,
GC23-3896

As an alternative to ordering the individual books, you can use SBOF-8588 to order
the entire IBM Parallel Environment for AIX library.

Related IBM Publications
� IBM AIX Version 4 Getting Started, SC23-2527

� IBM AIX General Concepts and Procedures for RS/6000 GC23-2202

� IBM AIX Version 4 Files Reference, SC23-2512

� IBM AIX Version 4 System Management Guide: Communications and
Networks, SC23-2526

� IBM AIX Version 4.1 Installation Guide SC23-2550

� IBM AIX Version 4.2 Installation Guide SC23-1924

� IBM AIX Version 4 Commands Reference, SBOF-1851 (all volumes)

� IBM AIX Versions 3.2 and 4 Performance Tuning Guide SC23-2365

� IBM AIX Version 4 Messages Guide and Reference SC23-2641

� IBM AIX Version 4.1 Network Installation Management Guide and Reference,
SC23-2627

� IBM AIX Version 4.2 Network Installation Management Guide and Reference,
SC23-1926

� IBM AIX Version 4 System Management Guide: Operating System and
Devices, SC23-2525

� IBM AIX Version 4 General Programming Concepts: Writing and Debugging
Programs, SC23-2533

� IBM AIX Version 4 Communications Programming Concepts SC23-2610

� Diskless Workstation Management Guide, SC23-2433

� C++ for AIX/6000: Language Reference, SC09-1606

� C++ for AIX/6000: Standard Class Library Reference, SC09-1604

� C++ for AIX/6000: User's Guide, SC09-1605

� IBM Performance Toolbox 1.2 and 2 for AIX: Guide and Reference, SC23-2625

Related Non-IBM Publications
� Almasi, G., Gottlieb, A., Highly Parallel Computing Benjamin-Cummings

Publishing Company, Inc., 1989.

� Gropp, W., Lusk, E., Skjellum, A., Using MPI, The MIT Press, 1994.

� Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6,

| 1995. This standard can be found at the following URL:
| http://www.mpi_forum.org/

� Foster, I., Designing and Building Parallel Programs Addison-Wesley, 1995.

� Pfister, Gregory, F., In Search of Clusters Prentice Hall, 1995.

  About This Book xiii



  
 

Setting POE Environment Variables
Throughout this book, a number of POE environment variables are discussed.
These environment variables can be set to influence the operation of certain tools
and the execution of parallel programs. The POE environment variables also have
associated command-line flags that can be used when invoking a parallel program
or tool. The POE command-line flags temporarily override their associated
environment variable. The following table shows how to set a POE environment
variable or command-line flag depending on the shell you are using. The remainder
of this book assumes use of the Korn Shell. For a complete listing of the POE
environment variables and command-line flags, refer to Appendix B, “POE
Environment Variables and Command-Line Flags” on page 139.

 To set an environment variable: To override an environment variable when
invoking a parallel program or PE tool:

In Korn Shell: ENTER export VARIABLE=value ENTER command program -flag value

In C Shell ENTER setenv VARIABLEvalue ENTER command program -flag value

National Language Support
For National Language Support (NLS), all PE components and tools display
messages located in externalized message catalogs. English versions of the
message catalogs are shipped with the IBM Parallel Environment for AIX program
product, but your site may be using its own translated message catalogs. The AIX
environment variable NLSPATH  is used by the various PE components to find the
appropriate message catalog. NLSPATH  specifies a list of directories to search for
message catalogs. The directories are searched, in the order listed, to locate the
message catalog. In resolving the path to the message catalog, NLSPATH  is
affected by the values of the environment variables LC_MESSAGES  and LANG . If
you get an error saying that a message catalog is not found, and want the default
message catalog:

ENTER export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following
directories:

 /usr/lib/nls/msg/C
 /usr/lib/nls/msg/En_us
 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH  or LANG . For
additional information on NLS and message catalogs, see IBM Parallel Environment
for AIX: Messages and AIX for RS/6000: General Programming Concepts

xiv IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Accessing Online Information
| In order to use the PE man pages or access the PE online (HTML) publications,
| the ppe.pedocs  file set must first be installed. To view the PE online publications,
| you also need access to an HTML document browser such as Netscape. An index
| to the HTML files that are provided with the ppe.pedocs  file set is installed in the
| /usr/lpp/ppe.pedocs/html  directory.

| Online Information Resources
| If you have a question about the SP, PSSP, or a related product, the following
| online information resources make it easy to find the information:

| � Access the new SP Resource Center by issuing the command:
| /usr/lpp/ssp/bin/resource_center . Note that the ssp.resctr  fileset must be
| installed before you can do this.

| If you have the Resource Center on CD ROM, see the readme.txt file for
| information on how to run it.

| � Access the RS/6000 Web Site at: http://www.rs6000.ibm.com .

| Getting the Books Online
| All of the PE books are available in Portable Document Format (PDF). They are
| included on the product media (tape or CD ROM), and are part of the ppe.pedocs
| file set. If you have a question about the location of the PE softcopy books, see
| your System Administrator.

| To view the PE PDF publications, you need access to the Adobe Acrobat Reader
| 3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is
| also freely available for downloading from the Adobe web site at URL
| http://www.adobe.com .

| As stated above, you can also view or download the PE books from the IBM
| RS/6000 web site at http://www.rs6000.ibm.com . At the time this manual was
| published, the full path was
| http://www.rs6000.ibm.com/resource/aix_resource/sp_books.  However, note
| that the structure of the RS/6000 web site can change over time.

  About This Book xv



  
 

xvi IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

 Chapter 1. Introduction

The IBM Parallel Environment for AIX program product (PE) is an environment
designed for the development and execution of parallel Fortran, C, or C++
programs. PE consists of components and tools for developing, executing,
debugging, profiling, and tuning parallel programs.

The PE is a distributed memory message passing system. It runs on the RS/6000
platform using the AIX operating system (Version 4.2.1). Specifically, you can use
the PE to execute parallel programs on:

� any configuration of the IBM RS/6000 SP as described in the IBM Parallel
System Support Programs for AIX: Installation and Migration Guide Essentially,
an SP system is a collection of RS/6000 processors grouped into a number of
frames. Each frame of an SP system can contain from two to 16 RS/6000
processors.

� a networked cluster of RS/6000 processors, including a single processor or a
single workstation.

� a mixed system. In a mixed system, additional RS/6000 processors supplement
the processors of an SP system.

The RS/6000 processors of your system are called processor nodes. A parallel
program executes as a number of individual, but related, parallel tasks on a number
of your system's processor nodes. The group of parallel tasks is called a partition.
The processor nodes are connected on the same LAN, so the parallel tasks of your
partition can communicate to exchange data or synchronize execution. If you are
using an SP system:

� Your system may have an optional high performance switch for communication.
The switch increases the speed of communication between nodes. It supports
a high volume of message passing with increased bandwidth and low latency.

� Your system administrator can divide its nodes into separate pools. An SP
system pool is a subset of processor nodes and is given an identifying pool

| number. A LoadLeveler system pool is a subset of processor nodes and is
| given an identifying pool name or number.

PE supports the two basic parallel programming models – SPMD and MPMD. In
the SPMD (Single Program Multiple Data) model, the programs running the parallel
tasks of your partition are identical. The tasks, however, work on different sets of
data. In the MPMD (Multiple Program Multiple Data) model, each node may be
running a different program. A typical example of this is the master/worker MPMD
program. In a master/worker program, one task – the master – coordinates the
execution of all the others – the workers.

Note:  While the remainder of this introduction describes each of the PE
components and tools in relation to a specific phase of an application's life
cycle, this does not imply that they are limited to one phase. They are
ordered this way for descriptive purposes only; you will find many of the
tools useful across an application's entire life cycle.

The application developer begins by creating a parallel program's source code. The
application developer might create this program from scratch or could modify an
existing serial program. In either case, the developer places calls to Message

 Copyright IBM Corp. 1995, 1998  1



  
 

Passing Interface (MPI)  or Low-level Application Programming Interface (LAPI)
routines so that it can run as a number of parallel tasks. This is known as
parallelizing the application. The MPI is similar to the Message Passing Library
(MPL) from an earlier version of Parallel Environment. MPI provides message
passing capabilities for the current version of PE. There are two libraries for MPI:

� Signal handling - which uses UNIX signals and signal handlers

� Threaded - which uses and supports POSIX user threads.

All tasks of a program must use either signal handling or threaded calls but not a
combination of each.

MPL programs are still supported for non-threaded applications.

Note:  Throughout this book, when referring to anything non-specific for MPI and
MPL, the term message passing will be used. For example:

message passing program

message passing routine

message passing call

The message passing calls enable the parallel tasks of your partition to
communicate data and coordinate their execution. The message passing routines in
turn call communication subsystem library routines which handle communication
among the processor nodes. There are two separate implementations of the
communication subsystem library – the Internet Protocol (IP) Communication
Subsystem and the User Space (US) Communication Subsystem. While the
message passing application interface remains the same, the communication
subsystem libraries use different protocols for communication among processor
nodes. The IP communication subsystem uses Internet Protocol, while the US
communication subsystem is designed for the SP system's high performance switch
feature. The communication subsystem library implementations are dynamically
linked when you invoke the program. For more information on the message passing
subroutine calls, refer to IBM Parallel Environment for AIX: MPI Programming and
Subroutine Reference IBM Parallel Environment for AIX: MPL Programming and
Subroutine Reference, and IBM Parallel Environment for AIX: Hitchhiker's Guide

In addition to message passing communication, the Parallel Environment supports
a separate communication protocol known as the Low-level Application
Programming Interface (LAPI) . LAPI differs from MPI in that it is based on an
“active message style” mechanism that provides a one-sided communications
model. That is, one process initiates an operation and the completion of that
operation does not require any other process to take a complimentary action.

LAPI only runs with the US Communication Subsystem. For this reason, it is
designed to run on the SP system's high performance communication adapter only.
The RS/6000 workstation cluster does not support LAPI.

Although LAPI is used for data communication in conjunction with PE, it is actually
part of the communication subsystem for IBM's Parallel System Support Programs
(PSSP). For more information on LAPI, see IBM Parallel System Support Programs
for AIX: Administration Guide, and IBM Parallel System Support Programs for AIX:
Command and Technical Reference

2 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

After writing the parallel program, the application developer then begins a cycle of
modification and testing. The application developer now compiles and runs his
program from his home node  using the Parallel Operating Environment (POE) .
The home node is any workstation on the LAN. POE is an execution environment
designed to hide, or at least smooth, the differences between serial and parallel
execution.

| To assist with node allocation for job management, the role of IBM LoadLeveler has
| been expanded to work with POE for interactive jobs. LoadLeveler will now provide
| resource management function both on and off the SP system. You can run parallel
| programs on a cluster of processors running LoadLeveler, or on a mixed system of
| LoadLeveler processors that supplement an SP system. LoadLeveler not only
| provides SP node allocation for jobs using the US communication subsystem, but
| also provides management for non-SP nodes, or for SP nodes being used for jobs
| other than user space. LoadLeveler will still be used by POE for batch jobs as well.
| See the IBM LoadLeveler documentation for more information on this job
| management system.

| In general, with POE, you invoke a parallel program from your home node and run
| its parallel tasks on a number of remote nodes . When you invoke a program on
| your home node, POE starts your Partition Manager  which allocates the nodes of
| your partition and initializes the local environment. Depending on your hardware
| and configuration, the Partition Manager uses a host list file , LoadLeverler, or the
| SP system Resource Manager  to allocate nodes. A host list file contains an
| explicit list of node requests, while LoadLeveler or the Resource Manager allocate
| nodes from one or more system pools implicitly based on their availability. On an
| SP system using the Resource Manager, you can also use a host list file to
| determine how an allocated node's resources – its SP switch adapter and CPU –
| are used. Your program task can either:

| � share or not share the node's SP switch adapter
| � share or not share the node's CPU.

| With regard to the expanded LoadLeveler function, POE now provides an option to
| enable you to specify whether your program will use MPI, LAPI, or both. Using this
| option, POE ensures that each API initializes properly and informs LoadLeveler
| which APIs are used so each node is set up completely.

For Single Program Multiple Data (SPMD) applications the Partition Manager
executes the same program on all nodes. For Multiple Program Multiple Data
(MPMD) applications, the Partition Manager prompts you for the name of the
program to load on each node. The Partition Manager also connects standard I/O
to each remote node so the parallel tasks can communicate with the home node.
Although you are running tasks on remote nodes, POE allows you to continue
using the standard UNIX** and AIX execution techniques with which you are
already familiar. For example, you can redirect input and output, pipe the output of
programs, or use shell tools. The POE includes:

� A number of parallel compiler scripts . These are shell scripts that call the C,
C++, or Fortran compilers while also linking in an interface library to enable
communication between your home node and the parallel tasks running on the
remote nodes. You dynamically link in a communication subsystem
implementation when you invoke the executable.

� A number of POE Environment Variables  you can use to set up your
execution environment. These are AIX environment variables you can set to

  Chapter 1. Introduction 3



  
 

influence the operation of POE. These environment variables control such
things as how processor nodes are allocated, what programming model you are
using, and how standard I/O between the home node and the parallel tasks
should be handled. Most of the POE environment variables also have
associated command-line flags that enable you to temporarily override the
environment variable value when invoking POE and your parallel program.

� Two X-Windows** analysis tools:

– The Program Marker Array . This is a programmable array of small boxes,
or lights, which are associated with parallel tasks. Under program control,
these lights can change color to provide you with immediate visual
feedback as your program executes. See Figure 1 on page 75 for a
complete description of this tool.

– The System Status Array . This tool lets you quickly survey the utilization
of your processor nodes. It is useful when listing nodes in a host list file for
explicit node allocation, and is discussed in “Using the System Status
Array” on page 78.

The following tools are discussed in IBM Parallel Environment for AIX: Operation
and Use, Volume 2, Tools Reference and allow you to debug, visualize, and tune
parallel programs.

There are two parallel debugging facilities . The first – pdbx  – is a line-oriented
debugger based on the dbx  debugger. The other – pedb  – is a Motif**-based
debugger.

Once the parallel program is debugged, you now want to tune the program for
optimal performance. To do this, you turn to the PE parallel profiling capability and
Visualization Tool to analyze the program.

The parallel profiling capability  enables you to use the PE Xprofiler graphical
user interface, as well as the AIX commands prof  and gprof  on parallel programs.
Xprofiler is a tool that helps you analyze your parallel application's performance
quickly and easily. It uses procedure profiling information to construct a graphical
display of the functions within your application. Xprofiler provides quick access to
the profiled data, which lets you identify the functions that are the most
CPU-intensive. The graphical user interface also lets you manipulate the display in
order to focus on the application's critical areas.

The Visualization Tool (VT)  contains a set of displays which allow you to visualize
performance characteristics of your program and system. Each display presents
specific, often complex, information in an easily-interpretable form such as a bar
chart or a strip graph. You can use VT's displays for trace visualization and online
performance monitoring.

� In trace visualization, you play back statistical and event records – or trace
records – generated during your program's execution. You can use VT to
visualize information about the program as well as its use of the underlying
system. This visualized information can help you tune the program to optimize
its use of the underlying system.

� In performance monitoring, you use VT as an online monitor to study the
operational status and activity of each of the processor nodes in your SP
system or RS/6000 network cluster. This mode of VT is similar to the System
Status Array in that it only displays system statistics and not communication

4 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

information. Like the System Status Array, it is useful when listing nodes in a
host list file for explicit node allocation.

Note:  Once the parallel program is tuned to your satisfaction, you might prefer to
execute it using a job management system such as IBM LoadLeveler*. If
you do use a job management system, consult its documentation for
information on its use.

| What's New in PE 2.4?

| AIX 4.3 Support
| With PE 2.4, POE supports user programs developed with AIX 4.3. It also supports
| programs developed with AIX 4.2, intended for execution on AIX 4.3.

|  Parallel Checkpoint/Restart
| This release of PE provides a mechanism for temporarily saving the state of a
| parallel program at a specific point (checkpointing), and then later restarting  it from
| the saved state. When a program is checkpointed, the checkpointing function
| captures the state of the application as well as all data, and saves it in a file. When
| the program is restarted, the restart function retrieves the application information
| from the file it saved, and the program then starts running again from the place at
| which it was saved.

| Enhanced Job Management Function
| In earlier releases of PE, POE relied on the SP Resource Manager for performing
| job management functions. These functions included keeping track of which nodes
| were available or allocated and loading the switch tables for programs performing
| User Space communications. LoadLeveler, which had only been used for batch job
| submissions in the past, is now replacing the Resource Manager as the job
| management system for PE. One notable effect of this change is that LoadLeveler
| now allows you to run up to four User Space tasks per node.

|  MPI I/O
| With PE 2.4, the MPI library now includes support for a subset of MPI I/O,
| described by Chapter 9 of the MPI-2 document; MPI-2: Extensions to the
| Message-Passing Interface, Version 2.0. MPI-I/O provides a common programming
| interface, improving the portability of code that involves parallel I/O.

| 1024 Task Support
| With regard to MPI/LAPI jobs, this release of PE supports a maximum of 2048
| tasks for IP, and 1024 tasks for US, as opposed to the previous release, which
| supported a maximum of 512 tasks.

| Enhanced Compiler Support
| In this release, POE is adding support for the following compilers:

| � Fortan Version 5

|  � C

|  � C++

  Chapter 1. Introduction 5



  
 

|  � xlhpf

| Message Queue Facility
| The pedb  debugger now includes a message queue facility. Part of the pedb
| debugger interface, the message queue viewing feature can help you debug
| Message Passing Interface (MPI) applications by showing internal message request
| queue information. With this feature, you can view:

| � A summary of the number of active messages for each task in the application.
| You can select criteria for the summary information based on message type
| and source, destination, and tag filters.

| � Message queue information for a specific task.

| � Detailed information about a specific message.

|  Xprofiler Enhancements
| This release includes a variety of enhancements to Xprofiler, including:

| � Save Configuration and Load Configuration options for saving the names of
| functions, currently in the display, and reloading them later in order to
| reconstruct the function call tree.

| � An Undo option that lets you undo operations that involve adding or removing
| nodes or arcs from the function call tree.

| PE 2.4 Migration Information
| This section is intended for customers migrating from earlier releases of PE to PE
| 2.4. It contains specific information on some differences between earlier releases
| that you need to consider prior to installing or using PE 2.4. To find out which
| release of PE you currently have installed, use lslpp .

|  AIX Compatibility
| PE 2.4 commands and applications are compatible with AIX Version 4.3.2 or later
| only, not with earlier versions of AIX.

|  Existing Applications
| Applications from previous versions of Parallel Environment are binary compatible
| with PE 2.4, with the following exceptions:

| � User applications created using PE 2.4 are not binary compatible with Version
| 1.

| � In order to run under PE 2.4, you must recompile existing applications that
| were developed under PE Version 1.

| � In order to run under PE 2.4, you must recompile any statically bound
| applications that were created with PE Version 2 Release 1.

6 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

| Existing Host List Files
| Host list files from previous releases that contained multiple pool or usage
| specifications will be affected as follows when using LoadLeveler:

| � Usage specification in a host list file will be ignored.

| � You can request how nodes are used with the MP_CPU_USE and/or
| MP_ADAPTER_USE  environment variables, or their associated command line
| flags

| � LoadLeveler does not allow dissimilar pool entries.

|  LAPI Applications
| LAPI programs must set the MP_MSGAPI environment variable.

| MPI and MPL Applications
| � The MPI function became available in Version 2.

| � The MPL message passing applications are source compatible between PE
| Version 1 Release 2 and PE 2.4, but must be recompiled.

|  Coexistence
| All tasks within a partition or cluster must be running the same version of PE. You
| cannot mix versions of PE.

| Therefore, for all processors within a workstation cluster, the same release level of
| the PE software is required.

| When you use partitioning, you may have different levels of PE software installed
| on different partitions; however, within a partition, all the nodes must be at the
| same level of PE software.

| Note:  See IBM Parallel Environment for AIX: Installation for more information
| about software compatibility within a workstation cluster or partition, and for
| administrative and usage information about running different versions of
| POE in a partitioned environment.

| Use of /usr/lib in LIBPATH
| Users who previously set LIBPATH  to include /usr/lib  should no longer do so.
| Setting LIBPATH  to include /usr/lib  would cause the POE application not to include
| all of the POE libraries at execution time.

| /usr/lib  is included in the loader section search path of all POE applications at
| compile time, so there is no need to include it in LIBPATH .

| Compiler -ip and -us options
| The -ip  and -us  flags for PE Version 1 mpcc , mpCC , and mpxlf  compiler scripts
| are no longer used or supported. All application programs are dynamically linked
| using these scripts.

| Instructions are provided on how to create statically executable versions of your
| applications in IBM Parallel Environment for AIX: Operation and Use, Volume 1,
| Using the Parallel Operating Environment. User-written scripts that utilize these
| options need to be rewritten.

  Chapter 1. Introduction 7



  
 

| VT trace files are incompatible
| VT trace files generated using Version 1 or Version 2, Release 2 will not be
| compatible with Version 2.4, and vice versa. Trace files must be regenerated.

| However, refer to IBM Parallel Environment for AIX: Operation and Use, Volume 2,
| Tools Reference for information about the VT trace file format, if you want to write
| your own conversion program.

| SP_Name Environment Variable
| Previous versions of POE allowed jobs using the SP Resource Manager to be
| submitted from a non-SP node by setting the SP_NAME environment variable. For
| POE Version 2 Release 2 or later, you must also install the ssp.clients  fileset.
| Refer to IBM Parallel Environment for AIX: Installation for more information.

| POSIX Threads Support
| PE 2.4 supports IEEE POSIX 1003.1-1996 of POSIX threads (sometimes known as
| Draft 10), that is xpg5 compliant as a default when compiling parallel applications.
| Existing applications from previous releases of PE were built with an earlier version
| of POSIX threads (Draft 7).

| Existing threaded applications are supported in binary compatibility mode, without
| needing to recompile. However, these will run with the older objects from the
| previous version's threads library.

| All new applications are compiled with the new draft of POSIX threads as the
| default. However, the POE threaded compiler scripts (mpcc_r , mpCC_r , mpxlf_r ,
| mpxlf90_r ) also provide an optional flag (-d7) to allow applications to be compiled
| with the older version of the threads library. See the appropriate compiler command
| description for further details.

| 32/64 Bit Applications
| POE compiles and runs all applications as 32 bit applications. 64 bit applications
| are not yet supported.

8 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Chapter 2. Executing Parallel Programs

This chapter describes the Parallel Operating Environment (POE). POE is a simple
and friendly environment designed to ease the transition from serial to parallel
application development and execution. POE lets you develop and run parallel
programs using many of the same methods and mechanisms as you would for
serial jobs. POE allows you to continue to use the standard UNIX** and AIX
application development and execution techniques with which you are already
familiar. For example, you can redirect input and output, pipe the output of
programs into more  or grep , write shell scripts to invoke parallel programs, and
use shell tools such as history. You do all these in just the same way you would for
serial programs. So while the concepts and approach to writing parallel programs
must necessarily be different, POE makes your working environment as familiar as
possible.

This chapter describes the steps involved in compiling and executing your parallel
C, C++, or Fortran programs using either an IBM RS/6000 SP, an RS/6000 network
cluster, or a mixed system.

Executing Parallel Programs Using POE
This section discusses how to compile and execute your parallel C, C++, or Fortran
programs. It leaves out the first step in any application's life cycle which is actually
writing the program. For information on writing parallel programs, refer to IBM
Parallel Environment for AIX: MPI Programming and Subroutine Reference IBM
Parallel Environment for AIX: MPL Programming and Subroutine Reference IBM
Parallel Environment for AIX: Hitchhiker's Guide, and IBM Parallel System Support
Programs for AIX: Command and Technical Reference.

Note:  If you are using POE for the first time, check that you have authorized
access. See IBM Parallel Environment for AIX: Installation for information on
setting up users.

In order to execute an MPI, MPL, or LAPI parallel program, you need to:

1. Compile and link the program using shell scripts or makefiles which call the C,
C++, or Fortran compilers while linking in the Partition Manager interface and
message passing subroutines.

2. Copy your executable to the individual nodes in your partition if it is not
accessible to the remote nodes.

3. Set up your execution environment. This includes setting the number of tasks,
and determining the method of node allocation.

4. Optionally start either of the POE X-Windows analysis tools – the Program
Marker Array and the System Status Array – you want to use.

5. Load and execute the parallel program on the processor nodes of your
partition. You can:

� load a copy of the same executable on all nodes of your partition. This is
the normal procedure for SPMD programs.

� individually load the nodes of your partition with separate executables. This
is the normal procedure for MPMD programs.

 Copyright IBM Corp. 1995, 1998  9



  
 

� load and execute a series of SPMD or MPMD programs, in job step
fashion, on all nodes of your partition.

Step 1: Compile the Program
As with a serial application, you must compile a parallel C, C++, or Fortran program
before you can run it. Instead of using the cc , xlC , or xlf  commands, however, you
use the commands mpcc , mpCC , or mpxlf . The mpcc , mpCC , and mpxlf
commands not only compile your program, but also link in the Partition Manager
and message passing interface libraries. When you later invoke the program, the
subroutines in these libraries enable the home node Partition Manager to
communicate with the parallel tasks, and the tasks with each other. To compile
threaded C, C++, or Fortran programs, use the mpcc_r , mpCC_r , or mpxlf_r
commands. These commands can also be used to compile non-threaded programs
with the threaded libraries.

| To compile programs with the checkpoint/restart capability, use the mpcc_chkpt ,
| mpCC_chkpt , or mpxlf_chkpt  commands. See IBM Parallel Environment for AIX:
| Hitchhiker's Guide for an overview of checkpointing and restarting POE programs.
| For specific details, see the section later in this chapter, “Checkpointing and
| Restarting Programs” on page 51.

These compiler commands are actually shell scripts which call the appropriate
compiler. You can use any of the cc , xlC , or xlf  flags on these commands.

The following table shows what to enter to compile a program depending on the
language in which it is written. For more information on these commands, see
Appendix A, “Parallel Environment Commands” on page 83.

To: Enter:

Compile a C program. A communication subsystem
library implementation will be dynamically linked when
the executable is invoked.

mpcc  program.c -o program

Compile a C++ program. A communication subsystem
library implementation will be dynamically linked when
the executable is invoked.

mpCC  program.C -o program

Compile a Fortran program. A communication
subsystem library implementation will be dynamically
linked when the executable is invoked.

mpxlf  program.f -o program

Compile a C program which uses threaded MPI. A
communication subsystem library implementation will
be dynamically linked when the executable is invoked.

mpcc_r  program.c -o program

Compile a C++ program which uses threaded MPI. A
communication subsystem library implementation will
be dynamically linked when the executable is invoked.

mpCC_r  program.C -o program

Compile a Fortran program which uses threaded MPI.
A communication subsystem library implementation will
be dynamically linked when the executable is invoked.

mpxlf_r  program.f -o program

10 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Notes:

1. Be sure to specify the -g flag when compiling a program for use with one of the
parallel debuggers or with VT. The -g flag is a standard compiler flag that
produces an object file with symbol table references. This object file is needed
by the debuggers and by VT's Source Code view. For more information on the
-g option, refer to its use on the cc  command as described in IBM AIX Version
4 Commands Reference.

| 2. Application programs compiled for use with POE are limited to eight (8) data
| segments. The -bmaxdata  option cannot specify any more than 0x80000000.

Creating a Static Executable
Note:  We discourage you from creating statically bound executables with POE. If

service is ever applied that affects any of the Parallel Environment libraries,
you will need to recompile your application to create a new executable that
will work with the new libraries. This could lead to a lot of work and may
expose you to potential problems, which would be avoided if dynamic
libraries are used.

In general, to create a static executable, do the following:

1. Create an object file of your program using cc , xlf , or xlC . For your threaded
program, use cc_r  or xlC_r . Include the path /usr/lpp/ppe.poe/include  to the
message passing include files in your compilation statement. For example:

cc -c myprog.c -I/usr/lpp/ppe.poe/include

2. Using ld , create the executable.

The following table shows how you create a C, C++, or Fortran static executable for
IP or US.

Note:  When you see ld , l represents a lower case L. When you see -bI, I
represents an upper case i.

  Chapter 2. Executing Parallel Programs 11



  
 

To: For IP, Enter: For US (SP only), Enter:

Create a C or
C++ static
executable

ld -o  myprog myprog.o /lib/crt0.o
-binitfini:poe_remote_main -bnso -lmpci -lmpi
-lvtd -lc -lppe -bI :/lib/syscalls.exp
-L/usr/lpp/ppe.poe/lib -L/usr/lpp/ppe.poe/lib/ip

ld -o  myprog myprog.o /lib/crt0.o
-binitfini:poe_remote_main -bnso
-bI:/usr/lpp/ssp/css/libus /fs_ext.exp -lmpci -lmpi
-lvtd -lc -lppe -bI:/lib/syscalls.exp
-L/usr/lpp/ppe.poe/lib -L/usr/lpp/ppe.poe/lib/us

Create a
Fortran static
executable

ld -o  myprog myprog.o /lib/crt0.o
-binitfini:poe_remote_main -bnso -lmpci -lmpi
-lvtd -lxlf90 -lxlf -lc -lppe -bI:/lib/syscalls.exp
-L/usr/lpp/ppe.poe/lib -L/usr/lpp/ppe.poe/lib/ip

ld -o  myprog myprog.o /lib/crt0.o
-binitfini:poe_remote_main -bnso
-bI:/usr/lpp/ssp/css/libus /fs_ext.exp -lmpci -lmpi
-lvtd -lxlf90 -lxlf -lc -lppe -bI:/lib/syscalls.exp
-L/usr/lpp/ppe.poe/lib -L/usr/lpp/ppe.poe/lib/us

Create a C or
C++ static
executable
which uses
threaded MPI

ld -o  myprog myprog.o /lib/crt0_r.o
-binitfini:poe_remote_main -bnso -lmpi_r -lvtd_r
-lc_r -lppe_r -lpthreads -lmpci_r -lc /usr/lib/libc.a
-bI:/lib/threads.exp -bI:/lib/syscalls.exp
-L/usr/lib/threads -L/usr/lpp/ppe.poe/lib
-L/usr/lpp/ppe.poe/lib/ip

ld -o  myprog myprog.o /lib/crt0_r.o
-binitfini:poe_remote_main -bnso
-bI:/usr/lpp/ssp/css/libus/fs_ext.exp -lmpi_r
-lvtd_r -lc_r -lppe_r -lpthreads -lmpci_r -lc
/usr/lib/libc.a -bI:/lib/threads.exp
-bI:/lib/syscalls.exp -L/usr/lib/threads
-L/usr/lpp/ppe.poe/lib -L/usr/lpp/ppe.poe/lib/us

Create a
Fortran static
executable
which uses
threaded MPI

ld -o  myprog myprog.o /lib/crt0_r.o
-binitfini:poe_remote_main -bnso -lmpci_r
-lmpi_r -lvtd_r -lxlf90_r -lc_r -lppe_r -lc
-lpthreads /usr/lib/libc.a -bI:/lib/syscalls.exp
-bI:/lib/threads.exp -L/usr/lib/threads
-L/usr/lpp/ppe.poe/lib -L/usr/lpp/ppe.poe/lib/ip

ld -o  myprog myprog.o /lib/crt0_r.o
-binitfini:poe_remote_main -bnso
-bI:/usr/lpp/ssp/css/libus/fs_ext.exp -lmpci_r
-lmpi_r -lvtd_r -lxlf90_r -lc_r -lppe_r -lc
-lpthreads /usr/lib/libc.a -bI:/lib/syscalls.exp
-bI:/lib/threads.exp -L/usr/lpp/ppe.poe/lib
-L/usr/lpp/ppe.poe/lib/us

Notes:

1. Users of PE 2.1 and 2.2 who have made references to any crt0  in
/usr/lpp/ppe.poe/lib  (for example, users who create statically bound

| executables) and who wish to recompile using PE 2.4 should do the following:

a. References to any crt0  in /usr/lpp/ppe.poe/lib  should be changed to the
desired crt0  in /lib  or /usr/lpp/xlC/lib .

b. The -binitfini:poe_remote_main  binder option should be added to the
compile or ld  statement.

2. POE compile scripts utilize the -binitfini  binder option. As a result, POE
programs have a priority default of zero. If other user applications are using the
initfini  binder option, they should only specify a priority in the range of 1 to
2,147,483,647.

3. If you try to create a US static executable on the SP control workstation, and
the ld  command fails because it cannot find the mpci  library file, it is possible
that a link needs to be set by your system administrator. Refer to IBM Parallel
Environment for AIX: Installation for instructions on installing PE on the SP
control workstation.

4. On a cluster, you can create an IP static executable only. The US libraries are
only shipped with an SP system.

5. When creating a Fortran static executable, include the xlf90  and xlf  libraries in
the ld  command after the -lvtd  statement.

| 6. To use threads and Fortran, you should have Fortran Release 4.1.0.1 or later .

7. To create a static executable of a program which uses LAPI subroutines, see
“Understanding and Using the Communications Low-Level Application
Programming Interface (LAPI),” in  IBM Parallel System Support Programs for
AIX: Administration Guide

12 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Step 2: Copy Files to Individual Nodes
Note:  You only need to perform this step if your executable, your data files, and (if

you plan to use pdbx ) your source code files are not in a commonly
accessed, or shared, file system. If running on an SP system, you can also
skip this step if the needed files are part of a file collection which is
distributed automatically. For information on using file collections, see IBM
Parallel System Support Programs for AIX: Administration Guide For more
information on the parallel debuggers, see IBM Parallel Environment for
AIX: Operation and Use, Volume 2, Tools Reference.

If the program you are running is in a shared file system, the Partition Manager
loads a copy of your executable in each processor node in your partition when you
invoke a program. If your executable is in a private file system, however, you must
copy it to the nodes in your partition. If you plan to use the parallel debugger pdbx ,
you must copy your source files to all nodes as well. You can easily copy files to
nodes using the mprcp  command. All you do is pass mprcp  the name of the host
list file you are using to define your partition and the absolute path name of the file.

For example, to send a copy of program to all the processor nodes listed in host.list
in your current directory:

ENTER mprcp  host.list $PWD/program

Á The mprcp  command copies program to each of the nodes listed in
host.list using the rcp  command. If a program of the same name already
exists, the mprcp  command will overwrite it.

For more information on the rcp  command, refer to IBM AIX Version 4 Commands
Reference . For more information on the mprcp  command, see Appendix A,
“Parallel Environment Commands” on page 83.

You can also copy your executable to each node with the mcp  command. There is
an advantage in using mcp  over mprcp  in that mcp  copies large programs faster.
mcp  uses the message passing facilities of the Parallel Environment to copy a file
from a file system on the home node to a remote node file system. For example,
assume that your executable program is on a mounted file system
(/u/edgar/somedir/myexecutable), and you want to make a private copy in /tmp on
each node in host.list.

ENTER mcp  /u/edgar/somedir/myexecutable /tmp/myexecutable -procs  n

Note:  If you load your executable from a mounted file system, you may
experience an initial delay while the program is being initialized on all
nodes. You may experience this delay even after the program begins
executing, because individual pages of the program are brought in on
demand. This is particularly apparent during initialization of the message
passing interface; since individual nodes are synchronized, there are
simultaneous demands on the network file transfer system. You can
minimize this delay by copying the executable to a local file system on each
node, using the mcp  message passing file copy program.

  Chapter 2. Executing Parallel Programs 13



  
 

Step 3: Set Up the Execution Environment
This step contains the following sections:

| � “Step 3a: Set the MP_PROCS Environment Variable” on page 19

| � “Step 3b: Set the SP_NAME Environment Variable” on page 20

| � “Step 3c: Create a Host List File” on page 20

| � “Step 3d: Set the MP_HOSTFILE Environment Variable” on page 28

| � “Step 3e: Set the MP_RESD Environment Variable” on page 28

| � “Step 3f: Set the MP_EUILIB Environment Variable” on page 29

| � “Step 3g: Set the MP_EUIDEVICE Environment Variable” on page 31

| � “Step 3h: Set the MP_MSG_API Environment Variable” on page 31

| � “Step 3i: Set the MP_RMPOOL Environment Variable” on page 32

| � “Step 3j: Set the MP_AUTH Environment Variable” on page 34

Before invoking your program, you need to set up your execution environment.
There are a number of POE environment variables discussed throughout this book
and summarized in Appendix B, “POE Environment Variables and Command-Line
Flags” on page 139. Any of these environment variables can be set at this time to
later influence the execution of parallel programs. This step covers those
environment variables most important for successful invocation of a parallel
program. When you invoke a parallel program, your home node Partition Manager
checks these environment variables to determine:

� the number of tasks in your program as specified by the MP_PROCS
environment variable.

� how to allocate processor nodes for these tasks. There are two basic methods
of node allocation – specific and non-specific.

For specific node allocation, the Partition Manager reads an explicit list of
nodes contained in a host list file you create. If you are using an RS/6000
network cluster, or if you are using a mixed system and want to include nodes
not on the SP system, you must use this method of node allocation.

| For non-specific node allocation, you give the Partition Manager the name or
| number of a LoadLeveler pool, or the number of an SP system pool. A pool
| name or number may also be provided in a host list file when using
| LoadLeveler, or a list of SP system pools may be provided if using the
| Resource Manager. The Partition Manager then connects to LoadLeveler or the
| SP system Resource Manager, which allocates nodes from the specified
| pool(s) for you.

Note:  If you are using an SP system, and plan to use its high performance switch
adapter for communication, note that each node has been configured by
your system administrator for communication using the IP communication
subsystem, the US communication subsystem, or both. Any node you
request through specific or non-specific node allocation must be configured
for the appropriate communication subsystem library implementation. Check
with your system administrator to learn which nodes were initialized for the
US communication subsystem, which were initialized for the IP
communication subsystem, or which nodes allow either.

14 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

There are five separate environment variables that, collectively, determine how
nodes are allocated by the Partition Manager. While these are the only ones you
must set to allocate nodes, keep in mind that there are many other environment
variables you can set. These are summarized in Appendix B, “POE Environment
Variables and Command-Line Flags” on page 139, and control such things as
standard I/O handling and VT trace file generation. The environment variables for
node allocation are:

MP_HOSTFILE which specifies the name of a host list file to use for node
allocation. If set to an empty string (“ ”) or to the word
“NULL”, this environment variable specifies that no host list
file should be used. If MP_HOSTFILE is not set, POE looks
for a file host.list in the current directory. You need to create
a host list file if you want specific node allocation, or if you
want non-specific node allocation from a number of SP
system pools.

| MP_RESD which specifies whether or not the Partition Manager should
| connect to a job management system (LoadLeveler or the
| Resource Manager) to allocate nodes.

| Notes:

| 1. MP_RESD only specifies whether or not to use a job
| management system.

| 2. When the Resource Manager is used, the actual system
| you are using must be identified by the environment
| variable SP_NAME, of the control workstation on the SP
| system.

| 3. When running POE from a workstation that is external to
| the LoadLeveler cluster, the LoadL.so fileset must be
| installed on the external node (see Using and
| Administering LoadLeveler and IBM Parallel Environment
| for AIX: Installation for more information).

| 4. When running POE from a workstation that is external to
| the SP system, and using the Resource Manager, the
| ssp.clients fileset must be installed on the external node
| (see IBM Parallel Environment for AIX: Installation for
| more information).

MP_EUILIB which specifies the communication subsystem library
implementation to use – either the IP communication
subsystem implementation or the User Space (US)
communication subsystem implementation. The IP
communication subsystem library uses Internet Protocol for
communication among processor nodes, while the US
communication subsystem library lets you drive an SP
system's high performance switch directly from your parallel
tasks, without going through the kernel or operating system.
For US communication on an SP system, you must have the
high performance switch feature.

| MP_EUIDEVICE which specifies the adapter set you want to use for IP
| communication among processor nodes. The Partition
| Manager only checks this if you are using the IP

  Chapter 2. Executing Parallel Programs 15



  
 

| communication subsystem implementation with LoadLeveler
| or the SP system Resource Manager. It does not check this
| if you are using an RS/6000 network cluster. If
| MP_RESD=no, the value of MP_EUIDEVICE is ignored.

| MP_RMPOOL which specifies the name or number of a LoadLeveler pool,
| or number of an SP system pool. The Partition Manager only
| checks this if you are using LoadLeveler or the SP system
| Resource Manager for non-specific node allocation without a
| host list file. You can use the llstatus  command to return
| information about LoadLeveler pools. To use llstatus  on a
| workstation that is external to the LoadLeveler system, the
| LoadL.so fileset must be installed on the external node. For
| more information, see Using and Administering LoadLeveler
| and IBM Parallel Environment for AIX: Installation. You can
| use the jm_status  command to return information about SP
| system pools. To use jm_status  on a workstation that is
| external to the SP system, the ssp.clients fileset must be
| installed on the external node (see IBM Parallel Environment
| for AIX: Installation for more information). For information on
| this command, and on SP system pools in general, refer to
| IBM Parallel System Support Programs for AIX: Command
| and Technical Reference

The remainder of this step consists of sub-steps describing how to set each of
these environment variables, and how to create a host list file. Depending on the
hardware and message passing library you are using, and the method of node
allocation you want, some of the sub-steps that follow may not apply to you. For
this reason, pay close attention to the task variant tables at the beginning of many
of the sub-steps. They will tell you whether of not you need to perform the
sub-step.

For further clarification, the following tables summarize the procedure for
determining how nodes are allocated. The tables describe the possible methods of
node allocation available to you, what each environment variable must be set to,
and whether or not you need to create a host list file. To make the procedure of
setting up the execution environment easier and less prone to error, you may
eventually wish to create a shell script which automates some of the environment
variable settings. To allocate nodes of an SP system, see Table 1. If you are using
an RS/6000 network cluster, or if you are using a mixed system and want to
allocate nodes not on the SP system, see Table 2 on page 18.

Table 1. Execution Environment Setup Summary (for an SP system)

If you want to use the US communication
subsystem library for communication among
parallel tasks and...

If you want to use the IP communication
subsystem library for communication among
parallel tasks and...

16 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

 you want
non-specific node
allocation from a
single pool:

you want specific
node allocation or
if you want
non-specific node
allocation from
more than one
pool:

you want
non-specific node
allocation from a
single pool:

| you want specific
| node allocation or
| non-specific node
| allocation (using
| the Resource
| Manager) from
| more than one
| pool:

A host list file... not required. required. not required. required.

MP_HOSTFILE should be set to an
empty string ("") or
the word “NULL”

should be set to
the name of your
host list file. If not
set, the host list file
is assumed to be
host.list in the
current directory.

should be set to an
empty string ("") or
the word “NULL”

should be set to
the name of your
host list file. If not
set, the host list file
is assumed to be
host.list in the
current directory.

MP_RESD should be set to
yes. If set to an
empty string (""), or
if not set, the
Partition Manager
assumes
MP_RESD is yes.

should be set to
yes. If set to an
empty string (""), or
if not set, the
Partition Manager
assumes
MP_RESD is yes.

should be set to
yes. If set to an
empty string (""), or
if not set, the
Partition Manager
assumes
MP_RESD is yes.

should be set to
yes. If set to an
empty string (""),
the Partition
Manager assumes
MP_RESD is no.

MP_EUILIB us us ip ip

MP_EUIDEVICE css0 (the high
performance
switch). However,
the actual value is
ignored when
MP_EUILIB  is set
to us.

css0 (the high
performance
switch). However,
the actual value is
ignored when
MP_EUILIB  is set
to us.

should specify the
adapter type. A
valid,
case-sensitive
value is css0 (the
high performance
switch).

Note that the
MP_EUIDEVICE
value is only used
when the value of
MP_EUILIB  is ip.

should specify the
adapter type. A
valid,
case-sensitive
value is css0 (the
high performance
switch).

Note that the
MP_EUIDEVICE
value is only used
when the value of
MP_EUILIB  is ip.

MP_RMPOOL| should be set to
| the name or
| number of a
| LoadLeveler pool,
| or the number of
| an SP system pool.
| It must be used if
| you are not using a
| host list file.

is ignored if you
are using a host
list file.

| should be set to
| the name or
| number or a
| LoadLeveler pool,
| or the number of
| an SP system pool.
| It must be used if
| you are not using a
| host list file.

is ignored if you
are using a host
list file.

  Chapter 2. Executing Parallel Programs 17



  
 

Table 2. Execution Environment Setup Summary (for RS/6000 Network Cluster or Mixed System)

If you are using an RS/6000 network
cluster: If you are using a mixed system:

A host list file... is used. is used.

MP_HOSTFILE should be set to the name of a host list
file. If not defined, the host list file is
assumed to be host.list in the current
directory.

should be set to the name of a host list
file. If not defined, the host list file is
assumed to be host.list in the current
directory.

MP_RESD should be set to no. should be set to yes. If set to an empty
string (""), the Partition Manager
assumes MP_RESD is no.

MP_EUILIB should be set to ip. should be set to ip.

MP_EUIDEVICE is not checked. should specify the adapter type. Valid,
case-sensitive, values are en0
(Ethernet), tr0 (token ring), fi0 (FDDI),
and css0 (the high performance
switch).

MP_RMPOOL is not used because you are using a
host list file.

is not used because you are using a
host list file.

The following table shows how nodes will be allocated depending on the value of
the environment variables discussed in this step. It is provided here for additional
illustration. Refer to it in situations when the environment variables are set in
patterns other than those suggested in Table 1 on page 16 and Table 2.

Table 3 (Page 1 of 2). Node Allocation Summary

If Then

The value of
MP_EUILIB is:

The value of
MP_RESD
is:

Your Host List file
contains a list of:

The allocation
mode will be:

The
communication
subsystem
library
implementation
used will be:

The message
passing
address used
will be:

ip – nodes Node_List IP Nodes

pools RM_List IP MP_EUIDEVICE NULL RM

IP MP_EUIDEVICE yes nodes RM_List IP

MP_EUIDEVICE pools RM_List IP MP_EUIDEVICE NULL

RM IP MP_EUIDEVICE no nodes Node_List

IP Nodes pools Error – –

NULL Error – –

us – nodes RM_List US N/A

pools RM_List US N/A NULL RM

US N/A yes nodes RM_List US

N/A pools RM_List US N/A NULL

RM US N/A no nodes Error

– – pools Error – –

NULL Error – –

– – nodes Node_List IP Nodes

pools RM_List IP MP_EUIDEVICE NULL RM

US N/A yes nodes RM_List US

N/A pools RM_List US N/A NULL

18 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Table 3 (Page 2 of 2). Node Allocation Summary

If Then

RM US N/A no nodes Node_List

IP Nodes pools Error – –

NULL Error – –

Note: 

Node_List means that the host list file is used to create the partition.

| RM_List means that the host list file is used to create the partition, but the nodes are requested from either
| LoadLeveler or the SP system Resource Manager.

RM means that the partition is created by requesting nodes in MP_RMPOOL from the SP system
Resource Manager.

Nodes indicates that the external IP address of the processor node is used for communication.

MP_EUIDEVICE indicates that the IP adapter address indicated by MP_EUIDEVICE is used for communication.

Step 3a: Set the MP_PROCS Environment Variable
Before you execute a program, you need to set the size of the partition. To do this,
use the MP_PROCS environment variable or its associated command-line flag
-procs . For example, say you want to specify the number of task processes as 6.
You could:

Set the MP_PROCS environment variable: Use the -procs flag when invoking the program:

ENTER export MP_PROCS=6 ENTER poe  program -procs 6

Invoking parallel programs is discussed in more detail in “Step 5: Invoke the
Executable” on page 34.

Notes:

1. Keep in mind that MP_PROCS sets the number of task processes per partition
and does not necessarily correspond to the number of processor nodes. If
tasks are time-sharing processor nodes, for example, the number of tasks will
be greater than the number of nodes.

| 2. If you do not set MP_PROCS, the default number of task processes is 1
| unless:

| � you are using LoadLeveler

| � you are using MP_RMPOOL

| � both MP_NODES and MP_TASK_PER_NODES  are set.

| See “Step 3i: Set the MP_RMPOOL Environment Variable” on page 32 for
| more details.

3. The examples in this book assume use of the Korn shell. If you are using the C
shell, you would have to use the setenv  command rather than the export
command. See “Setting POE Environment Variables” on page xiv for more
information.

  Chapter 2. Executing Parallel Programs 19



  
 

| Step 3b: Set the SP_NAME Environment Variable
| If all nodes to be used for the parallel job exist in a PSSP 2.3.0 or 2.4.0 partition,
| the SP_NAME environment variable should be set to the name of the control
| workstation of the SP system on which these nodes exist. This is the only case that
| results in POE contacting the Resource Manager rather than LoadLeveler for node
| allocation requests.

Step 3c: Create a Host List File

You need to create a host list file if: You do not need to create a host list file if:

� you are using an RS/6000 network cluster.

| � you are using a mixed system with the Resource
| Manager and want to allocate some nodes not on the SP
| system.

� you are using an SP system and want specific node
allocation.

� you are using an SP system with the Resource Manager
and want non-specific node allocation from more than one
pool.

| you are using a LoadLeveler cluster or an SP system and
| want non-specific node allocation from a single pool.

A host list file specifies the processor nodes on which the individual tasks of your
program should run. When you invoke a parallel program, your Partition Manager
checks to see if you have specified a host list file. If you have, it reads the file to
allocate processor nodes. The procedure for creating a host list file differs

| depending on whether you are using an RS/6000 network cluster, a LoadLeveler
| cluster , an SP system, or a mixed system. If you are using an RS/6000 network

cluster, see “Creating a Host List File to Allocate Nodes of a Cluster.” If you are
| using  a LoadLeveler cluster , an SP system, or a mixed system, see “Creating a

Host List File to Allocate Nodes of an SP System” on page 21.

Creating a Host List File to Allocate Nodes of a Cluster:  If you are using an
RS/6000, a host list file simply lists a series of host names – one per line. These
must be the names of remote nodes accessible from the Home Node. Lines
beginning with an exclamation point (!) or asterisk (*) are comments. The Partition
Manager ignores blank lines and comments. The host list file can list more names
than are required by the number of program tasks. The additional names are
ignored.

To understand how the Partition Manager uses a host list file to determine the
nodes on which your program should run, consider the following example host list
file:

20 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

! Host list file for allocating 6 tasks

\ An asterisk may also be used to indicate a comment

host1_name

host2_name

host3_name

host4_name

host5_name

host6_name

The Partition Manager ignores the first two lines because they are comments, and
the third line because it is blank. It then allocates host1_name to run task 0,
host2_name to run task 1, host3_name to run task 2, and so on. If any of the
processor nodes listed in the host list file are unavailable when you invoke your
program, the Partition Manager returns a message stating this and does not run
your program.

You can also have multiple tasks of a program share the same node by simply
listing the same node multiple times in your host list file. For example, say your
host list file contains the following:

host1_name

host2_name

host3_name

host1_name

host2_name

host3_name

Tasks 0 and 3 will run on host1_name, tasks 1 and 4 will run on host2_name, and
tasks 2 and 5 will run on host3_name.

Creating a Host List File to Allocate Nodes of an SP System:  If you are using
| a LoadLeveler cluster or SP system, you can use a host list file for either:

| � non-specific node allocation from one system pool only, when using
| LoadLeveler. When using the Resource Manager, you can have one or more
| SP system pools.

� specific node allocation. If you are using a mixed system and want to allocate
nodes that are not on the SP system, you must use specific node allocation.

In either case, the host list file can contain a number of records – one per line. For
specific node allocation, each record indicates a processor node. For non-specific

| node allocation you can have one system pool only, when using LoadLeveler .
| When using the Resource Manager , each record indicates an SP system pool.

  Chapter 2. Executing Parallel Programs 21



  
 

Your host list file cannot contain a mixture of node and pool requests, so you must
use one method or the other. The host list file can contain more records than
required by the number of program tasks. The additional records are ignored.

| For specific node allocation::  Each record is either a host name or IP adapter
| address of a specific processor node of the SP system. If you are using a mixed
| system and want to allocate nodes not on the SP system, you must request them
| by host name. Lines beginning with an exclamation point (!) and asterisk (*) are
| comments. The Partition Manager ignores blank lines and comments.

| To understand how the Partition Manager uses a host list file to determine the SP
| system nodes on which your program should run, consider the following
| representation of a host list file.

| ! Host list file for allocating 6 tasks

| host1_name
| host2_name
| host3_name
| 9.117.8.53
| 9.117.8.53
| 9.117.8.53

| The Partition Manager ignores the first line because it is a comment, and the
| second because it is blank. It then allocates host1_name to run task 0, host2_name
| to run task 1, host3_name to run task 2, and so on. The last three nodes are
| requested by adapter IP address using dot decimal notation.

| Notes:

| 1. You can also, on each of the records in the host list file, specify how the
| allocated node's adapter and CPU should be used. For more information, see
| “Specifying How a Node's Resources Are Used” on page 24.

| 2. If any of the processor nodes listed in the host list file are unavailable when
| you invoke your program, the Partition Manager returns a message stating this
| and does not run your program.

| For non-specific node allocation from a number of pools:  After installation of a
| LoadLeveler cluster or SP system, your system administrator divides its processor
| nodes into a number of pools. With LoadLeveler, each pool has an identifying pool
| name or number. With an SP system, each pool has an identifying pool number.
| Using LoadLeveler for non-specific node allocation, you need to supply the
| appropriate pool name or number. LoadLeveler does not use more than one pool.
| Using Resource Manager for non-specific node allocation from a number of pools,
| you need to supply the appropriate pool numbers.

| If you require information about LoadLeveler pools, use the command llstatus . To
| use llstatus  on a workstation that is external to the LoadLeveler cluster, the
| LoadL.so fileset must be installed on the external node (see Using and
| Administering LoadLeveler for more information).

| ENTER llstatus -l  (lower case L)

| Á LoadLeveler lists information about pools in the LoadLeveler cluster.

| If you require information about SP system pools, use the command jm_status . To
| use jm_status  on a workstation that is external to the SP system, the ssp.clients

22 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

| fileset must be installed on the external node (see IBM Parallel Environment for
| AIX: Installation for more information).

| ENTER jm_status -P

| Á The Resource Manager lists information about all SP system pools.

| With regard to LoadLeveler, in a host list file intended for non-specific node
| allocation, each record is a pool name or number preceded by an at symbol (@).
| Lines beginning with an exclamation point (!) and asterisk (*) are comments. The
| Partition Manager ignores blank lines and comments.

| To understand how the Partition Manager uses a host list file for non-specific node
| allocation, consider the following example host list file:

| ! Host list file for allocating 3 tasks with LoadLeveler

| @6
| @6
| @6

| The Partition Manager ignores the first line because it is a comment, and the
| second line because it is blank. The at (@) symbols tell the Partition Manager that
| these are pool requests. It connects to LoadLeveler to request three nodes from
| pool 6.

| With regard to the Resource Manager only, in a host list file intended for
| non-specific node allocation from a number of pools, each record is a pool number
| preceded by an at symbol (@). Lines beginning with an exclamation point (!) and
| asterisk (*) are comments. The Partition Manager ignores blank lines and
| comments.

| To understand how the Partition Manager uses a host list file for non-specific node
| allocation from a number of pools, consider the following example host list file:

| ! Host list file for allocating 6 tasks with the Resource Manager

| @6
| @6
| @6
| @12
| @12
| @12

| The Partition Manager ignores the first line because it is a comment, and the
| second line because it is blank. The at (@) symbols tell the Partition Manager that
| these are pool requests. It connects to the SP system Resource Manager to
| request three nodes from pool 6, and three nodes from pool 12.

| Notes:

| 1. When using the Resource Manager you can also, on each of the records in the
| host list file, specify how the allocated node's adapter and CPU should be
| used. For more information, see “Specifying How a Node's Resources Are
| Used” on page 24.

| 2. If there are insufficient nodes available in a requested pool when you invoke
| your program, the Partition Manager returns a message stating this, and does
| not run your program.

  Chapter 2. Executing Parallel Programs 23



  
 

| 3. For more information on the llstatus  command and LoadLeveler pools, refer to
| Using and Administering LoadLeveler. For more information on the jm_status
| command and SP system pools, refer to IBM Parallel System Support
| Programs for AIX: Command and Technical Reference.

| 4. If the number of program tasks is greater than the number of records in the
| host list file, the last record in the file is used for the remaining requests.

Specifying How a Node's Resources Are Used:  When requesting nodes of an SP
system, you can optionally request how each node's resources – its adapter and
CPU – should be used. You can specify:

� Whether the node's adapter is to be dedicated or shared. If dedicated, only a
single program task can use it for the same protocol. If shared, a number of
tasks on that node can use it. If you are using the US communication
subsystem library implementation, POE forces the adapter use to be dedicated
(see Table 4 on page 25).

� Whether the node's CPU usage should be unique or multiple. If unique, only
your program's tasks can use the CPU. If multiple, your program may share the
node with other users.

| Note:  When using LoadLeveler, you can request how nodes are used with the
| MP_CPU_USE and/or MP_ADAPTER_USE  environment variables, or their
| associated command line options. Usage specification in a host list file will
| be ignored when using LoadLeveler.

| When Using a Host List File for Node Allocation:  With regard to the Resource
| Manager , on each record of the host list file, you can make either or both of the
| specifications listed above . For example, if you wanted your program task to have

exclusive use of both the adapter and CPU, the host list record would be:

host1_name dedicated unique

or

host1_name d u

This is the same for pool requests:

@6 dedicated unique

or

@6 d u

When Not Using a Host List File for Node Allocation:  The environment variables
MP_ADAPTER_USE  and MP_CPU_USE, or the associated command line options
(-adapter_use  and -cpu_use ) can be used to make either or both of these
specifications. These specifications will then affect the resource usage for each
node allocated from the pool specified using MP_RMPOOL or -rmpool . For
example, if you wanted nodes from Resource Manager pool 5, and you wanted
your program to have exclusive use of both the adapter and CPU, the following
command line could be used:

poe [program] -rmpool 5 -adapter_use d[edicated]

-cpu_use u[nique] [more_poe_options]

24 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Associated environment variables (MP_RMPOOL, MP_ADAPTER_USE ,
MP_CPU_USE) could also be used to specify any or all of the options in this
example.

The following tables illustrate how node resources are used. Table 4 shows the
default settings for adapter and CPU use, while Table 5 outlines how the two
separate specifications determine how the allocated node's resources are used.

Table 4. Adapter/CPU Default Settings

 Adapter CPU

If host list file contains non-specific
pool requests:

Dedicated Unique

If host list file requests specific
nodes:

Shared 1 Multiple

If host list file is not used nodes: Dedicated2 Unique3

Note: 

1 For US jobs, adapter is dedicated.

2 For IP jobs, adapter is shared.

3 For IP jobs, CPU is multiple.

| Table 5. Adapter/CPU Use under LoadLeveler

| If the Node's CPU is “Unique”:| If the Node's CPU is “Multiple”:

| If the adapter use is “Dedicated”:| Intended for production runs of high
| performance applications. Only the
| tasks of that parallel job use the
| adapter and CPU.

| The adapter you specified with
| MP_EUIDEVICE is dedicated to the
| tasks of your parallel job. However, you
| and other users still have access to the
| CPU through another adapter.

| If the adapter use is “Shared”:| Only your program tasks have access
| to the node's CPU, but other program's
| tasks can share the adapter.

| Both the adapter and CPU can be used
| by a number of your program's tasks
| and other users.

| Table 6. Adapter/CPU Use under the Resource Manager

If the Node's CPU is “Unique”: If the Node's CPU is “Multiple”:

If the adapter use is “Dedicated”: Intended for production runs of high
performance applications. Only one
task uses the adapter and CPU.

The adapter you specified with
MP_EUIDEVICE is dedicated to your
program task. However, you and other
users still have access to the CPU
through another adapter.

If the adapter use is “Shared”: Only you have access to the node's
CPU, but a number of your program's
tasks can share the adapter.

Both the adapter and CPU can be used
by a number of your program's tasks
and other users.

| Notes:

| 1. When using LoadLeveler, the US communication subsystem library does not
| require dedicated use of the SP switch on the node. Adapter use will be
| defaulted, as in Table 4, but shared usage may be specified.

| 2. When using the Resource Manager, the US communication subsystem library
| requires dedicated use of the SP switch on the node. If you are using the US
| communication subsystem for communication among processor nodes, POE
| forces adapter use to be dedicated. If you are using the US communication

  Chapter 2. Executing Parallel Programs 25



  
 

| subsystem and you specify adapter use to be shared, the specification is
| ignored.

| 3. Adapter/CPU usage specification is only enforced for jobs using LoadLeveler or
| the SP system Resource Manager for node allocation.

| Generating an Output Host List File:  When running parallel programs in a
| LoadLeveler cluster or on an SP system, you can generate an output host list file of
| the nodes allocated by LoadLeveler or the Resource Manager. When you have
| LoadLeveler or the Resource Manager perform non-specific node allocation from

SP system pools, this enables you to learn which nodes were allocated. This
information is vital if you want to perform some postmortem analysis or file cleanup
on those nodes, or if you want to rerun the program using the same nodes. To
generate a host list file, set the MP_SAVEHOSTFILE  environment variable to a file
name. You can specify this using a relative or full path name. As with most POE
environment variables, you can temporarily override the value of
MP_SAVEHOSTFILE  using its associated command-line flag -savehostfile . For

| example, to save LoadLeveler's or the Resource Manager's node allocation into a
file called /u/hinkle/myhosts, you could:

Set the MP_SAVEHOSTFILE environment variable: Use the -savehostfile flag when invoking the program:

ENTER export MP_SAVEHOSTFILE=/u/hinkle/myhosts ENTER poe  program -savehostfile /u/hinkle/myhosts

Each record in the output host list file will be the original non-specific pool request.
Following each record will be comments indicating the specific node that was
allocated. The specific node is identified by:

 � hostname
� external IP address
� adapter IP address (which may be the same as the external IP address)

| For example, using LoadLeveler, say the input host list file contains the following
| records:

| @mypool
| @mypool
| @mypool

| The following is a representation of the output hostlist file.

| host1_name
| ! 9.117.11.47 9.117.8.53

| !@mypool
| host1_name
| ! 9.117.11.47 9.117.8.53

| !@mypool
| host1_name
| ! 9.117.11.47 9.117.8.53

| !@mypool

Using the Resource Manager, say the input host list file contains the following
records:

26 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

@6

@6

@6

@12

@12

@12

The following is a representation of the output hostlist file.

host1_name dedicated unique

! 9.117.11.47 9.117.8.53

!@6

host2_name dedicated unique

! 9.117.11.47 9.117.8.53

!@6

host3_name dedicated unique

! 9.117.11.47 9.117.8.53

!@6

host4_name dedicated unique

! 9.117.11.47 9.117.8.53

!@12

host5_name dedicated unique

! 9.117.11.47 9.117.8.53

!@12

host6_name dedicated unique

! 9.117.11.47 9.117.8.53

!@12

Note:  The name of your output host list file can be the same as your input host
list file. If a file of the same name already exists, it is overwritten by the
output host list file.

  Chapter 2. Executing Parallel Programs 27



  
 

Step 3d: Set the MP_HOSTFILE Environment Variable

You need to set the MP_HOSTFILE environment variable
if:

You do not need to set the MP_HOSTFILE environment
variable if:

� you are using a host list file other than the default
./host.list

� you are requesting non-specific node allocation without a
host list file.

If your host list file is the default ./host.list

The default host list file used by the Partition Manager to allocate nodes is called
host.list and is located in your current directory. You can specify a file other than
host.list by setting the environment variable MP_HOSTFILE to the name of a host
list file, or by using either the -hostfile  or -hfile  flag when invoking the program. In
either case, you can specify the file using its relative or full path name. For
example, say you want to use the host list file myhosts located in the directory
/u/hinkle. You could:

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER export MP_HOSTFILE=/u/hinkle/myhosts ENTER poe  program -hostfile /u/hinkle/myhosts

or poe  program -hfile /u/hinkle/myhosts

| If you are using LoadLeveler or the SP system Resource Manager for non-specific
| node allocation from a single pool specified by MP_RMPOOL, and a host list file
| exists in the current directory , you must set MP_HOSTFILE to an empty string or
| to the word “NULL”. Otherwise the Partition Manager uses the host list file. You can

either:

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER export MP_HOSTFILE=

 or

 export MP_HOSTFILE= ""

 or

 export MP_HOSTFILE= NULL

ENTER poe  program -hostfile  ""

or poe  program -hostfile  NULL

Step 3e: Set the MP_RESD Environment Variable
| To indicate whether a job management system should be used, you set the
| MP_RESD environment variable to yes or no. As specified in Table 1 on page 16
| and Table 2 on page 18, MP_RESD controls whether or not the Partition Manager
| connects to LoadLeveler or the Resource Manager to allocate processor nodes.

| If you are allocating nodes that are not  part of a LoadLeveler cluster, MP_RESD
| should be set to no. If MP_RESD is set to yes, only nodes within the LoadLeveler
| cluster are allocated.

| If you are allocating nodes of an RS/6000 network cluster, you do not have a job
| management system and should set MP_RESD to no. If you are using a mixed
| system, you may set MP_RESD to yes. However, the job management system only
| has knowledge of SP system nodes. To allocate any of the additional RS/6000
| processors which supplement the SP system nodes in a mixed system, you must
| also use a host list file.

28 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

As with most POE environment variables, you can temporarily override the value of
MP_RESD using its associated command-line flag -resd . For example, to specify
that you want the Partition Manager to connect to the Resource Manager, you
could:

Set the MP_RESD environment variable: Use the -resd flag when invoking the program:

ENTER export MP_RESD= yes ENTER poe  program -resd  yes

You can also set MP_RESD to an empty string. If set to an empty string, or if not
set, the default value of MP_RESD is interpreted as yes or no depending on the
context. Specifically, the value of MP_RESD will be determined by the value of
MP_EUILIB  and whether or not you are using a host list file. The following table
shows how the context determines the value of MP_RESD.

MP_EUILIB setting and you are using a host list file: and you are not using a host list file:

If MP_EUILIB is set to ip, an empty
string, the word "NULL", or if not
set:

MP_RESD is interpreted as no by
default, unless host list file includes
pool requests.

MP_RESD is interpreted as yes by
default.

If MP_EUILIB is set to us: MP_RESD is interpreted as yes by
default.

MP_RESD is interpreted as yes by
default.

| Notes:

| 1. MP_RESD only specifies whether or not to use a job management system
| (LoadLeveler or the Resource Manager).

| 2. When the Resource Manager is used, the actual system you are using is
| identified by the environment variable SP_NAME, of the control workstation on
| the SP system.

| 3. When running POE from a workstation that is external to the LoadLeveler
| cluster, the LoadL.so fileset must be installed on the external node (see Using
| and Administering LoadLeveler and IBM Parallel Environment for AIX:
| Installation for more information).

| 4. When running POE from a workstation that is external to the SP system, and
| using the Resource Manager, the ssp.clients fileset must be installed on the
| external node (see IBM Parallel Environment for AIX: Installation for more
| information).

Step 3f: Set the MP_EUILIB Environment Variable
During execution, the tasks of your program can communicate via calls to message
passing routines. The message passing routines in turn call communication
subsystem library routines which enable the processor nodes to exchange the
message data. Before you invoke your program, you need to decide which
communication subsystem library implementation you wish to use – the Internet
Protocol (IP) communication subsystem or the User Space (US) communication
subsystem.

� The IP communication subsystem library implementation uses the Internet
Protocol for communication among processor nodes. If you do not have the
high performance switch feature, you must use the IP communication
subsystem.

� The US communication subsystem library implementation uses the User Space
protocol for dedicated use of a high performance communication adapter.

  Chapter 2. Executing Parallel Programs 29



  
 

Programs that use LAPI must set MP_EUILIB  (or -euilib ) to us. It allows you to
drive the switch adapter directly from your parallel tasks. You can only use the
US communication subsystem when running on an SP system configured with
the high performance switch feature.

The MP_EUILIB  environment variable, or its associated command-line flag -euilib ,
is used to indicate which communication subsystem library implementation you are
using. POE needs to know which communication subsystem implementation to
dynamically link in as part of your executable when you invoke it. The following
table shows the appropriate setting for MP_EUILIB  depending on the
communication subsystem library implementation you want and whether or not it
has already been statically linked.

 
and you want it dynamically linked when you invoke your
program:

If you want the IP communication subsystem or US
communication subsystem:

MP_EUILIB  should be set to ip or us This specification is
case-sensitive.

For example, say you want to dynamically link in the communication subsystem
library at execution time. You could:

Set the MP_EUILIB environment variable: Use the -euilib flag when invoking the program:

ENTER export MP_EUILIB=ip or us ENTER poe  program -euilib ip or us

Note:  When you invoke a parallel program, your Partition Manager checks the
value of MP_EUILIB  and then looks to the directory /usr/lpp/ppe.poe/lib for
the message passing interface and the communication subsystem library
implementation. If you are running on an RS/6000 network cluster, this is
the actual location of the message passing interface. If you are running on
an SP system, /usr/lpp/ppe.poe/lib contains symbolic links to the actual
location. Consult your system administrator for the actual location of the
message passing library if necessary.

You can make POE look to a directory other than /usr/lpp/ppe.poe/lib by
setting the MP_EUILIBPATH  environment variable or its associated
command-line flag -euilibpath . For example, say the communication
subsystem library implementations were moved to /usr/altlib. To instruct the
Partition Manager to look there, you could:

Set the MP_EUILIBPATH environment variable: Use the -euilibpath flag when invoking the program:

ENTER export MP_EUILIBPATH=/usr/altlib ENTER poe  program -euilibpath /usr/altlib

The expected library for loading the communication subsystem library
implementation is in directory /usr/lpp/ppe.poe/lib/$MP_EUILIB . Setting the
MP_EUILIBPATH  environment variable causes POE to try to load the
communication subsystem library from the directory
$MP_EUILIBPATH/$MP_EUILIB . If the communication subsystem library
(libmpci.a) is not in the requested path, it will be loaded from the library path for the
IP communication subsystem library implementation used when the program was
compiled – $MP_PREFIX/ppe.poe/lib/ip. MP_PREFIX can also be set by the user,
but is normally /usr/lpp. Thus the default library path is normally
/usr/lpp/ppe.poe/lib/ip, provided the library is not specified by the MP_EUILIB
and/or MP_EUILIBPATH  environment variables.

30 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Step 3g: Set the MP_EUIDEVICE Environment Variable

You need to set the MP_EUIDEVICE environment variable
if:

You do not need to set the MP_EUIDEVICE environment
variable if:

you have set the MP_EUILIB  environment variable to ip, and
| are using LoadLeveler or the Resource Manager.

you have set the MP_EUILIB  environment variable to us. The
Partition Manager assumes that MP_EUIDEVICE is css0 –
the high performance communication adapter.

If you are using the IP communication subsystem library implementation for
communication among parallel tasks on an SP system, you can specify which
adapter set to use for message passing – either Ethernet, FDDI, token-ring, or a
high performance switch. The MP_EUIDEVICE environment variable and its
associated command-line flag -euidevice  are used to select an alternate adapter
set for communication among processor nodes. If neither MP_EUIDEVICE device
nor the -euidevice  flag is set, the communication subsystem library uses the
external IP address of each remote node. The following table shows the possible,
case-sensitive, settings for MP_EUIDEVICE.

Setting the MP_EUIDEVICE environment variable to: Selects:

en0 The Ethernet adapter

fi0 The FDDI adapter

tr0 The token-ring adapter

css0 The high performance switch adapter

For example, say you want to use IP over the high performance switch. The nodes
have been initialized for IP as described in IBM Parallel System Support Programs
for AIX: Installation and Migration Guide, and you have already set the MP_EUILIB
environment variable to ip. To specify the high performance switch, you could:

Set the MP_EUIDEVICE environment variable: Use the -euidevice flag when invoking the program:

ENTER export MP_EUIDEVICE=css0 ENTER poe  program -euidevice css0

Notes:

1. If you do not set the MP_EUIDEVICE environment variable, the default is the
adapter set used as the external network address.

| 2. If MP_EUIDEVICE is explicitly set to en0 and LoadLeveler is being used for
| node allocation, the en0 adapter must be configured in LoadLeveler. See Using
| and Administering LoadLeveler for more information.

| Step 3h: Set the MP_MSG_API Environment Variable
| The MP_MSG_API environment variable, or its associated command line option, is
| used to indicate to POE which message passing API is being used by the parallel
| tasks.

| You need to set the MP_MSG_API environment variable
| if:
| You do not need to set the MP_MSG_API environment
| variable if:

| A parallel task is using LAPI alone or in conjunction with MPI.| A parallel task is using MPI only.

  Chapter 2. Executing Parallel Programs 31



  
 

Step 3i: Set the MP_RMPOOL Environment Variable

You need to set the MP_RMPOOL environment variable
if:

You do not need to set the MP_RMPOOL environment
variable if:

| You are using a LoadLeveler cluster oran SP system and
| want non-specific node allocation from a single pool.

You are allocating nodes using a host list file.

| After installation of a LoadLeveler cluster or SP system, your system administrator
| divides its processor nodes into a number of pools. Each pool has an identifying
| pool name or number. When using LoadLeveler, and you want non-specific node
| allocation from a single pool, you need to set the MP_RMPOOL environment
| variable to the name or number of that pool. When using the Resource Manager,
| and you want non-specific node allocation from a single pool, you need to set the
| MP_RMPOOL environment variable to the number of that pool. The pool number
| you specify should consist of nodes configured for the appropriate communication
| subsystem library implementation. Check with your system administrator to learn
| which pools consist of nodes initialized for the US communication subsystem and
| which were initialized for the IP communication subsystem.

| If you need information about available pools and are using LoadLeveler, use the
| command llstatus . To use llstatus  on a workstation that is external to the
| LoadLeveler cluster, the LoadL.so fileset must be installed on the external node
| (see Using and Administering LoadLeveler and IBM Parallel Environment for AIX:
| Installation for more information).

| ENTER llstatus -l  (lower case L)

| Á LoadLeveler lists information about all LoadLeveler pools and/or
| features.

| If you need information about available pools and are using the Resource Manager
, use the command jm_status  to get job manager status. To use jm_status  on a
workstation that is external to the SP system, the ssp.clients fileset must be
installed on the external node (see IBM Parallel Environment for AIX: Installation for
more information).

ENTER jm_status -P

Á The Resource Manager lists information about all SP system pools.

As with most POE environment variables, you can temporarily override the value of
MP_RMPOOL using its associated command-line flag -rmpool . To specify pool 6,
for example, you could:

Set the MP_RMPOOL environment variable: Use the -rmpool flag when invoking the program:

ENTER export MP_RMPOOL=6 ENTER poe  program -rmpool 6

| Notes:

| 1. For more information on the llstatus  command and on LoadLeveler pools, refer
| to Using and Administering LoadLeveler.

| 2. For more information on the jm_status  command and on SP system pools,
| refer to IBM Parallel System Support Programs for AIX: Command and
| Technical Reference.

32 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

| 3. When using LoadLeveler, if the value of the MP_RMPOOL environment
| variable is numeric, that pool number must be configured in LoadLeveler. If the
| value of MP_RMPOOL contains any non-numeric characters, that pool name
| must be configured as a feature in LoadLeveler. See Using and Administering
| LoadLeveler for more information.

| In conjunction with MP_RMPOOL, when using LoadLeveler, the MP_NODES or
| MP_TASKS_PER_NODE  environment variables or associated command line
| options may be used.

| � MP_NODES or -nodes  is used to specify the number of physical nodes on
| which to run the parallel tasks. It may be used alone or in conjunction with
| -tasks_per_node  and/or -procs , as described in Table 7 below.

| � MP_TASKS_PER_NODE  or -tasks_per_node  is used to specify the number of
| tasks to be run on each of the physical nodes. It may be used in conjunction
| with -nodes  and/or -procs , as described in Table 7 below, but may not be
| used alone.

| Table 7. LoadLeveler Node Allocation

| MP_PROCS
| set?
| MP_TASKS_PER_NODE
| set?
| MP_NODES
| set?| Conditions and Results

| Yes| Yes| Yes| MP_TASKS_PER_NODE  multiplied by
| MP_NODES must equal MP_PROCS,
| otherwise an error occurs.

| Yes| Yes| No| MP_TASKS_PER_NODE  must divide evenly
| into MP_PROCS, otherwise an error occurs.

| Yes| No| Yes| MP_NODES (n) must be less than or equal to
| MP_PROCS (p). If less than, LoadLeveler will
| allocate one task to each node, from 0 to n -
| 1, and will then allocate a second task to each
| of the nodes from 0 to n - 1, etc., until there
| are p tasks allocated. For example, if n = 3
| and p = 5, 2 tasks will run on node 0, 2 tasks
| will run on node 1, and 1 task will run on node
| 2.

| Yes| No| No| The parallel job will run with the indicated
| number of MP_PROCS (p) on p nodes.

| No| Yes| Yes| The parallel job will consist of
| MP_TASKS_PER_NODE  multiplied by
| MP_NODES tasks.

| No| Yes| No| An error occurs. MP_NODES or MP_PROCS
| must be specified with
| MP_TASKS_PER_NODE .

| No| No| Yes| One parallel task will be run on each of n
| nodes.

| No| No| No| One parallel task will be run on one node.

| Note:  The examples in this table use the environment variable setting to illustrate each of the three options. The
| associated command line options may also be used.

  Chapter 2. Executing Parallel Programs 33



  
 

Step 3j: Set the MP_AUTH Environment Variable

You need to set the MP_AUTH environment variable if:
You do not need to set the MP_AUTH environment
variable if:

You are using DFS/DCE based user authorization and your
system administrator has not defined the MP_AUTH value in
/etc/poe.limits .

You are using AIX based user authorization defined by
/etc/hosts.equiv  or .rhosts  entries, or your system
administrator has defined the MP_AUTH value in
/etc/poe.limits .

POE allows two types of user authorization:

1. AIX based user authorization, using entries in /etc/hosts.equiv  or .rhosts  files.
This is the default POE user authorization method.

2. DFS/DCE based user authorization, using DCE credentials. If you plan to run
POE jobs in a DFS environment, you must use DFS/DCE based user
authorization.

| Note:  If POE is run under LoadLeveler, LoadLeveler handles the user
| authorization, and the POE user authorization steps are skipped.

The type of user authorization is controlled by the MP_AUTH environment variable.
The valid values are AIX (the default) or DFS.

The system administrator can also define the value for MP_AUTH in the
/etc/poe.limits  file. If MP_AUTH is specified in /etc/poe.limits , POE will override
the value of the MP_AUTH environment variable, if different.

For more information on running POE in a DFS environment, see “Running POE
within a Distributed File System” on page 53.

For more information on user authorization and on the /etc/poe.limits  entries, see
IBM Parallel Environment for AIX: Installation

Step 4: Start X-Windows Analysis Tools
If you wish to use either of the POE X-Windows analysis tools – the Program
Marker Array or the System Status Array – you should start them before invoking
the executable. For more information on these tools and how to start them, see
Figure 1 on page 75 and “Using the System Status Array” on page 78.

Step 5: Invoke the Executable
Note:  In order to perform this step, you need to have a user account on, and be

able to remotely login to, each of the processor nodes. This requires that
you have an .rhosts file set up in your home directory on each of the remote
processor nodes. Alternatively, your user id on the home node can be
authorized in the /etc/hosts.equiv file on each remote node. For more
information on the TCP/IP .rhosts file format, see IBM General Concepts
and Procedures for RS/6000, and IBM AIX Version 4 Files Reference

The poe  command enables you to load and execute programs on remote nodes.
You can use it to:

� load and execute an SPMD program onto all nodes of your partition. For more
information, see “Invoking an SPMD Program” on page 36.

34 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

� individually load the nodes of your partition. This capability is intended for
MPMD programs. For more information, see “Invoking an MPMD Program” on
page 36.

� load and execute a series of SPMD or MPMD programs, in individual job steps,
on the same partition. For more information, see “Loading a Series of Programs
as Job Steps” on page 38.

� run non-parallel programs on remote nodes. For more information, see
“Invoking a Non-Parallel Program On Remote Nodes” on page 41.

When you invoke poe , the Partition Manager allocates processor nodes for each
task and initializes the local environment. It then loads your program, and
reproduces your local environment, on each processor node. The Partition Manager
also passes the option list to each remote node. If your program is in a shared file
system, the Partition Manager loads a copy of it on each node. If your program is in
a private file system, you will have already manually copied your executable to the
nodes using the mprcp  or mcp  command. If you are using the dynamic message
passing interface, the appropriate communication subsystem library implementation
(IP or US) is automatically loaded at this time.

Since the Partition Manager attempts to reproduce your local environment on each
remote node, your current directory is important. When you invoke poe , the
Partition Manager will, immediately before running your executable, issue the cd
command to your current working directory on each remote node. If you are in a
local directory that does not exist on remote nodes, you will get an error as the
Partition Manager attempts to change to that directory on remote nodes. Typically,
this will happen when you invoke poe  from a directory under /tmp. We suggest that
you invoke poe  from a file system that is mounted across the system. If it is
important that the current directory be under /tmp, make sure that directory exists
on all the remote nodes. If you are running in the C shell, see “Running Programs
Under the C Shell” on page 67.

Note:  The Parallel Environment opens several file descriptors before passing
control to the user. The Parallel Environment will not assign specific file
descriptors other than standard in, standard out, and standard error.

Before using the poe  command, you can first specify which programming model
you are using by setting the MP_PGMMODEL environment variable to either spmd
or mpmd. As with most POE environment variables, you can temporarily override
the value of MP_PGMMODEL using its associated command-line flag -pgmmodel .
For example, if you want to run an MPMD program, you could:

Set the MP_PGMMODEL environment variable: Use the -pgmmodel flag when invoking the program:

ENTER export MP_PGMMODEL= mpmd ENTER poe  program -pgmmodel  mpmd

Note:  If you do not set the MP_PGMMODEL environment variable or -pgmmodel
flag, the default programming model is SPMD.

Note:  If you load your executable from a mounted file system, you may
experience an initial delay while the program is being initialized on all
nodes. You may experience this delay even after the program begins
executing, because individual pages of the program are brought in on
demand. This is particularly apparent during initialization of the message
passing interface; since individual nodes are synchronized, there are
simultaneous demands on the network file transfer system. You can

  Chapter 2. Executing Parallel Programs 35



  
 

minimize this delay by copying the executable to a local file system on each
node, using the mcp  message passing file copy program.

Invoking an SPMD Program
If you have an SPMD program, you want to load it as a separate task on each
node of your partition. To do this, follow the poe  command with the program name
and any options. The options can be program options or any of the POE
command-line flags shown in Appendix B, “POE Environment Variables and
Command-Line Flags” on page 139. You can also invoke an SPMD program by
entering the program name and any options:

ENTER poe  program [options]

or

program [options]

You can also enter poe  without a program name:

ENTER poe [options]

Á Once your partition is established, a prompt appears.

ENTER the name of the program you want to load. You can follow the program
name with any program options or a subset of the POE flags.

Note:  For National Language Support, POE displays messages located in an
| externalized message catalog. POE checks the LANG  and NLSPATH
| environment variables, and if either is not set, it will set up the following
| defaults:

 � LANG=C

 � NLSPATH=/usr/lib/nls/msg/%L/%N

For more information about the message catalog, see “National Language
Support” on page xiv.

Invoking an MPMD Program
Note:  You must set the MP_PGMMODEL environment variable or -pgmmodel

flag to invoke an MPMD program.

| With an SPMD application, the name of the same executable is sent to, and runs
on, each of the processor nodes of your partition. If you are invoking an MPMD
application, you are dealing with more than one program and need to individually
load the nodes of your partition.

For example, say you have two programs – master and workers – designed to run
together and communicate via calls to message passing subroutines. The program
master is designed to run on one processor node. The workers program is
designed to run as separate tasks on any number of other nodes. The master
program will coordinate and synchronize the execution of all the worker tasks.
Neither program can run without the other, as master only does sends and the
workers tasks only do receives.

You can establish a partition and load each node individually using:

� standard input (from the keyboard or redirected)
� a POE commands file

36 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Loading Nodes Individually From Standard Input:  To establish a partition and
load each node individually using STDIN:

ENTER poe [options]

Á The Partition Manager allocates the processor nodes of your partition.
Once your partition is established, a prompt containing both the logical
node identifier 0 and the actual host name it maps to, appears.

ENTER the name of the program you want to load on node 0. You can follow
the program name with any program options or a subset of the POE
flags.

Á A prompt for the next node in the partition displays.

ENTER the name of the program you want to load on each processor node as
you are prompted.

Á When you have specified the program to run on the last node of your
partition, the message “Partition loaded...” displays and execution
begins.

For additional illustration, the following shows the command prompts that would
appear, as well as the program names you would enter, to load the example
master and workers programs. This example assumes that the MP_PROCS
environment variable is set to 5.

ð:host1_name> master [options]

1:host2_name> workers [options]

2:host3_name> workers [options]

3:host4_name> workers [options]

4:host5_name> workers [options]

Partition loaded...

% poe

ð:host1_name> master [options]

1:host2_name> workers [options]

2:host3_name> workers [options]

3:host4_name> workers [options]

4:host5_name> workers [options]

Partition loaded...

Note:  You can use some POE command-line flags on individual program names,
but not those that are used to set up the partition. The flags you can use
are mainly those having to do with VT trace file collection. They are:

� -infolevel  or -ilevel
� -ttempsize  or -ttsize

 � -tmpdir
� -samplefreq  or -sfreq

  Chapter 2. Executing Parallel Programs 37



  
 

� -tbuffwrap  or -tbwrap
� -tbuffsize  or -tbsize

 � -euidevelop

Loading Nodes Individually Using a POE Commands File:  The MP_CMDFILE
environment variable, and its associated command-line flag -cmdfile , let you
specify the name of a POE commands file. You can use such a file when
individually loading a partition – thus freeing STDIN. The POE commands file
simply lists the individual programs you want to load and run on the nodes of your
partition. The programs are loaded in task order. For example, say you have a
typical master/workers MPMD program that you want to run as 5 tasks. Your POE
commands file would contain:

master [options]

workers [options]

workers [options]

workers [options]

workers [options]

Once you have created a POE commands file, you can specify it using a relative or
full path name on the MP_CMDFILE environment variable or -cmdfile  flag. For
example, if your POE commands file is /u/hinkle/mpmdprog, you could:

Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER export MP_CMDFILE=/u/hinkle/mpmdprog ENTER poe  -cmdfile /u/hinkle/mpmdprog

Once you have set the MP_CMDFILE environment variable to the name of the
POE commands file, you can individually load the nodes of your partition. To do
this:

ENTER poe [options]

Á The Partition Manager allocates the processor nodes of your partition.
The programs listed in your POE commands file are run on the nodes of
your partition.

Loading a Series of Programs as Job Steps
By default, the Partition Manager releases your partition when your program
completes its run. However, you can set the environment variable MP_NEWJOB ,
or its associated command-line flag -newjob , to specify that the Partition Manager
should maintain your partition for multiple job steps.

For example, say you have three separate SPMD programs. The first one sets up a
particular computation by adding some files to /tmp on each of the processor nodes
on the partition. The second program does the actual computation. The third
program does some postmortem analysis and file cleanup. These three parallel
programs must run as job steps on the same processor nodes in order to work
correctly. While specific node allocation using a host list file might work, the
requested nodes might not be available when you invoke each program. The better
solution is to instruct the Partition Manager to maintain your partition after execution
of each program completes. You can then read multiple job steps from:

38 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

 � standard input
� a POE commands file using the MP_CMDFILE environment variable.

In either case, you must first specify that you want the Partition Manager to
maintain your partition for multiple job steps. To do this, you could:

Set the MP_NEWJOB environment variable: Use the -newjob flag on the poe command:

ENTER export MP_NEWJOB= yes ENTER poe  -newjob  yes

Notes:

1. You can only load a series of programs as job steps using the poe  command.
You cannot do this with either of the parallel debugger commands – pdbx  and
pedb .

| 2. poe  is its own shell. Whether successive steps run after a step completes is a
| function of the exit code, as described in IBM Parallel Environment for AIX: MPI
| Programming and Subroutine Reference

Reading Job Steps From Standard Input:  Say you want to run three SPMD
programs – setup, computation, and cleanup – as job steps on the same partition.
Assuming STDIN is keyboard entry, MP_PGMMODEL is set to spmd, and
MP_NEWJOB  is set to yes, you would:

ENTER poe [poe-options]

Á The Partition Manager allocates the processor nodes of your partition,
and the following prompt displays:

| ðð31-5ð3 Enter program name (or quit):

ENTER setup [program-options]

Á The program setup executes on all nodes of your partition. When
execution completes, the following prompt displays:

| ðð31-5ð3 Enter program name (or quit):

ENTER computation [program-options]

Á The program computation executes on all nodes of your partition.
When execution completes, the following prompt displays:

| ðð31-5ð3 Enter program name (or quit):

ENTER cleanup [program-options]

Á The program cleanup executes on all nodes of your partition. When
execution completes, the following prompt displays:

| ðð31-5ð3 Enter program name (or quit):

ENTER quit

 or

 <Ctrl-d >

 <Ctrl-d >

Á The Partition Manager releases the nodes of your partition.

  Chapter 2. Executing Parallel Programs 39



  
 

Notes:

1. You can also run a series of MPMD programs in job step fashion from STDIN.
If MP_PGMMODEL is set to mpmd, the Partition Manager will, after each step
completes, prompt you to individually reload the partition as described in
“Loading Nodes Individually From Standard Input” on page 37.

2. When MP_NEWJOB  is yes, the Partition Manager, by default, looks to STDIN
for job steps. However, if the environment variable MP_CMDFILE is set to the
name of a POE commands file as described in “Reading Job Steps From a
POE Commands File” on page 40, the Partition Manger will look to the
commands file instead. To ensure that job steps are read from STDIN, check
that the MP_CMDFILE environment variable is unspecified.

Multi-Step STDIN for Newjob Mode:  POE's STDIN processing model allows
redirected STDIN to be passed to all steps of a newjob sequence, when the
redirection is from a file. If redirection is from a pipe, POE does not distribute the
input to each step, only to the first step.

Reading Job Steps From a POE Commands File:   The MP_CMDFILE
environment variable, and its associated command-line flag -cmdfile , lets you
specify the name of a POE commands file. If MP_NEWJOB  is yes, you can have
the Partition Manager read job steps from a POE commands file. The commands
file in this case simply lists the programs you want to run as job steps. For
example, say you want to run the three SPMD programs setup, computation, and
cleanup as job steps on the same partition. Your POE commands file would contain
the following three lines:

setup [program-options]

computation [program-options]

cleanup [program-options]

Program-options represent the actual values you need to specify.

If you are loading a series of MPMD programs, the POE commands file is also
responsible for individually loading the partition. For example, say you had three
master/worker MPMD job steps that you wanted to run as 4 tasks on the same
partition. The following is a representation of what your POE commands file would
contain. Options represent the actual values you need to specify.

40 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

master1 [options]

workers1 [options]

workers1 [options]

workers1 [options]

master2 [options]

workers2 [options]

workers2 [options]

workers2 [options]

master3 [options]

workers3 [options]

workers3 [options]

workers3 [options]

While you could also redirect STDIN to read job steps from a file, a POE
commands file gives you more flexibility by not tying up STDIN. You can specify a
POE commands file using its relative or full path name. Say your POE commands
file is called /u/hinkle/jobsteps. To specify that the Partition Manager should read
job steps from this file rather than STDIN, you could:

Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER export MP_CMDFILE=/u/hinkle/jobsteps ENTER poe  -cmdfile /u/hinkle/jobsteps

Once MP_NEWJOB  is set to yes, and MP_CMDFILE is set to the name of your
POE commands file, you would:

ENTER poe [poe-options]

Á The Partition Manager allocates the processor nodes of your partition,
and reads job steps from your POE commands file. The Partition
Manager does not release your partition until it reaches the end of your
commands file.

Invoking a Non-Parallel Program On Remote Nodes
You can also use POE to run non-parallel programs on the remote nodes of your
partition. Any executable (binary file, shell script, UNIX utility) is suitable, and it
does not need to have been compiled with mpcc , mpCC , or mpxlf . For example, if
you wanted to check the process status (using the AIX command ps ) for all remote
nodes in your partition, you would:

ENTER poe ps

Á The process status for each remote node is written to standard out
(STDOUT) at your home node. How STDOUT from all the remote nodes
is handled at your home node depends on the output mode. See
“Managing Standard Output (STDOUT)” on page 48 for more
information.

  Chapter 2. Executing Parallel Programs 41



  
 

Controlling Program Execution
This section describes a number of additional POE environment variables for
monitoring and controlling program execution. It describes how to use the:

� MP_EUIDEVELOP environment variable to specify that you want to run your
program in message passing develop mode. In this mode, more detailed
checking of your program is performed.

� MP_RETRY environment variable to make POE wait for processor nodes to
become available from the Resource Manager.

� MP_RETRYCOUNT environment variable to specify the number of times the
Partition Manager should request nodes before returning.

� MP_NOARGLIST  and MP_FENCE environment variable to make POE ignore
arguments.

� MP_STDINMODE and MP_HOLD_STDIN environment variables to manage
standard input.

� MP_STDOUTMODE environment variable to manage standard output.

� MP_INFOLEVEL  environment variable to specify the level of messages you
want reported to standard error.

� MP_PMDLOG environment variable to generate a diagnostic log on remote
nodes.

� MP_LABELIO  environment variable to label message output with task
identifiers.

� MP_COREDIR environment variable to create a separate directory for each
task's core file.

� MP_PULSE environment variable to ensure that remote nodes are
communicating with the home node. See “Detecting Remote Node Failures” on
page 57 for more information.

| � MP_CHECKFILE  environment variable to define the base name of the
| checkpoint file when checkpointing or restarting a program. See “Checkpointing
| and Restarting Programs” on page 51 for more information.

| � MP_CHECKDIR environment variable to define the directory where the
| checkpoint file will reside when checkpointing or restarting a program. See
| “Checkpointing and Restarting Programs” on page 51 for more information.

For a complete listing of all POE environment variables, see Appendix B, “POE
Environment Variables and Command-Line Flags” on page 139.

Specifying Develop Mode
You can run programs in one of two modes – develop mode or run mode. In
develop mode, intended for developing applications, the message passing interface
performs more detailed checking during execution. Because of the additional
checking it performs, develop mode can significantly slow program performance. In
run mode, intended for completed applications, only minimal checking is done.
While run mode is the default, you can use the MP_EUIDEVELOP environment
variable to specify message passing develop mode. As with most POE environment
variables, MP_EUIDEVELOP has an associated command-line flag -euidevelop .
To specify MPI develop mode, you could:

42 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Set the MP_EUIDEVELOP environment variable: Use the -euidevelop flag when invoking the program:

ENTER export MP_EUIDEVELOP= yes ENTER poe  program -euidevelop  yes

To later go back to run mode, set MP_EUIDEVELOP to no.

You can also use MP_EUIDEVELOP for pedb  parameter checking by specifying
the DEB value, for “debug.”

Set the MP_EUIDEVELOP environment variable: Use the -euidevelop flag when invoking the program:

ENTER export MP_EUIDEVELOP= DEB ENTER poe  program -euidevelop  DEB

| To stop parameter checking, set MP_EUIDEVELOP to min, for “minimum.”

Making POE Wait for Processor Nodes
If you are using an SP system, and there are not enough available nodes to run
your program, the Partition Manager, by default, returns immediately with an error.
Your program does not run. Using the MP_RETRY and MP_RETRYCOUNT
environment variables, however, you can instruct the Partition Manager to repeat
the node request a set number of times at set intervals. Each time the Partition
Manager repeats the node request, it displays the following message:

Retry allocation ......press control-C to terminate

The MP_RETRY environment variable, and its associated command-line flag -retry ,
specifies the interval (in seconds) to wait before repeating the node request. The
MP_RETRYCOUNT environment variable, and its associated command-line flag
-retrycount , specifies the number of times the Partition Manager should make the
request before returning. For example, if you wanted to retry the node request five
times at five minute (300 second) intervals, you could:

Set the MP_RETRY and MP_RETRYCOUNT environment
variables:

Use the -retry and -retrycount flags when invoking the
program:

ENTER export MP_RETRY= 300

 export MP_RETRYCOUNT= 5

ENTER poe  program -retry  300 -retrycount  5

Note:  If the MP_RETRYCOUNT environment variable or the -retrycount
command-line flag is used, the MP_RETRY environment variable or the
-retry  command-line flag must be set to at least one second.

Making POE Ignore Arguments
When you invoke a parallel executable, you can specify an argument list consisting
of a number of program options and POE command-line flags. The argument list is
parsed by POE – the POE command-line flags are removed and the remainder of
the list is passed on to the program. If any of your program arguments are identical
to POE command-line flags, however, this can cause problems. For example, say
you have a program that takes the argument -retry . You invoke the program with
the -retry  option, but it does not execute correctly. This is because there is also a
POE command-line flag -retry . POE parses the argument list and so the -retry
option is never passed on to your program. There are two ways to correct this sort
of problem. You can:

  Chapter 2. Executing Parallel Programs 43



  
 

� make POE ignore the entire argument list using the MP_NOARGLIST
environment variable.

� make POE ignore a portion of the argument list using the MP_FENCE
environment variable.

Making POE Ignore the Entire Argument List
When you invoke a parallel executable, POE, by default, parses the argument list
and removes all POE command-line flags before passing the rest of the list on to
the program. Using the environment variable MP_NOARGLIST , you can prevent
POE from parsing the argument list. To do this:

ENTER export MP_NOARGLIST= yes

When the MP_NOARGLIST  environment variable is set to yes, POE does not
examine the argument list at all. It simply passes the entire list on to the program.
For this reason, you can not use any POE command-line flags, but must use the
POE environment variables exclusively. While most POE environment variables
have associated command-line flags, MP_NOARGLIST , for obvious reasons, does
not. To specify that POE should again examine argument lists, either set
MP_NOARGLIST  to no, or unset it.

ENTER export MP_NOARGLIST= no

 or

 unset MP_NOARGLIST

Making POE Ignore a Portion of the Argument List
When you invoke a parallel executable, POE, by default, parses the entire
argument list and removes all POE command-line flags before passing the rest of
the list on to the program. You can use a fence, however, to prevent POE from
parsing the remainder of the argument list. A fence is simply a character string you
define using the MP_FENCE environment variable. Once defined, you can use the
fence to separate those arguments you want parsed by POE from those you do
not. For example, say you have a program that takes the argument -retry .
Because there is also a POE command-line flag -retry , you need to put this
argument after a fence. To do this, you could:

ENTER export MP_FENCE= Q

poe  program -procs  26 -infolevel  2 Q -retry RGB

While this example defines Q as the fence, keep in mind that the fence can be any
character string. Any arguments placed after the fence are passed by POE,
unexamined, to the program. While most POE environment variables have
associated command-line flags, MP_FENCE does not.

Managing Standard Input, Output, and Error
POE lets you control standard input (STDIN), standard output (STDOUT), and
standard error (STDERR) in several ways. You can continue using the traditional
I/O manipulation techniques such as redirection and piping, and can also:

� determine whether a single task or all parallel tasks should receive data from
STDIN.

44 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

� determine whether a single task or all parallel tasks should write to STDOUT. If
all tasks are writing to STDOUT, you can further define whether or not the
messages are ordered by task id.

� specify the level of messages that will be reported to STDERR during program
execution.

� specify that messages to STDOUT and STDERR should be labeled by task id.

Managing Standard Input (STDIN)
STDIN is the primary source of data going into a command. Usually, STDIN refers
to keyboard input. If you use redirection or piping, however, STDIN could refer to a
file or the output from another command (see “Using MP_HOLD_STDIN” on
page 46). How you manage STDIN for a parallel application depends on whether
or not its parallel tasks require the same input data. Using the environment variable
MP_STDINMODE or the command-line flag -stdinmode , you can specify that:

� all tasks should receive the same input data from STDIN. This is multiple input
mode.

� STDIN should be sent to a single task of your partition. This is single input
mode.

� no task should receive input data from STDIN.

Multiple Input Mode:  Setting MP_STDINMODE to all indicates that all tasks
should receive the same input data from STDIN. The home node Partition Manager
sends STDIN to each task as it is read.

To specify multiple input mode so all tasks receive the same input data from
STDIN, you could:

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER export MP_STDINMODE= all ENTER poe  program -stdinmode  all

Note:  If you do not set the MP_STDINMODE environment variable or use the
-stdinmode  command-line flag, multiple input mode is the default.

Single Input Mode:  There are times when you only want a single task to read
from STDIN. To do this, you set MP_STDINMODE to the appropriate task id. For
example, say you have an MPMD application consisting of two programs – master
and workers. The program master is designed to run as a single task on one
processor node. The workers program is designed to run as separate tasks on any
number of other nodes. The master program handles all I/O, so only its task needs
to read STDIN. If master is running as task 0, you need to specify that only task 0
should receive STDIN. To do this, you could:

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER export MP_STDINMODE= 0 ENTER poe  program -stdinmode  0

  Chapter 2. Executing Parallel Programs 45



  
 

 Using MP_HOLD_STDIN
The environment variable MP_HOLD_STDIN is used to defer sending of STDIN
from the home node to the remote node(s) until the message passing library has
been initialized. The variable must be set to “yes” when using POE to invoke a
program which: (1) has been compiled with mpcc , mpxlf , or mpCC  and their _r
equivalents for the threaded environment, and (2) will be reading STDIN from other
than the keyboard (redirection or piping). Failing to export this environment
variable when running these programs could likely result in the user program
hanging.

In addition, if a program invoked using POE has not been compiled with mpcc ,
mpxlf , or mpCC , the environment variable must not be set (or set to “no”) to
ensure that STDIN is delivered to the remote node(s).

To set MP_HOLD_STDIN correctly, you need to know the relative order of your
program's use of stdin data and initialization of the message passing library.

The discussion immediately below applies to the signal handling message passing
library (MPI/MPL), which is initialized before the user's executable gets control.

The subsequent section addresses the question for the threaded MPI library.

Using Redirected STDIN
Note:  Wherever the following description refers to a POE environment variable

(starting with MP_), the use of the associated command line option
produces the same effect, with the exception of MP_HOLD_STDIN, which
has no associated command line option.

A POE process can use its STDIN in two ways. First, if the program name is not
supplied on the command line and no command file (MP_CMDFILE) is specified,
POE uses STDIN to resolve the names of the programs to be run as the remote
tasks. Second, any “remaining” STDIN is then distributed to the remote tasks as
indicated by the MP_STDINMODE and MP_HOLD_STDIN settings. In this dual
STDIN model, redirected STDIN can then pose two problems:

1. If using job steps (MP_NEWJOB=yes ), the “remaining” STDIN is always
consumed by the remote tasks during the first job step.

2. If POE attempts program name resolution on the redirected STDIN, program
behavior can vary when using job steps, depending on the type of redirection
used and the size of the redirected STDIN.

The first problem is addressed in POE by performing a rewind of STDIN between
job steps (only if STDIN is redirected from a file, for reasons beyond the scope of
this document). The second problem is addressed by providing an additional setting
for MP_STDINMODE of “none,” which tells POE to only use STDIN for program
name resolution. As far as STDIN is concerned, “none” ever gets delivered to the
remote tasks. This provides an additional method of reliably specifying the program
name to POE, by redirecting STDIN from a file or pipe, or by using the shell's
here-document syntax in conjunction with the “none” setting. If MP_STDINMODE is
not set to “none” when POE attempts program name resolution on redirected
STDIN, program behavior is undefined.

46 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

The following scenarios describe in more detail the effects of using (or not using)
an MP_STDINMODE of “none” when redirecting (or not redirecting) STDIN, as
shown in the example:

Is STDIN Redirected?

 Yes No

 Yes A B

Is MP_STDINMODE set to "none"?

No C D

 Scenario A
POE will use the redirected STDIN for program name resolution, only if no program
name is supplied on the command line (MP_CMDFILE is ignored when
MP_STDINMODE=none ). No STDIN is distributed to the remote tasks. No rewind
of STDIN is performed when MP_STDINMODE=none . If MP_HOLD_STDIN is set
to “yes,” this is ignored because no STDIN is being distributed.

 Scenario B
POE will use the keyboard STDIN for program name resolution, only if no program
name is supplied on the command line (MP_CMDFILE is ignored when
MP_STDINMODE=none ). No STDIN is distributed to the remote tasks. No rewind
of STDIN is performed when MP_STDINMODE=none  (also, STDIN is not from a
file). If MP_HOLD_STDIN is set to “yes,” this is ignored because no STDIN is being
distributed.

 Scenario C
POE will use the redirected STDIN for program name resolution, if required, and
will distribute “remaining” STDIN to the remote tasks. If STDIN is intended to be
used for program name resolution, program behavior is undefined in this case,
since POE was not informed of this by setting STDINMODE to “none” (see Problem
2 above). If STDIN is redirected from a file, POE will rewind STDIN between each
job step. If MP_HOLD_STDIN is set to “yes,” this feature will behave accordingly.

 Scenario D
POE will use the keyboard STDIN for program name resolution, if required. Any
“remaining” STDIN is distributed to the remote tasks. No rewind of STDIN is
performed since STDIN is not from a file. If MP_HOLD_STDIN is set to “yes,” it is
ignored because STDIN is not redirected.

Using Redirected STDIN with the Threaded MPI Library
If the user's executable is compiled with the threaded MPI library, message passing
initialization occurs when MPI_Init is called, not before POE gives the user program
control. If MPI_Init is called before any STDIN data is read, the discussions of the
previous section apply. If, however, all STDIN is read before MPI_Init is called, then
MP_HOLD_STDIN should be set to “no,” to allow the STDIN data to be sent to the
user's executable by POE.

  Chapter 2. Executing Parallel Programs 47



  
 

Managing Standard Output (STDOUT)
STDOUT is where the data coming from the command will eventually go. Usually,
STDOUT refers to the display. If you use redirection or piping, however, STDOUT
could refer to a file or another command. How you manage STDOUT for a parallel
application depends on whether you want output data from one task or all tasks. If
all tasks are writing to STDOUT, you can also specify whether or not output is
ordered by task id. Using the environment variable MP_STDOUTMODE, you can
specify that:

� all tasks should write output data to STDOUT asynchronously. This is
unordered output mode.

� output data from each parallel task should be written to its own buffer, and later
all buffers should be flushed, in task order, to STDOUT. This is ordered output
mode.

� a single task of your partition should write to STDOUT. This is single output
mode.

Unordered Output Mode:  Setting MP_STDOUTMODE to unordered specifies that
all tasks should write output data to STDOUT asynchronously. To specify
unordered output mode, you could:

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER export MP_STDOUTMODE= unordered ENTER poe  program -stdoutmode  unordered

Notes:

1. If you do not set the MP_STDOUTMODE environment variable or use the
-stdoutmode  command-line flag, unordered output mode is the default.

2. If you are using unordered output mode, you will probably want the messages
labeled by task id. Otherwise it will be difficult to know which task sent which
message. See “Labeling Message Output” on page 49 for more information.

3. You can also specify unordered output mode from your program by calling the
MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to IBM
Parallel Environment for AIX: MPI Programming and Subroutine Reference for
more information.

4. Although the above environment variable and Parallel Utility Function are both
described as “MP_STDOUTMODE,” they are each used independently for their
specific purposes.

Ordered Output Mode:  Setting MP_STDOUTMODE to ordered specifies ordered
output mode. In this mode, each task writes output data to its own buffer. Later, all
the task buffers are flushed, in order of task id, to STDOUT. The buffers are
flushed when:

� any one of the individual task buffers fills

� execution of the program completes.

� all tasks explicitly flush the buffers by calling the MP_FLUSH or mpc_flush
Parallel Utility Function.

� tasks change output mode using calls to Parallel Utility Functions. For more
information on Parallel Utility Functions, refer to IBM Parallel Environment for
AIX: MPI Programming and Subroutine Reference

48 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Note:  When running the parallel application under pdbx  with MP_STDOUTMODE
set to ordered, there will be a difference in the ordering from when the
application is run directly under poe . The buffer size available for the
application’s STDOUT is smaller because pdbx  uses some of the buffer, so
the task buffers fill up more often.

To specify ordered output mode, you could:

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER export MP_STDOUTMODE= ordered ENTER poe  program -stdoutmode  ordered

Note:  You can also specify ordered output mode from your program by calling the
MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to
IBM Parallel Environment for AIX: MPI Programming and Subroutine
Reference for more information.

Single Output Mode:  You can specify that only one task should write its output
data to STDOUT. To do this, you set MP_STDOUTMODE to the appropriate task
id. For example, say you have an SPMD application in which all the parallel tasks
are sending the exact same output messages. For easier readability, you would
prefer output from only one task – task 0. To specify this, you could:

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER export MP_STDOUTMODE= 0 ENTER poe  program -stdoutmode  0

Note:  You can also specify single output mode from your program by calling the
MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to
IBM Parallel Environment for AIX: MPI Programming and Subroutine
Reference for more information.

Labeling Message Output
You can set the environment variable MP_LABELIO , or use the -labelio  flag when
invoking a program, so that output from the parallel tasks of your program are
labeled by task id. While not necessary when output is being generated in single
mode, this ability can be useful in ordered and unordered modes. For example, say
the output mode is unordered. You are executing a program and receiving
asynchronous output messages from all the tasks. This output is not labeled, so
you do not know which task has sent which message. It would be clearer if the
unordered output was labeled. For example:

7: Hello World

ð: Hello World

3: Hello World

 23: Hello World

 14: Hello World

9: Hello World

To have the messages labeled with the appropriate task id, you could:

  Chapter 2. Executing Parallel Programs 49



  
 

Set the MP_LABELIO environment variable: Use the -labelio flag when invoking the program:

ENTER export MP_LABELIO= yes ENTER poe  program -labelio  yes

To no longer have message output labeled, set the MP_LABELIO  environment
variable to no.

Setting the Message Reporting Level for Standard Error
(STDERR)
You can set the environment variable MP_INFOLEVEL  to specify the level of
messages you want from POE. You can set the value of MP_INFOLEVEL  to one of
the integers shown in the following table. The integers 0, 1, and 2 give you
different levels of informational, warning, and error messages. The integers 3
through 6 indicate debug levels that provide additional debugging and diagnostic
information. Should you require help from the IBM Support Center in resolving a
PE-related problem, you will probably be asked to run with one of the debug levels.
As with most POE environment variables, you can override MP_INFOLEVEL  when
you invoke a program. This is done using either the -infolevel  or -ilevel  flag
followed by the appropriate integer.

This integer:

Indicates this
level of
message
reporting: In other words:

0 Error Only error messages from POE are written to STDERR.

1 Normal Warning and error messages from POE are written to STDERR. This level of
message reporting is the default.

2 Verbose Informational, warning, and error messages from POE are written to STDERR.

3 Debug Level 1 Informational, warning, and error messages from POE are written to STDERR. Also
written is some high-level debugging and diagnostic information.

4 Debug Level 2 Informational, warning, and error messages from POE are written to STDERR. Also
written is some high- and low-level debugging and diagnostic information.

5 Debug Level 3 Debug level 2 messages plus some additional loop detail.

6 Debug Level 4 Debug level 3 messages plus other informational error messages for the greatest
amount of diagnostic information.

Let us say you want the POE message level set to verbose. The following table
shows the two ways to do this. You could:

Set the MP_INFOLEVEL environment variable: Use the -infolevel flag when invoking the program:

ENTER export MP_INFOLEVEL =2 ENTER poe  program -infolevel  2

or poe  program -ilevel  2

As with most POE command-line flags, the -infolevel  or -ilevel  flag temporarily
override their associated environment variable.

Generating a Diagnostic Log on Remote Nodes
Using the MP_PMDLOG environment variable, you can also specify that diagnostic
messages should be logged to a file in /tmp on each of the remote nodes of your
partition. The log file is named mplog.pid.n, where pid is the AIX process id of the
Partition Manager Daemon, and n is the task number. Should you require help from
the IBM Support Center in resolving a PE-related problem, you will probably be
asked to generate these diagnostic logs.

50 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

The ability to generate diagnostic logs on each node is particularly useful for
isolating the cause of abnormal termination, especially when the connection
between the remote node and the home node Partition Manager has been broken.
As with most POE environment variables, you can temporarily override the value of
MP_PMDLOG using its associated command-line flag -pmdlog . For example, to
generate a pmd  log file, you could:

Set the MP_PMDLOG environment variable: Use the -pmdlog flag when invoking the program:

ENTER export MP_PMDLOG= yes ENTER poe  program -pmdlog  yes

Note:  By default, MP_PMDLOG is set to no. No diagnostic logs are generated. It
is not suggested that you run MP_PMDLOG routinely. Running this will
greatly impact performance and fill up your file system space.

| Checkpointing and Restarting Programs
| You can set the environment variables MP_CHECKFILE  and MP_CHECKDIR to
| checkpoint or restart a program, which was previously compiled with the
| mpcc_chkpt , mpCC_chkpt , or mpxlf_chkpt  commands. Only POE/MPI
| applications submitted under LoadLeveler in batch mode are able to be
| checkpointed. Checkpointing of interactive POE applications is not allowed.

| The program's execution will be suspended when the mp_chkpt()  function is
| reached. See IBM Parallel Environment for AIX: MPI Programming and Subroutine
| Reference for the description of the mp_chkpt  function. At that point, the state of
| the application is captured, along with all data, and saved to the file pointed to by
| the MP_CHECKFILE  and MP_CHECKDIR variables.

| MP_CHECKFILE  defines the base name of the checkpoint file. MP_CHECKDIR
| defines the directory where the checkpoint file will reside. If the MP_CHECKFILE
| variable is not specified, the program cannot be checkpointed. The file name
| specified by MP_CHECKFILE  may include the full path, in which case the
| MP_CHECKDIR variable will be ignored. If MP_CHECKDIR is not defined and
| MP_CHECKFILE  does not specify a full path name, then MP_CHECKFILE  is used
| as a relative path name from the current working directory.

| Only programs compiled with the checkpoint compile scripts (mpcc_chkpt ,
| mpCC_chkpt , or mpxlf_chkpt ) that call the mp_chkpt  function can be
| checkpointed.

| When the checkpoint file is created during the checkpointing phase, the task id and
| a version id are appended to the base file name to differentiate between checkpoint
| files from different instances of the program.

| There are certain limitations associated with checkpointing an application. Please
| refer to IBM Parallel Environment for AIX: MPI Programming and Subroutine
| Reference for specific details.

  Chapter 2. Executing Parallel Programs 51



  
 

| Restarting a Checkpointed Program
| A program can be restarted by executing POE, using MP_CHECKFILE  and
| MP_CHECKDIR to point to the checkpoint file from the previously checkpointed
| program. The checkpoint file must be valid and accessible to all tasks specific when
| invoking POE. The application can be restarted on the same or a different set of
| nodes. However, the number of tasks must remain the same.

| During the restart processing, the version and content of the checkpoint file are
| verified internally by POE to ensure consistency and accuracy. Any discrepancies,
| such as a mismatch in versions of the program files, will be reported. That is, the
| versions of the specified checkpoint files are not the same across all tasks.

| The checkpoint file will be read, and the program will be restored to an executing
| state, after retrieving the program state and data information from the file. When
| execution is completely restored, the checkpoint files are deleted.

| If you are using the MP_BUFFER_MEM environment variable to change the
| maximum size of memory used by the communication subsystem while
| checkpointing a program, please be aware that the amount of space needed for the
| checkpointing files will be increased by the value of MP_BUFFER_MEM.

| Checkpointing File Management
| The ability to checkpoint or restart programs is controlled by the definition and
| availability of the checkpoint files, as specified by the MP_CHECKFILE
| environment variable.

| The specified file may be defined on the local file system (JFS) of the node on
| which the instance of the program is running, or it may be defined in some shared
| file system (such as NFS, AFS, DFS, GPFS, etc.). When the file is in a local file
| system, then in order to perform process migration, the checkpoint file will have to
| be moved to the new system on which the process is to be restarted. If the old
| system crashed and is unavailable, it may not be possible to restart the program. It
| may be necessary, therefore, to use some kind of file management to avoid such a
| problem. If migration is not desired, it is sufficient to place checkpoint files in the
| local JFS file system.

| The program checkpoint files can be large, and numerous. There is the potential
| need for significant amounts of available disk space to maintain the files. It is
| recommended that you do not  use NFS, AFS, or DFS for managing checkpoint
| files. The nature of these systems is such that it takes a very long time to write and
| read large files. The use of GPFS or JFS is recommended.

| If a local JFS file system is used, the checkpoint file must be written to each remote
| task's local file system during checkpointing. Consequently, during a restart, each
| remote task's local file system must be able to access the checkpoint file from the
| previously checkpointed program. This is of special concern when opting to restart
| a program on a different set of nodes from which it was checkpointed. The local
| checkpoint file may need to be relocated to any new nodes. For these reasons, it is
| suggested that GPFS be the file system best suited for checkpoint and restart file
| management.

52 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Running POE within a Distributed File System
This section gives you instructions on how to run POE within a Distributed File
System (DFS). Included is a description of the poeauth  command, which allows
you to copy DFS credentials to all nodes on which you want to run POE jobs.

| Note:  When running POE under LoadLeveler, LoadLeveler handles all user
| authorization instead of POE.

Setting Up Your System to Run POE
In order to run POE jobs from DFS, you will need to copy the DFS/DCE credentials
files to each node you wish to run on, using the poeauth  command. You should be
set up with a DFS account, and after you login, you access your DCE user
credentials by doing a dce_login .

DCE credentials are defined on a per user basis, therefore each user must use
poeauth  to copy the credentials prior to running a POE job on a DFS/DCE system.

To be able to run the poeauth  command, you should make some initial file and
directory changes. In your pool or host list file you define all nodes on which you
want to run POE jobs. You change directories to a local non-DFS file system, for
example, /tmp. The poeauth  command sets up the DFS credentials for POE,
therefore you cannot be in a DFS directory (as the current directory) to run it.

The execution of the poeauth  command is dependent upon the type of user
authorization specified by the MP_AUTH environment variable – either AIX or
DFS/DCE authorization.

When AIX user authorization is selected (either by setting MP_AUTH=AIX  or
allowing it as the default), and your home directory resides in DFS, your user name
must be properly authorized to access those nodes in the /etc/hosts.equiv file on
each node. You should remove all entries from the .rhosts files on each node, and
allow the /etc/hosts.equiv file to authorize the users on each node. Otherwise, POE
will not be able to authorize users properly. Once DFS credentials are established,
you can use a .rhosts file.

The dce_login  sets up a new shell. As a result, you should set up any environment
variables needed to run poeauth  or other POE applications (such as MP_AUTH)
after doing the dce_login .

Running the poeauth Command
You should run the poeauth  command from task 0 that had a dce_login . You can
use any POE command line flag or environment variable with poeauth , because it
is a POE application. Each user must run poeauth  before running any POE
applications. When the credentials are copied, there is no need to use poeauth
until the credentials expire (at which time you will need to copy them using
poeauth  again). After you run the poeauth  command successfully, you can run
POE from DFS. For more information on the poeauth  command, see Appendix A,
“Parallel Environment Commands” on page 83.

Note:  Credentials files need to exist on the home node (task 0), that is, from
where dce_login  was performed. The poeauth  command needs to be run
from task 0.

  Chapter 2. Executing Parallel Programs 53



  
 

Checking for Errors
When POE returns error messages related to an inability to change to a DFS
directory or a problem copying a file to a DFS directory, it most likely means there
is a problem with the DFS credentials on that task or node. Check to see if the
credentials were properly copied with poeauth , or if they have expired (use the
klist  command).

Since poeauth  is a POE application, if you try to run it when the credentials have
expired, POE will encounter an error accessing the expired credentials.

If the credentials have expired, you must do another dce_login  and run the
poeauth  command again.

POE maintains a master control file in /tmp to keep track of the credentials. If /tmp
is periodically cleaned out or the file is accidentally erased before your credentials
expire, POE will not be able to access your DCE credentials and you may get
errors related to the inability to access credentials. If this occurs, you will need to
run the poeauth  command again to redefine your credentials to POE.

54 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Chapter 3. Managing POE Jobs

This chapter describes the tasks involved with managing POE jobs. It includes the
following:

| � Scenarios for allocating nodes with LoadLeveler

� Scenarios for allocating nodes with the Resource Manager

� Information about IBM LoadLeveler support

� Appropriate environment variable information to use when running your
applications.

Multi-Task Core File
With the MP_COREDIR environment variable, you can create a separate directory
to save a core file for each task. The corresponding command line option is
-coredir . Creating this type of directory is useful when you are running a parallel
job on one node, and the job dumps a core file. By checking the directory, you can
see which task dumped the file. When setting MP_COREDIR, you specify the first
attribute of the directory name. The second attribute is the task id. If you do not
specify a directory, the default is coredir. The subdirectory containing each task's
core file is named coredir.taskid. The following examples show what happens when
you set the environment variable:

 Copyright IBM Corp. 1995, 1998  55



  
 

Example 1:

MP_COREDIR=my_parallel_cores

MP_PROCS=2

run generates core files

Core files will be located at:

/current directory/my_parallel_cores.ð/core

/current directory/my_parallel_cores.1/core

Example 2:

MP_COREDIR not specified

MP_PROCS=2

run generates core files

Core files will be located at:

/current directory/coredir.ð/core

/current directory/coredir.1/core

Stopping a POE Job
You can stop (suspend) a POE job by pressing <Ctrl-z > or by sending POE a
SIGTSTP signal. POE stops, and sends a SIGSTOP signal to all the remote tasks,
which stops them. To resume the parallel job, issue the fg  or bg  command to POE.
A SIGCONT signal will be sent to all the remote tasks to resume them.

56 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Cancelling and Killing a POE Job
You can cancel a POE job by pressing <Ctrl-c > or <Ctrl-\ >. This sends POE a

| SIGINT or SIGQUIT signal respectively. POE terminates all the remote tasks,
completes the generation of the VT trace file, and exits.

If POE is killed or terminated before the remote nodes are shut down, direct
communication with the parallel job will be lost. In this situation, use the poekill
script as a POE command, or individually via rsh , to terminate the partition. poekill
kills all instantiations of the program name on a remote node by sending it a
SIGTERM signal. See the poekill  script in /usr/lpp/ppe.poe/bin, and the description
of the poekill  command in Appendix A, “Parallel Environment Commands” on
page 83.

Note:  Do not kill the pmd s using the poekill  command. This will ensure that your
remote processes will continue running.

Detecting Remote Node Failures
POE and the Partition Manager use a pulse detection mechanism to periodically
check each remote node to ensure that it is actively communicating with the home
node. You specify the time interval (or pulse interval), of these checks with the
-pulse  flag or the MP_PULSE environment variable. When POE starts a parallel
job, During an execution of a POE job, POE and the Partition Manager daemons
check at the interval you specify that each node is running. When a node failure is
detected, POE terminates the job on all remaining nodes and issues an error
message.

The default pulse interval is 600 seconds (10 minutes). You can increase or
decrease this value with the -pulse  flag or the MP_PULSE environment variable.
To completely disable the pulse function, specify an interval value of 0 (zero). For
the PE debugging facility MP_PULSE is disabled.

| Considerations for Using the SP Switch
| The SP switch supports dedicated User Space (US) and IP sessions, running
| concurrently on a single node. Users of IP communication programs that are not
| using a job management system (LoadLeveler or the Resource Manager), may
| treat this adapter like any other IP-supporting adapter. In this case, the adapter
| name is css0.

| While US message passing programs must use a job management system to
| allocate nodes, IP message passing programs may use a job management system,
| but are not required to. When using LoadLeveler, nodes may be requested by
| name or number from one system pool only. When using the Resource Manager,
| nodes may be requested by number or by specifying one or more node pools to be
| used. When specifying node pools, the following rules apply:

| � All the nodes in a pool should support the same combination of IP and US
| protocols. In other words, all the nodes should be able to run:
| – the IP protocol

| or
| – the US protocol

  Chapter 3. Managing POE Jobs 57



  
 

| or
| – the IP and US protocols concurrently.
| � In order to run the IP protocol, the IP switch addresses must be configured and
| started. In order to run the US protocol, the switch node numbers must be
| configured. For more information regarding these protocols and LoadLeveler,
| see Using and Administering LoadLeveler . For more information regarding
| these protocols and the Resource Manager, see IBM Parallel System Support
| Programs for AIX: Installation and Migration Guide .
| � By default, requests for the US message passing protocol also request
| exclusive use of the node; the job management system will not allocate
| concurrent IP message passing programs on this node. You can override this
| default so that the node can be used for both IP and US programs by
| specifying “multiple” CPU usage.
| � By default, requests for the IP message passing protocol also request multiple
| use of the node; the job management system can allocate both IP and US
| message passing programs on this node. You can override this default so that
| the node is designated for exclusive use by specifying “unique” CPU usage.
| � When running a batch parallel program under LoadLeveler, the adapter and
| CPU are allocated as specified by the network keyword in the LoadLeveler Job
| Command File. See Using and Administering LoadLeveler for more information.

| Scenarios for Allocating Nodes With LoadLeveler
| This section provides some examples of how someone would allocate nodes using
| LoadLeveler.

| Scenario 1: Explicit Allocation
| A POE user, Paul, wishes to run a US job 1 in nodes A, B, C, and D. He doesn't
| mind sharing the node with other jobs, as long as they are not also running in US.
| To do this, he specifies MP_EUIDEVICE=css0, MP_EUILIB=us, MP_PROCS=4,
| MP_CPU_USE=multiple, and MP_ADAPTER_USE=dedicated. In his host file, he
| also specifies:

| node_A
| node_B
| node_C
| node_D

| The POE Partition Manager (PM) sees that this is a US job, and asks LoadLeveler
| for dedicated use of the css0 adapter on nodes A, B, C, and D and shared use of
| the CPU on those nodes. LoadLeveler then allocates the nodes to the job,
| recording that the css0/US session on A, B, C, and D has been reserved for
| dedicated use by this job, but that the node may also be shared by other users.

| While job 1 is running, another POE user, Dan, wants to run another US job, job 2,
| on nodes B and C, and is willing to share the nodes with other users. He specifies
| MP_EUIDEVICE=css0, MP_EUILIB=us, and MP_PROCS=2,
| MP_CPU_USE=multiple, and MP_ADAPTER_USE=dedicated. In his host file, he
| also specifies:

| node_B
| node_C

| The PM, as before, asks LoadLeveler for dedicated use of the css0/US adapter on
| nodes B and C. LoadLeveler determines that this adapter has already been

58 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

| reserved for dedicated use on nodes B and C, and does not allocate the nodes
| again to job 2. The allocation fails, and POE job 2 cannot run.

| While job 1 is running, a second POE user, John, wishes to run IP/switch job 3 on
| nodes A, B, C, and D, but doesn't mind sharing the node and the SP switch with
| other users. He specifies MP_EUIDEVICE=css0, MP_EUILIB=ip, MP_PROCS=4,
| MP_CPU_USE=multiple, and MP_ADAPTER_USE=shared. In his host file, he also
| specifies;

| node_A
| node_B
| node_C
| node_D

| The POE PM asks LoadLeveler, as requested by John, for shared use of the
| css0/ip adapter and CPU on nodes A, B, C, and D. LoadLeveler determines that
| job 1 permitted other jobs to run on those nodes as long as they did not use the
| css0/US session on them. The allocation succeeds, and POE IP/switch job 3 runs
| concurrently with POE US job 1 on A, B, C, and D.

| The scenario above, illustrates a situation in which users do not mind sharing
| nodes with other users' jobs. If a user wants his POE job to have dedicated access
| to nodes or the css0 adapter on nodes, he would indicate that in the environment
| by setting MP_CPU_USE=unique instead of multiple. If job 1 had done that, then
| job 3 would not have been allocated to those nodes and, therefore, would not have
| been able to run.

| Scenario 2: Implicit Allocation
| In this scenario, all nodes have both css0/US and css0/IP sessions configured, and
| are assigned to pool 2.

| In this example, we have eight nodes; A, B, C, D, E, F, G, H.

| Job 1:  Job1 is interactive, and requests 4 nodes for US using MP_RMPOOL.

| MP_PROCS=4

| MP_RMPOOL=2

| MP_EUILIB=us

| LoadLeveler allocates nodes A, B, C, and D for dedicated adapter (forced for US)
| and dedicated CPU (default for MP_RMPOOL).

| Job 2:  Job 2 is interactive, and requests six nodes for US using host.list.

| MP_PROCS=6

| MP_HOSTFILE=./host.list

| MP_EUILIB=us

| MP_CPU_USE=multiple
| MP_ADAPTER_USE=shared
| host.list

|  @2

  Chapter 3. Managing POE Jobs 59



  
 

| POE forces the adapter request to be dedicated, even though the user specified
| shared. Multiple (shared CPU) is supported, but in this case LoadLeveler doesn't
| have six nodes, either for CPU or for adapter, so the job fails.

| Job 3:  Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

| MP_PROCS=6

| MP_RMPOOL=2

| MP_EUILIB=ip

| The defaults are shared adapter and shared CPU, but LoadLeveler only has four
| nodes available for CPU use, so the job fails.

| Job 4:  Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

| MP_PROCS=3

| MP_RMPOOL=2

| MP_EUILIB=ip

| The defaults are shared adapter and shared CPU. LoadLeveler allocates nodes E,
| F, and G.

| Job 5:  Job 5 is interactive and requests two nodes for IP using MP_RMPOOL.

| MP_PROCS=2

| MP_RMPOOL=2

| MP_EUILIB=ip

| The defaults are shared adapter and shared CPU. LoadLeveler allocates two nodes
| from the list E, F, G, H (the others are assigned as dedicated to job 1).

| Scenario 3: Implicit Allocation
| In this scenario, all nodes have both css0/US and css0/IP sessions configured, and
| are assigned to pool 2.

| In this example, we have eight nodes; A, B, C, D, E, F, G, H

| Job 1:  Job 1 is interactive and requests four nodes for US using host.list.

| MP_PROCS=4

| MP_HOSTFILE=./host.list

| MP_EUILIB=us

| MP_CPU_USE=multiple
| MP_ADAPTER_USE=dedicated
| host.list

|  @2

| LoadLeveler allocates nodes A, B, C, and D for dedicated adapter (forced for US),
| and shared CPU.

60 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

| Job 2:  Job 2 is interactive and requests six nodes for US using host.list.

| MP_PROCS=6

| MP_HOSTFILE=./host.list

| MP_EUILIB=us

| MP_CPU_USE=multiple
| MP_ADAPTER_USE=shared
| host.list

|  @2

| POE forces the adapter request to be dedicated, even though the user has
| specified shared. Multiple (shared CPU) is supported, but in this case, LoadLeveler
| doesn't have six nodes for the adapter request, so the job fails.

| Job 3:  Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

| MP_PROCS=6

| MP_HOSTFILE=NULL

| MP_EUILIB=ip

| MP_RMPOOL=2

| The defaults are shared adapter and shared CPU. LoadLeveler allocates six nodes
| for IP from the pool.

| Job 4:  Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

| MP_PROCS=3

| MP_HOSTFILE=NULL

| MP_EUILIB=ip

| MP_RMPOOL=2

| The defaults are shared adapter and shared CPU. LoadLeveler allocates three
| nodes from the pool.

| Scenarios for Allocating Nodes With the Resource Manager
| This section provides some examples of how someone would allocate nodes using
| the Resource Manager.

| Scenario 1: Explicit Allocation
| A POE user, Paul, wishes to run a US job 1 in nodes A, B, C, and D. He doesn't
| mind sharing the node with other jobs, as long as they are not also running in US.
| To do this, he specifies MP_EUIDEVICE=css0, MP_EUILIB=us, and
| MP_PROCS=4. In his host file, he also specifies:

  Chapter 3. Managing POE Jobs 61



  
 

| node_A dedicated multiple

| node_B dedicated multiple

| node_C dedicated multiple

| node_D dedicated multiple

| The POE Partition Manager (PM) sees that this is a US job, and asks the RM for
| dedicated use of the css0 adapter on nodes A, B, C, and D (regardless of whether
| you specify dedicated or shared in the host file), and shared use of the CPU on
| those nodes. The RM then allocates the nodes to the job, recording that the
| css0/US session on A, B, C, and D has been reserved for dedicated use by this
| job, but that the node may also be shared by other users.

| While job 1 is running, another POE user, Dan, wants to run another US job, job 2,
| on nodes B and C, and is willing to share the nodes with other users. He specifies
| MP_EUIDEVICE=css0, MP_EUILIB=us, and MP_PROCS=2. In his host file, he
| also specifies:

| node_B dedicated multiple

| node_C dedicated multiple

| The PM, as before, asks the RM for dedicated use of the css0/US adapter on
| nodes B and C. The RM determines that this adapter has already been reserved
| for dedicated use on nodes B and C, and does not allocate the nodes again to job
| 2. The allocation fails, and POE job 2 cannot run.

| While job 1 is running, a second POE user, John, wishes to run IP/switch job 3 on
| nodes A, B, C, and D, but doesn't mind sharing the node and the High
| Performance Communication Adapter with other users. He specifies
| MP_EUIDEVICE=css0, MP_EUILIB=ip, MP_PROCS=4. In his host file, he also
| specifies;

| node_A shared multiple

| node_B shared multiple

| node_C shared multiple

| node_D shared multiple

| The POE PM asks the RM, as requested by John, for shared use of the css0/ip
| adapter and CPU on nodes A, B, C, and D. The RM determines that job 1
| permitted other jobs to run on those nodes as long as they did not use the css0/US
| session on them. The allocation succeeds, and POE IP/switch job 3 runs
| concurrently with POE US job 1 on A, B, C, and D.

| The scenario above, illustrates a situation in which users do not mind sharing
| nodes with other users' jobs. If a user wants his POE job to have dedicated access
| to nodes or the css0 adapter on nodes, he would indicate that in the host file by
| specifying unique instead of multiple. If job 1 had done that, then job 3 would not
| have been allocated to those nodes and, therefore, would not have been able to
| run.

62 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

| Scenario 2: Implicit Allocation
| In this scenario, all nodes have both css0/US and css0/IP sessions configured, and
| are assigned to pool 2.

| In this example, we have eight nodes; A, B, C, D, E, F, G, H.

| Job 1:  Job1 is interactive, and requests 4 nodes for US using MP_RMPOOL.

| MP_PROCS=4

| MP_RMPOOL=2

| MP_EUILIB=us

| The RM allocates nodes A, B, C, and D for dedicated adapter (forced for US) and
| dedicated CPU (default for MP_RMPOOL).

| Job 2:  Job 2 is interactive, and requests six nodes for US using host.list.

| MP_PROCS=6

| MP_HOSTFILE=./host.list

| MP_EUILIB=us

| host.list

| @2 shared multiple

| POE forces the adapter request to be dedicated, even though the user specified
| shared. Multiple (shared CPU) is supported, but in this case the RM doesn't have
| six nodes, either for CPU or for adapter, so the job fails.

| Job 3:  Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

| MP_PROCS=6

| MP_RMPOOL=2

| MP_EUILIB=ip

| The defaults are shared adapter and shared CPU, but the RM only has four nodes
| available for CPU use, so the job fails.

| Job 4:  Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

| MP_PROCS=3

| MP_RMPOOL=2

| MP_EUILIB=ip

| The defaults are shared adapter and shared CPU. The RM allocates nodes E, F,
| and G.

| Job 5:  Job 5 is interactive and requests two nodes for IP using MP_RMPOOL.

  Chapter 3. Managing POE Jobs 63



  
 

| MP_PROCS=2

| MP_RMPOOL=2

| MP_EUILIB=ip

| The defaults are shared adapter and shared CPU. The RM allocates two nodes
| from the list E, F, G, H (the others are assigned as dedicated to job 1).

| Scenario 3: Implicit Allocation
| In this scenario, all nodes have both css0/US and css0/IP sessions configured, and
| are assigned to pool 2.

| In this example, we have eight nodes; A, B, C, D, E, F, G, H

| Job 1:  Job 1 is interactive and requests four nodes for US using host.list.

| MP_PROCS=4

| MP_HOSTFILE=./host.list

| MP_EUILIB=us

| host.list

| @2 dedicated multiple

| The RM allocates nodes A, B, C, and D for dedicated adapter (forced for US), and
| shared CPU.

| Job 2:  Job 2 is interactive and requests six nodes for US using host.list.

| MP_PROCS=6

| MP_HOSTFILE=./host.list

| MP_EUILIB=us

| host.list

| @2 shared multiple

| POE forces the adapter request to be dedicated, even though the user has
| specified shared. Multiple (shared CPU) is supported, but in this case, the RM
| doesn't have six nodes for the adapter request, so the job fails.

| Job 3:  Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

| MP_PROCS=6

| MP_HOSTFILE=NULL

| MP_EUILIB=ip

| MP_RMPOOL=2

| The defaults are shared adapter and shared CPU. The RM allocates six nodes for
| IP from the pool. There is no attempt to load balance with Job 1.

64 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

| Job 4:  Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

| MP_PROCS=3

| MP_HOSTFILE=NULL

| MP_EUILIB=ip

| MP_RMPOOL=2

| The defaults are shared adapter and shared CPU. The RM allocates three nodes
| from the pool. There is no attempt to load balance with jobs 1 and 3.

| Submitting a Batch POE Job using IBM LoadLeveler
| Note:  POE version 2.4.0 is only compatible with LoadLeveler version 2.1.0.
| Submitting a POE version 2.4.0 batch job with an earlier version of
| LoadLeveler is not supported.

| This section is intended for users who wish to submit batch POE jobs using IBM
| LoadLeveler, version 2.1.0. Refer to Using and Administering LoadLeveler for more
| information on using this job management system.

To submit a POE job using LoadLeveler, you need to build a LoadLeveler job file,
which specifies:

� The number of nodes to be allocated
� Any POE options, passed via environment variables using Loadleveler's

environment keyword, or passed as command line options using LoadLeveler's
argument keyword.

� The path to your POE executable (usually /usr/bin/poe).
| � Adapter specifications using the network keyword.

The following POE environment variables, or associated command line options, are
| validated, but not used, for batch jobs submitted using LoadLeveler .

 � MP_PROCS
 � MP_RMPOOL
 � MP_EUIDEVICE
 � MP_HOSTFILE
 � MP_SAVEHOSTFILE
 � MP_PMDSUFFIX
 � MP_RESD
 � MP_RETRY
 � MP_RETRYCOUNT
 � MP_ADAPTER_USE
 � MP_CPU_USE

|  � MP_NODES
|  � MP_TASKS_PER_NODE

To run myprog  on five nodes, using a Token ring adapter for IP message passing,
with the message level set to the info  threshold, you could use the following
LoadLeveler job file. The arguments myarg1  and myarg2  are to be passed to
myprog .

  Chapter 3. Managing POE Jobs 65



  
 

#!/bin/ksh

# @ input = myjob.in

# @ output = myjob.out

# @ error = myjob.error

# @ environment = COPY_ALL; \

 MP_EUILIB=ip; \

 MP_INFO_LEVEL=2

# @ executable = /usr/bin/poe

# @ arguments = myprog myarg1 myarg2

# @ min_processors = 5

# @ requirements = (Adapter == "tokenring")

# @ job_type = parallel

# @ checkpoint = no

To run myprog  on 12 nodes from pool 2, using the User Space message passing
interface with the message threshold set to warning , you could use the following
LoadLeveler job file. See the documentation provided with the LoadLeveler program
product for more information.

#!/bin/ksh

# @ input = myusjob.in

# @ output = myusjob.out

# @ error = myusjob.error

# @ environment = COPY_ALL; MP_EUILIB=us

# @ executable = /usr/bin/poe

# @ arguments = myprog -infolevel 1

# @ min_processors = 12

# @ requirements = (Pool == 2) && (Adapter == "hps_user")

# @ job_type = parallel

# @ checkpoint = no

66 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Notes:

1. If you are using the POE dynamically linked message passing interface
support, you must set the MP_EUILIB  environment variable or the -euilib
command line option.

2. The first token of the arguments string in the LoadLeveler job file must be the
name of the program to be run under POE, unless:

� You use the MP_CMDFILE environment variable or the -cmdfile  command
line option

� The file you specify with the keyword input contains the name(s) of the
programs to be run under POE.

3. When setting the environment string, make sure that no white space characters
follow the backslash, and that there is a space in between the semicolon and
backslash.

| 4. When LoadLeveler allocates nodes for parallel execution, POE and task 0 will
| be executed on the same node.

5. When LoadLeveler detects a condition that should terminate the parallel job, a
SIGTERM will be sent to POE. POE will then send the SIGTERM to each
parallel task in the partition. If this signal is caught or ignored by a parallel task,
LoadLeveler will ultimately terminate the task.

6. Programs that call the usrinfo  function with the getinfo  parameter, or programs
that use the getinfo  function, are not guaranteed to receive correct information
about the owner of the current process.

| 7. Programs that use LAPI and also the LoadLeveler requirements  keyword to
| specify Adapter="hps_user" , must set the MP_MSG_API environment
| variable or associated command line option accordingly.

| 8. If the value of the MP_EUILIB , MP_EUIDEVICE, or MP_MSG_API environment
| variables that is passed as an argument to POE differs from the specification in
| the network statement of the job command file, the network specification will be
| used, and a warning message will be printed.

Running Programs Under the C Shell
During normal configuration of an SP system, the Automount Daemon (amd) is
used to mount user directories. amd's maps use the symbolic file system links,
rather than the physical file system links. While the Korn shell keeps track of file
system changes, so that a directory is always available, this mapping does not take
place in the C shell. This is because the C shell only maintains the physical file
system links. As a result, users that run POE from a C shell may find that their
current directory (for example /a/moms/fileserver/sis), is not known to amd, and
POE fails with message 0031-214 (unable to change directory).

By default, POE uses the Korn shell pwd  command to obtain the name of the
current directory. This works for C shell users if the current directory is either:

� The home directory
� Not mounted by amd.

If neither of the above are true (for example, if the user's current directory is a
subdirectory of the home directory), then POE provides another mechanism to
determine the correct amd name; the MP_REMOTEDIR environment variable.

  Chapter 3. Managing POE Jobs 67



  
 

POE recognizes the MP_REMOTEDIR environment variable as the name of a
command or Korn shell script that echoes a fully-qualified file name.
MP_REMOTEDIR is run from the current directory from which POE is started.

If you do not set MP_REMOTEDIR, the command defaults to pwd , and is run as
ksh -c pwd . POE sends the output of this command to the remote nodes and uses
it as the current directory name.

You can set MP_REMOTEDIR to some other value and then export it. For
example, if you set MP_REMOTEDIR="echo /tmp" , the current directory on the
remote nodes becomes /tmp on that node, regardless of what it is on the home
node.

The script mpamddir  is also provided in /usr/lpp/ppe.poe/bin, and the setting
MP_REMOTEDIR=mpamddir  will run it. This script determines whether or not the
current directory is a mounted file system. If it is, the script searches the amd maps
for this directory, and constructs a name for the directory that is known to amd. You
can modify this script or create additional ones that apply to your installation.

Note:  Programs that depend upon the name of the current directory for correct
operation may not function properly with an alternate directory name. In this
case, you should carefully evaluate how to provide an appropriate name for
the current directory on the home nodes.

If you are executing from a subdirectory of your home directory, and your home
directory is a mounted file system, it may be sufficient to replace the C shell name
of the mounted file system with the contents of $HOME. One approach would be:

export MP_REMOTEDIR=pwd.csh

or for C shell users:

setenv MP_REMOTEDIR pwd.csh

where the file pwd.csh  is:

#!/bin/csh -fe

# save the current working directory name

set oldpwd = ypwdy

# get the name of the home directory

cd $HOME

set hmpwd = ypwdy

# replace the home directory prefix with the contents of $HOME

set sed_home = yecho $HOME | sed 's/\//\\\//g'y

set sed_hmpwd = yecho $hmpwd | sed 's/\//\\\//g'y

set newpwd = yecho $oldpwd | sed "s/$sed_hmpwd/$sed_home/"y

# echo the result to be used by amd

echo $newpwd

68 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

 Using MP_CSS_INTERRUPT
The MP_CSS_INTERRUPT environment variable may take the value of either yes
or no . By default it is set to no . In certain applications, setting this value to yes  will
provide improved performance.

The following briefly summarizes some general application characteristics that could
potentially benefit from setting MP_CSS_INTERRUPT=yes .

Applications which have the following characteristics may see performance
improvements from setting the POE environment variable MP_CSS_INTERRUPT to
yes :

� Applications that use nonblocking send or receive operations for
communication.

� Applications that have non-synchronized sets of send or receive pairs. In other
words, the send from node0 is issued at a different point in time with respect to
the matching receive in node1.

� Applications that do not issue waits for nonblocking send or receive operations
immediately after the send or receive, but rather do some computation prior to
issuing the waits.

In all of the above cases, the application is taking advantage of the asynchronous
nature of the nonblocking communication subroutines. This essentially means that
the calls to the nonblocking send or receive routines do not actually ensure the
transmission of data from one node to the next, but only post the send or receive
and then return immediately back to the user application for continued processing.
However, since the SP communication subsystem is a user space protocol and
executes within the user's process, it must regain control from the application to
complete asynchronous requests for communication.

The SP communication subsystem can regain control from the application in any
one of three different methods:

1. Any subsequent calls to the SP communication subsystem to post send or
receive, or to wait on messages.

2. A timer signal is received periodically to allow the communication subsystem to
do recovery from transmission errors.

3. If the value of MP_CSS_INTERRUPT is set to yes , the communication
subsystem device driver will send a signal to the user application when data is
received or buffer space is available to transmit data.

Method 1 and Method 2 are always enabled. Method 3 is controlled by the POE
environment variable MP_CSS_INTERRUPT, and is enabled when this variable is
set to yes .

For those applications that have the characteristics mentioned above, this implies
that when using asynchronous communication the completion of the communication
must occur through one of the these three methods. In the case that
MP_CSS_INTERRUPT is not enabled, only the first two methods are available to
process communication. Depending upon the amount of time between the
non-synchronized send or receive pairs, or between the nonblocking send or
receive and the corresponding waits, the actual transmission of data may only

  Chapter 3. Managing POE Jobs 69



  
 

complete at the matching wait call. If this is the case, it is possible that an
application may see a performance degradation due to unnecessary processor
stalling waiting for communication.

As an example, consider the following application template, where both processors
execute the same code, and processor 0 sends and receives data from processor
1.

 DO LOOP

MP_SEND (A ...., msgid1)

MP_RECV (B ...., msgid2)

MP_WAIT (msgid2, nbytes)

COMPUTE LOOP1 (uses B)

MP_WAIT (msgid1, nbytes)

COMPUTE LOOP2 (modifies A)

 ENDDO

In this example, application B is guaranteed to be received after the wait for msgid2,
and more than likely the data is actually received during the wait call. B can then
be safely used in the compute loop1. A is not guaranteed to be sent until the wait
for msgid1. Therefore, A cannot be modified until after this wait.

With MP_CSS_INTERRUPT=no , it is likely that processor0 receives B during the
wait for msgid2, and enters the compute loop1 before the send of A has completed.
In this case, processor1 will stall waiting for the completion of the wait for msgid2,
which will not complete until processor0 completes the compute loop1 and reaches
the wait for msgid1. The stalling of processor1 is directly related to the
non-continuous flow of communication. If MP_CSS_INTERRUPT=yes , when the
communication is ready to complete, the communication subsystem device driver
sends a signal to the application and causes the application to immediately
complete the communication. Therefore data flow is continuous and smooth. The
send of A can be completed, even during the compute loop1, preventing the stalling
of processor1 and improving overall performance of this application.

Finally, it should be noted that there is a cost associated with handling the signals
when MP_CSS_INTERRUPT is set to yes . In some cases, this cost can degrade
application performance. Therefore, MP_CSS_INTERRUPT should only be used for
those applications that require it. For the IP version of the library,
MP_CSS_INTERRUPT=yes  enables UDP to send a SIGIO signal when a message
packet is received.

70 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Support for Performance Improvements
POE provides interfaces to improve interrupt mode latency in general, and to
increase performance of the receive-and-call mechanism.

Interrupt Mode Improvements
When a node receives a packet and an interrupt is generated, the interrupt handler
checks its tables for the process identifier (PID) of the user process and notifies the
process. The signal handler or service thread waits for at least two times the
interrupt delay, checking to see if more packets will arrive. Waiting for more packets
avoids the cost of incurring an interrupt each time a new packet arrives (interrupt
processing is very expensive). However, the more packets that arrive, the more
delay time is increased. Therefore, with the functions you can either tune the delay
parameter based on your application, and/or dynamically turn interrupts on or off at
selected nodes.

For an application with few nodes exchanging small messages, it will help latency if
you keep the interrupt delay small. For an application with a large number of nodes,
or one which exchanges large messages, keeping the delay parameter large will
help the bandwidth. A large delay allows multiple read transmissions to occur in a
single read cycle. You should experiment with different values and use the
functions described below to achieve desired performance, depending on the
communication pattern.

MP_INTRDELAY  is the environment variable which allows you to set the delay
parameter for how long the signal handler or service thread waits for more data.
The delay specified in the environment variable is set during initialization, before
running the program. In this way, user programs can tune the delay parameter
without having to recompile existing applications. If none is specified, the default

| value of 1 microsecond is used. The application can tune this parameter based on
the communication pattern it has in different parts of the application.

Five application programming interfaces are provided to help you enable or disable
interrupts on specific tasks, based on the communication patterns of the tasks. If a
task is frequently in the communication library, then the application can turn
interrupts off for that particular task for the duration of the program. The application
can enable interrupts when the task is not going to be in the communication
subsystem often. The enable or disable interfaces override the setting of the
MP_CSS_INTERRUPT environment variable.

The first two functions allow you to query what the current delay parameter is and
to set the delay parameter to a new value.

int mpc_queryintrdelay()  - for C programs
void mp_queryintrdelay(int rc)  - for Fortran programs

This function returns the current interrupt delay (in microseconds). If none was set
by the user, the default is returned.

int mpc_setintrdelay(int val)  - for C programs
void mp_setintrdelay(int val, int rc)  - for Fortran programs

This function sets the delay parameter to the value, in microseconds, specified by
“val.” The function can be called at multiple places within the program to set the
delay parameter to different values during execution.

  Chapter 3. Managing POE Jobs 71



  
 

The following three functions allow you to control dynamically masking interrupts on
individual nodes, and query the state of interrupts. In the current system only “all”
nodes or “none” can be selected to statically enable or disable running in interrupt
mode.

int mpc_queryintr()  - for C programs
void mp_queryintr(int rc)  - for Fortran programs

This function returns 0 if the node on which it is executed has interrupts turned off,
and it returns 1 otherwise.

int mpc_disableintr()  - for C programs
void mp_disableintr(int rc)  - for Fortran programs

This function disables interrupts on the node on which it is executed. Return code
= 0, if successful, -1 otherwise.

int mpc_enableintr()  - for C programs
void mp_enableintr(int rc)  - for Fortran programs

This function enables interrupts on the node on which it is executed. Return code
= 0, if successful, -1 otherwise.

Note:  The last two of the above functions override the setting of the environment
variable MP_CSS_INTERRUPT. If they are not used properly they can
deadlock the application. Please use these functions only if you are sure of
what you are doing. These functions are useful in reducing latency if the
application is doing blocking recv/wait and interrupts are otherwise enabled.
Interrupts should be turned off before executing blocking communication
calls and turned on immediately after those calls.

All of the above functions can also be used for programs running IP.

 Rcvncall Improvements
The mpc_wait  function can be called just before re-posting the Rcvncall instead of
in the beginning of the Rcvncall handler, if information provided by the wait function
call (like length of message) is already available. This removes the wait time from
the critical path for latency. The wait function provides the message id, the length of
the message, and also cleans up the resources used by the previously posted
Rcvncall. This applies to the signal-handling MPI/MPL library only.

Parallel File Copy Utilities
During the course of developing and running parallel applications on numerous
nodes, the potential need exists to efficiently copy data and files to and from a
number of places. POE provides three utilities for this reason:

1. mcp  - to copy a single file from the home node to a number of remote nodes.
This was discussed briefly in “Step 2: Copy Files to Individual Nodes” on
page 13.

2. mcpscat  - to copy a number of files from task 0 and scatter them in sequence
to all tasks, in a round robin order.

3. mcpgath  - to copy (or gather) a number of files from all tasks back to task 0.

72 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

mcp  is for copying the same file to all tasks. The input file must reside on task 0.
You can copy it to a new name on the other tasks, or to a directory. It accepts the
source file name and a destination file name or directory, in addition to any POE
command line argument, as input parameters.

mcpscat  is intended for distributing a number of files in sequence to a series of
tasks, one at a time. It will use a round robin ordering to send the files in a one to
one correspondence to the tasks. If the number of files exceeds the number of
tasks, the remaining files are sent in another round through the tasks.

mcpgath  is for when you need to copy a number of files from each of the tasks
back to a single location, task 0. The files must exist on each task. You can
optionally specify to have the task number appended to the file name when it is
copied.

Both mcpscat  and mcpgath  accept the source file names and a destination
directory, in addition to any POE command line argument, as input parameters.
You can specify multiple file names, a directory name (where all files in that
directory, not including subdirectories, are copied), or use wildcards to expand into
a list of files as the source. Wildcards should be enclosed in double quotes,
otherwise they will be expanded locally, which may not produce the intended file
name resolution.

These utilities are actually message passing applications provided with POE. Their
syntax is described in Appendix A, “Parallel Environment Commands” on page 83.

  Chapter 3. Managing POE Jobs 73



  
 

74 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Chapter 4. Monitoring Program Execution and System
Activity

This chapter describes how you monitor programs on the system. Included are
instructions on how to use the Program Marker Array and System Status Array.

Using the Program Marker Array
The Program Marker Array (shown in Figure 1) is an X-Windows run-time
monitoring tool. This window consists of a number of small squares called lights
that change color under program control. Each task in a parallel program has its
own row of lights, and Parallel Utility Function calls from those tasks can change
light colors. The calls can also send strings to the PM Array.

Figure 1. The Program Marker Array

The ability to color lights on, and send strings to, the PM Array window enables a
parallel program to provide you with immediate visual feedback as it executes. A
program could begin by coloring lights red and then slowly move through the
spectrum towards blue as it executes. If a program takes a long time to run, this
would give you an indication that it was indeed progressing. Should the program
not be progressing, the PM Array would indicate that as well. For example, lights
“stuck” on a particular color could indicate that the program is stuck as well. The
strings displayed could provide additional information on the program's progress. In
addition, the Program Marker Array is distributed as source code, so you can
customize the program as you see fit. The source code is located in the directory
/usr/lpp/ppe.poe/samples/marker.

In order to use the PM Array to monitor program execution, you need to:

1. In your C, C++, and/or Fortran program, insert subroutine calls to color lights
on, and send strings to, the PM Array. This is described in “Step 1: Call PM
Array Parallel Utility Functions” on page 76.

2. Compile and link the program using the mpcc , mpCC , or mpxlf  command.
These commands call the C, C++, or Fortran compilers while linking in the
Partition Manager interface and Parallel Utility subroutines.

 Copyright IBM Corp. 1995, 1998  75



  
 

3. Set the environment variable MP_PMLIGHTS equal to the number of lights you
would like displayed per program task. Alternatively, you can set the number of
lights using a command-line flag when invoking your parallel program. See
“Step 3: Set the Number of Lights” on page 76.

4. Issue the pmarray  command to start the PM Array program as described in
“Step 4: Open the PM Array Window” on page 77.

5. Invoke your parallel program and monitor its execution using the PM Array.
This is described in “Step 5: Invoke the Program and Monitor its Execution” on
page 77.

Step 1: Call PM Array Parallel Utility Functions
In order for the PM Array to display meaningful information at run time, you need to
place calls to Parallel Utility Functions within your program. At run time, your
program can then:

� color lights on, and/or send output strings to, the PM Array Window. This is
done by calling (in C programs) the mpc_marker or (in Fortran programs) the
MP_MARKER Parallel Utility Function.

� determine the number of lights displayed per task row. This is done by calling
(in C programs) the mpc_nlights or (in Fortran programs) the MP_NLIGHTS
Parallel Utility Function. Since the number of lights displayed for each task on
the PM Array can vary from run to run, this capability is important. It enables
your program to learn exactly how many lights are available to be set. It returns
an integer value that can then be used by the program to resolve some
conditional expression.

The syntax of these Parallel Utility Functions is shown in IBM Parallel Environment
for AIX: MPI Programming and Subroutine Reference

Step 2: Compile the Program
Once you have inserted calls to the mpc_marker  and mpc_nlights  functions or
the MP_MARKER  and MP_NLIGHTS subroutines into your program, you can
compile it. Since this is the same procedure you follow when regularly compiling a
parallel program with POE, see page 10 for more information. see “Step 1: Compile
the Program” on page 10 for more information.

Step 3: Set the Number of Lights
When you open the PM Array window in the next step, the number of rows in the
PM Array are set to the number of program tasks – the current setting of
MP_PROCS. You can also specify the number of lights you want displayed per
task row. To do this, set the environment variable MP_PMLIGHTS or specify the
-pmlights  command-line flag in “Step 5: Invoke the Program and Monitor its
Execution” on page 77. in “Step 5: Invoke the Program and Monitor its Execution”
on page 77.

For example, say you want five lights displayed per task in the PM Array. You
could:

Set the MP_PMLIGHTS environment variable: Use the -pmlights flag when invoking your executable:

ENTER export MP_PMLIGHTS= 5 ENTER poe  program -pmlights  5

76 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

As with most POE command-line flags, the -pmlights  flag temporarily overrides its
associated environment variable.

Notes:

1. Setting the MP_PMLIGHTS environment variable, or the -pmlights  flag, to 0
indicates that you do not want your program to communicate with the PM Array
tool.

2. If you reset the MP_PMLIGHTS environment variable, or the -pmlights  flag,
after the Program Marker Array tool is started, it will usually reset to the new
number of lights. The only time it will not, however, is when the new value of
MP_PMLIGHTS is 0.

Step 4: Open the PM Array Window
The pmarray  command starts the PM Array program. You will probably want to use
the & & operator so the program runs in the background and does not tie up the
aixterm window.

ENTER pmarray &  pmarray &

Á The PM Array window opens. The number of task rows displayed in
the PM Array is equal to the current setting of MP_PROCS. The number
of lights per task row is determined by the current setting of
MP_PMLIGHTS. If, when you invoke your program in Step 5: Invoke the
Program and Monitor its Execution, you override either of the
environment variables using its associated command-line flag, the PM
Array redisplays with the new number of rows and/or lights.

Note:  The PM Array connects to the Partition Manager using a socket assigned,
by default, to port 9999. If you get an error message indicating that the port
is in use, specify a different port by setting the MP_USRPORT environment
variable before entering the pmarray  command. For example, to specify
port 9998:

ENTER export MP_USRPORT= 9998

Step 5: Invoke the Program and Monitor its Execution
Finally, you invoke your program. As the program runs, the Parallel Utility Function
calls placed within it change the color of lights on the PM Array. With appropriate
mouse clicks on this window, you can:

� display details of a light
� display output strings from a task
� close the window and discontinue monitoring

Displaying Details of a Light
Each light on the PM Array is associated with a particular task, has a particular light
number, and has a particular color value. You can display these details for each of
the lights on the PM Array.

For example, say you have coded the PM Array subroutines into your program so
that the lights slowly move during execution through the spectrum over color values
0 to 99. As the program runs, the lights start off black, and then turn brown, green,
blue, and so on. By watching the lights as they change color, you get a general
idea of the program's progress. For a more precise indication of the program's
progress, you could display the actual color value number for a light. In this

  Chapter 4. Monitoring Program Execution and System Activity 77



  
 

example, the closer this light's value is to 99, the closer execution is to being
complete.

To display details of a light:

PLACE the cursor over any light on the PM Array.

PRESS the left mouse button.

Á The following information displays in the text area at the bottom of the
PM Array window:

� the task identifier number
� the light number
� the color value number

This information is not updated until you select another light.

Displaying Task Output
You can display output strings sent by the tasks of your program in the output
display area of the PM Array window. This is the area to the right of the PM Array,
and the strings displayed there are the ones you specified on the mpc_marker or
MP_MARKER subroutine calls. Only one task's strings are displayed in this area at
a time. By default, output from task 0 is displayed. You can select the task and
display its output instead by pressing its task push button. Each task has a push
button. It is just to the right of the task's row on the PM Array, and is labeled with
the task identifier. To select, for example, task 3:

PRESS the task pushbutton labeled 3.

Á Output strings from task 3 are displayed in the output display area.
Only one string is displayed at a time.

Note:  If a task not currently selected has sent new output to the PM Array
window, its task push button will appear yellow.

Step 6: Close the PM Array Window
The PM Array window remains open after your parallel program completes
executing. You could then repeat Step 5: Invoke the Program and Monitor its
Execution to monitor the same, or a different program's execution. To close the PM
Array window when you are done monitoring:

SELECT Action → Quit

Using the System Status Array
Note:  VT must be installed in order to use the System Status Array. See IBM

Parallel Environment for AIX: Installation for more information on installing
VT.

The System Status Array is an X-Windows monitoring tool that lets you quickly
survey the utilization of processor nodes. This tool is particularly useful if you are

| not using a job management system , and so must manually schedule which nodes
should be used to run a parallel program. The System Status Array lets you easily
see the CPU utilization of each of your processor nodes. Using a host list file, you
can then have your program run on those processor nodes you expect to be the
least busy. The host list file can contain up to 255 nodes.

78 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Figure 2. The System Status Array (actual array is 16 by 16 nodes)

Each square on the System Status Array represents a processor node of your SP
system or cluster. The squares are colored pink and yellow to show the
instantaneous percent of CPU utilization for each processor node. If a square were
to appear all pink, it would be at 0 percent utilization. If a square were to appear all
yellow, it would be at 100 percent utilization. The percent of the area colored yellow
responds to the percent of CPU utilization. If a square appears gray, the node is
unavailable for monitoring – either it does not have the Statistics Collector daemon
(digd) running, or the System Status Array cannot communicate with it.

To the right of the Array is a node list which contains the name of each node in the
Array. You use this list to identify the name of a node represented in the Array. The
nodes are listed in order, left to right, starting with the top row of the Array. If you

| are using the resource manager on an SP system, the nodes are displayed in the
pool order returned by the jm_status  command. To use jm_status  on a
workstation that is external to the SP system, the ssp.clients fileset must be
installed on the external node (see IBM Parallel Environment for AIX: Installation for
more information). For more information on this command, see IBM Parallel System
Support Programs for AIX: Command and Technical Reference If you are using an

| RS/6000 network cluster, or are using LoadLeveler on an SP system , the order of
nodes displayed is determined by the order in which they are contacted.

  Chapter 4. Monitoring Program Execution and System Activity 79



  
 

Notes:

1. In order to use this tool, the Visualization Tool statistics collector daemon
process (digd) needs to be running on each of the nodes you wish to monitor.
This daemon feeds the System Status Array with the CPU information it
displays. The program that interrogates the digd daemon is installed as part of
the Visualization Tool's installation procedure.

2. Do not attempt to display more than 255 nodes at one time. If you wish to view
more than 255 nodes, you can invoke multiple sessions using the poestat
command (described below) to cover that many nodes.

Opening and Closing the System Status Array Window
The poestat  command starts the System Status Array, and opens its window. How
you invoke this command differs depending on whether you are monitoring an SP
system or an RS/6000 network cluster. The method the Array uses to find the
processor nodes to monitor is also different. In either case, you will probably want
to use the & operator so the program runs in the background and does not tie up
the aixterm window.

If you are monitoring an SP system: If you are monitoring an RS/6000 network cluster:

First make sure the environment variable SP_NAME is set to
the name of your control workstation. This environment
variable identifies the Resource Manager you are using.
When running poestat  from a workstation that is external to
an SP system, the ssp.clients file set must be installed on the
external node (see IBM Parallel Environment for AIX:
Installation for more information).

ENTER export SP_NAME= control_workstation_name

To start the Array:

ENTER poestat &

Á The System Status Array window (shown in
Figure 2 on page 79) opens. The System Status
Array program connects to the Resource Manager
to automatically select all the nodes of your SP
system for monitoring.

ENTER poestat  -norm  &

Á The System Status Array window (shown in
Figure 2 on page 79) opens. The System Status
Array program selects for monitoring each of the
nodes on the LAN that have the Statistics
Collector Daemon running. It also selects each of
the nodes listed in the host list file indicated by the
MP_HOSTFILE environment variable. If
MP_HOSTFILE is not set, the default is host.list in
your current directory.

Note:  If a node listed in the host list file references a node
that is also on the LAN, the node will be represented
twice on the Array.

Note that poestat  allows you to specify a list of nodes to be monitored. You do this
by setting the MP_HOSTFILE environment variable to
MP_HOSTFILE=name_of_host_list_file. The default is host.list.

Note:  For National Language Support, this X-Windows tool displays messages
located in an externalized message catalog. If you get an error saying that a
message catalog is not found, and want the default message catalog that
we provide:

ENTER export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

For more information about the message catalog, see “National Language
Support” on page xiv.

When the System Status Array opens, all nodes display status. You can selectively
stop and start displaying status for a single node or all nodes.

To toggle between displaying and not displaying status for a single node:

80 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

PLACE the cursor over the name of the processor node.

PRESS the left mouse button.

To toggle between displaying and not displaying status for all nodes:

PLACE the cursor over the digit that appears in the column to the left of the
Array under the word “JobList”.

PRESS the left mouse button.

To close the System Status Array window once you have finished monitoring:

SELECT Actions → Done

  Chapter 4. Monitoring Program Execution and System Activity 81



  
 

82 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mcp(1)
 

Appendix A. Parallel Environment Commands

This appendix contains the manual pages for the PE commands discussed
throughout this book. Each manual page is organized into the sections listed below.
The sections always appear in the same order, but some appear in all manual
pages while others are optional.

NAME Provides the name of the command described in the manual
page, and a brief description of its purpose.

SYNOPSIS Includes a diagram that summarizes the command syntax,
and provides a brief synopsis of its use and function. If you
are unfamiliar with the typographic conventions used in the
syntax diagrams, see “Typographic Conventions” on page xii.

FLAGS Lists and describes any required and optional flags for the
command.

DESCRIPTION Describes the command more fully than the NAME and
SYNOPSIS sections.

ENVIRONMENT VARIABLES
Lists and describes any applicable environment variables.

EXAMPLES Provides examples of ways in which the command is typically
used.

FILES Lists and describes any files related to the command.

RELATED INFORMATION
Lists commands, functions, file formats, and special files that
are employed by the command, that have a purpose related
to the command, or that are otherwise of interest within the
context of the command.

 mcp

 NAME
mcp  – Allows you to propagate a copy of a file to multiple nodes on an IBM
POWERparallel system.

 SYNOPSIS
mcp  infile [outfile] [POE options]

In the command synopsis above, the infile is the name of the file to be copied. You
can copy to a new name by specifying an outfile. If you do not provide the outfile
name, the file will be placed in its current directory on each node. The outfile can
be either an explicit output file name or a directory name. When a directory is
specified, the file is copied with the same name to that directory.

 Copyright IBM Corp. 1995, 1998  83



 mcp(1)  
 

 DESCRIPTION
The mcp  command allows you to propagate a copy of a file to multiple nodes on
an IBM RS/6000 SP. The file must initially reside (or be NFS-mounted) on at least
one node.

mcp  is a POE program and, therefore, all POE options are available. You can set
POE options with either command line flags or environment variables. The number
of nodes to copy the file to (-procs ), and the message passing protocol used to
copy the file (-euilib ) are the POE options of most interest. The input file must be
readable from the node assigned to task 0.

Note:  A POE job loads faster if a copy of the job resides on each node. For this
reason, it is suggested that you use mcp  to copy your executable to a file
system such as /tmp, which resides on each node.

Return codes are:

| Note:  The actual command return code value is 128 plus the unsigned return
| code value. That is, a return code of -2 will give a value of 130. For more
| information, see the “Exit Status” section in IBM Parallel Environment for
| AIX: MPI Programming and Subroutine Reference

-1 incorrect usage

-2 error opening input file

-3 error opening to file on originating node

-4 error writing data to to file on originating node

-5 no room on remote node's file system

-6 error opening file on remote node

-7 error writing data on remote node

-8 error renaming temp file to file name

-9 input file is empty

| -10 invalid block size

| -11 error allocating storage

|  ENVIRONMENT VARIABLES
| MP_BLKSIZE sets the block size used for copying the data. This can be a
| value between 1 and 8,000,000 (8 megabytes). The default is
| 100,000 (100K).

 EXAMPLES
1. To copy a file from your current directory to the current directory on all nodes of

a 16-processor system, using the High Performance Switch, enter:

mcp filename -procs 16 -euilib us

2. To copy a filename from your current directory to the /tmp directory on all
nodes of a 16-processor system, using IP, enter:

mcp filename /tmp -procs 16 -euilib ip

84 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mcpgath(1)
 

3. To copy a file from your current directory to a different filename on all nodes of
a 16-processor system, enter:

mcp filename /tmp/newfilename -procs 16

 RELATED INFORMATION
Commands: mprcp (1), rcp (1)

 mcpgath

 NAME
mcpgath  – Takes files from each task of tasks 0 through task N and copies them
back in sequence to task 0.

 SYNOPSIS
mcpgath  [-ai] source ... destination [POE options]

Source is one of the following:

� one or more existing file names - files will be copied with the same names to
the destination directory on task 0. Each file name specified must exist on all
tasks involved in the copy.

� a directory name - all files in that directory on each task are copied with the
same names to the destination directory on task 0.

� an expansion of file names, using wildcards - files are copied with the same
names to the destination directory. All wildcarded input strings must be
enclosed in double quotes.

Destination is an existing destination directory name to where the data will be
copied. The destination directory must be the last item specified before any POE
flags.

 FLAGS
-a An optional flag that appends the task number to the end of the file

name when it is copied to task 0. This is for task identification
purposes, to know where the data came from. The -a and -i flags
can be combined to check for existing files appended with the task
number.

-i An optional flag that checks for duplicate or existing files of the
same name, and does not replace any existing file found. Instead,
issues an error message and continues with the remaining files to
be copied. The -a and -i flags can be combined to check for
existing files appended with the task number.

See Chapter 2, Executing Parallel Programs for information on POE options.

  Appendix A. Parallel Environment Commands 85



 mcpgath(1)  
 

 DESCRIPTION
The mcpgath  function determines the list of files to be gathered on each task. This
function also resolves the source file, destination directory, and path names with
any meta characters, wildcard expansions, etc. to come up with valid file names.
Wildcards should be enclosed in double quotes, otherwise they will be expanded
locally on the task from where the command is issued, which may not produce the
intended file name resolution.

mcpgath  is a POE program and, therefore, all POE options are available. You can
set POE options with either command line flags or environment variables. The
number of nodes to copy the file to (-procs ), and the message passing protocol
used to copy the file (-euilib ) are the POE options of most interest.

Note:  A default of 100K data block size is used for copying the data. This can be
changed by updating the source found in /usr/lpp/ppe.poe/samples/mpi, and
compiling it with the mpcc  command.

Return codes are:

| Note:  The actual command return code value is 128 plus the unsigned return
| code value. That is, a return code of -2 will give a value of 130. For more
| information, see the “Exit Status” section in IBM Parallel Environment for
| AIX: MPI Programming and Subroutine Reference

-1 invalid number of arguments specified

-2 invalid option flag specified

-3 unable to resolve input file name(s)

-4 could not open input file for read

-5 no room on destination node's file system

-6 error opening file output file

-7 error creating output file

-8 error writing to output file

-9 MPI_Send  of data failed

-10 final MPI_Send  failed

-11 MPI_Recv failed

| -12 invalid block size

| -13 error allocating storage

| -14 total number of tasks must be greater than one

|  ENVIRONMENT VARIABLES
| MP_BLKSIZE sets the block size used for copying the data. This can be a
| value between 1 and 8,000,000 (8 megabytes). The default is
| 100,000 (100K).

86 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mcpgath(1)
 

 EXAMPLES
1. You can copy a single file from all tasks into the destination directory. For

example, enter:

mcpgath -a hello_world /tmp -procs 4

This will copy the file hello_world (assuming it is a file and not a directory) from
tasks 0 through 3 as to task 0:

From task ð: /tmp/hello_world.ð

From task 1: /tmp/hello_world.1

From task 2: /tmp/hello_world.2

From task 3: /tmp/hello_world.3

2. You can specify any number of files as source files. The destination directory
must be the last item specified before any POE flags. For example:

mcpgath -a file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory on each task and copy
them back to task 0. All files specified must exist on all tasks involved. The file
distribution will be as follows:

  Appendix A. Parallel Environment Commands 87



 mcpgath(1)  
 

From Task ð: /tmp/file1.a.ð

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 3: /tmp/file1.a.3

From Task ð: /tmp/file2.a.ð

From Task 1: /tmp/file2.a.1

From Task 2: /tmp/file2.a.2

From Task 3: /tmp/file2.a.3

From Task ð: /tmp/file3.a.ð

From Task 1: /tmp/file3.a.1

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file3.a.3

From Task ð: /tmp/file4.a.ð

From Task 1: /tmp/file4.a.1

From Task 2: /tmp/file4.a.2

From Task 3: /tmp/file4.a.3

From Task ð: /tmp/file5.a.ð

From Task 1: /tmp/file5.a.1

From Task 2: /tmp/file5.a.2

From Task 3: /tmp/file5.a.3

3. You can specify wildcard values to expand into a list of files to be gathered. For
this example, assume the following distribution of files before calling mcpgath :

Task ð contains file1.a and file2.a

Task 1 contains file1.a only

Task 2 contains file1.a, file2.a, and file3.a

Task 3 contains file4.a, file5.a, and file6.a

Enter:

mcpgath -a "file\.a" /tmp -procs 4

This will pass the wildcard expansion to each task, which will resolve into the
list of locally existing files to be copied. This will result in the following
distribution of files on task 0:

88 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mcpscat(1)
 

From Task ð: /tmp/file1.a.ð

From Task ð: /tmp/file2.a.ð

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 2: /tmp/file2.a.2

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file4.a.3

From Task 3: /tmp/file5.a.3

From Task 3: /tmp/file6.a.3

4. You can specify a directory name as the source, from which the files to be
gathered are found. For this example, assume the following distribution of files
before calling mcpgath :

Task ð /test contains file1.a and file2.a

Task 1 /test contains file1.a only

Task 2 /test contains file1.a and file3.a

Task 3 /test contains file2.a, file4.a, and file5.a

Enter:

mcpgath -a /test /tmp -procs 4

This results in the following file distribution:

From Task ð: /tmp/file1.a.ð

From Task ð: /tmp/file2.a.ð

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file2.a.3

From Task 3: /tmp/file4.a.3

From Task 3: /tmp/file5.a.3

 mcpscat

  Appendix A. Parallel Environment Commands 89



 mcpscat(1)  
 

 NAME
mcpscat  – Takes a number of files from task 0 and scatters them in sequence to
all tasks, in a round robin order.

 SYNOPSIS
mcpscat  [-f] [-i] source ... destination
[POE options]

Source can be one of the following:

� a single file name - file is copied to all tasks

| � a single file name that contains a list of file names (-f option)

� two of more file names - files will be distributed in a round robin order to the
tasks

� an expansion of file names, using wildcards - files will be distributed in a round
robin order to the tasks

� a directory name - all files in that directory are copied in a round robin order to
the tasks.

Destination is an existing destination directory name to where the data will be
copied.

 FLAGS
| -f Is an optional flag that says the first file contains the names of the
| source files that are to be scattered. Each file name, in the file,
| must be specified on a separate line. No wildcards are supported
| when this option is used. Directory names are not supported in the
| file either. When this option is used, the mcpscat  parameters
| should consist of a single source file name (for the list of files) and
| a destination directory. The files will then be scattered just as if
| they had all been specified on the command line in the same order
| as they are listed in the file.

-i Checks for duplicate or existing files of the same name, and does
not replace any existing file found. Instead, issues an error
message and continues with the remaining files to be copied.
Without this flag, the default action is to replace any existing files
with the source file.

See Chapter 2, Executing Parallel Programs for information on POE options.

 DESCRIPTION
The mcpscat  function determines the order in which to distribute the files, using a
round robin method, according to the list of nodes and number of tasks. Files are
sent in a one-to-one correspondence to the nodes in the list of tasks. If the number
of files specified is greater than the number of nodes, the remaining files are sent in
another round through the list of nodes. Wildcards should be enclosed in double
quotes, otherwise they will be expanded locally on the task from where the
command is issued, which may not produce the intended file name resolution.

90 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mcpscat(1)
 

mcpscat  is a POE program and, therefore, all POE options are available. You can
set POE options with either command line flags or environment variables. The
number of nodes to copy the file to (-procs ), and the message passing protocol
used to copy the file (-euilib ) are the POE options of most interest.

Return codes are:

| Note:  The actual command return code value is 128 plus the unsigned return
| code value. That is, a return code of -2 will give a value of 130. For more
| information, see the “Exit Status” section in IBM Parallel Environment for
| AIX: MPI Programming and Subroutine Reference

-1 invalid number of arguments specified

-2 invalid option flag specified

-3 unable to resolve input file name(s)

-4 could not open input file for read

-5 no room on destination node's file system

-6 error opening file output file

-7 error creating output file

-8 MPI_Send  of data failed

-9 final MPI_Send  failed

-10 MPI_Recv failed

-11 failed opening temporary file

-12 failed writing temporary file

-13 error renaming temp file to filename

-14 input file is empty (zero byte file size)

| -15 invalid block size

| -16 error allocating storage

| -17 number of tasks and files do not match

| -18 not enough memory for list of file names

|  ENVIRONMENT VARIABLES
| MP_BLKSIZE sets the block size used for copying the data. This can be a
| value between 1 and 8,000,000 (8 megabytes). The default is
| 100,000 (100K).

 EXAMPLES
1. You can copy a single file to all tasks into the destination directory. For

example, enter:

mcpscat filename /tmp -procs 4

This will take the file and distribute it to tasks 0 through 3 as /tmp/filename.

  Appendix A. Parallel Environment Commands 91



 mpamddir(1)  
 

2. You can specify any number of files as source files. The destination directory
must be the last item specified before any POE flags. For example:

mcpscat file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory and copy them in a round
robin order to tasks 0 through 3 into /tmp. The file distribution will be as follows:

Task ð: /tmp/file1.a

Task 1: /tmp/file2.a

Task 2: /tmp/file3.a

Task 3: /tmp/file4.a

Task ð: /tmp/file5.a

| 3. You can specify the source files to copy in a file. For example:

| mcpscat -f file.list /tmp -procs 4

| will produce the same results as the previous example if as file.list contains five
| lines with the file names file1.a through file5.a in it.

4. You can specify wildcard values to expand into a list of files to be scattered.
Enter:

mcpscat "file\.a" /tmp -procs 4

Assuming Task 0 contains file1.a, file2.a, file3.a, file4.a, and file5.a in its home
directory, this will result in a similar distribution as in the previous example.

5. You can specify a directory name as the source, from which the files to be
scattered are found. Assuming /test contains myfile.a, myfile.b, myfile.c,
myfile.d, myfile.f, and myfile.g on Task 0, enter:

mcpscat /test /tmp -procs 4

This results in the following file distribution:

Task ð: /tmp/myfile.a

Task 1: /tmp/myfile.b

Task 2: /tmp/myfile.c

Task 3: /tmp/myfile.d

Task ð: /tmp/myfile.f

Task 1: /tmp/myfile.g

 mpamddir

92 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpcc(1)
 

 NAME
mpamddir  – echoes an amd-mountable directory name.

 SYNOPSIS
mpamddir

or, if you're using the Parallel Environment for AIX:

export  MP_REMOTEDIR=mpamddir

This script determines whether or not the current directory is a mounted file system.
If it is, it looks to see if it appears in the amd maps, and constructs a name for the
directory that is known to amd. You can modify this script, or create additional ones
that apply to your installation.

By default, POE uses the Korn shell pwd  command to obtain the name of the
current directory to pass to the remote nodes for execution. This works for C shell
users if the current directory is:

� The home directory
� Not mounted by amd, the AutoMount Daemon.

If this is not the case, (for example, if the user's current directory is a subdirectory
of the home directory), then you can supply your own script for providing the name
of the current directory on the remote nodes.

To use mpamddir  as the script for providing the name, export the environment
variable MP_REMOTEDIR, and set it to mpamddir .

 RELATED INFORMATION
Commands: ksh (1), poe (1), csh (1)

 mpcc

 NAME
mpcc  – Invokes a shell script to compile C programs.

 SYNOPSIS
mpcc  [cc_flags]... program.c

The mpcc  shell script compiles C programs while linking in the Partition Manager,
Message Passing Interface (MPI), and/or Message Passing Library (MPL).

  Appendix A. Parallel Environment Commands 93



 mpcc(1)  
 

 FLAGS
Any of the compiler flags normally accepted by the cc  command can also be used
on mpcc . For a complete listing of these flag options, refer to the manual page for
the AIX cc  command. Typical options to mpcc  include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object
file is needed for debugging with the pdbx  and pedb  debuggers,
and is also needed by the Source Code view of the Visualization
Tool (vt ).

-o names the executable.

-l (lower-case L)
names additional libraries to be searched. Several libraries are
automatically included, and are listed below in the FILES section.

-I (upper-case i)
names directories for additional includes. The directory
/usr/lpp/ppe.poe/include is automatically included.

-p enables profiling with the prof  command. For more information,
see the appendix on “Profiling Programs” in IBM Parallel
Environment for AIX: Operation and Use, Volume 2, Tools
Reference

-pg enables profiling with the xprofiler  and gprof  commands. For
more information, see the “Xprofiler” chapter and the appendix on
“Profiling Programs” in IBM Parallel Environment for AIX:
Operation and Use, Volume 2, Tools Reference

 DESCRIPTION
The mpcc  shell script calls the AIX xlc  compiler. In addition, the Partition Manager
and message passing interface are automatically linked in. The script creates an
executable that dynamically binds with the message passing libraries. If you wish to
create a statically bound application, use the instructions in “Creating a Static
Executable” on page 11 in place of this script.

Flags are passed by mpcc  to the xlc  command, so any of the xlc  options can be
used on the mpcc  shell script. The communication subsystem library
implementation is dynamically linked when you invoke the executable using the poe
command. The value specified by the MP_EUILIB  environment variable or the
-euilib  flag will then determine which communication subsystem library
implementation is dynamically loaded.

 ENVIRONMENT VARIABLES
MP_PREFIX sets an alternate path to the scripts library. If not set or

NULL, the standard path /usr/lpp/ppe.poe is used. If this
environment variable is set, then all libraries are prefixed by
$MP_PREFIX/ppe.poe.

94 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpcc_chkpt(1)
 

 EXAMPLES
To compile a C program, enter:

mpcc program.c -o program

 FILES
When you compile a program using mpcc , the following libraries are automatically
selected:

/usr/lpp/ppe.poe/lib/libmpi.a (Message Passing Interface, collective
communication routines)
/usr/lpp/ppe.poe/lib/libvtd.a (VT tracing subsystem)
/usr/lpp/ppe.poe/lib/libppe.a (PE common routines)
/usr/lpp/ppe.poe/lib/libc.a (POE version of libc.a)

 RELATED INFORMATION
Commands: mpcc_r (1), mpCC (1), mpCC_r (1), mpxlf (1), cc (1), pdbx (1), pedb (1),
vt (1), xprofiler (1)

|  mpcc_chkpt

|  NAME
| mpcc_chkpt  – Invokes a shell script to compile checkpointable C programs.

|  SYNOPSIS
| mpcc_chkpt  [cc_flags]... -us | -ip  program.c

| The mpcc_chkpt  shell script compiles C programs while linking in the Partition
| Manager, Message Passing Interface (MPI), and support code for parallel
| Checkpoint/Restart. It builds an executable with no shared objects.

|  FLAGS
| Most of the compiler flags normally accepted by the cc  command can also be used
| on mpcc_chkpt . For a complete listing of these flag options, refer to the manual
| page for the AIX cc  command. Typical options to mpcc_chkpt  include:

| -v causes a “verbose” output listing of the shell script.

| -g Produces an object file with symbol table references. This object
| file is needed for debugging with the pdbx  and pedb  debuggers,
| and is also needed by the Source Code view of the Visualization
| Tool (vt ).

| -o names the executable.

| -l (lower-case L)
| names additional libraries to be searched. Several libraries are
| automatically included, and are listed below in the FILES section.

| -I (upper-case i)
| names directories for additional includes. The directory
| /usr/lpp/ppe.poe/include is automatically included.

  Appendix A. Parallel Environment Commands 95



 mpcc_chkpt(1)  
 

| -p enables profiling with the prof  command. For more information,
| see the appendix on “Profiling Programs” in IBM Parallel
| Environment for AIX: Operation and Use, Volume 2, Tools
| Reference

| -pg enables profiling with the xprofiler  and gprof  commands. For
| more information, see the “Xprofiler” chapter and the appendix on
| “Profiling Programs” in IBM Parallel Environment for AIX:
| Operation and Use, Volume 2, Tools Reference

| -ip specifies that the executable is bound with the UDP/IP message
| passing support library.

| -us specifies that the executable is bound with the RS/6000 SP User
| Space message passing library. Executables using this option
| should be compiled on an RS/6000 SP node compatible with the
| node on which execution will occur.

|  DESCRIPTION
| The mpcc_chkpt  shell script invokes the AIX cc  command. The Partition
| Manager, message passing interface, and checkpoint support code are
| automatically linked in. The script creates an executable with no shared obects.
| This executable must be run on a node of the same machine type and having the
| same level of system software as the machine on which the executable is built. The
| executable is not binary compatible over changes to the system software.

| Flags are passed by mpcc_chkpt  to the cc  command, so most of the cc  options
| can be used on the mpcc_chkpt  shell script. Options which would generate shared
| objects should not be used.

| At execution time, the value specified by the MP_EUILIB  environment variable or
| the -euilib  flag must match the -ip | -us  option specified when this command was
| run.

|  ENVIRONMENT VARIABLES
| MP_PREFIX sets an alternate path to the scripts library. If not set or
| NULL, the standard path /usr/lpp/ppe.poe is used. If this
| environment variable is set, then all libraries are prefixed by
| $MP_PREFIX/ppe.poe.

|  EXAMPLES
| To compile a C program, enter:

| mpcc_chkpt program.c -o program

|  FILES
| When you compile a program using mpcc_chkpt , the following libraries are
| automatically included:

| /usr/lpp/ppe.poe/lib/libmpi.a (Message Passing Interface, collective
| communication routines)
| /usr/lpp/ppe.poe/lib/libvtd.a (VT tracing subsystem)
| /usr/lpp/ppe.poe/lib/libppe.a (PE common routines)
| /usr/lpp/ppe.poe/lib/libc.a (POE version of libc.a)

96 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpcc_r(1)
 

| /usr/lpp/LoadL/nfs/lib/chkrst.a (LoadLeveler checkpoint/support)

| When the -us  option is selected, the following libraries are included:

| /usr/lpp/ppe.poe/lib/us/libmpci.a (PSSP message passing interface)
| /usr/lpp/ssp/css/lib/hal.a (PSSP User Space adapter interface)
| /usr/lib/swclock.o (PSSP Switch clock interface)

| When the -ip  option is selected, the following libraries are included:

| /usr/lpp/ppe.poe/lib/ip/libmpci.a (PSSP message passing interface)

|  RELATED INFORMATION
| Commands: mpcc (1), mpCC_chkpt (1), mpxlf_chkpt (1)

 mpcc_r

 NAME
mpcc_r  – Invokes a shell script to compile C programs which use threaded MPI.

 SYNOPSIS
mpcc_r  [cc_flags]... program.c

The mpcc_r  shell script compiles C programs while linking in the Partition
Manager, the threaded implementation of Message Passing Interface (MPI), and
Low-level Applications Programming Interface (LAPI).

 FLAGS
Any of the compiler flags normally accepted by the xlc_r  or cc_r  command can
also be used on mpcc_r . For a complete listing of these flag options, refer to the
manual page for the AIX cc_r  command. Typical options to mpcc_r  include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object
file is needed for debugging with the pdbx  and pedb  debuggers,
and is also needed by the Source Code view of the Visualization
Tool (vt ).

-o names the executable.

| -d7 compiles the program with POSIX Threads Draft 7 base MPI and
| compatibility libraries. Otherwise, POSIX Threads Draft 10 base
| libraries are used.

-l (lower-case L)
names additional libraries to be searched. Several libraries are
automatically included, and are listed below in the FILES section.

Note:  Not all AIX libraries are thread safe. Verify that your
intended use is supported.

-I (upper-case i)
names directories for additional includes. The directory
/usr/lpp/ppe.poe/include is automatically included.

  Appendix A. Parallel Environment Commands 97



 mpcc_r(1)  
 

-p enables profiling with the prof  command. For more information,
see the appendix on “Profiling Programs” in IBM Parallel
Environment for AIX: Operation and Use, Volume 2, Tools
Reference

-pg enables profiling with the xprofiler  and gprof  commands. For
more information, see the “Xprofiler” chapter and the appendix on
“Profiling Programs” in IBM Parallel Environment for AIX:
Operation and Use, Volume 2, Tools Reference

 DESCRIPTION
The mpcc_r  shell script calls the AIX xlc_r  compiler. In addition, the Partition
Manager and data communication interfaces are automatically linked in. The script
creates an executable that dynamically binds with the communication subsystem
libraries. If you wish to create a statically bound application, use the instructions in
“Creating a Static Executable” on page 11 in place of this script.

Flags are passed by mpcc_r  to the xlc_r  command, so any of the xlc_r  options
can be used on the mpcc_r  shell script. The communication subsystem library
implementation is dynamically linked when you invoke the executable using the poe
command. The value specified by the MP_EUILIB  environment variable or the
-euilib  flag will then determine which communication subsystem library
implementation is dynamically linked.

 ENVIRONMENT VARIABLES
MP_PREFIX sets an alternate path to the scripts library. If not set or

NULL, the standard path /usr/lpp/ppe.poe is used. If this
environment variable is set, then all libraries are prefixed by
$MP_PREFIX/ppe.poe.

 EXAMPLES
To compile a C program, enter:

mpcc_r program.c -o program

 FILES
When you compile a program using mpcc_r , the following libraries are
automatically selected:

/usr/lpp/ppe.poe/lib/libmpi_r.a (Message Passing Interface, collective
communication routines)
/usr/lpp/ppe.poe/lib/libvtd_r.a (VT tracing subsystem)
/usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)
/usr/lpp/ppe.poe/lib/libc_r.a (POE version of libc_r.a)
The following library is selected if it exists as a symbolic link to
/usr/lpp/ssp/css/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

98 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpCC(1)
 

 RELATED INFORMATION
Commands: mpCC (1), mpCC_r (1), mpcc (1), cc (1), pdbx (1), pedb (1), vt (1),
xprofiler (1)

 mpCC

 NAME
mpCC  – Invokes a shell script to compile C++ programs.

 SYNOPSIS
mpCC  [xlC_flags]... program.C

The mpCC  shell script compiles C++ programs while linking in the Partition
Manager, Message Passing Interface (MPI), and/or Message Passing Library
(MPL).

 FLAGS
Any of the compiler flags normally accepted by the xlC  command can also be used
on mpCC . For a complete listing of these flag options, refer to the manual page for
the xlC  command. Typical options to mpCC  include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object
file is needed by the Source Code view of the Visualization Tool
(vt ).

-o names the executable.

-l (lower-case L)
names additional libraries to be searched. Several libraries are
automatically included, and are listed below in the FILES section.

-I (upper-case i)
names directories for additional includes. The directory
/usr/lpp/ppe.poe/include is automatically included.

-p enables profiling with the prof  command. For more information,
see the appendix on “Profiling Programs” in IBM Parallel
Environment for AIX: Operation and Use, Volume 2, Tools
Reference

-pg enables profiling with the xprofiler  and gprof  commands. For
more information, see the “Xprofiler” chapter and the appendix on
“Profiling Programs” in IBM Parallel Environment for AIX:
Operation and Use, Volume 2, Tools Reference

  Appendix A. Parallel Environment Commands 99



 mpCC_chkpt(1)  
 

 DESCRIPTION
The mpCC  shell script calls the AIX xlC  compiler. In addition, the Partition Manager
and message passing interface are automatically linked in. The script creates an
executable that dynamically binds with the message passing libraries. If you wish to
create a statically bound application, use the instructions in “Creating a Static
Executable” on page 11 in place of this script.

Flags are passed by mpCC  to the xlC  command, so any of the xlC  options can be
used on the mpCC  shell script. The communication subsystem library
implementation is dynamically linked when you invoke the executable using the poe
command. The value specified by the MP_EUILIB  environment variable or the
-euilib  flag will then determine which communication subsystem library
implementation is dynamically linked.

 ENVIRONMENT VARIABLES
MP_PREFIX sets an alternate path to the scripts library. If not set or

NULL, the standard path /usr/lpp/ppe.poe is used. If this
environment variable is set, then all libraries are prefixed by
$MP_PREFIX/ppe.poe.

 EXAMPLES
To compile a C++ program, enter:

mpCC program.C -o program

 FILES
When you compile a program using mpCC , the following libraries are automatically
selected:

/usr/lpp/ppe.poe/lib/libmpi.a (Message passing interface, collective
communication routines)
/usr/lpp/ppe.poe/lib/libvtd.a (VT tracing subsystem)
/usr/lpp/ppe.poe/lib/libppe.a (PE common routines)
/usr/lpp/ppe.poe/lib/libc.a (POE version of libc.a)

 RELATED INFORMATION
Commands: mpCC_r (1), mpcc (1), mpcc_r (1), mpxlf (1), xlC (1), pdbx (1), pedb (1),
vt (1), xprofiler (1)

|  mpCC_chkpt

|  NAME
| mpCC_chkpt  – Invokes a shell script to compile checkpointable C++ programs.

|  SYNOPSIS
| mpCC_chkpt  [xlC_flags]... -us | -ip  program.C

| The mpCC_chkpt  shell script compiles C++ programs while linking in the Partition
| Manager, Message Passing Interface (MPI), and support code for parallel
| Checkpoint/Restart. It builds an executable with no shared objects.

100 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpCC_chkpt(1)
 

|  FLAGS
| Most of the compiler flags normally accepted by the xlC  command can also be
| used on mpCC_chkpt . For a complete listing of these flag options, refer to the
| manual page for the AIX xlC  command. Typical options to mpCC_chkpt  include:

| -v causes a “verbose” output listing of the shell script.

| -g Produces an object file with symbol table references. This object
| file is needed for debugging with the pdbx  and pedb  debuggers,
| and is also needed by the Source Code view of the Visualization
| Tool (vt ).

| -o names the executable.

| -l (lower-case L)
| names additional libraries to be searched. Several libraries are
| automatically included, and are listed below in the FILES section.

| -I (upper-case i)
| names directories for additional includes. The directory
| /usr/lpp/ppe.poe/include is automatically included.

| -p enables profiling with the prof  command. For more information,
| see the appendix on “Profiling Programs” in IBM Parallel
| Environment for AIX: Operation and Use, Volume 2, Tools
| Reference

| -pg enables profiling with the xprofiler  and gprof  commands. For
| more information, see the “Xprofiler” chapter and the appendix on
| “Profiling Programs” in IBM Parallel Environment for AIX:
| Operation and Use, Volume 2, Tools Reference

| -ip specifies that the executable is bound with the UDP/IP message
| passing support library.

| -us specifies that the executable is bound with the RS/6000 SP User
| Space message passing library. Executables using this option
| should be compiled on an RS/6000 SP node compatible with the
| node on which execution will occur.

|  DESCRIPTION
| The mpCC_chkpt  shell script invokes the AIX xlC  command. The Partition
| Manager, message passing interface, and checkpoint support code are
| automatically linked in. The script creates an executable with no shared obects.
| This executable must be run on a node of the same machine type and having the
| same level of system software as the machine on which the executable is built. The
| executable is not binary compatible over changes to the system software.

| Flags are passed by mpCC_chkpt  to the xlC  command, so most of the xlC  options
| can be used on the mpCC_chkpt  shell script. Options which would generate
| shared objects should not be used.

| At execution time, the value specified by the MP_EUILIB  environment variable or
| the -euilib  flag must match the -ip | -us  option specified when this command was
| run.

  Appendix A. Parallel Environment Commands 101



 mpCC_r(1)  
 

|  ENVIRONMENT VARIABLES
| MP_PREFIX sets an alternate path to the scripts library. If not set or
| NULL, the standard path /usr/lpp/ppe.poe is used. If this
| environment variable is set, then all libraries are prefixed by
| $MP_PREFIX/ppe.poe.

|  EXAMPLES
| To compile a C++ program, enter:

| mpCC_chkpt program.C -o program

|  FILES
| When you compile a program using mpCC_chkpt , the following libraries are
| automatically included:

| /usr/lpp/ppe.poe/lib/libmpi.a (Message Passing Interface, collective
| communication routines)
| /usr/lpp/ppe.poe/lib/libvtd.a (VT tracing subsystem)
| /usr/lpp/ppe.poe/lib/libppe.a (PE common routines)
| /usr/lpp/ppe.poe/lib/libc.a (POE version of libc.a)
| /usr/lpp/LoadL/full/lib/chkrst.a (LoadLeveler checkpoint/support)

| When the -us  option is selected, the following libraries are included:

| /usr/lpp/ppe.poe/lib/us/libmpci.a (PSSP message passing interface)
| /usr/lpp/ssp/css/lib/hal.a (PSSP User Space adapter interface)
| /usr/lib/swclock.o (PSSP Switch clock interface)

| When the -ip  option is selected, the following libraries are included:

| /usr/lpp/ppe.poe/lib/ip/libmpci.a (PSSP message passing interface)

|  RELATED INFORMATION
| Commands: mpCC (1), mpcc_chkpt (1), mpxlf_chkpt (1)

 mpCC_r

 NAME
mpCC_r  – Invokes a shell script to compile C++ programs which use threaded
MPI.

 SYNOPSIS
mpCC_r  [xlC_flags]... program.C

The mpCC_r  shell script compiles C++ programs while linking in the Partition
Manager, the threaded implementation of Message Passing Interface (MPI), and
Low-level Applications Programming Interface (LAPI).

102 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpCC_r(1)
 

 FLAGS
Any of the compiler flags normally accepted by the xlC_r  command can also be
used on mpCC_r . For a complete listing of these flag options, refer to the manual
page for the xlC_r  command. Typical options to mpCC_r  include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object
file is needed by the Source Code view of the Visualization Tool
(vt ).

-o names the executable.

| -d7 compiles the program with POSIX Threads Draft 7 base MPI and
| compatibility libraries. Otherwise, POSIX Threads Draft 10 base
| libraries are used.

-l (lower-case L)
names additional libraries to be searched. Several libraries are
automatically included, and are listed below in the FILES section.

Note:  Not all AIX libraries are thread safe. Verify that your
intended use is supported.

-I (upper-case i)
names directories for additional includes. The directory
/usr/lpp/ppe.poe/include is automatically included.

-p enables profiling with the prof  command. For more information,
see the appendix on “Profiling Programs” in IBM Parallel
Environment for AIX: Operation and Use, Volume 2, Tools
Reference

-pg enables profiling with the xprofiler  and gprof  commands. For
more information, see the “Xprofiler” chapter and the appendix on
“Profiling Programs” in IBM Parallel Environment for AIX:
Operation and Use, Volume 2, Tools Reference

 DESCRIPTION
The mpCC_r  shell script calls the AIX xlC_r  compiler. In addition, the Partition
Manager and data communication interfaces are automatically linked in. The script
creates an executable that dynamically binds with the communication subsystem
libraries. If you wish to create a statically bound application, use the instructions in
“Creating a Static Executable” on page 11 in place of this script.

Flags are passed by mpCC_r  to the xlC_r  command, so any of the xlC_r  options
can be used on the mpCC_r  shell script. The communication subsystem library
implementation is dynamically linked when you invoke the executable using the poe
command. The value specified by the MP_EUILIB  environment variable or the
-euilib  flag will then determine which communication subsystem library
implementation is dynamically linked.

  Appendix A. Parallel Environment Commands 103



 mprcp(1)  
 

 ENVIRONMENT VARIABLES
MP_PREFIX sets an alternate path to the scripts library. If not set or

NULL, the standard path /usr/lpp/ppe.poe is used. If this
environment variable is set, then all libraries are prefixed by
$MP_PREFIX/ppe.poe.

 EXAMPLES
To compile a C++ program, enter:

mpCC_r program.C -o program

 FILES
When you compile a program using mpCC_r , the following libraries are
automatically selected:

/usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective
communication routines)
/usr/lpp/ppe.poe/lib/libvtd_r.a (VT tracing subsystem)
/usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)
/usr/lpp/ppe.poe/lib/libc_r.a (POE version of libc_r.a)
The following library is selected if it exists as a symbolic link to
/usr/lpp/ssp/css/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

 RELATED INFORMATION
Commands: mpcc_r (1), mpcc (1), mpCC (1), xlC (1), pdbx (1), pedb (1), vt (1),
xprofiler (1)

 mprcp

 NAME
mprcp  – copies a file from the home node to a list of remote hosts.

 SYNOPSIS
mprcp  host_list_file file_id

The mprcp  shell script uses the rcp  command to copy the file specified by file_id
to all the remote hosts listed in the specified host_list_file. This file_id must be
specified by an absolute path name.

 FLAGS
None.

 DESCRIPTION
The mprcp  shell script is typically used to distribute executables, data files, and (in
order to use the parallel debuggers) source code files from the home node to all
the remote nodes of the partition prior to invoking poe . This only needs to be done
if the needed files are not in a shared file system, or are not part of a file collection
which is distributed automatically.

104 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpxlf(1)
 

For each remote host listed in the specified host_list_file, the size and date of
file_id on the remote system is determined. If the file does not exist on the remote
system, or if either the size or date differs from the corresponding statistic for the
local system, the rcp  command is used to copy the file to the remote system. The
copied file retains the local system size and date and overlays any existing file of
the same name. The remote copy uses the same userid as the local system. If the
remote host cannot be contacted, or if the rcp  command fails, an error message is
printed and the script exits.

 EXAMPLES
To send a copy of the executable program to all the processor nodes listed in
host.list in your current directory, enter:

mprcp host.list $PWD/program

 RELATED INFORMATION
Commands: rcp (1), mcp (1)

 mpxlf

 NAME
mpxlf  – Invokes a shell script to compile Fortran programs.

 SYNOPSIS
mpxlf  [xlf_flags]... program.f

The mpxlf  shell script compiles Fortran programs while linking in the Partition
Manager, Message Passing Interface (MPI), and/or Message Passing Library
(MPL).

 FLAGS
Any of the compiler flags normally accepted by the xlf  command can also be used
on mpxlf . For a complete listing of these flag options, refer to the manual page for
the xlf  command. Typical options to mpxlf  include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object
file is needed for debugging with the pdbx  and pedb  debuggers,
and is also needed by the Source Code view of the Visualization
Tool.

-o names the executable.

-l (lower-case L)
names additional libraries to be searched. Several libraries are
automatically included, and are listed below in the FILES section.

-I (upper-case i)
names directories for additional includes. The directory
/usr/lpp/ppe.poe/include is automatically included.

  Appendix A. Parallel Environment Commands 105



 mpxlf(1)  
 

-p enables profiling with the prof  command. For more information,
see the appendix on “Profiling Programs” in IBM Parallel
Environment for AIX: Operation and Use, Volume 2, Tools
Reference

-pg enables profiling with the xprofiler  and gprof  commands. For
more information, see the “Xprofiler” chapter and the appendix on
“Profiling Programs” in IBM Parallel Environment for AIX:
Operation and Use, Volume 2, Tools Reference

 DESCRIPTION
The mpxlf  shell script calls the xlf  compiler. In addition, the Partition Manager and
message passing interface are automatically linked in. The script creates an
executable that dynamically binds with the message passing libraries. If you wish to
create a statically bound application, use the instructions in “Creating a Static
Executable” on page 11 in place of this script.

Flags are passed by mpxlf  to the xlf  command, so any of the xlf  options can be
used on the mpxlf  shell script. The communication subsystem library
implementation is dynamically linked when you invoke the executable using the poe
command. The value specified by the MP_EUILIB  environment variable or the
-euilib  flag will then determine which communication subsystem library
implementation is dynamically linked.

| mpxlf , mpxlf_r , mpxlf90 , mpxlf90_r , mpxlf_chkpt , mpxlf90_chkpt  have been
| updated to support High Performance Fortran (HPF) Version 1, Release 3. In doing
| so, if other Fortran compilers are installed on your system in addition to HPF 1.3,
| you may need to use a new environment variable with the compiler script in order
| to use HPF 1.3.

| xlf  and HPF use different compiler paths and stanzas. Therefore, the scripts will
| now check for the compiler level installed, and will do the following:

| � If only xlf  is installed on the system, it will be used.

| � If only HPF is installed, only HPF 1.3 or greater is supported and it will be
| used.

| � If both xlf  and HPF 1.3 are installed, xlf  is used as the default, unless the
| customer overrides it by specifying the MP_HPF environment variable.

| As such, the POE Fortran compile scripts check for a new environment variable,
| MP_HPF, to determine if the HPF should be used. Customers with both HPF and
| xlf  installed should set MP_HPF=YES when they desire to use the HPF 1.3
| compiler.

| Customers without both HPF and xlf  installed do not need to set the MP_HPF
| variable.

 ENVIRONMENT VARIABLES
MP_PREFIX sets an alternate path to the scripts library. If not set or

NULL, the standard path /usr/lpp/ppe.poe is used. If this
environment variable is set, then all libraries are prefixed by
$MP_PREFIX/ppe.poe.

106 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpxlf_chkpt(1)
 

| MP_HPF If High Performance Fortran (HPF) 1.3 is installed along with
| other Fortran compilers, set this to YES if the HPF 1.3
| compiler is to be used. Otherwise the default xlf  compiler will
| be used.

 EXAMPLES
To compile a Fortran program, enter:

mpxlf program.f -o program

 FILES
When you compile a program using mpxlf , the following libraries are automatically
selected:

/usr/lpp/ppe.poe/lib/libmpi.a (Message passing interface, collective
communication routines)
/usr/lpp/ppe.poe/lib/libvtd.a (VT tracing subsystem)
/usr/lpp/ppe.poe/lib/libppe.a (PE common routines)
/usr/lpp/ppe.poe/lib/libc.a (POE version of libc.a)

 RELATED INFORMATION
Commands: mpcc (1), xlf (1), pdbx (1), pedb (1), vt (1), xprofiler (1)

|  mpxlf_chkpt

|  NAME
| mpxlf_chkpt  – Invokes a shell script to compile checkpointable FORTRAN
| programs.

|  SYNOPSIS
| mpxlf_chkpt  [xlf_flags]... -us | -ip  program.f

| The mpxlf_chkpt  shell script compiles FORTRAN programs while linking in the
| Partition Manager, Message Passing Interface (MPI), and support code for parallel
| Checkpoint/Restart. It builds an executable with no shared objects.

|  FLAGS
| Most of the compiler flags normally accepted by the xlf  command can also be used
| on mpxlf_chkpt . For a complete listing of these flag options, refer to the manual
| page for the AIX xlf  command. Typical options to mpxlf_chkpt  include:

| -v causes a “verbose” output listing of the shell script.

| -g Produces an object file with symbol table references. This object
| file is needed for debugging with the pdbx  and pedb  debuggers,
| and is also needed by the Source Code view of the Visualization
| Tool (vt ).

| -o names the executable.

  Appendix A. Parallel Environment Commands 107



 mpxlf_chkpt(1)  
 

| -l (lower-case L)
| names additional libraries to be searched. Several libraries are
| automatically included, and are listed below in the FILES section.

| -I (upper-case i)
| names directories for additional includes. The directory
| /usr/lpp/ppe.poe/include is automatically included.

| -p enables profiling with the prof  command. For more information,
| see the appendix on “Profiling Programs” in IBM Parallel
| Environment for AIX: Operation and Use, Volume 2, Tools
| Reference

| -pg enables profiling with the xprofiler  and gprof  commands. For
| more information, see the “Xprofiler” chapter and the appendix on
| “Profiling Programs” in IBM Parallel Environment for AIX:
| Operation and Use, Volume 2, Tools Reference

| -ip specifies that the executable is bound with the UDP/IP message
| passing support library.

| -us specifies that the executable is bound with the RS/6000 SP User
| Space message passing library. Executables using this option
| should be compiled on an RS/6000 SP node compatible with the
| node on which execution will occur.

|  DESCRIPTION
| The mpxlf_chkpt  shell script invokes the AIX xlf  command. The Partition
| Manager, message passing interface, and checkpoint support code are
| automatically linked in. The script creates an executable with no shared obects.
| This executable must be run on a node of the same machine type and having the
| same level of system software as the machine on which the executable is built. The
| executable is not binary compatible over changes to the system software.

| Flags are passed by mpxlf_chkpt  to the xlf  command, so most of the xlf  options
| can be used on the mpxlf_chkpt  shell script. Options which would generate shared
| objects should not be used.

| At execution time, the value specified by the MP_EUILIB  environment variable or
| the -euilib  flag must match the -ip | -us  option specified when this command was
| run.

| mpxlf , mpxlf_r , mpxlf90 , mpxlf90_r , mpxlf_chkpt , mpxlf90_chkpt  have been
| updated to support High Performance Fortran (HPF) Version 1, Release 3. In doing
| so, if other Fortran compilers are installed on your system in addition to HPF 1.3,
| you may need to use a new environment variable with the compiler script in order
| to use HPF 1.3.

| xlf  and HPF use different compiler paths and stanzas. Therefore, the scripts will
| now check for the compiler level installed, and will do the following:

| � If only xlf  is installed on the system, it will be used.

| � If only HPF is installed, only HPF 1.3 or greater is supported and it will be
| used.

108 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpxlf_chkpt(1)
 

| � If both xlf  and HPF 1.3 are installed, xlf  is used as the default, unless the
| customer overrides it by specifying the MP_HPF environment variable.

| As such, the POE Fortran compile scripts check for a new environment variable,
| MP_HPF, to determine if the HPF should be used. Customers with both HPF and
| xlf  installed should set MP_HPF=YES when they desire to use the HPF 1.3
| compiler.

| Customers without both HPF and xlf  installed do not need to set the MP_HPF
| variable.

|  ENVIRONMENT VARIABLES
| MP_PREFIX sets an alternate path to the scripts library. If not set or
| NULL, the standard path /usr/lpp/ppe.poe is used. If this
| environment variable is set, then all libraries are prefixed by
| $MP_PREFIX/ppe.poe.

| MP_HPF If High Performance Fortran (HPF) 1.3 is installed along with
| other Fortran compilers, set this to YES if the HPF 1.3
| compiler is to be used. Otherwise the default xlf  compiler will
| be used.

|  EXAMPLES
| To compile a FORTRAN program, enter:

| mpxlf_chkpt program.f -o program

|  FILES
| When you compile a program using mpxlf_chkpt , the following libraries are
| automatically included:

| /usr/lpp/ppe.poe/lib/libmpi.a (Message Passing Interface, collective
| communication routines)
| /usr/lpp/ppe.poe/lib/libvtd.a (VT tracing subsystem)
| /usr/lpp/ppe.poe/lib/libppe.a (PE common routines)
| /usr/lpp/ppe.poe/lib/libc.a (POE version of libc.a)
| /usr/lpp/LoadL/full/lib/chkrst.a (LoadLeveler checkpoint/support)

| When the -us  option is selected, the following libraries are included:

| /usr/lpp/ppe.poe/lib/us/libmpci.a (PSSP message passing interface)
| /usr/lpp/ssp/css/lib/hal.a (PSSP User Space adapter interface)
| /usr/lib/swclock.o (PSSP Switch clock interface)

| When the -ip  option is selected, the following libraries are included:

| /usr/lpp/ppe.poe/lib/ip/libmpci.a (PSSP message passing interface)

|  RELATED INFORMATION
| Commands: mpxlf (1), mpcc_chkpt (1), mpxlf90_chkpt (1)

  Appendix A. Parallel Environment Commands 109



 mpxlf_r(1)  
 

 mpxlf_r

 NAME
mpxlf_r  – Invokes a shell script to compile Fortran programs and link them into a
threaded environment.

 SYNOPSIS
mpxlf_r  [xlf_flags]... program.f

The mpxlf_r  shell script compiles Fortran programs while linking in the Partition
Manager, the threaded implementation of Message Passing Interface (MPI), and
Low-level Applications Programming Interface (LAPI).

Note:  Only one thread can run a Fortran program.

 FLAGS
Any of the compiler flags normally accepted by the xlf  command can also be used
on mpxlf_r . For a complete listing of these flag options, refer to the manual page
for the xlf  command. Typical options to mpxlf_r  include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object
file is needed for debugging with the pdbx  and pedb  debuggers,
and is also needed by the Source Code view of the Visualization
Tool.

-o names the executable.

| -d7 compiles the program with POSIX Threads Draft 7 base MPI and
| compatibility libraries. Otherwise, POSIX Threads Draft 10 base
| libraries are used. This flag can only be used with Fortran Version
| 5.1.1 or later.

-l (lower-case L)
names additional libraries to be searched. Several libraries are
automatically included, and are listed below in the FILES section.

Note:  Not all AIX libraries are thread safe. Verify that your
intended use is supported.

-I (upper-case i)
names directories for additional includes. The directory
/usr/lpp/ppe.poe/include is automatically included.

-p enables profiling with the prof  command. For more information,
see the appendix on “Profiling Programs” in IBM Parallel
Environment for AIX: Operation and Use, Volume 2, Tools
Reference

-pg enables profiling with the xprofiler  and gprof  commands. For
more information, see the “Xprofiler” chapter and the appendix on
“Profiling Programs” in IBM Parallel Environment for AIX:
Operation and Use, Volume 2, Tools Reference

110 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpxlf_r(1)
 

 DESCRIPTION
The mpxlf_r  shell script calls the xlf  compiler. In addition, the Partition Manager
and data communication interfaces are automatically linked in. The script creates
an executable that dynamically binds with the communication subsystem libraries. If
you wish to create a statically bound application, use the instructions in “Creating a
Static Executable” on page 11 in place of this script.

Flags are passed by mpxlf_r  to the xlf  command, so any of the xlf  options can be
used on the mpxlf_r  shell script. The communication subsystem library
implementation is dynamically linked when you invoke the executable using the poe
command. The value specified by the MP_EUILIB  environment variable or the
-euilib  flag will then determine which communication subsystem library
implementation is dynamically linked.

| mpxlf , mpxlf_r , mpxlf90 , mpxlf90_r , mpxlf_chkpt , mpxlf90_chkpt  have been
| updated to support High Performance Fortran (HPF) Version 1, Release 3. In doing
| so, if other Fortran compilers are installed on your system in addition to HPF 1.3,
| you may need to use a new environment variable with the compiler script in order
| to use HPF 1.3.

| xlf  and HPF use different compiler paths and stanzas. Therefore, the scripts will
| now check for the compiler level installed, and will do the following:

| � If only xlf  is installed on the system, it will be used.

| � If only HPF is installed, only HPF 1.3 or greater is supported and it will be
| used.

| � If both xlf  and HPF 1.3 are installed, xlf  is used as the default, unless the
| customer overrides it by specifying the MP_HPF environment variable.

| As such, the POE Fortran compile scripts check for a new environment variable,
| MP_HPF, to determine if the HPF should be used. Customers with both HPF and
| xlf  installed should set MP_HPF=YES when they desire to use the HPF 1.3
| compiler.

| Customers without both HPF and xlf  installed do not need to set the MP_HPF
| variable.

 ENVIRONMENT VARIABLES
MP_PREFIX sets an alternate path to the scripts library. If not set or

NULL, the standard path /usr/lpp/ppe.poe is used. If this
environment variable is set, then all libraries are prefixed by
$MP_PREFIX/ppe.poe.

| MP_HPF If High Performance Fortran (HPF) 1.3 is installed along with
| other Fortran compilers, set this to YES if the HPF 1.3
| compiler is to be used. Otherwise the default xlf  compiler will
| be used.

  Appendix A. Parallel Environment Commands 111



 mpxlf90(1)  
 

 EXAMPLES
To compile a Fortran program, enter:

mpxlf_r program.f -o program

 FILES
When you compile a program using mpxlf_r , the following libraries are
automatically selected:

/usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective
communication routines)
/usr/lpp/ppe.poe/lib/libvtd_r.a (VT tracing subsystem)
/usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)
/usr/lpp/ppe.poe/lib/libc_r.a (POE version of libc_r.a)
The following library is selected if it exists as a symbolic link to
/usr/lpp/ssp/css/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

Note:  Fortran Version 4.1.0.1, specifically the library libxlf90_t.a, must be available
for both linking and execution.

 RELATED INFORMATION
Commands: mpcc_r (1), xlf (1), pdbx (1), pedb (1), vt (1), xprofiler (1)

 mpxlf90

 NAME
mpxlf90  – Invokes a shell script to compile Fortran 90 programs.

 SYNOPSIS
mpxlf90  [xlf_flags]... program.f

The mpxlf90  shell script compiles Fortran 90 programs while linking in the Partition
Manager, Message Passing Interface (MPI), and Message Passing Library (MPL).

 FLAGS
Any of the compiler flags normally accepted by the xlf  command can also be used
on mpxlf90 . For a complete listing of these flag options, refer to the manual page
for the xlf  command. Typical options to mpxlf90  include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object
file is needed by the Source Code view of the Visualization Tool.

-o names the executable.

-l (lower-case L)
names additional libraries to be searched. Several libraries are
automatically included, and are listed below in the FILES section.

112 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpxlf90(1)
 

-I (upper-case i)
names directories for additional includes. The directory
/usr/lpp/ppe.poe/include is automatically included.

-p enables profiling with the prof  command. For more information,
see the appendix on “Profiling Programs” in IBM Parallel
Environment for AIX: Operation and Use, Volume 2, Tools
Reference

-pg enables profiling with the xprofiler  and gprof  commands. For
more information, see the “Xprofiler” chapter and the appendix on
“Profiling Programs” in IBM Parallel Environment for AIX:
Operation and Use, Volume 2, Tools Reference

 DESCRIPTION
The mpxlf90  shell script calls the xlf  compiler. In addition, the Partition Manager
and message passing interface are automatically linked in. The script creates an
executable that dynamically binds with the message passing libraries. If you wish to
create a statically bound application, use the instructions in “Creating a Static
Executable” on page 11 in place of this script.

Flags are passed by mpxlf90  to the xlf  command, so any of the xlf  options can be
used on the mpxlf90  shell script. The communication subsystem library
implementation is dynamically linked when you invoke the executable using the poe
command. The value specified by the MP_EUILIB  environment variable or the
-euilib  flag will then determine which communication subsystem library
implementation is dynamically linked.

| mpxlf , mpxlf_r , mpxlf90 , mpxlf90_r , mpxlf_chkpt , mpxlf90_chkpt  have been
| updated to support High Performance Fortran (HPF) Version 1, Release 3. In doing
| so, if other Fortran compilers are installed on your system in addition to HPF 1.3,
| you may need to use a new environment variable with the compiler script in order
| to use HPF 1.3.

| xlf  and HPF use different compiler paths and stanzas. Therefore, the scripts will
| now check for the compiler level installed, and will do the following:

| � If only xlf  is installed on the system, it will be used.

| � If only HPF is installed, only HPF 1.3 or greater is supported and it will be
| used.

| � If both xlf  and HPF 1.3 are installed, xlf  is used as the default, unless the
| customer overrides it by specifying the MP_HPF environment variable.

| As such, the POE Fortran compile scripts check for a new environment variable,
| MP_HPF, to determine if the HPF should be used. Customers with both HPF and
| xlf  installed should set MP_HPF=YES when they desire to use the HPF 1.3
| compiler.

| Customers without both HPF and xlf  installed do not need to set the MP_HPF
| variable.

  Appendix A. Parallel Environment Commands 113



 mpxlf90_chkpt(1)  
 

 ENVIRONMENT VARIABLES
MP_PREFIX sets an alternate path to the scripts library. If not set or

NULL, the standard path /usr/lpp/ppe.poe is used. If this
environment variable is set, then all libraries are prefixed by
$MP_PREFIX/ppe.poe.

| MP_HPF If High Performance Fortran (HPF) 1.3 is installed along with
| other Fortran compilers, set this to YES if the HPF 1.3
| compiler is to be used. Otherwise the default xlf  compiler will
| be used.

 EXAMPLES
To compile a Fortran 90 program, enter:

mpxlf9ð program.f -o program

 FILES
When you compile a program using mpxlf90 , the following libraries are
automatically selected:

/usr/lpp/ppe.poe/lib/libmpi.a (Message passing interface, collective
communication routines)
/usr/lpp/ppe.poe/lib/libvtd.a (VT tracing subsystem)
/usr/lpp/ppe.poe/lib/libppe.a (PE common routines)
/usr/lpp/ppe.poe/lib/libc.a (POE version of libc.a)

 RELATED INFORMATION
Commands: mpcc (1), mpCC (1), xlf (1), mpxlf (1), vt (1), xprofiler (1)

|  mpxlf90_chkpt

|  NAME
| mpxlf90_chkpt  – Invokes a shell script to compile checkpointable Fortran 90
| programs.

|  SYNOPSIS
| mpxlf90_chkpt  [xlf90_flags]... -us | -ip  program.f

| The mpxlf90_chkpt  shell script compiles Fortran 90 programs while linking in the
| Partition Manager, Message Passing Interface (MPI), and support code for parallel
| Checkpoint/Restart. It builds an executable with no shared objects.

|  FLAGS
| Most of the compiler flags normally accepted by the xlf90  command can also be
| used on mpxlf90_chkpt . For a complete listing of these flag options, refer to the
| manual page for the AIX xlf90  command. Typical options to mpxlf90_chkpt
| include:

| -v causes a “verbose” output listing of the shell script.

114 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpxlf90_chkpt(1)
 

| -g Produces an object file with symbol table references. This object
| file is needed for debugging with the pdbx  and pedb  debuggers,
| and is also needed by the Source Code view of the Visualization
| Tool (vt ).

| -o names the executable.

| -l (lower-case L)
| names additional libraries to be searched. Several libraries are
| automatically included, and are listed below in the FILES section.

| -I (upper-case i)
| names directories for additional includes. The directory
| /usr/lpp/ppe.poe/include is automatically included.

| -p enables profiling with the prof  command. For more information,
| see the appendix on “Profiling Programs” in IBM Parallel
| Environment for AIX: Operation and Use, Volume 2, Tools
| Reference

| -pg enables profiling with the xprofiler  and gprof  commands. For
| more information, see the “Xprofiler” chapter and the appendix on
| “Profiling Programs” in IBM Parallel Environment for AIX:
| Operation and Use, Volume 2, Tools Reference

| -ip specifies that the executable is bound with the UDP/IP message
| passing support library.

| -us specifies that the executable is bound with the RS/6000 SP User
| Space message passing library. Executables using this option
| should be compiled on an RS/6000 SP node compatible with the
| node on which execution will occur.

|  DESCRIPTION
| The mpxlf90_chkpt  shell script invokes the AIX xlf90  command. The Partition
| Manager, message passing interface, and checkpoint support code are
| automatically linked in. The script creates an executable with no shared obects.
| This executable must be run on a node of the same machine type and having the
| same level of system software as the machine on which the executable is built. The
| executable is not binary compatible over changes to the system software.

| Flags are passed by mpxlf90_chkpt  to the xlf90  command, so most of the xlf90
| options can be used on the mpxlf90_chkpt  shell script. Options which would
| generate shared objects should not be used.

| At execution time, the value specified by the MP_EUILIB  environment variable or
| the -euilib  flag must match the -ip | -us  option specified when this command was
| run.

| mpxlf , mpxlf_r , mpxlf90 , mpxlf90_r , mpxlf_chkpt , mpxlf90_chkpt  have been
| updated to support High Performance Fortran (HPF) Version 1, Release 3. In doing
| so, if other Fortran compilers are installed on your system in addition to HPF 1.3,
| you may need to use a new environment variable with the compiler script in order
| to use HPF 1.3.

  Appendix A. Parallel Environment Commands 115



 mpxlf90_chkpt(1)  
 

| xlf  and HPF use different compiler paths and stanzas. Therefore, the scripts will
| now check for the compiler level installed, and will do the following:

| � If only xlf  is installed on the system, it will be used.

| � If only HPF is installed, only HPF 1.3 or greater is supported and it will be
| used.

| � If both xlf  and HPF 1.3 are installed, xlf  is used as the default, unless the
| customer overrides it by specifying the MP_HPF environment variable.

| As such, the POE Fortran compile scripts check for a new environment variable,
| MP_HPF, to determine if the HPF should be used. Customers with both HPF and
| xlf  installed should set MP_HPF=YES when they desire to use the HPF 1.3
| compiler.

| Customers without both HPF and xlf  installed do not need to set the MP_HPF
| variable.

|  ENVIRONMENT VARIABLES
| MP_PREFIX sets an alternate path to the scripts library. If not set or
| NULL, the standard path /usr/lpp/ppe.poe is used. If this
| environment variable is set, then all libraries are prefixed by
| $MP_PREFIX/ppe.poe.

| MP_HPF If High Performance Fortran (HPF) 1.3 is installed along with
| other Fortran compilers, set this to YES if the HPF 1.3
| compiler is to be used. Otherwise the default xlf  compiler will
| be used.

|  EXAMPLES
| To compile a FORTRAN program, enter:

| mpxlf9ð_chkpt program.f -o program

|  FILES
| When you compile a program using mpxlf90_chkpt , the following libraries are
| automatically included:

| /usr/lpp/ppe.poe/lib/libmpi.a (Message Passing Interface, collective
| communication routines)
| /usr/lpp/ppe.poe/lib/libvtd.a (VT tracing subsystem)
| /usr/lpp/ppe.poe/lib/libppe.a (PE common routines)
| /usr/lpp/ppe.poe/lib/libc.a (POE version of libc.a)
| /usr/lpp/LoadL/full/lib/chkrst.a (LoadLeveler checkpoint/support)

| When the -us  option is selected, the following libraries are included:

| /usr/lpp/ppe.poe/lib/us/libmpci.a (PSSP message passing interface)
| /usr/lpp/ssp/css/lib/hal.a (PSSP User Space adapter interface)
| /usr/lib/swclock.o (PSSP Switch clock interface)

| When the -ip  option is selected, the following libraries are included:

| /usr/lpp/ppe.poe/lib/ip/libmpci.a (PSSP message passing interface)

116 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  mpxlf90_r(1)
 

|  RELATED INFORMATION
| Commands: mpxlf90 (1), mpcc_chkpt (1), mpxlf_chkpt (1)

 mpxlf90_r

 NAME
mpxlf90_r  – Invokes a shell script to compile Fortran 90 programs and link them
into a threaded environment.

 SYNOPSIS
mpxlf90_r  [xlf_flags]... program.f

The mpxlf90_r  shell script compiles Fortran 90 programs while linking in the
Partition Manager, the threaded implementation of Message Passing Interface
(MPI), and Low-level Applications Programming Interface (LAPI).

Note:  Only one thread can run a Fortran program.

 FLAGS
Any of the compiler flags normally accepted by the xlf  command can also be used
on mpxlf90_r . For a complete listing of these flag options, refer to the manual page
for the xlf  command. Typical options to mpxlf90_r  include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object
file is needed by the Source Code view of the Visualization Tool.

-o names the executable.

| -d7 compiles the program with POSIX Threads Draft 7 base MPI and
| compatibility libraries. Otherwise, POSIX Threads Draft 10 base
| libraries are used. This flag can only be used with Fortran Version
| 5.1.1 or later.

-l (lower-case L)
names additional libraries to be searched. Several libraries are
automatically included, and are listed below in the FILES section.

Note:  Not all AIX libraries are thread safe. Verify that your
intended use is supported.

-I (upper-case i)
names directories for additional includes. The directory
/usr/lpp/ppe.poe/include is automatically included.

-p enables profiling with the prof  command. For more information,
see the appendix on “Profiling Programs” in IBM Parallel
Environment for AIX: Operation and Use, Volume 2, Tools
Reference

-pg enables profiling with the xprofiler  and gprof  commands. For
more information, see the “Xprofiler” chapter and the appendix on
“Profiling Programs” in IBM Parallel Environment for AIX:
Operation and Use, Volume 2, Tools Reference

  Appendix A. Parallel Environment Commands 117



 mpxlf90_r(1)  
 

 DESCRIPTION
The mpxlf90_r  shell script calls the xlf  compiler. In addition, the Partition Manager
and data communication interfaces are automatically linked in. The script creates
an executable that dynamically binds with the communication subsystem libraries. If
you wish to create a statically bound application, use the instructions in “Creating a
Static Executable” on page 11 in place of this script.

Flags are passed by mpxlf90_r  to the xlf  command, so any of the xlf  options can
be used on the mpxlf90_r  shell script. The communication subsystem library
implementation is dynamically linked when you invoke the executable using the poe
command. The value specified by the MP_EUILIB  environment variable or the
-euilib  flag will then determine which communication subsystem library
implementation is dynamically linked.

| mpxlf , mpxlf_r , mpxlf90 , mpxlf90_r , mpxlf_chkpt , mpxlf90_chkpt  have been
| updated to support High Performance Fortran (HPF) Version 1, Release 3. In doing
| so, if other Fortran compilers are installed on your system in addition to HPF 1.3,
| you may need to use a new environment variable with the compiler script in order
| to use HPF 1.3.

| xlf  and HPF use different compiler paths and stanzas. Therefore, the scripts will
| now check for the compiler level installed, and will do the following:

| � If only xlf  is installed on the system, it will be used.

| � If only HPF is installed, only HPF 1.3 or greater is supported and it will be
| used.

| � If both xlf  and HPF 1.3 are installed, xlf  is used as the default, unless the
| customer overrides it by specifying the MP_HPF environment variable.

| As such, the POE Fortran compile scripts check for a new environment variable,
| MP_HPF, to determine if the HPF should be used. Customers with both HPF and
| xlf  installed should set MP_HPF=YES when they desire to use the HPF 1.3
| compiler.

| Customers without both HPF and xlf  installed do not need to set the MP_HPF
| variable.

 ENVIRONMENT VARIABLES
MP_PREFIX sets an alternate path to the scripts library. If not set or

NULL, the standard path /usr/lpp/ppe.poe is used. If this
environment variable is set, then all libraries are prefixed by
$MP_PREFIX/ppe.poe.

| MP_HPF If High Performance Fortran (HPF) 1.3 is installed along with
| other Fortran compilers, set this to YES if the HPF 1.3
| compiler is to be used. Otherwise the default xlf  compiler will
| be used.

118 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  pmarray(1)
 

 EXAMPLES
To compile a Fortran 90 program, enter:

mpxlf9ð_r program.f -o program

 FILES
When you compile a program using mpxlf90_r , the following libraries are
automatically selected:

/usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective
communication routines)
/usr/lpp/ppe.poe/lib/libvtd_r.a (VT tracing subsystem)
/usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)
/usr/lpp/ppe.poe/lib/libc_r.a (POE version of libc_r.a)
The following library is selected if it exists as a symbolic link to
/usr/lpp/ssp/css/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

Note:  Fortran Version 4.1.0.1, specifically the library libxlf90_t.a, must be available
for both linking and execution.

 RELATED INFORMATION
Commands: mpcc_r (1), xlf (1), mpxlf_r (1), pdbx (1), pedb (1), vt (1), xprofiler (1)

 pmarray

 NAME
pmarray  – Starts the Program Marker Array, which is an X-Windows tool for
monitoring a parallel executable's run.

 SYNOPSIS
pmarray

The pmarray  command starts the Program Marker Array X-Windows tool prior to
invoking poe . This tool is used for run-time monitoring.

 FLAGS
None.

 DESCRIPTION
The pmarray  command starts the Program Marker Array. This X-Windows run-time
monitoring tool consists of a number of small squares, or lights. Each task in a
parallel program has its own row of lights. Using calls to the Parallel Utility
Functions enables a parallel program to control the appearance of the Program
Marker Array Window. Calls to MP_MARKER (for Fortran programs) or
mpc_marker (for C programs) enables a program to color lights on, and/or send
output strings to the Window. Calls to MP_NLIGHTS (for Fortran programs) and
mpc_nlights (for C programs) enables a program to determine the number of lights
displayed per task row.

  Appendix A. Parallel Environment Commands 119



 poe(1)  
 

 ENVIRONMENT VARIABLES
This command responds to the following environment variables:

MP_PMLIGHTS Indicates the number of lights displayed per row on the
Array. (If, when you invoke poe , you override
MP_PMLIGHTS using the -pmlights  flag, the Array will
redisplay with the new number of lights per row.)

MP_PROCS Indicates the number of program tasks. The pmarray
command sets the number of task rows displayed in the
Array equal to the value of MP_PROCS. (If, when you invoke
poe , you override MP_PROCS using the -procs  flag, the
Array will redisplay with the new number of rows.)

MP_USRPORT Indicates the port id used by the Partition Manager to
connect to the Array. By default, the Partition Manager
connects to the Array using a socket assigned to port 9999.
If you get an error message indicating that the port is in use,
specify a different port. Standard TCP/IP practice suggests
using ports greater than 5000 and less than 10000.

 EXAMPLES
To start the Program Marker Array program as a background process, and open its
window, enter:

pmarray &

 FILES
/usr/lib/X11/app-defaults/PMarray (Xdefaults file)

/usr/lib/ppe.poe/samples/PMarray.ad (X-Windows resource information)

 RELATED INFORMATION
Commands: poe (1)

Subroutines: mpc_marker (3), MP_MARKER (3), mpc_nlights (3), MP_NLIGHTS(3)

“Monitoring Program Execution Using the Program Marker Array” in IBM Parallel
Environment for AIX: Operation and Use

 poe

 NAME
poe  – Invokes the Parallel Operating Environment (POE) for loading and executing
programs on remote processor nodes.

120 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poe(1)
 

 SYNOPSIS
poe  [-h] [program] [program_options]...
[-adapter_use  adapter_specifier]
[-cpu_use  cpu_specifier]
[-euidevice  device_specifier]
[-euilib  {ip | us}]
[-euilibpath  path_specifier]
[{-hostfile  | -hfile } host_file_name]
[-procs  partition_size]
[-pulse  interval]
[-resd  {yes  | no }]
[-retry  retry_interval]
[-retrycount  retry_count]
[-rmpool  pool_ID]
[-savehostfile  output_file_name]
[-spname  name]
[-cmdfile  commands_file]
[-newjob  {yes  | no }]
[-pgmmodel  {spmd  | mpmd }]
[-labelio  {yes  | no }]
[-stdinmode  {all  | none  | task_ID}]
[-stdoutmode  {unordered  | ordered  | task_ID}]
[{-samplefreq  | -sfreq } samp_int]
[{-tbuffsize  | -tbsize } buffer_size]
[{-tbuffwrap  | -tbwrap } {yes  | no }]
[-tmpdir  temp_trace_directory]
[{-tracedir  | -tdir } final_trace_directory]
[{-tracefile  | -tfile } trace_file_name]
[{-tracelevel  | -tlevel } level_int]
[{-ttempsize  | -ttsize } temp_file_size]
[{-infolevel  | -ilevel } message_level]
[-pmdlog  {yes  | no }]
[-buffer_mem ] memory_size
[-css_interrupt  {yes  | no }]
[-eager_limit  size_limit]
[-intrdelay  delay_parameter]
[-max_typedepth  maximum_depth]
[-use_flow_control  {yes  | no }]
[-thread_stacksize ]
[-single_thread  {no  | yes }]
[-wait_mode  {poll  | yield  | sleep }]
[-polling_interval  interval]
[-euidevelop  {yes  | no  | deb  | min | nor }]
[-pmlights  number_of_lights]
[-usrport  port_ID] [fence_string additional_options]
[-coredir ]

The poe  command invokes the Parallel Operating Environment for loading and
executing programs on remote processor nodes. The operation of POE is
influenced by a number of POE environment variables. The flag options on this
command are each used to temporarily override one of these environment
variables. User program_options can be freely interspersed with the flag options. If
no program is specified, POE will either prompt you for programs to load, or, if the

  Appendix A. Parallel Environment Commands 121



 poe(1)  
 

MP_CMDFILE environment variable is set, will load the partition using the specified
commands file.

 FLAGS
The -h flag, when used, must appear immediately after poe , and causes the poe
man page, if it exists, to be printed to the screen.

The remaining flags you can specify on this command are used to temporarily
override POE environment variables. For more information on valid values, and on
what a particular flag sets, refer to the description of its associated environment
variable in the ENVIRONMENT VARIABLES section. The following flags are
grouped by function.

The following Partition Manager control flags override the associated environment
variables.

-adapter_use  MP_ADAPTER_USE
-cpu_use  MP_CPU_USE
-euidevice  MP_EUIDEVICE
-euilib  MP_EUILIB
-euilibpath  MP_EUILIBPATH
-hostfile or -hfile MP_HOSTFILE
-procs  MP_PROCS
-pulse  MP_PULSE
-resd  MP_RESD
-retry  MP_RETRY
-retrycount  MP_RETRYCOUNT

| -msg_api  MP_MSG_API
-rmpool  MP_RMPOOL

| -nodes  MP_NODES
| -tasks_per_node  MP_TASKS_PER_NODE

-savehostfile  MP_SAVEHOSTFILE
-spname  SP_NAME

The following Job Specification flags override the associated environment variables.

-cmdfile  MP_CMDFILE
-newjob  MP_NEWJOB
-pgmmodel  MP_PGMMODEL

The following I/O Control flags override the associated environment variables.

-labelio  MP_LABELIO
-stdinmode  MP_STDINMODE
-stdoutmode  MP_STDOUTMODE

The following VT Trace Collection flags override the associated environment
variables.

-samplefreq or -sfreq
MP_SAMPLEFREQ

-tbuffsize or -tbsize MP_TBUFFSIZE
-tbuffwrap or -tbwrap

MP_TBUFFWRAP
-tmpdir  MP_TMPDIR

122 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poe(1)
 

-tracedir or -tdir MP_TRACEDIR
-tracefile or -tfile MP_TRACEFILE
-tracelevel or -tlevel MP_TRACELEVEL
-ttempsize or -ttsize MP_TTEMPSIZE

The following generation of diagnostic information flags override the associated
environment variables.

-infolevel or -ilevel MP_INFOLEVEL
-pmdlog  MP_PMDLOG

The following Message Passing flags override the associated environment
variables.

-buffer_mem  MP_BUFFER_MEM
-css_interrupt  MP_CSS_INTERRUPT
-eager_limit  MP_EAGER_LIMIT
-intrdelay  MP_INTRDELAY
-max_typedepth  MP_MAX_TYPEDEPTH
-use_flow_control  MP_USE_FLOW_CONTROL
-thread_stacksize  MP_THREAD_STACKSIZE
-single_thread  MP_SINGLE_THREAD
-wait_mode  MP_WAIT_MODE

| -polling_interval  MP_POLLING_INTERVAL

The following are miscellaneous flags:

-euidevelop Overrides the MP_EUIDEVELOP environment variable.

-pmlights Determines the number of lights displayed (per row) on the
Program Marker Array. This overrides the MP_PMLIGHTS
environment variable. For more information on the Program
Marker Array, refer to the manual page for the pmarray
command.

-usrport Overrides the MP_USRPORT environment variable.

-coredir Overrides the MP_COREDIR environment variable.

 DESCRIPTION
The poe  command invokes the Parallel Operating Environment for loading and
executing programs on remote nodes. You can enter it at your home node to:

� load and execute an SPMD program on all nodes of your partition.

� individually load the nodes of your partition with an MPMD job.

� load and execute a series of SPMD and MPMD programs, in individual job
steps, on the same partition.

� run non-parallel programs on remote nodes.

The operation of POE is influenced by a number of POE environment variables.
The flag options on this command are each used to temporarily override one of
these environment variables. User program_options can be freely interspersed with
the flag options, and additional_options not to be parsed by POE can be placed
after a fence_string defined by the MP_FENCE environment variable. If no program
is specified, POE will either prompt you for programs to load, or, if the

  Appendix A. Parallel Environment Commands 123



 poe(1)  
 

MP_CMDFILE environment variable is set, will load the partition using the specified
commands file.

The environment variables and flags that influence the operation of this command
fall into distinct categories of function. They are:

� Partition Manager control . The environment variables and flags in this
category determine the method of node allocation, message passing
mechanism, and the PULSE monitor function.

� Job specification . The environment variables and flags in this category
determine whether or not the Partition Manager should maintain the partition for
multiple job steps, whether commands should be read from a file or STDIN,
and how the partition should be loaded.

� I/O control . The environment variables and flags in this category determine
how I/O from the parallel tasks should be handled. These environment
variables and flags set the input and output modes, and determine whether or
not output is labeled by task id.

� VT trace collection . The environment variables and flags in this category
determine if and how execution traces are collected for playback using the
Visualization Tool (vt ). They determine which types of traces are collected, and
how trace storage is handled.

� Generation of diagnostic information . The environment variables and flags in
this category enable you to generate diagnostic information that may be
required by the IBM Support Center in resolving PE-related problems.

� Message Passing Interface . The environment variables and flags in this
category enable you to specify values for tuning message passing applications.

� Miscellaneous . The additional environment variables and flags in this category
enable additional error checking, and set a dispatch priority class for execution.

 ENVIRONMENT VARIABLES
The environment variable descriptions in this section are grouped by function.

The following environment variables are associated with Partition Manager control.

| MP_ADAPTER_USE
| Determines how the node's adapter should be used. If using
| LoadLeveler, the US communication subsystem library does
| not require dedicated use of the SP switch on the node.
| Adapter use will be defaulted, as in Table 4 on page 25, but
| shared usage may be specified. If using the Resource
| Manager, this value is only used when POE is requesting
| non-specific nodes via the MP_RMPOOL or -rmpool  setting.
| Valid values are dedicated and shared. If not set, the default
| is dedicated for US jobs, or shared for IP jobs. The value of
| this environment variable can be overridden using the
| -adapter_use  flag.

MP_AUTH Determines the type of user authorization to be used. Valid
values are AIX (the default) for AIX based user authorization,
using /etc/hosts.equiv  or .rhosts  entries, and DFS for
DFS/DCE based authorization. This value can be overridden

124 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poe(1)
 

with an entry in the /etc/poe.limits  file. There is no
associated command line flag.

| MP_CPU_USE Determines how the node's CPU should be used. If using
| LoadLeveler, the US communication subsystem library does
| not require unique CPU use on the node. CPU use will be
| defaulted, as in Table 4 on page 25, but multiple use may
| be specified. If using the Resource Manager, this value is
| only used when POE is requesting non-specific nodes via the
| MP_RMPOOL or -rmpool  setting. Valid values are multiple
| and unique. If not set, the default is unique for US jobs, or
| multiple for IP jobs. The value of this environment variable
| can be overridden using the -cpu_use  flag.

MP_EUIDEVICE Determines the adapter set to use for message passing.
Valid values are en0 (for Ethernet), fi0 (for FDDI), tr0 (for
token-ring), and css0 (for the SP system's high performance
switch feature).

MP_EUILIB Determines the communication subsystem library
implementation to use for communication – either the IP
communication subsystem or the US communication
subsystem. In order to use the US communication
subsystem, you must have an SP system configured with its
high performance switch feature. Valid, case-sensitive,
values are ip  (for the IP communication subsystem) or us
(for the US communication subsystem). The value of this
environment variable can be overridden using the -euilib
flag.

MP_EUILIBPATH Determines the path to the message passing and
communication subsystem libraries. This only needs to be set
if the libraries are moved. Valid values are any path specifier.
The value of this environment variable can be overridden
using the -euilibpath  flag.

MP_HOSTFILE Determines the name of a host list file for node allocation.
Valid values are any file specifier. If not set, the default is
host.list in your current directory. The value of this
environment variable can be overridden using the -hostfile  or
-hfile  flags.

MP_PROCS Determines the number of program tasks. Valid values are
any number from 1 to 128. If not set, the default is 1. The
value of this environment variable can be overridden using
the -procs  flag.

MP_PULSE The interval (in seconds) at which POE checks the remote
nodes to ensure that they are communicating with the home
node. The default interval is 600 seconds (10 minutes). To
disable the pulse function, specify an interval of 0 (zero)
seconds. The pulse function is automatically disabled when
running the pdbx  or pedb  debuggers. You can override the
value of this environment variable with the -pulse  flag.

MP_REMOTEDIR Specifies the name of a script which echoes the name of the
current directory to be used on the remote nodes. By default,
the current directory is the current directory at the time that

  Appendix A. Parallel Environment Commands 125



 poe(1)  
 

POE is run. You may need to specify this if the AutoMount
Daemon is used to mount user file systems, and the user is
not using the Korn shell.

The script mpamddir  is provided for mapping the C shell
directory name to an AutoMount Daemon name.

MP_RESD Determines whether or not the Partition Manager should
| connect to LoadLeveler or the SP system Resource Manager

to allocate nodes. Valid values are either yes  or no , and
there is no default. The value of this environment variable
can be overridden using the -resd  flag.

MP_RETRY Determines the period of time (in seconds) between
processor node allocation retries if there are not enough
processor nodes immediately available to run a program.

| This is only valid if you are using LoadLeveler or the SP
system Resource Manager. Valid values are any integer
greater than or equal to 0. The default is 0 (no retry). The
value of this environment variable can be overridden using
the -retry  flag.

MP_RETRYCOUNT The number of times (at the interval set by MP_RETRY) that
the Partition Manager should attempt to allocate processor
nodes. Valid values are any integer greater than or equal to
0. If not set, the default is 0. The value of this environment
variable can be overridden using the -retrycount  flag.

| MP_MSG_API Indicates to POE which message passing API is being used
| by the parallel tasks. You need to set this environment
| variable if a parallel task is using LAPI alone or in
| conjunction with MPI. You do not need to set it if a parallel
| task is using MPI only. The value of this environment variable
| can be overridden using the -msg_api  flag.

| MP_RMPOOL With regard to LoadLeveler, determines the name or number
| of the pool that should be used for non-specific node
| allocation. With regard to the Resource Manager, determines
| the number of the SP system pool that should be used for
| non-specific node allocation. This environment
| variable/command-line flag only applies to LoadLeveler or the
| SP system Resource Manager. Valid values are any
| identifying pool name or number for LoadLeveler, and any
| identifying pool number for the Resource Manager. There is
| no default. The value of this environment variable can be
| overridden using the -rmpool  flag.

| MP_NODES Specifies the number of physical nodes on which to run the
| parallel tasks. It may be used alone or in conjunction with
| MP_TASKS_PER_NODE  and/or MP_PROCS, as described
| in Table 7 on page 33. The value of this environment
| variable can be overridden using the -nodes  flag.

| MP_TASKS_PER_NODE
| Specifies the number of tasks to be run on each of the
| physical nodes. It may be used in conjunction with
| MP_NODES and/or MP_PROCS, as described in Table 7 on
| page 33, but may not be used alone. The value of this

126 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poe(1)
 

| environment variable can be overridden using the
| -tasks_per_node  flag.

MP_SAVEHOSTFILE
The name of an output host list file to be generated by the
Partition Manager. Valid values are any relative or full path
name. The value of this environment variable can be
overridden using the -savehostfile  flag.

MP_TIMEOUT Controls the length of time POE waits before abandoning an
attempt to connect to the remote nodes. The default is 150
seconds. MP_TIMEOUT also changes the length of time the
communication subsystem will wait for a connection to be
established during message passing initialization.

| SP_NAME Determines the job management system (LoadLeveler or the
| SP system Resource Manager) to use. If all nodes to be
| used for the parallel job exist in a PSSP 2.4.0 partition, the
| SP_NAME environment variable should be set to the name
| of the control workstation of the SP system on which these
| nodes exist. This is the only case that results in POE
| contacting the Resource Manager rather than LoadLeveler
| for node allocation requests. When running POE from a
| workstation that is external to the LoadLeveler cluster, the
| LoadL.so fileset must be installed on the external node (see
| Using and Administering LoadLeveler and IBM Parallel
| Environment for AIX: Installation for more information). When
| running POE from a workstation that is external to the SP
| system, and using the Resource Manager, the ssp.clients
| fileset must be installed on the external node (see IBM
| Parallel Environment for AIX: Installation for more
| information).

| MP_CHECKFILE Defines the base name of the checkpoint file when
| checkpointing or restarting a program. See “Checkpointing
| and Restarting Programs” on page 51 for more information.

| MP_CHECKDIR Defines the directory where the checkpoint file will reside
| when checkpointing or restarting a program. See
| “Checkpointing and Restarting Programs” on page 51 for
| more information.

The following environment variables are associated with Job Specification.

MP_CMDFILE Determines the name of a POE commands file used to load
the nodes of your partition. If set, POE will read the
commands file rather than STDIN. Valid values are any file
specifier. The value of this environment variable can be
overridden using the -cmdfile  flag.

MP_NEWJOB Determines whether or not the Partition Manager maintains
your partition for multiple job steps. Valid values are yes  or
no . If not set, the default is no . The value of this environment
variable can be overridden using the -newjob  flag.

  Appendix A. Parallel Environment Commands 127



 poe(1)  
 

MP_PGMMODEL Determines the programming model you are using. Valid
values are spmd  or mpmd . If not set, the default is spmd .
The value of this environment variable can be overridden
using the -pgmmodel  flag.

The following environment variables are associated with I/O Control.

MP_LABELIO Determines whether or not output from the parallel tasks are
labeled by task id. Valid values are yes  or no . If not set, the
default is no . The value of this environment variable can be
overridden using the -labelio  flag.

MP_STDINMODE Determines the input mode – how STDIN is managed for the
parallel tasks. Valid values are:

all all tasks receive the same input data from STDIN.

none no tasks receive input data from STDIN; STDIN
will be used by the home node only.

n STDIN is only sent to the task identified (n).

If not set, the default is all . The value of this environment
variable can be overridden using the -stdinmode  flag.

MP_HOLD_STDIN Determines whether or not sending of STDIN from the home
node to the remote nodes is deferred until the message
passing partition has been established. Valid values are yes
or no . If not set, the default is no .

MP_STDOUTMODE Determines the output mode – how STDOUT is handled by
the parallel tasks. Valid values are:

unordered  all tasks write output data to STDOUT
asynchronously.

ordered output data from each parallel task is written to its
own buffer. Later, all buffers are flushed, in task
order, to STDOUT.

a task id only the task indicated writes output data to
STDOUT.

If not set, the default is unordered . The value of this
environment variable can be overridden using the
-stdoutmode  flag.

The following environment variables are associated with VT Trace Collection.

MP_SAMPLEFREQ Determines the interval (in milliseconds) at which AIX kernel
statistics are sampled when executing a program with tracing
on. Valid values are any integer greater than or equal to 0. If
not set, the default is 10. The value of this environment
variable can be overridden using the -samplefreq  or -sfreq
flags.

MP_TBUFFSIZE Determines the size (in bytes) of the buffer used when
generating trace files. This may be specified as nnnK or
nnnM. If not set, the default is 5M. The value of this
environment variable can be overridden using the -tbuffsize
or -tbsize  flags.

128 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poe(1)
 

MP_TBUFFWRAP Determines that a wraparound storage approach for trace
records should be used instead of the default three-tiered
approach. With this approach, the system keeps overwriting
the buffer instead of flushing it to a temp file. Valid values
are either yes  or no . If not set, the default is no . The value
of this environment variable can be overridden using the
-tbuffwrap  or -tbwrap  flags.

MP_TMPDIR The temporary directory to which output trace files are
written. Valid values are any path specifier. If not set, the
default is /tmp/username. The value of this environment
variable can be overridden using the -tmpdir  flag.

MP_TRACEDIR Determines the directory to which the final integrated trace
file is built. Valid values are any path specifier. If not set, the
default is the current directory. The value of this environment
variable can be overridden using the -tracedir  or -tdir  flags.

MP_TRACEFILE Determines the name of the output trace file created when
executing a program with tracing on. Valid values are any file
specifier. If not set, the default is the name of the program
with the suffix .trc added. The value of this environment
variable can be overridden using the -tracefile  and -tfile
flags.

MP_TRACELEVEL Determines the level of VT tracing that should be generated
during the execution of a program. Valid values are:

0 no trace records

1 Application Markers

2 AIX Kernel Statistic and Application Markers

3 Message Passing, Collective Communication, and
Application Markers

9 all trace records

If not set, the default is 0 (no trace records). The value of this
environment variable can be overridden using the -tracelevel
or -tlevel  flags.

MP_TTEMPSIZE Determines the size (in bytes) of the temp file used when
generating trace files. This may be specified as nnnM or
nnnG. If not set, the default is 10M. The value of this
environment variable can be overridden using the -ttempsize
or -ttsize  flags.

The following environment variables are associated with the generation of
diagnostic information.

MP_INFOLEVEL Determines the level of message reporting. Valid values are:

0 error

1 warning and error

2 informational, warning, and error

3 informational, warning, and error. Also reports diagnostic messages for use by
the IBM Support Center.

  Appendix A. Parallel Environment Commands 129



 poe(1)  
 

4, 5, 6 Informational, warning, and error. Also reports high- and low-level diagnostic
messages for use by the IBM Support Center.

If not set, the default is 1 (warning and error). The value of this environment
variable can be overridden using the -infolevel  or -ilevel  flags.

MP_PMDLOG Determines whether or not diagnostic messages should be
logged to a file in /tmp on each of the remote nodes.
Typically, this environment variable/command-line flag is only
used under the direction of the IBM Support Center in
resolving a PE-related problem. Valid values are yes  or no . If
not set, the default is no . The value of this environment
variable can be overridden using the -pmdlog  flag.

MP_DEBUG_LOG Determines the level of diagnostic messages written to
$MP_tmp/dbelog.pid.taskid . Typically, this environment
variable/command-line flag is only used under the direction of
the IBM Support Center in resolving a PE-related problem.
This environment variable has no associated command-line
flag.

MP_DEBUG_INITIAL_STOP
Determines the initial breakpoint in the application where
pdbx  or pedb  will get control. MP_DEBUG_INITIAL_STOP
should be specified as file_name:line_number. The
line_number is the number of the line within the source file
file_name; where file_name has been compiled with -g. The
line number has to be one that defines executable code. In
general, this is a line of code for which the compiler
generates machine level code. Another way to view this is
that the line number is one for which debuggers will accept a
breakpoint. Another valid string for
MP_DEBUG_INITIAL_STOP  would be the function_name of
the desired initial stopping point in the debugger. If this
variable is not specified, the default is to stop at the first
executable source line in the main routine. This environment
variable has no associated command-line flag.

| MP_PMDSUFFIX When using LoadLeveler, this environment variable
| determines a string to be appended to the normal partition
| manager daemon executable. The normal partition manager
| daemon executable specified is /etc/pmdv2. By setting
| MP_PMDSUFFIX, you can append a string to pmdv2. If
| MP_PMDSUFFIX is set to abc, for example, then the
| partition manager daemon that gets run on each node of the
| parallel task is /etc/pmdv2abc. When using the Resource
| Manager, this environment variable determines a string to be
| appended to the normal tcp service. The normal tcp service
| specified in /etc/services is named pmv2. By setting
| MP_PMDSUFFIX, you can append a string to pmv2. If
| MP_PMDSUFFIX is set to abc, for example, then the service
| requested in /etc/services is pmv2abc. Using the environment
| variable with LoadLeveler or the Resource Manager as
| described above permits testing of alternate versions of the
| Partition Manager daemon. Typically, this environment
| variable is only used under the direction of the IBM Support

130 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poe(1)
 

| Center in resolving a PE-related problem. Valid values are
| any string. This environment variable has no associated
| command-line flag.

The following environment variables are associated with the Message Passing
Interface.

MP_BUFFER_MEM Changes the maximum size of memory used by the
| communication subsystem to buffer early arrivals. The default
| is 2.8 megabytes for IP and 64 megabytes for US. However,
| if checkpointing a program, for US the default will be 2.8
| megabytes. If you are using this environment variable to
| change the maximum size of memory used by the
| communication subsystem while checkpointing a program,
| please be aware that the amount of space needed for the
| checkpointing files will be increased by the value of
| MP_BUFFER_MEM.

MP_CSS_INTERRUPT
Determines whether or not arriving message packets cause
interrupts. This may provide better performance for certain
applications. Valid values are yes  and no . If not set, the
default is no .

MP_EAGER_LIMIT Changes the threshold value for message size, above which
rendezvous protocol is used.

MP_INTRDELAY Allows user programs to tune the delay parameter without
having to recompile existing applications.

MP_MAX_TYPEDEPTH
Changes the maximum depth of message buffer types.

MP_USE_FLOW_CONTROL
Limits the maximum number of outstanding messages posted
by a sender.

MP_THREAD_STACKSIZE
Determines the additional stacksize allocated for user
programs executing on an MPI service thread. If you allocate
insufficient space, the program may encounter a SIGSEGV
exception.

MP_SINGLE_THREAD
| Avoids mutex lock overheads in a single threaded program.

This is an optimization flag, with values of no  and yes . The
default value is no , which means multiple user message
passing threads are assumed.

| Note:  MPI-IO cannot be used if this is set to YES. Results are undefined if this is
| YES, with multiple message passing threads in use.

MP_WAIT_MODE Determines how a thread or task behaves when it discovers
it is blocked, waiting for a message to arrive. Values are poll ,
yield , and sleep . The default mode for the signal handling

| library is poll  for US, and sleep  for IP.

| MP_POLLING_INTERVAL
| Defines the polling interval in microseconds. The maximum
| interval is approximately 2 billion microseconds (2000

  Appendix A. Parallel Environment Commands 131



 poe(1)  
 

| seconds). The default is 180,000 microseconds for IP, and
| 400,000 microseconds for US.

The following are miscellaneous environment variables:

MP_EUIDEVELOP Determines whether or not the message passing interface
performs more detailed checking during execution. This
additional checking is intended for developing applications,
and can significantly slow performance. Valid values are yes

| or no , deb  (for “debug”), nor  (for “normal”), and min  (for
| “minimum”) . The debug  and min  values are used to start

and stop parameter checking. If not set, the default is no .
The value of this environment variable can be overridden
using the -euidevelop  flag.

MP_FENCE Determines a fence_string to be used for separating options
you want parsed by POE from those you do not. Valid values
are any string, and there is no default. Once set, you can
then use the fence_string followed by additional_options on
the poe  command line. The additional_options will not be
parsed by POE. This environment variable has no associated
command-line flag.

MP_NOARGLIST Determines whether or not POE ignores the argument list.
Valid values are yes  and no . If set to yes , POE will not
attempt to remove POE command-line flags before passing
the argument list to the user's program. This environment
variable has no associated command-line flag.

MP_PMLIGHTS Indicates the number of lights displayed per row on the
Program Marker Array.

MP_PRIORITY Determines a dispatch priority adjustment class for execution.
See IBM Parallel Environment for AIX: Installation for more
information on dispatch priority classes. Valid values are any
of the dispatch priority classes set up by the system
administrator in the file /etc/poe.priority. This environment
variable has no associated command-line flag.

MP_USRPORT Indicates the port id used by the Partition Manager to
connect to the Program Marker Array. By default, the
Partition Manager connects to the Array using a socket
assigned to port 9999. If you get an error message indicating
that the port is in use, specify a different port. Standard
TCP/IP practice suggests using ports greater than 5000 and
less than 10000.

MP_COREDIR Creates a separate directory for each task's core file.

 EXAMPLES
1. Assume the MP_PGMMODEL environment variable is set to spmd , and

MP_PROCS is set to 6. To load and execute the SPMD program sample on
the six remote nodes of your partition, enter:

poe sample

2. Assume you have an MPMD application consisting of two programs – master
and workers. These programs are designed to run together and communicate

132 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poeauth(1)
 

via calls to message passing subroutines. The program master is designed to
run on one processor node. The workers program is designed to run as
separate tasks on any number of other nodes. The MP_PGMMODEL
environment variable is set to mpmd , and MP_PROCS is set to 6. To
individually load the six remote nodes with your MPMD application, enter:

poe

Once the partition is established, the poe  command responds with the prompt:

ð:host1_name>

To load the master program as task 0 on host1_name, enter:

master

The poe  command responds with a prompt for the next node to load. When
you have loaded the last node of your partition, the poe  command displays the
message Partition loaded... and begins execution.

3. Assume you want to run three SPMD programs – setup, computation, and
cleanup – as job steps on the same partition of nodes. The MP_PGMMODEL
environment variable is set to spmd, and MP_NEWJOB  is set to yes . You
enter:

poe

Once the partition is established, the poe  command responds with the prompt:

Enter program name (or quit):

To load the program setup, enter:

setup

The program setup executes on all nodes of your partition. When execution
completes, the poe  command again prompts you for a program name. Enter
the program names in turn. To release the partition, enter:

quit

4. To check the process status (using the non-parallel command ps ) for all remote
nodes in your partition, enter:

poe ps

 FILES
host.list (Default host list file)

 RELATED INFORMATION
Commands: mpcc (1), mpcc_r (1), mpCC (1), mpCC_r (1), mpxlf (1), mpxlf_r (1),
pdbx (1), pedb (1), pmarray (1), vt (1), xprofiler (1)

 poeauth

  Appendix A. Parallel Environment Commands 133



 poeauth(1)  
 

 NAME
poeauth  – Allows you to copy Distributed File System (DFS) credentials to all
nodes on which you want to run POE jobs.

 SYNOPSIS
poeauth  [POE options]

 DESCRIPTION
The poeauth  command allows you to copy DFS credentials to all nodes on which
you want to run POE jobs. You can use any POE command line flag or
environment variable with poeauth , because it is a POE application. Before running
poeauth , you must run dce_login  from task 0 (where DFS/DCE credentials
reside). The credentials must reside on task 0 for poeauth  to copy them. In order
to be properly authorized, you must run poeauth  before running any POE
applications. When the credentials are copied, there is no need to use poeauth
until the credentials expire.

Return codes are:

| Note:  The actual command return code value is 128 plus the unsigned return
| code value. That is, a return code of -2 will give a value of 130. For more
| information, see the “Exit Status” section in IBM Parallel Environment for
| AIX: MPI Programming and Subroutine Reference

-1 error reading KRB5CCNAME environment variable

-3 credentials files not found on home node, task 0

-4 could not open credentials file for read

-5 no room on destination node's filesystem

-6 error opening file output file

-7 error creating output file

-8 error writing to output file

-9 MPI_Send of data failed

-10 Final MPI_Send failed

-11 MPI_Recv failed

-13 error creating unique id for credentials

-14 error opening /tmp/poedce_master file

-15 error creating /tmp/poedce_master file

-16 error writing to /tmp/poedce_master file

134 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poekill(1)
 

 EXAMPLES
1. To copy the credentials to the first 32 nodes listed in the host list file named

“my_hosts” in your home directory, enter:

poeauth -procs 32 -hfile $HOME/my_hosts -labelio yes -pmdlog yes

Note:  If you were previously set up to use a PMD suffix, remember to set the
MP_PMDSUFFIX environment variable and export it before running
poeauth .

 RELATED INFORMATION
Commands: poe (1), pdbx (1), pedb (1)

 poekill

 NAME
poekill  – terminates all remote tasks for a give program.

 SYNOPSIS
poe  poekill  pgm_name  [poe_options ]

or

rsh  remote_node  poekill  pgm_name

poekill  is a Korn shell script that searches for the existence of running programs
(named pgm_name ) owned by the user, and terminates them via SIGTERM
signals. If run under POE, poekill  uses the standard POE mechanism for
identifying the set of remote nodes (host.list, Resource Manager, etc.). If run under
rsh, poekill  applies only to the node specified as remote_node.

 FLAGS
When run as a POE program, standard POE flags apply.

 DESCRIPTION
poekill  determines the user ID of the user that submitted the command. It then
uses the ID to obtain a list of active processes, which is filtered by the pgm_name
argument into a scratch file in /tmp. The file is processed by an awk script that
sends a SIGTERM signal (15) to each process in the list, and echoes the action
back to the user. The scratch file is then erased, and the script exits with code of 0.

If you do not provide a pgm_name, an error message is printed and the script exits
with a code of 0.

The pgm_name can be a substring of the program name.

  Appendix A. Parallel Environment Commands 135



 poestat(1)  
 

 RELATED INFORMATION
Commands: rsh (1), poe (1), kill (1)

 poestat

 NAME
poestat  – Starts the System Status Array, which is an X-Windows tool for
monitoring the operational status and CPU utilization of processor nodes.

 SYNOPSIS
poestat  [-norm ]

The poestat  command starts the System Status Array. This X-Windows tool lets
you quickly survey the utilization of processor nodes. Normally, this would be run in
the background.

 FLAGS
| -norm Indicates that a job management system , which would normally

be used to select nodes for monitoring, is not available. Instead,
the System Status Array program selects for monitoring each of
the nodes on the LAN that have the VT Statistics Collector
Daemon (digd) running. It also selects each of the nodes listed in
the host list file indicated by the MP_HOSTFILE environment
variable. If you are monitoring nodes of an RS/6000 network
cluster, you must use this flag.

 DESCRIPTION
The poestat  command starts the System Status Array. This X-Windows monitoring
tool lets you quickly survey the utilization of processor nodes. The Array consists
of a number of squares, each representing a processor node of your SP system or
cluster. The squares are colored pink and yellow to show the instantaneous percent
of CPU utilization for each processor node. If a square were to appear all pink, the
node would be at 0 percent utilization. If a square were to appear all yellow, it
would be at 100 percent utilization. To the right of the Array is a node list which
contains the name of each node shown in the Array. The nodes are listed in the
order in which they were contacted, left to right, starting with the top row of the
Array. You use this list to identify the name of a node represented in the Array.

In order to use this tool, the Visualization Tool's Statistics Collector Daemon
process (digd) needs to be running on each of the nodes you wish to monitor. The
daemon feeds the System Status Array with the CPU information it displays, and is
created on each of your nodes as part of the Visualization Tool's installation
procedure. The digd statistics collector daemon can also feed information to the
Visualization Tool. If a square on the Array appears gray, the node is unavailable
for monitoring. It either does not have the Statistics Collector daemon running, or
the Array cannot communicate with it.

136 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  poestat(1)
 

 ENVIRONMENT VARIABLES
MP_HOSTFILE This environment variable is normally associated with node

allocation. However, it is also checked by the poestat
command when running with the -norm  option. It determines
the name of a host list file to use in selecting nodes for
monitoring. If not set, the default is host.list in your current
directory.

| MP_RESD Identifies whether or not node data for allocated nodes
| received from a job management system (LoadLeveler or the
| SP system Resource Manager) should be filtered with a host
| list file. If MP_RESD=yes , and a host list file is specified,
| only those nodes allocated by the job management system
| and listed in the host list file will be displayed. This option is
| useful if you would like to view selected job management
| system allocated nodes or view up to 512 nodes. To view
| 512 nodes, create two host list files. Each file can contain up
| to 255 nodes. Set MP_HOSTFILE to one of the host list files
| and start poestat  in the background. Set MP_HOSTFILE to
| the other host list file and start another poestat  in the
| background. Two instances of poestat  will be running, each
| displaying a different set of 255 nodes. If MP_RESD=no , the
| job management system node data will not be displayed
| (similar to the -norm  command line option). For more
| information, see “Step 3e: Set the MP_RESD Environment
| Variable” on page 28.

| SP_NAME Identifies the control workstation of the SP system. This
| should only be used when all nodes to be monitored exist in
| a PSSP 2.3.0 or 2.4.0 partition. This is the only case that
| results in poestat  contacting the Resource Manager rather
| than LoadLeveler for node allocation requests. When running
| poestat  from a workstation that is external to the SP system,
| and using the Resource Manager, the ssp.clients fileset must
| be installed on the external node (see IBM Parallel
| Environment for AIX: Installation for more information).

 EXAMPLES
To start the System Status Array as a background process when the SP system
Resource Manager is available, enter:

poestat &

To start the System Status Array as a background process to monitor an RS/6000
network cluster, enter:

poestat -norm &

To display 512 resource manager nodes, enter:

  Appendix A. Parallel Environment Commands 137



 poestat(1)  
 

export MP_RESD=yes

export MP_HOSTFILE= a host list file with 1st 255 nodes

poestat &

export MP_HOSTFILE= a host list file with 2nd 255 nodes

poestat &

 FILES
host.list (Default host list file)

 RELATED INFORMATION
Commands: vt (1)

138 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Appendix B. POE Environment Variables and Command-Line
Flags

This appendix contains tables which summarize the environment variables and
command-line flags discussed throughout this book. You can set these variables
and flags to influence the execution of parallel programs, and the operation of
certain tools. The command-line flags temporarily override their associated
environment variable. The tables divide the environment variables and flags by
function.

� Table 8 on page 140 summarizes the environment variables and flags for
controlling the Partition Manager. These environment variables and flags
enable you to specify such things as an input or output host list file, and the
method of node allocation. For a complete description of the variables and flags
summarized in this table, see Chapter 2, “Executing Parallel Programs” on
page 9.

� Table 9 on page 142 summarizes the environment variables and flags for Job
Specifications. These environment variables and flags determine whether or not
the Partition Manager should maintain the partition for multiple job steps,
whether commands should be read from a file or STDIN, and how the partition
should be loaded. For a complete description of the variables and flags
summarized in this table, see Chapter 2, “Executing Parallel Programs” on
page 9.

� Table 10 on page 142 summarizes the environment variables and flags for
determining how I/O from the parallel tasks should be handled. These
environment variables and flags set the input and output modes, and determine
whether or not output is labeled by task id. For a complete description of the
variables and flags summarized in this table, see “Managing Standard Input,
Output, and Error” on page 44.

� Table 11 on page 143 summarizes the environment variables and flags
controlling VT trace collection. These environment variables and flags
determine such things as which types of traces are collected, and how trace
storage is handled. For a complete description of the variables and flags
summarized in this table, see IBM Parallel Environment for AIX: Operation and
Use, Volume 2, Tools Reference

� Table 12 on page 144 summarizes the environment variables and flags for
collecting diagnostic information. These environment variables and flags enable
you to generate diagnostic information that may be required by the IBM
Support Center in resolving PE-related problems.

� Table 13 on page 144 summarizes the environment variables and flags for the
Message Passing Interface. These environment variables and flags allow you
to change message and memory sizes, as well as other message passing
information.

� Table 14 on page 146 summarizes some miscellaneous environment variables
and flags. These environment variables and flags provide control for the
Program Marker Array, enable additional error checking, and let you set a
dispatch priority class for execution.

You can use the POE command-line flags on the poe , pdbx , and pedb  commands.
You can also use some of these flags on program names when individually loading

 Copyright IBM Corp. 1995, 1998  139



  
 

nodes from STDIN or a POE commands file. The flags you can use are mainly
those having to do with VT trace collection. They are:

� -infolevel  or -ilevel
� -ttempsize  or -ttsize

 � -tmpdir
� -samplefreq  or -sfreq
� -tbuffwrap  or -tbwrap
� -tbuffsize  or -tbsize

 � -euidevelop

In the tables that follow, a check mark (√) denotes those flags you can use when
individually loading nodes. For more information on individually loading nodes, refer
to “Invoking an MPMD Program” on page 36.

Table 8 (Page 1 of 3). POE Environment Variables/Command-Line Flags for Partition Manager Control

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_ADAPTER_USE
-adapter_use

| How the node's adapter should be used. If using
| LoadLeveler, the US communication subsystem
| library does not require dedicated use of the SP
| switch on the node. Adapter use will be defaulted,
| as in Table 4 on page 25, but shared usage may
| be specified. If using the Resource Manager, this
| value is only used when POE is requesting
| non-specific nodes via the MP_RMPOOL or
| -rmpool  setting.

One of the following strings:

dedicated Only a single program
task can use the
adapter.

shared A number of tasks on
the node can use the
adapter.

Dedicated for US
jobs, shared for IP
jobs.

MP_AUTH (no associated
command line flag)

The type of user authorization. This value can be
overridden with an entry in /etc/poe.limits .

One of the following strings:

AIX AIX based user
security.

DFS DFS/DCE bsed user
security.

AIX

MP_CPU_USE -cpu_use| How the node's CPU should be used. If using
| LoadLeveler, the US communication subsystem
| library does not require unique CPU use on the
| node. CPU use will be defaulted, as in Table 4 on
| page 25, but multiple use may be specified. If
| using the Resource Manager, this value is only
| used when POE is requesting non-specific nodes
| via the MP_RMPOOL or -rmpool  setting.

One of the following strings:

unique Only your program's
task can use the
CPU.

multiple Your program may
share the node with
other users.

Unique for US jobs,
multiple for IP jobs.

MP_EUIDEVICE
-euidevice

The adapter set to use for message passing –
either Ethernet, FDDI, token-ring, or the IBM
RS/6000 SP's high performance switch adapter.

One of the following strings:

en0 Ethernet

fi0 FDDI

tr0 token-ring

css0 high performance
switch

The adapter set
used as the
external network
address.

MP_EUILIB -euilib The communication subsystem library
implementation to use for communication – either
the IP communication subsystem or the User
Space (US) communication subsystem. Programs
that use LAPI must set MP_EUILIB  (or -euilib ) to
us. In order to use the US communication
subsystem, you must have an SP system
configured with its high performance switch feature.

One of the following strings:

ip The IP
communication
subsystem.

us The US
communication
subsystem.

Note:  This specification is
case-sensitive.

ip

MP_EUILIBPATH
-euilibpath

The path to the message passing and
communication subsystem libraries. This only
needs to be set if the libraries are moved.

Any path specifier. /usr/lpp/ppe.poe/lib

MP_HOSTFILE -hostfile
-hfile

The name of a host list file for node allocation. Any file specifier or the word
NULL.

host.list in the
current directory.

140 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Table 8 (Page 2 of 3). POE Environment Variables/Command-Line Flags for Partition Manager Control

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_PROCS -procs The number of program tasks. Any number from 1 to the
maximum supported
configuration.

1

MP_PULSE -pulse The interval (in seconds) at which POE checks the
remote nodes to ensure that they are actively
communicating with the home node.

Note:  Pulse  is ignored for pdbx  and pedb .

An integer greater than or equal
to 0.

600

MP_RESD -resd| Whether or not the Partition Manager should
| connect to a job management system (LoadLeveler
| or the Resource Manager) to allocate nodes.

| Notes:

| 1. MP_RESD only specifies whether or not to use
| a job management system.

| 2. When the Resource Manager is used, the
| actual system you are using is identified by the
| environment variable SP_NAME, of the control
| workstation on the SP system.

| 3. When running POE from a workstation that is
| external to the LoadLeveler cluster, the
| LoadL.so fileset must be installed on the
| external node (see Using and Administering
| LoadLeveler and IBM Parallel Environment for
| AIX: Installation for more information).

| 4. When running POE from a workstation that is
| external to the SP system, and using the
| Resource Manager, the ssp.clients fileset must
| be installed on the external node (see IBM
| Parallel Environment for AIX: Installation for
| more information).

yes no None

MP_RETRY -retry The period of time (in seconds) between processor
node allocation retries if there are not enough
processor nodes immediately available to run a
program. This is only valid if you are using the SP
system Resource Manager.

An integer greater than or equal
to 0.

0 (no retry)

MP_RETRYCOUNT
-retrycount

The number of times (at the interval set by
MP_RETRY) that the Partition Manager should
attempt to allocate processor nodes.

An integer greater than or equal
to 0.

0

| MP_MSG_API -msg_api| To indicate to POE which message passing API is
| being used by the parallel tasks. You need to set
| this environment variable if a parallel task is using
| LAPI alone or in conjunction with MPI. You do not
| need to set it if a parallel task is using MPI only.

| MPI LAPI or MPI,LAPI| MPI

| MP_RMPOOL -rmpool| With regard to LoadLeveler, the name or number of
| the pool that should be used for non-specific node
| allocation. With regard to the Resource Manager,
| the number of the SP system pool that should be
| used for non-specific node allocation. This
| environment variable/command-line flag only
| applies to LoadLeveler or the SP system Resource
| Manager.

| An identifying pool number.| None

| MP_NODES -nodes| To specify the number of physical nodes on which
| to run the parallel tasks. It may be used alone or in
| conjunction with MP_TASKS_PER_NODE  and/or
| MP_PROCS, as described in Table 7 on page 33.

| Any number from 1 to the
| maximum supported
| configuration.

| None

| MP_TASKS_PER_NODE
| -tasks_per_node
| To specify the number of tasks to be run on each
| of the physical nodes. It may be used in
| conjunction with MP_NODES and/or MP_PROCS,
| as described in Table 7 on page 33, but may not
| be used alone.

| Any number from 1 to the
| maximum supported
| configuration.

| None

MP_SAVEHOSTFILE
-savehostfile

The name of an output host list file to be generated
by the Partition Manager.

Any relative or full path name. None

  Appendix B. POE Environment Variables and Command-Line Flags 141



  
 

Table 8 (Page 3 of 3). POE Environment Variables/Command-Line Flags for Partition Manager Control

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_REMOTEDIR (no
associated command line
flag)

The name of a script which echoes the name of the
current directory to be used on the remote nodes.

Any file specifier. None

MP_TIMEOUT (no
associated command line
flag)

The length of time that POE waits before
abandoning an attempt to connect to the remote
nodes.

Any number greater than 0. 150 seconds

| MP_CHECKFILE (no
| associated command line
| flag)

| The base name of the checkpoint file.| Any file specifier.| None

| MP_CHECKDIR (no
| associated command line
| flag)

| The directory where the checkpoint file will reside.| Any path specifier.| None

Table 9. POE Environment Variables/Command-Line Flags for Job Specification

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_CMDFILE -cmdfile The name of a POE commands file used to load
the nodes of your partition. If set, POE will read
the commands file rather than STDIN.

Any file specifier. None

MP_NEWJOB -newjob Whether or not the Partition Manager maintains
your partition for multiple job steps.

yes no no

MP_PGMMODEL
-pgmmodel

The programming model you are using. spmd mpmd spmd

Table 10 (Page 1 of 2). POE Environment Variables/Command-Line Flags for I/O Control

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_LABELIO -labelio Whether or not output from the parallel tasks is
labeled by task id.

yes no no (yes for pdbx )

MP_STDINMODE
-stdinmode

The input mode. This determines how input is
managed for the parallel tasks.

all All tasks receive the
same input data from
STDIN.

none No tasks receive
input data from
STDIN; STDIN will be
used by the home
node only.

a task id STDIN is only sent to
the task identified.

all

MP_HOLD_STDIN (no
associated command line
flag)

Whether or not sending of STDIN from the home
node to the remote nodes is deferred until the
message passing partition has been established.

yes no no

142 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Table 10 (Page 2 of 2). POE Environment Variables/Command-Line Flags for I/O Control

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_STDOUTMODE
-stdoutmode

The output mode. This determines how STDOUT
is handled by the parallel tasks.

One of the following:

unordered All tasks write output
data to STDOUT
asynchronously.

ordered Output data from
each parallel task is
written to its own
buffer. Later, all
buffers are flushed, in
task order, to
STDOUT.

a task id Only the task
indicated writes
output data to
STDOUT.

unordered

Table 11. POE Environment Variables/Command-Line Flags for VT Trace Collection

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_SAMPLEFREQ
-samplefreq √ -sfreq √

The interval (in milliseconds) at which AIX kernel
statistics are sampled when executing a program
with tracing on.

An integer greater than or equal
to 0.

10

MP_TBUFFSIZE -tbuffsize
√ -tbsize √

The size (in bytes) of the buffer used when
generating trace files.

nnnK nnnM 1M

MP_TBUFFWRAP
-tbuffwrap √ -tbwrap √

A wraparound storage approach for trace records
instead of the default three-tiered approach. With
this approach, the system keeps overwriting the
buffer instead of flushing it to a temp file.

yes no no

MP_TMPDIR -tmpdir √ The temporary directory to which output trace files
are written.

Note:  This environment variable/flag is also used
| by the pdbx  and pedb  commands to

determine the directory to which individual
startup files are written for each dbx  task.

| This is where the pedb  remote debug logfile
is written.

Any path specifier.| /tmp/username /tmp
| (for pedb  and
| pdbx )

MP_TRACEDIR -tracedir
-tdir

The directory to which the final integrated trace file
is built.

Any path specifier. The current
directory.

MP_TRACEFILE -tracefile
-tfile

The name of the output trace file created when
executing a program with tracing on.

Any file specifier. The name of the
program with the
suffix .trc added.

MP_TRACELEVEL
-tracelevel -tlevel

The level of VT tracing that should be generated
during the execution of a program.

Note:  pedb automatically sets the trace level to 0.

One of the following integers:

0 No trace records

1 Application Markers

2 AIX Kernel Statistic and
Application Markers

3 Message Passing,
Collective Communication,
and Application Markers

9 All trace records

0

MP_TTEMPSIZE
-ttempsize √ -ttsize √

The size (in bytes) of the temp file used when
generating trace files.

nnnM nnnG 10M

Note:  √ symbol denotes flags you can use when individually loading nodes.

  Appendix B. POE Environment Variables and Command-Line Flags 143



  
 

Table 12. POE Environment Variables/Command-Line Flags for Diagnostic Information

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_INFOLEVEL -infolevel
√ -ilevel √

The level of message reporting. One of the following integers:

0 Error

1 Warning and error

2 Informational, warning,
and error

3 Informational, warning,
and error. Also reports
high-level diagnostic
messages for use by the
IBM Support Center.

4, 5, 6 Informational, warning,
and error. Also reports
high- and low-level
diagnostic messages for
use by the IBM Support
Center.

1

MP_PMDLOG -pmdlog Whether or not diagnostic messages should be
logged to a file in /tmp on each of the remote
nodes. Typically, this environment
variable/command-line flag is only used under the
direction of the IBM Support Center in resolving a
PE-related problem.

yes no no

MP_DEBUG_LOG (no
associated command-line
flag)

The level of diagnostic messages written to
| $MP_TMPDIR/debug_log.pid.taskid . Typically,

this environment variable/command-line flag is only
used under the direction of the IBM Support Center
in resolving a PE-related problem.

Note:  MP_DEBUG_LOG  is only valid for pedb .

0 - 4 0

MP_DEBUG_INITIAL_STOP
(no associated
command-line flag)

The initial breakpoint in the application where pdbx
or pedb  will get control.

One of the following:

 “filename”:line_number
 function_name

The first executable
source line in the
main routine.

MP_PMDSUFFIX (no
associated command-line
flag)

| When using LoadLeveler, to determine a string to
| be appended to the normal partition manager
| daemon executable. The normal partition manager
| daemon executable specified is /etc/pmdv2. By
| setting MP_PMDSUFFIX, you can append a string
| to pmdv2. If MP_PMDSUFFIX is set to abc, for
| example, then the partition manager daemon that
| gets run on each node of the parallel task is
| /etc/pmdv2abc. When using the Resource Manager,
| to determine a string to be appended to the normal
| tcp service. The normal tcp service specified in
| /etc/services is named pmv2. By setting
| MP_PMDSUFFIX, you can append a string to
| pmv2. If MP_PMDSUFFIX is set to abc, for
| example, then the service requested in /etc/services
| is pmv2abc. Using the environment variable with
| LoadLeveler or the Resource Manager as
| described above permits testing of alternate
| versions of the Partition Manager daemon.
| Typically, this environment variable is only used
| under the direction of the IBM Support Center in
| resolving a PE-related problem.

Any string. None

Note:  √ symbol denotes flags you can use when individually loading nodes.

Table 13 (Page 1 of 2). POE Environment Variables/Command-Line Flags for Message Passing Interface (MPI)

The Environment
Variable/Command-Line Flag(s): Set: Possible Values: Default:

MP_MAX_TYPEDEPTH
-max_typedepth

To change the maximum depth of
message derived data types.

An integer greater than or equal
to 1.

5

144 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Table 13 (Page 2 of 2). POE Environment Variables/Command-Line Flags for Message Passing Interface (MPI)

The Environment
Variable/Command-Line Flag(s): Set: Possible Values: Default:

MP_EAGER_LIMIT -eager_limit To change the threshold value for
message size, above which
rendezvous protocol is used.

To ensure that at least 32 messages
can be outstanding between any 2
tasks, MP_EAGER_LIMIT  will be
adjusted based on the number of tasks
according to the following table (when
MP_EAGER_LIMIT  and
MP_BUFFER_MEM have not been set
by the user):

Number of Tasks MP_EAGER_LIMIT

=============== ==============

1 - 16 4ð96

17 - 32 2ð48

33 - 64 1ð24

65 - 128 512

An integer less than or equal to
65536.

4KB

MP_BUFFER_MEM -buffer_mem To change the maximum size of
memory used by the communication
subsystem to buffer early arrivals.

An integer less than or equal to
64MB.

2800000 bytes (IP)
64MB (US)

MP_INTRDELAY -intrdelay To tune the delay parameter without
having to recompile existing
applications.

An integer greater than 0. 35 µ (TB2) 1 µ
(TB3)

MP_USE_FLOW_CONTROL
-use_flow_control

To limit the maximum number of
outstanding messages posted by a
sender.

yes no no

MP_CSS_INTERRUPT -css_interrupt Whether or not arriving packets
generate interrupts. This may provide
better performance for certain
applications.

yes no no

MP_TIMEOUT (no associated
command-line flag)

To change the length of time the
communication subsystem will wait for
a connection to be established during
message passing initialization.

An integer greater than 0. 150 seconds

MP_THREAD_STACKSIZE
-thread_stacksize

To specify the additional stacksize
allocated for user programs executing
on an MPI service thread. If you
allocate insufficient space, the program
may encounter a SIGSEGV exception.

nnnnn nnnK nnM (where
K=1024 bytes and
M=1024*1024 bytes)

None

MP_SINGLE_THREAD -single_thread| To avoid mutex lock overheads in a
| program which is known to be single
| threaded.

no yes no

MP_WAIT_MODE -wait_mode To specify how a thread or task
behaves when it discovers it is
blocked, waiting for a message to
arrive.

poll yield sleep| poll for US sleep
for IP

| MP_POLLING_INTERVAL
| -polling_interval
| To change the polling interval, in
| microseconds.
| An integer between 1 and 2
| billion.
| 400,000 for US
| 180,000 for IP

  Appendix B. POE Environment Variables and Command-Line Flags 145



  
 

Table 14. Other POE Environment Variables/Command-Line Flags

The Environment
Variable/Command-Line
Flag(s): Set: Possible Values: Default:

MP_DBXPROMPTMOD
(no associated
command-line flag)

A modified dbx  prompt. The dbx  prompt \n(dbx) is
used by the pdbx  command as an indicator
denoting that a dbx  subcommand has completed.
This environment variable modifies that prompt.
Any value assigned to it will have a “.” prepended
and will then be inserted in the \n(dbx) prompt
between the “x” and the “)”. This environment
variable is useful when the string \n(dbx) is present
in the output of the program being debugged.

Any string. None

MP_EUIDEVELOP
-euidevelop √

| Whether or not the message passing interface
| performs more detailed checking during execution.
| This additional checking is intended for developing
| applications, and can significantly slow
| performance. You can also start and stop
| parameter checking with deb (for “debug”) and min
| (for “minimum”).

| yes (for “develop”) no (for
| “normal”) deb (for “debug”) min
| (for “minimum”)

no

MP_FENCE (no
associated command-line
flag)

A “fence” character string for separating arguments
you want parsed by POE from those you do not.

Any string. None

MP_NOARGLIST (no
associated command-line
flag)

Whether or not POE ignores the argument list. If
set to yes, POE will not attempt to remove POE
command-line flags before passing the argument
list to the user's program.

yes no no

MP_PMLIGHTS -pmlights The number of lights displayed (per row) on the
Program Marker Array.

An integer greater than or equal
to 0.

0

MP_PRIORITY (no
associated command-line
flag)

A dispatch priority class for execution. See IBM
Parallel Environment for AIX: Installation for more
information on dispatch priority classes.

Any of the dispatch priority
classes set up by the system
administrator in the file
/etc/poe.priority.

None

MP_USRPORT -usrport The port id used by the Partition Manager to
connect to the Program Marker Array.

Any positive integer less than
32767. Standard TCP/IP
practice suggests using ports
greater than 5000 and less than
10000.

9999

MP_COREDIR -coredir To create a separate directory for each task's core
file.

Any valid directory name. coredir.taskid

146 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

� The Dictionary of Computing, New York:
McGraw-Hill, 1994.

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018. Definitions
are identified by the symbol (A) after the definition.

� The ANSI/EIA Standard - 440A: Fiber Optic
Terminology, copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

� The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

This section contains some of the terms that are
commonly used in the Parallel Environment books and
in this book in particular.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards
Committee X3. ANSI definitions are preceded by an
asterisk (*).

Other definitions in this glossary are taken from IBM
Vocabulary for Data Processing, Telecommunications,
and Office Systems (GC20-1699).

A
address .  A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

AIX.  Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

AIXwindows Environment/6000 .  A graphical user
interface (GUI) for the RS/6000. It has the following
components:

� A graphical user interface and toolkit based on
OSF/Motif

� Enhanced X-Windows, an enhanced version of the
MIT X Window System

� Graphics Library (GL), a graphical interface library
for the applications programmer which is compatible
with Silicon Graphics' GL interface.

API.  Application Programming Interface.

application .  The use to which a data processing
system is put; for example, topayroll application, an
airline reservation application.

argument .  A parameter passed between a calling
program and a called program or subprogram.

attribute .  A named property of an entity.

B
bandwidth .  The total available bit rate of a digital
channel.

blocking operation .  An operation which does not
complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint .  A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or to
a specified program.

broadcast operation .  A communication operation in
which one processor sends (or broadcasts) a message
to all other processors.

 Copyright IBM Corp. 1995, 1998  147



  
 

buffer .  A portion of storage used to hold input or
output data temporarily.

C
C.  A general purpose programming language. It was
formalized by ANSI standards committee for the C
language in 1984 and by Uniforum in 1983.

C++.  A general purpose programming language, based
on C, which includes extensions that support an
object-oriented programming paradigm. Extensions
include:

 � strong typing
� data abstraction and encapsulation
� polymorphism through function overloading and

templates
 � class inheritance.

call arc .  The representation of a call between two
functions within the Xprofiler function call tree. It
appears as a solid line between the two functions. The
arrowhead indicates the direction of the call; the
function it points to is the one that receives the call. The
function making the call is known as the caller, while
the function receiving the call is known as the callee.

chaotic relaxation .  An iterative relaxation method
which uses a combination of the Gauss-Seidel and
Jacobi-Seidel methods. The array of discrete values is
divided into sub-regions which can be operated on in
parallel. The sub-region boundaries are calculated using
Jacobi-Seidel, whereas the sub-region interiors are
calculated using Gauss-Seidel. See also Gauss-Seidel.

client .  A function that requests services from a server,
and makes them available to the user.

cluster .  A group of processors interconnected through
a high speed network that can be used for high
performance computing. It typically provides excellent
price/performance.

collective communication .  A communication
operation which involves more than two processes or
tasks. Broadcasts, reductions, and the MPI_Allreduce
subroutine are all examples of collective communication
operations. All tasks in a communicator must
participate.

command alias .  When using the PE command line
debugger, pdbx, you can create abbreviations for
existing commands using the pdbx  alias  command.
These abbreviations are know as command aliases.

Communication Subsystem (CSS) .  A component of
the IBM Parallel System Support Programs for AIX that
provides software support for the High Performance
Switch. It provides two protocols; IP (Internet Protocol)

for LAN based communication and US (user space) as
a message passing interface that is optimized for
performance over the switch. See also Internet Protocol
and User Space.

communicator .  An MPI object that describes the
communication context and an associated group of
processes.

compile .  To translate a source program into an
executable program.

condition .  One of a set of specified values that a data
item can assume.

control workstation .  A workstation attached to the
RS/6000 SP that serves as a single point of control
allowing the administrator or operator to monitor and
manage the system using IBM Parallel System Support
Programs for AIX.

core dump .  A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault, or severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file .  A file which preserves the state of a
program, usually just before a program is terminated for
an unexpected error. See also core dump.

current context .  When using either of the PE parallel
debuggers, control of the parallel program and the
display of its data can be limited to a subset of the
tasks that belong to that program. This subset of tasks
is called the current context. You can set the current
context to be a single task, multiple tasks, or all the
tasks in the program.

D
data decomposition .  A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating on
each part independently.

data parallelism .  Refers to situations where parallel
tasks perform the same computation on different sets of
data.

dbx .  A symbolic command line debugger that is often
provided with UNIX systems. The PE command line
debugger, pdbx , is based on the dbx  debugger.

debugger .  A debugger provides an environment in
which you can manually control the execution of a

148 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

program. It also provides the ability to display the
program's data and operation.

distributed shell (dsh) .  An IBM Parallel System
Support Programs for AIX command that lets you issue
commands to a group of hosts in parallel. See the IBM
RISC System/6000 Scalable POWERparallel Systems:
Command and Technical Reference (GC23-3900-00) for
details.

domain name .  The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

E
environment variable .  1. A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2. A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

event .  An occurrence of significance to a task; for
example, the completion of an asynchronous operation
such as an input/output operation.

Ethernet .  Ethernet is the standard hardware for
TCP/IP LANs in the UNIX marketplace. It is a 10
megabit per second baseband type network that uses
the contention based CSMA/CD (collision detect) media
access method.

executable .  A program that has been link-edited and
therefore can be run in a processor.

execution .  To perform the actions specified by a
program or a portion of a program.

expression .  In programming languages, a language
construct for computing a value from one or more
operands.

F
fairness .  A policy in which tasks, threads, or
processes must be allowed eventual access to a
resource for which they are competing. For example, if
multiple threads are simultaneously seeking a lock, then
no set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI.  Fiber distributed data interface (100 Mbit/s fiber
optic LAN).

file system .  In the AIX operating system, the
collection of files and file management structures on a

physical or logical mass storage device, such as a
diskette or minidisk.

fileset .  1) An individually installable option or update.
Options provide specific function while updates correct
an error in, or enhance, a previously installed product.
2) One or more separately installable, logically grouped
units in an installation package. See also Licensed
Program Product and package.

foreign host .  See remote host.

Fortran .  One of the oldest of the modern programming
languages, and the most popular language for scientific
and engineering computations. It's name is a
contraction of FORmula TRANslation. The two most
common Fortran versions are Fortran 77, originally
standardized in 1978, and Fortran 90. Fortran 77 is a
proper subset of Fortran 90.

function call tree .  A graphical representation of all the
functions and calls within an application, which appears
in the Xprofiler main window. The functions are
represented by green, solid-filled rectangles called
function boxes. The size and shape of each function
box indicates its CPU usage. Calls between functions
are represented by blue arrows, called call arcs, drawn
between the function boxes. See also call arcs.

function cycle .  A chain of calls in which the first caller
is also the last to be called. A function that calls itself
recursively is not considered a function cycle.

functional decomposition .  A method of dividing the
work in a program to exploit parallelism. One divides
the program into independent pieces of functionality
which are distributed to independent processors. This is
in contrast to data decomposition which distributes the
same work over different data to independent
processors.

functional parallelism .  Refers to situations where
parallel tasks specialize in particular work.

G
Gauss-Seidel .  An iterative relaxation method for
solving Laplace's equation. It calculates the general
solution by finding particular solutions to a set of
discrete points distributed throughout the area in
question. The values of the individual points are
obtained by averaging the values of nearby points.
Gauss-Seidel differs from Jacobi-Seidel in that for the
i+1st iteration Jacobi-Seidel uses only values calculated
in the ith iteration. Gauss-Seidel uses a mixture of
values calculated in the ith and i+1st iterations.

global max .  The maximum value across all
processors for a given variable. It is global in the sense
that it is global to the available processors.

  Glossary of Terms and Abbreviations 149



  
 

global variable .  A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

gprof .  A UNIX command that produces an execution
profile of C, Pascal, Fortran, or COBOL programs. The
execution profile is in a textual and tabular format. It is
useful for identifying which routines use the most CPU
time. See the man page on gprof .

GUI (Graphical User Interface) .  A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

H
High Performance Switch .  The high-performance
message passing network, of the RS/6000 SP(SP)
machine, that connects all processor nodes.

HIPPI.  High performance parallel interface.

hook .  hook  is a pdbx  command that allows you to
re-establish control over all task(s) in the current context
that were previously unhooked with this command.

home node .  The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host .  A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

host list file .  A file that contains a list of host names,
and possibly other information, that was defined by the
application which reads it.

host name .  The name used to uniquely identify any
computer on a network.

hot spot .  A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when
one processor that seeks the resource blocks,
preventing many other processors from having it,
thereby forcing them to become idle.

I
IBM Parallel Environment for AIX .  A program
product that provides an execution and development
environment for parallel Fortran, C, or C++ programs. It
also includes tools for debugging, profiling, and tuning
parallel programs.

installation image .  A file or collection of files that are
required in order to install a software product on a
RS/6000 workstation or on SP system nodes. These
files are in a form that allows them to be installed or
removed with the AIX installp  command. See also
fileset, Licensed Program Product, and package.

Internet .  The collection of worldwide networks and
gateways which function as a single, cooperative virtual
network.

Internet Protocol (IP) .  1) The TCP/IP protocol that
provides packet delivery between the hardware and
user processes. 2) The High Performance Switch
library, provided with the IBM Parallel System Support
Programs for AIX, that follows the IP protocol of
TCP/IP.

IP.  See Internet Protocol.

J
Jacobi-Seidel .  See Gauss-Seidel.

| job management system .  

| The software you use to manage the jobs across your
| system, based on the availability and state of system
| resources.

K
Kerberos .  A publicly available security and
authentication product that works with the IBM Parallel
System Support Programs for AIX software to
authenticate the execution of remote commands.

kernel .  The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in kernel mode (in other words, at higher
execution priority level than user mode) and is protected
from user tampering by the hardware.

L
Laplace's equation .  A homogeneous partial
differential equation used to describe heat transfer,
electric fields, and many other applications.

latency .  The time interval between the instant at which
an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

150 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

Licensed Program Product (LPP) .  A collection of
software packages, sold as a product, that customers
pay for to license. It can consist of packages and
filesets a customer would install. These packages and
filesets bear a copyright and are offered under the
terms and conditions of a licensing agreement. See also
fileset and package.

| LoadLeveler .  A job management system that works
| with POE to allow users to run jobs and match
| processing needs with system resources, in order to
| better utilize the system.

local variable .  A variable that is defined and used
only in one specified portion of a computer program.

loop unrolling .  A program transformation which
makes multiple copies of the body of a loop, placing the
copies also within the body of the loop. The loop trip
count and index are adjusted appropriately so the new
loop computes the same values as the original. This
transformation makes it possible for a compiler to take
additional advantage of instruction pipelining, data
cache effects, and software pipelining.

See also optimization.

M
menu .  A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated.

message catalog .  A file created using the AIX
Message Facility from a message source file that
contains application error and other messages, which
can later be translated into other languages without
having to recompile the application source code.

message passing .  Refers to the process by which
parallel tasks explicitly exchange program data.

MIMD (Multiple Instruction Multiple Data) .  A parallel
programming model in which different processors
perform different instructions on different sets of data.

MPMD (Multiple Program Multiple Data) .  A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI.  Message Passing Interface; a standardized API
for implementing the message passing model.

N
network .  An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

node .  (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
the RS/6000 SP, a single location or workstation in a
network. An SP node is a physical entity (a processor).

node ID .  A string of unique characters that identifies
the node on a network.

nonblocking operation .  An operation, such as
sending or receiving a message, which returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

O
object code .  The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory.

optimization .  A not strictly accurate but widely used
term for program performance improvement, especially
for performance improvement done by a compiler or
other program translation software. An optimizing
compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

option flag .  Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command line
options.

P
package .  A number of filesets that have been
collected into a single installable image of program
products, or LPPs. Multiple filesets can be bundled
together for installing groups of software together. See
also fileset and Licensed Program Product.

  Glossary of Terms and Abbreviations 151



  
 

parallelism .  The degree to which parts of a program
may be concurrently executed.

parallelize .  To convert a serial program for parallel
execution.

Parallel Operating Environment (POE) .  An execution
environment that smooths the differences between
serial and parallel execution. It lets you submit and
manage parallel jobs. It is abbreviated and commonly
known as POE.

parameter .  * (1) In Fortran, a symbol that is given a
constant value for a specified application. (2) An item in
a menu for which the operator specifies a value or for
which the system provides a value when the menu is
interpreted. (3) A name in a procedure that is used to
refer to an argument that is passed to the procedure.
(4) A particular piece of information that a system or
application program needs to process a request.

partition .  (1) A fixed-size division of storage. (2) In
terms of the RS/6000 SP, a logical definition of nodes
to be viewed as one system or domain. System
partitioning is a method of organizing the SP into
groups of nodes for testing or running different levels of
software of product environments.

Partition Manager .  The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard
error (STDERR).

pdbx .  pdbx  is the parallel, symbolic command line
debugging facility of PE. pdbx  is based on the dbx
debugger and has a similar interface.

PE.  The IBM Parallel Environment for AIX program
product.

performance monitor .  A utility which displays how
effectively a system is being used by programs.

POE.  See Parallel Operating Environment.

pool .  Groups of nodes on an SP that are known to the
Resource Manager, and are identified by a number.

point-to-point communication .  A communication
operation which involves exactly two processes or
tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

procedure .  (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of

related control statements that cause one or more
programs to be performed.

process .  A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process's state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

The process is created via a fork () system call and
ends using an exit () system call. Between fork  and
exit , the process is known to the system by a unique
process identifier (pid).

Each process has its own virtual memory space and
cannot access another process's memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

prof .  A utility which produces an execution profile of
an application or program. It is useful to identifying
which routines use the most CPU time. See the man
page for prof .

profiling .  The act of determining how much CPU time
is used by each function or subroutine in a program.
The histogram or table produced is called the execution
profile.

Program Marker Array .  An X-Windows run time
monitor tool provided with Parallel Operating
Environment, used to provide immediate visual
feedback on a program's execution.

pthread .  A thread that conforms to the POSIX
Threads Programming Model.

R
reduction operation .  An operation, usually
mathematical, which reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

remote host .  Any host on a network except the one at
which a particular operator is working.

remote shell (rsh) .  A command supplied with both
AIX and the IBM Parallel System Support Programs for
AIX that lets you issue commands on a remote host.

Report .  In Xprofiler, a tabular listing of performance
data that is derived from the gmon.out files of an
application. There are five types of reports that are
generated by Xprofiler, and each one presents different
statistical information for an application.

152 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

| Resource Manager .  A server that runs on one of the
| nodes of an RS/6000 SP (SP) machine. It prevents
| parallel jobs from interfering with each other, and
| reports job-related node information.

RISC.  Reduced Instruction Set Computing (RISC), the
technology for today's high performance personal
computers and workstations, was invented in 1975.

S
shell script .  A sequence of commands that are to be
executed by a shell interpreter such as C shell, korn
shell, or Bourne shell. Script commands are stored in a
file in the same form as if they were typed at a terminal.

segmentation fault .  A system-detected error, usually
caused by referencing an invalid memory address.

server .  A functional unit that provides shared services
to workstations over a network; for example, a file
server, a print server, a mail server.

signal handling .  A type of communication that is used
by message passing libraries. Signal handling involves
using AIX signals as an asynchronous way to move
data in and out of message buffers.

source line .  A line of source code.

source code .  The input to a compiler or assembler,
written in a source language. Contrast with object
code.

SP.  RS/6000 SP; a scalable system from two to 128
processor nodes, arranged in various physical
configurations, that provides a high powered computing
environment.

SPMD (Single Program Multiple Data) .  A parallel
programming model in which different processors
execute the same program on different sets of data.

standard input (STDIN) .  In the AIX operating system,
the primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command.

standard output (STDOUT) .  In the AIX operating
system, the primary destination of data produced by a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command.

stencil .  A pattern of memory references used for
averaging. A 4-point stencil in two dimensions for a
given array cell, x(i,j), uses the four adjacent cells,
x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine .  (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in
a computer program. (3) A group of instructions that
can be part of another routine or can be called by
another program or routine.

synchronization .  The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator .  (1) The person at a computer
installation who designs, controls, and manages the use
of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

System Data Repository .  A component of the IBM
Parallel System Support Programs for AIX software that
provides configuration management for the SP system.
It manages the storage and retrieval of system data
across the control workstation, file servers, and nodes.

System Status Array .  An X-Windows run time monitor
tool, provided with the Parallel Operating Environment,
that lets you quickly survey the utilization of processor
nodes.

T
task .  A unit of computation analogous to an AIX
process.

thread .  A single, separately dispatchable, unit of
execution. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently.

tracing .  In PE, the collection of data for the
Visualization Tool (VT). The program is traced by
collecting information about the execution of the
program in trace records. These records are then
accumulated into a trace file which a user visualizes
with VT.

tracepoint .  Tracepoints are places in the program
that, when reached during execution, cause the
debugger to print information about the state of the
program.

trace record .  In PE, a collection of information about a
specific event that occurred during the execution of your
program. For example, a trace record is created for
each send and receive operation that occurs in your
program (this is optional and may not be appropriate).
These records are then accumulated into a trace file
which allows the Visualization Tool to visually display
the communications patterns from the program.

  Glossary of Terms and Abbreviations 153



  
 

U
unrolling loops .  See loop unrolling.

US.  See user space.

user .  (1) A person who requires the services of a
computing system. (2) Any person or any thing that may
issue or receive commands and message to or from the
information processing system.

user space (US) .  A version of the message passing
library that is optimized for direct access to the SP High
Performance Switch, that maximizes the performance
capabilities of the SP hardware.

utility program .  A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine .  A routine in general support of the
processes of a computer; for example, an input routine.

V
variable .  (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose

value can be changed, while the program is running, by
referring to the name of the variable.

view .  (1) In an information resource directory, the
combination of a variation name and revision number
that is used as a component of an access name or of a
descriptive name.

Visualization Tool .  The PE Visualization Tool. This
tool uses information that is captured as your parallel
program executes, and presents a graphical display of
the program execution. For more information, see IBM
Parallel Environment for AIX: Operation and Use,
Volume 2, Tools Reference

VT.  See Visualization Tool.

X
X Window System .  The UNIX industry's graphics
windowing standard that provides simultaneous views of
several executing programs or processes on high
resolution graphics displays.

xpdbx .  This is the former name of the PE graphical
interface debugging facility, which is now called pedb .

Xprofiler .  An AIX tool that is used to analyze the
performance of both serial and parallel applications, via
a graphical user interface. Xprofiler provides quick
access to the profiled data, so that the functions that
are the most CPU-intensive can be easily identified.

154 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

 Index

A
adapter 14
address 18
AIX 1
allocating nodes 58, 61
application 2
application marker 129
application programming interface (API) 71
argument 43
attribute 55
authorized access 9

B
bandwidth 1
breakpoint 130
buffer 48

C
C 10
C shell 67
C++ 1
cancelling a POE job 57
checkpointing programs 51
cluster 1
collective communication 95, 98
command-line flags, POE 19, 139
commands, PE 83
Communication Subsystem (CSS) 2
communication subsystem library 2
compiling parallel programs 10
condition 67
control workstation 12
conventions xii
core file 42

D
daemon 79
dbx 4
debugger 4
Distributed File System (DFS) 53
dynamic libraries 11

E
environment variables, POE 19, 139
Ethernet 18
event 4
executable 9

executing parallel programs 9
execution 1
execution environment 14
expression 76

F
FDDI 18
file system 13
fileset 15, 29, 141
flag 10
Fortran 1
function 48, 57

G
gprof 4

H
home node 3
host 104
host list file 20
host name 20

I
IBM Parallel Environment for AIX 1
Internet Protocol (IP) 2

K
kernel 15
killing a POE job 57

L
latency 1
LoadLeveler 58
LoadLeveler, submitting a batch POE job to 65
Low-level Application Programming Interface (LAPI) 2

M
message catalog 36
message passing 2
message passing call 2
Message Passing Interface (MPI) 2
Message Passing Library (MPL) 2
message passing program 2
message passing routine 2
message queue facility 6

 Copyright IBM Corp. 1995, 1998  155



  
 

migrating to 2.4 6
mixed system 1
monitoring processor nodes using the System Status

Array 78, 81
MPMD (Multiple Program Multiple Data) 1

N
network 4
node 1
nonblocking operation 69

O
option 24

P
Parallel Environment (PE), overview 1, 5
parallel file copy utilities 72
Parallel Operating Environment (POE) 9

executing parallel programs 9
parallel profiling capability 4
parallel programs 9

compiling 10
controlling program execution 42, 56
executing 9
monitoring execution using the Program Marker

Array 75
Parallel Utility Function 49
parallelizing 2
parameter 67
partition 1
Partition Manager 3
pdbx 4
PE commands 83

mcp 83
mcpgath 85
mcpscat 89
mpamddir 92
mpcc 93, 99
mpcc_chkpt 95, 100
mpcc_r 97, 102
mprcp 104
mpxlf 105
mpxlf_chkpt 107
mpxlf_r 109
mpxlf90 112
mpxlf90_chkpt 114
mpxlf90_r 117
pmarray 119
poe 120
poeauth 133
poekill 135
poestat 136

pedb 4
performance monitoring 4
POE

commands file, loading nodes individually using 38
commands file, reading job steps from 40
compiling parallel programs 10
controlling program execution using 42, 56
executing non-parallel programs using 41
invoking executables in 34, 41
setting up execution environment 14

POE command line flags
-polling_interval 145
-single_thread 145
-thread_stacksize 145
-wait_mode 145

POE command-line flags 19, 139
-adapter_use 24, 140
-buffer_mem 123, 145
-cmdfile 38, 40, 142
-coredir 123, 146
-cpu_use 24, 140
-css_interrupt 123, 145
-eager_limit 123, 145
-euidevelop 132, 146
-euidevice 31, 140
-euilib 30, 140
-euilibpath 30, 140
-hfile 28, 140
-hostfile 28, 140
-ilevel 130, 144
-infolevel 130, 144
-intrdelay 123, 145
-labelio 49, 142
-max_typedepth 123, 144
-msg_api 141
-newjob 38, 142
-nodes 141
-pgmmodel 35, 142
-pmdlog 130, 144
-pmlights 120, 146
-polling_interval 123
-procs 19, 141
-pulse 57, 141
-resd 29, 141
-retry 43, 141
-retrycount 43, 141
-rmpool 32, 141
-samplefreq 128, 143
-savehostfile 26, 141
-sfreq 128, 143
-single_thread 123
-stdinmode 45, 142
-stdoutmode 48, 143
-tasks_per_node 141
-tbsize 128, 143
-tbuffsize 128, 143

156 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  



  
 

POE command-line flags (continued)
-tbuffwrap 129, 143
-tbwrap 129, 143
-tdir 129, 143
-tfile 129, 143
-thread_stacksize 123
-tlevel 129, 143
-tmpdir 129, 143
-tracedir 129, 143
-tracefile 129, 143
-tracelevel 129, 143
-ttempsize 129, 143
-ttsize 129, 143
-use_flow_control 123, 145
-usrport 123, 146
-wait_mode 123
generating diagnostic logs using 50
labeling task output using 49
maintaining partition for multiple job steps using 38
making POE wait for available nodes using 43
managing standard input using 45
managing standard output using 48
setting number of task processes 19
setting the message reporting level using 50
specifying a commands file using 38, 40
specifying a host list file 28
specifying adapter set for message passing

using 31
specifying additional error checking using 42
specifying communication subsystem library

implementation using 29
specifying node allocation through Resource

Manager using 28
specifying programming model using 35

POE environment variables 19, 139
generating diagnostic logs using 50
labeling task output using 49
maintaining partition for multiple job steps using 38
making POE ignore arguments using 43
making POE wait for available nodes using 43
managing standard input using 45
managing standard output using 48
MP_ADAPTER_USE 24, 140
MP_AUTH 140
MP_BUFFER_MEM 131, 145
MP_CHECKDIR 42, 51, 142
MP_CHECKFILE 42, 51, 142
MP_CMDFILE 38, 40, 142
MP_COREDIR 132, 146
MP_CPU_USE 24, 140
MP_CSS_INTERRUPT 131, 145
MP_DBXPROMPTMOD 146
MP_DEBUG_INITIAL_STOP 130, 144
MP_DEBUG_LOG 130, 144
MP_EAGER_LIMIT 131, 145
MP_EUIDEVELOP 132, 146

POE environment variables (continued)
MP_EUIDEVICE 15, 140
MP_EUILIB 15, 140
MP_EUILIBPATH 30, 140
MP_FENCE 132, 146
MP_HOLD_STDIN 42, 142
MP_HOSTFILE 15, 140
MP_INFOLEVEL 129, 144
MP_INTRDELAY 131, 145
MP_LABELIO 42, 142
MP_MAX_TYPEDEPTH 131, 144
MP_MSG_API 141
MP_NEWJOB 38, 142
MP_NOARGLIST 132, 146
MP_NODES 141
MP_PGMMODEL 35, 142
MP_PMDLOG 130, 144
MP_PMDSUFFIX 130, 144
MP_PMLIGHTS 120, 146
MP_POLLING_INTERVAL 131, 145
MP_PRIORITY 132, 146
MP_PROCS 14, 141
MP_PULSE 42, 141
MP_REMOTEDIR 67, 142
MP_RESD 15, 141
MP_RETRY 42, 141
MP_RETRYCOUNT 42, 141
MP_RMPOOL 16, 141
MP_SAMPLEFREQ 128, 143
MP_SAVEHOSTFILE 26, 141
MP_SINGLE_THREAD 131, 145
MP_STDINMODE 42, 142
MP_STDOUTMODE 42, 143
MP_TASKS_PER_NODE 141
MP_TBUFFSIZE 128, 143
MP_TBUFFWRAP 129, 143
MP_THREAD_STACKSIZE 131, 145
MP_TIMEOUT 127, 142, 145
MP_TMPDIR 129, 143
MP_TRACEDIR 129, 143
MP_TRACEFILE 129, 143
MP_TRACELEVEL 129, 143
MP_TTEMPSIZE 129, 143
MP_USE_FLOW_CONTROL 131, 145
MP_USRPORT 120, 146
MP_WAIT_MODE 131, 145
setting number of task processes 19
setting the message reporting level using 50
specifying a commands file using 38, 40
specifying a host list file 28
specifying adapter set for message passing

using 31
specifying additional error checking using 42
specifying communication subsystem library

implementation using 29
specifying node allocation through Resource

Manager using 28

  Index 157



  
 

POE environment variables (continued)
specifying programming model using 35

poeauth 53
pool 1
process 41
prof 4
Program Marker Array 75

displaying details of light on 77
displaying task output on 78
Parallel Utility Functions for 76
setting the number of lights on 76
starting 77

publications, related xii

R
remote host 104
remote node 3
Resource Manager 61
restarting programs 51

S
serial program 1
shell script 3
source code 1
source line 144
SPMD (Single Program Multiple Data) 1
standard error (STDERR) 44
standard input (STDIN) 44
standard output (STDOUT) 44
static executable 11
stopping a POE job 56
subroutine 9
system administrator 1
System Status Array 4

T
task 1
threads 2
trace file 128
trace record 4
tracing 128
trademarks vii

U
user 9
User Space (US) 2

V
variable 4
view 94, 95, 97, 101, 107, 115
Visualization Tool (VT) 4

X
Xprofiler 6

158 IBM PE for AIX V2R4.0: Operation and Use, Vol. 1  





Communicating Your Comments to IBM

IBM Parallel Environment for AIX
Operation and Use, Volume 1
Using the Parallel Operating Environment
Version 2 Release 4

Publication No. SC28-1979-02

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.s390.ibm.com/os390

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.



 

Reader's Comments — We'd Like to Hear from You

IBM Parallel Environment for AIX
Operation and Use, Volume 1
Using the Parallel Operating Environment
Version 2 Release 4

Publication No. SC28-1979-02

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note:  Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:  

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[ ] As an introduction [ ] As a text (student)

[ ] As a reference manual [ ] As a text (instructor)

[ ] For another purpose (explain)

  

  



Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
SC28-1979-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SC28-1979-02



 

 



IBM

Program Number: 5765-543

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC28-1979-ð2


