

Command and Technical Reference, Volume 2

Version 3 Release 1.1

Command and Technical Reference, Volume 2

Version 3 Release 1.1

Note!

Before using this information and the product it supports, read the information in "Notices" on page ix.

Second Edition (October 1999)

This edition applies to version 3 release 1 modification 1 of the IBM Parallel System Support Programs for AIX (PSSP) Licensed Program (product number 5765-D51) and to all subsequent releases and modifications until otherwise indicated in new editions. This edition replaces SA22-7351-00. Significant changes or additions to the text are indicated by a vertical line (|) to the left of the change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address your comments to the following address:

International Business Machines Corporation Department 55JA, Mail Station P384 522 South Road Poughkeepsie, NY 12601-5400 United States of America

FAX (United States & Canada): 1+914+432-9405 FAX (Other Countries):

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)

IBM Mail Exchange: USIB6TC9 at IBMMAIL Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

- · Title and order number of this book
- · Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 1999. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

	Notices
	Trademarks
	Publicly Available Software
	About This Book xiii
	Who Should Use This Book xiii
	How This Book Is Organized xiii
	Command Format
	Typographic Conventions
Part 1 Comma	nd Reference Volume 2 1
Tart I. Comma	nd Reference volume 2
	Chapter 1. Commands
	System Partitioning and Commands
	rcmdtgt
	rcp
	removehsd
	removersd
	resource_center
	resumevsd
	rmkp
	rsh
	rvsdrestrict
	SDR_config
	SDR_init
	SDR_test
	SDRAddSyspar
	SDRArchive
	SDRChangeAttrValues
	SDRClearLock
	SDRCreateAttrs
	SDRCreateClass
	SDRCreateFile
	SDRCreateObjects
	SDRCreateSystemClass
	SDRCreateSystemFile
	SDRDeleteFile
	SDRDeleteObjects
	SDRGetObjects
	SDRListClasses
	SDRListFiles
	SDRMoveObjects
	SDRRemoveSyspar
	SDRReplaceFile
	SDRRestore
	SDRRetrieveFile
	SDRWhoHasLock
	seqfile
	services config

© Copyright IBM Corp. 1998, 1999

sethacws																	
setup_authent																	
setup_CWS																	
setup_logd																	
setup_server																	
sp_configd																	
sp_configdctrl Script																	
spacctnd																	
spacs_cntrl			 	 							 	 					. 84
spadaptrs																	
spapply_config																	
spauthconfig																	
spbootins																	
spbootlist																	
spchuser			 	 							 	 					. 100
spchvgobj			 	 							 	 					. 102
spcustomize_syspar																	
spcw_addevents																	
spcw_apps			 	 							 	 					. 109
spdeladap																	
spdelexp																	
spdelfram																	
spdelnode																	
spdisplay_config			 	 							 	 					. 119
spethernt																	
spevent			 	 							 	 					. 126
spframe																	
spget_syspar																	
spgetdesc																	
sphardware																	
sphostnam																	
sphrdwrad																	
spled																	
splm																	
splogd Daemon																	
splst_syspars																	
splst_versions																	
splstadapters																	
splstdata																	
splstnodes																	
splsuser																	
spmgrd Daemon																	
spmkuser																	
spmirrorvg																	
spmkvgobj																	
spmon																	
spmon_ctest																	
spmon_itest																	
sppenode																	
spperfmon																	
sprestore_config																	. 192
sprmuser																	
sprmvgobj	٠.	•	 		٠.	•	 •	• •	٠	 •	 	 	•	٠.	٠	•	. 195 197
SOSECCIO																	197

	spsetauth	199
	spsitenv	201
	spsvrmgr	206
	spsyspar	213
	sptg	216
	spunmirrorvg	217
	spverify_config	219
	51 - 53	220
		223
		225
	_ ,	227
	startvsd	229
	statvsd	231
	stopvsd	234
	supfilesry Daemon	236
	supper	237 239
	suspendvsd	239
	switch_stress	241
	,	244
	,	252
	_	254
	sysparaid	259
	s1term	264
	tecad_pssp	266
	ucfghsd	268
	ucfghsdvsd	269
	ucfgvsd	271
	~	273
	undefhsd	275
		276
	unfencevsd	277
	updatehsd	279
	updatevsdnode	281
	updatevsdtab	284
	updauthfiles	286
	verparvsd	
	vhostname	
	vsdatalst	
	vsdchgserver	
	vsddiag	
	vsdelnode	
	9	302
		304
	vsdsklst	
	vsdvg	
	vsdvgts	
	vsdvts	
	wrap_test	31/
Dant O. Taribri	J. Deference	
Part 2. Technica	al Reference	319
	Chapter 2. RS/6000 SP Files and Other Technical Information	321

|

auto.master File	322
bootptab.info File	323
haemloadlist File	324
hmacls File	328
hmthresholds File	
hwevents File	
.klogin File	
Kerberos	
krb.conf File	
krb.realms File	
SDR_dest_info File	
sysctl.acl File	
sysctl.conf File	
tuning.commercial File	
tuning.default File	
tuning.development File	
tuning.scientific File	
turing.Scientific File	334
Chapter 3. SP Subroutines	355
getvhostname Subroutine	
hacws_set Subroutine	
hacws_stat Subroutine	
LAPI_Address Subroutine	
LAPI_Address_init Subroutine	
LAPI_Amsend Subroutine	
LAPI_Fence Subroutine	
LAPI_Get Subroutine	
LAPI_Getcntr Subroutine	
LAPI_Gfence Subroutine	
LAPI_Init Subroutine	
LAPI_Msg_string Subroutine	
LAPI_Probe Subroutine	
LAPI_Put Subroutine	
LAPI_Qenv Subroutine	
LAPI_Rmw Subroutine	
LAPI_Senv Subroutine	
	393
LAPI_Term Subroutine	
LAPI_Waitcntr Subroutine	
setvhostname Subroutine	
swclockGetIncrement Subroutine	
swclockInit Subroutine	
swclockRead Subroutine	
swclockReadSec Subroutine	
swclockTerm Subroutine	
swtbl_clean_table Subroutine	409
swtbl_load_job Subroutine	411
swtbl_load_table Subroutine	
swtbl_query_adapter Subroutine	
swtbl_status Subroutine	
swtbl_status_node Subroutine	423
swtbl_unload_job Subroutine	425
swtbl_unload_table Subroutine	428

Part 3. Appen	dixes
	Appendix A. Perspectives Colors and Fonts
	Perspectives Colors with Red, Green, and Blue (RGB) Triplets 433
	Perspectives Fonts
	Glossary of Terms and Abbreviations
	Bibliography
	Finding Documentation on the World Wide Web
	Accessing PSSP Documentation Online
	Manual Pages for Public Code
	RS/6000 SP Planning Publications
	RS/6000 SP Hardware Publications
	RS/6000 SP Switch Router Publications
	RS/6000 SP Software Publications
	AIX and Related Product Publications
	Red Books
	Non-IBM Publications
	Index

Notices

I

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785 USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing 2-31 Roppongi 3-chome, Minato-ku Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1998, 1999

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation Department LJEB/P905 522 South Road Poughkeepsie, NY 12601-5400 U.S.A

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States or other countries or both:

AIX AIX/6000 **DATABASE 2** ES/9000 **ESCON HACMP/6000**

IBM IBMLink LoadLeveler

Netfinity POWERparallel

RS/6000

Scalable POWERparallel Systems

SP

System/370 System/390 TURBOWAYS

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, BackOffice, MS-DOS, and the Windows logo are trademarks or registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Tivoli Enterprise Console is a trademark of Tivoli Systems Inc. in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both and is licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be the trademarks or service marks of others.

Publicly Available Software

PSSP includes software that is publicly available:

expect Programmed dialogue with interactive programs

Kerberos Provides authentication of the execution of remote commands

NTP Network Time Protocol

Perl Practical Extraction and Report Language

SUP Software Update Protocol
Tcl Tool Command Language

TcIX Tool Command Language Extended

Tk Tcl-based Tool Kit for X-windows

This book discusses the use of these products only as they apply specifically to the RS/6000 system. The distribution for these products includes the source code and associated documentation. (Kerberos does not ship source code.)

/usr/lpp/ssp/public contains the compressed tar files of the publicly available software. (IBM has made minor modifications to the versions of Tcl and Tk used in the SP system to improve their security characteristics. Therefore, the IBM-supplied versions do not match exactly the versions you may build from the compressed tar files.) All copyright notices in the documentation must be respected. You can find version and distribution information for each of these products that are part of your selected install options in the /usr/lpp/ssp/README/ssp.public.README file.

About This Book

This book provides detailed syntax and parameter information for all commands you can use to install, customize, and maintain the IBM RS/6000 SP system.

For a list of related books and information about accessing online information, see the bibliography in the back of the book.

This book applies to PSSP Version 3 Release 1 Modification 1. To find out what version of PSSP is running on your control workstation (node 0), enter the following:

```
splst_versions -t -n0
```

In response, the system displays something similar to:

```
0 PSSP-3.1.1
```

If the response indicates **PSSP-3.1.1**, this book applies to the version of PSSP that is running on your system.

To find out what version of PSSP is running on the nodes of your system, enter the following from your control workstation:

```
splst_versions -t -G
```

In response, the system displays something similar to:

```
1 PSSP-3.1.1
2 PSSP-3.1.1
7 PSSP-2.4
8 PSSP-2.2
```

If the response indicates **PSSP-3.1.1**, this book applies to the version of PSSP that is running on those nodes.

If you are running mixed levels of PSSP, be sure to maintain and refer to the appropriate documentation for whatever versions of PSSP you are running.

Who Should Use This Book

This book is intended for anyone not familiar with the syntax and use of the RS/6000 SP commands.

How This Book Is Organized

This book consists of two volumes. Volume 1 contains RS/6000 SP commands a -p. Volume 2 contains RS/6000 SP commands r - v, RS/6000 SP Files and Other Technical Information, and RS/6000 SP Subroutines. Both volumes share a common frontmatter, appendix, glossary, and bibliography. The indexes are customized for each volume.

© Copyright IBM Corp. 1998, 1999

Command Format

The commands in this book are in the following format:

Purpose Provides the name of the command and a brief description of its

purpose.

Syntax Includes a diagram that summarizes the use of the command.

Flags Lists and describes the options that control the behavior of the

command.

Operands Lists and describes the objects on which the command operates.

Description Includes a complete description of the command.

Extended Description

Includes more detailed or additional description of the command.

Environment Variables

Lists any environment variables that affect the operation of the command. Lists any environment variables that are affected by

the operation of the command.

Files Lists any RS/6000 SP system files that are read, employed,

referred to, or written to by the command, or that are otherwise

relevant to its use.

Standard Input

Describes what this command reads from standard input.

Standard Output

Describes what this command writes to standard output.

Standard Error

Describes what and when this command writes to standard error.

Exit Values Describes the values returned and the conditions that caused the

values to be returned.

Security Describes who can run this command and provides other

security-related information.

Restrictions Lists restrictions beyond the security restrictions described

previously.

Implementation Specifics

Identifies the package of each individual command.

Prerequisite Information

Provides a pointer to other documents that would enhance the

user's understanding of this command.

Location Specifies the location of the command.

Related Information

Lists RS/6000 SP commands, functions, file formats, and special files that are employed by the command, that have a purpose which is related to that of the command, or that are otherwise of interest within the context of the command. Also listed are related

RS/6000 SP documents, other related documents, and miscellaneous information related to the command.

Examples Provides examples of how the command is typically used.

Typographic Conventions

This book uses the following typographic conventions:

Typographic	Usage
Bold	Bold words or characters represent system elements that you must use literally, such as commands, flags, and path names.
	Bold words also indicate the first use of a term included in the glossary.
Italic	 Italic words or characters represent variable values that you must supply.
	 Italics are also used for book titles and for general emphasis in text.
Constant width	Examples and information that the system displays appear in constant width typeface.
[]	Brackets enclose optional items in format and syntax descriptions.
{}	Braces enclose a list from which you must choose an item in format and syntax descriptions.
1	A vertical bar separates items in a list of choices. (In other words, it means "or.")
<>	Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For example, < Enter > refers to the key on your terminal or workstation that is labeled with the word Enter.
	An ellipsis indicates that you can repeat the preceding item one or more times.
<ctrl-x></ctrl-x>	The notation <ctrl-< b=""><i>x</i>> indicates a control character sequence. For example, <ctrl-< b="">c> means that you hold down the control key while pressing <c< b="">>.</c<></ctrl-<></ctrl-<>
1	The continuation character is used in coding examples in this book for formatting purposes.

Part 1. Command Reference Volume 2

© Copyright IBM Corp. 1998, 1999

Chapter 1. Commands

This volume contains the RS/6000 SP Commands R - Z, RS/6000 SP Files and Other Technical Information (Chapter 2), and RS/6000 SP Subroutines (Chapter 3). See Volume 1 for RS/6000 SP Commands A - Q.

To access the RS/6000 SP online manual pages, set the MANPATH environment variable as follows:

for ksh
export MANPATH=\$MANPATH:/usr/lpp/ssp/man
for csh
setenv MANPATH \$MANPATH\:/usr/lpp/ssp/man

System Partitioning and Commands

When you partition your system, you create one or more system partitions which, for most tasks, function as separate and distinct logical RS/6000 SP systems. Most commands function within the boundary of the system partition in which they are executed. A number of commands, however, continue to treat the RS/6000 SP as a single entity and do not respect system partition boundaries. That is, in their normal function they may affect a node or other entity outside of the current system partition. In addition, some commands which normally function only within the current system partition have been given a new parameter which, when used, allows the scope of that command to exceed the boundaries of the current system partition.

On the control workstation, the administrator is in an environment for *one system* partition at a time. The SP_NAME environment variable identifies the system partition to subsystems. (If this environment variable is not set, the system partition is defined by the primary: stanza in the <code>/etc/SDR_dest_info</code> file.) Most tasks performed on the control workstation that get information from the System Data Repository (SDR) will get the information for *that particular system partition*.

In managing multiple system partitions, it is helpful to open a window for each system partition. You can set and export the SP_NAME environment variable in each window and set up the window title bar or shell prompt with the system partition name. The following script is an example:

© Copyright IBM Corp. 1998, 1999

```
sysparenv:
#!/bin/ksh
 for i in 'splst syspars'
     syspar='host $i | cut -f 1 -d"."'
    echo "Opening the $syspar partition environment"
    export SP NAME=$syspar
    aixterm -T "Work Environment for CWS 'hostname -s' - View: $syspar" -ls -sb &
 done
 exit
.profile addition:
# Added for syspar environment setup
 if [ "'env | grep SP_NAME | cut -d= -f1'" = SP_NAME ]
       PS1="['hostname -s'"$SP NAME] ['$PWD]> '
       PS1="['hostname -s']["'$PWD]< '
 fi
 export ENV
```

As a user, you can check what system partition you're in with the command: spget_syspar -n

The following table summarizes those commands which can exceed the boundary of the current system partition. Unless otherwise stated, commands not listed in this table have as their scope the current system partition.

Command	Effect
arp	Can reference any node (by its host name) in any system partition.
Automounter commands	Host names need not be in the current system partition.
chauthpar -p	The -p flag allows specification of a system partition other than the current system partition.
crunacct	Merges accounting data from all nodes regardless of system partition boundaries.
cshutdown -G	The -G flag allows specification of target nodes outside of the current system partition.
cstartup -G	The -G flag allows specification of target nodes outside of the current system partition.
dsh dsh -w{hostname -}	Hosts added to the working collective by host name need not be in the current system partition.
dsh -aG	The -G flag modifies the -a flag (all nodes in the current system partition) by expanding the scope to all nodes in the entire physical SP system.
Eclock	There is a single switch clock for the SP regardless of the number of system partitions.
Efence -G	The -G flag allows specification of nodes outside of the current system partition.
emonctrl -c	The system partition-sensitive control script for the emon subsystem supports the -c option, which crosses system partitions.
Eunfence -G	The -G flag allows specification of nodes outside of the current system partition.

Command	Effect
haemctrl -c haemctrl -u	The system partition-sensitive control script for the haem subsystem supports the -c and -u options, which cross system partitions.
haemd_SP syspar_IPaddr	Specifies the IP address of the system partition in which the haemd daemon is to execute.
haemqvar	If the SP_NAME environment variable is not set, the default system partition is used.
hagsctrl -c hagsctrl -u	The system partition-sensitive control script for the hags subsystem supports the -c and -u options, which cross system partitions.
hatsctrl -c hatsctrl -u	The system partition-sensitive control script for the hats subsystem supports the -c and -u options, which cross system partitions.
hmcmds -G	The -G flag allows the hmcmds commands to be sent to any hardware on the SP system.
hmmon -G	The -G flag allows for the specification of hardware outside of the current system partition.
hostlist hostlist -f filename hostlist -w hostname	Host names need not be in the current system partition.
hostlist -aG -nG -sG	The -G flag modifies the -a , -n , or -s flag by expanding the scope to the entire physical SP system.
hrctrl -c	The system partition-sensitive control script for the hr subsystem supports the -c option, which crosses system partitions.
hsdatalst -G	The -G flag causes the display of HSD information to be for all system partitions.
Ippdiff -aG	The -G flag modifies the -a flag (all nodes in the current system partition) by expanding the scope to all nodes in the entire physical SP system.
Isauthpar -p	The -p flag allows specification of a system partition other than the current system partition.
nodecond -G	The -G flag allows specification of a node outside of the current system partition.
psysIrpt -w hostnames	The host names supplied with the -w flag can be in any system partition (the -a flag will select all nodes in the current system partition).
psysicir -w hostnames	The host names supplied with the -w flag can be in any system partition (the -a flag will select all nodes in the current system partition).
penotify -w hostnames	The host names supplied with the -w flag can be in any system partition (the -a flag will select all nodes in the current system partition).
pmanctrl -c	The system partition-sensitive control script for the pman subsystem supports the -c option, which crosses system partitions.

Command	Effect
Parallel commands: • p_cat • pcp	Parallel commands can take the following options and will behave accordingly: -w Host names specified with -w need not be in the current
 pdf pfck pexec pexscr pfind pfps pls pmv ppred pps prm 	system partition. noderange Nodes specified by noderange must be in the current system partition. hostlist_args Host names specified with hostlist options -w or -G need not be in the current system partition (any other hostlist options operate within the current system partition).
SDRArchive, SDRRestore	Archives/restores the SDR representing the entire SP.
SDRGetObjects -G	The -G flag allows for retrieval of partitioned class objects from partitions other than the current system partition. Without the -G , objects which are in a partitioned class are retrieved from the current system partition only.
SDRMoveObjects	Moves objects from one system partition to another.
Other SDR commands	SDR commands that create, change or delete values work within the system partition. Note though that System classes (Frame, for example) are shared among all system partitions. Changes to system classes will affect other system partitions.
Security commands: • ext_srvtab • kadmin • kdb_destroy • kdb_edit • kdb_init • kdb_util • k4destroy • k4init • k4list • kpasswd • kprop • ksrvtgt • ksrvutil • kstash • rcmdtgt • setup_authent • spseccfg	The function of these security commands is unchanged under system partitioning. That is, if they previously affected the entire SP, they continue to do so even if the system has been partitioned. If they previously had the ability to affect a remote node that function is unchanged in a system partitioned environment.
sp_configdctrl -c	The system partition-sensitive control script for the sp_configd subsystem supports the -c option, which crosses system partitions.
spapply_config	Applies a system partition configuration to the entire SP.
spbootins	If a boot server outside of the current system partition is specified, that node is prepared appropriately.
spbootlist	The command targets nodes in any system partition.
spchvgobj	The command targets nodes in any system partition.
spframe	Configures data for one or more frames across the entire SP.
sphardware	Global system partition can be selected from within the Perspective.

Command	Effect
splm	The target nodes defined in the input table can include nodes from any system partition.
splst_versions -G	The -G flag allows for retrieval of PSSP version information from nodes outside the current system partition.
splstdata -G	The -G flag allows display of information on nodes and adapters outside of the current system partition.
splstadapters -G	The -G flag lists information about target adapters outside of the current system partition.
splstnodes -G	The -G flag lists information about target nodes outside of the current system partition.
spmirrorvg	The command targets nodes in any system partition.
spmkvgobj	The command targets nodes in any system partition.
spmon -G	The -G flag allows specification of nodes outside of the current system partition. The -G flag is required when performing operations on any frame or switch.
sprestore_config	Restores the entire SP SDR from a previously made archive.
sprmvgobj	The command targets nodes in any system partition.
spsitenv	Site environment variables are specified for the SP system as a whole. The specification of acct_master= can be any node in the SP regardless of system partition. The specification of install_image= may cause boot server nodes outside of the current system partition to refresh the default installation image they will serve to their nodes.
spsyspar	Command is always in global mode.
sptg	Can launch TaskGuides that affect nodes in any system partition.
spunmirrorvg	The command targets nodes in any system partition.
spverify_config	Verifies the configuration of all system partitions in the SPsystem.
st_clean_table	Can specify a node name which is outside the current partition.
st_status	Can specify a node which is outside the current partition.
supper	File collections are implemented and managed without respect to system partition boundaries.
sysctl	The Sysctl client can send requests to any node in the SP.
syspar_ctrl -c -G	The -c and -G flags allow for the crossing of system partitions in providing a single interface to the control scripts for the system partition-sensitive subsystems.
s1term -G	The -G flag allows specification of a node outside of the current system partition.
vsdatalst -G	The -G flag causes the display of IBM Virtual Shared Disk information to be for all system partitions.
vsdsklst -G	The -G flag specifies the display of information for disks outside the current system partition.

1

rcmdtgt

Purpose

rcmdtgt – Obtains and caches a Kerberos Version 4 ticket-granting-ticket for the local realm, with a maximum allowed lifetime, using the service key for the instance of **rcmd** on the local host.

Syntax

rcmdtgt

Flags

None.

Operands

None.

Description

Use this command to obtain a Kerberos Version 4 ticket-granting-ticket with a maximum allowed lifetime, using the service key for **rcmd.***localhost* found in the service key file at **/etc/krb-srvtab**. When using SP authentication services, these tickets have an unlimited lifetime. When using AFS authentication services, a maximum of 30 days is enforced.

This command must be run as root and is intended for use in shell scripts and other batch-type facilities. The **rcmdtgt** command retrieves your initial ticket and puts it in the ticket file specified by your KRBTKFILE environment variable. If the KRBTKFILE variable is undefined, your ticket is stored in the **/tmp/tkt**uid file, where uid specifies your user identification number.

Note: These tickets are shared by all processes running under the user's IDs. The KRBTKFILE environment variable can be set to change the location of the ticket cache file.

Because the ticket obtained using this command does not expire, the user should be careful to delete the temporary ticket file.

When using /usr/lpp/ssp/rcmd/bin/rcmdtgt, remember to check that the authentication method is in fact Kerberos V4 before using k4destroy or /usr/lpp/ssp/kerberos/bin/k4destroy to destroy credentials. While Kerberos V4 may be configured, the authentication method may be superseded by DCE and you could be destroying credentials obtained by the system administrator through a Kerberos V4 login.

Files

/etc/krb.conf Contains the name of the local realm.

/etc/krb-srvtab Specifies the service key file.
/tmp/tktuid Specifies the ticket cache file.

Location

/usr/lpp/ssp/rcmd/bin/rcmdtgt

Related Information

Commands: k4destroy, k4init

File: krb.conf

Refer to the "RS/6000 SP Files and Other Technical Information" section of PSSP: Command and Technical Reference for additional Kerberos information.

Examples

The following example, excerpted from the sample script.cust file, shows how rcmdtgt can be used in a shell script to perform the authentication required to use the SP **rcp** command:

```
# set the host name from which you will copy the file.
SERVER='cat /etc/ssp/server_host_name | cut -d" " -f1'
# Define a temporary ticket cache file, then get a ticket
export KRBTKFILE=/tmp/tkt.$$
/usr/lpp/ssp/rcmd/bin/rcmdtgt
# Perform kerberos-authenticated rcp
/usr/lpp/ssp/rcmd/bin/rcp $SERVER:/etc/resolv.conf /etc/resolv.conf
# Remove the ticket cache file
/bin/rm $KRBTKFILE
```

rcp

Purpose

rcp - Transfers files between a local and a remote host.

Note: The remote-to-remote copy is restricted for the Kerberos V4 execution path.

The /usr/lpp/ssp/rcmd/bin/rcp path points to the AIX Secure /usr/bin/rcp. This version supports DCE authentication, Kerberos V4 authentication and Standard Unix authentication. The authentication method in use on the host can be checked using the Isauthent command. The SP Kerberos 4 support is provided to AIX Secure remote commands through library routines. For more information on the AIX Secure remote commands shipped with AIX 4.3.1, refer to the AIX rcp online man pages for that release.

Syntax

```
rcp
      [-p] [-k Kerberos_realm] {User@Host.File | Host.File | File}
      {User@Host.File | Host.File | File | User@Host.Directory |
      Host:Directory | Directory | [-F] | [-r] {User@ Host:Directory |
      Host:Directory | Directory | {User@ Host:Directory |
       Host:Directory | Directory
```

Flags

Refer to the AIX Secure **rcp** online man page.

Operands

Refer to the AIX Secure **rcp** online man page.

Description

The /usr/lpp/ssp/rcmd/bin/rcp path points to the AIX Secure /usr/bin/rcp. The AIX Secure /usr/bin/rcp supports the SP Kerberos V4 rcp by executing an SP KV4 rcp routine when the authentication mechanism is set to Kerberos Version 4. The SP KV4 rcp routine communicates with the AIX Secure remote command daemon, krshd. The krshd daemon supports Kerberos V4 using the V4 compatibility library included with the Kerberos V5 that is used by DCE (Distributed Computing Environment).

The execution path of rcp will depend on the authentication methods that have been set using chauthent.

In the case of DCE and Kerberos V4, the Kerberos V4 execution path will be taken when DCE authentication is unsuccessful.

In the case of Kerberos V4 and AIX Standard, the Kerberos V4 execution path will be tried. If the user is unsuccessful with Kerberos V4 authentication, then the standard AIX execution path is tried. The standard AIX execution path requires a .rhosts file.

If the /usr/kerberos/bin/rcp path does not exist, a link is created from /usr/bin/rcp to /usr/kerberos/bin/rcp. The Kerberos V4 execution path of rcp uses this path when initially starting an **rcp** process on a remote host for compatibility purposes.

The authentication method used by the AIX Secure **rsh** can be listed using the AIX command **Isauthent** and can be changed by root using the AIX command **chauthent**. In order for the Kerberos V4 execution path to be taken, the Kerberos V4 authentication method must be set.

Security

The remote host allows access only if at least one of the following conditions is satisfied:

- The local user ID is listed as a principal in the authentication database and had performed a **k4init** to obtain an authentication ticket.
- If a \$HOME/.klogin file exists, it must be located in the local user's /home directory on the target system. The local user must be listed as well as any users or services allowed to rsh into this account. This file performs a similar function to a local .rhosts file. Each line in this file should contain a principal in the form of "principal.instance@realm." If the originating user is authenticated as one of the principals named in .klogin, access is granted to the account. The owner of the account is granted access if there is no .klogin file.

For security reasons, any **\$HOME/.klogin** file must be owned by either the remote user or root, and only the owner should have read and write access.

Restrictions

The SP Kerberos V4 **rcp** execution path does not support remote-to-remote copy.

Files

\$HOME/.klogin

Specifies remote users that can use a local user account.

/usr/lpp/ssp/rcmd/bin/rcp

Link to AIX Secure /usr/bin/rcp which calls the SP Kerberos 4 rcp routine if applicable.

/usr/kerberos/bin/rcp

Link to AIX Secure /usr/bin/rcp which calls the SP Kerberos 4 rcp routine if applicable.

Prerequisite Information

Refer to AIX Version 4 System Management Guide: Communications and Networks for a network overview.

Refer to the chapter on security in PSSP: Administration Guide for an overview.

Refer to the "RS/6000 SP Files and Other Technical Information" section of *PSSP:* Command and Technical Reference for additional **Kerberos** information.

Location

The /usr/lpp/ssp/rcmd/bin/rcp path points to the AIX Secure /usr/bin/rcp.

Related Information

SP Commands: k4init, rsh

AIX Commands: cp, ftp, rlogin, rsh, rshd, tftp, umask

Examples

In the following examples, the local user is listed in the authentication database and a ticket was obtained by issuing a k4init and the password. In the following examples, host1 is the local host and host2 is the remote host:

1. To copy a local file to a remote host, enter:

/usr/lpp/ssp/rcmd/bin/rcp localfile host2:/home/eng/jane

The file **localfile** from the local host is copied to the remote host host2.

2. To copy a remote file from one remote host to the local host, enter:

/usr/lpp/ssp/rcmd/bin/rcp host2:/home/eng/jane/newplan/home/eng/mary

The file /home/eng/jane/newplan is copied from remote host host1 to local host host2.

3. To send the directory subtree from the local host to a remote host and preserve the modification times and modes, enter:

```
/usr/lpp.ssp/rcmd/bin/rcp -p -r report jane@host2:report
```

The directory subtree report is copied from the local host to the home directory of user jane at remote host host2 and all modes and modification times are preserved. The remote file /home/jane/.rhosts includes an entry specifying the local host and user name.

4. This example shows how the root user can issue an **rcp** on a remote host. The root user must be in the authentication database and must have already issued k4init on the local host. The command is issued at the local host to copy the file, stuff, from node r05n07 to node r05n05.

```
/usr/lpp/ssp/rcmd/bin/rsh r05n07 'export KRBTKTFILE=/tmp/rcmdtkt$$; \
/usr/lpp/ssp/rcmd/bin/rcmdtgt; \
/usr/lpp/ssp/rcmd/bin/rcp /tmp/stuff r05n05:/tmp/stuff;'
```

The root user sets the KRBTKTFILE environment variable to the name of a temporary ticket-cache file and then obtains a service ticket by issuing the rcmdtqt command. The rcp command uses the service ticket to authenticate from host r05n07 to host r05n05.

removehsd

Purpose

removehsd – Removes one or more hashed shared disks, the virtual shared disks associated with them, and the System Data Repository (SDR) information for virtual shared disks on the associated nodes.

Syntax

removehsd {-v hsd_names | -a} [-f]

Flags

- -v Specifies the hashed shared disk name or names that are to be removed by this command.
- Specifies that the command should remove all hashed shared disks in the system or system partition.
- -f Forces the system to unconfigure the hashed shared disks and its underlying virtual shared disks and remove them. If -f is not specified and any of the virtual shared disks that constitute the hashed shared disks to be removed are configured or the hashed shared disk itself is configured, the command is unsuccessful.

Operands

None.

Description

Use this command to remove the logical volumes associated with virtual shared disks in the set of hashed shared disks. The order in which the virtual shared disks that make up the hashed shared disks and the hashed shared disks themselves are removed is the reverse of the order in which they were created.

If the virtual shared disk or hashed shared disk is configured on any of the nodes on the system partition, this command is unsuccessful, unless the -f flag is specified.

Security

You must have **sysctl** and **sysctl.vsd** access and authorization from your system administrator to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/removehsd

Related Information

Commands: createhsd, removevsd

Examples

To unconfigure and remove the virtual shared disks associated with the hashed shared disks DATA and remove the hashed shared disk as well, type:

removehsd -d DATA -f

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit delete_vsd

and select the Remove a Hashed Shared Disk option.

removevsd

Purpose

removevsd – Removes a set of virtual shared disks that are not part of any hashed shared disk.

Syntax

removevsd {-v vsd_names | -a} [-f]

Flags

- -v Specifies the virtual shared disk name or names that are to be removed by this command.
- -a Specifies that the command should remove all virtual shared disks in the system or system partition.
- -f Forces the system to unconfigure the virtual shared disks and remove them. If -f is not specified and any of the virtual shared disks that are to be removed are configured, the command is unsuccessful.

Operands

None.

Description

Use this command to remove the logical volumes associated with the virtual shared disks and update the backup nodes' Object Data Managers (ODMs), if any exist. The virtual shared disk information will be deleted from the System Data Repository (SDR). The removal of the virtual shared disks is done in the reverse of the order in which they were created. Volume groups are not removed with this command.

If the virtual shared disk is configured on any of the nodes on the system partition, this command is unsuccessful, unless the **-f** flag is specified.

Note: This command is unsuccessful if one of the virtual shared disks named in *vsd_names* belongs to a hashed shared disk. To remove virtual shared disks that belong to a hashed shared disk, use **removehsd**.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit delete vsd

and select the Remove a Virtual Shared Disk option.

Security

You must have **sysctl** and **sysctl.vsd** access and authorization from your system administrator to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands: createvsd, removehsd

Location

/usr/lpp/csd/bin/removevsd

Examples

To unconfigure and remove all defined virtual shared disks in a system or system partition, enter:

removevsd -a -f

resource_center

Purpose

resource_center - Invokes the RS/6000 SP Resource Center.

Syntax

resource_center [-c] [Netscape flags ...]

Flags

-c Forces the SP Resource Center to prompt the user for the Netscape location.

Netscape flags

Refer to Netscape documentation or run **netscape** –**h** to list available flags.

Operands

None.

Description

The RS/6000 SP Resource Center provides one single interface for all softcopy SP documentation and information resources. It consists of HTML files, Java and JavaScript, and runs in Netscape Navigator. The SP Resource Center provides access to the following RS/6000 SP information:

- Publications, READMEs, Redbooks, White Papers
- Up-to-date Service Information
- SP Product Information (Software & Hardware)
- Many other online resources useful to the RS/6000 SP user and administrator.

Upon invoking the **resource_center** command for the first time, a dialog box will ask you for the location of the Netscape executable that is installed on your system. Enter the full pathname to the Netscape program (for example,

/usr/local/bin/netscape). This path information is stored in your \$HOME/.resctr file, and you will only be prompted for it once.

The **resource_center** command will bring up Netscape Navigator with the top level RS/6000 SP Resource Center page loaded. There are three frames on the SP Resource Center interface. The frame on the top is the Title frame. The frame on the left is the Navigation frame. The large frame on the right is the Display frame.

The Title frame lets you access the IBM Home Page on the Internet (click on the IBM logo), go back to the top of the SP Resource Center (the "Home" link), search the contents of the SP Resource Center (the "Search" link), display an index of the SP Resource Center's contents (the "Index" link), and obtain help about the use of the SP Resource Center (the "Help" link).

The Navigation frame lets you select content to view. This frame contains categories that may be expanded and collapsed to display their sub-categories. Click on a category with a right-pointing arrow to expand the category, and click on a category with a down-pointing arrow to collapse the category. When one category is expanded, all other categories are collapsed. When a category is expanded, any

of the sub-categories may be selected, and the contents are displayed in the Display frame.

Some sub-categories on the Navigation frame include a small "world" icon that indicates that the link will take you to the Internet. If you do not have an internet connection, these links will not work. When you select a link to the internet, a new Netscape window appears. This ensures that the SP Resource Center Title and Navigation frames do not get in the way of the internet web page.

The Display frame is used to display all local information. When a non-internet link is selected from the Navigation frame, the resulting information is displayed in the Display frame.

To quit the SP Resource Center, exit Netscape Navigator.

Environment Variables

The environment variable **NETSCAPE** is used (if set) to specify the pathname to the Netscape Navigator web browser that will be used to display the RS/6000 SP Resource Center.

Files

\$HOME/.resctr Stores the pathname to Netscape Navigator for each user.

Restrictions

If your machine does not have a connection to the internet, some of the SP Resource Center's hyperlinks will not function.

Web Pages on the internet that the SP Resource Center points to may not be available due to the dynamic nature of the web.

Prerequisite Information

Netscape Navigator version 4 or later is required to run this command. The first time each user invokes the resource_center command, the pathname to the Netscape program is stored in **\$HOME/.resctr**.

If online publications are installed on the system, the SP Resource Center will use the local copies, otherwise it will look on the web for the online publications.

Location

/usr/lpp/ssp/bin/resource_center

Examples

To invoke the RS/6000 SP Resource Center, enter:

resource center

This example assumes the directory /usr/lpp/ssp/bin is in your path.

resumevsd

Purpose

resumevsd – Activates an available virtual shared disk.

Syntax

resumevsd [-p | -b] -a | {*vsd_name* ...}

Flags

-p Specifies that the primary server node defined for the global volume group is to be the active server.

-b Specifies that the secondary server node defined for the global volume group is to be the active server.

Note: This flag is used only by the Recoverable Virtual Shared Disk subsystem.

 Specifies that all the virtual shared disks that have been defined are to be resumed.

Operands

vsd_name Specifies a virtual shared disk.

Description

The **resumevsd** command brings the specified virtual shared disks from the suspended state to the active state. The virtual shared disks remains available. Read and write requests which had been held while the virtual shared disk was in the suspended state are resumed.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Resume a Virtual Shared Disk option.

Security

You must have root privilege to run this command.

Restrictions

1. If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks

2. The -b flag is used only by the Recoverable Virtual Shared Disk subsystem.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/resumevsd

Related Information

Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, startvsd, stopvsd, suspendvsd, ucfgvsd

Examples

To bring the virtual shared disk vsd1vg1n1 from the suspended state to the active state, enter:

resumevsd vsd1vg1n1

rmkp

Purpose

rmkp – Removes Kerberos principals.

Syntax

rmkp -h

rmkp [-n] [-v] {name[.instance]|name.|.instance} ...

Flags

- –h Displays usage information.
- –n Suppresses prompting for confirmation.
- -v Specifies verbose mode (displays informational messages).

Operands

{name[.instance]|name.|.instance} ...

Identifies specific principals to remove. When the command is invoked interactively (without the -n flag and not through Sysctl), you can use special notation to select all principals with a particular name or instance that you want to remove. Specify *name*. to remove all principals with a specific name or *.instance* to remove all principals with a specific instance.

Note: The *name* must be followed by a period and the *instance* must be preceded by a period.

Description

Use this command to remove principals from the local Kerberos database. You will be prompted to confirm each deletion prior to its execution. This command will not remove any of the four principals that were predefined by Kerberos when the database was created. Deleted entries are saved in the

/var/kerberos/database/rmkp.save.<PID> file, in the readable ASCII format produced by the kdb_util dump command. The rmkp command should normally be used only on the primary server. If there are secondary authentication servers, the push-kprop command is invoked to propagate the change to the other servers. The command can be used to update a secondary server's database, but the changes may be negated by a subsequent update from the primary.

Files

/var/kerberos/database/admin_acl.add

Access control list for kadmin, mkkp, and rmkp.

/var/kerberos/database/principal.*

Kerberos database files.

/var/kerberos/database/rmkp.save.<pid>

File containing removed Kerberos database entries.

Standard Output

When the -v option is omitted, only the prompt for confirmation is written to standard output. When the -v flag is specified, the disposition of each selected principal is indicated by a message, and the name of the file containing the removed entries is printed. The -v flag has no effect on error messages written to standard error.

Exit Values

- 0 Indicates the successful completion of the command. At least one principal was found that matched the specified names. Whether or not any were removed depends on the responses you entered when prompted. If you entered a principal that does not exist, or if you entered an operand of the form name. or .instance in noninteractive mode, a message is written to standard error and processing continues with any remaining principals.
- 1 Indicates that an error occurred and no principal was removed. One of the following conditions was detected:
 - The command was incorrectly specified with no operand or a flag that is not valid.
 - No principal was found matching the names specified.
 - The host on which the command was issued is not an authentication server.
 - The database was changed by another process while this command was executing.
 - The kdb_util command was unsuccessful.

Security

The **rmkp** command can be run by the root user logged in on a Kerberos server host. It can be invoked indirectly as a Sysctl procedure by a Kerberos database administrator who has a valid ticket and is listed in the admin acl.add file.

Restrictions

When you execute the **rmkp** command through the Sysctl procedure of the same name, the -n flag is added to your command invocation. This is required because Sysctl does not provide an interactive environment that supports prompting for confirmation. Suppressing confirmation increases the risk of unintentionally removing the wrong principal. In this mode, each principal to be removed must be named explicitly; selection of multiple principals by name or instance alone is not allowed. Since nonroot Kerberos administrators can execute this command only through Sysctl, you must be root on the server to use the special notation for selecting multiple principals.

Location

/usr/kerberos/etc/rmkp

Related Information

Commands: chkp, kadmin, kdb_util, lskp, mkkp, sysctl

Examples

1. To remove Kerberos principal tempuser, enter:

```
rmkp tempuser
```

You should receive a prompt similar to the following:

```
Confirm removal of principal tempuser? (y or n): y
```

2. To remove (be given the option to remove) all instances of joe, frank, and the rcmd service principal with instance node 25tr, enter:

```
rmkp -v joe. frank rcmd.node25tr
```

You should receive prompts similar to the following:

```
Confirm removal of principal joe? (y or n): n
```

```
joe was not removed
```

Confirm removal of principal joe.admin? (y or n): y

joe.admin was removed

Confirm removal of principal frank? (y or n): y

frank was removed

Confirm removal of principal rcmd.node25tr? (y or n): y

rcmd.node25tr was removed

Removed entries were saved in /var/kerberos/database/rmkp.save.7942

rsh

Purpose

/usr/lpp/ssp/rcmd/bin/rsh - Executes the specified command at the remote host through the AIX Secure /usr/bin/rsh command.

This path points to the AIX Secure /usr/bin/rsh. This version supports DCE authentication, Kerberos V4 authentication and Standard Unix authentication. The authentication method in use on the host can be checked using the Isauthent command. The SP Kerberos 4 support is provided to AIX Secure remote commands through library routines. For more information on the AIX Secure remote commands shipped with AIX 4.3.1, refer to the AIX rsh online man pages for that release.

Syntax

{rsh | remsh} RemoteHost [-n] [-I user] [-k Kerberos_realm] [-F] [-f]command

Flags

Refer to the AIX Secure **rsh** online man page.

Operands

Refer to the AIX Secure **rsh** online man page.

Description

The /usr/lpp/ssp/rcmd/bin/rsh and remsh path point to the AIX Secure /usr/bin/rsh. The AIX Secure /usr/bin/rsh supports the SP Kerberos V4 rsh by executing an SP KV4 rsh routine when the authentication mechanism is set to Kerberos Version 4. Ths SP KV4 rsh routine communicates with the AIX Secure remote command daemon, krshd. The krshd daemon supports Kerberos V4 using the V4 compatibility library included with the Kerberos V5 that is used by DCE (Distributed Computing Environment).

The execution path of **rsh** will depend on the authentication methods that have been set using chauthent. In the case of DCE and Kerberos V4, the Kerberos V4 execution path will be taken when DCE authentication is unsuccessful. In the case of Kerberos V4 and AIX Standard, the Kerberos V4 execution path will be tried. If the user is unsuccessful with Kerberos V4 authentication, then the standard AIX execution path is tried. The standard AIX execution path requires a .rhosts file.

The authentication method used by the AIX Secure rsh can be listed using the AIX command Isauthent and can be changed by root using the AIX command chauthent. In order for the Kerberos V4 execution path to be taken, the Kerberos V4 authentication method must be set.

Files

\$HOME/.klogin

Specifies remote users that can use a local user account.

/usr/lpp/ssp/rcmd/bin/rsh

Link to AIX Secure /usr/bin/rsh which calls the SP Kerberos 4 rsh routine if applicable.

/usr/lpp/ssp/rcmd/bin/remsh

Link to AIX Secure /usr/bin/rsh which calls the SP Kerberos 4 rsh routine if applicable.

Security

The remote host allows access only if at least one of the following conditions is satisfied:

- The local user ID is listed as a principal in the authentication database and had performed a k4init to obtain an authentication ticket.
- If a \$HOME/.klogin file exists, it must be located in the local user's /home directory on the target system. The local user must be listed as well as any users or services allowed to rsh into this account. This file performs a similar function to a local .rhosts file. Each line in this file should contain a principal in the form of "principal.instance@realm." If the originating user is authenticated as one of the principals named in .klogin, access is granted to the account. The owner of the account is granted access if there is no .klogin file.

For security reasons, any \$HOME/.klogin file must be owned by either the remote user or root, and only the owner should have read and write access.

Restrictions

The SP Kerberos V4 rsh execution path does not support a default to rlogin when there is no command listed on the command line. A message is issued indicating this restriction.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP)

Prerequisite Information

Refer to AIX Version 4 System Management Guide: Communications and Networks for a network overview.

Refer to the chapter on security in PSSP: Administration Guide for an overview.

Refer to the "RS/6000 SP Files and Other Technical Information" section of PSSP: Command and Technical Reference for additional Kerberos information.

Location

/usr/lpp/ssp/rcmd/bin/rsh

Related Information

SP Commands: k4init, rcp

AIX Commands: Isauthent, chauthent, /usr/bin/rsh, /usr/bin/rcp, rlogin, krshd, telnet

Examples

In the following examples, the local user is listed in the authentication database and has obtained a ticket by issuing a k4init and the password.

1. To check the amount of free disk space on a remote host, enter:

/usr/lpp/ssp/rcmd/bin/rsh host2 df

The amount of free disk space on host2 is displayed on the local system.

2. To append a remote file to another file on the remote host, place the >> metacharacters in quotation marks, and enter:

/usr/lpp/ssp/rcmd/bin/rsh host2 cat test1 ">>" test2

The file test1 is appended to test2 on remote host host2.

3. To append a remote file at the remote host to a local file, omit the quotation marks, and enter:

/usr/lpp/ssp/rcmd/bin/rsh host2 cat test2 >> test3

The remote file test2 on host2 is appended to the local file test3.

4. To append a remote file to a local file and use a remote user's permissions at the remote host, enter:

/usr/lpp/ssp/rcmd/bin/rsh host2 -1 jane cat test4 >> test5

The remote file test4 is appended to the local file test5 using user jane's permissions at the remote host.

This example shows how the root user can issue an **rcp** on a remote host. The root user must be in the authentication database and must have already issued **k4init** on the local host. The command is issued at the local host to copy the file, stuff, from node r05n07 to node r05n05.

/usr/lpp/ssp/rcmd/bin/rsh r05n07 'export KRBTKTFILE=/tmp/rcmdtkt\$\$; \ /usr/lpp/ssp/rcmd/bin/rcmdtgt; \ /usr/lpp/ssp/rcmd/bin/rcp /tmp/stuff r05n05:/tmp/stuff;'

The root user sets the KRBTKTFILE environment variable to the name of a temporary ticket-cache file and then obtains a service ticket by issuing the **rcmdtgt** command. The **rcp** uses the service ticket to authenticate from host r05n07 to host r05n05.

rvsdrestrict

Purpose

rvsdrestrict – Displays and sets which level of the IBM Recoverable Virtual Shared Disk software is to run when you have a system partition with mixed levels of the PSSP or IBM Recoverable Virtual Shared Disk software.

Syntax

rvsdrestrict {-I | -s {RVSD1.2 | RVSD2.1 | RVSD3.1 | Reset}}

Flags

- -I Lists the current rvsd subsystem run level as recorded in the SDR.
- -s Sets the rvsd subsystem run level to RVSD 1.2, RVSD 2.1, or RVSD 3.1 in the SDR, or resets the rvsd subsystem run level.

Operands

None.

Description

The **rvsdrestrict** command is used to restrict the level that the IBM Recoverable Virtual Shared Disk software will run at. This command must be used when in a system partition with mixed levels of PSSP and or mixed levels of the IBM Recoverable Virtual Shared Disk software. If a node has a lower level of the IBM Recoverable Virtual Shared Disk software installed than what is set with this command, then the rvsd subsystem will not start on that node.

This command does not dynamically change rvsd subsystem run levels across the SP. An rvsd subsystem instance will only react to this information after being restarted. Thus, if your cluster runs at a given level, and you want to override this level you must stop rvsd subsystem on all nodes, override the level, and restart.

Standard Output

Current rvsd subsystem run level as recorded in the SDR.

Location

/usr/lpp/csd/bin/rvsdrestrict

Examples

 If you were to have nodes with RVSD1.2, RVSD2.1, and RVSD3.1 all in the same system partition, and you wanted them to all run and coexist, you would issue:

rvsdrestrict -s RVSD1.2

This will force all the rvsd subsystems to run at the functionality level of RVSD1.2.

2. If you were to have nodes with RVSD1.2, RVSD2.1, and RVSD3.1 all in the same system partition, but you only wanted the rvsd subsystem to start on nodes that were capable of running RVSD3.1, then you would issue:

rvsdrestrict

rvsdrestrict -s RVSD3.1

SDR_config

Purpose

SDR_config – Queries the existing hardware on the SP and updates the System Data Repository (SDR) as necessary.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Use this command only under the direction of the IBM Support Center. You should only run this command if SDR configuration problems have been diagnosed.

Syntax

SDR_config [-I] [-u] [-e frame:slot:type...] [-v] [-d]

Flags

- Logs output. All output will be logged to the SDR_config log file /var/adm/SPlogs/sdr/SDR_config.log.
- –u Updates switch information.
- -e frame:slot:type

Adds one or more external or dependent nodes. Each node is specified by the triple *frame:slot:type* where frame and slot indicate the physical location of the node, and type is the hardware type for the node (for example, 99 for dependent nodes). Additional nodes can be specified by separating the triples with a colon (:).

- -v Verbose mode. Status messages, informational messages, and SDR commands will be echoed to **stdout**.
- -d Debug mode. No SDR changes will be made. This option is most useful if run with the verbose (-v) option to see what the command would do during normal execution.

Operands

None.

Description

SDR_config creates and configures objects in the SDR. It queries **hardmon** for a current list of all frames, nodes, and switches. It then queries the existing data in the SDR. New objects are created as necessary and existing objects are updated to match the **hardmon** data for SDR frames, nodes, dependent nodes, switches, host responds, switch responds and the system partitioning map. Data in the SDR for which no hardware information is available is **NOT** deleted, since the hardware may be temporarily disabled or cannot be sensed by **hardmon**.

SDR config is normally invoked during system initialization when the SP logging daemon is started, when hardmon records hardware changes through the logging daemon, and by the hmreinit, spframe, and endefnode commands.

If SDR_config encounters severe problems, no changes will be made and the SDR will be restored to the same state as it was before the command was invoked.

When **SDR** config is invoked, it creates a lock file in /var/adm/SPlogs/sdr/SDR_config.lock and removes it when the command has completed execution. This lock file prevents two instances of SDR config from executing at the same time.

Files

/var/adm/SPlogs/sdr/SDR_config.log

Records output if the -v option was specified.

/var/adm/SPlogs/sdr/SDR_config.lock

Locks the command to prevent more than one instance of the **SDR** config command from running at a time.

Standard Output

All informational messages generated as a result of the **-v** option will be written to standard output.

If the -I option is specified, standard output will be redirected to the log file /var/adm/SPlogs/sdr/SDR_config.log.

Standard Error

All error messages will be written to standard output.

If the -I option is specified, standard error will be redirected to the log file /var/adm/SPlogs/sdr/SDR config.log.

Exit Values

- 0 Indicates the successful completion of the command.
- 1 Indicates that a recoverable error occurred.
- 2 Indicates that an irrecoverable error occurred.
- 3 Indicates that **SDR_config** lock exists - command is already in use.

Security

You must have root privilege to run this command or be a member of the system group.

You must run this command from a user who has monitor authority in /spdata/sys1/spmon/hmacls. The user must have a non-expired authentication ticket.

Restrictions

Use this command only under the direction of the IBM Support Center. You should only run this command if SDR configuration problems have been diagnosed.

This command can only be issued on the control workstation.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) **ssp.basic** file set.

Location

/usr/lpp/ssp/install/bin/SDR_config

Related Information

Commands: endefnode, hmreinit, SDR_init, spframe, splogd

Examples

1. To check if SDR configuration changes may be required, but not actually perform those changes, login to the control workstation and enter:

/usr/lpp/ssp/install/bin/SDR_config -v -d

2. To update the SDR to reflect the existing hardware, login to the control workstation and enter:

/usr/lpp/ssp/install/bin/SDR_config

SDR init

Purpose

SDR_init – Initializes the System Data Repository (SDR) during PSSP installation.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Use this command only under the direction of the IBM Support Center. You should only run this command if SDR configuration problems have been diagnosed.

Syntax

SDR_init [-I] [-v] [-d]

Flags

- -1 Logs output. All output is logged to the **SDR_config** log file /var/adm/SPlogs/sdr/SDR_config.log.
- Verbose mode. Status messages, informational messages, and SDR -V commands is echoed to stdout.
- -d Debug mode. No SDR changes will be made. This option is most useful if run with the verbose option (-v) to see what the command would do during normal execution.

Operands

None.

Description

SDR init initializes the SDR during PSSP installation. It creates and initializes new SDR classes and attributes as required by the new level of PSSP being installed.

Files

/var/adm/SPlogs/sdr/SDR config.log

Records output if the -I option was specified.

Standard Output

All informational messages generated as a result of the **-v** option will be written to standard output.

If the -I option is specified, standard output will be redirected to the log file /var/adm/SPlogs/sdr/SDR_config.log.

Standard Error

All error messages are written to standard error.

If the **-I** option is specified, standard error will be redirected to the log file **/var/adm/SPlogs/sdr/SDR_config.log**.

Security

You must have root privilege to run this command or be a member of the system group.

You must run this command from a user who has monitor authority in **/spdata/sys1/spmon/hmacls**. The user must have a non-expired authentication ticket.

Restrictions

Use this command only under the direction of the IBM Support Center. You should only run this command if SDR initialization problems have been diagnosed.

This command can only be issued on the control workstation.

Location

/usr/lpp/ssp/install/bin/SDR_init

Related Information

Commands: SDR_config

Examples

1. To check if SDR initialization changes may be required, but not actually perform those changes, login to the control workstation and enter:

/usr/lpp/ssp/install/bin/SDR_init -v -d

2. To initialize the SDR for the current level of PSSP, login to the control workstation and enter:

/usr/lpp/ssp/install/bin/SDR_init

SDR test

Purpose

SDR_test – Verifies that the installation and configuration of the System Data Repository (SDR) component of the SP system completed successfully.

Syntax

SDR_test [-q] [-I log_file]

Flags

-q Specifies quiet mode; suppresses output to standard error.

-I log_file Specifies the path name of the log file to which error messages are

written. (This is lowercase I, as in list.)

Operands

None.

Description

This command verifies that the SDR is functioning properly. After clearing out a class name, it creates the class, performs various SDR tasks, and removes the class when done.

A return code of 0 indicates that the test completed as expected; otherwise it returns the number of errors. If you do not specify the -q flag, a message is displayed on standard output that indicates if the tests were successful or not. In either case, the command returns 0 if successful, 1 if unsuccessful. If errors are detected, more detailed information is recorded in the log file. If you do not specify the -I flag, error messages are recorded in /var/adm/SPlogs/SDR_test.log.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit SP_verify

and select the System Data Repository option.

Files

/var/adm/SPlogs/SDR_test.log

Default log file.

Related Information

Commands: CSS_test, st_verify, SYSMAN_test, spmon_ctest, spmon_itest

Location

/usr/lpp/ssp/bin/SDR_test

Examples

To verify the System Data Repository following installation, saving error messages in **sdr_err** in the current working directory, enter:

SDR_test -1 sdr_err

SDRAddSyspar

Purpose

SDRAddSyspar – Creates a new daemon using the System Resource Controller (SRC). The new daemon creates a subdirectory under the /spdata/sys1/sdr/partitions directory.

Attention -

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRAddSyspar IP_address

Flags

None.

Operands

IP address Specifies a TCP dotted decimal address (real or alias).

Description

This command creates a new instance of the SDR daemon and passes it the IP address of the system partition. It does not perform all of the system management tasks involved in creating a system partition.

Location

/usr/lpp/ssp/bin/SDRAddSyspar

SDRArchive

Purpose

SDRArchive – Archives the entire contents of the System Data Repository (SDR), except for the archives directory, for later retrieval.

Attention

Migration Note: Each new PSSP release may introduce new SDR classes and attributes. Use caution when using **SDRArchive** and **SDRRestore** to avoid overwriting new SDR classes and attributes. IBM suggests that after migration you do not execute **SDRRestore** from a back level system since it will overwrite any new SDR classes and attributes.

Syntax

SDRArchive [append_string]

Flags

None.

Operands

append_string If specified, the append_string is appended to the name of the backup file.

Description

Use this command to tar the contents of the SDR and put the file in the <code>/spdata/sys1/sdr/archives</code> subdirectory. You might want to mount this directory from another machine or physical disk drive to protect against an error in the drive holding the SDR. The file name is <code>backup.JULIANdate.HHMM.append_string</code>, where <code>JULIANdate.HHMM</code> is a number or string uniquely identifying the date and time of the archive and <code>append_string</code> is the argument entered in the command invocation, if specified.

Location

/usr/lpp/ssp/bin/SDRAddSyspar

SDRChangeAttrValues

Purpose

SDRChangeAttrValues – Changes attribute values of one or more objects.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRChangeAttrValues class_name [attr==value ...] attr=value ...

Flags

None.

Operands

class_name Identifies the target object and checks the class to see if it is a system

class or a partitioned class.

attr==value Specifies attribute values to match for the change to be made (note

double equal signs signifying comparison.)

attr=value Specifies target attribute to change and value to be assigned.

Description

This command changes one or more attribute values in a specified object with certain other attribute values.

Location

/usr/lpp/ssp/bin/SDRChangeAttrValues

SDRClearLock

Purpose

SDRClearLock – Unlocks a System Data Repository (SDR) class.

- Attention -

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRClearLock class_name

Flags

None.

Operands

class_name Identifies the target class and removes the lock on that class if a lock exists.

Description

Use this command when a process that obtained a lock ends abnormally and does not unlock the class.

Location

/usr/lpp/ssp/bin/SDRClearLock

SDRCreateAttrs

Purpose

SDRCreateAttrs – Creates new attributes for a System Data Repository (SDR) class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCreateAttrs *class_name attr=datatype* ...

Flags

None.

Operands

class_name Identifies the target object.

attr=datatype

Names the new attribute and defines the data type as an integer (int), a floating-point value (float), or a string (string).

Description

This command creates one or more new attributes for a target class.

Location

/usr/lpp/ssp/bin/SDRCreateAttrs

SDRCreateClass

Purpose

SDRCreateClass – Creates a partitioned class.

- Attention -

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCreateClass class_name attr=datatype ...

Flags

None.

Operands

class_name Identifies the new object class.

attr=datatype

Names the new attribute and defines the data type as an integer (int), a floating-point value (float), or a string (string).

Description

This command creates a partitioned class and defines its attributes.

Location

/usr/lpp/ssp/bin/SDRCreateClass

SDRCreateFile

Purpose

SDRCreateFile - Reads the specified AIX file and puts it in the System Data Repository (SDR) under the specified SDR file name.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCreateFile AIX_filename SDR_filename

Flags

None.

Operands

AIX filename

Identifies the AIX file name to be written to the SDR.

SDR_filename

Specifies the name of the new SDR file.

Description

This command creates a partitioned SDR file from an AIX file. Use SDRCreateSystemFile to create a system file. Use SDRRetrieveFile to retrieve the file.

Location

/usr/lpp/ssp/bin/SDRCreateFile

SDRCreateObjects

Purpose

SDRCreateObjects – Creates new objects in a system class or a partitioned class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCreateObjects class_name attr=value ...

Flags

None.

Operands

class_name Identifies the class of the new objects.

attr=value Specifies the target attribute and value to be assigned.

Description

This command creates one or more new objects. Not all attributes for an object need to be specified in this call; however, a subset of the attributes that uniquely identify this object must be entered at this time.

Location

/usr/lpp/ssp/bin/SDRCreateObjects

SDRCreateSystemClass

Purpose

SDRCreateSystemClass – Creates a system class.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCreateSystemClass class_name attr=datatype ...

Flags

None.

Operands

class_name Identifies the new object class.

attr=datatype

Names the new attribute and defines the data type as an integer (int), a floating-point value (float), or a string (string).

Description

This command creates a system class and defines its attributes.

Location

/usr/lpp/ssp/bin/SDRCreateSystemClass

SDRCreateSystemFile

Purpose

SDRCreateSystemFile – Creates a file that can be retrieved from any system partition.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRCreateSystemFile AIX_filename SDR_filename

Flags

None.

Operands

AIX filename

Specifies the AIX file name.

SDR_filename

Specifies the System Data Repository (SDR) file name.

Description

This command reads the AIX file and puts it in the repository under the SDR file name. Note that only ASCII files can be saved. Results are unpredictable if binary files are used with this command. Clients connected to any system partition can read this file.

Use **SDRRetrieveFile** to retrieve this file. If a system file and a partitioned file exist with the same name, the partitioned file will be returned from **SDRRetrieveFile**.

Location

/usr/lpp/ssp/bin/SDRCreateSystemFile

SDRDeleteFile

Purpose

SDRDeleteFile – Deletes the specified System Data Repository (SDR) file.

Attention -

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRDeleteFile SDR_filename

Flags

None.

Operands

SDR_filename

Specifies the name of the SDR file to be deleted.

Description

This command deletes the partitioned file *SDR_filename*, if it exists. If the *SDR_filename* partitioned file does not exist, it will delete the *SDR_filename* system file. This command will not delete both the partitioned file and the system file.

Location

/usr/lpp/ssp/bin/SDRDeleteFile

SDRDeleteObjects

Purpose

SDRDeleteObjects – Deletes objects from the System Data Repository (SDR).

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRDeleteObjects class_name [attr==value ...]

Flags

None.

Operands

class_name Identifies the class of the object to be deleted.

attr==value Specifies specific attribute values to match to qualify the object for deletion.

Description

This command deletes one or more objects. All objects in the specified class with attribute values matching those specified are deleted. If no *attr==value* pairs are specified, this command will match all objects in the class and all objects will be deleted.

Location

/usr/lpp/ssp/bin/SDRDeleteObjects

SDRGetObjects

Purpose

SDRGetObjects – Sends contents of attributes in specified object to standard output.

Syntax

SDRGetObjects [-G] [-x] [-q] [-d delimiter] class_name

[attr==value ...] [attr ...]

Flags

-G For a partitioned class, returns the objects that match the

attr==value arguments in the class specified from **all** system partitions. For system classes, the **-G** option has no effect.

-**x** Inhibits the output of the header line.

-q Specifies quiet mode; suppresses message output to standard

error.

-d delimiter Allows the user to specify a delimiter in the output.

Operands

class_name Identifies the target class.

attr==value Specifies attribute values to match to qualify the objects for the

operation (note the double equal signs, which signify comparison.)

attr Specifies which attribute values should be returned by the

command. The order of these arguments is the order they are written in the output. If no *attr* arguments are entered, all attributes

will be selected.

Description

This command retrieves and sends to standard output attribute values in the specified objects.

Location

/usr/lpp/ssp/bin/SDRGetObjects

Examples

1. To query the SDR Adapter class for the node number and network address of all switch adapters, enter:

SDRGetObjects -G Adapter adapter_type==css0 node_number netaddr

You should receive output similar to the following:

```
node_number netaddr

1 129.40.102.129
3 129.40.102.131
5 129.40.102.133
6 129.40.102.134
7 129.40.102.135
8 129.40.102.136
9 129.40.102.137
10 129.40.102.138
11 129.40.102.139
12 129.40.102.140
13 129.40.102.141
14 129.40.102.141
15 129.40.102.143
16 129.40.102.144
```

2. To determine the reliable host name, switch node number, and switch chip port of every Node object, enter:

```
SDRGetObjects -G Node reliable_hostname switch_node_number \
switch_chip_port
```

You should receive output similar to the following:

```
reliable_hostname switch_node_number switch_chip_port
                                                3
k3n01.hpssl.kgn.ibm.com
                                   0
                                   2
k3n03.hpssl.kgn.ibm.com
                                                0
k3n05.hpssl.kgn.ibm.com
                                   4
                                                1
                                   5
                                                0
k3n06.hpssl.kgn.ibm.com
                                                2
k3n07.hpssl.kgn.ibm.com
                                   6
k3n08.hpssl.kgn.ibm.com
                                  7
                                                3
k3n09.hpssl.kgn.ibm.com
                                  8
                                                3
k3n10.hpssl.kgn.ibm.com
                                  9
                                                2
                                  10
                                                0
k3n11.hpssl.kgn.ibm.com
k3n12.hpssl.kgn.ibm.com
                                 11
                                                1
                                  12
k3n13.hpssl.kgn.ibm.com
                                                1
k3n14.hpssl.kgn.ibm.com
                                  13
                                                0
                                  14
                                                2
k3n15.hpssl.kgn.ibm.com
k3n16.hpssl.kgn.ibm.com
                                  15
                                                3
```

3. To save each node's node number and hardware Ethernet addresses (which is needed for netboot) in a file called **bootptab.info** without the SDR header class information, enter:

SDRGetObjects -G -x Node node_number hdw_enet_addr > /etc/bootptab.info You should receive output similar to the following:

```
1 02608C2D58D2
3 10005AFA2375
4 10005AFA22CE
5 10005AFA22B2
6 10005AFA2410
7 10005AFA223F
8 10005AFA2417
```

8 10005AFA2417 9 02608C2DA0C7

11 02608C2D9F62

13 02608C2D9E75

15 10005AFA1B03

16 10005AFA2B9B

SDRListClasses

Purpose

SDRListClasses – Lists the class names in the System Data Repository (SDR).

Syntax

SDRListClasses

Flags

None.

Operands

None.

Description

This command outputs all of the class names (system and partitioned) currently

defined in the SDR to standard output.

Location

/usr/lpp/ssp/bin/SDRListClasses

SDRListFiles

Purpose

SDRListFiles - Lists all of the files in the system file area first, then lists all of the

files in the system partition area.

Syntax

SDRListFiles

Flags

None.

Operands

None.

Description

This command outputs all the system partition files first, then the system files.

Location

/usr/lpp/ssp/bin/SDRListFiles

SDRMoveObjects

Purpose

SDRMoveObjects – Moves objects from one system partition to another.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRMoveObjects source_syspar target_syspar class_name [attr==value ...]

Flags

None.

Operands

source_syspar

Specifies the system partition from which objects are to be moved.

target_syspar

Specifies the system partition to which objects should be moved.

class_name Identifies the target object.

attr==value Specifies attribute values to be moved.

Description

This command moves any objects in class_name that match all of the attr==value pairs from the source_syspar to the target_syspar.

Location

/usr/lpp/ssp/bin/SDRMoveObjects

SDRRemoveSyspar

Purpose

SDRRemoveSyspar – Removes all of the partitioned classes in the System Data Repository (SDR) associated with the system partition whose address is IP address. It removes the daemon that serves this system partition using the System Resource Controller (SRC).

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR test, and SDRWhoHasLock.

Syntax

SDRRemoveSyspar *IP_address*

Flags

None.

Operands

IP_address Specifies the dotted decimal address (real or alias) of a system partition.

Description

This command deletes a system partition in the SDR. It does not perform all of the system management tasks involved in deleting a system partition.

Location

/usr/lpp/ssp/bin/SDRRemoveSyspar

SDRReplaceFile

Purpose

SDRReplaceFile - Replaces the specified System Data Repository (SDR) file with the specified AIX file.

Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Syntax

SDRReplaceFile AIX_filename SDR_filename

Flags

None.

Operands

AIX_filename

Identifies the AIX file name to be written to the SDR.

SDR_filename

Specifies the name of the SDR file to be overwritten.

Description

This command searches first for a partitioned file, then for a system file, and replaces the first one found.

Location

/usr/lpp/ssp/bin/SDRReplaceFile

SDRRestore

Purpose

SDRRestore – Extracts the contents of the archived System Data Repository (SDR).

- Attention

The System Data Repository (SDR) commands are to be used by the IBM Parallel System Support Programs for AIX (PSSP) system management software. Use of these commands by a user can cause damage to system configuration data. Exceptions are: SDRArchive, SDRGetObjects, SDRListClasses, SDRListFiles, SDRRetrieveFile, SDR_test, and SDRWhoHasLock.

Attention -

Migration Note: Each new PSSP release may introduce new SDR classes and attributes. Use caution when using SDRArchive and SDRRestore to avoid overwriting new SDR classes and attributes. IBM suggests that after migration you do not execute SDRRestore from a back level system since it will overwrite any new SDR classes and attributes.

Syntax

SDRRestore archive_file

Flags

None.

Operands

archive_file Indicates the name of the archive file. The file name is backup.JULIANdate.HHMM, where JULIANdate.HHMM is a number or string uniquely identifying the time of the archive.

Description

Use this command to remove the contents of the SDR and retrieve the archived contents of the archive_file. The archive_file must be in the /spdata/sys1/sdr/archives directory. Any new SDR daemons that represent partitions in the restored SDR are then started and any daemons that are not in the new SDR are stopped.

Location

/usr/lpp/ssp/bin/SDRRestore

SDRRestore

Related Information

Command: SDRArchive

SDRRetrieveFile

Purpose

SDRRetrieveFile - Retrieves the specified System Data Repository (SDR) file into

an AIX file.

Syntax

SDRRetrieveFile *SDR_filename AIX_filename*

Flags

None.

Operands

SDR_filename

Specifies the name of the SDR file to be retrieved.

AIX filename

Identifies the name of the AIX file to be written.

Description

This command searches first for a partitioned file, then for a system file if a

partitioned file was not found.

Location

/usr/lpp/ssp/bin/SDRRetrieveFile

SDRWhoHasLock

Purpose

SDRWhoHasLock – Returns transaction ID of lock on specified class.

Syntax

SDRWhoHasLock class_name

Flags

None.

Operands

class_name Identifies the target object class.

Description

The lock transaction ID returned from this command takes the form <code>host_name:pid:session</code>, where <code>host_name</code> is the long name of the machine running the process with the lock, <code>pid</code> is the process ID of the process that has the lock, and <code>session</code> is the number of the client's session with the System Data Repository (SDR).

Location

/usr/lpp/ssp/bin/SDRWhoHasLock

segfile

Purpose

seqfile – Creates node sequence files for system startup and shutdown using information in the System Data Repository (SDR).

Syntax

seqfile [-b]

Flags

-b Includes lines for boot/install servers as well as /usr servers. Specify this option to create lines for /etc/cstartSeq.

Operands

None.

Description

seqfile uses information in the SDR to determine dependencies of SP nodes on **/usr** and, optionally, and boot/install servers, and to write the dependencies to standard output in the format of the node sequence files **/etc/cstartSeq** and **/etc/cshutSeq**.

/usr servers must shut down after and start before their clients. Boot-install servers must start before their clients. The node sequence files, /etc/cshutSeq and /etc/cstartSeq, have lines that describe these dependencies. The seqfile command eliminates the need for you to create these files from scratch. If the nodes in your system have sequencing dependencies in addition to those related to boot/install and /usr servers and clients, you can edit the output of seqfile to define those relationships.

seqfile defines only the nodes that have dependencies; if there are no **/usr** or boot/install dependencies, **seqfile** generates no output.

If you do not have a **/etc/cstartSeq** or **/etc/cshutSeq** file, the **cstartup** and **cshutdown** commands use **seqfile** to determine the default startup or shutdown sequence.

Files

The following files reside on the control workstation:

/usr/lpp/ssp/bin/seqfile

The **seqfile** command.

/etc/cshutSeq

Describes the sequence in which the nodes should be shut down. Nodes not listed in the file are shut down concurrently with listed nodes. If the file is empty, all nodes are shut down concurrently. If the file does not exist, **cshutdown** uses the output of **seqfile** as a temporary sequencing default.

/etc/cstartSeq Describes the sequence in which the nodes should be started. Nodes not listed in the file are started up concurrently with listed nodes. If the file is empty, all nodes are started up concurrently. If the file does not exist, cstartup uses the output of seqfile as a temporary sequencing default.

Location

/usr/lpp/ssp/bin/seqfile

Related Information

Commands: cshutdown, cstartup

Examples

1. To create the node sequence file for system startup from information in the SDR, enter:

seqfile -b > /etc/cstartSeq

2. To create the node sequence file for system shutdown from information in the SDR, enter:

seqfile > /etc/cshutSeq

3. To view the sequence used during system shutdown in the absence of a /etc/cshutSeq file, enter:

seqfile | more

services_config

Purpose

services_config - Configures designated services on nodes or the control

workstation.

Syntax

services_config

Flags

None.

Operands

None.

Description

Use this command to configure SP services on the node or control workstation.

Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Security

You must have root privilege to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/install/bin/services_config

Related Information

Commands: setup_server, spbootins

Examples

To configure the SP services on a node or the control workstation, enter:

services_config

sethacws

Purpose

sethacws – Sets the state of the control workstation.

Syntax

sethacws state

Flags

None.

Operands

state Specifies a number of the set: 0, 1, 2, 16, 32.

Description

Use this command to set the current state of the control workstation. It is valid only when issued on the control workstation. When the command is executed and the calling process is not on a control workstation, an error occurs.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts and installation scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP), set the control workstation state. The state is changed during fail over or reintegration in the HACWS supplied pre- and post-event scripts for HACMP. The administrator should not normally have to set the control workstation state.

Exit Values

- 0 Indicates successful completion of the command.
- 1 Indicates that the command could not access the control workstation state location.
- 2 Indicates that the command was executed with a control workstation state that was not valid.
- 3 Indicates that the command was not executed on a control workstation.

The following are the valid state values and their defined control workstation state:

- 0 Indicates that the configuration is not an HACWS configuration, but is a control workstation.
- 1 Indicates that this is the primary control workstation, but not the active control workstation.
- 2 Indicates that this is the primary and active control workstation.
- 16 Indicates that this is the backup control workstation and not the active control workstation.
- 32 Indicates that this is the backup and active control workstation.

Security

You must have root privilege to run this command.

Prerequisite Information

Refer to PSSP: Administration Guide for information on the HACWS option.

Location

/usr/bin/sethacws

Related Information

Command: Ishacws

Subroutines: hacws_set, hacws_stat

Examples

1. To set the control workstation state as a backup and active control workstation, enter:

sethacws 32

2. To set the control workstation state as a backup and inactive control workstation, enter:

sethacws 16

To set the control workstation state as a primary and active control workstation, enter:

sethacws 2

4. To set the control workstation state as a primary and inactive control workstation, enter:

sethacws 1

5. To set the control workstation state as a control workstation but not an HACWS configuration, enter:

sethacws 0

setup_authent

Purpose

setup_authent – Sets up a workstation to use SP authentication services.

Syntax

setup_authent

Flags

None.

Operands

None.

Description

The **setup_authent** command configures SP authentication services during SP installation on the control workstation and on other IBM RS/6000 workstations connected to an SP system. It is not executed on SP nodes, where authenticated client services are automatically installed. Executing this command invokes an interactive dialog, in which instructions for the various steps are displayed and various utility programs are invoked to accomplish the configuration.

There are several ways that **setup_authent** can configure these services. The method chosen is based on runtime choice, the combination of SP options installed on the workstation, and the contents of any predefined authentication configuration file that you have supplied.

Primary Server: When the local system is to be configured as the primary server, both **ssp.clients** and **ssp.authent** SP options must have been installed. You may supply the configuration files, **/etc/krb.conf** and **/etc/krb.realms**, or let the system create one that lists the local system as the sole authentication server in the local realm. This command creates the files used by the authentication and ticket granting services. These include the configuration files, the authentication database files, and the master key cache file. The server daemon, **kerberos**, is added to the inittab and started.

The administration of the authentication database is handled by the **kadmind** daemon, which is also added to inittab and started. The **setup_authent** command requires you to define the initial principal who administers the database. Access control list files are created containing this name, to be used by **kadmind** for authorization.

This command invokes **k4init** to log you in as this administrator, to define additional principals used by the SP authenticated services for monitoring and system administration. A server key file is created for use by the monitor commands, SP remote commands, and Sysctl remote command execution facility.

Backup Server: When the local workstation is to be configured as a secondary server, **ssp.clients** and **ssp.authent** must be installed. You must supply the configuration files, listing the local host as a slave server and some other

workstation as the primary authentication server. The primary server must be configured and running and be available by standard TCP/IP connection to the local host.

You are required to authenticate your identity as the administrative user that you defined when you configured the primary server. The service principals for the local host are added to the primary database, and the server key file is created for them. Then the **kpropd** daemon is used in conjunction with the **kprop** command (executed remotely on the primary server) to copy the master database onto the local system. The server daemon, **kerberos**, is then added to the inittab and started.

Authentication Server: When the local host is to be configured only to provide authentication client services, just **ssp.clients** needs to be installed. As in the case of the slave server, you must supply the configuration files. In this case, however, the local host is not listed as a server. **setup_authent** simply requires the information to know how to get to the primary authentication server (already configured and accessible).

You are required to authenticate your identity as the administrative user that you defined when you configured the primary server. The service principals for the local host are added to the primary database, and the server key file is created for them.

Using AFS Authentication Services: When AFS authentication is to be configured, the local host must have already been established as either an AFS server or an AFS client. The CellServDB and ThisCell files are expected to exist in the /usr/vice/etc directory (or linked to that path). ssp.clients is the only required SP authentication option. When setup_authent finds these AFS configuration files on the local system, it allows you the choice of whether to use AFS authentication. If you choose not to use AFS, processing follows one of the other three variations described previously. When using AFS, you must supply an AFS user name and password that is a valid administrative ID in the local AFS cell. setup_authent creates the local service principals in the AFS database and creates a server key file for the SP authenticated services to use on the local host.

If you choose AFS authentication, you must do so for all workstations you configure with **setup_authent**, including the control workstation for your SP system.

You can reexecute **setup_authent** to change the configuration of your authentication services, but you add varying degrees of risk to system operations depending on how far you have progressed in the installation of the control workstation and nodes. Running it again on the control workstation prior to executing **install_cw** is not a problem. Reconfiguring a client workstation has little risk of disruption. A slave can be reconfigured provided the primary server is available. If the primary server must be reconfigured, all slave and client systems have to be reconfigured after the new primary server is up. If the control workstation is an authentication server, you have to recustomize any SP nodes previously booted, after running **setup authent**.

Files

/.k Master key cache file.

/etc/krb.conf Authentication configuration file.

/etc/krb.realms

Authentication configuration file.

/etc/krb-srvtab Server key file.

/usr/kerberos/admin_acl.{add,get,mod}

Access Control List files.

/var/kerberos/database/principal.pag, /var/kerberos/database/principal.dir

Authentication database files.

/usr/vice/etc/CellServDB. /usr/vice/etc/ThisCell

AFS configuration files.

Location

/usr/lpp/ssp/bin/setup_authent

Related Information

Commands: add_principal, ext_srvtab, kadmind, kdb_edit, kdb_init, kdb_util, kerberos, k4init, k4list, krb_conf, krb_realms, ksrvutil, kstash

Refer to the "RS/6000 SP Files and Other Technical Information" section of PSSP: Command and Technical Reference for additional Kerberos information.

Examples

See PSSP: Installation and Migration Guide.

setup_CWS

Purpose

setup_CWS – Updates control workstation files and directories for installation tasks.

Syntax

setup_CWS [-h]

Flags

-h Displays usage information. If the command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken.

Operands

None.

Description

Use this command to update control workstation files and directories for installation tasks. This includes control workstation-specific Kerberos and other files. This command can only be run on the control workstation.

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in *PSSP: Administration Guide* for additional information on ticket-granting-tickets.

If you do not have a ticket-granting-ticket, you must run k4init.

Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

0 Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Security

You must have root privilege to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/setup_CWS

Related Information

Commands: setup_server

Examples

To update the control workstation environment for installation, enter: ${\tt setup_CWS}$

setup_logd

Purpose

setup_logd – Sets up the logging daemon (**splogd**). This is called by installation scripts when the IBM RS/6000 control workstation is installed. It can also be run by root on a different workstation to have **splogd** spawned by the System Resource Controller (SRC).

Syntax

setup_logd

Flags

None.

Operands

None.

Description

To run the **splogd** logging daemon on a workstation other than the control workstation, install the **ssp.clients** option on that workstation and run **setup_logd**. You may want to do this so that:

- 1. Offload error logging from the control workstation
- 2. Have your own script called when a state change on a particular variable or variables occurs

By default the /spdata/sys1/spmon/hwevents file is set up to do error logging and state change logging for all frames. If you are installing splogd on a workstation besides the control workstation to call your own script, you should edit the /spdata/sys1/spmon/hwevents file, removing the entries for SP_STATE_LOG and SP_ERROR_LOG and add a call for your own script. Refer to the splogd command for instructions.

The **setup_logd** command performs the following steps:

- 1. Creates directories in **/var/adm** that the logging daemon uses, if they do not already exist.
- 2. Adds an entry to **syslog.conf** for **daemon.notice** and sends a HUP signal to **syslogd** to reread its configuration file.
- 3. Adds errlog templates for SP messages.
- 4. Adds the **splogd** daemon to SRC as the **splogd** subsystem.
- 5. Adds an entry for splogd to /etc/inittab.

If you do not want to perform any of the preceding steps on your workstation, do not run **setup_logd**. If you are only using **splogd** to call your own script, you might only want to do step 4 and step 5 (add **splogd** to SRC and **/etc/inittab**).

To run the logging daemon on a separate workstation, you must add the following to the **/etc/environment** file:

SP NAME={control workstation}

To move a subset of error logging off of the control workstation, edit /spdata/sys1/spmon/hwevents on the control workstation to define the subset that you want to monitor. Then stopsrc and startsrc the logging daemon on the control workstation to reread the hwevents file.

Starting and Stopping the splogd Daemon

The **splogd** daemon is under System Resource Controller (SRC) control. It uses the signal method of communication in SRC. The splogd daemon is a single subsystem and not associated with any SRC group. The subsystem name is splogd. To start the splogd daemon, use the startsrc -s splogd command. This starts the daemon with the default arguments and SRC options. The splogd daemon is setup to be respawnable and be the only instance of the splogd daemon running on a particular node or control workstation. Do not start the splogd daemon from the command line without using the startsrc command to start it.

To stop the **splogd** daemon, use the **stopsrc** -s **splogd** command. This stops the daemon and does not allow it to respawn.

To display the status of the **splogd** daemon, use the **lssrc** -**s splogd** command.

If the default startup arguments need to be changed, use the chasys command to change the startup arguments or the SRC options. Refer to AIX Version 4 Commands Reference and AIX Version 4 General Programming Concepts: Writing and Debugging Programs for more information about daemons under SRC control and how to modify daemon arguments when under SRC.

To view the current SRC options and daemon arguments, use the **odmget** -q "subsysname=splogd" SRCsubsys command.

Files

/etc/inittab AIX file that contains a list of parameters to be brought up during

initialization.

/spdata/sys1/spmon/hwevents

File that describes what logging is performed and what user exits

are called.

/etc/syslog.conf

Describes where syslog messages are logged.

Location

/usr/lpp/ssp/bin/setup_logd

Related Information

Daemon: splogd

Refer to PSSP: Installation and Migration Guide for more information on setting up Hardware Monitor clients on separate workstations and the System Resource Controller.

Examples

1. To start the **splogd** daemon, enter:

startsrc -s splogd

2. To stop the **splogd** daemon, enter:

stopsrc -s splogd

3. To display the status of the **splogd** daemon, enter:

lssrc -s splogd

4. To display the status of all the daemons under SRC control, enter:

lssrc -a

5. To display the current SRC options and daemon arguments for the **splogd** daemon, enter:

odmget -q "subsysname=splogd" SRCsubsys

setup_server

Purpose

setup_server – Configures a node or control workstation as a boot/install server.

Syntax

setup_server [-h]

Flags

-h Displays usage information. If the command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken.

Operands

None.

Description

Use this command to set up the node on which it is run as a boot/install server for client nodes as defined in the System Data Repository (SDR).

On a boot/install server, this command:

- Defines the boot/install server as a Network Installation Management (NIM) master
- · Defines the resources needed for the NIM clients
- Defines each node that this server installs as a NIM client
- Allocates the NIM resources necessary for each NIM client
- Creates the node.install_info file containing netinstall information
- Creates the **node.config_info** file containing node-specific configuration information be used during network boot
- Creates server key files containing the service keys for the nodes
- Copies the install images from the control workstation for nodes which are boot/install servers

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in PSSP: Administration Guide for additional information on ticket-granting-tickets.

If you do not have a ticket-granting-ticket, you must run **k4init**.

Creation of the Network Installation Management (NIM) lppsource resource on a boot/install server will result in setup_server creating a lock in the lppsource directory on the control workstation. The setup server command calls mknimres which creates the lock.

Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

- 0 Indicates the successful completion of the command.
- -1 Indicates that an error occurred.

Security

You must have root privilege to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/setup_server

Related Information

Commands: allnimres, create_krb_files, delnimclient, delnimmast, export_clients, mkconfig, mkinstall, mknimclient, mknimint, mknimmast, mknimres, setup_CWS, unallnimres

Examples

To prepare a boot/install server node, enter the following on that node: setup_server

sp_configd

Purpose

sp_configd – Starts the Simple Network Management Protocol (SNMP) SP Proxy daemon as a background process.

Syntax

sp_configd [-T] [-t secs] [-s secs] [-e secs]

Flags

-T Specifies whether to perform internal tracing. Trace entries are placed in the /var/tmp/sp_config.log file. The default is off.

-t secs Specifies the amount of time, data instance values that are nonconstant should be kept in cache before being considered stale. This is used to improve the performance associated with a dump of the ibmSPEMVarValuesTable (which is a series of SNMP getnext-requests). When a specific instance value from this table is requested by an SNMP get-request, the latest value is obtained from the SP Event Manager (EM) regardless of the amount of elapsed time since the last request for this data. If the -t flag is not specified, a default value of 720 seconds is used.

-s secs Specifies the amount of elapsed time between sending requests for the SP EM to determine the set of EM variables for which a resource monitor is currently active. Current EM resource instance values can only be obtained for those EM resource which are currently being monitored. If the -s flag is not specified, a default value of 1200 seconds is used.

-e secs Specifies the amount of elapsed time between retrying unsuccessful EM connection attempts. EM connection initialization causes requests to be sent to the System Data Repository (SDR) which may hinder performance if attempted too frequently. If the -e flag is not specified, a default value of 60 seconds is used.

Operands

None.

Description

The **sp_configd** daemon is internally configured as an SNMP Multiplexing Protocol (SMUX) peer, or proxy agent, of the **snmpd** daemon on the control workstation and on each node of the SP. For more information, refer to the "Managing SP System Events in a Network Environment" chapter in *PSSP: Administration Guide*.

The **sp_configd** daemon provides the following functions:

It receives requests from network monitors for data from the ibmSP MIB (these
requests are routed from the snmpd daemon to the sp_configd daemon over
the SMUX interface). The results are returned by the sp_configd daemon to
the snmpd daemon by the SMUX interface and are then sent to the originating
monitor by the snmpd agent.

• It sends trap notifications about events occurring on the SP to all hosts listed in the **snmpd** daemon configuration file.

The **snmpd** daemon should be active before the **sp_configd** daemon is started. The following command activates the **snmpd** daemon:

```
startsrc -s snmpd
```

The **snmpd** daemon is controlled by the System Resource Controller (SRC) and activated whenever the system is initialized.

The sp_configd daemon has several sessions with the EM. These sessions are used to maintain SP EM variable instance data and information from the last trap issued associated with an SP EM event. See the haem command for information on starting the SP Event Manager.

The sp configd daemon should be controlled using the SRC. IBM suggests that you do not enter **sp_configd** at the command line.

Manipulating the sp_config Daemon with the System Resource Controller

The **sp_configd** daemon is a subsystem controlled by the SRC. Use the following SRC commands to manipulate the **sp configd** daemon:

Issrc Gets the status of a subsystem, group of subsystems, or a subserver.

The long status form of the **Issrc** command is not supported.

startsrc Starts a subsystem, group of subsystems, or a subserver. Issuing the

> **startsrc** command causes the **sp_configd** daemon to generate a coldStart trap. Use the -a switch to override default switch values.

stopsrc Stops a subsystem, group of subsystems, or a subserver.

Files

/etc/services

Contains port assignments for required services. The following entry must be present in the /etc/services file if the entries are not already present:

smux 199/tcp

Notes:

- 1. The SMUX port must be 199.
- 2. The **/etc/services** file is shipped with this entry already in
- 3. If the **/etc/services** file is being served from a server, this entry must be present in the server's /etc/services file.

/etc/snmpd.conf

Specifies the SMUX association configuration for the sp configd Proxy Agent. The following entry must be present:

1.3.6.1.4.1.2.6.117 sp configd pw # sp configd

These entries are created when the SP is installed.

/etc/snmpd.peers

Specifies the configuration for the **sp_configd** SMUX peer. The following entry must be present:

sp configd 1.3.6.1.4.1.2.6.117 sp configd pw

These entries are created when the SP is installed.

Security

You must have root privilege to run this command or be a member of the system group.

Location

/usr/lpp/ssp/bin/sp_configd

Related Information

See the "Understanding the SNMP Daemon" and "Problem Determination for the SNMP Daemon" chapters in AIX Version 3.2 System Management Guide: Communications and Networks.

See the "Understanding the Simple Network Management Protocol (SNMP)", "Understanding the Management Information Base (MIB)", and "xgmon Overview for Programmers" chapters in AIX Version 3.2 Communication Programming Concepts.

See the "Managing SP System Events in a Network Environment" chapter in PSSP: Administration Guide.

Examples

1. To start the **sp_configd** daemon, enter a command similar to the following:

```
startsrc -s sp configd -a '-T'
```

This command starts the **sp_configd** daemon and logs information to the /var/tmp/sp_configd.log file.

2. To stop the **sp_configd** daemon normally, enter:

```
stopsrc -s sp configd
```

This command stops the daemon. The -s flag specifies the subsystem that follows to be stopped.

3. To get short status from the sp_configd daemon, enter:

```
lssrc -s sp_configd
```

This command returns the daemon name, process ID, and state (active or inactive).

sp_configdctrl Script

Purpose

sp_configdctrl – A control script that is used to manage the installation of the SP Simple Network Management Protocol (SNMP) Proxy Agent subsystem.

Syntax

sp_configdctrl { -a | -s | -k | -d | -c | -t | -o | -r | -h }

Flags

- -a Adds the subsystem.
- Starts the subsystem.
- -k Stops the subsystem.
- -d Deletes the subsystem.
- -c Cleans the subsystem, that is, deletes it.
- -t Turns tracing on for the subsystem.
- Turns tracing off for the subsystem.
- -r Refreshes the subsystem.
- -h Displays usage information.

Operands

None.

Description

Use this command to install or remove the SP SNMP Proxy Agent daemon. This command can be issued only by a user with root privileges or by a member of the system group.

The **sp_configdctrl** control script controls the operation of the SP SNMP Proxy Agent subsystem. The subsystem is under the control of the System Resource Controller (SRC). The subsystem is called **sp_configd**.

An instance of the SP SNMP Proxy Agent subsystem executes on the control workstation and on every node of a system partition. Because the information about SP nodes and Event Manager (EM) variables exists in system partitions, it is said to be system partition-sensitive. This control script operates in a manner similar to the control scripts of other system partition-sensitive subsystems. It can be issued from either the control workstation or any of the system partition's nodes.

From an operational point of view, the SP SNMP Proxy Agent subsystem group is organized as follows:

Subsystem SP SNMP Proxy Agent

Subsystem Group None

SRC Subsystem Name

sp_configd

The **sp_configd** subsystem is associated with the **sp_configd** daemon.

The subsystem name on the nodes and the control workstation is **sp_configd**. There is one daemon per node and control workstation.

Daemons sp_configd

The **sp_configd** daemon provides the SP SNMP Proxy Agent function.

The **sp_configdctrl** script is not normally executed from the command line. It is normally called by the **syspar_ctrl** command during installation of the system, and partitioning or repartitioning of the system.

The **sp_configdctrl** script provides a variety of controls for operating the SP SNMP Proxy Agent subsystem:

- · Adding, starting, stopping, and deleting the subsystem
- · Cleaning up the subsystem, that is, deleting it from all system partitions
- Turning tracing on and off

Adding the Subsystem

When the -a flag is specified, the control script uses the **mkssys** command to add the SP SNMP Proxy Agent subsystem to the SRC. The control script operates as follows:

- 1. It makes sure that the **sp_configd** daemon is stopped.
- It removes the sp_configd subsystem from the SRC (just in case it is still there).
- 3. It adds the **sp_configd** subsystem to the SRC.
- 4. It adds an entry for the **sp_configd** subsystem to the **/etc/inittab** file. The entry ensures that the subsystem is started during boot.
- It adds a smux entry to the /etc/snmpd.conf file and a password entry to the /etc/snmpd.peers file for the sp_configd Proxy Agent if they do not currently exist.
- 6. It appends the ibmSP MIB definitions to the /etc/mib.defs file if they do not currently exist.
- 7. It issues a **refresh -s snmpd** command so that **snmpd** processes the new entries placed in the **/etc/snmpd.conf** and **/etc/snmpd.peers** files.
- 8. It adds an errnotify stanza for the **snmp_trap_gen** function to the Object Data Manager (ODM). This function notifies the SP SNMP Proxy Agent when an entry is written to the AIX errlog which has a template specifying **Alert = true**.

Starting the Subsystem

When the -s flag is specified, the control script uses the **startsrc** command to start the SP SNMP Proxy Agent subsystem, $sp_configd$.

Stopping the Subsystem

When the -k flag is specified, the control script uses the **stopsrc** command to stop the SP SNMP Proxy Agent subsystem, **sp_configd**.

Deleting the Subsystem

When the -d flag is specified, the control script uses the **rmssys** command to remove the SP SNMP Proxy Agent subsystem from the SRC. The control script operates as follows:

- 1. It makes sure that the **sp configd** daemon is stopped.
- 2. It removes the **sp_configd** subsystem from the SRC using the **rmssys** command.
- 3. It removes the entry for the **sp_configd** subsystem from the **/etc/inittab** file.
- It removes entries from /etcsnmpd.conf and /etc/snmpd.peers and removes ibmSP MIB definitions from /etc/mib.defs.

Cleaning Up the Subsystem

When the **-c** flag is specified, the control script stops and removes the SP SNMP Proxy Agent subsystem from the SRC. The control script operates as follows:

- 1. It stops the subsystem using the **stopsrc -s sp_configd** command.
- 2. It removes the subsystem from the SRC using the **rmssys** command.
- 3. It removes entries from **/etcsnmpd.conf** and **/etc/snmpd.peers** and removes ibmSP MIB definitions from **/etc/mib.defs**.

Turning Tracing On

When the -t flag is specified, the control script turns tracing on for the **sp_configd** daemon, by stopping the daemon and restarting it with the -T option.

Turning Tracing Off

When the $-\mathbf{o}$ flag is specified, the control script turns tracing off for the $\mathbf{sp_configd}$ daemon, by stopping the daemon and restarting it without the $-\mathbf{T}$ option.

Refreshing the Subsystem

The -r flag has no effect for this subsystem.

Files

/etc/snmpd.peers

Contains password entries.

/etc/snmpd.conf

Contains smux entries.

/etc/mib.defs Contains the ibmSP MIB definitions.

Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

- **0** Indicates the successful completion of the command.
- 1 Indicates that an error occurred.

Security

You must be running with an effective user ID of root.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information

AIX Version 4 Commands Reference

Information about the System Resource Controller (SRC) in AIX Version 4 General Programming Concepts: Writing and Debugging Programs

Location

/usr/lpp/ssp/bin/sp_configdctrl

Related Information

Commands: sp_configd

Examples

 To add the SP SNMP Proxy Agent subsystem to the SRC in the current system partition, set the SP_NAME environment variable to the appropriate system partition name, enter:

```
sp configdctrl -a
```

2. To start the SP SNMP Proxy Agent subsystem in the current system partition, set the SP_NAME environment variable to the appropriate system partition name, enter:

```
sp_configdctrl -s
```

3. To stop the SP SNMP Proxy Agent subsystem in the current system partition, set the SP_NAME environment variable to the appropriate system partition name, enter:

```
sp_configdctrl -k
```

4. To delete the SP SNMP Proxy Agent subsystem from the SRC in the current system partition, set the SP_NAME environment variable to the appropriate system partition name, enter:

```
sp configdctrl -d
```

5. To clean up the SP SNMP Proxy Agent subsystem on all system partitions, enter:

```
sp configdctrl -c
```

6. To turn tracing on for the **sp_configd** daemon in the current system partition, set the **SP_NAME** environment variable to the appropriate system partition name, enter:

```
sp_configdctrl -t
```

7. To turn tracing off for the **sp_configd** daemon in the current system partition, set the **SP_NAME** environment variable to the appropriate system partition name, enter:

```
sp_configdctrl -o
```

8. To display the status of the SP SNMP Proxy Agent subsystem on a node or the control workstation, enter:

```
lssrc -s sp_configd
```

spacctnd

Purpose

spacetnd – Enters accounting data into the System Data Repository for a node or group of nodes.

Syntax

Flags

-c acct class id

Indicates that the accounting class identifier attribute of each specified node should be changed to the value of *acct_class_id*. The accounting class identifier is an arbitrary string. All nodes with the same string value constitute a class for purposes of grouping and merging accounting data.

-e Indicates that the accounting enabled attribute of each specified node should be changed. The accounting enabled attribute is an indicator of whether accounting is enabled for the node. The possible values are:

true Accounting is enabled false Accounting is disabled

default Accounting is enabled based on the value of the SP accounting enabled attribute

-j acct_job_charge

Indicates that the accounting job charge value of each specified node should be changed to the value of <code>acct_job_charge</code>. The job charge value is used to determine the number of <code>charge fee units</code> to charge a user for exclusive use of the node. Its value is in units of seconds per charge fee unit. This value must be expressed as a float value with one or more digits followed by a decimal point which is followed by one or more digits.

-x Indicates whether accounting start and end job records and thus chargefee records are generated for jobs having exclusive use of the node. A value of true specifies that exclusive use accounting is enabled and start and end job records are generated. A value of false specifies that exclusive use accounting is not enabled and start and end job records are not generated.

-N node group

Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

-I node_list

Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white

space. If you use the *node_list* field, do not use the *start_frame*, *start_slot*, or *node_count* fields. (This is lowercase I, as in list.)

Operands

start frame

Indicates which frame is the starting frame for the range of nodes in this operation. If you use the *start_frame*, *start_slot*, and *node_count* fields, do not use the *node_list* field. Select a value from 1 through 64.

start_slot Indicates which slot is the starting slot for the range of nodes in this operation. The slot is the position in the rack that a node occupies. For example, for a thin node which is the second node in a rack that has a wide node in the first slot, the slot number is 3. If you use start_frame, start_slot, and node_count, do not use the node_list field. Specify the start slot as a number from 1 through 16.

Note: The *start_frame* and *start_slot* must resolve to a node in the current system partition.

node_count

Indicates which nodes are to be used for the range of nodes in this operation. If the combination of *start_slot* and *node_count* goes past the nodes in a frame, the next sequential frame is used for the operation. If you use *start_frame*, *start_slot*, and *node_count*, do not use the *node_list* field. Specify a value from 1 through 1024.

Note: The *node_count* is considered to be within the current system partition.

Description

Run this command during installation of the SP or later to set the accounting class identifier, the accounting enabled attribute, job charge value or the exclusive use accounting enabled attribute of a node or set of nodes.

You can use the System Management Interface Tool (SMIT) to run the **spacetnd** command. To use SMIT, enter:

smit node_data

and select the Accounting Information option.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Location

/usr/lpp/ssp/bin/spacctnd

Examples

The following example adds accounting SDR information for a system with 2 frames and 32 nodes. Accounting and exclusive use accounting is to be enabled for each node and 60 seconds of exclusive use by a user is to constitute one *charge fee unit*.

spacetnd -e true -j 60.0 -x true $1\ 1\ 32$

spacs_cntrl

Purpose

spacs_cntrl – Controls interactive access to SP nodes.

Syntax

spacs_cntrl [-v -s] [-d] [-h] [-l] [-f file_name] [-n netgroup_name] {allow | block | deny | unblock} user_name ...

Flags

 Specifies debugging mode. Displays additional messages, when available, to trace program flow and system errors.

-f file_name

Specifies the name of a file in which the user names to be allowed or denied access are listed in a column.

- -h Displays the usage message when present on the command line.
- -I Specifies log messages. This flag logs messages to the /var/adm/SPlogs/spacs/spacs.log file. Included are all messages regarding user states that are be displayed if the -v flag is specified, as well as any debug messages if -d is specified. (This is lowercase I, as in list.)
- Specifies suppress mode. No error messages displayed. If -I is specified, error messages are sent to log file.
- -v Specifies verbose mode. A message is displayed for each user, containing the date, time and state of the user. User states resulting from this command include:

Access was removed
Access was allowed
Access removed, user allowed
Access removed, user denied
Access allowed, user allowed
Access allowed, user denied
User name is not valid or is root.

-n netgroup_name

Accepts one NIS netgroup name of a netgroup that contains user names in the user field. Netgroups embedded in a given netgroup name is resolved.

allow Used by job submission systems such as the Resource Manager.
Requests that interactive access be granted to run a parallel job. Result depends on user state.

block Used by root user to set user state to a known denied state and remove user state information used by job submission systems.

denyUsed by job submission systems such as the Resource Manager.
Requests that interactive access be denied after running parallel job.
Result depends on user state.

unblock Used by root user to set user state to a known allowed state and remove user state information used by job submission systems.

Operands

user name

Specifies the user name for which access is to be allowed or denied. Delineate with a blank space if specifying more than one user name.

Description

Use caution when issuing this command while the Resource Manager is running. If the Resource Manager is configured to use Login Control, you may cause loss of user state information. For more Login Control information, refer to *PSSP*: *Administration Guide*.

The following types of access can be disallowed when **spacs_cntrl block** or **deny** is used:

login rlogin AIX rsh AIX rcp AIX rexec SP rsh SP rcp

The **spacs_cntrl** command does not allow individual types of access to be disallowed.

Duplicate user names are removed from the user list whether entered from the command line or in a file.

If you add a new user to a node for which all users are denied, you must reissue **spacs cntrl** to deny the new user as well.

Flags and Logging

Flags specified in combination have the following results:

None	Error messages go to standard output.
-I	Error messages got to standard output and are logged.
-l -s	Error messages go to log only.
- s	Error messages suppressed.
-l -d -v -s	All messages go to log only.
-d -v -s	Messages suppressed.
-d −l	Debug and error messages go to standard output and log.

Use of the verbose flag (-v) causes the command to run longer due to extra processing required to find state information.

Location

/usr/lpp/ssp/bin/spacs_cntrl

Examples

- 1. To block a single user (Betty) on a single parallel node, on that node enter: spacs_cntrl block betty
- 2. To block users on multiple nodes, enter:
 - a. Create the **block_usr_sample** file after adjusting threshold uid.
 - b. Send file to all nodes in the current system partition. Note this example would require **rsh** privileges on the nodes.

```
dsh -a rcp root@mynode:/tmp/usr.input /tmp/usr.input
```

c. Issue the **spacs_cntrl** command to block users to all the nodes in the current system partition.

```
dsh -a spacs_cntrl -f /tmp/usr.input block
```

spadaptrs

Purpose

spadaptrs – Enters configuration data for an additional adapter for a node or series of nodes in the System Data Repository (SDR).

Syntax

spadaptrs [-s {yes | no}] [-t {bnc | dix | fiber| NA | tp}]

[-r {4 | 16 | autosense}] [-d {full | half | auto}]

[-f {10 | 100 | 1000 | auto}] [-a {no | yes}]

[-n {yes | no}] [-o IP_address]

{-I node_list | -N node_group | start_frame start_slot node_count}}

adapter_name starting_IP_address netmask

Flags

-s yes | no Indicates whether IP addresses should be skipped, as needed, when assigning IP addresses. If -s no is specified, no skipping occurs; each IP address assigned is equal to the previous address assigned plus one. If -s yes is specified, each IP address assigned is equal to the previous address assigned plus the difference in their respective node numbers.

-t bnc | dix | fiber | NA | tp

Designates the Ethernet type. Use **bnc** to designate a thin Ethernet. Use **dix** to designate a thick Ethernet (also called a twisted pair). Use **fiber** to designate a 1000 Base SX network. Use **NA** for an integrated Ethernet. Use **tp** to designate a twisted pair. The default is **bnc**.

-r 4 | 16 | autosense

Specifies the token-ring network speed. This is required for **tr0** and **tr1** token-ring adapters. Specify **4** for 4MB per second, **16** for 16MB per second, and **autosense** for adapters that automatically choose the network speed.

-d full | half | auto

Specifies the communication transfer as one way (half) or two way (full). The default is auto. If -t fiber is set then -d is set to full.

-f 10 | 100 | 1000 | auto

Specifies ethernet speed in megabits (Mb/s). Specify **10** for 10Mb per second, **100** for 100Mb per second or **1000** for 1000Mb per second. The default is **auto**.

-a no | yes

Indicates whether you want Address Resolution Protocol (ARP) to be used for the switch. If you want to assign IP addresses freely, as for other adapters, you must specify **yes**. If you specify **–a no**, you must not specify **–n no**. Do not use this flag unless you are specifying IP addresses for the **css0** adapter. If you do not specify **–a**, the default is **yes**.

-n yes | no

Indicates whether you want to use switch node numbers for assigning IP addresses for the switch. If you want to assign IP addresses freely, as for other adapters, you must specify **–n no** and

-a yes. If you specify -n yes, you must not specify -s yes. If you specify -n yes, you must not specify your nodes with a node list. Do not use this flag unless you are specifying IP addresses for the **css0** adapter. If you do not use -n, the default is **yes**.

−o ip_list

Specifies a list of additional IP addresses associated with this adapter. The ip_list is a comma delimited list of dotted decimal IP addresses. This flag is used in an HACMP environment only.

-I node list

Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the *node list* field, do not use the start frame, start slot, or node count fields. (This is lowercase I, as in list.)

-N node group

Specifies a node group to be used for this operation. This node group must be bound to the current system partition.

Operands

start frame Specifies the frame number of the first node to be used for this

operation. Specify a value between 1 and 64 inclusive.

start slot Specifies the slot number of the first node to be used for this

operation. Specify a value between 1 and 16 inclusive. **Note:** The *start_frame* and *start_slot* must resolve to a node in the

current system partition.

node_count

Specifies the number of nodes to be used for this operation. The information is added sequentially to nodes in slots within a frame and, if the slots in a frame are exhausted, to slots in the next sequential frame. Specify a value between 1 and 1024 inclusive.

Note: The *node_count* is considered to be within the current system partition.

adapter name Specifies the name of the adapter. Valid adapter types are: ethernet (en), fddi (fi), token ring (tr), and switch (css).

starting IP address

Specifies the IP address of the first node on the network. IP addresses of subsequent nodes are created via incrementing the IP address for each node.

Each IP address used in the operation must be resolved by the host command on the control workstation.

netmask

Specifies the netmask for the network on which the adapter resides. Specify a valid IP address.

Description

Execute this command during installation of the SP to identify the IP addresses, netmask, and default route associated with node adapters other than en0. If all your IP addresses are in the same block, run this command once. If you have "holes" in your IP addressing scheme, run this command once for each block of addresses you want to assign.

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in *PSSP: Administration Guide* for additional information on ticket-granting-tickets.

If you do not have a ticket-granting-ticket, you must run k4init.

You can use the System Management Interface Tool (SMIT) to run the **spadaptrs** command. To use SMIT, enter:

smit node_data

and select the Additional Adapter Information option.

Notes:

- 1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
- 2. After running this command, you must issue the **syspar_ctrl** -**r** command to refresh system partition-sensitive subsystems in each system partition where node customization was performed. Subsystems like **hats**, **hb**, and **hr** need to be refreshed whenever nodes or adapters are added or deleted.
- Any changes made will not take effect on the nodes until they are customized.

Location

/usr/lpp/ssp/bin/spadaptrs

Related Information

Commands: syspar_ctrl

Examples

 If you specify the -s flag to skip IP addresses when setting the css0 switch addresses, you must also specify -n no to not use switch numbers for an IP address assignment. You must specify -a yes to use ARP.

```
spadaptrs -s yes -n no -a yes 1 1 30 css0 129.33.34.1 255.255.255.0
```

 The following example configures the Gigabit Ethernet adapter as (en1) on node (7) following the guidelines of: Adapter Type = fiber; Duplex = full; Adapter Speed = 1000.

```
spadaptrs -t fiber -f 1000 -d full -l 7 en1 129.33.34.1 255.255.255.0
```

spapply_config

Purpose

spapply_config – Applies a system partition configuration to the SP system.

Syntax

spapply_config [-h] [-v] [-A] [-F] [-q] config_dir/layout_dir

Flags

- -h Displays usage information. If this command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken (even if other valid options or operands are entered with the -h flag).
- -v Verifies, but does not apply, the specified configuration layout. With this option, the command:
 - Checks the contents of each custom file in the specified layout to ensure that the required stanza entries exist
 - Describes which system partitions would be changed and which would be unchanged by applying the specified configuration layout
 - Lists all nodes in the changed system partitions which are not shutdown
- A Archives the System Data Repository (SDR). With this flag, a copy of the SDR prior to applying the configuration is saved using the SDRArchive command.
- -F Corrects recoverable errors encountered in the IBM Virtual Shared Disk subsystem in the application of the specified configuration layout. Irrecoverable errors encountered cause the command to terminate prior to applying the specified layout.
- -q Specifies quiet mode. This option suppresses all status messages as well as the output from most internally called commands. The list of changed and unchanged system partitions, the list of nodes in changed system partitions which are not shutdown, and any warning or error messages are still displayed with this option.

Operands

config_dir Specifies the directory name for a configuration directory.

layout_dir Specifies the directory name for a layout directory within the

configuration directory.

Description

This command functions in two phases: verification and application. Before applying a new system partition configuration, the administrator should back up the SP system SDR. This can be accomplished by using either the **SDRArchive** command or by using the **–A** flag on **spapply_config**. If your system has an SP switch, the **Eunpartition** command must be run before applying a new system partition configuration. Otherwise there will be unpredictable results in the new

system partitions. Refer to the "Managing System Partitions" chapter in *PSSP: Administration Guide* for additional information.

The layout directory contains one system partition directory for each system partition in the configuration. Each partition directory contains the switch **topology** file and **nodelist** file. It also contains the **custom** file (created and updated by the **spcustomize_syspar** command). The **spapply_config** command verifies that these files exist. It also verifies the contents of the **custom** file. If an error is encountered in this verification phase, the command issues an appropriate message and terminates without attempting to apply a configuration layout that is not valid. As part of its verification phase, this command also calls the **verparvsd** command to determine the impact on the IBM Virtual Shared Disk subsystem of applying the specified configuration layout. If any errors or warnings are returned from **verparvsd**, the **spapply_config** command reports those messages and stops. The **-F** flag can be used to alter this behavior by correcting recoverable IBM Virtual Shared Disk errors encountered in the analysis of the IBM Virtual Shared Disk subsystem.

As part of its processing, **spapply_config** displays to standard output the list of changed system partitions and the list of unchanged system partitions. A changed system partition is a currently-defined partition which will be changed in some way by the application of the specified configuration layout. Nodes in changed system partitions should be shutdown prior to applying that configuration. Conversely, an unchanged system partition is a currently-defined partition which will be unchanged by the application of the specified configuration layout. Nodes in unchanged system partitions can remain in operation during the application of this configuration layout. The **spapply_config** command issues the **Eannotator**, **Eprimary**, and **Etopology** commands as necessary.

The **spapply_config** command issues status messages which track the progress of operation to standard output. These messages along with the lists of changed and unchanged system partitions can be suppressed by the using the **-q** flag.

In the event that **spapply_config** encounters an error during the application phase, a descriptive error message is displayed and the command stops. In this case, it will be necessary to restore the SP SDR and the system partition-sensitive subsystems (for example, **hats**, **hb**, and **hr**) to their previous state by using the **sprestore_config** command.

Note: Due to system partitioning changes, your SP_NAME environment variable may no longer be set to a valid system partition name. To get a list of valid system partition names, enter the **splst_syspars -n** command. Then verify that your SP_NAME environment variable is either unset or set to one of the system partition names in the list.

Files

nodelist Contains a list of switch node numbers contained in a system

partition (used internally, not by end users).

topology Contains the wiring configuration information for switch-to-switch

and node-to-switch cabling in a switch network. This information is

used during switch initialization.

Related Information

Commands: Eunpartition, SDRArchive, spcustomize_syspar, spdisplay_config, sprestore_config, spverify_config, syspar_ctrl, verparvsd

Files: nodelist, topology

Location

/usr/lpp/ssp/bin/spapply_config

Examples

1. To apply the system partition configuration represented by the config.4_12/layout.2 layout directory, enter:

```
spapply_config config.4_12/layout.2
```

2. To check (but not apply) the system partition configuration represented by the config.8_8/layout.1 layout directory, enter:

```
spapply_config -v config.8_8/layout.1
```

spauthconfig

Purpose

spauthconfig – Called from **rc.sp**, run each time a node boots. Installs and configures node based on selected authentication methods.

Syntax

spauthconfig [-h] node number

Flags

-h Presents syntax of command.

Operands

node number

Description

The **spauthconfig** command invokes the **updauthfiles** command and sets the authentication methods.

This command may be run manually to update the node to pick up any changes to the authentication configuration that occurred on the control workstation. This command is similar to the process run on the control workstation except this is automated and relies on information in the SDR to control program flow. The ODM will be updated based on authentication methods set in the SDR.

Files

The **spauthconfig** command reads from the SDR database, ODM database, and **.rhost** file.

The command writes to the log file created in /var/adm/SPlogs/auth_install/log, SDR database, ODM database, and .rhost file.

Standard Input

SDR database

ODM database

.rhost

Standard Output

Log file created in /var/adm/SPlogs/auth_inst/log

SDR database

ODM database

.rhost

spauthconfig

Exit Values

- 0 Indicates successful completion of the command.
- 1 Indicates errors occurred during the execution of this program. Review any reported errors either on the console or in the Log file.

Security

Root authority is required to run this command.

Location

/usr/lpp/ssp/bin/spauthconfig

Related Information

Commands: Isauthent, chauthent

Files: /etc/inittab

Examples

This command may be run locally by the user, but generally will be run at boot time out of the /etc/rc.sp file. The following example will run the command on the local node 2:

/usr/lpp/ssp/bin/spauthconfig 2

spbootins

Purpose

spbootins – Enters boot/install configuration data for a node or series of nodes in the System Data Repository (SDR).

Syntax

spbootins {-c volume_group_name |

-r {install | customize | disk | maintenance | diag | migrate}}
[-s {yes | no}] {start_frame start_slot node_count | -I node_list}

Flags

-c volume_group_name

Specifies the name of the volume group to select for the target nodes. This volume group will become the current volume group for subsequent installations, and customizations.

 -r Specifies the boot/install server's response to the bootp request from the nodes.

install Indicates that you should specify install if you want

the server to perform a network install (overwrite

install) and customize each node.

customize Indicates that you should specify customize if you

want the server to place node-specific configuration information from the SDR into each node's local

Object Data Management (ODM).

disk Indicates that you should specify disk if you want

the server to ignore the bootp request and have

each node boot from its local disk.

maintenance Indicates that you should specify maintenance to

have each node boot in a prompted mode.

A node that boots in a prompted mode, comes up with the "Install/Maintenance" panel. From this panel, you can choose option 3 to start a limited function maintenance shell. You may access files in the root volume group (**rootvg**) by choosing the panels to mount the root volume group and enter a

shell.

diag

Sets the bootp_response to **diag**. The next time the node is network booted, a diagnostic menu will be displayed on the tty. From the diagnostic menu, you can execute simple or advanced diagnostics on the node or execute service aids. Service aids allow you to perform such tasks as formatting and certifying the hard drive on the node, or downloading microcode to a device attached to the node. When diagnostics are complete, set the bootp_response back to disk and reboot the node.

The diag parameter can be used only on the IBM Parallel System Support Programs for AIX (PSSP) Version 2 Release 1 and later nodes. PSSP Version 1 Release 2 nodes cannot run remote diagnostics.

migrate

Indicates that you want the server to perform a migration installation on the specified nodes. See the PSSP: Installation and Migration Guide for more details on the migration installation method.

-s no | yes

Indicates whether **setup server** should be run on the boot servers (including the control workstation) of the indicated nodes. If you specify -s no, setup_server is not run on the node's boot server, and it must be run later to make any necessary changes to installation-related files. Specify -s yes if you have finished entering boot/install/usr server data during your initial installation or if you are changing data after the initial installation. Otherwise, specify -s no. If -s is not specified, the default is -s yes.

-I node list

Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the *node list* field, do not use the start frame, start slot, or node count fields. (This is lowercase I, as in list.)

Operands

start frame Specifies the frame number of the first node to be used for this

operation. Specify a value between 1 and 64 inclusive.

start_slot Specifies the slot number of the first node to be used for this operation. Specify a value between 1 and 16 inclusive.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node count Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame.

Specify a value between 1 and 1024 inclusive.

Note: The *node count* is considered to be within the current

system partition.

Description

Use this command to select a volume group for the target nodes to use as their root volume group and to select what action to perform using that volume group the next time this node is booted or network booted. Each time this command is run, the setup_server command is run on each of the affected boot/install servers.

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in *PSSP: Administration Guide* for additional information on ticket-granting-tickets.

If you do not have a ticket-granting-ticket, you must run k4init.

You can use the System Management Interface Tool (SMIT) to run the spbootins command. To use SMIT, enter:

```
smit node_data
```

and select the Boot/Install Information option.

You cannot use SMIT if you are using AFS authentication services.

Notes:

- 1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
- 2. Any changes made will not take effect on the nodes until they are customized.

Location

/usr/lpp/ssp/bin/spbootins

Examples

1. To change the root volume group for node 1 and install that volume group,

```
spbootins -c rootvg2 -r install -s yes -l 1
```

2. To customize nodes 3 and 7 using their current volume group, enter:

```
spbootins -r customize -s yes -1 3,7
```

spbootlist

Purpose

spbootlist – Sets the bootlist on a node or set of nodes based on the values in the Node and Volume Group objects.

Syntax

spbootlist {start_frame start_slot node_count -I node_list}

Flags

-I node_list Specifies a list of nodes for this operation. This list can be a single

numeric node number, or a list of numeric node numbers

separated by commas.

Operands

start_frame Specifies the frame number of the first node to be used for this

operation.

start_slot Specifies the slot number of the first node to be used for this

operation.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node_count Specifies the number of nodes to be used for this operation. The

node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame.

Note: The *node_count* is considered to be within the current

system partition.

Description

The **spbootlist** command is used to set the bootlist on a node or set of nodes based on the values in the Node and Volume Group objects. The selected_vg attribute of the Node object will point to a unique Volume_Group object for a node. **spbootlist** will look at the vg_name of the Volume_Group object and determine which physical volumes are in the volume group, and set the bootlist to "ent0" followed by all the physical volumes which contain boot logical volumes. In a mirrored environment, more than one physical volume will contain a boot logical volume.

Exit Values

- Indicates the successful completion of the command.
- 1 Indicates that a recoverable error occurred, some changes may have succeeded.
- 2 Indicates that an irrecoverable error occurred and no changes were made.

Security

A user must run as "root" and have a valid Kerberos ticket.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/spbootlist

Related Information

Commands: spchvgobj

Examples

1. To set the bootlist on node one, enter:

```
spbootlist -l 1
```

2. To set the bootlist on a list of nodes, enter:

```
spbootlist -1 1,2,3
```

spchuser

Purpose

spchuser – Changes the attributes of an SP user account.

Syntax

spchuser attribute=value ... name

Flags

None.

Operands

attribute=value Pairs of the supported attributes and values as follows.

name Name of the user account whose information you want to

change.

Supported Attributes and Values

id ID of the user specified by the name parameter.

pgrp Principle group of the user specified by the *name* parameter.

gecos General information about the user.

groups The secondary groups to which the user specified by the *name*

parameter belongs.

home Host name of the file server where the home directory resides and the

full path name of the directory. You can specify a host and directory in the format *host:path*, just specify the directory and have the host default

to a value set in SMIT site environment panel or the **spsitenv**

command, or just specify a directory and have the host default to the

local machine.

login Indicates whether the user specified by the *name* parameter can log in

to the system with the **login** command. This option does not change the **/etc/security/user** file. Instead, it alters the user password field in

/etc/security/passwd.

shell Program run for the user specified by the *name* parameter at the

session initiation.

Description

No flags are supported. Except for **home**, the rules for the supported attributes and values correspond to those enforced by the AIX **chuser** command.

You can only change the values of the supported attributes.

You can use the System Management Interface Tool (SMIT) to run the **spchuser** command. To use SMIT, enter:

smit spusers

and select the Change/Show Characteristics of a User option.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Location

/usr/lpp/ssp/bin/spchuser

Examples

To change the default shell to /bin/csh, and change the secondary group membership to $\mbox{\bf dev}$ and $\mbox{\bf dev2}$ for the user account $\mbox{\bf charlie}:$

spchuser groups=dev,dev2 shell=/bin/csh charlie

spchvgobj

Purpose

spchvgobj – Changes the contents of a **Volume_Group** object.

Syntax

spchvgobj -r volume_group_name [-h pv_list] [-i install_image] [-**p** code_version] [-**v** lppsource_name] [-**n** boot_server] [-c {1 | 2 | 3}] [-q {true | false}] {start_frame start_slot node_count | -I node_list}]

Flags

-r volume group

Specifies the root volume group name to apply the changes towards.

-h pv list Indicates the physical volumes to be used for installation for the volume group specified. The root volume group is defined on the disks indicated, and all data on the disks is destroyed. The physical volumes may be specified as logical names (such as hdisk0), hardware location (such as **00-00-00-0,0**), or connwhere (such as ssar//012345678912345). If multiple physical volumes are specified, separate them by commas for logical names and by colons for hardware location and connwhere. At installation, the value for each node's pv_list is hdisk0.

> **Note:** IBM strongly suggests that you use the hardware location or connwhere format. It ensures that you install on the intended disk by targeting a specific disk at a specific location. The logical naming of physical volumes may change depending on hardware installed or possible hardware problems. This is especially true when there are external drives present, as the manner in which the device names are defined may not be obvious.

-i install image

Specifies the name of the install image to be used for the volume group when they are next network-installed. Specify a file in the /spdata/sys1/install/images directory on the control workstation. At installation, the value for each volume group's install image name is default, which means that the default install image name for the system partition or the system is used for each node. The default install image name is found in the Syspar or the SP object in that order.

-p code_version

Sets the volume group's code version. Use this to indicate the PSSP level to install on the node. The *code version* value you choose must match the directory name that the PSSP installation files are placed under in the /spdata/sys1/install/pssplpp directory during installation. See the PSSP: Installation and Migration Guide for more details.

-v lppsource_name

Sets the volume group's Ippsource name. Use this to indicate the AIX level to install on the node. The *lppsource name* value you choose must match the directory name you choose to place the lppsource files under

in the **/spdata/sys1/install** directory during installation. See the *PSSP: Installation and Migration Guide* for more details.

-n boot_server

Identifies the boot/install server for the volume groups you have specified. The boot/install server is identifies by a node number. Node number 0 represents the control workstation. The value of the boot/install server at installation depends on how many frames are in your system. In a single frame system, the control workstation (node 0) is the default server for each node. In a multiple frame system, the default server for the first node in each frame is the control workstation, and the default server for the rest of the nodes in a frame is the first node in that frame.

-c copies

Specifies the number of mirrors to create for the volume group. To enable mirroring, set this to 2 or 3. Setting this to 1 disables mirroring. When enabling mirroring, be sure that there are enough physical volumes to contain all the copies of the volume group. Each copy must have at least 1 physical volume.

-q true | false

Specifies whether quorum should be enabled. If quorum is enabled, a voting scheme will be used to determine if the number of physical volumes that are up is enough to maintain quorum. If quorum is lost, the entire volume group will be taken off line to preserve data integrity. If quorum is disabled, the volume group will remain on line as long as there is at least 1 running physical volume.

-I node list

Specifies a list of nodes to be used for this operation. Specify a comma-delimited list of node numbers. If you use the **-I** flag, do not use the *start_frame*, *start_slot*, or *node_count* operands.

Operands

start_frame Specifies the frame number of the first node to be used for

this operation.

start_slot Specifies the slot number of the first node to be used for this

operation.

Note: The *start_frame* and *start_slot* must resolve to a node

in the current system partition.

node_count Specifies the number of nodes to be used for this operation.

The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next

sequential frame.

Note: The *node_count* is considered to be within the current

system partition.

Description

This command is used to change the configuration information for an existing volume group on a node or group of nodes in the System Data Repository (SDR). When this command is run and the SDR is changed, setup server must be run on the affected boot/install servers and affected nodes may need to be customized or installed to apply the changes. Certain volume group information such as mirroring and the *pv_list* may be updated using the **spmirrorvg** or **spunmirrorvg** commands.

Exit Values

- 0 Indicates the successful completion of the command.
- 1 Indicates that a recoverable error occurred, some changes may have succeeded.
- 2 Indicates that an irrecoverable error occurred and no changes were made.

Security

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in PSSP: Administration Guide for additional information on ticket-granting-tickets. If you do not have a ticket-granting-ticket, you must run k4init.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/spchvgobj

Related Information

Commands: spbootins, spmirrorvg, spmkvgobj, sprmvgobj, spunmirrorvg

Examples

1. To specify node 1 as the boot/install server for the volume group "rootvg" on nodes 2-16, enter:

```
spchvgobj -r rootvg -n 1 1 2 15
```

2. To enable mirroring with 2 copies, no quorum and 2 SSA physical volumes for the volume group "rootvg" on nodes 2 and 3, enter:

```
spchvgobj -r rootvg -c 2 -q false -h \
ssar//567464736372821:ssar//67464736372821 -1 2,3
```

spcustomize_syspar

Purpose

spcustomize_syspar - Enters or verifies customization information to be used in creating a system partition.

Syntax

spcustomize_syspar [-h] [-n syspar_name | IP_address] [-I PSSP_code_level] [-d default_install_image | default] [-e primary_node | default] [-b backup_primary_node | default] config_dirllayout_dirlsyspar_dir | fully_qualified_path_name [-r k4 | std] [-m k5 | k4 | std]

Flags

- -h Displays usage information.
- -n syspar_name | IP_address

Specifies the system partition name (the control workstation host name or host name alias) or IP address (which corresponds to the system partition name) associated with this system partition.

-I PSSP code level

Specifies the IBM Parallel System Support Programs for AIX (PSSP) code level for the system partition. For mixed system partitions, partitions that have multiple supported levels of PSSP coexisting in the same partition, should be set to the minimum (earliest) level of PSSP in this system partition.

-d default install image | default

Specifies the default install image for the system partition or default to direct the system to use the system-wide default install image. Refer to PSSP: Installation and Migration Guide for additional information on the default install image.

-e primary_node | default

Specifies the primary node number for switch operations or **default** to direct the system to automatically set the default which is the first node in the node list.

-b backup_primary_node | default

Specifies the primary backup node number for switch operations or default to direct the system to automatically set the default which is the last node in the node list. This flag is valid only on SP Switch systems.

- Authorization Method for root access to remote commands. -r
- Authentication Method enabled for **usstem** use. -m

Operands

config_dir Specifies the directory name for a configuration directory.

layout_dir Specifies the directory name for a layout directory within the

configuration directory.

syspar_dir Specifies the directory name for a system partition directory within the

layout directory.

fully_qualified_path_name

Specifies the fully qualified path name to a system partition directory.

Description

Use this command to customize a system partition customization file (**custom**) or to display the previously-entered customization information.

For a specified system partition, the customization data can be entered with the optional parameters. If the **custom** file does not exist, you can create one by specifying the -**n** and -**l** flags. The -**d** and -**e** flags are optional when creating a **custom** file. If -**d** and -**e** are not specified, the system automatically specifies **default** to set the default install image and primary node in the newly-created **custom** file. Once the **custom** file is created, any combination of the optional parameters can be used to update the contents of the file.

If none of the optional parameters are specified with the **spcustomize_syspar** command, the contents of the customization file for the specified system partition are displayed to standard output as in the **spdisplay_config** command with the **-c** flag.

Location

/usr/lpp/ssp/bin/spcustomize_syspar

Related Information

Commands: spapply_config, spdisplay_config, spverify_config

Files: nodelist, topology

Examples

1. To display the customization information for the specified system partition, enter:

```
spcustomize_syspar config.4_12/layout.1/syspar.1
```

syspar-name: my-partition-1
IP-address: 9.102.55.301
PSSP-code-level: PSSP-2.2
default-install-image: bos.4.1.5
primary-node: 9

primary-node: 9 backup-primary-node: 16

To modify the system partition name, PSSP code level, and primary node information for the specified system partition, enter:

```
spcustomize_syspar -n my-new-partition-name -l PSSP-2.2 \
-e 7 config.4 12/layout.1/syspar.1
```

spcustomize_syspar

3. To use the default primary node information for the specified system partition, enter:

spcustomize_syspar -e default config.4_12/layout.1/syspar.1

spcw_addevents

Purpose

spcw_addevents – Identifies the High Availability Cluster Multiprocessing(HACMP) event scripts supplied by the High Availability Control Workstation(HACWS) to the AIX High Availability Cluster Multi-Processing (HACMP) software.

Syntax

spcw_addevents

Flags

None.

Operands

None.

Description

HACWS customizes the recovery of control workstation services by providing HACMP event scripts, which get executed by the HACMP software. The **spcw_addevents** command is a shell script which identifies the HACMP event scripts to HACMP, without requiring the system administrator to go through all the equivalent HACMP SMIT panels.

Exit Values

Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Security

You must have root privilege to run this command.

Prerequisite Information

Refer to *PSSP: Administration Guide* for additional information on the HACWS option.

Location

/usr/sbin/hacws/spcw_addevents

spcw_apps

Purpose

spcw_apps – Starts or stops control workstation applications in a High Availability Control Workstation (HACWS) configuration.

Syntax

spcw_apps {-**u** | -**d**} [-**i** | -**a**]

Flags

- -u Starts control workstation applications on the local host.
- -d Stops control workstation applications on the local host.
- Sets the local host to be the inactive control workstation before starting or after stopping control workstation applications.
- -a Sets the local host to be the active control workstation before starting or after stopping control workstation applications.

Operands

None.

Description

The control workstation services are started at boot time on a regular control workstation via entries in /etc/inittab. An HACWS configuration requires the capability to stop control workstation services on one control workstation and restart them on the other. The install_hacws command removes most of the control workstation entries from /etc/inittab, and the spcw_apps command is provided as a means to stop and start control workstation services in the HACWS configuration. In addition, the spcw_apps command can be used to make the inactive control workstation act as a client of the active control workstation to keep the two control workstations synchronized.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts and installation scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP) will start or stop the control workstation applications during a fail over or reintegration. The administrator should not normally have to start or stop the control workstation applications.

Exit Values

0 Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Prerequisite Information

Refer to PSSP: Administration Guide for additional information on the HACWS option.

Location

/usr/sbin/hacws/spcw_apps

Related Information

Command: install_hacws

Examples

In the following example, assume that the primary control workstation is currently the active control workstation. This means that the primary control workstation is providing control workstation services to the SP system. When a control workstation failover occurs, the AIX High Availability Cluster Multi-Processing (HACMP) software moves the control workstation network and file system resources from the primary to the backup control workstation. In addition, control workstation applications must be stopped on the primary and restarted on the backup. HACWS provides the **spcw_apps** command to HACMP as the method to accomplish this. The HACMP software issues the following command on the primary:

spcw apps -di

This command stops control workstation services on the active primary and then sets the primary to be the inactive control workstation. Next, the HACMP software issues the following command on the backup:

spcw apps -ua

This command sets the backup to be the active control workstation and then starts the control workstation services on the backup. Finally, the HACMP software issues the following command on the primary:

spcw_apps -u

This command configures the primary to be a client of the backup (which is active) control workstation.

spdeladap

Purpose

spdeladap – Removes configuration data for adapters for a node or series of nodes from the System Data Repository (SDR).

Syntax

spdeladap {start_frame start_slot node_count | -N node_group | -I node_list} adapter_name

Flags

-N node_group Specifies a node group to be used for this operation. This node

group must be bound to the current system partition.

-I node_list Specifies a list of nodes to be used for this operation. Either

specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the *node_list* field, do not use the *start_frame*, *start_slot*, or

node_count fields. (This is lowercase I, as in list.)

Operands

start_frame Frame number of first node to be used for this operation.

Specify a value between 1 and 64 inclusive.

start_slot Slot number of first node to be used for this operation. Specify

a value between 1 and 16 inclusive.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node_count Number of nodes to be used for this operation. The adapter

information is deleted for successive nodes within a frame and, when the count of nodes causes the nodes in a frame to be exhausted, for nodes in the next sequential frame. Specify a

value between 1 and 1024 inclusive.

Note: The *node count* is considered to be within the current

system partition.

adapter_name Specifies the name of the adapter. Valid adapter types are:

ethernet (en), fddi (fi), token ring (tr), and switch (css).

Description

Use this command to remove configuration data for adapters for a node or series of nodes from the SDR. You cannot use this command to delete data for the **en0** adapter. If you want to remove configuration data for the **en0** adapter, you should use the **spdeInode** command.

You can use the System Management Interface Tool (SMIT) to run the **spdeladap** command. To use SMIT, enter:

smit delete_data

spdeladap

and select the Delete Adapter Information option.

Notes:

- 1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
- 2. After running this command, you must issue the syspar_ctrl -r command to refresh system partition-sensitive subsystems in each system partition where node customization was performed. Subsystems like hats, hb, and hr need to be refreshed whenever nodes or adapters are added or deleted.
- 3. Any changes made will not take effect on the nodes until they are customized.

Location

/usr/lpp/ssp/bin/spdeladap

Related Information

Commands: syspar_ctrl

Examples

This example deletes tr0 adapter information for the the first two nodes in frame 2: spdeladap 2 1 2 tr0

spdelexp **Purpose spdelexp** – Removes configuration data for node expansion units from the System Data Repository (SDR). **Syntax** spdelexp {start_frame start_slot expansion_count | -x expansion_list | -I associated_node_list | -N node_group} **Flags** -x expansion list Specifies a list of node expansion units to be used for this operation. Either specify a comma-delimited list of expansion numbers, or a file containing one line of data which is a comma-delimited list of expansion numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the expansion_list field, do not use the start_frame, start_slot, or expansion_count fields, the -I flag or the -N flag. -I associated_node_list Specifies a list of nodes whose attached node expansion units are to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the associated_node_list field, do not use the start_frame, start_slot, or expansion_count fields, the -x flag or the -N flag. -N node_group Specifies a node group containing nodes whose attached node expansion units are to be used for this operation. If you use the node group field, do not use the start frame, start slot, or expansion_count fields, the -x flag or the -I flag. Operands Specifies the frame number of the first expansion unit to be start frame used for this operation. Specify a value between 1 and 64 inclusive. start_slot Specifies the slot number of the first expansion unit to be used for this operation. Specify a value between 1 and 16 inclusive. **Note:** The *start frame* and *start slot* must resolve to an expansion unit in the current system partition. expansion_count Specifies the number of expansion units to be used for this operation. The expansion information is removed for successive node expansion units within a frame and, when the count of expansion units exceeds those in a frame, processing continues with the next sequential frame. Specify a value between 1 and 1024 inclusive.

current system partition. **Description** Execute this command to remove configuration data for a node expansion unit or series of units from the SDR. All the nodes to be deleted must be shut down. The expansion_number is also removed from the expansion_list of the node that it is connected to. This command can be used to delete node expansion units in the current system partition. To delete expansion units in another system partition, you must make it your current system partition. Node expansion units reside in the system partition that their associated node resides in, or in the default system partition if the node expansion unit is not connected to a node. You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in PSSP: Administration Guide for additional information on ticket-granting-tickets. If you do not have a ticket-granting-ticket, you must run k4init. You can use the System Management Interface Tool (SMIT) to run the **spdelexp** command. To use SMIT, enter: smit delete data and select the Delete Node Expansion Information option. **Note:** This command should be run only on the control workstation. Location /usr/lpp/ssp/bin/spdelexp **Related Information** Commands: syspar_ctrl **Examples** This example removes configuration data for node expansion unit 2 from the SDR: spdelexp -x 2

Note: The *expansion count* is considered to be within the

spdelfram

Purpose

spdelfram – Removes configuration data for a frame or series of frames from the System Data Repository (SDR).

Syntax

spdelfram start_frame frame_count

Flags

None.

Operands

start_frame Specifies the frame number of first node to be used for this

operation. Specify a value between 1 and 64 inclusive.

frame_count Specifies the number of frames to be used for this operation.

Specify a value between 1 and 64 inclusive.

Description

Execute this command to remove configuration data for a frame or series of frames from the SDR. Any node information for nodes on the frames is also removed, as well as adapter information for any of the nodes on the frames. All the nodes on all the frames to be deleted must be shut down. A frame containing a node acting as a server for another node on a frame not being removed with this operation cannot be removed with this command. To remove a frame containing such a node, you must configure a different **boot/install** or **/usr** server for the client nodes on the other frames. If a definition for a node being removed exists in **/etc/switch.info**, this definition will be removed from that file. If a non-SP frame is using a switch port number within an SP frame, that SP frame may not be deleted.

All node expansion information is removed from the SDR for expansion units that reside on frames being deleted, or that reside on other frames and are connected to nodes residing on frames being deleted. These node expansion units must be shut down before invoking this command.

The **spdelfram** command removes all extension node and extension node adapter information for extension nodes whose node numbers are within the range of node numbers represented by a frame being deleted.

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in *PSSP: Administration Guide* for additional information on ticket-granting-tickets.

If you do not have a ticket-granting-ticket, you must run **k4init**.

You can use the System Management Interface Tool (SMIT) to run the **spdelfram** command. To use SMIT, enter:

smit delete data

and select the Delete Frame Information option.

spdelfram

Notes:

- 1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
- 2. You should stop the Resource Manager before the command and start it again afterward.
- 3. There must be only one system partition defined when deleting a frame. This is to aid in the configuration of the system once the frame is deleted.

Security

You must be logged into the control workstation as root to run this command.

Location

/usr/lpp/ssp/bin/spdelfram

Examples

- 1. This example deletes the first two node expansion units in frame 2: spdelexp 2 1 2
- 2. To delete the node expansion units connected to node 5, enter spdelexp -1 5

spdelnode

Purpose

spdeInode – Removes configuration data for a node or nodes from the System Data Repository (SDR).

Syntax

spdeInode {start_frame start_slot node_count | -N node_group | -I node_list}

Flags

-N node_group Specifies a node group to be used for this operation. This node

group must be bound to the current system partition.

-I node_list Specifies a list of nodes to be used for this operation. Either

specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the *node list* field, do not use the *start frame*, *start slot*, or

node_count fields. (This is lowercase I, as in list.)

Operands

start_frame Specifies the frame number of the first node to be used for this

operation. Specify a value between 1 and 64 inclusive.

start_slot Specifies the slot number of the first node to be used for this

operation. Specify a value between 1 and 16 inclusive.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node_count Specifies the number of nodes to be used for this operation. The

node information is added for successive nodes within a frame and, when the count of nodes causes the nodes in a frame to be exhausted, for nodes in the next sequential frame. Specify a

value between 1 and 1024 inclusive.

Note: The *node_count* is considered to be within the current

system partition.

Description

Execute this command to remove configuration data for a node or series of nodes from the SDR. Any adapter information associated with the node is also removed. All the nodes to be deleted must be shut down. A node acting as a server for another node cannot be removed with this command. To remove a node which is a server, you must configure a different boot/install server for the client nodes.

All node expansion information is removed from the SDR for expansion units that are connected to nodes being deleted. These node expansion units must be shut down before invoking this command.

spdelnode

This command can be used to delete nodes in the current system partition. To delete nodes in another system partition, you must make it your current system partition.

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in PSSP: Administration Guide for additional information on ticket-granting-tickets.

If you do not have a ticket-granting-ticket, you must run k4init.

You can use the System Management Interface Tool (SMIT) to run the **spdeInode** command. To use SMIT, enter: smit delete_data and select the Delete Node Information option.

Notes:

- 1. This command should be run only on the control workstation.
- 2. After running this command, you must issue the syspar_ctrl -r command to refresh system partition-sensitive subsystems in each system partition where node customization was performed. Subsystems like hats, hb, and hr need to be refreshed whenever nodes or adapters are added or deleted.

Security

You must be logged into the control workstation as root to run this command.

Related Information

Commands: syspar_ctrl

Location

/usr/lpp/ssp/bin/spdelnode

Examples

- 1. This example deletes the first two nodes in frame 2:
 - spdelnode 2 1 2
- 2. To delete the nodes in the node group temp_nodes, enter:

```
spdelnode -N temp nodes
```

spdisplay_config

Purpose

spdisplay_config – Displays system partition configuration information which can be used to partition an SP system.

Syntax

spdisplay_config [-h] [-d] [-d] [-c] [-n] [config_dir [llayout_dir [lsyspar_dir]] | fully_qualified_path_name]

Flags

- -h Displays usage information. If this command is issued with the -h flag, the syntax description is displayed to standard output and no other action is taken (even if other valid options are entered with the -h flag).
- Recursively displays information for all levels below the specified directory level.
- Displays the description file (layout.desc) for the specified layout. This flag
 is valid only if the specified directory (or any subdirectories below it if -R is
 specified) is a layout directory.
- -c Displays the customization file (custom) for the specified system partition. This flag is valid only if the specified directory (or any subdirectories below it if -R is specified) is a system partition directory.
- n Displays the node list file (nodelist) for the specified system partition. This flag is valid only if the specified directory (or any subdirectories below it if -R is specified) is a system partition directory.

Operands

config_dir Specifies the directory name for a configuration directory.

layout_dir Specifies the directory name for a layout directory.

syspar_dir Specifies the directory name for a system partition directory.

fully_qualified_path_name

Specifies the fully qualified directory path for a configuration directory, layout directory, or system partition directory.

Description

This command displays system partition information stored in the system partition information directory structure. Depending on the option and operand specified, the information displayed is at the configuration, layout, or system partition level. The output of this command is normally restricted to the SP on which it is executed. To display information for configurations applicable to SP systems other than the one on which it is executed, a fully qualified path name must be provided. This command does not display current system partition information (that function is provided with the **splstdata** command). If the command is issued without specifying a directory path name, the list of all valid configuration directories for the SP on which the command is running is displayed. If none of the file option flags (-c, -d, -n) are entered, the names of the files and subdirectories located on (and all levels

below if -R is specified) the specified directory are displayed. If any of the file option flags are entered, the contents of the requested files are displayed instead.

Files

custom Contains customization information for a partition (such as,

partition name, IP address, code level, and so on).

layout.desc Describes the node slot breakdown for a partitioning configuration

(which nodes in which partition).

nodelist Contains a list of switch node numbers contained in a system

partition (used internally, not by end users).

topology Contains the wiring configuration information for switch-to-switch

and node-to-switch cabling in a switch network. This information is

used during switch initialization.

Related Information

Commands: spapply_config, spcustomize_syspar, splstdata, spverify_config

Files: nodelist, topology

Location

/usr/lpp/ssp/bin/spdisplay_config

Examples

1. To display all valid configurations for this SP, enter:

```
spdisplay_config
config.2_14
config.4_12
config.8 8
```

2. To display the list of layout directory names for a specific configuration directory to standard output, enter:

```
spdisplay_config config.4_12
layout.1
layout.2
layout.3
```

3. To display the name of the file describing the layout and the list of system partition directory names for a specific layout directory to standard output, enter:

```
spdisplay_config config.4_12/layout.2
layout.desc
syspar.1
syspar.2
```

4. To display the list of files located in a specific system partition directory to standard output, enter:

```
spdisplay_config config.4_12/layout.2/syspar.1
custom
nodelist
topology
```

If the **-c** flag is also supplied, only the customization information is displayed for that system partition. For example:

```
spdisplay_config -c config.4_12/layout.2/syspar.1
custom:
syspar-name: my-partition-1
IP-address: 9.102.55.301
primary-node: 9
default-install-image: bos.4.1.5
PSSP-code-level: PSSP-2.2
```

If the $-\mathbf{n}$ flag is supplied, only the list of nodes is displayed for that system partition. For example:

All of the commands can be issued with the $-\mathbf{R}$ flag to recursively display the information on the specified directory and all the levels below it.

To display the entire system partition information directory structure for the **config.4_12** configuration on this SP, enter:

```
spdisplay_config -R config.4_12
layout.1:
layout.1/layout.desc
layout.1/syspar.1:
layout.1/syspar.1/custom
layout.1/syspar.1/nodelist
layout.1/syspar.1/topology
layout.1/syspar.2:
layout.1/syspar.2/custom
layout.1/syspar.2/nodelist
layout.1/syspar.2/topology
layout.2:
layout.2/layout.desc
layout.2/syspar.1:
layout.2/syspar.1/custom
layout.2/syspar.1/nodelist
layout.2/syspar.1/topology
layout.2/syspar.2:
layout.2/syspar.2/custom
layout.2/syspar.2/nodelist
layout.2/syspar.2/topology
```

Another example to recursively display all of the customization information for the **config.4_12** on this SP follows:

spdisplay_config

```
spdisplay config -R -c config.4 12
  layout.1/syspar.1/custom:
  syspar-name:
                              my-partition-1
                              9.102.55.301
  IP-address:
  primary-node:
  default-install-image:
                              bos.4.1.5
  PSSP-code-level:
                              PSSP-2.2
  layout.1/syspar.2/custom:
  syspar-name:
                              my-partition-2
                              9.102.55.302
  IP-address:
  primary-node:
                              bos.4.1.5
  default-install-image:
  PSSP-code-level:
                              PSSP-2.2
  layout.2/syspar.1/custom:
  syspar-name:
                              my-partition-1
                              9.102.55.501
  IP-address:
  primary-node:
                              9
  default-install-image:
                              bos.4.1.5
  PSSP-code-level:
                              PSSP-2.2
  layout.2/syspar.2/custom:
  syspar-name:
                              my-partition-2
  IP-address:
                              9.102.55.502
                              9
  primary-node:
  default-install-image:
                              bos.4.1.5
                              PSSP-2.2
  PSSP-code-level:
5. To display all valid configurations for an SP, specify the fully qualified path
  name to its system partition information directory. For example:
  spdisplay_config /spdata/sys1/syspar_configs/1nsb0isb
  config.16
  config.4 12
```

config.4_4_4_4 config.4_4_8 config.8 8

spethernt

Purpose

spethernt – Enters configuration data for a node or series of nodes in the System Data Repository (SDR).

Syntax

spethernt [-s {yes | no}] [-t {bnc | dix | tp}] [-d {full | half | auto}] [-f {10 | 100 | auto}]

{start_frame start_slot node_count | -**N** node_group | -**I** node_list} starting_IP_address netmask default_route

Flags

-s yes | no Indicates whether IP addresses should be skipped, as needed,

when assigning IP addresses. If **-s no** is specified, no skipping occurs; each IP address assigned is equal to the previous address assigned plus one. If **-s yes** is specified, each IP address assigned is equal to the previous address assigned plus the difference in their respective pade numbers.

plus the difference in their respective node numbers.

-t bnc | dix | tp Designates the Ethernet type. Use **dix** to designate a thick

Ethernet (also called a twisted pair). Use **bnc** to designate a thin Ethernet. Use **tp** to designate a twisted pair. The default is

bnc.

-d full | half | auto

Specifies the communication transfer as one way (half) or two

way (full). The default is auto.

-f 10 | 100 | auto Specifies ethernet speed in megabits (Mb/s). Specify 10 for

10Mb per second or 100 for 100Mb per second. The default is

auto.

-N node_group Specifies a node group to be used for this operation. This node

group must be bound to the current system partition.

-I node_list Specifies a list of nodes to be used for this operation. Either

specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the *node_list* field, do not use the *start_frame*, *start_slot*, or

node_count fields. (This is lowercase I, as in list.)

Operands

start frame Specifies the frame number of the first node to be used for this

operation. Specify a value between 1 and 64 inclusive.

start slot Specifies the slot number of the first node to be used for this

operation. Specify a value between 1 and 16 inclusive.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node count

Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame and, when the count of nodes causes the nodes in a frame to be exhausted, for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive.

Note: The *node_count* is considered to be within the current system partition.

starting IP address

default_route

Specifies the IP address or host name of the first node in this operation. IP addresses of subsequent nodes are created by incrementing the IP address for each node, depending on how the -s flag is set. Specify a valid IP address or host name.

Ensure that the combination of the starting IP address, the node count operand, and the -s flag do not result in the incrementing of the IP address to an IP address that is not valid.

Each IP address used in the operation must be resolved by the **host** command on the control workstation.

netmask Specifies the netmask for the en0 network. Specify a valid IP

netmask.

The default route that you enter is not the same as the default route on the node. The route that you enter goes in the SDR Node Class. It is the route over which the node communicates with its boot/install server (for example, install, customize, and so on). The default route must be a valid Ethernet en0 path to the node's boot/install server and the control workstation.

The default route on the node is the route it will use for its network communications if there is no specific route to the destination. During the boot process, this is set to the default route in the SDR. It can be changed later on in the boot process or after the node is running, but should not be changed permanently in the SDR. For FDDI, token ring, or other Ethernet adapters, create the route in **script.cust**. For the switch, set the route up in /etc/inittab after the line that runs rc.switch.

Description

Execute this command during installation of the SP to identify the IP addresses, netmask, and default route associated with the en0 adapters of the nodes. If all your IP addresses are in the same block, run this command once. If you have "holes" in your IP addressing scheme, run this command once for each block of addresses you want to assign.

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in PSSP: Administration Guide for additional information on ticket-granting-tickets.

If you do not have a ticket-granting-ticket, you must run **k4init**.

You can use the System Management Interface Tool (SMIT) to run the **spethernt** command. To use SMIT, enter:

smit node data

and select the SP Ethernet Information option.

Notes:

- 1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
- 2. After running this command, you must issue the syspar_ctrl -r command to refresh system partition-sensitive subsystems in each system partition where node customization was performed. Subsystems like hats, hb, and hr need to be refreshed whenever nodes or adapters are added or deleted.
- 3. Any changes made will not take effect on the nodes until they are customized.

Location

/usr/lpp/ssp/bin/spethernt

Related Information

Commands: syspar_ctrl

Examples

The following example adds SDR information for an en0 network of 15 nodes (frame 1 slot 1 to frame 1 slot 16 with the first node being a wide node and the rest of the nodes thin nodes all in a single system partition) with IP addresses from 129.33.32.1 to 129.33.32.15, a netmask of 255.255.255.0, and a default route of 129.33.32.200. The addresses are to be assigned to correspond with the nodes in the frame; for example, they do not increment the IP address of a wide node by 2 before assigning the IP address of the next node.

spethernt -s no 1 1 15 129.33.32.1 255.255.255.0 129.33.32.200

spevent

Purpose

spevent - Directly invokes the Event Perspective graphical user interface (GUI).

Syntax

spevent [-userProfile name] [-systemProfile name] [-noProfile]

[-backgroundColor colorName]

[-foregroundColor colorName] [-fontFamily name]

[-fontSize Size] [-fontBold] [-fontItalic] [-nosplash] [-h]

Flags

-userProfile name

Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the **–userProfile** flag is not specified.

-systemProfile name

Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

-noProfile Upon initialization, does not read either profile.

-backgroundColor colorName

Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

-foregroundColor colorName

Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

-fontFamily name

Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid fonts.

-fontSize size

Overrides any font point size with the specified size. Valid values are 6–30 points.

-fontBold Sets the font to bold.

-fontItalic Sets the font to italics.

-nosplash Does not display the splash screen before the Perspectives main window is displayed.

-h Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, –**display** *displayname*.

Operands

None.

Description

Use this command to launch the Event Perspective. The Event Perspective is a graphic vehicle for managing events and event definitions in the system.

This Perspective allows the user to interact with the Event Manager and the Problem Manager. The user can create event definitions, register or unregister event definitions, and delete event definitions. A properties dialog box is provided for viewing and editing the condition, the resource identifier, and other attributes of an event definition. The properties dialog box also provides users with the capability for creating new conditions. Event definitions are viewed and manipulated within system partition boundaries.

By default, the Event Definition pane displays all the event definitions with the Kerberos principal of the user within the current system partition. The user can use the filter function provided on the pane to expand or further confine the event definitions being displayed.

When the command is invoked, preferences which define the look and layout of the spevent window are prioritized in the following order:

- Command line options
- User preferences profile
- · System preferences profile
- Default values

Files

The Users Preferences are read from and saved to **\$HOME/.spevent(User Profile Name)**.

The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/.spevent(System Profile name).

Restrictions

Any user can run the **spevent** command. Many actions require root privilege to run.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information

For information on using the Event Perspective, see the online help and the "Using SP Perspectives" chapter in the *PSSP: Administration Guide*.

For information on the Event Management services, refer to "The Event Management Subsystem" and "Using the Problem Management Subsystem" chapters in *PSSP: Administration Guide*.

Location

/usr/lpp/ssp/bin/spevent

Related Information

You can also access the Event Perspective by using the SP Perspectives Launch Pad. The perspectives command invokes the Launch Pad. Other Perspectives may be launched by invoking the following commands: sphardware, spsyspar, spvsd, and spperfmon.

Examples

- 1. To invoke the spevent window, enter: spevent
- 2. To bring up the Event Perspective using a specific user profile, enter: spevent -userProfile myProfile

spframe

Purpose

spframe – Enters configuration data for a frame or series of frames and, optionally, set up the initial System Data Repository (SDR).

Syntax

spframe [-p SP] [-r yes | no] start_frame frame_count starting_tty_port

spframe -p SAMI -n {starting_switch_port} [-s {s1tty}] [-r yes | no]

start_frame frame_count starting_tty_port

spframe

For use with SP-controlled Netfinity servers;

-p SLIM [-r yes | no] start_frame frame_count starting_tty_port

Flags

-r no | yes Indicates whether you want to initialize the System Data

Repository. If this is the last or only time you are invoking this command during installation, specify -r yes. If -r yes is specified, the /spdata/sys1/spmon/hmacls file has the default entries created.

The default is -r no.

-n starting_switch_port

Indicates the switch port number to which the node in the non-SP frame is connected. If a frame count greater than one has been specified, this field indicates the starting switch port number in a range of contiguous switch port numbers. (Note: "switch port number" is also known as "switch node number.")

−**s** s1tty

Indicates the s1 tty port for the single non-SP frame. If an s1 tty is specified, the frame count must be one. If a hardware protocol (-**p**) of SAMI is specified, the -**s** flag must be specified. The *s1tty* must be specified as a fully qualified special device file name (such as /dev/tty2).

-p hardware_protocol

Indicates the hardware protocol of the node(s) within the frame. For example, the hardware protocol of the SP-attached server is SAMI. The hardware protocol for the SP-controlled Netfinity server is SLIM. The default is -p SP.

Operands

start_frame Specifies the frame number of the first node to be used for this

operation. Specify a value between 1 and 64 inclusive.

frame_count Specifies the number of frames to be used for this operation.

Specify a value between 1 and 64 inclusive.

assigned to the first frame on this operation. tty ports for subsequent frames are assigned by incrementing the tty

number for each frame. Specify the full path of a valid tty device special file.

Description

Execute this command during installation of the SP to identify the tty ports to which your frames are connected. If the tty special files for your frames are consecutively numbered, run this command once during installation, specifying -r yes. If you have "holes" in your tty special file numbering scheme, run this command once for each block of ttys you want to assign, specifying -r yes only on the last invocation of the command.

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in PSSP: Administration Guide for additional information on ticket-granting-tickets.

You can use the System Management Interface Tool (SMIT) to run the spframe command. To use SMIT, enter:

```
smit enter data
```

and select the SP Frame Information or non-SP Frame Information options.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Location

/usr/lpp/ssp/bin/spframe

Examples

1. The following example enters information for four frames (frame 1 to frame 4) and indicates that frame 1 is connected to /dev/tty1, frame 2 to /dev/tty2, and so on. The System Data Repository is to be initialized with this invocation of spframe.

```
spframe -r yes 1 4 /dev/tty1
```

2.

For SP-controlled Netfinity servers the following example enters information for 1 frame connected to /dev/tty5 and reinitializes the SDR.

```
spframe -r yes -p SLIM 5 1 /dev/tty5
```

spget_syspar

Purpose

spget_syspar – Returns the IP address or name of the current system partition.

Syntax

spget_syspar [-n] [-d]

Flags

- -n Returns a host name instead of an address.
- -d Returns the name or IP address of the default system partition rather than the current system partition.

Operands

None.

Description

Use this command to display to standard output the IP address (in dotted decimal format) of the current or default system partition. The current system partition indicates the system partition to which System Data Repository (SDR) client requests are directed. The result is displayed in dotted decimal format unless $-\mathbf{n}$ is specified.

Restrictions

The -d flag will not work if the command is not issued on a control workstation or SP node.

Location

/usr/lpp/ssp/bin/spget_syspar

Examples

1. To display the IP address associated with the current system partition, enter:

```
spget_syspar
```

You should receive output similar to the following:

```
129.40.127.122
```

2. To display the name (host name alias of the control workstation) of the current system partition, enter:

```
spget_syspar -n
```

You should receive output similar to the following:

k47sp1

spgetdesc

Purpose

spgetdesc – Obtains the description information from the nodes specified and, optionally, enters it into the SDR.

Syntax

spgetdesc [-h] [-u] [-c] [-f] {-a | -l node_list}

Flags

- -h Displays help information for this command (syntax message). If the command is issued with the -h flag then the syntax description is displayed to standard output and no other action is taken (even if other valid flags are entered along with the -h flag).
- Updates the description attribute in the SDR with the description information -u found.
- -C Outputs the description information in a colon delimited format. The output will be of the form:

"node number:hostname:description"

for all nodes that successfully obtained the description information.

−f Forces the command to obtain description information from the specified nodes regardless of the host responds value.

One of the following flags must be specified:

- −a Obtains description information from all nodes found in the SDR.
- -I node list Indicates by node list the SP nodes to obtain the description information from. The *node_list* is a comma-separated list of node numbers.

Operands

None.

Description

This command will obtain the description information from the nodes specified and, optionally, update the description attribute in the SDR Node class. Unless the -f flag is specified, the node's host_responds will be checked before it will attempt to dsh to the nodes and obtain their description information. This command requires that the user be authenticated to Kerberos using the k4init command. This command is primarily intended as a migration tool for obtaining description information from existing nodes. The description information will be obtained from new nodes when they are installed or customized.

Standard Output

The model information that is obtained will be printed to standard output as well as placed in the SDR.

Standard Error

This command writes error messages (as necessary) to standard error. Errors will be printed if any attempt to get the description information on a node is unsuccessful.

If the command does not run successfully it terminates with an error message and a nonzero return code. Messages will inform the user of the cause of the error. For a terminal error, no description information will be obtained. For a nonterminal error, no description information will be obtained for the node that had the error.

Exit Values

- 0 Successful completion
- 1 A nonterminal error occurred for 1 or more nodes. Processing continued for any remaining nodes.
- 2 A terminal error occurred and all processing was stopped.

Security

Since this command uses **dsh**, it requires that the user issuing the command obtain a valid Kerberos ticket.

Implementation Specifics

This command is part of the IBM Parallel System Support Program (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/spgetdesc

Related Information

SP Commands: dsh, k4init, SDRChangeAttrValues, SDRGetObjects

AIX Commands: uname

Examples

To obtain description information for all existing nodes enter:

spgetdesc -a

To obtain description information for nodes 3 & 4 and update the SDR, enter:

spgetdesc -ul 3,4

To obtain description information from all nodes in a colon delimited format, enter:

spgetdesc -ac

sphardware

Purpose

sphardware - Directly launches the Hardware Perspective graphical user interface (GUI).

Syntax

sphardware [-userProfile name] [-systemProfile name] [-noProfile] [-backgroundColor colorName] [-foregroundColor colorName] [-fontFamily name] [-fontSize size] [-fontBold] [-fontItalic] [-nosplash] [-h]

Flags

-userProfile name

Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the **-userProfile** flag is not specified.

-systemProfile name

Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

-noProfile Upon initialization, does not read either profile.

-backgroundColor colorName

Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid color names.

-foregroundColor colorName

Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid color names.

-fontFamily name

Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in PSSP: Command and Technical Reference for a list of valid fonts.

-fontSize size

Overrides any font point size with the specified size. Valid values are 6-30 points.

-fontBold Sets the font to bold.

-fontItalic Sets the font to italics.

-nosplash Does not display the splash screen before the Perspectives main window is displayed.

-h Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, -display displayname.

Operands

None.

Description

Use this command to launch the Hardware Perspective. From the Hardware Perspective, the user can monitor and manipulate objects within the SP system. The SP objects included in this Perspective are the control workstation, SP system and system partitions, nodes, node groups, and frames and switches.

By default, the Hardware Perspective will display the CWS, System and Syspars pane and the Nodes pane. The CWS, System and Syspars pane contains all system partitions and indicates the current system partition. The Node pane contains all the nodes in the current system partition.

The Node Groups and Frame and Switches panes can be added to the Hardware Perspective by using the Add Pane tool bar icon. Panes can be deleted from the window by using the Delete Pane tool bar icon.

When the command is invoked, preferences which define the look and layout of the sphardware window are prioritized in the following order:

- · Command line options
- · User preferences profile
- · System preferences profile
- · Default values

Files

The Users Preferences are read from and saved to **\$HOME/.sphardware(User Profile Name)**.

The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/.sphardware(System Profile name).

Restrictions

Any user can run the **sphardware** command. Many actions require root privilege.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information

For information on using the Hardware Perspective, see the online help and the "Using SP Perspectives" chapter in the *PSSP: Administration Guide*.

Location

/usr/lpp/ssp/bin/sphardware

Related Information

The Hardware Perspective can also be accessed by using the SP Perspectives Launch Pad. The perspectives command invokes the Launch Pad. Other Perspectives windows can be launched by invoking the following commands: spevent, sphardware, spperfmon, spsyspar, and spvsd.

Examples

- 1. To invoke the **sphardware** window, enter: sphardware
- 2. To force **sphardware** to display text in chartreuse, regardless of what is set in the preference files, enter:
 - sphardware -foregroundColor chartreuse
- 3. To start the **sphardware** window in the background, enter: sphardware &

sphostnam

Purpose

sphostnam – Enters host name configuration data for a node or series of nodes in the System Data Repository.

Syntax

sphostnam [-a adapter_name] [-f {long | short}]
{start_frame start_slot node_count | -N node_group | -I node_list}

Flags

–f

-a Indicates the adapter to be used to derive the host name for the

nodes specified. If $-\mathbf{a}$ is not specified, the default is $\mathbf{en0}$.

Specifies which form of the host name is to be used. Specify **long** if you want the host name to be the fully qualified host name and **short** if you want to use the short form of the host name. If

-f is not specified, the default is long.

-N node_group Specifies a node group to be used for this operation. This node

group must be bound to the current system partition.

-I node_list Specifies a list of nodes to be used for this operation. Either

specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the *node_list* field, do not use the *start_frame*, *start_slot*, or

node_count fields. (This is lowercase I, as in list.)

Operands

start frame Specifies the frame number of the first node to be used for this

operation. Specify a value between 1 and 64 inclusive.

start_slot Specifies the slot number of the first node to be used for this

operation. Specify a value between 1 and 16 inclusive.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node_count Specifies the number of nodes to be used for this operation. The

node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted the operation continues in the next sequential frame. Specify a

value between 1 and 1024 inclusive.

Note: The *node_count* is considered to be within the current

system partition.

Description

Execute this command during installation of the SP to specify the adapter type to be used to determine the host name by which your nodes are known. You can also use this command to indicate whether you want the long (fully qualified) or short form of a host name to be used.

You can use the System Management Interface Tool (SMIT) to run the **sphostnam** command. To use SMIT, enter:

smit node_data

and select the Hostname Information option.

Notes:

- 1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
- 2. Any changes made will not take effect on the nodes until they are customized.

Location

/usr/lpp/ssp/bin/sphostnam

Examples

The following example selects the **css0** adapter for the host name for a system with two frames and 32 nodes. The long form of the host name is to be used.

sphostnam -a css0 1 1 32

sphrdwrad

Purpose

sphrdwrad – Obtains hardware Ethernet addresses for SP nodes so they can be written to the System Data Repository.

Syntax

Flags

rest Indicates that, beginning with the node determined by *start_frame*

and start_slot, all the rest of the nodes should be used for this

operation.

-N node group Specifies a node group to be used for this operation. This node

group must be bound to the current system partition.

-I node_list Specifies a list of nodes to be used for this operation. Either

specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the node_list field, do not use the start_frame, start_slot, or node_count fields. (This is

lowercase I, as in list.)

Operands

start_frame Specifies the frame number of the first node to be used for this

operation. Specify a value between 1 and 64 inclusive.

start_slot Specifies the slot number of the first node to be used for this

operation. Specify a value between 1 and 16 inclusive.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node_count Specifies the number of nodes to be used for this operation. The

node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted the operation continues in the next sequential frame. Specify a

value between 1 and 1024 inclusive.

Note: The *node_count* is considered to be within the current

system partition.

Description

Execute this command only at installation or when adding new frames or nodes. The **spframe** command must be run **before** this command so that frame information is already in the System Data Repository.

If you know your hardware Ethernet addresses, you can speed this process by putting the addresses in /etc/bootptab.info, as follows:

17 02608C2E48D9

19 02608C2D6712

21 02608C2E49A4

23 02608C2E48E2

If you do not know your hardware Ethernet addresses, use the **sphrdwrad** command to find them.

Notes:

- 1. The nodes should be physically powered on (but logically powered off) when you run this command.
- 2. The LEDs change values while this command is running.
- You should not have a tty open to any of the nodes to be used for this command.
- 4. If the addresses are not found in **/etc/bootptab.info**, the **sphrdwrad** command takes a few minutes to run, and the addresses are obtained from the nodes in parallel.
- Any nodes specified will be powered off to acquire the Ethernet addresses. The nodes remain in the powered off state, even after the addresses are received.
- 6. If you are adding a node, only the new node needs to be specified because any selected nodes will be powered off.
- 7. To avoid possible file system damage, you should always shut down a node cleanly before powering it off. You can do this by using the **cshutdown** command or by using the SHUTDOWN/POWER OFF option in the System Monitor Graphical User Interface.

You can use the System Management Interface Tool (SMIT) to run the **sphrdwrad** command. To use SMIT, enter:

```
smit enter_data
```

and select the Get Hardware Ethernet Addresses option.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Note: If you are using a **bootptab.info** file, you must only place nodes in the current partition in the file. If you have multiple partitions, you must update the **bootptab.info** file and run **sphrdwrad** for each partition.

Location

/usr/lpp/ssp/bin/sphrdwrad

Examples

To obtain Ethernet addresses for a new frame containing 8 nodes (4 wide nodes and 4 thin nodes), enter:

sphrdwrad 2 1 8

You should receive output similar to the following:

```
Acquiring hardware Ethernet address for node 17
Acquiring hardware Ethernet address for node 19
Acquiring hardware Ethernet address for node 21
Acquiring hardware Ethernet address for node 23
Acquiring hardware Ethernet address for node 25
Acquiring hardware Ethernet address for node 26
Acquiring hardware Ethernet address for node 27
Acquiring hardware Ethernet address for node 28
Hardware ethernet address for node 17 is 02608C2D481C
Hardware ethernet address for node 19 is 02608C2D78DF
Hardware ethernet address for node 21 is 02608C2D93B3
Hardware ethernet address for node 23 is 02608C2D8C3C
Hardware ethernet address for node 25 is 10005AFA22B9
Hardware ethernet address for node 26 is 10005AFA230A
Hardware ethernet address for node 27 is 10005AFA2229
Hardware ethernet address for node 28 is 10005AFA2210
```

spled

Purpose

spled – Displays SP node LCD or LED information in a graphical user interface.

Syntax

spled [**-G**] [**-n** *title*] [**-p**] [**-f** *fontname*] [-r pollrate] [-b background color] [-l] [-h]

Flags

-G Displays LED or LCD information for SP nodes in all system partitions.

-n title Sets the window title.

Output the process id to stdout. -p

-f fontname Sets the font.

-**r** pollrate Sets the time increment to poll for LCD or LED updates. The default is to poll every 5 seconds. IBM suggests that you not change this value.

-b background color

Sets the background color.

-1 Changes the "Window" menu bar item labeled "Exit" to "Close."

-h Displays usage information on the options available for the command.

Operands

None.

Description

spled is an X Windows based application that displays the three digit seven segment light emitting diode (LED) or the two line by 16 character liquid crystal display (LCD) information found on the front of an SP node.

The **spled** application contains a menubar at the top of the window which contains one button, "Window." This button has one menu item which by default is labeled "Exit." Selecting this button will close the **spled** application.

Below the menubar is an area which by default contains a graphical representation of the frames and the SP nodes in those frames for the current system partition. If the -G flag is specified then all of the SP nodes in the system will be shown in their respective frames.

The size of each node is represented by the number of slots it uses in the frame. A thin node occupies one slot; a wide node occupies two slots; and a high node occupies four slots.

Pressing mouse button one inside a frame will display the slot number of each node in that frame. Pressing mouse button two inside a frame will display the node number of each node in that frame.

For nodes that have an LCD:

- For high nodes, all 2 lines by 16 characters will be shown.
- For wide nodes, the first line of 16 characters will be shown.
- For thin nodes, up to the first 8 characters of the first line will be shown.

Thin and wide nodes that contain an LCD may display "..." after some characters in the LCD. This indicates there is more LCD data available than can be shown. Pressing mouse button three in a frame containing nodes with an LCD displaying "..." will open a window displaying all of the LCD information available for those nodes.

Note: A node in the process of having the microcode on its supervisor card updated will not be displayed in the window.

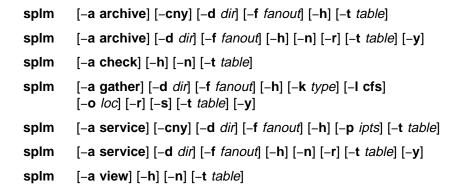
Security

The user must have **hardmon** vfop or monitor permission to use this command.

Location

/usr/lpp/ssp/bin/spled

Examples


- 1. To start **spled** and set the window title to "My System" enter:
 - spled -n "My System"
- 2. To start ${f spled}$ and display all of the nodes in a multiple partition system, enter:
- spled -G

splm

Purpose

splm – Views, gathers, archives, or collects log and system data.

Syntax

Flags

The **splm** command requires the -a flag and an argument to select a function to execute. It also requires a log table that contains records specifying target nodes and files or commands.

- a action	Specifies the function to perform: archive , check , gather , service , or view .
- c	Creates a compressed tar file. For the archive function, this will be a tar starting the - d <i>dir</i> flag. For service collections, /usr/sbin/snap - c - d <i>dir</i> will be called to create the tar file. The tar file will be named node.tar.Z .
− d dir	Specifies the path where the archive or service collection will be stored on each node. The archive default is /var/adm/archives . The service default is /tmp .
− f fanout	Sets the maximum fanout value which determines how many nodes will execute in parallel. The default is 32. Any number between 1–32 can be used.
-h	Displays usage information.
-k type	For the gather function only, this flag indicates whether a service collection or archive is being collected.
-l cfs	Specifies the path on the local node where the archive or service collections should be gathered.
-n	Ignores the node designation in the input table and executes all entries on the local node only.
− o loc	Specifies the device or mail location where to direct tar files.
- p opts	Accepts a string of characters representing option parameters for calling snap collection. Each character relates to a category of system data to be collected. Valid characters are: a, A, D, f, g, G, k, I, n, p, s,

S, t.

- -r Removes archive or service on each node. Exclusive with -s flag.
- -s Staggers collection to a mail location or device.
- -t Specifies the input table of nodes and commands.
- Appends the *yymmdd* timestamp subdirectory to the per node directory.

Operands

None.

Description

Use this command to execute a number of log management functions on a single host or a set of hosts in parallel. The **splm** functions are driven by a log table file that contains the target node designations and associated files, and the commands to execute. The table format follows:

```
# Comment line
target nodes: file or command
```

The target node portion of a table stanza is a comma-delimited list with no blanks. The values in the list are interpreted as:

- 1. If the value begins with a slash (/), it is a file containing a list of node names, one per line.
- 2. If the value is an exclamation point (!), it refers to the local host.
- 3. Any string not matching 1 or 2, is interpreted as a node name.

The -n flag ignores the target node portion of the table and only executes on the local node. The file or command portion of the stanza specifies either a command to execute that displays information to standard output, or a file that will be archived, collected, or viewed. File specification can take advantage of Tcl file globbing (similar to csh file globbing). If the file or command portion of the stanza refers to a command to be executed, it must be followed by a redirection and a path or file name. The information generated by the command will be redirected to the path or file name under the -d top level directory. Use > or >> following the command to redirect the output. The view option ignores the file or command destinations and displays the file's contents or command output to the executing node.

 To specify the local node, nodes listed in the /tmp/nodelist file and node k47n10, and archive or collect errpt output from those nodes to the errpt.output file under the top level directory, enter:

```
!,/tmp/nodelist,k47n10: /bin/errpt -a > errpt.output
```

2. To archive or collect **/etc/filesystems** file to a subdirectory on nodes k47n10 and k47n15, enter:

```
k47n10,k47n15: /etc/filesystems etc/filesystems
```

This copies the file to the **/etc** subdirectory under the **-d** top level directory.

Note: The **-d** top level directory is always appended with a subdirectory named **arch**_*table*_*name* for archives, or **srvc**_*table*_*name* for service collections.

splm Functions

Archive: The archive function copies files and redirects command output as specified in the input table to the top level directory on each node. The -c flag then creates a compressed tar file of the data named /topdirectory/node_name.tar.Z. The -r flag removes an archive by removing all files starting from the top level directory down.

Check: The **check** function can be used to check a table for errors.

Gather: The gather function moves archive or service tar files to a central location on the executing node. The -r option removes the archive or service collection on each remote node only after the tar file was successfully copied to the central location. If the node.tar.Z file is not found, the gather function will attempt to create one. Gathered tar files can be mailed or copied to a tape or disk device using the -o flag. If mailed, the files are first uuencoded. The -I flag specifies the file system on the local node where the tar files are to be gathered. The -I flag must be specified if the -s stagger flag is not used. The gather function makes two passes, if necessary. On the first pass, it allows each node to take up an equal amount of the central file system. If any nodes encounter errors, the gather function retries those nodes, one at a time, until the file system is full or all the nodes are copied. If gather is unsuccessful on any node, but a node.tar.Z file exists for that node in the central location, it is moved to node.tar.Z.old, and not sent to the output location. The -s stagger flag forces the fanout to 1, gathers the tar files one at a time, attempts to send the tar to the output location, then removes it from the local node. The $-\mathbf{r}$ flag cannot be used with $-\mathbf{s}$. The default central location directory for stagger is /tmp.

Service: The **service** function first calls the AIX **snap** command to gather system data to the top level directory if the -p flag is used. The snap command creates a set of subdirectories based on the -p arguments. The additional data defined in the table data is then collected under the "other" subdirectory created by **snap**. If the -p flag is not used, the data will still be collected under the "other" subdirectory. If the -c flag is used, splm uses the snap -c command to create the tar.Z file. The -r flag can be used to remove service collections. splm calls snap -r which removes the tar file and all files under each **snap** subdirectory.

View: The view function displays the output of the command or contents of file entries in the input table to the local host.

Files

/etc/splm.allow

Restricts table commands that can be executed.

/etc/logmgt.acl

Acl file for **archive**, **gather**, and **service** functions.

/spdata/sys1/logtables/*

Contains sample tables for service collections.

Security

The archive, gather, and service functions of splm require that you have a Kerberos principal defined in the /etc/logmgt.acl file. The command then runs as root on all target nodes. The viewing function requires that you be Kerberos authenticated to a valid user ID on the nodes that you are executing on. The server switches IDs from root to your authenticated ID before executing.

Location

/usr/lpp/ssp/bin/splm

Related Information

AIX commands: compress snap, tar, uuencode

The PSSP: Administration Guide

Examples

1. To create an archive based on the entries in the /etc/tables/logs.tab table and to create a compressed tar file and have the archive under directory /var/adm/archives/arch_logs.tab, enter:

```
splm -a archive -c -d /var/adm/archives -t /etc/tables/archive.tab
```

2. To create a service collection of entries in the /spdata/sys1/logtables/amd.tab table and have snap include general system information, enter:

```
splm -a service -c -t /spdata/sys1/logtables/amd.tab -p g
```

3. To gather the service collections in Example 2, remove the collection on each node, and copy the gathered data to tape device rmt0, enter:

```
splm -a gather -k service -t /spdata/sys1/logtables/amd.tab \
-1 /tmp/amdproblem -o /dev/rmt0 -r
```

splogd Daemon

Purpose

splogd - Reports error logging, writes state changes, and calls user exits.

Syntax

splogd [-d] [-b] [-f file_name]

Flags

-d Turns debugging on.

-b Starts the daemon in the background from the command line.

-f file name

Names an input file to use to define what logging is to be done and what user exits should be called. The default file is

/spdata/sys1/spmon/hwevents.

Operands

None.

Description

The SP logging daemon has the following functions:

error logging

Reports SP hardware errors to both the syslog and the AIX error log.

state change logging

Writes SP hardware state changes to a file.

user exits Calls a user exit when a state change occurs.

The **hwevents** file contains state change actions that are to be performed by the **splogd** logging daemon. The fields are:

frame Specifies a frame number (1-n) or * for all frames.

slot Specifies the following:

- A number from 0-17
- One of:
 - NODES_ONLY (addresses 1 through 16)
 - SWITCH (address 17)
 - FRAME (address 0)
 - * (all addresses)
 - NODES_AND_SWITCH (addresses 1–17)
 - FRAME AND NODES (addresses 0-16)
 - FRAME_AND_SWITCH (addresses 0 and 17)

variable Specifies a hardware variable (for example, nodePower, temp,

LED7SegA).

operator Specifies how to compare the value. Acceptable values are: =, <, >, and

!=.

value Specifies the value of the variable to match with the operator wildcard

(*), or a partial match with the wildcard at the end (23*).

time Specifies if the function should be called at startup, when the state

changes, or both times. Valid options are **startup**, **change**, or **both**.

function Specifies the program to call when an event occurs.

There are two special keywords for function. If function is SP_ERROR_LOG, error logging is performed provided that syslog is set up and AIX error logging is set up to perform SP logging. Refer to the **setup logd** command for details.

If function is SP_STATE_LOG, these state changes that meet the statement's criteria are logged to

/var/adm/SPlogs/spmon/splogd.state changes.timestamp.

Note: To close the current **state_changes**.*timestamp* and open a new one, send a SIGHUP signal to **splogd**. For example,

kill -HUP {splogd pid}

User Exit Arguments

When a user exit is called by **splogd**, the following arguments are passed:

- 1. A **c** or **s** depending on whether this call is for a change of state or to provide the startup values for the variables being monitored.
- 2. For each variable being reported, the following arguments are passed:
 - a. Frame number.
 - b. Node number.
 - c. Variable name. Refer to the "System Monitor Variables, Display Types, and Attributes Appendix" of *PSSP: Administration Guide* for a list of variables.
 - d. Value of the variables. Boolean variables are expressed as TRUE or FALSE, integers as decimal strings, and floating-point values as floating-point strings.

Starting and Stopping the splogd Daemon

The **splogd** daemon is under System Resource Controller (SRC) control. It uses the signal method of communication in SRC. The **splogd** daemon is a single subsystem and not associated with any SRC group. The subsystem name is **splogd**. To start the **splogd** daemon, use the **startsrc** –**s splogd** command. This starts the daemon with the default arguments and SRC options. The **splogd** daemon is setup to be respawnable and be the only instance of the **splogd** daemon running on a particular node or control workstation. Do **not** start the **splogd** daemon from the command line without using the **startsrc** command to start it.

To stop the **splogd** daemon, use the **stopsrc –s splogd** command. This stops the daemon and does not allow it to respawn.

To display the status of the **splogd** daemon, use the **lssrc** -s **splogd** command.

If the default startup arguments need to be changed, use the **chssys** command to change the startup arguments or the SRC options. Refer to *AIX Version 4*

Commands Reference and AIX Version 4 General Programming Concepts: Writing and Debugging Programs for more information about daemons under SRC control and how to modify daemon arguments when under SRC.

To view the current SRC options and daemon arguments, use the **odmget** –**q** 'subsysname=splogd' SRCsubsys command.

Files

/spdata/sys1/spmon/hwevents

File that describes what logging is performed and what user exits are called

/var/adm/SPlogs/spmon/splogd.state_changes.timestamp

File where state changes are recorded.

Location

/usr/lpp/ssp/bin/splogd

Related Information

Command: setup_logd

The "System Monitor Variables, Display Types, and Attributes Appendix" in *PSSP: Administration Guide*

Examples

1. To start the **splogd** daemon, enter:

```
startsrc -s splogd
```

2. To stop the **splogd** daemon, enter:

```
stopsrc -s splogd
```

3. To display the status of the **splogd** daemon, enter:

```
lssrc -s splogd
```

4. To display the status of all the daemons under SRC control, enter:

```
1ssrc -a
```

5. To display the current SRC options and daemon arguments for the **splogd** daemon, enter:

```
odmget -q 'subsysname=splogd' SRCsubsys
```

splst_syspars

Purpose

splst_syspars – Returns the list of defined system partitions.

Syntax

splst_syspars [-n]

Flags

-n Returns a list of host names instead of addresses.

Operands

None.

Description

This command returns the list of the system partitions. The system partition names are in dotted decimal format unless $-\mathbf{n}$ is specified.

Location

/usr/lpp/ssp/bin/splst_syspars

Examples

1. To display the IP addresses associated with all the defined system partitions on the SP, enter:

```
splst syspars
```

You should receive output similar to the following:

```
129.40.127.122
129.40.127.47
```

2. To display the names of all the defined system partitions on the SP, enter:

```
splst_syspars -n
```

You should receive output similar to the following:

k47sp1 k47s

splst_versions

Purpose

splst_versions - Returns information about the PSSP code version installed on nodes in the SP system.

Syntax

splst_versions [-G] [-I] [-e] [-n node_num] [-N node_group] [-t] [-h]

Flags

- -G Causes the command to look at all system partitions rather than just the current system partition (but not the control workstation).
- -1 Returns the latest PSSP version for the nodes that are the target of the command.
- Returns the earliest PSSP version for the nodes that are the target of the -e command.

-n node_num

Returns the PSSP code version for node_num. Use node_num 0 to specify the control workstation.

-N node group

Returns a list of PSSP versions for *node_group*. If **-G** is supplied, a global node group is used. Otherwise, a partitioned-bound node group is used.

- −t Returns the node number and PSSP version in two columns.
- -h Displays usage information.

Operands

None.

Description

Use this command to return a list of PSSP code versions that are installed on the nodes in the current system partition. The PSSP version and release numbers, and modification level are included in the output. The fix level is not returned in the output. Node number 0 (zero) is considered the control workstation and is not evaluated as part of any system partition. The output is sorted in ascending order by version.

If the -t flag is omitted, there will be only one record for each version present. If the -t flag is used, there will be a record for each node.

Location

/usr/lpp/ssp/bin/splst_versions

Examples

1. To list each PSSP version represented in the current system partition, enter:

```
prompt> splst_versions
PSSP-2.4
PSSP-3.1
```

2. To list each node in the system partition and its PSSP code version, enter:

```
prompt> splst_versions -t
1 PSSP-2.4
5 PSSP-2.4
6 PSSP-2.4
9 PSSP-3.1
```

3. To list the earliest and latest PSSP code versions in a system partition, enter:

```
prompt> splst_versions -l -e
PSSP-2.4
                              /* this case has mixed partitions */
PSSP-3.1
```

The following will be the output if only PSSP-2.4 exists in the system partition:

```
prompt> splst_versions -l -e
PSSP-2.4
                              /* this case has only 2.4 in partition */
```

spistadapters

Purpose

splstadapters - Use this command to list information about adapters to standard output.

Syntax

Flags

-h Displays usage information.

-G Removes system partition boundaries for this invocation. This flag causes the command to consider all nodes regardless of system partition.

Inhibits the output of the header record. $-\mathbf{X}$

-d delimiter Forces the delimiter between tokens to be delimiter, where delimiter is any string value. If this flag is used, only one copy of the delimiter is used between tokens, even if the delimiter is a blank.

-p str Prints the *str* string in place of an attribute that does not apply to the object being output. The default is to print two double quotes (").

-s attr Sorts the output by the value of the attribute attr.

−t Restricts the query to a specific node type. The node type can be one of the following:

standard

Indicates that only adapters relating to SP nodes (nodes in a frame/slot) will be considered for output.

If the -t flag is not specified, the default is to consider adapters relating to both standard and dependent nodes for output.

dependent Indicates that only adapters on dependent nodes will be considered for output.

Operands

attr==value Specifies certain adapter objects to be returned. The attr token must

be a valid attribute of one of the adapter classes in the System Data Repository (SDR) (Adapter or DependentAdapter). If attr exists in both adapter classes, objects from each class will be considered unless that class is excluded with the -t flag. The token value is the value of attr that objects must have to be returned by this invocation

of the command.

Specifies the attributes to be returned as output of the command. It does not limit the adapter objects that are considered for output. If an attr argument is not specified, the **node_number** and **adapter_type**

attributes are returned.

attr

Description

Use this command to get configuration information about any adapter from the SDR. For a complete list of adapter attributes, see the Adapter and DependentAdapter classes in "The System Data Repository" appendix in *PSSP: Administration Guide*.

Not all of the attributes are applicable to each type of adapter.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit list_extadapters

Environment Variables

The environment variable SP_NAME is used (if set) to direct this command to a system partition. The default is to use the default system partition when on the control workstation and the partition of the node when on a node.

Standard Output

This command writes informational messages to standard output.

Standard Error

This command writes all error messages to standard error.

Exit Values

Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Implementation Specifics

You must specify an attribute in order for it to be displayed in the output. The attribute in the sort option (-**s** flag) and the attributes in the form *attr==value* must be repeated in order for them to be displayed.

Location

/usr/lpp/ssp/bin/splstadapters

Examples

1. To list the **node_number** and **adapter_type** attributes for all adapter objects in the current system partition, enter:

splstadapters

You should receive output similar to the following:

node number adapter type

1 en0

1 css0

5 en0

5 css0

splstadapters

2. To list the netmask attribute of SP adapters along with their node numbers and have the output sorted by node number, enter:

```
splstadapters -t standard -s node_number node_number netmask
```

You should receive output similar to the following:

- 1 255.255.255.192
- 3 255.255.255.192
- 3. To list the "css0" adapters in the system, regardless of system partition, enter:

```
splstadapters -G adapter_type==css0
```

You should receive output similar to the following:

```
node_number adapter_type
```

- 1 css0
- 5 css0
- 7 css0
- 9 css0
- 19 css0
- 23 css0

splstdata

Purpose

splstdata – Displays configuration data from the System Data Repository (SDR) or system information for each node.

Syntax

splstdata
$$\{-A \mid -n \mid -s \mid -t \mid -b \mid -a \mid -u \mid -h \mid -i \mid -d \mid -x\} [-G]$$
 $[\{start_frame\ start_slot\ \{node_count \mid rest\} \mid -N\ node_group \mid -I\ node_list\}]$

OR

spistdata $\{-e \mid -f \mid -p\}$

Flags

One of the following flags must be specified with each invocation of **splstdata**:

-A Displays the following SDR accounting data:

node_number host_name acct_class_id acct_enable acct_excluse_enable acct_job_charge

-n Displays the following SDR node data:

node_number frame_number slots_number slots_used host_name rel_host default_route processor_type processors_installed

-s Displays the following SDR node and dependent node switch data in three lists:

node_number host_name switch_node_number switch_protocol switch_number switch_chip_number switch_port_number

switch_number (common field)

frame_number slot_number switch partition number

```
switch_type
            clock_input
            switch_partition_number (common field)
            topology_filename
            primary_name
            arp_enabled
            switch_node_nos._used
-t
        Displays the following data from the ProcessorExtensionNode class.
            node_number
            frame_number
            slot number
            host_name
            short_comment
            long_comment
-b
            node_number
            host_name
            hdw.enet.addr
            boot_server
            bootp_response
            install_disk
            last_inst_image
            last_inst_time
            next_inst_image
            lppsource_name
            pssp_version
        Displays the following SDR LAN data only for nodes in the current system
−a
        partition:
            node_number
            adapter_type
            netaddr
            netmask
            host_name
            type
            rate
-u
        Displays the following SDR /usr data:
            node_number
            host_name
            usr_server_id
            usr_gateway_id
            usr_client_adapter
            has_usr_clients
-h
        Displays hardware data for each node, as provided by the Iscfg
        command.
−i
        Displays network adapter data for each node, as provided by the netstat
```

-**n** command.

- -d Displays file system data for each node, as provided by the df command.
- -x Displays node expansion data for each node. If no nodes are specified, the command displays data for all node expansion units in the current system partition. The data is displayed in two lists:

expansion_number frame_number slot_number slots associated_node# remote_port node_number expansion_list

The following flags are optional:

- **-G** Allows the specification of nodes to include one or more nodes outside of the current system partition.
- -N node_group

Specifies a node group to be used for this operation. If $-\mathbf{G}$ is supplied, a global node group is used. Otherwise, a partitioned-bound node group is used.

- -I node_list Specifies a list of nodes to be used for this operation. Either specify a comma-delimited list of node numbers, or a file containing one line of data which is a comma-delimited list of node numbers. The file can also contain comment lines (preceded by a #) and lines that are all white space. If you use the node_list field, do not use the start_frame, start_slot, or node_count fields. (This is lowercase I, as in list.)
- –e Displays SP object attributes and their values from the SDR.
- -f Displays the following SDR frame data:

frame_number tty frame_type

-p Lists all information for the currently-applied system partition configuration (all active system partitions on the system). This includes the list of system partitions, plus information about each system partition.

Operands

start_frame Frame number of first node to be used for this operation. Specify a

value between 1 and 64 inclusive. If *start_frame*, *start_slot* and *node_count* are not specified, the default is **1 1 rest**. If *start_frame* is specified, *start_slot* and *node_count* must also be specified.

start_slot Slot number of first node to be used for this operation. Specify a value between 1 and 16 inclusive.

Note: The start_frame and start_slot must resolve to a node in the current system partition.

node count

Number of nodes to be used for this operation. Node information is provided for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame. Specify a value between 1 and 1024 inclusive. If **rest** is specified, all the nodes from <code>start_frame start_slot</code> to the end of your system are used.

Note: The *node_count* is considered to be within the current system partition.

Description

You can use the System Management Interface Tool (SMIT) to run the **splstdata** command. To use SMIT, enter:

smit list_data

and select the System Data Repository option for the information you want to see. To see system information for each node, enter:

smit config_data

and select the option for the information you want.

Note: This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.

Location

/usr/lpp/ssp/bin/splstdata

Examples

1. To display SDR node data for all the nodes in the current SP system partition, enter:

splstdata -n

You should receive output similar to the following:

List Node Configuration Information

node	frame	slot	;		
#	#	#	slots	initial_hostname reliable_hostname defaul	t_route
	proces	sor t	ype pro	ocessors installed description	_
				- '	
1	1	1	2	k5n01.ppd.pok.ib k5n01.ppd.pok.ib 129.4	0.85.126
	- U	Ρ _		1 135 MHz P2SC Wide	
3	1	3	2		0.85.126
	UP			1 77 MHz PWR2 Wide-2	
5	1	5	1	k5n05.ppd.pok.ib k5n05.ppd.pok.ib 129.4	0.85.126
	U	Р		1 160 MHz P2SC Thin	
6	1	6	1	k5n06.ppd.pok.ib	0.85.126
	U	Р		1 120_MHz_P2SC_Thin	
7	1	7	1	k5n07.ppd.pok.ib k5n07.ppd.pok.ib 129.4	0.85.126
	UP			1 66 MHz PWR2 Thin-2	
8	1	8	1	k5n08.ppd.pok.ib k5n08.ppd.pok.ib 129.4	0.85.126
	U	P		1 66 MHz PWR2 Thin	
9	1	9	4	k5n09.ppd.pok.ib k5n09.ppd.pok.ib 129.4	0.85.126
	MP			1 112 MHz SMP High	
13	1	13	4	k5n13.ppd.pok.ib k5n13.ppd.pok.ib 129.4	0.85.126
	М	P		1 200_MHz_SMP_High	
:				_ _ _	

2. To display SDR boot/install data for the first four nodes in the first frame, enter: splstdata -b 1 1 4

You should receive output similar to the following:

List Node Boot/Install Information

nod	e# hostname hdw_enet_addr srvr re last_install_image last_install_time next pssp_ver selected_vg	•		_
1	k55n01.ppd.pok.i 0004AC493851 0	disk		hdisk0
	default Sun_Jul_12_14:05:19 PSSP-3.1 rootvg		default	aix43k
3	k55n05.ppd.pok.i 0004AC4944FE 0	disk		hdisk0
	default Sun_Jul_12_14:06:38		default	aix43k
	PSSP-3.1 rootvg			
5	k55n09.ppd.pok.i 0004AC493FA1 0	disk		hdisk0
	default Sun_Jul_12_14:05:38		default	aix43k
	PSSP-3.1 rootvg			
6	k55n13.ppd.pok.i 0004AC493B66 0	disk		hdisk0
	default Sun_Jul_12_14:05:27		default	aix43k
	PSSP-3.1 rootvg			

3. To list system partition information, enter:

splstdata -p

You should receive output similar to the following:

List System Partition Information

System Partitions:

k55sp1 k55s

Syspar: k55sp1

install_image default

/spdata/sys1/syspar_configs/2nsb0isb/config.4_28/ syspar_dir

layout.8/syspar.1

code_version PSSP-2.2

haem_cdb_version 852558375,501538560,0

Syspar: k55s

syspar_name k55s
ip_address 129.40.62.55
install_image default
/cndata/cycl

/spdata/sys1/syspar_configs/2nsb0isb/config.4_28/ syspar_dir

layout.8/syspar.2

code_version PSSP-2.2

haem_cdb_version 852558451,833611264,0

auth_install k4:std auth root rcmd k4:std auth_methods k4:std

splstnodes

Purpose

splstnodes – Lists to standard output information about nodes.

Syntax

Flags

-h Displays usage information.

-G Removes system partition boundaries for this invocation. This causes the command to consider all nodes regardless of system partition.

-x Inhibits the output of the header record.

-d delimiter Forces the delimiter between tokens to be delimiter, where delimiter is

any string value. If this flag is used, only one copy of the delimiter is

used between tokens, even if the delimiter is a blank.

-p str Prints the str string in place of an attribute that does not apply to the

object being output. The default is to print two double quotes (").

-s attr Sorts the output by the value of the attr attribute.

-t Restricts the query to a specific node type. The node type can be one

of the following:

standard Only SP nodes (nodes in a frame/slot) are considered for

output.

dependent Only dependent nodes are considered for output.

If the **-t** flag is not specified, the default is to consider both **standard** and **dependent** nodes for output.

-N node_group

Restricts the query to only the nodes in the node group specified by *node_group*. If *node_group* is a system node group, the **-G** flag is implied.

Operands

attr==value Used to specify certain node objects to be returned. The attr token

must be a valid attribute of one of the node classes in the System Data Repository (SDR) (**Node** or **DependentNode**). If *attr* exists in both node classes, the objects from each class will be considered, unless that class is excluded with the -t flag. The token *value* is the value of *attr* that objects must have to be returned by this invocation

of the command.

attr Used to specify the attributes to be returned as output of the

command. It does not limit the node objects that are considered for output. If an *attr* argument is not specified, the *node_number* attribute

is returned.

Description

Use this command to get configuration information about any node from the SDR. For a complete list of node attributes, see the Node and DependentNode classes in "The System Data Repository" appendix in PSSP: Administration Guide.

Not all of the attributes are applicable to each type of node.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit list extnodes

Environment Variables

The environment variable SP NAME is used (if set) to direct this command to a system partition. The default is to use the default system partition when on the control workstation and the system partition of the node when on a node.

Standard Output

This command writes informational messages to standard output.

Standard Error

This command writes all error messages to standard error.

Exit Values

0 Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Implementation Specifics

You must specify an attribute in order for it to be displayed in the output. The attribute in the sort option (-s flag) and the attributes in the form attr==value must be repeated in order for them to be displayed.

Location

/usr/lpp/ssp/bin/splstnodes

Examples

1. To list the node number of all wide node objects in the current system partition, enter:

```
splstnodes slots used==2
```

You should receive results in the following output, if four wide nodes are in the system partition in slots 1, 3, 5, and 7:

```
node number
1
3
5
```

2. To list the **reliable hostname** attribute of SP nodes along with their node numbers and have the output sorted by node number, enter:

```
splstnodes -t standard -s node_number node_number reliable_hostname
You should receive results in the following output:
node_number reliable_hostname
```

```
node_number reliable_hostname
1 k22n1.ppd.pok.ibm.com
3 k22n3.ppd.pok.ibm.com
5 k22n5.ppd.pok.ibm.com
7 k22n7.ppd.pok.ibm.com
```

3. To list the "wide nodes" in the system, regardless of system partition, enter:

```
splstnodes -G slots_used==2
```

You should receive results in output similar to the following:

```
node_number
1
3
5
7
19
21
23
```

4. To list the **snmp_community_name** attribute of any SP dependent nodes along with their node numbers, enter:

```
splstnodes -t dependent node_number snmp_community_name
```

If you have dependent nodes, you should receive output similar to the following:

```
node_number snmp_community_name
8 mycomm
2 yourcomm
```

splsuser

Purpose

splsuser - Lists the attributes of an SP user account.

Syntax

spisuser [-c | -f] name

Flags

- **−c** Displays the attributes for the user in colon-separated records.
- -f Displays the attributes for the user in stanza format.

Operands

name Name of the user account you want to view.

Description

You can only list the information for one SP user at a time. Unlike the AIX **Isuser** command, the **ALL** option and the **-a** flag are not supported for this command.

If you specify this command with no flags, the information of the user appears in a sequential display of attribute and values.

You can use the System Management Interface Tool (SMIT) to run the **splsuser** command. To use SMIT, enter:

smit spusers

and select the Change/Show Characteristics of a User option.

Location

/usr/lpp/ssp/bin/splsuser

Examples

1. To display the attributes of the user account **rob** in a colon-separated list, enter:

```
splsuser -c rob
```

You should receive output similar to the following:

```
#name:id:pgrp:groups:home:shell:gecos:login
rob:16416:1::/u/rob on k46s.hpssl.kgn.ibm.com:/bin/ksh::true
```

2. To display the attributes of the user account rob in stanza format, enter:

```
splsuser -f rob
```

You should receive output similar to the following:

```
rob:
        id=16416
        pgrp=1
        groups=
        home=/u/rob on k46s.hpssl.kgn.ibm.com
        shell=/bin/ksh
        gecos=
        login=true
```

spmgrd Daemon

Purpose

spmgrd – Automates management and configuration required for extension nodes.

Syntax

spmgrd [-s | -l] -f filename -m [size | 0]

Flags

- Specifies that short tracing is to be turned on as part of initialization processing. This is used to capture trace events that occur during bring-up. The trace file is located in /var/adm/SPlogs/spmgr/spmgrd.log unless overridden. Short tracing does not include informational messages nor the content of messages exchanged with Simple Network Management Protocol (SNMP) agents. The default is for tracing to be turned off.
- Specifies that long tracing is to be turned on as part of initialization processing. This is used to capture trace events that occur during bring-up. The trace file is located in /var/adm/SPlogs/spmgr/spmgrd.log unless overridden. Long tracing includes informational messages and the content of messages exchanged with SNMP agents in addition to error messages. The default is for tracing to be turned off.
- -f Specifies the name of a trace file. The default trace file name is /var/adm/SPlogs/spmgr/spmgrd.log.
- -m Specifies the maximum trace file size in bytes. When 0 is specified, there is no maximum size. The default is 0.

Operands

None.

Description

The **spmgrd** daemon is part of the **spmgr** subsystem and can only be controlled using the System Resource Controller (SRC). This daemon acts as an SNMP Manager monitoring SNMP *trap* messages received from SNMP agents supporting dependent nodes. A *trap* message may contain state information about an attached dependent node or may request the transfer of configuration data for a dependent node supported by the sending SNMP agent. When requested by a *trap* message, **spmgrd** transfers configuration data to the requesting SNMP agent. The data transfer is in the form of an SNMP *set-request* message containing the SNMP object instantiations representing configuration aspects of the dependent node and the values to which the aspects are to be set. When a *trap* message indicates that a dependent node previously fenced from the switch network with the "automatic rejoin" option is now active, **spmgrd** will automatically issue an **Eunfence** command to trigger the appropriate unfence processing.

The **spmgrd** daemon keeps log messages in a default file or in a file specified by the *filename* variable if the **-f** flag is specified. When the size of the log file exceeds an optional user-specified maximum log file size, the **spmgrd** daemon rotates the log file by moving the old log file to another file as follows:

- * LogFile.3 is deleted.
- * LogFile.2 is moved to LogFile.3.
- * LogFile.1 is moved to LogFile.2.
- * LogFile.0 is moved to LogFile.1.
- * LogFile is moved to LogFile.0.
- * LogFile continues in LogFile.

The **spmgrd** daemon only runs on the control workstation.

The **spmgrd** daemon is controlled using the SRC. The **spmgrd** daemon is a member of the **spmgr** system group. The **spmgrd** daemon is enabled by default and can be manipulated by SRC commands. Use the following SRC commands to manipulate the **spmgrd** daemon:

startsrc

Issrc

Starts a subsystem, group of subsystems, or a subserver. The **spmgrd** daemon is part of the **spmgr** subsystem. Issuing the **startsrc -s spmgr** command causes the **spmgrd** daemon to be activated. Any **spmgrd** switches must be set using the **startsrc** command **–a** switch and must be enclosed within double quotes (").

stopsrc Stops a subsystem, group of subsystems, or a subserver.

traceson Enables tracing of a subsystem, group of subsystems, or a subserver. Long tracing is specified by using the -I switch.

tracesoff Disables tracing of a subsystem, group of subsystems, or a subserver.

Gets the status of a subsystem, group of subsystems, or a subserver. When the long form of the subsystem's status is requested, information provided by the **spmgr** subsystem includes:

- · Trace information:
 - Whether tracing is on or off
 - The name of the trace file
 - The mode of tracing (long or short)
 - The trace file size limit (if any)
- Summary information about the traps received
- The content and the completion status of the snmpinfo commands issued by the spmgrd daemon. The snmpinfo commands are issued internally to request the SNMP agent managing a dependent node to change the dependent node's administrative state (this occurs whenever an enadmin command is entered by a user). The snmpinfo command is also issued internally to send configuration data for a dependent node to the SNMP agent managing it (the request for configuration data is received in the form of a trap message).

Files

/var/adm/SPlogs/spmgr/spmgrd.log

Is the spmgrd trace file.

/usr/lpp/spp/config/spmgrd/ibmSPDepNode.my

Is the Management Information Base (MIB) file containing the **ibmSPDepNode** object group that defines dependent node configuration objects.

/usr/lpp/ssp/config/spmgrd/ibmSPDepNode.defs

Is the compiled ibmSPDepNode.my object file.

/etc/services Contains a line, spmgrd-trap, that defines the User Datagram

Protocol (UDP) port number over which trap messages are received from an SNMP agent supporting dependent nodes.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) **ssp.spmgr** file set.

Location

/usr/lpp/ssp/bin/spmgrd

Related Information

Commands: enadmin, Issrc, startsrc, stopsrc, tracesoff, traceson

Examples

1. To start the **spmgr** subsystem (for example, the **spmgrd** daemon with short tracing on), enter:

```
startsrc -s spmgr -a'-s'
```

2. Use the **traceson** and **tracesoff** commands to control tracing after the **spmgrd** daemon is started.

```
traceson -ls spmgr (to turn on long tracing)
```

```
tracesoff -s spmgr (to stop tracing)
```

To stop the spmgr subsystem, enter:

```
stopsrc -s spmgr
```

4. To obtain the trace status and a list of **snmpinfo** commands issued by the **spmgr** subsystem since it was last activated, enter:

```
lssrc -ls spmgr
```

spmkuser

Purpose

spmkuser – Adds a new user account to the SP system.

Syntax

spmkuser [attribute=value ...] name

Flags

None.

Operands

attribute=valuepairs of the supported attributes and values as follows.nameUser login name. This name must follow the same rules

enforced by the AIX **mkuser** command.

Supported Attributes and Values

id ID of the user specified by the *name* operand.

pgrp Principle group of the user specified by the *name* operand.

gecos General information about the user.

groups The secondary groups to which the user specified by the *name* operand

belongs.

home Host name of the file server where the home directory resides and the

full path name of the directory. You can:

Specify a host and directory in the format host:path, just specify the
directory and have the host default to a value set in the SMIT site
environment panel or the spsitenv command. If this value has not
been set, then the host will default instead to the local machine

name, if you do not specify host explicitly.

login Indicates whether the user specified by the *name* operand can log in to

the system with the **login** command. This option does not change the **/etc/security/user** file. Instead, it alters the user password field in

/etc/security/passwd.

shell Program run for the user specified by the *name* operand at the session

initiation.

Description

The **–a** flag is not supported. Except for **home**, the rules for the supported attributes and values correspond to those enforced by the AIX **mkuser** command.

All other attribute and value pairs are not supported.

The standard administrative AIX privileges do not apply to the SP users.

This command generates a random password for the user and stores it in /usr/lpp/ssp/config/admin/newpass.log. The root user has read and write

permission to this file. It is the administrators responsibility to communicate this password to the new user and periodically delete the contents of this file.

You can use the System Management Interface Tool (SMIT) to run the spmkuser command. To use SMIT, enter:

smit spusers

and select the Add a User option.

Note: The home directory must be in an exported file system before you can run this command.

Location

/usr/lpp/ssp/bin/spmkuser

Examples

Note

The following examples assume that the SP automounter function is configured and the following defaults are specified:

spsitenv command or SMIT panel HOMEDIR_SERVER="svr1"

HOMEDIR PATH="/home/filesvr1"

spmkuser.default file In the *user* stanza:

> group=staff groups=staff prog=/bin/ksh

1. To create a user account for baker using the defaults specified in the spmkuser.default file and the home directory specified in the SMIT site environment panel or **spsitenv** command:

spmkuser baker

2. To create a user account for charlie with a UID of 1234, a home directory of /u/charlie that is physically located at /home/charlie on hostx, the staff primary group and the dev, the test secondary groups, and the /bin/ksh default shell:

spmkuser id=1234 groups=dev,test home=hostx:/home/charlie

spmirrorvg

Purpose

spmirrorvg – Initiates mirroring on a node or set of nodes.

Syntax

spmirrorvg [-f] {start_frame start_slot node_count | -l node_list}

Flags

-f Forces the physical volume to be added to the specified volume

group unless it is a member of another volume group in the Device Configuration Database or of a volume group that is active. If the volume group is varied off, and -f is specified, the

physical volume will be added to the volume group.

-I node list Specifies a list of nodes for this operation. This list can be a

single numeric node number, or a list of numeric node numbers

separated by commas.

Operands

start_frame Specifies the frame number of the first node to be used for this

operation.

start_slot Specifies the slot number of the first node to be used for this

operation.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node_count Specifies the number of nodes to be used for this operation. The

node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame.

Note: The $node_count$ is considered to be within the current

system partition.

Description

The **spmirrorvg** command uses information found in the Volume_Group object to initiate mirroring on a node. If the number of requested copies is already achieved on the node, **spmirrorvg** exits. If the number of copies has not been achieved, the **spmirrorvg** command uses the *pv_list* attribute to extend the named volume group. After extending the volume group, **spmirrorvg** calls the AIX **mirrorvg** command to make two or three copies of the volume group. If not enough disks are specified in the *pv_list* to maintain strictness this command will exit. Quorum will be set according to the quorum attribute in the Volume_Group object. If the state of quorum changes as a result of running the **spmirrorvg** command, a message will be displayed that the node needs to be rebooted. The AIX commands **bosboot** and **bootlist** are run by **spmirrorvg**. **bosboot** updates the bootable image and **bootlist** sets the node bootlist to reflect multiple bootable logical volumes.

Exit Values

- 0 Indicates the successful completion of the command.
- 1 Indicates that a recoverable error occurred, some changes may have succeeded.
- 2 Indicates that an irrecoverable error occurred and no changes were made.

Security

A user must run as "root" and have a valid Kerberos ticket.

Files

Log file created on node which contains AIX error messages if an error occurs during mirroring: /var/adm/SPlogs/sysman/mirror.out

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/spmirrorvg

Related Information

Commands: spchvgobj, spunmirrorvg

Examples

1. To initiate mirroring on node 1 for the rootvg volume group enter:

```
spmirrorvg -1 1
```

2. To initiate mirroring on a list of nodes enter:

```
spmirrorvg -1 1,2,3
```

spmkvgobj

Purpose

spmkvgobj – Creates a new root volume group for a node or series of nodes in the System Data Repository (SDR).

Syntax

Flags

-r volume_group

Specifies the root volume group name to create.

-h pv_list Indicates the physical volumes to be used for installation for the volume group specified. The root volume group is defined on the disks indicated, and all data on the disks is destroyed. The physical volumes may be specified as logical names (for example, hdisk0), hardware location (for example, 00-00-00-0,0), or connwhere (for example, ssar//012345678912345). If multiple physical volumes are specified, separate them by commas for logical names and by colons for hardware location and connwhere. The default value is hdisk0.

Note: IBM strongly suggests that you use the hardware location or connwhere format. It ensures that you install on the intended disk by targeting a specific disk at a specific location. The logical naming of physical volumes may change depending on hardware installed or possible hardware errors. This is especially true when there are external drives present, as the manner in which the device names are defined may not be obvious.

-i install image

Specifies the name of the install image to be used for the volume group when they are next network-installed. Specify a file in the <code>/spdata/sys1/install/images</code> directory on the control workstation. At installation, the value for each volume group's install image name is default, which means that the default install image name for the system partition or the system is used for each node. The default install image name is found in the Syspar or the SP object in that order. The default value is "default".

-p code_version

Sets the volume group's code version. Use this to indicate the PSSP level to install on the node. The *code_version* value you choose must match the directory name that the PSSP installation files are placed under in the <code>/spdata/sys1/install/pssplpp</code> directory during installation. See the <code>PSSP: Installation and Migration Guide</code> for more details. The default value is "PSSP-3.1".

-v lppsource_name

Sets the volume group's lppsource name. Use this to indicate the AIX level to install on the node. The *lppsource_name* value you choose must

match the directory name you choose to place the lppsource files under in the /spdata/sys1/install directory during installation. See the PSSP: Installation and Migration Guide for more details. The default value is "default".

-n boot server

Identifies the boot/install server for the volume groups you have specified. The boot/install server is identifies by a node number. Node number 0 represents the control workstation. The value of the boot/install server at installation depends on how many frames are in your system. In a single frame system, the control workstation (node 0) is the default server for each node. In a multiple frame system, the default server for the first node in each frame is the control workstation, and the default server for the rest of the nodes in a frame is the first node in that frame. The default value for a new root volume group is "0".

-c copies

Specifies the number of mirrors to create for the volume group. To enable mirroring, set this to 2 or 3. Setting this to 1 disables mirroring. When enabling mirroring, be sure that there are enough physical volumes to contain all the copies of the volume group. Each copy must have at least 1 physical volume. The default value is "1".

-q true | false

Specifies whether quorum should be enabled. If quorum is enabled, a voting scheme will be used to determine if the number of physical volumes that are up is enough to maintain quorum. If quorum is lost, the entire volume group will be taken off line to preserve data integrity. If quorum is disabled, the volume group will remain on line as long as there is at least 1 running physical volume. The default value is "true".

-I node_list

Specifies a list of nodes to be used for this operation. Specify a comma-delimited list of node numbers. If you use the -I flag, do not use the start_frame, start_slot, or node_count operands.

Operands

start_frame Specifies the frame number of the first node to be used for this

operation.

start slot Specifies the slot number of the first node to be used for this operation.

Note: The *node_count* is considered to be within the current

system partition.

node_count

Specifies the number of nodes to be used for this operation. The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame.

Note: The *node_count* is considered to be within the current system partition.

Description

Use the **spmkvgobj** command to create a new root volume group on a node or group of nodes in the System Data Repository (SDR). When this command is run and the SDR is changed, **setup_server** must be run on the affected boot/install servers and affected nodes may need to be customized or installed to apply the changes. Certain volume group information such as mirroring and the *pv_list* may be updated using the **spmirrorvg** or **spunmirrorvg** commands.

Exit Values

- **0** Indicates the command has run successfully.
- 1 A non-critical error occurred, some creations may have succeeded.
- 2 Indicates an irrecoverable error occurred and no changes were made.

Security

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in *PSSP: Administration Guide* for additional information on ticket-granting-tickets. If you do not have a ticket-granting-ticket, you must run **k4init**.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/spmkvgobj

Related Information

Commands: spbootins, spchvgobj, spmirrorvg, sprmvgobj, spunmirrorvg

Examples

1. To create a new root volume group using 2 SSA physical volumes and taking all other default values on nodes 2 and 3, enter:

```
spmkvgobj -r rootvg2 -h \
ssar//567464736372821:ssar//67464736372821 -1 2,3
```

2. To create a new root volume group using 3 SCSI physical volumes, enabling mirroring and specifying a mksysb image on node 7, enter:

```
spmkvgobj -r rootvg2 -h 00-00-00-0,0:00-00-00-1,0:00-00-00-2,0
-c 2 -q false -i bos.obj.ssp.432 -l 7
```

spmon

Purpose

spmon – Operates the system controls and monitors system activity.

Syntax

```
spmon [-query [-Monitor] [-long] | -connect host_name |
-Global | -help | -key {normal | secure | service} | -Key |
-Led | -power {on | off} |
-reset | -mux {i | 1 | 2 | 3} |
-open | -diagnostics]
[[-target] target_value...]
```

Flags

All **spmon** commands require a **-target** parameter except those with **-diagnostics**, and **-help** parameters.

- -query Queries the hardware variable specified as the target and returns the requested value. query is the default. If no other parameter is entered, a query is performed.
- -Monitor Monitors the variables specified in the targets. If any of the specified variables change the state, the new state is written to standard output.
- -long Applies only to -query and -Monitor. Returns the requested variables in fully qualified hierarchical format rather than the default format which is just the variable value.
- -connect Connects to control workstation specified in host_name variable. Use this parameter with the -key, -Key, -Led, -open, -power, -reset, and -mux parameters.
- -Global Allows targets that are outside of the current system partition. This parameter must be used for any query or command if specifying frames or switches.
- -help Displays the usage information for the spmon command.
- **-key** Choice of **normal | secure | service**. Changes the key mode switch position for the node specified as the target.
- -Key Returns status of the key mode switch position for the node specified as the target.
- **-Led** Displays the 3-digit display value.
- -power Choice of on | off.

Turns the power on or off for the node, frame, or switch specified as the target. For example:

```
spmon -G -p off frame1
spmon -p off node16
spmon -G -p off frame2/switch
spmon -G -p off frame11/switch2
```

-reset Resets the node specified as the target.

-mux Choice of i | 1 | 2 | 3. Sets multiplexors that control the clocking of a switch to the value indicated. These values mean:

- i Use internal oscillator (make this switch the master)
- 1 Use input 1
- 2 Use input 2
- 3 Use input 3

The **mux** setting must match the physical wiring of the switch clocks and requires a frame as its target. For a switch in node 17, use a frame as the target or frame/switch*N* for a switch in a switch-only frame.

-open Opens a tty connection to the node specified in the target flag. Press Enter to begin the session. Type Ctrl-x to close the connection. Refer to the s1term command for details.

-diagnostics

Performs the following diagnostics tests:

- 1. Checks if the server process is running
- 2. Tries to open a connection to the server
- 3. Queries the number of frames in system
- 4. If the -G parameter is specified, for each frame checks:
 - · If the frame controller responding
 - · If a switch is attached
 - The mux value
 - · If the frame power supplies are ON or OFF
- 5. For each node in each frame, checks:
 - Node type
 - · If power is on or off
 - hostResponds
 - switchResponds
 - · The position of key switch
 - Environment problems
 - The values of the front panel LEDs.

For each switch, checks:

- · Frame, slot
- Node type
- If power is on or off
- · Clock input
- Environment problems

The tests are in dependent order. If any of these are unsuccessful, the subsequent tests do not run.

[-target] target_value

Specifies the target node, frame, variable, or attribute for the command as *target_value*.

The **-target** flag is optional. Any parameter without a flag is assumed to be the target. You can also have multiple target-flags (**-t**), which are optional.

Operands

None.

Description

Any unique abbreviation of flags and keywords is acceptable.

Specify $target_value$ with the hierarchical format (or tree structure). The format is:

/SP/frame/frameN/[nodeM|switchM]/variableX/value

SP Is literally the string "SP".

frame Is the string **frame**.

frameN Is frame1...frameN where N is the frame number in the SP system.

nodeM | switchM Is the node number or switch number within the specified frame. M is the slot number of that node or switch. When switch is specified without a number, it means switch 17.

variableX Is a variable known to the SP System Monitor. Refer to the "System Monitor Variables, Display Types, and Attributes Appendix" of PSSP:
Administration Guide for a list of variables.

value Is literally the string "value."

You can use wildcards (*) to specify more than one target node or frame for the **query** command.

Note: Though they are not hardware variables, for compatibility with older systems, the variables *hostResponds* and *switchResponds* can be used as specific targets of the **spmon** command for both **–query** and **–Monitor** commands. However, the variable names must be entered explicitly. These two variables are not returned if the variable specified is a wildcard (*).

You can use aliases in place of fully qualified hierarchical target values. Aliases require less typing and may be more intuitive than the fully qualified targets. Leaving the leading slash (/) off the target indicates that it is an alias.

There are two formats for aliases:

Format 1: frameN/nodeM

frameN Is the target frame, where N is the frame number.

node Is node1 to node16 within the specified frame.

You can include a variable and attribute after the alias.

Format 2: nodeM

node M Is node 1 to node M where M is the node number of the node in the

SDR node class.

Location

/usr/lpp/ssp/bin/spmon

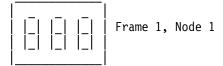
Related Information

The **sphardware** command launches a graphical user interface for monitoring and controlling an SP system.

Examples

1. To query the key setting of node1 on frame1, enter:

```
spmon -q -t /SP/frame/frame1/node1/keyModeSwitch/value
0
```


2. To perform the same query using an alias (uses query flag default), enter:

```
spmon node1/keyModeSwitch/value
```

3. To query the LED settings of node1 on frame1, enter:

```
spmon -L frame1/node1
```

You should receive output similar to the following:

4. To query the mux value on all switches in the system, enter:

```
spmon -G -q -l frame*/switch*/mux/value
/SP/frame/frame1/switch17/mux/value/0
```

5. To monitor the power LEDs on the nodes on frame1, enter:

```
spmon -M frame1/node*/powerLED/value
2
1
```

6. To query the power LEDs on the nodes on frame1 and then monitor them and print the values in fully qualified hierarchical form, enter:

```
spmon -M -q -l frame1/node*/powerLED/value
/SP/frame/frame1/node1/powerLED/value/1
/SP/frame/frame1/node3/powerLED/value/1
/SP/frame/frame1/node5/powerLED/value/1
/SP/frame/frame1/node7/powerLED/value/1
/SP/frame/frame1/node9/powerLED/value/1
/SP/frame/frame1/node10/powerLED/value/1
/SP/frame/frame1/node11/powerLED/value/1
/SP/frame/frame1/node13/powerLED/value/1
/SP/frame/frame1/node14/powerLED/value/1
/SP/frame/frame1/node15/powerLED/value/1
/SP/frame/frame1/node16/powerLED/value/1
/SP/frame/frame1/node1/powerLED/value/1
```

Note: "node*" returns powerLED values on switches in slots 1—16 also.

7. To switch power off node3 on frame2, enter:

```
spmon -p off frame2/node3
```

If node3 on frame2 is outside the current system partition, enter:

```
spmon -G -p off frame2/node3
```

8. To switch power off node3 on frame2 using alias format2, enter:

```
spmon -p off node19
```

9. To change key setting on node1 on frame1 to service, enter:

```
spmon -k service node1
```

10. To switch power off frame1, (type 17 frame supervisor only), enter:

```
spmon -G -p off frame1
```

11. To switch power off frame1, (SEPBU - type 18 frame supervisor), enter:

```
spmon -G -p off frame1/A
```

12. To set the frame1 switch to be the master switch (use internal oscillator), enter:

```
spmon -G -m i frame1
or
```

spmon -G -m i frame1/switch

13. To set frame 10, switch4 in a switch-only frame to be the master switch, enter:

```
spmon -G -m i frame10/switch4
```

spmon_ctest

Purpose

spmon_ctest – Verifies that the System Monitor component is configured correctly.

Syntax

spmon_ctest [-I log_file] [-q]

Flags

-I log_file Specifies the path name of the log file to which error messages are written. (This is lowercase I, as in list.)

-q Specifies quiet mode; suppresses output to standard error.

Operands

None.

Description

This command is designed to be run after installing the SP system to verify that the System Monitor is configured correctly. The test checks to make sure that the hardware is running, that it can be queried, and determines whether any node objects were created in the System Data Repository (SDR). The test also indicates whether the RS232 lines are connected properly.

A return code of zero indicates that the test completed as expected; otherwise it returns the number of errors. If you do not specify the -q flag, a message is displayed on standard output that indicates if the test was successful or not. In either case, the command returns 0 if successful, 1 if unsuccessful. If errors are detected, more detailed information is recorded in the log file. If you do not specify the -I flag, error messages are recorded in /var/adm/SPlogs/spmon_ctest.log.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit SP_verify

and select the System Monitor Configuration option.

You must run this test from a user who has monitor authority in **/spdata/sys1/spmon/hmacls**. The user must also have a nonexpired authentication ticket.

Refer to the "RS/6000 SP Files and Other Technical Information" section of *PSSP: Command and Technical Reference* for additional **Kerberos** information.

Files

/var/adm/SPlogs/spmon_ctest.log

Default log file.

Location

/usr/lpp/ssp/bin/spmon_ctest

Related Information

Commands: CSS_test, jm_install_verify, jm_verify, SDR_test, SYSMAN_test, spmon_itest

Examples

To verify installation of the SP System Monitor, saving error messages in spmon.err in the current working directory, enter:

spmon_ctest -1 spmon.err

spmon_itest

Purpose

spmon_itest – Verifies that the System Monitor is installed and operational.

Syntax

spmon_itest [-I log_file] [-q]

Flags

-I log_file Specifies the path name of the log file to which error messages are

written. (This is lowercase I, as in list.)

-q Specifies quiet mode; suppresses output to standard error.

Operands

None.

Description

This command is designed to be run after installing the SP system to verify that the System Monitor is installed correctly.

A return code of zero indicates that the test completed as expected; otherwise it returns the number of errors. If you do not specify the -q flag, a message is displayed on standard output that indicates if the tests were successful or not. In either case, the command returns 0 if successful, 1 if unsuccessful. If errors are detected, more detailed information is recorded in the log file. If you do not specify the -I flag, error messages are recorded in /var/adm/SPlogs/spmon_itest.log.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit SP_verify

and select the System Monitor Installation option.

Files

Path name of this command.

/var/adm/SPlogs/spmon_itest.log
Default log file.

Location

/usr/lpp/ssp/bin/spmon_itest

Related Information

Commands: CSS_test, jm_install_verify, jm_verify, SDR_test, SYSMAN_test, spmon_ctest

Examples

To verify installation of the SP System Monitor, saving error messages in **spmon.err** in the current working directory, enter:

spmon_itest -1 spmon.err

sppenode

Purpose

sppenode – Enters configuration data for a processor extension node in the System Data Repository (SDR).

Syntax

sppenode [-h]

OR

sppenode [-n hostname] [-s short comment] [-l long comment] node_number

Flags

-h Displays usage information.

-n hostname Hostname.

-s short comment

Allows you to enter a short description of the node.

-I long comment

Allows you to enter a long description of the node.

Operands

node_number Specifies the node number for this processor extension node.

Description

Execute this command during installation of the Netfinity server to add node specific data to the SDR for the ProcessorExtensionNode class. The *node_number* operand is required when entering this information.

Standard Output

This command writes informational messages to standard out.

Standard Error

This command writes all error messages to standard error.

Errors can result from causes that include:

- SDR access errors
- · Insufficient user authorization for the command

Exit Values

0 Indicates the successful completion of the command.

1 Indicates that an error occurred. The Netfinity node information was not updated. It is accompanied by one or more error messages that indicate the cause of the error.

Security

You must have root privilege, or be a member of the system group to run this

command.

Restrictions

This command may only be issued on the control workstation.

Location

/usr/lpp/ssp/bin/sppenode

Examples

Command for a processor extension node with a node number of 17:

sppenode-n SAPserver -s SAPserver -l Rack1FirstNode 17

spperfmon

Purpose

spperfmon – Directly launches the Performance Monitor Perspective graphical user interface (GUI).

Syntax

spperfmon [-userProfile name] [-systemProfile name] [-noProfile]

[-backgroundColor colorName]

[-foregroundColor colorName] [-fontFamily name]

[-fontSize size] [-fontBold] [-fontItalic] [-nosplash] [-h]

Flags

-userProfile name

Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the **-userProfile** flag is not specified.

-systemProfile name

Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

-noProfile Upon initialization, does not read either profile.

-backgroundColor colorName

Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

-foregroundColor colorName

Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

-fontFamily name

Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid fonts.

-fontSize size

Overrides any font point size with the specified size. Valid values are 6—30 points.

-fontBold Sets the font to bold.

-fontItalic Sets the font to italics.

-nosplash Does not display the splash screen before the Perspectives main window is displayed.

-h Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, –**display** displayname.

Operands

None.

Description

Use this command to launch the SP Performance Monitor Perspective. This tool enables the user to monitor the performance of the SP in conjunction with other licensed products: Performance Toolbox for AIX (PTX), 5765-654.

From the Performance Monitor Perspective, you can perform most of the PTPE command set functions through point and click operations. For example, you can easily manipulate the PTPE monitoring hierarchy and save it to the System Data Repository (SDR).

The Performance Monitor Perspective window uses three panes to display SP system information:

- Hierarchy pane: This shows the current monitoring hierarchy, displaying the central coordinator at the top, with data manager nodes below and reporter nodes at the bottom. By default, the monitoring hierarchy from the System Data Repository (SDR) is displayed when this Perspective is initialized.
- Syspar pane: This shows how the SP is partitioned. The system partition
 selected in this pane is the one displayed in the Hierarchy and Nodes panes. If
 other partitions are defined by the SP, you can use this pane to select them.
- 3. *Nodes pane*: This shows the nodes in the SP system, organized by frame in the default display, but you can sort and filter them to suit your purposes.

When the command is invoked, preferences that define the look and layout of the SP Performance window are prioritized in the following order:

- Command line options
- · User preferences profile
- System preferences profile
- · Default values

Files

- The Users Preferences are read from and saved to \$HOME/.spperfmon(User Profile Name).
- The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/.spperfmon(System Profile name).

Restrictions

Any user can run the **spperfmon** command. To get a read/write PTPE session requires root privilege and the user must be a member of the UNIX group 'perfmon'.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) and the IBM Performance Toolbox Parallel Extensions for AIX separately priced feature.

Prerequisite Information

For information on using **spperfmon** and SP Perspectives, see the online help and the "Using SP Perspectives" chapter in *PSSP: Administration Guide*.

Location

/usr/lpp/ssp/bin/spperfmon

Related Information

You can also access the Performance Monitor Perspective by using the SP Perspectives Launch Pad. The **perspectives** command invokes the Launch Pad. Other Perspectives can be launched by invoking the following commands: **spevent**, **sphardware**, **spsyspar**, and **spvsd**.

IBM Performance Toolbox Parallel Extensions for AIX: Guide and Reference

IBM Performance Toolbox 1.2 and 2.1 for AIX: Guide and Reference

Examples

- To invoke the spperfmon window, enter: spperfmon
- 2. To launch the SP Performance Monitor Perspective ignoring the preferences found in the system and user profile files, enter:

spperfmon -noProfile

sprestore_config

Purpose

sprestore_config – Restores the system to a given system partitioning configuration as specified in the System Data Repository (SDR) which was previously archived.

Syntax

sprestore_config archive_file [-h]

Flags

-h Displays usage information.

Operands

archive file Specifies the name of the archived SDR file to be restored.

Description

Use this command to restore the SDR from an archive file that was previously created with the SDRArchive command. In addition to restoring the SDR (using the SDRRestore command), the sprestore_config command also restores system partition-sensitive subsystems (for example, hats, hb, and hr) to their previous state. This command is most useful when recovering from an attempt to partition the SP (see the **spapply_config** command).

You can use the System Management Interface Tool (SMIT) to run the sprestore_config command. To use SMIT, enter:

smit syspar restore

and enter (or select from a generated list) the name of the SDR archive from which to restore.

Notes:

- 1. This command should be run only on the control workstation.
- 2. Due to system partitioning changes, your SP_NAME environment variable may no longer be set to a valid system partition name. To get a list of valid system partition names, enter the **splst_syspars -n** command. Then verify that your SP_NAME environment variable is either unset or set to one of the system partition names in the list.

Exit Values

- 0 Indicates success.
- 1 Indicates that an error occurred while trying to restore the specified system partitioning configuration.
- 2 Indicates a usage error.

Related Information

Commands: SDRArchive, SDRRestore, spapply_config, spcustomize_syspar, spdisplay_syspar, spverify_config, syspar_ctrl

Files: nodelist, topology

Examples

To restore the SDR and the system-partition sensitive subsystems (for example, hats, hb, and hr) from the archive 'backup.95110.1620' which was previously created using the SDRArchive command, enter:

sprestore_config backup.95110.1620

sprmuser

Purpose

sprmuser – Removes a user account from the SP system.

Syntax

sprmuser [-i] [-p] [-r] name

Flags

- -i Displays the current user information and enables interactive control. This allows you to quit before deleting the user account.
- -p Removes user password information from the /etc/security/passwd file.
- **-r** Removes the user's home directory specified in the **home** attribute.

name Name of the user account you want to delete.

Operands

None.

Description

The -i and -r options are unique to the SP system.

You can use the System Management Interface Tool (SMIT) to run the **sprmuser** command. To use SMIT, enter:

smit spusers

and select the Remove a User option.

Location

/usr/lpp/ssp/bin/sprmuser

Examples

- 1. To remove user account **charlie** without destroying the home directory, enter: sprmuser charlie
- 2. To remove user account **charlie**, remove any information about this user in the **/etc/security/passwd** file, and remove the home directory, enter:

```
sprmuser -pr charlie
```

sprmvgobj

Purpose

sprmvgobj – Removes a root volume group for a node or series of nodes from the System Data Repository (SDR).

Syntax

sprmvgobj [-r volume_group_name]

{start_frame start_slot node_count | -I node_list}

Flags

-r volume_group Specifies the root volume group name to remove.

-I node_list Specifies a list of nodes to be used for this operation. Specify a

comma-delimited list of node numbers. If you use the **-I** flag, do not use the *start_frame*, *start_slot*, or *node_count* operands.

Operands

start_frame Specifies the frame number of the first node to be used for this

operation.

start_slot Specifies the slot number of the first node to be used for this

operation.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node_count Specifies the number of nodes to be used for this operation.

The node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next

sequential frame.

Note: The *node_count* is considered to be within the current

system partition.

Description

The **sprmvgobj** command is used to remove a root volume group on a node or group of nodes from the System Data Repository (SDR).

Exit Values

- **0** Indicates the command has run successfully.
- 2 Indicates an irrecoverable error occurred and no changes were made.

Security

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in *PSSP: Administration Guide* for additional information on ticket-granting-tickets. If you do not have a ticket-granting-ticket, you must run **k4init**.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/sprmvgobj

Related Information

Commands: spbootins, spchvgobj, sprmvgobj

Examples

1. To remove a root volume group on nodes 2 and 3, enter:

sprmvgobj -r rootvg2 -l 2,3

spseccfg

Purpose

spseccfg – Displays host configuration information related to Security Services.

Syntax

spseccfg [-h | target_host]

Flags

-h Specifies that the command syntax is to be listed.

Operands

target_host The hostname or IP address of the host whose host configuration

data is requested. When target_host is omitted, the information

displayed is for the local host.

Description

The **spseccfg** command obtains the DCE-hostname that was assigned when DCE was configured on the target host and the system partition name. It prints each name to STDOUT as a separate line.

Security

This command is available to all users.

Standard Output

The first line of output is the DCE-hostname, if DCE is installed and configured, otherwise an empty line.

If the host is an SP node, the second line of output is the system partition name. If the host is the control workstation, It is the default system partition name. Otherwise, for an independent workstation, it is the (short) local hostname.

Standard Error

Output consists of error messages, when the command cannot complete successfully.

Exit Values

- **0** Indicates the successful completion of the command.
- 1 Indicates that an error occurred.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP) (fileset ssp.clients).

Prerequisite Information

The chapters on security in the PSSP: Administration Guide.

Location

/usr/lpp/ssp/bin/spseccfg

Examples

1. To display the configuration information for the local host, enter:

```
$spseccfg
hosts/sp3.xyz.com
sp3
```

2. To display the configuration information for the host at address 120.14.89.10,

```
$spseccfg 120.14.89.10
hosts/p16n9
p16part3
```

spsetauth

Purpose

spsetauth – Sets the authentication methods to be installed on the control workstation and in the partition.

Syntax

spsetauth

-**p** partition name [-**h**] -**d** k4 [std]

Flags

-p partition name

Specifies the partition name for Syspar object.

- -h Presents syntax to stdout.
- -d Specifies authorization setup.

Operands

Set of Authentication methods to be set in the Syspar object in the SDR (std is optional; k4 is required).

Description

This command will only run on the control workstation. If the **-d** flag is set, it sets the set of authorization methods used for root access to remote commands. It writes this information to the SDR Syspar object for which an authorization method is to be used for root access to remote commands.

Values for either attribute are: k4 or std.

Currently k4 is required. If std is selected, it will be set last as an authorization method.

Files

Log file created in /var/adm/SPlogs/auth_inst/log. This log file will be trimmed by using the /usr/lpp/ssp/bin/cleanup.logs.ws program.

Exit Values

- 0 Command completed successfully.
- 1 Command was unsuccessful. Review any errors displayed on console or reported in the log file.

If anything but a return code of 0 occurs, the error must be corrected and the command executed again before proceeding to any further configuration or installation steps.

spsetauth

Security

You will need root authorization to run this command.

Location

/usr/lpp/ssp/bin/spsetauth

Examples

1. To set partition "par_2" to have Kerberos 4 and Standard AIX as the set of authorization methods enter:

/usr/lpp/ssp/bin/spsetauth -d -p par_2 k4 std

spsitenv

Purpose

spsitenv – Enters configuration parameters used by SP installation and system management scripts into the System Data Repository (SDR).

Syntax

```
spsitenv
            [acct_master = accounting_master]
            [amd_config = true | false]
            [cw_lppsource_name = lppsource_name]
            [filecoll_config = true | false]
            [homedir_path = home_directory_path]
            [homedir_server = home_directory_server_host_name]
            [install_image = default_network_install_image_name]
            [ntp_config = consensus | internet | none | timemaster]
            [ntp_server = ntp_server_host_name ...]
            [ntp_version = 3 | 1]
            [passwd_file_loc = passwd_file_server_host_name]
            [passwd_file = passwd_file_path]
            [print_config = false | open | secure]
            [print_id = secure_print_login_name]
            [remove_image = true | false]
            [spacct_enable = false | true]
            [spacct_actnode_thresh = sp_accounting_active_node_threshold]
            [spacct excluse enable = false | true]
            [supfilesrv_port = port]
            [supman_uid = supman_uid]
            [usermgmt_config = false | true]
```

Flags

runs. The initial value is *accounting_master*=0, specifying the

control workstation.

amd_config Indicates whether the automounter function should be

configured and supported by the SP. Specify **true** if you want to have the automounter configured and the automounter daemon started on your SP. Automounter entries are created for your home directories if **usermgmt_config** is also **true**. Specify **false** if you do not want to have the SP manage the

automounter. The initial value of **amd_config** is **true**.

cw lppsource name

Indicates the LPP source name to use when installing the NIM file sets on the control workstation. The name you specify must correspond to an LPP source directory on the control

workstation. The directory must be named

/spdata/sys1/install/LPP_source_name/lppsource, where LPP source_name is the name that you have assigned to the LPP source. The default value is default.

You must ensure that the AIX level on the LPP source (indicated by the **cw_lppsource_name**) matches the AIX level installed on your control workstation.

filecoll config Indicates whether the SP file collection management code

should be installed.

Specify **true** if the code is to be installed. Specify **false** if the code is not to be installed. The initial value is true.

homedir_path Specify an absolute path name for *home_directory_path* if you

want to use a path other than the initial value of the control workstation path. The initial value is **/home/***cw*, where *cw* is

the host name of the control workstation.

homedir_server Indicates where user home directories physically reside.

Specify a valid host name or IP address for

home directory server host name if you want to use a server other than the initial value of the control workstation host name.

The initial value is the host name of the control workstation.

install_image Indicates the location of the default network install image for

your SP system. default_network_install_image_name should point to the install image which is used for a node if that node's

install image field is not set. This should be a file in

/spdata/sys1/install/images.

ntp_config See ntp_server.

ntp_server Indicates your choice for running NTP in your SP. To use your

site's NTP time server, specify ntp_config=timemaster and specify the host name of your NTP time server with the

ntp_server parameter.

To use an Internet NTP time server, your control workstation must be connected to the Internet. Specify

ntp config=internet and specify the full host name of an Internet time server with the **ntp_server** parameter.

To cause the control workstation and file servers to generate a consensus time based on their own date settings, specify ntp_config=consensus and specify ntp_server=".

If you do not want to run NTP on the SP, specify ntp_config=none and ntp_server=".

The initial value of **ntp_config** is **consensus** and the initial value of ntp_server is ". If ntp_config is specified as either timemaster or internet, the ntp_server value must be a valid

host name.

ntp_version

Indicates which version of NTP you are running. The initial value is **3**.

passwd file

Indicates the path of the password file where new user entries are placed. The initial value is <code>/etc/passwd</code>. If you change the value of <code>passwd_file</code> from <code>/etc/passwd</code> and are using NIS, be sure to modify your NIS Makefile to build the password map from the new password file.

This field is meaningful only if usermgmt config=true.

passwd file loc

Specifies the host name of the machine where your password file resides. The initial value of **passwd_file_loc** is the control workstation. The value of the **passwd_file_loc** cannot be one of the nodes in the SP system.

print_config

Indicates how SP print management should be integrated into your system.

Specify **print_config = false** if you do not want to have the existing AIX print commands saved and have the file names linked to the SP print functions.

If you want to have the print management system integrated, specify **secure** if you do not want users to not have rsh privileges on the print host. Specify **open** if the users are to have rsh privileges on the print host.

The initial value of **print_config** is **false**.

print_id

Specify the login name to be used for rsh for secure mode printing. This field is meaningful only if **print_config=secure** is specified.

The initial value is ". If the value remains at " and the value of **print_config** is **secure**, the installation script uses a print management ID of **prtid** as a default.

The SP Print Management System was removed from PSSP 2.3. That is, the SP Print Management System cannot be configured on nodes running PSSP 2.3 or later. We suggest the use of Printing Systems Manager (PSM) for AIX as a more general solution to managing printing on the SP system.

However, if you are running earlier versions of PSSP on some of your nodes, the SP Print Management System is still supported on those nodes. The **print_config** routine running on the control workstation will configure the SP Print Management System on nodes running versions of PSSP earlier than PSSP 2.3.

If you are running mixed levels of PSSP in a system partition, be sure to maintain and refer to the appropriate documentation for whatever versions of PSSP you are running.

remove image

Indicates whether install images are to be removed from the boot servers after an install has been completed.

Specify **remove_image=true** if the images are to be removed.

Specify **remove_image=false** if the images are not to be removed.

203

The initial value is false.

spacct_actnode_thresh

Indicates the percentage of nodes for which accounting data must be present in order for crunacct to continue processing that day. The initial value is **80**.

spacct_enable

Indicates whether accounting is enabled or disabled on all nodes that have an accounting enabled attribute set to default. The initial value is **false**, disabling accounting.

spacct excluse enable

Indicates if accounting start and end job records are generated for jobs having exclusive use of the node. A value of true indicates that exclusive use accounting is enabled and start and end job records are generated. A value of **false** indicates that exclusive use accounting is not enabled and start and end job records are not generated.

The initial value is false.

supfilesrv_port

Specifies the file collection daemon port. This is used in /etc/services for the file collection daemon. Pick a value that does not conflict with any other ports in use. It is meaningful only if **filecoll_config=true** is specified. The initial value is 8431.

supman uid

Specifies the uid for the file collection daemon. It is meaningful only if **filecoll config=true** is specified. The initial value is ". If you are using login control, make this uid lower than the threshold ID you set in the **block_usr_sample** script.

usermgmt config Indicates whether SP user management scripts should be

integrated into your system.

Specify usermgmt=true if you want to have the SP User Management scripts in the Security & Users SMIT menu. Specify usermgmt=false to remove the scripts from the SMIT

The initial value is true.

Operands

None.

Description

Use this command during installation of the SP or at a later time to identify SP configuration parameters in use at your location.

You must have a ticket-granting-ticket to run this command. Refer to the chapter on security in PSSP: Administration Guide for additional information on ticket-granting-tickets.

If you do not have a ticket-granting-ticket, you must run **k4init**.

You can use the System Management Interface Tool (SMIT) to run the spsitenv command. To use SMIT, enter:

smit enter data

and select the Site Environment Information option.

You cannot use SMIT if you are using AFS authentication services.

Notes:

- 1. This command should be run only on the control workstation. You must be logged into the control workstation as root to execute this command.
- 2. Any changes made will not take effect on the nodes until they are customized.

Location

/usr/lpp/ssp/bin/spsitenv

Examples

The following example enters site environment parameters into the System Data Repository. The NTP configuration is **consensus** and the file collection management code is to be installed:

 ${\tt spsitenv} \ {\tt ntp_config=consensus} \ {\tt filecoll_config=true}$

spsvrmgr

Purpose

spsvrmgr – SP Supervisor Manager.

Syntax

```
spsvrmgr [-G] [-f file_name]

[[-q rc | msg] |

[-r status | action] |

[-m status | action] | [-u]] [slot_spec | all]
```

Flags

- -G Specifies Global mode. With this flag, commands can be sent to any hardware.
- -f Uses *file name* as the source of slot ID specifications.
- -q rc | msg Checks the supervisor hardware configuration for supervisors that support microcode download, and that also require an action.

Action checks include:

Install Indicates that the Supervisor card has no supervisor

installed. An install is required.

Upgrade Indicates that the Supervisor card has a supervisor

installed, but it is not at the most current level. An upgrade

is required.

Reboot Indicates that the Supervisor card has a supervisor

installed and it is at the most current level, but it is not

active. A reboot is required.

Update Media

Indicates that the Supervisor card has a supervisor installed, but the media that is the repository for microcode files does not contain the version that is installed on the card. A media update is required.

If rc is specified with the -q flag, the command will issue a return code indicating whether any of the hardware requires action. A return code of 0 indicates that no action is required. A return code of 1 indicates that at least one supervisor was found that required action.

If \mathbf{msg} is specified with the $-\mathbf{q}$ flag, the command will issue a message indicating whether any of the hardware requires action. In this case, a return code of 0 is issued unless an error condition occurs.

-r status | action

Checks the supervisor hardware configuration for supervisors that support microcode download and displays status for those supervisors in "report" form.

If **status** is specified with the $-\mathbf{r}$ flag, the status is listed for all of the installed supervisors that support microcode download.

If **action** is specified with the **-r** flag, the status is listed for all of the installed supervisors that support microcode download and that also require an action.

In both cases, Status includes:

Frame Number

Indicates the number of the frame.

Slot Number Indicates a number in the range of 0—17.

Supervisor State

Indicates either Active (supervisor is executing) or Inactive (supervisor is not executing).

Media Versions

Indicates the microcode files that are compatible with the supervisor installed in this frame/slot.

Installed Version

Indicates the microcode file installed as the supervisor.

Required Action

Can be one of the following: None, Install, Upgrade, Reboot, or Update Media.

-m status | action

Checks the supervisor hardware configuration for supervisors that support microcode download and displays status for those supervisors in "matrix" form.

If **status** is specified with the **-m** flag, the status is listed for all of the installed supervisors that support microcode download.

If **action** is specified with the **-m** flag, the status is listed for all of the installed supervisors that support microcode download and that also require an action.

In both cases, Status includes:

Frame Number

Indicates the number of the frame.

Slot Number Indicates a number in the range of 0—17.

Action Required

Can be either Required or Not Required.

 -u Installs, upgrades, or reboots the hardware supervisors specified by the slot_spec option that support microcode download and that also requires an action.

Note: This flag starts an **hmcmds** process to perform the actual update. Refer to the **hmcmds** command specifically the **basecode**, **microcode**, and the **boot_supervisor** command options.

Attention -

In most cases, the $-\mathbf{u}$ flag started processes powers off the target slots during the duration of the update.

Operands

```
slot_spec | all
```

Specifies the addresses of the hardware components.

Description

The design of the SP supervisor control system divides the microcode used in the frame supervisor, node supervisor, and switch supervisor into the following two types:

basecode Microcode that is loaded at the time of manufacture and

gives the card the ability to load application microcode

during system operation.

application microcode Microcode that is loaded via basecode and contains the

instruction that is the supervisor application.

The **spsvrmgr** command controls the software level and state of the supervisor applications that reside on the SP supervisor hardware.

Normally, commands are only sent to the hardware components in the current system partition. A system partition contains only processing nodes. The switches and the frames themselves are not contained in any system partition. To access hardware components not in the current system partition or to any frame or switch, use the $-\mathbf{G}$ flag.

The *slot_spec* option is interpreted as slot ID specifications. A slot ID specification names one or more slots in one or more SP frames and has either of two forms:

```
fidlist:sidlist or nodlist
```

where:

fidlist = fval[,fval,...]
sidlist = sval[,sval,...]
nodlist = nval[,nval,...]

The first form specifies frame numbers and slot numbers. The second form specifies node numbers. An *fval* is a frame number or a range of frame numbers of the form a–b. An *sval* is a slot number from the set 0 through 17 or a range of slot numbers of the form a–b. An *nval* is a node number or a range of node numbers of the form a–b.

The relationship of node numbers to frame and slot numbers is shown in the following formula:

```
node\_number = ((frame\_number - 1) \times 16) + slot\_number
```

Note: Node numbers can only be used to specify slots 1 through 16 of any frame.

Refer to the **hmcmds** command for examples of the *slot_spec*.

Optionally, slot ID specifications can be provided in a file rather than as command flags. The file must contain one specification per line. The command requires that slot ID specifications be provided. If the command is to be sent to all SP hardware, the keyword **all** must be provided in lieu of the *slot_spec* option. However, the **all** keyword can only be specified if the **-G** flag is specified.

Files

The media that is the repository for the application microcode files is the **/spdata/sys1/ucode** directory structure.

Exit Values

- **0** Indicates the successful completion of the command.
- 1 Returned only in conjunction with the **-q rc** flag to indicate that at least one supervisor was found that required action.
- -1 Indicates that the command was unsuccessful. This return value is always accompanied with an error message.

Restrictions

IBM suggests that you use this command through the RS/6000 SP Supervisor Manager option of the System Management Interface Tool (SMIT).

To access this command using SMIT, enter:

smit

and select the RS/6000 SP System Management option, then the RS/6000 SP Supervisor Manager option.

A list of options that correspond to the **spsvrmgr** command flags will be presented for selection.

You can also directly access this list of options using the following SMIT fast-path command:

smit supervisor

Implementation Specifics

You must be authorized to access the Hardware Monitor subsystem to run the **spsvrmgr** command. In addition, for those frames specified to the command, you must have Virtual Front Operator Panel (VFOP) permission. Commands sent to frames for which you do not have VFOP permission are ignored. Since the Hardware Monitor subsystem uses SP authentication services, you must run the **k4init** command prior to running this command. Alternatively, site-specific procedures can be used to obtain the tokens that are otherwise obtained by **k4init**.

The **spsvrmgr** command, by design, only interacts with SP supervisor hardware that supports the ability to download application microcode. Commands sent to slots that do not support this ability are ignored.

Location

/usr/lpp/ssp/bin/spsvrmgr

Related Information

Commands: hmcmds

Refer to the "Installing and Configuring a New RS/6000 System" chapter in PSSP: Installation and Migration Guide.

Examples

1. To perform a "quick check" of your configuration for supervisor hardware that requires action and to have a message issued, enter:

```
spsvrmgr -G -q msg all
```

You should receive output similar to the following:

spsvrmgr: At least one occurrence of supervisor hardware was found to require attention. Enter "smit supervisor" for installation options.

2. To perform a "quick check" of your configuration for supervisor hardware that requires action and to have a status code returned, enter:

```
spsvrmgr -G -q rc all
echo $?
Example usage in a script:
spsvrmgr -G -q rc all
if [[ $? = 1 ]]
then
    echo "*** Attention*** One or more supervisors require action."
    echo "Enter \"smit supervisor\" for installation options."
fi
```

3. To display status information in report form of all hardware that supports microcode download for frame 2, enter:

```
spsvrmgr -G -r status 2:0-17
```

You should receive report output similar to the following:

spsvrmgr:	Frame	Slot	Supervisor State	Media Versions	Installed Version	Required Action
	2	1	Active	u_10.3a.0609 u_10.3a.060a u_10.3a.060b	u_10.3a.060b	None
		5	Active	u_10.3a.0609 u_10.3a.060a u_10.3a.060b	u_10.3a.060b	None
		9	Active	u_10.1a.0609 u_10.1a.060a u_10.1a.060b	u_10.1a.060b	None
		13	Active	u_10.3a.0609 u_10.3a.060a u_10.3a.060b	u_10.3a.060b	None

4. To display status information in matrix form of all hardware that supports microcode download for in your configuration, enter:

You should receive matrix output similar to the following:

5. To display status information in report form of all hardware that supports microcode download and requires an action for frame 1, enter:

You should receive report output similar to the following:

spsvrmgr:	Frame	Slot	Supervisor State	Media Versions	Installed Version	Required Action
	1	1	Active	u_10.3a.0609 u_10.3a.060a u_10.3a.060b	u_10.3a.060a	Upgrade
		5	Inactive	u_10.3a.0609 u_10.3a.060a u_10.3a.060b	u_10.3a.060b	Reboot
		9	Inactive	u_10.1a.0609 u_10.1a.060a u_10.1a.060b	u_10.1a.060b	Reboot

6. To update the hardware that supports microcode download in frame 1 slot 1, enter:

```
spsvrmgr -u 1:1
```

You should receive installation output similar to the following:

spsvrmgr: Dispatched "microcode" process [24831] for frame 1 slot 1. Process will take approximately 12 minutes to complete.

spsvrmgr: Process [24831] for frame 1 slot 1 completed successfully.

7. To update the hardware that supports microcode download in frame 1 slots 5 and 9, enter:

```
spsvrmgr -u 1:5,9
```

You should receive installation output similar to the following:

spsvrmgr

spsvrmgr: Dispatched "boot_supervisor" process [27956]

for frame 1 slot 5.

Process will take less than a minute to complete.

spsvrmgr: Dispatched "boot_supervisor" process [23606]

for frame 1 slot 9.

Process will take less than a minute to complete.

spsvrmgr: Process [27956] for frame 1 slot 5 completed successfully. spsvrmgr: Process [23606] for frame 1 slot 9 completed successfully.

spsyspar

Purpose

spsyspar – Directly invokes the System Partitioning Aid Perspective graphical user interface (GUI).

Syntax

spsyspar [-userProfile name] [-systemProfile name] [-noProfile]

[-backgroundColor colorName]

[-foregroundColor colorName] [-fontFamily name]

[-fontSize size] [-fontBold] [-fontItalic] [-nosplash] [-h]

Flags

-userProfile name

Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the **–userProfile** flag is not specified.

-systemProfile name

Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

-noProfile Upon initialization, does not read either profile.

-backgroundColor colorName

Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

-foregroundColor colorName

Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

-fontFamily name

Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid fonts.

-fontSize size

Overrides any font point size with the specified size. Valid values are 6–30 points.

-fontBold Sets the font to bold.

-fontItalic Sets the font to italics.

-nosplash Does not display the splash screen before the Perspectives main window is displayed.

-h Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, –**display** displayname.

Operands

None.

Description

Use this command to launch the System Partitioning Aid window of the SP Perspectives GUI. The System Partitioning Aid Perspective is used to view and manage the current system partitioning configuration. This tool can also be used to generate new configurations.

When the command is invoked, preferences which define the look and layout of the System Partitioning Aid window are prioritized in the following order:

- Command line options
- User preferences profile
- System preferences profile
- · Default values

Files

The users preferences are read from and saved to \$HOME/.spsyspar(User Profile **Name).** The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/.spsyspar(System Profile name). If a new system partitioning configuration is created, the following files are created under the layout directory: layout.desc, nodes.syspar and a system partition directory for each system partition in the layout. For each system partition directory, a node list file and topology file are created.

Restrictions

Any user can run the spsyspar command. Many actions require root privilege.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information

For information on using the System Partitioning Aid Perspective and SP Perspectives, see the online help and the "Using SP Perspectives" chapter in the PSSP: Administration Guide.

Refer to the "Managing System Partitions" chapter in PSSP: Administration Guide for additional information on the System Partitioning Aid.

See also Appendix A, "The System Partitioning Aid – A Brief Tutorial" in IBM RS/6000 SP: Planning, Volume 2, Control Workstation and Software Environment.

Location

/usr/lpp/ssp/bin/spsyspar

Related Information

You can also access the System Partitioning Aid Perspective by using the SP Perspectives Launch Pad. The **perspectives** command invokes the Launch Pad. Other Perspectives windows may be launched by invoking the following commands: spevent, sphardware, spperfmon, and spvsd. The sysparaid command provides a command line interface into the System Partitioning Aid.

Examples

- 1. To launch the Partitioning Aid Perspective, enter: spsyspar
- 2. To launch the Partitioning Aid Perspective with a pink background regardless of what is provided in the preference files, enter:

spsyspar -backgroundColor pink

sptg

Purpose

sptg – Launches an SP TaskGuide.

Syntax

sptg [**-h** | *name*]

Flags

-h Displays usage.

Operands

name The name of the TaskGuide. The values allowed are setsitenv (Set Site

Environment Information TaskGuide), addframe (Add Frames

TaskGuide), confnode (Configure New Nodes TaskGuide), and createim

(Create Node Image TaskGuide).

Description

The sptg command launches a specific SP TaskGuide. If no flags or operands are specified, the command launches a GUI that lists available TaskGuides and allows one to be selected and started.

Restrictions

The **sptg** command can be run on the Control Workstation only.

Location

/usr/lpp/ssp/bin/sptg

Examples

1. To launch the Configure New Nodes TaskGuide, enter: sptg confnode

spunmirrorvg

Purpose

spunmirrorvg – Initiates unmirroring on a node or a set of nodes.

Syntax

spunmirrorvg {start_frame start_slot node_count | -I node_list}

Flags

-I node_list Specifies a list of nodes for this operation. This list can be a single

numeric node number, or a list of numeric node numbers

separated by commas.

Operands

start_frame Specifies the frame number of the first node to be used for this

operation.

start_slot Specifies the slot number of the first node to be used for this

operation.

Note: The *start_frame* and *start_slot* must resolve to a node in

the current system partition.

node_count Specifies the number of nodes to be used for this operation. The

node information is added for successive nodes within a frame. If the count of nodes causes the nodes in a frame to be exhausted, the operation continues for nodes in the next sequential frame.

Note: The *node_count* is considered to be within the current

system partition.

Description

The **spunmirrorvg** command uses information found in the Volume_Group object to initiate unmirroring on a node or a list of nodes. If the number of desired copies is already achieved (the number of copies of a volume group equals the "copies" attribute in the Volume_Group object) the command exits. If the number is not yet achieved, **spunmirrorvg** will invoke the AIX **unmirror** command to reduce the number of copies. If **unmirrorvg** is successful, the volume group is reduced by any physical volumes that are part of the volume group, that are not listed in the *pv_list* attribute. If there are non-empty logical volumes on the physical volumes, the volume group will not be reduced by the physical volume. If reducing the volume group is unsuccessful, the command exits with an error. Quorum is set based on the value of the "quorum" attribute for the volume group in the Volume_Group object. If the state of quorum changes, a message is sent that the node requires rebooting. **spunmirrorvg** also issues the **bosboot** command to rebuild the bootable image, and the **bootlist** command, to remove any physical volumes from the bootlist that no longer contain bootable logical volumes.

Exit Values

- 0 Indicates the successful completion of the command.
- 1 Indicates that a recoverable error occurred, some changes may have succeeded.
- 2 Indicates that an irrecoverable error occurred and no changes were made.

Security

A user must run as "root" and have a valid Kerberos ticket.

Files

Log file created on node which contains AIX error messages if an error occurs during unmirroring: /var/adm/SPlogs/sysman/unmirror.out

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/spunmirrorvg

Related Information

Commands: spchvgobj, spmirrorvg

Examples

1. To initiate unmirroring on a node, enter:

```
spunmirrorvg -1 1
```

2. To initiate unmirroring on a list of nodes, enter:

```
spunmirrorvg -1 1,2,3
```

spverify_config

Purpose

spverify_config – Verifies the active system partition configuration information for the SP system.

Syntax

spverify_config

Flags

None.

Operands

None.

Description

This command is run by the **spapply_config** command after the System Data Repository (SDR) is updated. It can also be run by an administrator to verify that the SDR information is consistent (such as, after a system outage or a problem with the SDR). (This verification is only performed on a system which was partitioned beyond the initial single partition created at initial installation.)

Exit Values

- **0** Indicates that the SDR and corresponding layout directory are in agreement.
- 1 Indicates differences were found.
- 2 Indicates a usage error.

Location

/usr/lpp/ssp/bin/spverify_config

Related Information

Commands: spapply_config, spcustomize_syspar, spdisplay_config

Files: nodelist, topology

Examples

To verify that the information in the SDR matches the customization information previously supplied by the user, enter:

spverify_config

spvsd

Purpose

spvsd – Directly launches the IBM Virtual Shared Disk Perspective graphical user interface (GUI).

Syntax

spvsd [-userProfile name] [-systemProfile name] [-noProfile]
[-backgroundColor colorName]
[-foregroundColor colorName] [-fontFamily name]
[-fontSize size] [-fontBold] [-fontItalic] [-nosplash] [-h]

Flags

-userProfile name

Upon initialization, loads the specified user profile. If a user profile named "Profile" exists in the user's home directory, it will be loaded by default if the **–userProfile** flag is not specified.

-systemProfile name

Upon initialization, loads the specified system profile instead of the default system profile. The default system profile is named "Profile."

-noProfile Upon initialization, does not read either profile.

-backgroundColor colorName

Overrides the background color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

-foregroundColor colorName

Overrides the foreground color specified by any profile or default with the specified color. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid color names.

-fontFamily name

Overrides any font family with the specified font. The list of valid family names is dependent on the X server. Refer to Appendix A, "Perspectives Colors and Fonts" in *PSSP: Command and Technical Reference* for a list of valid fonts.

-fontSize size

Overrides any font point size with the specified size. Valid values are 6–30 points.

-fontBold Sets the font to bold.

-fontItalic Sets the font to italics.

-nosplash Does not display the splash screen before the Perspectives main window is displayed.

-h Displays usage information on the options available for the command.

Note: Most flags accepted by X will also be recognized. For example, –**display** *displayname*.

Operands

None.

Description

Use this command to launch the IBM Virtual Shared Disk Perspective. This Perspective allows the user to view and control the IBM Virtual Shared Disk subsystem.

By default, when the window is brought up, it displays:

- · The control workstation system partitions pane
- · The Nodes pane
- The IBM VSDs or IBM HSDs pane must be added for viewing.

The current system partition is indicated by a lightning bolt in the control workstation and system partitions pane. The Nodes pane displays all nodes in the current system partition. Other panes display virtual shared disks and hashed shared disks. You can control which panes are displayed by using the Add Pane and Delete Pane tool bar icons.

When the command is invoked, preferences that define the look and layout of the **spvsd** window are prioritized in the following order:

- · Command line options
- · User preferences profile
- System preferences profile
- · Default values

Files

The Users Preferences are read from and saved to \$HOME/.spvsd(User Profile Name). The System Preferences are read from and saved to /usr/lpp/ssp/perspectives/profiles/.spvsd(System Profile name).

Restrictions

Any user can run the **spvsd** command. Many actions require root privilege.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Prerequisite Information

For information on using the IBM Virtual Shared Disk Perspective and SP Perspectives, see the online help and the "Using SP Perspectives" chapter in *PSSP: Administration Guide*. For information about the IBM Virtual Shared Disk subsystem, see *PSSP: Managing Shared Disks*.

Location

/usr/lpp/ssp/bin/spvsd

Related Information

You can access the IBM Virtual Shared Disk Perspective by using the SP Perspectives Launch Pad. The **perspectives** command invokes the Launch Pad. Other Perspectives windows may be launched by invoking the following commands: spevent, sphardware, spperfmon, and spsyspar.

PSSP: Managing Shared Disks

Examples

1. To invoke the **spvsd** window, enter:

spvsd

2. To force spvsd to display bold text regardless of what is set in the preference files, enter:

spvsd -fontBold

st clean table

Purpose

st_clean_table - Forces the unload of the job switch

resource table for a specified window on the specified node.

Syntax

st_clean_table {-h | -? | node_name} [-w window_id] [-k]

Flags

- -h Prints out a short description of all of the flags.
- -? Prints out the usage statement.
- -w window id

Specifies the window id for which the unload and cleanup will be done. If no window id is specified, then the default window will be unloaded.

Stops any job that is currently using the switch table on that node_name and unloads the table. The -k flag has the same function as the ST_ALWAYS_KILL option of the swtbl_clean_table API.

Operands

node_name Specifies the name of the node upon which the switch table window will be unloaded.

Description

Use this command to override user ID (uid) checking and to unload the job switch resource table window on the node specified.

Normal unloading of the job switch resource table by the **swtbl_unload_table** API checks that the user ID (uid) of the unload matches the uid specified during the load. The **st_clean_table** command ignores this check and allows the administrator to unload the window from a node. It is intended to be used for error recovery and not for normal unloading. Use this command when a parallel job has left a process in use and the window did not unload with the **swtbl_unload_table** API. If **-k** is not specified and a job is using the switch table, the unload will not be performed. The default window is defined within the **st_client.h** file. A single job switch resource table may contain more than one window. This command needs to be issued for every window within the table. Use the **st_status** command to obtain the current state of the windows. Additional error and information may be found in the **/var/adm/SPlogs/st/st_log** file.

Files

/usr/lpp/ssp/include/st_client.h /usr/lpp/ssp/lib/libswitchtbl.a

Path name of the client header file.

Path name of the shared library containing APIs.

\i 13.

Standard Output

After the job switch resource table window is successfully unloaded, the status should be ST_SWITCH_NOT_LOADED.

Exit Values

Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Security

You must have root privilege to run this command.

Location

/usr/lpp/ssp/bin/st_clean_table

Related Information

Commands: st_status

Examples

To stop the process currently using window 1 and unload the window from k10n10, enter:

st_clean_table -w 1 -k k10n10

This produces the result:

Node k1010 window 1 has been unloaded.

st_status

Purpose

st_status – Displays the status of every window within all job switch resource tables upon a node.

Syntax

st_status [-h | -? | -n node_group | nodelist]

Flags

-h Prints out a short description of all of the flags.

-? Prints out the usage statement.

-n node_group

Reports status for all nodes within the specified *node_group*. This "node_group" is defined and managed by the "Node Grouping" commands.

Operands

nodelist Specifies a list of nodes separated by spaces for which status will

be reported. If node names are not specified, all nodes defined

within the current system partition will be reported.

Description

Use this command to report the current status of every window within all job switch resource tables. This command reports whether each window is loaded or unloaded but not whether it is currently in use.

Files

/usr/lpp/ssp/include/st_client.h Path name of the header file containing

return codes.

/usr/lpp/ssp/lib/libswitchtbl.a Path name of the shared library containing

the API interfaces.

Standard Output

The output of this command reports the following data when a window is loaded:

Status from node: Node for which the following data is reported.

User: User name corresponding to the uid specified by the

swtbl load table API.

Load request from: Node upon which the load request was made.

Pid: Pid of the process who issued the load, most likely a job

management application.

Uid: Uid specified by the **swtbl_load_table** API request.

Job Description: String specified upon load request for the job who will be

using the job switch resource table.

Time of request: Timestamp of when load request was processed.

Window id: Window for which the data is being reported.

The output of this command reports the following data when a window is in some other state:

ST SWITCH NOT LOADED Indicates that the switch table is not currently

loaded.

ST_LOADED_BYOTHER Indicates that the switch table is currently loaded but

was not loaded via the Job Switch Resource Table

Services.

The output of this command reports the following data when a error occurred:

ST SYSTEM ERROR Indicates a system error occurred. The

/var/adm/SPlogs/st/st log file will have further

details.

ST_CANT_CONNECT Indicates that the connect request was

unsuccessful.

ST INVALID ADDR Indicates that the **st_addr** argument cannot be

converted by inet_ntoa.

ST NO SWITCH The open call of /dev/css0 was unsuccessful.

Exit Values

Indicates the successful completion of the command.

nonzero Indicates that an error occurred.

Location

/usr/lpp/ssp/bin/st_status

Related Information

Commands: ngcreate, ngfind, st_clean_table, st_verify

Examples

1. To show the status of all windows on k10n15, enter: st status k10n15

You should receive output similar to the following:

Status from node:k10n15 User: root

Load request from:k10n15 Pid: 12494 Uid:0 Job Description: No job description given

Time of request:Wed Jan 24 13:38:21 1998 Window id:0

Node k10n15 Window 1 ST_SWITCH_NOT_LOADED *********** Node k10n15 Window 2 ST_SWITCH_NOT_LOADED *********** Node k10n15 Window 3 ST_SWITCH_NOT_LOADED

st_verify

Purpose

st_verify – Verifies that the installation of the Job Switch Resource Table Services component of the SP system completed successfully.

Syntax

st_verify [-h] [-q] [-l logfile]

Flags

-h Displays usage information.

-q Specifies quiet mode and suppresses output to stdout.

-I logfile Specifies the pathname of the logfile to which error messages are

written.

Description

Use this command to perform various tests to determine whether the Job Switch Resource Table Services component of the SP system is completely installed. It checks that the necessary commands and files are installed correctly and checks for switchtbld entries in /etc/services and /etc/inetd.conf file. If this is executed on the control workstation and tests are successful, it will also check on each node within that system partition.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit SP_verify

and select the Job Switch Resource Table Services Installation option.

Files

/var/adm/SPlogs/st/st_verify.log Default log file.

Exit Values

0 Indicates that the test completed as expected.

nonzero Returns the number of errors.

If you do not specify the **-q** flag, a message is displayed on stdout that indicates whether the tests were successful or not. In either case, the command returns 0 if successful, 1 if not. If errors are detected, more detailed information is recorded in the log file. If you do not specify the **-I** flag, error messages are recorded in **/var/adm/SPlogs/st/st_verify.log**.

Security

You must have root privilege to run this command.

Location

/usr/lpp/ssp/bin/st_verify

Related Information

Commands: CSS_test, SDR_test, spmon_ctest, spmon_itest, SYSMAN_test

Examples

To verify the installation of the Job Switch Resource Table Services, saving error messages in **st_install.out** in the current working directory, enter:

st_verify -l st_install.out

startvsd

Purpose

startvsd - Makes a virtual shared disk available and activates it.

Syntax

startvsd [-p | -b] {-a | vsd_name ...}

Flags

-p Specifies that the primary server node defined for the global volume group is to be the active server.

This option is only used by the Recoverable Virtual Shared Disk subsystem. See the *PSSP: Managing Shared Disks*.

-b Specifies that the secondary server node defined for the global volume group is to be the active server.

Note: This flag is used only by the Recoverable Virtual Shared Disk subsystem.

 -a Specifies that all virtual shared disks that have been defined are to be started.

Operands

Description

The **startvsd** command makes the specified virtual shared disks available and activates them. It is equivalent to running the **preparevsd** command followed by the **resumevsd** command on the specified virtual shared disk.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Start a Virtual Shared Disk option.

Security

You must have root privilege to run this command.

Restrictions

1. If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks

2. The -b flag is used only by the Recoverable Shared Disk subsystem.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/startvsd

Related Information

Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, resumevsd, stopvsd, suspendvsd, ucfgvsd

Examples

To make available and activate the virtual shared disk vsd1vg1n1, enter: startvsd vsd1vg1n1

statvsd

Purpose

statvsd - Displays IBM Virtual Shared Disk device driver statistics of a node.

Syntax

statvsd

Flags

None.

Operands

None.

Description

The **statvsd** command displays the level of IBM Virtual Shared Disk parallelism, several IBM Virtual Shared Disk IP device driver counters, nonzero sequence numbers and the nodes they are for, the node out cast status, and the <code>max_IP_msg_size</code>. If either the expected or outgoing sequence number for a node is nonzero, both are displayed along with the node number. If both the expected and outgoing sequence numbers are zero, no sequence numbers are displayed for that node.

The level of IBM Virtual Shared Disk parallelism defaults to 9 and is set via the **ctlvsd** –**p** command.

Sequence numbers are initially all zero at the first **cfgvsd**. They are incremented as requests are sent (outgoing) and received (expected), and reset via **ctlvsd** –**R** | –**r**.

The counters all start at zero at the first **cfgvsd**, then are incremented as the events they count occur. Use **suspendvsd** and **stopvsd** to ensure that there is no virtual shared disk activity; then use **ctlvsd** to reset the counters.

The requests queued waiting for a request block, pbuf, cache block, and buddy buffer counters indicate shortages of these resources. All four are tunable values on the **vsdnode** command. If a significant increase in these counters occurs during the running of a critical application, see *PSSP: Managing Shared Disks* for information about tuning virtual shared disk performance and how to respond to resource shortages.

When a user buffer address is not on a page boundary, two virtual shared disks can share a page in I/O requests. Typically, when a local virtual shared disk server is copying data to the user buffer, the DMA hides the page. If the client receives the data from a remote virtual shared disk server, network protocol interrupts the local I/O; however, the page is still hidden by the DMA. Therefore, the virtual shared disk places the remote request on a Rework_Q, swaps control to the local I/O, and later performs rework by copying data from the network protocol mbuf to the user buffer.

A request, or its corresponding response, may be lost due to transmission error or an error in allocating an mbuf. The current virtual shared disk communication protocol implements an exponential back-off retransmission strategy. A request is retransmitted to the server a fixed number of times. The IBM Virtual Shared Disk IP device driver waits about 2 seconds for a response after initially sending the request before retransmission. Thereafter, it waits about twice as long as the last time as it cycles through the fixed number of retries. If a response is not received after the timeout expires on the last retransmission attempt, the request returns an error with the ETIMEOUT errno value. Currently, the sum total of retransmission time is about 15 minutes. If a request is not responded to after about 10 transmissions of the request over a 15 minute period, the request is unsuccessful. statvsd displays the number of requests that were unsuccessful due to timeouts in the timeouts counter. The retries counters display the number of requests that have been retransmitted for each retry bucket value. The number of numbers on the retries line of statvsd output indicates the fixed number of times a request is retransmitted. The total retries is the sum of the retries bucket values, which is the total number of request retransmissions.

There is no tuning that can be performed to affect these values; the values are provided for information only. If a request to a virtual shared disk is being retransmitted, and the virtual shared disk is suspended and subsequently resumed, the request starts over with a fresh 15 minute retry period.

If a server gets heavily loaded, it may not be able to respond to a request fast enough to prevent the client from retransmitting the request. If the server responds after the client has retransmitted the request, the client rejects the response since its sequence number no longer matches the current sequence number of the request. The client records this event in the rejected response counter that **statvsd** displays.

If a server receives a request with an unexpected sequence number, a rejected request event is recorded in a counter that statvsd displays.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands:

netstat -**m** for **mbuf** usage information.

/etc/no -o thewall=16,384 to dynamically add more mbufs.

/etc/no -a | grep thewall to show your current mbuf setting.

cfgvsd, statvsd, ucfgvsd, vsdnode.

ctivsd to cast nodes in and out, resetting sequence numbers and setting the max_IP_msg_size.

Refer to PSSP: Managing Shared Disks for information on tuning IBM Virtual Shared Disk performance and sequence numbers.

Examples

The following example displays IBM Virtual Shared Disk device driver statistics:

```
VSD driver: IP interface
```

```
9 vsd parallelism
```

24576 vsd max IP message size

O requests queued waiting for a request block

O requests queued waiting for a pbuf

O requests queued waiting for a cache block

O requests queued waiting for a buddy buffer

0.0 average buddy buffer wait_queue size

0 rejected requests

0 rejected responses

O rejected no buddy buffer

0 requests rework

0 indirect I/O

0 64-byte unaligned reads

9 comm. buf pool shortage

0 timeouts

retries: 0 0 0 0 0 0 0 0 0

0 total retries

Non-zero Sequence numbers

node# expected outgoing outcast? Incarnation: 0

3 Nodes Up with zero sequence numbers: 256 1000 2000

stopvsd

Purpose

stopvsd - Makes a virtual shared disk unavailable.

Syntax

stopvsd {-a | vsd_name ...}

Flags

-a Specifies that all virtual shared disks in the suspended state are to

be stopped.

Operands

vsd_name Specifies a virtual shared disk. If the virtual shared disk is not is the

suspended state, you get an error message.

Description

The **stopvsd** command brings the specified virtual shared disks from the suspended state to the stopped state. They become unavailable. All applications that have outstanding requests for the virtual shared disk see these requests terminate with error. Read and write requests return errors with **errno** set to **ENODEV**. If the virtual shared disk is in the stopped state, this command leaves it in the stopped state.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Stop a Virtual Shared Disk option.

Security

You must have root privilege to run this command.

Restrictions

If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/stopvsd

Related Information

Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, resumevsd, startvsd, suspendvsd, ucfgvsd

Examples

To bring the virtual shared disk **vsd1vg1n1** from the suspended state to the stopped state, enter:

stopvsd vsd1vg1n1

supfilesry Daemon

Purpose

supfilesrv – Is the daemon that serves the file collections on the SP system.

Syntax

startsrc -s supfilesrv

stopsrc -s supfilesrv

Flags

There are no flags or options for this daemon. All arguments and options are defined to the System Resource Controller (SRC).

Description

This daemon executes on the control workstation and the boot and install servers. It responds to requests executed on the nodes to update collections of files configured for File Collections. The supfilesry daemon is under control of the System Resource Controller (SRC). It is normally started as part of the SP initialization scripts. Under normal circumstances, the administrator does have to start or stop the daemon.

Exit Values

- 0 Indicates the successful completion of the command.
- 1 Indicates that an error occurred.

Prerequisite Information

Refer to PSSP: Administration Guide for information on file collections.

Location

/var/sysman/etc

Related Information

Refer to PSSP: Administration Guide for information on file collections, the System Resource Controller, and user management.

Examples

1. To start the **supfilesrv** daemon, enter:

```
startsrc -s supfilesrv
```

2. To stop the **supfilesrv** daemon, enter:

```
stopsrc -s supfilesrv
```

supper

Purpose

Manages the SP file collections.

Syntax

supper [-d] [-o options] [-v] subcommands

Flags

-d Turns on debug mode.

-o options Lists SUP options to pass to SUP. See the SUP manual pages for

more detail.

-v Turns on verbose mode and echoes print of SUP messages.

Operands

Subcommands

activate volume Set the active volume group. The active volume group must

be set before installing a collection that requires a file

system.

debug Choice of **on | off**. Turn debug messages on or off.

diskinfo Show available disk space and active volume.

files collection Show all files associated with a resident collection.

install collection Install a collection.

log Show summary of last/current supper session.

offline collection Disable updates of a collection.

online collection Enable updates of a collection (this is the default).

quit Exit the program.

remove collection Remove a collection.

reset collection Set the last update time of a collection to the epoch.

rlog Show raw output of last/current supper session.

scan collection Run a scan for a collection.

serve List all collections this machine is able to serve.

status Show the current status of all available collections. The

status information includes the names of all collections, whether they are resident on the local machine, and the name and size of the file system associated with each

collection.

update collection Update a collection.

verbose Choice of on | off. Turn SUP output messages on or off.

when Print the last update time of all resident collections.

where Show current servers for collections.

! command Shell escape.

Description

You can invoke supper as an interactive session by entering the supper command without any parameters or subcommands. This allows you to enter the subcommands in an interactive dialog.

Examples

/var/sysman/supper rlog /var/sysman/supper status /var/sysman/supper scan user.admin

/var/sysman/supper update power system

suspendvsd

Purpose

suspendvsd - Deactivates an available virtual shared disk.

Syntax

suspendvsd {-a | vsd_name...}

Flags

-a Specifies that all the virtual shared disks in the active state are to

be suspended.

Operands

vsd_name Specifies a virtual shared disk. If the virtual shared disk is not in the

active state, you get an error message.

Description

The **suspendvsd** command brings the specified virtual shared disks from the active state to the suspended state. They remain available. Read and write requests which were active while the virtual shared disk was active are suspended and held. Subsequent read and write operations are also held. If the virtual shared disk is in the suspended state, this command leaves it in the suspended state.

If you issue this command for the server node and not the client, retries occur unsuccessfully. An error occurs within 15 minutes.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Suspend a Virtual Shared Disk option.

Security

You must have root privilege to run this command.

Restrictions

If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/suspendvsd

Related Information

Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, resumevsd, startvsd, stopvsd, ucfgvsd

Examples

To bring the virtual shared disk vsd1vg1n1 from the active state to the suspended state, enter:

suspendvsd vsdlvglnl

switch stress

Purpose

switch_stress – Tests the functionality of a specific switch chip.

Attention -

ATTENTION – **READ THIS FIRST:** Do **not** activate the SP Switch advanced diagnostic facility until you have read this section completely, and understand this material. If you are not certain how to properly use this facility, or if you are not under the guidance of IBM Service, do **not** activate this facility.

Activating this facility may result in degraded performance of your system. Activating this facility may also result in longer response times, higher processor loads, and the consumption of system disk resources. Activating this facility may also obscure or modify the symptoms of timing-related problems.

Syntax

switch stress

-s switch_chip_id [-a allowed_nodes_list]

[-A allowed_nodes_file] [-f forbidden_nodes_list]
[-F forbidden_nodes_file] [-m model] [-z data_size]
[-p pattern_files_list] [-P pattern_files_file] [-g] [-h]

Flags

-s switch_chip_id

Specifies the switch chip id of a suspicious switch chip.

-a allowed_nodes_list

Specifies a list of nodes that the test can use. *allowed_nodes_list* is a blank-separated list of node identifiers. A node identifier can be a host name, IP address, frame, slot pair, or node number.

-A allowed_nodes_file

Specifies a file containing a list of nodes that the test can use. allowed_nodes_file is a path to a file that contains a list of node identifiers.

-f forbidden_nodes_list

Specifies a list of nodes that the test cannot use. *forbidden_nodes_list* is a blank-separated list of node identifiers.

-F forbidden_nodes_file

Specifies a file containing a list of nodes that the test cannot use. forbidden_nodes_file is a path to a file that contains a list of node identifiers.

-m model

Specifies a test model that will be used for testing. *model* is a name of the model to be used.

-z data size

Specifies amount of data in MB to be sent on every test iteration.

-p pattern files list

Specifies a list of paths to the pattern files. pattern_files_list is a blank-separated list of paths. Each pattern file path is a full path to a file accessible from each participating node.

-P pattern files file

Specifies the file containing a list of paths to the pattern files.

- Requests to use SPD GUI. -g
- -h Requests that usage information be displayed.

Operands

None.

Description

This command starts the switch chip stress test, which determines whether the specified switch chip is malfunctioning under stress. You are required to specify the switch chip ID that appeared in the primary node error reports.

The model argument lets you select a single test model. By default, all models will be executed.

You can specify the nodes that are allowed to participate in the test, or nodes that are not allowed to participate in the test. If the same node is present in both lists, it is not allowed to participate in the test. You must be aware that the selected nodes will not be able to run any application that uses a switch network during the test execution. By default all nodes are allowed to participate in the test. These nodes could be specified as a list of nodes or as a file that contains the list. The data_size argument allows you to control the amount of data that will be sent by every sender on every test iteration. By default this value is set to 360MB.

You can provide a path to a file that contains the data pattern to be used during the test. By default the output of the test is displayed on the command line. You can request to display the output on the SPD GUI.

Location

/usr/lpp/ssp/bin/spd/switch_stress

Examples

- 1. To test switch chip 16 using default settings, enter:
 - switch_stress -s 16
- 2. To test switch chip 20 displaying the output on GUI, enter:
 - switch_stress -s 20 -g
- 3. To test switch chip 25 specifying allowed nodes by host name, enter:
 - switch stress -s 25 -a n05 n06 n11
- 4. To test switch chip 25 specifying a forbidden node by frame, slot, enter:
 - switch_stress -s 25 -f 2,9
- 5. To execute model A for switch chip 25, enter:

switch_stress -s 25 -m ModelA

- 6. To increase the amount of data sent through the switch chip under test, enter: switch_stress -s 25 -z 1000
- 7. To use a different data pattern, create a data file, make it accessible to nodes (copy to every node or mount using the same name), and enter:

```
switch_stress -s 25 -p /tmp/spd/pattern1.dat
```

sysctl

Purpose

sysctl - Is the command interface to Sysctl remote command execution and monitoring server.

Syntax

Flags

[-c collection of nodes]

Runs the command on the specified collection_of_nodes. If the collection_of_nodes argument contains a "/", it is assumed to name a file that holds the names of host machines. More than one collection_of_nodes can be specified with multiple -c options. Use for standard input.

- [**-f** num] Controls maximum fan-out, when multiple hosts are specified. By default, a maximum of eight concurrent connections are used. The most allowed is 128. You may want to increase *num* to allow for greater parallelism when running commands that place low demand on system services.
- [-**h** *host*] The server on which to execute the command. More than one host can be specified using multiple -h options. If no -h (or -c) option is specified, the server is assumed to be the local host.
- [-L] Provides an alternate way to delimit output from multiple servers. A host name, such as helloworld.testcell.ibm.com precedes each line of output from the host. This type of output is easier to parse in programs and scripts than the default. The default format is to separate the output in blocks labeled with the host name. This is compatible with the dshbak output filter.
- [-m] Uses safe (message-authenticated) communication.
- Sends no authentication information. [-n]
- [-**P** *port*] Connects to the server using a specified port number. If this flag is not specified, the port is obtained from file /etc/services.
- [-q] Quick mode—do not wait for the result from the server. In this case. the server does not return the result to the client.
- Replays (drops) this file on the servers. Used to pass scripts to sysctl [-r file | -] for execution. You can specify standard input as the source of input by entering a dash (-) instead of a file name; press < Ctrl-D> when you are finished entering script commands from standard input.
- [-s] Tells the server to send results back via a TCP socket. The output from the server is demultiplexed into standard output and standard error, allowing you to separate the two types of output.

Using a socket also enables two-way communication between the client and a command procedure. Any commands that start a dialog requiring input from the client must be run with the -s option.

[-t sec] Specifies the connection timeout in seconds. The default is 10 seconds. If the specified value falls outside the valid range of 1 to 60 seconds, the default value of 10 seconds is used.

[-T sec] Specifies the maximum time to wait in seconds for the result from a sysctl command. The default is 30 minutes. -T0 is not valid; it will default to 30 minutes. The upper limit is the maximum positive integer.

[-v] Prints the version number of **sysctl**, then exits.

[-x] Sends a NULL RPC (such as a ping) to the servers. You can use this to check if a server is up before you try to run a command on that machine.

Operands

command ...

The command to pass to the server. You can enter multiple commands.

If you do not specify a command, **sysctl** runs in interactive mode.

Description

The **sysctl** program provides a simple command line interface for communicating with the **Sysctl** server, **sysctld**. Together, the **Sysctl** client and server provide monitoring and execution abilities needed to remotely manage workstations on all nodes on the SP system. **Sysctl** connects to a remote host's **sysctld** using TCP/IP, passes keywords and commands to the server, and writes any output returned to standard output. **sysctl** does not interpret the commands it passes.

The **Sysctl** server uses the Tcl embeddable command language as the foundation for its built-in interpreter. The server is augmented with application-specific commands that may vary between servers. The **Sysctl** (Tcl) expressions that are passed to the server for execution can be anything from a single command to an entire script. The server uses SP authentication services for reliable third party authentication. The **Sysctl** request sent from the client optionally contains an authentication ticket that uniquely identifies the user that initiated the request. The server's built-in authorization mechanism controls the set of commands available to a user.

Files

/etc/krb-srvtab Contains authentication key for services.

/etc/sysctl.acl Default ACL file for the sysctl server

/etc/sysctl.conf

sysctl server configuration file.

Location

/usr/lpp/ssp/bin/sysctl

Related Information

Commands: dshbak, hostlist, sysctld

The chapter on security in PSSP: Administration Guide.

Examples

These examples show commands issued from the shell prompt. Unless noted otherwise, the syntax is the same (minus the word sysctl) when issuing the command from within an interactive session of sysctl:

1. To list the local file systems on server ceti-alpha5, enter:

```
sysctl listfs -h ceti-alpha5
```

2. To list all the commands that you are authorized to run on ceti-alpha5, enter:

```
sysctl -h ceti-alpha5 info commands
```

3. To add principal arielle.admin to the ACL of trusted users for the sysctl server on ceti-alpha5, enter:

```
sysctl -h ceti-alpha5 acladd -p arielle.admin
```

If you do not specify a realm, the local realm is assumed. If ceti-alpha5 is in realm **TESTCELL.HAL.COM**, **sysctl** returns the following message:

```
-principal arielle.admin@TESTCELL.HAL.COM
```

4. To add principal arielle.admin to ACL file /test/data/mount.acl on ceti-alpha5, enter:

```
sysctl -h ceti-alpha5 acladd -f /test/data/mount.acl \
-p arielle.admin
```

5. To see if arielle is in ACL file /test/data/mount.acl on ceti-alpha5, enter:

```
sysctl -h ceti-alpha5 aclcheck -f /test/data/mount.acl arielle
```

The server returns 1 if arielle is in the ACL, 0 if it is not.

6. To check to see if you are authorized to run the test:mount_if command on the SP node ceti-alpha5, enter:

```
sysctl -h ceti-alpha5 checkauth -cmd test:mount if
```

The server returns 1 if you are authorized, 0 if not.

sysctld Daemon

Purpose

sysctld – Contains the remote execution and monitoring server.

Syntax

sysctld [-sd] [-a acl] [-f file] [-k keyfile] [-l log_file] [-P port]

Flags

-d	Runs in debug mode. This causes a large amount of debugging
	information to be written to the log file as the server executes
	requests.

-s Runs in security audit mode. An audit trace is written to the log file as the server executes each user request.

−**a** acl Specifies the Access Control List (ACL) file. The default ACL file is /etc/sysctl.acl.

Specifies an alternate configuration file. The default is

-f file /etc/sysctl.conf.

-k keyfile Specifies the server's key file. The default key file is /etc/srvtab.

-I log_file Specifies the server log file. The default log file is

/var/adm/SPlogs/sysctl/sysctld.log. (This is lowercase I, as in list.)

−**P** port Specifies the server port number. If this flag is not specified, the port

is obtained from /etc/services using sysctl/tcp as the key.

Operands

None.

Description

The sysctld daemon is the server component for the Sysctl remote command execution facility. Security and performance characteristics of sysctld make it an ideal mechanism for managing a large, distributed computing environment. Typically, one instance of **sysctld** runs on every workstation. Commands are sent to a sysctld server via the sysctl client program. When a command request is received, sysctld parses and executes the request using an embedded Tcl command interpreter. Authorization to execute commands is determined by authorization callbacks that are attached to each command. These callbacks are pieces of Tcl code that implement the security policy for the **sysctld** server.

Security and Access Control

Sysctl uses the SP authentication service for reliable third-party authentication. Command requests sent by the client include an authentication ticket giving the identity of the client. As the server executes the commands sent by the client, the client's access to commands and variables is determined dynamically via authorization callbacks. In a typical command language, a procedure has a name, a set of arguments, a set of commands which form the body of the procedure, and a return value. With Sysctl procedures, an additional attribute is added, a policy for

determining who is able to run the command. These policies are implemented using authorization callbacks. An authorization callback is a piece of Tcl code that is attached to a command and determines the access policy for that command. The authorization callback for a command is invoked whenever a client attempts to execute the command. If the callback returns a Tcl error, the command is not executed and the following message is returned to the caller:

Authorization Denied

If the callback returns a normal Tcl result, the command executes normally.

Sysctl variables also have an authorization callback attached to them which determines the read-access policy for the variable. Therefore, it is possible to create a "private" variable in which you restrict the set of clients who have access to its value.

The **sysctId** server defines a set of commands which are designed to be used as authorization callbacks. These commands provide a simple authorization policy; if more complex authorizations are required, you have the ability to code your own authorization callback procedures.

NONE Always returns a normal result. Any command it is attached to can be

executed by any user.

AUTH Returns a normal result if the user is authenticated via SP

authentication services.

ACL [file] Returns a normal result if the user is authenticated as the local host

principal or if the user is listed in the ACL passed as an argument. If an ACL file is not supplied, the default system ACL (defined by the \$ACL variable) is used. See sysctl.acl for more details about Sysctl

ACLs.

SYSTEM Always returns a Tcl error. Any command it is attached to can never

> be executed directly by a user. Instead, these commands are intended to be executed from within a procedure registered with the Sysctl

server by way of its configuration file.

Bypassing Authorization Callbacks

Under certain circumstances, the authorization callbacks are bypassed by the server. While the checks are bypassed, the user has access to all commands (and read/write access to variables) defined in the server. The authorization callbacks are bypassed while the server is:

- · Reading configuration files
- Executing an authorization callback
- Executing the body of a procedure for which a user is authorized to run

Since authorization checks are bypassed during procedure execution, users are able to execute procedures that contain commands they are not authorized to run directly. For example, if a variable has the SYSTEM callback attached to it, a procedure for which a user is authorized can reference or modify the variable even though that user cannot modify or reference it.

Authorization Variables

Several variables, accessible as read-only variables in the interpreters or as environment variables, are set by the server prior to executing the client request. These variables provide a mechanism for external commands and procedures to perform their own authorization checking independent of the server's standard authorization checks. They are:

SCHOST Specifies the name of the host from which the request was issued.

SCPRINCIPAL

Indicates the authenticated identity of the issuer. If the user is

unauthenticated, it is set to NULL.

SCUSER Specifies the base name of the user, or NULL if unauthenticated.

SCINSTANCE

Specifies the instance of the user, or NULL if unauthenticated.

SCREALM Specifies the realm of the user, or NULL if unauthenticated.

SCLHOST Specifies the host name of the local server.

SCLREALM Specifies the local realm of the server.

SCLPRINCIPAL

Specifies the principal name of the local **sysctld** server.

SCMODE Specifies the communication mode between the client and server,

either WAIT, NOWAIT, or SOCKET. NOWAIT indicates that the client is not interested in the result of the operation, and it is discarded by the server. SOCKET indicates that the result of the operation is

returned to the client via a TCP/IP socket.

Determining Connection Authorization Policy

Whenever a client connects to the server, the command **svcconnect** is invoked. If the user is not authorized to run this command or if the command returns a Tcl error, the result of the command is returned to the user and the connection is broken. Therefore, the **svcconnect** command determines the connection policy for the server. By default, **svcconnect** simply returns a normal result and its authorization callback is AUTH. This implies that any authenticated user can connect. This policy can be altered by changing the authorization for the **svcconnect** callback (via the **setauth** command), or by redefining the **svcconnect** procedure (via the **create proc** command).

Server Configuration

At startup, the server reads a configuration file. By default, this file is named **/etc/sysctl.conf**. The **-f** flag is used to specify an alternate configuration file. The server interprets the contents of the configuration file as Tcl commands. Typically, additional commands and variables are defined in this file. Also, commands are available that instruct the server to read additional configuration files or dynamically load in shared libraries. In this way, the set of commands available to a **sysctld** server is extendable. Refer to the **sysctl.conf** file for more details.

Signals

Sending a SIGHUP signal to the server causes it to close the log file, delete and re-create all interpreters, reread the configuration files, and reinitialize the log file. The **svcrestart** command performs the same function.

Logging

The **sysctId** default log file is **/var/adm/SPlogs/sysctI/sysctId.log**. This default can be overridden with the **-I** command line option, or by by setting the LOG variable in the SysctI configuration file. Each time a request is received, the **svclogevent** SysctI command is invoked. By default, it writes a record to the log file giving the identity of the user who sent the request or "unknown" if the user is not authenticated. A different logging policy can be achieved by redefining the **svclogevent** procedure in the server's configuration file.

While running in security audit mode, each line written to the log file is tagged with a *Connection ID* field which is used to filter the audit trail for a particular connection in cases where multiple connections are processed simultaneously.

Starting and Stopping the sysctld Daemon

The **sysctld** daemon is under System Resource Controller (SRC) control. It uses the signal method of communication in SRC. The **sysctld** daemon is a single subsystem and not associated with any SRC group. The subsystem name is **sysctld**. To start the **sysctld** daemon, use the **startsrc** –**s sysctld** command. This starts the daemon with the default arguments and SRC options. The **sysctld** daemon is setup to be respawnable and be the only instance of the **sysctld** daemon running on a particular node or control workstation. Do **not** start the **sysctld** daemon from the command line without using the **startsrc** command to start it.

To stop the **sysctld** daemon, use the **stopsrc** –**s sysctld** command. This stops the daemon and does not allow it to respawn.

To display the status of the **sysctld** daemon, use the **lssrc -s sysctld** command.

If the default startup arguments need to be changed, use the **chssys** command to change the startup arguments or the SRC options. Refer to *AIX Version 4 Commands Reference* and *AIX Version 4 General Programming Concepts: Writing and Debugging Programs* for more information about daemons under SRC control and how to modify daemon arguments when under SRC.

To view the current SRC options and daemon arguments, use the **odmget** –**q** 'subsysname=sysctld' SRCsubsys command.

Files

/etc/sysctl.acl The default ACL used to assign base authorizations.

/etc/sysctl.conf

The default configuration file read by the server on startup.

/var/adm/SPlogs/sysctl/sysctld.log

The default log file.

Location

/usr/lpp/ssp/bin/sysctld

Related Information

Command: sysctl

Files: sysctl.acl, sysctl.conf

Examples

1. To start the **sysctld** daemon, enter:

startsrc -s sysctld

2. To stop the **sysctId** daemon, enter:

stopsrc -s sysctld

3. To display the status of the **sysctld** daemon, enter:

lssrc -s sysctld

4. To display the status of all the daemons under SRC control, enter:

lssrc -a

5. To display the current SRC options and daemon arguments for the sysctld daemon, enter:

odmget -q 'subsysname=sysctld' SRCsubsys

SYSMAN test

Purpose

SYSMAN_test - Verifies that the installation and customization of the Systems Management components of the SP system completed successfully.

Syntax

SYSMAN_test [-q | -v] [-I log_file]

Flags

-q Specifies quiet mode; suppresses all but summary output to standard output.

-V Specifies verbose mode, includes informational messages to standard output.

-I log_file Specifies the path name of the log file to which error messages are written. (This is lowercase I, as in list.)

Operands

None.

Description

The SYSMAN test command performs various tests to determine whether the systems management components of the SP system are completely installed and customized properly.

A return code of 0 indicates that the test completed as expected; otherwise it returns the number of errors. If you do not specify the -q flag, a message is displayed on standard output that indicates whether the tests were successful or not. In either case, the command returns 0 if successful, 1 if insuccessful. If errors are detected, more detailed information is recorded in the log file. If you do not specify the -I flag, error messages are recorded in

/var/adm/SPlogs/SYSMAN_test.log.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit SP_verify

and select the RS/6000 SP System Management option.

Files

/var/adm/SPlogs/SYSMAN_test.log

Default log file.

Related Information

Commands: CSS_test, jm_install_verify, jm_verify, SDR_test, spmon_ctest, spmon_itest

Location

/usr/lpp/ssp/bin/SYSMAN_test

Examples

To verify systems management following customization, saving error messages in sm.errors in the current working directory, enter:

 $SYSMAN_test -1 sm.errors$

syspar_ctrl

Purpose

syspar_ctrl – Starts, stops, adds, deletes, and refreshes the system partition-sensitive subsystems installed on your SP system.

Syntax

Flags

- -h (help) Displays usage information. If a subsystem_name is specified, help is provided only for the specified subsystem's control script. Help is displayed as a syntax description and is written to standard output. Once help is displayed, no other action is taken even if other valid options are entered with the -h flag.
- -a (add) Adds all subsystems. If a subsystem_name is specified, only the specified subsystem is added. The -a flag invokes each subsystem's control script. Typically, this causes each subsystem's control script to add itself to the System Resource Controller (SRC) subsystem, /etc/inittab and /etc/services. The actual function that is performed depends on whether the underlying control script runs on the control workstation or on a node.
- -A (add and start) Adds and starts all subsystems. If a subsystem_name is specified, only the specified subsystem is added and started. Each subsystem's control script is invoked with the -a flag followed by the -s flag. This is a convenience option that provides the same function as first calling syspar_ctrl with the -a flag followed by the -s flag.
- (clean) Cleans up after all of the subsystems. If a subsystem_name is specified, only the specified subsystem is cleaned up. Each subsystem's control script is invoked with the -c flag. Typically, this causes each subsystem's control script to stop any subsystem daemons that may be running and clean or remove all entries for this subsystem from the SRC, /etc/inittab, /etc/services. This flag is similar to the -d (delete) flag, but independent of system partitions. Cleaning up the subsystems is done in the reverse order of how the subsystems are listed in the Syspar Controller subsystems file. You can use this option to clean up subsystem information while trying to get back to some preexisting state, such as when an old System Data Repository (SDR) is restored and the old system partitioning needs to be restored.
- (delete) Deletes all subsystems. If a subsystem_name is specified, the specified subsystem is deleted. Each subsystem's control script is invoked with the -d flag. Typically, this causes each subsystem's control script to delete itself from the SRC subsystem, /etc/inittab and /etc/services. Deleting subsystems is done in the reverse order of how the subsystems are listed in the Syspar Controller subsystems file. The actual function that is performed depends on whether the underlying control script runs on the control workstation or on a node.

- (stop and delete) Stops and deletes all subsystems. If a subsystem_name is specified, that subsystem is stopped and deleted. Each subsystem's control script is invoked with the -k flag followed by the -d flag. This is a convenience option that provides the same function as first calling syspar_ctrl with the -k flag followed by the -d flag.
- (examine) Examines all subsystems. If a subsystem_name is specified, the specified subsystem is examined in the Syspar Controller subsystems file. Each subsystem name control script pair in the subsystems file is examined and displayed. Entries that are not valid are noted. An entry is not valid when the control script for a particular subsystem does not exist at the specified location or does not have the correct read and execute permissions.
- -G (global) Invokes the appropriate underlying subsystem's control scripts for each system partition. If the -G flag is not specified, the appropriate underlying subsystem's control script is run only in the current system partition (SP_NAME).
- -k Stops all subsystems. If a subsystem_name is specified, only the specified subsystem is stopped. Each subsystem's control script is invoked with the -k flag. Typically, this causes each subsystem's control script to stop any daemons associated with this particular subsystem. Stopping subsystems is done in the reverse order of how the subsystems are listed in the Syspar Controller's subsystem file. The actual function that is performed depends on whether the underlying control script runs on the control workstation or on a node.
- -r (refresh) Refreshes all subsystems. If a subsystem_name is provided, only the specified subsystem is refreshed. Each subsystem's control script is invoked with the -r flag. Typically, this causes each subsystem's control script to rebuild configuration data and refresh any daemons associated with this particular subsystem. Subsystems may need to be refreshed when nodes are added to an existing system or the nodes PSSP version changes. The actual function that is performed depends on the subsystem. This option is only meaningful when run on the control workstation.
- (restore) Restores all subsystems. If a subsystem_name is specified, only the specified subsystem is restored. All subsystems are stopped and deleted before they are added and started. Each subsystem's control script is invoked with the -k flag followed by the -d flag, then the -a flag followed by the -s flag. This is a convenience option that provides the same function as first calling syspar_ctrl with the -D flag followed by the -A flag.
- -s (start) Starts all subsystems. If a subsystem_name is specified, only the specified subsystem is started. Each subsystem's control script is invoked with the -s flag. Typically, this causes each subsystem's control script to start any daemons associated with this particular subsystem. The actual function that is performed depends on whether the underlying control script runs on the control workstation or on a node.

-t (trace on) Turns the trace option on for all subsystems. If a subsystem name is specified, the trace option is turned on only for the specified subsystem. Each subsystem's control script is invoked with the -t flag.

> **Note:** IBM suggests only turning on a particular subsystem's trace by providing a subsystem name. If the trace is turned on for all subsystems, the volume of data produced may quickly fill up /var.

- (trace off) Turns the trace option off for all subsystems. If a -0 subsystem_name is specified, the trace option is turned off only for the specified subsystem. Each subsystem's control script is invoked with the -o flag.
- -V(verbose) Turns verbose mode on in the **syspar_ctrl** script which then prints out the actual calls it makes to the underlying subsystem control scripts. It also prints out additional information that is useful for debugging.

Operands

subsystem name

Specifies the subsystem name that you want the command to act on. If a subsystem_name is not provided, this command is run for all subsystems that are listed in the Syspar Controller subsystems file (syspar subsystems). For example, if you only want this command to work with the Event Management subsystem, enter:

syspar ctrl option haem

Description

This command acts as an interface to the system partition-sensitive subsystems supporting the functions that are shared by all subsystems. This command is also referred to as the Syspar Controller. It can be used to add or delete, start or stop, refresh or restore the subsystems, and various other functions. When used on the control workstation, it works with the subsystems on the control workstation. When used on the nodes, it works with the subsystems on the nodes. The refresh option is an exception. To refresh some subsystems, the subsystem must be refreshed on both the control workstation and on the nodes. In this case, the refresh on the control workstation will **dsh** an appropriate refresh command from the control workstation to the appropriate nodes.

This command supports two types of options: primitive options and macro options. Primitive options are passed directly to the underlying control scripts, for example, -a (add), -d (delete), -r (refresh). Macro options conveniently group a commonly used set of primitive options into one option, for example, -R (restore). All of the subsystems and each subsystem's control script that are managed by the Syspar Controller are listed in the Syspar Controller subsystems file. By default, all of the control scripts listed in the Syspar Controller subsystems file will be called unless a subsystem_name is provided. In that case, the control script for just the specified subsystem will be called.

This command is automatically called when the system is partitioned (spapply_config) to first stop and delete the system partition-sensitive subsystems from system partitions that are being removed, and then to add and start the

system partition-sensitive subsystems (for example, **hats**, **hb**, and **hr**) in new system partitions.

The Syspar Controller is also called when restoring the SDR with **sprestore_config** to first clean up and then add and start the system partition-sensitive subsystems (for example, **hats**, **hb** and **hr**) in each system partition.

The Syspar Controller also needs to be called with refresh flag (-r) by the System Administrator using the command line whenever a node is added or deleted from the system, or a node is migrated to a new level of PSSP.

Files

syspar_subsystems

Lists all of the system partition sensitive subsystems and their control scripts that are controlled by the Syspar Controller. Only the **syspar_ctrl** command should read this file. This file is located in the directory **/usr/lpp/ssp/config/cmi**.

Security

You must be running with an effective user ID of root.

Environment Variables

SP_NAME

syspar_ctrl sets the SP_NAME environment variable prior to calling
the underlying subsystems. Typically, SP_NAME is set to the value
returned from the spget_syspar -n command. However, when
syspar_ctrl is called with the -G flag, syspar_ctrl sets SP_NAME in
turn to each value returned by the splst_syspars -n command. The
-c flag ignores system partition boundaries while all other options
respect system partition boundaries.

Exit Values

- **0** Indicates the successful completion of the command.
- 1 Indicates that the command was unsuccessful. Most likely a subsystem's control script returned a problem return code.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/syspar_ctrl

Related Information

Commands: emonctrl, hatsctrl, hbctrl, hrctrl, haemctrl, hagsctrl, pmanctrl, sp_configdctrl, spapply_config, spcw_apps, sprestore_config

Examples

1. To add and start all of the system partitions subsystems in each of the system partitions, enter:

```
syspar_ctrl -G -A
```

2. To stop and delete all of the system partition subsystems in each of the system partitions, enter:

```
syspar_ctrl -G -D
```

3. To refresh all of the system partition subsystems in the current system partition, enter:

```
syspar_ctrl -r
```

4. To restore all of the system partition subsystems running in the current system partition, enter:

```
syspar_ctrl -R
```

5. To stop all of the system partition subsystems running in the current system partition, enter:

```
syspar_ctrl -k
```

6. To get help for the event manager subsystem (haem) control script, enter:

```
syspar_ctrl -h haem
```

7. To display a list of all subsystems managed by the Syspar Controller, enter:

```
syspar ctrl -E
```

8. To see the state of the system partition subsystems controlled by the Syspar Controller for system partition spp1, enter the commands:

```
lssrc -a | grep spp1
lssrc -a | grep sp_configd
```

Note: The SDR is not managed by the System Controller.

sysparaid

Purpose

sysparaid – Creates a layout for a new system partition configuration of an SP system.

Syntax

sysparaid [-h] [-i] [-s layout_name | a_fully_qualified_path] [-t tmpdir] input_file [topology_file]

Flags

- -h Displays usage information. If the command is issued with the -h flag, the syntax description of the command and the startup guidelines are displayed to standard output and no other action is taken (even if other valid flags are entered along with the -h flag).
- Creates a switch-map file (spa.sysinfo) for the current SP system if a System Data Repository (SDR) is present. If an SDR is not available, it will generate the file for the system described by the topology_file. If the -s flag is entered along with the -i flag, it will be ignored.
- -s Saves the newly generated layout in the system partition directory tree (/spdata/sys1/syspar_configs/...) if a layout_name is specified; otherwise, it will be saved under the directory specified by the fully qualified path given.
- Saves the snapshot, performance, and intermediate files under tmpdir.

Operands

input_file Specifies the file containing the system partition configuration requirement.

topology file

Specifies the topology file for the system to be partitioned. This operand is required only when the topology file for the system to be partitioned is not under /spdata/sys1/syspar_configs/topologies. It is also required with the -i flag when there is no SDR or when the switch-map file for a system not represented by the SDR is desired.

Description

Use this command to invoke the System Partitioning Aid, a tool for generating new system partition configuration layouts. When invoked with the -i flag, it creates a switch-map file that will help the user to generate the <code>input_file</code> for creating a layout for a desired system partition configuration. When invoked with no flags or with the -s or -t flags, it attempts to partition the system according to the input requirement. If the attempt is unsuccessful, it will output appropriate error messages to the log and exit. If the attempt is successful and the -s flag is specified, the newly created layout will be saved at the desired location specified by the flag argument.

Extended Description

The **sysparaid** command uses a set of built-in rules to create a layout for a desired system partition configuration. The following startup guidelines will help to generate an acceptable input to the command:

- The nodes can be identified by either using node_numbers or switch_port_numbers. While both schemes are permitted for partitioning a system defined by an SDR, switch_port_numbers is the only allowed choice when running the tool without an SDR. Also, the numbering schemes cannot be mixed when both schemes are allowed.
- 2. Identify the four nodes linked to any switch chip to place them in the same system partition. If an SDR is present, the identity of the switch chips linked to the nodes in the system can be obtained by issuing the following command:

```
sysparaid -i -t spa dir
```

This command places a **spa.sysinfo** file in the **spa_dir** if the **-t** flag is used; otherwise, it places it in the current directory. If an SDR is not present, issue the following command:

```
sysparaid -i -t spa dir topology file
```

where *topology_file* is the name of the topology file for the system to be partitioned.

Note: In this case, only the *switch_port_numbers* are provided. No *node_numbers* are available.

- 3. The keyword "remaining_nodes" can be used for the last system partition provided all nodes or switch ports not in the last system partition were placed in other system partitions. Therefore, the keyword cannot be used with the node_number numbering scheme for systems with empty input switch ports.
- 4. Nodes on a switch board can be part of a maximum of two multichip system partitions.
- 5. The input file must be formatted according the the template provided in /spdata/sys1/syspar_configs/bin/inpfile_template.

Standard Input

This command requires an input file when invoked with no flag or the -s flag. The template for the input file can be found in /spdata/sys1/syspar_configs/bin.

Standard Output

Informational messages are written to standard output.

Standard Error

Error messages are written to standard error.

Output Files

This command creates **spa.snapshot** and **spa.metrics** under *tmpdir* (if specified) or under the current working directory. If the **-s** flag is specified and the attempt is successful, it creates the following under the layout directory:

layout.desc spa.snapshot

nodes.syspar and a system partition directory for each system partition in the layout. Under each system partition directory, it creates the following:

node list topology spa.snapshot spa.metrics

When invoked with the -i flag, the command creates **spa.sysinfo** under *tmpdir* (if specified), or under the current working directory.

Security

Any user can run this command. Only users authorized to write to the system partitioning directory can save a generated layout under it.

Location

/usr/lpp/ssp/bin/sysparaid

Related Information

The **spsyspar** command provides the graphical user interface (GUI) for the System Partitioning Aid.

Examples

1. The following is an example of an input file with the switch port number option (all switch ports linked to nodes):

```
Number of Nodes in System: 32
Number of Frames in System: 2
Frame Type: tall
Switch Type: HiPS
Number of Switches in Node Frames: 2
Number of Switches in Switch Only Frames: 0
Node Numbering Scheme: switch port number
Number of Partitions: 3
Partition Name: part1
Number of Nodes in Partition: 8
0 - 7
Partition Name: part2
Number of Nodes in Partition: 8
8 - 15
Partition Name: part3
Number of Nodes in Partition: 16
remaining nodes
```

To use /tmp as the working directory, enter:

```
sysparaid -t /tmp inpfile
```

You should receive a message similar to the following:

```
A layout, for the desired system partition configuration or an equivalent, can be created.

To save this layout, invoke the command again with -s option.
```

To save the layout for this configuration under

/spdata/sys1/syspar_configs/2nsb0isb/config.8_8_16/layout.myconfig, enter:

```
sysparaid -s myconfig inpfile
```

To save the layout for this configuration under /tmp/custom/config1, enter:

```
sysparaid -s /tmp/custom/config1 inpfile
```

2. The following is an example of an input file with the switch port number option (not all switch ports in the system are linked to nodes):

```
Number of Nodes in System: 87
Number of Frames in System: 6
Frame Type: tall
Switch Type: SP
Number of Switches in Node Frames: 6
Number of Switches in Switch Only Frames: 4
Node Numbering Scheme: switch_port_number
Number of Partitions: 2
Partition Name: ProductionPartition
Number of Nodes in Partition: 82
4
16 - 95
Partition Name: TestPartition
Number of Nodes in Partition: 5
6
8
10
12
```

If you enter the sysparaid -s myconfig inpfile command, this configuration will be saved under

/spdata/sys1/syspar_configs/6nsb4isb/config.12_84/layout.myconfig. Note that the nine unspecified switch port numbers have been allocated to one of the two system partitions.

3. The following is an example of an input file with the node number option (not all switch ports are linked to nodes):

```
Number of Nodes in System: 8
Number of Frames in System: 2
Frame Type: tall
Switch Type: SP
Number of Switches in Node Frames: 1
Number of Switches in Switch Only Frames: 0
Node Numbering Scheme: node_number
Number of Partitions: 3
Partition Name: part1
Number of Nodes in Partition: 2
25
Partition Name: part2
Number of Nodes in Partition: 4
5
17
Partition Name: part3
Number of Nodes in Partition: 2
7
```

This input file for a particular SP system returned the location of an existing layout:

The layout for the desired/equivalent system partition configuration is under /spdata/sys1/syspar_configs/1nsb0isb/config.4_4_8/layout.2

4. The **spa.sysinfo** file for the system in Example 3 that was generated using the **sysparaid -i** command follows:

switch_number	switch_chip	switch_port_number	node_number
1	4	9	25
1	4	13	29
1	5	0	1
1	5	1	17
1	5	4	5
1	5	5	21
1	6	2	3
1	6	6	7

5. The following is an example of an input file for a switchless system:

```
Number of Nodes in System: 32
Number of Frames in System: 2
Frame Type: tall
Switch Type: NA
Number of Switches in Node Frames: 0
Number of Switches in Switch Only Frames: 0
Node Numbering Scheme: switch port number
Number of Partitions: 2
Partition Name: part1
Number of Nodes in Partition: 14
2 - 5
10
11
13
15
19
24 - 25
29 - 31
Partition Name: partition2
Number of Nodes in Partition: 18
remaining_nodes
```

To save the layout for this configuration under

/spdata/sys1/syspar_configs/2nsb0isb/config.14_18/layout.myconfig, enter:

sysparaid -s myconfig inpfile

s1term

Purpose

s1term - Opens a connection to an SP node's S1 serial port.

Syntax

s1term [-G] [-w] frame_ID slot_ID

Flags

-G Allows specification of nodes outside the current system partition.

-w Opens the connection in read/write mode.

Operands

frame_ID Specifies the number of the frame containing the node.slot_ID Specifies the number of the slot containing the node.

Description

Use this command to open a connection to the S1 serial port of the SP node contained in the slot specified by the <code>frame_ID</code> and <code>slot_ID</code> operands. The specified node must be in the current system partition unless the <code>-G</code> flag is also specified. By default, the connection is read only. As data arrives from the serial port, it is written to standard output. When the connection is read/write and standard input is a terminal, the terminal is placed in <code>raw</code> mode, that is, canonical processing is turned off in the terminal driver. As data is read from standard input, it is sent to the S1 serial port. Standard input and output can be files or pipes.

When the connection is read only, the command terminates upon receipt of a signal, usually generated by the terminal Interrupt key. When in read/write mode, the command terminates when either the termination character or End-of-File is read from standard input. The termination character is **Ctrl-x** by default. Another termination character can be used by setting the S1TERMESC environment variable to the octal (denoted by leading 0), decimal or hexadecimal (denoted by leading 0x) value of the desired termination character.

Note: The termination character must only be one byte.

To execute this command, the user must be authorized to access the Hardware Monitor subsystem and, for the frame specified to the command, must be granted S1 permission. Since the Hardware Monitor subsystem uses SP authentication services, the user must execute the **k4init** command prior to executing this command. Alternatively, site-specific procedures can be used to obtain the tokens that are otherwise obtained by **k4init**.

Location

/usr/lpp/ssp/bin/s1term

Related Information

Commands: hmcmds, hmmon

Examples

1. To open an interactive connection to the S1 serial port of the node in slot 8 in frame 12, enter:

s1term -w 12 8

2. To write the output of the S1 serial port of the node in slot 2 in frame 9 to a file,

s1term 9 2 > s1term.output

tecad_pssp

Purpose

tecad_pssp – Forwards PSSP events.

Syntax

```
tecad_pssp [-I path/filename] [-Cc]
[-m text] [-a tiv_admin_name]
[-s severity] [-p port]
```

Flags

-I path/filename

Specifies the *path/filename* of the configuration file. The default value is */usr/lpp/ssp/donfig/tecad_pssp.cfg*. The only required value in this file is the *ServerLocation* parameter, which should be one of the following:

- ServerLocation = hostname.domain, for secure communications
- ServerLocation = @ServerName, for a managed node over a TME channel
- ServerLocation = @ServerName#RegionName, for secure transport in connected TMRs

Consult the *TME 10 EIF User's Guide* for the correct values of the other configuration parameters.

- -C Specifies the connection-oriented protocol.
- -c Specifies a connectionless protocol (the default).
- **-m** *text* Adds *text* to the message field of the event.
- -a tiv_admin_name

Adds admin in the T/EC_administrator field of the event.

-s severity Sets the severity of the event to severity. The following strings are the legal values for severity:

FATAL

CRITICAL

WARNING

MINOR

HARMLESS

INDETERMINATE

If an incorrect value is used, the default UNKNOWN is used.

-p port Sets the communication port number to port. Note that you can also set the port number in the configuration file.

Operands

None.

Description

The **tecad_pssp** command was designed to be executed by the PSSP Problem Management subsystem. It should not be executed by any other subsystem, since it depends on environment variables that are exported by the Problem Management daemon, **pmand**. Therefore, to forward PSSP events using the **tecad_pssp** command, you need to make a Problem Management subscription using either the SP Event Perspective, or using Problem Management directly. In either case, you should select **tecad_pssp** as the command to run for that subscription, and provide the appropriate parameters.

Prerequisite Information

Integrating TME 10 on the RS/6000 SP

Related Information

Commands: pmandef, wtdumprl

Examples

1. This example creates event subscriptions using the **pmandef** command:

```
pmandef -s example1
    -e "AnyResourceVariable; Any InstanceVector; AnyPredicate"
    -c "$AGENT_PATH/tecad_pssp -l $CONF_PATH/tecad_pssp.cfg"
    -r "AnyRearmPredicate"
    -C "$AGENT_PATH/tecad_pssp -l $CONF_PATH/tecad_pssp.cfg"
    -n 0
```

ucfghsd

Purpose

ucfghsd - Makes a hashed shared disk unavailable.

Syntax

ucfghsd {-a | hsd_name...}

Flags

-a Specifies that all the hashed shared disks defined are to be

unconfigured.

Operands

hsd_name Specifies the name of a specific hashed shared disk that is

unconfigured.

Description

This command unconfigures the already defined hashed shared disks. This

command does not change the definition of the hashed shared disks; it makes the

hashed shared disks unavailable on one node.

Security

You must have root privilege to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/ucfghsd

Related Information

Commands: cfghsd, defhsd, hsdatalst, lshsd, undefvsd

Examples

To unconfigure the hashed shared disk *hsd1*, enter:

ucfghsd hsd1

ucfghsdvsd

Purpose

ucfghsdvsd – Stops the virtual shared disks that comprise a hashed shared disk and makes the hashed shared disk and the virtual shared disks unavailable.

Syntax

ucfghsdvsd -a | {hsd_name...}

Flags

-a Specifies that all the hashed shared disks defined on this system or

system partition are to be unconfigured.

hsd_name Specifies the names of defined hashed shared disks that are to be

unconfigured. This command unconfigures the underlying virtual

shared disks as well.

Operands

None.

Description

Use this command to unconfigure hashed shared disks and their underlying virtual shared disks. This command does not change the definition of the hashed shared disks and virtual shared disks; it just makes them unavailable to the node on which this command is run. The underlying virtual shared disks do not have to be in the stopped state for this command to work. The virtual shared disks will be stopped and then unconfigured.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit hsd_mgmt

and select the Unconfigure an HSD and its Underlying Virtual Shared Disks option.

Security

You must have root privilege or **sysctl** and **sysctl.vsd** access and authorization from your system administrator to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/ucfghsdvsd

Related Information

Commands: cfghsdvsd, ucfghsd, ucfgvsd

Examples

To unconfigure the hashed shared disk hsd1 and the virtual shared disks that comprise it, enter:

ucfghsdvsd hsd1

ucfgvsd

Purpose

ucfgvsd - Makes a virtual shared disk unavailable.

Syntax

ucfgvsd {-a | vsd_name ...}

Flags

-a Specifies that all virtual shared disks in the stopped state are to be

unconfigured.

Operands

vsd_name Specifies a virtual shared disk.

Description

The **ucfgvsd** command unconfigures the specified virtual shared disks. This command does not change any virtual shared disk definitions. It moves virtual shared disks from the stopped state to the defined state.

If a configured hashed shared disk is using this virtual shared disk, you must first unconfigure the hashed shared disk before you unconfigure the virtual shared disk.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Unconfigure a Virtual Shared Disk option.

Security

You must have root privilege to run this command.

Restrictions

If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/ucfgvsd

Related Information

Commands: cfgvsd, ctlvsd, lsvsd, preparevsd, resumevsd, startvsd, stopvsd, suspendvsd

Examples

To unconfigure the virtual shared disk **vsd1vg1n1** in the stopped state, enter: ucfgvsd vsd1vg1n1

unallnimres

Purpose

unallnimres – Deallocates Network Installation Management (NIM) resources from a NIM master to one or more NIM clients.

Syntax

unallnimres -h | -l node_list

Flags

-h Displays usage information. If the command is issued with the -h

flag, the syntax description is displayed to standard output and no other action is taken (even if other valid flags are entered along with

the -h flag).

-I node list Indicates by node list the SP nodes to which to unallocate

installation resources. The node_list is a comma-separated list of

node numbers.

Operands

None.

Description

Use this command to unallocate all NIM resources from a NIM client.

Standard Error

This command writes error messages (as necessary) to standard error.

Exit Values

- **0** Indicates the successful completion of the command.
- -1 Indicates that an error occurred.

Security

You must have root privilege to run this command.

Implementation Specifics

This command is part of the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP).

Location

/usr/lpp/ssp/bin/unallnimres

Related Information

Commands: allnimres, setup_server

Examples

To unallocate boot/installation resources to boot/install client nodes 1, 3, and 5 from their respective boot/install servers, enter:

unallnimres -1 1,3,5

undefhsd

Purpose

undefhsd - Undefines a hashed shared disk.

Syntax

undefhsd hsd_name...

Flags

None.

Operands

hsd_name Specifies the unique name defined in the SDR names that you want

to delete.

Description

This command is used to remove a hashed shared disk by removing its definition from the system, including the special device files in **/dev**. The hashed shared disks must be unconfigured and in the defined state on all nodes in the system partition.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit delete_vsd

and select the Undefine a Hashed Shared Disk option.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/undefhsd

Related Information

Commands: defhsd, hsdatalst

Examples

To delete the information associated with the hashed shared disk *hsd1* from the SDR, enter:

undefhsd hsd1

undefvsd

Purpose

undefvsd - Undefines a virtual shared disk.

Syntax

undefvsd vsd name ...

Flags

None.

Operands

vsd_name Specifies the virtual shared disk whose underlying logical volume

you no longer want to be globally accessed by any virtual shared

disk nodes.

Description

This command is used to remove virtual shared disk definition data from the System Data Repository (SDR) and any special device files from /dev for the given vsd_names on all the virtual shared disk nodes. The virtual shared disks must be unconfigured and in the defined state on all the virtual shared disk nodes.

You can use the System Management Interface Tool (SMIT) to run the undefvsd command. To use SMIT, enter:

smit delete_vsd

and select the Undefine a Virtual Shared Disk option.

Security

You must be in the **bin** group to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/undefvsd

Related Information

Command: defvsd

Examples

To delete the information associated with the virtual shared disk vsd1vg2n1 from the SDR, enter:

undefvsd vsd1vg2n1

unfencevsd

Purpose

unfencevsd – Gives applications running on a node or group of nodes access to a virtual shared disk or group of virtual shared disks that were previously fenced from applications running on those nodes.

Syntax

unfencevsd [-v] vsd_name_list {-n node_list [-f] | -r}

Flags

- -v Specifies one or more virtual shared disk names, separated by commas.
- -n Specifies one or more node numbers separated by commas.
- Allows a fenced node to unfence itself.
- -r Removes records associated with virtual shared disks listed in vsd_name_list from the SDR.

Note: Use **unfencevsd** -**v** -**n** to unfence nodes. Only use -**r** to remove an IBM Virtual Shared Disk fence record from the SDR while no IBM Virtual Shared Disk is configured on any node.

Operands

None.

Description

Under some circumstances, the system may believe a node has become inoperable and may begin recovery procedures when the node is actually operational, but is cut off from communication with other nodes running the same application. In this case, the problem node must not be allowed to serve requests for the virtual shared disks it normally manages until recovery is complete and the other nodes running the application recognize the problem node as operational. The **fencevsd** command prevents the problem node from filling requests for its virtual shared disks. The **unfencevsd** command allows fenced nodes to regain access to the virtual shared disks.

This command can be run from any node.

Note: This command will be unsuccessful if you do not specify a current server (primary or backup) to a virtual shared disk with the -**v** flag.

Note: This command changes SDR attributes when issued with the -**r** flag. Specify -**r** only when disks have already been removed from a fenced virtual shared disk.

Security

You must have root privilege to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/unfencevsd

Related Information

Commands: fencevsd, Isfencevsd, Isvsd, updatevsdtab, vsdchgserver

Refer to PSSP: Managing Shared Disks for information on how to use this command in writing applications.

Examples

- 1. To unfence node 5 from the virtual shared disks vsd1 and vsd2, enter: unfencevsd -v vsd1, vsd2 -n 5
- 2. To unfence node 7 from the virtual shared disks vsd1 and vsd2 when the unfencevsd command must be entered from node 7, enter:

```
unfencevsd -v vsd1, vsd2 -n 7 -f
```

updatehsd

Purpose

updatehsd – Lets you change the option in the System Data Repository (SDR) that prevents overwriting the Logical Volume Control Block (LVCB) for specified hashed shared disks.

Syntax

Flags

- -d Specifies the names of the hashed shared disks that are the targets of this command.
- -a Updates the option on all hashed shared disks defined in the system or system partition.

-o protect_lvcb | not_protect_lvcb

Specifies whether to skip the first stripe (the LVCB) up to a maximum of 128KB of every virtual shared disk that constitutes the hashed shared disk. **protect_lvcb** specifies skipping the LVCB; **not_protect_lvcb** specifies not skipping it.

-f Forces the SDR changes by reconfiguring one or more virtual shared disks on all nodes in the current partition on which those virtual shared disks are currently configured.

Operands

None.

Description

Use this command only on the control workstation.

Note: This utility is very powerful. Misuse can destroy the contents of a database. Only the superuser should be allowed to run it. If a database has been loaded on a configured hashed shared disk, modifying the *protect_lvcb* or *not_protect_lvcb* option will destroy the database.

The hashed shared disk name must be specified. You must choose either **protect_lvcb** or **not_protect_lvcb**. The hashed shared disk must be defined in the System Data Repository (SDR).

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

```
smit set HSDdd parms
```

and select the Update Hashed Shared Disk Options. option or

```
smit hsd_mgmtd_parms
```

and select the Set/Show HSD Device Driver Operational Parameters. option or the Update Hashed Shared Disk Options option.

Security

You must have **sysctl** and **sysctl.vsd** access and authorization from your system administrator to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/updatehsd

Related Information

Commands: defhsd, Ishsd, hsdatalst

Examples

To set the **protect_lvcb** option for hsdcont01 and hsdcont02, enter:

updatehsd -d hsdcont01,hsdcont02 -o protect_lvcb

updatevsdnode

Purpose

updatevsdnode – Changes IBM Virtual Shared Disk subsystem options in the System Data Repository (SDR).

Syntax

```
updatevsdnode   -n {ALL | node_number [,node_number ...]}
    {[-a {VSD_adapter | none}]
        [-i init_cache_buffer_count]
        [-m max_cache_buffer_count] [-r vsd_request_count]
        [-p rw_request_count] [-b min_buddy_buffer_size]
        [-x max_buddy_buffer_size] [-s max_buddy_buffers]
        [-M vsd_max_ip_packet_size]}
        [-f]
```

Flags

- -n Specifies the node numbers of the nodes whose SDR information you want this command to update, or ALL nodes in the system or system partition. You can issue the command /usr/lpp/ssp/install/bin/node_number to find out the node number of the node you are running on.
- -a Specifies the adapter name to be used for IBM Virtual Shared Disk communications with this node or nodes. IBM suggests using the switch (adapter name css0) for the virtual shared disk for best performance.
- The IBM Virtual Shared Disk device driver implements an optional write-through cache of pinned kernel memory with a block size of 4KB. When the first cached virtual shared disk is configured on a node, the cache is created, and it contains the number of blocks specified in this field of the SDR. The minimum value is 1. IBM suggests using a value of 64, which results in a 256K cache. If you use the switch as the virtual shared disk adapter, no cache buffer is allocated.
- The number of buffers in the cache can be increased up to max_cache_buffer_count. You cannot decrease the number; you must unconfigure all the virtual shared disks and start over. IBM suggests using the value of 256, which results in a 1MB cache. If you use the switch as the virtual shared disk adapter, no cache buffer is allocated.
- -r Specifies the maximum number of outstanding virtual shared disk requests originating on each node. If the number is too small, local requests will queue up waiting for a request block to become available. IBM suggests using the value of 256. The size of the block is approximately 76 bytes.
- Specifies the maximum number of outstanding read/write requests the virtual shared disk will make to each underlying logical volume. The minimum value is 1. IBM suggests using a value of 48. WARNING: generally this value should not exceed 192. For details see the information on pufs in the chapter on "Performance and Tuning Considerations for Virtual Shared Disks" in PSSP: Managing Shared Disks.

updatevsdnode

- -b Specifies the smallest buddy buffer a server uses to satisfy a remote request to a virtual shared disk. This value must be a power of 2 and greater than or equal to 4096. IBM suggests using the value of 4096 (4KB).
- The largest buddy buffer a server will use to satisfy a remote request. $-\mathbf{X}$ This value must be a power of 2 and greater than or equal to the min buddy buffer size. IBM suggests using the maximum value of 65536 (64KB). This value must be the same on all nodes within a system partition.
- The size of the buddy buffer affects the number of remote requests the -s virtual shared disk server node can handle at one time. Remote requests can queue waiting for a buddy buffer. statvsd reports this queuing as buddy buffer shortages. Use the output from **statvsd** to select a buddy buffer size for your environment. When the switch is used as the virtual shared disk adapter, IBM suggests using a value of at least 4, which results in a 256KB combined buddy buffer size in combination with the default max_buddy_buffer_size of 64KB.
- -MSpecifies the maximum IP message size for virtual shared disks, in bytes. The default value is 24KB (24,576). If you are using the switch as your virtual shared disk adapter, use a value of 60KB (61,440).
- −f Specifies that this command will force the SDR changes by reconfiguring one or more virtual shared disks on all nodes in the current partition on which those virtual shared disks are currently configured.

Operands

None.

Description

Use **updatevsdnode** to change the specified values in the SDR for all nodes in node list.

Note: This command only changes the information in the SDR. To effectively configure the virtual shared disks, you must first unconfigure all the virtual shared disks and then reconfigure them.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Set/Show Virtual Shared Disk Device Driver Operational Parameters option or the Update IBM Virtual Shared Disk Device Driver Node Parameters option.

Security

You must have sysctl and sysctl.vsd access and authorization from your system administrator to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/updatevsdnode

Related Information

Commands: Isvsd, vsdatalst, vsdnode

Examples

To change buddy buffer options after you've installed a new SP Switch Adapter, enter:

updatevsdnode -n ALL -b 4096 -x 4 -s 5

This command leaves *min_buddy_buffer_size* at 4KB, the default, lowers the *max_buddy_buffer_size* to 4KB as well, and allocates a maximum of 5 buddy buffers.

updatevsdtab

Purpose

updatevsdtab – Changes the IBM Virtual Shared Disk subsystem option to set cache or nocache in the System Data Repository (SDR).

Syntax

updatevsdtab {-v vsd_names | -a} {[-o {cache | nocache}] [-s]} [-f]

Flags

-v vsd_names

Specifies a list of virtual shared disk names to be updated.

-a Specifies that the option is to be changed on all nodes of the system or system partition.

-o cache | nocache

Specifies either the **cache** or the **nocache** option. The default is **cache**.

- Updates the virtual shared disk size after the associated logical volume size is changed.
- -f Forces SDR changes by reconfiguring a virtual shared disk on all nodes in the current system partition on which the virtual shared disk is configured.

Operands

None.

Description

Use this command to update the SDR, if necessary. When a feature of the virtual shared disk in the SDR (such as cache/nocache option or the virtual shared disk size), is changed using the **updatevsdtab** command, the change will not take effect until the virtual shared disk is unconfigured and configured again.

If the **-f** flag is specified, the virtual shared disks involved will be reconfigured (using **sysct!**) on all nodes that are up and initially had these virtual shared disks configured.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit vsd_mgmt

and select the Set/Show IBM Virtual Shared Disk Device Driver Operational Parameters option or the Update IBM Virtual Shared Disk Options option.

Security

You must have **sysctl** and **sysctl.vsd** access and authorization from your system administrator to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/updatevsdtab

Related Information

Commands: defvsd, updatevsdnode

Examples

1. To change the cache default for all virtual shared disks on a system or system partition, enter:

updatevsdtab -a -o nocache

2. To reset the size of the virtual shared disk named USER1n3, enter:

updatevsdtab -v USER1n3 -s

updauthfiles

Purpose

updauthfiles – Updates and creates if necessary, **.rhost** files on the control workstation and all nodes in the system for which Standard AIX is defined as an Authentication Method.

Syntax

updauthfiles [-h]

Flags

-h Presents syntax message.

Operands

None.

Description

updauthfiles will determine the authorization methods for the local machine and create or update the appropriate authorization file. The control workstation's authorization files will be updated according to the union of all authentication methods in the system.

Environment Variables

SDR attribute **auth_root_rcmd** for the Syspar class, will have an instance per Syspar object defining which authorization methods should be used.

Security

You must have root user authority to run this command.

Standard Input

This command will read the .rhost files.

Standard Output

This command will update the .rhost file.

A Log file is created in /var/adm/SPlogs/auth_inst/log.

Exit Values

- Indicates successful completion of the command.
- 1 Indicates a problem running the command. Review the **log** file for the specific problem.

Consequences of Error

One or more nodes will not have correct authorization files. This could possibly cause errors when remote commands are issued causing problems with some PSSP administrative tasks.

Related Information

Commands: rsh

Files: .rhost

Location

/usr/lpp/ssp/bin/updauthfiles

Examples

1. To create appropriate authorization file (.rhost) on the control workstation, enter:

/usr/lpp/ssp/bin/updauthfiles

verparvsd

Purpose

verparvsd – Verifies IBM Virtual Shared Disk system partitioning.

Syntax

verparvsd [-F] [-o output_file] layout_directory [new_partition ...]

Flags

- -F Returns success if correctable virtual shared disk errors are found in the system partitioning operation. This flag is the same as spapply_config -F and is used only when spapply_config invokes verparvsd when it is invoked with -F.
- -o Specifies the file where the System Data Repository (SDR) commands are placed to load the IBM Virtual Shared Disk data in the new system partitions. If -o is not specified, the output is placed in the /spdata/sys1/vsd/partitionVSDdata file.

Operands

layout_directory

Specifies the *layout_directory* that describes the new system partitions that the user wants to apply, and wants **verparvsd** to verify for IBM Virtual Shared Disk system partitioning. This operand is used as the first argument in the invocation of the **spdisplay_config** command. Refer to the **spdisplay_config** command for more details.

new_partition ...

Specifies the list of new system partitions to be processed. If some system partitions are going to be unaffected by the system partitioning operation implied by the <code>layout_directory</code>, and you do not want <code>verparvsd</code> to look at them, do not list them here, but list only the system partitions being affected. The <code>verparvsd</code> command only verifies and processes the system partitions passed as arguments. If no new system partitions are given as arguments, <code>all</code> system partitions in <code>layout_directory</code> are processed and analyzed. The <code>spapply_config</code> command invokes <code>verparvsd</code> listing only the new, changing system partitions.

Description

Use this command to verify that the system partition proposed in the <code>layout_directory</code> will work for all the existing IBM Virtual Shared Disk data. The <code>spapply_config</code> command invokes this command to partition the IBM Virtual Shared Disk data during a system partition operation. The <code>verparvsd</code> command extracts all IBM Virtual Shared Disk data from nodes involved in the system partitioning and writes SDR commands to the output file that will reload the IBM Virtual Shared Disk SDR data into the correct new system partitions. This file is executed during the system partitioning process to partition the IBM Virtual Shared Disk data.

The **spapply_config** command invokes this command and its output to effect IBM Virtual Shared Disk system partitioning. You can also invoke the command prior to invoking the **spapply_config** command to see how well suited the desired layout is for the existing IBM Virtual Shared Disk configuration as defined in the SDR.

This command only checks and processes the new system partitions listed on the command line. If some existing system partitions are to be unchanged in the system partitioning operation, do not list those system partition names on the command line. If no new system partitions are listed, the default is to process all system partitions in the layout directory.

This command checks to see if the IBM Virtual Shared Disk data can be partitioned as specified by the layout directory without any problems. The command reports any problems it identifies, as well as reports how it would *fix* the problem.

The **verparvsd** command places global volume groups (GVGs) in the system partition containing their primary server node. Virtual shared disks are placed in the system partition of their GVG. HSDs are placed in the system partition containing their first virtual shared disk.

The **verparvsd** command looks for the following types of errors in each new system partition:

- 1. Inconsistent VSD_adapter Node attributes. If any are found, the VSD_adapter field is set to en0 for all virtual shared disk nodes in the system partition.
- 2. Inconsistent VSD_max_buddy_buffer_size Node attributes. The verparvsd command sets the VSD_max_buddy_buffer_size field for all virtual shared disk nodes in the system partition to the largest value of any node in the system partition, and adjusts the VSD_max_buddy_buffers so that the buddy buffer is still the same size, or just minimally larger than it was before on each node.
- 3. A twin-tailed GVG with primary and secondary server nodes in different system partitions. GVGs are placed in the system partition of the primary server. If the secondary is in a different system partition, the **verparvsd** command will set the secondary server to NULL, making the GVG have only one server, the primary.
- 4. An HSD with virtual shared disks in more than one system partition. The verparvsd command appends .BAD to the HSD's name. These HSDs would be unusable if the new system partition were applied and the VSD_adapter was css0.

As a corollary, if an HSD with .BAD at the end of its name is found in the new system partition to have all its virtual shared disks in the system partition, the .BAD will be removed from its name.

- 5. Any duplicate GVG, virtual shared disk, or HSD name. The **verparvsd** command keeps the original name for the first name it encounters, but makes up unique names for any subsequent duplicate names encountered. New names follow the following suggested naming conventions:
 - vg01n01 for single tailed GVG on node 1. vg01p0ss02 for twin tailed GVGs, primary server node 1, secondary server node 2.
 - **VSD** vsd01vg01n01 (for example, vsdnn*GVG name*)
 - **HSD** hsd01 (for example, hsdnn)

Files

/spdata/sys1/vsd/partitionVSDdata

The default location of the output file containing all the SDR commands to correctly system partition the IBM Virtual Shared Disk data.

Exit Values

The **verparvsd** command looks for error types (described previously) in each new system partition and corrects them as specified:

- Without –**F**, any single error of the preceding type for even a single system partition causes **verparvsd** to return an error code upon completion.
- With -F, all errors of all of the types described previously are corrected as described, and verparvsd returns a zero (successful) return code.

In either case, **verparvsd** processes all the IBM Virtual Shared Disk data, and generates a complete list of errors on standard error, and a complete SDR command list to the output file.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands: defhsd, defvsd, spapply_config, spdisplay_config, vsdnode, vsdvg

Examples

To see how well suited the configuration specified in the **config.4_4_8/layout.6** layout directory is to your IBM Virtual Shared Disk configuration, enter:

verparvsd config.4_4_8/layout.6

vhostname

Purpose

vhostname – Sets or displays the virtual host name.

Syntax

vhostname [-s] [host_name]

Flags

-s Trims any domain information from the printed name.

Operands

host_name Sets the virtual host name to host_name.

Note: You must have root authority to use the *host_name* operand.

Description

Use this command to display or set the virtual host name of the local host. Only users with root authority can set the virtual host name. The *host_name* is stored in the *letc/vhostname* file.

If displaying the virtual host name and the virtual host name has not been set and the **/etc/vhostname** file does not exist, **vhostname** will return the real host name from the kernel variable.

When setting the virtual host name, if the **/etc/vhostname** file does not exist, it will be created. If it does exist, the file contents will be overwritten by the new virtual host name.

To clear the virtual host name so that the virtual host name no longer exists, remove the /etc/vhostname file.

Note: You must have root authority to remove the /etc/vhostname file.

The virtual host name is used in fail over situations when an application has associated the host name in the kernel of a particular machine to the service it is providing. When the application is restarted on the fail over node that has a different host name, the application may not work or work incorrectly. If the application needs to associate a host name with a particular service and it cannot handle having multiple host names, a virtual host name can be provided. The application can call **vhostname** instead of **hostname** and get the host name of the node it normally runs on. This eliminates the need to change the real host name in the kernel on the fail over node. It should be noted that changing the real host name in the kernel can cause problems with other applications that rely on the real host name in the kernel to identify the *physical machine*.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts provided with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP) set and clear the virtual host name in the HACMP pre- and post-event scripts. The administrator normally should not have to set or clear the virtual host name.

Files

/etc/vhostname

Contains the virtual host name.

Exit Values

- 0 Indicates that if a parameter was used, a virtual host name was successfully set. If a parameter was not used, either a virtual or real host name was printed out.
- 1 Indicates that an error occurred.

Related Information

Subroutines: getvhostname, setvhostname

AIX command: hostname

AIX Subroutines: gethostname, sethostname

Examples

1. To display the virtual host name, enter:

vhostname

2. To set the virtual host name to **spcw_prim**, enter:

vhostname spcw_prim

3. To display the virtual host name and trim domain information for host donald.ibm.com, enter:

vhostname -s

A vhostname of **donald** prints out.

4. To clear the virtual host name so it no longer exists, enter:

rm /etc/vhostname

Note: You must have root authority to remove the /etc/vhostname file.

vsdatalst

Purpose

vsdatalst – Displays IBM Virtual Shared Disk subsystem definition data from the System Data Repository (SDR).

Syntax

```
vsdatalst [-G] {-g | -n | -v}
```

Flags

-G Displays information for all system partitions on the SP, not only the current system partition.

Only one of the following flags can be specified with each invocation of vsdatalst:

-g Displays the following SDR virtual shared disk global volume group data:

```
global_group_name,
local_group_name,
primary_server_node,
secondary_server_node. (This is only enabled with the Recoverable
Virtual Shared Disk subsystem.)
eio_recovery
recovery
```

-n Displays the following SDR virtual shared disk Node data:

```
node_number,
host_name,
adapter_name,
init_cache_buffer_count,
max_cache_buffer_count,
rw_request_count,
vsd_request_count,
min_buddy_buffer_size,
max_buddy_buffers.
```

–v Displays the following SDR virtual shared disk definition data:

```
vsd_name,
logical_volume_name,
global_group_name,
minor_number,
option (cache|nocache).
```

Operands

None.

Description

Use this command to display one of several kinds of information to standard output.

You can use the System Management Interface Tool (SMIT) to run the vsdatalst command. To use SMIT, enter:

smit list_vsd

and select the option for the kind of IBM Virtual Shared Disk SDR information you want to see.

Security

You must be in the **bin** group to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands: Isvsd, updatevsdnode, vsdnode

Examples

1. To display SDR virtual shared disk global volume group data, enter:

vsdatalst -g

The system displays a message similar to the following:

Note: backup or secondary_server_node is only enabled with the Recoverable Virtual Shared Disk subsystem.

VSD Global Volume	Group Info	ormation			
Global Volume	Local	Server Node	Numbers:	eio_	
Group name	VG name	primary	backup	recovery	Recovery
hunter-rileysvg	rileysvg	1	0	0	0
ppstest1-rootvg	rootvg	3	0	0	0
tattooine-rootvg	rootvg	2	0	0	0

2. To display SDR virtual shared disk node data, enter:

vsdatalst -n

The system displays a message similar to the following:

VSD Node Information

			Initial	Maximum	VSD	rw	Buddy	Buffer:	
node		VSD	cache	cache	req.	req.	min.	max.	size: #
#	$\verb host_name $	adapt.	buffers	buffers	count	count	size	size	${\tt maxbufs}$
1	hunter	tr0	64	256	256	48	4096	65536	4
2	tattooine	tr0	64	256	256	48	4096	65536	4
3	ppstest1	tr0	64	256	256	48	4096	65536	4

3. To display SDR virtual shared disk definition data, enter:

vsdatalst -v

The system displays a message similar to the following:

VSD Table

VSD name	logical volume	Global Volume Group	minor# option
vsd.rlv01	rlv01	hunter-rileysvg	2 cache
vsd.rlv02	rlv02	hunter-rileysvg	3 cache
vsd.vsd1	vsd1	tattooine-rootvg	1 nocache
vsd.vsdp1	vsd1	ppstest1-rootvg	4 nocache

vsdchgserver

Purpose

vsdchgserver – Switches the server function for one or more virtual shared disks from the node that is currently acting as the server node to the other.

Syntax

vsdchgserver -g vsd_global_volume_group_name -p primary_node
[-b secondary_node] [-o EIO_recovery]

Flags

- -g Specifies the Global Volume Group name for the volume group that represents all the virtual shared disks defined on a particular node.
- -p Specifies the node number defined as the primary server node for the global volume group specified with the -g flag. The value of the -p option must be the same as the current acting server of the global volume group.
- -b Specifies the node number defined as the secondary server node for the global volume group specified with the -g flag. If the -b flag is not specified, it will set the secondary_node to undefined in the System Data Repository (SDR). If the current secondary_node in the SDR is not defined and the -b flag is specified, the vsdchgserver command will set the secondary_node for the global volume group specified in the -g flag.
- -o Specified as 0, for no recovery on an EIO error, or 1, for recovery on an EIO error. The default is the current value defined in the SDR.

Operands

None.

Description

The **vsdchgserver** command allows the serving function for a global volume group defined on a primary node to be taken over by the secondary node, or to be taken over by the primary node from the secondary node. This allows an application to continue to use virtual shared disks in situations where the cable or adapter between the physical disks and one of the attached nodes is not working.

The Recoverable Virtual Shared Disk subsystem automatically updates the virtual shared disk devices if, and only if, the **vsdchgserver** command is used to flip the currently-defined primary node and secondary node in the global volume group specified in the $-\mathbf{g}$ flag.

Security

You must have root privilege to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Refer to PSSP: Managing Shared Disks for information on how to use this command in writing applications.

Location

/usr/lpp/csd/bin/vsdchgserver

Examples

To change the primary server node for the global volume group node12vg to node 1 and the secondary node to node 2, with EIO recovery, enter:

vsdchgserver -g node12vg -p 1 -b 2 -o 1

vsddiag

Purpose

vsddiag - Displays information about the status of virtual shared disks.

Syntax

vsddiag

Flags

None.

Operands

None.

Description

This command displays information about virtual shared disks that can help you determine their status and collect information that helps IBM service representatives diagnose system problems.

Note: The **vsddiag** command can only be used when no virtual shared disk I/O is in progress.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/vsddiag

Related Information

Commands: vsdatalst, vsdsklst

Examples

To display information about the virtual shared disks in your system or system partition, enter:

vsddiag

If all virtual shared disks are created and configured correctly, the output is:

Checking server vsds

Checking VSD request sequence number.

Checking device drivers.

end of vsdlldiag:checkvsdll program.

If there are no virtual shared disks defined, the output is:

k5n02.ppd.pok.ibm.com

VSD ERROR:3:No IBM Virtual Shared Disks are configured on this node.

k5n01.ppd.pok.ibm.com

VSD ERROR:3:No IBM Virtual Shared Disks are configured on this node.

Checking server vsds Checking VSD request sequence number. Checking device drivers.

end of vsdlldiag:checkvsdll program.

If there is something wrong with the virtual shared disks, the output is:

k5n02.ppd.pok.ibm.com

VSD_ERROR:3:No IBM Virtual Shared Disks are configured on this node.

k5n01.ppd.pok.ibm.com

VSD ERROR:3:No IBM Virtual Shared Disks are configured on this node.

Checking server vsds

Checking VSD request sequence number.

Checking device drivers.

vsdlldiag:checkvsdll: 0034-619 Device driver on node 14 is not at the same level as others on this SP system or system partition. vsdlldiag:checkvsdll: 0034-620 VSD Maximum IP Message Size on node 14 is not at the same level as others on this SP system or system partition.

vsdelnode

Purpose

vsdelnode – Removes IBM Virtual Shared Disk information for a node or series of nodes from the System Data Repository (SDR).

Syntax

vsdelnode node_number ...

Flags

None.

Operands

node_number Specifies the number attribute assigned to a node in the SDR.

Description

This command is used to remove IBM Virtual Shared Disk data for a node or series of nodes from the SDR.

The **vsdelnode** command makes the listed nodes no longer virtual shared disk nodes so that no virtual shared disks can be accessed from them. This command is unsuccessful for any nodes that are servers for any global volume groups.

You can use the System Management Interface Tool (SMIT) to run the **vsdelnode** command. To use SMIT, enter:

smit delete_vsd

and select the Delete Virtual Shared Disk Node Information option.

Security

You must be in the **bin** group to run this command.

Restrictions

If you have the Recoverable Virtual Shared Disk software installed and operational, do not use this command. The results may be unpredictable.

See PSSP: Managing Shared Disks.

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands: vsdatalst, vsdnode

Examples

To delete virtual shared disk node information for nodes 3 and 6, enter: vsdelnode 3 6

vsdelvg

Purpose

vsdelvg - Removes virtual shared disk global volume group information from the System Data Repository (SDR).

Syntax

vsdelvg [-f] global_group_name ...

Flags

−f Forces the removal of any virtual shared disks defined on this global volume group.

Operands

global_group_name Specifies the volume group that you no longer want to be

global to the system.

Description

Use this command to remove virtual shared disk global volume group information from the SDR. If any virtual shared disks are defined on a global volume group, the vsdelvg command is unsuccessful unless -f is specified. If -f is specified, any such virtual shared disks must be unconfigured and in the defined state on all the virtual shared disk nodes to be deleted.

You can use the System Management Interface Tool (SMIT) to run the vsdelvg command. To use SMIT, enter:

smit delete vsd

and select the Delete Virtual Shared Disk Global Volume Group Information option.

Security

You must be in the **bin** group to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/vsdelvg

Related Information

Commands: undefvsd, vsdatalst, vsdvg

Examples

To delete the virtual shared disk information associated with global volume group vg1n1 from the SDR, enter:

vsdelvg vgln1

vsdnode

Purpose

vsdnode – Enters IBM Virtual Shared Disk information for a node or series of nodes into the System Data Repository (SDR).

Syntax

vsdnode node_number... adapter_name init_cache_buffer_count
 max_cache_buffer_count vsd_request_count rw_request_count
 min_buddy_buffer_size max_buddy_buffer_size max_buddy_buffers
 vsd_max_ip_msg_size

Flags

None.

Operands

node_number Specifies the node or nodes whose virtual shared disk

information is to be set as identified by the node_number

attribute of the SDR node class.

adapter_name Specifies the adapter name to be used for virtual shared

disk communications for the nodes specified. The adapter name must already be defined to the nodes. Note that the nodes involved in IBM Virtual Shared Disk

support must be fully connected so that proper communications can take place. Use **css0** to specify that the IBM Virtual Shared Disk device driver transmits data requests over the SP Switch. The **css0** adapter will be used the next time the IBM Virtual Shared Disk

device driver is loaded.

to an optoinal cache if you do not use the switch as your

adapter. The recommended value is 256.

max cache buffer count Specifies the maximum number of buffers to be used for

virtual shared disk caching for the nodes specified. The recommended initial value is 256. If you use the switch

as your adapter, no cache buffer is allocated.

vsd_request_count Specifies the number of outstanding virtual shared disk

requests for the nodes specified. The recommended

value is 256.

rw_request_count Specifies the number of outstanding read and write

requests the virtual shared disk issues at one time to each logical volume for the nodes specified. The recommended value for a server node is 48.

min_buddy_buffer_size Specifies the smallest buddy buffer a server uses to

satisfy a remote request to a virtual shared disk. This value must be a power of 2 and greater than or equal to 4096. IBM suggests using a value of 4096 (4KB). For a 512 byte request, 4KB is excessive. However, recall that

a buddy buffer is only used for the short period of time while a remote request is being processed at the server node.

max_buddy_buffer_size

Specifies the largest buddy buffer a server uses to satisfy a remote noncached request. This value must be a power of 2 and greater than or equal to the *min_buddy_buffer_size*. IBM suggests using a value of 262144 (256KB). This value depends on the I/O request size of applications using the virtual shared disks and the network used by the IBM Virtual Shared Disk software.

max buddy buffers

This value should be the same on all nodes in a system partition. The buddy buffer is pinned kernel memory allocated when the IBM Virtual Shared Disk device driver is loaded the first time a virtual shared disk is configured (and freed when the last virtual shared disk is unconfigured). The size of the buddy buffer affects the number of remote requests the virtual shared disk server node can handle at one time. Remote requests can queue while waiting for a buddy buffer. **statvsd** reports this queuing as buddy buffer shortages. Use this number to select the buddy buffer size for your environment. IBM suggests using a value of 2 initially, resulting in a 512KB buddy buffer for the switch.

Note: If the application issues requests larger than 64KB, the number of buddy buffers can be increased, depending on the size of the requests.

vsd_max_ip_msg_size

Specifies the maximum message size in bytes for virtual shared disks. If you use SMIT to define the virtual shared disk node, the default is 24576 (24KB); otherwise, the default is none. If you are using the switch as your adapter, the recommended value is 61440 (61KB).

Description

Use this command to make the specified nodes virtual shared disk nodes and to assign their IBM Virtual Shared Disk operational parameters. The operational parameters are: adapter name, initial cache buffer count, maximum cache buffer count, read/write request count, virtual shared disk request count, and buddy buffer parameters. If this information is the same for all nodes, run this command once. If the information is different for the nodes, run this command once for each block of nodes that should have the same virtual shared disk information.

You can use the System Management Interface Tool (SMIT) to run the **vsdnode** command. To use SMIT, enter:

smit vsd data

and select the IBM Virtual Shared Disk Node Information option.

Security

You must be in the **bin** group to run this command.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/vsdnode

Related Information

Commands: updatevsdnode, vsdatalst, vsdelnode

Refer to PSSP: Managing Shared Disks for defining virtual shared disk information in the SDR.

Examples

The following example adds SDR information for a css0 network and nodes 1 through 8 with css0 being the adapter name used for virtual shared disk communications. Initially, this is accomplished with 64 cache buffers and with a maximum of 256 cache buffers to be used for IBM Virtual Shared Disk support, with allowance for 48 outstanding read/write requests per virtual shared disk and 256 outstanding virtual shared disk requests per node with two 256KB max_buddy_buffers and a 4KB min_buddy_buffer_size.

vsdnode 1 2 3 4 5 6 7 8 css0 64 256 256 48 4096 65536 2 262144

vsdsklst

Purpose

vsdsklst – Produces output that shows you the disk resources used by the IBM Virtual Shared Disk subsystem across a system or system partition.

Syntax

vsdsklst [-v] [-d] {-a | -n node_number[, node_number2, ...]} [-G]

Flags

- –v Displays only disk utilization information about volume groups and the virtual shared disks associated with them.
- -d Displays only disk utilization information about volume groups and the physical disks associated with them.
- Displays specified information for all nodes in the system or system partition.
- -n node_number

Lists one or more node numbers for which information is to be displayed.

–G Displays global disk information (across system partitions).

Operands

None.

Description

Use this command to check disk utilization across a system or system partition.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/vsdisklist

Related Information

Command: vsdatalst

Examples

This command:

vsdsklst -dv -a

displays the following information on a system that has volume groups and virtual shared disks defined on nodes 1, 3, 5, 7, 10, and 12. Node 5 is temporarily inactive.

```
k7n12.ppd.pok.ibm.com
Node Number:12; Node Name:k7n12.ppd.pok.ibm.com
   Volume group:rootvg; Partition Size:4; Total:537; Free:315
        Physical Disk:hdisk0; Total:537; Free:315
    Volume group:vsdvg; Partition Size:4; Total:537; Free:533
        Physical Disk:hdisk1; Total:537; Free:533
        VSD Name:1HsD8n12{1v1HsD8n12}; Size:2
       VSD Name:1HsD20n12{1v1HsD20n12}; Size:2
k7n01.ppd.pok.ibm.com
Node Number:1; Node Name:k7n01.ppd.pok.ibm.com
    Volume group:rootvg; Partition Size:4; Total:537; Free:210
        Physical Disk:hdisk0; Total:537; Free:210
    Volume group:vsdvg; Partition Size:4; Total:537; Free:533
        Physical Disk:hdisk1; Total:537; Free:533
        VSD Name:1HsD1n1{1v1HsD1n1}; Size:2
       VSD Name:1HsD13n1{1v1HsD13n1}; Size:2
k7n05.ppd.pok.ibm.com
No response
k7n10.ppd.pok.ibm.com
Node Number:10; Node Name:k7n10.ppd.pok.ibm.com
   Volume group:rootvg; Partition Size:4; Total:537; Free:303
        Physical Disk:hdisk0; Total:537; Free:303
       VSD Name:vsdn10v1{lvn10v1}; Size:4
       VSD Name:vsdn10v2{lvn10v2}; Size:4
        VSD Name:vsdn10v3{1vn10v3}; Size:4
    Volume group:vsdvg; Partition Size:4; Total:537; Free:533
        Physical Disk:hdisk1; Total:537; Free:533
       VSD Name:1HsD6n10{1v1HsD6n10}; Size:2
       VSD Name:1HsD18n10{\text{Tv1HsD18n10}}; Size:2
k7n03.ppd.pok.ibm.com
Node Number:3; Node Name:k7n03.ppd.pok.ibm.com
    Volume group:rootvg; Partition Size:4; Total:537; Free:269
        Physical Disk:hdisk0; Total:537; Free:269
        VSD Name:vsdn03v1{lvn03v1}; Size:4
       VSD Name:vsdn03v2{1vn03v2}; Size:4
        VSD Name:vsdn03v3{1vn03v3}; Size:4
    Volume group:vsdvg; Partition Size:4; Total:537; Free:533
        Physical Disk:hdisk1; Total:537; Free:533
        VSD Name:1HsD2n3{1v1HsD2n3}; Size:2
        VSD Name:1HsD14n3{1v1HsD14n3}; Size:2
```

```
k7n07.ppd.pok.ibm.com
Node Number:7; Node Name:k7n07.ppd.pok.ibm.com
    Volume group:rootvg; Partition Size:4; Total:537; Free:300
        Physical Disk:hdisk0; Total:537; Free:300
        VSD Name:vsdn07v1{lvn07v1}; Size:4
        VSD Name:vsdn07v2{1vn07v2}; Size:4
        VSD Name:vsdn07v3{1vn07v3}; Size:4
    Volume group:vsdvg; Partition Size:4; Total:537; Free:533
        Physical Disk:hdisk1; Total:537; Free:533
        VSD Name:1HsD4n7{1v1HsD4n7}; Size:2
        VSD Name:1HsD16n7{lv1HsD16n7}; Size:2
To view the output for a specific node, type:
vsdsklst -n 12
The output is:
k7n07.ppd.pok.ibm.com
Node Number:7; Node Name:k7n07.ppd.pok.ibm.com
    Volume group:rootvg; Partition Size:4; Total:537; Free:300
        Physical Disk:hdisk0; Total:537; Free:300
        VSD Name:vsdn07v1{lvn07v1}; Size:4
        VSD Name:vsdn07v2{1vn07v2}; Size:4
        VSD Name:vsdn07v3{1vn07v3}; Size:4
    Volume group:vsdvg; Partition Size:4; Total:537; Free:533
        Physical Disk:hdisk1; Total:537; Free:533
        VSD Name:1HsD4n7{1v1HsD4n7}; Size:2
        VSD Name:1HsD16n7{1v1HsD16n7}; Size:2
If both the rootvg and testvg volume groups are varied on, the system displays
output similar to the following:
Node Number:12; Node Name:k21n12.ppd.pok.ibm.com
    Volume group:rootvg; Partition Size:4; Total:537; Free:47
        Physical Disk:hdisk0; Total:537; Free:47
        VSD Name:1HsD1n12[1v1HsD1n12]; Size:5
        VSD Name:1HsD2n12[1v1HsD2n12]; Size:5
        VSD Name:vsd4n12[1vvsd4n12]; Size:4
        VSD Name:vsd5n12[1vvsd5n12]; Size:4
        VSD Name:vsd6n12[lvvsd6n12]; Size:4
    Volume group:testvg; Partition Size:4; Total:537; Free:313
        Physical Disk:hdisk1; Total:537; Free:313
        VSD Name:vsd14n12[lvvsd14n12]; Size:4
If the testvg volume group is not varied on, the system displays output similar to the
following:
Node Number:12; Node Name:k21n12.ppd.pok.ibm.com
    Volume group:rootvg; Partition Size:4; Total:537; Free:47
        Physical Disk:hdisk0; Total:537; Free:47
        VSD Name:1HsD1n12[1v1HsD1n12]; Size:5
        VSD Name:1HsD2n12[1v1HsD2n12]; Size:5
        VSD Name:vsd4n12[1vvsd4n12]; Size:4
        VSD Name:vsd5n12[lvvsd5n12]; Size:4
        VSD Name:vsd6n12[1vvsd6n12]; Size:4
    Volume group:testvg is not varied on.
        Physical Disk:hdisk1;
```

vsdsklst

Instead of issuing this command directly, you should use the appropriate SMIT panels to view it in the best format. To view information about volume groups, type:

smit lsvg

To view information about logical volumes, type:

smit lslv

To view information about physical volumes, type:

smit lspv

vsdvg

Purpose

vsdvg – Defines a virtual shared disk global volume group.

Syntax

vsdvg [-g global_group_name] local_group_name primary_server_node
 [secondary_server_node] [eio_recovery]

Flags

-g global_group_name

Specifies a unique name for the new global volume group. This name must be unique across the system partition. It should be unique across the SP, to avoid any naming conflicts during future system partitioning operations. The suggested naming convention is **vg**xxnyy, where yy is the node number, and xx uniquely numbers the volume groups on that node. If this is not specified, the local group name is used for the global name. The length of the name must be less than or equal to 31 characters.

Operands

local_group_name

Specifies the name of a volume group that you want to indicate as being used for virtual shared disks. This name is local to the host upon which it resides. The length of the name must be less than or equal to 15 characters.

primary_server_node

Specifies the primary server node on which the volume group resides. The length of the name must be less than or equal to 31 characters. This can be specified in four different ways:

- frame,slot
- · node number
- host name
- IP address

secondary_server_node

Specifies the secondary server node on which the volume group resides. The length of the name must be less than or equal to 31 characters.

This can be specified in four different ways:

- · frame,slot
- node number
- host name
- · IP address

Note: This operand is used only by the Recoverable Virtual Shared Disk subsystem.

eio recovery

If a secondary server node is not specified, the default is 0 for no recovery. If the secondary server node is specified, the default is 1.

Description

Use this command to define volume groups for use by the IBM Virtual Shared Disk subsystem. This is done by specifying the local volume group name, the node on which it resides, and the name by which the volume group will be known throughout the cluster.

If eio_recovery is set (to a value of 1) due to disk error (EIO error), the IBM Recoverable Virtual Shared Disk system will perform a full recovery by flipping the current primary node and the secondary node and doing one more retry on the new primary node.

You can use the System Management Interface Tool (SMIT) to run the vsdvg command. To use SMIT, enter:

smit vsd data

and select the Virtual Shared Disk Global Volume Group Information option.

Security

You must be in the **bin** group to run this command.

Restrictions

The secondary_server_node operand is used only by the Recoverable Shared Disk subsystem.

Prerequisite Information

PSSP: Managing Shared Disks

Location

/usr/lpp/csd/bin/vsdvg

Related Information

Command: vsdelvg

Examples

1. The following example adds SDR information indicating that the volume group known as vg2n17 on node 17 is available for global access and is known to the cluster as **vg2n17**. Node **17** is the primary and only server.

vsdvg vg2n17 17

2. The following example with the Recoverable Virtual Shared Disk subsystem adds SDR information indicating that the volume group known as vg1p3s15 on nodes 3 and 15 is available for global access and is known to the cluster as vg1p3s15. 3 is the primary server node and 15 is the secondary server node.

vsdvg vg1p3s15 3 15

vsdvgts

Purpose

vsdvgts – Reads the timestamp from the volume group descriptor area (VGDA) of the physical disks and sets the value in the System Data Repository (SDR).

Syntax

vsdvgts [-a] [volgrp]

Flags

-a Specifies that the timestamps for this volume group for both primary and secondary nodes should be updated. If this flag is not specified, the timestamp is updated on the local node only.

Operands

volgrp Specifies a volume group. If this operand is not specified, the timestamps for all the volume groups on this node are updated.

Description

Use this command to update the timestamp that the Recoverable Virtual Shared Disk subsystem uses to determine if a twin-tailed volume group has changed. When the subsystem detects a change, the recovery scripts export the volume group and then import the volume group.

This command can be used to avoid exporting the volume group and then importing the volume group during recovery in situations where the export and import operations are not really necessary. This command should be used very carefully.

Exit Values

- **0** Indicates the successful completion of the command.
- 1 Indicates that the program was unable to read one or more timestamps.

Security

You must have root privilege to issue the vsdvgts command.

Implementation Specifics

This command is part of the Recoverable Virtual Shared Disk optional component of PSSP.

Prerequisite Information

See PSSP: Managing Shared Disks.

vsdvgts

Location

/usr/lpp/csd/bin/vsdvgts

Examples

To update the timestamp associated with the virtual shared disk volume group vsdvg1 for just this node, enter:

vsdvgts vsdvg1

vsdvts

Purpose

vsdvts - Verifies that the IBM Virtual Shared Disk component works.

Syntax

vsdvts [-b block_size] [-n number_of_blocks] vsd_name [file]

Flags

-b Specifies the block_size used on the read and write calls to the virtual shared disk. Because the virtual shared disk raw device is used, the block size must be a multiple of 512. The default block size is 4096.

Specifies the number of blocks of the file to read. The default is to read 1MB of data from the file, so 1MB divided by block_size is the default number of blocks. Specifying 0 means to read as many full blocks of data as there are in the file. If more blocks are specified than are in the file, only the number of full blocks that exist will be used.

Operands

vsd_name Specifies the virtual shared disk to be verified (for example, that will

be written and read with the data from the file). The virtual shared disk should be in the active state. Ensure that the virtual shared disk is large enough to hold all the data you plan to write to it. A virtual shared disk on a logical volume with one physical system partition is large enough if all the **vsdvts** defaults are taken.

file Specifies the file to be written to the virtual shared disk to verify its

operation. The data is then read from the virtual shared disk and compared to this file to ensure the virtual shared disk read and write

operations are successful. The default file is /unix.

Description

Attention

Data on *vsd_name* and its underlying logical volume is overwritten and, therefore, destroyed. Use this command after you have defined a virtual shared disk (including its underlying logical volume), but **before** placing application data on it.

Use this command to verify that the *vsd_name* is in the active state and then to write the specified part of *file* to the raw *vsd_name* device, */dev/rvsd_name*. This command reads the data back from the virtual shared disk, then compares it to *file*. If the data is the same, the test is successful and *vsdvts* succeeds. Otherwise, *vsdvts* is unsuccessful. The *dd* command is used for all I/O operations.

Try **vsdvts** on both a server and client node (for example, on both the node with a logical volume and one without it).

Prerequisite Information

PSSP: Managing Shared Disks

Related Information

Commands: vsdnode, vsdvg, defvsd, cfgvsd, startvsd, dd

The preceding commands are listed in their order of use.

Examples

To verfiy that the IBM Virtual Shared Disk component works, choose a newly created vsd that has no application data on it, say vsd1, and enter:

vsdvts vsd1

wrap_test

Purpose

wrap_test – Checks the functionality of a link.

Attention

ATTENTION – **READ THIS FIRST:** Do **not** activate the SP Switch advanced diagnostic facility until you have read this section completely, and understand this material. If you are not certain how to properly use this facility, or if you are not under the guidance of IBM Service, do **not** activate this facility.

Activating this facility may result in degraded performance of your system. Activating this facility may also result in longer response times, higher processor loads, and the consumption of system disk resources. Activating this facility may also obscure or modify the symptoms of timing-related problems.

Syntax

wrap_test {[-j jack] [-sswitch_chip_id -p switch_chip_port]}
[-c cable_length] [-h]

Flags

- -j jack Specifies the Frame-Switch-BulkHead-Jack connected to the suspected link.
- -s switch_chip_id Specifies the ID of a switch chip connected to the suspected link.
- **-p** *switch_chip_port* Specifies the number of the switch chip port connected to the suspected link.
- **-c** cable_length Specifies the length of the cable in meters. The flag is applicable only to the links connecting two switches. The default value is 10 m.
- **-h** Displays usage information.

Operands

None.

Description

The **wrap_test** command checks the functionality of a suspected link, and points to the faulty part of the link that should be replaced. You must specify either the Frame-Switch-BulkHead-Jack, or the *switch_chip_id* and *switch_chip_port* number that identify the switch chip port connected to the link. If the suspected link connects two switches, you might also specify the *cable_length* parameter. This will help the wrap test to choose the correct technique for the cable testing.

If the link under test connects a switch to a node, you are required to fence the node before running the test. If the link under test connects two switches, the link will be disabled during the test.

Location

/usr/lpp/ssp/bin/spd/wrap_test

Examples

1. To test the link connected to jack 6 of switch 17 of frame 1 with a 15 m cable (switch - switch link), enter:

2. To test the link connected to port 3 of switch chip 23 enter:

Part 2. Technical Reference

This part of the book contains RS/6000 SP Files and Other Technical Information and SP Subroutines.

© Copyright IBM Corp. 1998, 1999

Chapter 2. RS/6000 SP Files and Other Technical Information

© Copyright IBM Corp. 1998, 1999

auto.master File

Purpose

auto.master - Specifies the master input file to the AIX automount daemon defining the file systems to be controlled and their associated map files.

Description

The auto.master file is the master map file for the AIX automount daemon. It identifies the file systems that are to be controlled by the automounter and the directory map file associated with each file system. It may also contain default mount information for specific file systems. The auto.master file may reference a Network Information Service (NIS) configuration map that is to be used by the automounter. Entries in the master map file use one of the following formats:

+NIS map

Directory path Automount map name [default mount options]

The first form specifies an NIS configuration map that contains mount point and automounter map information. The second form directly identifies the directory path of the file system that is to be controlled by the automounter, along with the map file containing entries for the supported directories within that file system. Default options to be used when the file system is mounted can be optionally specified.

Files

/etc/auto.master

Specifies map files for the AIX automount daemon.

Related Information

AIX Daemons: automount

The "Managing the Automounter" chapter in PSSP: Administration Guide

The "Network File System (NFS)" and "Network Information Service (NIS)" chapters in AIX Version 4 System Management Guide: Communications and Networks

Examples

The following example is a copy of the default auto.master file shipped with the SP modified to support an NIS configuration map:

The following entry will use the NIS configuration map if NIS is

defined for this system and the database exists

+auto master

The following entry provides automount support for users' home

directories

/u /etc/auto/maps/auto.u -rw,hard,retry=3,timeo=40,rsize=4096, \ wsize=4096

bootptab.info File

Purpose

/etc/bootptab.info – Specifies the hardware ethernet addresses of SP nodes.

Description

The **/etc/bootptab.info** file contains a list of nodes with their hardware ethernet addresses. It is used by the **sphrdwrad** command during node conditioning to save time in obtaining the hardware ethernet addresses. Each line of the **bootptab.info** file contains two tokens. The first token represents the node, and the second token represents the hardware ethernet address. This information may be input in one of two formats:

node number hardware ethernet address

or

frame, slot hardware ethernet address

Related Information

Commands: sphrdwrad

Examples

The following is an example of a **bootptab.info** file for a single framed system that contains four high nodes:

1 02608CE8764D

5 02608CE87174

1,9 02608CE87180

13 02608CE8618B

haemloadlist File

Purpose

haemloadlist File - Event Management configuration data that is to be loaded into the System Data Repository (SDR)

Description

RS/6000 Cluster Technology (RSCT), which is included with the IBM Parallel System Support Programs (PSSP) Licensed Program Product (LPP), contains a number of resource monitors that use the Resource Monitor Application Programming Interface (RMAPI) to supply information about system resources to the Event Management subsystem. Information about the monitors and the resources is defined in the **haemloadlist** file and includes:

- The resource variables from which events may be generated
- · The resource IDs for each resource variable
- The classes in which the resource variables are grouped
- The resource monitors that supply the variables.

Before the Event Management subsystem can use this information, it must first be loaded into the System Data Repository (SDR) and then compiled into a binary Event Management Configuration Database (EMCDB) file. The haemloadcfg command is used to load the data from the haemloadlist file into the SDR. The haemcfg command is then used to compile the data from the SDR into the binary EMCDB file. Both of these commands are issued automatically by the haemctrl command when it is used to start the Event Management subsystem on the control workstation.

For resource monitors other than those supplied by RSCT, you must create one or more separate files in load list format to contain their Event Management configuration data. You can specify the name of any file in load list format on the haemloadcfg command.

You can use SDR commands to work with objects in the Event Management classes directly. However, IBM suggests that you use load list files and the haemloadcfg command to work with objects in these classes. The haemloadcfg command provides validation, unique to the Event Management configuration data, not available in the SDR commands.

You cannot use System Management Interface Tool (SMIT) panels to work with objects in these classes.

The Format of an Event Management Load List File

Source information for the EMCDB is kept in the several partitioned classes in the SDR, each of which has a set of associated attributes. The format of an Event Management load list file, which can be used as input to the haemloadcfg command, follows the structure of the Event Management data in the SDR.

This man page describes the format of the Event Management load list file. For detailed information about its content (the Event Management SDR classes,

attributes, and their values), see the description of the EMCDB in *PSSP: Event Management Programming Guide and Reference*.

The **haemloadlist** file consists of stanzas, each of which describes an object in one of the Event Management SDR classes. The stanzas may appear in any order in the file.

Each stanza begins with the SDR class name to which the object belongs, followed by one or more lines that define the attributes of the object. The SDR class name must begin in column 1.

An attribute line consists of leading whitespace (blanks or tabs) followed by the attribute name followed by an = (equal sign) followed by a data field. The = (equal sign) may not be surrounded by blank spaces. The data field consists of a single value for the attribute. If the field contains blanks, it must be surrounded by double quotes ("). If the field contains a double quote character, it should be preceded by a backslash (\"). If the field contains a backslash character, it should be preceded by a second backslash (\").

The data field must be on the same line as the attribute. The attribute lines for a stanza stop at either the start of a new stanza or at the end of the file.

Comments may be present in the file. Any line in which the first nonwhite space character is a pound sign (#) is a comment. Blank lines are also considered comment lines and are ignored.

The EM Resource Variable Stanza

The **EM_Resource_Variable** SDR class contains one object for each resource variable defined in the database. Accordingly, there is one **EM_Resource_Variable** stanza for each resource variable that is defined.

Here is an example of a stanza that defines a resource variable of type Quantity:

Here is an example of a stanza that defines a resource variable of type State:

The EM_Structured_Byte_String Stanza

The **EM_Structured_Byte_String** SDR class contains one object for each structured field that is defined in a structured byte string. Accordingly, there is one **EM_Structured_Byte_String** stanza for each structured field that is defined.

The **IBM.PSSP.Prog.pcount** resource variable is an SBS that has three structured fields. Here is an example of the stanzas that define the fields:

The EM Resource ID Stanza

The **EM_Resource_ID** SDR class contains one object for each resource ID element that is defined for a resource and all of its resource variables. Accordingly, there is one **EM_Resource_ID** stanza for each resource ID element that is defined.

Here are some examples of stanzas that define resource IDs. The resource ID for the resource named **IBM.PSSP.aixos.PagSp** contains only one resource ID element. The resource ID for the resource named **IBM.PSSP.Prog** contains three elements.

```
EM Resource ID
        riResource_name="IBM.PSSP.aixos.PagSp"
        riElement name="NodeNum"
        riElement description="701"
EM Resource ID
        riResource name="IBM.PSSP.Prog"
        riElement name="UserName"
        riElement_description="701"
EM Resource ID
        riResource name="IBM.PSSP.Prog"
        riElement name="ProgName"
        riElement description="701"
EM Resource ID
        riResource_name="IBM.PSSP.Prog"
        riElement name="NodeNum"
        riElement_description="701"
```

The EM_Resource_Class Stanza

The **EM_Resource_Class** SDR class contains one object for each resource variable class that is defined in the database. Accordingly, there is one **EM_Resource_Class** stanza for each resource variable class that is defined.

Here are two examples of stanzas that define resource classes:

The EM_Resource_Monitor Stanza

The **EM_Resource_Monitor** SDR class contains one object for each resource monitor that is defined in the database. Accordingly, there is one **EM_Resource_Monitor** stanza for each resource monitor that is defined.

Here are some examples of stanzas that define resource monitors:

```
EM_Resource_Monitor
        rmName="IBM.PSSP.harmpd"
        rmPath="/usr/lpp/ssp/bin/haemRM/harmpd"
        rmMessage file="PEM.cat"
        rmMessage set="2"
        rmConnect type="server"
        rmPTX prefix="0"
        rmPTX_description="0"
        rmPTX_asnno="0"
EM Resource Monitor
        rmName="IBM.PSSP.harmld"
        rmPath="/usr/lpp/ssp/bin/haemRM/harmld"
        rmMessage file="harm des.cat"
        rmMessage set="1"
        rmConnect type="server"
        rmPTX prefix="IBM/PSSP.harmld"
        rmPTX description="1,2"
        rmPTX_asnno="2"
```

Related Information

Commands: haemcfg, haemloadcfg

For a general overview of configuring Event Management, see "The Event Management Subsystem" chapter of *PSSP: Administration Guide*.

For a description of the SDR classes and attributes that are related to the EMCDB, see *PSSP: Event Management Programming Guide and Reference*.

hmacls File

Purpose

/spdata/sys1/spmon/hmacls – Defines the Access Control Lists (ACLs) used by the Hardware Monitor daemon.

Description

The **/spdata/sys1/spmon/hmacls** file contains permission specifications for users to execute the various Hardware Monitor operations. Each line in the file consists of three white-space separated tokens in the following format:

obj user_name permissions

The *obj* token is either a frame ID or the host name of the control workstation (known as the Monitor and Control Node (MACN) by the Hardware Monitor). The *user_name* token is the user's principal name or principal name and instance.

The *permissions* token specifies which operations the user specified by the *user_name* token can execute against the object specified by the *obj* token.

If the *obj* token is a frame ID, the *permissions* token is one or more characters taken from the set **v**, **s**, and **m**. A definition of each follows:

- v Specifies Virtual Front Operator Panel (VFOP) permission
- s Specifies S1 permission
- m Specifies Monitor permission

The VFOP permission implies the monitor permission. These permissions are described in the various commands. If the *obj* token is the MACN host name, the *permissions* token must be the character **a**. The character **a** is the administrative permission required to use the **hmadm** command.

Users are authorized to use the Hardware Monitor by virtue of having their names in the /spdata/sys1/spmon/hmacls file and have issued the k4init command with that name.

Files

/spdata/sys1/spmon/hmacls

Specifies ACLs for the Hardware Monitor daemon.

Related Information

Commands: hmadm, hmcmds, hmmon, nodecond, s1term

Examples

The following is an example of a hmacls file:

```
workstn3.kgn.ibm.com john.admin a
1 john.admin vsm
2 john.admin vsm
3 john.admin vsm
1 mary m
2 mary m
3 mary m
```

hmthresholds File

Purpose

hmthresholds – provides a software mechanism for applying threshold values to SP Frame, Node, and Switch environmental conditions such as voltage, amperage, and temperature. The Hardware Monitor (**hardmon**), with the aid of the Logging Daemon (**splogd**), provides notification to the ERRPT when an applied threshold value is crossed. This software checking, if enabled, is done in parallel with the internal self-checking done by the hardware itself.

Description

The **/spdata/sys1/spmon/hmthresholds** file contains threshold values in the form of low/high warning conditions, and low/high shutdown conditions. Each line in the file, excluding comment lines, which begin with a # (pound sign) in column one, consists of at least three white-space separated tokens in the following format:

```
node_type low_value high_value [ [low_value high_value] [... ...] ]
```

The **node_type** token is the value of the Hardware Monitor variable "type" which is the definitive identifier for the SP Supervisor card that is installed in the hardware for any given slot. Use the **hmmon** command to obtain the value of the variable "type" for a given node.

For example, using an SP2 wide node with 4.0 volt power:

```
$ hmmon -G -Q -v type 1:1
frame 001, slot 01:
supervisor type 0x0051
```

low_value and **high_value** are token pairs that are the low/high values for the environmental condition you want to threshold.

For example, examine the following excerpt from the /spdata/sys1/spmon/hmthresholds file.

```
#### SP2 wide node w/4.0 volt power:
       VOLTP5M
                 VOLTP12
                           VOLTN12
                                      VOLTP5I
                                                 TEMP
                                                          VOLTP4
      low high low high low high low high low high
# Warning thresholds
                                               0x00 45.0 3.46 4.2
# 0x51 4.75 5.4
                11.0 13.0 11.0 13.0 4.75 5.4
# Shutdown thresholds
# 0x51 4.50 5.75 10.2 13.8 10.2 13.8 4.50 5.75 0x00 60.0 3.28 4.4
# Software thresholding disabled
 0x51 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff
```

The node_type is 0x51. It is an SP2 wide node w/4.0 volt power. There are three sets of token pairs defined (only one is uncommented). Each of the three sets contain six token pairs. The six token pairs are the low/high threshold values for, in order from left to right, +5 volts memory, +12 volts, -12 volts, +5 volts I/O, temperature, and +4 volts. The first set establishes warning thresholds, the second establishes shutdown thresholds. The last set, which is the one used by the Hardware Monitor since its the one that's uncommented, effectively disables environmental checking since the low/high value pairs are set to maximum low and maximum high.

For hardware that does not report environmental conditions there is a dummy entry in the **/spdata/sys1/spmon/hmthresholds** file. Recall that at least three white-space separated tokens are required for each SP hardware type supported by the Hardware Monitor.

For example, examine the following excerpt from the /spdata/sys1/spmon/hmthresholds file for an SP Switch and Twin-Tail Frame hardware in basecode, or non-active, mode:

```
#
# #### SP Switch - base code only; no supervisor:
# DUMMY (cardtype has no A/D registers)
# low high
# Software thresholding disabled
0x80 0x00 0xff
#
# #### twin-tail frame - base code only; no supervisor:
# DUMMY (cardtype has no A/D registers)
# low high
# Software thresholding disabled
0x10 0x00 0xff
```

Enabling Software Thresholding

Software thresholding can be enabled in one of following ways:

- Use the Released Values: Since the /spdata/sys1/spmon/hmthresholds file
 is released with nominal warning and shutdown values you would need to
 simply decide which environmental condition you wish to monitor (warning or
 shutdown) and uncomment the appropriate line for that hardware type. The
 released values coincide with the values that the hardware itself uses to
 perform hardware out-of-spec thresholding, or said another way, internal
 self-checking.
- Make Up Your Own: You could code your own low/high values. If you code
 your own values, it's recommended that, instead of modifying the warning or
 shutdown line itself, you add a new line thereby preserving the released values.

Low/high threshold values (token pairs) are coded as either decimal (base 10), or hex. Temperatures are in Celsius. Volts are volts. Amps are amps. You can enable any number of threshold low/high pairs. In other words, you need not enable all of the value pairs if it is only a subset of them that you are interested in

For example, assume that you suspect the room temperature is causing SP2 wide nodes w/4.0 volt power to overheat and you want to be notified in advance of the released warning threshold.

```
#
#
 #### SP2 wide node w/4.0 volt power:
       VOLTP5M VOLTP12 VOLTN12
                                     VOLTP5I
                                                TEMP
                                                          VOLTP4
#
      low high low high low high low high low high
# Warning thresholds
# 0x51 4.75 5.4
               11.0 13.0 11.0 13.0 4.75 5.4 0x00 45.0 3.46 4.2
# Shutdown thresholds
# 0x51 4.50 5.75 10.2 13.8 10.2 13.8 4.50 5.75 0x00 60.0 3.28 4.4
# Software thresholding disabled
# 0x51 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff
# Software thresholding enabled
 0x51 0x00 0xff 0x00 0xff 0x00 0xff 0x00 0xff 0x00 35.0 0x00 0xff
```

In the example, note that a temperature limit of 35 degrees Celsius has been coded (it's the uncommented line and again the only one that the Hardware Monitor will read). All other threshold values on that same line remain disabled. This does not mean that the node will never get hotter than 35 degrees. It means that you will be notified when this temperature is reached.

Deciding What Threshold Value To Use

Using the **hmmon** command you can query the Hardware Monitor for the nodes' environmental values. If you query more than once, with a 5 second lapse between queries (the Hardware Monitor refreshes itself with hardware state data every 5 seconds), you should begin to see a pattern develop. The information returned will provide insight into what values to use when coding your own low/high threshold pairs.

For example, using an SP2 wide node with 4.0 volt power:

```
$ hmmon -Q -s -v temp 1:1
   1 temp
                            36.480 0x9034 temperature
$ hmmon -Q -s -v temp 1:1
1
   1 temp
                            38.916 0x9034 temperature
$ hmmon -Q -s -v temp 1:1
                            39.212 0x9034
                                           temperature
   1 temp
$ hmmon -Q -s -v temp 1:1
                            38.882 0x9034 temperature
   1 temp
```

In the example, you can see that the nodes' temperature seems to be hovering around 38-39 degrees. This is only 6 or 7 degrees below the established nominal warning condition. You may choose to establish a high warning threshold value of approximately 40 degrees.

Note: When using the **hmmon** command to obtain environmental values be sure to use the "-s (symbolic)" flag. This flag causes hmmon to apply a scalar to the environmental value before displaying it. With the scalar applied, the values can be interpreted as "real-life" values. Again, with temperatures in Celsius, volts as volts, and amps as amps.

hmmon "-r (raw)" and "default" formats do not cause hmmon to apply the scalar value. These two formats display information exactly as it's obtained from the Hardware Monitor - to be more specific, from the hardware itself which holds the values in a "normalized" format.

Environmental Condition Notification

Environmental condition checking and notification comes in two flavors, Hardware Out-Of-Spec Notification and Software Out-Of-Range Notification.

Hardware Out-Of-Spec Notification: A hardware out-of-spec condition occurs
when the Frame, Node, or Switch Supervisor determines that the hardware is
operating outside the scope of its established warning or shutdown limits.
These established limits are kept internal to the hardware and cannot be
modified through /spdata/sys1/spmon/hmthresholds.

If a hardware out-of-spec environmental condition occurs the Frame, Node, or Switch Supervisor will alert the Hardware Monitor. **hardmon** will in turn report the out-of-spec state to interested parties, such as the Logging Daemon. **splogd** will cut an ERRPT entry. This all happens regardless of whether software thresholding is enabled or disabled. That is, it is a function of the hardware itself.

The following is an example of the hardware out-of-spec environmental states for an SP2 wide node w/4.0 volt power:

```
$ hmmon -G -Q -s 1:1
 1
     1 warningN12Low
                             FALSE
                                      0x9073
                                              -12 volt low warning
 1
                             FALSE
                                      0x9074
                                              -12 volt low shutdown
     1
        shutdownN12Low
 1
     1 warningN12High
                             FALSE
                                      0x9075 -12 volt high warning
 1
        shutdownN12High
                             FALSE
                                      0x9076 -12 volt high shutdown
 1
        warningP12Low
                             FALSE
                                      0x9064 +12 volt low warning
     1
 1
     1
        shutdownP12Low
                             FALSE
                                      0x9065 +12 volt low shutdown
                                      0x9062 +12 volt high warning
 1
     1
        warningP12High
                             FALSE
 1
     1
        shutdownP12High
                             FALSE
                                      0x9063 +12 volt high shutdown
 1
        warningP5mLow
                             FALSE
                                      0x907b +5m volt low warning
 1
                             FALSE
                                      0x907c +5m volt low shutdown
     1 shutdownP5mLow
 1
     1
        warningP5mHigh
                             FALSE
                                      0x907d +5m volt high warning
 1
     1
        shutdownP5mHigh
                             FALSE
                                      0x907e +5m volt high shutdown
 1
     1
        warningP5iLow
                             FALSE
                                      0x907f +5i volt low warning
 1
                             FALSE
                                      0x9080 +5i volt low shutdown
        shutdownP5iLow
 1
     1
        warningP5iHigh
                             FALSE
                                      0x9081 +5i volt high warning
 1
     1
        shutdownP5iHigh
                             FALSE
                                      0x9082
                                              +5i volt high shutdown
 1
     1 fanwarning5
                             FALSE
                                      0x9055 fan 5 warning
 1
     1 fanfail5d
                             FALSE
                                      0x9070 fan 5 delayed shutdown
 1
     1 warningTemp
                             FALSE
                                      0x9058 temperature warning
 1
     1 shutdownTemp
                             FALSE
                                      0x9059
                                              temperature shutdown
 1
        warningP4Low
                             FALSE
                                      0x9087
                                              +4 volt low warning
 1
                                      0x9088 +4 volt low shutdown
     1
        shutdownP4Low
                             FALSE
 1
     1
        warningP4High
                             FALSE
                                      0x9089 +4 volt high warning
 1
     1
        shutdownP4High
                             FALSE
                                      0x908a +4 volt high shutdown
 1
     1 fanwarning1
                             FALSE
                                      0x904d fan 1 warning
 1
     1 fanfailld
                             FALSE
                                      0x906b fan 1 delayed shutdown
 1
     1 fanwarning2
                             FALSE
                                      0x904f fan 2 warning
 1
     1 fanfail2d
                             FALSE
                                      0x906c fan 2 delayed shutdown
 1
     1 fanwarning3
                             FALSE
                                      0x9051 fan 3 warning
 1
                                      0x906e fan 3 delayed shutdown
     1
        fanfail3d
                             FALSE
 1
     1
        fanwarning4
                             FALSE
                                      0x9053
                                              fan 4 warning
 1
     1 fanfail4d
                                      0x906f fan 4 delayed shutdown
                             FALSE
```

In the example, there are no hardware out-of-spec conditions since the environmental states are not asserted. That is, they are all FALSE.

Software Out-Of-Range Notification: A software out-of-range assertion occurs
when the Hardware Monitor detects that the nodes' environmental condition has
either fallen below the low threshold value coded in
/spdata/sys1/spmon/hmthresholds, or has risen higher than the high
threshold value coded in /spdata/sys1/spmon/hmthresholds. For both of

these cases the Hardware Monitor will transition the software out-of-range environmental state to TRUE.

The software out-of-range environmental state will transition to FALSE when the Hardware Monitor detects that the nodes' environmental condition has settled between the low/high threshold value coded in

/spdata/sys1/spmon/hmthresholds. That is, has either crossed the low or high value toward the norm, or average value.

The following is an example of the software out-of-range environmental states for an SP2 wide node w/4.0 volt power.

```
$ hmmon -G -Q -s 1:1
 1 1 voltP5mRange
                            FALSE
                                    0x9092 +5 mem volts out of range
 1 1
        voltP12Range
                            FALSE
                                    0x908e +12 voltage out of range
 1 1
        voltN12Range
                            FALSE
                                    0x9091 -12 voltage out of range
 1 1
                                    0x9090 +5 I/0  volts out of range
        voltP5iRange
                            FALSE
 1 1
        tempRange
                            FALSE
                                    0x9084 temperature out of range
                            FALSE
 1 1
        voltP4Range
                                    0x9093 +4 voltage out of range
```

In the example, there are no software out-of-range conditions since the environmental states are not asserted. That is, they are all FALSE. Note that the environmental states end with the suffix "Range". This is true of all software out-of-range environmental state variables.

If a software out-of-range environmental condition were to occur the Hardware Monitor would report the out-of-range state to interested parties, such as the Logging Daemon, by transitioning the state to TRUE. splogd will cut an ERRPT entry.

The following is an example of an ERRPT entry for a temperature out-of-range condition:

LABEL: SPMON_INFO103_TR

IDENTIFIER: 0D1620A8

Date/Time: Thu Jul 9 12:15:04

Sequence Number: 47977

Machine Id: 000044587000

Node Id: k4s
Class: H
Type: UNKN
Resource Name: sphwlog
Resource Class: NONE
Resource Type: NONE
Location: NONE

Description

THRESHOLD HAS BEEN EXCEEDED

Probable Causes POWER SUBSYSTEM COOLING FAN THERMAL DETECTOR

Failure Causes POWER SUBSYSTEM COOLING FAN THERMAL DETECTOR

Recommended Actions NONE

Detail Data
DETECTING MODULE
LPP=PSSP,Fn=splogd.c,SID=1.16.1.16,L#=925,
DIAGNOSTIC EXPLANATION
Information; Node 1:1; tempRange; Value out of range.

If the software out-of-range environmental condition was to transition toward the norm, or average value, the Hardware Monitor would transition the state to FALSE and notify interested parties such as the Logging Daemon. **splogd** will cut an ERRPT entry.

The following is an example of an ERRPT entry for a temperature out-of-range condition that transitioned to FALSE:

LABEL: SPMON INFO104 TR

IDENTIFIER: E91A5929

Date/Time: Thu Jul 9 12:15:09

Sequence Number: 47978

Machine Id: 000044587000 Node Id: k4s Н Class: .. TEMP Type: Resource Name: sphwlog Resource Class: NONE Resource Type: NONE NONE Location:

Description PROBLEM RESOLVED

Probable Causes POWER SUBSYSTEM COOLING FAN THERMAL DETECTOR UNDETERMINED

Failure Causes POWER SUBSYSTEM COOLING FAN THERMAL DETECTOR

> Recommended Actions NONE

Detail Data DETECTING MODULE LPP=PSSP,Fn=splogd.c,SID=1.16.1.16,L#=925, DIAGNOSTIC EXPLANATION Information; Node 1:1; tempRange; Condition cleared.

Implementation Specifics

This file is part of the PSSP **ssp.basic** fileset.

Files

/spdata/sys1/spmon/hmthresholds

Related Information

Commands: hmmon

Subsystems: Hardware Monitor (hardmon), Logging Daemon (splogd)

Examples

The following is an example of the software out-of-range environmental states for an SP2 wide node w/4.0 volt power.

\$ hm	mon	-G -Q -s 1:1			
1	1	voltP5mRange	FALSE	0x9092	+5 mem volts out of range
1	1	voltP12Range	FALSE	0x908e	+12 voltage out of range
1	1	voltN12Range	FALSE	0x9091	-12 voltage out of range
1	1	voltP5iRange	FALSE	0x9090	+5 I/O volts out of range
1	1	tempRange	FALSE	0x9084	temperature out of range
1	1	voltP4Range	FALSE	0x9093	+4 voltage out of range

hwevents File

Purpose

hwevents – Contains state change actions that are to be performed by the logging daemon (**splogd**). The Hardware Monitor (**hardmon**) detects these state changes, and notifies the logging daemon. The Logging Daemon (**splogd**) can perform three different operations, based on information in **hwevents**. It can 1) write state changes to the ERRPT, 2) write state changes to a log file, 3) run user exits when specified state changes occur.

Description

The /spdata/sys1/spmon/hwevents file contains lines that specify one of the three operations described in the Purpose section. Each line in the file, excluding comment lines, which begin with a # (pound sign) in column one, consists of at least seven white-space separated tokens in the following format:

frame slot variable operator value time function [argument [... ...]]

Following is a description of these tokens:

frame Specifies a frame number (1-n) or * for all frames.

slot Specifies the following:

- A number from 0–17
- · One of:
 - NODES_ONLY (addresses 1 through 16)
 - SWITCH (address 17)
 - FRAME (address 0)
 - * (all addresses)
 - NODES AND SWITCH (addresses 1–17)
 - FRAME_AND_NODES (addresses 0–16)
 - FRAME_AND_SWITCH (addresses 0 and 17)

variable Specifies a hardware variable, as returned from the Hardware Monitor

(for example, nodePower, temp, LED7SegA). For a list of all variables, issue the command **hmmon –V**.

operator Specifies how to compare the value. Acceptable values are: =, <, >, and

value Specifies the value of the variable to match with the operator wildcard (*), or a partial match with the wildcard at the end (23*).

Specifies if the function should be called at startup, when the state changes, or at both times. Valid options are **startup**, **change**, or **both**.

function Specifies the program to call when an event occurs. Any 'argument' tokens will be passed as arguments to the program.

There are two special keywords for function. If function is SP_ERROR_LOG, error logging is performed provided that syslog is set up and AIX error logging is set up to perform SP logging. Refer to the **setup_logd** command for details.

•

338

time

```
If function is SP_STATE_LOG, these state changes that meet the
                                statement's criteria are logged to
                                /var/adm/SPlogs/spmon/splogd.state_changes.timestamp.
  Files
                      /spdata/sys1/spmon/hwevents
                      /var/adm/SPlogs/spmon/splogd.state_changes.timestamp
  Related Information
                      SP Commands: hmmon
                      Subsystems: Logging Daemon (splogd), Hardware Monitor (hardmon)
  Examples
  The following is an example of an hwevents file:
  # frame slot
                variable
                                operator value time function
                                               b SP ERROR LOG
                                 =
                                               b
                                                   /usr/lpp/ssp/install/bin/SDR_config -l
                 type
                 hostHWFrameID
                                         0
                                             c /usr/lpp/ssp/install/bin/SDR config -l
                                  1=
                 hostHWSlotID
                                            С
                                                   /usr/lpp/ssp/install/bin/SDR_config -l
                                            С
                                                   /usr/lpp/ssp/bin/Eclock.state change -s
                 mux
                                         1
                                            С
                                                   /usr/lpp/ssp/bin/Eclock.state change -s
                 portClkMissing
                                            С
                                                   /usr/lpp/ssp/bin/Eclock.state change -s
                 chipC1kMissing
                                         1
                 nodePower
                                               С
                                                   /usr/lpp/ssp/bin/Eclock.state change -p
           17
                                         1
                                                   /usr/lpp/ssp/install/bin/spexpon
     * NODES ONLY PowerOnRequest
  #
  # Uncomment the SP STATE LOG line to turn state change logging on.
  # If you run with state change logging on, be sure you have a large enough /var.
  # The state change logs will be closed each night on the control workstation
  # if they exist and any that are older than a week will be removed by
 # cleanup.logs.ws.
 #
```

SP STATE LOG

.klogin File

Purpose

.klogin - Specifies remote principals that can use a local user account.

Description

The **\$HOME/.klogin** file defines which users and services on any remote hosts (computers in a network) within an authentication realm are allowed to invoke commands on the local user account.

The format of the **\$HOME/.klogin** file is:

principal.instance@realm

A typical .klogin file, if present, looks similar to the following:

harry@KGN.IBM.COM beverly.root@KGN.IBM.COM root.admin@KGN.IBM.COM user.wkst3@KGN.IBM.COM user1@KGN.IBM.COM rcmd.wkst3@KGN.IBM.COM

The **principal** name is the name of the remote user using SP authentication to execute remote commands on a local user account.

The **instance** is used to distinguish among variations on the principal name and may be used to indicate special privileges such as root authorization. In many environments, the **instance** is used with a service to indicate the workstation the service is running on. The service entries are usually found only in the root directory **.klogin** file.

The realm is the authentication realm. This may be different if there are several authentication realms, each with a different realm name, in your environment.

If the originating remote user is authenticated to one of the principals named in the **.klogin** file, access is granted to the account. The owner of the account is granted access if there is no **.klogin** file. If a **.klogin** file is present, the owner must also be listed to gain access to his or her account from a remote host.

For security reasons, any **\$HOME/.klogin** file must be owned by either the local user or root, and only the owner should have read and write access.

Files

\$HOME/.klogin

Specifies remote users that can use a local user account.

Prerequisite Information

- Refer to AIX Version 4 System Management Guide: Communications and Networks for a network overview.
- Refer to the chapter on security in PSSP: Administration Guide for an overview and for additional Kerberos information.

Related Information

SP Commands: k4init, rcp, rsh

Examples

The following examples assume both Jeff and Anna have principal names in the authentication database (anna@KGN.IBM.COM, jeff@KGN.IBM.COM) and have issued a **k4init** to be authenticated on their local host. In addition, there is one authentication realm signified by KGN.IBM.COM.

- 1. To allow only user Anna on host wkst3 to rsh into her own account on host wkst7, a .klogin file is not required.
- 2. To allow user Jeff on host wkst3 to rsh into Anna's account on host wkst7, the .klogin file in Anna's account on wkst7 must have the following entries:

anna@KGN.IBM.COM jeff@KGN.IBM.COM

Anna's entry must be present in the **.klogin** file since the **.klogin** file exists. Jeff can now use the **-I** flag on the rsh or rcp to access Anna's account.

Kerberos

Purpose

Kerberos – Contains an introduction to SP authentication services.

Description

Kerberos authenticates individual users in a network environment. After authenticating your identity, you can use facilities such as Sysctl, the SP System Monitor, and the authenticated versions of network utilities rsh and rcp, without having to present passwords to remote hosts and without having to use .rhosts files.

Before you can use the SP authenticated commands, you must make sure that you are added to the authentication database. You can use the k4init command to find out. This command tries to authenticate your identity in the system. The k4init command prompts you for a principal name and password. Enter your principal name and password. If the command accepts your authentication information without sending you a message, you are already registered. If you enter your user name and k4init responds with the following message:

Kerberos principal unknown

contact your system administrator.

A principal identifier contains three parts. The first is the user or service name. The second is the instance, which in the case of a user is usually null. Some users can have privileged instances, however, such as root or admin. In the case of a service, the instance is the name of the machine on which it runs (for example, there can be a rcmd (sysctld daemon) service running on the machine abc, which is different from the kshd service running on the machine xyz). The third part of the name is the realm. The realm corresponds to the service providing authentication for the principal. For example, computing resources within an enterprise can be partitioned into multiple administrative units for convenience or other business reasons.

When writing a principal identifier, the user or service name is separated from the instance (if not null) by a period, and the realm (if not the local realm) follows, preceded by an at sign (@).

When you authenticate your identity using the k4init command, you are given an initial ticket (which is an encrypted protocol message that provides authentication). This ticket is used to request other tickets from the authentication service for SP authenticated services such as SP sysctl. The ticket transactions are done transparently, so you do not have to worry about their management.

Be aware that tickets expire. Some tickets, such as admin instance tickets, may expire in a few minutes, while other tickets may be good for hours, days, or weeks depending on the installation's policy. If your login session extends beyond the time limit, you have to reauthenticate your identity using the k4init command to get new tickets.

For more information about the k4init and k4destroy commands, see the k4init and k4destroy command.

Related Information

Commands: kadmin, k4destroy, k4init, k4list, kpasswd

krb.conf File

Purpose

/etc/krb.conf - Contains the SP authentication configuration file.

Description

The **krb.conf** file contains configuration information describing the local authentication realm and the location of authentication servers for known realms.

The first line of the krb.conf file contains the name of the local authentication realm. Additional lines specify the location of an authentication server for a realm. The krb.conf file must contain at least one entry for each realm used by the local system. Each line specifying the location of an authentication server must be of the form:

REALM_NAME host_name

REALM_NAME host_name admin server

When "admin server" follows the host name, it indicates that the hosts also provides an administrative database server.

Related Information

SP File: krb.realms

Refer to the chapter on security in PSSP: Administration Guide for additional Kerberos information.

Examples

The following example of an /etc/krb.conf shows a simple configuration consisting a single realm with two servers, the primary and one secondary:

EAST.COAST

EAST.COAST master.authent.abc.com admin server

EAST.COAST backup.authent.abc.com

Here, "admin server" identifies the system whose full host name is "master.authent.abc.com" as the primary server, responsible for administration of the master database. Note that, in this case, there would have to be information in the /etc/krb.realms file to map the two host names or the domain name authent.abc.com to the local realm name, "EAST.COAST". See the Example section of the krb.realms file.

krb.realms File

Purpose

/etc/krb.realms – Specifies the translations from host names to authentication realms.

Description

The **krb.realms** file provides a translation from a host name or a network domain name to the authentication realm name for the services provided by that host. Each line of the translation file is in one of the following forms (domain names should begin with a period (.)):

```
host_name realm_name domain name realm name
```

If a host name exactly matches the *host_name* field in a line of the first form, the corresponding realm is the realm of the host. If a host name does not match any *host_name* in the file but its domain exactly matches a domain name, the corresponding realm is the realm of the host.

If no translation entry applies, the host's realm is considered to be the host name's domain portion converted to uppercase. If the host name does not contain a domain name, the host's realm is considered to be the host name converted to uppercase.

Related Information

SP File: krb.conf

Refer to the chapter on security in *PSSP: Administration Guide* for additional **Kerberos** information.

Examples

The following example of an **/etc/krb.realms** shows the entries that could be used to map a host name or a domain name to a realm. These names correspond to those used in the **krb.conf** file example.

```
master.authent.abc.com EAST.COAST
.authent.abc.com EAST.COAST
```

The first line maps a specific host name to the realm "EAST.COAST". If the host name were "master.east.coast", no entry would have been required. The second entry maps all host names whose domain portion is "authent.abc.com" to the same domain. The default mapping for this realm is:

```
.east.coast EAST.COAST
```

This type of mapping is always assumed, even if the /etc/krb.realms file is empty.

SDR_dest_info File

Purpose

SDR_dest_info – Provides connection addresses for System Data Repository (SDR) clients.

Description

The **SDR_dest_info** file provides connection addresses for System Data Repository (SDR) clients. It contains the following fields:

primary Specifies the IP address of the system partition to which the node

belongs. On the control workstation, this is the IP address of the

default system partition.

default Specifies the IP address of the default system partition.

nameofprimary Specifies the host name of the system partition to which the node

belongs.

nameofdefault Specifies the host name of the default system partition.

Related Information

Refer to the *PSSP: Administration Guide* for additional information on the **SDR dest info** file.

Examples

This example shows the contents of an **SDR_dest_info** file for a node. The node is a member of system partition 129.40.127.46. The default system partition on this system is 129.40.127.47. The host name of the node's system partition is k99sp1. The host name of the default system partition is k99s.

default:129.40.127.47 primary:129.40.127.46 nameofprimary:k99sp1 nameofdefault:k99s

sysctl.acl File

Purpose

sysctl.acl – Contains the Access Control List (ACL) for the Sysctl ACL authorization callback.

Description

The **sysctl.acl** file contains the list of users authorized to access objects which are assigned the ACL authorization callback. Each line of the file must conform to one of the following formats:

Comment A line which begins with a number sign (#) is considered a comment.

Principal name A line of the form of "_PRINCIPAL *principal_name*" defines a principal on the ACL. If the *principal_name* is not fully qualified (for example, it does not contain an instance or realm separator), the realm defaults to the local realm and the instance defaults to NULL.

ACL file A line in the form "_ACL_FILE *file_name*" references another ACL file the contents of which is included in this file.

The first line of this (or any Sysctl ACL file) must begin with the line:

#ac1#

Note: Including a principal in the **sysctl.acl** file gives that principal the same level of authority as having the root password.

Prerequisite Information

See the descriptions of SP authentication and Sysctl in *PSSP: Administration Guide*.

Related Information

SP Command: sysctl

SP Daemon: sysctld

Examples

The following **sysctl.acl** file defines two principals and includes the contents of another ACL file:

```
#acl#
#
# This is the Sysctl ACL file for the system. It defines two
# principals: "root.@HPSSL.KGN.IBM.COM" and "rcr.@HPSSL.KGN.IBM.COM"
# It also includes the contents of file /etc/my.acl.file
#
_PRINCIPAL root.@HPSSL.KGN.IBM.COM
_PRINCIPAL rcr.@HPSSL.KGN.IBM.COM
ACL FILE /etc/my.acl.file
```

sysctl.conf File

Purpose

sysctl.conf – Configures the Sysctl server (**sysctld**) running on the local SP node.

Description

The **sysctl.conf** file configures the local Sysctl server daemon by optionally creating variables, procedures and classes, setting variables, loading shared libraries, and executing Sysctl commands. These items are used by the server in the processing of requests from local and remote Sysctl clients.

The default location of this file is **/etc/sysctl.conf**. An alternate configuration file location can be specified by using the **-f** flag when starting the server (see the **sysctld** command).

The **/etc/sysctl.conf** file contains Sysctl commands which are read and executed by the Sysctl server during its initialization. The following commands are supported:

create var var_name var_value [auth_callback]

The **create var** statement creates a variable, assigns it a value, and assigns it an authorization callback. This variable can then be referenced from within other Sysctl procedures and commands. If the *auth_callback* parameter is not supplied, a value of NONE is assumed. For example:

create var buildTop /usr/lpp/ssp AUTH

creates the variable **buildTop**, assigns it a value of **/usr/lpp/ssp**, and assigns it an authorization callback of AUTH. The variable **buildTop** can be referenced within Sysctl commands and procedures.

Another example:

create var STARTTIME [exec /bin/date] NONE

creates the variable **STARTTIME**, assigns it the value returned from the execution of the **/bin/date** command at server initialization, and assigns it an authorization callback of NONE. This variable contains the date and time at which the server was started on the node.

create proc proc_name {parameters} auth_callback {procedure}

The **create proc** statement creates a new procedure in the Sysctl server. This new procedure can be invoked from a client by supplying its name along with any defined parameters. For example:

create proc mydate {} AUTH {exec /bin/date}

creates the procedure **mydate** which has no parameters. This procedure has an authorization callback of AUTH. The procedure is comprised of a single statement (**exec /bin/date**).

create class class_name class_file_name [auth_callback]

The **create class** statement creates a class of commands in the Sysctl server. An optional authorization callback can be supplied. The authorization callback assigned to each object in the class is the logical OR of the class' callback (if supplied) and the object's callback. Thus, access to a class' object is granted if either the object's or the class' authorization callback allows access. For example:

create class sys \$buildTop/samples/sysctl/sys.cmds

creates the class sys. If \$buildTop is defined as /usr/lpp/ssp, the file /usr/lpp/ssp/samples/sysctl/sys.cmds contains the definition of the sys class.

include

The **include** statement includes the contents of another file in the configuration file. This provides a way of organizing the Server configuration statements into manageable groupings. For example:

include \$buildTop/samples/sysctl/pdfpfck.cmds

causes the Sysctl server to read the contents of the specified file at initialization time.

set The set statement sets the value of the server variables ACL, LOG, or KEY, or sets values in the env() array. The default values for the Sysctl server's ACL file, log file, and service key file can be overridden by assigning values to the ACL, LOG, and KEY variables in the configuration file. For example, the following line overrides the default value for the log file name:

```
set LOG /var/sysctld.log_file
```

The values assigned to the ACL, LOG, and KEY variables are overridden by the optional command line arguments $-\mathbf{a}$, $-\mathbf{l}$, and $-\mathbf{k}$.

Environment variables (such as the default PATH) can also be set within the configuration file by assigning values to the **env**() array. For example:

```
set env(PATH) /usr/bin:/usr/etc:/etc
```

sets the PATH for the Sysctl server. The **env**() array is assigned an authorization callback of SYSTEM which prevents its modification from outside the Sysctl server by a request sent by a Sysctl client.

load lib_path [init_proc]

The **load** command dynamically loads the shared library at *lib_path* into memory. If the **init_proc** parameter is given, it is used as the library's initialization procedure. Otherwise, the name of the initialization function is derived from the library name as follows:

library name	init function
libxxx.sl	xxx_Init()
libxxx.a	xxx_Init()

The Sysctl server exports an API which the library uses to define commands, variables, authorization callbacks, and interpreter deletion callbacks. See the **load()** help page for details.

Other Sysctl Commands

The configuration file can also contain other Sysctl commands to modify the behavior of the server. For example, the following command in the configuration file causes the authorization callback for the **svcconnect** command to be changed from the default value of AUTH to NONE. This would allow nonauthenticated clients to connect to the server.

setauth -cmd sycconnect NONE

Prerequisite Information

See the description of Sysctl in PSSP: Administration Guide.

Related Information

SP Command: sysctl

SP Daemon: sysctld

tuning.commercial File

Purpose

tuning.commercial – Contains initial performance tuning parameters for a typical commercial SP environment.

Description

This file is a Korn shell script file containing commands to set network performance tuning parameters. It can be copied to the **/tftpboot/tuning.cust** file on the control workstation for propagation to the nodes.

Related Information

SP Commands: cptuning

AIX Commands: This file contains invocations of the no command.

SP Files: tuning.default, tuning.development, tuning.scientific

tuning.default File

Purpose

tuning.default - Contains initial (default) performance tuning parameters for an SP environment.

Description

This file is a Korn shell script file containing commands to set network performance tuning parameters. In the absence of explicit administrator action, this file is copied to the /tftpboot/tuning.cust file on the control workstation for propagation to the

Related Information

SP Commands: cptuning

AIX Commands: This file contains invocations of the **no** command.

SP Files: tuning.commercial, tuning.development, tuning.scientific

tuning.development File

Purpose

tuning.development – Contains initial performance tuning parameters for a typical software development/interactive SP environment.

Description

This file is a Korn shell script file containing commands to set network performance tuning parameters. It can be copied to the **/tftpboot/tuning.cust** file on the control workstation for propagation to the nodes.

Related Information

SP Commands: cptuning

AIX Commands: This file contains invocations of the no command.

SP Files: tuning.commercial, tuning.default, tuning.scientific

tuning.scientific File

Purpose

tuning.scientific – Contains initial performance tuning parameters for a typical engineering or scientific SP environment.

Description

This file is a Korn shell script file containing commands to set network performance tuning parameters. It can be copied to the /tftpboot/tuning.cust file on the control workstation for propagation to the nodes.

Related Information

Commands: cptuning

AIX Commands: This file contains invocations of the **no** command.

SP Files: tuning.commercial, tuning.default, tuning.development

Chapter 3. SP Subroutines

© Copyright IBM Corp. 1998, 1999 **355**

getvhostname Subroutine

Purpose

getvhostname - Gets the virtual host name.

Library

Availability Library (libavail.a)

Syntax

```
#include <vhost.h>
int getvhostname (name, name_length);
char *name;
int name length;
```

name Specifies the virtual host name.

name_length Specifies the length of the name array.

Description

Use this subroutine to retrieve the virtual host name of a host machine. This routine is similar to the **gethostname** system call with the exception that it retrieves the virtual host name from the **/etc/vhostname** file instead of using a kernel variable. The **getvhostname** subroutine is a library call and **gethostname** is a system call.

The *name* is retrieved from the *letc/vhostname* file. If the file does not exist, the **gethostname** system call is used and the real host name is returned. If excess space is provided, the returned *name* parameter is null terminated. If insufficient space is provided, the returned *name* parameter is truncated to fit in the given space. Virtual host names are limited to MAX_VHOSTNAME_LEN bytes (255), not including the terminating null character. The MAX_VHOSTNAME_LEN macro is defined in the **vhost.h** header file. To guarantee sufficient buffer space to hold the virtual host name, the *name_length* parameter should be MAX_VHOSTNAME_LEN + 1 or 256.

To clear the virtual host name so that the virtual host name no longer exists, remove the **/etc/vhostname** file.

Note: You must have root authority to remove the /etc/vhostname file.

The virtual host name is used in fail over situations when an application has associated the host name in the kernel of a particular machine to the service it is providing. When the application is restarted on the fail over node that has a different host name, the application may not work or work incorrectly. If the application needs to associate a host name with a particular service and it cannot handle having multiple host names, a virtual host name can be provided. The application can call **getvhostname** instead of **gethostname** and get the host name of the node it normally runs on. This eliminates the need to change the real host name in the kernel on the backup node. It should be noted that changing the real host name in the kernel can cause problems with other applications that rely on the real host name to identify the *physical machine*.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP), set and clear the virtual host name in the supplied HACMP pre- and post-event scripts. The administrator should not normally have to set the virtual host name.

Return Values

Upon successful completion, the **getvhostname** subroutine returns a value of 0. Otherwise, a value of -1 is returned, the global variable **errno** is set to identify the error, and the contents of the buffer pointed to by the *name* parameter are indeterminate.

Error Values

The **getvhostname** subroutine is unsuccessful if the following error occurs:

EFAULT Indicates that either the *name* or *name_length* parameter gave an address that is not valid.

EINVAL Indicates that the *name_length* parameter is less than 0.

If one of the system calls used to retrieve the virtual host name from the **/etc/vhostname** file encounters and error(for example, open or read), **errno** is set by the system call that encountered an error.

Related Information

Commands: vhostname

Subroutines: setvhostname

AIX Commands: hostname

AIX Subroutines: gethostname, sethostname

Header Files: vhost.h

Examples

1. To clear the virtual host name so that it no longer exists, enter:

rm /etc/vhostname

Note: You must have root authority to remove the /etc/vhostname file.

2. To get the virtual host name from the /etc/vhostname file, enter:

```
#include <vhost.h>
main ( )
{
char name [MAX_VHOSTNAME_LEN + 1];
getvhostname (name, (MAX_VHOSTNAME_LEN + 1));
}
```

hacws_set Subroutine

Purpose

hacws set – Sets the state of the control workstation.

Library

Availability Library (libavail.a)

Location

/usr/lib/libavail.a

Syntax

```
#include <hacws.h>
int hacws set (state);
int state;
```

Parameters

state Specifies the state of the control workstation. Valid values are: 0, 1, 2, 16,

32.

Description

Use this subroutine to set the current state of the control workstation. It is valid only when issued on the control workstation. When the subroutine is called and the calling process is not on a control workstation, an error occurs.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts and installation scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP), set the control workstation state. The state is changed during fail over or reintegration in the HACWS supplied pre- and post-event scripts for HACMP. The administrator should not normally have to set the control workstation state.

Return Values

Upon successful completion, the **hacws_set** subroutine returns a value of 0. Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.

Error Values

The hacws_set subroutine is unsuccessful if any of the following errors occur:

EINVAL Indicates that the value of the state parameter is not one of the valid values contained in hacws.h.

ENODEV Indicates that the calling process is not on a control workstation.

ENOENT Indicates that the **hacws** set subroutine could not determine whether

the calling process is on a control workstation.

EPERM Indicates that the calling process did not have root's effective user ID. If one of the system calls used to store the HACWS state value into the **/etc/hacws.state** file encounters an error (for example, open, write, rename), **errno** is set by the system call that encountered and error.

Macros

The /usr/include/hacws.h header file defines the following macros as valid input values for the hacws_set subroutine:

0 or HACWS_NOT_AN_HACWS

Indicates that this control workstation is not in an HACWS configuration.

1 or HACWS PRIM INACT CWS

Indicates that this control workstation is the primary control workstation, but not the currently active control workstation.

2 or HACWS_PRIM_ACT_CWS

Indicates that this control workstation is the primary control workstation and is the currently active control workstation.

16 or HACWS_BACK_INACT_CWS

Indicates that this control workstation is the backup control workstation, but not the currently active control workstation.

32 or HACWS_BACK_ACT_CWS

Indicates that this control workstation is the backup control workstation and is the currently active control workstation.

Prerequisite Information

Refer to PSSP: Administration Guide for information on the HACWS option.

Related Information

Commands: Ishacws, sethacws

Subroutines: hacws_set

Header Files: hacws.h

hacws_stat Subroutine

Purpose

hacws_stat – Gets the state of the control workstation.

Library

Availability Library (libavail.a)

Location

/usr/lib/libavail.a

Syntax

#include <hacws.h> int hacws_stat (void);

Description

Use this subroutine to return the current state of the control workstation. It returns an integer that indicates the state of the primary or backup control workstation and specifies whether the control workstation is a high availability configuration. This subroutine is valid only when issued on the control workstation. When the subroutine is called and the calling process is not on a control workstation, an error occurs.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts and installation scripts supplied with the High Availability Control Workstation (HACWS) option of the IBM Parallel System Support Programs for AIX (PSSP), set the control workstation state. The state is changed during fail over or reintegration in the HACWS supplied pre- and post-event scripts for HACMP. The administrator should not normally have to set the control workstation state.

Return Values

Upon successful completion, the hacws_stat subroutine returns a nonnegative value. If the hacws_stat subroutine is unsuccessful, a value of -1 is returned and the global variable **errno** is set to identify the error.

Error Values

The hacks stat subroutine is unsuccessful if any of the following errors occur:

ENODEV Indicates that the calling process is not on a control workstation.

ENOENT Indicates that the **hacws_stat** subroutine could not determine whether the calling process is on a control workstation.

ERANGE Indicates that the /etc/hacws.state file does not contain a valid HACWS state.

If one of the system calls used to retrieve the HACWS state value from the /etc/hacws.state file encounters an error (for example, open or read), errno is set by the system call that encountered an error.

Macros

The /usr/include/hacws.h header file defines the following macros for the nonnegative return values for the hacws_stat subroutine:

0 or HACWS_NOT_AN_HACWS

Indicates that this control workstation is not in an HACWS configuration.

1 or HACWS_PRIM_INACT_CWS

Indicates that this control workstation is the primary control workstation, but not the currently active control workstation.

2 or HACWS_PRIM_ACT_CWS

Indicates that this control workstation is the primary control workstation and is the currently active control workstation.

16 or HACWS_BACK_INACT_CWS

Indicates that this control workstation is the backup control workstation, but not the currently active control workstation.

32 or HACWS_BACK_ACT_CWS

Indicates that this control workstation is the backup control workstation and is the currently active control workstation.

Prerequisite Information

Refer to PSSP: Administration Guide for information on the HACWS option.

Related Information

Commands: Ishacws, sethacws

Subroutines: hacws_set

Header Files: hacws.h

LAPI_Address Subroutine

Purpose

LAPI_Address – Gets an unsigned integer value for a specified address.

C Syntax

```
#include <lapi.h>
int LAPI_Address(my addr, ret addr)
void *my_addr;
uint *ret addr;
```

FORTRAN Syntax

```
include 'lapif.h'
LAPI ADDRESS(my addr, ret addr, ierror)
INTEGER my addr;
INTEGER ret_addr;
INTEGER ierror;
```

Parameters

my_addr Specifies the address to save. This parameter cannot be NULL. (IN) ret addr Stores the *my_addr* address for later use. This is especially useful in FORTRAN programs. This parameter cannot be NULL. (OUT) ierror Specifies a FORTRAN return code. It is always the last argument. (OUT)

Description

Use this subroutine in FORTRAN programs when specified addresses need to be stored in an array. In FORTRAN, the concept of address ('&') does not exist as it does in C. This function gives that ability to FORTRAN.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

LAPI_Address_init Subroutine

Purpose

LAPI_Address_init – Exchanges virtual addresses for non-Single Program Multiple Data (SPMD) programs and for dynamically allocated data.

C Syntax

```
#include <lapi.h>
int LAPI_Address_init(hndl, my_addr, add_tab)
lapi_handle_t hndl;
void *my_addr;
void *add tab[];
```

FORTRAN Syntax

```
include 'lapif.h'
LAPI_ADDRESS_INIT(hndl, my_addr, add_tab, ierror)
INTEGER hndl;
<type> my_addr(*);
INTEGER add_tab(*);
INTEGER ierror;
```

Parameters

hndl	Contains a handle that specifies a particular Low-Level Application
	Programming Interface (LAPI) context. (IN)
my oddr	Specifies the entry supplied by each process. This parameter can be

my_addr Specifies the entry supplied by each process. This parameter can be

NULL. (IN)

add_tab Specifies the address table containing the addresses supplied by all

processes. This parameter can be NULL. (IN/OUT)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to exchange virtual and dynamically allocated addresses. add_tab is an array of pointers of size >= LAPI_Qenv(,NUM_TASKS,). This function is a collective call over the LAPI context hndl which fills the table add_tab with the entries supplied by each task. Upon completion of this call, add_tab[i] will contain the entry provided by task i.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

LAPI_Amsend Subroutine

Purpose

LAPI_Amsend – Invokes a user-provided Active Message (AM) handler to run on a remote (target) process.

C Syntax

```
#include <lapi.h>
typedef void (compl_hndlr_t)(hndl, user_info);
lapi handle t *hndl;
                                LAPI context passed in from LAPI Amsend.
void *
              user info; Buffer (user info) pointer passed in from
                                header handler (void * (hnd hndlr t)).
typedef void * (hdr_hndlr_t)(hndl, uhdr, uhdr_len, msg_len,
comp_h, user_info);
lapi_handle_t
                             LAPI context passed in from LAPI_Amsend.
                 *hndl;
void *
                 uhdr;
                             uhdr passed in from LAPI AMsend.
uint
                 *uhdr len;
                             uhdr_len passed in from LAPI_Amsend.
                             udata len passed in from LAPI Amsend.
uint *
                 msg len;
compl_hndlr_t ** comp_h;
                             Function address of completion handler
                             (void (compl_hndlr_t)) that needs to be
                             filled out by this header handler function.
void **
                             Buffer pointer (user_info) that is
                 user_info;
                             provided by this head handler function
                             to pass to the completion handler.
int LAPI Amsend(hndl, tgt, hdr hdl, uhdr, uhdr len, udata,
   udata len, tgt cntr, org cntr, cmpl cntr)
lapi handle t hndl;
uint tgt;
void *hdr_hdl;
void *uhdr;
uint uhdr len;
void *udata;
uint udata len;
lapi cntr t *tgt cntr;
lapi_cntr_t *org cntr;
lapi_cntr_t *cmpl_cntr;
```

FORTRAN Syntax

```
include 'lapif.h'
COMPL_H(hndl, user_info);
INTEGER hndl;
INTEGER user_info;
INTEGER FUNCTION HDR_HDL(hndl, uhdr, uhdr_len, msg_len, comp_h,
user_info)
INTEGER hndl;
INTEGER uhdr;
INTEGER uhdr_len;
INTEGER msg_len;
INTEGER comp_h;
INTEGER user_info;
{\bf LAPI\_AMSEND} (hndl,\ tgt,\ hdr\_hdl,\ uhdr,\ uhdr\_len,\ udata\_len,
tgt\_cntr
   org_cntr, cmpl_cntr, ierror)
INTEGER hndl;
INTEGER tgt;
<type> hdr hdl(*);
INTEGER uhdr;
INTEGER uhdr len;
INTEGER udata;
INTEGER udata_len;
<type> tgt_cntr(*);
INTEGER org_cntr;
INTEGER cmpl cntr;
INTEGER ierror;
```

Parameters

hndl	Contains a handle that specifies a particular Low-Level Application Programming Interface (LAPI) context. (IN)
tgt	Specifies the target task number. This parameter is valid from 0 <= tgt < LAPI_Qenv(,NUM_TASKS,). (IN)
hdr_hdl	Specifies the pointer to the remote header handler function to be invoked at the target. This parameter cannot be NULL. (IN)
uhdr	Specifies the pointer to the local header (parameter list) that is passed to the handler function. This parameter can be NULL if <i>uhdr_len</i> is equivalent to 0. (IN)
uhdr_len	This parameter is valid from 0 <= uhdr_len <= LAPI_Qenv(,MAX_UHDR_SZ,). (IN)
udata	Specifies the pointer to the user data. This parameter can be NULL if <i>udata_len</i> is equivalent to 0. (IN)
udata_len	Specifies the length of the user data in bytes. This parameter is valid from 0 < e udata_len < = LAPI_Qenv(,MAX_DATA_SZ,). (IN)
tgt_cntr	Specifies the target counter address. The target counter is incremented after data arrives at the target and after the completion handler completes. If the parameter is NULL, this counter will not be updated. (IN)

org_cntr Specifies the origin counter address. The origin counter is

incremented after data is copied out of the origin address. If the parameter is NULL, this counter will not be updated. (IN/OUT)

cmpl_cntr Specifies the counter at the origin that signifies completion of the

completion handler. It is updated once the completion handler completes. If the parameter is NULL, the counter will not be updated.

(IN/OUT)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to transfer the *hdr_hdl* function pointer along with the contents of *uhdr* and *udata* from the origin to the *tgt* target process. When the message arrives at the target process, the *hdr_hdl* header handler is invoked at the *tgt* target with the pointer to *uhdr* as one of the parameters.

The user-supplied header handler is expected to return a buffer pointer (*user_info* as the return value) in which *udata* is to be copied. The header handler is also expected to save any information that will be required later by the completion handler. The header handler returns (through reference parameters) the completion handler and a pointer to the saved information (*user_info*).

Note: The header handler should be nonblocking because no progress on the messages associated with *hndl* can be made until control is returned to the communications library from the header handler.

After the header handler returns, the *udata* (if any) is copied into the user-specified buffer (*user_info*). When all of the *udata* is copied into the user buffer, the completion handler you specified through the header handler is enqueued.

After the parameters (including the contents of *uhdr* and *udata*) are copied out of the memory at the origin, the *org_cntr* is incremented. After the completion handler finishes running at the *tgt*, the *tgt_cntr* is incremented. If the completion handler specified is NULL, the *tgt_cntr* is incremented after all of the *udata* is copied into the user-specified buffers. If the user-specified buffer is NULL and the completion handler is also NULL, the *tgt_cntr* will be incremented in some implementation-specific manner. Either counter addresses may be NULL.

This is a nonblocking call. The calling process cannot change the *uhdr* origin header and *udata* data until completion at the origin is signaled by the *org_cntr* being incremented. Similarly, you can assume that the specified AM handler has run at the *tgt* only after the *tgt_cntr* target counter is incremented. The *cmpl_cntr* and *tgt_cntr* counters are incremented after the AM handler has completed execution at the target. When the AM handler has both a *hdr_hdl* header handler and a *comp_h* completion handler, the *cmpl_cntr* and *tgt_cntr* counters are incremented after the completion handler has completed execution. If the AM handler has only a *hdr_hdl* header handler, the *cmpl_cntr* and *tgt_cntr* counters will be incremented after the header handler has completed execution. This call can be made synchronous if the origin waits for the *cmpl_cntr* update to complete.

The length (uhdr_len) of the user-specified header is constrained by an implementation specified maximum value (LAPI_Qenv(,MAX_UHDR_SZ,)). In the current implementation, the amount of udata sent per packet is

LAPI_Qenv(,MAX_UHDR_SZ,) - uhdr_len. To get the best bandwidth, uhdr_len should be as small as possible.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Fence, LAPI_Getcntr, LAPI_Qenv, LAPI_Waitcntr

LAPI_Fence Subroutine

Purpose

LAPI_Fence – Enforces order on Low-Level Application Programming Interface (LAPI) calls.

C Syntax

```
#include <lapi.h>
int LAPI_Fence(hndl)
lapi_handle_t hndl;
```

FORTRAN Syntax

```
include 'lapif.h'
LAPI_FENCE(hndl, ierror)
INTEGER hndl;
INTEGER ierror;
```

Parameters

hndl Contains a handle that specifies a particular LAPI context. (IN)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to enforce order on LAPI calls. If a process calls **LAPI_Fence()**, all the LAPI operations that were initiated by that process, before the fence using the LAPI context *hndI*, are guaranteed to complete at the target processes. This occurs before any of its communication operations using *hndI*, initiated after the fence, complete at the target processes. This is a data fence which means that the data movement is complete. This is not an operation fence which would need to include Active Message completion handlers completing on the target.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in *PSSP: Administration Guide* for additional LAPI information.

Related Information

Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Gfence, LAPI_Put, LAPI_Rmw

LAPI_Get Subroutine

Purpose

LAPI_Get – Copies data from a remote process to the local address on a local process.

C Syntax

```
#include <lapi.h>
int LAPI_Get(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr)
lapi_handle_t hndl;
uint tgt;
uint len;
void *tgt_addr;
void *org_addr;
lapi_cntr_t *tgt_cntr;
lapi_cntr_t *org_cntr;
```

FORTRAN Syntax

```
include 'lapif.h'
LAPI_GET(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr,
ierror)
INTEGER hndl;
INTEGER tgt;
INTEGER len;
<type> tgt addr(*);
INTEGER org_addr;
<type> tgt_cntr(*);
INTEGER org_cntr;
INTEGER ierror;
```

Parameters

hndl	Contains a handle that specifies a particular Low-level Applications Programming Interface (LAPI) context. (IN)
tgt	Specifies the target task that is the source of the data. This parameter is valid from $0 \leftarrow tgt \leftarrow LAPI_Qenv(,NUM_TASKS,)$. (IN)
len	Specifies the number of bytes of data to be copied. This parameter is valid from 0 <= len <= LAPI_Qenv(,MAX_DATA_SZ,). (IN)
tgt_addr	Specifies the target buffer address of the data source. This parameter can be NULL only if <i>len</i> is equivalent to 0. (IN)
org_addr	Specifies the local buffer address that the received data is copied into. This parameter can be NULL only if <i>len</i> is equivalent to 0. (IN/OUT)
tgt_cntr	Specifies the target counter address. The target counter is incremented after data arrives at the target. If the parameter is NULL, this counter will not be updated. (IN)
org_cntr	Specifies the origin counter address. The origin counter is incremented after data arrives at the origin. If the parameter is NULL, the counter will not be updated. (IN/OUT)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to transfer the *len* number of bytes from the *tgt_addr* address at the target process to the org_addr virtual address at the origin process over the port identified by hndl. After the data is copied out of the memory at the tgt_addr, the *tgt_cntr* is incremented. After the data arrives at the origin, the *org_cntr* is incremented. If either counter address is NULL, the data transfer occurs, but the corresponding counter increment does not take place.

This is a nonblocking call in that the calling program cannot assume that the target buffer can be changed, nor that the contents of the memory pointed to by the org_addr on the origin is ready for use. However, after the origin waits for the org cntr update to complete, the origin can use the org addr data. Similarly, the target can reuse the target buffer tgt_addr only after it has waited for the tgt_cntr update to complete at the target.

Return Values

LAPI SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI ERR BAD PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Fence, LAPI_Getcntr, LAPI_Gfence, LAPI_Put, LAPI_Qenv, **LAPI** Waitcntr

LAPI_Getcntr Subroutine

Purpose

LAPI_Getcntr – Gets the integer value of the counter.

C Syntax

```
#include <lapi.h>
int LAPI_Getcntr(hndl, cntr, val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int *val;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_GETCNTR(hndl, cntr, val, ierror)
INTEGER hndl;
INTEGER cntr;
INTEGER val;
INTEGER ierror;
```

Parameters

hndl	Contains a handle that specifies a particular Low-Level Application
	D : 1 (((1AD)

Programming Interface (LAPI) context. (IN)

cntr Specifies the address of the counter. This parameter cannot be NULL.

(IN)

val Stores the integer value of the counter. This parameter cannot be

NULL. (OUT)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to get the integer value of *cntr*. It can be used to find how much progress is being made in LAPI context *hndl*. In conjunction, **LAPI_Probe()** can be used to make progress in LAPI context *hndl* if **LAPI_Getcntr()** is called inside a loop.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI ERR BAD PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Probe, LAPI_Put, LAPI_Setcntr, LAPI_Waitcntr

LAPI_Gfence Subroutine

Purpose

LAPI_Gfence – Enforces order on Low-Level Application Programming Interface (LAPI) calls on all processes.

C Syntax

```
#include <lapi.h>
int LAPI_Gfence(hndl)
lapi_handle_t hndl;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_GFENCE(hndl, ierror)
INTEGER hndl;
INTEGER ierror;
```

Parameters

hndl Contains a handle that specifies a particular LAPI context. (IN)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

This is a collective call. On completion of this call, it is assumed that all LAPI communications associated with *hndl* from all processes has quiesced.

Note: Although *hndl* is a local variable, it has a set of nodes that were associated with it at **LAPI_Init** all of which have to participate in this operation in order for it to complete.

This is a data fence which means that the data movement is complete. This is not an operation fence which would need to include Active Message completion handlers completing on the target.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI ERR BAD PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in *PSSP: Administration Guide* for additional LAPI information.

LAPI_Gfence Subroutine

Related Information

Subroutines: LAPI_Fence

LAPI Init Subroutine

Purpose

LAPI_Init – Initializes the Low-Level Application Programming Interface (LAPI) subsystem.

C Syntax

```
#include <lapi.h>
int LAPI_Init(hndl, lapi_info)
lapi_handle_t *hndl;
lapi_info_t *lapi_info;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_INIT(hndl, lapi_info, ierror)
INTEGER hndl;
INTEGER lapi_info(10);
INTEGER ierror;
```

Parameters

```
    hndl Contains a handle that specifies a particular LAPI context. This parameter cannot be NULL. (OUT)
    lapi_info Specifies a structure that provides the parallel job information that this LAPI context is associated with. This parameter cannot be NULL. (IN/OUT)
    ierror Specifies a FORTRAN return code. It is always the last argument. (OUT)
```

Description

Use this subroutine to instantiate a new context of the LAPI subsystem and to initialize it. A handle to the newly-created LAPI context is returned in *hndl*. All subsequent LAPI calls can use *hndl* to specify the context of the LAPI operation. The *lapi_info* structure (**lapi_info_t**) needs to be filled in:

```
typedef struct
                                  /* Not in use currently */
                                       /* OUT - Which protocol is
       lapi_dev_t
                         protocol;
                                           initialized */
       int
                         info2
                                       /* Future support */
       int
                         info3;
                                       /* Future support */
       int
                         info4;
                                       /* Future support */
       int
                         info5;
                                       /* Future support */
       int
                         info6;
                                       /* Future support */
                        *err hndlr;
                                       /* IN - User registered error
       LAPI err hndlr
                                           handler */
                                       /* Future support */
       void
                         *info_info2;
       void
                         *info info3;
                                       /* Future support */
                         *info info4;
                                        /* Future support */
       void
}
      lapi_info_t;
```

lapi_dev_t is defined as follows:

Note: Only the **TB3_DEV lapi_dev_t** type is supported at this time.

You can register an error handler through the *lapi_info* structure.

To create a function, you need the following parameters:

The error code (*error_code) of **LAPI_ERR_TIMEOUT** is a recoverable error if you choose to ignore it in your error handler. All other error codes are currently terminal and you should do clean-up processing of your process and terminate the process (for example, exit()).

An error occurs if any LAPI calls are made before calling **LAPI_Init()**, except for **LAPI_Address()** and **LAPI_Msg_string()**.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

CSS KE INTERNAL ERROR

Is a system error indicating that the Kernel extension internal memory management encountered an error.

CSS_KE_UCODE_ERROR

Is a system error indicating that the adapter microcode is not

responding.

EBUSY Is a system error indicating that the previous job is still running.

EINVAL Is a system error indicating that the specified argument was not

valid.

ENODEV Is a system error indicating that the adapter type and library do

not match.

ENOSPC Is a system error indicating that you cannot attach to bus

memory (either out of memory or segment register).

EPERM Is a system error indicating that the caller is not authorized to

perform the specified action.

ETIMEDOUT Is a system error indicating that the switch network is not

available.

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

LAPI_ERR_INIT_FAILED

Indicates that initialization was unsuccessful.

LAPI_ERR_NOMORE_PORTS

Indicates that no more communication ports are available.

LAPI_ERR_OPEN_FAILED

Indicates that the opening of the communication device was unsuccessful.

LAPI_ERR_UNKNOWN_DEVICE

Indicates that the specified device is not supported.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Term

LAPI_Msg_string Subroutine

Purpose

LAPI_Msg_string – Gets the Low-Level Application Programming Interface (LAPI) and system message string.

C Syntax

```
#include <lapi.h>
LAPI_Msg_string(error_code, buf)
int error_code;
void * buf;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_MSG_STRING(error_code, buf, ierror)
INTEGER error_code;
INTEGER buf(40);
INTEGER ierror;
```

Parameters

error_code Specifies the return value of a previous LAPI call. (IN)buf Specifies the buffer to store the message string. (OUT)ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to return the message string representation of the return value for a specific LAPI call.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in *PSSP: Administration Guide* for additional LAPI information.

Related Information

Subroutines: LAPI_Init, LAPI_Term

LAPI_Probe Subroutine

Purpose

LAPI_Probe - Transfers control to the communications subsystem to check for arriving messages and to make progress in polling mode.

C Syntax

```
#include <lapi.h>
int LAPI Probe(hndl)
lapi_handle_t hndl;
```

FORTRAN Syntax

```
include 'lapif.h'
```

LAPI PROBE(hndl, ierror) INTEGER hndl; **INTEGER** ierror;

Parameters

hndl Contains a handle that specifies a particular Low-Level Application

Programming Interface (LAPI) context. (IN)

Specifies a FORTRAN return code. It is always the last argument. ierror

(OUT)

Description

Use this subroutine to transfer control to the communications subsystem to make progress on messages associated with the context hndl.

Note: There is no guarantee about receipt of messages on the return from this function.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Getcntr, LAPI_Setcntr, LAPI_Waitcntr

LAPI_Put Subroutine

Purpose

LAPI_Put – Puts data into the target address on a target process.

C Syntax

```
#include <lapi.h>
int LAPI_Put(hndl, tgt, len, tgt addr, org addr, tgt cntr,
   org_cntr, cmpl_cntr)
lapi_handle_t hndl;
uint tgt;
uint len;
void *tgt_addr;
void *org_addr;
lapi_cntr_t *tgt cntr;
lapi_cntr_t *org_cntr;
lapi_cntr_t *cmpl_cntr;
```

FORTRAN Syntax

```
include 'lapif.h'
int LAPI_PUT(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr,
   org_cntr, cmpl_cntr, ierror)
INTEGER hndl;
INTEGER tgt;
INTEGER len;
<type> tgt addr(*);
INTEGER org_addr;
<type> tgt_cntr(*);
INTEGER org cntr;
INTEGER cmpl_cntr;
INTEGER ierror;
```

Parameters

hndl	Contains a handle that specifies a particular Low-Level Application Programming Interface (LAPI) context. (IN)
tgt	Specifies the target task number. This parameter is valid from $0 \leftarrow tgt < LAPI_Qenv(,NUM_TASKS,)$. (IN)
len	Specifies the number of bytes to be transferred. This parameter is valid from 0 <= len <= LAPI_Qenv(,MAX_DATA_SZ,). (IN)
tgt_addr	Specifies the address on the target process where data is to be copied into. This parameter can be NULL only if <i>len</i> is equivalent to 0. (IN)
org_addr	Specifies the address on the origin process where data is to be copied from. This parameter can be NULL only if <i>len</i> is equivalent to 0. (IN)
tgt_cntr	Specifies the target counter address. The target counter is incremented after data arrives at the target. If the parameter is NULL, this counter will not be updated. (IN)

org_cntr Specifies the origin counter address. The origin counter is

incremented after data is copied out of the origin address. If the parameter is NULL, this counter will not be updated. (IN/OUT)

cmpl_cntr Specifies the address of the completion counter that is a reflection of

the *tgt_cntr*. This counter is incremented at the origin after the *tgt_cntr* is incremented. If the parameter is NULL, the counter will not be

updated. (IN/OUT)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to transfer the *len* number of bytes from the *org_addr* virtual address on the origin to the *tgt* target process at the *tgt_address* address over the port identified by *hndl*. After the data is copied out of the memory at *org_addr*, the *org_cntr* is incremented. After the data arrives at the *tgt*, the *tgt_cntr* is incremented. If either counter address is NULL, the data transfer occurs, but the corresponding counter increment does not take place.

This is a nonblocking call in that the calling program cannot assume that the origin buffer can be changed, nor that the contents of the memory pointed to by tgt_addr on tgt is ready for use. However, after the origin waits for the org_cntr update to complete, the origin can modify the org_addr origin buffer. Similarly, the target can modify the data in the tgt_addr target buffer after it has waited for the tgt_cntr update to complete on the target. This call can be made synchronous if the origin waits for the $cmpl_cntr$ update to complete.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in *PSSP: Administration Guide* for additional LAPI information.

Related Information

Subroutines: LAPI_Fence, LAPI_Get, LAPI_Getcntr, LAPI_Gfence, LAPI_Qenv, LAPI_Waitcntr

LAPI_Qenv Subroutine

Purpose

LAPI_Qenv – Queries the Low-Level Application Programming Interface (LAPI) interface for parallel job information.

C Syntax

```
#include <lapi.h>
int LAPI_Qenv(hndl, query, ret_val)
lapi_handle_t hndl;
lapi_query_t query;
int *ret_val;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_QENV(hndl, query, ret_val, ierror)
INTEGER hndl;
INTEGER query;
INTEGER ret_val;
INTEGER ierror;
```

Parameters

nnai	Contains a nancie that specifies a particular LAPI context. (IN)
query	Specifies the type of query requested as defined by <code>lapi_query_t</code> in <code>lapi.h</code> . (IN)
ret_val	Specifies the integer value of the query request. This parameter cannot be NULL. (OUT)
ierror	Specifies a FORTRAN return code. It is always the last argument. (OUT)

Description

Use this subroutine to query the LAPI interface for information about a specific LAPI instance. **lapi_query_t** defines the types of LAPI queries available.

```
typedef enum { TASK ID=0,
                               /* Query task id of current task in
                                   .job */
                NUM TASKS.
                                /* Query number of tasks in job */
               MAX UHDR SZ,
                                /* Query max. user header size for
                                   AM */
               MAX DATA SZ,
                                /* Query max. data length that can
                                   be sent */
                ERROR CHK,
                                /* Query & Set parameter checking
                                   on(1)/off(0) */
                TIMEOUT,
                                /* Query & Set current comm.
                                   timeout setting in seconds */
               MIN TIMEOUT,
                                /* Query minimum comm. timeout
                                   setting */
               MAX TIMEOUT,
                                /* Query maximum comm. timeout
                                   setting */
                INTERRUPT_SET, /* Query & Set interrupt
                                   on(1)/off(0) */
                                /* Query max. available comm. ports */
                MAX PORTS.
                MAX PKT SZ,
                                /* This is the payload size of 1
                                   packet */
                                /* Number of retransmission buffers */
                NUM REX BUFS,
                                /* Size of Each retransmission buffer
                REX_BUF_SZ,
                                   in bytes */
                LAST_QUERY | lapi_query_t;
```

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in *PSSP: Administration Guide* for additional LAPI information.

Related Information

Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Put, LAPI_Senv

LAPI_Rmw Subroutine

Purpose

LAPI_Rmw – Provides the synchronization primitives.

C Syntax

```
#include <lapi.h>
int LAPI_Rmw(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)
lapi_handle_t hndl;
RMW ops t op;
uint tgt;
int *tgt_var;
int *in_val;
int *prev_tgt_val;
lapi_cntr_t *org_cntr;
```

FORTRAN Syntax

```
include 'lapif.h'
LAPI_RMW(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr,
ierror)
INTEGER hndl;
INTEGER op;
INTEGER tgt;
<type> tgt \ var(*);
INTEGER in_val;
INTEGER prev tgt val;
INTEGER org_cntr;
INTEGER ierror;
```

Parameters

Contains a handle that specifies a particular Low-Level Application Programming Interface (LAPI) context. (IN)
Specifies the operation to be performed. (IN)
Specifies the target task where the Read-Modify-Write (RMW) variable resides. This parameter is valid from 0 <= <i>tgt</i> < LAPI_Qenv(,NUM_TASKS,) . (IN)
Specifies the target RMW variable address. This parameter cannot be NULL. (IN)
Specifies the value input to the <i>op</i> . This parameter cannot be NULL. (IN)
Specifies the location at the origin in which the previous <i>tgt_var</i> on the target process is stored before the RMW <i>op</i> is executed. This parameter can be NULL. (IN/OUT)
Specifies the origin counter address. The origin counter is incremented after data is copied out of the origin address. If the parameter is NULL, this counter will not be updated. (IN/OUT)

ierror Specifies a FORTRAN return code. It is always the last argument. (OUT)

Description

Use this subroutine to synchronize two independent operations, such as two processes sharing a common data structure. The operation is performed at the *tgt* target process and is atomic. The operation takes an *in_val* from the origin and performs one of four selected *op* operations on a *tgt_var* variable at the *tgt* target, and then replaces the *tgt_var* target variable with the results of the *op* operation. The *prev_tgt_val* original value of the *tgt_var* target variable is returned to the origin.

The valid operations for op are:

- COMPARE_AND_SWAP
- FETCH_AND_ADD
- FETCH AND OR
- SWAP

The operations are performed over the context referred to by *hndl*. The outcome of the execution of these calls is as if the following code was executed atomically:

```
*prev_tgt_val = *tgt_var;
*tgt_var = f(*tgt_var, *in_val);
where:
f(a,b) = a + b for FETCH_AND_ADD
f(a,b) = a | b for FETCH_AND_OR (bitwise or)
f(a,b) = b for SWAP
```

For **COMPARE_AND_SWAP**, *in_val* is treated as a pointer to an array of two integers, and the *op* is the following atomic operation:

```
if(*tgt_var == in_val[0]) {
    *prev_tgt_val = TRUE;
*tgt_var = in_val[1];
} else {
    *prev_tgt_val = FALSE;
}
```

All the calls are nonblocking. To test for completion, use the **LAPI_Getcntr** and **LAPI_Waitcntr** functions. There is no *tgt_cntr* on RMW calls and they do not provide any indication of completion on the *tgt* process.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI ERR BAD PARAMETER

Indicates that addresses were passed in that were not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Getcntr, LAPI_Probe, LAPI_Qenv, LAPI_Setcntr, LAPI_Waitcntr

LAPI_Senv Subroutine

Purpose

LAPI_Senv – Sets the Low-level Application Programming Interface (LAPI) environment for the specified context.

C Syntax

```
#include <lapi.h>
int LAPI_Senv(hndl, query, set_val)
lapi_handle_t hndl;
lapi_query_t query;
int set val;
```

FORTRAN Syntax

```
include 'lapif.h'
LAPI_SENV(hndl, query, set_val, ierror)
INTEGER hndl;
INTEGER query;
INTEGER set_val;
INTEGER ierror;
```

Parameters

```
hndl Contains a handle that specifies a particular LAPI context. (IN)
query Specifies the LAPI set environment type as defined by lapi_query_t in lapi.h. (IN)
set_val Specifies the integer value to set the LAPI environment. (IN)
ierror Specifies a FORTRAN return code. It is always the last argument. (OUT)
```

Description

Use this subroutine to set the LAPI environment for a specific LAPI instance. **lapi_query_t** defines the types of LAPI set environment variables.

To obtain the default values of the settings, use the LAPI_Qenv function.

Note: If **ERROR_CHK** is set to 0 for all LAPI calls, parameter error checking is ignored (for example, **LAPI_ERR_BAD_PARAMETER** is not returned).

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Qenv

LAPI_Setcntr Subroutine

Purpose

LAPI_Setcntr – Sets a counter to a specified value.

C Syntax

```
#include <lapi.h>
int LAPI_Setcntr(hndl, cntr, val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int val;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_SETCNTR(hndl, cntr, val, ierror)
INTEGER hndl;
INTEGER cntr;
INTEGER val;
INTEGER ierror;
```

Parameters

hndl Contains a handle that specifies a particular Low-Level Application

Programming Interface (LAPI) context. (IN)

cntr Specifies the address of the counter to be set. This parameter cannot be

NULL. (IN/OUT)

val Specifies the value the counter needs to be set to. (IN)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to set the *cntr* to the appropriate value. The LAPI context associated with *hndl* may or may not be polled for incoming messages.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in *PSSP: Administration Guide* for additional LAPI information.

Related Information

Subroutines: LAPI_Getcntr, LAPI_Probe, LAPI_Waitcntr

LAPI_Term Subroutine

Purpose

LAPI_Term – Terminates and cleans up the Low-Level Application Programming Interface (LAPI) subsystem.

C Syntax

```
#include <lapi.h>
int LAPI_Term(hndl)
lapi_handle_t hndl;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_TERM(hndl, ierror)
INTEGER hndl;
INTEGER ierror;
```

Parameters

hndl Contains a handle that specifies a particular LAPI context. (OUT)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to terminate the LAPI context specified by *hndl*. Any LAPI notification threads associated with this context are terminated. An error occurs when any LAPI calls are made using *hndl* after **LAPI_Term()** is called, except for **LAPI_Msg_string()** and **LAPI_Address()**.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

EINVAL Is a system error indicating that the specified argument was not

valid.

EPERM Is a system error indicating that the caller is not authorized to

perform the specified action.

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

LAPI_ERR_CLOSE_FAILED

Indicates the close of the communication device was

unsuccessful.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Init

LAPI_Waitcntr Subroutine

Purpose

LAPI_Waitcntr – Waits until a specified counter reaches the value specified.

C Syntax

```
#include <lapi.h>
int LAPI_Waitcntr(hndl, cntr, val, cur_cntr_val)
lapi_handle_t hndl;
lapi_cntr_t *cntr;
int val;
int *cur cntr val;
```

FORTRAN Syntax

```
include 'lapif.h'

LAPI_WAITCNTR(hndl, cntr, val, cur_cntr_val, ierror)
INTEGER hndl;
INTEGER cntr;
INTEGER val;
INTEGER cur_cntr_val;
INTEGER ierror;
```

Parameters

hndl Contains a handle that specifies a particular Low-Level Application

Programming Interface (LAPI) context. (IN)

cntr Specifies the address of the counter to be waited on. This parameter

cannot be NULL. (IN)

val Specifies the value the counter needs to reach. (IN)

cur_cntr_val Specifies the integer value of the current counter. This parameter

can be NULL. (OUT)

ierror Specifies a FORTRAN return code. It is always the last argument.

(OUT)

Description

Use this subroutine to wait until the *cntr* reaches or exceeds the specified *val*. Once the *cntr* reaches the *val*, the *cntr* is decremented by that value. (We say decremented rather than set to zero since the *cntr* could have had a value greater than the specified *val* when the call was made.) This call may or may not check for message arrivals over the LAPI context *hndl*; **LAPI_Probe** will always check for message arrivals.

Return Values

LAPI_SUCCESS Indicates successful completion.

The following is returned when an error occurs:

LAPI_ERR_BAD_PARAMETER

Indicates that a parameter was passed in that was not valid.

Prerequisite Information

Refer to the "Understanding and Using the Communications Low-Level Application Programming Interface" chapter in PSSP: Administration Guide for additional LAPI information.

Related Information

Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Getcntr, LAPI_Probe, LAPI_Put, LAPI_Rmw, LAPI_Setcntr

setvhostname Subroutine

Purpose

setvhostname – Sets the virtual host name.

Library

Availability Library (libavail.a)

Syntax

#include <vhost.h>

int setvhostname (name, name_length); char *name; int name_length;

Parameters

name Specifies the virtual host name.

name_length Specifies the length of the name array.

Description

Use this subroutine to set the virtual host name of a host machine. Only programs with a root user ID can use this subroutine. This routine is similar to the **sethostname** system call with the exception that it stores the virtual host name in the **/etc/vhostname** file instead of using a kernel variable. The **setvhostname** subroutine is a library call and **sethostname** is a system call.

The *name* is stored in the **/etc/vhostname** file. If the file does not exist, it will be created. If it does exist, the file contents will be overwritten by the new virtual host name. Virtual host names are limited to MAX_VHOSTNAME_LEN bytes (255), not including the terminating null character. The MAX_VHOSTNAME_LEN macro is defined in the **vhost.h** header file. The *name_length* parameter does not have to allow for the terminating null character, therefore, the largest allowable value for *name_length* is MAX_VHOSTNAME_LEN.

To clear the virtual host name so that the virtual host name no longer exists, remove the /etc/vhostname file.

Note: You must have root authority to remove the **/etc/vhostname** file.

The virtual host name is used in fail over situations when an application has associated the host name in the kernel of a particular machine to the service it is providing. When the application is restarted on the fail over node that has a different host name, the application may not work or work incorrectly. If the application needs to associate a host name with a particular service and it cannot handle having multiple host names, a virtual host name can be provided. The application can call **getvhostname** instead of **gethostname** and get the host name of the node it normally runs on. This eliminates the need to change the real host name in the kernel on the backup node. It should be noted that changing the real host name in the kernel can cause problems with other applications that rely on the real host name to identify the *physical machine*.

Note: The High Availability Cluster Multiprocessing (HACMP) event scripts supplied with the High Availability Control Workstation (HACWS) option of

the IBM Parallel System Support Programs for AIX (PSSP), set and clear the virtual host name in the HACMP pre- and post-event scripts. The administrator should not normally have to set the virtual host name.

Return Values

Upon successful completion, the **setvhostname** subroutine returns a value of 0. Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.

Error Values

The **setvhostname** subroutine is unsuccessful if the following error occurs:

EINVAL Indicates that the *name_length* parameter is greater than MAX_VHOSTNAME_LEN or less than 0.

EPERM Indicates that the calling process does not have an effective root user

If one of the system calls used to store the virtual host name into the /etc/vhostname file encounters an error (for example, open, write, rename), errno is set by the system call that encountered an error.

Examples

1. To clear the virtual host name so that it no longer exists, enter:

rm /etc/vhostname

Note: You must have root authority to remove the /etc/vhostname file.

2. To set the virtual host name to **spcw_prim**, enter:

```
#include <string.h>
#include <vhost.h>
main ()
char name[]='spcw_prim';
setvhostname(name, strlen(name));
}
```

Related Information

Commands: vhostname

Subroutines: getvhostname

AIX Commands: hostname

AIX Subroutines: gethostname, sethostname

swclockGetIncrement Subroutine

Purpose

swclockGetIncrement – Returns the hertz frequency at which the switch clock

operates.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h>

int swclockGetIncrement(swclock_handle_t swclock_handle);

Parameters

swclock_handle Specifies the handle returned by the swclockInit subroutine.

Description

Use this thread-safe subroutine to obtain the hertz frequency at which the switch clock operates. Switch clock frequency can be used to convert the switch clock value returned by the **swclockRead** subroutine.

Return Values

Upon successful completion, the **swclockGetIncrement** subroutine returns the hertz frequency at which the switch clock operates. Otherwise, a value of -1 is returned and the global variable **errno** is set to identify the error.

Error Values

EINVAL Indicates that the switch clock read interface was not initialized by the

current thread.

EPERM Indicates that a handle that was not valid was passed to the

swclockGetIncrement subroutine.

Related Information

Subroutines: swclockInit, swclockRead, swclockReadSec, swclockTerm

Header File: swclock.h

swclocklnit Subroutine

Purpose

swclockInit – Initializes the switch clock read interface for a thread.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h> swclock_handle_t swclockInit(void);

Description

Use this thread-safe subroutine to initialize the switch clock read interface for the current thread. It returns a handle which must be passed as an input parameter to all other switch clock library subroutines.

Usage Notes:

- 1. This subroutine **must** be called on a per-thread basis.
- 2. This subroutine allocates a segment register (one per process) that might otherwise be used by shared memory, memory-mapped files or the extended heap.

Return Values

Upon successful completion, the swclocklnit subroutine returns a handle that must be passed as input to all other switch clock library subroutines. Otherwise, a value of 0 is returned and the global variable **errno** is set to identify the error.

Error Values

EAGAIN

Indicates that the node is not active on the switch. Since this may be a temporary condition, the **swclocklnit** subroutine should be retried; IBM suggests a number of retry attempts of SWCLOCK_RETRY. If retry attempts are unsuccessful, refer to the "Using a Switch" chapter in the PSSP: Administration Guide for information on determining switch connectivity.

EBUSY

Indicates that the switch clock lock for the process could not be obtained. The swclocklnit subroutine should be retried; IBM suggests a number of retry attempts of SWCLOCK RETRY.

ENOENT, ENXIO

Indicates that either the switch adapter does not exist or the adapter did not configure successfully.

ENOMEM Indicates that the **swclockInit** subroutine could not obtain sufficient system resources to satisfy the request. The swclocklnit subroutine should be retried; IBM suggests a number of retry attempts of SWCLOCK_RETRY.

ETXTBSY

Indicates that diagnostics is running on the switch adapter. The swclockInit subroutine should be retried after adapter diagnostics have completed.

Related Information

PSSP: Administration Guide

Subroutines: swclockGetIncrement, swclockRead, swclockReadSec, swclockTerm

Header File: swclock.h

swclockRead Subroutine

Purpose

swclockRead - Returns the current switch clock value.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h> long64_t swclockRead(swclock_handle_t swclock_handle);

Parameters

swclock handle Specifies the handle returned by the swclocklnit subroutine.

Description

Use this thread-safe subroutine to read the switch clock. The switch clock value can be converted using the frequency returned by the swclockGetIncrement subroutine. The swclockRead subroutine can be called as many times as needed once the switch clock read interface is initialized for the current thread.

The switch clock is synchronous across all nodes active on a switch. Its value is set to zero when the primary node powers on, and can be reset during switch operation and management.

Usage Notes:

- 1. IBM suggests that a SIGBUS signal handler be established before this subroutine is called since adapter problems can result in a bus error when the switch clock is accessed. The SIGBUS signal handler should regard such an error as permanent. For information on diagnosing adapter problems, refer to the "Diagnosing Switch Problems" chapter in the PSSP: Diagnosis Guide.
- 2. Callers of this subroutine may want to check for a switch clock value that has regressed since the previous call due to a wrap or resetting condition. The High Performance Switch communications adapter wraps after approximately 81 days, while the SP Switch communications adapter effectively has no wrap. For events that can reset the switch clock, refer to the "Using a Switch" chapter in the PSSP: Administration Guide.

Return Values

Upon successful completion, the swclockRead subroutine returns the current value of the switch clock. Otherwise, a value of -1 is returned and the global variable **errno** is set to identify the error.

Error Values

EAGAIN Indicates that the node is not active on the switch. Since this may be a

temporary condition, the **swclockRead** subroutine should be retried; IBM suggests a number of retry attempts of **SWCLOCK_RETRY**. If retry attempts are unsuccessful, refer to the "Using a Switch" chapter in the *PSSP: Administration Guide* for information on determining switch

connectivity.

EINVAL Indicates that the switch clock read interface was not initialized by the

current thread.

EPERM Indicates that a handle that was not valid was passed to the

swclockRead subroutine.

Related Information

PSSP: Diagnosis Guide

PSSP: Administration Guide

Subroutines: swclockGetIncrement, swclockInit, swclockReadSec,

swclockTerm

Header File: swclock.h

swclockReadSec Subroutine

Purpose

swclockReadSec – Returns the current switch clock value in seconds.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h>
double swclockReadSec(swclock_handle_t swclock_handle);

Parameters

swclock_handle Specifies the handle returned by the swclockInit subroutine.

Description

Use this thread-safe subroutine to read the switch clock. The **swclockReadSec** subroutine returns switch clock value converted to seconds. It can be called as many times as needed to read the switch clock once the switch clock read interface is initialized for the current thread.

The switch clock is synchronous across all nodes active on a switch. Its value is set to zero when the primary node powers on, and can be reset during switch operation and management.

Usage Notes:

- 1. IBM suggests that a SIGBUS signal handler be established before this subroutine is called since adapter problems can result in a bus error when the switch clock is accessed. The SIGBUS signal handler should regard such an error as permanent. For information on diagnosing adapter problems, refer to the "Diagnosing Switch Problems" chapter in the *PSSP: Diagnosis Guide*.
- 2. Callers of this subroutine may want to check for a switch clock value that has regressed since the previous call due to a wrap or resetting condition. The High Performance Switch communications adapter wraps after approximately 81 days, while the SP Switch communications adapter effectively has no wrap. For events that can reset the switch clock, refer to the "Using a Switch" chapter in the PSSP: Administration Guide.

Return Values

Upon successful completion, the **swclockReadSec** subroutine returns the current value of the switch clock converted to seconds. Otherwise, a value of -1 is returned and the global variable **errno** is set to identify the error.

Error Values

EAGAIN Indicates that the node is not active on the switch. Since this may be a

temporary condition, the swclockReadSec subroutine should be retried; IBM suggests a number of retry attempts of **SWCLOCK_RETRY**. If retry attempts are unsuccessful, refer to the "Using a Switch" chapter in the PSSP: Administration Guide for information on determining switch

connectivity.

EINVAL Indicates that the switch clock read interface was not initialized by the

current thread.

EPERM Indicates that a handle that was not valid was passed to the

swclockReadSec subroutine.

Related Information

PSSP: Diagnosis Guide

PSSP: Administration Guide

Subroutines: swclockGetIncrement, swclockInit, swclockRead, swclockTerm

Header File: swclock.h

swclockTerm Subroutine

Purpose

swclockTerm – Terminates the switch clock read interface for a thread.

Library

Switch Clock Library (libswclock.a)

Location

/usr/lib/libswclock.a

Syntax

#include <swclock.h>

int swclockTerm(swclock_handle_t swclock_handle);

Parameters

swclock_handle Specifies the handle returned by the swclockInit subroutine.

Description

Use this thread-safe subroutine to terminate the switch clock read interface for the current thread. Switch clock library subroutines called subsequent to the **swclockTerm** subroutine will encounter an error unless the thread reinitializes the interface. If the **swclockTerm** subroutine is not called, the switch clock read interface will be terminated when the thread itself terminates.

Return Values

Upon successful completion, the **swclockTerm** subroutine returns a value of 0. Otherwise, a value of -1 is returned and the global variable **errno** is set to identify the error.

Error Values

EBUSY Indicates that the switch clock lock for the process could not be

obtained. The swclockTerm subroutine should be retried; IBM suggests

a number of retry attempts of SWCLOCK_RETRY.

EINVAL Indicates that the switch clock read interface was not initialized by the

current thread.

EPERM Indicates that a handle that was not valid was passed to the

swclockTerm subroutine.

Related Information

Subroutines: swclockGetIncrement, swclockInit, swclockRead,

swclockReadSec

Header File: swclock.h

swtbl_clean_table Subroutine

Purpose

swtbl_clean_table – Forces the unload of the job switch resource table window on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>
int swtbl_clean_table(int version,char *adapter,int option,int window_id);

Parameters

version Specifies the version of header file used. Should be

ST_VERSION defined in st_client.h.

adapter Specifies the adapter to be opened upon which the window

resides. Only css0 is supported.

option ST_OPTION

enumeration value which indicates the following action:

ST_LEAVE_INUSE: If a process is currently using the switch

table then don't force the unload.

ST ALWAYS KILL: If a process is currently using the switch

table, stop the process and unload the

table.

window id Specifies the window id for which the unload and cleanup will be

done. If window_id equals -1, then the default window will be

unloaded.

Description

Use this subroutine to override user ID (uid) checking and to unload the job switch resource table window on the node from which it is invoked.

Normal unloading of the job switch resource table window by the **swtbl_unload_table** API verifies that the uid of the unload matches the uid specified during the load. The **swtbl_clean_table** API ignores this verification and allows the caller to unload the window from a node.

This subroutine should be used for error recovery and not for normal switch table unloading. For example, when a parallel job has left a process in use and the window did not unload by the **swtbl_unload_table** API, the caller can use **swtbl_clean_table** to clean up that node.

If the **ST_LEAVE_INUSE** option is specified and a process is using the switch, the **swtbl_clean_table** will not unload the window.

If the **ST_ALWAYS_KILL** option is specified, and a process is using the switch then the process will be stopped by a **SIGKILL** signal.

To invoke this interface, the effective user id of the calling process must be the root user id.

The default window is specified within the **st_client.h** file.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log

Return Values

Upon successful completion, the **swtbl_clean_table** subroutine returns a value of ST_SUCCESS. Otherwise, it returns an error value defined by the ST_RETURN_CODE enumerator found in st_client.h.

Error Values

ST_INVALID_PARAM	Indicates that a specified parameter was not valid. The /var/adm/SPlogs/st/st_log file will have further details.		
ST_NOT_AUTHOR	Caller did not have effective user id of root.		
ST_NO_SWITCH	The open call of the specified adapter was unsuccessful.		
ST_SWITCH_NOT_LOADED			
	Indicates that the switch table is not currently loaded.		
ST_SWITCH_IN_USE	Indicates that the switch table is currently in use and the ST_LEAVE_INUSE option was specified.		
ST_SYSTEM_ERROR	Indicates a system error occurred. The /var/adm/SPlogs/st/st_log file will have further details.		

Related Information

```
Commands: st_clean_table, st_status
```

Subroutines: swtbl_load_job, swtbl_load_table, swtbl_unload_job, swtbl unload table, swtbl status, swtbl status node

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

To clean up a running process and unload the table from this node:

```
#include <st client.h>
 main() {
   int rc;
    enum ST OPTION option = ST ALWAYS KILL;
    int window id = 1;
    rc = swtbl clean table(ST VERSION, "css0", option, window id);
    fprintf(stdout, "swtbl_clean_table returned %d\n");
```

swtbl_load_job Subroutine

Purpose

swtbl_load_job – Loads the job switch resource table on the indicated nodes for a single job.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>
int swtbl_load_job(int version,uid_t uid,int job_key,int num_tasks, \
char *job desc,char *cws, ST NODE INFO *nodeinfo);

Parameters

version Specifies the version of header file used. Should be

ST_VERSION defined in st_client.h.

uid Specifies the real user ID of the user for whom the tables are

being loaded and who will be authenticated to run the user space

job.

job_key Specifies a globally unique job key. This job key is then used

later by the user space job to access the table. Must be greater

than 0.

num tasks Specifies the number of tasks that will be accessing the job

switch resource table during user space execution.

job_desc Specifies the string describing the job that will be using the job

switch resource table. Maximum length of 50 characters,

truncated after maximum. Defaults to "no_job_description_given".

cws Specifies the string representing the control workstation or system

partition where the specified nodes reside. It is used to determine the switch node numbers defined within the System Data

Repository (SDR). The default is the **SP_NAME** environment

variable.

nodeinfo Specifies the pointer to the ST NODE INFO structure that was

allocated and defined by the caller. A nodeinfo structure must exist for every **num_tasks** defined. **ST_NODE_INFO** members:

char st_node_name

Indicates the name or dotted decimal IP string of the node for which this data pertains. It works in

combination with **st_addr**, if **st_node_name** is NULL, the **st_addr** must contain the struct **in_addr** address of the node. The **st_node_name** is checked first and if non-NULL, the **st_addr** is ignored. The maximum

length is 256 characters.

struct in addr st addr

Indicates the network address of the node for which this data pertains. It works in combination with

st node name, the st node name must be NULL to use this.

int st virtual task id

Specifies an integer between 0 and (num tasks-1), which represents this task. It must be sequential with other task ids for this job switch resource table.

int st_window_id

Specifies the window id to be loaded and used by the corresponding task id. The window id must be between 0 and 3 inclusive. Each window is dedicated to a task and cannot be shared. If -1 is specified, then the default window will be used.

Description

Use this subroutine to load all of the job switch resource tables needed for a single parallel job. A switch table needs to be loaded upon every node used by the job for communication in user space mode over the switch.

An ST NODE INFO structure needs to be defined for every node that the parallel job will execute on. The **swtbl_load_job** subroutine interfaces with the **switchtbld** daemon over the network to call the local swtbl_load_table API which loads the table on that node.

The effective user id of the calling process must be the root user id.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file on the calling node and for all of the nodes within the request.

The default window is defined within the **st client.h** header file.

Return Values

Upon successful completion, the swtbl load job subroutine returns a value of ST_SUCCESS. Otherwise, it returns an integer value defined by the ST_RETURN_CODE enumerator found in st_client.h.

The ST NODE INFO member st return code is updated to reflect any errors that may have occurred on the individual nodes. This return code corresponds to the return code of the swtbl load table API called on that node.

The **ST_ALREADY_CONNECTED** return code does not indicate an error. It means that the load request was already sent to that node because the **st_node_name** was defined within a previous nodeinfo structure.

The ST_UNLOADED return code indicates that the switch table was unloaded upon that node after another node within the same request encountered an error.

Error Values

ST_CANT_CONNECT Indicates that the connect request was unsuccessful.

ST_INVALID_ADDR Indicates that the **st_addr** argument cannot be converted

by inet_ntoa.

ST_INVALID_PARAM Indicates that a specified parameter was not valid. The

/var/adm/SPlogs/st/st_log file will have further details.

ST_INVALID_TASK_ID

The virtual task id was negative, greater than the number

of tasks requested or not sequentially defined.

ST_NOT_AUTHOR Caller did not have effective user id of root.

ST_SDR_ERROR Indicates an error occurred during interaction with the

SDR.

ST_SWITCH_NOT_LOADED

Indicates that the load request was not issued due to

another error.

ST_SYSTEM_ERROR Indicates a system error occurred. The

/var/adm/SPlogs/st/st_log file will have further details.

Related Information

Commands: st_clean_table, st_status

Subroutines: swtbl_clean_table, swtbl_load_table, swtbl_status, swtbl_status_node, swtbl_unload_job, swtbl_unload_table

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to load the job switch resource table for a job that will be executing on two nodes:

```
#include <st_client.h>
 main() {
   int rc;
   int job_key;
   int num tasks = 2;
   struct ST_NODE_INFO node[num_tasks];
   struct hostent *hp;
   uid_t uid;
    uid = set_user_id();  /* User defined routine to get uid */
    job_key = set_unique_key(); /* User defined routine to get job_key */
     strcpy(node[0].st node name, "Node1");
    node[0].st_window_id = 0;
    node[0].st_virtual_task_id = 0;
    hp = gethostbyname("Node2");
    bcopy(hp->h addr list[0],&node[1].swtbl addr,hp->h length);
    node[1].st_window_id = 1;
    node[1].st virtual task id = 1;
     rc = swtbl load job(uid,job key,num tasks,"User1 job",NULL,node);
     fprintf(stdout, "swtbl_load_job returned %d\n", rc);
 }
```

swtbl_load_table Subroutine

Purpose

swtbl_load_table – Loads a job switch resource table on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>
int swtbl_load_table(int version,uid_t uid,pid_t pid,int job_key, \
char *requester_node, int num_tasks,char *job_desc,\
ST_NODE_INFO *nodeinfo);

Parameters

version Specifies the version of header file used. Should be

ST_VERSION defined in st_client.h.

uid Specifies the real user ID of the user for whom the table is being

loaded and who will be authenticated to run the user space job.

pid Specifies the process ID (pid) of the calling process, typically a

job scheduler.

job_key Specifies a globally unique job key. This job key is then used

later by the user space job to access the table. Must be greater

than 0.

requester_node Specifies the name of the node from which the request is being

made. It is used in conjunction with **swtbl_load_job** API to determine where the load was made from. The default is

"no_request_node_given"

resource table during user space execution.

job_desc Specifies the string that describes the job that is using the job

switch resource table. Maximum length of 50 characters,

truncated after maximum. Defaults to "no_job_description_given".

nodeinfo Specifies the pointer to the **ST_NODE_INFO** structure that was

allocated and defined by the caller. A nodeinfo structure must exist for every num_tasks defined. **ST_NODE_INFO** members:

int st_virtual_task_id

Specifies an integer between 0 and (num_tasks-1),

which represents this task.

int st_switch_node_num

Specifies the switch node number from the System Data Repository (SDR) for the node defined by this

structure.

int st_window_id

Specifies the window id to be loaded and used by the corresponding task id. The window id must be between 0 and 3 inclusive. Each window is dedicated to task and cannot be shared. If -1 is specified, then the default window will be used.

Description

Use this subroutine to load the job switch resource table on the node from which it is invoked. This switch table is used by parallel jobs running user space over the switch.

An ST_NODE_INFO structure needs to be defined for every node that the parallel job will execute on.

The effective user id of the calling process must be the root user id.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file.

The default window is defined within the **st_client.h** header file.

Return Values

Upon successful completion, the swtbl_load_table subroutine returns a value of ST_SUCCESS. Otherwise, it returns an integer value defined by the **ST_RETURN_CODE** enumerator found in st_client.h.

The **ST_NODE_INFO** member **st_return_code** is not updated by this subroutine.

Error Values

ST_DOWNON_SWITCH	Indicates that one or more nodes in switch table list are down on the switch or outside the switch boundaries.
ST_INVALID_PARAM	Indicates that a specified parameter was not valid. The /var/adm/SPlogs/st/st_log file will have further details.
ST_INVALID_TASK_ID	The virtual task id was negative or greater than the number of tasks requested.
ST_NO_SWITCH	The open call of /dev/css0 was unsuccessful.
ST_NOT_AUTHOR	Caller did not have effective user id of root.
ST_INVALID_ADDR	Indicates the node name or node address specified could not be resolved.
ST_SWITCH_IN_USE	Indicates a switch table is already loaded or the switch table is loaded and in use.
ST_SYSTEM_ERROR	Indicates a system error occurred. The /var/adm/SPlogs/st/st_log file will have further details.

Related Information

Commands: st_clean_table, st_status

Subroutines: swtbl_clean_table, swtbl_load_job, swtbl_status, swtbl_status_node, swtbl_unload_job, swtbl_unload_table

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to load the job switch resource table for a job that will be running on 2 nodes:

```
#include <st_client.h>
 main() {
    int i,rc;
    struct ST NODE INFO node[2];
    uid t uid;
    pid t pid;
    int job_key;
    int num_tasks=2;
    char hostname[MAXHOSTNAMELEN];
                              /* User defined routine to get uid */
   uid = set user id();
    pid = getpid();
    gethostname(hostname, MAXHOSTNAMELEN);
    job_key = set_unique_key(); /* User defined routine to get job_key */
    node[0].st_virtual_task_id = 0;
    node[0].st window id = 0;
    node[0].st_switch_node_num = get_num_from_SDR(); /* get switch num */
    node[1].st virtual task id = 1;
    node[1].st window id = 1;
    node[1].st switch node num = get num from SDR(); /* get switch num */
    rc = swtbl load table(ST VERSION, uid, pid, job key, hostname, num tasks,
     "User1_job", node);
    fprintf(stdout, "swtbl_load_table returned %d\n",rc);
```

swtbl_query_adapter Subroutine

Purpose

swtbl_query_adapter – Returns the status of the adapter specified on the node

from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>

int swtbl_query_adapter(int version,char *adapter,\

enum ST ADAPTER STATUS *status)

Parameters

version Specifies the version of header file used. Should be

ST_VERSION defined in st_client.h.

adapter Specifies the adapter to obtain status for. Only **css0** is supported.

status Specifies the address of the ST_ADAPTER_STATUS enum to

contain the status.

Description

Use this subroutine to obtain the current status of the adapter specified on the node from which it is invoked. The ST_ADAPTER_STATUS variable will contain ADAPTER_READY or ADAPTER_NOTREADY. ADAPTER_READY indicates that the node has connectivity over the switch for sending and receiving data. ADAPTER_NOTREADY indicates that the node is not connected to other nodes over the switch.

The effective user id of the calling process must be the root user id.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file.

Return Values

Upon successful completion, the **swtbl_query_adapter** subroutine returns a value of **ST_SUCCESS**. Otherwise, it returns an integer value defined by the **ST_RETURN_CODE** enumerator found in **st_client.h**.

Error Values

ST_INVALID_PARAM Indicates that a specified parameter was not valid.

The /var/adm/SPlogs/st/st_log file will have further

details.

ST_NO_SWITCH The open call of the specified adapter was

unsuccessful.

ST_NOT_AUTHOR Indicates that the caller did not have an effective

user id of root.

ST_SYSTEM_ERROR

Indicates a system error occurred. The **/var/adm/SPlogs/st/st_log** file will have further details.

Related Information

Commands: st_clean_table, st_status

Subroutines: swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl_status, swtbl_status_node, swtbl_unload_job

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to query **css0** on the current node:

```
#include <st_client.h>
  main() {
    int rc;
    enum ST_ADAPTER_STATUS status;

    rc = swtbl_query_adapter(ST_VERSION,"css0",&status);
    fprintf(stdout,"swtbl_query_adapter returned %d\n",rc);
    fprintf(stdout,"status = %d\n",status);
}
```

swtbl_status Subroutine

Purpose

swtbl_status – Returns the status of all job switch resource table windows upon a node.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>
int swtbl_status(int version,int num_nodes,ST_STATUS *status_info);

Parameters

version Specifies the version of header file used. Should be

ST_VERSION defined in st_client.h.

num_nodes Specifies the number of nodes on which status is reported.

status_info Specifies the pointer to the array of ST_STATUS structures that

was allocated by the caller. A **status_info** structure must exist for every **num_nodes** defined. **ST_STATUS** members include:

char st_node_name

Indicates the name or dotted decimal IP string of the node for which this data pertains. It works in combination with **st_addr**, if **st_node_name** is NULL, then **st_addr** must contain the struct **in_addr** address of the node. The **st_node_name** is checked first and if non-NULL, the **st_addr** is ignored. The maximum

length is 256 characters.

struct in_addr st_addr

Indicates the network address of the node for which this data pertains. Works in combination with **st_node_name**, the **st_node_name** must be NULL to

use this.

Description

Use this subroutine to return the status of all job switch resource table windows on the nodes specified within each **ST_STATUS** structure. This subroutine interfaces with the **switchtbld** daemon to call the local **swtbl_status_node** API on each node. Each node returns a linked list of **ST_STATUS** structures representing the windows defined upon that node. The caller is responsible for freeing the memory allocated for the linked list. A **NULL** *next pointer indicates the end.

If a window is loaded, the corresponding **ST_STATUS** structure will contain information about who made the load request, which user was designated to use the table and when the request was made. If a window is not loaded or an error occurred, the **st_return_code** contains the corresponding error value.

The **swtbl_status** API gives no information about whether the switch table is in use or not.

Any information or error messages are recorded in the **/var/adm/SPlogs/st/st_log** file on the calling node and for all of the nodes within the request.

Return Values

Upon successful completion, the **swtbl_status** subroutine returns a value of **ST_SUCCESS**. Otherwise, it returns an integer value defined by the **ST_RETURN_CODE** enumerator found in **st_client.h**.

The **ST_STATUS** member **st_return_code** is updated to reflect any errors that may have occurred on the individual nodes. This return code corresponds to the return code of the **swtbl_status_node** API called on that node.

The following data members are returned when the switch table is loaded:

st_user_name The name corresponding to the uid given during the load

request.

st_node_name Node for which this status is reported.

st_req_node Node from which the load request was issued.

st_description String given during load request describing the job using the

switch table.

st_time_loaded Timestamp of when the load request was processed.

st_client_pid Pid of the process who made the load request.

st_uidUid given during the load request for the user who will be using

the switch table.

st_window_id Window for which the data is being reported.

Error Values

ST_CANT_CONNECT Indicates that the connect request was

unsuccessful.

ST_INVALID_ADDR Indicates that the **st_addr** argument cannot be

converted by inet_ntoa.

ST_INVALID_PARAM Indicates that a specified parameter was not valid.

The /var/adm/SPlogs/st/st_log file will have further

details.

ST_SWITCH_NOT_LOADED Indicates that the switch table is not currently

loaded.

ST_LOADED_BYOTHER Indicates that the switch table is currently loaded but

was not loaded via the Job Switch Resource Table

Services.

ST_SYSTEM_ERROR Indicates a system error occurred. The

/var/adm/SPlogs/st/st_log file will have further

details.

ST_NO_SWITCH The open call of /dev/css0 was unsuccessful.

Related Information

Commands: st_clean_table, st_status

Subroutines: swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl_status_node, swtbl_unload_job, swtbl_unload_table

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to get the status for three nodes:

```
#include <st_client.h>
 main() {
   int i,rc;
    int num nodes = 3;
    struct ST_STATUS status[num_nodes];
    strcpy(status_info[0].st_node_name,"k10n09");
    strcpy(status_info[1].st_node_name,"129.40.161.74");
    strcpy(status_info[2].st_node_name, "k10n11");
    rc = swtbl_status(ST_VERSION,num_nodes,status_info);
    fprintf(stdout,"swtbl_status returned %d\n",rc);
    print header();
    for (i=0; i<num_tasks; i++) {</pre>
     /* Print out each member of the struct */
     print_status(status_info[i]);
    }
```

swtbl_status_node Subroutine

Purpose

swtbl_status_node – Returns the status of all job switch resource table windows on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>
swtbl_status_node(int version, ST_STATUS *status_info);

Parameters

version Specifies the version of header file used. Should be

ST_VERSION defined in st_client.h.

status_info Specifies the pointer to the ST_STATUS structure that was

allocated by the caller.

Description

Use this subroutine to return the status of all job switch resource table windows on the node from which it is invoked. The caller must supply the first **ST_STATUS** structure but the API will allocate any remaining structures depending on the number of windows defined for that node. These structures will be linked to the first **ST_STATUS** by the next pointer. The caller is responsible for freeing all allocated memory. If a window is loaded, the corresponding **ST_STATUS** structure will contain information about who made the load request, which user was designated to use the table and when the request was made. If a window is not loaded or an error occurred, the **st_return_code** contains the corresponding error value.

The **swtbl_status_node** API gives no information about whether the switch table is in use or not.

The effective user id of the calling process must be the root user id.

Any information or error messages are recorded in the **/var/adm/SPlogs/st/st_log** file.

Return Values

Upon successful completion, the **swtbl_status_node** subroutine returns a value of **ST_SUCCESS**. Otherwise, it returns an integer value defined by the **ST_RETURN_CODE** enumerator found in **st_client.h**.

The following data members are returned when the switch table is loaded:

st_user_name The name corresponding to the uid given during the load

request.

st node name Node for which this status is reported.

st_req_node Node from which the load request was issued.

st description String given during load request describing the job using the

switch table.

st_time_loaded Timestamp of when the load request was processed.

st_client_pid Pid of the process who made the load request.

st uid Uid given during the load request for the user who will be using

the switch table.

st_window_id Window for which the data is being reported.

Error Values

ST_NOT_AUTHOR Indicates that the caller did not have an effective

user id of root.

ST INVALID PARAM Indicates that a specified parameter was not valid.

The /var/adm/SPlogs/st/st_log file will have further

details.

ST_NO_SWITCH The open call of /dev/css0 was unsuccessful.

ST_SWITCH_NOT_LOADED Indicates that the switch table is not currently

loaded.

ST LOADED BYOTHER Indicates that the switch table is currently loaded but

was not loaded via the Job Switch Resource Table

Services.

ST_SYSTEM_ERROR Indicates a system error occurred. The

/var/adm/SPlogs/st/st_log file will have further

details.

Related Information

Commands: st_clean_table, st_status

Subroutines: swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl status, swtbl unload job, swtbl unload table

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to get the status for this node:

```
#include <st client.h>
 main() {
    int rc;
    struct ST_STATUS status[1];
    rc = swtbl status node(ST VERSION, status info);
    fprintf(stdout, "swtbl status node returned %d\n", rc);
    print header();
    print_status(status_info); /* Print out each member of the struct */
```

swtbl_unload_job Subroutine

Purpose

swtbl_unload_job – Unloads the job switch resource tables on the indicated nodes for a single job.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

#include <st_client.h>
int swtbl_unload_job(int version,uid_t uid,int num_tasks,\
ST NODE INFO *nodeinfo);

Parameters

version Specifies the version of header file used. Should be

ST_VERSION defined in st_client.h

uid Specifies the real user ID of the user for whom the unload is

done. This uid must match the uid provided during the

swtbl load job API.

num_tasks Specifies the number of tasks that accessed the job switch

resource table during execution. Represents the size of the

nodeinfo structure list.

nodeinfo Specifies the pointer to the ST_NODE_INFO structure that was

allocated and defined by the caller. A nodeinfo structure must exist for every **num_tasks** defined. ST_NODE_INFO members

include:

char st_node_name

Indicates the name or dotted decimal IP string of the node for which this data pertains. It works in combination with **st_addr**, if **st_node_name** is NULL, then **st_addr** must contain the **struct in_addr** address of the node. The **st_node_name** is checked first and if non-NULL, the **st_addr** is ignored. The maximum

length is 256 characters.

struct in_addr st_addr

Indicates the network address of the node for which this data pertains. It works in combination with st_node_name , the st_node_name must be NULL to

use this.

int st window id

Specifies the window id to be unloaded. The window id must be between 0 and 3 inclusive. If -1 is specified, then the default window will be used.

Description

Use this subroutine to unload all of the job switch resource tables needed for a single parallel job. This switch table is used by parallel jobs running user space over the switch.

An **ST_NODE_INFO** structure needs to be defined for every node that needs to have the switch table unloaded. The swtbl_unload_job subroutine interfaces with the switchtbld daemon over the network to call the local swtbl_unload_table API which unloads every window within the table on that node.

The effective user id of the calling process must be the root user id.

The default window is defined within the **st_client.h** header file.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st log file on the calling node and for all of the nodes within the request.

Return Values

Upon successful completion, the **swtbl_unload_job** subroutine returns a value of ST_SUCCESS. Otherwise, it returns an integer value defined by the ST RETURN CODE enumerator found in st client.h. The ST NODE INFO member st_return_code is updated to reflect any errors that may have occurred on the individual nodes. This return code corresponds to the return code of the swtbl_unload_table API called on that node.

Error Values

ST	CANT	CONNECT	Indicates that the connect request wa
OΙ	CANI	COMMECT	indicates that the connect reduest w

unsuccessful.

ST_INVALID_ADDR Indicates that the **st_addr** argument cannot be

converted by inet_ntoa.

Indicates that a specified parameter was not valid. ST_INVALID_PARAM

The /var/adm/SPlogs/st/st_log file will have further

ST_NOT_AUTHOR Indicates that the caller did not have effective user

id of root.

Indicates the unload request was not issued due to ST_NOT_UNLOADED

another error.

ST SYSTEM ERROR Indicates a system error occurred. The

/var/adm/SPlogs/st/st log file will have further

details.

Related Information

Commands: st_clean_table, st_status

Subroutines: swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl_status, swtbl_status_node, swtbl_unload_table

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to unload the job switch resource table windows for a job that was previously loaded for two nodes:

```
#include <st_client.h>
main() {
    int rc;
    int num_tasks = 2;
    struct ST_NODE_INFO node[num_tasks];
    uid_t uid;

uid = set_user_id(); /* User defined routine to get uid */
    strcpy(node[0].st_node_name, "Node1");
    node[0].st_window_id = 1;

    strcpy(node[1].st_node_name, "129.40.161.74");
    node[1].st_window_id = 2;

    rc = swtbl_unload_job(ST_VERSION, uid, num_tasks, node);
    fprintf(stdout, "swtbl_unload_job returned %d\n", rc);
}
```

swtbl_unload_table Subroutine

Purpose

swtbl_unload_table – Unloads the job switch resource table window on the node from which it is invoked.

Library

Job Switch Resource Table Services library (libswitchtbl.a)

Syntax

```
#include <st_client.h>
int swtbl_unload_table(int version, char *adapter, \
uid_t uid, int window_id);
```

Parameters

version Specifies the version of header file used. Should be

ST_VERSION defined in st_client.h

adapter Specifies the adapter to be opened upon which the window

resides. Only css0 is supported.

uid Specifies the real user ID of the user for whom the unload is

done. This uid must match the uid provided during the

swtbl_load_table API.

int st_window_id Specifies the window id to be unloaded. The window id must be

between 0 and 3 inclusive. If -1 is specified, then the default

window will be used.

Description

Use this subroutine to unload the job switch resource table window on the node from which it is invoked. This switch table is used by parallel jobs running user space over the switch. This subroutine checks that the uid provided matches the one that is stored during the **swtbl_load_table** call. Each window within the job switch resource table must be unloaded individually.

The effective user id of the calling process must be the root user id.

The default window is defined within the **st_client.h** header file.

Any information or error messages are recorded in the /var/adm/SPlogs/st/st_log file.

Return Values

Upon successful completion, the **swtbl_unload_table** subroutine returns a value of **ST_SUCCESS**. Otherwise, it returns an integer value defined by the **ST_RETURN_CODE** enumerator found in **st_client.h**.

Error Values

ST_INVALID_PARAM Indicates that a specified parameter was not valid.

The /var/adm/SPlogs/st/st_log file will have further

details.

ST_NO_SWITCH The open call of the specified adapter was

unsuccessful.

ST_NOT_AUTHOR Indicates that the caller did not have an effective

user id of root or the input uid does not match the

uid of the corresponding st_datafile.

ST_SWITCH_IN_USE Indicates that the currently loaded switch table

window is in use by a process.

ST_SWITCH_NOT_LOADED Indicates that the switch table window is not

currently loaded.

ST_SYSTEM_ERROR Indicates a system error occurred. The

/var/adm/SPlogs/st/st_log file will have further

details.

Related Information

Commands: st_clean_table, st_status

Subroutines: swtbl_clean_table, swtbl_load_job, swtbl_load_table, swtbl_status, swtbl_status_node, swtbl_unload_job

Files: /usr/lpp/ssp/include/st_client.h, /var/adm/SPlogs/st/st_log

Examples

Code fragment to unload window 1 on the current node:

```
#include <st_client.h>
main() {
   int i,rc;
   uid_t uid;
   int window = 1;

   uid = set_user_id(); /* User defined routine to get uid */
   rc = swtbl_unload_table(ST_VERSION,"css0",uid,window);
   fprintf(stdout,"swtbl_unload_table returned %d\n",rc);
}
```

swtbl_unload_ table Subroutine

Part 3. Appendixes

© Copyright IBM Corp. 1998, 1999

Appendix A. Perspectives Colors and Fonts

Perspectives Colors with Red, Green, and Blue (RGB) Triplets

The following list contains valid color names that can be supplied as optional arguments to the **-backgroundColor** and **-foregroundColor** flags. Colors may vary depending on the type of display you are using.

aquamarine 127 255 212 azure 240 255 255 beige 245 245 220 bisque 255 228 196 black 0 0 0 0 blue 0 0 0 255 brown 165 42 42 42 burlywood 222 184 135 chartreuse 127 255 0 chocolate 210 105 30 corrail 255 127 80 corraill 255 248 220 coyan 0 255 255 0 chocolate 20 coyan 0 255 255 0 chocolate 20 corraill 255 248 220 coyan 0 255 255 128 220 coyan 0 255 2255 125 126 0 0 255 255 125 126 0 0	Color	Red	Green	Blue
azure 240 255 255 beige 245 245 220 bisque 255 228 196 black 0 0 0 blue 0 0 255 brown 185 42 42 burlywood 222 184 135 chartreuse 127 255 0 chocolate 210 105 30 coral 255 127 80 cornsilk 255 248 220 cyan 0 255 255 125 0 goldenced 278 215 20 0 0 0 0 0 0 0 0	aquamarine	127	255	212
bisque 255 228 196 black 0 0 0 blue 0 0 255 brown 185 42 42 burlyword 222 184 135 chartreuse 127 255 0 chocolate 210 105 30 corral 255 127 80 cornsilk 255 248 220 cyan 0 255 255 177 80 firebrick 178 34 34 34 34 34 34 34 36 30 30 30 30 30 30 30 30 30 30 30 32 32 32 32 32 32 30 <td>azure</td> <td>240</td> <td>255</td> <td>255</td>	azure	240	255	255
black 0 0 0 255 brown 166 42 42 burlywood 222 184 135 chartreuse 210 105 30 chocolate 210 105 30 corral 255 127 80 cornsilk 255 248 220 cyan 0 255 255 firebrick 178 34 34 gold 255 215 0 goldenrod 218 165 32 gray 190 190 190 green 0 255 240 honeydew 240 255 240 khaki 240 255 240 khaki 240 230 250 linen 250 240 230 magenta 255 28 181 noccasin 255 28 181 <td< td=""><td>beige</td><td>245</td><td>245</td><td>220</td></td<>	beige	245	245	220
blue 0 0 255 brown 165 42 42 burlywood 222 184 135 chartreuse 127 255 0 chocolate 210 105 30 corral 255 248 220 cyan 0 255 255 255 firebrick 178 34 34 gold 255 215 0 goldenrod 218 165 32 gray 190 190 190 green 0 255 240 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 255 lavender 230 240 230 inen 255 228 181 oldace 255 228 181 <t< td=""><td>bisque</td><td>255</td><td>228</td><td>196</td></t<>	bisque	255	228	196
brown 165 42 42 burlywood 222 184 135 chartreuse 127 255 0 chocolate 210 105 30 coral 255 127 80 cornsilk 255 248 220 cyan 0 255 255 255 firebrick 178 34 34 gold 255 215 0 goldenrd 218 165 32 gray 190 190 190 gray 190 190 190 green 0 255 240 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 255 linen 250 240 230 magenta 255 228 181	black	0	0	0
burlywood 222 184 135 chartreuse 127 255 0 chocolate 210 105 30 cornal 255 127 80 cornsilk 255 248 220 cyan 0 255 255 firebrick 178 34 34 gold 255 215 0 goldenrod 218 165 32 gray 190 190 190 green 0 255 25 boneydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 228 181 moccasin 255 228 181 oldlace 253 245 230 orange<	blue	0	0	255
chartreuse 127 255 0 chocolate 210 105 30 coral 255 127 80 cornsilk 255 248 220 cyan 0 255 255 255 firebrick 178 34 34 34 gold 255 215 0 0 255 255 215 0 goldenrod 218 166 32 33 32 32 32 32 32 32 32 32 32 32 32	brown	165	42	42
chatreuse 127 255 0 chocolate 210 105 30 coral 255 127 80 cornsilk 255 248 220 cyan 0 255 255 firebrick 178 34 34 gold 255 215 0 goldenrod 218 166 32 gray 190 190 190 green 0 255 240 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 230 linen 250 240 230 magenta 255 0 255 moccasin 255 228 181 oldace 253 245 230 orange 255 165 0 orange	burlywood	222	184	135
coral 255 127 80 cornsilk 255 248 220 cyan 0 255 255 firebrick 178 34 34 gold 255 215 0 goldenrod 218 165 32 gray 190 190 190 green 0 255 0 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 255 245 230 orange 255 128 112 214 peru 255 129 203 p		127	255	0
cornsilk 255 248 220 cyan 0 255 255 firebrick 178 34 34 gold 255 215 0 goldenrod 218 165 32 gray 190 190 190 green 0 255 0 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 182 23 orange 255 182 23 orange 255 192 23 orange <	chocolate	210	105	30
cyan 0 255 255 firebrick 178 34 34 gold 255 215 0 goldenrod 218 165 32 gray 190 190 190 green 0 255 0 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 255 0 255 magenta 255 0 255 marcon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 166 0 orchid 218 112 214 peru 206 133 63 pilm 225 192 203 plum 221 <td>coral</td> <td>255</td> <td>127</td> <td>80</td>	coral	255	127	80
firebrick 178 34 34 gold 255 215 0 goldenrod 218 165 32 gray 190 190 190 green 0 255 0 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oidlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 1	cornsilk	255	248	220
firebrick 178 34 34 gold 255 215 0 goldenrod 218 165 32 gray 190 190 190 green 0 255 0 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 marcon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 1	cyan	0	255	255
goldenrod 218 165 32 gray 190 190 190 green 0 255 0 honeydew 240 255 240 ivory 255 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 moccasin 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 25 25 238 <		178	34	34
goldenrod 218 165 32 gray 190 190 190 green 0 255 0 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 25 25 238 sienna<	gold	255	215	0
green 0 255 0 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 251 160 221 purple 160 32 240 red 255 0 0 salmon 255 245 238 sienna 160	goldenrod	218	165	32
green 0 255 0 honeydew 240 255 240 ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 255 245 238 sienna 160	gray	190	190	190
ivory 255 255 240 khaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orange 255 165 0 orange 255 182 230 orange 255 182 230 orange 255 182 214 peru 205 133 63 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 2		0	255	0
knaki 240 230 140 lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 <td>honeydew</td> <td>240</td> <td>255</td> <td>240</td>	honeydew	240	255	240
lavender 230 230 250 linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 255 192 203 plum 251 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 <td>ivory</td> <td>255</td> <td>255</td> <td>240</td>	ivory	255	255	240
linen 250 240 230 magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 160 82 45 snow 255 250 250 tan 210 180 140 thistle 21	khaki	240	230	140
magenta 255 0 255 maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 <td>lavender</td> <td>230</td> <td>230</td> <td>250</td>	lavender	230	230	250
maroon 176 48 96 moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255 <t< td=""><td>linen</td><td>250</td><td>240</td><td>230</td></t<>	linen	250	240	230
moccasin 255 228 181 oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 </td <td>magenta</td> <td>255</td> <td>0</td> <td>255</td>	magenta	255	0	255
oldlace 253 245 230 orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255	maroon			
orange 255 165 0 orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255	moccasin	255	228	181
orchid 218 112 214 peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255	oldlace			
peru 205 133 63 pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255 255				
pink 255 192 203 plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255	orchid			
plum 221 160 221 purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255				
purple 160 32 240 red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255	pink			
red 255 0 0 salmon 250 128 114 seashell 255 245 238 sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255				
salmon250128114seashell255245238sienna1608245snow255250250tan210180140thistle216191216tomato2559971turquoise64224208violet238130238wheat245222179white255255255				
seashell255245238sienna1608245snow255250250tan210180140thistle216191216tomato2559971turquoise64224208violet238130238wheat245222179white255255255				
sienna 160 82 45 snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255				
snow 255 250 250 tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255	seashell			
tan 210 180 140 thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255				
thistle 216 191 216 tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255	snow			
tomato 255 99 71 turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255				
turquoise 64 224 208 violet 238 130 238 wheat 245 222 179 white 255 255 255				
violet 238 130 238 wheat 245 222 179 white 255 255 255				
wheat 245 222 179 white 255 255 255				
white 255 255 255				
yellow 255 255 0				
	yellow	255	255	U

© Copyright IBM Corp. 1998, 1999 **433**

Perspectives Fonts

Note: Fonts will vary depending on the type of Xmachine or Xstation you are using.

The following list contains font names that can be supplied as optional arguments to the -fontFamily flag:

application

block

charter

clean

courier

ergonomic

fixed

helvetica

lucida

lucida bright

lucida typewriter

new century schoolbook

roman

sans serif

serif

special

terminal

times

times new roman

type

typewriter

utopia

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

- The IBM Dictionary of Computing, New York: McGraw-Hill, 1994.
- The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI). Copies can be purchased from the American National Standards Institute, 1430 Broadway, New York, New York 10018. Definitions are identified by the symbol (A) after the definition.
- The ANSI/EIA Standard 440A: Fiber Optic Terminology copyright 1989 by the Electronics Industries Association (EIA). Copies can be purchased from the Electronic Industries Association, 2001 Pennsylvania Avenue N.W., Washington, D.C. 20006. Definitions are identified by the symbol (E) after the definition.
- The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions of published parts of this vocabulary are identified by the symbol (I) after the definition; definitions taken from draft international standards, committee drafts, and working papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition, indicating that final agreement has not yet been reached among the participating National Bodies of SC1.

The following cross-references are used in this glossary:

Contrast with. This refers to a term that has an opposed or substantively different meaning. **See.** This refers the reader to multiple-word terms in which this term appears.

See also. This refers the reader to terms that have a related, but not synonymous, meaning.

Synonym for. This indicates that the term has the same meaning as a preferred term, which is defined in the glossary.

This section contains some of the terms that are commonly used in the SP publications.

IBM is grateful to the American National Standards Institute (ANSI) for permission to reprint its definitions from the American National Standard *Vocabulary for Information Processing* (Copyright 1970 by American National Standards Institute, Incorporated), which was prepared by Subcommittee X3K5 on Terminology and Glossary of the American National Standards

Committee X3. ANSI definitions are preceded by an asterisk (*).

Other definitions in this glossary are taken from *IBM Vocabulary for Data Processing, Telecommunications, and Office Systems* (SC20-1699) and *IBM DATABASE 2 Application Programming Guide for TSO Users* (SC26-4081).

Α

adapter. An adapter is a mechanism for attaching parts. For example, an adapter could be a part that electrically or physically connects a device to a computer or to another device. In the SP system, network connectivity is supplied by various adapters, some optional, that can provide connection to I/O devices, networks of workstations, and mainframe networks. Ethernet, FDDI, token-ring, HiPPI, SCSI, FCS, and ATM are examples of adapters that can be used as part of an SP system.

address. A character or group of characters that identifies a register, a device, a particular part of storage, or some other data source or destination.

AFS. A distributed file system that provides authentication services as part of its file system creation.

AIX. Abbreviation for Advanced Interactive Executive, IBM's licensed version of the UNIX operating system. AIX is particularly suited to support technical computing applications, including high function graphics and floating point computations.

Amd. Berkeley Software Distribution automount daemon.

API. Application Programming Interface. A set of programming functions and routines that provide access between the Application layer of the OSI seven-layer model and applications that want to use the network. It is a software interface.

application. The use to which a data processing system is put; for example, a payroll application, an airline reservation application.

application data. The data that is produced using an application program.

ARP. Address Resolution Protocol.

ATM. Asynchronous Transfer Mode. (See *TURBOWAYS 100 ATM Adapter.*)

© Copyright IBM Corp. 1998, 1999 435

Authentication. The process of validating the identity of a user or server.

Authorization. The process of obtaining permission to perform specific actions.

В

batch processing. * (1) The processing of data or the accomplishment of jobs accumulated in advance in such a manner that each accumulation thus formed is processed or accomplished in the same run. * (2) The processing of data accumulating over a period of time. * (3) Loosely, the execution of computer programs serially. (4) Computer programs executed in the background.

BMCA. Block Multiplexer Channel Adapter. The block multiplexer channel connection allows the RS/6000 to communicate directly with a host System/370 or System/390; the host operating system views the system unit as a control unit.

BOS. The AIX Base Operating System.

C

call home function. The ability of a system to call the IBM support center and open a PMR to have a repair scheduled.

CDE. Common Desktop Environment. A graphical user interface for UNIX.

charge feature. An optional feature for either software or hardware for which there is a charge.

CLI. Command Line Interface.

client. * (1) A function that requests services from a server and makes them available to the user. * (2) A term used in an environment to identify a machine that uses the resources of the network.

Client Input/Output Sockets (CLIO/S). A software package that enables high-speed data and tape access between SP systems, AIX systems, and ES/9000 mainframes.

CLIO/S. Client Input/Output Sockets.

CMI. Centralized Management Interface provides a series of SMIT menus and dialogues used for defining and querying the SP system configuration.

connectionless. A communication process that takes place without first establishing a connection.

connectionless network. A network in which the sending logical node must have the address of the receiving logical node before information interchange can begin. The packet is routed through nodes in the network based on the destination address in the packet. The originating source does not receive an acknowledgment that the packet was received at the destination.

control workstation. A single point of control allowing the administrator or operator to monitor and manage the SP system using the IBM AIX Parallel System Support Programs.

css. Communication subsystem.

D

daemon. A process, not associated with a particular user, that performs system-wide functions such as administration and control of networks, execution of time-dependent activities, line printer spooling and so forth.

DASD. Direct Access Storage Device. Storage for input/output data.

DCE. Distributed Computing Environment.

DFS. distributed file system. A subset of the IBM Distributed Computing Environment.

DNS. Domain Name Service. A hierarchical name service which maps high level machine names to IP addresses.

E

Error Notification Object. An object in the SDR that is matched with an error log entry. When an error log entry occurs that matches the Notification Object, a user-specified action is taken.

ESCON. Enterprise Systems Connection. The ESCON channel connection allows the RS/6000 to communicate directly with a host System/390; the host operating system views the system unit as a control unit.

Ethernet. (1) Ethernet is the standard hardware for TCP/IP local area networks in the UNIX marketplace. It is a 10-megabit per second baseband type LAN that allows multiple stations to access the transmission medium at will without prior coordination, avoids contention by using carrier sense and deference, and resolves contention by collision detection (CSMA/CD). (2) A passive coaxial cable whose interconnections contain devices or components, or both, that are all active. It uses CSMA/CD technology to provide a best-effort delivery system.

Ethernet network. A baseband LAN with a bus topology in which messages are broadcast on a coaxial cabling using the carrier sense multiple access/collision detection (CSMA/CD) transmission method.

event. In Event Management, the notification that an expression evaluated to true. This evaluation occurs each time an instance of a resource variable is observed.

expect. Programmed dialogue with interactive programs.

expression. In Event Management, the relational expression between a resource variable and other elements (such as constants or the previous value of an instance of the variable) that, when true, generates an event. An example of an expression is X < 10 where X represents the resource variable IBM.PSSP.aixos.PagSp.%totalfree (the percentage of total free paging space). When the expression is true, that is, when the total free paging space is observed to be less than 10%, the Event Management subsystem generates an event to notify the appropriate application.

F

failover. Also called fallover, the sequence of events when a primary or server machine fails and a secondary or backup machine assumes the primary workload. This is a disruptive failure with a short recovery time.

fall back. Also called fallback, the sequence of events when a primary or server machine takes back control of its workload from a secondary or backup machine.

FDDI. Fiber Distributed Data Interface.

Fiber Distributed Data Interface (FDDI). An American National Standards Institute (ANSI) standard for 100-megabit-per-second LAN using optical fiber cables. An FDDI local area network (LAN) can be up to 100 km (62 miles) and can include up to 500 system units. There can be up to 2 km (1.24 miles) between system units and concentrators.

file. * A set of related records treated as a unit, for example, in stock control, a file could consist of a set of invoices.

file name. A CMS file identifier in the form of 'filename filetype filemode' (like: TEXT DATA A).

file server. A centrally located computer that acts as a storehouse of data and applications for numerous users of a local area network.

File Transfer Protocol (FTP). The Internet protocol (and program) used to transfer files between hosts. It is

an application layer protocol in TCP/IP that uses TELNET and TCP protocols to transfer bulk-data files between machines or hosts.

foreign host. Any host on the network other than the local host.

FTP. File transfer protocol.

G

gateway. An intelligent electronic device interconnecting dissimilar networks and providing protocol conversion for network compatibility. A gateway provides transparent access to dissimilar networks for nodes on either network. It operates at the session presentation and application layers.

Н

HACMP. High Availability Cluster Multi-Processing for AIX.

HACWS. High Availability Control Workstation function, based on HACMP, provides for a backup control workstation for the SP system.

HAL. Hardware Abstraction Layer, a communication device interface that provides communication channels for processes.

Hashed Shared Disk (HSD). The data striping device for the IBM Virtual Shared Disk. The device driver lets application programs stripe data across physical disks in multiple IBM Virtual Shared Disks, thus reducing I/O bottlenecks.

help key. In the SP graphical interface, the key that gives you access to the SP graphical interface help facility.

High Availability Cluster Multi-Processing. An IBM facility to cluster nodes or components to provide high availability by eliminating single points of failure.

HiPPI. High Performance Parallel Interface. RS/6000 units can attach to a HiPPI network as defined by the ANSI specifications. The HiPPI channel supports burst rates of 100 Mbps over dual simplex cables; connections can be up to 25 km in length as defined by the standard and can be extended using third-party HiPPI switches and fiber optic extenders.

home directory. The directory associated with an individual user.

host. A computer connected to a network, and providing an access method to that network. A host provides end-user services.

I

instance vector. Obsolete term for resource identifier.

Intermediate Switch Board. Switches mounted in the Sp Switch expansion frame.

Internet. A specific inter-network consisting of large national backbone networks such as APARANET, MILNET, and NSFnet, and a myriad of regional and campus networks all over the world. The network uses the TCP/IP protocol suite.

Internet Protocol (IP). (1) A protocol that routes data through a network or interconnected networks. IP acts as an interface between the higher logical layers and the physical network. This protocol, however, does not provide error recovery, flow control, or guarantee the reliability of the physical network. IP is a connectionless protocol. (2) A protocol used to route data from its source to it destination in an Internet environment.

IP address. A 32-bit address assigned to devices or hosts in an IP internet that maps to a physical address. The IP address is composed of a network and host portion.

ISB. Intermediate Switch Board.

K

Kerberos. A service for authenticating users in a network environment.

kernel. The core portion of the UNIX operating system which controls the resources of the CPU and allocates them to the users. The kernel is memory-resident, is said to run in "kernel mode" and is protected from user tampering by the hardware.

L

LAN. (1) Acronym for Local Area Network, a data network located on the user's premises in which serial transmission is used for direct data communication among data stations. (2) Physical network technology that transfers data a high speed over short distances. (3) A network in which a set of devices is connected to another for communication and that can be connected to a larger network.

local host. The computer to which a user's terminal is directly connected.

log database. A persistent storage location for the logged information.

log event. The recording of an event.

log event type. A particular kind of log event that has a hierarchy associated with it.

logging. The writing of information to persistent storage for subsequent analysis by humans or programs.

M

mask. To use a pattern of characters to control retention or elimination of portions of another pattern of characters.

menu. A display of a list of available functions for selection by the user.

Motif. The graphical user interface for OSF, incorporating the X Window System. Also called OSF/Motif.

MTBF. Mean time between failure. This is a measure of reliability.

MTTR. Mean time to repair. This is a measure of serviceability.

N

naive application. An application with no knowledge of a server that fails over to another server. Client to server retry methods are used to reconnect.

network. An interconnected group of nodes, lines, and terminals. A network provides the ability to transmit data to and receive data from other systems and users.

NFS. Network File System. NFS allows different systems (UNIX or non-UNIX), different architectures, or vendors connected to the same network, to access remote files in a LAN environment as though they were local files.

NIM. Network Installation Management is provided with AIX to install AIX on the nodes.

NIM client. An AIX system installed and managed by a NIM master. NIM supports three types of clients:

- Standalone
- Diskless
- Dataless

NIM master. An AIX system that can install one or more NIM clients. An AIX system must be defined as a NIM master before defining any NIM clients on that system. A NIM master managers the configuration database containing the information for the NIM clients.

NIM object. A representation of information about the NIM environment. NIM stores this information as objects in the NIM database. The types of objects are:

- Network
- Machine
- Resource

NIS. Network Information System.

node. In a network, the point where one or more functional units interconnect transmission lines. A computer location defined in a network. The SP system can house several different types of nodes for both serial and parallel processing. These node types can include thin nodes, wide nodes, 604 high nodes, as well as other types of nodes both internal and external to the SP frame.

Node Switch Board. Switches mounted on frames that contain nodes.

NSB. Node Switch Board.

NTP. Network Time Protocol.

0

ODM. Object Data Manager. In AIX, a hierarchical object-oriented database for configuration data.

P

parallel environment. A system environment where message passing or SP resource manager services are used by the application.

Parallel Environment. A licensed IBM program used for message passing applications on the SP or RS/6000 platforms.

parallel processing. A multiprocessor architecture which allows processes to be allocated to tightly coupled multiple processors in a cooperative processing environment, allowing concurrent execution of tasks.

parameter. * (1) A variable that is given a constant value for a specified application and that may denote the application. * (2) An item in a menu for which the operator specifies a value or for which the system provides a value when the menu is interpreted. * (3) A name in a procedure that is used to refer to an argument that is passed to the procedure. * (4) A particular piece of information that a system or application program needs to process a request.

partition. See system partition.

Perl. Practical Extraction and Report Language.

perspective. The primary window for each SP Perspectives application, so called because it provides a unique view of an SP system.

pipe. A UNIX utility allowing the output of one command to be the input of another. Represented by the | symbol. It is also referred to as filtering output.

PMR. Problem Management Report.

POE. Formerly Parallel Operating Environment, now Parallel Environment for AIX.

port. (1) An end point for communication between devices, generally referring to physical connection. (2) A 16-bit number identifying a particular TCP or UDP resource within a given TCP/IP node.

predicate. Obsolete term for expression.

Primary node or machine. (1) A device that runs a workload and has a standby device ready to assume the primary workload if that primary node fails or is taken out of service. (2) A node on the SP Switch that initializes, provides diagnosis and recovery services, and performs other operations to the switch network. (3) In IBM Virtual Shared Disk function, when physical disks are connected to two nodes (twin-tailed), one node is designated as the primary node for each disk and the other is designated the secondary, or backup, node. The primary node is the server node for IBM Virtual Shared Disks defined on the physical disks under normal conditions. The secondary node can become the server node for the disks if the primary node is unavailable (off-line or down).

Problem Management Report. The number in the IBM support mechanism that represents a service incident with a customer.

process. * (1) A unique, finite course of events defined by its purpose or by its effect, achieved under defined conditions. * (2) Any operation or combination of operations on data. * (3) A function being performed or waiting to be performed. * (4) A program in operation. For example, a daemon is a system process that is always running on the system.

protocol. A set of semantic and syntactic rules that defines the behavior of functional units in achieving communication.

R

RAID. Redundant array of independent disks.

rearm expression. In Event Management, an expression used to generate an event that alternates with an original event expression in the following way: the event expression is used until it is true, then the

rearm expression is used until it is true, then the event expression is used, and so on. The rearm expression is commonly the inverse of the event expression (for example, a resource variable is on or off). It can also be used with the event expression to define an upper and lower boundary for a condition of interest.

rearm predicate. Obsolete term for rearm expression.

remote host. See foreign host.

resource. In Event Management, an entity in the system that provides a set of services. Examples of resources include hardware entities such as processors, disk drives, memory, and adapters, and software entities such as database applications, processes, and file systems. Each resource in the system has one or more attributes that define the state of the resource.

resource identifier. In Event Management, a set of elements, where each element is a name/value pair of the form name=value, whose values uniquely identify the copy of the resource (and by extension, the copy of the resource variable) in the system.

resource monitor. A program that supplies information about resources in the system. It can be a command, a daemon, or part of an application or subsystem that manages any type of system resource.

resource variable. In Event Management, the representation of an attribute of a resource. An example of a resource variable is IBM.AIX.PagSp.%totalfree, which represents the percentage of total free paging space. IBM.AIX.PagSp specifies the resource name and %totalfree specifies the resource attribute.

RISC. Reduced Instruction Set Computing (RISC), the technology for today's high performance personal computers and workstations, was invented in 1975. Uses a small simplified set of frequently used instructions for rapid execution.

rlogin (remote LOGIN). A service offered by Berkeley UNIX systems that allows authorized users of one machine to connect to other UNIX systems across a network and interact as if their terminals were connected directly. The rlogin software passes information about the user's environment (for example, terminal type) to the remote machine.

RPC. Acronym for Remote Procedure Call, a facility that a client uses to have a server execute a procedure call. This facility is composed of a library of procedures plus an XDR.

RSH. A variant of RLOGIN command that invokes a command interpreter on a remote UNIX machine and passes the command line arguments to the command interpreter, skipping the LOGIN step completely. See also *rlogin*.

S

SCSI. Small Computer System Interface.

Secondary node. In IBM Virtual Shared Disk function, when physical disks are connected to two nodes (twin-tailed), one node is designated as the primary node for each disk and the other is designated as the secondary, or backup, node. The secondary node acts as the server node for the IBM Virtual Shared disks defined on the physical disks if the primary node is unavailable (off-line or down).

server. (1) A function that provides services for users. A machine may run client and server processes at the same time. (2) A machine that provides resources to the network. It provides a network service, such as disk storage and file transfer, or a program that uses such a service. (3) A device, program, or code module on a network dedicated to providing a specific service to a network. (4) On a LAN, a data station that provides facilities to other data stations. Examples are file server, print server, and mail server.

shell. The shell is the primary user interface for the UNIX operating system. It serves as command language interpreter, programming language, and allows foreground and background processing. There are three different implementations of the shell concept: Bourne, C and Korn.

Small Computer System Interface (SCSI). An input and output bus that provides a standard interface for the attachment of various direct access storage devices (DASD) and tape drives to the RS/6000.

Small Computer Systems Interface Adapter (SCSI Adapter). An adapter that supports the attachment of various direct-access storage devices (DASD) and tape drives to the RS/6000.

SMIT. The System Management Interface Toolkit is a set of menu driven utilities for AIX that provides functions such as transaction login, shell script creation, automatic updates of object database, and so forth.

SNMP. Simple Network Management Protocol. (1) An IP network management protocol that is used to monitor attached networks and routers. (2) A TCP/IP-based protocol for exchanging network management information and outlining the structure for communications among network devices.

socket. (1) An abstraction used by Berkeley UNIX that allows an application to access TCP/IP protocol functions. (2) An IP address and port number pairing. (3) In TCP/IP, the Internet address of the host computer on which the application runs, and the port number it uses. A TCP/IP application is identified by its socket.

standby node or machine. A device that waits for a failure of a primary node in order to assume the identity of the primary node. The standby machine then runs the primary's workload until the primary is back in service.

subnet. Shortened form of subnetwork.

subnet mask. A bit template that identifies to the TCP/IP protocol code the bits of the host address that are to be used for routing for specific subnetworks.

subnetwork. Any group of nodes that have a set of common characteristics, such as the same network ID.

subsystem. A software component that is not usually associated with a user command. It is usually a daemon process. A subsystem will perform work or provide services on behalf of a user request or operating system request.

SUP. Software Update Protocol.

switch capsule. A group of SP frames consisting of a switched frame and its companion non-switched frames.

Sysctl. Secure System Command Execution Tool. An authenticated client/server system for running commands remotely and in parallel.

syslog. A BSD logging system used to collect and manage other subsystem's logging data.

System Administrator. The user who is responsible for setting up, modifying, and maintaining the SP system.

system partition. A group of nonoverlapping nodes on a switch chip boundary that act as a logical SP system.

Т

tar. Tape ARchive, is a standard UNIX data archive utility for storing data on tape media.

TaskGuides. SP TaskGuides are a form of advanced online assistance designed to walk you through complex or infrequently performed tasks. Each TaskGuide does not simply list the required steps. It actually performs the steps for you, automating the steps to the highest degree possible and prompting you for input only when absolutely necessary. You might recognize them as *wizards*.

Tcl. Tool Command Language.

TcIX. Tool Command Language Extended.

TCP. Acronym for Transmission Control Protocol, a stream communication protocol that includes error recovery and flow control.

TCP/IP. Acronym for Transmission Control Protocol/Internet Protocol, a suite of protocols designed to allow communication between networks regardless of the technologies implemented in each network. TCP provides a reliable host-to-host protocol between hosts in packet-switched communications networks and in interconnected systems of such networks. It assumes that the underlying protocol is the Internet Protocol.

Telnet. Terminal Emulation Protocol, a TCP/IP application protocol that allows interactive access to foreign hosts.

Tk. Tcl-based Tool Kit for X Windows.

TMPCP. Tape Management Program Control Point.

token-ring. (1) Network technology that controls media access by passing a token (special packet or frame) between media-attached machines. (2) A network with a ring topology that passes tokens from one attaching device (node) to another. (3) The IBM Token-Ring LAN connection allows the RS/6000 system unit to participate in a LAN adhering to the IEEE 802.5 Token-Passing Ring standard or the ECMA standard 89 for Token-Ring, baseband LANs.

transaction. An exchange between the user and the system. Each activity the system performs for the user is considered a transaction.

transceiver (transmitter-receiver). A physical device that connects a host interface to a local area network, such as Ethernet. Ethernet transceivers contain electronics that apply signals to the cable and sense collisions.

transfer. To send data from one place and to receive the data at another place. Synonymous with move.

transmission. * The sending of data from one place for reception elsewhere.

TURBOWAYS 100 ATM Adapter. An IBM high-performance, high-function intelligent adapter that provides dedicated 100 Mbps ATM (asynchronous transfer mode) connection for high-performance servers and workstations.

U

UDP. User Datagram Protocol.

UNIX operating system. An operating system developed by Bell Laboratories that features multiprogramming in a multiuser environment. The UNIX operating system was originally developed for use on minicomputers, but has been adapted for mainframes and microcomputers. Note: The AIX operating system is IBM's implementation of the UNIX operating system.

user. Anyone who requires the services of a computing system.

User Datagram Protocol (UDP). (1) In TCP/IP, a packet-level protocol built directly on the Internet Protocol layer. UDP is used for application-to-application programs between TCP/IP host systems. (2) A transport protocol in the Internet suite of protocols that provides unreliable, connectionless datagram service. (3) The Internet Protocol that enables an application programmer on one machine or process to send a datagram to an application program on another machine or process.

user ID. A nonnegative integer, contained in an object of type *uid_t*, that is used to uniquely identify a system user.

Virtual Shared Disk, IBM. The function that allows application programs executing at different nodes of a system partition to access a raw logical volume as if it were local at each of the nodes. In actuality, the logical volume is local at only one of the nodes (the server node).

workstation. * (1) A configuration of input/output equipment at which an operator works. * (2) A terminal or microcomputer, usually one that is connected to a mainframe or to a network, at which a user can perform applications.

X Window System. A graphical user interface product.

Bibliography

This bibliography helps you find product documentation related to the RS/6000 SP hardware and software products.

You can find most of the IBM product information for RS/6000 SP products on the World Wide Web. Formats for both viewing and downloading are available.

PSSP documentation is shipped with the PSSP product in a variety of formats and can be installed on your system. The man pages for public code that PSSP includes are also available online.

You can order hard copies of the product documentation from IBM. This bibliography lists the titles that are available and their order numbers.

Finally, this bibliography contains a list of non-IBM publications that discuss parallel computing and other topics related to the RS/6000 SP.

Finding Documentation on the World Wide Web

Most of the RS/6000 SP hardware and software books are available from the IBM RS/6000 Web site at:

http://www.rs6000.ibm.com

You can view a book or download a Portable Document Format (PDF) version of it. At the time this manual was published, the Web address of the "RS/6000 SP Product Documentation Library" page was:

http://www.rs6000.ibm.com/resource/aix_resource/sp_books

However, the structure of the RS/6000 Web site can change over time.

Accessing PSSP Documentation Online

On the same medium as the PSSP product code, IBM ships PSSP man pages, HTML files, and PDF files. In order to use these publications, you must first install the **ssp.docs** file set.

To view the PSSP HTML publications, you need access to an HTML document browser such as Netscape. The HTML files and an index that links to them are installed in the /usr/lpp/ssp/html directory. Once installed, you can also view the HTML files from the RS/6000 SP Resource Center.

If you have installed the SP Resource Center on your SP system, you can access it by entering the <code>/usr/lpp/ssp/bin/resource_center</code> command. If you have the SP Resource Center on CD-ROM, see the <code>readme.txt</code> file for information about how to run it.

To view the PSSP PDF publications, you need access to the Adobe Acrobat Reader 3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack.

To successfully print a large PDF file (approximately 300 or more pages) from the Adobe Acrobat reader, you may need to select the "Download Fonts Once" button on the Print window.

© Copyright IBM Corp. 1998, 1999 **443**

Manual Pages for Public Code

The following manual pages for public code are available in this product:

SUP /usr/lpp/ssp/man/man1/sup.1
NTP /usr/lpp/ssp/man/man8/xntpd.8

/usr/lpp/ssp/man/man8/xntpdc.8

Perl (Version 4.036) /usr/lpp/ssp/perl/man/perl.man

/usr/lpp/ssp/perl/man/h2ph.man /usr/lpp/ssp/perl/man/s2p.man /usr/lpp/ssp/perl/man/a2p.man

Perl (Version 5.003) Man pages are in the /usr/lpp/ssp/perl5/man/man1 directory

Manual pages and other documentation for TcI, TcIX, Tk, and expect can be found in the compressed tar files located in the /usr/lpp/ssp/public directory.

RS/6000 SP Planning Publications

This section lists the IBM product documentation for planning for the IBM RS/6000 SP hardware and software.

IBM RS/6000 SP:

- Planning, Volume 1, Hardware and Physical Environment, GA22-7280
- Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

RS/6000 SP Hardware Publications

This section lists the IBM product documentation for the IBM RS/6000 SP hardware.

IBM RS/6000 SP:

- Planning, Volume 1, Hardware and Physical Environment, GA22-7280
- Planning, Volume 2, Control Workstation and Software Environment, GA22-7281
- Maintenance Information, Volume 1, Installation and Relocation, GA22-7375
- Maintenance Information, Volume 2, Maintenance Analysis Procedures, GA22-7376
- Maintenance Information, Volume 3, Locations and Service Procedures, GA22-7377
- Maintenance Information, Volume 4, Parts Catalog, GA22-7378

RS/6000 SP Switch Router Publications

The RS/6000 SP Switch Router is based on the Ascend GRF switched IP router product from Ascend Communications, Inc.. You can order the SP Switch Router as the IBM 9077.

The following publications are shipped with the SP Switch Router. You can also order these publications from IBM using the order numbers shown.

- Ascend GRF Getting Started, GA22-7368
- · Ascend GRF Configuration Guide, GA22-7366
- · Ascend GRF Reference Guide, GA22-7367
- IBM SP Switch Router Adapter Guide, GA22-7310.

RS/6000 SP Software Publications

This section lists the IBM product documentation for software products related to the IBM RS/6000 SP. These products include:

- · IBM Parallel System Support Programs for AIX (PSSP)
- · IBM LoadLeveler for AIX (LoadLeveler)
- IBM Parallel Environment for AIX (Parallel Environment)
- IBM General Parallel File System for AIX (GPFS)
- · IBM Engineering and Scientific Subroutine Library (ESSL) for AIX
- · IBM Parallel ESSL for AIX
- IBM High Availability Cluster Multi-Processing for AIX (HACMP)
- IBM Client Input Output/Sockets (CLIO/S)
- IBM Network Tape Access and Control System for AIX (NetTAPE)

PSSP Publications

IBM RS/6000 SP:

Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

PSSP:

- Installation and Migration Guide, GA22-7347
- · Administration Guide, SA22-7348
- · Managing Shared Disks, SA22-7349
- Performance Monitoring Guide and Reference, SA22-7353
- Diagnosis Guide, GA22-7350
- Command and Technical Reference, SA22-7351
- Messages Reference, GA22-7352

RS/6000 Cluster Technology (RSCT):

- · Event Management Programming Guide and Reference, SA22-7354
- Group Services Programming Guide and Reference, SA22-7355

As an alternative to ordering the individual books, you can use SBOF-8587 to order the PSSP software library.

LoadLeveler Publications

LoadLeveler:

- · Using and Administering, SA22-7311
- Diagnosis and Messages Guide, GA22-7277

GPFS Publications

GPFS:

Installation and Administration Guide, SA22-7278

Parallel Environment Publications

Parallel Environment:

Installation Guide, GC28-1981

- Hitchhiker's Guide, GC23-3895
- Operation and Use, Volume 1, SC28-1979
- Operation and Use, Volume 2, SC28-1980
- MPI Programming and Subroutine Reference, GC23-3894
- MPL Programming and Subroutine Reference, GC23-3893
- Messages, GC28-1982

As an alternative to ordering the individual books, you can use SBOF-8588 to order the PE library.

Parallel ESSL and ESSL Publications

- ESSL Products: General Information, GC23-0529
- Parallel ESSL: Guide and Reference, SA22-7273
- ESSL: Guide and Reference, SA22-7272

HACMP Publications

HACMP:

- Concepts and Facilities, SC23-4276
- Planning Guide, SC23-4277
- Installation Guide, SC23-4278
- Administration Guide, SC23-4279
- Troubleshooting Guide, SC23-4280
- Programming Locking Applications, SC23-4281
- Programming Client Applications, SC23-4282
- Master Index and Glossary, SC23-4285
- HANFS for AIX Installation and Administration Guide, SC23-4283
- · Enhanced Scalability Installation and Administration Guide, SC23-4284

CLIO/S Publications

CLIO/S:

- General Information, GC23-3879
- User's Guide and Reference, GC28-1676

NetTAPE Publications

NetTAPE:

- General Information, GC23-3990
- User's Guide and Reference, available from your IBM representative

AIX and Related Product Publications

For the latest information on AIX and related products, including RS/6000 hardware products, see *AIX and Related Products Documentation Overview*, SC23-2456. You can order a hard copy of the book from IBM. You can also view it online from the "AIX Online Publications and Books" page of the RS/6000 Web site at:

http://www.rs6000.ibm.com/resource/aix_resource/Pubs

Red Books

IBM's International Technical Support Organization (ITSO) has published a number of redbooks related to the RS/6000 SP. For a current list, see the ITSO Web site at: http://www.redbooks.ibm.com.

Non-IBM Publications

Here are some non-IBM publications that you may find helpful.

- Almasi, G., Gottlieb, A., *Highly Parallel Computing*, Benjamin-Cummings Publishing Company, Inc., 1989.
- Foster, I., Designing and Building Parallel Programs, Addison-Wesley, 1995.
- Gropp, W., Lusk, E., Skjellum, A., Using MPI, The MIT Press, 1994.
- Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6, 1995.
- Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface, Version 2.0, University of Tennessee, Knoxville, Tennessee, July 18, 1997.
- Ousterhout, John K., Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994, ISBN 0-201-63337-X.
- Pfister, Gregory, F., In Search of Clusters, Prentice Hall, 1998.

Index

Special Characters	commands (continued)
klogin file 340	sethacws 62
.kiogiri ilie 340	setup_authent 64
	setup_CWS 67
Α	setup_logd 69
auto.master file 322	setup_server 72
auto.master nie 622	sp_configd 74
	sp_configdctrl script 77
В	spacctnd 82
bootptab.info file 323	spacs_cntrl 84
	spadaptrs 87
_	spapply_config 90
C	spauthconfig 93
colors 433	spbootins 95
commands	spbootlist 98
Kerberos 342	spchuser 100
rcmdtgt 8	spchvgobj 102
rcp 10	spcustomize_syspar 105
removehsd 13	spcw_addevents 108
removevsd 15	spcw_apps 109
resource_center 17	spdeladap 111
resumevsd 19	spdelexp 113
rmkp 21	spdelfram 115
rsh 24	spdelnode 117
rysdrestrict 27	spdisplay_config 119
s1term 264	spethernt 123
SDR_config 29	spevent 126
SDR_init 32	spframe 129
SDR_test 34	spget_syspar 131
SDRAddSyspar 36	spgetdesc 132
SDRArchive 37	sphardware 134
SDRChangeAttrValues 38	sphostnam 137
SDRClearLock 39	sphrdwrad 139
SDRCreateAttrs 40	spled 142
SDRCreateClass 41	splm 144
SDRCreateFile 42	splst_syspars 151
SDRCreateObjects 43	splst_versions 152
SDRCreateObjects 43 SDRCreateSystemClass 44	splstadapters 154
SDRCreateSystemFile 45	spistdata 157
SDRDeleteFile 46	spistata 167
	spisuser 166
SDRDeleteObjects 47 SDRGetObjects 48	spmirrorvg 173
SDRGetObjects 46 SDRListClasses 50	spmkuser 171
SDRListGlasses 50 SDRListFiles 51	spmkvgobj 175
	spmon 178
SDRMoveObjects 52	spmon_ctest 183
SDRRemoveSyspar 53	spmon_itest 185
SDRReplaceFile 54	
SDRRestore 55	• •
SDRRetrieveFile 57	-11
SDRWhoHasLock 58	sprestore_config 192
seqfile 59	sprmuser 194
services_config 61	sprmvgobj 195

© Copyright IBM Corp. 1998, 1999 **449**

commands (continued)	daemons (continued)
spseccfg 197	spmgrd 168
spsetauth 199	supfilesrv 236
spsitenv 201	•
spsvrmgr 206	_
spsyspar 213	E
sptg 216	Event Management configuration
spunmirrorvg 217	haemloadlist file 324
spverify_config 219	
spvsd 220	_
st_clean_table 223	F
st_status 225	files
st_verify 227	.klogin 340
startysd 229	auto.master 322
	bootptab.info 323
statvsd 231	haemloadlist 324
stopvsd 234	hmacls 328
supper 237	hmthresholds 330
suspendvsd 239	hwevents 338
switch_stress 241	krb.conf 344
sysctl 244	krb.realms 345
sysctld 247	SDR_dest_info 346
SYSMAN_test 252	sysctl.acl 347
syspar_ctrl 254	sysctl.conf 348
sysparaid 259	tuning.commercial 351
tecad_pssp 266	tuning.default 352
ucfghsd 268	tuning.development 353
ucfghsdvsd 269	tuning.scientific 354
ucfgvsd 271	fonts 433
unallnimres 273	10110
undefhsd 275	
undefvsd 276	G
unfencevsd 277	getvhostname subroutine 356
updatehsd 279	
updatevsdnode 281	11
updatevsdtab 284	Н
updauthfiles 286	hacws_set subroutine 358
verparvsd 288	hacws_stat subroutine 360
vhostname 291	haemloadlist file 324
vsdatalst 293	hmacls file 328
vsdchgserver 296	hmthresholds file 330
vsddiag 298	hwevents file 338
vsdelnode 300	
vsdelvg 302	V
vsdnode 304	K
vsdsklst 307	Kerberos command 342
vsdvg 311	krb.conf file 344
vsdvgts 313	krb.realms file 345
vsdvts 315	
wrap_test 317	L
configuration, Event Management	-
haemloadlist file 324	LAPI_Address subroutine 362
	LAPI_Address_init subroutine 363
n	LAPI_Amsend subroutine 365
ט	LAPI_Fence subroutine 369
daemons	LAPI_Get subroutine 371
splogd 148	

LAPI_Getcntr subroutine 373 LAPI Gfence subroutine 375	SDRMoveObjects command 52 SDRRemoveSyspar command 53
LAPI Init subroutine 377	SDRReplaceFile command 54
LAPI_Msg_string subroutine 380	SDRRestore command 55
LAPI Probe subroutine 382	SDRRetrieveFile command 57
LAPI Put subroutine 384	SDRWhoHasLock command 58
LAPI_Qenv subroutine 386	seqfile command 59
LAPI Rmw subroutine 388	services_config command 61
LAPI_Senv subroutine 391	sethacws command 62
LAPI Setcntr subroutine 393	setup authent command 64
LAPI_Term subroutine 395	setup_CWS command 67
LAPI_Waitcntr subroutine 397	setup_logd command 69
<u> </u>	setup_server command 72
	setvhostname subroutine 399
M	SP SNMP Proxy Agent subsystem
manual pages for public code 444	control script 77
	SP subroutines 355
n	sp_configd command 74
R	sp_configdctrl script 77
rcmdtgt command 8	spacctnd command 82
rcp command 10	spacs_cntrl command 84
removehsd command 13	spadaptrs command 87
removevsd command 15	spapply_config command 90
resource_center command 17	spauthconfig command 93
resumevsd command 19	spbootins command 95
rmkp command 21	spbootlist command 98
RS/6000 SP files 321	spchuser command 100
RS/6000 SP technical information 321	spchvgobj command 102
rsh command 24	spcustomize_syspar command 105
rvsdrestrict command 27	spcw_addevents command 108
	spcw_apps command 109
S	spdeladap command 111
s1term command 264	spdelexp command 113
	spdelfram command 115
scripts sp_configdctrl 77	spdelnode command 117
SDR_config 29	spdisplay_config command 119
SDR_dest_info file 346	spethernt command 123
SDR_init 32	spevent command 126
SDR_test command 34	spframe command 129
SDRAddSyspar command 36	spget_syspar command 131
SDRArchive command 37	spgetdesc command 132
SDRChangeAttrValues command 38	sphardware command 134
SDRClearLock command 39	sphostnam command 137
SDRCreateAttrs command 40	sphrdwrad command 139
SDRCreateClass command 41	spled command 142
SDRCreateFile command 42	splm command 144
SDRCreateObjects command 43	splogd daemon 148
SDRCreateSystemClass command 44	splst_syspars command 151
SDRCreateSystemFile command 45	splst_versions command 152
SDRDeleteFile command 46	splstadapters command 154
SDRDeleteObjects command 47	splstdata command 157
SDRGetObjects command 48	splstnodes command 163
SDRListClasses command 50	splsuser command 166
SDRListFiles command 51	spmgrd daemon 168
	spmirrorvg command 173

spmkuser command 171	subroutines (continued)
spmkvgobj command 175	swtbl_query_adapter 418
spmon command 178	swtbl_status 420
spmon_ctest command 183	swtbl_status_node 423
spmon_itest command 185	swtbl_unload_job 425
sppenode 187	swtbl_unload_table 428
sppenode command 187	subsystem control scripts
spperfmon command 189	sp_configdctrl 77
sprestore_config command 192	supfilesry daemon 236
sprmuser command 194	supper command 237
sprmvgobj command 195	suspendvsd command 239
spseccfg command 197	swclockGetIncrement subroutine 401
spsetauth command 199	swclockInit subroutine 402
spsitenv command 201	swclockRead subroutine 404
spsvrmgr command 206	swclockReadSec subroutine 406
spsyspar command 213	swclockTerm subroutine 408
sptg command 216	switch stress command 241
spunmirrorvg command 217	swtbl_clean_table subroutine 409
spverify_config command 219	swtbl_load_job_subroutine 411
spvsd command 220	swtbl_load_table subroutine 415
st_clean_table command 223	swtbl_query_adapter 418
st status command 225	swtbl_status 420
st_verify command 227	swtbl status node 423
startvsd command 229	swtbl_unload_job 425
statvsd command 231	swtbl_unload_table 428
stopvsd command 234	sysctl command 244
subroutines	sysctl.acl file 347
getvhostname 356	sysctl.conf file 348
hacws_set 358	sysctld command 247
hacws_stat 360	SYSMAN_test command 252
LAPI_Address 362	syspar_ctrl command 254
LAPI_Address_init 363	sysparaid command 259
LAPI_Amsend 365	dysparaid command 200
LAPI_Fence 369	_
LAPI_Get 371	T
LAPI_Getcntr 373	tecad_pssp 266
LAPI_Gfence 375	trademarks x
LAPI_Init 377	tuning.commercial file 351
LAPI_Msg_string 380	tuning.default file 352
LAPI_Probe 382	tuning.development file 353
LAPI_Put 384	tuning.scientific file 354
LAPI_Qenv 386	S .
LAPI_Rmw 388	
LAPI_Senv 391	U
LAPI_Setcntr 393	ucfghsd command 268
LAPI_Term 395	ucfghsdvsd command 269
LAPI_Waitcntr 397	ucfgvsd command 271
setvhostname 399	unallnimres command 273
swclockGetIncrement 401	undefhsd command 275
swclocklnit 402	undefvsd command 276
	unfencevsd command 277
swclockRead 404	updatehsd command 279
swclockReadSec 406	updatevsdnode command 281
swclockTerm 408	updatevsdtab command 284
swtbl_clean_table 409	updauthfiles command 286
swtbl_load_job 411	·
swtbl load table 415	

V

verparvsd command 288
vhostname command 291
vsdatalst command 293
vsdchgserver command 296
vsddiag command 298
vsdelnode command 300
vsdelvg command 302
vsdnode command 304
vsdsklst command 307
vsdvg command 311
vsdvgts command 313
vsdvts command 315

W

wrap_test command 317

Communicating Your Comments to IBM

Parallel System Support Programs for AIX Command and Technical Reference, Volume 2 Version 3 Release 1.1

Publication No. SA22-7351-01

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. However, the comments you send should pertain to only the information in this manual and the way in which the information is presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the United States, you can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.

- If you prefer to send comments by mail, use the RCF at the back of this book.
- If you prefer to send comments by FAX, use this number:
 - FAX: (International Access Code)+1+914+432-9405
- If you prefer to send comments electronically, use one of these network IDs:
 - IBM Mail Exchange: USIB6TC9 at IBMMAIL
 - Internet e-mail: mhvrcfs@us.ibm.com

Make sure to include the following in your note:

- · Title and publication number of this book
- · Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your comments by phone.

Reader's Comments — We'd Like to Hear from You

Parallel System Support Programs for AIX Command and Technical Reference, Volume 2 Version 3 Release 1.1

Publication No. SA22-7351-01

Phone No.

You may use this form to communicate your comments about this publication, its organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please

direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality. Today's date: _ What is your occupation? Newsletter number of latest Technical Newsletter (if any) concerning this publication: How did you use this publication? [] As an introduction [] As a text (student) As a reference manual [] As a text (instructor) [] [] For another purpose (explain) Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications: specific errors and omissions. Page Number: Comment: Name Address Company or Organization

Fold and Tape

Fold and Tape

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Please do not staple

Please do not staple

Fold and Tape

Fold and Tape

Program Number: 5765-D51

Printed in the United States of America on recycled paper containing 10% recovered post-consumer fiber.

SA22-7351-01