

RS/6000 Cluster Technology IBM

Event Management Programming Guide
and Reference

 SA22-7354-00

RS/6000 Cluster Technology IBM

Event Management Programming Guide
and Reference

 SA22-7354-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition (October 1998)

This edition applies to:

� Version 3 Release 1 of the IBM Parallel System Support Programs for AIX (PSSP) Licensed Program, program number
5765-D51, and to all subsequent releases and modifications until otherwise indicated in new editions, and

� The Enhanced Scalability feature of Version 4 Release 3 of the IBM High Availability Cluster Multi-Processing for AIX (HACMP)
Licensed Program, program number 5765-D28, and to all subsequent releases and modifications

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+914+432-9405
FAX (Other Countries):

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.rs6000.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Trademarks . vii
Publicly Available Software . viii

About This Book . ix
Checking Which Level(s) of Code You Have . ix

PSSP . ix
HACMP . x
RSCT . x

Who Should Use This Book . x
Typographic Conventions . xi

Chapter 1. Understanding Event Management 1
Introducing Event Management . 1

The Event Management Components . 1
Communicating across Nodes . 3
Event Management and Domains . 3
How Can You Use Event Management Services? 4

Writing Resource Monitors . 5
Defining the Resource Data . 5
Choosing the Resource Monitor Type . 12
Configuring the Resource Data and Resource Monitor 14
Coding and Testing the Resource Monitor . 16

Writing Event Management Clients . 21
Finding Out What Resource Data Is Available 21
Using Expressions to Define Events . 24
Coding and Testing the EM Client . 27

Event Management Performance Considerations 30
Resource Monitors and PTX Shared Memory 30

DDS Shared Memory . 31
Releasing Shared Memory Manually . 31

Chapter 2. Event Management Configuration Data Reference 33
Event Management Configuration Data (emcdb) 34

Chapter 3. Event Management Subroutine Reference 47
EMAPI Subroutine Summary . 47
RMAPI Subroutine Summary . 47
ha_em_end_session Subroutine . 49
ha_em_get_ecgid Subroutine . 51
ha_em_receive_response Subroutine . 53
ha_em_restart_session Subroutine . 65
ha_em_send_command Subroutine . 68
ha_em_start_session Subroutine . 77
ha_rr_add_var Subroutine . 80
ha_rr_del_var Subroutine . 84
ha_rr_end_session Subroutine . 87
ha_rr_get_ctrlmsg Subroutine . 89
ha_rr_get_interval Subroutine . 94
ha_rr_init Subroutine . 96

 Copyright IBM Corp. 1998 iii

ha_rr_makserv Subroutine . 99
ha_rr_reg_var Subroutine . 102
ha_rr_rm_ctl Subroutine . 105
ha_rr_send_val Subroutine . 108
ha_rr_start_session Subroutine . 111
ha_rr_terminate Subroutine . 115
ha_rr_touch Subroutine . 117
ha_rr_unreg_var Subroutine . 119

Chapter 4. Event Management Files Reference 123
EMAPI Errors (err_emapi) . 124
ha_emapi.h File . 131
Expressions (haemexpr) . 149
Resource Variables (haemrvars) . 152
RMAPI Errors (err_rmapi) . 159
ha_rmapi.h File . 164

Chapter 5. Using the RMAPI: Some Resource Monitor Examples 169
The rmapi_smpcmd.c Sample Program . 170
The rmapi_smpdae.c Sample Program . 181
The rmapi_smpsig.c Sample Program . 196
The rmapi_smp.msg Message File . 212
The rmapi_smp.loadsdr Shell Script . 214
The rmapi_smp.unloadsdr Shell Script . 220

Chapter 6. Using the EMAPI: Some Event Management Client Examples 223
The emapi_v02_ex01.c Sample Program . 224
The emapi_v02_ex02.c Sample Program . 241
The emapi_v02_ex03.c Sample Program . 257
The emapi_v02_ex04.c Sample Program . 273

Bibliography . 281
Finding Documentation on the World Wide Web 281
Accessing PSSP Documentation Online . 281
Manual Pages for Public Code . 281
RS/6000 SP Planning Publications . 282
RS/6000 SP Hardware Publications . 282
RS/6000 SP Switch Router Publications . 282
RS/6000 SP Software Publications . 282
AIX and Related Product Publications . 284
Red Books . 284
Non-IBM Publications . 285

Glossary of Terms and Abbreviations . 287

Index . 295

iv RS/6000 Cluster Technology Event Management Programming

 Figures

1. An Overview of the Event Management Components 3
2. Examples of Structured Byte String Definitions 8
3. Examples of Resource Variable Names and Resource IDs 10
4. Examples of Resource Variable Classes 12
5. A Pseudocode Outline of a Command-Based Resource Monitor 17
6. A Pseudocode Outline of a Daemon-Based Resource Monitor 19
7. Show Resource Variable Details Dialog Box 24

 Copyright IBM Corp. 1998 v

vi RS/6000 Cluster Technology Event Management Programming

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

 AIX
 AIX/6000
 DATABASE 2
 DB2
 ES/9000
 ESCON
 HACMP/6000
 IBM
 IBMLink
 LoadLeveler
 NQS/MVS
 POWERparallel

 Copyright IBM Corp. 1998 vii

 POWERserver
 POWERstation
 RS/6000

RS/6000 Scalable POWERparallel Systems
Scalable POWERparallel Systems

 SP
 System/370
 System/390
 TURBOWAYS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be the trademarks or service
marks of others.

Publicly Available Software
PSSP includes software that is publicly available:

expect Programmed dialogue with interactive programs

Kerberos Provides authentication of the execution of remote commands

NTP Network Time Protocol

Perl Practical Extraction and Report Language

SUP Software Update Protocol

Tcl Tool Command Language

TclX Tool Command Language Extended

Tk Tcl-based Tool Kit for X-windows

This book discusses the use of these products only as they apply specifically to the
RS/6000 SP system. The distribution for these products includes the source code
and associated documentation. (Kerberos does not ship source code.)
/usr/lpp/ssp/public contains the compressed tar files of the publicly available
software. (IBM has made minor modifications to the versions of Tcl and Tk used in
the SP system to improve their security characteristics. Therefore, the IBM-supplied
versions do not match exactly the versions you may build from the compressed tar
files.) All copyright notices in the documentation must be respected. You can find
version and distribution information for each of these products that are part of your
selected install options in the /usr/lpp/ssp/README/ssp.public.README file.

viii RS/6000 Cluster Technology Event Management Programming

About This Book

This book contains conceptual, guidance, and reference information to help you
write programs that use the Event Management APIs that are part of RS/6000
Cluster Technology (RSCT). RSCT is provided by IBM Parallel System Support
Programs for AIX (PSSP) and by the Enhanced Scalability feature of IBM High
Availability Cluster Multi-Processing for AIX (HACMP/ES). Specifically, this book
contains information to help you write the following types of programs:

� Resource monitors, using the Resource Monitor Application Programming
Interface (RMAPI)

� Event Management client programs, using the Event Management Application
Programming Interface (EMAPI).

In addition, this book contains information about how to configure the Event
Management subsystem.

For a list of related books and information about accessing online information, see
the bibliography in the back of the book.

Checking Which Level(s) of Code You Have
This book applies to PSSP Version 3 Release 1 and to HACMP/ES at the HACMP
Version 4 Release 3 level. To find out which level(s) of code you have running on
your system, follow the instructions in the sections below.

 PSSP
To find out what version of PSSP is running on your control workstation (node 0),
enter the following:

splst_versions -t -nð

In response, the system displays something similar to:

ð PSSP-3.1

If the response indicates PSSP-3.1, this book applies to the version of PSSP that is
running on your system.

To find out what version of PSSP is running on the nodes of your system, enter the
following from your control workstation:

splst_versions -t -G

In response, the system displays something similar to:

1 PSSP-3.1
2 PSSP-3.1
7 PSSP-2.4
8 PSSP-2.2

If the response indicates PSSP-3.1, this book applies to the version of PSSP that is
running on your system.

 Copyright IBM Corp. 1998 ix

If you are running mixed levels of PSSP, be sure to maintain and refer to the
appropriate documentation for whatever versions of PSSP you are running.

 HACMP
To find out which version of HACMP is running on a particular node, enter the
following:

lslpp -L | grep cluster.es.server.rte

 RSCT
To find out which code version of IBM RS/6000 Cluster Technology is running on a
particular node, enter the following:

lslpp -L rsct.basic.rte

Who Should Use This Book
This book is intended primarily for programmers of applications that manage
system resources (which may or may not be subsystems) who want to use Event
Management services to make their applications highly available. This book
contains information for programmers who want to write new resource monitors,
write new clients that use the EMAPI, or add the use of Event Management
services to existing programs.

It assumes that you are an experienced C programmer and have a thorough
understanding of RS/6000 SP (SP) hardware, IBM Parallel System Support
Programs for AIX (PSSP) software and/or the Enhanced Scalability feature of IBM
High Availability Cluster Multi-Processing for AIX (HACMP/ES) software, and AIX
operating system fundamentals. In particular: if you are using RSCT on PSSP, you
should be familiar with the operation of the SP control workstation, PSSP system
partitions, and the PSSP System Data Repository (SDR); if you are using RSCT on
HACMP/ES, you should be familiar with HACMP/ES user-defined event processing.
It also assumes that you are familiar with the management of system resources
and recovery concepts.

The Event Management subsystem requires that the perfagent.tools fileset be
installed on the Control Workstation and on each node of the RS/6000 SP where
PSSP Version 3.1 is installed, or on each node of an HACMP/ES cluster where the
HACMP Version 4.3 level of HACMP/ES is installed. The perfagent.tools fileset is
shipped with AIX. Refer to PSSP: Installation and Migration Guide, GA22-7347 and
HACMP: Installation Guide, SC23-1940 for more information.

When you write a new resource monitor where the associated resource variable
values are also to be supplied to Performance Toolbox Parallel Edition (PTPE), this
book assumes that you have a thorough understanding of Performance Toolbox for
AIX (PTX) programming concepts. These concepts are discussed in Performance
Toolbox for AIX Guide and Reference, SC23-2625.

System administrators will need to use the information about configuring the Event
Management subsystem.

The commands and interfaces described in this book require that you have the
appropriate privileges and authorizations. For example, you may need to be running

x RS/6000 Cluster Technology Event Management Programming

with an effective user ID of root . The specific security requirements for each
subroutine and command are listed in the reference material.

 Typographic Conventions
This book uses the following typographic conventions:

Typographic Usage

Bold � Bold words or characters represent system elements that you must use literally, such as
commands, flags, and path names.

Italic � Italic words or characters represent variable values that you must supply.

� Italics are also used for book titles and for general emphasis in text.

Constant width Examples and information that the system displays appear in constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means “or.”)

< > Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For
example, <Enter> refers to the key on your terminal or workstation that is labeled with the
word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more times.

<Ctrl- x> The notation <Ctrl- x> indicates a control character sequence. For example, <Ctrl-c> means
that you hold down the control key while pressing <c>.

 About This Book xi

xii RS/6000 Cluster Technology Event Management Programming

Chapter 1. Understanding Event Management

This chapter introduces you to the concepts and operation of the Event
Management subsystem, and the use of the Event Management application
programming interfaces (APIs) to write resource monitors and Event Management
client programs. It briefly discusses some performance considerations to keep in
mind as you write resource monitors and EM clients. Finally, it provides some
information about resource monitors and shared memory.

Introducing Event Management
The Event Management subsystem is a distributed subsystem of IBM RS/6000
Cluster Technology (RSCT) on the RS/6000 system. RSCT provides a set of high
availability services to the IBM Parallel System Support Programs (PSSP) and to
the Enhanced Scalability Feature of the IBM High Availability Cluster
Multi-Processing (HACMP/ES) program. By matching information about the state of
system resources with information about resource conditions that are of interest to
client programs, it creates events. Client programs can use events to detect and
recover from system failures, thus enhancing the availability of RS/6000 systems.

The Event Management Components
Event Management operates through the cooperation of three software
components:

� Resource monitors, which supply information about the current state of system
resources.

� Event Management clients (EM clients), which supply information about which
of those resource states are of interest.

� The Event Management subsystem, which puts the two together. It compares a
condition of interest to a current state of a resource. If the state meets the test,
the Event Management subsystem generates an event and notifies the EM
client that the event has occurred.

Let's take a closer look at the roles of each of these components.

 Resource Monitors
The first Event Management component is the resource monitor. A resource
monitor supplies information about the resources in the system. A system
resource is an object in the system that provides services to system users.
Examples of system resources are nodes, memory, disks, application programs,
data bases, and file systems.

Resource monitors keep track of system resources and supply information about
the characteristics or attributes of system resources to the Event Management
subsystem. For example, a resource monitor might report whether a node is up or
down, the percentage of free memory for a particular node, the percentage of
space on a particular disk on a particular node that is free, whether a particular
program or process is running, and so on.

For each attribute of a resource, the resource monitor defines a resource variable .

 Copyright IBM Corp. 1998 1

Of course, there may be more than one copy of a resource in the system. For
example, a system may have multiple nodes, a node may have multiple disks, a
program may have multiple processes, and a database may have multiple
partitions. Accordingly, the resource monitor reports the value of each copy of the
resource variable in the system. Each copy is called an instance of the resource
variable. So, if a node has three disks, for example, the resource monitor that
monitors the percentage of free disk space would report the values of three
instances of the percentage-of-free-disk-space resource variable for that node.

The resource monitor reports the value of each resource variable instance to the
Event Management subsystem at defined times. The reporting occurs either
periodically at configurable intervals or every time the attribute changes, depending
on the type of resource variable.

A resource monitor can be a command, a daemon, or part of an application or
subsystem that manages any type of system resource. It uses the Resource
Monitor Application Programming Interface (RMAPI) to report its data to and
receive control information from the Event Management subsystem.

Event Management Clients
The second Event Management component is the Event Management client. An
Event Management client (EM client) acts on information about the condition of
system resources. Typical actions include recovery from system failures and
reporting system changes.

Different conditions are of interest to different EM clients. For example, one EM
client may want to know when the percentage-of-free-disk-space for any disk on
any node in the system falls below 10%. Another EM client may want to know
when a node in the system fails. The disk space client might allocate more space
or send a note to a data administrator about the condition. The node health client
might initiate a program that causes a backup node to take over the work of the
failed node.

A condition in which an EM client is interested is called an expression . An EM
client indicates that it wishes to be notified when the state of a resource instance
matches a certain condition by registering an expression for particular resource
variable instances.

An EM client is an application program or a subsystem. It uses the Event
Management Application Programming Interface (EMAPI) to register interest in
particular events, to receive information when the events occur, and to query
resource variable values and definitions.

The Event Management Subsystem
The last component, and the one that ties the other two together, is the Event
Management subsystem. The Event Management subsystem communicates with
the resource monitors and EM clients. It receives the values of resource variable
instances as they are reported by the resource monitors. It keeps track of the
resource variables and expressions for which EM clients have registered.

At configurable intervals (or every time that values are reported, depending on the
type of resource variable), the Event Management subsystem observes the values
of resource variable instances. This means that it applies an expression to the
value of the associated resource variable instances. When an expression evaluates

2 RS/6000 Cluster Technology Event Management Programming

to true (that is, when the value of a resource variable instance matches the
condition expressed by the expression), the Event Management subsystem
generates an event and notifies the appropriate EM client. The EM client then takes
action appropriate to the event.

Figure 1 shows the relationship between the three basic Event Management
components.

EM Client

Node A Node B

EM Client

Event Management
Subsystem

Resource
Monitor

Resource
Monitor

Resource
Monitor

EM Client EM Client

Event Management
Subsystem

Resource
Monitor

Resource
Monitor

Resource
Monitor

Figure 1. An Overview of the Event Management Components

Communicating across Nodes
As Figure 1 shows, a resource monitor provides data to an instance of the Event
Management subsystem that is running on the same node as the resource monitor.
An EM client communicates with the instance of the Event Management subsystem
that is running on the same node as the client. An instance of the Event
Management subsystem on one node communicates with instances of the Event
Management subsystem on other nodes to provide events to its local clients.
Therefore, an EM client can register for and receive events about any resource in
an RS/6000 SP or HACMP/ES system. In addition, an EM client that is executing
outside of the SP system can remotely communicate with the Event Management
subsystem that is located on the control workstation.

Event Management and Domains
The Event Management subsystem operates in a domain . A domain is a set of
RS/6000 machines upon which the Event Management subsystem executes and,
exclusively of other machines, provides its services. On the RS/6000 SP a domain
is a system partition. On an HACMP/ES cluster a domain is the entire cluster. Note
that a machine may be in more than one domain. If an SP node is also a node in
an HACMP/ES cluster, then the node is a member of both the SP domain and the
HACMP/ES domain. In this case there are two instances of the Event Management

 Chapter 1. Understanding Event Management 3

subsystem executing on the node. The RS/6000 SP control workstation is
considered to be a node in each SP system partition; there is an instance of the
Event Management subsystem executing on the control workstation for each
system partition.

Instances of the Event Management subsystem communicate only with other
instances of the Event Management subsystem that are running in the same
domain.

By default, an EM client establishes a session with the Event Management
subsystem in the current domain. The current domain is the domain containing the
node on which the client is running. Since a node may be in both an SP and an
HACMP/ES cluster, a domain type must be specified. Optionally, the EM client can
also specify the name of the domain with which the session is to be established. If
the domain is an SP system partition, the domain name is the system partition
name. If the domain is an HACMP/ES cluster, the domain name is the cluster
name.

If the domain type is HACMP/ES , the domain name must be the name of the
HACMP/ES cluster containing the node on which the client is executing. If the
domain type is SP, the domain name may be the name of any of the defined
system partitions.

If the EM client is running on the SP control workstation or on a workstation outside
of the SP, and a domain name is not specified when a session is established, then
the SP_NAME environment variable is used to determine the domain name.

An EM client may establish multiple sessions. The client can then receive events
from, and issue queries to, multiple domains. Multiple sessions can also be
established with a single domain. Since each session provides a unique
communication path, multiple sessions are useful if the client wishes to ignore
certain responses from a domain while accepting others. For example, a client can
register events in one session and issue queries in another.

How Can You Use Event Management Services?
RSCT supports the following interfaces for using event management services:

� The RMAPI, an application programming interface that resource monitors use
to communicate information about resource states to the Event Management
subsystem

� The EMAPI, an application programming interface that EM clients use to get
information about resource state changes from the Event Management
subsystem

� On an RS/6000 SP, the SP Perspectives, a graphical user interface (GUI) that
you can use to perform SP system management tasks, one of which is
managing system events.

Using the RMAPI
Programmers can use the RMAPI to write standalone C programs that monitor
resources or to incorporate resource monitoring function into existing subsystems or
applications. For example, a distributed database program can use the RMAPI to
supply information about the state of its resources.

4 RS/6000 Cluster Technology Event Management Programming

This book provides guidance and reference information to help you use the RMAPI.
However, in this release of RSCT, you can only write resource monitors to be
executed in the SP domain.

Using the EMAPI
Programmers can use the EMAPI to write standalone C programs that take
appropriate action when monitored resources change state. For example, an EM
client that is notified when a resource becomes unavailable can initiate actions to
recover the resource or circumvent the failure.

This book provides guidance and reference information to help you use the EMAPI.

Using SP Perspectives to Monitor Events
System administrators and operators can use the Event Management portion of SP
Perspectives to receive notice when resources of interest change state and run
shell scripts that take recovery action. Detailed panels help you use the SP
Perspectives graphical user interface to perform event management and other
system management tasks.

For information on using SP Perspectives, see the PSSP Administration Guide.

Writing Resource Monitors
To write a resource monitor to be used in an SP domain, you must perform the
following steps:

� Define the resource data you want to monitor

� Choose the type of resource monitor you are going to write

� Configure the resource data and the resource monitor to the system

� Code and test the resource monitor.

This section provides you with an overview of each of these steps. For complete
details on how to specify any of the data or subroutines, see the reference
information in the following chapters:

� Chapter 2, “Event Management Configuration Data Reference” on page 33

� Chapter 3, “Event Management Subroutine Reference” on page 47

� Chapter 4, “Event Management Files Reference” on page 123.

For details on any commands you need to issue, see PSSP Command and
Technical Reference.

For listings of several sample resource monitor programs, see Chapter 5, “Using
the RMAPI: Some Resource Monitor Examples” on page 169.

Defining the Resource Data
The first task in writing a resource monitor is to define the data that it is to collect
and send to the Event Management subsystem. To do that, you must understand
the following terms as they are used by the Event Management subsystem:

 � Resources

 � Resource variables

 Chapter 1. Understanding Event Management 5

� Resource variable names and descriptions

� Resource variable value types and data types

� Resource variable instances and resource IDs

� Dynamically instantiable resource variables

� The location of a resource variable instance

� Resource variable classes.

 Resources
A resource is an entity in the system that provides a set of services. Examples of
resources include hardware entities such as processors, disk drives, memory, and
adapters, and software entities such as database applications, processes, and file
systems. Each resource in the system has one or more attributes that define the
state of the resource. The number of attributes and the semantics of each attribute
are defined by the resource.

The purpose of the Event Management subsystem is to inform interested programs
whenever the state of a resource changes in some way. The resource state change
is reflected by a change in a resource attribute. To perform this function without
having to understand the semantics of resource attributes, each attribute is
represented by a variable. This variable is called a resource variable.

 Resource Variables
A resource variable is the representation of an attribute of a resource in the Event
Management subsystem. Associated with each resource variable is a name, a
description, a value type, a data type, a resource ID, and, optionally, a location.
Resource variables are grouped together into classes.

Resource Variable Names
A resource variable is identified by a resource variable name , which is a string
that consists of a resource name followed by a period followed by the resource
attribute.

By convention, the resource name consists of two or more components that
include the name of the vendor and the name of the product that supplies the
subsystem or application that manages the resource. The resource name may
include additional components as needed to further specify the resource.

The resource attribute is a single component that follows the resource name.

The specification of components must follow certain rules, such as the type of
character that is allowed in each component. For complete details on the
specification of resource variable names, see “Event Management Configuration
Data (emcdb)” on page 34. For examples of resource variable names, see
Figure 3 on page 10.

Resource Variable Description
A resource variable description provides information about the resource variable,
in particular, its semantics. It should contain enough information so that writers of
EM clients will be able to define meaningful expressions.

6 RS/6000 Cluster Technology Event Management Programming

Resource Variable Value Types
A resource variable can have one of the following value types: Counter, Quantity,
or State.

A Counter is a resource variable that represents a rate. It can have a data type of
either long or float. The long and float formats are identical to the C language types
of the same names. Typically, a Counter represents throughput. Examples include
paging rates, I/O rates, and transaction rates.

The Event Management subsystem presents the value of an instance of a Counter
as a rate. The rate represents the change in the actual contents of the instance of
the Counter from one observation to the next divided by the time between the two
observations.

For example, the resource variable called IBM.PSSP.aixos.Mem.Virt.pagein is a
Counter that represents the rate at which pages are paged into virtual memory.
Normally, its value is presented as a rate (number of pages per second). However,
its raw value indicates the total number of pages that have been paged in since the
Counter was initialized.

A Quantity is a resource variable whose value fluctuates over time. It can have a
data type of either long or float. The long and float formats are identical to the C
language types of the same names. Typically, a Quantity represents a level.
Examples include the size of real memory or paging space, the number of
processes in a queue, or the percentage of free disk space.

The Counter and Quantity value types have the same definition as the value types
for statistics objects that are defined by the Performance Toolbox for AIX
(PTX/6000) System Performance Measurement Interface (SPMI). Counters and
Quantities can be reported to the Performance Monitor subsystem at the same time
as they are reported to the Event Management subsystem. Instances of these two
types of resource variable can be updated frequently by the resource monitor for
the purpose of monitoring performance and observed relatively infrequently by the
Event Management subsystem without losing the ability to generate useful events.

A State is a variable whose value fluctuates over time. In addition, every fluctuation
is significant and must be observed; otherwise, meaningful information would be
lost. A State variable typically represents any attribute other than throughput or a
level. A simple example of a State is an indicator of whether a node is up or down.
For more complicated examples of State resource variables, see Figure 2 on
page 8.

Values of a State variable can be reported only to the Event Management
subsystem. They cannot be reported to the Performance Monitor subsystem. The
Event Management subsystem observes instances of a State variable when they
are reported. While a resource monitor can update a State variable instance
rapidly, on average, instances of State variables are expected to change at a
relatively slow rate.

 Chapter 1. Understanding Event Management 7

Resource Variable Data Types
Each of the value types (Counter, Quantity, and State) can have a data type of long
or float. The long and float formats are identical to the C language types of the
same names.

In addition, a State can have a data type of structured byte string (SBS) . An SBS
is a string of bytes that consists of an SBS length field followed by one or more
structured fields. The SBS length specifies the total length of the structured fields
that follow it.

A structured field consists of a header followed by a value. The structured field
header contains the length and data type of the structured field value and a serial
number. A structured field may have a data type of long, float, null-terminated
character string, or byte string.

The serial number is a unique value that identifies the structured field. Within an
SBS, the serial numbers are numbered sequentially, starting with 0.

Associated with each structured field in an SBS, but not included in the actual SBS,
is a structured field name. This name contains a short description of the structured
byte field.

Figure 2 shows some examples of structured byte string definitions.

SBS associated with resource variable IBM.PSSP.Prog.pcount

SBS Length = variable
SBS Fields

Field Name Field Length Field Type Field Serial Number
 CurPIDCount 4 long ð

PrevPIDCount 4 long 1
 CurPIDList variable cstring 2

SBS associated with resource variable IBM.PSSP.pm.Errlog

SBS Length = variable
SBS Fields

Field Name Field Length Field Type Field Serial Number
 sequenceNumber variable cstring ð
 errorID variable cstring 1
 errorClass variable cstring 2
 errorType variable cstring 3
 alertFlagsValue variable cstring 4
 resourceName variable cstring 5
 resourceType variable cstring 6

resourceClass variable cstring 7
 errorLabel variable cstring 8

Figure 2. Examples of Structured Byte String Definitions

8 RS/6000 Cluster Technology Event Management Programming

Resource Variable Instances and Resource IDs
Most resources in the system have multiple copies. For example, there is more
than one logical volume per node, more than one processor per node if the node is
an SMP node, more than one pool of kernel memory buffers, more than one
partition in a parallel database, more than one node in the system partition, and so
on. Each of these copies is an instance of the resource.

The resource variables that represent the states of these resources also have
multiple copies. Each of these copies is an instance of the resource variable.

To uniquely identify each copy of a resource and all of its variables, each resource
in the system has one, and only one, associated resource ID.

A resource ID is a list of elements, where each element is a name/value pair. A
name/value pair consists of a resource ID element name followed by an equal sign
followed by the value. In the EMAPI, the elements are separated by semicolons. In
the RMAPI, the elements are separated by commas.

A resource ID element name is a string that describes the element.

For the EMAPI, a resource ID element value is a single value, a range of values,
a comma-separated list of single values, or a comma-separated list of ranges. A
range takes the form a-b and is valid only for resource ID elements of type integer.

For the RMAPI, a resource ID element value is a single value.

The resource ID of a resource specifies a particular instance of a resource and all
of its resource variables within the system. To identify an instance, a resource ID
can contain up to 4 elements, as defined by the HA_EM_RSRC_ID_SIZE constant.

For example, a variable that represents the number of used blocks in the /tmp file
system requires a resource ID with three elements: the node number, the volume
group name, and the logical volume name. A variable that represents the power
state of a node requires a single element: the node number.

A resource ID element may be wildcarded in a manner that varies by subroutine.

The set of values in the resource ID uniquely identifies the copy of the resource in
the system. By extension, they also uniquely identify the copy of the resource
variable in the system. If there is only one copy of the resource in the system (for
example, the control workstation), its resource ID is null.

The semantics of a resource ID are defined by the semantics of the resource
variable with which it is associated. The names of the resource ID elements must
be unique within a given resource variable's resource ID.

Figure 3 on page 10 shows some examples of resource variable names and
resource IDs.

 Chapter 1. Understanding Event Management 9

Resource Variable Name Resource ID

 IBM.PSSP.aixos.CPU.gluser NodeNum=5
 IBM.PSSP.aixos.cpu.kern NodeNum=5;Cpu=cpuð
 IBM.PSSP.aixos.Mem.Real.size NodeNum=5
 IBM.PSSP.aixos.Mem.Virt.pagein NodeNum=5
 IBM.PSSP.aixos.Mem.Virt.pageout NodeNum=5
 IBM.PSSP.aixos.Mem.Kmem.inuse NodeNum=5;Type=mbuf
 IBM.PSSP.aixos.PagSp.%totalfree NodeNum=5
 IBM.PSSP.aixos.Disk.busy NodeNum=5;Name=hdiskð
 IBM.PSSP.aixos.Disk.busy NodeNum=5;Name=hdisk1
 IBM.PSSP.aixos.VG.free NodeNum=5;VG=rootvg
 IBM.PSSP.aixos.VG.free NodeNum=5;VG=spdata
 IBM.PSSP.aixos.FS.%totused NodeNum=5;VG=rootvg;LV=hd4
 IBM.PSSP.aixos.FS.%totused NodeNum=5;VG=spdata;LV=lvðð
 IBM.PSSP.SP_HW.Node.powerLED NodeNum=5
 IBM.PSSP.SP_HW.Frame.frACLED FrameNum=1
 IBM.PSSP.SP_HW.Switch.powerLED SwitchNum=1
 IBM.PSSP.Membership.Node.state NodeNum=5
 IBM.DB2.Part.size DBname=foo;Part=3

Figure 3. Examples of Resource Variable Names and Resource IDs

In Figure 3, although most resource IDs contain a node number, some resource
variables are not associated with a particular node.

Although components of a resource name can be used in more than one name,
resource names must uniquely identify a resource.

Dynamically Instantiable Resource Variables
In most cases, the instances of a resource that a resource monitor is responsible
for tracking and reporting on are static or relatively so. Thus, a resource monitor
knows from the time it starts running, after any necessary initialization occurs, all of
the instances of the resources it monitors. For example, after any necessary
initialization, a hardware monitor would know what frames there are in the system,
a node health monitor would know what nodes there are in the system, and a disk
monitor would know what disks there are in the system.

However, in some cases, a resource monitor knows how to track and report on a
type of resource, but the resource monitor does not know all of the possible
instances of the resource that may occur. For example, the program resource
monitor knows how to track and report on a program that is running in a domain,
but it does not know in advance the names of all possible programs that can run.
For a resource like this, you can define the resource variable as dynamically
instantiable .

If a resource variable is dynamically instantiable, the resource monitor does not
register all of the instances of its resource variables. Instead, it waits for the Event
Management subsystem to tell it what instances to register. As the Event
Management subsystem receives requests from EM clients for events based on
instances of dynamically instantiable variables, the Event Management subsystem
passes the instances to the resource monitor in a control message with an
“instantiate variables” command.

10 RS/6000 Cluster Technology Event Management Programming

Location of a Resource Variable Instance
The location of a resource variable instance is the node on which the resource
monitor that supplies the instance resides. Note that the resource monitor may or
may not reside on the same node as the instance of the resource.

For example, in Figure 3 on page 10, the resource variables that begin with
IBM.PSSP.SP_HW represent hardware resources that are monitored by the
hardware monitor subsystem. A resource monitor that connects to the hardmon
daemon can reside on any node of the SP. It can even reside on an RS/6000
outside of the SP, such as the control workstation. Thus, a resource monitor on a
single node supplies all instances of IBM.PSSP.SP_HW resource variables.
Accordingly, the location fields in all of the instances specify that node.

As another example, in Figure 3 on page 10, the resource variable named
IBM.DB2.Part.size represents the size of a partition in a DB2 parallel database. In
this case, the resource variable instance originates on the node that contains the
database partition. The database partition itself may move from one node to
another if recovery of the database is required.

If a resource ID implies the location of a resource variable, the description of the
resource variable should so specify.

Resource Variable Classes
The class of a resource variable indicates the subsystem or application that
manages the associated resource. By convention, class names follow the same
naming conventions that are used for resource names: the first component is a
vendor name, the second component is a product name, and subsequent
components, if any, further specify the resource class. Class names must be
unique among all of the class names defined for a domain.

Grouping resource variables by class can also be used to set the observation
interval for resource variables of value type Counter and Quantity. All instances of
all variables of these value types in the same class are observed at the same
intervals.

For examples of class names, see Figure 4 on page 12.

 Chapter 1. Understanding Event Management 11

Resource Variable Class Resource Variables in the Class

IBM.PSSP.aixos.CPU IBM.PSSP.aixos.CPU.gluser
 IBM.PSSP.aixos.CPU.glkern
 IBM.PSSP.aixos.CPU.glwait
 IBM.PSSP.aixos.CPU.glidle
 IBM.PSSP.aixos.cpu.user
 IBM.PSSP.aixos.cpu.kern
 IBM.PSSP.aixos.cpu.wait
 IBM.PSSP.aixos.cpu.idle

IBM.PSSP.aixos.Mem IBM.PSSP.aixos.Mem.Real.size
 IBM.PSSP.aixos.Mem.Real.numfrb
 IBM.PSSP.aixos.Mem.Real.%free
 IBM.PSSP.aixos.Mem.Real.%pinned
 IBM.PSSP.aixos.Mem.Virt.pagein
 IBM.PSSP.aixos.Mem.Virt.pageout
 IBM.PSSP.aixos.Mem.Virt.pgspgin
 IBM.PSSP.aixos.Mem.Virt.pgspgout
 IBM.PSSP.aixos.Mem.Virt.pagexct
 IBM.PSSP.aixos.Mem.Kmem.inuse
 IBM.PSSP.aixos.Mem.Kmem.calls
 IBM.PSSP.aixos.Mem.Kmem.failures
 IBM.PSSP.aixos.Mem.Kmem.memuse

IBM.PSSP.aixos.Disk IBM.PSSP.aixos.Disk.busy
 IBM.PSSP.aixos.Disk.xfer
 IBM.PSSP.aixos.Disk.rblk
 IBM.PSSP.aixos.Disk.wblk

Figure 4. Examples of Resource Variable Classes

Name Spaces, System Partitions, and Domains
With respect to RS/6000 SP system partitioning, the name space for node
numbers, whether contained in a resource ID element or in a location field, are
global across all system partitions of a single SP system—that is, across all SP
type domains in a single SP. The name space for node numbers in an HACMP/ES
domain are local to the domain. The name spaces for other element values of
resource IDs are local to a domain, of any type. The name space for resource
variable names and classes are also local to a domain, of any type.

Choosing the Resource Monitor Type
After defining the data, the next step is to choose the type of resource monitor you
are going to write.

The way in which a resource monitor operates depends upon the way in which it is
implemented. A resource monitor can be implemented as one of the following:

 � A daemon

 � A command

� Routines you add to an existing program.

12 RS/6000 Cluster Technology Event Management Programming

Daemon-Based Resource Monitors
A resource monitor that is implemented as a daemon has the following
characteristics:

� It is long-lived.

� It can be started automatically by the Event Management subsystem whenever
an EM client queries or registers for events that are generated from resource
variables it supplies.

� It can supply values for Counter, Quantity, and State resource variable
instances.

Once the resource monitor daemon initializes itself and starts a server session,
the Event Management subsystem connects to it and begins to request values
for the Counter and Quantity resource variables that the resource monitor has
defined. A daemon-based resource monitor can also supply values for State
resource variables to the Event Management subsystem.

� All values of Counter and Quantity variable instances can be supplied to both
the Event Management subsystem and the Performance Monitor subsystem.

To configure a daemon-based resource monitor, specify a connection type of server
and, optionally, the fully-qualified path and file name of the daemon. The server
connection type indicates that the Event Management subsystem and the
Performance Monitor subsystem initiate the connection and that the program is to
act as a daemon. If specified, the path and file name tell the Event Management
subsystem which daemon to start. If a path and file name are not specified, it is
assumed that the daemon is started by some other means, independent of the
Event Management subsystem.

Command-Based Resource Monitors
A resource monitor that is implemented as a command is more limited but also less
complex. It can be used to supply resource variable values from a shell script. A
command-based resource monitor has the following characteristics:

� It is relatively short-lived.

� It is not started automatically by the Event Management subsystem; instead, it
initiates the connection to the Event Management subsystem. It supplies values
whether or not any Event Management client has registered interest in events
that are generated from resource variables it is monitoring.

� It can supply values only for State resource variables and only to the Event
Management subsystem. It sends the values as the states of the monitored
resources change. A command-based resource monitor cannot supply values
for Counter or Quantity variables and cannot respond to requests for variables.

� It cannot supply resource variable values to the Performance Monitor
subsystem.

If your resource monitor is command-based, specify a connection type of client
when you configure it. The client connection type indicates that the resource
monitor initiates the connection and that the program is to act as a command.

 Chapter 1. Understanding Event Management 13

Resource Monitors that Are Incorporated in Other Programs
A resource monitor that is incorporated in another program can act as either a
daemon-based resource monitor or a command-based resource monitor.

If it is to act as a daemon-based resource monitor, specify a connection type of
server and a null path name when you configure it. The server connection type
indicates that the Event Management subsystem and the Performance Monitor
subsystem initiate the connection and that the resource monitoring function will
behave as if it were a daemon. However, the null path name indicates that there is
no daemon to be started.

If the resource monitoring function incorporated in another program is to act as a
command-based resource monitor, specify a connection type of client. The client
connection type indicates that the resource monitor initiates the connection and that
the program is to act as a command.

Resource Monitor Type Considerations
In making your choice, consider the following questions:

� Do you already have an existing program that manages a resource?

If so, you may want to incorporate resource monitoring function into it rather
than write a stand-alone program.

� What kind of data do you need to handle?

If your resource monitor deals only with State resource variables, your resource
monitor can act as either a daemon or a command. However, if you have
Counter or Quantity resource variables, your resource monitor must act as a
daemon, although you can incorporate the function in another program.

� Do you want to supply data to the Performance Monitor subsystem as well as
the Event Management subsystem?

If you do, you must write a resource monitor (or function) that acts as a
daemon. Keep in mind, however, that only the values of Counter and Quantity
resource variables are supplied to the Performance Monitor subsystem.

� How complicated does your resource monitor need to be?

A command-based resource monitor is simpler to code than a daemon-based
resource monitor.

When making your choice, also keep in mind this recovery characteristic of the
Event Management subsystem: If any of its components fail, after the failed
components have been restarted it is assumed that any resource variable values
that have been lost can be refreshed from the resource monitor. If the resource
monitor is command-based, it may take some time before it once again provides
the resource variable values. A resource monitor that is a daemon, or behaves as a
daemon, can provide resource variable values immediately.

Configuring the Resource Data and Resource Monitor
Once you have determined the data your resource monitor is going to supply and
the type of resource monitor you are going to write, you must make the information
available to the Event Management subsystem as a set of formal definitions. This is
called Event Management configuration .

As part of Event Management configuration, you must supply information about:

14 RS/6000 Cluster Technology Event Management Programming

� The resource variables that your program will monitor

� Any structured byte string definitions that are required

� The resource IDs for each resource variable

� The classes in which the resource variables are grouped

� Your resource monitor.

Event Management configuration updates the SDR and “production” files for each
system partition. Accordingly, it is advisable to create a separate system partition
for testing purposes before you alter your production environment.

Event Management configuration requires several steps. First, from the control
workstation, you must store the resource definitions for a given system partition as
a set of objects in the System Data Repository (SDR). There are two ways to do
this.

The preferred way to load your data for a new resource monitor into the SDR is to
create a load list file and run the haemloadcfg command. For details on how to do
this, see the Event Management subsystem chapter in PSSP Administration Guide.

Another way of loading your data into the SDR is to use such commands as the
SDRCreateObjects command. You can do this most easily by creating a shell
script with the appropriate commands. For an example, see “The
rmapi_smp.loadsdr Shell Script” on page 214.

You place the source information in the following partitioned classes in the SDR:

� Class = EM_Resource_Variable

� Class = EM_Structured_Byte_String

� Class = EM_Resource_ID

� Class = EM_Resource_Class

� Class = EM_Resource_Monitor

Once you have stored the information in the SDR, you must issue the haemcfg
command. This command compiles the Event Management data in the SDR for a
system partition and creates a staging version of the system partition's Event
Management Configuration Data Base (EMCDB) file. The data in the EMCDB file,
not the SDR, is the data that is used by the Event Management subsystem.

In order to make the new EMCDB file active, that is, to change it from the staging
version to the production or real-time version, you must shut down and restart the
Event Management subsystem in the system partition. To do so, shut down all of
the Event Management daemons for the system partition (on the control
workstation and all of the nodes) and then restart them all. For details, see PSSP
Administration Guide.

Finally, you must repeat this process for each of the system partitions in which
Event Management services are required.

Each time you update the EMCDB for a system partition, the haemcfg command
modifies a version number. The version number allows each instance of the Event
Management subsystem and each resource monitor in a system partition to verify

 Chapter 1. Understanding Event Management 15

that they have access to the correct version of configuration information. The
haemcfg command maintains the version number in both the EMCDB and the
SDR.

Each database may be updated at any time without interfering with the operation of
any Event Management subsystem, client, or resource monitor. However, once a
database has been updated in a system partition, the Event Management
subsystem in the system partition must be restarted to refresh its configuration
information from the newly updated database.

Coding and Testing the Resource Monitor
Having defined and configured the resource monitor and its data, the next task is to
code the resource monitor.

In general, all resource monitors perform certain functions. They initialize
themselves with the RMAPI, manage RMAPI sessions, update resource variables,
and terminate. However, the structure and functions of the resource monitor (or
resource monitoring function) depend on the implementation you have chosen:
daemon-based or command-based. Because the coding of a command-based
resource monitor is simpler, we'll describe that type first.

Also, Chapter 5, “Using the RMAPI: Some Resource Monitor Examples” on
page 169 contains several listings of sample resource monitor programs.

To test your new resource monitor with the test version of the EMCDB, you must
run it in the separate system partition that you created for that purpose.

Coding a Command-Based Resource Monitor
A command-based resource monitor includes the following functions:

 � Initializing

The resource monitor calls the ha_rr_init subroutine to inform the RMAPI of
the identity of the resource monitor.

� Starting a session

After the ha_rr_init subroutine completes successfully, the command-based
resource monitor calls the ha_rr_start_session subroutine to start a session
with the Event Management subsystem.

� Registering resource variables and their instances

After starting a session, the resource monitor calls the ha_rr_reg_var
subroutine to register one or more resource variable instances with the RMAPI.

� Adding resource variables

After registering resource variables and their instances, the resource monitor
must call the ha_rr_add_var subroutine to add the resource variables to the list
of those known to the RMAPI and supply their current values.

� Sending updated values of resource variable instances

Whenever it is time to send updated values of resource variable instances to
the RMAPI, the resource monitor calls the ha_rr_send_val subroutine to send
them to the Event Management subsystem.

� Deleting resource variables

16 RS/6000 Cluster Technology Event Management Programming

If a resource monitor is no longer sending one or more resource variables to
the RMAPI, the resource monitor must call the ha_rr_del_var subroutine to
delete them from the list of those known to the RMAPI.

� Ending a session

When the command-based resource monitor is to ready to end, it calls the
ha_rr_end_session subroutine to end the session.

 � Terminating

Once the session has ended, the command-based resource monitor calls the
ha_rr_terminate subroutine and then exits.

Figure 5 shows a pseudocode outline of a command-based resource monitor that
uses RMAPI subroutines.

 Call ha_rr_init

 Call ha_rr_start_session

Call ha_rr_reg_var with all known variable instances.

Call ha_rr_add_var with the variables that were specified to
the ha_rr_reg_var routine and supply current

 values.

Call ha_rr_send_val with the State variable values. Do this
as frequently as required by the operation
of the resource monitor.

Call ha_rr_del_var to delete variables added.

 Call ha_rr_end_session

 Call ha_rr_terminate

 Exit

Figure 5. A Pseudocode Outline of a Command-Based Resource Monitor

Coding a Daemon-Based Resource Monitor
A daemon-based resource monitor includes the following functions:

 � Initializing

The resource monitor calls the ha_rr_init subroutine to inform the RMAPI of
the identity of the resource monitor.

� Making a server session

After the ha_rr_init subroutine completes successfully, the daemon-based
resource monitor calls the ha_rr_makserv subroutine to start a server session
so that one or both of the resource monitor managers can connect to it. The
resource monitor managers are the Event Management subsystem and the
Performance Monitor subsystem.

� Registering resource variables and their instances

 Chapter 1. Understanding Event Management 17

After starting a server session, the resource monitor calls the ha_rr_reg_var
subroutine to register one or more resource variable instances with the RMAPI.

� Starting a session

Whenever the file descriptor returned by the ha_rr_makserv subroutine is
ready for reading, the daemon-based resource monitor calls the
ha_rr_start_session subroutine to start a session with the resource monitor
manager.

� Getting a control message from the Event Management subsystem

When the resource monitor determines that there is data to be read for the
session, it calls the ha_rr_get_ctrlmsg subroutine to read the control message,
which contains a command from the resource monitor manager.

� Processing the control message

Once the resource monitor has received the control message, it processes the
command it contains. For information on the commands a control message can
contain and the processing that the resource monitor performs, see “Processing
Control Messages.”

� Ending a session

When a resource monitor manager has disconnected, the daemon-based
resource monitor calls the ha_rr_end_session subroutine to end the session.

 � Terminating.

When the daemon-based resource monitor no longer has a session with either
resource monitor manager, it should call the ha_rr_terminate subroutine and
then exit, if the resource monitor was configured to be startable by a resource
monitor manager.

Processing Control Messages: A control message contains one of the following
commands:

HA_RR_CMD_INSTV
The “instantiate variables” command asks the resource monitor to create
instances of specified resource variables. This command is sent only for
variables that have been configured as dynamically instantiable.

To process the command, the resource monitor creates actual instances
for each specified instance of a resource variable. Once the instances
have been created, the resource monitor calls the ha_rr_reg_var
subroutine to register the instances.

HA_RR_CMD_ADDV
The “add variables” command tells the resource monitor to add the
specified resource variable instances to the RMAPI.

To process the command, the resource monitor calls the ha_rr_add_var
subroutine to add the variables and supply their current values. Then, it
calls the ha_rr_send_val subroutine to start sending updated values for
the resource variable instances that have been added.

To find out how often to send values for each class of resource
variables of type Counter or Quantity, it calls the ha_rr_get_interval
subroutine to get the reporting interval that has been configured.

18 RS/6000 Cluster Technology Event Management Programming

HA_RR_CMD_ADDALL
The “add all variables” command tells the resource monitor to add all of
its Counter and Quantity resource variable instances to the RMAPI.

To process the command, the resource monitor calls the ha_rr_add_var
subroutine to add the variables and supply their current values. Then, it
calls the ha_rr_send_val subroutine to start sending updated values for
the resource variable instances that have been added.

To find out how often to send values for each class of resource
variables of type Counter or Quantity, it calls the ha_rr_get_interval
subroutine to get the reporting interval that has been configured.

HA_RR_CMD_DELV
The “delete variables” command tells the resource monitor to delete the
specified resource variable instances from the RMAPI.

To process the command, the resource monitor calls the ha_rr_del_var
subroutine to delete the resource variables. Then, it stops sending
values for the resource variable instances that have been deleted.

HA_RR_CMD_DELALL
The “delete all variables” command tells the resource monitor to delete
all of its Counter and Quantity resource variable instances from the
RMAPI.

To process the command, the resource monitor calls the ha_rr_del_var
subroutine to delete the variables. Then, it stops sending values for the
resource variable instances that have been deleted.

Figure 6 shows a pseudocode outline of a daemon-based resource monitor that
uses RMAPI subroutines.

 Call ha_rr_init

 Call ha_rr_makserv
Add the file descriptor (fdc) to the select mask.

Call ha_rr_reg_var with all known variable instances.

Loop on select
If fdc is ready

 Call ha_rr_start_session
Add the file descriptor (fdN) to the select mask.

If fdN is ready
Call ha_rr_get_ctrlmsg with fdN

Process the control message

If the session is disconnected
 Call ha_rr_end_session

 end Loop

 Call ha_rr_terminate.

Figure 6. A Pseudocode Outline of a Daemon-Based Resource Monitor

 Chapter 1. Understanding Event Management 19

Alternative Testing Method
While it is recommended that a new resource monitor be tested in a non-production
system partition, it is possible to test a new resource monitor on one or more nodes
in an existing system partition. However, the Event Management subsystem on the
test node(s) would no longer be in the domain for the duration of the test. Also, the
definitions for the new resource monitor must be added to the SDR in the system
partition containing the test nodes.

During this procedure, do not execute the haemcfg command on the control
workstation. Specifically, while you have the test resource monitor definitions in the
SDR you do not want to create a new Event Management Configuration Database
(EMCDB) in the staging area on the control workstation.

Perform the following steps:

1. On the node (or nodes) where the new resource monitor is to be tested,
execute the command:

/usr/sbin/rsct/bin/haemctrl -k

2. On one of the test nodes, create a loadlist file containing the definitions for the
new resource monitor. See the haemloadlist man page in the PSSP:
Command and Technical Reference.

3. Execute the following command, specifying the name of the loadlist file created
in the prior step:

/usr/sbin/rsct/install/bin/haemloadcfg filename

See the haemloadcfg man page in the PSSP: Command and Technical
Reference.

4. In the /etc/ha/cfg directory, execute the command:

/usr/sbin/rsct/bin/haemcfg -n

Ensure that the -n flag is specified. Without this flag, the version number of the
production EMCDB in this system partition will be updated in the SDR. See the
haemcfg man page in the PSSP: Command and Technical Reference.

If you are testing on more than one node, copy the EMCDB to the /etc/ha/cfg
directory on the other nodes. The name of the EMCDB is
em.domain_name.cdb , where domain_name is the name of the domain
(system partition name) that contains the node.

5. On each test node, execute the command:

chssys -s haem -a "-T test_rm"

On each test node, execute the /usr/sbin/rsct/bin/haemctrl -s command. The
Event Management subsystem(s) on the test nodes(s) can now be used to test
the new resource monitor.

6. When testing is complete, execute the following command on each test node:

/usr/sbin/rsct/bin/haemctrl -k

7. On each test node, execute the command:

chssys -s haem -a ""

8. Using the loadlist file created earlier, execute the command:

/usr/sbin/rsct/install/bin/haemloadcfg -d filename

20 RS/6000 Cluster Technology Event Management Programming

This will remove the definitions for the new resource monitor.

9. On each test node, execute the command:

/usr/sbin/rsct/bin/haemctrl -s

The Event Management subsystem on the test nodes will now be back in the
domain.

Writing Event Management Clients
To write an Event Management client (EM client), you must perform the following
steps:

� Find out what resource data is available

� Define expressions to create events

� Code and test the EM client.

This section provides you with an overview of each of these steps. For complete
details on how to specify any of the data or subroutines, see the reference
information in the following chapters:

� Chapter 2, “Event Management Configuration Data Reference” on page 33

� Chapter 3, “Event Management Subroutine Reference” on page 47

� Chapter 4, “Event Management Files Reference” on page 123.

For details on any commands you need to issue, see PSSP Command and
Technical Reference.

For listings of several sample Event Management clients, see Chapter 6, “Using
the EMAPI: Some Event Management Client Examples” on page 223.

Finding Out What Resource Data Is Available
As described in “Defining the Resource Data” on page 5, resource data is collected
and sent to the Event Management subsystem by resource monitors.

The first task in writing an EM client is to determine what resource data is being
collected in the system.

There are two ways to do this:

� You can use commands.

You can use the RSCT haemqvar command to list information about resource
variables and resource IDs that have been defined in the system.

� On an RS/6000 SP you can use the SP Perspectives graphical user interface.

You can use the Event Management portion of SP Perspectives to list
information about the resource variables and resource IDs that have been
defined in the system.

 Chapter 1. Understanding Event Management 21

Getting Resource Variable Information Using the haemqvar
Command
By default, the haemqvar command produces a listing of all defined resource
variables in the current SP domain. For each resource variable the following
information is included:

 � Variable name

 � Value type

 � Data type

� SBS format (if data type is Structured Byte String)

 � Initial value

 � Class

 � Locator

 � Variable description

� Resource ID and its description

� Default expression (if defined) and its description

Since the amount of information produced can be quite large, the output of this
command should be redirected to a file:

haemqvar > var.list

This command can also take arguments requesting information about a particular
resource variable. The following example produces information about the
IBM.PSSP.aixos.FS.%totused resource variable:

haemqvar "" IBM.PSSP.aixos.FS.%totused "\"

Refer to the PSSP: Command and Technical Reference for more information.

Getting Resource Variable Information from SP Perspectives
You can use the Event Management portion of SP Perspectives to get information
about the resource variables and resource IDs that have been defined in the
system. To do this:

1. Start the Event Management portion of SP Perspectives. To do so, enter:

spevent

In response, the system displays the Event Perspective window.

2. If you have more than one system partition defined:

a. Click on the icon that represents the system partition in which you are
interested.

b. From the Menu bar, click on Actions , then click on Set Current System
Partition .

3. If the Conditions pane is not already loaded:

a. From the Menu bar, click on View , then click on Add Pane...

b. Select Conditions in the “Pane type” field, then click on OK.

22 RS/6000 Cluster Technology Event Management Programming

In response, the system displays the Conditions pane on the Event
Perspective window.

4. Click on the Conditions pane to make it active.

5. Open the Create Condition notebook. To do so:

From the Menu bar, click on Actions , then select Create... .

Or

From the tool bar, click on the Create a Condition (pencil) icon.

In response, the system displays the Create Condition notebook. On the Create
Condition notebook, the Resource variable names field displays a list of all of
the resource variables that are defined in the system partition you selected.

6. To get information about any particular resource variable, select that variable
and click on Show Details... .

In response, the system displays the Show Resource Variable Details dialog
box. This dialog box contains the following fields, each of which provides
details about the selected resource variable:

� Resource variable name

� Resource variable description

� Resource variable value type

� Resource variable data type

� SBS (Structured Byte String) format

Note: This field is displayed only if the resource variable data type is sbs .

� Resource ID format

� Resource ID description

Figure 7 on page 24 provides an example of the Show Resource Variable
Details dialog box—in this case, showing details about the
IBM.PSSP.pm.Errlog resource variable.

For complete information on using SP Perspectives, see PSSP: Administration, the
IBM PSSP for AIX: SP Perspectives Comprehensive Guide redbook, and the SP
Perspectives help panels.

 Chapter 1. Understanding Event Management 23

Figure 7. Show Resource Variable Details Dialog Box

Using Expressions to Define Events
Once you know what resource data is being collected in the system, you can start
defining expressions that will cause your program to be notified when conditions of
interest occur. This notification is called an event. Before we get into defining
expressions, though, let's take a look at how the Event Management subsystem
generates an event.

How the Event Management Subsystem Generates Events
As discussed in “Defining the Resource Data” on page 5, a resource is represented
by one or more variables that are defined and updated by a resource monitor. The
Event Management subsystem observes each resource variable instance at an
interval that is configurable (for Counter and Quantity resource variables), or as the
resource variable instance changes (for State resource variables). At each
observation of a resource variable instance, the Event Management subsystem
applies one or more expressions that were previously supplied by EM clients.

24 RS/6000 Cluster Technology Event Management Programming

An expression is a relational condition between a resource variable and other
elements, such as a constant or the value of a variable from the previous
observation. The relationship can be an arithmetic one, a logical one, or a
combination.

The expression is applied to each instance of the resource variable as it is
observed. If the expression is true, an event is generated. More than one
expression may be applied to an instance of the same resource variable at the
same observation.

Here's an example of an event that could be generated. Suppose a resource
monitor is keeping track of whether a particular node is up or down. The resource
monitor represents the node by the IBM.PSSP.Membership.Node.state integer
variable. As the state of the node changes, it sets the variable equal to a value of 1
(when the node is up) or a value of 0 (when the node is down).

An EM client is interested in knowing when the node goes down. Accordingly, it
asks the Event Management subsystem to observe instances of the variable and
apply the following expression to it:

X == ð

where X represents the IBM.PSSP.Membership.Node.state variable.

At each observation, the Event Management subsystem applies the expression to
the resource variable instance. If the Event Management subsystem observes that
the value of an instance of the IBM.PSSP.Membership.Node.state variable is
equal to a value of 0, the expression is true and the Event Management subsystem
generates an event, thereby notifying the client.

Another example of a simple expression is X < 10, where X is a resource variable
that represents the percentage of free space in a file system. This expression
would generate an event whenever the file system's free space was observed to be
less than 10%.

To summarize, then, an expression is a relational condition between a resource
variable and other elements, such as a constant or the value of a variable from the
previous observation. An event is the notification that an expression that contains a
resource variable is true.

 Defining Expressions
To define an expression, you must specify the resource variable and its relationship
to at least one other element.

To specify the resource variable, you use the letter “X.” Unmodified, “X” represents
the value of the latest observation of an instance of the resource variable.

You can also modify the resource variable name to indicate any, or a combination,
of the following:

� The value of the previous observation of the instance (P)

� The raw value of the Counter rather than the default rate (R)

� The value of a specific structured byte field (the serial number of the field).

The relationship you specify can be arithmetic, logical, or a combination.

 Chapter 1. Understanding Event Management 25

For the complete definition and syntax of an expression, see “Expressions
(haemexpr)” on page 149. Here are some examples of valid expression definitions:

X == ð The value of the resource variable instance is equal to zero.

X < 2ð || X > 8ð The value of the resource variable instance is less than 20 or
greater than 80.

!(X < 2ð || X > 8ð)
The value of the resource variable instance is neither less
than 20 nor greater than 80.

X@R > X@PR The current raw value of the variable instance is greater than
the raw value of the variable instance from its previous
observation.

X >= X@P + 5 The current value of the variable instance is greater than or
equal to the value of the variable instance from its previous
observation plus 5.

X@2 != 1ðð For a resource variable instance that is defined as an SBS,
the value of structured field number 2 is not equal to 100.

X@ð != X@Pð || X@1 != X@P1
For a resource variable instance that is defined as an SBS,
the value of either structured field number 0 or structured
field number 1 has changed since its previous observation.

Defining Rearm Expressions
When an EM client registers for an event, it can specify either one or two
expressions.

By default, it specifies a single expression, the event expression . When the event
expression is true, the EM client receives an event.

However, an EM client can also specify a second expression called the rearm
expression in addition to the original event expression. When an EM client
specifies a rearm expression, the two expressions are used alternately, as follows:
the event expression is used until it is true, then the rearm expression is used until
it is true, then the event expression is used, and so on.

Rearm expressions can be used in a couple of different ways. One common way is
to define the rearm expression as the inverse of the event expression. For
example, if the event expression tests whether a resource variable value is “on,”
the rearm expression tests whether it is “off.”

A rearm expression can also be used with the event expression to define an upper
and lower boundary for a condition of interest. For example, suppose an EM client
is interested in how much disk space is used in the system. It defines a normal disk
space condition to be in the range between 80% and 90% of the total space.
However, if the amount of disk space used rises above 90% or falls below 80%, the
EM client wants to be notified.

In this case, it would define the event expression to be “the amount of disk space
used is greater than 90%” and the rearm expression to be “the amount of disk
space used is less than 80%.” The EM client would also register for events from
both expressions.

26 RS/6000 Cluster Technology Event Management Programming

The first time disk space usage rises above 90%, the Event Management
subsystem notifies the EM client and switches to the rearm expression. The EM
client is not notified again until disk space usage decreases to an amount less than
80%, and then the Event Management subsystem switches to the event
expression.

Using a Default Expression
When the writer of a resource monitor defines a resource variable, he or she may
also optionally define for it a single default expression . As the writer of an EM
client, you can use the default expression (if it is defined) in addition to, or instead
of, expressions you define.

Coding and Testing the EM Client
Having determined what resource data is available and the conditions your program
will be interested in, the next task is to code the EM client.

In general, your EM client will start one or more EMAPI sessions, register for
events with the Event Management subsystem, process events from the Event
Management subsystem, and end its EMAPI sessions. It can also query resource
variable information and unregister for events. The following sections describe each
of these activities in more detail.

Also, Chapter 6, “Using the EMAPI: Some Event Management Client Examples” on
page 223 contains several listings of sample EM client programs.

From an Event Management point of view, you do not need to set up a separate
domain just for testing an EM client. However, if your EM client is taking actions
that might adversely affect a production environment, you may wish to set up a
separate test domain or other testing environment.

Starting a Session
To start an event management session, the EM client calls the
ha_em_start_session subroutine.

By default, an EM client establishes a session with the Event Management
subsystem in the current domain. The current domain is the domain containing the
node on which the client is running. Since a node may be in both an SP and an
HACMP/ES cluster, a domain type must be specified. Optionally, the EM client can
also specify the name of the domain with which the session is to be established. If
the domain is an SP system partition, the domain name is the system partition
name. If the domain is an HACMP/ES cluster, the domain name is the cluster
name.

If the domain type is HACMP/ES , the domain name must be the name of the
HACMP/ES cluster containing the node on which the client is executing. If the
domain type is SP, the domain name may be the name of any of the defined
system partitions.

If the EM client is running on the SP control workstation or on a workstation outside
of the SP, and a domain name is not specified when a session is established, then
the SP_NAME environment variable is used to determine the domain name. In this
situation the EM client may only establish a session with an SP domain type.

 Chapter 1. Understanding Event Management 27

An EM client may establish multiple sessions. The client can then receive events
from, and issue queries to, multiple domains. Multiple sessions can also be
established with a single domain. Since each session provides a unique
communication path, multiple sessions are useful if the client wishes to ignore
certain responses from a domain while accepting others. For example, a client can
register events in one session and issue queries in another.

If the communication path for a session is lost, the EM client calls the
ha_em_restart_session subroutine to restart an existing session.

Registering for Events
Once it has started a session, the EM client calls the ha_em_send_command
subroutine to register for events.

The EM client may specify either of two register commands:

� HA_EM_CMD_REG, which the EM client uses to register for an event from a
single expression, the event expression. If a rearm expression is defined, it
does not generate an event.

� HA_EM_CMD_REG2, which the EM client uses to register for an event from
both an event expression and a rearm expression.

For each event, the EM client supplies the name of a resource variable, a resource
ID, and the expression or expressions that are to be used to generate the event.
For each successfully registered event, the EMAPI returns an event ID to the EM
client.

The resource ID identifies the particular instance or instances of the resource
variable that the Event Management subsystem should use to generate the event.
To receive events from more than one instance of the resource variable, the EM
client can use wildcard characters in the resource ID to specify multiple instances.

The EM client can supply its own expression or expressions or use the default
expression (if any) that was defined when the resource variable was configured.

If the EM client registers for more than one event with a single command, the
events belong to an event command group . The EM client can call the
ha_em_get_ecgid subroutine to get the identifier of the event command group to
which an event belongs.

By default, the Event Management subsystem does not generate an event until the
expression is true. However, if the EM client specifies the HA_EM_SCMD_REVAL
subcommand on either register command, the Event Management subsystem
generates an event at the first observation of an instance of the resource variable,
whether or not the expression is true. In this way, the EM client can obtain the
initial state of the resource variable. Then the Event Management subsystem
generates events as usual.

Unregistering for Events
When the EM client no longer wishes to receive an event, it calls the
ha_em_send_command subroutine to unregister for the event, specifying the
HA_EM_CMD_UNREG command. For each event to be unregistered, the EM client
supplies the event ID that was returned when the event was registered. The EM
client can unregister one or more events with a single command.

28 RS/6000 Cluster Technology Event Management Programming

Sending Queries to the Event Management Subsystem
The EM client can also get certain kinds of information by calling the
ha_em_send_command subroutine, specifying the HA_EM_CMD_QUERY
command. Using query subcommands, the EM client can get the following
information:

� The current value of one or more resource variables, using the
HA_EM_SCMD_QCUR subcommand

� The resource IDs of one or more resource variables, using the
HA_EM_SCMD_QINST subcommand

� A list of the resource variables and default expressions that are defined in the
Event Management Configuration Database (EMCDB), using the
HA_EM_SCMD_QDEF subcommand.

The scope of each query is defined by the specification of a resource variable
name and a resource ID. These specifications may be wildcarded.

Receiving Responses from the Event Management Subsystem
Once the EM client has sent a command, it must be ready to receive a response.

First, the EM client checks the session's file descriptor, using either the poll or the
select system call. When the file descriptor is ready for reading, the EM client calls
the ha_em_receive_response routine.

By default, the Event Management subsystem returns the response in a response
block. The response block contains one of the following:

� One or more events

� A notification that one or more events have been unregistered

� A response to a previously issued query command

� An indicator that there was an error in a previously issued register or query
command.

If you prefer to program using callback routines, your EM client may specify one or
more callback routines instead. A callback routine can handle one or more events,
responses to unregister commands, and responses to query commands.

You specify callback routines on input to the ha_em_send_command subroutine.
You can specify a different callback routine for each event or the same callback
routine for multiple events on a single register command. For queries, you can
specify only one callback routine on a single query command.

When there is no error in the event or response, the Event Management subsystem
delivers it directly to the callback routine. The Event Management subsystem
passes information about the event or response as input to the callback routine.

For some error conditions, the Event Management subsystem always returns from
the ha_em_receive_response subroutine with a response block that contains the
error, even if the EM client specified a callback routine. For details on error
handling in response to commands, see “ha_em_receive_response Subroutine” on
page 53.

 Chapter 1. Understanding Event Management 29

Ending a Session
When the EM client no longer needs Event Management services, it ends the
session by calling the ha_em_end_session subroutine.

Event Management Performance Considerations
The amount of overhead that the Event Management subsystem incurs is directly
proportional to the number of resource variable instances it is observing and the
number of expressions that it is evaluating at each observation. Accordingly, you
can improve performance by specifying longer reporting and observation intervals.

Also, the Event Management subsystem does not start certain daemon-based
resource monitors until at least one EM client has registered interest in the
resources they are monitoring.

Resource Monitors and PTX Shared Memory
A resource monitor that uses Quantity and Counter variables can send the values
of those variable to the Performance Monitor as well as the Event Management
subsystem. Such a resource monitor uses shared memory to pass the variable
values to the Performance Monitor and, in PTX parlance, is a “dynamic
data-supplier program.” The Performance Monitor is a PTX “local data-consumer
program.” The shared memory is called “DDS Shared Memory”; it is created and
managed by the RMAPI and is not directly referenced by the resource monitor
program.

If your resource monitor uses shared memory in this way, it is important to make
sure that the shared memory is released when the resource monitor exits, either
normally or abnormally. The best way to make sure this happens is by calling the
ha_rr_terminate subroutine before exiting. The ha_rr_terminate subroutine causes
the RMAPI to release the shared memory. In addition to a routine that handles a
normal exit, you should establish a signal handler to catch termination signals; for
example, the signal handler should handle the following signals: SIGTERM,
SIGHUP, and SIGINT.

If the resource monitor abnormally terminates without calling the ha_rr_terminate
subroutine, you may need to release the shared memory manually. The following
sections, adapted from PTX documentation, explain how to do this.

You may have to use this procedure when any program that uses PTX shared
memory fails to release it, due to abnormal termination or any other cause. Such
programs are not limited to resource monitors, but also include the Performance
Monitor subsystem and any other dynamic data-supplier programs that may be
running in the domain .

Note that Quantity and Counter variables are passed to the Event Management
subsystem using private shared memory, distinct from the DDS shared memory.
The private shared memory is created, managed, and released by the Event
Management subsystem.

30 RS/6000 Cluster Technology Event Management Programming

DDS Shared Memory
If a dynamic data-supplier program is terminated in a way that cannot be detected
from the program itself, the DDS shared memory is not released and subsequent
attempts to start the dynamic data-supplier program fail. If this happens, you must
release the DDS shared memory manually, as described in “Releasing Shared
Memory Manually.”

To avoid the situation, never kill a dynamic data-supplier program with the option -9
That would terminate the program with a SIGKILL signal, which is not detectable.

Releasing Shared Memory Manually
In situations where one or more data-supplier or local data-consumer programs
have terminated in such a way that their shared memory allocations have not been
released, the shared memory segments should be released from the command line
before attempting to restart the programs. It is recommended that all data-supplier
and local data-consumer programs, including xmservd , are killed before you
attempt to release shared memory. Clearing of all shared memory segments could
be done through the following steps:

1. Identify all data-supplier and local data-consumer programs that are running.
Use the ps command and your knowledge of the programs in use on your
system to locate all of them. For each of the running data-supplier or local
data-consumer programs, note their process IDs.

2. Kill all processes associated with data-supplier and local data-consumer
programs without using a command line flag.

3. Verify that all data-supplier and local data-consumer processes have been
killed. If not, use the kill -9 command to kill them.

4. List the shared memory segments in use with the ipcs -m command. This
produces a list like the following:

IPC status from /dev/mem as of Fri Dec 31 ð7:54:44 CST 1993
T ID KEY MODE OWNER GROUP
Shared Memory:
m ð ðxðdð5ð296 --rw------- root system
m 2ð481 ðx58ð6188b --rw-rw-rw- nchris system
m 28674 ðx78ð5ð2ea --rw-rw-rw- root system
m 12292 ðx78ð5ð2e3 --rw-rw-rw- root system
m 2ð485 ðx78ð5ð2d1 --rw-rw-rw- root system

5. Identify all shared memory segments with a KEY that begins with '0x78'. All
shared memory allocated by data-supplier and local data-consumer programs
has this key. Now use the ipcrm command to remove the shared memory
segments, specifying as command arguments the IDs of the segments you
want to remove. To remove all three data-supplier and local data-consumer
segments listed above, your command would be:

ipcrm -m 28674 -m 12292 -m 2ð485

6. Restart the dynamic data-supplier and data-consumer programs as required.
To start xmservd and any dynamic data-supplier programs started by it, enter
the xmpeek command.

 Chapter 1. Understanding Event Management 31

32 RS/6000 Cluster Technology Event Management Programming

Chapter 2. Event Management Configuration Data Reference

This chapter contains the reference material for the Event Management
configuration data that is stored as a set of objects in the System Data Repository
(SDR).

These objects are created from a load list file (haemloadlist) by the haemloadcfg
utility command. The SDR objects are compiled using the haemcfg utility command
to produce a binary file called the Event Management Configuration Database
(EMCDB) that is used by the Event Manager daemon.

The man page in this chapter describes the SDR classes and attributes for the
Event Management objects.

For information about the haemloadcfg utility command, the haemloadlist load list
file and its format, and the haemcfg utility command, see PSSP Command and
Technical Reference.

Note: The material in this chapter applies only to SP domains. For the Event
Management subsystem in an HACMP/ES domain, a pre-compiled EMCDB
is shipped in the RSCT install image.

 Copyright IBM Corp. 1998 33

 Event Management Configuration Data

Event Management Configuration Data (emcdb)

 Purpose
Event Management Configuration Data (SDR) – System Data Repository (SDR)
classes and attributes for Event Management resource variables, resource IDs,
resource classes, and resource monitors

 Description
Before you can use Event Management services through the Event Management
Application Programming Interface (EMAPI), information about the system
resources being monitored must be defined and configured to the Event
Management subsystem. This information includes the resource variables from
which events may be generated, the resource ID for each resource variable, the
classes in which the resource variables are grouped, and the resource monitors
that supply the variables. For resource variables that are structured byte strings
(SBSs), the SBS structured fields must also be defined. A distinct database is
created for each SP-type domain (system partition) on the IBM RS/6000 SP.

The configuration process for each domain consists of the following steps:

1. The programmer that creates the resource monitor defines the Event
Management resource information and stores it in an Event Management load
list file.

2. The programmer or system administrator issues the haemloadcfg command to
load the resource definitions from the load list file into the System Data
Repository (SDR).

3. The programmer or system administrator uses the haemcfg command to
compile the SDR objects, producing a binary file called the Event Management
Configuration Database (EMCDB). The new EMCDB is placed in a staging
directory.

4. The programmer or system administrator activates the new EMCDB by using
haemctrl commands to stop all of the domain's Event Manager daemons and
restart them. The commands must stop and restart the domain's daemon on
the control workstation and the daemon on each of the domain's nodes. This
has the effect of replacing the run-time version of the EMCDB with the new
EMCDB from the staging directory.

For more details on the procedures for configuring Event Management, see the
Event Management subsystem chapter in PSSP Administration Guide.

To place information in the SDR, you must have the appropriate authorization. If
you do not have the appropriate authorization, consult with your system
administrator. For more information about the requirements for access to the SDR,
see PSSP Administration Guide.

You can use SDR commands to work with objects in the Event Management
classes directly. However, IBM recommends that you use load list files and the
haemloadcfg command to work with objects in these classes.

You cannot use System Management Interface Tool (SMIT) panels to work with
objects in these classes.

34 RS/6000 Cluster Technology Event Management Programming

 Event Management Configuration Data

EMCDB Source Information

Source information for the EMCDB is kept in the following partitioned classes in the
SDR:

� Class = EM_Resource_Variable

� Class = EM_Structured_Byte_String

� Class = EM_Resource_ID

� Class = EM_Resource_Class

� Class = EM_Resource_Monitor

The tables below summarize the SDR classes for Event Management and their
attributes. The value in the Type column is the datatype of the attribute: S=string,
I=integer, F=floating point.

Detailed explanations of each class and attribute, as well as examples showing
their use, follow the tables.

Class = EM_Resource_Variable

Attribute Name Type Description

rvName S The name of a resource variable.

rvDescription I The ID of the message that contains the description of
the variable, including its semantics.

rvValue_type S The value type of the variable.

rvData_type S The data type of the variable.

rvInitial_value S The initial value of the resource variable.

rvClass S The name of a resource variable class.

rvPTX_name S The name that is used to read and write the variable in
the Performance Toolbox (PTX) shared memory.

rvPTX_description S A comma-separated list, with no blanks, of message
IDs.

rvPTX_min I The lower range for plotting this variable by the
Performance Monitor.

rvPTX_max I The upper range for plotting this variable by the
Performance Monitor.

rvExpression S The default expression that is to be applied to the
resource variable.

rvEvent_description I The ID of the message that contains a short description
of the event

rvLocator S A resource ID element name.

rvDynamic_instance I If nonzero (true), instances of this variable are created
dynamically by its resource monitor whenever the
instance is referenced in an EMAPI command.

rvIndex_element S A resource ID element name.

 Chapter 2. Event Management Configuration Data Reference 35

 Event Management Configuration Data

Class = EM_Structured_Byte_String

Attribute Name Type Description

sbsVariable_name S The name of the SBS resource variable for which this
object defines one of its structured fields.

sbsField_name S A structured field name, which provides a short
description of the structured byte field.

sbsField_type S The data type of this field.

sbsField_SN I The serial number of the structured field.

sbsField_init_val S The initial value of the structured field, with a format
suitable to the field's type.

Class = EM_Resource_ID

Attribute Name Type Description

riResource_name S The name of the resource (and all of its resource
variables) for which this resource ID element is defined.

riElement_name S A resource ID element name, which describes the
element.

riElement_description I The ID of the message that describes the resource ID
element, including its semantics.

Class = EM_Resource_Class

Attribute Name Type Description

rcClass S The name of a resource variable class.

rcResource_monitor S The name of the resource monitor definition for the
resource monitor that supplies the resource variables in
this class.

rcObservation_interval I The observation interval, which is the amount of time,
in seconds, between each observation by the Event
Management subsystem of instances of any variable of
value type Counter or Quantity in this class.

rcReporting_interval I The reporting interval, which is the amount of time, in
seconds, between each update of any variable of value
type Counter or Quantity in this class by the
corresponding resource monitor.

rcInstance_limit I The maximum number of resource variable instances
the Event Management subsystem will accept from the
resource monitor for this class.

Class = EM_Resource_Monitor

36 RS/6000 Cluster Technology Event Management Programming

 Event Management Configuration Data

Attribute Name Type Description

rmName S A resource monitor definition name.

rmPath S The executable absolute path name of the resource
monitor if it is a daemon that can be started by the
Event Management subsystem.

rmArguments S A list of optional arguments that the Event Management
subsystem should pass when it starts the resource
monitor daemon.

rmMessage_file S The name of the message catalog that contains all of
the descriptions for the resource variables that are
supplied by this resource monitor.

rmMessage_set I The set ID of the descriptions for the resource variables
that are supplied by this resource monitor.

rmConnect_type S The type of connection.

rmPTX_prefix S The PTX name prefix.

rmPTX_description S A comma-separated list, with no blanks, of message
IDs.

rmPTX_asnno I The ASN.1 number equal to the SNMP Assigned
Enterprise Number for the vendor that supplies this
resource monitor.

rmNum_instances I The maximum number of resource monitor instances.

Class = EM_Resource_Variable

The EM_Resource_Variable class contains one object for each resource variable
defined in the database.

Some of the attributes in this class are used to meet PTX requirements. For more
information on PTX, see Performance Toolbox for AIX Guide and Reference.

The attributes of this class are defined as follows:

rvName A string that contains the name of a resource variable. It consists of a
resource name followed by a period followed by the resource attribute.
For details on specifying the components of a resource variable name,
see “Resource Variables (haemrvars)” on page 152.

Resource variables that represent different attributes of the same
resource must contain the same resource name.

rvDescription
An integer that identifies the message that contains the description of
the variable, including its semantics. The first line of the message must
be no more than 63 bytes, excluding the newline character at the end of
the line, and should be a brief abstract of the description.

The description provides information about the resource variable, in
particular its semantics. It must provide enough information for a
programmer or administrator to understand what information is
contained in the resource variable, what the motivation is for the default

 Chapter 2. Event Management Configuration Data Reference 37

 Event Management Configuration Data

expression, and under what circumstances additional expressions could
be provided through the EMAPI.

If the variable is of value type Counter or Quantity, the first line of the
message is used when viewing the variable through the Performance
Monitor.

To find the message, use the message ID with the message set and
message catalog attributes of the EM_Resource_Monitor class object
for the resource monitor that defines the resource variable.

rvValue_type
A string that indicates the value type of the variable. It may be one of
the following: Counter, Quantity, or State. Case is significant.

A Counter is a variable whose value increases monotonically. By
default, a counter is interpreted as a rate, that is, the change in the
value of an instance of the counter from one observation to the next
divided by the time, in seconds, between the two observations.
However, the actual contents of the instance of the counter from the
latest observation, called the raw value, is also available.

A Counter is typically used to represent an attribute of a resource that is
an indicator of throughput. Instances of a Counter are observed by the
Event Management subsystem at an interval, in seconds, that is
configurable for the class to which the Counter belongs. Instances of a
Counter may be updated more often than they are observed without
losing meaningful information for generating events.

If the value of the Counter is also to be passed to the Performance
Monitor, a PTX name is required for this variable and all other Counter
and Quantity variables defined for the resource monitor. See below.

A Quantity is a variable whose value fluctuates over time. It is typically
used to represent an attribute of a resource that is a level, that is, an
indicator of how many. Instances of a Quantity are observed by the
Event Management subsystem at an interval, in seconds, that is
configurable for the class to which the Quantity belongs. Instances of a
Quantity may be updated more often than they are observed without
losing meaningful information for generating events.

If the value of the Quantity is also to be passed to the Performance
Monitor, a PTX name is required for this variable and all other Counter
and Quantity variables defined for the resource monitor. See below.

A State is a variable whose value fluctuates over time, like a Quantity.
However, every time an instance of a State resource variable is
updated, it must be observed so that potential events are not missed.

A State variable can be used to represent an attribute of a resource that
indicates anything other than throughput or a level. A resource monitor
passes instances of a State variable to the Event Management
subsystem as messages. Thus, an instance of a State variable is
observed whenever it is received by the Event Management subsystem,
rather than at regular intervals.

rvData_type
A string that indicates the data type of the variable. It may be one of the
following: long, float, or SBS. Case is significant.

38 RS/6000 Cluster Technology Event Management Programming

 Event Management Configuration Data

The long and float formats are identical to the C language types of the
same names.

The SBS data type specifies a structured byte string and is permitted
only for a variable of value type State. If specified, the structured fields
that make up the structured byte string must be defined as objects in the
EM_Structured_Byte_String class.

rvInitial_value
A string that contains the initial value of the resource variable.

If the data type of the variable is long, the initial value is an integer
constant in a format suitable for conversion by the strtol subroutine
(with a base parameter of 0).

If the data type of the variable is float, the initial value is a floating point
constant in a format suitable for conversion by the strtof subroutine.

If the data type of the variable is structured byte string, this attribute
value must be the null string.

rvClass A string that contains the name of a resource variable class.

The class of a resource variable indicates the application or subsystem
that manages the associated resource and can also be used to group
variables by observation interval.

For details on specifying the name of a resource variable class, see
“Resource Variables (haemrvars)” on page 152.

rvPTX_name
A string that contains the name that is used to write the variable into the
Performance Toolbox (PTX) DDS shared memory. This attribute is
required for a variable with a value type of Counter or Quantity that is to
be supplied to the Performance Monitor. If the variable is not to be
supplied to the Performance Monitor this attribute is omitted. Note that
either all Counter and Quantity variables defined for a resource monitor
must specify this attribute, or all must omit this attribute.

The PTX name used to place a variable into DDS shared memory must
follow the PTX naming convention. If the PTX name contains
components that are instances, these component values must be taken
from one or more elements of the variable's resource ID. This implies
that the PTX name and the resource ID for the resource varaible are
designed in concert.

Where a PTX name contains a component that is an instance, that part
of the name is specified by the name of the corresponding resource ID
element, prepended with the dollar sign. For example,

Resource Variable Name Resource ID

IBM.PSSP.CSS.ibytes_lsw NodeNum=5
IBM.PSSP.CSS.oerrors NodeNum=7
IBM.PSSP.VSD.blocks_rw NodeNum=5;L1=4;L2=5;
 VSD=vsdn2
IBM.PSSP.VSDdrv.rejected_requests NodeNum=5

 SomeDatabase.transactions NodeNum=5;DBname=foo
VendorA.Resource1.Server.counter NodeNum=8;Group=gapg33;
 ServerID=bkg21

 Chapter 2. Event Management Configuration Data Reference 39

 Event Management Configuration Data

would have the corresponding PTX names defined in the configuration
file:

 PTX Name

 CSS/ibytes_lsw
 CSS/oerrors
 VSD/$L1/$L2/$VSD/blocks_rw
 VSDdrv/rej_requests
 SomeDatabase/$DBname/transactions
 Resource1/Server/$Group/$ServerID/counter

The Event Management subsystem replaces PTX name components
that begin with a dollar sign by the value of the corresponding resource
ID element.

rvPTX_description
A string that contains a comma-separated list, with no blanks, of
message IDs. Each ID specifies a message that contains a short
description (no more than 63 bytes) of a PTX context.

The first ID in the list corresponds to the context specified by the first
component of the name specified by the rvPTX_name attribute, the
second ID in the list corresponds to the context specified by the first two
components of the name, the third ID corresponds to the context
specified by the first three components of the name, and so on.
However, there is one fewer ID in this string than the number of
components in rvPTX_name . (The last component in the PTX name is a
statistic, not a context.)

This attribute is required if the rvPTX_name attribute is specified.
Otherwise, it is omitted.

To find the message, use the message ID with the message set and
message catalog attributes of the EM_Resource_Monitor class object
for the resource monitor that defines the resource variable.

rvPTX_min
An integer that is equal to the lower range for plotting this variable by
the Performance Monitor. This attribute is required if the rvPTX_name
attribute is specified. Otherwise, it is omitted.

rvPTX_max
An integer that is equal to the upper range for plotting this variable by
the Performance Monitor. This attribute is required if the rvPTX_name
attribute is specified. Otherwise, it is omitted.

rvExpression
A string that contains the default expression that is to be applied to the
resource variable.

If you do not wish to specify a default expression, omit this attribute.

For details on how to specify an expression, see “Expressions
(haemexpr)” on page 149.

rvEvent_description
An integer that equals the ID of the message that contains a short
description of the event that is generated when the default expression is

40 RS/6000 Cluster Technology Event Management Programming

 Event Management Configuration Data

applied to the variable. If a default expression is not specified, this
attribute is omitted.

rvLocator
A string that contains a resource ID element name.

If the resource ID for this resource implies the resource's location, the
value of this item is the name of the resource ID element whose value is
the number of the node that contains the resource monitor which
supplies the resource instance. Values of the resource ID element that
is specified by the rvLocator attribute must be of type integer.

If this attribute is omitted, the Event Management subsystem must
determine the location of the resource monitor.

rvDynamic_instance
An integer that, if nonzero (true), indicates that instances of this variable
are created dynamically by its resource monitor whenever the instance
is referenced in an EMAPI command.

rvIndex_element
A string that contains a resource ID element name.

If a resource ID element for this resource variable can be used as an
index into an array that represents all of the variable's instances, specify
its name. However, you cannot specify the same element for both the
rvLocator and the rvIndex_element fields.

Values of the resource ID element that is specified by the
rvIndex_element attribute must be of type integer.

Specifying an index element can improve the performance of the Event
Management subsystem.

If more than one of the resource ID elements can be used as an index,
specify the one that can take on the larger number of possible values.
For example, if one resource ID element represents a node number in a
128-node system and another represents a frame number in the same
system, choose the element that represents the node number, because
there are more nodes than frames.

Class = EM_Structured_Byte_String

The EM_Structured_Byte_String class contains one object for each structured
field that is defined in a structured byte string.

The attributes of this class are defined as follows:

sbsVariable_name
A string that contains the name of the SBS resource variable for which
this object defines one of its structured fields.

sbsField_name
A string that contains a structured field name, which provides a short
description of the structured byte field. The name must consist of only
alphanumeric characters and underscores; the first character must be
alphabetic. This name is available through the Event Management API.

sbsField_type
A string that indicates the data type of this field. It can be one of the
following values: long , float , cstring , or bstring , indicating a structured

 Chapter 2. Event Management Configuration Data Reference 41

 Event Management Configuration Data

field of data type long, float, character string, or byte string, respectively.
The long and float data types are the same as in the C language. A
character string consists of one or more nonzero bytes terminated by a
null byte; the null byte is included in the structured field value length. A
byte string consists of one or more bytes, where each byte may have
any value from 0 through 255.

sbsField_SN
An integer that is the serial number of the structured field. The serial
number is a one-byte value that uniquely identifies the structured field
within the structured byte string. This serial number is defined for each
structured field by the resource monitor that supplies the SBS resource
variable. However, the set of serial numbers for the structured byte
string starts with 0 and continues sequentially, incrementing by 1.

sbsField_init_val
A string that contains the initial value of the structured field, with a
format suitable to the field's type.

If the type of the structured field is long, the initial value is an integer
constant in a format suitable for conversion by the strtol subroutine
(with a base parameter of 0).

If the type of the structured field is float, the initial value is a floating
point constant in a format suitable for conversion by the strtof
subroutine.

Otherwise, the initial value is a string constant. To indicate
nondisplayable characters, a string constant may contain \ooo, where
ooo is an octal constant that represents the character. If the type of the
structured field is cstring , a terminating null character is appended
automatically.

If this attribute is omitted, default initial values are used. The default
values are 0 for long fields, 0.0 for float fields, the null string for
character strings and, for byte strings, a string consisting of a single byte
with a value of 0.

Class = EM_Resource_ID

The EM_Resource_ID class contains one object for each resource ID element that
is defined for a resource and all of its resource variables.

The attributes of this class are defined as follows:

riResource_name
A string that contains the name of the resource for which this resource
ID element is defined.

riElement_name
A string that contains a resource ID element name, which describes the
element. The name must consist of only alphanumeric characters and
underscores; the first character must be alphabetic.

riElement_description
An integer that is the ID of the message that describes the resource ID
element, including its semantics.

42 RS/6000 Cluster Technology Event Management Programming

 Event Management Configuration Data

To find the message, use the message ID with the message set and
message catalog attributes of the EM_Resource_Monitor class object
for the resource monitor that defines the resource variable of which this
is a resource ID.

Class = EM_Resource_Class

The EM_Resource_Class class contains one object for each resource variable
class that is defined in the database.

The attributes of this class are defined as follows:

rcClass A string that contains the name of a resource variable class.

The class of a resource variable indicates the application or subsystem
that manages the associated resource and can also be used to group
variables by observation interval.

For details on specifying the name of a resource variable class, see
“Resource Variables (haemrvars)” on page 152.

rcResource_monitor
A string that contains the name of the resource monitor definition for the
resource monitor that supplies the resource variables in this class.

rcObservation_interval
An integer that is the observation interval, which is the amount of time,
in seconds, between each observation by the Event Management
subsystem of instances of any variable of value type Counter or
Quantity in this class. This value must be greater than or equal to the
reporting interval.

rcReporting_interval
An integer that is the reporting interval, which is the amount of time, in
seconds, between each update of any variable of value type Counter or
Quantity in this class by the corresponding resource monitor.

The value of the reporting interval may be 0 if the design of the resource
monitor fixes the interval between variable updates. It may also be 0 if
the resource monitor is incorporated into a subsystem and the
subsystem updates the variable as part of its normal execution.

rcInstance_limit
An integer that is the limit of the number of resource variable instances
for this class that the Event Management subsystem will accept from a
resource monitor. If this attribute is omitted, the default value is
HA_EM_MAX_INSTS . If specified, the attribute value should be a lower
value than HA_EM_MAX_INSTS . A higher value is ignored and the
default value is used.

HA_EM_MAX_INSTS is defined in the ha_emcommon.h header file.
See “ha_emapi.h File” on page 131.

Class = EM_Resource_Monitor

The EM_Resource_Monitor class contains one object for each resource monitor
that is defined in the database.

 Chapter 2. Event Management Configuration Data Reference 43

 Event Management Configuration Data

Some of the attributes in this class are used to meet PTX requirements. For more
information on PTX, see the Performance Toolbox for AIX Guide and Reference.

The attributes of this class are defined as follows:

rmName A string that contains a resource monitor definition name. This name
must be unique in the database.

By convention, resource monitor names follow the same hierarchical
naming conventions that are used for resource names except that they
may not contain percent signs. For more information, see “Resource
Variables (haemrvars)” on page 152.

rmPath A string that contains the executable absolute path name of the
resource monitor if it is a daemon that can be started by the Event
Management subsystem. If the resource monitor cannot be started by
the Event Management subsystem, this attribute is omitted.

rmArguments
A string that contains a list of optional arguments that the Event
Management subsystem should pass when it starts the resource monitor
daemon. If there are no arguments, this attribute is omitted.

rmMessage_file
A string that contains the name of the message catalog that contains all
of the descriptions for the resource variables that are supplied by this
resource monitor.

For information about message catalogs, see the “Message Facility
Overview for Programming” topic in AIX Version 4.3 General
Programming Concepts: Writing and Debugging Programs.

rmMessage_set
An integer that is the set ID of the descriptions for the resource
variables that are supplied by this resource monitor.

For information about message sets, see the “Message Facility
Overview for Programming” topic in AIX Version 4.3 General
Programming Concepts: Writing and Debugging Programs.

rmConnect_type
A string that indicates the type of connection. It may be one of the
following: client or server .

If the resource monitor is to connect to the Event Management
subsystem, specify client . The resource monitor is a command.

If the Event Management subsystem and the Performance Monitor
subsystem are to connect to the resource monitor, specify server . In
this case, the resource monitor is either a daemon or incorporated within
a subsystem.

rmPTX_prefix
A string that contains the PTX name prefix. This prefix is prepended to
each PTX name for resource variables of value type Counter or Quantity
that are supplied by this resource monitor to the Performance Monitor. If
no variables are to be supplied to the Performance Monitor, then this
attribute is omitted.

Resource variables of value type Counter or Quantity that are supplied
by a resource monitor to the Peformance Monitor are also implemented

44 RS/6000 Cluster Technology Event Management Programming

 Event Management Configuration Data

as PTX variables and must therefore conform to the PTX naming
architecture. The PTX name for either of these types of variables is
formed by concatenating the following strings:

� The string DDS/

� The string specified by the rmPTX_prefix attribute of the
EM_Resource_Monitor object that defines the resource monitor.

� The string specified by the rvPTX_name attribute of the
EM_Resource_Variable object.

The PTX name prefix is expected to consist of at least one component
but probably not more than two or three. The prefix is used to group all
of the resource variables of value type Counter or Quantity that are
supplied by a resource monitor to the Performance Monitor.

If specified, each resource monitor must have a unique PTX name
prefix. For PSSP resource monitors, the prefix is
IBM/PSSP.res_mon_name. For vendor-supplied resource monitors, IBM
recommends specifying the PTX name prefix as
vendor_name.res_mon_name.

rmPTX_description
A string that contains a comma-separated list, with no blanks, of
message IDs. Each ID specifies a message that contains a short
description (no more than 63 bytes) of a PTX context.

The first ID in the list corresponds to the context specified by the first
component of the name specified by the rmPTX_prefix attribute, the
second ID in the list corresponds to the context specified by the first two
components of the name, the third ID corresponds to the context
specified by the first three components of the name, and so on.

This attribute is required if the rmPTX_prefix attribute is specified.
Otherwise, it is omitted.

To find the message, use the message ID with the message set and
message catalog attributes of the EM_Resource_Monitor class object
for this resource monitor.

rmPTX_asnno
An integer that is the ASN.1 number equal to the SNMP Assigned
Enterprise Number for the vendor that supplies this resource monitor.
For IBM supplied resource monitors, this value is 2.

This attribute is required if the rmPTX_prefix attribute is specified.
Otherwise, it is omitted.

rmNum_instances
An integer that is the maximum number of executing instances of the
resource monitor. If this attribute is omitted the default value is 1.

A server resource monitor program may be executed in multiple
processes, as long as each process supplies unique resource variable
instances. If a resource monitor supplies variables to the Performance
Monitor, it must be instance number 0 (resource monitor instances are
numbered starting at 0). If a resource monitor defines the rmPath
attribute, the Event Management subsystem will only start one resource
monitor process. It is assumed that this resource monitor process will
start other instances. Furthermore, the Event Management subsystem

 Chapter 2. Event Management Configuration Data Reference 45

 Event Management Configuration Data

will not start a resource monitor instance as long as it has connections
to any other instances of the resource monitor.

 Related Information
See the following PSSP commands and files in PSSP Command and Technical
Reference.

Commands: haemloadcfg , haemcfg , haemctrl

Files: haemloadlist

For more information about configuring and managing the Event Management
subsystem, see PSSP Administration Guide.

46 RS/6000 Cluster Technology Event Management Programming

Chapter 3. Event Management Subroutine Reference

This chapter contains the reference material for each of the subroutines in the
Event Management Application Programming Interface (EMAPI) and the Resource
Monitor Application Programming Interface (RMAPI). Following the next two
sections, which summarize each API's subroutines by function, the subroutines are
listed alphabetically.

EMAPI Subroutine Summary
The EMAPI consists of the following subroutines:

Subroutine Action

ha_em_start_session
Establish a session with the Event Management subsystem

ha_em_end_session
End a session with the Event Management subsystem

ha_em_restart_session
Reconnect a session to the Event Management subsystem

ha_em_send_command
Send a command to the Event Management subsystem

Commands are provided to register for events, unregister
events, and query the Event Management subsystem for
information about resource variables.

ha_em_receive_response
Receive a response from the Event Management subsystem

ha_em_get_ecgid Get an event command group ID

RMAPI Subroutine Summary
The RMAPI consists of the following subroutines:

Subroutine Action

ha_rr_rm_ctl Set or get attributes of the RMAPI

ha_rr_init Initialize the Resource Monitor Application Programming
Interface (RMAPI)

ha_rr_makserv Establish the resource monitor as a server to enable
resource monitor managers to connect

ha_rr_start_session
Start a session with a resource monitor manager

ha_rr_get_ctrlmsg Get a control message from a resource monitor manager

ha_rr_reg_var Register a resource variable instance with the RMAPI

ha_rr_add_var Add registered variables to a resource monitor manager
session

ha_rr_get_interval Get the reporting interval for a class of resource variables

 Copyright IBM Corp. 1998 47

ha_rr_send_val Send variable values to the RMAPI

ha_rr_touch Meet “send” frequency requirements when there are no
resource variable values to send

ha_rr_del_var Delete resource variables from a resource monitor manager
session

ha_rr_unreg_var Unregister a variable instance

ha_rr_end_session End an RMAPI session

ha_rr_terminate Free resources and terminate use of the RMAPI

48 RS/6000 Cluster Technology Event Management Programming

 ha_em_end_session

 ha_em_end_session Subroutine

 Purpose
ha_em_end_session – End an EM client session with the Event Management
subsystem

 Library
EMAPI Thread-Safe Library (libha_em_r.a)

EMAPI Library (not thread-safe) (libha_em.a)

 Syntax
#define HA_EM_VERSION 2
#include <ha_emapi.h>

int
 ha_em_end_session(
 int session_fd,
 struct ha_em_err_blk \em_errb)

 Parameters
session_fd The file descriptor of the session that is to be ended. This file

descriptor was returned by a previous call to either the
ha_em_start_session or ha_em_restart_session subroutine.

em_errb A pointer to an error block structure.

 Description
The ha_em_end_session subroutine is used by an EM client to end a session.

 Restrictions
Using the ha_em_end_session subroutine to end a session causes all event
registrations for the session to be lost. To continue to use an existing session to
which the connection has been lost, use the ha_em_restart_session subroutine to
reestablish the connection.

When you use the EMAPI in a threaded program, IBM recommends that an Event
Management session be used by only one thread at a time. If multiple threads try
to use the same Event Management session at the same time, EMAPI subroutines
may return the HA_EM_EBUSY error code. The thread-safe version of the EMAPI
library was designed assuming that each thread using the EMAPI would have its
own Event Management session or sessions.

 Return Values
If the ha_em_end_session subroutine is successful, it returns a value of 0 and the
session is ended. The file descriptor that was specified on input must no longer be
used as an argument to the select or poll system call.

 Chapter 3. Event Management Subroutine Reference 49

 ha_em_end_session

 Error Values
If the ha_em_end_session subroutine is unsuccessful, it returns a value of -1 and
other error information in the error block specified on input. The error block
contains an error number and a null-terminated error message.

The EMAPI error block and error numbers are defined in the ha_emapi.h header
file. For more information on EMAPI errors, see “EMAPI Errors (err_emapi)” on
page 124.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

The file descriptor that was provided on input in the session_fd argument is still
valid and can be used in another attempt to end the session.

 Examples
For examples of using EMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/emapi .

 Files
ha_emapi.h .

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_emapi.h header file: ha_em_err_blk

Subroutines: ha_em_start_session , ha_em_restart_session

50 RS/6000 Cluster Technology Event Management Programming

 ha_em_get_ecgid

 ha_em_get_ecgid Subroutine

 Purpose
ha_em_get_ecgid – Get an event command group ID

 Library
EMAPI Thread-Safe Library (libha_em_r.a)

EMAPI Library (not thread-safe) (libha_em.a)

 Syntax
#define HA_EM_VERSION 2
#include <ha_emapi.h>

ha_em_ecgid_t
 ha_em_get_ecgid(
 ha_em_eid_t event_id)

 Parameters
event_id An event ID. This event ID was returned when the caller registered

for events by a previous call to the ha_em_send_command
subroutine using the HA_EM_CMD_REG or HA_EM_CMD_REG2
command.

 Description
The ha_em_get_ecgid subroutine is used by an EM client to get the ID of the
event command group to which the event specified on input belongs. All events for
which the caller registered through a single HA_EM_CMD_REG or
HA_EM_CMD_REG2 command belong to the same event command group.

 Return Values
The ha_em_get_ecgid subroutine returns the event command group ID. This
event command group ID is valid until all of the events that were registered by the
command are unregistered. Once these events are unregistered, the EMAPI may
reuse the event command group ID.

 Error Values
None.

 Examples
For examples of using EMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/emapi .

 Chapter 3. Event Management Subroutine Reference 51

 ha_em_get_ecgid

 Files
ha_emapi.h .

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Subroutine: ha_em_send_command

52 RS/6000 Cluster Technology Event Management Programming

 ha_em_receive_response

 ha_em_receive_response Subroutine

 Purpose
ha_em_receive_response – Receive a response from the Event Management
subsystem

 Library
EMAPI Thread-Safe Library (libha_em_r.a)

EMAPI Library (not thread-safe) (libha_em.a)

 Syntax
#define HA_EM_VERSION 2
#include <ha_emapi.h>

int
 ha_em_receive_response(
 int session_fd,
 struct ha_em_rsp_blk \\em_rsp_blk,
 struct ha_em_err_blk \em_errb)

 Parameters
session_fd The file descriptor of the Event Management session for which the

response is to be received.

em_rsp_blk A pointer to the address of a buffer containing a response block
structure. The response block contains information returned by the
Event Management subsystem in response to a previously issued
command.

em_errb A pointer to an error block structure.

 Description
The ha_em_receive_command subroutine is used by an EM client to receive
information returned in response to a previously issued command.

When an EM client starts or restarts a session, it obtains a file descriptor. The EM
client uses this file descriptor as an argument to the select or poll system call.
When the system call that is used indicates that there is data to be read from the
file descriptor, the EM client calls the ha_em_receive_response subroutine to read
the data and thereby receive the response from the Event Management subsystem.

The session_fd argument contains the file descriptor of the Event Management
session that has data to be read.

The ha_em_rsp_blk response block has the following definition:

 Chapter 3. Event Management Subroutine Reference 53

 ha_em_receive_response

struct ha_em_rsp_blk {
 int em_rsp_blk_len;
 int em_rsp_num_resp;
 short em_cmd;
 short em_subcmd;
 ha_em_qid_t em_qid;
 int em_qend;

union ha_em_resp_blk {
struct ha_em_rpb_event em_rpb_event[1];

 struct ha_em_rpb_qcur em_rpb_qcur[1];
 struct ha_em_rpb_qdef em_rpb_qdef[1];
 struct ha_em_rpb_rerr em_rpb_rerr[1];
 struct ha_em_rpb_qerr em_rpb_qerr[1];
 } em_resp_blk;
}

In an actual response block, the arrays in the em_resp_blk union may contain any
number of elements; the em_rsp_num_resp field contains the actual number that
are returned. The em_cmd and em_subcmd fields contain the values of the
command and subcommands to which this is a response. If the response block
contains information in response to a query and the em_qend field is nonzero, this
response is the last piece of information to be returned for the query specified by
the em_qid field. The remaining fields in the response block are used as specified
in the response descriptions that follow.

Responses to Register Event Commands

When the buffer returned by the ha_em_receive_response subroutine contains a
response block in which the value of the em_cmd field is HA_EM_CMD_REG or
HA_EM_CMD_REG2, the response block contains one or more events. The
em_rpb_event array is used in the response block.

The ha_em_rpb_event structure has the following definition:

struct ha_em_rpb_event {
 union ha_em_errnum em_error;
 ha_em_eid_t em_event_id;
 unsigned long em_event_flags;
 struct timeval em_timestamp;
 int em_location;
 char \em_name;
 char \em_rsrc_ID;

enum ha_emData_Type em_data_type;
union ha_em_val {

 long em_vall;
 float em_valf;
 void \em_valsbs;
 } em_val;
}

The ha_em_errnum union contains information about any error that may have
occurred. It has the following definition:

union ha_em_errnum {
 unsigned int em_error_number;
 unsigned short em_error_codes[2];
};

54 RS/6000 Cluster Technology Event Management Programming

 ha_em_receive_response

#define em_errnum em_error.em_error_number /\ for quick tests \/
#define em_generr em_error.em_error_codes[ð] /\ general error code \/
#define em_specerr em_error.em_error_codes[1] /\ specific error code \/

The em_error_number field indicates whether there is an error. If there is no error,
the em_error_number field contains a value of 0 and the remainder of
ha_em_rpb_event information should be used.

If the em_error_number field is nonzero, there is an error and the validity of the
remaining fields in the ha_em_rpb_event structure depend on the error. For more
information, see the section on error responses to register and unregister
commands later in this man page.

The em_event_id field contains the ID of the event. The value can be used to
match this event to the information that was used to register for the event.

The em_event_flags field contains one of the following bit flags:

HA_EM_EVENT_RE_ARM
The event was generated from the rearm expression.

HA_EM_EVENT_EXPR_FALSE
The expression is false. False events can be generated when the
HA_EM_SCMD_REVAL subcommand is specified on event registration.
They can also be generated once the value of the resource variable
instance is known after it had been unknown due to an error.

The em_timestamp field is the time that the event was generated by the Event
Management subsystem. The em_location field contains the number of the node
where the event was generated.

The em_name field is a pointer to a string that contains the name of the resource
variable that was used to register the expression that generated the event. The
em_rsrc_ID field is a pointer to the resource ID of the variable instance from which
the event was generated. The em_val field is the current value of the variable
instance at the time of the event. The em_data_type field indicates whether the
value is a long, a float, or a structured byte string. For information about resource
variable definitions, see “Resource Variables (haemrvars)” on page 152.

If, when registering for this event, the EM client supplied a pointer to a callback
routine, then instead of returning the ha_em_rpb_event structure in a buffer, the
ha_em_receive_response subroutine invokes the callback routine. The session file
descriptor, a pointer to the ha_em_rpb_event structure, and the value of the
em_cb_arg field, which was specified when registering for this event, are all
passed to the callback routine. The memory addressed by the pointer to the
ha_em_rpb_event structure must not be freed or modified by the callback routine.
If all of the events received by the invocation of the ha_em_receive_response
subroutine have callback routines, the ha_em_receive_response subroutine
returns a value of 0. Otherwise, it returns a value greater than zero and also
returns in the response block all of the events that were not processed by callback
routines.

Responses to Unregister Event Commands

 Chapter 3. Event Management Subroutine Reference 55

 ha_em_receive_response

When the buffer returned by the ha_em_receive_response subroutine contains a
response block in which the value of the em_cmd field is HA_EM_CMD_UNREG,
the response block contains one or more unregister event responses. The
em_rpb_event array is used in the response block, which was described earlier in
this man page.

The em_event_id field contains the ID of the event that has been unregistered.
The em_event_flags field contains the HA_EM_EVENT_UNREG flag. This flag is
used so that the callback routine, if any is specified, can distinguish between an
event and an unregister response. The em_timestamp field is the time that the
response was generated by the Event Management subsystem. All other fields in
the em_rpb_event array element are undefined.

If the EM client supplied a callback routine for an event that is specified in one of
the responses, then instead of returning the ha_em_rpb_event structure in a
buffer, the ha_em_receive_response subroutine invokes the callback routine. The
session file descriptor, a pointer to the ha_em_rpb_event structure, and the value
of the em_cb_arg field, which was specified when registering for the event, are
passed to the callback routine. The memory addressed by the pointer to the
ha_em_rpb_event structure must not be freed or modified by the callback routine.
If all of the events specified in the responses have callback routines, the
ha_em_receive_response subroutine returns a value of 0. Otherwise, it returns a
value greater than zero and also returns in the response block all of the
unregistered event responses that were not processed by callback routines.

Responses to Queries about Current Values

When the buffer returned by the ha_em_receive_response subroutine contains a
response block in which the value of the em_cmd field is HA_EM_CMD_QUERY
and the value of the em_subcmd field is HA_EM_SCMD_QCUR, the response is a
reply to a query for the current values of the resource variables that were targeted
in the query. The em_qid field contains the unique value that was returned to the
EM client when the query command was issued. The em_rpb_qcur array is used
in the response block.

The ha_em_rpb_qcur structure has the following definition:

struct ha_em_rpb_qcur {
 union ha_em_errnum em_error;
 int em_location;
 char \em_name;
 char \em_rsrc_ID;
 int em_data_type;

union ha_em_val {
 long em_vall;
 float em_valf;
 void \em_valsbs;
 } em_val;
}

The ha_em_errnum union contains information about any error that may have
occurred. It has the following definition:

union ha_em_errnum {
 unsigned int em_error_number;
 unsigned short em_error_codes[2];
};

56 RS/6000 Cluster Technology Event Management Programming

 ha_em_receive_response

#define em_errnum em_error.em_error_number /\ for quick tests \/
#define em_generr em_error.em_error_codes[ð] /\ general error code \/
#define em_specerr em_error.em_error_codes[1] /\ specific error code \/

The em_error_number field indicates whether there is an error. If there is no error,
the em_error_number field contains a value of 0 and the remainder of
ha_em_rpb_qcur information should be used.

If the em_error_number field is nonzero, there is an error and the validity of the
remaining fields in the the ha_em_rpb_qcur structure depend on the error. For
more information, see the section on error responses to query commands later in
this man page.

The em_location field contains the number of the node running the resource
monitor supplying the resource variable instance. The em_name field is a pointer to
a string that contains the name of the resource variable. The em_rsrc_ID field is a
pointer to a string that contains the resource ID of the variable instance. The
em_val field is the current value of the variable. The em_data_type field indicates
whether the value is a long, a float, or a structured byte string. For information
about resource variable definitions, see “Resource Variables (haemrvars)” on
page 152.

If, when issuing the query command that resulted in this response, the EM client
supplied a pointer to a callback routine, then instead of returning the
ha_em_rsp_blk structure in a buffer, the ha_em_receive_response subroutine
invokes the callback routine. The session file descriptor, a pointer to the
ha_em_rsp_blk structure, and the value of the em_qcb_arg field, which was
specified when the query command was issued, are passed to the callback routine.
The memory addressed by the pointer to the ha_em_rsp_blk structure or by any of
the pointers contained within it must not be freed or modified by the callback
routine. The ha_em_receive_response subroutine then returns a value of 0.

Responses to Queries about Instances

When the buffer returned by the ha_em_receive_response subroutine contains a
response block in which the value of the em_cmd field is HA_EM_CMD_QUERY
and the value of the em_subcmd field is HA_EM_SCMD_QINST, the response is
a reply to a query for the instances of the resource variables that were targeted in
the query.

The em_qid field contains the unique value that was returned to the EM client
when the query was issued. The em_rpb_qcur array is used in the response block.

The definition of the ha_em_rpb_qcur structure is shown in the section Responses
to Queries about Current Values on page 56, and the fields have the same
meanings as described in that section, with the exception of the em_val field. The
em_val field is the last known value of the variable. It may or may not be the
current value.

Responses to Queries about Defined Variables and Expressions

When the buffer returned by the ha_em_receive_response subroutine contains a
response block in which the value of the em_cmd field is HA_EM_CMD_QUERY

 Chapter 3. Event Management Subroutine Reference 57

 ha_em_receive_response

and the value of the em_subcmd field is HA_EM_SCMD_QDEF, the response is a
reply to a query for a list of resource variables, targeted in the query, that are
defined in the Event Management Configuration Database (EMCDB). The em_qid
field contains the unique value that was returned to the EM client when the query
command was issued. The em_rpb_qdef array is used in the response block.

The ha_em_rpb_qdef structure has the following definition:

struct ha_em_rpb_qdef {
 union ha_em_errnum em_error;
 char \em_name;
 char \em_descrp;
 enum ha_emValue_Type em_value_type;
 enum ha_emData_Type em_data_type;
 char \em_sbs_format;
 char \em_init_value;
 char \em_class;
 char \em_rsrc_ID;
 char \em_rsrc_ID_descrp;
 char \em_ptx_name;
 char \em_dflt_expr;
 char \em_event_descrp;
 char \em_locator;
 char \em_order_group;
}

The ha_em_errnum union contains information about any error that may have
occurred. It has the following definition:

union ha_em_errnum {
 unsigned int em_error_number;
 unsigned short em_error_codes[2];
};

#define em_errnum em_error.em_error_number /\ for quick tests \/
#define em_generr em_error.em_error_codes[ð] /\ general error code \/
#define em_specerr em_error.em_error_codes[1] /\ specific error code \/

The em_error_number field indicates whether there is an error. If there is no error,
the em_error_number field contains a value of 0 and the remainder of
ha_em_rpb_qdef information should be used.

If the em_error_number field is nonzero, there is an error and the validity of the
remaining fields the ha_em_rpb_qdef structure depend on the error. For more
information, see the section on error responses to query commands later in this
man page.

The em_name field is a pointer to a string that contains the name of the resource
variable. The em_descrp field is a pointer to a string that contains the text of the
resource variable description.

The em_value_type field is one of Counter, Quantity, or State. The em_data_type
field indicates whether the variable value is a long, a float, or a structured byte
string. If the variable is a structured byte string, the em_sbs_format field points to
a string that contains a description of its format. This description is a
comma-separated list in serial-number order of name/value pairs, where the name

58 RS/6000 Cluster Technology Event Management Programming

 ha_em_receive_response

is the SBS field name and the value is the SBS field type. The name/value pair is
in the form name=value.

The em_init_value field points to a string that contains the initial value of the
variable. For a structured byte string, the initial value is specified as a list of
name/value pairs, separated by commas, in serial number order. The em_class
field is a pointer to a string that contains the variable's resource class.

The em_rsrc_ID field points to a string that contains the variable's resource ID
definition. This definition is a semicolon-separated list of name/value pairs, where
the value is the data type of the resource ID element. The em_rsrc_ID_descrp
field points to a string that contains the text of each resource ID element's
description; the descriptions are separated by the newline character. For
information about resource variable definitions, see “Resource Variables
(haemrvars)” on page 152.

The em_ptx_name field points to a string that contains the name that is used to
read and write the resource variable in Performance Toolbox (PTX) shared
memory. If the resource variable is of value type State, the em_ptx_name field
points to a null string.

The em_dflt_expr field is a pointer to a string that contains the default expression.
If no default expression is defined, the em_dflt_expr field points to a null string.
For information about defining expressions, see “Expressions (haemexpr)” on
page 149.

The em_event_descrp field is a pointer to a string that contains the text of the
event description for the event specified by the default expression.

The em_locator field is a pointer to a string that contains the Locator value
specified for the variable. If no Locator value is defined, the em_locator field points
to a null string.

The em_order_group field is reserved for IBM use.

If, when issuing the query command that resulted in this response, the EM client
supplied a pointer to a callback routine, then instead of returning the
ha_em_rsp_blk structure in a buffer, the ha_em_receive_response subroutine
invokes the callback routine. The session file descriptor, a pointer to the
ha_em_rsp_blk structure, and the value of the em_qcb_arg field, which was
specified when the query command was issued, are passed to the callback routine.
The memory addressed by the pointer to the ha_em_rsp_blk structure or by any of
the pointers contained within it must not be freed or modified by the callback
routine. The ha_em_receive_response subroutine then returns a value of 0.

Error Responses to Register and Unregister Event Commands

Errors can be returned in response to the registration commands
HA_EM_CMD_REG and HA_EM_CMD_REG2 in one of two ways, as follows:

� When the buffer returned by the ha_em_receive_response subroutine
contains a response block in which the value of the em_cmd field is either
HA_EM_CMD_REG or HA_EM_CMD_REG2, then the response block contains
one or more events that may have an error. The em_rpb_event array is used
in the response block.

 Chapter 3. Event Management Subroutine Reference 59

 ha_em_receive_response

If a callback routine has been specified for an event, it is invoked if the event
has an error.

If the event has an error, the em_error_number field of the em_error union is
nonzero.

An error returned in this way indicates that the corresponding event has been
successfully registered but an error was encountered after registration. The
event remains registered.

� When the buffer returned by the ha_em_receive_response subroutine
contains a response block in which the value of the em_cmd field is either
HA_EM_CMD_RERR or HA_EM_CMD_R2ERR, then an error may have been
encountered while processing the registration command HA_EM_CMD_REG or
HA_EM_CMD_REG2, respectively. This type of response is also received for
event registrations that specified the HA_EM_SCMD_RACK subcommand
regardless of whether an error occurred. The em_rpb_rerr array is used in the
response block.

Callback routines are never invoked for this type of response.

An error returned in this way indicates that the corresponding event has not
been registered.

The ha_em_rpb_rerr structure has the following definition:

struct ha_em_rpb_rerr {
 union ha_em_errnum em_error;
 char \em_name;
 char \em_rsrc_ID;
 char \em_expr;
 char \em_raexpr;
 short em_errinfoð;
 unsigned short em_errinfo1;
 ha_em_eid_t em_event_id;
};

The ha_em_errnum union, in either the ha_em_rpb_event structure or the
ha_em_rpb_rerr structure, contains information about the error that occurred. It
has the following definition:

union ha_em_errnum {
 unsigned int em_error_number;
 unsigned short em_error_codes[2];
};

#define em_errnum em_error.em_error_number /\ for quick tests \/
#define em_generr em_error.em_error_codes[ð] /\ general error code \/
#define em_specerr em_error.em_error_codes[1] /\ specific error code \/

The em_error_number field indicates whether there is an error. When the field is
nonzero, there is an error. When the field is zero, this is an acknowledgement of a
successful event registration, as requested by the specification of the
HA_EM_SCMD_RACK subcommand.

The em_error_codes array contains further information about the error. The first
element of the array is a general error code; the second element is a more specific

60 RS/6000 Cluster Technology Event Management Programming

 ha_em_receive_response

error code. For information about error codes, see “EMAPI Errors (err_emapi)” on
page 124.

The em_name field is a pointer to a string that contains the name of the resource
variable specified in the original registration command. The em_rsrc_ID field is a
pointer to the resource ID that was specified in the original registration command.
The em_expr and em_raexpr fields point to strings that contain the expression and
rearm expression, respectively, specified in the original registration command. For
information about defining expressions, see “Expressions (haemexpr)” on
page 149.

The em_errinfo0 and em_errinfo1 fields may contain additional error information,
depending on the specific error.

The em_event_id field contains the ID of the event related to the error. The value
can be used to match this event to the information that was used to register for the
event.

Errors can also be returned in response to the unregister event command
HA_EM_CMD_UNREG. When the buffer returned by the
ha_em_receive_response subroutine contains a response block in which the value
of the em_cmd field is HA_EM_CMD_UNREG, then the response block contains
one or more unregistration events that may have an error. The setting of
HA_EM_EVENT_UNREG bit in the em_event_flags field indicates an
unregistration event. The em_rpb_event array is used in the response block.

If a callback routine has been specified for an event, it is invoked if the event has
an error.

If the event has an error, the em_error_number field of the em_error union is
nonzero.

An error returned in this way indicates that the corresponding event has not been
unregistered.

Error Responses to Query Commands

Errors can be returned in response to the query command HA_EM_CMD_QUERY
in one of two ways, as follows:

� When the buffer returned by the ha_em_receive_response subroutine
contains a response block in which the value of the em_cmd field is
HA_EM_CMD_QUERY and the value of the em_subcmd field is
HA_EM_SCMD_QCUR or HA_EM_SCMD_QINST, then the response block
contains one or more responses that may have an error. The em_rpb_qcur
array is used in the response block.

If a callback routine has been specified for the query, it is invoked if the query
response has an error.

If the query response has an error, the em_error_number field of the
em_error union is nonzero.

� When the buffer returned by the ha_em_receive_response subroutine
contains a response block in which the value of the em_cmd field is
HA_EM_CMD_QERR, then an error was encountered while processing the
query command. This can occur while processing any of the query

 Chapter 3. Event Management Subroutine Reference 61

 ha_em_receive_response

subcommands HA_EM_SCMD_QCUR, HA_EM_SCMD_QINST, or
HA_EM_SCMD_QDEF. The em_subcmd field in the response block contains
the original subcommand value. The em_rpb_qerr array is used in the
response block.

Callback routines are never invoked for this type of response.

The ha_em_rpb_qerr structure has the following definition:

struct ha_em_rpb_qerr {
 union ha_em_errnum em_error;
 char \em_class;
 char \em_name;
 char \em_rsrc_ID;
 unsigned short em_errinfo;
};

The ha_em_errnum union in either the ha_em_rpb_qcur structure or the
ha_em_rpb_qerr structure contains information about the error that occurred. It
has the following definition:

union ha_em_errnum {
 unsigned int em_error_number;
 unsigned short em_error_codes[2];
};

#define em_errnum em_error.em_error_number /\ for quick tests \/
#define em_generr em_error.em_error_codes[ð] /\ general error code \/
#define em_specerr em_error.em_error_codes[1] /\ specific error code \/

The em_error_number field indicates whether there is an error. When the field is
nonzero, there is an error.

The em_error_codes array contains further information about the error. The first
element of the array is a general error code; the second element is a more specific
error code. For information about error codes, see “EMAPI Errors (err_emapi)” on
page 124.

The em_class field is a pointer to a string that contains the name of the resource
variable class as specified in the original query command.

The em_name field is a pointer to a string that contains the name of the resource
variable as specified in the original query command.

The em_rsrc_ID field is a pointer to the resource ID of the variable instance as
specified in the original query command.

The em_errinfo field may contain additional error information, depending on the
specific error.

62 RS/6000 Cluster Technology Event Management Programming

 ha_em_receive_response

 Restrictions
When you use the EMAPI in a threaded program, IBM recommends that an Event
Management session be used by only one thread at a time. If multiple threads try
to use the same Event Management session at the same time, EMAPI subroutines
may return the HA_EM_EBUSY error code. The thread-safe version of the EMAPI
library was designed assuming that each thread using the EMAPI would have its
own Event Management session or sessions.

 Return Values
If the ha_em_receive_response subroutine returns a value that is greater than 0, it
also returns a pointer to a buffer that contains a response block. The em_rsp_blk
argument specified on input points to an area where the buffer pointer is to be
returned. It is the responsibility of the calling routine to free the buffer. When the
buffer is freed, any memory areas to which there are pointers in the response block
can no longer be accessed.

If the ha_em_receive_response subroutine returns a value that is equal to 0, the
response either was intended for the EMAPI or it contained events or query
responses, all of which were processed by the callback routines supplied by the EM
client. No further action by the calling routine is necessary.

 Error Values
If the ha_em_receive_response subroutine is unsuccessful, it returns a value of -1
and other error information in the error block specified on input. The error block
contains an error number and a null-terminated error message.

If the HA_EM_ECONNLOST error is received, it is recommended that the EM client
no longer use the session file descriptor that was specified on the failing call on
subsequent select system calls. To reconnect to the Event Management
subsystem, use the ha_em_restart_session subroutine.

The EMAPI error block and error numbers are defined in the ha_emapi.h header
file. For more information on EMAPI errors, see “EMAPI Errors (err_emapi)” on
page 124.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using EMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/emapi .

 Files
ha_emapi.h .

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Chapter 3. Event Management Subroutine Reference 63

 ha_em_receive_response

 Related Information
Structures in the ha_emapi.h header file: ha_em_rsp_blk , ha_em_err_blk ,
ha_em_rb_reg , ha_em_rb_query , ha_em_rpb_event , ha_em_rpb_qcur ,
ha_em_rpb_qdef

Subroutines: ha_em_send_command

64 RS/6000 Cluster Technology Event Management Programming

 ha_em_restart_session

 ha_em_restart_session Subroutine

 Purpose
ha_em_restart_session – Restart an EM client session to the Event Management
subsystem

 Library
EMAPI Thread-Safe Library (libha_em_r.a)

EMAPI Library (not thread-safe) (libha_em.a)

 Syntax
#define HA_EM_VERSION 2
#include <ha_emapi.h>

int
 ha_em_restart_session(
 int session_fd,
 struct ha_em_err_blk \em_errb)

 Parameters
session_fd The file descriptor of the session that is to be reconnected. This

file descriptor was returned by a previous call to either the
ha_em_start_session or ha_em_restart_session subroutine.

em_errb A pointer to an error block structure.

 Description
The ha_em_restart_session subroutine is used by an EM client to reconnect to an
existing session when the connection has been lost.

If an error returned by the ha_em_send_command or ha_em_receive_response
subroutine indicates that the connection to the Event Management subsystem has
been lost, this subroutine can be called to create a new connection. If the EM client
ended the existing session and established a new session, all of the event
registrations for the old session would be lost. The ha_em_restart_session
subroutine lets the EM client reestablish a connection that has been lost without
having to reregister all of the events.

Once a connection to the Event Management subsystem has been lost, it may not
be possible to reestablish the connection immediately, because the Event
Management subsystem may be recovering from the failure that caused the
connection to be lost in the first place. The EM client may wish to make repeated
calls to ha_em_restart_session at some interval until the session is successfully
reestablished. For more details, see the “Error Values” section later in this man
page.

 Chapter 3. Event Management Subroutine Reference 65

 ha_em_restart_session

 Restrictions
When you use the EMAPI in a threaded program, IBM recommends that an Event
Management session be used by only one thread at a time. If multiple threads try
to use the same Event Management session at the same time, EMAPI subroutines
may return the HA_EM_EBUSY error code. The thread-safe version of the EMAPI
library was designed assuming that each thread using the EMAPI would have its
own Event Management session or sessions.

 Return Values
If the return value of the ha_em_restart_session subroutine is greater than or
equal to 0, the return value is a file descriptor. The ha_em_restart_session
subroutine closes the file descriptor that was provided on input in the session_fd
argument and returns a new one. The newly returned file descriptor replaces the
file descriptor that was provided on input, and the EM client can use the new file
descriptor in the same way as it used the file descriptor that was originally returned
by the ha_em_start_session subroutine.

 Error Values
If the ha_em_restart_session subroutine is unsuccessful, it returns a value of -1
and other error information in the error block specified on input. The error block
contains an error number and a null-terminated error message.

The EMAPI error block and error numbers are defined in the ha_emapi.h header
file. For more information on EMAPI errors, see “EMAPI Errors (err_emapi)” on
page 124.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

The file descriptor that was provided on input in the session_fd argument is still
valid and can be used in another attempt to restart the session.

If the HA_EM_ECONNREFUSED error is received, the Event Management
subsystem may be recovering from the failure that caused the connection to be lost
in the first place. The EM client may wish to make repeated calls to
ha_em_restart_session at some interval while it is receiving the
HA_EM_ECONNREFUSED error until the session is successfully reestablished.
The interval selected depends on the needs of the client application, but it is
probably not useful for the interval to be less than 5 seconds long.

The EM client may try to reestablish the connection indefinitely, or it may give up
after a number of failed attempts. How persistent the EM client is in attempting to
reestablish the connection depends on the needs of the client application. The
Event Management subsystem persistently tries to recover from failure conditions
so that client connections can be established.

 Examples
For examples of using EMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/emapi .

66 RS/6000 Cluster Technology Event Management Programming

 ha_em_restart_session

 Files
ha_emapi.h .

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_emapi.h header file: ha_em_err_blk

Subroutines: ha_em_start_session , ha_em_end_session

 Chapter 3. Event Management Subroutine Reference 67

 ha_em_send_command

 ha_em_send_command Subroutine

 Purpose
ha_em_send_command – Send a command to the Event Management subsystem

 Library
EMAPI Thread-Safe Library (libha_em_r.a)

EMAPI Library (not thread-safe) (libha_em.a)

 Syntax
#define HA_EM_VERSION 2
#include <ha_emapi.h>

int
 ha_em_send_command(
 int session_fd,
 struct ha_em_cmd_blk \em_cmdb,
 struct ha_em_err_blk \em_errb)

 Parameters
session_fd The file descriptor of the Event Management session to which the

command is to be sent. This file descriptor was returned by a
previous call to either the ha_em_start_session or
ha_em_restart_session subroutine.

em_cmdb A pointer to a command block structure. The command block
contains the command to be sent to the Event Management
subsystem in the specified session and any additional parameters
that are needed to execute the command.

em_errb A pointer to an error block structure.

 Description
The ha_em_send_command subroutine is used by the EM client to send a
command to the instance of the Event Management subsystem that is associated
with the session supplied on input. The command and any additional parameters
that it requires are contained in the command block specified on input.

The ha_em_cmd_blk command block has the following definition:

68 RS/6000 Cluster Technology Event Management Programming

 ha_em_send_command

struct ha_em_cmd_blk {
 int em_cmd_num_elem;
 short em_cmd;
 short em_subcmd;
 ha_em_qid_t em_qid;

void (\em_qcb)(int, struct ha_em_rsp_blk \, void \);
 void \em_qcb_arg;

union ha_em_res_blk {
 struct ha_em_rb_reg em_rb_reg[1];
 ha_em_eid_t em_rb_unreg[1];
 struct ha_em_rb_query em_rb_query[1];
 } em_res_blk;
}

In an actual command block, the arrays in the ha_em_res_blk union may contain
any number of elements; the em_cmd_num_elem field contains the actual number
that are allocated. It is the responsibility of the caller to allocate a buffer to contain
the command block with the desired number of array elements.

The em_cmd field must be set to one of the following values:

HA_EM_CMD_REG
Register for an event from a single expression, the event expression. If
a rearm expression is defined, it does not generate an event.

HA_EM_CMD_REG2
Register for an event from both an event expression and a rearm
expression.

HA_EM_CMD_UNREG
Unregister events

HA_EM_CMD_QUERY
Query for information

For the HA_EM_CMD_REG or HA_EM_CMD_REG2 command, the em_subcmd
field may be set to 0, if no subcommand is required, or to one or more of the
following values bitwise ORed together:

HA_EM_SCMD_RACK
Return a registration acknowledgement.

HA_EM_SCMD_REVAL
Generate an event at the first observation, even if the expression
evaluates to false.

For the HA_EM_CMD_QUERY command, the em_subcmd field must be set to
one of the following values:

HA_EM_SCMD_QINST
Query the current instances of resource variables.

HA_EM_SCMD_QCUR
Query the current values of resource variable instances.

HA_EM_SCMD_QDEF
Query defined resource variables and their default expressions

The remaining fields in the command block are used as specified in the command
descriptions that follow.

 Chapter 3. Event Management Subroutine Reference 69

 ha_em_send_command

HA_EM_CMD_REG and HA_EM_CMD_REG2 Commands (Register for Events)

An EM client uses the command value HA_EM_CMD_REG or
HA_EM_CMD_REG2 to register for events. The em_rb_reg array is used in the
command block. One array element is defined for each event to be registered.

The ha_em_rb_reg structure has the following definition:

struct ha_em_rb_reg {
 char \em_name;
 char \em_rsrc_ID;
 char \em_expr;
 char \em_raexpr;
 ha_em_eid_t em_event_id;

void (\em_cb)(int, struct ha_em_rpb_event \, void \);
 void \em_cb_arg;
}

The em_name field is a pointer to a string that contains the name of the resource
variable from which the event is to be generated.

The em_rsrc_ID field is a pointer to a string that contains a resource ID. The event
is registered for all instances of the specified resource variable that match the
resource ID.

The resource ID is a semicolon-separated list of name/value pairs. A name/value
pair consists of a resource ID element name followed by an equal sign followed by
the value of the element. There are no blanks in the resource ID. A resource ID
element is wildcarded by specifying its value as an asterisk. The resource ID string
must contain each element that is defined for the variable's resource ID. An
element value may consist of a single value, a range of values, a comma-separated
list of single values, or a comma-separated list of ranges. A range takes the form
a-b and is valid only for resource ID elements of type integer.

The resource ID must contain each element that is defined for the resource
variable. The resource ID may be wildcarded to match more than one instance by
specifying an asterisk for the value of one or more elements, as shown in the
following examples:

 NodeNum=5;VG=rootvg;LV=hd4
 NodeNum=\;VG=rootvg;LV=hd4
 NodeNum=\;VG=\;LV=\

In the first example, the Event Management subsystem registers an event for one
instance, associated with node 5, volume group rootvg , and logical volume hd4 . In
the second example, the Event Management subsystem registers an event for all
instances that are associated with all nodes, volume group rootvg , and logical
volume hd4 . In the last example, the Event Management subsystem registers an
event for all instances that are associated with all nodes, all volume groups, and all
logical volumes.

The em_expr field is a pointer to a string that contains the expression that is to be
used to generate the event. If the expression string is null, the default expression,
which is defined for the specified variable in the Event Management Configuration
Database (EMCDB), is to be used to generate the event. For information about
defining expressions, see “Expressions (haemexpr)” on page 149.

70 RS/6000 Cluster Technology Event Management Programming

 ha_em_send_command

The em_raexpr field is a pointer to a string that contains a rearm expression, which
has the same syntax as the expression pointed to by the em_expr field. If the
em_raexpr field points to a null string, a rearm expression is not specified.

If a rearm expression is specified, whenever a “true” event is generated by applying
the event expression to the observed variable instance, the rearm expression is
applied to the instance of the variable as it is observed from then on. When the
rearm expression is true, the original event expression is used again. In other
words, whenever either expression is true, the other expression is used for that
instance until it is true.

When the HA_EM_CMD_REG command is specified, an event is generated only
from the event expression, not from the rearm expression. However, when the
HA_EM_CMD_REG2 command is specified, an event is also generated when the
rearm expression is TRUE. The event response indicates which expression was
used to generate the event.

Rearm expressions can be used in a couple of different ways. One common way is
to define the rearm expression as the inverse of the event expression. For
example, if the event expression tests whether a resource variable value is “on,”
the rearm expression tests whether it is “off”.

A rearm expression can also be used with the event expression to define an upper
and lower boundary for a condition of interest. For example, suppose an EM client
is interested in how much disk space is used in the system. It defines a normal disk
space condition to be in the range between 80% and 90% of the total space.
However, if the amount of disk space used rises above 90% or falls below 80%, the
EM client wants to be notified.

In this case, it would define the event expression to be “the amount of disk space
used is greater than 90%” and the rearm expression to be “the amount of disk
space used is less than 80%.” The EM client would also register for events from
both expressions.

The first time disk space usage rises above 90%, the Event Management
subsystem notifies the EM client and switches to the rearm expression. The EM
client is not notified again until disk space usage decreases to an amount less than
80%, and then the Event Management subsystem switches to the event
expression.

The expression must contain the resource variable name, represented by the letter
“X,” in any one or more of its modified or unmodified forms. Events generated by
the specified expression (s) from all matching instances of the specified resource
variable have the same event ID. These events are differentiated by inclusion of the
resource ID value with the event.

If the HA_EM_SCMD_REVAL subcommand is specified with either the
HA_EM_CMD_REG or HA_EM_CMD_REG2 command, an event is generated at
the first observation of an instance of the variable after registration, even if the
expression is false. The event response indicates whether the expression was true
or false. This allows the EM client to obtain an initial state of the resource variable.
Note, however, that this event does not indicate the time the resource variable
assumed the returned value (it only indicates the time the event response was
generated). When a subsequent event is received it is known that the resource

 Chapter 3. Event Management Subroutine Reference 71

 ha_em_send_command

variable assumed the subsequent returned value some time between the event
generated as a result of the HA_EM_SCMD_REVAL subcommand and the
subsequent event.

When the ha_em_send_command subroutine returns successfully, the
em_event_id field has been set by the EMAPI with an event ID. The event ID is
returned with each generated event for reference back to the registration
information. At this point, the EM client can now expect to receive events from the
registered resource variables.

All events that are registered by a single call to the ha_em_send_command
subroutine can be identified by an event command group ID. This ID can be used
to relate individual event responses back to the command with which they were
registered. The event command group ID can be obtained by calling the
ha_em_get_ecgid subroutine.

If the caller specifies a function pointer in the em_cb field, the specified function is
used as a callback routine by the EMAPI. Whenever an event that is associated
with this registration is received by the EMAPI, the callback routine is called.

The first argument to the callback routine is the file descriptor of the session in
which the event was registered. The second argument is a pointer to a structure
that contains the event information. The third argument is the value of the
em_cb_arg field. The em_cb_arg field specifies an argument, meaningful in the
context of the specified event only to the EM client, that can be passed to the
callback routine. The argument must be valid when the callback routine is invoked.
For example, a pointer to a stack must be valid when the callback routine is
invoked, or an argument must be valid in the context of the thread in which the
callback routine executes. For more information about callback routines, see the
man page for the ha_em_receive_response subroutine.

If the HA_EM_SCMD_RACK subcommand is specified with either the
HA_EM_CMD_REG or HA_EM_CMD_REG2 command, a registration
acknowledgement is returned once the Event Management subsystem has
validated the registration request. The acknowledgement is returned in a response
specifying the HA_EM_CMD_RERR or HA_EM_CMD_RERR2 command.
Registration errors are always reported through these responses. The specification
of HA_EM_SCMD_RACK on the registration request causes successful
registrations to be reported through these responses too. See “Error Responses to
Register and Unregister Event Commands” in the ha_em_receive_response() man
page for further detail.

HA_EM_CMD_UNREG Command (Unregister Events)

An EM client uses the command value HA_EM_CMD_UNREG to stop receiving
events for which it registered. The em_rb_unreg array is used in the command
block. One array element is defined for each event that is no longer to be sent to
the EM client. The array element contains an event ID that was returned in the
ha_em_rb_reg structure when the EM client registered for events.

Because the command to unregister events is sent asynchronously to the schedule
on which events are generated by the Event Management subsystem, the EM client
may still receive the events for which it just unregistered until the Event
Management subsystem can process the command. Once the command has been

72 RS/6000 Cluster Technology Event Management Programming

 ha_em_send_command

processed, the Event Management subsystem generates a response for each
unregistered event. This response has a format similar to that of the event that has
just been unregistered.

If the EM client specified a callback routine for any of the unregistered events, then,
when the unregistered event response is received by the EMAPI, the callback
routine is invoked with the same arguments as if the response were the event.
Thus, the callback routine sees some number of events followed by an indication
that no more events will be forthcoming.

HA_EM_CMD_QUERY Command (Query for Information)

An EM client uses the HA_EM_CMD_QUERY command to query for information. It
is used with the following subcommands:

HA_EM_SCMD_QINST
Obtain a list of instances of resource variables.

HA_EM_SCMD_QCUR
Obtain the current value of one or more resource variable instances.

HA_EM_SCMD_QDEF
Obtain a list of resource variables and default expressions that are
defined in the Event Management Configuration Database (EMCDB).

Each query subcommand uses the em_rb_query array in the command block. One
array element is defined for each query; a single query can specify multiple
resource variables.

The ha_em_rb_query structure has the following definition:

struct ha_em_rb_query {
 char \em_class;
 char \em_name;
 char \em_rsrc_ID;
}

For all the query subcommands, the target of the operation is one or more resource
variables. The em_class , em_name , and em_rsrc_ID fields are used to define the
resource variables to be queried. Resource variables may be specified individually
in separate ha_em_rb_query structures or one ha_em_rb_query structure may be
used to specify many resource variables through the use of wildcards. Any number
of ha_em_rb_query structures may be specified in either manner in one
subcommand.

If the em_class field is a pointer to a string that contains the name of a resource
variable class, then all variables in that class, as further limited by the em_name
and em_rsrc_ID fields, are the targets of the query. If the em_class field points to
a null string, then variables of all classes, as further limited by the em_name and
em_rsrc_ID fields, are the targets of the query.

The em_name field points to a string that contains the resource variable name that
is the target of the query. The resource variable name may be wildcarded in one of
two ways:

� Specifying the name as a null string.

� Truncating the name after any component.

 Chapter 3. Event Management Subroutine Reference 73

 ha_em_send_command

When the resource variable name is wildcarded in the first manner, then all
resource variables, as further limited by the em_class and em_rsrc_ID fields, are
targets of the query. When the resource variable name is wildcarded in the second
manner, all resource variables whose high-order (leftmost) components match the
specified resource variable name, as further limited by the em_class and
em_rsrc_ID fields, are the targets of the query.

The em_rsrc_ID field is a pointer to a string that contains a resource ID. All
instances, or definitions in the case of HA_EM_SCMD_QDEF, of the resource
variable(s) specified by the em_class and em_name fields that match the resource
ID are the targets of the query.

If the query is HA_EM_SCMD_QCUR or HA_EM_SCMD_QINST, the resource ID
is a semicolon-separated list of name/value pairs. A name/value pair consists of a
resource ID element name followed by an equal sign followed by the value of the
element. An element value may consist of a single value, a range of values, a
comma-separated list of single values, or a comma-separated list of ranges. A
range takes the form a-b and is valid only for resource ID elements of type integer.
There are no blanks in the resource ID.

If the query is HA_EM_SCMD_QDEF, the resource ID is a semicolon-separated list
of element names only.

A resource ID element is wildcarded by specifying its value as the asterisk
character. Only variables that are defined to contain the elements, and only the
elements, specified in the resource ID are candidates for a match of the query. If
any element of the resource ID consists of the asterisk character, rather than a
name/value pair (or name, in the case of the HA_EM_SCMD_QDEF subcommand),
all variables that are defined to contain at least the remaining specified elements
are candidates for a match of the query. The entire resource ID is wildcarded if the
em_rsrc_ID field points to a string that contains a single asterisk.

Here are some examples of using wildcards for resource IDs specified on a query:

 NodeNum=5;VG=rootvg;LV=hd4
 NodeNum=\;VG=rootvg;LV=hd4
 NodeNum=\;VG=\;LV=\

 NodeNum=9
 NodeNum=\

 NodeNum=9;VG=\;\
 NodeNum=\;\

For these examples, assume that the class and resource variable names are
specified as null strings. If either the class or resource variable name or both are
specified, matches for the query are restricted accordingly.

In the first three examples, all variables whose resource IDs are defined to contain
the elements NodeNum , VG, and LV, and only those elements, are matched. The
instances matched are the same for the event registration examples in the section
on registering for events earlier in this man page.

In the fourth example, all variables whose resource IDs are defined to contain only
the element NodeNum are matched. The instances matched are associated with

74 RS/6000 Cluster Technology Event Management Programming

 ha_em_send_command

node 9. In the fifth example, the same set of variables are matched, but all
instances of each variable are matched.

In the sixth example, all variables whose resource IDs are defined to contain the
elements NodeNum and VG, as well as zero or more additional elements, are
matched. The instances matched are associated with node 9. In the last example,
all variables whose resource IDs are defined to contain the element NodeNum , as
well as zero or more additional elements, are matched. All instances of the
variables are matched.

Given the flexibility in specifying resource variables for a query, it is possible that
no resource variable instance or resource variable definition will match the
specification in the ha_em_rb_query structure. If there is no match, an appropriate
error response is returned.

If the caller specifies a function pointer in the em_qcb field, the specified function is
used as a callback routine by the EMAPI. When the response or responses for this
query are received by the EMAPI, the callback routine is called.

The first argument to the callback routine is the file descriptor of the session in
which the query was made. The second argument is a pointer to a structure that
contains the query information. The third argument is the value of the em_qcb_arg
field. The em_qcb_arg field specifies an argument, meaningful in the context of the
query response only to the EM client, that can be passed to the callback routine.
The argument must be valid when the callback routine is invoked. For example, a
pointer to a stack must be valid when the callback routine is invoked, or an
argument must be valid in the context of the thread in which the callback routine
executes. For more information about callback routines, see the man page for the
ha_em_receive_response subroutine.

If the ha_em_send_command subroutine returns successfully, the em_qid field in
the command block contains a value unique to each query; the EM client can now
expect one or more responses that contain the requested information. Each
response contains the value returned in em_qid . Because responses are returned
asynchronously, this value is used to match responses to the query command.

 Restrictions
When you use the EMAPI in a threaded program, IBM recommends that an Event
Management session be used by only one thread at a time. If multiple threads try
to use the same Event Management session at the same time, EMAPI subroutines
may return the HA_EM_EBUSY error code. The thread-safe version of the EMAPI
library was designed assuming that each thread using the EMAPI would have its
own Event Management session or sessions.

 Return Values
If the ha_em_send_command subroutine is successful, it returns a value of 0.
Other information that may be returned depends on the command that is sent. For
more information, see the command's description.

 Chapter 3. Event Management Subroutine Reference 75

 ha_em_send_command

 Error Values
If the ha_em_send_command subroutine is unsuccessful, it returns a value of -1
and other error information in the error block specified on input. The error block
contains an error number and a null-terminated error message.

If the HA_EM_ECONNLOST error is received, it is recommended that the EM client
no longer use the session file descriptor that was specified on the failing call on
subsequent select system calls. To reconnect to the Event Management
subsystem, use the ha_em_restart_session subroutine.

The EMAPI error block and error numbers are defined in the ha_emapi.h header
file. For more information on EMAPI errors, see “EMAPI Errors (err_emapi)” on
page 124.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using EMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/emapi .

 Files
ha_emapi.h .

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_emapi.h header file: ha_em_cmd_blk , ha_em_err_blk ,
ha_em_rb_reg , ha_em_rb_query

Subroutines: ha_em_start_session , ha_em_restart_session ,
ha_em_receive_response

76 RS/6000 Cluster Technology Event Management Programming

 ha_em_start_session

 ha_em_start_session Subroutine

 Purpose
ha_em_start_session – Start an EM client session with the Event Management
subsystem

 Library
EMAPI Thread-Safe Library (libha_em_r.a)

EMAPI Library (not thread-safe) (libha_em.a)

 Syntax
#define HA_EM_VERSION 2
#include <ha_emapi.h>

int
 ha_em_start_session(
 int em_domain_type,
 char \em_domain_name,
 ha_em_err_blk \em_errb)

 Parameters
em_domain_type

Indicates the type of the domain in which a session is to be
established. Specify HA_EM_DOMAIN_SP for an SP domain, or
HA_EM_DOMAIN_HACMP for an HACMP/ES domain.

em_domain_name
A pointer to a string that indicates the domain in which a session is
to be established.

If the em_domain_name argument points to a null string, the
session is established with the Event Management subsystem in
the default domain.

For the HA_EM_DOMAIN_SP type, the default domain is the
current system partition. If the EM client is executing on the control
workstation or on a workstation outside of the SP, the current
system partition is determined from the value of the SP_NAME
environment variable.

For the HA_EM_DOMAIN_HACMP domain type, the default
domain is the HACMP/ES domain to which the workstation or SP
node on which the EM client is executing belongs.

If the em_domain_name argument points to a string that is not
null, the string is the name of the domain in which a session is to
be established with the Event Management subsystem. For the
HA_EM_DOMAIN_SP domain type, the name of any system
partition in the SP may be specified. For the
HA_EM_DOMAIN_HACMP domain type, the only domain that may
be specified is the HACMP/ES domain to which the workstation or
SP node on which the EM client is executing belongs.

 Chapter 3. Event Management Subroutine Reference 77

 ha_em_start_session

em_errb A pointer to an error block structure.

 Description
The ha_em_start_session subroutine is used by an EM client to establish a
session with the Event Management subsystem. The session validates that the EM
client is permitted to use Event Management services and then provides a
communication path to the specified Event Management subsystem. If this
communication path is lost, it can be restored without starting another session by
using the ha_em_restart_session subroutine. When the EM client no longer needs
Event Management services, it ends the session by using the
ha_em_end_session subroutine.

When the HA_EM_DOMAIN_SP domain type is specified, a session is established
with the Event Management subsystem in the current system partition by default.
To receive events from, and to issue queries to, other system partitions, the
ha_em_start_session subroutine must be called once for each other system
partition.

Multiple sessions may be started with any single domain. This provides multiple
communication paths to the Event Management subsystem in a single domain.
Multiple paths are useful if the EM client wishes to ignore certain responses for a
time while accepting others. For example, an EM client can register events in one
session and issue queries in another.

 Restrictions
The EMAPI uses connection-oriented socket communication. An EM client may
want to change the handling of the SIGPIPE signal so that it is ignored. If the EM
client does not ignore the SIGPIPE signal, and the connection between the EM
client and the Event Management subsystem is lost, delivery of a SIGPIPE signal
may kill the EM client.

When you use the EMAPI in a threaded program, IBM recommends that an Event
Management session be used by only one thread at a time. If multiple threads try
to use the same Event Management session at the same time, EMAPI subroutines
may return the HA_EM_EBUSY error code. The thread-safe version of the EMAPI
library was designed assuming that each thread using the EMAPI would have its
own Event Management session or sessions.

The syntax and semantics described here occur only if you define
HA_EM_VERSION to the value 2 before including the ha_emapi.h header file. If
HA_EM_VERSION is not defined to the value 2, you may see the syntax and
semantics of a prior version of the EMAPI.

 Return Values
If the return value of the ha_em_start_session subroutine is greater than or equal
to 0, the return value is a file descriptor. The EM client uses the file descriptor to
determine when the Event Management subsystem has sent a response. The file
descriptor is used as an argument in the select or poll system call. This descriptor
is also used as a session handle in all other EMAPI subroutine calls.

78 RS/6000 Cluster Technology Event Management Programming

 ha_em_start_session

 Error Values
If the ha_em_start_session subroutine is unsuccessful, it returns a value of -1 and
other error information in the error block specified on input. The error block contains
an error number and a null-terminated error message.

The EMAPI error block and error numbers are defined in the ha_emapi.h header
file. For more information on EMAPI errors, see “EMAPI Errors (err_emapi)” on
page 124.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

If the HA_EM_ECONNREFUSED error is received, the Event Management
subsystem may not be running or it may be initializing itself. The EM client may
wish to exit or retry establishing a session with the Event Management subsystem.
To retry, it would make repeated calls to ha_em_start_session at some interval
while it is receiving the HA_EM_ECONNREFUSED error until the session is
successfully established. The interval selected depends on the needs of the client
application, but it is probably not useful for the interval to be less than 5 seconds
long.

The EM client may try to establish the connection indefinitely, or it may give up
after a number of failed attempts. How persistent the EM client is in attempting to
establish the connection depends on the needs of the client application.

 Examples
For examples of using EMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/emapi .

 Files
ha_emapi.h .

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_emapi.h header file: ha_em_err_blk

Subroutines: ha_em_restart_session , ha_em_end_session

 Chapter 3. Event Management Subroutine Reference 79

 ha_rr_add_var

 ha_rr_add_var Subroutine

 Purpose
ha_rr_add_var – Add and supply current values of registered resource variables to
a resource monitor manager session

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_add_var(
 int session_fd,
 struct ha_rr_variable \pv,
 int numv,
 int add_complete,
 struct ha_em_err_blk \rr_errb)

 Parameters
session_fd The file descriptor of the session from which the

HA_RR_CMD_ADDV or HA_RR_CMD_ADDALL command was
received or, if the resource monitor is command-based, the file
descriptor that was returned by the ha_rr_start_session
subroutine.

pv A pointer to an array of ha_rr_variable structures, which contain
the names, resource IDs, and values of the resource variables to
be added.

numv The number of elements in the array pointed to by the pv
parameter.

add_complete A flag that indicates when the resource monitor has completed
adding variables in response to receiving an
HA_RR_CMD_ADDALL command. A value of 0 indicates that
there are more variables to be added. A nonzero value indicates
that, with this call, the adding of variables is complete.

More than one call of the ha_rr_add_var subroutine may be used
to add variables. When multiple calls are used, the add_complete
parameter is set to 0 on each call but the last.

For the HA_RR_CMD_ADDV command, this argument is always
0.

rr_errb A pointer to an error block structure.

80 RS/6000 Cluster Technology Event Management Programming

 ha_rr_add_var

 Description
The ha_rr_add_var subroutine is used by the resource monitor to add resource
variables, which have been previously registered with the RMAPI, to the resource
monitor manager session specified by the session_fd parameter. The monitor must
start supplying the values of variables that have been added to one or more
sessions using the ha_rr_send_val subroutine.

This command is called by server type resource monitors in response to receiving
an HA_RR_CMD_ADDALL or HA_RR_CMD_ADDV command from a resource
monitor manager.

A command-based resource monitor calls the ha_rr_add_var subroutine
immediately after it registers its variable instances to add those instances to the list
of those known to the RMAPI and supply current values for resource variable
instances.

The ha_rr_variable structure has the following definition:

struct ha_rr_variable {
 char \rr_var_name;
 char \rr_var_rsrc_ID;
 union {
 int rr_var_inst_id;
 void \\rr_var_hndl;
 } rr_varu;
#define rr_var_handle rr_varu.rr_var_hndl
#define rr_var_iid rr_varu.rr_var_inst_id
 void \rr_value;
 int rr_var_errno;
}

The rr_var_name field is a pointer to a string that contains the name of a resource
variable.

The rr_var_rsrc_ID field is a pointer to a string that contains the resource ID of an
instance of the specified variable. The resource ID must be fully qualified; no
wildcarding is permitted.

The resource ID is specified as a comma-separated list of name/value pairs. A
name/value pair consists of a resource ID element name followed by an equal sign
followed by the value of the resource ID element. There are no blanks in the
resource ID.

The rr_var_hndl field is a pointer to a buffer that will be used to store the handle of
the specified resource variable. On input, it must point to a valid location.

The rr_value field is a pointer to a buffer that contains the current value of the
variable.

The rr_var_errno field is used to hold the result of the operation for each variable.

 Chapter 3. Event Management Subroutine Reference 81

 ha_rr_add_var

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Restrictions
A resource monitor of connection type server must call the ha_rr_add_var
subroutine only in response to receiving the HA_RR_CMD_ADDV or
HA_RR_CMD_ADDALL command. Calling this subroutine at other times is a
programming error for a server type of resource monitor, with undefined results.

If the name of one of the elements in any resource ID matches the resource ID
element name specified by the Locator field in the associated resource variable
definition, that resource ID name/value pair is never supplied by the resource
monitor in the resource ID specified by the rr_var_rsrc_ID field. This resource ID
element is added by the Event Management subsystem when the instance is given
in a response to any Event Management client.

 Return Values
If the ha_rr_add_var subroutine is successful, it returns the number of resource
variables that were added.

For each variable in the array that was successfully added, a variable handle is
placed by the RMAPI in the location that is pointed to by the associated
rr_var_hndl field in the ha_rr_variable structure. This variable handle is used
when sending the resource variable to the RMAPI. If a variable has already been
added, its variable handle is returned unchanged. The ha_rr_add_var subroutine
can be called multiple times for the same resource variable.

For each variable in the array that was successfully added, the associated
rr_var_errno field is also set to 0.

If a variable could not be added, an error code is placed in its rr_var_errno field.

For all variables that are successfully added, the resource monitor should
immediately start sending values at the intervals determined by the resource
variable value type and the design of the resource monitor.

 Error Values
If the ha_rr_add_var subroutine is unsuccessful, it returns a value of -1 and other
error information in the error block specified on input. The error block contains an
error number and a null-terminated error message.

The following error number requires specific action by the resource monitor:

HA_RR_EDISCONNECT

The resource monitor manager associated with the session_fd file
descriptior has dropped its connection.

82 RS/6000 Cluster Technology Event Management Programming

 ha_rr_add_var

A server type resource monitor should call ha_rr_del_var to delete all
variables, using the session_fd file descriptor, that have been added by
the resource monitor. The monitor should then end the session, by
calling ha_rr_end_session .

A client type resource monitor should call ha_rr_terminate to end the
current use of the RMAPI.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_rr_variable , ha_em_err_blk

Subroutines: ha_rr_del_var , ha_rr_get_ctrlmsg

 Chapter 3. Event Management Subroutine Reference 83

 ha_rr_del_var

 ha_rr_del_var Subroutine

 Purpose
ha_rr_del_var – Delete resource variable instances from a resource monitor
manager session

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_del_var(
 int session_fd,
 struct ha_rr_variable \pv,
 int numv,
 struct ha_em_err_blk \rr_errb)

 Parameters
session_fd For server type monitors, the file descriptor of a resource manager

session that has ended, or from which the HA_RR_CMD_DELV or
HA_RR_CMD_DELALL command was received. If the resource
monitor is command-based, the file descriptor that was returned by
the ha_rr_start_session subroutine.

pv A pointer to an array of ha_rr_variable structures, which contain
the handles of the resource variables to be deleted.

numv The number of elements in the array pointed to by the pv
parameter.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_del_var subroutine is used by the resource monitor to delete variables
from a resource monitor manager session.

This command is called by server type resource monitors whenever the resource
monitor receives the HA_RR_CMD_DELALL or HA_RR_CMD_DELV command.

If a server type resource monitor detects that a resource monitor manager session
has ended, and the monitor will continue executing, the ha_rr_del_var subroutine
should be called prior to calling ha_rr_end_session . All variables that had been
previously added by any call to ha_rr_add_var should be deleted from the ending
session.

A command-based resource monitor calls the ha_rr_del_var subroutine when it
has stopped sending variable values to the RMAPI.

The ha_rr_variable structure has the following definition:

84 RS/6000 Cluster Technology Event Management Programming

 ha_rr_del_var

struct ha_rr_variable {
 char \rr_var_name;
 char \rr_var_rsrc_ID;
 union {
 int rr_var_inst_id;
 void \\rr_var_hndl;
 } rr_varu;
#define rr_var_handle rr_varu.rr_var_hndl
#define rr_var_iid rr_varu.rr_var_inst_id
 void \rr_value;
 int rr_var_errno;
}

The rr_var_name and rr_var_rsrc_ID fields are not used.

The rr_var_hndl field points to the variable handle of each variable that is to be
deleted. The variable handle was previously assigned by the RMAPI when the
variable was added by the ha_rr_add_var subroutine.

The rr_value field is not used.

The rr_var_errno field is used to hold the result of the operation for each variable.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performances Monitor, it
must have an effective user ID of root .

 Restrictions
A resource monitor of connection type server must call the ha_rr_del_var
subroutine only in response to receiving the HA_RR_CMD_DELV or
HA_RR_CMD_DELALL command, or before calling the ha_rr_end_session
subroutine. Calling this subroutine at other times is a programming error for a
server type of resource monitor, with undefined results.

 Return Values
If the ha_rr_del_var subroutine is successful, it returns the number of variables
that must no longer be sent to the RMAPI. If a variable is no longer to be sent, its
variable handle is cleared by setting the location specified by the rr_var_hndl field
to NULL . If a variable should continue to be sent, its variable handle is unchanged.

For each variable in the array that was successfully processed, the associated
rr_var_errno field is set to 0. If a variable could not be processed, an error code is
placed in its rr_var_errno field.

A return value of 0 indicates that values of all of the variables specified in the pv
parameter should continue to be sent by calling ha_rr_send_val .

 Chapter 3. Event Management Subroutine Reference 85

 ha_rr_del_var

 Error Values
If the ha_rr_del_var subroutine is unsuccessful, it returns a value of -1 and other
error information in the error block specified on input. The error block contains an
error number and a null-terminated error message.

The following error number requires specific action by the resource monitor:

HA_RR_EDISCONNECT

The resource monitor manager associated with the session_fd file
descriptor has dropped its connection.

A server type resource monitor should call ha_rr_del_var to delete all
variables, using the session_fd file descriptor, that have been added by
the resource monitor. The monitor should then end the session, by
calling ha_rr_end_session .

A client type resource monitor should call ha_rr_terminate to end the
current use of the RMAPI.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_rr_variable , ha_em_err_blk

Subroutines: ha_rr_add_var , ha_rr_get_ctrlmsg , ha_rr_end_session

86 RS/6000 Cluster Technology Event Management Programming

 ha_rr_end_session

 ha_rr_end_session Subroutine

 Purpose
ha_rr_end_session – End a resource monitor manager session

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_end_session(
 int session_fd,
 struct ha_em_err_blk \rr_errb)

 Parameters
session_fd The file descriptor of the session to be ended.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_end_session subroutine ends the session between the resource
monitor and the resource monitor manager. A resource monitor that is not a
command calls this subroutine when the resource monitor manager associated with
the session has disconnected. A command-based resource monitor calls this
subroutine before it terminates.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Restrictions
Before it calls the ha_rr_end_session subroutine, the resource monitor must first
call the ha_rr_del_var subroutine to delete all of the variables that were added to
the RMAPI during the session.

If it was started by a resource monitor manager and if it no longer has an active
session after it calls the ha_rr_end_session subroutine, the resource monitor
should terminate.

The ha_rr_end_session subroutine must be called only as specified in this man
page. Calling this subroutine in any other manner is a programming error with
undefined results.

 Chapter 3. Event Management Subroutine Reference 87

 ha_rr_end_session

 Return Values
If the ha_rr_end_session subroutine is successful, it returns a value of 0. The file
descriptor for the session just ended must no longer be used as an argument to the
select or poll system call.

 Error Values
If the ha_rr_end_session subroutine is unsuccessful, it returns a value of -1 and
other error information in the error block specified on input. The error block
contains an error number and a null-terminated error message.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_em_err_blk

Subroutines: ha_rr_start_session

88 RS/6000 Cluster Technology Event Management Programming

 ha_rr_get_ctrlmsg

 ha_rr_get_ctrlmsg Subroutine

 Purpose
ha_rr_get_ctrlmsg – Get a control message from a resource monitor manager

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_get_ctrlmsg(
 int session_fd,
 struct ha_rr_ctrl_msg \\rr_ctrl_msg,
 struct ha_em_err_blk \rr_errb)

 Parameters
session_fd A session file descriptor that is ready to be read.

rr_ctrl_msg A pointer to the address of a control message buffer.

rr_errb A pointer to an error block structure.

 Description
When a resource monitor is notified that a file descriptor returned by the
ha_rr_start_session subroutine is ready for reading, as indicated by the select or
poll system call, or SIGIO is caught, the resource monitor calls the
ha_rr_get_ctrlmsg subroutine to get a control message.

If HA_RR_NOTIFY_SELECT notification is being used, session_fd contains a
session file descriptor that is ready to be read.

If HA_RR_NOTIFY_SIGIO notification is being used, session_fd contains a session
file descriptor that may be ready for reading. The ha_rr_get_ctrlmsg subroutine
must be called once for each file descriptor that is returned by the
ha_rr_start_session subroutine.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Chapter 3. Event Management Subroutine Reference 89

 ha_rr_get_ctrlmsg

 Restrictions
It is the responsibility of the calling routine to free the control message buffer. When
the buffer is freed, any memory areas to which there are pointers in the control
message can no longer be accessed.

If the SIGIO notification method is being used, the returned buffer may contain
more than one message. It is possible that more than one message had been
received before the SIGIO signal could be processed.

Before calling the ha_rr_get_ctrlmsg subroutine, the resource monitor must block
the SIGIO signal and must establish a signal handler for it.

 Return Values
If the ha_rr_get_ctrlmsg subroutine returns a value of 0, the response is intended
for the Resource Monitor Application Programming Interface (RMAPI) itself. No
action by the calling routine is necessary.

If the ha_rr_get_ctrlmsg subroutine returns a value that is greater than 0, it also
returns a pointer to a buffer that contains one or more control messages. The
rr_ctrl_msg argument points to an area where the buffer pointer is returned. The
return value indicates the length of the data in the control message buffer.

The control message has the following structure:

struct ha_rr_ctrl_msg {
 int rr_ctrl_msg_len;
 int rr_ctrl_cmd;
 int rr_ctrl_cmdarg;
 int rr_ctrl_num_vars;
 union ha_rr_ctrlv {

struct ha_rr_ctrl_var {
 char \rr_ctrl_name;
 char \rr_ctrl_rsrc_ID;
 } rr_ctrl_varn[1];
 int rr_ctrl_vari[1];

struct ha_rr_ctrl_var2 {
 int rr_ctrl_var_id;
 int rr_ctrl_API_inst_id;
 } rr_ctrl_varn2[1];
 } rr_ctrlv;
#define rr_ctrl_vars rr_ctrlv.rr_ctrl_varn
#define rr_ctrl_ids rr_ctrlv.rr_ctrl_vari
#define rr_ctrl_vars2 rr_ctrlv.rr_ctrl_varn2
};

The rr_ctrl_msg_len field contains the length of the message. If this value is less
than the value that was returned by the ha_rr_get_ctrlmsg subroutine, one or
more additional messages are present in the buffer. To get a pointer to the next
message in the buffer, increment the buffer pointer by the length of the message.

An actual control message may contain any number of elements in the rr_ctrl_varn
or rr_ctrl_vari arrays; the rr_ctrl_num_vars field contains the actual number.

The rr_ctrl_varn2 array is not used in any control messages that are returned to
the resource monitor.

90 RS/6000 Cluster Technology Event Management Programming

 ha_rr_get_ctrlmsg

The rr_ctrl_cmd field contains a command to the resource monitor. The
rr_ctrl_cmdarg field contains an optional command argument.

The rr_ctrl_cmd field can contain one of the following values:

HA_RR_CMD_INSTV
This command tells the resource monitor to create instances of resource
variables that match the variables listed in the rr_ctrl_varn array. Each
element of the array contains two pointers: a pointer to a string that
contains the name of a resource variable and a pointer to a string that
contains a resource ID. If any resource ID element is omitted, the
resource ID is wildcarded. If all resource ID elements are omitted, the
resource ID string is null.

The resource monitor creates actual instances for each specified
instance of a resource variable. If the resource ID is wildcarded, the
resource monitor creates all actual instances that match the wildcarded
resource ID for a specified resource variable. If no actual instances can
be created that match the specified instance(s), this command is
ignored.

This command is sent only for variables that are configured as being
dynamically instantiable.

In response, the resource monitor should create the instances and then
register them with the RMAPI using the ha_rr_reg_var subroutine. If
any instances specified by the command have already been created and
registered as a result of a previous HA_RR_CMD_INSTV command, the
instances must be registered again using the same values that were
specified in the previous call to the ha_rr_reg_var subroutine.

Note: If one of the resource ID element names of a resource variable
matches the resource ID element name specified by the Locator
field of the variable's definition, then that resource ID element is
never supplied in a resource ID that is specified by the
HA_RR_CMD_INSTV command. Note that this may result in a
null resource ID.

HA_RR_CMD_ADDV
This command tells the resource monitor to add to the RMAPI the
variables listed in the rr_ctrl_vari array. Each element of the array is an
identifier for a particular instance of a resource variable. The identifier is
supplied to the RMAPI when the resource monitor registers its variable
instances.

In response, the resource monitor should call the ha_rr_add_var
subroutine to add the variables and supply current values for resource
variable instances. Then, it should call the ha_rr_send_val subroutine
to start sending updated resource variable values for those instances
that are indicated by the ha_rr_add_var subroutine.

HA_RR_CMD_ADDALL
This command tells the resource monitor to add to the RMAPI all of the
variables of value type Counter or Quantity that have been registered
with the RMAPI. The rr_ctrl_num_vars field is set to a value of 0.

In response, the resource monitor should call the ha_rr_add_var
subroutine to add the variables and supply current values for resource
variable instances. Then, it should call the ha_rr_send_val subroutine

 Chapter 3. Event Management Subroutine Reference 91

 ha_rr_get_ctrlmsg

to start sending updated resource variable values for those instances
that are indicated by the ha_rr_add_var subroutine.

This command can only be sent to the resource monitor if the monitor is
configured to supply Counter or Quantity variables to the performance
monitor.

HA_RR_CMD_DELV
This command tells the resource monitor to delete from the resource
monitor manager session the variables that are listed in the rr_ctrl_vari
array. Each element of the array is an identifier for a particular instance
of a resource variable. The identifier is supplied to the RMAPI when the
resource monitor registers its variable instances.

In response, the resource monitor should call the ha_rr_del_var
subroutine to delete the variables. Then, it should stop sending resource
variable values for those instances that are indicated by the
ha_rr_del_var subroutine.

HA_RR_CMD_DELALL
This command tells the resource monitor to delete from the resource
monitor manager session, using the ha_rr_del_var subroutine, all of the
variables of value type Counter or Quantity that have been registered
with the RMAPI. The rr_ctrl_num_vars field is set to a value of 0.

In response, the resource monitor should call the ha_rr_del_var
subroutine to delete the variables. Then, it should stop sending resource
variable values for those instances that are indicated by the
ha_rr_del_var subroutine.

This command can only be sent to the resource monitor if the monitor is
configured to supply Counter or Quantity variables to the performance
monitor.

HA_RR_CMD_REFRESH
This command tells the resource monitor to send immediately the latest
possible values for the variables that are listed in the rr_ctrl_vari array.
Each element of the array is an identifier for a particular instance of a
resource variable. The identifier is supplied to the RMAPI when the
resource monitor registers its variable instances.

This command is sent to the resource monitor only for variables of value
type Counter or Quantity that have configurable reporting intervals.

In response, the resource monitor should call the ha_rr_send_val
subroutine to send the latest values for the variables.

This command is not currently sent by any resource monitor manager.

 Error Values
If the ha_rr_get_ctrlmsg subroutine is unsuccessful, it returns a value of -1 and
other error information in the error block specified on input. The error block
contains an error number and a null-terminated error message.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

92 RS/6000 Cluster Technology Event Management Programming

 ha_rr_get_ctrlmsg

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

The following error numbers are either normal or require specific action by the
resource monitor:

HA_RR_EAGAIN
The resource monitor specified HA_RR_NOTIFY_SIGIO on the call to
the ha_rr_start_session subroutine and no data was read by the
ha_rr_get_ctrlmsg subroutine. Because the ha_rr_get_ctrlmsg
subroutine must be called each time SIGIO is caught, this error is
normal.

If the resource monitor specified HA_RR_NOTIFY_SELECT , then this
error indicates that the monitor called ha_rr_get_ctrlmsg for a session
that does not have any data ready to read. The monitor may continue
executing.

HA_RR_EDISCONNECT
The resource monitor manager that is associated with the session file
descriptor specified on input to the ha_rr_get_ctrlmsg subroutine has
dropped its connection. In response, the resource monitor should call
the ha_rr_del_var subroutine using this file descriptor and specifying all
variables that have been added by the resource monitor. Finally, the
resource monitor should call the ha_rr_end_session subroutine for the
specified session.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_rr_ctrl_msg , ha_em_err_blk

Subroutines: ha_rr_start_session , ha_rr_end_session

 Chapter 3. Event Management Subroutine Reference 93

 ha_rr_get_interval

 ha_rr_get_interval Subroutine

 Purpose
ha_rr_get_interval – Get the reporting interval for a class of resource variables

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_get_interval(
 char \cname,
 struct ha_em_err_blk \rr_errb)

 Parameters
cname A pointer to a string that contains the name of the class of

resource variables for which the reporting interval is to be returned.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_get_interval subroutine is used by the resource monitor to get the
reporting interval for a class of resource variables whose reporting interval is
configurable. The reporting interval specifies how often a resource variable of value
type Counter or Quantity of a particular class is to be sent to the RMAPI.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter of Quantity variables to the Performance Monitor, it
must have an effective user ID of root.

 Return Values
If the ha_rr_get_interval subroutine is successful, it returns the reporting interval,
in seconds.

 Error Values
If the ha_rr_get_interval subroutine is unsuccessful, it returns a value of -1 and
other error information in the error block specified on input. The error block
contains an error number and a null-terminated error message.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

94 RS/6000 Cluster Technology Event Management Programming

 ha_rr_get_interval

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_em_err_blk

 Chapter 3. Event Management Subroutine Reference 95

 ha_rr_init

 ha_rr_init Subroutine

 Purpose
ha_rr_init – Initialize the Resource Monitor Application Programming Interface
(RMAPI)

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_init(
 char \name,
 struct ha_em_err_blk \rr_errb)

 Parameters
name A pointer to a string that contains the resource monitor name, as

defined in the Event Management Configuration Database
(EMCDB).

rr_errb A pointer to an error block structure.

 Description
The ha_rr_init subroutine initializes a resource monitor, informing the Resource
Monitor Application Programming Interface (RMAPI) of its identity. The RMAPI
obtains configuration information for the resource monitor, initializes internal
resources, determines the domain in which the monitor is executing, and creates a
lock for the monitor instance as specified in the EMCDB and by any prior call to the
ha_rr_rm_ctl subroutine.

Determining the Event Management Domain

The ha_rr_init routine determines the domain in which the resource monitor is
executing, and uses the domain name in forming socket and file names. If the
resource monitor is started by a resource monitor manager, the manager sets
environment variables to inform the RMAPI of the domain. The environment
variables used to indicate the domain are:

HA_DOMAIN_TYPE

The type of domain, either SP for RS/6000 SP, or HACMP for
HACMP/ES clusters.

HA_DOMAIN_NAME

The name of the RS/6000 SP system partition or HACMP/ES cluster the
monitor is executing in.

Command-based monitors and monitors that are not started by resource monitor
managers may need to set the environment variables prior to calling ha_rr_init .
The RMAPI determines and verifies the domain it is executing in as follows:

96 RS/6000 Cluster Technology Event Management Programming

 ha_rr_init

� If HA_DOMAIN_NAME is set, but HA_DOMAIN_TYPE is not, the RMAPI
returns an error.

� If neither the HA_DOMAIN_TYPE nor the HA_DOMAIN_NAME environment
variable is set, the RMAPI defaults to the action taken when the
HA_DOMAIN_TYPE is SP.

� The RMAPI attempts to determine the domain name based on the domain type:

– If the domain type is HACMP, the RMAPI calls an HACMP/ES command to
query the name of the HACMP/ES cluster.

– If the domain type is SP and the RMAPI is executing on a node, the
domain name is the system partition the node is in. If the RMAPI is
executing on the control workstation, the system partition is determined by
the value of the SP_NAME environment variable. If SP_NAME has not
been set, the system partition name used is the name of the default
partition.

� If HA_DOMAIN_NAME is set, the RMAPI compares the value to the domain
name it determined. If the domain type is SP, and the RMAPI is executing on
the control workstation, the value of HA_DOMAIN_NAME is compared against
all defined system partitions. If the value of HA_DOMAIN_NAME does not
match a domain name value determined by the RMAPI, an error is returned.

� If the HA_DOMAIN_NAME variable is not set, the RMAPI uses the domain
name that it determined.

Resource Monitor Instance ID

A resource monitor may be configured to execute multiple, up to
HA_EM_MAX_RM_INSTS , copies or instances of itself at the same time. The
number of instances allowed is defined by the value of the rmNum_instances
attribute of the EM_Resource_Monitor SDR class. If the attribute is not present,
the number of simultaneous instances allowed for the monitor defaults to 1.

Resource monitor instances are identified as having instance numbers or IDs in the
range 0–HA_RR_RM_INSTID_MAX . When ha_rr_init is called, the RMAPI
attempts to lock the lowest available resource monitor instance ID based on the
monitor's configuration and instance ID set by a prior call to ha_rr_rm_ctl . Since
the number of allowed instances is determined by the definition of the monitor, it is
possible to call ha_rr_rm_ctl to set an instance ID that is not valid for the monitor.
In this case, the ha_rr_init routine fails and returns the error.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Chapter 3. Event Management Subroutine Reference 97

 ha_rr_init

 Return Values
If the ha_rr_init subroutine is successful, it returns a value of 0.

 Error Values
If the ha_rr_init subroutine is unsuccessful, it returns a value of -1 and other error
information in the error block specified on input. The error block contains an error
number and a null-terminated error message.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

The following error number requires specific action by the resource monitor:

HA_RR_ENOLOCK
The RMAPI was not able to acquire a unique lock for the monitor
process. This indicates that either the maximum number of instances
the monitor is configured to allow is already executing, or a specific
monitor instance requested by previous call to ha_rr_rm_ctl was
already executing.

HA_RR_EACCESS
The RMAPI was unable to open or create a file required for initialization.
This error could occur if the resource monitor was started before the
Event Management subsystem and before the EMCDB file or directories
used by the RMAPI had been created. If the resource monitor is a
server which is not configured to be started by resource monitor
managers, it may periodically retry the ha_rr_init routine, waiting at
least several seconds between attempts. The decision to retry the
ha_rr_init routine when this error is encountered, and the number of
attempts made, should be based upon the design of the resource
monitor.

 Examples
For examples of using RMAPI subroutines, see the programs in the PSSP product
samples directory, /usr/lpp/ssp/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_em_err_blk

98 RS/6000 Cluster Technology Event Management Programming

 ha_rr_makserv

 ha_rr_makserv Subroutine

 Purpose
ha_rr_makserv – Establish the resource monitor as a server to enable connections
from resource monitor managers

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_makserv(
 int rr_notify_proto,
 struct ha_em_err_blk \rr_errb)

 Parameters
rr_notify_proto A value that indicates the method the resource monitor will use to

detect when a resource monitor manager is attempting to connect
to the resource monitor. The notification protocol specified to the
ha_rr_makserv must be the same value used when calling
ha_rr_start_session . The possible values are:

HA_RR_NOTIFY_SELECT
The resource monitor expects to use the select or poll
system call to determine when a manager is making a
connection request.

HA_RR_NOTIFY_SIGIO
The resource monitor expects to use SIGIO notification
to determine when a manager connection request may
be pending.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_makserv subroutine creates a server session for a resource monitor so
that resource monitor managers can connect to it. Resource monitor managers are
the Event Management subsystem or the Performance Monitor subsystem.

If the resource monitor is not a command, the ha_rr_makserv subroutine should
be called after the call to ha_rr_init .

If the resource monitor is a command, do not call the ha_rr_makserv subroutine.

 Chapter 3. Event Management Subroutine Reference 99

 ha_rr_makserv

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Restrictions
If the value of the rr_notify_proto argument is HA_RR_NOTIFY_SIGIO, then
before calling the ha_rr_makserv subroutine, the resource monitor must block the
SIGIO signal and must establish a signal handler for it.

 Return Values
If the ha_rr_makserv subroutine is successful, it returns a value greater than or
equal to 0. The value is a file descriptor that is used by the resource monitor to
determine when a resource monitor manager is attempting to start a session with
the resource monitor.

If the rr_notify_proto argument is the value HA_RR_NOTIFY_SELECT , the
resource monitor is expected to use this descriptor in the argument to the select or
poll system call (as a read event).

If the value of the rr_notify_proto argument is the value HA_RR_NOTIFY_SIGIO,
the resource monitor is expected to catch the SIGIO signal. The ha_rr_makserv
subroutine enables the descriptor for SIGIO notification. Notification that the
descriptor is ready for read, or potentially ready for read if SIGIO is caught,
indicates that a resource monitor manager is, or may be, attempting to connect to
the resource monitor.

Note that a resource monitor must always select (or poll) on the file descriptor that
is returned by the ha_rr_makserv subroutine or must always catch the SIGIO
signal. The Event Management subsystem and the Performance Monitor subsystem
may come and go while the resource monitor is otherwise executing normally.

 Error Values
If the ha_rr_makserv subroutine is unsuccessful, it returns a value of -1 and other
error information in the error block specified on input. The error block contains an
error number and a null-terminated error message.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

100 RS/6000 Cluster Technology Event Management Programming

 ha_rr_makserv

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_em_err_blk

 Chapter 3. Event Management Subroutine Reference 101

 ha_rr_reg_var

 ha_rr_reg_var Subroutine

 Purpose
ha_rr_reg_var – Register a resource variable instance with the Resource Monitor
Application Programming Interface (RMAPI)

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_reg_var(
 struct ha_rr_variable \pv,
 int numv,
 struct ha_em_err_blk \rr_errb)

 Parameters
pv A pointer to an array of ha_rr_variable structures, which contain

the names, resource IDs, and instance identifiers of the resource
variable instances to be registered.

numv The number of elements in the array pointed to by the pv
parameter.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_reg_var subroutine is used by the resource monitor to register resource
variable instances with the RMAPI.

The resource monitor must register each instance of a resource variable known to
the resource monitor at the following times:

� After it calls the ha_rr_init subroutine

� After it instantiates any resource variable upon receipt of the
HA_RR_CMD_INSTV command. If the HA_RR_CMD_INSTV command
specifies resource variable instances that have already been registered, the
instances must be registered again.

� After it creates any resource variable's instances during normal operation.

The ha_rr_variable structure has the following definition:

102 RS/6000 Cluster Technology Event Management Programming

 ha_rr_reg_var

struct ha_rr_variable {
 char \rr_var_name;
 char \rr_var_rsrc_ID;
 union {
 int rr_var_inst_id;
 void \\rr_var_hndl;
 } rr_varu;
#define rr_var_handle rr_varu.rr_var_hndl
#define rr_var_iid rr_varu.rr_var_inst_id
 void \rr_value;
 int rr_var_errno;
}

The rr_var_name field is a pointer to a string that contains the name of a resource
variable.

The rr_var_rsrc_ID field is a pointer to a string that contains the resource ID of an
instance of the specified variable. The resource ID must be fully qualified; no
wildcarding is permitted.

The resource ID is specified as a comma-separated list of name/value pairs. A
name/value pair consists of a resource ID element name followed by an equal sign
followed by the value of the resource ID element. There are no blanks in the
resource ID.

The rr_var_inst_id field is an instance identifier that the resource monitor assigns
to the instance. The instance identifier is used to specify variable instances
efficiently in commands that are sent to the resource monitor. Typically, the
instance identifier is an index into a table that is maintained by the resource
monitor. If the variable instance has already been registered, this value must match
the value in the previous registration.

The rr_value field is not used.

The rr_var_errno field is used to hold the result of the registration for each
variable.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Restrictions
If the name of one of the elements in any resource ID matches the resource ID
element name specified by the Locator field in the associated resource variable
definition, that resource ID element name/value pair is never supplied by the
resource monitor in the resource ID specified by the rr_var_rsrc_ID field. This
resource ID element is added by the Event Management subsystem when the
instance is given in a response to any Event Management client.

 Chapter 3. Event Management Subroutine Reference 103

 ha_rr_reg_var

 Return Values
If the ha_rr_reg_var subroutine is successful, it returns the number of resource
variables that were registered. For each variable that was successfully registered,
the associated rr_var_errno field in the ha_rr_variable structure is set to 0. If a
variable could not be registered, an error code is returned in its rr_var_errno field.

 Error Values
If the ha_rr_reg_var subroutine is unsuccessful, it returns a value of -1 and other
error information in the error block specified on input. The error block contains an
error number and a null-terminated error message.

The following error number requires specific handling by the resource monitor:

HA_RR_EDISCONNECT

This error is only returned to client type resource monitors and indicates
that the session created by a call to ha_rr_start_session was closed by
the Event Management daemon. The resource monitor should respond
by calling ha_rr_terminate to end the current use of the RMAPI.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_rr_variable , ha_em_err_blk

Subroutines: ha_rr_unreg_var

104 RS/6000 Cluster Technology Event Management Programming

 ha_rr_rm_ctl

 ha_rr_rm_ctl Subroutine

 Purpose
ha_rr_rm_ctl – Set or get attributes of the RMAPI.

 Library
RMAPI Library (not thread safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>
int
 ha_rr_rm_ctl(
 struct ha_rr_args \argp,
 int command,
 struct ha_em_err_blk \rr_errb);

 Parameters
argp A pointer to an ha_rr_args structure which is used to set or get

attributes of the RMAPI.

command Bit flag command to get or set attributes of the RMAPI.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_args structure is defined as:

struct ha_rr_args {
 int rr_instance_id;
 char \rr_domain_name;
 char rr_reserved[56];
 };

The rr_instance_id field is the requested or actual instance ID (number) of the
resource monitor.

The rr_domain_name is the name of the domain in which the resource monitor is
executing.

The rr_reserved field is reserved for future use.

The ha_rr_rm_ctl subroutine may be called prior to calling ha_rr_init to set
attributes of the RMAPI for initialization. It may also be called after ha_rr_init in
order to get the values of attributes initialized by the RMAPI. The following are valid
values for the command parameter:

HA_RR_RM_ARGS_SET_INSTID

Sets the resource monitor instance ID the RMAPI should use when
ha_rr_init is called. The rr_instance_id field must be set to a value in
the range, 0-N, where N is the number of simultaneous copies the
monitor is configured to allow minus 1. One of the following symbols
defined in ha_rmapi.h may also be used:

 Chapter 3. Event Management Subroutine Reference 105

 ha_rr_rm_ctl

HA_RR_RM_INSTID_PERF

Initialize only as instance 0 of the monitor.

HA_RR_RM_INSTID_NOPERF

Initialize as any instance except 0. The monitor must be
configured to allow more than one instance of itself or
ha_rr_init will fail.

HA_RR_RM_INSTID_ANY

Initialize as the lowest available instance number of the
monitor. This is the default value if ha_rr_rm_ctl is not used.

HA_RR_RM_ARGS_GET

Gets attributes of the RMAPI after initialization. This command is only
valid after ha_rr_init has been called. Upon successful return, the
ha_rr_args parameter will be set with the following values:

rr_instance_id

The instance ID of the monitor.

rr_domain_name

A pointer to a buffer containing the name of the domain in
which the monitor is executing.

 Security

 Restrictions
If ha_rr_rm_ctl is called with the command HA_RR_RM_ARGS_GET , the buffer
referred to by the rr_domain_name field must be freed by the caller. When setting
the monitor instance ID, ha_rr_rm_ctl only checks the instance value as being
within the range HA_RR_RM_INSTID_ANY - HA_RR_RM_INSTID_MAX . Since the
RMAPI does not know the resource monitor configuration prior to ha_rr_init , it is
possible to set an instance ID that is not valid for the configuration of the monitor.
In this case, the call to ha_rr_init will fail.

 Return Values
If the ha_rr_rm_ctl subroutine is successful, it returns a 0. If the subroutine was
called to get values, the ha_rr_args structure pointed to by the argp parameter will
be filled with current values in use by the RMAPI. Note that if the rr_domain_name
is not NULL, it refers to a buffer which was allocated by the RMAPI, but must be
freed by the caller.

If ha_rr_rm_ctl was called to set values, those values are only tested for being
within the range of possible values valid for any resource monitor. The set values
are further tested for their validity based on the configuration of the resource
monitor specified when the RMAPI is initialized by calling ha_rr_init .

106 RS/6000 Cluster Technology Event Management Programming

 ha_rr_rm_ctl

 Error Values
If the ha_rr_rm_ctl subroutine is unsuccessful, it returns a value of -1 and other
error information in the error block specified on input. The error block contains an
error number and a null-terminated error message. The RMAPI error block and
error numbers are defined in the ha_rmapi.h header file. For more information on
RMAPI errors, see “RMAPI Errors (err_rmapi)” on page 159. For information about
error messages, see PSSP: Messages Reference or HACMP: Troubleshooting
Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_rr_args

Subroutines: ha_rr_init

 Chapter 3. Event Management Subroutine Reference 107

 ha_rr_send_val

 ha_rr_send_val Subroutine

 Purpose
ha_rr_send_val – Send variable values to the Resource Monitor Application
Programming Interface (RMAPI)

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_send_val(
 struct ha_rr_val \pv,
 int numv,
 int refresh,
 struct ha_em_err_blk \rr_errb)

 Parameters
pv A pointer to an array of ha_rr_val structures, which contain

pointers to the values and handles of the resource variables that
the resource monitor is sending to the RMAPI.

numv The number of elements in the array pointed to by the pv
parameter.

refresh A value that indicates whether the resource variable values are
being sent in response to a HA_RR_CMD_REFRESH command.
A value of 0 indicates that the values are not being refreshed. A
nonzero value indicates that they are being refreshed.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_send_val subroutine is used by the resource monitor whenever it is
time to send values of resource variables to the RMAPI.

The values of State type resource variables are sent whenever the monitor detects
that they have changed. Counter and Quantity values are sent based on their
reporting interval as determined by the design of the monitor or the reporting
interval returned by the ha_rr_get_interval subroutine.

The ha_rr_val structure has the following definition:

struct ha_rr_val {
 void \rr_value;
 void \rr_var_hndl;
}

108 RS/6000 Cluster Technology Event Management Programming

 ha_rr_send_val

The rr_value field is a pointer to the value of a resource variable. The rr_var_hndl
field contains the variable handle of the resource variable that was returned by the
ha_rr_add_var subroutine.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Restrictions
The resource monitor may send as many variable values as it desires in a single
call of the ha_rr_send_val subroutine. The actual number that it sends depends on
the semantics of the variables, the required frequency of update, and the design of
the resource monitor.

However, if any of the variables that were added are of value type Counter or
Quantity and were configured to be supplied to the performance monitor, the
resource monitor must perform some “send” activity every 500 seconds. If the
resource monitor has no values to send within 500 seconds from the last call to
ha_rr_send_val , it must call the ha_rr_touch subroutine.

 Return Values
If the ha_rr_send_val subroutine is successful, it returns a value of 0.

 Error Values
If the ha_rr_send_val subroutine is unsuccessful, it returns a value of -1 and other
error information in the error block specified on input. The error block contains an
error number and a null-terminated error message.

The following error number requires specific handling by the resource monitor:

HA_RR_EDISCONNECT

This error is only returned to client type resource monitors and indicates
that the session created by a call to ha_rr_start_session was closed by
the Event Management daemon. The resource monitor should respond
by calling ha_rr_terminate to end the current use of the RMAPI.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Chapter 3. Event Management Subroutine Reference 109

 ha_rr_send_val

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_rr_val , ha_em_err_blk

Subroutines: ha_rr_get_ctrlmsg , ha_rr_touch

110 RS/6000 Cluster Technology Event Management Programming

 ha_rr_start_session

 ha_rr_start_session Subroutine

 Purpose
ha_rr_start_session – Start a session with a resource monitor manager

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_start_session(
 int rr_notify_proto,
 struct ha_em_err_blk \rr_errb)

 Parameters
rr_notify_proto A value that indicates the method the resource monitor will use to

detect when a resource monitor manager session file descriptor is
ready to be read by a call to ha_rr_get_ctrlmsg .

HA_RR_NOTIFY_SELECT
The resource monitor expects to use the select or poll
system call to detect when session file descriptors are
ready to be read.

HA_RR_NOTIFY_SIGIO
The resource monitor expects to use SIGIO notification
to determine when a session file descriptor may be
ready to be read.

Note: Since client type resource monitors do not receive
commands from resource monitor managers, the value of
the rr_notify_proto parameter is ignored.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_start_session subroutine is called by a resource monitor to establish a
communication path, or session, between the resource monitor and one of its
managers. This communication path is used to send control messages between the
resource monitor manager and the resource monitor. For a command-based
resource monitor, a session establishes a communication path to the Event
Management subsystem only.

If the resource monitor is command-based, it does not call the ha_rr_makserv
subroutine. Instead, it calls the ha_rr_start_session subroutine immediately after
the call to the ha_rr_init subroutine completes successfully.

Otherwise, whenever the file descriptor returned by the ha_rr_makserv subroutine
is ready for reading, as indicated by the notification protocol used by the monitor,
the resource monitor calls the ha_rr_start_session subroutine.

 Chapter 3. Event Management Subroutine Reference 111

 ha_rr_start_session

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Restrictions
If the ha_rr_makserv subroutine is called before the ha_rr_start_session
subroutine is called, the value of the rr_notify_proto argument must be the same for
both calls.

If the value of the rr_notify_proto argument is HA_RR_NOTIFY_SIGIO, then
before calling the ha_rr_start_session subroutine, the resource monitor must block
the SIGIO signal and must establish a signal handler for it.

 Return Values
If the ha_rr_start_session subroutine is successful, it returns a value greater than
or equal to 0. The value is a file descriptor that is used by the resource monitor to
determine when a resource monitor manager has sent a control message to the
resource monitor.

If it is not command-based, the resource monitor must be prepared to accept
multiple sessions, up to a value of HA_RR_MAXSESSIONS .

If the rr_notify_proto argument is the value HA_RR_NOTIFY_SELECT , the
resource monitor is expected to use this descriptor in the argument to the select or
poll system call (as a read event).

If the rr_notify_proto argument is the value HA_RR_NOTIFY_SIGIO, the resource
monitor is expected to catch the SIGIO signal. The ha_rr_start_session subroutine
enables the descriptor for SIGIO notification. Notification that the descriptor is ready
for read, or potentially ready for read if SIGIO is caught, indicates that a control
message has, or may have, arrived.

The file descriptor is also used as a session handle by other RMAPI subroutines.
Because a command-based resource monitor does not receive control messages, it
uses the file descriptor only as a session handle.

 Error Values
If the ha_rr_start_session subroutine is unsuccessful, it returns a value of -1 and
other error information in the error block specified on input. The error block contains
an error number and a null-terminated error message.

Error Numbers:

HA_RR_ECONNREFUSED

This error number applies only to client type resource monitors and
indicates that a connection attempt to the Event Management daemon
was refused. Since the Event Management daemon may not be running

112 RS/6000 Cluster Technology Event Management Programming

 ha_rr_start_session

or may be initializing, the resource monitor may periodically retry the
connection attempt to the Event Management daemon by waiting
several seconds, then calling ha_rr_start_session again. The monitor
may otherwise end the current use of the RMAPI by calling
ha_rr_terminate . Since client type resource monitors are typically
implemented in a command, the decision to retry and the number of
connection attempts made should be based on the design of the
resource monitor.

HA_RR_EMAXSESSIONS

Accepting the connection request would result in more than
HA_RR_MAX_SESSIONS connections to resource monitor managers.
The RMAPI closes the pending connection request and the resource
monitor may continue normal execution. This error only applies to server
type resource monitors. To avoid this error, resource monitors should
ensure that the ha_rr_end_session subroutine is called whenever the
HA_RR_EDISCONNECT error has been detected. This allows the
RMAPI to clean up closed manager sessions, enabling new connection
requests to be accepted.

HA_RR_EAGAIN

No connection request was found by the ha_rr_start_session routine. If
the notification protocol is HA_RR_NOTIFY_SIGIO, this can occur
because the ha_rr_start_session must be called each time a SIGIO
signal is caught. If the notification protocol is
HA_RR_NOTIFY_SELECT , the error indicates that the resource monitor
attempted to start a session before the select or poll system call
indicated the server socket returned by ha_rr_makserv had a pending
connection request. This error applies only to server type resource
monitors.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Chapter 3. Event Management Subroutine Reference 113

 ha_rr_start_session

 Related Information
Structures in the ha_rmapi.h header file: ha_em_err_blk

114 RS/6000 Cluster Technology Event Management Programming

 ha_rr_terminate

 ha_rr_terminate Subroutine

 Purpose
ha_rr_terminate – Terminate communications with the Resource Monitor
Application Programming Interface (RMAPI)

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_terminate(
 struct ha_em_err_blk \rr_errb)

 Parameters
rr_errb A pointer to an error block structure.

 Description
The ha_rr_terminate subroutine is used by the resource monitor to terminate its
activity with the RMAPI.

If a server type resource monitor is configured to be started by a resource monitor
manager, the ha_rr_terminate subroutine is called whenever it no longer has any
sessions with resource monitor managers. Upon return from this subroutine, it exits.

If the resource monitor logic is contained within a subsystem, the ha_rr_terminate
subroutine is called before the exit of the subsystem.

If the resource monitor is a command, it calls the ha_rr_terminate subroutine
before it exits.

The ha_rr_terminate subroutine should also be invoked whenever the resource
monitor detects an unrecoverable error, from the RMAPI or from any other source,
that no longer permits the successful execution of the resource monitor's function.
Upon detection of the unrecoverable error, the resource monitor should not call any
other RMAPI subroutine before it calls ha_rr_terminate . The ha_rr_terminate
subroutine releases all resources that were acquired by previous calls to the
RMAPI.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Chapter 3. Event Management Subroutine Reference 115

 ha_rr_terminate

 Return Values
If the ha_rr_terminate subroutine is successful, it returns a value of 0. The file
descriptor that was returned by the ha_rr_makserv subroutine must no longer be
used in an argument to the select or poll system call.

 Error Values
If the ha_rr_terminate subroutine is unsuccessful, it returns a value of -1 and other
error information in the error block specified on input. The error block contains an
error number and a null-terminated error message.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_em_err_blk

Subroutines: ha_rr_makserv

116 RS/6000 Cluster Technology Event Management Programming

 ha_rr_touch

 ha_rr_touch Subroutine

 Purpose
ha_rr_touch – Meet “send” frequency requirements when there are no resource
variable values to send to the Resource Monitor Application Programming Interface
(RMAPI)

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_touch(
 struct ha_em_err_blk \rr_errb)

 Parameters
rr_errb A pointer to an error block structure.

 Description
The ha_rr_touch subroutine is used by the resource monitor to meet “send”
frequency requirements when it has no resource variable values to send to the
RMAPI.

If any of the variables that were added to the list of those known to the RMAPI by a
resource monitor are of value type Counter or Quantity and they are configured to
be supplied to the performance monitor, then every 500 seconds the resource
monitor must call either the ha_rr_send_val subroutine (to send values) or the
ha_rr_touch subroutine.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Return Values
If the ha_rr_touch subroutine is successful, it returns a value of 0.

 Chapter 3. Event Management Subroutine Reference 117

 ha_rr_touch

 Error Values
If the ha_rr_touch subroutine is unsuccessful, it returns a value of -1 and other
error information in the error block specified on input. The error block contains an
error number and a null-terminated error message.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_em_err_blk

Subroutines: ha_rr_send_val

118 RS/6000 Cluster Technology Event Management Programming

 ha_rr_unreg_var

 ha_rr_unreg_var Subroutine

 Purpose
ha_rr_unreg_var – Unregister a variable instance with the Resource Monitor
Application Programming Interface (RMAPI)

 Library
RMAPI Library (not thread-safe) (libha_rr.a)

 Syntax
#include <ha_rmapi.h>

int
 ha_rr_unreg_var(
 struct ha_rr_variable \pv,
 int numv,
 struct ha_em_err_blk \rr_errb)

 Parameters
pv A pointer to an array of ha_rr_variable structures, which contain

the names and resource IDs of the resource variable instances to
be unregistered.

numv The number of elements in the array pointed to by the pv
parameter.

rr_errb A pointer to an error block structure.

 Description
The ha_rr_unreg_var subroutine is used by the resource monitor to unregister
resource variable instances with the RMAPI. It is called when the resource variable
no longer exists.

If a variable instance has been added to the RMAPI by a call to the ha_rr_add_var
subroutine, the call to the ha_rr_unreg_var subroutine automatically deletes it. If
the variable instance is successfully unregistered, the handle returned by the
ha_rr_add_var subroutine is no longer valid and must not be used in any further
calls to the RMAPI.

The ha_rr_variable structure has the following definition:

 Chapter 3. Event Management Subroutine Reference 119

 ha_rr_unreg_var

struct ha_rr_variable {
 char \rr_var_name;
 char \rr_var_rsrc_ID;
 union {
 int rr_var_inst_id;
 void \\rr_var_hndl;
 } rr_varu;
#define rr_var_handle rr_varu.rr_var_hndl
#define rr_var_iid rr_varu.rr_var_inst_id
 void \rr_value;
 int rr_var_errno;
}

The rr_var_name field is a pointer to a string that contains the name of a resource
variable.

The rr_var_rsrc_ID field is a pointer to a string that contains the resource ID of an
instance of the specified variable. The resource ID must be fully qualified; no
wildcarding is permitted.

The resource ID is specified as a comma-separated list of name/value pairs. A
name/value pair consists of a resource ID element name followed by an equal sign
followed by the value of the resource ID element. There are no blanks in the
resource ID.

The rr_varu field is not used.

The rr_value field is not used.

The rr_var_errno field is used to hold the result of the operation for each variable.

 Security
The calling process must have a real or effective group ID of haemrm , or must
have the haemrm group ID in its supplemental group list. If the process is not in
the haemrm group, its effective user ID must be root .

If the calling process is instance 0 of the resource monitor, and the monitor is
configured to supply Counter or Quantity variables to the Performance Monitor, it
must have an effective user ID of root .

 Restrictions
If the name of one of the elements in any resource ID matches the resource ID
element name specified by the Locator field in the associated resource variable
definition, that resource ID element name/value pair is never supplied by the
resource monitor in the resource ID specified by the rr_var_rsrc_ID field.

The Event Management subsystem starts to cache resource variable instances
once they have been registered through the RMAPI. Until the first send of an
instance value occurs, the instance assumes the default value from the
configuration file. Variable instances are removed from this cache only when they
are unregistered; they are not removed if the resource monitor terminates without
calling the ha_rr_unreg_var subroutine. Therefore, even if a resource monitor
terminates, its variable instances are still available for query through the EMAPI.

120 RS/6000 Cluster Technology Event Management Programming

 ha_rr_unreg_var

Typically, a command-based resource monitor does not call the ha_rr_unreg_var
subroutine.

The monitor should wait 10 seconds before reusing any instance identifiers of
unregistered variables. Variable instance identifiers are supplied to the RMAPI by
the resource monitor when variables are registered, in the rr_var_inst_id field of
ha_rr_variable structure.

 Return Values
If the ha_rr_unreg_var subroutine is successful, it returns the number of resource
variables that were unregistered. For each variable that was successfully
unregistered, the associated rr_var_errno field in the ha_rr_variable structure is
set to 0. If a variable could not be unregistered, an error code is placed in its
rr_var_errno field.

 Error Values
If the ha_rr_unreg_var subroutine is unsuccessful, it returns a value of -1 and
other error information in the error block specified on input. The error block
contains an error number and a null-terminated error message.

The following error number requires specific handling by the resource monitor:

HA_RR_EDISCONNECT This error is only returned to client type resource monitors
and indicates that the session created by a call to ha_rr_start_session
was closed by the Event Management daemon. The resource monitor
should respond by calling ha_rr_terminate to end the current use of the
RMAPI.

The RMAPI error block and error numbers are defined in the ha_rmapi.h header
file. For more information on RMAPI errors, see “RMAPI Errors (err_rmapi)” on
page 159.

For information about error messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

 Examples
For examples of using RMAPI subroutines, see the programs in the RSCT product
samples directory, /usr/sbin/rsct/samples/haem/rmapi .

 Files
ha_rmapi.h

 Prerequisite Information
Chapter 1, “Understanding Event Management” on page 1.

 Related Information
Structures in the ha_rmapi.h header file: ha_rr_variable

Subroutines: ha_rr_reg_var .

 Chapter 3. Event Management Subroutine Reference 121

 ha_rr_unreg_var

122 RS/6000 Cluster Technology Event Management Programming

Chapter 4. Event Management Files Reference

This chapter contains the reference material for the error numbers and header files
in the Event Management Application Programming Interface (EMAPI) and the
Resource Monitor Application Programming Interface (RMAPI). The files are listed
alphabetically.

 Copyright IBM Corp. 1998 123

 EMAPI Errors

EMAPI Errors (err_emapi)

 Purpose
EMAPI Errors – Error numbers and the error block for the Event Management
Application Programming Interface (EMAPI)

 Description
The Event Management Application Programming Interface (EMAPI) provides
several classes of errors. These consist of errors that are returned:

� Synchronously by EMAPI subroutines

� Asynchronously as the result of EMAPI commands.

Synchronous Errors Returned by EMAPI Subroutines

If an EMAPI subroutine is unsuccessful, it returns a value of -1 and other error
information in the error block specified on input. The error block contains an error
number and a null-terminated error message.

The EMAPI uses an error block that is common to both the EMAPI and the RMAPI.
The block is defined in the ha_emcommon.h header file that is included by the
ha_emapi.h header file.

The EMAPI error numbers are defined in the ha_emapi.h header file.

The Event Management error block has the following definition:

struct ha_em_err_blk {
 int em_errline;
 char em_errlevel[HA_EM_MAXERRLVL];
 char em_errfile[HA_EM_MAXERRFN];
 int em_errno;
 char em_errmsg[HA_EM_MAXERRMSG];
}

The em_errline , em_errlevel , and em_errfile fields are reserved for IBM use in
providing information for problem determination.

If an error occurs, the em_errno field contains one of the values listed below. The
em_errmsg field contains a message text that describes the error in further detail.
For information about EMAPI messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

The EMAPI error numbers are:

HA_EM_EGETDOMAINFO
The Event Management subsystem could not get information about the
domain that is associated with a session.

HA_EM_EGETNODNUM
The Event Management subsystem could not determine the number of
the node on which the application is running.

124 RS/6000 Cluster Technology Event Management Programming

 EMAPI Errors

HA_EM_ESDROPEN
The Event Management subsystem could not establish a System Data
Repository (SDR) session.

HA_EM_ESDRGET
The Event Management subsystem could not obtain required information
from the System Data Repository (SDR).

HA_EM_ENOMEM
The Event Management subsystem could not allocate required memory.

HA_EM_ESYSCALL
The Event Management subsystem received an unexpected error from a
system call.

HA_EM_EEXIST
A connection to the Event Management subsystem was being created
using a file descriptor that was already being used for another
connection to the Event Management subsystem. This can occur if the
EM client closes a file descriptor that is an Event Management session
handle. An EM client should not close such a descriptor. When an Event
Management session is no longer needed, it should be ended through a
call to the ha_em_end_session subroutine.

HA_EM_ECONNREFUSED
The Event Management subsystem refused a requested connection.

This error can be received during a call to either the
ha_em_start_session or the ha_em_restart_session subroutine. It
indicates that the Event Management subsystem either is not running, is
recovering from a failure, or is initializing itself. The EM client may wish
to exit or retry the call repeatedly at some interval until the call is
successful. The interval selected depends on the needs of the client
application, but it is probably not useful for the interval to be less than 5
seconds long.

The EM client may try to establish the connection indefinitely, or it may
give up after a number of failed attempts. How persistent the EM client
is in attempting to establish the connection depends on the needs of the
client application.

HA_EM_ENOCONNECT
An error occurred while the Event Management subsystem attempted a
connection.

HA_EM_ECONNLOST
The connection with the Event Management subsystem was lost. To
reconnect to the Event Management subsystem, use the
ha_em_restart_session subroutine.

HA_EM_EAUTHENT
The Event Management subsystem could not authenticate the user.

HA_EM_EAUTHOR
The user is not authorized to use the Event Management subsystem.

HA_EM_ESECSERV
An error occurred while requesting a security service.

 Chapter 4. Event Management Files Reference 125

 EMAPI Errors

HA_EM_ENOENT
The specified session does not exist.

HA_EM_EBUSY
The specified session is busy. This can occur when multiple threads are
attempting to use the same session at the same time. It is
recommended that an Event Management session be used by only one
thread.

HA_EM_EINVALID
An invalid parameter was specified.

HA_EM_ENOTOWNER
The process does not own the specified session.

HA_EM_EUNEXPECTED
The Event Management subsystem encountered an unexpected
condition.

HA_EM_EUNUSABLE
The specified session has become unusable. The session may have
become unusable because of an error previously reported for the
session. In a multi-threaded program, a session can also become
unusable if a thread that is executing an EMAPI subroutine is canceled
with the pthread_cancel system call.

HA_EM_ECONNECTED
A restart of the specified session is not permitted, because the session's
connection with the Event Management subsystem has not been lost.

Asynchronous Errors Resulting from EMAPI Commands

When an asynchronous error occurs as the result of a command, the Event
Management subsystem indicates that there is an error by setting the em_error
field of one of the structures specified in the em_resp_blk union of the
ha_em_rsp_blk structure to a nonzero value. It also passes two error codes in the
em_error_codes array. The first element of the array contains a general error code
that indicates the nature of the operation that resulted in the error. The second
element indicates in more detail the actual error.

The general error codes are:

HA_EM_RSP_EGEN_COMMAND
An error was detected in the specification of a command.

HA_EM_RSP_EGEN_RESOURCE
An error was caused because an internal Event Management subsystem
resource was temporarily unavailable.

HA_EM_RSP_EGEN_RESMON
An error resulted from starting or communicating with a resource
monitor.

HA_EM_RSP_EGEN_EVALERR
An error was detected during the evaluation of an expression.

Each general error code can have a specific error code associated with it.

Unless otherwise stated, if any of these specific error codes are returned in the
em_error field of the ha_em_rpb_rerr or ha_em_rpb_qerr structures, then if the

126 RS/6000 Cluster Technology Event Management Programming

 EMAPI Errors

value of the em_errinfo1 field in the ha_em_rpb_rerr structure or the value of the
em_errinfo field in the ha_em_rpb_qerr structure is nonzero, the nonzero value
represents the position of the error within the input string that is in error, as
specified by the specific error code.

The specific error codes associated with each general error code are listed below.

The HA_EM_RSP_EGEN_COMMAND General Error Code

Specific error codes associated with the HA_EM_RSP_EGEN_COMMAND general
error code are:

HA_EM_RSP_ENOVARENT
The specified variable name does not exist in the Event Management
Configuration Database (EMCDB).

HA_EM_RSP_EEXPR
The specified expression could not be parsed correctly. In the
ha_em_rpb_rerr structure, the expression parsing error is contained in
the em_errinfo0 field and the position of the error within the expression
is contained in the em_errinfo1 field.

For a list of parsing errors, see the expression parsing error section later
in this man page.

HA_EM_RSP_ERAEXPR
The specified rearm expression could not be parsed correctly. In the
ha_em_rpb_rerr structure, the expression parsing error is contained in
the em_errinfo0 field and the position of the error within the expression
is contained in the em_errinfo1 field.

For a list of parsing errors, see the expression parsing error section later
in this man page.

HA_EM_RSP_ENODFLTEXPR
No expression was specified and no default expression is configured.

HA_EM_RSP_ENORIDNAME
The specified resource ID was missing a resource ID element name.

HA_EM_RSP_ENORIDVALUE
The specified resource ID was missing a resource ID element value.

HA_EM_RSP_ERIDSYNTAX
The specified resource ID contained a syntax error.

HA_EM_RSP_ERIDVALLENGTH
A resource ID element value length, including the terminating null
character, was longer than the maximum allowed (
HA_EM_RSRC_ID_ELEM_VALUE_LEN_MAX).

HA_EM_RSP_EMISSINGRID
The specified resource ID was missing a required element.

HA_EM_RSP_EDUPRIDENT
The specified resource ID contained a duplicate element.

HA_EM_RSP_ENORIDENT
The specified resource ID contained an element that is not defined for
the specified variable.

 Chapter 4. Event Management Files Reference 127

 EMAPI Errors

HA_EM_RSP_EINVALEID
An invalid event ID was specified.

HA_EM_RSP_ECLASSMISMATCH
The specified class does not match the class defined for the specified
variable.

HA_EM_RSP_ERIDMISMATCH
The specified resource ID does not match the resource ID defined for
the specified variable(s).

HA_EM_RSP_EWCRMISMATCH
The class, if specified, and/or the resource ID, if specified, do not match
the class and/or resource ID defined for any of the variables that
matched the specified wildcarded variable name.

HA_EM_RSP_ENOCLASS
The specified class name does not exist in the Event Management
Configuration Database (EMCDB).

HA_EM_RSP_ERIDTOOLONG
The specified resource ID string is too long.

HA_EM_RSP_EINVALNODENUM
A node number implied in a resource ID is not within the range
supported by the Event Management subsystem.

HA_EM_RSP_EINVALRIDVAL
A resource ID element value of type integer is invalid. It is either less
than 0, greater than 4096 or, if a range is specified, the second value is
less than the first.

Expression Parsing Error Codes

Expression parsing error codes associated with the HA_EM_RSP_EEXPR,
HA_EM_RSP_ERAEXPR , and HA_EM_RSP_EGEN_EVALERR error codes are:

HA_EM_EXPR_ERVAR
There is an internal resource variable error. Contact the IBM Support
Center.

HA_EM_EXPR_EEXPRLEN
The parsing table overflowed.

HA_EM_EXPR_ESYNTAX
There is an error in the syntax of the expression.

HA_EM_EXPR_ESTACK
An internal stack overflowed. Contact the IBM Support Center.

HA_EM_EXPR_EILLEGALOP
The specified operation is illegal between the specified data types.

HA_EM_EXPR_ESTRING
There is an error in the syntax of a string constant.

HA_EM_EXPR_ESBSSN
The serial number of a structured byte string field is either missing or
out of range.

128 RS/6000 Cluster Technology Event Management Programming

 EMAPI Errors

HA_EM_EXPR_EFIELDTYPE
The data type of a structured byte string field is either illegal or does not
match its value.

HA_EM_EXPR_EDATATYPE
There is an internal data type error. Contact the IBM Support Center.

HA_EM_EXPR_ESBSLEN
There is a mismatch between the data type and the length of structured
byte string field.

HA_EM_EXPR_EDIVIDE
An attempt was made to divide by zero.

HA_EM_EXPR_EOCTAL_INVALID
An octal value was not valid.

HA_EM_EXPR_EOCTAL_2BIG
An octal value was greater than the maximum allowed.

The HA_EM_RSP_EGEN_RESOURCE General Error Code

Specific error codes associated with the HA_EM_RSP_EGEN_RESOURCE general
error code are:

HA_EM_RSP_EQNONE
The Event Management subsystem could not generate a response for
this query.

HA_EM_RSP_EQCOMPLETE
The query is complete. All information was returned in previous
responses.

HA_EM_RSP_EINSTNOTAVAIL
The variable instance was not available.

HA_EM_RSP_EINSTSTALE
The variable instance is stale, that is, the resource monitor that supplies
the instance has terminated unexpectedly.

HA_EM_RSP_EDAEMONGONE
The Event Management daemon that supplies instances that match the
resource ID has terminated.

HA_EM_RSP_ESHMEM
The variable instance value could not be obtained due to a shared
memory error.

The HA_EM_RSP_EGEN_RESMON General Error Code

Specific error codes associated with the HA_EM_RSP_EGEN_RESMON general
error code are:

HA_EM_RSP_ERMLOCKSTATUS
An error was encountered while trying to obtain the lock status of the
resource monitor.

HA_EM_RSP_ERMNOTRUNNING
The resource monitor is not running and it cannot be started by the
Event Management subsystem.

 Chapter 4. Event Management Files Reference 129

 EMAPI Errors

HA_EM_RSP_ENOSTARTRM
The resource monitor could not be started by the Event Management
subsystem.

HA_EM_RSP_ENORMCONNECT
The Event Management subsystem could not connect to the resource
monitor.

The HA_EM_RSP_EGEN_EVALERR General Error Code

The specific error codes associated with the HA_EM_RSP_EGEN_EVALERR
general error code are the error codes listed in the expression parsing error section
elsewhere in this man page.

 Related Information
EMAPI subroutines: ha_em_end_session , ha_em_receive_response ,
ha_em_restart_session , ha_em_send_command , ha_em_start_session

EMAPI header file: ha_emapi.h

Messages: PSSP: Messages Reference or HACMP: Troubleshooting Guide

130 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

 ha_emapi.h File

 Purpose
ha_emapi.h – Header file for the Event Management Application Programming
Interface (EMAPI)

 Description
The ha_emapi.h header file provides data types and structures for use with the
Event Management Application Programming Interface (EMAPI) subroutines. The
EMAPI provides two libraries, one that is thread-safe (libha_em_r.a) and one that
is not (libha_em.a). Any program that uses the EMAPI subroutines must include
this file, which resides in the /usr/include directory.

The following listing shows the contents of the ha_emapi.h file. Nested header
files, ha_emapi_base.h and ha_emcommon.h , follow the ha_emapi.h file listing.

ha_emapi.h File

/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/

/\===\/
/\ \/
/\ Module Name: ha_emapi.h \/
/\ \/
/\ Description: \/
/\ \/
/\ Interface definitions of the Event Manager API needed by \/
/\ Event Manager API clients and the Event Manager API library. \/
/\ \/
/\ This file is formatted to be viewed with tab stops set to 4. \/
/\===\/

/\ @(#)41 1.12 src/rsct/pem/emcommon/ha_emapi.h, emcommon, rsct_rtro, rtrot2f2 2/19/98 22:ð9:15 \/

#ifndef _HA_EMAPI_H
#define _HA_EMAPI_H

/\---\/
/\ Event Manager API Versioning. \/
/\---\/

/\
 \ HA_EM_VERSION identifies the version of the Event Manager Application
 \ Programming Interface desired by a client. If the client has not
 \ specified a particular version, version 1 is used. The current valid
 \ versions are 1 and 2.

 Chapter 4. Event Management Files Reference 131

 ha_emapi

 \/

#ifndef HA_EM_VERSION
#define HA_EM_VERSION 1
#endif /\ HA_EM_VERSION \/

#if (HA_EM_VERSION < 1) || (HA_EM_VERSION > 2)
#error "HA_EM_VERSION MUST BE AN INTEGER BETWEEN 1 AND 2, INCLUSIVE."
#endif

/\
 \ The following macros convert references to the generic names of EMAPI
 \ routines, like ha_em_start_session(), to references to version specific
 \ EMAPI routines, like ha_em_start_session_1(). The version used during
 \ conversion is determined by the value of HA_EM_VERSION. Note that these
 \ macros can deal with the different versions of a routine having different
 \ arguments.
 \/

#define ha_em_start_session \
 HA_EM_ROUTINE_VERSION(ha_em_start_session, HA_EM_VERSION)

#define ha_em_restart_session \
 HA_EM_ROUTINE_VERSION(ha_em_restart_session, HA_EM_VERSION)

#define ha_em_end_session \
 HA_EM_ROUTINE_VERSION(ha_em_end_session, HA_EM_VERSION)

#define ha_em_send_command \
 HA_EM_ROUTINE_VERSION(ha_em_send_command, HA_EM_VERSION)

#define ha_em_receive_response \
 HA_EM_ROUTINE_VERSION(ha_em_receive_response, HA_EM_VERSION)

#define ha_em_get_ecgid \
 HA_EM_ROUTINE_VERSION(ha_em_get_ecgid, HA_EM_VERSION)

#define HA_EM_ROUTINE_VERSION(routine, version) \
 HA_EM_ROUTINE_VERSION_GLUE(routine, version)

#define HA_EM_ROUTINE_VERSION_GLUE(routine, version) \
routine ## _ ## version

/\---\/
/\ Event Manager API Include Files. \/
/\---\/

#include <ha_emapi_base.h>

/\---\/
/\ Event Manager API constants. \/
/\---\/

/\
 \ Event Manager error values.
 \/

#if (HA_EM_VERSION == 2) || defined(HA_EM_ALL_VERSIONS)
#define HA_EM_EGETDOMAINFO 1 /\ Could not get domain information \/
#endif

132 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

#if (HA_EM_VERSION == 1) || defined(HA_EM_ALL_VERSIONS)
#define HA_EM_EGETPARTINFO 1 /\ Could not get partition information \/
#endif

#define HA_EM_EGETNODNUM 2 /\ Could not determine host node number \/
#define HA_EM_ESDROPEN 3 /\ Could not establish a SDR session \/
#define HA_EM_ESDRGET 4 /\ Could not obtain needed info from SDR \/
#define HA_EM_ENOMEM 5 /\ Could not allocate needed memory \/
#define HA_EM_ESYSCALL 6 /\ Unexpected system call error \/
#define HA_EM_EEXIST 7 /\ Unexpected re-use of file descriptor \/
#define HA_EM_ECONNREFUSED 8 /\ Connection to E.M. daemon refused \/
#define HA_EM_ENOCONNECT 9 /\ Connection error to E.M. daemon \/
#define HA_EM_ECONNLOST 1ð /\ Connection lost with E.M. daemon \/
#define HA_EM_EAUTHENT 11 /\ Could not authenticate user \/
#define HA_EM_EAUTHOR 12 /\ User not authorized to use E.M. daemon\/
#define HA_EM_ESECSERV 13 /\ Security service error encountered \/
#define HA_EM_ENOENT 14 /\ Specified session does not exist \/
#define HA_EM_EBUSY 15 /\ Specified session is busy \/
#define HA_EM_EINVALID 16 /\ Invalid parameter specified \/
#define HA_EM_ENOTOWNER 17 /\ The process does not own the session \/
#define HA_EM_EUNEXPECTED 18 /\ Unexpected condition occurred \/
#define HA_EM_EUNUSABLE 19 /\ Specified session has become unusable \/
#define HA_EM_ECONNECTED 2ð /\ Session restart not permitted \/

/\
 \ Event Manager Domain Type Values.
 \/

#if (HA_EM_VERSION == 2) || defined(HA_EM_ALL_VERSIONS)
#define HA_EM_DOMAIN_SP 1 /\ The SP domain \/
#define HA_EM_DOMAIN_HACMP 2 /\ The HACMP domain \/
#endif

/\---\/
/\ Event Manager API type and structure definitions. \/
/\---\/

/\
 \ One event registration request is made through a ha_em_rb_reg
 \ (Event Manager Request Block: REGister) structure. This structure is
 \ included in the ha_em_res_blk union, defined later in this file.
 \/

struct ha_em_rb_reg {
char \em_name; /\ input: resource variable name \/
char \em_rsrc_ID; /\ input: resource ID \/

 char \em_expr; /\ input: experssion \/
 char \em_raexpr; /\ input: re-arm expression \/

ha_em_eid_t em_event_id; /\ output: event identifier \/
void (\em_cb)(int, struct ha_em_rpb_event \, void \);

/\ input: callback routine address \/
void \em_cb_arg; /\ input: callback routine argument \/

};

/\
 \ One query request is made through a ha_em_rb_query
 \ (Event Manager Request Block: QUERY) structure. This structure is
 \ actually defined in ha_emapi_base.h. It is included in the ha_em_res_blk
 \ union, defined later in this file.
 \/

struct ha_em_rb_query;

 Chapter 4. Event Management Files Reference 133

 ha_emapi

/\
 \ Multiple requests of a particular type are made through a ha_em_res_blk
 \ (Event Manager REquestS BLocK) union. All the requests must be of the
 \ same type. The type of array used depends on the type of the requests
 \ being made. The number of elements in the array depends on the number
 \ of requests being made. This union is included in the ha_em_cmd_blk
 \ structure, defined later in this file.
 \/

union ha_em_res_blk {
struct ha_em_rb_reg em_rb_reg[1]; /\ Used to register for events \/
ha_em_eid_t em_rb_unreg[1]; /\ Used to unregister events \/
struct ha_em_rb_query em_rb_query[1]; /\ Used to query for information \/

};

/\
 \ A block of requests of a particular type are made through a ha_em_cmd_blk
 \ (Event Manager CoMmand BLocK) structure passed to the ha_em_send_command()
\ routine. All the requests must be of the same type. The type of the
 \ requests are identified in the em_cmd and em_subcmd fields. The requests
 \ themselves are in an array within the ha_em_res_blk union.
 \/

struct ha_em_cmd_blk {
int em_cmd_num_elem; /\ input: number of requests \/
short em_cmd; /\ input: type of requests \/
short em_subcmd; /\ input: subtype of requests \/
ha_em_qid_t em_qid; /\ output: query identifier \/
void (\em_qcb)(int, struct ha_em_rsp_blk \, void \);

/\ input: query callback routine\/
void \em_qcb_arg; /\ input: query callback arg. \/
union ha_em_res_blk em_res_blk; /\ the array of requests \/

};

/\
 \ A block of responses of a particular type are delivered through a
 \ ha_em_rsp_blk (Event Manager ReSPonse BLocK) structure passed through
 \ the ha_em_receive_command() routine. This structure is
 \ actually defined in ha_emapi_base.h.
 \/

struct ha_em_rsp_blk;

/\---\/
/\ Event Manager API compatibility definitions. \/
/\ \/
/\ These definitions are provided to maintain source compatibility with \/
/\ programs written using prior versions of this header file. \/
/\ If these definitions result in inappropriate substitutions, then define \/
/\ the symbol HA_EM_NO_NAME_COMPAT prior to inclusion of this header file. \/
/\ If HA_EM_NO_NAME_COMPAT is defined, the source files that include this \/
/\ header file must be modified to use the new symbol names if the old \/
/\ symbol names are referenced therein. \/
/\---\/

#ifndef HA_EM_NO_NAME_COMPAT
#ifndef em_ivector
#define em_ivector em_rsrc_ID /\ replace em_ivector by em_rsrc_ID \/
#endif
#ifndef em_pred
#define em_pred em_expr /\ replace em_pred by em_expr \/
#endif
#ifndef em_rapred

134 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

#define em_rapred em_raexpr /\ replace em_rapred by em_raexpr \/
#endif
#endif /\ HA_EM_NO_NAME_COMPAT \/

/\---\/
/\ Event Manager API function prototypes - Version 2 \/
/\---\/

/\
 \ Function prototypes for functions intended for Event Manager API clients.
 \ Clients should use the generic routine names defined by macros included
 \ in this header file, such as ha_em_start_session(), instead of the version
 \ specific routine names, like ha_em_start_session_2(). Those macros
 \ convert the generic names to the appropriate version specific names.
 \/

#if ((HA_EM_VERSION == 2) || defined(HA_EM_ALL_VERSIONS)) && !defined(_NO_PROTO)

extern int ha_em_start_session_2(/\ Start an Event Manager session \/
int em_domain_type, /\ input: session domain type \/
char \em_domain_name, /\ input: session domain name \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: session ID or -1 (error) \/

extern int ha_em_restart_session_2(/\ Restart an Event Manager session \/
int em_session_fd, /\ input: old session ID \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: new ID or -1 (error) \/

extern int ha_em_end_session_2(/\ End an Event Manager session \/
int em_session_fd, /\ input: Event Manager session ID \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: ð or -1 (error) \/

extern int ha_em_send_command_2(/\ Send an Event Manager command \/
int em_session_fd, /\ input: Event Manager session ID \/
struct ha_em_cmd_blk \em_cmdb, /\ input/output: Command block \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: ð or -1 (error) \/

extern int ha_em_receive_response_2(/\ Receive an Event Manager response \/
int em_session_fd, /\ input: Event Manager session ID \/
struct ha_em_rsp_blk \\em_rsp_blk, /\ output: pointer to response block \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: number of responses \/
/\ (may be ð), or -1 (error) \/

extern ha_em_ecgid_t ha_em_get_ecgid_2(/\ Get event command group identifier\/
 ha_em_eid_t em_eid /\ input: event identifier \/
); /\ return: event command group ID \/

#endif

#if ((HA_EM_VERSION == 2) || defined(HA_EM_ALL_VERSIONS)) && defined(_NO_PROTO)
extern int ha_em_start_session_2(); /\ Start an Event Manager session \/
extern int ha_em_restart_session_2(); /\ Restart an Event Manager session \/
extern int ha_em_end_session_2(); /\ End an Event Manager session \/
extern int ha_em_send_command_2(); /\ Send an Event Manager command \/
extern int ha_em_receive_response_2(); /\ Receive an Event Manager response \/
extern ha_em_ecgid_t ha_em_get_ecgid_2(); /\ Get event command group ID \/
#endif

 Chapter 4. Event Management Files Reference 135

 ha_emapi

/\---\/
/\ Event Manager API function prototypes - Version 1 \/
/\---\/

/\
 \ Function prototypes for functions intended for Event Manager API clients.
 \ Clients should use the generic routine names defined by macros included
 \ in this header file, such as ha_em_start_session(), instead of the version
 \ specific routine names, like ha_em_start_session_1(). Those macros
 \ convert the generic names to the appropriate version specific names.
 \/

#if ((HA_EM_VERSION == 1) || defined(HA_EM_ALL_VERSIONS)) && !defined(_NO_PROTO)

extern int ha_em_start_session_1(/\ Start an Event Manager session \/
char \em_part_name, /\ input: SP partition of session \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: session ID or -1 (error) \/

extern int ha_em_restart_session_1(/\ Restart an Event Manager session \/
int em_session_fd, /\ input: old session ID \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: new ID or -1 (error) \/

extern int ha_em_end_session_1(/\ End an Event Manager session \/
int em_session_fd, /\ input: Event Manager session ID \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: ð or -1 (error) \/

extern int ha_em_send_command_1(/\ Send an Event Manager command \/
int em_session_fd, /\ input: Event Manager session ID \/
struct ha_em_cmd_blk \em_cmdb, /\ input/output: Command block \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: ð or -1 (error) \/

extern int ha_em_receive_response_1(/\ Receive an Event Manager response \/
int em_session_fd, /\ input: Event Manager session ID \/
struct ha_em_rsp_blk \\em_rsp_blk, /\ output: pointer to response block \/
struct ha_em_err_blk \em_errb /\ output: error description block \/

); /\ return: number of responses \/
/\ (may be ð), or -1 (error) \/

extern ha_em_ecgid_t ha_em_get_ecgid_1(/\ Get event command group identifier\/
 ha_em_eid_t em_eid /\ input: event identifier \/
); /\ return: event command group ID \/

#endif

#if ((HA_EM_VERSION == 1) || defined(HA_EM_ALL_VERSIONS)) && defined(_NO_PROTO)
extern int ha_em_start_session_1(); /\ Start an Event Manager session \/
extern int ha_em_restart_session_1(); /\ Restart an Event Manager session \/
extern int ha_em_end_session_1(); /\ End an Event Manager session \/
extern int ha_em_send_command_1(); /\ Send an Event Manager command \/
extern int ha_em_receive_response_1(); /\ Receive an Event Manager response \/
extern ha_em_ecgid_t ha_em_get_ecgid_1(); /\ Get event command group ID \/
#endif

#endif /\ _HA_EMAPI_H \/

136 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

ha_emapi_base.h File

/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/
/\ vi:set tabstop=4: \/
/\===\/
/\ \/
/\ Module Name: ha_emapi_base.h \/
/\ \/
/\ Description: \/
/\ \/
/\ Interface definitions of the Event Manager API needed by \/
/\ Event Manager API clients, the Event Manager API library, and the \/
/\ Event Manager daemon. \/
/\ \/
/\ This file is formatted to be viewed with tab stops set to 4. \/
/\===\/

/\ @(#)42 1.23 src/rsct/pem/emcommon/ha_emapi_base.h, emcommon, rsct_rtro, rtrot2f2 4/17/98 16:53:4ð \/

#ifndef _HA_EMAPI_BASE_H
#define _HA_EMAPI_BASE_H

#include <sys/time.h>

#include <ha_emcommon.h>

/\---\/
/\ Event Manager API constants. \/
/\---\/

/\
 \ Event Manager Commands.
 \/

#define HA_EM_CMD_REG 1 /\ Register for events \/
#define HA_EM_CMD_REG2 2 /\ Register for events from both expressions \/
#define HA_EM_CMD_UNREG 3 /\ Unregister events \/
#define HA_EM_CMD_QUERY 4 /\ Query for information \/

#define HA_EM_CMD_RERR 5 /\ Returned for registration command errors \/
#define HA_EM_CMD_R2ERR 6 /\ Returned for registration 2 command errors\/
#define HA_EM_CMD_QERR 7 /\ Returned for query command errors \/

/\
 \ Event Manager Subcommands for the HA_EM_CMD_REG and HA_EM_CMD_REG2 commands.
 \ The HA_EM_SCMD_REVAL and HA_EM_SCMD_RACK subcommands may be bitwise OR'ed
 \ if both functions are desired.
 \/

#define HA_EM_SCMD_REVAL 1 /\ Evaluate expression at first observation \/

 Chapter 4. Event Management Files Reference 137

 ha_emapi

/\ and return result as an event \/
#define HA_EM_SCMD_RACK 2 /\ Return ð error code if registration req \/

/\ has no errors, as part of \/
/\ HA_EM_CMD_RERR or HA_EM_CMD_R2ERR \/

 /\ response \/

/\
 \ Event Manager Subcommands for the HA_EM_CMD_QUERY command. These are also
 \ returned with HA_EM_CMD_QERR to indicate the query subcommand that
 \ resulted in errors.
 \/

#define HA_EM_SCMD_QCUR 1 /\ Query current resource variable values \/
#define HA_EM_SCMD_QDEF 2 /\ Query for defined resource variables and \/

/\ their default expressions \/
#define HA_EM_SCMD_QINST 3 /\ Query for resource variable instances in \/

/\ order to obtain their resource IDs \/
/\ (the returned values are last known) \/

/\
 \ Event Manager Error Codes, returned in em_error of the various response
 \ structures. General error codes indicate the nature of the operation that
 \ resulted in the error. Specific error codes detail the actual error.
 \/

#define HA_EM_RSP_EGEN_COMMAND 1 /\ This general error code indicates an \/
/\ error was detected in the \/
/\ specification of a command \/

/\---\/
/\ Specific error codes associated with HA_EM_RSP_EGEN_COMMAND \/
/\---\/
#define HA_EM_RSP_ENOVARENT 1 /\ The specified variable name does not \/

/\ exist in the EM data base \/
#define HA_EM_RSP_EEXPR 2 /\ The specified expression could not be \/

/\ correctly parsed. The expression \/
/\ parsing error is contained in the \/
/\ em_errinfoð field of the \/
/\ ha_em_rpb_rerr structure; the \/
/\ position of the error within the \/
/\ expression is contained in the \/
/\ em_errinfo1 field of the \/
/\ ha_em_rpb_rerr structure. \/

#define HA_EM_RSP_ERAEXPR 3 /\ The specified re-arm expression could \/
/\ not be correctly parsed. The returned \/
/\ value is encoded as for the \/
/\ HA_EM_RSP_EEXPR error. \/

#define HA_EM_RSP_ENODFLTEXPR 4 /\ No expression was specified and no \/
/\ default expression is configured \/

#define HA_EM_RSP_ENORIDNAME 5 /\ the specified resource ID was missing \/
/\ a resource ID element name \/

#define HA_EM_RSP_ENORIDVALUE 6 /\ the specified resource ID was missing \/
/\ a resource ID element value \/

#define HA_EM_RSP_ERIDSYNTAX 7 /\ the specified resource ID contained \/
/\ a syntax error. \/

#define HA_EM_RSP_ERIDVALLENGTH 8 /\ a resource ID value length was longer \/
/\ including the terminating NULL, than \/

 /\ HA_EM_RSRC_ID_ELEM_VALUE_LEN_MAX \/
#define HA_EM_RSP_EMISSINGRID 9 /\ the specified resource ID was missing \/

/\ a required element. \/
#define HA_EM_RSP_EDUPRIDENT 1ð /\ the specified resource ID contained \/

/\ a duplicate element. \/
#define HA_EM_RSP_ENORIDENT 11 /\ the specified resource ID contained \/

/\ an element that is not defined for \/

138 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

/\ the specified variable. \/
#define HA_EM_RSP_EINVALEID 12 /\ An invalid event ID was specified. \/
#define HA_EM_RSP_ECLASSMISMATCH 13 /\ The specified class does not \/

/\ match the class defined for the \/
/\ specified variable. \/

#define HA_EM_RSP_ERIDMISMATCH 14 /\ The specified resource ID does not \/
/\ match the resource ID defined for \/
/\ the specified variable(s). \/

#define HA_EM_RSP_EWCRMISMATCH 15 /\ The class, if specified, and/or the \/
/\ resource ID, if specified, do not \/
/\ match the class and/or resource ID \/
/\ defined for any of the variables that \/
/\ matched the specified wildcarded \/
/\ variable name. \/

#define HA_EM_RSP_ENOCLASS 16 /\ The specified class name does not \/
/\ exist in the EM data base \/

#define HA_EM_RSP_ERIDTOOLONG 17 /\ The specified resource ID string is \/
/\ too long. \/

#define HA_EM_RSP_EINVALNODENUM 18 /\ A node number implied in a resource \/
/\ ID isn't within the range supported \/
/\ by the Event Manager \/

#define HA_EM_RSP_EINVALRIDVAL 19 /\ A resource ID value of type 'int' is \/
/\ invalid, i.e. less than ð, greater \/
/\ than 4ð96 or, if the second value in \/
/\ a value range, it is less than the \/
/\ first value in the range \/

#define HA_EM_RSP_EPRED HA_EM_RSP_EEXPR /\ for compatibility \/
#define HA_EM_RSP_ERAPRED HA_EM_RSP_ERAEXPR /\ for compatibility \/
#define HA_EM_RSP_ENODFLTPRED HA_EM_RSP_ENODFLTEXPR /\ for compatibility \/
#define HA_EM_RSP_ENOVECNAME HA_EM_RSP_ENORIDNAME /\ for compatibility \/
#define HA_EM_RSP_ENOVECVALUE HA_EM_RSP_ENORIDVALUE /\ for compatibility \/
#define HA_EM_RSP_EVECSYNTAX HA_EM_RSP_ERIDSYNTAX /\ for compatibility \/
#define HA_EM_RSP_EVECVALLENGTH HA_EM_RSP_ERIDVALLENGTH /\ for compatibility \/
#define HA_EM_RSP_EMISSINGVEC HA_EM_RSP_EMISSINGRID /\ for compatibility \/
#define HA_EM_RSP_EDUPVECENT HA_EM_RSP_EDUPRIDENT /\ for compatibility \/
#define HA_EM_RSP_ENOVECENT HA_EM_RSP_ENORIDENT /\ for compatibility \/
#define HA_EM_RSP_EVECMISMATCH HA_EM_RSP_ERIDMISMATCH /\ for compatibility \/
#define HA_EM_RSP_EWCVMISMATCH HA_EM_RSP_EWCRMISMATCH /\ for compatibility \/
#define HA_EM_RSP_EVECTOOLONG HA_EM_RSP_ERIDTOOLONG /\ for compatibility \/
#define HA_EM_RSP_EINVALVECVAL HA_EM_RSP_EINVALRIDVAL /\ for compatibility \/

#define HA_EM_RSP_EGEN_RESOURCE 2 /\ This general error code indicates an \/
/\ error was due to the temporary \/
/\ unavailability of an internal Event \/
/\ Manager resource. \/

/\---\/
/\ Specific error codes associated with HA_EM_RSP_EGEN_RESOURCE \/
/\---\/
#define HA_EM_RSP_EQNONE 1 /\ No response could be generated for \/

/\ this individual query request. \/
#define HA_EM_RSP_EQCOMPLETE 2 /\ The query is complete; all data was \/

/\ returned in previous message(es) \/
#define HA_EM_RSP_EINSTNOTAVAIL 3 /\ Variable instance not available \/
#define HA_EM_RSP_EINSTSTALE 4 /\ Variable instance is stale, i.e. the \/

/\ resource monitor supplying the \/
/\ instance has terminated unexpectedly. \/

#define HA_EM_RSP_EDAEMONGONE 5 /\ the Event Manager daemon supplying \/
/\ instances matching the resource ID \/
/\ has terminated. \/

#define HA_EM_RSP_ESHMEM 6 /\ Variable instance value cannot be \/
/\ obtained due to a shared memory error \/

 Chapter 4. Event Management Files Reference 139

 ha_emapi

#define HA_EM_RSP_EGEN_RESMON 3 /\ This general error code indicates an \/
/\ error resulted from starting or \/
/\ communicating with a resource monitor \/

/\---\/
/\ Specific error codes associated with HA_EM_RSP_EGEN_RESMON \/
/\---\/
#define HA_EM_RSP_ERMLOCKSTATUS 1 /\ Error in obtaining resource monitor \/

/\ lock status. \/
#define HA_EM_RSP_ERMNOTRUNNING 2 /\ a resource monitor is not running and \/

/\ it cannot be started by Event Mgt \/
#define HA_EM_RSP_ENOSTARTRM 3 /\ a resource monitor could not be \/

/\ started by Event Management \/
#define HA_EM_RSP_ENORMCONNECT 4 /\ the Event Management daemon could not \/

/\ connect to a resource monitor. \/

#define HA_EM_RSP_EGEN_EVALERR 4 /\ This general error code indicates an \/
/\ error was detected in the evaluation \/
/\ of a expression \/

/\---\/
/\ Specific error codes associated with HA_EM_RSP_EGEN_EVALERR are defined \/
/\ in ha_emcommon.h using names of the form HA_EM_EXPR_\. \/
/\---\/

/\---\/
/\ Event Manager API type and structure definitions. \/
/\---\/

/\
 \ Event command group identifiers are of type ha_em_ecgid_t
 \ (Event Manager Event Command Group IDentifier).
 \/

typedef unsigned long ha_em_ecgid_t;

/\
 \ Event identifiers are of type ha_em_eid_t (Event Manager Event IDentifier).
 \/

typedef unsigned long ha_em_eid_t;

/\
 \ Query identifiers are of type ha_em_qid_t (Event Manager Query IDentifier).
 \/

typedef unsigned long ha_em_qid_t;

/\
 \ One query request is made through a ha_em_rb_query
 \ (Event Manager Request Block: QUERY) structure. This structure is
 \ included in the ha_em_res_blk union, defined in ha_emapi.h.
 \/

struct ha_em_rb_query {
char \em_class; /\ input: resource variable class name \/
char \em_name; /\ input: resource variable name \/
char \em_rsrc_ID; /\ input: resource ID \/

};

140 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

/\
 \ Resource variables can have one of three types of values, signed long
 \ integer, float, or structured byte string. The ha_em_val (Event Manager
 \ VALue) union reflects these possibilities.
 \/

union ha_em_val {
 long em_vall; /\ output: long integer value \/

float em_valf; /\ output: floating point value \/
 void \em_valsbs; /\ output: structured byte string value \/
};

/\
 \ Event Manager error codes consist of a general error code and a specific
 \ error code, encoded in the ha_em_errnum union.
 \/

union ha_em_errnum {
 unsigned int em_error_number;
 unsigned short em_error_codes[2];
};

#define em_errnum em_error.em_error_number /\ for quick tests \/
#define em_generr em_error.em_error_codes[ð] /\ general error code \/
#define em_specerr em_error.em_error_codes[1] /\ specific error code \/

/\
 \ The occurrence of an event, or the unregistration of an event, is reported
 \ through a ha_em_rpb_event (Event Manager ResPonse Block: EVENT) structure.
 \ This structure is included in the ha_em_resp_blk union, defined later in
 \ this file.
 \/

struct ha_em_rpb_event {
union ha_em_errnum em_error; /\ output: error number \/
ha_em_eid_t em_event_id; /\ output: event identifier \/
unsigned long em_event_flags; /\ output: event flags. See below \/
struct timeval em_timestamp; /\ output: time of event \/
int em_location; /\ output: node generating event \/
char \em_name; /\ output: resource variable name \/
char \em_rsrc_ID; /\ output: resource ID \/
enum ha_emData_Type em_data_type; /\ output: resource var. data type \/
union ha_em_val em_val; /\ output: resource variable value \/

};

#define HA_EM_EVENT_RE_ARM ðxððð1 /\ event generated from re-arm \/
 /\ expression. \/
#define HA_EM_EVENT_EXPR_FALSE ðxððð2 /\ expression evaluated to FALSE. \/

/\ (response to HA_EM_SCMD_REVAL \/
 /\ subcommand) \/
#define HA_EM_EVENT_UNREG ðxððð4 /\ event has been unregistered \/
#define HA_EM_EVENT_PRED_FALSE HA_EM_EVENT_EXPR_FALSE /\ for compatibility \/

/\
 \ When the current value of a resource variable is queried, it is reported
 \ through a ha_em_rpb_qcur (Event Manager ResPonse Block: Query CURrent)
\ structure. This structure is included in the ha_em_resp_blk union,
 \ defined later in this file.
 \
 \ This structure is also used to return the resource IDs of variables
 \ when the current value is not required (although the last known value
 \ is returned).
 \/

 Chapter 4. Event Management Files Reference 141

 ha_emapi

struct ha_em_rpb_qcur {
union ha_em_errnum em_error; /\ output: error number \/
int em_location; /\ output: node containing variable \/
char \em_name; /\ output: name of resource variable \/
char \em_rsrc_ID; /\ output: resource ID \/
enum ha_emData_Type em_data_type; /\ output: resource var. data type \/
union ha_em_val em_val; /\ output: resource variable value \/

};

/\
 \ When defined resource variables and expressions are queried, they are
 \ reported through ha_em_rpb_qdef (Event Manager ResPonse Block: Query
 \ DEFined) structure. This structure is included in the ha_em_resp_blk union,
 \ defined later in this file.
 \/

struct ha_em_rpb_qdef {
union ha_em_errnum em_error; /\ output: error number \/
char \em_name; /\ output: name of resource variable \/
char \em_descrp; /\ output: resource variable description \/
enum ha_emValue_Type em_value_type; /\ output: Counter, Quantity, or \/

 /\ State \/
enum ha_emData_Type em_data_type; /\ output: long, float, or structured\/

/\ byte string (SBS) \/
 char \em_sbs_format; /\ output: description of SBS format \/
 char \em_init_value; /\ output: initial value of variable \/
 char \em_class; /\ output: variable's resource class \/
 char \em_rsrc_ID; /\ output: resource ID definition \/
 char \em_rsrc_ID_descrp; /\ output: resource ID description \/
 char \em_ptx_name; /\ output: PTX shared memory name \/
 char \em_dflt_expr; /\ output: default expression \/
 char \em_event_descrp; /\ output: event description \/
 char \em_locator; /\ output: location indicator \/
 char \em_order_group; /\ output: resource variable order group \/
};

/\
 \ When the parsing of an element in an event registration request results in
 \ an error, it is reported through a ha_em_rpb_rerr (Event Manager ResPonse
 \ Block: Registration ERRor) structure. This structure is included in the
 \ ha_em_resp_blk union, defined later in this file.
 \
 \ The fields in this structure are a reflection of the information in the
 \ request in error.
 \/

struct ha_em_rpb_rerr {
 union ha_em_errnum em_error; /\ output: error number \/

char \em_name; /\ output: resource variable name \/
 char \em_rsrc_ID;/\ output: resource ID \/
 char \em_expr; /\ output: expression \/

char \em_raexpr; /\ output: re-arm expression \/
short em_errinfoð;/\ output: additional error info \/
unsigned short em_errinfo1;/\ output: additional error info \/

 ha_em_eid_t em_event_id; /\ output: event identifier \/
};
#define em_expr_err em_errinfoð /\ output: expression parsing error \/
#define em_expr_pos em_errinfo1 /\ output: position of parsing error \/
#define em_pred_err em_expr_err /\ for compatibility \/
#define em_pred_pos em_expr_pos /\ for compatibility \/

/\
 \ When the parsing of an element in a query request results in an error, it
 \ is reported through a ha_em_rpb_qerr (Event Manager ResPonse Block: Query

142 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

 \ ERRor) structure. This structure is included in the ha_em_resp_blk union,
 \ defined later in this file.
 \
 \ The fields in this structure are a reflection of the information in the
 \ request in error.
 \/

struct ha_em_rpb_qerr {
 union ha_em_errnum em_error; /\ output: error number \/

char \em_class; /\ output: resource variable class name \/
char \em_name; /\ output: resource variable name \/

 char \em_rsrc_ID;/\ output: resource ID \/
unsigned short em_errinfo; /\ output: additional error info \/

};

/\
 \ Multiple responses of a particular type are made through a ha_em_resp_blk
 \ (Event Manager RESPonse BLocK) union. All the responses are of the
 \ same type. The number of elements in the array depends on the number
 \ of responses being made. This union is included in the ha_em_rsp_blk
 \ structure, defined later in this file.
 \/

union ha_em_resp_blk {
struct ha_em_rpb_event em_rpb_event[1]; /\ Used for events \/
struct ha_em_rpb_qcur em_rpb_qcur[1]; /\ Used for current values \/
struct ha_em_rpb_qdef em_rpb_qdef[1]; /\ Used for defined variables\/
struct ha_em_rpb_rerr em_rpb_rerr[1]; /\ Used for reg cmd errors \/
struct ha_em_rpb_qerr em_rpb_qerr[1]; /\ Used for query cmd errors \/

};

/\
 \ A block of responses of a particular type are delivered through a
 \ ha_em_rsp_blk (Event Manager ReSPonse BLocK) structure passed through
 \ the ha_em_receive_command() routine. All the responses are of the same type.
 \ The type of the requests are identified in the em_cmd and em_subcmd
\ fields. The responses themselves are in an array within the ha_em_resp_blk
 \ union.
 \/

struct ha_em_rsp_blk {
int em_rsp_blk_len; /\ output: length of responses \/
int em_rsp_num_resp;/\ output: number of responses \/
short em_cmd; /\ output: type of responses \/
short em_subcmd; /\ output: subtype of responses \/
ha_em_qid_t em_qid; /\ output: query identifier \/
int em_qend; /\ output: query response end \/

 union ha_em_resp_blk em_resp_blk; /\ output: the array of responses\/
};

/\---\/
/\ Event Manager API compatibility definitions. \/
/\ \/
/\ These definitions are provided to maintain source compatibility with \/
/\ programs written using prior versions of this header file. \/
/\ If these definitions result in inappropriate substitutions, then define \/
/\ the symbol HA_EM_NO_NAME_COMPAT prior to inclusion of this header file. \/
/\ If HA_EM_NO_NAME_COMPAT is defined, the source files that include this \/
/\ header file must be modified to use the new symbol names if the old \/
/\ symbol names are referenced therein. \/
/\---\/

 Chapter 4. Event Management Files Reference 143

 ha_emapi

#ifndef HA_EM_NO_NAME_COMPAT
#ifndef em_ivector
#define em_ivector em_rsrc_ID /\ replace em_ivector by em_rsrc_ID \/
#endif
#ifndef em_ivector_descrp
#define em_ivector_descrp em_rsrc_ID_descrp

/\ replace em_ivector_descrp by
 em_rsrc_ID_descrp \/
#endif
#ifndef em_dflt_pred
#define em_dflt_pred em_dflt_expr

/\ replace em_dflt_pred by em_dflt_expr \/
#endif
#ifndef em_pred
#define em_pred em_expr /\ replace em_pred by em_expr \/
#endif
#ifndef em_rapred
#define em_rapred em_raexpr /\ replace em_rapred by em_raexpr \/
#endif
#endif /\ HA_EM_NO_NAME_COMPAT \/

#endif /\ _HA_EMAPI_BASE_H \/

144 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

ha_emcommon.h File

/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/

/\===\/
/\ \/
/\ Module Name: ha_emcommon.h \/
/\ \/
/\ Description: \/
/\ Common definitions for the Event Management Subsystem \/
/\ \/
/\===\/

/\ @(#)37 1.13 src/rsct/pem/emcommon/ha_emcommon.h, emcommon, comm_rtro, rtrot2f1 5/2ð/98 14:55:ð3 \/

#ifndef _HA_EMCOMMON_H
#define _HA_EMCOMMON_H

#define HA_EM_MAXERRMSG 256
#define HA_EM_MAXERRLVL 16
#define HA_EM_MAXERRFN 32

struct ha_em_err_blk {
 int em_errline;
 char em_errlevel[HA_EM_MAXERRLVL];
 char em_errfile[HA_EM_MAXERRFN];
 int em_errno;
 char em_errmsg[HA_EM_MAXERRMSG];
};

#define HA_EM_CLEAR_ERR(X) memset(X,ð,sizeof(struct ha_em_err_blk))

#define HA_EM_RSRC_ID_SIZE 4 /\ max number of elements in a
resource ID \/

#define HA_EM_VECTOR_SIZE HA_EM_RSRC_ID_SIZE /\ for compatibility \/

/\ Max length of a resource ID value including null \/
#define HA_EM_RSRC_ID_ELEM_VALUE_LEN_MAX 32
#define HA_EM_VECTOR_ELEM_VALUE_LEN_MAX HA_EM_RSRC_ID_ELEM_VALUE_LEN_MAX

/\ Max length of a Structured Byte String (including length field) \/
#define HA_EM_MAX_SBS_VALUE_LEN 2ð48

/\ Max number of variable instances accepted per class from RM \/
#define HA_EM_MAX_INSTS 1ðððð

enum ha_emValue_Type {
 ha_emVTcounter,
 ha_emVTquantity,
 ha_emVTstate
};

 Chapter 4. Event Management Files Reference 145

 ha_emapi

enum ha_emData_Type {
 ha_emDTlong,
 ha_emDTfloat,
 ha_emDTsbs
};

enum ha_emField_Type {
 ha_emFTlong,
 ha_emFTfloat,
 ha_emFTchar,
 ha_emFTbyte
};

enum ha_emElement_Type {
 ha_emETint,
 ha_emETstring
};

/\ define pathnames for lock, socket, log and config files \/

/\ Define type and macros used to manage a resource monitor lock file.
 \ This lock file is used to track a number of instances of the same
 \ resource monitor program.
 \
 \ ha_em_lckreg_t is the region of the file that is locked.
 \ HA_EM_MAX_RM_INSTS limits the number of instances of a resource monitor
 \ and, hence, the number of lock regions.
 \ In HA_EM_RM_LOCK_FMT, first %s is resource monitor name, second %s
 \ is domain name.
 \/
typedef int ha_em_lckreg_t;
#define HA_EM_RM_LOCK_FMT "/var/ha/lck/haem/em.RM%s.%s"
#define HA_EM_MAX_RM_INSTS 8
#define HA_EM_LCK_SIZE (sizeof(ha_em_lckreg_t))

/\ file used in creation of key file, which holds the shared memory ID of
 \ a shared memory segment used by a resource monitor instance and the
 \ EM daemon. "Conceptually" a lock file, so put it in lck directory. First
 \ %s is resource monitor name, %d is resource monitor instance number and
 \ the last %s is the domain name.
 \/
#define HA_EM_RMSHM_KEY_FMT "/var/ha/lck/em.RM%s.%dSHM.%s"

/\ Define macros useful in finding old key files from prior incarnations of
 \ the EM daemon. The %s is the domain name.
 \/
#define HA_EM_RMSHM_KEY_DIR_FMT "/var/ha/lck"
#define HA_EM_RMSHM_KEY_PFX_FMT "em.RM"
#define HA_EM_RMSHM_KEY_SFX_FMT "SHM.%s"

/\ name of file used to dump the red zone of a shared memory segment.
 \ The red zone page is dumped when it is modified unexpectedly. The %s
 \ is a resource monitor name, the first %d is a resource monitor instance
 \ number and the last %d is a timestamp (in seconds).
 \/
#define HA_EMRMSHM_RZ_FMT "rzdump.RM%s.%d.%d"

/\ file passed as argument to SPMI routines by the RMAPI. The %s is a
 \ resource monitor name.
 \/
#define HA_EM_SPMI_KEY_FMT "/var/ha/lck/em.RM%sSPMI"

/\ lock file to ensure single instance of an event management daemon.
 \ %s is domain name.

146 RS/6000 Cluster Technology Event Management Programming

 ha_emapi

 \/
#define HA_EM_DAEMON_LOCK_FMT "/var/ha/lck/em.haemd.%s"

/\ name of Unix domain socket used by EMAPI to connect to event management
 \ daemon. %s is domain name.
 \/
#define HA_EM_CL_TO_D_SOCK_FMT "/var/ha/soc/em.clsrv.%s"

/\ name of Unix domain socket used by RMAPI to connect to event management
 \ daemon. %s is domain name.
 \/
#define HA_EM_RM_TO_D_SOCK_FMT "/var/ha/soc/em.rmsrv.%s"

/\ name of Unix domain socket used by event management daemon to connect to
 \ a server resource monitor instance. First %s is resource monitor name,
 \ the %d is a resource monitor instance number and the last %s is a domain
 \ name.
 \/
#define HA_EM_D_TO_RM_SOCK_FMT "/var/ha/soc/haem/em.RM%s.%d.%s"

/\ name of event management daemon log file for tracing. %s is domain
 \ name.
 \/
#define HA_EM_HAEMD_TRACE_LOG_FMT "/var/ha/log/em.trace.%s"

/\ name of event management daemon log file for tracing messages between the
 \ various daemon components. %s is domain name.
 \/
#define HA_EM_HAEMD_MSGTRACE_LOG_FMT "/var/ha/log/em.msgtrace.%s"

/\ name of event management daemon log file for default messages. These are
 \ messages produced before logging to error log is possible. %s is domain
 \ name.
 \/
#define HA_EM_HAEMD_DFLT_LOG_FMT "/var/ha/log/em.default.%s"

/\ name of event management configuration data base. %s is domain name. \/
#define HA_EM_HAEMD_CFGDB_FMT "/etc/ha/cfg/em.%s.cdb"

/\ name of file that contains the version string of the CDB currently
 \ being used by the event management daemon. This is used by the RMAPI
 \ to insure it is using the same copy. %s is domain name.
 \/
#define HA_EM_HAEMD_CFGDB_VERS_FMT "/etc/ha/cfg/em.%s.cdb_vers"

/\ name of directory where event management instance executes; place where
 \ core files are produced. %s is domain name.
 \/
#define HA_EM_HAEMD_CWD_FMT "/var/ha/run/haem.%s"

/\ define the service name for the port used by Event Management for peer
 \ communication. %s is domain name.
 \/
#define HA_EM_SERVICE_NAME_FMT "haem.%s"

/\
 \ Expression parsing and evaluation errors.
 \/

#define HA_EM_EXPR_ERVAR 1 /\ Internal resource variable error. \/
#define HA_EM_EXPR_EEXPRLEN 2 /\ Parsing table overflow. \/
#define HA_EM_EXPR_ESYNTAX 3 /\ Error in expression syntax. \/
#define HA_EM_EXPR_ESTACK 4 /\ Internal stack overflow. \/
#define HA_EM_EXPR_EILLEGALOP 5 /\ Illegal operation between types. \/

 Chapter 4. Event Management Files Reference 147

 ha_emapi

#define HA_EM_EXPR_ESTRING 6 /\ Error in string constant syntax. \/
#define HA_EM_EXPR_ESBSSN 7 /\ SBS out of range or missing from \/
 /\ value. \/
#define HA_EM_EXPR_EFIELDTYPE 8 /\ Illegal or mismatch in SBS field \/
 /\ type. \/
#define HA_EM_EXPR_EDATATYPE 9 /\ Invalid internal data type. \/
#define HA_EM_EXPR_ESBSLEN 1ð /\ Mismatch SBS data type and field \/
 /\ length. \/
#define HA_EM_EXPR_EDIVIDE 11 /\ Divide by zero. \/
#define HA_EM_EXPR_EOCTAL_INVALID 12 /\ Octal value was not valid. \/
#define HA_EM_EXPR_EOCTAL_2BIG 13 /\ Octal value was > maximum allowed \/

#define HA_EM_PRED_ERVAR HA_EM_EXPR_ERVAR /\ for compat \/
#define HA_EM_PRED_EPREDLEN HA_EM_EXPR_EEXPRLEN /\ for compat \/
#define HA_EM_PRED_ESYNTAX HA_EM_EXPR_ESYNTAX /\ for compat \/
#define HA_EM_PRED_ESTACK HA_EM_EXPR_ESTACK /\ for compat \/
#define HA_EM_PRED_EILLEGALOP HA_EM_EXPR_EILLEGALOP /\ for compat \/
#define HA_EM_PRED_ESTRING HA_EM_EXPR_ESTRING /\ for compat \/
#define HA_EM_PRED_ESBSSN HA_EM_EXPR_ESBSSN /\ for compat \/
#define HA_EM_PRED_EFIELDTYPE HA_EM_EXPR_EFIELDTYPE /\ for compat \/
#define HA_EM_PRED_EDATATYPE HA_EM_EXPR_EDATATYPE /\ for compat \/
#define HA_EM_PRED_ESBSLEN HA_EM_EXPR_ESBSLEN /\ for compat \/
#define HA_EM_PRED_EDIVIDE HA_EM_EXPR_EDIVIDE /\ for compat \/
#define HA_EM_PRED_EOCTAL_INVALID HA_EM_EXPR_EOCTAL_INVALID /\ for compat \/
#define HA_EM_PRED_EOCTAL_2BIG HA_EM_EXPR_EOCTAL_2BIG /\ for compat \/

#endif /\ _HA_EMCOMMON_H \/

 Related Information
EMAPI subroutines: ha_em_end_session , ha_em_receive_response ,
ha_em_restart_session , ha_em_send_command , ha_em_start_session

148 RS/6000 Cluster Technology Event Management Programming

 Expressions

 Expressions (haemexpr)

 Purpose
Expressions – Expressions used in Event Management

 Description
In the Event Management Application Programming Interface (EMAPI), an
expression is a condition that a resource variable must meet in order to generate
an event. More formally, an expression is the relational condition between a
resource variable and other elements, such as a constant or the value of a variable
from the previous observation.

Expressions that represent conditions of interest are defined by the programmers of
Event Management clients. Default expressions are defined by the designers of
resource monitors when they design the data that their resource monitors report.

The expression is applied to each instance of the resource variable as it is
observed. If the expression is true, an event is generated. More than one
expression may be applied to an instance of the same resource variable at the
same observation.

An example of a simple expression is X < 10, where X is a resource variable that
represents the percentage of free space in a file system. This expression would
generate an event whenever the file system's free space was observed to be less
than 10%.

For information about how resource variables are defined, see “Resource Variables
(haemrvars)” on page 152.

An expression is of the following form:

 Chapter 4. Event Management Files Reference 149

 Expressions

expression:: operand log_op operand
operand rel_op operand
operand arith_op operand

 unary_op operand

operand:: expression
 var_name
 constant

var_name:: X
 X@var_name_mod

var_name_mod:: one of
P, R, PR, sbs_sn, Psbs_sn

unary_op:: !

rel_op:: one of
== != < > <= >=

log_op:: one of
 && ||

arith_op:: one of
\ / % + -

sbs_sn:: a structured field serial number

constant:: one of
long_value float_value "char constant" "byte constant"

Operators have the same meaning and precedence as in the C language.
Parentheses may be used for grouping as in C. Constants are integer or floating
point, also as in C.

Fractional constants must be in decimal format.

Character and byte string constant values are enclosed in double quotes ("). Octal
values may be inserted into these constants to represent non-printable characters
by including a '\' character followed by the octal digits. The '\' and octal value are
converted into the one-byte value and must be between 0 and 255. The '\' is
represented by placing two adjacent '\' characters in the string. Character string
constants are automatically NULL terminated.

The variable name modifier P indicates that the value of the variable instance from
its previous observation is used. The variable name modifier R indicates that the
raw value of the variable instance is used; this is useful only with resource
variables of type Counter. When both of these modifiers are present (PR), the raw
value of the variable instance from its previous observation is used. If neither
modifier is present for a Counter, a rate is used. The rate is calculated by
subtracting the raw value of the previous observation of the variable instance from
the raw value of the latest observation, and dividing it by the time, in seconds,
between the two observations.

The variable name modifier sbs_sn is a structured field serial number. This modifier
is used only with a structured byte string (SBS) resource variable and is used to

150 RS/6000 Cluster Technology Event Management Programming

 Expressions

select the structured field value that is to be used in the evaluation of the
expression. When used with P, the selected structured field is taken from the value
of the variable instance from its previous observation. For more information about
the format of SBS resource variables, see “Resource Variables (haemrvars)” on
page 152.

Operands that are modified to select structured fields of type character string or
byte string may only be used with the relational operators; both operands must be
of the same type. When the operands are character strings, the implied comparison
and its result are equivalent to the C library function strcmp (loprn,roprn), where
loprn is the left operand in the expression and roprn is the right operand in the
expression. When the operands are byte strings, the implied comparison and its
result are equivalent to the C library function memcmp (loprn,roprn,N), where loprn
is the left operand in the expression, roprn is the right operand in the expression,
and N is the length of the shortest byte string.

Expressions use the letter “X” to represent the resource variable name. The
variable name may be repeated in the expression and may be in any one of its
modified forms.

Here are some examples of valid expression definitions:

X == ð The value of the resource variable instance is equal to zero.

X < 2ð || X > 8ð The value of the resource variable instance is less than 20 or
greater than 80.

!(X < 2ð || X > 8ð)
The value of the resource variable instance is neither less
than 20 nor greater than 80.

X@R > X@PR The current raw value of the variable instance is greater than
the raw value of the variable instance from its previous
observation.

X >= X@P + 5 The current value of the variable instance is greater than or
equal to the value of the variable instance from its previous
observation plus 5.

X@2 != 1ðð For a resource variable instance that is defined as an SBS,
the value of the structured field number 2 is not equal to 100.

X@ð != X@Pð || X@1 != X@P1
For a resource variable instance that is defined as an SBS,
the value of either structured field number 0 or structured
field number 1 has changed since its previous observation.

 Related Information
EMAPI subroutines: ha_em_receive_response , ha_em_send_command

 Chapter 4. Event Management Files Reference 151

 Resource Variables and Resource IDs

Resource Variables (haemrvars)

 Purpose
Resource Variables and Resource IDs – Resource variables and resource IDs used
in Event Management

 Description
In the Event Management Application Programming Interface (EMAPI) and the
Resource Monitor Application Programming Interface (RMAPI), the attributes of
system resources are represented by resource variables and the copy of each
resource is represented by a resource ID.

Resource variables and resource IDs are defined by the programmers of resource
monitors. Unless otherwise indicated, the definitions and specifications described
here apply to both the EMAPI and the RMAPI.

Resource Variables

A resource variable represents the attribute of a system resource. Associated with
each resource variable is a name, a value type, a data type, a resource ID and,
optionally, a location.

Resource Variable Names

A resource variable is identified by a resource variable name , which is a string
that consists of a resource name followed by a period followed by the resource
attribute.

By convention, a resource name represents a hierarchical organization of
components, from general to specific, similar to a filename. It consists of a series
of two or more components separated by periods, as follows:

� The first component is the name of the vendor that supplies the subsystem or
application that manages the resource.

� The second component is the name of the product that contains the subsystem
or application.

� Any additional components that are required to name the resource appear after
the second component.

The resource attribute is a single component that follows the resource name.

Each component of the resource variable name is a character string that may
contain only alphanumeric characters, underscores, or a percent sign. The first
component (vendor name) must begin with an alphabetic character. All other
components must begin with either an alphabetic character or a percent sign.

Here are some examples of resource variable names:

152 RS/6000 Cluster Technology Event Management Programming

 Resource Variables and Resource IDs

IBM.PSSP.aixos.CPU.gluser
IBM.PSSP.aixos.Mem.Real.size
IBM.PSSP.aixos.Mem.Virt.pagein
IBM.PSSP.aixos.Mem.Virt.pageout
IBM.PSSP.aixos.Mem.Kmem.inuse
IBM.PSSP.aixos.PagSp.%totalfree
IBM.PSSP.aixos.Disk.busy
IBM.PSSP.Membership.Node.state

The name space for resource variable names is local to a domain.

Although components of a resource variable name can be used in more than one
name, resource names must uniquely identify a resource.

Resource Variable Value Types

A resource variable belongs to one of three value types: Counter, Quantity, or
State.

A Counter is a resource variable that represents a rate. It can have a data type of
either long or float. Typically, a Counter represents throughput. Examples include
paging rates, I/O rates, and transaction rates.

By default, the Event Management subsystem presents the value of an instance of
a Counter as a rate. The rate represents the change in the actual contents of the
instance of the Counter from one observation to the next divided by the time
between the two observations. However, the Event Management subsystem can
also present the raw value of the instance of the Counter, which is the actual
contents of the instance of the Counter from the latest observation. The raw value
of a Counter always increases over time.

For example, the resource variable called IBM.PSSP.aixos.Mem.Virt.pagein is a
Counter that represents the rate at which pages are paged into virtual memory.
Normally, its value is presented as a rate (number of pages per second). However,
its raw value indicates the total number of pages that have been paged in since the
Counter was initialized.

A Counter can have a data type of either long or float. These formats are identical
to the C language types of the same names.

The Event Management subsystem assumes that instances of a Counter may be
observed at an interval different from that of their update without loss of meaningful
information.

A Quantity is a variable whose value fluctuates over time. Typically, a Quantity is
used to represent a level, that is, an indicator of how many.

A Quantity can have a data type of either long or float. These formats are identical
to the C language types of the same names.

The Event Management subsystem assumes that instances of a Quantity may be
observed at an interval different from that of their update without loss of meaningful
information.

 Chapter 4. Event Management Files Reference 153

 Resource Variables and Resource IDs

A State is a variable whose value fluctuates over time, like a Quantity. Unlike a
Quantity, however, the semantics of a State variable are assumed to be such that
every change in value of an instance of a State variable must be observed;
otherwise, meaningful information would be lost. A State variable can be used to
represent an attribute of a resource that indicates anything other than throughput or
a level.

A State can have a data type of long, float, or structured byte string (SBS). The
long and float formats are identical to the C language types of the same names.
The format of an SBS is described in 'Resource Variable Data Types' on page 154.

Resource Variable Data Types

A Counter and a Quantity can have a data type of either long or float. The long and
float formats are identical to the C language types of the same names.

A State can have a data type of long, float, or structured byte string. The long and
float formats are identical to the C language types of the same names.

A structured byte string (SBS) is a string of bytes, where each byte may have
any value from 0 through 255, that consists of a four-byte SBS length field followed
by one or more structured fields. The SBS length specifies the total length of the
structured fields that follow it.

A structured field consists of a four-byte header followed by a value. The first two
bytes of the header are the length of the structured field value, the third byte is a
structured field data type, and the fourth byte is a serial number.

The structured field type is one of long, float, character string, or byte string. These
types are defined by the enumerator ha_emField_Type , which is included in the
ha_emapi.h header file. Long and float are the same as in the C language. A
character string consists of one or more nonzero bytes terminated by a null byte;
the null byte is included in the structured field value length. A byte string consists of
one or more bytes, where each byte may have any value from 0 through 255.

The serial number is a unique value that identifies the structured field. This serial
number is defined for each structured field by the resource monitor that supplies
the SBS resource variable. However, the set of serial numbers for the structured
byte string starts with 0 and is contiguous.

Associated with each structured field in an SBS, but not included in the actual SBS,
is a structured field name. This name is used to provide a short description of the
structured byte field and must consist of only alphanumeric characters and
underscores; the first character must be alphabetic.

Here are some examples of structured byte string definitions, taken from resource
variables provided by RSCT resource monitors:

154 RS/6000 Cluster Technology Event Management Programming

 Resource Variables and Resource IDs

SBS associated with resource variable IBM.PSSP.Prog.pcount

SBS Length = variable
SBS Fields

Field Name Field Length Field Type Field Serial Number
 CurPIDCount 4 long ð

PrevPIDCount 4 long 1
 CurPIDList variable cstring 2

SBS associated with resource variable IBM.PSSP.pm.Errlog

SBS Length = variable
SBS Fields

Field Name Field Length Field Type Field Serial Number
 sequenceNumber variable cstring ð
 errorID variable cstring 1
 errorClass variable cstring 2
 errorType variable cstring 3
 alertFlagsValue variable cstring 4
 resourceName variable cstring 5
 resourceType variable cstring 6

resourceClass variable cstring 7
 errorLabel variable cstring 8

The Counter and Quantity types have the same definition as the value types for
statistics objects that are defined by the Performance Toolbox for AIX (PTX/6000)
System Performance Measurement Interface (SPMI).

Resource Variable Instances and Resource IDs

Most resources in the system have multiple copies. Each of these copies is an
instance of the resource.

The resource variables that represent the states of these resources also have
multiple copies. Each of these copies is an instance of the resource variable.

To uniquely identify each copy of a resource and all of its variables, each resource
in the system has one, and only one, associated resource ID. A resource ID is a
list of elements, where each element is a name/value pair. In the EMAPI, the
elements are separated by semicolons. In the RMAPI, the elements are separated
by commas.

A name/value pair consists of a resource ID element name followed by an equal
sign followed by the value of the resource ID element. There are no blanks in the
resource ID. A resource ID can contain up to 4 elements, as defined by the
HA_EM_RSRC_ID_SIZE constant.

The resource ID element name is a string that describes the element. It must
consist of only alphanumeric characters and underscores; the first character must
be alphabetic. In the EMAPI, a resource ID element value may consist of a single
value, a range of values, a comma-separated list of single values, or a
comma-separated list of ranges. A range takes the form a-b and is valid only for
resource ID elements of type integer. In the RMAPI, only single values are allowed.

 Chapter 4. Event Management Files Reference 155

 Resource Variables and Resource IDs

A resource ID element may be wildcarded in a manner that varies by subroutine.

The set of values in the resource ID uniquely identify the copy of the resource in
the system. By extension, they also uniquely identify the copy of the resource
variable in the system. If there is only one copy of the resource in the system (for
example, the control workstation), its resource ID is null.

The semantics of a resource ID are defined by the semantics of the resource with
which it is associated. The names of the resource ID elements must be unique
within a given resource's resource ID. These names may be used in other resource
IDs and may or may not have the same semantics. In other words, the name space
for resource ID element names is local to each defined resource.

Here are some examples of PSSP resource variable names and resource IDs:

Resource Variable Name Resource ID

 IBM.PSSP.aixos.CPU.gluser NodeNum=5
 IBM.PSSP.aixos.cpu.kern NodeNum=5;cpu=cpuð
 IBM.PSSP.aixos.Mem.Real.size NodeNum=5
 IBM.PSSP.aixos.Mem.Virt.pagein NodeNum=5
 IBM.PSSP.aixos.Mem.Virt.pageout NodeNum=5
 IBM.PSSP.aixos.Mem.Kmem.inuse NodeNum=5;Type=mbuf
 IBM.PSSP.aixos.PagSp.%totalfree NodeNum=5
 IBM.PSSP.aixos.Disk.busy NodeNum=5;Name=hdiskð
 IBM.PSSP.aixos.Disk.busy NodeNum=5;Name=hdisk1
 IBM.PSSP.aixos.VG.free NodeNum=5;VG=rootvg
 IBM.PSSP.aixos.VG.free NodeNum=5;VG=spdata
 IBM.PSSP.aixos.FS.%totused NodeNum=5;VG=rootvg;LV=hd4
 IBM.PSSP.aixos.FS.%totused NodeNum=5;VG=rootvg;LV=hd4
 IBM.PSSP.SP_HW.Node.powerLED NodeNum=5
 IBM.PSSP.SP_HW.Frame.frACLED FrameNum=1
 IBM.PSSP.SP_HW.Switch.powerLED SwitchNum=1
 IBM.PSSP.Membership.Node.state NodeNum=5
 IBM.DB2.Part.size DBname=foo;Part=3

Although many resources are associated with a particular node, some are not.
Therefore, not all resource IDs contain a node number.

Dynamically Instantiable Resource Variables

In most cases, the instances of a resource that a resource monitor is responsible
for tracking and reporting on are static or relatively so. Thus, a resource monitor
knows from the time it starts running, after any necessary initialization occurs, all of
the instances of the resources it monitors. For example, after any necessary
initialization, a hardware monitor would know what frames there are in the system,
a node health monitor would know what nodes there are in the system, and a disk
monitor would know what disks there are in the system.

However, in some cases, a resource monitor knows how to track and report on a
type of resource, but the resource monitor does not know all of the possible
instances of the resource that may occur. For example, the program resource
monitor knows how to track and report on a program that is running in a domain,
but it does not know in advance the names of all possible programs that can run.
For a resource like this, you can define the resource variable as dynamically
instantiable .

156 RS/6000 Cluster Technology Event Management Programming

 Resource Variables and Resource IDs

If a resource variable is dynamically instantiable, the resource monitor does not
register all of the instances of its resource variables. Instead, it waits for the Event
Management subsystem to tell it what instances to register. As the Event
Management subsystem receives requests from EM clients for events based on
instances of dynamically instantiable variables, the Event Management subsystem
passes the instances to the resource monitor in a control message with an
“instantiate variables” command.

Location of a Resource Variable Instance

The location of a resource variable instance is the node on which the resource
monitor that supplies the instance resides. The resource monitor may or may not
reside on the same node as the instance of the resource.

Resource Variable Classes

The class of a resource variable is used to indicate the subsystem or application
that manages the associated resource. It can also be used to group resource
variables by observation interval. Instances of all resource variables of value type
Counter and Quantity in the same class are observed at the same intervals.

By convention, class names follow the same hierarchical naming conventions that
are used for resource names.

Each class name must be unique among class names within a domain.

Here are some examples of class names:

Resource Variable Class Resource Variables in the Class

IBM.PSSP.aixos.CPU IBM.PSSP.aixos.CPU.gluser
 IBM.PSSP.aixos.CPU.glkern
 IBM.PSSP.aixos.CPU.glwait
 IBM.PSSP.aixos.CPU.glidle
 IBM.PSSP.aixos.cpu.user
 IBM.PSSP.aixos.cpu.kern
 IBM.PSSP.aixos.cpu.wait
 IBM.PSSP.aixos.cpu.idle

IBM.PSSP.aixos.Mem IBM.PSSP.aixos.Mem.Real.size
 IBM.PSSP.aixos.Mem.Real.numfrb
 IBM.PSSP.aixos.Mem.Real.%free
 IBM.PSSP.aixos.Mem.Real.%pinned
 IBM.PSSP.aixos.Mem.Virt.pagein
 IBM.PSSP.aixos.Mem.Virt.pageout
 IBM.PSSP.aixos.Mem.Virt.pgspgin
 IBM.PSSP.aixos.Mem.Virt.pgspgout
 IBM.PSSP.aixos.Mem.Virt.pagexct
 IBM.PSSP.aixos.Mem.Kmem.inuse
 IBM.PSSP.aixos.Mem.Kmem.calls
 IBM.PSSP.aixos.Mem.Kmem.failures
 IBM.PSSP.aixos.Mem.Kmem.memuse

IBM.PSSP.aixos.Disk IBM.PSSP.aixos.Disk.busy
 IBM.PSSP.aixos.Disk.xfer
 IBM.PSSP.aixos.Disk.rblk
 IBM.PSSP.aixos.Disk.wblk

 Chapter 4. Event Management Files Reference 157

 Resource Variables and Resource IDs

 Related Information
EMAPI subroutine: ha_em_send_command

158 RS/6000 Cluster Technology Event Management Programming

 RMAPI Errors

RMAPI Errors (err_rmapi)

 Purpose
RMAPI Errors – Error numbers and the error block for the Resource Monitor
Application Programming Interface (RMAPI)

 Description
The Resource Monitor Application Programming Interface (RMAPI) provides a class
of errors that are returned synchronously by RMAPI subroutines.

Synchronous Errors Returned by RMAPI Subroutines

If an RMAPI subroutine is unsuccessful, it returns a value of -1 and other error
information in the error block specified on input. The error block contains an error
number and a null-terminated error message.

The RMAPI uses an error block that is common to both the EMAPI and the RMAPI.
The block is defined in the ha_emcommon.h header file that is included by the
ha_rmapi.h header file.

The RMAPI error numbers are defined in the ha_rmapi.h header file.

The Event Management error block has the following definition:

struct ha_em_err_blk {
 int em_errline;
 char em_errlevel[HA_EM_MAXERRLVL];
 char em_errfile[HA_EM_MAXERRFN];
 int em_errno;
 char em_errmsg[HA_EM_MAXERRMSG];
}

The em_errline , em_errlevel , and em_errfile fields are reserved for IBM use in
providing information for problem determination.

If an error occurs, the em_errno field contains one of the values listed below. The
em_errmsg field contains a message text that describes the error in further detail.
For information about RMAPI messages, see PSSP: Messages Reference or
HACMP: Troubleshooting Guide.

In addition to indicating the reason that an RMAPI subroutine is unsuccessful,
RMAPI error numbers are also used to indicate errors in individual elements of the
ha_rr_variable array that was passed to the ha_rr_add_var , ha_rr_del_var ,
ha_rr_reg_var , or ha_rr_unreg_var subroutine. The error number is returned in
the rr_var_errno field of the ha_rr_variable array element. The ha_rmapi.h
header file indicates which error numbers may be returned in the rr_var_errno
field.

The RMAPI error numbers are:

HA_RR_ENOSDR
An error occurred while trying to obtain information from the System
Data Repository (SDR). Either an SDR class had a missing or invalid
attribute, or an SDR subroutine failed.

 Chapter 4. Event Management Files Reference 159

 RMAPI Errors

HA_RR_EACCESS
An error occurred while attempting to open or create a file used by the
RMAPI.

HA_RR_EBADCDB
A problem was detected with the Event Management Configuration
Database (EMCDB) file. Either the file was found to be corrupted, or the
file version does not match the version of the EMCDB being used by the
Event Management daemon. The latter condition could occur if the
EMCDB was updated after the monitor started.

HA_RR_ESPMIFAIL
A System Performance Measurement (SPMI) routine failed.

HA_RR_ENOTSERVER
An RMAPI routine specific to server type resource monitors was called
by a client type resource monitor.

HA_RR_ENOHNDLR
The resource monitor requested HA_RR_NOTIFY_SIGIO as the
notification protocol, but does not have a SIGIO signal handler installed.

HA_RR_ENOSERVSOCK
An attempt to start a session was made by the server type resource
monitor prior to calling ha_rr_makserv to establish a server socket.

HA_RR_EBADPROTO
The notification protocol specified to the RMAPI was not a valid value,
or does not match the protocol value that was specified on a previous
call to the RMAPI.

HA_RR_EEXIST
A session or server file descriptor already exists. Server resource
monitors could receive this error if ha_rr_makserv is called more than
once, or more than one session has been started to the same manager
as a result of calling ha_rr_start_session before ending a previously
closed session with ha_rr_end_session . A command-based resource
monitor receives this error if ha_rr_start_session is called more than
once.

HA_RR_EAGAIN
A request was made to accept a connection on the resource monitor
server socket but no connection request was found, or a request to read
data from a connection failed because there was no data ready to be
read.

HA_RR_EMAXSESSIONS
A request for a session was denied because the number of active
sessions would exceed the maximum number that are allowed.

HA_RR_EBADSESSION
The RMAPI did not find a session matching the session file descriptor
parameter.

HA_RR_EDISCONNECT
A resource monitor manager dropped its connection to the resource
monitor.

HA_RR_ENOENT
The specified entity was not found in the EMCDB file.

160 RS/6000 Cluster Technology Event Management Programming

 RMAPI Errors

HA_RR_EBADRIDNAME
The value of a resource ID element was not valid. The value was either
too long (greater than HA_EM_RSRC_ID_ELEM_VALUE_LEN_MAX),
contained blanks, or the element was defined to be numeric and
contained characters that were not in the range '0'–'9'.

HA_RR_ENORIDNAME
The resource ID specified was not valid. One or more portions of the
resource ID elements name/value pairs was missing.

HA_RR_EBADRSRCID
Undefined resource ID elements were found in the resource ID string.
One possible cause for this error could occur if the only resource ID
element defined for the variable is also defined to be the Locator field. In
this case the monitor should not specify a resource ID string for the
variable.

HA_RR_EDUPRSRCID
A resource ID element name/value pair was found more than once in
the resource ID string.

HA_RR_EBADCLASS
The specified resource monitor class was not found in the EMCDB file
for this resource monitor.

HA_RR_ESYSCALL
An error was returned by a system call.

HA_RR_ENOMEM
Required memory could not be allocated.

HA_RR_EINTERNAL
The RMAPI encountered an internal error.

HA_RR_EPARM
A parameter passed to an RMAPI subroutine was not valid.

HA_RR_EHADDR
The address of the variable handle location is null.

HA_RR_EHANDLE
The handle value passed to the RMAPI was NULL or not a valid handle.

HA_RR_ENOTREG
The specified resource variable instance was not registered with the
RMAPI.

HA_RR_EDUPREG
The resource variable instance identifier is different from the value
passed to the RMAPI on a prior registration of the variable. Resource
variables may be registered more than once with the RMAPI, but the
instance identifier specified by the monitor must remain the same.

HA_RR_EGETNODNUM
The RMAPI could not determine the number of the node on which the
application is running.

HA_RR_ESDRGET
The RMAPI could not obtain required information from the System Data
Repository (SDR).

 Chapter 4. Event Management Files Reference 161

 RMAPI Errors

HA_RR_EDOMAIN
An error occurred when trying to determine the domain the monitor is
executing in.

HA_RR_ENOSBS_VALUE
The value of the State type variable was NULL .

HA_RR_ESBSLEN
The length reported in an SBS value is too long (greater than
HA_EM_MAX_SBS_VALUE_LEN), or the actual length (sum of the
SBS fields) does not match the length as specified in the SBS header.

HA_RR_EBAD_SBSSN
An SBS field in an SBS value specified a serial number that was not
valid for the definition of the resource variable.

HA_RR_EDUP_SBSFIELD
An SBS field was found more than once in the SBS value. An SBS
value must contain each field defined for the SBS once.

HA_RR_EBAD_SBSFIELDTYPE
The SBS value contained a field type that was not valid. The field type
was an unknown value, or did not match the definition of the SBS field.

HA_RR_EBAD_SBSFIELDLEN
The length of a field in an SBS value was not valid for the data type of
the field.

HA_RR_EMISSING_SBSFIELD
One or more fields are missing from the SBS value. An SBS value must
contain each field defined for the SBS once.

HA_RR_EPERM
The requested function could not be performed. This error is returned if
the resource monitor attempts to call an RMAPI subroutine in a manner
that is not allowed. Conditions that return this error include calling
ha_rr_rm_ctl to set attributes of the RMAPI after ha_rr_init has been
called, a server type resource monitor attempting to add variables to a
resource monitor manager session that has not sent an add command
request, or an attempt to add State type variables in response to
receiving an HA_RR_CMD_ADDALL command.

HA_RR_ERMINSTID
The requested resource monitor instance is not valid for the definition of
the resource monitor. This condition could occur if ha_rr_rm_ctl was
called prior to initializing the RMAPI, and the value of the
rr_instance_id field of the ha_rr_args parameter was not valid for the
monitor.

HA_RR_EAPI_LOCKED
The RMAPI subroutines were locked due to an unrecoverable error that
was previously returned. The monitor should call the ha_rr_terminate
routine before attempting to re-initialize the RMAPI.

HA_RR_ENOCONNECT
An error occurred when the RMAPI attempted to make a connection to a
resource monitor manager.

162 RS/6000 Cluster Technology Event Management Programming

 RMAPI Errors

HA_RR_ESHM
A shared memory segment used by the RMAPI was found to be
corrupted. This could occur if the process calling the RMAPI overwrites
a portion of the shared memory segment, or another process has
erroneously attached and written to the segment.

HA_RR_EERRCMD
A resource monitor manager detected an error in the operation of the
RMAPI or the resource monitor. See the accompanying error message
for details of the error.

HA_RR_EAUTH
The calling process does not have the authority to call the RMAPI.

HA_RR_EINIT
The RMAPI has not been initialized by a call to ha_rr_init . This error
may also be returned by the ha_rr_init subroutine, indicating that a
specified instance, or the maximum numbers of instances defined for the
monitor, are already executing.

HA_RR_ECONREFUSED
The Event Management daemon refused a requested connection. This
error can occur when a client type resource monitor calls
ha_rr_start_session to connect to the Event Management daemon.
The error indicates that the Event Management daemon may not be
running, is recovering from a failure, or is initializing.

HA_RR_ENOLOCK
During initialization, the RMAPI attempted to create a unique lock for the
resource monitor process. The RMAPI was unable to obtain a lock for
the monitor instance. All locks in the range 0 to the maximum number of
instances the monitor is configured to allow, and as specified by any
previous calls to ha_rr_rm_ctl , were attempted. This error indicates that
there are already the maximum numbers of instances of this monitor
executing, or a specific instance ID specified by a call to ha_rr_rm_ctl
was not available.

HA_RR_EBADMGRID
The RMAPI received a command from a resource manager session
which is used to identify the resource monitor manager. The manager ID
value in the command was not a valid value known to the RMAPI.

 Related Information
RMAPI subroutines: ha_rr_add_var , ha_rr_del_var , ha_rr_end_session ,
ha_rr_get_ctrlmsg , ha_rr_get_interval , ha_rr_init , ha_rr_makserv ,
ha_rr_reg_var , ha_rr_send_val , ha_rr_start_session , ha_rr_terminate ,
ha_rr_touch , ha_rr_unreg_var , ha_rr_rm_ctl

RMAPI header file: ha_rmapi.h

Messages: PSSP: Messages Reference or HACMP: Troubleshooting Guide

 Chapter 4. Event Management Files Reference 163

 ha_rmapi

 ha_rmapi.h File

 Purpose
ha_rmapi.h – Header file for the Resource Monitor Application Programming
Interface (RMAPI)

 Description
The ha_rmapi.h header file provides data types and structures for use with the
Resource Monitor Application Programming Interface (RMAPI) subroutines, which
reside in the libha_rr.a library. The libha_rr.a library is not thread-safe. Any
program that uses the RMAPI subroutines must include this file, which resides in
the /usr/include directory.

The following listing shows the contents of the ha_rmapi.h file. For the contents of
the nested header file, ha_emcommon.h , see ha_emapi.h .

/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/
/\===\/
/\ \/
/\ Module Name: ha_rmapi.h \/
/\ \/
/\ Description: \/
/\ Include for Event Management resource monitor api (librmapi.a) \/
/\ \/
/\===\/
/\ static char \sccsid = "@(#)38 1.17
src/rsct/pem/emcommon/ha_rmapi.h,
emcommon, rsct_rtro 4/28/98 1ð:38:28"; \/

#ifndef _H_HA_RMAPI
#define _H_HA_RMAPI

#include <ha_emcommon.h>

/\\\
 \
 \ Good and Bad return codes
 \
 \\/

#define HA_RR_PASS (int)ð
#define HA_RR_FAIL (int)-1

/\\\
 \
 \ RMAPI error codes
 \

164 RS/6000 Cluster Technology Event Management Programming

 ha_rmapi

 \ A '+' in the description indicates the error may be returned in either a
 \ ha_em_err_blk structure, or in the rr_var_errno field of a ha_rr_variable
 \ structure.
 \
 \\/

#define HA_RR_ENOSDR (int)1ð1 /\ SDR session subroutine failed \/
#define HA_RR_EACCESS (int)1ð2 /\ Unable to open or create file \/
#define HA_RR_EBADCDB (int)1ð3 /\ EMCDB corrupted or back level \/
#define HA_RR_ESPMIFAIL (int)1ð4 /\ libSpmi.a subroutine failed \/
#define HA_RR_ENOTSERVER (int)1ð5 /\ Calling RM is not a server \/
#define HA_RR_ENOHNDLR (int)1ð6 /\ No signal handler for SIGIO \/
#define HA_RR_ENOSERVSOCK (int)1ð7 /\ RM server socket not created \/
#define HA_RR_EBADPROTO (int)1ð8 /\ Bad or mismatched notify potocol \/
#define HA_RR_EEXIST (int)1ð9 /\ Socket already exists \/
#define HA_RR_EAGAIN (int)11ð /\ No data or connection pending \/
#define HA_RR_EMAXSESSIONS (int)111 /\ HA_RR_MAX_SESSIONS reached \/
#define HA_RR_EBADSESSION (int)112 /\ Specified session not found \/
#define HA_RR_EDISCONNECT (int)113 /\ Session connection closed \/
#define HA_RR_ENOENT (int)114 /\ + Specified entity not in EMCDB \/
#define HA_RR_EBADRIDNAME (int)115 /\ + Bad resource ID name \/
#define HA_RR_ENORIDNAME (int)116 /\ + Missing resource ID element(s) \/
#define HA_RR_EBADRSRCID (int)117 /\ + Bad resource ID element value \/
#define HA_RR_EDUPRSRCID (int)118 /\ + Duplicate resource ID element \/
#define HA_RR_EBADCLASS (int)119 /\ Resource class not found \/
#define HA_RR_ESYSCALL (int)12ð /\ A system call failed \/
#define HA_RR_ENOMEM (int)121 /\ Memory allocation failed \/
#define HA_RR_EINTERNAL (int)122 /\ Internal RMAPI error occured \/
#define HA_RR_EPARM (int)123 /\ Bad parameter passed to RMAPI \/
#define HA_RR_EHADDR (int)124 /\ + Bad handle location \/
#define HA_RR_EHANDLE (int)125 /\ + Handle value not valid \/
#define HA_RR_ENOTREG (int)126 /\ + Variable was not registered \/
#define HA_RR_EDUPREG (int)127 /\ + ID changed on subsequent reg \/
#define HA_RR_EGETNODNUM (int)128 /\ Unable to determine node number \/
#define HA_RR_ESDRGET (int)129 /\ SDRGet subroutine failed \/
#define HA_RR_EDOMAIN (int)13ð /\ Error determining domain name \/
#define HA_RR_ENOVALUE (int)131 /\ + RV value address was NULL \/
#define HA_RR_ESBSLEN (int)132 /\ + Bad SBS value length \/
#define HA_RR_EBAD_SBSSN (int)133 /\ + Bad SBS field serial number \/
#define HA_RR_EDUP_SBSFIELD (int)134 /\ + Duplicate SBS field in value \/
#define HA_RR_EBAD_SBSFIELDTYPE (int)135 /\ + Bad SBS field type \/
#define HA_RR_EBAD_SBSFIELDLEN (int)136 /\ + Bad SBS field value length \/
#define HA_RR_EMISSING_SBSFIELD (int)137 /\ + SBS field(s) missing in value \/
#define HA_RR_EPERM (int)138 /\ Operation could not be performed \/
#define HA_RR_ERMINSTID (int)139 /\ Monitor instance id not valid \/
#define HA_RR_EAPI_LOCKED (int)14ð /\ RMAPI locked on previous error \/
#define HA_RR_ENAMETOOLONG (int)141 /\ File name/socket path too long \/
#define HA_RR_ENOCONNECT (int)142 /\ Error connecting to RMM \/
#define HA_RR_ESHM (int)143 /\ Bad private shm segment \/
#define HA_RR_EERRCMD (int)144 /\ RM error detected by manager \/
#define HA_RR_EAUTH (int)145 /\ No authority to use RMAPI \/
#define HA_RR_EINIT (int)146 /\ API already/not yet initialized \/
#define HA_RR_ECONNREFUSED (int)147 /\ Mgr not available for connect \/
#define HA_RR_ENOLOCK (int)148 /\ Unable to lock a RM instance \/
#define HA_RR_EBADMGRID (int)149 /\ Unknown resource monitor manager \/

#define HA_RR_EBADVECNAME HA_RR_EBADRIDNAME /\ For compatibility \/
#define HA_RR_ENOVECNAME HA_RR_ENORIDNAME /\ For compatibility \/
#define HA_RR_EBADVECTOR HA_RR_EBADRSRCID /\ For compatibility \/
#define HA_RR_EDUPVECTOR HA_RR_EDUPRSRCID /\ For compatibility \/

/\\\
 \

 Chapter 4. Event Management Files Reference 165

 ha_rmapi

 \ ctrl command values received from resource managers
 \
 \\/

#define HA_RR_CMD_ADDV ((int)ðxððc9) /\ (int)2ð1 \/
#define HA_RR_CMD_ADDALL ((int)ðxððca) /\ (int)2ð2 \/
#define HA_RR_CMD_DELV ((int)ðxððcb) /\ (int)2ð3 \/
#define HA_RR_CMD_DELALL ((int)ðxððcc) /\ (int)2ð4 \/
#define HA_RR_CMD_REFRESH ((int)ðxððcd) /\ (int)2ð5 \/
#define HA_RR_CMD_INSTV ((int)ðxððce) /\ (int)2ð6 \/
#define HA_RR_CMD_MGR_ID ((int)ðxððcf) /\ (int)2ð7 \/
#define HA_RR_CMD_UNREG_ACK ((int)ðxððdð) /\ (int)2ð8 \/
#define HA_RR_CMD_ATTCH_SHM ((int)ðxððd1) /\ (int)2ð9 \/
#define HA_RR_CMD_ERROR ((int)ðxððd2) /\ (int)21ð \/
#define HA_RR_CMD_MGR_ID_EVM ((int)ðxð1f5) /\ (int)5ð1 \/
#define HA_RR_CMD_MGR_ID_PERF ((int)ðxð1f6) /\ (int)5ð2 \/

/\\\
 \
 \ Error codes returned in the rr_ctrl_cmdarg field if the command
 \ is HA_RR_CMD_ERROR. (Only the header is sent).
 \ These errors are processed by the RMAPI and are not returned to
 \ the resource monitor.
 \
 \\/

#define HA_RR_CMD_ERROR_DUP 1
#define HA_RR_CMD_ERROR_ADD 2
#define HA_RR_CMD_ERROR_DEL 3
#define HA_RR_CMD_ERROR_BADRZ 4

/\\\
 \
 \ ctrl msg notification method HA_RR_NOTIFY_SELECT (for select or poll),
 \ HA_RR_NOTIFY_SIGIO for SIGIO signal notification
 \ HA_RR_MAX_SESSIONS is the max number of client sessions for server RMs
 \
 \\/

#define HA_RR_NOTIFY_SELECT (int)3ð1
#define HA_RR_NOTIFY_SIGIO (int)3ð2
#define HA_RR_MAX_SESSIONS (int)8

/\\\
 \
 \ Resource monitor instance id values.
 \
 \\/
#define HA_RR_RM_INSTID_PERF (int)ð
#define HA_RR_RM_INSTID_NOPERF (int)-1
#define HA_RR_RM_INSTID_ANY (int)-2
#define HA_RR_RM_INSTID_DEFAULT HA_RR_RM_INSTID_ANY
#define HA_RR_RM_INSTID_MAX (HA_EM_MAX_RM_INSTS - 1)

/\\\
 \
 \ Commands for the ha_rr_rm_ctl() routine.
 \
 \\/
#define HA_RR_RM_ARGS_GET (int)ðxððððððð1
#define HA_RR_RM_ARGS_SET_INSTID (int)ðxððððððð2

/\\\
 \

166 RS/6000 Cluster Technology Event Management Programming

 ha_rmapi

 \ rmapi structures
 \
 \\/

struct ha_rr_args {
 int rr_instance_id;
 char \rr_domain_name;
 char rr_reserved[56];
};

struct ha_rr_variable {
 char \rr_var_name;
 char \rr_var_rsrc_ID;
 union {
 int rr_var_inst_id;
 void \\rr_var_hndl;
 } rr_varu;
#define rr_var_handle rr_varu.rr_var_hndl
#define rr_var_iid rr_varu.rr_var_inst_id
 void \rr_value;
 int rr_var_errno;
};

struct ha_rr_val {
 void \rr_value;
 void \rr_var_hndl;
};

struct ha_rr_ctrl_msg {
 int rr_ctrl_msg_len;
 int rr_ctrl_cmd;
 int rr_ctrl_cmdarg;
 int rr_ctrl_num_vars;
 union ha_rr_ctrlv {

struct ha_rr_ctrl_var {
 char \rr_ctrl_name;
 char \rr_ctrl_rsrc_ID;
 } rr_ctrl_varn[1];
 int rr_ctrl_vari[1];

struct ha_rr_ctrl_var2 {
 int rr_ctrl_var_id;
 int rr_ctrl_API_inst_id;
 } rr_ctrl_varn2[1];
 } rr_ctrlv;
#define rr_ctrl_vars rr_ctrlv.rr_ctrl_varn
#define rr_ctrl_ids rr_ctrlv.rr_ctrl_vari
#define rr_ctrl_vars2 rr_ctrlv.rr_ctrl_varn2
};

/\\\
 \ Resource Monitor API compatibility definitions.
 \
 \ These definitions are provided to maintain source compatibility with
 \ programs written using prior versions of this header file.
 \ If these definitions result in inappropriate substitutions, then define
 \ the symbol HA_EM_NO_NAME_COMPAT prior to inclusion of this header file.
 \ If HA_EM_NO_NAME_COMPAT is defined, the source files that include this
 \ header file must be modified to use the new symbol names if the old
 \ symbol names are referenced therein.
 \\/

#ifndef HA_EM_NO_NAME_COMPAT
#ifndef rr_var_ivector
#define rr_var_ivector rr_var_rsrc_ID

 Chapter 4. Event Management Files Reference 167

 ha_rmapi

/\ replace rr_var_ivector by rr_var_rsrc_ID \/
#endif
#ifndef rr_ctrl_ivector
#define rr_ctrl_ivector rr_ctrl_rsrc_ID

/\ replace rr_ctrl_ivector by rr_ctrl_rsrc_ID \/
#endif
#endif /\ HA_EM_NO_NAME_COMPAT \/
/\\\
 \
 \ rmapi function prototypes
 \
 \\/

#ifdef _NO_PROTO
int ha_rr_rm_ctl();
int ha_rr_init();
int ha_rr_makserv();
int ha_rr_start_session();
int ha_rr_get_ctrlmsg();
int ha_rr_end_session();
int ha_rr_add_var();
int ha_rr_del_var();
int ha_rr_get_interval();
int ha_rr_send_val();
int ha_rr_reg_var();
int ha_rr_unreg_var();
int ha_rr_terminate();
int ha_rr_touch();
#else /\ NO_PROTO \/
int ha_rr_rm_ctl(struct ha_rr_args \, int, struct ha_em_err_blk \);
int ha_rr_init(char \, struct ha_em_err_blk \);
int ha_rr_makserv(int, struct ha_em_err_blk \);
int ha_rr_start_session(int, struct ha_em_err_blk \);
int ha_rr_get_ctrlmsg(int, struct ha_rr_ctrl_msg \\, struct ha_em_err_blk \);
int ha_rr_end_session(int, struct ha_em_err_blk \);
int ha_rr_add_var(int, struct ha_rr_variable \, int, int, struct ha_em_err_blk \);
int ha_rr_del_var(int, struct ha_rr_variable \, int, struct ha_em_err_blk \);
int ha_rr_get_interval(char \, struct ha_em_err_blk \);
int ha_rr_send_val(struct ha_rr_val \pv, int, int, struct ha_em_err_blk \);
int ha_rr_reg_var(struct ha_rr_variable \, int, struct ha_em_err_blk \);
int ha_rr_unreg_var(struct ha_rr_variable \, int, struct ha_em_err_blk \);
int ha_rr_terminate(struct ha_em_err_blk \);
int ha_rr_touch(struct ha_em_err_blk \);
#endif /\ NO_PROTO \/

#endif /\ _H_HA_RMAPI \/

 Related Information
RMAPI subroutines: ha_rr_add_var , ha_rr_del_var , ha_rr_end_session ,
ha_rr_get_ctrlmsg , ha_rr_get_interval , ha_rr_init , ha_rr_makserv ,
ha_rr_reg_var , ha_rr_send_val , ha_rr_start_session , ha_rr_terminate ,
ha_rr_touch , ha_rr_unreg_var , ha_rr_rm_ctl

168 RS/6000 Cluster Technology Event Management Programming

Chapter 5. Using the RMAPI: Some Resource Monitor
Examples

This chapter contains the listings of three sample resource monitors and their
associated files:

� “The rmapi_smpcmd.c Sample Program” on page 170 is an example of a
command-based resource monitor.

� “The rmapi_smpdae.c Sample Program” on page 181 is an example of a
daemon-based resource monitor that uses select system call notification.

� “The rmapi_smpsig.c Sample Program” on page 196 is an example of a
daemon-based resource monitor that uses SIGIO notification.

� “The rmapi_smp.msg Message File” on page 212 is the message source file
for the messages used by the examples.

� “The rmapi_smp.loadsdr Shell Script” on page 214 and “The
rmapi_smp.unloadsdr Shell Script” on page 220 are shell scripts that you can
use to load the definitions of the resource variables used by the samples into
the SDR, and unload them, respectively.

You can find the files for these programs online in the PSSP product samples
directory, /usr/sbin/rsct/samples/haem/rmapi .

 Copyright IBM Corp. 1998 169

 rmapi_smpcmd.c

The rmapi_smpcmd.c Sample Program
/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/
/\===\/
/\ @(#)42 1.9 src/rsct/pem/emtools/rmapi_samples/rmapi_smpcmd.c, emtools, rsct_rtro 6/5/98 11:25:29 \/

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ha_rmapi.h>

/\
 \ rmapi_smpcmd.c
 \
 \ This program presents an example of using the Resource Monitor Application
 \ Programming Interface (RMAPI). The configuration data for this monitor
 \ is in the file RmapiSample.loadsdr. This monitor is an example of a command
 \ based client monitor (connects to the Event Management daemon) and uses
 \ state type variables.
 \
 \ Event Management objects defined for this monitor:
 \
 \ Monitor:
 \ IBM.PSSP.SampleCmdMon # client monitor
 \ #
 \ Class: #
 \ IBM.PSSP.SampleCmdClass # variable class
 \ #
 \ Variables: #
 \ IBM.PSSP.SampleCmdMon.state # Valuetype state, datatype long used to
 \ # reflect the state of the resource:
 \ # Configured, Unconfigured, Running.
 \ Resource Identifiers: NodeNum # Used as locator field of variable.
 \ NAME # Name of the resource instance.
 \ #
 \ IBM.PSSP.SampleCmdMon.call # Valuetype state, datatype SBS used to
 \ # reflect the state of the last command
 \ # for this resource instance.
 \ Resource Identifiers: NodeNum # Used as locator field of variable.
 \ NAME # Name of the resource instance.
 \ SBS Field: Action # Datatype long, sn=ð.
 \ # Last action attempted for this resource.
 \ Options # Datatype char, sn=1.
 \ # Dummy options string to put into SBS.
 \ StateChange # Datatype long, sn=2.
 \ # ð if action failed, else !ð.
 \ State # Datatype long, sn=3.
 \ # Final state of the resource (same as the state var).
 \
 \ What this monitor does: rmapi_smpcmd provides an example of a command which

170 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpcmd.c

 \ controls some imaginary resource. The command is used to change the "state"
 \ of the resource to one of the following: Unconfigured, Configured, or Running,
 \ by passing an "action" argument: config, unconfig, start, or stop. One
 \ or both of the state variables will be updated through the RMAPI on each
 \ invocation of this command.
 \
 \ Legal state transitions (action):
 \ Unconfigured -> Configured (config)
 \ Configured -> Unconfigured (unconfig)
 \ Configured -> Running (start)
 \ Running -> Configured (stop)
 \
 \ If a "legal" action is requested, the command will add both of the variables
 \ for this resource to the Event Management client session. The IBM.PSSP.SampleCmdMon.state
 \ variable will be added by the call ha_rr_add_var() with a value of TRANSITION and then
 \ updated to the new state value by ha_rr_send_val().
 \
 \ If the action is "illegal" for the current state, only the IBM.PSSP.SampleCmdMon.call variable
 \ will be updated so that the IBM.PSSP.SampleCmdMon.state variable remains unchanged.
 \
 \ Parameters:
 \
 \ -a <action> Required. Possible options are config, unconfig, start or stop. This is
 \ the action requested.
 \
 \ -c <curr_state> Required. Possible options are Configured, Unconfigured, or Running.
 \ Since this command does no real work, this option tells the command
 \ what "state" the resource is in before attempting the action.
 \
 \ -n <name> Required. Used as the resource ID NAME element to uniquely
 \ identify different instances of the resource variables.
 \
 \ -o <option> Optional. Any string, used to demonstrate a char datatype within an SBS
 \ variable.
 \
 \ Eamples:
 \
 \ 1. rmapi_smpcmd -a config -c Unconfigured -n test_resource -o test_opt_str
 \
 \ Will cause both variables defined for this monitor to be created
 \ using "test_resource" as the NAME resource ID. Both variables will
 \ be registered and added to the RMAPI. The IBM.PSSP.SampleCmdMon.call
 \ will have the following values sent to the Event Manager daemon on
 \ the call to ha_rr_add():
 \ action: ð # CONFIG
 \ options: test_opt_str # -o flag parm
 \ state_change: 1 # successful state change
 \ state: 1 # CONFIGURED
 \
 \ The IBM.PSSP.SampleCmdMon.state variable will have a initial value of TRANSITION
 \ sent to the RMAPI on ha_rr_add(). It's value will then be updated to CONFIGURED
 \ and sent to the RMAPI using ha_rr_send_val().
 \
 \ 2. rmapi_smpcmd -a unconfig -c Running -n test_resource
 \
 \ Will cause only the IBM.PSSP.SampleCmdMon.call variable to be created
 \ using "test_resource" as the NAME resource ID value. The "state"
 \ variable is not sent to the RMAPI because it was unchanged. IBM.PSSP.SampleCmdMon.call
 \ will have the following values sent to the Event Manager daemon on
 \ the call to ha_rr_add():
 \ action: 1 # UNCONFIG
 \ options: No options. # default value for -o flag
 \ state_change: ð # state change failed
 \ state: 2 # RUNNING

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 171

 rmapi_smpcmd.c

 \
 \ This program can be compiled with the following command:
 \
 \ cc -O rmapi_smpcmd.c -o rmapi_smpcmd -lha_rr
 \/

/\ local defines
CMDNAME - Name of this command.
RESOURCE_MONITOR_NAME - Name of this monitor as defined in the configuration database.
STATE_VARIABLE_NAME - Name of the "state" variable defined for this monitor.
CALL_VARIABLE_NAME - Name of the "call" variable defined for this monitor.
RES_ID - Resource ID.
MAX_VARIABLES - Number of variables defined for this monitor.
DEFAULT_OPTION_STRING - Default string for -o opt.
USAGE_MSG - Error msg for cmd syntax errors.
\/
#define CMDNAME "rmapi_smpcmd"
#define RESOURCE_MONITOR_NAME "IBM.PSSP.SampleCmdMon"
#define STATE_VARIABLE_NAME "IBM.PSSP.SampleCmdMon.state"
#define CALL_VARIABLE_NAME "IBM.PSSP.SampleCmdMon.call"
#define RES_ID "NAME="
#define MAX_VARIABLES 2
#define DEFAULT_OPTION_STRING "No options."
#define USAGE_MSG "Usage: "CMDNAME" -a <action> -c <curr_state> -n <name> -o <options>\n"\

"\t-a <action>\tResource action (config,unconfig,start or stop).\n"\
"\t-c <curr_state>\tCurrent \"state\" of the resource (Configured,Unconfigured,Running).\n"\
"\t-n <name>\tName of the resource.\n"\
"\t-o <options>\tResource options.\n"

/\ local functions \/
void display_rmapi_err(struct ha_em_err_blk \errblk);
enum States process_action(enum States, enum Actions);
void \ create_sbs(enum Actions, char \, long, enum States);
void rr_start();
void rr_reg_var();
void rr_add_var();
void rr_del_var();
void rr_end();

/\ globals \/
struct ha_rr_variable Variables[MAX_VARIABLES]; /\ RMAPI variable array. \/
struct ha_rr_val Values[MAX_VARIABLES]; /\ RMAPI value array. \/
int NumVariables = ð; /\ Number of RMAPI variables to use. \/
struct ha_em_err_blk ErrBlock; /\ global error block for RMAPI calls. \/
int ClientSock = HA_RR_FAIL; /\ Client session socket. \/
enum Actions { /\ State processing actions. \/
 CONFIG,
 UNCONFIG,
 START,
 STOP,
 NUM_ACTIONS
};
char \ActionNames[] = {"config", "unconfig", "start", "stop"};
enum States { /\ Resource states. \/
 CONFIGURED,
 UNCONFIGURED,
 RUNNING,
 NUM_STATES,
 TRANSITION
};
char \StateNames[] = {"Configured", "Unconfigured", "Running"};

/\\/
/\ Main - Main - Main - Main - Main - Main - Main - Main - Main - Main - Main \/

172 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpcmd.c

/\\/
main(int argc, char \\argv)
{
enum States new_state;
enum States curr_state;
enum States trans_state = TRANSITION;
enum Actions action;
char \action_name = NULL;
char \curr_state_name = NULL;
char \res_name = NULL;
char \res_opts = NULL;
char \resid;
int c, i, rc;

 /\
\ Parse the command line arguments.

 \/
while ((c = getopt(argc, argv, "a:c:n:o:")) != EOF) {

switch (c) {
case 'a' : action_name = optarg; break;
case 'c' : curr_state_name = optarg; break;
case 'n' : res_name = optarg; break;
case 'o' : res_opts = optarg; break;

 default :
 fprintf(stderr,USAGE_MSG);
 exit(1);
 }
 }

 /\
\ Check for required options.

 \/
if ((res_name == NULL) || (action_name == NULL) || (curr_state_name == NULL)) {

fprintf(stderr,"%s: missing -a, -c or -n flag.\n",CMDNAME);
 fprintf(stderr,USAGE_MSG);
 exit(1);
 }

 /\
\ Check for valid action and state options.

 \/
for (i=ð; (i < NUM_ACTIONS) && strcmp(ActionNames[i],action_name); i++);
action = i;

for (i=ð; (i < NUM_STATES) && strcmp(StateNames[i],curr_state_name); i++);
curr_state = i;

if ((action == NUM_ACTIONS) || (curr_state == NUM_STATES)) {
fprintf(stderr,"%s: invalid -a or -c parameter.\n",CMDNAME);

 fprintf(stderr,USAGE_MSG);
 exit(1);
 }

 /\
\ Make sure an option string is put into the sbs variable.

 \/
if (res_opts == NULL) {

res_opts = DEFAULT_OPTION_STRING;
 }

fprintf(stdout,"%s: Current state of resource %s is %s. Requested action is %s.\n",
 CMDNAME,res_name,curr_state_name,action_name);
 /\

\ Dummy resource processing. Just checks that the "action" is legal for the

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 173

 rmapi_smpcmd.c

\ current "state" and returns the new state (new_state == curr_state if not
\ a legal action for the current state).

 \/
new_state = process_action(curr_state,action);

 /\
\ Initialize the RMAPI variables.

 \/
memset(Variables, ð , sizeof(struct ha_rr_variable) \ MAX_VARIABLES);
memset(Values, ð , sizeof(struct ha_rr_val) \ MAX_VARIABLES);

 /\
\ Create an resource ID for the variables.

 \/
resid = malloc(strlen(res_name) + strlen(RES_ID) + 1);

 sprintf(resid,"%s%s",RES_ID,res_name);

Variables[ð].rr_var_name = CALL_VARIABLE_NAME;
Variables[ð].rr_var_rsrc_ID = resid;
Variables[ð].rr_varu.rr_var_inst_id = ð;

Variables[1].rr_var_name = STATE_VARIABLE_NAME;
Variables[1].rr_var_rsrc_ID = resid;
Variables[1].rr_varu.rr_var_inst_id = 1;

if (new_state != curr_state) {
 /\

\ The "action" was successful indicated by the state change.
\ Send both the new "state" variable and the "call" variable,
\ otherwise only send the failed "call" variable.

 \/
fprintf(stdout,"%s: Action %s successful. Resource %s will change states %s->TRANSITION->%s.\n",

 CMDNAME,action_name,res_name,curr_state_name,StateNames[new_state]);
NumVariables = 2;

} else {
fprintf(stderr,"%s: Cannot perform action %s when in state %s. The "

"\"state\" variable will not be updated.\n",
 CMDNAME,action_name,curr_state_name);

NumVariables = 1;
 }

 /\
\ Initialize the RMAPI and client session.

 \/
 rr_start();

 /\
\ Register variable(s) with the RMAPI.

 \/
 rr_reg_var();

 /\
\ Set the handle addresses and initial values in the
\ RMAPI variables and add them to the client session.
\ The initial value for IBM.PSSP.SampleCmdMon.state is
\ TRANSITION. If the state changed, the new state value
\ will then be sent by the RMAPI routine ha_rr_send_val().
\ If the state did not change, IBM.PSSP.SampleCmdMon will
\ not be added.

 \/
Variables[ð].rr_varu.rr_var_hndl = &(Values[ð].rr_var_hndl);
Variables[ð].rr_value = create_sbs(action,res_opts,(new_state==curr_state),new_state);
Variables[1].rr_varu.rr_var_hndl = &(Values[1].rr_var_hndl);
Variables[1].rr_value = &(trans_state);

174 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpcmd.c

 /\
\ Add the variable(s) to the RMAPI. This will also cause the initial
\ values (Variables[n].rr_value) to be sent to the Event Manager.

 \/
 rr_add_var();

if (new_state != curr_state) {
 /\

\ State change occurred. ha_rr_add_var() sent the initial value for
\ the "state" variable as being in TRANSITION state. Now call
\ the RMAPI to send the new state of the resource. First check that
\ an error didn't occur when register or adding the variable.

 \/
if ((NumVariables == 2) && (Variables[1].rr_var_errno == ð)) {

 /\
\ Sleep to look like were actually performing
\ an action on the resource.

 \/
 sleep(2);

 /\
\ Send the new state value of variable IBM.PSSP.SampleCmdMon.state.

 \/
Values[1].rr_value = &(new_state);
rc = ha_rr_send_val(&Values[1],1,ð,&ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 }
 }
 }

 /\
\ Delete the variable(s) that were registered and added.

 \/
 rr_del_var();

 /\
\ Close the EM session and terminate the RMAPI.

 \/
 rr_end();

 /\
\ Exit return code.

 \/
 exit (new_state==curr_state);
}

/\---
 \ Resource "processing" routine. Returns the new state if the action
 \ is valid for the current state, otherwise returns the current state.
 \ Legal state transitions:
 \ Unconfigured -> Configured (config)
 \ Configured -> Unconfigured (unconfig)
 \ Configured -> Running (start)
 \ Running -> Configured (stop)
 ---\/
enum States process_action(enum States state, enum Actions action) {
enum States new_state = state;

switch (state) {
case CONFIGURED :

switch (action) {
 case CONFIG :

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 175

 rmapi_smpcmd.c

 case STOP :
 break;

case UNCONFIG :
new_state = UNCONFIGURED; break;

 case START :
new_state = RUNNING; break;

 }
 break;

case UNCONFIGURED :
switch (action) {

case UNCONFIG :
 case START :
 case STOP :
 break;
 case CONFIG :

new_state = CONFIGURED; break;
 }
 break;

case RUNNING :
switch (action) {

 case CONFIG :
case UNCONFIG :

 case START :
 break;
 case STOP :

new_state = CONFIGURED; break;
 }
 break;
 }
 return new_state;
}

/\---
 \ Creates an SBS variable value for the call variable.
 ---\/
void \ create_sbs(enum Actions action, char \opts, long state_chg, enum States state) {
int buff_sz; /\ size of the buffer needed for the sbs value. \/
int slen; /\ length of the opts sbs field. \/
char \sbs, \p; /\ sbs buffer pointers. \/

 /\
\ Get the length of the "opts" field - including terminating character.

 \/
slen = strlen(opts) + 1;

 /\
\ Calculate the size of the buffer needed:
\ length of the opts field +
\ length of the 3 long fields +
\ 1 long for each sbs field header.

 \/
buff_sz = slen + (sizeof(long) \ 7);

 /\
\ Allocate an sbs buffer and prefix the buffer size.
\ Note: The actual buffer is sizeof(long) larger than the
\ calculated length (the SBS is prefixed with a long value
\ which contains the length of the SBS data that follows).

 \/
sbs = p = malloc(buff_sz + sizeof(long));
\((long \)p) = buff_sz; p += sizeof(long);

 /\
\ Copy the first (Action) sbs field. The field prefixes are a

176 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpcmd.c

\ short field length, 1 character for the data type and 1
\ character for the field serial number.

 \/
\((short \)p) = (short)sizeof(long); p += sizeof(short);
\p = (char)ha_emFTlong; p++;
\p = ð; p++;
\((long \)p) = (long)action; p += sizeof(long);

 /\
\ Copy the second (Options) field (sbs serial number 1).

 \/
\((short \)p) = (short)slen; p += sizeof(short);
\p = (char)ha_emFTchar; p++;
\p = 1; p++;
strcpy(p,opts); p += slen;

 /\
\ Copy the third (StateChange) field (sbs serial number 2).

 \/
\((short \)p) = (short)sizeof(long); p += sizeof(short);
\p = (char)ha_emFTlong; p++;
\p = 2; p++;
\((long \)p) = (long)state_chg; p += sizeof(long);

 /\
\ Copy the forth (State) field (sbs serial number 3).

 \/
\((short \)p) = (short)sizeof(long); p += sizeof(short);
\p = (char)ha_emFTlong; p++;
\p = 3; p++;
\((long \)p) = (long)state; p += sizeof(long);

 /\
\ Return the pointer to the sbs value.

 \/
 return sbs;
}

/\---
 \ Initializes the RMAPI and starts the Client session with haemd.
 ---\/
void rr_start() {
int rc;

 /\
\ Initialize the RMAPI.

 \/
rc = ha_rr_init(RESOURCE_MONITOR_NAME, &ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
} else {

 /\
\ Create a client session with the Event Manager daemon.

 \/
ClientSock = ha_rr_start_session(HA_RR_NOTIFY_SELECT, &ErrBlock);
if (ClientSock == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 }
 }

if ((rc == HA_RR_FAIL) || (ClientSock == HA_RR_FAIL)) {
 /\

\ RMAPI Initialize or start session failed. Set the number of
\ variable to ð so that RMAPI calls to register, add, send,
\ and delete variables are ignored.

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 177

 rmapi_smpcmd.c

 \/
NumVariables = ð;

 }
}

/\---
 \ Registers the variables to be added with the RMAPI.
 ---\/
void rr_reg_var() {
int i, num_registered;

if (NumVariables) {
num_registered = ha_rr_reg_var(Variables,NumVariables,&ErrBlock);
if (num_registered != NumVariables) {

if (num_registered == HA_RR_FAIL) {
 display_rmapi_err(&ErrBlock);

} else {
for (i=ð; i < NumVariables; i++) {

 /\
\ Loop through the variables that were attempted
\ to be registered and report any the errors.

 \/
if (Variables[i].rr_var_errno) {

fprintf(stderr,"ha_rr_reg_var() error with variable(%s) resource id(%s) "
"instance_id(%d) RMAPI errno=(%d).\n",

 Variables[i].rr_var_name,
 Variables[i].rr_var_rsrc_ID,
 Variables[i].rr_varu.rr_var_inst_id,
 Variables[i].rr_var_errno);
 }
 }
 }
 }

if ((num_registered == HA_RR_FAIL) || (num_registered == ð)) {
 /\

\ Register failed - set NumVariables to ð
\ so that ha_rr_add_var() isn't attempted.

 \/
NumVariables = ð;

 }
} else {

fprintf(stdout,"%s: No variables to register.\n",CMDNAME);
 }
}

/\---
 \ Adds variables to the Client session with haemd.
 ---\/
void rr_add_var() {
int i, num_added;

if (NumVariables) {
num_added = ha_rr_add_var(ClientSock, Variables, NumVariables, 1, &ErrBlock);
if (num_added != NumVariables) {

if (num_added == HA_RR_FAIL) {
 display_rmapi_err(&ErrBlock);

} else {
 /\

\ Loop through the variables that were attempted
\ to be added and report the errors.

 \/
for (i=ð; i < NumVariables; i++) {

if (Variables[i].rr_var_errno != ð) {
fprintf(stderr,"Variable(%s) resource id(%s) bad errno(%d) from ha_rr_add_var().\n",

178 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpcmd.c

 Variables[i].rr_var_name,
 Variables[i].rr_var_rsrc_ID,
 Variables[i].rr_var_errno);
 }
 }
 }
 }

if ((num_added == HA_RR_FAIL) || (num_added == ð)) {
 /\

\ Add failed - set NumVariables to ð so that ha_rr_send_var()
\ and ha_rr_del_var() are not called.

 \/
NumVariables = ð;

 }
} else {

fprintf(stdout,"%s: No variables to add.\n",CMDNAME);
 }
}

/\---
 \ Deletes any variables added to the RMAPI for the Client session with haemd.
 ---\/
void rr_del_var() {
int num_deleted;

if (NumVariables) {
 /\

\ Delete any variables that have been added.
 \/

num_deleted = ha_rr_del_var(ClientSock, Variables, NumVariables, &ErrBlock);
if (num_deleted == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 }

} else {
fprintf(stdout,"%s: No variables to delete.\n",CMDNAME);

 }
}

/\---
 \ Ends the Client session with haemd (if started) and terminates the RMAPI.
 ---\/
void rr_end() {
int rc;

if (ClientSock != HA_RR_FAIL) {
 /\

\ Call the RMAPI to close the client session with the Event Manager.
 \/

rc = ha_rr_end_session(ClientSock, &ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 }
 }

 /\
\ Terminate the RMAPI.

 \/
rc = ha_rr_terminate(&ErrBlock);
if (rc && ErrBlock.em_errno != HA_RR_EACCESS) {

 display_rmapi_err(&ErrBlock);
 }
}

/\---

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 179

 rmapi_smpcmd.c

 \ Displays an RMAPI error.
 ---\/
void display_rmapi_err(struct ha_em_err_blk \errblk) {
 fprintf(stderr,

"RMAPI Error: File(%s) Version(%s) Line(%d) Errno(%d)\n\t%s",
 errblk->em_errfile,
 errblk->em_errlevel,
 errblk->em_errline,
 errblk->em_errno,
 errblk->em_errmsg);
 }

180 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpdae.c

The rmapi_smpdae.c Sample Program
/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/
/\===\/
/\ @(#)43 1.9 src/rsct/pem/emtools/rmapi_samples/rmapi_smpdae.c, emtools, rsct_rtro 6/5/98 11:25:36 \/

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/select.h>
#include <sys/signal.h>
#include <sys/events.h>

#include <ha_rmapi.h>

/\
 \ rmapi_smpdae.c
 \
 \ This program presents an example of using the Resource Monitor Application
 \ Programming Interface (RMAPI). The configuration data for this monitor
 \ is in the file RmapiSample.loadsdr. This monitor is an example of server
 \ monitor (Resource Monitor Managers connect to the monitor) function that
 \ could be incorporated into a daemon or subsystem.
 \
 \ Event Management objects defined for this monitor:
 \
 \ Monitor:
 \ IBM.PSSP.SampleDaeMon # server monitor definition
 \
 \ Class:
 \ IBM.PSSP.SampleDaeClass # variable class
 \
 \ Variables:
 \ IBM.PSSP.SampleDaeMon.StaticVars.static_var1 # valuetype quantity, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
 \ IBM.PSSP.SampleDaeMon.StaticVars.static_var2 # valuetype quantity, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
 \ IBM.PSSP.SampleDaeMon.StaticVars.static_var3 # valuetype quantity, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
 \ IBM.PSSP.SampleDaeMon.InstVars.inst_var1 # valuetype quantity, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
 \ Name # instance name of the resource
 \ IBM.PSSP.SampleDaeMon.InstVars.inst_var2 # valuetype quantity, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
 \ Name # instance name of the resource
 \
 \ What this monitor does: rmapi_smpdae provides an example of a server monitor
 \ that has 3 non-instantiable and 2 instantiable Quantity variables which
 \ are updated with random values on a fixed interval defined in the variable class.
 \ When the monitor is started, it creates and registers the static and 1 set of the
 \ instantiable variables. To further demonstrate instantiation, new instances are
 \ created and registered on the 5th and 12th call to the function send_values().
 \
 \ The monitor will continue executing, adding/deleting and sending values for the
 \ variables as requested by control messages sent from the Event Management daemon
 \ through the RMAPI. This monitor uses select notification protocol to determine when a
 \ connection is ready to accept on the server socket created by ha_rr_makserv() or
 \ when a message is ready to be read through the RMAPI from one of the monitor's
 \ client sessions.
 \
 \ The monitor ends execution when it receives a terminating signal, or when all
 \ all clients have closed their connections.
 \
 \ This program also provides an example of executing multiple copies of a resource
 \ monitor at the same time. The monitor may be started from the command line, and is
 \ not configured to be started by resource monitor managers. The following command

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 181

 rmapi_smpdae.c

 \ line arguments may be used when starting the monitor:
 \
 \ -i <number> Optional: start the requested number of monitor copies,
 \ where <number> is in the range 1 - HA_RR_RM_INSTID_MAX.
\ -h Displays command line help.
 \ -H <name> Optional: Specifies the name of the HACMP domain the
 \ monitor is to execute in.
 \ -S <name> Optional: Specifies the name of the SP domain (system
 \ partition name) the monitor is to execute in.
 \
 \ The [-H, -S] options are mutually exclusive. If neither is supplied, the monitor
 \ will assume it is executing in the default system partition of a SP environment.
 \
 \ The static variables are intended to represent global values which are common
 \ to all instances of the resource being monitored. Since by definition only one
 \ instance of the each static variable may exist on a node, they are supplied only
 \ by the resource monitor whose monitor instance id is ð. This ensures that they are
 \ available for both performance and event monitoring. Each monitor copy contrives
 \ unique values for the Name resource ID element of the instantiable variables.
 \ The intention is to provide an example of multiple copies of a monitor, each
 \ monitoring a set of instances of the same resource.
 \
 \ Examples:
 \
 \ # rmapi_smpdae
 \ - Will start one copy of the monitor in the default system partition of the
 \ local SP node.
 \
 \ # rmapi_smpdae -i 4 -P x1ðs
 \ - Will start four copies of the monitor which will execute in the system
 \ partition named "x1ðs" on the local SP node.
 \
 \ This program can be compiled with the following command:
 \
 \ cc -O rmapi_smpdae.c -o rmapi_smpdae -lha_rr
 \/

/\ local defines
PROGNAME - Name of this program.
MAX_INTERVAL - Max number of seconds before ha_rr_send_value or ha_rr_touch must be called.
RESOURCE_MONITOR_NAME - Name of this monitor as defined in the config data.
MONITOR_CLASS_NAME - Class name as defined in the config data.
SOCKET_TABLE_SIZE - HA_RR_MAX_SESSIONS + 1 for the RMAPI server socket.
RMAPI_SERVER_INDEX - Index in the socket call table for the RMAPI server socket.
STATIC_VAR_NAME_PREFIX - Common portion of the static vars as defined in the config data.
INST_VAR_NAME_PREFIX - Common portion of the inst vars as defined in the config data.
INST_VAR_RESID_FORMAT - Resource ID format for instantiable vars.
INITIAL_VALUE - Variable initial value used on ha_rr_add_var().
MAX_VALUE - Maximum variable value.
NUM_STATIC_VARS - Number of static variables defined for monitor.
NUM_INST_VARS - Number of instantiable variables defined for monitor.
\/
#define PROGNAME "rmapi_smpdae"
#define MAX_INTERVAL 5ðð
#define RESOURCE_MONITOR_NAME "IBM.PSSP.SampleDaeMon"
#define MONITOR_CLASS_NAME "IBM.PSSP.SampleDaeClass"
#define SOCKET_TABLE_SIZE (HA_RR_MAX_SESSIONS + 1)
#define RMAPI_SERVER_INDEX (HA_RR_MAX_SESSIONS)
#define STATIC_VAR_NAME_PREFIX "IBM.PSSP.SampleDaeMon.StaticVars.static_var"
#define INST_VAR_NAME_PREFIX "IBM.PSSP.SampleDaeMon.InstVars.inst_var"
#define INST_VAR_RESID_FORMAT "InstName=Resource%d"
#define INITIAL_VALUE 1ð
#define MAX_VALUE 5ðð
#define NUM_STATIC_VARS 3
#define NUM_INST_VARS 2

/\ local structs \/
struct sock_table_entry {

int socket_fd; /\ fd for manager session or RMAPI server socket. \/
void (\sock_funcp)(int); /\ function to be called for this socket fd. \/

};

struct local_vars {
char var_name[128]; /\ Variable name (as in the CDB). \/
char var_resid[32]; /\ Qualified resource ID (for instantiable variables). \/
long value; /\ variables value. \/
void \var_handle; /\ place for RMAPI to store the var handle. \/

};

/\ local functions \/
void display_rmapi_err(struct ha_em_err_blk \errblk);
void server_socket_handler(int table_index);
void session_socket_handler(int table_index);

182 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpdae.c

void end_session(int table_index);
void register_variables();
void add_variables(int sock_fd, struct ha_rr_ctrl_msg \ctrl_msg);
void del_variables(int sock_fd, struct ha_rr_ctrl_msg \ctrl_msg);
void send_values();
void control_loop();
void set_signals();
void catch_alrm_signal(int);
void catch_exit_signal(int);
void mon_exit(int);

/\ globals \/
int NumMgrs = ð; /\ number of resource managers connected. \/
struct ha_rr_variable \Variables = (struct ha_rr_variable \)ð; /\ RMAPI variable array. \/
struct ha_rr_val \Values = (struct ha_rr_val \)ð; /\ RMAPI value array. \/
struct sock_table_entry SocketTable[SOCKET_TABLE_SIZE]; /\ RMAPI server and session sockets. \/
struct ha_em_err_blk ErrBlock; /\ global error block for RMAPI calls. \/
struct local_vars \LocalVars = (struct local_vars \)ð; /\ array of local variables. \/
static sigset_t SignalMask; /\ mask for signals. \/
timer_t IntervalTimerId; /\ ID for var update interval timer. \/
int Interval; /\ Update interval for this monitor. \/
int SampleTime = ð; /\ flag set by interval alrm sig. \/
int Terminate = ð; /\ flag set by terminate signal. \/
int SigCaught = ð; /\ signal caught by term. \/
int TimeOut = MAX_INTERVAL; /\ time out counter to call ha_rr_touch. \/
int NumVariables = ð; /\ Number of variables in arrays. \/
int MonitorInstanceID; /\ Instance ID of the running monitor \/
int Pid; /\ resource monitor process id. \/
char DomainHACMP[] = "HA_DOMAIN_TYPE=HACMP"; /\ string for HACMP domain type. \/
char DomainSP[] = "HA_DOMAIN_TYPE=SP"; /\ string for HACMP domain type. \/
int RmapiInit = ð; /\ flag to inidicate RMAPI initialized \/

/\\/
/\ Main - Main - Main - Main - Main - Main - Main - Main - Main - Main - Main \/
/\\/
main(int argc, char \\argv)
{
int c, i, rc;
int num_rm_insts = 1;
struct itimerstruc_t itimer;
char \domain_name = NULL, \domain_type = NULL, \bp;
struct ha_rr_args rr_args;

while ((c = getopt(argc, argv, "i:hH:S:")) != EOF) {
switch (c) {

 case 'i':
num_rm_insts = atoi(optarg);
if ((num_rm_insts < 1) || (num_rm_insts > HA_RR_RM_INSTID_MAX)) {

fprintf(stderr, "%s(%d): Invalid number of monitor instances, %d. "
 "Allowable 1-%d.\n",
 PROGNAME,Pid,num_rm_insts,HA_RR_RM_INSTID_MAX);
 mon_exit(1);
 }
 break;
 case 'H':

if (domain_name != NULL) {
fprintf(stderr, "%s(%d): Specify either the -S or -H options once.\n",

 PROGNAME,Pid);
 mon_exit(1);
 }

domain_name = optarg;
 domain_type = DomainHACMP;
 break;
 case 'S':

if (domain_name != NULL) {
fprintf(stderr, "%s(%d): Specify either the -S or -H options once.\n",

 PROGNAME,Pid);
 mon_exit(1);
 }

domain_name = optarg;
 domain_type = DomainSP;
 break;
 case 'h':
 default:

fprintf(stdout, "Usage:\t%s [-h] [-i number] [-H domain_name | -S domain_name]\n"
"\t\t-h\tDisplays this help message\n"
"\t\t-i\tCreate the number of monitor instances specified\n"
"\t\t-H\tUse the HACMP domain name\n"
"\t\t-S\tUse the SP domain name\n",

 PROGNAME);
 exit(ð);
 }
 }

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 183

 rmapi_smpdae.c

Pid = getpid();
fprintf(stdout,"%s(%d): %s resource monitor started. %d instance(s) of the monitor requested.\n",

 PROGNAME,Pid,RESOURCE_MONITOR_NAME,num_rm_insts);

 /\
\ Set up the domain type and name environment variables (if
\ supplied on the command line). Make the default domain
\ type "SP".

 \/
if (domain_type == NULL) domain_type = DomainSP;
if (putenv(domain_type)) {

fprintf(stderr, "%s(%d): putenv() failed, errno=%d.\n",PROGNAME,Pid,errno);
 mon_exit(1);
 }

if (domain_name != NULL) {
bp = (char \)malloc(strlen(domain_name) +

strlen("HA_DOMAIN_NAME=") + 1);
if (bp == NULL) {

fprintf(stderr, "%s(%d): malloc() failed.\n",PROGNAME,Pid);
 mon_exit(1);
 }
 sprintf(bp,"HA_DOMAIN_NAME=%s",domain_name);

if (putenv(bp)) {
fprintf(stderr, "%s(%d): putenv() failed, errno=%d.\n",PROGNAME,Pid,errno);

 mon_exit(1);
 }
 }

fprintf(stdout, "%s(%d): Resource monitor environment: DomainType=%s DomainName=%s.\n",
 PROGNAME,Pid,getenv("HA_DOMAIN_TYPE"),getenv("HA_DOMAIN_NAME"));

 /\
\ Setup signal handlers.

 \/
 set_signals();

 /\
\ Initialize the socket table. Socket file descriptors are initialized to -1.

 \/
for (i=ð;i<SOCKET_TABLE_SIZE;i++) {

SocketTable[i].socket_fd = -1;
if (i == RMAPI_SERVER_INDEX) {

SocketTable[i].sock_funcp = server_socket_handler;
} else {

SocketTable[i].sock_funcp = session_socket_handler;
 }
 }

 /\
\ Set the monitor instance number. If only 1 instance was specified,
\ request only instance number ð, so that the monitor can supply
\ variables to both the EM daemon and PTPE. If more than 1 copy is
\ to be started, specify HA_RR_RM_INSTID_ANY, so that for each copy,
\ the RMAPI attempts to lock the first available instance id within
\ the range defined for this monitor. Note that this is the default
\ action the RMAPI would take.

 \/
rr_args.rr_instance_id = num_rm_insts > 1 ? HA_RR_RM_INSTID_ANY : ð;
rc = ha_rr_rm_ctl(&rr_args,HA_RR_RM_ARGS_SET_INSTID,&ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

 fflush(stdout);
if (num_rm_insts > 1) {

 /\
\ fork() multiple copies of the monitor.

 \/
for (i=ð;i<num_rm_insts-1;i++) {

if ((rc = fork()) < ð) {
 /\

\ fork() system call failed.
 \/

fprintf(stderr, "%s(%d): Attempting to fork() monitor copy %d failed. Error: %d-%s.\n",
 PROGNAME,Pid,i,errno,strerror(errno));
 mon_exit(1);
 }

if (rc > ð) {
 /\

\ Child RM, break from the loop.
 \/

184 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpdae.c

 break;
 }
 }
 }

Pid = getpid();

 /\
\ Initialize the RMAPI.

 \/
rc = ha_rr_init(RESOURCE_MONITOR_NAME, &ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

RmapiInit = 1;

 /\
\ Query and report the monitor instance number and domain name.

 \/
rc = ha_rr_rm_ctl(&rr_args,HA_RR_RM_ARGS_GET,&ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

MonitorInstanceID = rr_args.rr_instance_id;

fprintf(stdout,"%s(%d): Resource monitor instance id=%d domain=%s.\n",
 PROGNAME,Pid,rr_args.rr_instance_id,rr_args.rr_domain_name);

 /\
\ Query the update interval from the RMAPI.

 \/
Interval = ha_rr_get_interval(MONITOR_CLASS_NAME,&ErrBlock);
if (Interval == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

fprintf(stdout,"%s(%d): Interval for class %s is %d.\n",
 PROGNAME,Pid,MONITOR_CLASS_NAME,Interval);

 /\
\ Register variables with the RMAPI

 \/
 register_variables();

 /\
\ Make this Resource Monitor a server.

 \/
rc = SocketTable[RMAPI_SERVER_INDEX].socket_fd = ha_rr_makserv(HA_RR_NOTIFY_SELECT, &ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

fprintf(stdout,"%s(%d): Assigned RMAPI server socket_fd(%d) to table index(%d).\n",
 PROGNAME,Pid,rc,RMAPI_SERVER_INDEX);

 /\
\ Set up sampling timer.

 \/
IntervalTimerId = gettimerid(TIMERID_REAL, DELIVERY_SIGNALS);
itimer.it_value.tv_sec = Interval;
itimer.it_value.tv_nsec = ð;
itimer.it_interval.tv_sec = Interval;
itimer.it_interval.tv_nsec = ð;

if (incinterval(IntervalTimerId, &itimer, (struct itimerstruc_t \)ð) < ð) {
fprintf(stderr,"%s(%d): incinterval() failed with errno=%d.\n",

 PROGNAME,Pid,errno);
 mon_exit(1);
 }

 /\
\ Start the control loop - should never return.

 \/
 control_loop();

 /\
\ Should never get here.

 \/
 mon_exit(ð);
}

/\

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 185

 rmapi_smpdae.c

 \ Sets the signal handlers.
 \/
void set_signals() {
struct sigaction sigactn;

 sigemptyset(&SignalMask);
 sigaddset(&SignalMask, SIGALRM);
 sigaddset(&SignalMask, SIGTERM);

 /\
\ SIGALRM caught on the interval boundary.
\ Handler sets a global flag to do sampling.

 \/
sigactn.sa_handler = catch_alrm_signal;
sigactn.sa_mask = SignalMask;
sigactn.sa_flags = ð;

if (sigaction(SIGALRM, &sigactn, (struct sigaction \)ð) < ð) {
fprintf(stderr,"%s(%d): sigaction() failed for ALRM signal. errno=%d.\n",

 PROGNAME,Pid,errno);
 mon_exit(1);
 }

 /\
\ Need terminate handler to cleanup RMAPI on exit.

 \/
sigactn.sa_handler = catch_exit_signal;
sigactn.sa_mask = SignalMask;
sigactn.sa_flags = ð;

if (sigaction(SIGTERM, &sigactn, (struct sigaction \)ð) < ð) {
fprintf(stderr,"%s(%d): sigaction() failed for TERM signal. errno=%d.\n",

 PROGNAME,Pid,errno);
 mon_exit(1);
 }

 /\
\ Set signal mask, i.e. block SIGALRM, SIGTERM

 \/
if (sigprocmask(SIG_SETMASK, &SignalMask, (sigset_t \)ð) < ð) {

fprintf(stderr,"%s(%d): sigprocmask() failed. errno=%d.\n",PROGNAME,Pid,errno);
 mon_exit(1);
 }
}

/\
 \ Sends new values to the RMAPI - called when SIGALRM is caught.
 \/
void send_values() {
int i, rc;
int num_vals_to_send = ð;
static int times_called = ð;

 times_called++;
for (i=ð;i<NumVariables;i++) {

 /\
\ Give the variable a new random value.

 \/
LocalVars[i].value = (random() % MAX_VALUE);

 /\
\ Only need to send values for vars with non-NULL handles.

 \/
if (LocalVars[i].var_handle != (void \)ð) {

 /\
\ Copy the handle and value to the next available RMAPI structure.

 \/
Values[num_vals_to_send].rr_var_hndl = LocalVars[i].var_handle;
Values[num_vals_to_send].rr_value = &(LocalVars[i].value);

 /\
\ Increment the number to send count.

 \/
 num_vals_to_send++;
 }
 }

if (num_vals_to_send) {
 /\

\ Send the Value array to the RMAPI.
 \/

186 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpdae.c

rc = ha_rr_send_val(Values,num_vals_to_send,ð,&ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

 /\
\ Reset the TimeOut counter.

 \/
TimeOut = MAX_INTERVAL;

} else if ((TimeOut -= Interval) <= ð) {

 /\
\ No values have been sent in the TimeOut period. Need
\ to call ha_rr_touch to meet server requirements.

 \/
if (ha_rr_touch(&ErrBlock) == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

 /\
\ Reset the TimeOut counter.

 \/
TimeOut = MAX_INTERVAL;

 }

 /\
\ Add some new instantiable variables
\ on the 5th and 12th time called.

 \/
if ((times_called == 5) || (times_called == 12)) {

fprintf(stdout,"%s(%d): send_values() called %d times - calling "
"register_variables() to create new variables.\n",

 PROGNAME,Pid,times_called);
 register_variables();
 }
}

/\
 \ Catches SIGALRM and sets global flag SampleTime to send values.
 \/
void catch_alrm_signal(int sig) {

SampleTime = 1;
 /\

\ flush stdout/stderr once in a while in
\ case the output has been redirected.

 \/
 fflush(stdout);
 fflush(stderr);
}

/\
 \ Catches SIGTERM and sets global flag Terminate to exit.
 \/
void catch_exit_signal(int sig) {

Terminate = 1;
SigCaught = sig;

}

/\
 \ Handles a connection request on the RMAPI server
 \ socket returned by ha_rr_makserv().
 \/
void server_socket_handler(int table_index) {
int i, mgr_sock, rc;

mgr_sock = ha_rr_start_session(HA_RR_NOTIFY_SELECT,&ErrBlock);
if (mgr_sock < ð) {

 display_rmapi_err(&ErrBlock);
if ((ErrBlock.em_errno != HA_RR_EMAXSESSIONS) && (ErrBlock.em_errno != HA_RR_EAGAIN)) {

 /\
\ Severe error in the RMAPI - exit.

 \/
 mon_exit(1);
 }
 return;
 }
 /\

\ Find an available element in the session socket table.
 \/

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 187

 rmapi_smpdae.c

for (i=ð;(i < HA_RR_MAX_SESSIONS)&&(SocketTable[i].socket_fd >= ð);i++);

if (i < HA_RR_MAX_SESSIONS) {
 /\

\ Save the mgr socket fd returned by the RMAPI.
\ The socket function was initialized in main.

 \/
SocketTable[i].socket_fd = mgr_sock;

 NumMgrs++;
fprintf(stdout,"%s(%d): New session accepted to index(%d) socket_fd(%d).\n",

 PROGNAME,Pid,i,mgr_sock);
} else {

 /\
\ Should never get here, RMAPI handles too many sessions.

 \/
rc = ha_rr_end_session(mgr_sock,&ErrBlock);

 }
}

/\
 \ Handles a message being received from the manager session
 \ specified by [table_index]. Called following select.
 \/
void session_socket_handler(int table_index) {
int rc, session_sock;
struct ha_rr_ctrl_msg \ctrl_msg;

 /\
\ Get the socket file descriptor for this session.

 \/
if ((session_sock = SocketTable[table_index].socket_fd) < ð) {

 return;
 }

 /\
\ Call ha_rr_get_ctrl_msg to read the command from the manager.

 \/
fprintf(stdout,"%s(%d): Calling ha_rr_get_ctrlmsg for session(%d) socket_fd(%d).\n",

 PROGNAME,Pid,table_index,session_sock);
rc = ha_rr_get_ctrlmsg(session_sock, &ctrl_msg, &ErrBlock);

if (rc == ð) {
 /\

\ Message was for the RMAPI or was incomplete.
 \/
 return;
 }

if (rc == HA_RR_FAIL) {
 display_rmapi_err(&ErrBlock);

if (ErrBlock.em_errno == HA_RR_EDISCONNECT) {
 end_session(table_index);

} else if (ErrBlock.em_errno != HA_RR_EAGAIN) {
 /\

\ Severe RMAPI error.
 \/
 mon_exit(1);
 }
 return;
 }

switch (ctrl_msg->rr_ctrl_cmd) {
 case HA_RR_CMD_ADDALL :
 case HA_RR_CMD_ADDV :
 add_variables(table_index,ctrl_msg);
 break;
 case HA_RR_CMD_DELALL :
 case HA_RR_CMD_DELV :
 del_variables(table_index,ctrl_msg);
 break;
 default :
 /\

\ Unknown or unsupported msg - ignore it.
 \/

fprintf(stderr,"%s(%d): Received an unexpected cmd(%d) from socket_fd(%d), ignoring...\n",
 PROGNAME,Pid,ctrl_msg->rr_ctrl_cmd,session_sock);
 break;
 }

 /\
\ Free the message allocated by the RMAPI.

 \/

188 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpdae.c

 free(ctrl_msg);
}

/\
 \ Adds the variables referenced in the control message to
 \ the manager session specified by [table_index].
 \/
void add_variables(int table_index, struct ha_rr_ctrl_msg \ctrl_msg) {
int i;
int sock_fd;
int inst_id;
int num_added, num_to_add = ð;

sock_fd = SocketTable[table_index].socket_fd;
switch (ctrl_msg->rr_ctrl_cmd) {

case HA_RR_CMD_ADDALL :
 /\

\ Add all variables to this manager session.
 \/

fprintf(stdout,"%s(%d): Processing cmd HA_RR_CMD_ADDALL to add all variables to session_fd %d.\n",
 PROGNAME,Pid,sock_fd);

for (i=ð;i<NumVariables;i++) {
 /\

\ Copy the var to the next RMAPI var struct.
 \/

Variables[num_to_add].rr_var_name = LocalVars[i].var_name;
Variables[num_to_add].rr_var_rsrc_ID = LocalVars[i].var_resid;
Variables[num_to_add].rr_varu.rr_var_hndl = &(LocalVars[i].var_handle);
Variables[num_to_add].rr_value = &(LocalVars[i].value);

 /\
\ Increment the count of variables to be added.

 \/
 num_to_add++;
 }
 break;

case HA_RR_CMD_ADDV :
 /\

\ Add a vector of variables to the manager session.
 \/

fprintf(stdout,"%s(%d): Processing cmd HA_RR_CMD_ADDV to add %d vars for session_fd %d.\n",
 PROGNAME,Pid,ctrl_msg->rr_ctrl_num_vars,sock_fd);

for (i=ð;i < ctrl_msg->rr_ctrl_num_vars;i++) {

 /\
\ The inst id field in the ctrl message is
\ the index into the LocalVars array.

 \/
 inst_id = ctrl_msg->rr_ctrlv.rr_ctrl_vari[i];

if (inst_id < NumVariables) {
 /\

\ Copy the variable to the next RMAPI structure.
 \/

Variables[num_to_add].rr_var_name = LocalVars[inst_id].var_name;
Variables[num_to_add].rr_var_rsrc_ID = LocalVars[inst_id].var_resid;
Variables[num_to_add].rr_varu.rr_var_hndl = &(LocalVars[inst_id].var_handle);
Variables[num_to_add].rr_value = &(LocalVars[inst_id].value);

 num_to_add++;
 }
 }
 break;
 default :
 break;
 }

if (num_to_add) {
 /\

\ Add the variables by calling ha_rr_add_var.
 \/

num_added = ha_rr_add_var(sock_fd, Variables, num_to_add, 1, &ErrBlock);

if (num_added == HA_RR_FAIL) {
 display_rmapi_err(&ErrBlock);

if (ErrBlock.em_errno == HA_RR_EDISCONNECT) {
 /\

\ Session closed by manager.
 \/
 end_session(table_index);

} else {
 mon_exit(1);
 }

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 189

 rmapi_smpdae.c

} else {

fprintf(stdout,"%s(%d): ha_rr_add_var() added %d vars to session_fd %d.\n",
 PROGNAME,Pid,num_added,sock_fd);

if (num_to_add != num_added) {
 /\

\ Loop through the variables that were attempted
\ to be added and report any that had errors.

 \/
for (i=ð;i<num_to_add;i++) {

if (Variables[i].rr_var_errno != ð) {
fprintf(stderr,"%s(%d): Variable(%s) resource ID(%s) had bad errno(%d) from ha_rr_add_var().\n",

 PROGNAME,Pid,Variables[i].rr_var_name,
 Variables[i].rr_var_rsrc_ID,Variables[i].rr_var_errno);
 }
 }
 }
 }
 }
}

/\
 \ Deletes the variables referenced in the ctrl_msg for the manager
 \ session specified by [table_index].
 \/
void del_variables(int table_index, struct ha_rr_ctrl_msg \ctrl_msg) {
int i;
int sock_fd;
int ctrl_cmd;
int inst_id;
int num_deleted, num_to_del = ð;

sock_fd = SocketTable[table_index].socket_fd;
if (ctrl_msg == (struct ha_rr_ctrl_msg \)ð) {

 /\
\ Called with NULL message when a session is ending. Need to delete
\ all variables from the session before calling ha_rr_end_session.

 \/
ctrl_cmd = HA_RR_CMD_DELALL;

} else {
ctrl_cmd = ctrl_msg->rr_ctrl_cmd;

 }

switch (ctrl_cmd) {
case HA_RR_CMD_DELALL :

fprintf(stdout,"%s(%d): Processing cmd HA_RR_CMD_DELALL to delete all vars for session_fd %d.\n",
 PROGNAME,Pid,sock_fd);
 /\

\ Delete all variables for this manager session.
 \/

for (i=ð;i<NumVariables;i++) {
if (LocalVars[i].var_handle != (void \)ð) {

 /\
\ Copy the variable to the next RMAPI structure.

 \/
Variables[num_to_del].rr_varu.rr_var_hndl = &(LocalVars[i].var_handle);

 /\
\ Increment the count of variables to be deleted.

 \/
 num_to_del++;
 }
 }
 break;

case HA_RR_CMD_DELV :
fprintf(stdout,"%s(%d): Processing cmd HA_RR_CMD_DELV to delete %d vars for session_fd %d.\n",

 PROGNAME,Pid,ctrl_msg->rr_ctrl_num_vars,sock_fd);
 /\

\ Delete a vector of variables for this manager session.
 \/

for (i = ð; i < ctrl_msg->rr_ctrl_num_vars; i++) {
inst_id = ctrl_msg->rr_ctrlv.rr_ctrl_vari[i];
if ((inst_id < NumVariables) &&

(LocalVars[inst_id].var_handle != (void \)ð)) {

 /\
\ Copy the variable to the next RMAPI structure.

 \/
Variables[num_to_del].rr_varu.rr_var_hndl = &(LocalVars[inst_id].var_handle);

 /\

190 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpdae.c

\ Increment the count of variables to be deleted.
 \/
 num_to_del++;
 }
 }
 break;
 default :
 break;
 }

if (num_to_del) {
 /\

\ Delete the variables by calling ha_rr_del_var.
 \/

num_deleted = ha_rr_del_var(sock_fd, Variables, num_to_del, &ErrBlock);

if (num_deleted == HA_RR_FAIL) {
 display_rmapi_err(&ErrBlock);

if (ErrBlock.em_errno == HA_RR_EDISCONNECT) {
 /\

\ Session closed by manager.
 \/
 end_session(table_index);

} else {
 mon_exit(1);
 }
 }

 /\
\ rc>ð from ha_rr_del_var is the number of variables that no longer need
\ their values updated. The RMAPI will have set their handles to NULL.

 \/
fprintf(stdout,"%s(%d): %d variables no longer need to be updated.\n",

 PROGNAME,Pid,num_deleted);
 }
}

/\
 \ Ends the manager session indexed by the [table_index] parameter
 \ in the socket table.
 \/
void end_session(int table_index) {
int rc;

fprintf(stdout,"%s(%d): Ending session index(%d) session_fd(%d).\n",
 PROGNAME,Pid,table_index,SocketTable[table_index].socket_fd);

 /\
\ Make sure this is a valid session.

 \/
if ((table_index < ð) || (table_index > HA_RR_MAX_SESSIONS) ||

(SocketTable[table_index].socket_fd < ð)) {
 return;
 }

 /\
\ Delete all variables for this manager.

 \/
del_variables(table_index, (struct ha_rr_ctrl_msg \)ð);

 /\
\ Call RMAPI to end the session.

 \/
rc = ha_rr_end_session(SocketTable[table_index].socket_fd, &ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

 /\
\ Reset the socket file descriptor in the SocketTable and
\ decrement the manager count.

 \/
SocketTable[table_index].socket_fd = -1;

 NumMgrs--;
}

/\
 \ Registers variables with the RMAPI.
 \/
void register_variables() {
int i, j, num_var;

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 191

 rmapi_smpdae.c

int num_registered, num_to_reg = ð;
static int times_called = ð;

fprintf(stdout,"%s(%d): Call number %d to register_variables().\n",
 PROGNAME,Pid,times_called);
 times_called++;

if (times_called == 1) {
 /\

\ First time called, allocate the LocalVars, Variables and
\ Value arrays. Only register the StaticVars if this is
\ resource monitor instance ð. Since only 1 monitor will
\ supply these non-instantiable common attributes, we want it to
\ be instance ð, so that the variables are made available to
\ both the EM daemon and PTPE.

 \/
NumVariables = NUM_INST_VARS;

if (MonitorInstanceID == ð) NumVariables += NUM_STATIC_VARS;

fprintf(stdout,"%s(%d): Creating %d initial variables.\n",
 PROGNAME,Pid,NumVariables);

LocalVars = (struct local_vars \)malloc(sizeof(struct local_vars) \ NumVariables);
Variables = (struct ha_rr_variable \)malloc(sizeof(struct ha_rr_variable) \ NumVariables);
Values = (struct ha_rr_val \)malloc(sizeof(struct ha_rr_val) \ NumVariables);

 /\
\ Initialize the arrays.

 \/
memset(LocalVars,ð,sizeof(struct local_vars) \ NumVariables);
memset(Variables,ð,sizeof(struct ha_rr_variable) \ NumVariables);
memset(Values,ð,sizeof(struct ha_rr_val) \ NumVariables);

if (MonitorInstanceID == ð) {
 /\

\ Initialize the local variable structures and copy the name, resource ID
\ and value pointers to the RMAPI variables for registration.

 \/
for (i=ð;i<NUM_STATIC_VARS;i++) {

 /\
\ Create the non-instantiable variable names. The resource IDs are NULL
\ strings because they are not instantiable. The only resource ID, NodeNum,
\ defined for these variables is used as the locator field and does not
\ need to be sent to the RMAPI. The index of the variable in the local
\ is used as the inst_id (Variables[n].rr_var_iid). This id is returned by
\ resource monitor managers in control messages to identify variables.

 \/
 sprintf(LocalVars[num_to_reg].var_name,"%s%d",STATIC_VAR_NAME_PREFIX,i+1);

LocalVars[num_to_reg].var_resid[ð] = '\ð';
LocalVars[num_to_reg].value = INITIAL_VALUE;

Variables[num_to_reg].rr_var_name = LocalVars[num_to_reg].var_name;
Variables[num_to_reg].rr_var_rsrc_ID = LocalVars[num_to_reg].var_resid;
Variables[num_to_reg].rr_var_iid = num_to_reg;

 num_to_reg++;
 }
 }

for (i=ð;i<NUM_INST_VARS;i++) {

 /\
\ Initialize the instantiable variables. The difference here is that
\ they have a resource ID that needs to be supplied. The resource ID
\ value will be InstSet<n> where <n> is the number of the call to
\ this routine plus the instance id of the monitor times 1ðð. There
\ is no significance to this naming scheme - it is only used to
\ generate unique instances between multiple copies of the monitor.

 \/
 sprintf(LocalVars[num_to_reg].var_name,"%s%d",INST_VAR_NAME_PREFIX,i+1);
 sprintf(LocalVars[num_to_reg].var_resid,INST_VAR_RESID_FORMAT,

times_called + (MonitorInstanceID \ 1ðð));
LocalVars[num_to_reg].value = INITIAL_VALUE;

Variables[num_to_reg].rr_var_name = LocalVars[num_to_reg].var_name;
Variables[num_to_reg].rr_var_rsrc_ID = LocalVars[num_to_reg].var_resid;
Variables[num_to_reg].rr_var_iid = num_to_reg;

 num_to_reg++;
 }

} else {

192 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpdae.c

 /\
\ Subsequent call to this routine. This is an example of new instantations
\ being created during normal execution. A new set of instantiable variables
\ will be registered using the current number of times this routine was called
\ in the resource ID.

 \/
fprintf(stdout,"%s(%d): Creating %d new variables.\n",

 PROGNAME,Pid,NUM_INST_VARS);

 /\
\ Get the new number of variables.

 \/
num_var = NumVariables + NUM_INST_VARS;

 /\
\ realloc the arrays to the new size and initialize the local array.

 \/
LocalVars = (struct local_vars \)realloc(LocalVars, sizeof(struct local_vars) \ num_var);
Variables = (struct ha_rr_variable \)realloc(Variables, sizeof(struct ha_rr_variable) \ num_var);
Values = (struct ha_rr_val \)realloc(Values, sizeof(struct ha_rr_val) \ num_var);
memset(LocalVars+NumVariables,ð,sizeof(struct local_vars) \ NUM_INST_VARS);

for (i=NumVariables,j=ð;i<num_var;i++,j++) {

 /\
\ Create a new set of variables as above and copy them to the
\ RMAPI variable structure to be registered.

 \/
 sprintf(LocalVars[i].var_name,"%s%d",INST_VAR_NAME_PREFIX,j+1);
 sprintf(LocalVars[i].var_resid,INST_VAR_RESID_FORMAT,

times_called + (MonitorInstanceID \ 1ðð));
LocalVars[i].value = INITIAL_VALUE;

Variables[num_to_reg].rr_var_name = LocalVars[i].var_name;
Variables[num_to_reg].rr_var_rsrc_ID = LocalVars[i].var_resid;
Variables[num_to_reg].rr_var_iid = i;

 num_to_reg++;
 }

NumVariables = num_var;
 }

if (num_to_reg) {
 /\

\ Call the RMAPI to register the variables.
 \/

num_registered = ha_rr_reg_var(Variables,num_to_reg,&ErrBlock);
if (num_registered != num_to_reg) {

if (num_registered == HA_RR_FAIL) {
 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

fprintf(stdout,"%s(%d): %d variables registered with the RMAPI.\n",
 PROGNAME,Pid,num_registered);

for (i=ð; i<num_to_reg; i++) {
if ((Variables[i].rr_var_errno) || (num_registered == HA_RR_FAIL)) {

 /\
\ Display a message for each variable with a registration error.

 \/
fprintf(stderr,"%s(%d): ha_rr_reg_var() error with variable(%s) instid(%d) RMAPI errno=(%d).\n",

 PROGNAME,Pid,
 Variables[i].rr_var_name,
 Variables[i].rr_varu.rr_var_inst_id,
 Variables[i].rr_var_errno);
 }
 }
 }
 }
}

/\
 \ Called once by main to establish the control loop.
 \/
void control_loop() {
int i, rc;
int sock;
int CallSockFunctions;
fd_set sockfd_set;

 for(;;) {

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 193

 rmapi_smpdae.c

 /\
\ Initialize the socket mask for select.

 \/
 FD_ZERO(&sockfd_set);
 for(i=ð;i<SOCKET_TABLE_SIZE;i++) {

if (SocketTable[i].socket_fd >= ð) FD_SET(SocketTable[i].socket_fd,&sockfd_set);
 }

CallSockFunctions = ð;

 /\
\ Unblock the SIGTERM and SIGALRM signals.

 \/
if (sigprocmask(SIG_UNBLOCK, &SignalMask, (sigset_t \)ð) < ð) {

 /\
\ sigprocmask sys call failed.

 \/
fprintf(stderr,"%s(%d): Cannot unblock signals. sigprocmask() errno=%d.\n",

 PROGNAME,Pid,errno);
 mon_exit(1);
 }

 /\
\ Only select if not terminating or SIGALRM caught to sample values.

 \/
if (!(SampleTime || Terminate)) {

sock = select(FD_SETSIZE, &sockfd_set, NULL, NULL, NULL);
if (sock > ð) {

CallSockFunctions = 1;
} else if (sock < ð) {

 /\
\ select() call failed - exit if not an interrupt.

 \/
if (errno != EINTR) {

fprintf(stderr,"%s(%d): select() failed with errno=%d.\n",
 PROGNAME,Pid,errno);
 mon_exit(1);
 }
 continue;
 }
 }

 /\
\ Block the SIGTERM and SIGALRM sigs.

 \/
if (sigprocmask(SIG_BLOCK, &SignalMask, (sigset_t \)ð) < ð) {

fprintf(stderr,"%s(%d): Cannot block signals. sigprocmask() errno=%d.\n",
 PROGNAME,Pid,errno);
 mon_exit(1);
 }

if (Terminate) {
 /\

\ SIGTERM caught - call mon_exit() to clean up.
 \/

fprintf(stdout,"%s(%d): Caught signal(%d)...calling exit...\n",
 PROGNAME,Pid,SigCaught);
 mon_exit(SigCaught);
 }

if (CallSockFunctions) {
 /\

\ Call the socket function for each socket returned by select.
 \/

for (i=ð;<SOCKET_TABLE_SIZE;i++) {
if (SocketTable[i].socket_fd >=ð &&

 FD_ISSET(SocketTable[i].socket_fd,&sockfd_set)) {
fprintf(stdout,"%s(%d): Calling socket function for session(%d) socket_fd(%d).\n",

 PROGNAME,Pid,i,SocketTable[i].socket_fd);
 (SocketTable[i].sock_funcp)(i);
 }
 }
 }

if (SampleTime) {
 /\

\ SIGALRM caught - call send_values()
\ and reset the sample flag.

 \/
 send_values();

SampleTime = ð;
 }
 }
}

194 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpdae.c

/\
 \ Routine to terminate the monitor.
 \/
void mon_exit(int s)
{
static int recursively_called = ð;
int i, rc;

 /\
\ Check for recursive call - some routines mon_exit()
\ calls can likewise call mon_exit().

 \/
if (recursively_called) return;
recursively_called = 1;

if (RmapiInit) {
 /\

\ Gracefully close all sessions.
 \/

for (i=ð;i<HA_RR_MAX_SESSIONS;i++) {
if (SocketTable[i].socket_fd >= ð) {

 end_session(i);
 }
 }
 /\

\ Terminate the RMAPI.
 \/

rc = ha_rr_terminate(&ErrBlock);
if (rc) {

 display_rmapi_err(&ErrBlock);
 }
 }

fprintf(stdout,"%s(%d): %s resource monitor exiting.\n",
 PROGNAME,Pid,RESOURCE_MONITOR_NAME);
 exit(s);
}

/\
 \ Display an RMAPI error.
 \/
void display_rmapi_err(struct ha_em_err_blk \errblk)
{
 fprintf(stderr,

"%s(%d): RMAPI Error: File(%s) Version(%s) Line(%d) Errno(%d)\n\t%s",
 PROGNAME,Pid,
 errblk->em_errfile,
 errblk->em_errlevel,
 errblk->em_errline,
 errblk->em_errno,
 errblk->em_errmsg);
}

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 195

 rmapi_smpsig.c

The rmapi_smpsig.c Sample Program
/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/
/\===\/
/\ @(#)44 1.9 src/rsct/pem/emtools/rmapi_samples/rmapi_smpsig.c, emtools, rsct_rtro 6/5/98 11:25:45 \/

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/events.h>
#include <ha_rmapi.h>

/\
 \ rmapi_smpsig.c
 \
 \ This program presents an example of using the Resource Monitor Application
 \ Programming Interface (RMAPI). The configuration data for this monitor
 \ is in the file RmapiSample.loadsdr. This monitor is an example of server
 \ monitor (Resource Monitor Managers connect to the monitor) function that could
 \ be incorporated into a daemon or subsystem. This example monitor demonstrates
 \ using SIGIO as the notification protocol and the use of dynamically instantiable
 \ variables.
 \
 \ Event Management objects defined for this monitor:
 \
 \ Monitor:
 \ IBM.PSSP.SampleSigMon # server monitor definition
 \
 \ Class:
 \ IBM.PSSP.SampleSigDynInstClass # class for dynamically instantable vars
 \ IBM.PSSP.SampleSigNonInstClass # class for non-instantable vars
 \
 \ Variables:
 \ IBM.PSSP.SampleSigMon.DynInstVar.var # valuetype quantity, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
 \ InstName # instance name of variable
\ IBM.PSSP.SampleSigMon.NonInstVars.var1 # valuetype counter, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
\ IBM.PSSP.SampleSigMon.NonInstVars.var2 # valuetype counter, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
\ IBM.PSSP.SampleSigMon.NonInstVars.var3 # valuetype counter, datatype long
 \ Resource Identifiers: NodeNum # used as locator field of var
 \
 \ What this monitor does: rmapi_smpsig provides an example of a server monitor
 \ which has 1 dynamically instantable variable and 3 non-instantiable variables.
 \
 \ The monitor will continue to run until it either receives a signal to terminate, or
 \ all clients have closed their connections.
 \
 \ This program can be compiled with the following command:
 \
 \ cc -O rmapi_smpsig.c -o rmapi_smpsig -lha_rr
 \/

196 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpsig.c

#ifndef MIN
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#endif

/\ local defines
PROGNAME - Name of this program.
MAX_INTERVAL - Max number of seconds before ha_rr_send_value or ha_rr_touch must be called.
RESOURCE_MONITOR_NAME - Name of this monitor as defined in the config data.
MONITOR_CLASS_NAME - Class name as defined in the config data.
SOCKET_TABLE_SIZE - HA_RR_MAX_SESSIONS + 1 for the RMAPI server socket.
RMAPI_SERVER_INDEX - Index in the socket call table for the RMAPI server socket.
STATIC_VAR_NAME_PREFIX - Common portion of the static vars as defined in the config data.
INST_VAR_NAME_PREFIX - Common portion of the inst vars as defined in the config data.
INST_VAR_RESID_FORMAT - Resource ID format for instantiable vars.
INITIAL_VALUE - Variable initial value used on ha_rr_add_var().
MAX_VALUE - Maximum variable value.
NUM_STATIC_VARS - Number of static variables defined for monitor.
NUM_INST_VARS - Number of instantiable variables defined for monitor.
\/
#define PROGNAME "rmapi_smpsig"
#define MAX_INTERVAL 5ðð
#define RESOURCE_MONITOR_NAME "IBM.PSSP.SampleSigMon"
#define DYN_INST_CLASS_NAME "IBM.PSSP.SampleSigDynInstClass"
#define NON_INST_CLASS_NAME "IBM.PSSP.SampleSigNonInstClass"
#define NUM_NONINST_VARS 3
#define SOCKET_TABLE_SIZE (HA_RR_MAX_SESSIONS + 1)
#define RMAPI_SERVER_INDEX (HA_RR_MAX_SESSIONS)
#define DYN_INST_VAR_NAME "IBM.PSSP.SampleSigMon.DynInstVar.var"
#define NON_INST_VAR_NAME_PREFIX "IBM.PSSP.SampleSigMon.NonInstVars.var"
#define DYN_INST_VAR_RESID "InstName"
#define INITIAL_VALUE 1ð
#define MAX_VALUE 5ðð
#define NULL_RESID ""

/\ local structs \/
struct sock_table_entry {

int socket_fd; /\ fd for manager session or RMAPI server socket. \/
void (\sock_funcp)(int); /\ function to be called for this socket fd. \/

};

struct local_vars {
char var_name[128]; /\ Variable name (as in config data). \/
char var_resid[32]; /\ Qualified resource ID (for instantiable variables). \/
short registered; /\ flag set when variable is registered. \/
long value; /\ variables value. \/
void \var_handle; /\ place for RMAPI to store the var handle. \/

};

/\ local functions \/
void display_rmapi_err(struct ha_em_err_blk \errblk);
void server_socket_handler(int table_index);
void session_socket_handler(int table_index);
void end_session(int table_index);
void register_variables();
void inst_variables(struct ha_rr_ctrl_msg \);
void add_variables(int sock_fd, struct ha_rr_ctrl_msg \ctrl_msg);
void del_variables(int sock_fd, struct ha_rr_ctrl_msg \ctrl_msg);
void send_values();
void control_loop();
void set_signals();
void catch_io_signal(int);
void catch_alrm_signal(int);
void catch_exit_signal(int);
void mon_exit(int);

/\ globals \/
int NumMgrs = ð; /\ number of resource managers connected. \/
struct ha_rr_variable \Variables = (struct ha_rr_variable \)ð; /\ RMAPI variable array. \/
struct ha_rr_val \Values = (struct ha_rr_val \)ð; /\ RMAPI val array. \/
struct sock_table_entry SocketTable[SOCKET_TABLE_SIZE]; /\ RMAPI sever and session sockets. \/
struct ha_em_err_blk ErrBlock; /\ global error block for RMAPI calls. \/
struct local_vars \LocalVars = (struct local_vars \)ð; /\ array of local variables. \/

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 197

 rmapi_smpsig.c

static sigset_t SignalMask; /\ mask for signals. \/
timer_t IntervalTimerId; /\ ID for var update interval timer. \/
int Interval; /\ Update interval for this monitor. \/
int SampleTime = ð; /\ flag set by catching interval SIGALRM. \/
int Terminate = ð; /\ flag set by catching SIGTERM. \/
int SigioCaught = ð; /\ flag set by catching SIGIO. \/
int SigCaught = ð; /\ actual signal caught by term. \/
int TimeOut = MAX_INTERVAL; /\ time out counter to call ha_rr_touch. \/
int NumVariables = ð; /\ Number of variables available. \/
int RmapiInit = ð; /\ flag to indicate RMAPI initialized. \/

/\\/
/\ Main - Main - Main - Main - Main - Main - Main - Main - Main - Main - Main \/
/\\/
main(int argc, char \\argv)
{
int interval1, interval2;
int i, rc;
struct itimerstruc_t itimer;

fprintf(stdout,"%s: %s resource monitor started.\n",PROGNAME,RESOURCE_MONITOR_NAME);

 /\
\ Setup signal handlers.

 \/
 set_signals();

 /\
\ Initialize the socket table. Socket file descriptors are set to -1.

 \/
for (i=ð;i<SOCKET_TABLE_SIZE;i++) {

SocketTable[i].socket_fd = -1;
if (i == RMAPI_SERVER_INDEX) {

SocketTable[i].sock_funcp = server_socket_handler;
} else {

SocketTable[i].sock_funcp = session_socket_handler;
 }
 }

 /\
\ Initialize the RMAPI.

 \/
rc = ha_rr_init(RESOURCE_MONITOR_NAME, &ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

RmapiInit = 1;

 /\
\ Query the update intervals for each class from the RMAPI.

 \/
interval1 = ha_rr_get_interval(DYN_INST_CLASS_NAME,&ErrBlock);
if (interval1 <= ð) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

fprintf(stdout,"Interval for class %s is %d.\n",DYN_INST_CLASS_NAME,interval1);

interval2 = ha_rr_get_interval(NON_INST_CLASS_NAME,&ErrBlock);
if (interval2 <= ð) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

fprintf(stdout,"Interval for class %s is %d.\n",NON_INST_CLASS_NAME,interval2);

 /\
\ For simplicity, the real interval will be the smallest of the two.

 \/
Interval = MIN(interval1,interval2);

 /\

198 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpsig.c

\ Allocate the local and RMAPI arrays for the non-instantiable variables.
 \/

NumVariables = NUM_NONINST_VARS;
LocalVars = (struct local_vars \)malloc(sizeof(struct local_vars) \ NumVariables);
Variables = (struct ha_rr_variable \)malloc(sizeof(struct ha_rr_variable) \ NumVariables);
Values = (struct ha_rr_val \)malloc(sizeof(struct ha_rr_val) \ NumVariables);

 /\
\ Initialize the arrays.

 \/
memset(LocalVars,ð,sizeof(struct local_vars) \ NumVariables);
memset(Variables,ð,sizeof(struct ha_rr_variable) \ NumVariables);
memset(Values,ð,sizeof(struct ha_rr_val) \ NumVariables);

 /\
\ Initialize the local variable structure for the non-instantiables.

 \/
for (i=ð;i<NUM_NONINST_VARS;i++) {

 sprintf(LocalVars[i].var_name,"%s%d",NON_INST_VAR_NAME_PREFIX,i+1);
LocalVars[i].var_resid[ð] = '\ð';
LocalVars[i].value = ð;

 }

 /\
\ Register the non-instantiable variables with the RMAPI.

 \/
 register_variables();

 /\
\ Make this Resource Monitor a server.

 \/
rc = SocketTable[RMAPI_SERVER_INDEX].socket_fd = ha_rr_makserv(HA_RR_NOTIFY_SIGIO, &ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

fprintf(stdout,"Assigned rmapi server socket_fd(%d) to table index(%d).\n",
 rc,RMAPI_SERVER_INDEX);

 /\
\ Set up sampling timer.

 \/
IntervalTimerId = gettimerid(TIMERID_REAL, DELIVERY_SIGNALS);
itimer.it_value.tv_sec = Interval;
itimer.it_value.tv_nsec = ð;
itimer.it_interval.tv_sec = Interval;
itimer.it_interval.tv_nsec = ð;

if (incinterval(IntervalTimerId, &itimer, (struct itimerstruc_t \)ð) < ð) {
fprintf(stderr,"incinterval() failed with errno=%d.\n",errno);

 mon_exit(1);
 }

 /\
\ Start the control loop - should never return.

 \/
 control_loop();

 /\
\ Should never get here.

 \/
 mon_exit(ð);
}

/\
 \ Sets the signal handlers.
 \/
void set_signals() {
struct sigaction sigactn;

 sigemptyset(&SignalMask);
 sigaddset(&SignalMask, SIGALRM);

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 199

 rmapi_smpsig.c

 sigaddset(&SignalMask, SIGTERM);
 sigaddset(&SignalMask, SIGIO);

 /\
\ SIGIO signal handler.

 \/
sigactn.sa_handler = catch_io_signal;
sigactn.sa_mask = SignalMask;
sigactn.sa_flags = ð;

if (sigaction(SIGIO, &sigactn, (struct sigaction \)ð) < ð) {
fprintf(stderr,"sigaction() failed for SIGIO signal. errno=%d.\n",errno);

 mon_exit(1);
 }

 /\
\ SIGALRM caught on the interval boundary.
\ Handler sets a global flag to do sampling.

 \/
sigactn.sa_handler = catch_alrm_signal;
sigactn.sa_mask = SignalMask;
sigactn.sa_flags = ð;

if (sigaction(SIGALRM, &sigactn, (struct sigaction \)ð) < ð) {
fprintf(stderr,"sigaction() failed for ALRM signal. errno=%d.\n",errno);

 mon_exit(1);
 }

 /\
\ Need a terminate handler to cleanup RMAPI on exit.

 \/
sigactn.sa_handler = catch_exit_signal;
sigactn.sa_mask = SignalMask;
sigactn.sa_flags = ð;

if (sigaction(SIGTERM, &sigactn, (struct sigaction \)ð) < ð) {
fprintf(stderr,"sigaction() failed for TERM signal. errno=%d.\n",errno);

 mon_exit(1);
 }

 /\
\ Set signal mask, i.e. block SIGIO, SIGALRM, SIGTERM

 \/
if (sigprocmask(SIG_SETMASK, &SignalMask, (sigset_t \)ð) < ð) {

fprintf(stderr,"sigprocmask() failed. errno=%d.\n",errno);
 mon_exit(1);
 }
}

/\
 \ Sends new values to the RMAPI - called when SIGALRM is caught.
 \/
void send_values() {
int i, rc;
int num_vals_to_send = ð;
static int times_called = ð;

 times_called++;
for (i=ð;i<NumVariables;i++) {

if (i < NUM_NONINST_VARS) {
 /\

\ Randomly increment the non-instantiable variable value (Counter).
 \/

LocalVars[i].value += (random() % 5ð);
} else {

 /\
\ Assign a random value to the DynInstVar variable value (Quantity).

 \/
LocalVars[i].value = (random() % MAX_VALUE);

 }

200 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpsig.c

 /\
\ Only need to send values for variables with non-NULL handles.

 \/
if (LocalVars[i].var_handle != (void \)ð) {

 /\
\ Copy the handle and value to the next available RMAPI structure.

 \/
Values[num_vals_to_send].rr_var_hndl = LocalVars[i].var_handle;
Values[num_vals_to_send].rr_value = &(LocalVars[i].value);

 /\
\ Increment the number to send count.

 \/
 num_vals_to_send++;
 }
 }

if (num_vals_to_send) {
 /\

\ Send the Value array to the RMAPI.
 \/

rc = ha_rr_send_val(Values,num_vals_to_send,ð,&ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

 /\
\ Reset the TimeOut counter.

 \/
TimeOut = MAX_INTERVAL;

} else if ((TimeOut -= Interval) <= ð) {

 /\
\ No values have been sent in the TimeOut period. Need
\ to call ha_rr_touch to meet server requirements.

 \/
if (ha_rr_touch(&ErrBlock) == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

 /\
\ Reset the TimeOut counter.

 \/
TimeOut = MAX_INTERVAL;

 }
}

/\
 \ Catches SIGIO and sets global flag SigioCaught to send values.
 \/
void catch_io_signal(int sig) {

SigioCaught = 1;
}

/\
 \ Catches SIGALRM and sets global flag SampleTime to send values.
 \/
void catch_alrm_signal(int sig) {

SampleTime = 1;
}

/\
 \ Catches SIGTERM and sets global flag Terminate to exit.
 \/
void catch_exit_signal(int sig) {

Terminate = 1;

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 201

 rmapi_smpsig.c

SigCaught = sig;
}

/\
 \ Handles a connection request on the RMAPI server
 \ socket returned by ha_rr_makserv().
 \/
void server_socket_handler(int table_index) {
int i, mgr_sock, rc;

mgr_sock = ha_rr_start_session(HA_RR_NOTIFY_SIGIO,&ErrBlock);
if (mgr_sock < ð) {

 display_rmapi_err(&ErrBlock);
if ((ErrBlock.em_errno != HA_RR_EMAXSESSIONS) && (ErrBlock.em_errno != HA_RR_EAGAIN)) {

 /\
\ Severe error in the RMAPI - exit.

 \/
 mon_exit(1);
 }
 return;
 }
 /\

\ Find an available element in the session socket table.
 \/

for (i=ð;(i < HA_RR_MAX_SESSIONS)&&(SocketTable[i].socket_fd >= ð);i++);

if (i < HA_RR_MAX_SESSIONS) {
 /\

\ Save the manager socket file descriptor returned by the RMAPI.
\ The socket function was initialized in main.

 \/
SocketTable[i].socket_fd = mgr_sock;

 NumMgrs++;
fprintf(stdout,"New session accepted to index(%d) socket_fd(%d).\n",i,mgr_sock);

} else {
 /\

\ Should never get here, RMAPI handles too many sessions.
 \/

rc = ha_rr_end_session(mgr_sock,&ErrBlock);
 }
}

/\
 \ Handles a message being received from the manager session
 \ specified by [table_index].
 \/
void session_socket_handler(int table_index) {
int len, session_sock;
struct ha_rr_ctrl_msg \ctrl_msg_start, \ctrl_msg;

 /\
\ Get the socket file descriptor for this session.

 \/
if ((session_sock = SocketTable[table_index].socket_fd) < ð) {

 return;
 }

 /\
\ Call ha_rr_get_ctrl_msg() to read the command from the manager.

 \/
fprintf(stdout,"Calling ha_rr_get_ctrlmsg for session(%d) socket_fd(%d).\n",

 table_index,session_sock);
len = ha_rr_get_ctrlmsg(session_sock, &ctrl_msg, &ErrBlock);

if (len == ð) {
 /\

\ Message was for the RMAPI or was incomplete.
 \/
 return;
 }

if (len == HA_RR_FAIL) {

202 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpsig.c

 display_rmapi_err(&ErrBlock);
if (ErrBlock.em_errno == HA_RR_EDISCONNECT) {

 end_session(table_index);
} else if (ErrBlock.em_errno != HA_RR_EAGAIN) {

 /\
\ Severe RMAPI error.

 \/
 mon_exit(1);
 }
 return;
 }

 /\
\ Since SIGIO is the notification protocol there could be
\ more than 1 message to read.

 \/
ctrl_msg_start = ctrl_msg;
while ((char \)ctrl_msg < (((char \)ctrl_msg_start) + len)) {

switch (ctrl_msg->rr_ctrl_cmd) {
 case HA_RR_CMD_ADDALL :
 case HA_RR_CMD_ADDV :
 add_variables(table_index,ctrl_msg);
 break;
 case HA_RR_CMD_DELALL :
 case HA_RR_CMD_DELV :
 del_variables(table_index,ctrl_msg);
 break;
 case HA_RR_CMD_INSTV :
 inst_variables(ctrl_msg);
 break;
 default :
 /\

\ Unknown or unsupported msg - ignore it.
 \/

fprintf(stderr,"Received an unexpected command(%d) from socket_fd(%d), ignoring...\n",
 ctrl_msg->rr_ctrl_cmd,session_sock);
 break;
 }

ctrl_msg = (struct ha_rr_ctrl_msg \)(((char \)ctrl_msg) + ctrl_msg->rr_ctrl_msg_len);
 }

 /\
\ Free the message allocated by the RMAPI.

 \/
 free(ctrl_msg_start);
}

/\
 \ Dynamically instantiates the variables requested in the control message. If the message
 \ does not wildcard the resource ID, this routine creates instances of the requested
 \ variables, otherwise it creates several variables to simulate wildcard matching.
 \/
void inst_variables(struct ha_rr_ctrl_msg \ctrl_msg) {
int num_var, num_to_create;
struct ha_rr_ctrl_var \vp;
char \inst_name;
static int inst_num = 1ð;
int i, j;

fprintf(stdout,"Processing command HA_RR_CMD_INSTV to create %d variables.\n",
 ctrl_msg->rr_ctrl_num_vars);

for (i=ð;i < ctrl_msg->rr_ctrl_num_vars;i++) {

num_to_create = ð;

 /\
\ Get a pointer to the variable structure in the control message.

 \/
vp = &(ctrl_msg->rr_ctrl_vars[i]);

if (strcmp(DYN_INST_VAR_NAME, vp->rr_ctrl_name)) {

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 203

 rmapi_smpsig.c

 /\
\ Variable name didn't match the dynamically instantiable variable name.

 \/
fprintf(stderr,"%s: Invalid variable (%s) name sent in INSTV ctrl msg.\n",

 PROGNAME,vp->rr_ctrl_name);
 continue;
 }

if (strcmp(vp->rr_ctrl_rsrc_ID,"") != ð) {
 /\

\ A specific instance is requested. Accommodate the request by creating
\ the instance. If this were a real monitor, it would be created if
\ the request matched a valid variable.

 \/
if (strncmp(vp->rr_ctrl_rsrc_ID,DYN_INST_VAR_RESID,strlen(DYN_INST_VAR_RESID))) {

 /\
\ The resource ID in the control message does not match the resource ID
\ for the variable.

 \/
fprintf(stderr,"%s: Invalid resource ID (%s) sent in INSTV ctrl msg.\n",

 PROGNAME,vp->rr_ctrl_rsrc_ID);
 continue;
 }
 /\

\ Get a pointer passed the resource ID name - should be pointing to an '=' now.
\ The format of the resource ID is: ResourceID_Element_Name=Value

 \/
inst_name = vp->rr_ctrl_rsrc_ID + strlen(DYN_INST_VAR_RESID);
if (\inst_name != '=' || \(inst_name + 1) == '\ð') {

 /\
\ '=' not found or value missing in the ctrl message.

 \/
fprintf(stderr,"%s: Invalid resource ID (%s) sent in INSTV ctrl msg.\n",

 PROGNAME,vp->rr_ctrl_rsrc_ID);
 continue;
 }
 /\

\ Adjust the instance name pointer to the value in the control message.
 \/
 inst_name++;

num_to_create = 1;
} else {

 /\
\ Resource ID in the message was NULL which means wildcard the value.
\ Since this is just a sample monitor, we'll make up some variable names
\ to simulate the wildcard match. The contrived instances will have
\ resource IDs: InstName=Inst<nn> where nn is the value of the local static
\ variable inst_num.

 \/
num_to_create = 5;

 }

fprintf(stdout,"Instantiating %d new variables.\n",num_to_create);
 /\

\ realloc() the local and RMAPI variable arrays to accommodate the new instances.
 \/

num_var = NumVariables + num_to_create;
LocalVars = (struct local_vars \)realloc(LocalVars, sizeof(struct local_vars) \ num_var);
Variables = (struct ha_rr_variable \)realloc(Variables, sizeof(struct ha_rr_variable) \ num_var);
Values = (struct ha_rr_val \)realloc(Values, sizeof(struct ha_rr_val) \ num_var);

 /\
\ Initialize the new local variables.

 \/
memset(LocalVars+NumVariables,ð,sizeof(struct local_vars) \ num_to_create);
for (j=NumVariables;j<num_var;j++) {

 /\
\ Copy the dynamic variable name to the local struct.

 \/
 sprintf(LocalVars[j].var_name,DYN_INST_VAR_NAME);

if (num_to_create == 1) {
 /\

204 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpsig.c

\ Resource ID was specified in the control message - use the
\ value in the new variable's resource ID.

 \/
 sprintf(LocalVars[j].var_resid,"%s=%s",DYN_INST_VAR_RESID,inst_name);

fprintf(stdout,"Created dynamic instance: %s\n",LocalVars[j].var_resid);
} else {

 /\
\ Resource ID not specified in the control message - contrive
\ a resource ID for the new instance.

 \/
 sprintf(LocalVars[j].var_resid,"%s=Inst%d",DYN_INST_VAR_RESID,inst_num);
 /\

\ Increment the inst_num counter to keep new resource IDs unique.
 \/
 inst_num++;
 }

LocalVars[j].value = INITIAL_VALUE;
 }
 /\

\ Update the variable array size.
 \/

NumVariables = num_var;
 }
 /\

\ Register the new variables with the RMAPI.
 \/
 register_variables();
}

/\
 \ Adds the variables referenced in the ctrl_msg to the
 \ manager session specified by [table index].
 \/
void add_variables(int table_index, struct ha_rr_ctrl_msg \ctrl_msg) {
int i;
int sock_fd;
int inst_id;
int num_added, num_to_add = ð;

sock_fd = SocketTable[table_index].socket_fd;
switch (ctrl_msg->rr_ctrl_cmd) {

case HA_RR_CMD_ADDALL :
 /\

\ Add all variables to this manager session.
 \/

fprintf(stdout,"Processing cmd HA_RR_CMD_ADDALL to add all variables to session_fd %d.\n",sock_fd);
for (i=ð;i<NumVariables;i++) {

 /\
\ Copy the variable to the next RMAPI structure.

 \/
Variables[num_to_add].rr_var_name = LocalVars[i].var_name;
Variables[num_to_add].rr_var_rsrc_ID = LocalVars[i].var_resid;
Variables[num_to_add].rr_varu.rr_var_hndl = &(LocalVars[i].var_handle);
Variables[num_to_add].rr_value = &(LocalVars[i].value);

 /\
\ Increment the count of variables to be added.

 \/
 num_to_add++;
 }
 break;
 case HA_RR_CMD_ADDV :
 /\

\ Add a vector of variables to the session.
 \/

fprintf(stdout,"Processing cmd HA_RR_CMD_ADDV to add %d vars for session_fd %d.\n",
 ctrl_msg->rr_ctrl_num_vars,sock_fd);

for (i=ð;i < ctrl_msg->rr_ctrl_num_vars;i++) {

 /\
\ The instance id field in the ccontrol message is
\ the index into the LocalVars array.

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 205

 rmapi_smpsig.c

 \/
 inst_id = ctrl_msg->rr_ctrlv.rr_ctrl_vari[i];

if (inst_id < NumVariables) {
 /\

\ Copy the variable to the next RMAPI structure.
 \/

Variables[num_to_add].rr_var_name = LocalVars[inst_id].var_name;
Variables[num_to_add].rr_var_rsrc_ID = LocalVars[inst_id].var_resid;
Variables[num_to_add].rr_varu.rr_var_hndl = &(LocalVars[inst_id].var_handle);
Variables[num_to_add].rr_value = &(LocalVars[inst_id].value);

 num_to_add++;
 }
 }
 break;
 default :
 break;
 }

if (num_to_add) {
 /\

\ Add the variables by calling ha_rr_add_var.
 \/

num_added = ha_rr_add_var(sock_fd, Variables, num_to_add, 1, &ErrBlock);

if (num_added == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);

if (ErrBlock.em_errno == HA_RR_EDISCONNECT) {
 /\

\ Session closed by manager.
 \/
 end_session(table_index);

} else {
 mon_exit(1);
 }

} else {

fprintf(stdout,"ha_rr_add_var() added %d vars to session_fd %d.\n",num_added,sock_fd);
if (num_to_add != num_added) {

 /\
\ Loop through the variables that were attempted
\ to be added and report any that had errors.

 \/
for (i=ð;i<num_to_add;i++) {

if (Variables[i].rr_var_errno != ð) {
fprintf(stderr,"Variable(%s) resource ID(%s) had bad errno(%d) from ha_rr_add_var().\n",

 Variables[i].rr_var_name,Variables[i].rr_var_rsrc_ID,Variables[i].rr_var_errno);
 }
 }
 }
 }
 }
}

/\
 \ Deletes the variables referenced in the control message from
 \ the manager session specified by [table_index].
 \/
void del_variables(int table_index, struct ha_rr_ctrl_msg \ctrl_msg) {
int i;
int sock_fd;
int ctrl_cmd;
int inst_id;
int num_deleted, num_to_del = ð;

sock_fd = SocketTable[table_index].socket_fd;
if (ctrl_msg == (struct ha_rr_ctrl_msg \)ð) {

 /\
\ Called with NULL message when a session is ending. Need to delete

206 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpsig.c

\ all variables from the session before calling ha_rr_end_session.
 \/

ctrl_cmd = HA_RR_CMD_DELALL;
} else {

ctrl_cmd = ctrl_msg->rr_ctrl_cmd;
 }

switch (ctrl_cmd) {
case HA_RR_CMD_DELALL :

fprintf(stdout,"Processing command HA_RR_CMD_DELALL to delete all variables for session_fd %d.\n",
 sock_fd);
 /\

\ Delete all variables from this manager session.
 \/

for (i=ð;i<NumVariables;i++) {
if (LocalVars[i].var_handle != (void \)ð) {

 /\
\ Copy the variable handle to the next RMAPI structure.

 \/
Variables[num_to_del].rr_varu.rr_var_hndl = &(LocalVars[i].var_handle);

 /\
\ Increment the count of variables to be deleted.

 \/
 num_to_del++;
 }
 }
 break;
 case HA_RR_CMD_DELV :

fprintf(stdout,"Processing command HA_RR_CMD_DELV to delete %d variables for session_fd %d.\n",
 ctrl_msg->rr_ctrl_num_vars,sock_fd);
 /\

\ Delete a vector of variables from this manager session.
 \/

for (i = ð; i < ctrl_msg->rr_ctrl_num_vars; i++) {
inst_id = ctrl_msg->rr_ctrlv.rr_ctrl_vari[i];
if ((inst_id < NumVariables) &&

(LocalVars[i].var_handle != (void \)ð)) {
 /\

\ Copy the variable handle to the next RMAPI structure.
 \/

Variables[num_to_del].rr_varu.rr_var_hndl = &(LocalVars[inst_id].var_handle);

 /\
\ Increment the count of variables to be deleted.

 \/
 num_to_del++;
 }
 }
 break;
 default :
 break;
 }

if (num_to_del) {
 /\

\ Delete the variables by calling ha_rr_del_var.
 \/

num_deleted = ha_rr_del_var(sock_fd, Variables, num_to_del, &ErrBlock);

if (num_deleted == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);

if (ErrBlock.em_errno == HA_RR_EDISCONNECT) {
 /\

\ Session closed by manager.
 \/
 end_session(table_index);

} else {
 mon_exit(1);
 }

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 207

 rmapi_smpsig.c

 }

 /\
\ rc>ð from ha_rr_del_var is the number of variables that no longer need
\ their values updated. The RMAPI will have set their handles to NULL.

 \/
fprintf(stdout,"%d variables no longer need to be updated.\n",num_deleted);

 }
}

/\
 \ Ends the manager session indexed by the [table_index] parameter
 \ in the socket table.
 \/
void end_session(int table_index) {
int rc;

fprintf(stdout,"Ending session index(%d) session_fd(%d).\n",
 table_index,SocketTable[table_index].socket_fd);

 /\
\ Make sure this is a valid session.

 \/
if ((table_index < ð) || (table_index > HA_RR_MAX_SESSIONS) ||

(SocketTable[table_index].socket_fd < ð)) {
 return;
 }

 /\
\ Delete all variables for this manager.

 \/
del_variables(table_index, (struct ha_rr_ctrl_msg \)ð);

 /\
\ Call RMAPI to end the session.

 \/
rc = ha_rr_end_session(SocketTable[table_index].socket_fd, &ErrBlock);
if (rc == HA_RR_FAIL) {

 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

 /\
\ Reset the socket file descriptor in the SocketTable and
\ decrement the manager count.

 \/
SocketTable[table_index].socket_fd = -1;

 NumMgrs--;

if (NumMgrs <= ð) {
 /\

\ This was the last manager to end - exit with a good rc.
 \/

fprintf(stdout,"Last manager session closed, exiting...\n");
 mon_exit(ð);
 }
}

/\
 \ Registers variables with the RMAPI.
 \/
void register_variables() {
int i, j, num_var;
int num_registered, num_to_reg = ð;

for (i=ð;i<NumVariables;i++) {
if (LocalVars[i].registered == ð) {

 /\
\ Variable not registered yet. Copy name, resource ID and and value
\ pointers. Use the index of the variable as the inst id.

 \/

208 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpsig.c

LocalVars[i].registered = 1;
Variables[num_to_reg].rr_var_name = LocalVars[i].var_name;
Variables[num_to_reg].rr_var_rsrc_ID = LocalVars[i].var_resid;
Variables[num_to_reg].rr_var_iid = i;

 num_to_reg++;
 }
 }

if (num_to_reg) {

 /\
\ Call the RMAPI to register the variables.

 \/
num_registered = ha_rr_reg_var(Variables,num_to_reg,&ErrBlock);
if (num_registered != num_to_reg) {

if (num_registered == HA_RR_FAIL) {
 display_rmapi_err(&ErrBlock);
 mon_exit(1);
 }

fprintf(stdout,"%d variables registered with the RMAPI.\n",
 num_registered);

for (i=ð; i < num_to_reg; i++) {
if ((Variables[i].rr_var_errno) || (num_registered == HA_RR_FAIL)) {

 /\
\ Display a message for each variable with a registration error.

 \/
fprintf(stderr,"ha_rr_reg_var() error with variable(%s) instid(%d) RMAPI errno=(%d).\n",

 Variables[i].rr_var_name,
 Variables[i].rr_varu.rr_var_inst_id,
 Variables[i].rr_var_errno);
 }
 }
 }
 }
}

/\
 \ Called once by main to establish the control loop.
 \/
void control_loop() {
int i, rc;
int sock;

 for(;;) {

 /\
\ Unblock the signals.

 \/
if (sigprocmask(SIG_UNBLOCK, &SignalMask, (sigset_t \)ð) < ð) {

 /\
\ sigprocmask sys call failed.

 \/
fprintf(stderr,"Cannot unblock signals. sigprocmask() errno=%d.\n",errno);

 mon_exit(1);
 }

 /\
\ Pause to receive a signal.

 \/
 pause();

 /\
\ Block the signals.

 \/
if (sigprocmask(SIG_BLOCK, &SignalMask, (sigset_t \)ð) < ð) {

fprintf(stderr,"Cannot block signals. sigprocmask() errno=%d.\n",errno);
 mon_exit(1);
 }

if (Terminate) {
 /\

\ SIGTERM caught - call mon_exit() to clean up.

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 209

 rmapi_smpsig.c

 \/
fprintf(stdout,"Caught signal(%d)...calling exit...\n",SigCaught);

 mon_exit(SigCaught);
 }

if (SampleTime) {
 /\

\ SIGALRM caught - call send_values()
\ and reset the sample flag.

 \/
 send_values();

SampleTime = ð;
 }

if (SigioCaught) {
 /\

\ Call the socket function for each valid socket.
 \/

SigioCaught = ð;
for (i=ð;i<SOCKET_TABLE_SIZE;i++) {

if (SocketTable[i].socket_fd >=ð) {
fprintf(stdout,"Calling socket function for session(%d) socket_fd(%d).\n",

 i,SocketTable[i].socket_fd);
 (SocketTable[i].sock_funcp)(i);
 }
 }
 }
 }
}

/\
 \ Routine to terminate the monitor.
 \/
void mon_exit(int s)
{
static int recursively_called = ð;
int i, rc;

 /\
\ Check for recursive call - some routines mon_exit()
\ calls can likewise call mon_exit().

 \/
if (recursively_called) return;
recursively_called = 1;

if (RmapiInit) {
 /\

\ Gracefully close all sessions.
 \/

for (i=ð;i<HA_RR_MAX_SESSIONS;i++) {
if (SocketTable[i].socket_fd >= ð) {

 end_session(i);
 }
 }
 /\

\ Terminate the RMAPI.
 \/

rc = ha_rr_terminate(&ErrBlock);
if (rc) {

 display_rmapi_err(&ErrBlock);
 }
 }

fprintf(stdout,"%s: %s resource monitor exiting.\n",PROGNAME,RESOURCE_MONITOR_NAME);
 exit(s);
}

/\
 \ Display an RMAPI error.
 \/
void display_rmapi_err(struct ha_em_err_blk \errblk)
{

210 RS/6000 Cluster Technology Event Management Programming

 rmapi_smpsig.c

 fprintf(stderr,
"RMAPI Error: File(%s) Version(%s) Line(%d) Errno(%d)\n\t%s",

 errblk->em_errfile,
 errblk->em_errlevel,
 errblk->em_errline,
 errblk->em_errno,
 errblk->em_errmsg);
}

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 211

 rmapi_smp.msg

The rmapi_smp.msg Message File
$ IBM_PROLOG_BEGIN_TAG
$ This is an automatically generated prolog.
$
$
$
$ Licensed Materials - Property of IBM
$
$ (C) COPYRIGHT International Business Machines Corp. 1996,1998
$ All Rights Reserved
$
$ US Government Users Restricted Rights - Use, duplication or
$ disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
$
$ IBM_PROLOG_END_TAG
$ ==\/
$ \/
$ Module Name: rmapi_smp.msg \/
$ \/
$ Description: \/
$ Script to load Event Manager configuration data into the SDR. \/
$ This data is for the Rmapi sample monitors. \/
$ \/
$ Use runcat to generate a catalog from this file: \/
$ \/
$ runcat rmapi_smp rmapi_smp.msg \/
$ \/
$ Then copy the rmapi_smp.cat file to the nls directory \/
$ for the language set by your environment. \/
$ \/
$ ==\/
$ "@(#)45 1.6 src/rsct/pem/emtools/rmapi_samples/rmapi_smp.msg, emtools, rsct_rtro 2/2ð/98 14:23:17" \/
$
$ The quote signifies that the " character will be used to delimit
$ messages in the catalog.
$
$quote "
$
$ Lines beginning with a dollar sign are comments. Lines
$ beginning with numbers are the messages.
$
$set 1
$
1 "IBM Data Suppliers"
$
2 "RMAPI Sample Monitor"
$
3 "Example non-instantiable resource variable (Counter or Quantity)."
$
4 "Example dynamically instantiable resource variable."
$
5 "Example instantiable resource variable (Counter or Quantity)."
$
6 "Example instantiable resource variable (State)."
$
7 "Example non-instantiable variables."
$
8 "Example instantiable variables."
$
9 "Example resource identifier NodeNum. Used to instantiate variables as node \n\
specific and as the variable locator field."
$
1ð "Example resource identifier for creating multiple instances of variables."

212 RS/6000 Cluster Technology Event Management Programming

 rmapi_smp.msg

$
11 "Example SBS field: Action. Last action requested by the sample command."
$
12 "Example SBS field: Options. Last options parameter passed to the sample command."
$
13 "Example SBS field: StateChange. Success of last sample command call (!ð==success,ð==fail)."
$
14 "Example SBS field: State. State of the resource."
$

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 213

 rmapi_smp.loadsdr

The rmapi_smp.loadsdr Shell Script
#! /bin/ksh
IBM_PROLOG_BEGIN_TAG
This is an automatically generated prolog.
#
#
#
Licensed Materials - Property of IBM
#
(C) COPYRIGHT International Business Machines Corp. 1996,1998
All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
IBM_PROLOG_END_TAG
#\===\/
#\ \/
#\ Module Name: rmapi_smp.loadsdr \/
#\ \/
#\ Description: \/
#\ Script to load Event Manager configuration data into the SDR. \/
#\ This data is for the Rmapi sample monitors. \/
#\ \/
#\ Usage: rmapi_smp.loadsdr <resource_monitor_path> \/
#\ Where <resource_monitor_path> is the path to the \/
#\ compiled monitor samples. \/
#\ \/
#\===\/
"@(#)4ð 1.8 src/rsct/pem/emtools/rmapi_samples/rmapi_smp.loadsdr, emtools, rsct_rtro 6/5/98 11:25:22"
#\===\/

#--
Load resource monitor data for example resource monitor rmapi_smpdae
#--

if ["$#" -ne 1]
then

echo "Usage: $ð <resource_monitor_path>"
 exit 1
fi
rmpath=$1

SDRCreateObjects EM_Resource_Monitor \
 'rmName=IBM.PSSP.SampleDaeMon' \
 'rmMessage_file=rmapi_smp.cat' \
 'rmMessage_set=1' \
 'rmConnect_type=server' \
 'rmNum_instances=8' \
 'rmPTX_prefix=IBM/PSSP.SampleDaeMon' \
 'rmPTX_description=1,2' \
 'rmPTX_asnno=2'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Class \
 'rcClass=IBM.PSSP.SampleDaeClass' \
 'rcResource_monitor=IBM.PSSP.SampleDaeMon' \
 'rcObservation_interval=1ð' \
 'rcReporting_interval=1ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleDaeMon.StaticVars.static_var1' \

214 RS/6000 Cluster Technology Event Management Programming

 rmapi_smp.loadsdr

 'rvLocator=NodeNum' \
 'rvDescription=3' \
 'rvValue_type=Quantity' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvPTX_name=StaticVars/static_var1' \
 'rvPTX_description=7' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ðð' \
 'rvClass=IBM.PSSP.SampleDaeClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleDaeMon.StaticVars.static_var2' \
 'rvLocator=NodeNum' \
 'rvDescription=3' \
 'rvValue_type=Quantity' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvPTX_name=StaticVars/static_var2' \
 'rvPTX_description=7' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ðð' \
 'rvClass=IBM.PSSP.SampleDaeClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleDaeMon.StaticVars.static_var3' \
 'rvLocator=NodeNum' \
 'rvDescription=3' \
 'rvValue_type=Quantity' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvPTX_name=StaticVars/static_var3' \
 'rvPTX_description=7' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ðð' \
 'rvClass=IBM.PSSP.SampleDaeClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleDaeMon.InstVars.inst_var1' \
 'rvLocator=NodeNum' \
 'rvDescription=5' \
 'rvValue_type=Quantity' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvPTX_name=$InstName/inst_var1' \
 'rvPTX_description=8' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ðð' \
 'rvClass=IBM.PSSP.SampleDaeClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleDaeMon.InstVars.inst_var2' \
 'rvLocator=NodeNum' \
 'rvDescription=5' \
 'rvValue_type=Quantity' \
 'rvInitial_value=ð' \

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 215

 rmapi_smp.loadsdr

 'rvData_type=long' \
 'rvPTX_name=$InstName/inst_var2' \
 'rvPTX_description=8' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ðð' \
 'rvClass=IBM.PSSP.SampleDaeClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_ID \
 'riResource_name=IBM.PSSP.SampleDaeMon.StaticVars' \
 'riElement_name=NodeNum' \
 'riElement_description=9'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_ID \
 'riResource_name=IBM.PSSP.SampleDaeMon.InstVars' \
 'riElement_name=NodeNum' \
 'riElement_description=9'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_ID \
 'riResource_name=IBM.PSSP.SampleDaeMon.InstVars' \
 'riElement_name=InstName' \
 'riElement_description=1ð'
if (($? != ð)) ; then exit 1 ; fi

#--
Load resource monitor data for example resource monitor rmapi_smpcmd
#--

SDRCreateObjects EM_Resource_Monitor \
 'rmName=IBM.PSSP.SampleCmdMon' \
 'rmMessage_file=rmapi_smp.cat' \
 'rmMessage_set=1' \
 'rmConnect_type=client' \
 'rmPTX_prefix=dummy' \
 'rmPTX_description=2' \
 'rmPTX_asnno=1'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Class \
 'rcClass=IBM.PSSP.SampleCmdClass' \
 'rcResource_monitor=IBM.PSSP.SampleCmdMon' \
 'rcObservation_interval=ð' \
 'rcReporting_interval=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleCmdMon.state' \
 'rvLocator=NodeNum' \
 'rvDescription=6' \
 'rvValue_type=State' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvClass=IBM.PSSP.SampleCmdClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleCmdMon.call' \
 'rvLocator=NodeNum' \
 'rvDescription=6' \
 'rvValue_type=State' \

216 RS/6000 Cluster Technology Event Management Programming

 rmapi_smp.loadsdr

 'rvInitial_value=ð' \
 'rvData_type=SBS' \
 'rvClass=IBM.PSSP.SampleCmdClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_ID \
 'riResource_name=IBM.PSSP.SampleCmdMon' \
 'riElement_name=NodeNum' \
 'riElement_description=9'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_ID \
 'riResource_name=IBM.PSSP.SampleCmdMon' \
 'riElement_name=NAME' \
 'riElement_description=1ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Structured_Byte_String \
 'sbsVariable_name=IBM.PSSP.SampleCmdMon.call' \
 'sbsField_name=11' \
 'sbsField_type=long' \
 'sbsField_SN=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Structured_Byte_String \
 'sbsVariable_name=IBM.PSSP.SampleCmdMon.call' \
 'sbsField_name=12' \
 'sbsField_type=cstring' \
 'sbsField_SN=1'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Structured_Byte_String \
 'sbsVariable_name=IBM.PSSP.SampleCmdMon.call' \
 'sbsField_name=13' \
 'sbsField_type=long' \
 'sbsField_SN=2'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Structured_Byte_String \
 'sbsVariable_name=IBM.PSSP.SampleCmdMon.call' \
 'sbsField_name=14' \
 'sbsField_type=long' \
 'sbsField_SN=3'
if (($? != ð)) ; then exit 1 ; fi

#--
Load resource monitor data for example resource monitor rmapi_smpsig
#--

SDRCreateObjects EM_Resource_Monitor \
 'rmName=IBM.PSSP.SampleSigMon' \
 'rmPath='$rmpath/rmapi_smpsig \
 'rmMessage_file=rmapi_smp.cat' \
 'rmMessage_set=1' \
 'rmConnect_type=server' \
 'rmPTX_prefix=IBM/PSSP.SampleSigMon' \
 'rmPTX_description=1,2' \
 'rmPTX_asnno=2'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Class \
 'rcClass=IBM.PSSP.SampleSigDynInstClass' \
 'rcResource_monitor=IBM.PSSP.SampleSigMon' \

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 217

 rmapi_smp.loadsdr

 'rcObservation_interval=1ð' \
 'rcReporting_interval=1ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Class \
 'rcClass=IBM.PSSP.SampleSigNonInstClass' \
 'rcResource_monitor=IBM.PSSP.SampleSigMon' \
 'rcObservation_interval=1ð' \
 'rcReporting_interval=1ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleSigMon.NonInstVars.var1' \
 'rvLocator=NodeNum' \
 'rvDescription=3' \
 'rvValue_type=Counter' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvPTX_name=NonInstVars/var1' \
 'rvPTX_description=7' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ððððð' \
 'rvClass=IBM.PSSP.SampleSigNonInstClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleSigMon.NonInstVars.var2' \
 'rvLocator=NodeNum' \
 'rvDescription=3' \
 'rvValue_type=Counter' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvPTX_name=NonInstVars/var2' \
 'rvPTX_description=7' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ððððð' \
 'rvClass=IBM.PSSP.SampleSigNonInstClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleSigMon.NonInstVars.var3' \
 'rvLocator=NodeNum' \
 'rvDescription=3' \
 'rvValue_type=Counter' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvPTX_name=NonInstVars/var3' \
 'rvPTX_description=7' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ððððð' \
 'rvClass=IBM.PSSP.SampleSigNonInstClass' \
 'rvDynamic_instance=ð'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_ID \
 'riResource_name=IBM.PSSP.SampleSigMon.NonInstVars' \
 'riElement_name=NodeNum' \
 'riElement_description=9'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_Variable \
 'rvName=IBM.PSSP.SampleSigMon.DynInstVar.var' \

218 RS/6000 Cluster Technology Event Management Programming

 rmapi_smp.loadsdr

 'rvLocator=NodeNum' \
 'rvDescription=4' \
 'rvValue_type=Quantity' \
 'rvInitial_value=ð' \
 'rvData_type=long' \
 'rvPTX_name=DynInstVars/$InstName/var' \
 'rvPTX_description=8,8' \
 'rvPTX_min=ð' \
 'rvPTX_max=5ððððð' \
 'rvClass=IBM.PSSP.SampleSigDynInstClass' \
 'rvDynamic_instance=1'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_ID \
 'riResource_name=IBM.PSSP.SampleSigMon.DynInstVar' \
 'riElement_name=NodeNum' \
 'riElement_description=9'
if (($? != ð)) ; then exit 1 ; fi

SDRCreateObjects EM_Resource_ID \
 'riResource_name=IBM.PSSP.SampleSigMon.DynInstVar' \
 'riElement_name=InstName' \
 'riElement_description=1ð'
if (($? != ð)) ; then exit 1 ; fi

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 219

 rmapi_smp.unloadsdr

The rmapi_smp.unloadsdr Shell Script
#! /bin/ksh
IBM_PROLOG_BEGIN_TAG
This is an automatically generated prolog.
#
#
#
Licensed Materials - Property of IBM
#
(C) COPYRIGHT International Business Machines Corp. 1996,1998
All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
IBM_PROLOG_END_TAG
#\===\/
#\ \/
#\ Module Name: rmapi_smp.unloadsdr \/
#\ \/
#\ Description: \/
#\ Script to remove Event Manager configuration data from the SDR. \/
#\ This script is for sample resource monitors. \/
#\ \/
#\===\/
"@(#)41 1.7
src/rsct/pem/emtools/rmapi_samples/rmapi_smp.unloadsdr,
emtools, rsct_rtro 2/2ð/98 14:23:22"
#--
Unload resource monitor data for example resource monitor rmapi_smpdae
#--

SDRDeleteObjects EM_Resource_Monitor \
 'rmName==IBM.PSSP.SampleDaeMon'

SDRDeleteObjects EM_Resource_Class \
 'rcClass==IBM.PSSP.SampleDaeClass'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleDaeMon.StaticVars.static_var1'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleDaeMon.StaticVars.static_var2'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleDaeMon.StaticVars.static_var3'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleDaeMon.InstVars.inst_var1'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleDaeMon.InstVars.inst_var2'

SDRDeleteObjects EM_Resource_ID \
 'riResource_name==IBM.PSSP.SampleDaeMon.StaticVars'

SDRDeleteObjects EM_Resource_ID \
 'riResource_name==IBM.PSSP.SampleDaeMon.InstVars'

#--
Unload resource monitor data for example resource monitor rmapi_smpcmd
#--

220 RS/6000 Cluster Technology Event Management Programming

 rmapi_smp.unloadsdr

SDRDeleteObjects EM_Resource_Monitor \
 'rmName==IBM.PSSP.SampleCmdMon'

SDRDeleteObjects EM_Resource_Class \
 'rcClass==IBM.PSSP.SampleCmdClass'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleCmdMon.state'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleCmdMon.call'

SDRDeleteObjects EM_Resource_ID \
 'riResource_name==IBM.PSSP.SampleCmdMon'

SDRDeleteObjects EM_Structured_Byte_String \
 'sbsVariable_name==IBM.PSSP.SampleCmdMon.call'

#--
Unload resource monitor data for example resource monitor rmapi_smpsig
#--

SDRDeleteObjects EM_Resource_Monitor \
 'rmName==IBM.PSSP.SampleSigMon'

SDRDeleteObjects EM_Resource_Class \
 'rcClass==IBM.PSSP.SampleSigDynInstClass'

SDRDeleteObjects EM_Resource_Class \
 'rcClass==IBM.PSSP.SampleSigNonInstClass'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleSigMon.NonInstVars.var1'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleSigMon.NonInstVars.var2'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleSigMon.NonInstVars.var3'

SDRDeleteObjects EM_Resource_ID \
 'riResource_name==IBM.PSSP.SampleSigMon.NonInstVars'

SDRDeleteObjects EM_Resource_Variable \
 'rvName==IBM.PSSP.SampleSigMon.DynInstVar.var'

SDRDeleteObjects EM_Resource_ID \
 'riResource_name==IBM.PSSP.SampleSigMon.DynInstVar'

 Chapter 5. Using the RMAPI: Some Resource Monitor Examples 221

 rmapi_smp.unloadsdr

222 RS/6000 Cluster Technology Event Management Programming

Chapter 6. Using the EMAPI: Some Event Management Client
Examples

This chapter contains the listings of four sample Event Management client
programs:

� “The emapi_v02_ex01.c Sample Program” on page 224 monitors four
programs that are running on various nodes in two SP system partitions.
Because two system partitions are involved, the program establishes two
sessions with the EMAPI, one per system partition.

Because the program is not multi-threaded, it uses the select system call to
multiplex responses from the two EMAPI sessions.

� “The emapi_v02_ex02.c Sample Program” on page 241 provides the same
function as the emapi_v02_ex01.c program. It differs in that it uses callback
routines to receive events.

� “The emapi_v02_ex03.c Sample Program” on page 257 provides the same
function as the first two programs. It differs in that it is multi-threaded. Each
session is managed by a separate thread.

� “The emapi_v02_ex04.c Sample Program” on page 273 illustrates the use of
the EMAPI query function.

You can find the files for these programs online in the RSCT product samples
directory, /usr/sbin/rsct/samples/haem/emapi .

 Copyright IBM Corp. 1998 223

 emapi_v02_ex01.c

The emapi_v02_ex01.c Sample Program
/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/

/\ @(#)42 1.3 src/rsct/pem/emtools/emapi_test/emapi_ex/emapi_vð2_exð1.c, emtools, rsct_rtro 6/3ð/98 1ð:47:ð7 \/

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
#include <time.h>

#include <sys/types.h>
#include <sys/select.h>
#include <sys/time.h>

#define HA_EM_VERSION 2
#include <ha_emapi.h>

/\
 \ emapi_vð2_exð1.c
 \
 \ This program presents an example of using the Event Manager Application
 \ Programming Interface (EMAPI). The program uses the EMAPI to monitor
 \ four programs running on various nodes in two SP partitions. Since two
 \ SP partitions are involved, the program establishes two sessions with the
 \ EMAPI, one per SP partition. Since the program is not multi-threaded,
 \ select() is used to multiplex responses from the two EMAPI sessions.
 \
 \ This program can be compiled with the following command:
 \
 \ cc -O emapi_vð2_exð1.c -o emapi_vð2_exð1 -lha_em
 \/

/\
 \ If a MAX macro isn't defined by one of the included header files, define
 \ it.
 \/

#ifndef MAX
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#endif

/\
 \ The following macros specify the programs this program will monitor through
 \ the EMAPI.
 \/

#define PART_1 "k21s" /\ 1st SP partition \/

#define PROG_1A "subsys_pgrm1" /\ 1st program in 1st SP partition, \/
#define USER_1A "root" /\ ... and user running 1st program, \/
#define NODE_1A 5 /\ ... and node running 1st program. \/

224 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex01.c

#define PROG_1B "subsys_pgrm2" /\ 2nd program in 1st SP partition, \/
#define USER_1B "root" /\ ... and user running 2nd program, \/
#define NODE_1B 6 /\ ... and node running 2nd program. \/

#define PART_2 "k21sp2" /\ 2nd SP partition \/

#define PROG_2A "subsys_pgrm1" /\ 1st program in 2nd SP partition, \/
#define USER_2A "root" /\ ... and user running 1st program, \/
#define NODE_2A 14 /\ ... and node running 1st program. \/

#define PROG_2B "subsys_pgrm2" /\ 2nd program in 2nd SP partition, \/
#define USER_2B "root" /\ ... and user running 2nd program, \/
#define NODE_2B 15 /\ ... and node running 2nd program. \/

/\
 \ This program saves information about each EMAPI session it has established
 \ in a session structure.
 \/

struct session {
char \name; /\ Name of partition used by session \/
int fd; /\ Session file descriptor \/
int restart; /\ Boolean - Session's connection has been lost \/

};

/\
 \ This program saves information about each program it is monitoring through
 \ the EMAPI in a program structure.
 \/

struct program {
char \name; /\ Name of a program to be monitored \/
char \user; /\ Name of user running program \/
int node; /\ Node on which program is running \/
ha_em_eid_t eid; /\ Event identifier for program \/
int unreged; /\ Event is unregistered \/

};

/\
 \ The terminate_requested global variable is set to a non-zero value when
 \ the user of this program requests that the program be terminated. The
 \ user requests program termination via the interrupt key (typically Ctrl-C).
 \ The interrupt key causes a SIGINT signal to be delivered to this program.
 \ This program installs a signal handler for the SIGINT signal, which sets
 \ the terminate_requested global variable to a non-zero value when SIGINT
 \ is delivered.
 \/

static int terminate_requested = ð;

/\
 \ The unregistrations_requested global variable indicates whether this
 \ program has sent unregistration requests to the Event Manager.
 \ Unregistration requests are sent when the user requests program
 \ termination.
 \/

static int unregistrations_requested = ð;

/\
 \ Function prototypes for internal functions.
 \/

static void interrupt_catch(int signo);
static void setup_signals(void);
static void start_session(struct session \sess_p);
static void register_for_events(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p);
static void unregister_events(struct session \sess_p,

struct program \progs_p, int progs_elems);
static void select_session(struct session \sess_p,

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 225

 emapi_v02_ex01.c

fd_set \read_fds_p, int \fd_limit_p, int \timeout_p);
static int session_response_ready(struct session \sess_p, fd_set \read_fds_p);
static void process_response(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p);
static void process_response_reg(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk);

static void process_response_rerr(struct session \sess_p,
struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk, int \reg_cnt_p);

static void process_response_unreg(struct session \sess_p,
struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk, int \reg_cnt_p);

static void format_timestamp(struct timeval \timestamp_p,
 char \fmt_timestamp_p);
static void breakdown_rsrc_ID(char \rsrc_ID_p,

char \prog_name_p, char \user_name_p, int \node_p);
static void find_rsrc_ID_value(char \rsrc_ID_p, char \name_p,

char \\value_pp, size_t \value_len_p);
static void end_session(struct session \sess_p);

/\
 \ The main() function calls functions to initialize the program, establish
 \ EMAPI sessions, register for events, wait for Event Manager responses,
 \ process Event Manager responses, and respond to the user request for
 \ program termination. When the program termination request is received,
 \ main() calls functions to send unregistration requests through the EMAPI.
 \ Once Event Manager responses have been received indicating that the
 \ events have been unregistered, the program ends its EMAPI sessions,
 \ and terminates.
 \/

int main(int argc, char \\argv)
{

struct session sess1 = {PART_1, -1, ð};
struct session sess2 = {PART_2, -1, ð};

struct program progs1[] = {{PROG_1A, USER_1A, NODE_1A, ð, ð},
{PROG_1B, USER_1B, NODE_1B, ð, ð}};

struct program progs2[] = {{PROG_2A, USER_2A, NODE_2A, ð, ð},
{PROG_2B, USER_2B, NODE_2B, ð, ð}};

int progs1_elems = sizeof progs1 / sizeof progs1[ð];
int progs2_elems = sizeof progs2 / sizeof progs2[ð];

int reg_cnt; /\ Count of registered events \/
fd_set read_fds; /\ select() file descriptor mask \/
int fd_limit; /\ select() file descriptor limit \/
int need_timeout; /\ Boolean - select() timeout needed \/
int rc; /\ Return code \/

struct timeval timeout_value = {15, ð}; /\ Fifteen second timeout \/

setup_signals(); /\ Initialize signal dispositions \/

start_session(&sess1); /\ Start EMAPI session for 1st SP partition \/
start_session(&sess2); /\ Start EMAPI session for 2nd SP partition \/

 /\
\ Register for events in both EMAPI sessions that will monitor the
\ programs of interest. Maintain count of registered events.

 \/

reg_cnt = ð;
register_for_events(&sess1, progs1, progs1_elems, ®_cnt);
register_for_events(&sess2, progs2, progs2_elems, ®_cnt);

 /\
\ Continue looking for Event Manager responses as long as there are

 \ registered events.

226 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex01.c

 \/

while (reg_cnt > ð) {

 /\
\ If program termination has been requested, and unregistration
\ requests have not been sent, send them now.

 \/

if (terminate_requested && !unregistrations_requested) {
 printf("Termination requested.\n");

unregister_events(&sess1, progs1, progs1_elems);
unregister_events(&sess2, progs2, progs2_elems);
unregistrations_requested = 1;

 }

 /\
\ Construct the parameters to be passed to select(), and then
\ call select() to wait for Event Manager responses.

 \/

FD_ZERO(&read_fds); fd_limit = ð; need_timeout = ð;
select_session(&sess1, &read_fds, &fd_limit, &need_timeout);
select_session(&sess2, &read_fds, &fd_limit, &need_timeout);

rc = select(fd_limit + 1, &read_fds, NULL, NULL,
need_timeout ? &timeout_value : NULL);

if (rc == -1) { /\ select() indicates error \/
if (errno == EINTR) { /\ select() interrupted by signal \/

continue; /\ Return to top of loop \/
 }

perror("select()"); /\ select() really encountered error \/
exit(1); /\ End program \/

 }

 /\
\ If an Event Manager response is present for the 1st EMAPI session,
\ process it. Also, maintain the count of registered events.

 \/

if (session_response_ready(&sess1, &read_fds)) {
process_response(&sess1, progs1, progs1_elems, ®_cnt);

 }

 /\
\ If an Event Manager response is present for the 2nd EMAPI session,
\ process it. Also, maintain the count of registered events.

 \/

if (session_response_ready(&sess2, &read_fds)) {
process_response(&sess2, progs2, progs2_elems, ®_cnt);

 }

 }

end_session(&sess1); /\ End EMAPI session for 1st SP partition \/
end_session(&sess2); /\ End EMAPI session for 2nd SP partition \/

return ð; /\ Indicate program was successful \/
}

/\
 \ The interrupt_catch() function is installed as the signal handler for the
 \ SIGINT signal. The SIGINT signal is delivered to this process when the
 \ user presses the interrupt key (usually Ctrl-C). When this routine is
 \ invoked, it sets the global variable terminate_requested to a non-zero
 \ value, indicating the program is to be terminated.
 \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 227

 emapi_v02_ex01.c

static
void interrupt_catch(int signo)
{

terminate_requested = 1;
 return;
}

/\
 \ The setup_signals() function initializes the disposition of a couple of
 \ signals.
 \
 \ The disposition of the SIGPIPE signal is set such that the signal is
\ ignored. When a process writes to a pipe or connection-oriented socket for
 \ which there is no reader, the SIGPIPE signal is delivered to the process.
 \ The default disposition for SIGPIPE is to kill the receiving process. If
 \ SIGPIPE is ignored, the SIGPIPE signal does not kill the process, and the
 \ system call used to write to the pipe or connection-oriented socket sets
 \ errno to EPIPE and returns an error indication. It is recommended that
 \ clients of the EMAPI ignore the SIGPIPE signal, since the EMAPI uses
 \ connection-oriented sockets to communicate with the Event Manager.
 \
 \ The interrupt_catch() function is installed as the signal handler for the
 \ SIGINT signal. See the comments pertaining to the interrupt_catch()
 \ function to find out why this is done.
 \/

static
void setup_signals(void)
{
 struct sigaction sa;

sa.sa_handler = SIG_IGN; /\ SIGPIPE to be ignored \/
sigemptyset(&sa.sa_mask); /\ No signals to mask off \/
sa.sa_flags = ð; /\ No flags needed \/

if (sigaction(SIGPIPE, &sa, NULL) == -1) { /\ Change SIGPIPE disposition\/
 perror("sigaction(SIGPIPE)");
 exit(1);
 }

sa.sa_handler = interrupt_catch; /\ SIGINT signal handler \/
sigemptyset(&sa.sa_mask); /\ No signals to mask off \/
sa.sa_flags = SA_RESTART; /\ Restart interrupted syscalls \/

if (sigaction(SIGINT, &sa, NULL) == -1) { /\ Change SIGINT disposition \/
 perror("sigaction(SIGINT)");
 exit(1);
 }

 return;
}

/\
 \ The start_session() function establishes a session with the EMAPI by
 \ calling the EMAPI routine ha_em_start_session(). If a session cannot be
 \ established, the program is terminated.
 \/

static
void start_session(struct session \sess_p)
{

struct ha_em_err_blk errb; /\ EMAPI error block \/

 /\
\ The ha_em_start_session() routine receives the name of the partition
\ with which a session is to be established, and returns a file
\ descriptor with which the session can be used.

 \/

228 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex01.c

sess_p->fd = ha_em_start_session(HA_EM_DOMAIN_SP, sess_p->name, &errb);

 /\
\ If ha_em_start_session() indicates a session could not be established,
\ print the error information returned by the routine, and exit the

 \ program.
 \/

if (sess_p->fd == -1) {
fprintf(stderr, "%s:\tha_em_start_session() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 /\
\ A session has been established with the EMAPI, and the session's file
\ descriptor has been saved in the session structure passed to this
\ routine. Set the flag in the session structure that indicates the
\ session does not need to be restarted.

 \/

sess_p->restart = ð;

 return;
}

/\
 \ The register_for_events() function uses the EMAPI routine
 \ ha_em_send_command() to request the registration of events pertaining to
 \ programs of interest that are in the same SP partition.
 \
 \ The resource variable name specified is "IBM.PSSP.Prog.xpcount". This is a
 \ state variable whose value indicates whether or not processes are executing
 \ a specific program. The resource ID for this resource variable
 \ specifies the program name, the name of the user running the program, and
 \ the node on which the program is running. The resource variable's value
 \ is a structured byte string of three fields. Field ð is of type long; its
 \ value is the number of processes currently running the specified program
 \ for the specified user on the specified node. Field 1 is also of type
 \ long; its value is the previous number of processes running the program.
 \ Field 2 is of type character string; its value is a comma separated list
 \ of the PIDs of the processes running the program.
 \
 \ When the events are registered, two expressions are specified. The primary
 \ expression, "X@ð == ð", specifies that an event is to be generated when
 \ field ð of the resource variable's structured byte string has a value of ð.
 \ Taking into account the semantics of the resource variable, the expression
 \ causes an event to be generated when no processes are running the specified
 \ program for the specified user on the specified node. The re-arm
 \ expression, "X@ð > ð", specifies that after the primary expression has
 \ generated an event, the primary expression is to be re-armed once a process
 \ starts running the specified program for the specified user on the
 \ specified node. Since the HA_EM_CMD_REG2 command is specified, the re-arm
 \ expression will generate events.
 \
 \ Notice that when events are registered, the HA_EM_SCMD_REVAL subcommand is
\ specified. As a result, the initial value of the programs being monitored
 \ will be returned.
 \/

static
void register_for_events(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p)
{

int num_events; /\ Number of events to register \/
size_t alloc_size; /\ Size of memory to allocate \/
struct ha_em_cmd_blk \cmd_blk; /\ Pointer to command block \/
struct ha_em_rb_reg \re; /\ Pointer to registered event \/

 int i; /\ Index \/
struct ha_em_err_blk errb; /\ EMAPI error block \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 229

 emapi_v02_ex01.c

int rc; /\ Return code \/
char rsrc_ID_buf[8ð]; /\ Resource ID buffer \/

num_events = progs_elems; /\ Register one event per program \/

 /\
\ Allocate enough memory to hold the command block to be given to the
\ EMAPI. The ha_em_cmd_blk structure contains one ha_em_rb_reg
\ structure. Additional space must be allocated when more than one
\ event is to be registered.

 \/

alloc_size = sizeof(struct ha_em_cmd_blk) +
((num_events - 1) \ sizeof(struct ha_em_rb_reg));

if ((cmd_blk = malloc(alloc_size)) == NULL) {
 perror("malloc()");
 exit(1);
 }

 /\
\ Fill in the em_rb_reg array entries. There is one entry per event to

 \ be registered.
 \/

for (i = ð; i < num_events; i++) {

re = &cmd_blk->em_res_blk.em_rb_reg[i];

re->em_name = "IBM.PSSP.Prog.xpcount"; /\ Resource variable name \/

 sprintf(rsrc_ID_buf, "ProgName=%s;UserName=%s;NodeNum=%d",
progs_p[i].name, progs_p[i].user, progs_p[i].node);

re->em_rsrc_ID = strdup(rsrc_ID_buf); /\ Resource ID \/

if (re->em_rsrc_ID == NULL) {
 perror("strdup()");
 exit(1);
 }

re->em_expr = "X@ð == ð"; /\ Expression \/
re->em_raexpr = "X@ð > ð"; /\ Re-arm expression \/

re->em_cb = NULL; /\ Callback routine not used\/
re->em_cb_arg = NULL; /\ Callback routine not used\/

 }

 /\
\ Fill in command block header, specifying number of elements in
\ em_rb_reg array, command, and subcommand.

 \/

cmd_blk->em_cmd_num_elem = num_events;
 cmd_blk->em_cmd = HA_EM_CMD_REG2;
 cmd_blk->em_subcmd = HA_EM_SCMD_REVAL;

 /\
\ Send the command. A more elaborate program might check for the
\ HA_EM_ECONNLOST Event Manager error number when an error is
\ returned, and attempt to restart the session. But, this program
\ just terminates if ha_em_send_command() detects a lost connection.

 \/

rc = ha_em_send_command(sess_p->fd, cmd_blk, &errb);

if (rc == -1) {
fprintf(stderr, "%s:\tha_em_send_command() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

230 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex01.c

 /\
\ Save the event identifiers assigned to the events just registered.

 \/

for (i = ð; i < num_events; i++) {
re = &cmd_blk->em_res_blk.em_rb_reg[i];

 progs_p[i].eid = re->em_event_id;
progs_p[i].unreged = ð;

 free(re->em_rsrc_ID);
 }

 free(cmd_blk);

\reg_cnt_p += num_events; /\ Update count of registered events \/

 return;
}

/\
 \ The unregister_events() function uses the EMAPI routine
 \ ha_em_send_command() to request the unregistration of events pertaining to
 \ programs of interest that are in the same SP partition.
 \/

static
void unregister_events(struct session \sess_p,

struct program \progs_p, int progs_elems)
{

int num_events; /\ Number of events to unreg. \/
size_t alloc_size; /\ Size of memory to allocate \/
struct ha_em_cmd_blk \cmd_blk; /\ Pointer to command block \/
ha_em_eid_t \re; /\ Pointer to unreg. event \/

 int i; /\ Index \/
struct ha_em_err_blk errb; /\ EMAPI error block \/
int rc; /\ Return code \/

 /\
\ Allocate enough memory to hold the command block to be given to the
\ EMAPI. The ha_em_cmd_blk structure contains one ha_em_eid_t
\ element. Additional space must be allocated when more than one
\ event is to be unregistered.

 \/

alloc_size = sizeof(struct ha_em_cmd_blk) +
((progs_elems - 1) \ sizeof(ha_em_eid_t));

if ((cmd_blk = malloc(alloc_size)) == NULL) {
 perror("malloc()");
 exit(1);
 }

 /\
\ Fill in the event identifier array entries. There is one entry per
\ event to be unregistered. Only unregister events that are not already

 \ unregistered.
 \/

num_events = ð;

for (i = ð; i < progs_elems; i++) {
if (!progs_p[i].unreged) {

 re = &cmd_blk->em_res_blk.em_rb_unreg[num_events];
\re = progs_p[i].eid;

 num_events++;
 }
 }

 /\
\ Fill in command block header, specifying the number of elements in
\ the event identifier array, and the unregister command.

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 231

 emapi_v02_ex01.c

 \/

cmd_blk->em_cmd_num_elem = num_events;
 cmd_blk->em_cmd = HA_EM_CMD_UNREG;

 /\
\ Send the unregister command. A more elaborate program might check for
\ the HA_EM_ECONNLOST Event Manager error number when an error is
\ returned, and attempt to restart the session. But, this program
\ just terminates if ha_em_send_command() detects a lost connection.

 \/

rc = ha_em_send_command(sess_p->fd, cmd_blk, &errb);

if (rc == -1) {
fprintf(stderr, "%s:\tha_em_send_command() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 free(cmd_blk);

 return;
}

/\
 \ The select_session() routine determines how the specified session affects
 \ the next call to select(). If the session is marked as needing to be
 \ restarted, ha_em_restart_session() is called to try to restart the session.
 \ If the restart attempt fails, the next call to select() should specify
 \ a timeout period - so the restart can be attempted again. If the restart
 \ attempt succeeds, the new session file descriptor is saved, and the session
 \ is marked as not needing to be restarted. If the session did not need
 \ to be restarted, or had been successfully restarted, the next call to
 \ select() should examine the session's file descriptor.
 \/

static
void select_session(struct session \sess_p,

fd_set \read_fds_p, int \fd_limit_p, int \timeout_p)
{

struct ha_em_err_blk errb; /\ EMAPI error block \/
int new_fd; /\ New session file descriptor \/

 /\
\ If the specified session needs to be restarted, try to do so.

 \/

if (sess_p->restart) {

new_fd = ha_em_restart_session(sess_p->fd, &errb);

if (new_fd == -1) {

 /\
\ The session could not be restarted. If the Event Manager
\ error number indicates connection refused, indicate the
\ next select() should specify a timeout value (so the restart
\ can be tried again later), and return without putting the
\ session's file descriptor in the select() file descriptor

 \ mask.
 \/

if (errb.em_errno == HA_EM_ECONNREFUSED) {
\timeout_p = 1;

 return;
 }

 /\
\ If execution reaches here, the session restart attempt failed

232 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex01.c

\ for an unexpected reason; terminate the program.
 \/

fprintf(stderr, "%s:\tha_em_restart_session() returned EM errno "
"%d:\n%s", sess_p->name, errb.em_errno, errb.em_errmsg);

 exit(1);
 }

 /\
\ If execution reaches here, a session restart was attempted and
\ was successful. Save the new session file descriptor, and indicate
\ that the session no longer needs to be restarted.

 \/

sess_p->fd = new_fd;
sess_p->restart = ð;

 }

 /\
\ If execution reaches here, the specified session is not known to be
\ in need of a restart. Put the session's file descriptor in the
\ select() file descriptor mask. Also, adjust the maximum file
\ descriptor to select, if appropriate.

 \/

 FD_SET(sess_p->fd, read_fds_p);
\fd_limit_p = MAX(sess_p->fd, \fd_limit_p);

 return;
}

/\
 \ The session_response_ready() function determines if a select() file
 \ descriptor mask indicates that a session's file descriptor is ready for
 \ reading.
 \/

static
int session_response_ready(struct session \sess_p, fd_set \read_fds_p)
{

return FD_ISSET(sess_p->fd, read_fds_p);
}

/\
 \ The process_response() function processes an Event Manager response
 \ in the specified EMAPI session. First, ha_em_receive_response() is called
 \ to receive the response. If ha_em_receive_response() indicates that the
 \ session's connection with the Event Manager has been lost, the session
 \ is marked as being in need of a restart. Any other error will terminate
 \ the program. The ha_em_receive_response() function may indicate that
 \ there really isn't any response for the EMAPI client to process at this
\ time. In that case, this function just returns. If a response has
 \ been received, it is processed depending on what type of response it is.
 \/

static
void process_response(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p)
{

struct ha_em_rsp_blk \rsp_blk; /\ Pointer to the response block \/
int rc; /\ Return code \/
struct ha_em_err_blk errb; /\ Event Manager error block \/

 int i; /\ Index \/

 /\
\ Receive response from session, if there is one to receive.

 \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 233

 emapi_v02_ex01.c

rc = ha_em_receive_response(sess_p->fd, &rsp_blk, &errb);

if (rc == -1) {

 /\
\ If the connection with the Event Manager has been lost,
\ mark the session as needing to be restarted, and return.

 \/

if (errb.em_errno == HA_EM_ECONNLOST) {
printf("%s:\tconnection to session lost.\n", sess_p->name);
sess_p->restart = 1;

 return;
 }

 /\
\ Some error has occurred other than the loss of the connection.
\ Terminate the program.

 \/

fprintf(stderr, "%s:\tha_em_receive_response() returned EM errno %d:\n"
"%s", sess_p->name, errb.em_errno, errb.em_errmsg);

 exit(1);

 }

 /\
\ If the ha_em_receive_response() routine returned zero,
\ there is no response for the EMAPI client (this program) to process
\ at this time. The response may have been for the EMAPI itself, or
\ a full response may not be available yet. Just return.

 \/

if (rc == ð) {
 return;
 }

 /\
\ A response for the EMAPI client (this program) has been returned.
\ The response buffer is pointed to by the rsp_blk variable. Appropriate
\ processing for the response depends on the command type.

 \/

switch (rsp_blk->em_cmd) {

case HA_EM_CMD_REG: /\ Event response \/
case HA_EM_CMD_REG2: /\ Event response (possible re-arm) \/

process_response_reg(sess_p, progs_p, progs_elems, rsp_blk);
 break;

case HA_EM_CMD_RERR: /\ REG event registration error \/
case HA_EM_CMD_R2ERR: /\ REG2 event registration error \/

process_response_rerr(sess_p, progs_p, progs_elems, rsp_blk,
 reg_cnt_p);
 break;

case HA_EM_CMD_UNREG: /\ Event unregistration response \/
process_response_unreg(sess_p, progs_p, progs_elems, rsp_blk,

 reg_cnt_p);
 break;

default: /\ Unexpected response \/
fprintf(stderr, "%s:\tProgram received unexpected command "

"response: %d.\n", sess_p->name, rsp_blk->em_cmd);
 exit(1);
 break;

 }

 /\
\ The EMAPI client (this program) must free the memory associated with
\ the returned response block when it is no longer needed.

234 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex01.c

 \/

 free(rsp_blk);

 return;
}

/\
 \ The process_response_reg() function processes event responses from the
 \ Event Manager. Several points should be kept in mind:
 \
 \ - The response block may contain multiple event responses. The
 \ number of responses included in the response block is given in
 \ the response block header.
 \
 \ - An event response may be an error response. An event error response
 \ does not indicate that a registered event has occurred. Instead, it
 \ indicates the Event Manager no longer knows the current value of
 \ the associated resource variable, and cannot generate events for
 \ the resource variable. This may be a temporary condition. If the
 \ Event Manager later obtains the current value of the associated
 \ resource variable, an event will be generated (possibly indicating
 \ that the expression is false).
 \
 \ - The event for which an event error response is generated is still
 \ registered. There is no need to re-register the event.
 \
 \ - Since events are registered by this program using the HA_EM_CMD_REG2
 \ command, the re-arm expressions will generate events. Therefore, the
 \ HA_EM_EVENT_RE_ARM flag must be tested to see if the expression or
 \ the re-arm expression generated the event.
 \
 \ - It is possible for an event to be delivered indicating the expression
 \ is false. This can happen for two reasons. First, when events are
 \ registered by this program, the HA_EM_SCMD_REVAL subcommand is
 \ specified. That subcommand requests the initial value of the
 \ associated resource variable. Second, the current value of the
 \ associated resource variable is returned through an event once the
 \ Event Manager obtains the current value of a resource variable after
 \ an error has occurred.
 \
 \ - If an event response does not have the HA_EM_EVENT_RE_ARM nor
 \ HA_EM_EVENT_EXPR_FALSE flags set, the event response indicates that
 \ the event's expression is true.
 \/

static
void process_response_reg(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk)

{
struct ha_em_rpb_event \event_p; /\ Pointer to event response \/
struct ha_em_rpb_event \last_event_p; /\ Beyond last event response\/

char time_stamp[8ð]; /\ Formatted event time stamp \/
char prog_name[8ð]; /\ Name of program to which event pertains \/
char user_name[8ð]; /\ Name of user to which event pertains \/
int node; /\ Node to which event pertains \/

event_p = rsp_blk->em_resp_blk.em_rpb_event;
last_event_p = event_p + rsp_blk->em_rsp_num_resp;

for (; event_p < last_event_p; event_p++) {

 /\
\ Format the event's time stamp; extract the program name, user
\ name, and node number from the resource ID.

 \/

 format_timestamp(&event_p->em_timestamp, time_stamp);

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 235

 emapi_v02_ex01.c

breakdown_rsrc_ID(event_p->em_rsrc_ID, prog_name, user_name, &node);

 /\
\ If this is an event error response, print a message which includes
\ the general and specific error codes.

 \/

if (event_p->em_errnum != ð) {
printf("%s:\t%s State of %s run by %s on node %d unknown (%d, %d)."

"\n", sess_p->name, time_stamp, prog_name, user_name, node,
 event_p->em_generr, event_p->em_specerr);
 continue;
 }

 /\
\ If the event response was generated for the re-arm expression, or
\ the event response was generated for the primary expression but
\ it is false, print a message indicating the program associated
\ with the event is being run.

 \/

if ((event_p->em_event_flags & HA_EM_EVENT_RE_ARM) ||
(event_p->em_event_flags & HA_EM_EVENT_EXPR_FALSE)) {
printf("%s:\t%s %s being run by %s on node %d.\n",

sess_p->name, time_stamp, prog_name, user_name, node);
 continue;
 }

 /\
\ If execution reaches this point, the event response was generated
\ for the primary expression, and it is true. Print a message
\ indicating the program associated with the event is not being run.

 \/

printf("%s:\t%s %s NOT being run by %s on node %d.\n",
sess_p->name, time_stamp, prog_name, user_name, node);

 }

 return;
}

/\
 \ The process_response_rerr() function processes registration error
\ responses. When an event cannot be registered due to some detected error,
 \ a registration error response is sent to the EMAPI client. This function
 \ marks the event, as tracked in a program structure, as being unregistered.
 \ This will prevent an attempt to unregister a non-registered event later
 \ in the program.
 \/

static
void process_response_rerr(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk, int \reg_cnt_p)

{
struct ha_em_rpb_rerr \error_p; /\ Pointer to error response \/
struct ha_em_rpb_rerr \last_error_p; /\ Beyond last error response\/
struct program \prog_p; /\ Pointer to program struct \/

char prog_name[8ð]; /\ Name of program to which error pertains \/
char user_name[8ð]; /\ Name of user to which error pertains \/
int node; /\ Node to which error pertains \/

error_p = rsp_blk->em_resp_blk.em_rpb_rerr;
last_error_p = error_p + rsp_blk->em_rsp_num_resp;

for (; error_p < last_error_p; error_p++) {

 /\

236 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex01.c

\ Find the program structure which describes the program associated
\ with the event whose registration failed. The match is made
\ with event identifiers.

 \/

for (prog_p = progs_p; prog_p < progs_p + progs_elems; prog_p++) {
if (prog_p->eid == error_p->em_event_id) {

 break;
 }
 }

if (prog_p == progs_p + progs_elems) {
fprintf(stderr, "%s:\tUnknown event identifier encountered (ðx%x)."

"\n", sess_p->name, error_p->em_event_id);
 exit(1);
 }

 /\
\ Extract the program name, user name, and node number from the

 \ resource ID.
 \/

breakdown_rsrc_ID(error_p->em_rsrc_ID, prog_name, user_name, &node);

 /\
\ Print a message about the registration error.

 \/

printf("%s:\tRegistration error for %s run by %s on node %d (%d, %d)."
"\n", sess_p->name, prog_name, user_name, node,

 error_p->em_generr, error_p->em_specerr);

 /\
\ Mark the program as not having an associated event registered.

 \/

prog_p->unreged = 1;

 }

 /\
\ Update the number of events that are registered.

 \/

\reg_cnt_p -= rsp_blk->em_rsp_num_resp;

 return;
}

/\
 \ The process_response_unreg() function processes unregistrations responses.
 \ Note that the unregistration response uses the same type of structure
 \ as the event response, but not all the fields in the structure have
 \ meaningful values for an unregistration response.
 \/

static
void process_response_unreg(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk, int \reg_cnt_p)

{
struct ha_em_rpb_event \event_p; /\ Pointer to unreg response \/
struct ha_em_rpb_event \last_event_p; /\ Beyond last unreg response\/
struct program \prog_p; /\ Pointer to program struct \/

char time_stamp[8ð]; /\ Formatted unregister time stamp \/

event_p = rsp_blk->em_resp_blk.em_rpb_event;
last_event_p = event_p + rsp_blk->em_rsp_num_resp;

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 237

 emapi_v02_ex01.c

for (; event_p < last_event_p; event_p++) {

 /\
\ Find the program structure which describes the program associated
\ with the event just unregistered. The match is made
\ with event identifiers.

 \/

for (prog_p = progs_p; prog_p < progs_p + progs_elems; prog_p++) {
if (prog_p->eid == event_p->em_event_id) {

 break;
 }
 }

if (prog_p == progs_p + progs_elems) {
fprintf(stderr, "%s:\tUnknown event identifier encountered (ðx%x)."

"\n", sess_p->name, event_p->em_event_id);
 exit(1);
 }

 /\
\ Format the unregistration time stamp.

 \/

 format_timestamp(&event_p->em_timestamp, time_stamp);

 /\
\ Print a message indicating the program associated with the
\ unregistered event is no longer being monitored.

 \/

printf("%s:\t%s no longer monitoring %s run by %s on node %d.\n",
sess_p->name, time_stamp, prog_p->name, prog_p->user,

 prog_p->node);

 /\
\ Note: em_errnum could indicate an error, but there is no point
\ looking at it here, since the program would not do anything

 \ differently.
 \/

 /\
\ Mark the program as not having an associated event registered.

 \/

prog_p->unreged = 1;

 }

 /\
\ Update the number of events that are still registered.

 \/

\reg_cnt_p -= rsp_blk->em_rsp_num_resp;

 return;
}

/\
 \ The format_timestamp() function takes a time stamp returned by the
 \ Event Manager and converts it into 24-hour time.
 \/

static
void format_timestamp(struct timeval \timestamp_p, char \fmt_timestamp_p)
{
 struct tm \broken_down_time;

broken_down_time = localtime((time_t \) ×tamp_p->tv_sec);
(void) strftime(fmt_timestamp_p, 2ð, "(%X)", broken_down_time);

238 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex01.c

 return;
}

/\
 \ The breakdown_rsrc_ID() function takes a resource ID
 \ associated with the IBM.PSSP.Prog.xpcount resource variable and extracts
 \ from it the program name, user name, and node number.
 \/

static
void breakdown_rsrc_ID(char \rsrc_ID_p,

char \prog_name_p, char \user_name_p, int \node_p)
{
 char \value_p;
 size_t value_len;

find_rsrc_ID_value(rsrc_ID_p, "ProgName=", &value_p, &value_len);
strncpy(prog_name_p, value_p, value_len);
\(prog_name_p + value_len) = '\ð';

find_rsrc_ID_value(rsrc_ID_p, "UserName=", &value_p, &value_len);
strncpy(user_name_p, value_p, value_len);
\(user_name_p + value_len) = '\ð';

find_rsrc_ID_value(rsrc_ID_p, "NodeNum=", &value_p, &value_len);
\node_p = atoi(value_p);

 return;
}

/\
 \ The find_rsrc_ID_value() takes a resource ID and extracts
 \ a value from it.
 \/

static
void find_rsrc_ID_value(char \rsrc_ID_p, char \name_p,

char \\value_pp, size_t \value_len_p)
{
 char \bp;
 char \ep;
 size_t len;

if ((bp = strstr(rsrc_ID_p, name_p)) == NULL) {
fprintf(stderr, "Unexpected resource ID encountered.\n");

 exit(1);
 }

bp += strlen(name_p);

if ((ep = strchr(bp, ';')) != NULL) {
len = ep - bp;

} else {
len = strlen(bp);

 }

 \value_pp = bp;
\value_len_p = len;

 return;
}

/\
 \ The end_session() function terminates a session with the EMAPI by
 \ calling the EMAPI routine ha_em_end_session().
 \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 239

 emapi_v02_ex01.c

static
void end_session(struct session \sess_p)
{

struct ha_em_err_blk errb;

if (ha_em_end_session(sess_p->fd, &errb) == -1) {
fprintf(stderr, "%s:\tha_em_end_session() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 return;
}

240 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex02.c

The emapi_v02_ex02.c Sample Program
/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/

/\ @(#)43 1.3 src/rsct/pem/emtools/emapi_test/emapi_ex/emapi_vð2_exð2.c, emtools, rsct_rtro 6/3ð/98 1ð:47:26 \/

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
#include <time.h>

#include <sys/types.h>
#include <sys/select.h>
#include <sys/time.h>

#define HA_EM_VERSION 2
#include <ha_emapi.h>

/\
 \ emapi_vð2_exð2.c
 \
 \ This program presents an example of using the Event Manager Application
 \ Programming Interface (EMAPI). The program uses the EMAPI to monitor
 \ four programs running on various nodes in two SP partitions. Since two
 \ SP partitions are involved, the program establishes two sessions with the
 \ EMAPI, one per SP partition. Since the program is not multi-threaded,
 \ select() is used to multiplex responses from the two EMAPI sessions.
 \
 \ This program provides the same function as the emapi_vð2_exð1.c program.
 \ This program differs in that it uses callback routines to receive events.
 \
 \ This program can be compiled with the following command:
 \
 \ cc -O emapi_vð2_exð2.c -o emapi_vð2_exð2 -lha_em
 \/

/\
 \ If a MAX macro isn't defined by one of the included header files, define
 \ it.
 \/

#ifndef MAX
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#endif

/\
 \ The following macros specify the programs this program will monitor through
 \ the EMAPI.
 \/

#define PART_1 "k21s" /\ 1st SP partition \/

#define PROG_1A "subsys_pgrm1" /\ 1st program in 1st SP partition, \/
#define USER_1A "root" /\ ... and user running 1st program, \/
#define NODE_1A 5 /\ ... and node running 1st program. \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 241

 emapi_v02_ex02.c

#define PROG_1B "subsys_pgrm2" /\ 2nd program in 1st SP partition, \/
#define USER_1B "root" /\ ... and user running 2nd program, \/
#define NODE_1B 6 /\ ... and node running 2nd program. \/

#define PART_2 "k21sp2" /\ 2nd SP partition \/

#define PROG_2A "subsys_pgrm1" /\ 1st program in 2nd SP partition, \/
#define USER_2A "root" /\ ... and user running 1st program, \/
#define NODE_2A 14 /\ ... and node running 1st program. \/

#define PROG_2B "subsys_pgrm2" /\ 2nd program in 2nd SP partition, \/
#define USER_2B "root" /\ ... and user running 2nd program, \/
#define NODE_2B 15 /\ ... and node running 2nd program. \/

/\
 \ This program saves information about each EMAPI session it has established
 \ in a session structure.
 \/

struct session {
char \name; /\ Name of partition used by session \/
int fd; /\ Session file descriptor \/
int restart; /\ Boolean - Session's connection has been lost \/

};

/\
 \ This program saves information about each program it is monitoring through
 \ the EMAPI in a program structure.
 \/

struct program {
char \name; /\ Name of a program to be monitored \/
char \user; /\ Name of user running program \/
int node; /\ Node on which program is running \/
ha_em_eid_t eid; /\ Event identifier for program \/
int unreged; /\ Event is unregistered \/
struct callback_data \cb_data; /\ Callback data allocated for program \/

};

/\
 \ Data for a callback routine is stored in a callback_data structure.
 \/

struct callback_data {
struct session \sess_p; /\ Session structure pointer \/
struct program \prog_p; /\ Program structure pointer \/
int \reg_cnt_p; /\ Registration counter pointer \/

};

/\
 \ The terminate_requested global variable is set to a non-zero value when
 \ the user of this program requests that the program be terminated. The
 \ user requests program termination via the interrupt key (typically Ctrl-C).
 \ The interrupt key causes a SIGINT signal to be delivered to this program.
 \ This program installs a signal handler for the SIGINT signal, which sets
 \ the terminate_requested global variable to a non-zero value when SIGINT
 \ is delivered.
 \/

static int terminate_requested = ð;

/\
 \ The unregistrations_requested global variable indicates whether this
 \ program has sent unregistration requests to the Event Manager.
 \ Unregistration requests are sent when the user requests program
 \ termination.
 \/

static int unregistrations_requested = ð;

/\

242 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex02.c

 \ Function prototypes for internal functions.
 \/

static void interrupt_catch(int signo);
static void setup_signals(void);
static void start_session(struct session \sess_p);
static void register_for_events(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p);
static void unregister_events(struct session \sess_p,

struct program \progs_p, int progs_elems);
static void select_session(struct session \sess_p,

fd_set \read_fds_p, int \fd_limit_p, int \timeout_p);
static int session_response_ready(struct session \sess_p, fd_set \read_fds_p);
static void process_response(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p);
static void process_response_rerr(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk, int \reg_cnt_p);

static void event_callback(int sess_fd, struct ha_em_rpb_event \event_p,
 void \arg);
static void format_timestamp(struct timeval \timestamp_p,
 char \fmt_timestamp_p);
static void breakdown_rsrc_ID(char \rsrc_ID_p,

char \prog_name_p, char \user_name_p, int \node_p);
static void find_rsrc_ID_value(char \rsrc_ID_p, char \name_p,

char \\value_pp, size_t \value_len_p);
static void end_session(struct session \sess_p);

/\
 \ The main() function calls functions to initialize the program, establish
 \ EMAPI sessions, register for events, wait for Event Manager responses,
 \ process Event Manager responses, and respond to the user request for
 \ program termination. When the program termination request is received,
 \ main() calls functions to send unregistration requests through the EMAPI.
 \ Once Event Manager responses have been received indicating that the
 \ events have been unregistered, the program ends its EMAPI sessions,
 \ and terminates.
 \/

int main(int argc, char \\argv)
{

struct session sess1 = {PART_1, -1, ð};
struct session sess2 = {PART_2, -1, ð};

struct program progs1[] = {{PROG_1A, USER_1A, NODE_1A, ð, ð, NULL},
{PROG_1B, USER_1B, NODE_1B, ð, ð, NULL}};

struct program progs2[] = {{PROG_2A, USER_2A, NODE_2A, ð, ð, NULL},
{PROG_2B, USER_2B, NODE_2B, ð, ð, NULL}};

int progs1_elems = sizeof progs1 / sizeof progs1[ð];
int progs2_elems = sizeof progs2 / sizeof progs2[ð];

int reg_cnt; /\ Count of registered events \/
fd_set read_fds; /\ select() file descriptor mask \/
int fd_limit; /\ select() file descriptor limit \/
int need_timeout; /\ Boolean - select() timeout needed \/
int rc; /\ Return code \/

struct timeval timeout_value = {15, ð}; /\ Fifteen second timeout \/

setup_signals(); /\ Initialize signal dispositions \/

start_session(&sess1); /\ Start EMAPI session for 1st SP partition \/
start_session(&sess2); /\ Start EMAPI session for 2nd SP partition \/

 /\
\ Register for events in both EMAPI sessions that will monitor the
\ programs of interest. Maintain count of registered events.

 \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 243

 emapi_v02_ex02.c

reg_cnt = ð;
register_for_events(&sess1, progs1, progs1_elems, ®_cnt);
register_for_events(&sess2, progs2, progs2_elems, ®_cnt);

 /\
\ Continue looking for Event Manager responses as long as there are

 \ registered events.
 \/

while (reg_cnt > ð) {

 /\
\ If program termination has been requested, and unregistration
\ requests have not been sent, send them now.

 \/

if (terminate_requested && !unregistrations_requested) {
 printf("Termination requested.\n");

unregister_events(&sess1, progs1, progs1_elems);
unregister_events(&sess2, progs2, progs2_elems);
unregistrations_requested = 1;

 }

 /\
\ Construct the parameters to be passed to select(), and then
\ call select() to wait for Event Manager responses.

 \/

FD_ZERO(&read_fds); fd_limit = ð; need_timeout = ð;
select_session(&sess1, &read_fds, &fd_limit, &need_timeout);
select_session(&sess2, &read_fds, &fd_limit, &need_timeout);

rc = select(fd_limit + 1, &read_fds, NULL, NULL,
need_timeout ? &timeout_value : NULL);

if (rc == -1) { /\ select() indicates error \/
if (errno == EINTR) { /\ select() interrupted by signal \/

continue; /\ Return to top of loop \/
 }

perror("select()"); /\ select() really encountered error \/
exit(1); /\ End program \/

 }

 /\
\ If an Event Manager response is present for the 1st EMAPI session,
\ process it. Also, maintain the count of registered events.

 \/

if (session_response_ready(&sess1, &read_fds)) {
process_response(&sess1, progs1, progs1_elems, ®_cnt);

 }

 /\
\ If an Event Manager response is present for the 2nd EMAPI session,
\ process it. Also, maintain the count of registered events.

 \/

if (session_response_ready(&sess2, &read_fds)) {
process_response(&sess2, progs2, progs2_elems, ®_cnt);

 }

 }

end_session(&sess1); /\ End EMAPI session for 1st SP partition \/
end_session(&sess2); /\ End EMAPI session for 2nd SP partition \/

return ð; /\ Indicate program was successful \/
}

/\
 \ The interrupt_catch() function is installed as the signal handler for the

244 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex02.c

 \ SIGINT signal. The SIGINT signal is delivered to this process when the
 \ user presses the interrupt key (usually Ctrl-C). When this routine is
 \ invoked, it sets the global variable terminate_requested to a non-zero
 \ value, indicating the program is to be terminated.
 \/

static
void interrupt_catch(int signo)
{

terminate_requested = 1;
 return;
}

/\
 \ The setup_signals() function initializes the disposition of a couple of
 \ signals.
 \
 \ The disposition of the SIGPIPE signal is set such that the signal is
\ ignored. When a process writes to a pipe or connection-oriented socket for
 \ which there is no reader, the SIGPIPE signal is delivered to the process.
 \ The default disposition for SIGPIPE is to kill the receiving process. If
 \ SIGPIPE is ignored, the SIGPIPE signal does not kill the process, and the
 \ system call used to write to the pipe or connection-oriented socket sets
 \ errno to EPIPE and returns an error indication. It is recommended that
 \ clients of the EMAPI ignore the SIGPIPE signal, since the EMAPI uses
 \ connection-oriented sockets to communicate with the Event Manager.
 \
 \ The interrupt_catch() function is installed as the signal handler for the
 \ SIGINT signal. See the comments pertaining to the interrupt_catch()
 \ function to find out why this is done.
 \/

static
void setup_signals(void)
{
 struct sigaction sa;

sa.sa_handler = SIG_IGN; /\ SIGPIPE to be ignored \/
sigemptyset(&sa.sa_mask); /\ No signals to mask off \/
sa.sa_flags = ð; /\ No flags needed \/

if (sigaction(SIGPIPE, &sa, NULL) == -1) { /\ Change SIGPIPE disposition\/
 perror("sigaction(SIGPIPE)");
 exit(1);
 }

sa.sa_handler = interrupt_catch; /\ SIGINT signal handler \/
sigemptyset(&sa.sa_mask); /\ No signals to mask off \/
sa.sa_flags = SA_RESTART; /\ Restart interrupted syscalls \/

if (sigaction(SIGINT, &sa, NULL) == -1) { /\ Change SIGINT disposition \/
 perror("sigaction(SIGINT)");
 exit(1);
 }

 return;
}

/\
 \ The start_session() function establishes a session with the EMAPI by
 \ calling the EMAPI routine ha_em_start_session(). If a session cannot be
 \ established, the program is terminated.
 \/

static
void start_session(struct session \sess_p)
{

struct ha_em_err_blk errb; /\ EMAPI error block \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 245

 emapi_v02_ex02.c

 /\
\ The ha_em_start_session() routine receives the name of the partition
\ with which a session is to be established, and returns a file
\ descriptor with which the session can be used.

 \/

sess_p->fd = ha_em_start_session(HA_EM_DOMAIN_SP, sess_p->name, &errb);

 /\
\ If ha_em_start_session() indicates a session could not be established,
\ print the error information returned by the routine, and exit the

 \ program.
 \/

if (sess_p->fd == -1) {
fprintf(stderr, "%s:\tha_em_start_session() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 /\
\ A session has been established with the EMAPI, and the session's file
\ descriptor has been saved in the session structure passed to this
\ routine. Set the flag in the session structure that indicates the
\ session does not need to be restarted.

 \/

sess_p->restart = ð;

 return;
}

/\
 \ The register_for_events() function uses the EMAPI routine
 \ ha_em_send_command() to request the registration of events pertaining to
 \ programs of interest that are in the same SP partition.
 \
 \ The resource variable name specified is "IBM.PSSP.Prog.xpcount". This is a
 \ state variable whose value indicates whether or not processes are executing
 \ a specific program. The resource ID for this resource variable
 \ specifies the program name, the name of the user running the program, and
 \ the node on which the program is running. The resource variable's value
 \ is a structured byte string of three fields. Field ð is of type long; its
 \ value is the number of processes currently running the specified program
 \ for the specified user on the specified node. Field 1 is also of type
 \ long; its value is the previous number of processes running the program.
 \ Field 2 is of type character string; its value is a comma separated list
 \ of the PIDs of the processes running the program.
 \
 \ When the events are registered, two expressions are specified. The primary
 \ expression, "X@ð == ð", specifies that an event is to be generated when
 \ field ð of the resource variable's structured byte string has a value of ð.
 \ Taking into account the semantics of the resource variable, the expression
 \ causes an event to be generated when no processes are running the specified
 \ program for the specified user on the specified node. The re-arm
 \ expression, "X@ð > ð", specifies that after the primary expression has
 \ generated an event, the primary expression is to be re-armed once a process
 \ starts running the specified program for the specified user on the
 \ specified node. Since the HA_EM_CMD_REG2 command is specified, the re-arm
 \ expression will generate events.
 \
 \ Notice that when events are registered, the HA_EM_SCMD_REVAL subcommand is
\ specified. As a result, the initial value of the programs being monitored
 \ will be returned.
 \/

static
void register_for_events(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p)
{

246 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex02.c

int num_events; /\ Number of events to register \/
size_t alloc_size; /\ Size of memory to allocate \/
struct ha_em_cmd_blk \cmd_blk; /\ Pointer to command block \/
struct ha_em_rb_reg \re; /\ Pointer to registered event \/

 int i; /\ Index \/
struct ha_em_err_blk errb; /\ EMAPI error block \/
int rc; /\ Return code \/
char rsrc_ID_buf[8ð]; /\ Resource ID buffer \/
struct callback_data \cd_p; /\ Pointer to callback data \/

num_events = progs_elems; /\ Register one event per program \/

 /\
\ Allocate enough memory to hold the command block to be given to the
\ EMAPI. The ha_em_cmd_blk structure contains one ha_em_rb_reg
\ structure. Additional space must be allocated when more than one
\ event is to be registered.

 \/

alloc_size = sizeof(struct ha_em_cmd_blk) +
((num_events - 1) \ sizeof(struct ha_em_rb_reg));

if ((cmd_blk = malloc(alloc_size)) == NULL) {
 perror("malloc()");
 exit(1);
 }

 /\
\ Fill in the em_rb_reg array entries. There is one entry per event to

 \ be registered.
 \/

for (i = ð; i < num_events; i++) {

re = &cmd_blk->em_res_blk.em_rb_reg[i];

re->em_name = "IBM.PSSP.Prog.xpcount"; /\ Resource variable name \/

 sprintf(rsrc_ID_buf, "ProgName=%s;UserName=%s;NodeNum=%d",
progs_p[i].name, progs_p[i].user, progs_p[i].node);

re->em_rsrc_ID = strdup(rsrc_ID_buf); /\ Resource ID \/

if (re->em_rsrc_ID == NULL) {
 perror("strdup()");
 exit(1);
 }

re->em_expr = "X@ð == ð"; /\ Expression \/
re->em_raexpr = "X@ð > ð"; /\ Re-arm expression \/

if ((cd_p = malloc(sizeof(struct callback_data))) == NULL) {
 perror("malloc()");
 exit(1);
 }

cd_p->sess_p = sess_p; /\ Callback gets session pointer \/
cd_p->prog_p = &progs_p[i]; /\ Callback gets program pointer \/
cd_p->reg_cnt_p = reg_cnt_p; /\ Callback gets reg. count pointer \/

re->em_cb = event_callback; /\ Callback routine \/
re->em_cb_arg = cd_p; /\ Callback routine args. \/

progs_p[i].cb_data = cd_p; /\ Save pointer to callback data \/
 }

 /\
\ Fill in command block header, specifying number of elements in
\ em_rb_reg array, command, and subcommand.

 \/

cmd_blk->em_cmd_num_elem = num_events;

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 247

 emapi_v02_ex02.c

 cmd_blk->em_cmd = HA_EM_CMD_REG2;
 cmd_blk->em_subcmd = HA_EM_SCMD_REVAL;

 /\
\ Send the command. A more elaborate program might check for the
\ HA_EM_ECONNLOST Event Manager error number when an error is
\ returned, and attempt to restart the session. But, this program
\ just terminates if ha_em_send_command() detects a lost connection.

 \/

rc = ha_em_send_command(sess_p->fd, cmd_blk, &errb);

if (rc == -1) {
fprintf(stderr, "%s:\tha_em_send_command() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 /\
\ Save the event identifiers assigned to the events just registered.

 \/

for (i = ð; i < num_events; i++) {
re = &cmd_blk->em_res_blk.em_rb_reg[i];

 progs_p[i].eid = re->em_event_id;
progs_p[i].unreged = ð;

 free(re->em_rsrc_ID);
 }

 free(cmd_blk);

\reg_cnt_p += num_events; /\ Update count of registered events \/

 return;
}

/\
 \ The unregister_events() function uses the EMAPI routine
 \ ha_em_send_command() to request the unregistration of events pertaining to
 \ programs of interest that are in the same SP partition.
 \/

static
void unregister_events(struct session \sess_p,

struct program \progs_p, int progs_elems)
{

int num_events; /\ Number of events to unreg. \/
size_t alloc_size; /\ Size of memory to allocate \/
struct ha_em_cmd_blk \cmd_blk; /\ Pointer to command block \/
ha_em_eid_t \re; /\ Pointer to unreg. event \/

 int i; /\ Index \/
struct ha_em_err_blk errb; /\ EMAPI error block \/
int rc; /\ Return code \/

 /\
\ Allocate enough memory to hold the command block to be given to the
\ EMAPI. The ha_em_cmd_blk structure contains one ha_em_eid_t
\ element. Additional space must be allocated when more than one
\ event is to be unregistered.

 \/

alloc_size = sizeof(struct ha_em_cmd_blk) +
((progs_elems - 1) \ sizeof(ha_em_eid_t));

if ((cmd_blk = malloc(alloc_size)) == NULL) {
 perror("malloc()");
 exit(1);
 }

 /\

248 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex02.c

\ Fill in the event identifier array entries. There is one entry per
\ event to be unregistered. Only unregister events that are not already

 \ unregistered.
 \/

num_events = ð;

for (i = ð; i < progs_elems; i++) {
if (!progs_p[i].unreged) {

 re = &cmd_blk->em_res_blk.em_rb_unreg[num_events];
\re = progs_p[i].eid;

 num_events++;
 }
 }

 /\
\ Fill in command block header, specifying the number of elements in
\ the event identifier array, and the unregister command.

 \/

cmd_blk->em_cmd_num_elem = num_events;
 cmd_blk->em_cmd = HA_EM_CMD_UNREG;

 /\
\ Send the unregister command. A more elaborate program might check for
\ the HA_EM_ECONNLOST Event Manager error number when an error is
\ returned, and attempt to restart the session. But, this program
\ just terminates if ha_em_send_command() detects a lost connection.

 \/

rc = ha_em_send_command(sess_p->fd, cmd_blk, &errb);

if (rc == -1) {
fprintf(stderr, "%s:\tha_em_send_command() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 free(cmd_blk);

 return;
}

/\
 \ The select_session() routine determines how the specified session affects
 \ the next call to select(). If the session is marked as needing to be
 \ restarted, ha_em_restart_session() is called to try to restart the session.
 \ If the restart attempt fails, the next call to select() should specify
 \ a timeout period - so the restart can be attempted again. If the restart
 \ attempt succeeds, the new session file descriptor is saved, and the session
 \ is marked as not needing to be restarted. If the session did not need
 \ to be restarted, or had been successfully restarted, the next call to
 \ select() should examine the session's file descriptor.
 \/

static
void select_session(struct session \sess_p,

fd_set \read_fds_p, int \fd_limit_p, int \timeout_p)
{

struct ha_em_err_blk errb; /\ EMAPI error block \/
int new_fd; /\ New session file descriptor \/

 /\
\ If the specified session needs to be restarted, try to do so.

 \/

if (sess_p->restart) {

new_fd = ha_em_restart_session(sess_p->fd, &errb);

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 249

 emapi_v02_ex02.c

if (new_fd == -1) {

 /\
\ The session could not be restarted. If the Event Manager
\ error number indicates connection refused, indicate the
\ next select() should specify a timeout value (so the restart
\ can be tried again later), and return without putting the
\ session's file descriptor in the select() file descriptor

 \ mask.
 \/

if (errb.em_errno == HA_EM_ECONNREFUSED) {
\timeout_p = 1;

 return;
 }

 /\
\ If execution reaches here, the session restart attempt failed
\ for an unexpected reason; terminate the program.

 \/

fprintf(stderr, "%s:\tha_em_restart_session() returned EM errno "
"%d:\n%s", sess_p->name, errb.em_errno, errb.em_errmsg);

 exit(1);
 }

 /\
\ If execution reaches here, a session restart was attempted and
\ was successful. Save the new session file descriptor, and indicate
\ that the session no longer needs to be restarted.

 \/

sess_p->fd = new_fd;
sess_p->restart = ð;

 }

 /\
\ If execution reaches here, the specified session is not known to be
\ in need of a restart. Put the session's file descriptor in the
\ select() file descriptor mask. Also, adjust the maximum file
\ descriptor to select, if appropriate.

 \/

 FD_SET(sess_p->fd, read_fds_p);
\fd_limit_p = MAX(sess_p->fd, \fd_limit_p);

 return;
}

/\
 \ The session_response_ready() function determines if a select() file
 \ descriptor mask indicates that a session's file descriptor is ready for
 \ reading.
 \/

static
int session_response_ready(struct session \sess_p, fd_set \read_fds_p)
{

return FD_ISSET(sess_p->fd, read_fds_p);
}

/\
 \ The process_response() function processes an Event Manager response
 \ in the specified EMAPI session. First, ha_em_receive_response() is called
 \ to receive the response. If ha_em_receive_response() indicates that the
 \ session's connection with the Event Manager has been lost, the session
 \ is marked as being in need of a restart. Any other error will terminate
 \ the program. The ha_em_receive_response() function may indicate that
 \ there really isn't any response for the EMAPI client to process at this

250 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex02.c

\ time. In that case, this function just returns. If a response has
 \ been received, it is processed depending on what type of response it is.
 \/

static
void process_response(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p)
{

struct ha_em_rsp_blk \rsp_blk; /\ Pointer to the response block \/
int rc; /\ Return code \/
struct ha_em_err_blk errb; /\ Event Manager error block \/

 int i; /\ Index \/

 /\
\ Receive response from session, if there is one to receive.

 \/

rc = ha_em_receive_response(sess_p->fd, &rsp_blk, &errb);

if (rc == -1) {

 /\
\ If the connection with the Event Manager has been lost,
\ mark the session as needing to be restarted, and return.

 \/

if (errb.em_errno == HA_EM_ECONNLOST) {
printf("%s:\tconnection to session lost.\n", sess_p->name);
sess_p->restart = 1;

 return;
 }

 /\
\ Some error has occurred other than the loss of the connection.
\ Terminate the program.

 \/

fprintf(stderr, "%s:\tha_em_receive_response() returned EM errno %d:\n"
"%s", sess_p->name, errb.em_errno, errb.em_errmsg);

 exit(1);

 }

 /\
\ If the ha_em_receive_response() routine returned zero,
\ there is no response for the EMAPI client (this program) to process
\ at this time. The response may have been for the EMAPI itself,
\ a full response may not be available yet, or the response may have
\ been handled with the callback routine. Just return.

 \/

if (rc == ð) {
 return;
 }

 /\
\ A response for the EMAPI client (this program) has been returned.
\ The response buffer is pointed to by the rsp_blk variable. Appropriate
\ processing for the response depends on the command type. Note that
\ since all event registrations in this program specify the use of a
\ callback routine, event responses and event unregistration responses
\ are not expected by this function.

 \/

switch (rsp_blk->em_cmd) {

case HA_EM_CMD_RERR: /\ REG event registration error \/
case HA_EM_CMD_R2ERR: /\ REG2 event registration error \/

process_response_rerr(sess_p, progs_p, progs_elems, rsp_blk,
 reg_cnt_p);
 break;

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 251

 emapi_v02_ex02.c

default: /\ Unexpected response \/
fprintf(stderr, "%s:\tProgram received unexpected command "

"response: %d.\n", sess_p->name, rsp_blk->em_cmd);
 exit(1);
 break;

 }

 /\
\ The EMAPI client (this program) must free the memory associated with
\ the returned response block when it is no longer needed.

 \/

 free(rsp_blk);

 return;
}

/\
 \ The process_response_rerr() function processes registration error
\ responses. When an event cannot be registered due to some detected error,
 \ a registration error response is sent to the EMAPI client. This function
 \ marks the event, as tracked in a program structure, as being unregistered.
 \ This will prevent an attempt to unregister a non-registered event later
 \ in the program.
 \/

static
void process_response_rerr(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk, int \reg_cnt_p)

{
struct ha_em_rpb_rerr \error_p; /\ Pointer to error response \/
struct ha_em_rpb_rerr \last_error_p; /\ Beyond last error response\/
struct program \prog_p; /\ Pointer to program struct \/

char prog_name[8ð]; /\ Name of program to which error pertains \/
char user_name[8ð]; /\ Name of user to which error pertains \/
int node; /\ Node to which error pertains \/

error_p = rsp_blk->em_resp_blk.em_rpb_rerr;
last_error_p = error_p + rsp_blk->em_rsp_num_resp;

for (; error_p < last_error_p; error_p++) {

 /\
\ Find the program structure which describes the program associated
\ with the event whose registration failed. The match is made
\ with event identifiers.

 \/

for (prog_p = progs_p; prog_p < progs_p + progs_elems; prog_p++) {
if (prog_p->eid == error_p->em_event_id) {

 break;
 }
 }

if (prog_p == progs_p + progs_elems) {
fprintf(stderr, "%s:\tUnknown event identifier encountered (ðx%x)."

"\n", sess_p->name, error_p->em_event_id);
 exit(1);
 }

 /\
\ Extract the program name, user name, and node number from the

 \ resource ID.
 \/

breakdown_rsrc_ID(error_p->em_rsrc_ID, prog_name, user_name, &node);

252 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex02.c

 /\
\ Print a message about the registration error.

 \/

printf("%s:\tRegistration error for %s run by %s on node %d (%d, %d)."
"\n", sess_p->name, prog_name, user_name, node,

 error_p->em_generr, error_p->em_specerr);

 /\
\ Mark the program as not having an associated event registered.

 \/

prog_p->unreged = 1;

 /\
\ Free the callback data allocated for this program.

 \/

 free(prog_p->cb_data);
prog_p->cb_data = NULL;

 }

 /\
\ Update the number of events that are registered.

 \/

\reg_cnt_p -= rsp_blk->em_rsp_num_resp;

 return;
}

/\
 \ The event_callback() function is called whenever an event response has been
 \ received from the Event Manager. Several points should be kept in mind:
 \
 \ - The event response may indicate that an unregistration request has
 \ been completed. The HA_EM_EVENT_UNREG flag indicates the event
 \ response is actually an unregistration response.
 \
 \ - An event response may be an error response. An event error response
 \ does not indicate that a registered event has occurred. Instead, it
 \ indicates the Event Manager no longer knows the current value of
 \ the associated resource variable, and cannot generate events for
 \ the resource variable. This may be a temporary condition. If the
 \ Event Manager later obtains the current value of the associated
 \ resource variable, an event will be generated (possibly indicating
 \ that the expression is false).
 \
 \ - The event for which an event error response is generated is still
 \ registered. There is no need to re-register the event.
 \
 \ - Since events are registered by this program using the HA_EM_CMD_REG2
 \ command, the re-arm expressions will generate events. Therefore, the
 \ HA_EM_EVENT_RE_ARM flag must be tested to see if the expression or
 \ the re-arm expression generated the event.
 \
 \ - It is possible for an event to be delivered indicating the expression
 \ is false. This can happen for two reasons. First, when events are
 \ registered by this program, the HA_EM_SCMD_REVAL subcommand is
 \ specified. That subcommand requests the initial value of the
 \ associated resource variable. Second, the current value of the
 \ associated resource variable is returned through an event once the
 \ Event Manager obtains the current value of a resource variable after
 \ an error has occurred.
 \
 \ - If an event response does not have the HA_EM_EVENT_RE_ARM nor
 \ HA_EM_EVENT_EXPR_FALSE flags set, the event response indicates that
 \ the event's expression is true.
 \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 253

 emapi_v02_ex02.c

static
void event_callback(int sess_fd, struct ha_em_rpb_event \event_p, void \arg)
{

struct callback_data \cd_p; /\ Callback routine data pointer \/
struct session \sess_p; /\ Session structure pointer \/
struct program \prog_p; /\ Program structure pointer \/
int \reg_cnt_p; /\ Registration counter pointer \/

char time_stamp[8ð]; /\ Formatted event time stamp \/

 /\
\ Get the callback routine's arguments.

 \/

cd_p = (struct callback_data \)arg;

 sess_p = cd_p->sess_p;
 prog_p = cd_p->prog_p;

reg_cnt_p = cd_p->reg_cnt_p;

 /\
\ Format the time stamp.

 \/

 format_timestamp(&event_p->em_timestamp, time_stamp);

if (event_p->em_event_flags & HA_EM_EVENT_UNREG) {

 /\
\ If execution reaches this point, the event indicates an event
\ unregistration has completed.
\ Print a message indicating the program associated with the
\ unregistered event is no longer being monitored.

 \/

printf("%s:\t%s no longer monitoring %s run by %s on node %d.\n",
sess_p->name, time_stamp, prog_p->name, prog_p->user,

 prog_p->node);

 /\
\ Note: em_errnum could indicate an error, but there is no point
\ looking at it here, since the program would not do anything

 \ differently.
 \/

 /\
\ Mark the program as not having an associated event registered.

 \/

prog_p->unreged = 1;

 /\
\ Indicate this program has one fewer registered event.

 \/

 (\reg_cnt_p)--;

 /\
\ The callback routine will no longer be called about this event,
\ so free the data that was allocated specifically for this event.

 \/

 free(prog_p->cb_data);
prog_p->cb_data = NULL;

 return;
 }

 /\
\ If execution reaches this point, the event response is not an

254 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex02.c

 \ unregistration response.
 \/

 /\
\ If this is an event error response, print a message which includes
\ the general and specific error codes.

 \/

if (event_p->em_errnum != ð) {
printf("%s:\t%s State of %s run by %s on node %d unknown (%d, %d).\n",

sess_p->name, time_stamp, prog_p->name, prog_p->user,
prog_p->node, event_p->em_generr, event_p->em_specerr);

 return;
 }

 /\
\ If the event response was generated for the re-arm expression, or
\ the event response was generated for the primary expression but
\ it is false, print a message indicating the program associated
\ with the event is being run.

 \/

if ((event_p->em_event_flags & HA_EM_EVENT_RE_ARM) ||
(event_p->em_event_flags & HA_EM_EVENT_EXPR_FALSE)) {
printf("%s:\t%s %s being run by %s on node %d.\n",

sess_p->name, time_stamp, prog_p->name, prog_p->user,
 prog_p->node);
 return;
 }

 /\
\ If execution reaches this point, the event response was generated
\ for the primary expression, and it is true. Print a message
\ indicating the program associated with the event is not being run.

 \/

printf("%s:\t%s %s NOT being run by %s on node %d.\n",
sess_p->name, time_stamp, prog_p->name, prog_p->user,

 prog_p->node);

 return;
}

/\
 \ The format_timestamp() function takes a time stamp returned by the
 \ Event Manager and converts it into 24-hour time.
 \/

static
void format_timestamp(struct timeval \timestamp_p, char \fmt_timestamp_p)
{
 struct tm \broken_down_time;

broken_down_time = localtime((time_t \) ×tamp_p->tv_sec);
(void) strftime(fmt_timestamp_p, 2ð, "(%X)", broken_down_time);

 return;
}

/\
 \ The breakdown_rsrc_ID() function takes a resource ID
 \ associated with the IBM.PSSP.Prog.xpcount resource variable and extracts
 \ from it the program name, user name, and node number.
 \/

static
void breakdown_rsrc_ID(char \rsrc_ID_p,

char \prog_name_p, char \user_name_p, int \node_p)
{

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 255

 emapi_v02_ex02.c

 char \value_p;
 size_t value_len;

find_rsrc_ID_value(rsrc_ID_p, "ProgName=", &value_p, &value_len);
strncpy(prog_name_p, value_p, value_len);
\(prog_name_p + value_len) = '\ð';

find_rsrc_ID_value(rsrc_ID_p, "UserName=", &value_p, &value_len);
strncpy(user_name_p, value_p, value_len);
\(user_name_p + value_len) = '\ð';

find_rsrc_ID_value(rsrc_ID_p, "NodeNum=", &value_p, &value_len);
\node_p = atoi(value_p);

 return;
}

/\
 \ The find_rsrc_ID_value() takes a resource ID and extracts
 \ a value from it.
 \/

static
void find_rsrc_ID_value(char \rsrc_ID_p, char \name_p,

char \\value_pp, size_t \value_len_p)
{
 char \bp;
 char \ep;
 size_t len;

if ((bp = strstr(rsrc_ID_p, name_p)) == NULL) {
fprintf(stderr, "Unexpected resource ID encountered.\n");

 exit(1);
 }

bp += strlen(name_p);

if ((ep = strchr(bp, ';')) != NULL) {
len = ep - bp;

} else {
len = strlen(bp);

 }

 \value_pp = bp;
\value_len_p = len;

 return;
}

/\
 \ The end_session() function terminates a session with the EMAPI by
 \ calling the EMAPI routine ha_em_end_session().
 \/

static
void end_session(struct session \sess_p)
{

struct ha_em_err_blk errb;

if (ha_em_end_session(sess_p->fd, &errb) == -1) {
fprintf(stderr, "%s:\tha_em_end_session() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 return;
}

256 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex03.c

The emapi_v02_ex03.c Sample Program
/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/

/\ @(#)45 1.3 src/rsct/pem/emtools/emapi_test/emapi_ex_r/emapi_vð2_exð3.c, emtools, rsct_rtro 6/3ð/98 1ð:48:47 \/

#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
#include <time.h>

#define HA_EM_VERSION 2
#include <ha_emapi.h>

/\
 \ emapi_vð2_exð3.c
 \
 \ This program presents an example of using the Event Manager Application
 \ Programming Interface (EMAPI). The program uses the EMAPI to monitor
 \ four programs running on various nodes in two SP partitions. Since two
 \ SP partitions are involved, the program establishes two sessions with the
 \ EMAPI, one per SP partition. Each session is managed by a separate thread.
 \
 \ This program can be compiled with the following command:
 \
 \ cc_r -O emapi_vð2_exð3.c -o emapi_vð2_exð3 -lha_em_r -lpthreads -lc_r
 \/

/\
 \ The following macros specify the programs this program will monitor through
 \ the EMAPI.
 \/

#define PART_1 "k21s" /\ 1st SP partition \/

#define PROG_1A "subsys_pgrm1" /\ 1st program in 1st SP partition, \/
#define USER_1A "root" /\ ... and user running 1st program, \/
#define NODE_1A 5 /\ ... and node running 1st program. \/

#define PROG_1B "subsys_pgrm2" /\ 2nd program in 1st SP partition, \/
#define USER_1B "root" /\ ... and user running 2nd program, \/
#define NODE_1B 6 /\ ... and node running 2nd program. \/

#define PART_2 "k21sp2" /\ 2nd SP partition \/

#define PROG_2A "subsys_pgrm1" /\ 1st program in 2nd SP partition, \/
#define USER_2A "root" /\ ... and user running 1st program, \/
#define NODE_2A 14 /\ ... and node running 1st program. \/

#define PROG_2B "subsys_pgrm2" /\ 2nd program in 2nd SP partition, \/
#define USER_2B "root" /\ ... and user running 2nd program, \/
#define NODE_2B 15 /\ ... and node running 2nd program. \/

/\

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 257

 emapi_v02_ex03.c

 \ The STRERROR_BUF and STRERROR macros make it a little more convenient to
 \ use the thread safe version of strerror(), strerror_r().
 \/

#define STRERROR_BUF char strerror_buf[256]

#define STRERROR(en) (\
strerror_r(en, strerror_buf, sizeof strerror_buf) == ð \

? strerror_buf : "Unknown error" \
)

/\
 \ This program saves information about each EMAPI session it has established
 \ in a session structure.
 \/

struct session {
char \name; /\ Name of partition used by session \/
int fd; /\ Session file descriptor \/
int restart; /\ Boolean - Session's connection has been lost \/

};

/\
 \ This program saves information about each program it is monitoring through
 \ the EMAPI in a program structure.
 \/

struct program {
char \name; /\ Name of a program to be monitored \/
char \user; /\ Name of user running program \/
int node; /\ Node on which program is running \/
ha_em_eid_t eid; /\ Event identifier for program \/
int unreged; /\ Event is unregistered \/

};

/\
 \ The thread_data structure is used by the initial thread to pass data to
 \ a secondary thread when it is created.
 \/

struct thread_data {
struct session \sess; /\ EMAPI session the thread is to establish \/
struct program \progs; /\ Programs the thread is to monitor \/
int progs_cnt; /\ Number of programs thread is to monitor \/

};

/\
 \ Following are handles for threads created by the initial thread.
 \/

pthread_t thread1; /\ Handle to thread 1 - a program monitor \/
pthread_t thread2; /\ Handle to thread 2 - a program monitor \/
pthread_t thread3; /\ Handle to thread 3 - cancellation monitor \/

/\
 \ Function prototypes for internal functions.
 \/

static void setup_signals(void);
static void create_thread(pthread_t \thread_p, void \(\ thread_rtn)(void \),
 void \data_p);
static void cancel_thread(pthread_t thread);
static void wait_for_thread(pthread_t thread);
static void \program_thread_main(void \parm_p);
static void program_thread_main_cleanup(void \parm_p);
static void \cancel_thread_main(void \parm_p);
static void start_session(struct session \sess_p);
static void register_for_events(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p);
static void ensure_session_connected(struct session \sess_p);
static void process_response(struct session \sess_p,

258 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex03.c

struct program \progs_p, int progs_elems, int \reg_cnt_p);
static void process_response_reg(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk);

static void process_response_rerr(struct session \sess_p,
struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk, int \reg_cnt_p);

static void format_timestamp(struct timeval \timestamp_p,
 char \fmt_timestamp_p);
static void breakdown_rsrc_ID(char \rsrc_ID_p,

char \prog_name_p, char \user_name_p, int \node_p);
static void find_rsrc_ID_value(char \rsrc_ID_p, char \name_p,

char \\value_pp, size_t \value_len_p);
static void end_session(struct session \sess_p);

/\
 \ The main() function is executed by this program's initial thread.
 \ The function creates three other threads. The first two threads
 \ use the EMAPI to monitor other programs. One thread is used per
 \ EMAPI session, and one EMAPI session is used per SP partition.
 \ The third thread waits for the user to request the termination of this
\ program. When the third thread detects the user would like this program
 \ to terminate, it cancels the two threads using the EMAPI. When those
 \ two threads terminate, the initial thread cancels the third thread, waits
 \ for the third thread to terminate, and terminates the program.
 \/

int main(int argc, char \\argv)
{

struct session sess1 = {PART_1, -1, ð};
struct session sess2 = {PART_2, -1, ð};

struct program progs1[] = {{PROG_1A, USER_1A, NODE_1A, ð, ð},
{PROG_1B, USER_1B, NODE_1B, ð, ð}};

struct program progs2[] = {{PROG_2A, USER_2A, NODE_2A, ð, ð},
{PROG_2B, USER_2B, NODE_2B, ð, ð}};

int progs1_elems = sizeof progs1 / sizeof progs1[ð];
int progs2_elems = sizeof progs2 / sizeof progs2[ð];

struct thread_data td1 = {&sess1, progs1, progs1_elems};
struct thread_data td2 = {&sess2, progs2, progs2_elems};

setup_signals(); /\ Initialize signal dispositions \/

 /\
\ Create 2 threads that will monitor programs with the EMAPI.

 \/

create_thread(&thread1, program_thread_main, &td1); /\ Create thread 1 \/
create_thread(&thread2, program_thread_main, &td2); /\ Create thread 2 \/

 /\
\ Create a thread that will wait for the user to request termination.

 \/

create_thread(&thread3, cancel_thread_main, NULL); /\ Create thread 3 \/

 /\
\ Wait for the 2 threads that are monitoring programs to end. They
\ will end due to errors or they will be canceled by thread 3 when
\ the user requests termination.

 \/

wait_for_thread(thread1); /\ Wait for thread 1 to terminate \/
wait_for_thread(thread2); /\ Wait for thread 2 to terminate \/

 /\
\ Cancel the thread waiting for the user to request termination, and
\ then wait for that thread to terminate.

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 259

 emapi_v02_ex03.c

 \/

cancel_thread(thread3); /\ Cancel thread 3 \/
wait_for_thread(thread3); /\ Wait for thread 3 to terminate \/

return ð; /\ Indicate program was successful \/
}

/\
 \ The setup_signals() function initializes the disposition of a couple of
 \ signals.
 \
 \ The disposition of the SIGPIPE signal is set such that the signal is
\ ignored. When a process writes to a pipe or connection-oriented socket for
 \ which there is no reader, the SIGPIPE signal is delivered to the process.
 \ The default disposition for SIGPIPE is to kill the receiving process. If
 \ SIGPIPE is ignored, the SIGPIPE signal does not kill the process, and the
 \ system call used to write to the pipe or connection-oriented socket sets
 \ errno to EPIPE and returns an error indication. It is recommended that
 \ clients of the EMAPI ignore the SIGPIPE signal, since the EMAPI uses
 \ connection-oriented sockets to communicate with the Event Manager.
 \
 \ The SIGINT signal is blocked in the initial thread's signal mask.
 \ Threads created by the initial thread will inherit the signal mask from
 \ the initial thread. One thread will wait for the SIGINT signal
 \ to be delivered by using sigwait().
 \/

static
void setup_signals(void)
{

struct sigaction sa; /\ Signal action description \/
int rc; /\ Return code (error number) \/
STRERROR_BUF; /\ Buffer for strerror_r() \/
sigset_t sigset; /\ Signal mask to block SIGINT \/

sa.sa_handler = SIG_IGN; /\ SIGPIPE to be ignored \/
sigemptyset(&sa.sa_mask); /\ No signals to mask off \/
sa.sa_flags = ð; /\ No flags needed \/

if (sigaction(SIGPIPE, &sa, NULL) == -1) { /\ Change SIGPIPE disposition\/
 perror("sigaction(SIGPIPE)");
 exit(1);
 }

sigemptyset(&sigset); /\ Initialize signal set \/
sigaddset(&sigset, SIGINT); /\ Add SIGINT to signal set \/

rc = sigthreadmask(SIG_BLOCK, &sigset, NULL); /\ Block SIGINT signal \/
if (rc != ð) {

fprintf(stderr, "sigthreadmask(): %s\n", STRERROR(rc));
 exit(1);
 }

 return;
}

/\
 \ The create_thread() function creates a thread, passing along the specified
 \ main function address and parameter address. The function returns the
 \ thread's handle. The thread is created such that it can be joined later
 \ on.
 \/

static
void create_thread(pthread_t \thread_p, void \(\ thread_rtn)(void \),
 void \data_p)
{

pthread_attr_t thread_attr; /\ Thread attributes \/

260 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex03.c

int rc; /\ Return code (error number) \/
STRERROR_BUF; /\ Buffer for strerror_r() \/

rc = pthread_attr_init(&thread_attr);
if (rc != ð) {

fprintf(stderr, "pthread_attr_init(): %s\n", STRERROR(rc));
 exit(1);
 }

rc = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_UNDETACHED);
if (rc != ð) {

fprintf(stderr, "pthread_attr_setdetachstate(): %s\n",
 STRERROR(rc));
 exit(1);
 }

rc = pthread_create(thread_p, &thread_attr, thread_rtn, data_p);
if (rc != ð) {

fprintf(stderr, "pthread_create(): %s\n", STRERROR(rc));
 exit(1);
 }

rc = pthread_attr_destroy(&thread_attr);
if (rc != ð) {

fprintf(stderr, "pthread_attr_destroy(): %s\n", STRERROR(rc));
 exit(1);
 }

 return;
}

/\
 \ The cancel_thread() function requests the cancellation of the specified
 \ thread.
 \/

static
void cancel_thread(pthread_t thread)
{

int rc; /\ Return code (error number) \/
STRERROR_BUF; /\ Buffer for strerror_r() \/

rc = pthread_cancel(thread);
if (rc != ð) {

fprintf(stderr, "pthread_cancel(): %s\n", STRERROR(rc));
 exit(1);
 }

 return;
}

/\
 \ The wait_for_thread() function waits for the specified thread to
 \ terminate.
 \/

static
void wait_for_thread(pthread_t thread)
{

int rc; /\ Return code (error number) \/
STRERROR_BUF; /\ Buffer for strerror_r() \/

rc = pthread_join(thread, NULL);
if (rc != ð) {

fprintf(stderr, "pthread_join(): %s\n", STRERROR(rc));
 exit(1);
 }

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 261

 emapi_v02_ex03.c

 return;
}

/\
 \ The program_thread_main() function is the main function for threads that
 \ are created to monitor programs in a SP partition. The function is told
 \ what programs are to be monitored in what partition through the function
 \ parameter, which is a pointer to a thread_data structure. The function
 \ calls functions to establish an EMAPI session, register for events, wait
 \ for process Event Manager responses, and cleanup when the thread is
\ canceled. The thread cleanup function that is installed ends the EMAPI
 \ session that was established for the thread.
 \/

static
void \program_thread_main(void \parm_p)
{

struct thread_data \td; /\ Thread data (parameters) \/
int reg_cnt; /\ Count of registered events \/
int rc; /\ Return code \/

td = (struct thread_data \) parm_p; /\ Get parameters for the thread \/

 start_session(td->sess); /\ Start EMAPI session for SP partition \/

 /\
\ Install a clean up handler that will end the session when the thread

 \ is canceled.
 \/

pthread_cleanup_push(program_thread_main_cleanup, (void \)td->sess);

 /\
\ Register for events that will monitor the programs of interest.
\ Maintain count of registered events.

 \/

reg_cnt = ð;
register_for_events(td->sess, td->progs, td->progs_cnt, ®_cnt);

 /\
\ Continue looking for Event Manager responses as long as there are

 \ registered events.
 \/

while (reg_cnt > ð) {

 /\
\ Ensure the session is still connected to the Event Manager.

 \/

 ensure_session_connected(td->sess);

 /\
\ Process the next response from the Event Manager.

 \/

process_response(td->sess, td->progs, td->progs_cnt, ®_cnt);

 }

 /\
\ Pop and execute the thread cleanup handler installed by this routine.
\ Note that the cleanup handler will end the EMAPI session.

 \/

 pthread_cleanup_pop(1);

262 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex03.c

return NULL; /\ The thread is finished. \/
}

/\
 \ The program_thread_main_cleanup() function is the thread cancellation
 \ cleanup handler for the program_thread_main() function. When this
 \ function is installed as a thread cancellation cleanup handler, the
 \ thread has an EMAPI session. This function ends that session. The
 \ function receives as input a pointer to the session structure describing
 \ the session.
 \/

static
void program_thread_main_cleanup(void \parm_p)
{
 struct session \sess_p;

sess_p = (struct session \) parm_p;

 end_session(sess_p);

printf("%s:\tno longer monitoring programs in this partition.\n",
 sess_p->name);

 return;
}

/\
 \ The cancel_thread_main() function waits for the user to request
 \ the termination of this program. The user requests program termination
 \ by pressing the interrupt key (usually Ctrl-C). Pressing the interrupt
 \ key will cause this program to receive the SIGINT signal. This function
 \ waits for the SIGINT signal to be delivered. Once the SIGINT signal has
 \ been delivered, this function cancels the two threads monitoring programs
 \ through the EMAPI.
 \/

static
void \cancel_thread_main(void \parm_p)
{

int rc; /\ Return code (error number) \/
sigset_t sigset; /\ Signal mask to unblock SIGINT \/
int sig; /\ Received signal \/
STRERROR_BUF; /\ Buffer for strerror_r() \/

sigemptyset(&sigset); /\ Initialize signal set \/
sigaddset(&sigset, SIGINT); /\ Add SIGINT to signal set \/

for (; ;) {

rc = sigwait(&sigset, &sig);
if (rc != ð) {

fprintf(stderr, "sigwait(): %s\n", STRERROR(rc));
 exit(1);
 }

if (sig == SIGINT) {
 printf("Termination requested.\n");

cancel_thread(thread1); /\ Request cancellation of thread 1 \/
cancel_thread(thread2); /\ Request cancellation of thread 2 \/
break; /\ No longer wait for SIGINT \/

 }

fprintf(stderr, "sigwait() reported unexpected signal: %d.\n", sig);
 exit(1);

 }

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 263

 emapi_v02_ex03.c

return NULL; /\ The thread is finished \/
}

/\
 \ The start_session() function establishes a session with the EMAPI by
 \ calling the EMAPI routine ha_em_start_session(). If a session cannot be
 \ established, the program is terminated.
 \/

static
void start_session(struct session \sess_p)
{

struct ha_em_err_blk errb; /\ EMAPI error block \/

 /\
\ The ha_em_start_session() routine receives the name of the partition
\ with which a session is to be established, and returns a file
\ descriptor with which the session can be used.

 \/

sess_p->fd = ha_em_start_session(HA_EM_DOMAIN_SP, sess_p->name, &errb);

 /\
\ If ha_em_start_session() indicates a session could not be established,
\ print the error information returned by the routine, and exit the

 \ program.
 \/

if (sess_p->fd == -1) {
fprintf(stderr, "%s:\tha_em_start_session() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 /\
\ A session has been established with the EMAPI, and the session's file
\ descriptor has been saved in the session structure passed to this
\ routine. Set the flag in the session structure that indicates the
\ session does not need to be restarted.

 \/

sess_p->restart = ð;

 return;
}

/\
 \ The register_for_events() function uses the EMAPI routine
 \ ha_em_send_command() to request the registration of events pertaining to
 \ programs of interest that are in the same SP partition.
 \
 \ The resource variable name specified is "IBM.PSSP.Prog.xpcount". This is a
 \ state variable whose value indicates whether or not processes are executing
 \ a specific program. The resource ID for this resource variable
 \ specifies the program name, the name of the user running the program, and
 \ the node on which the program is running. The resource variable's value
 \ is a structured byte string of three fields. Field ð is of type long; its
 \ value is the number of processes currently running the specified program
 \ for the specified user on the specified node. Field 1 is also of type
 \ long; its value is the previous number of processes running the program.
 \ Field 2 is of type character string; its value is a comma separated list
 \ of the PIDs of the processes running the program.
 \
 \ When the events are registered, two expressions are specified. The primary
 \ expression, "X@ð == ð", specifies that an event is to be generated when
 \ field ð of the resource variable's structured byte string has a value of ð.
 \ Taking into account the semantics of the resource variable, the expression
 \ causes an event to be generated when no processes are running the specified
 \ program for the specified user on the specified node. The re-arm

264 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex03.c

 \ expression, "X@ð > ð", specifies that after the primary expression has
 \ generated an event, the primary expression is to be re-armed once a process
 \ starts running the specified program for the specified user on the
 \ specified node. Since the HA_EM_CMD_REG2 command is specified, the re-arm
 \ expression will generate events.
 \
 \ Notice that when events are registered, the HA_EM_SCMD_REVAL subcommand is
\ specified. As a result, the initial value of the programs being monitored
 \ will be returned.
 \/

static
void register_for_events(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p)
{

int num_events; /\ Number of events to register \/
size_t alloc_size; /\ Size of memory to allocate \/
struct ha_em_cmd_blk \cmd_blk; /\ Pointer to command block \/
struct ha_em_rb_reg \re; /\ Pointer to registered event \/

 int i; /\ Index \/
struct ha_em_err_blk errb; /\ EMAPI error block \/
int rc; /\ Return code \/
char rsrc_ID_buf[8ð]; /\ Resource ID buffer \/

num_events = progs_elems; /\ Register one event per program \/

 /\
\ Allocate enough memory to hold the command block to be given to the
\ EMAPI. The ha_em_cmd_blk structure contains one ha_em_rb_reg
\ structure. Additional space must be allocated when more than one
\ event is to be registered.

 \/

alloc_size = sizeof(struct ha_em_cmd_blk) +
((num_events - 1) \ sizeof(struct ha_em_rb_reg));

if ((cmd_blk = malloc(alloc_size)) == NULL) {
 perror("malloc()");
 exit(1);
 }

 /\
\ Fill in the em_rb_reg array entries. There is one entry per event to

 \ be registered.
 \/

for (i = ð; i < num_events; i++) {

re = &cmd_blk->em_res_blk.em_rb_reg[i];

re->em_name = "IBM.PSSP.Prog.xpcount"; /\ Resource variable name \/

 sprintf(rsrc_ID_buf, "ProgName=%s;UserName=%s;NodeNum=%d",
progs_p[i].name, progs_p[i].user, progs_p[i].node);

re->em_rsrc_ID = strdup(rsrc_ID_buf); /\ Resource ID \/

if (re->em_rsrc_ID == NULL) {
 perror("strdup()");
 exit(1);
 }

re->em_expr = "X@ð == ð"; /\ Expression \/
re->em_raexpr = "X@ð > ð"; /\ Re-arm expression \/

re->em_cb = NULL; /\ Callback routine not used\/
re->em_cb_arg = NULL; /\ Callback routine not used\/

 }

 /\
\ Fill in command block header, specifying number of elements in
\ em_rb_reg array, command, and subcommand.

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 265

 emapi_v02_ex03.c

 \/

cmd_blk->em_cmd_num_elem = num_events;
 cmd_blk->em_cmd = HA_EM_CMD_REG2;
 cmd_blk->em_subcmd = HA_EM_SCMD_REVAL;

 /\
\ Send the command. A more elaborate program might check for the
\ HA_EM_ECONNLOST Event Manager error number when an error is
\ returned, and attempt to restart the session. But, this program
\ just terminates if ha_em_send_command() detects a lost connection.

 \/

rc = ha_em_send_command(sess_p->fd, cmd_blk, &errb);

if (rc == -1) {
fprintf(stderr, "%s:\tha_em_send_command() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 /\
\ Save the event identifiers assigned to the events just registered.

 \/

for (i = ð; i < num_events; i++) {
re = &cmd_blk->em_res_blk.em_rb_reg[i];

 progs_p[i].eid = re->em_event_id;
progs_p[i].unreged = ð;

 free(re->em_rsrc_ID);
 }

 free(cmd_blk);

\reg_cnt_p += num_events; /\ Update count of registered events \/

 return;
}

/\
 \ The ensure_session_connected() function ensures the specified session
 \ is not known to be disconnected. If the session is marked as needing
 \ to be restarted, the function does not return until the session has been
 \ successfully restarted. Restart attempts are tried every 15 seconds.
 \/

static
void ensure_session_connected(struct session \sess_p)
{

struct ha_em_err_blk errb; /\ EMAPI error block \/
int new_fd; /\ New session file descriptor \/

 /\
\ If the specified session needs to be restarted, try to do so.

 \/

while (sess_p->restart) {

new_fd = ha_em_restart_session(sess_p->fd, &errb);

if (new_fd == -1) {

 /\
\ The session could not be restarted. If the Event Manager
\ error number indicates connection refused, wait 15 seconds
\ before trying the restart again.

 \/

if (errb.em_errno == HA_EM_ECONNREFUSED) {
 sleep(15);

266 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex03.c

 continue;
 }

 /\
\ If execution reaches here, the session restart attempt failed
\ for an unexpected reason; terminate the program.

 \/

fprintf(stderr, "%s:\tha_em_restart_session() returned EM errno "
"%d:\n%s", sess_p->name, errb.em_errno, errb.em_errmsg);

 exit(1);
 }

 /\
\ If execution reaches here, a session restart was attempted and
\ was successful. Save the new session file descriptor, and indicate
\ that the session no longer needs to be restarted.

 \/

sess_p->fd = new_fd;
sess_p->restart = ð;

 }

 /\
\ If execution reaches here, the specified session is not known to be
\ in need of a restart. Just return.

 \/

 return;
}

/\
 \ The process_response() function processes an Event Manager response
 \ in the specified EMAPI session. First, ha_em_receive_response() is called
 \ to receive the response. If ha_em_receive_response() indicates that the
 \ session's connection with the Event Manager has been lost, the session
 \ is marked as being in need of a restart. Any other error will terminate
 \ the program. The ha_em_receive_response() function may indicate that
 \ there really isn't any response for the EMAPI client to process at this
\ time. In that case, this function just returns. If a response has
 \ been received, it is processed depending on what type of response it is.
 \/

static
void process_response(struct session \sess_p,

struct program \progs_p, int progs_elems, int \reg_cnt_p)
{

struct ha_em_rsp_blk \rsp_blk; /\ Pointer to the response block \/
int rc; /\ Return code \/
struct ha_em_err_blk errb; /\ Event Manager error block \/

 int i; /\ Index \/

 /\
\ Receive response from session, if there is one to receive.

 \/

rc = ha_em_receive_response(sess_p->fd, &rsp_blk, &errb);

if (rc == -1) {

 /\
\ If the connection with the Event Manager has been lost,
\ mark the session as needing to be restarted, and return.

 \/

if (errb.em_errno == HA_EM_ECONNLOST) {
printf("%s:\tconnection to session lost.\n", sess_p->name);
sess_p->restart = 1;

 return;

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 267

 emapi_v02_ex03.c

 }

 /\
\ Some error has occurred other than the loss of the connection.
\ Terminate the program.

 \/

fprintf(stderr, "%s:\tha_em_receive_response() returned EM errno %d:\n"
"%s", sess_p->name, errb.em_errno, errb.em_errmsg);

 exit(1);

 }

 /\
\ If the ha_em_receive_response() routine returned zero,
\ there is no response for the EMAPI client (this program) to process
\ at this time. The response may have been for the EMAPI itself, or
\ a full response may not be available yet. Just return.

 \/

if (rc == ð) {
 return;
 }

 /\
\ A response for the EMAPI client (this program) has been returned.
\ The response buffer is pointed to by the rsp_blk variable. Appropriate
\ processing for the response depends on the command type.

 \/

switch (rsp_blk->em_cmd) {

case HA_EM_CMD_REG: /\ Event response \/
case HA_EM_CMD_REG2: /\ Event response (possible re-arm) \/

process_response_reg(sess_p, progs_p, progs_elems, rsp_blk);
 break;

case HA_EM_CMD_RERR: /\ REG event registration error \/
case HA_EM_CMD_R2ERR: /\ REG2 event registration error \/

process_response_rerr(sess_p, progs_p, progs_elems, rsp_blk,
 reg_cnt_p);
 break;

default: /\ Unexpected response \/
fprintf(stderr, "%s:\tProgram received unexpected command "

"response: %d.\n", sess_p->name, rsp_blk->em_cmd);
 exit(1);
 break;

 }

 /\
\ The EMAPI client (this program) must free the memory associated with
\ the returned response block when it is no longer needed.

 \/

 free(rsp_blk);

 return;
}

/\
 \ The process_response_reg() function processes event responses from the
 \ Event Manager. Several points should be kept in mind:
 \
 \ - The response block may contain multiple event responses. The
 \ number of responses included in the response block is given in
 \ the response block header.
 \
 \ - An event response may be an error response. An event error response
 \ does not indicate that a registered event has occurred. Instead, it

268 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex03.c

 \ indicates the Event Manager no longer knows the current value of
 \ the associated resource variable, and cannot generate events for
 \ the resource variable. This may be a temporary condition. If the
 \ Event Manager later obtains the current value of the associated
 \ resource variable, an event will be generated (possibly indicating
 \ that the expression is false).
 \
 \ - The event for which an event error response is generated is still
 \ registered. There is no need to re-register the event.
 \
 \ - Since events are registered by this program using the HA_EM_CMD_REG2
 \ command, the re-arm expressions will generate events. Therefore, the
 \ HA_EM_EVENT_RE_ARM flag must be tested to see if the expression or
 \ the re-arm expression generated the event.
 \
 \ - It is possible for an event to be delivered indicating the expression
 \ is false. This can happen for two reasons. First, when events are
 \ registered by this program, the HA_EM_SCMD_REVAL subcommand is
 \ specified. That subcommand requests the initial value of the
 \ associated resource variable. Second, the current value of the
 \ associated resource variable is returned through an event once the
 \ Event Manager obtains the current value of a resource variable after
 \ an error has occurred.
 \
 \ - If an event response does not have the HA_EM_EVENT_RE_ARM nor
 \ HA_EM_EVENT_EXPR_FALSE flags set, the event response indicates that
 \ the event's expression is true.
 \/

static
void process_response_reg(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk)

{
struct ha_em_rpb_event \event_p; /\ Pointer to event response \/
struct ha_em_rpb_event \last_event_p; /\ Beyond last event response\/

char time_stamp[8ð]; /\ Formatted event time stamp \/
char prog_name[8ð]; /\ Name of program to which event pertains \/
char user_name[8ð]; /\ Name of user to which event pertains \/
int node; /\ Node to which event pertains \/

event_p = rsp_blk->em_resp_blk.em_rpb_event;
last_event_p = event_p + rsp_blk->em_rsp_num_resp;

for (; event_p < last_event_p; event_p++) {

 /\
\ Format the event's time stamp; extract the program name, user
\ name, and node number from the resource ID.

 \/

 format_timestamp(&event_p->em_timestamp, time_stamp);
breakdown_rsrc_ID(event_p->em_rsrc_ID, prog_name, user_name, &node);

 /\
\ If this is an event error response, print a message which includes
\ the general and specific error codes.

 \/

if (event_p->em_errnum != ð) {
printf("%s:\t%s State of %s run by %s on node %d unknown (%d, %d)."

"\n", sess_p->name, time_stamp, prog_name, user_name, node,
 event_p->em_generr, event_p->em_specerr);
 continue;
 }

 /\
\ If the event response was generated for the re-arm expression, or
\ the event response was generated for the primary expression but
\ it is false, print a message indicating the program associated

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 269

 emapi_v02_ex03.c

\ with the event is being run.
 \/

if ((event_p->em_event_flags & HA_EM_EVENT_RE_ARM) ||
(event_p->em_event_flags & HA_EM_EVENT_EXPR_FALSE)) {
printf("%s:\t%s %s being run by %s on node %d.\n",

sess_p->name, time_stamp, prog_name, user_name, node);
 continue;
 }

 /\
\ If execution reaches this point, the event response was generated
\ for the primary expression, and it is true. Print a message
\ indicating the program associated with the event is not being run.

 \/

printf("%s:\t%s %s NOT being run by %s on node %d.\n",
sess_p->name, time_stamp, prog_name, user_name, node);

 }

 return;
}

/\
 \ The process_response_rerr() function processes registration error
\ responses. When an event cannot be registered due to some detected error,
 \ a registration error response is sent to the EMAPI client. This function
 \ marks the event, as tracked in a program structure, as being unregistered.
 \ This will prevent an attempt to unregister a non-registered event later
 \ in the program.
 \/

static
void process_response_rerr(struct session \sess_p,

struct program \progs_p, int progs_elems,
struct ha_em_rsp_blk \rsp_blk, int \reg_cnt_p)

{
struct ha_em_rpb_rerr \error_p; /\ Pointer to error response \/
struct ha_em_rpb_rerr \last_error_p; /\ Beyond last error response\/
struct program \prog_p; /\ Pointer to program struct \/

char prog_name[8ð]; /\ Name of program to which error pertains \/
char user_name[8ð]; /\ Name of user to which error pertains \/
int node; /\ Node to which error pertains \/

error_p = rsp_blk->em_resp_blk.em_rpb_rerr;
last_error_p = error_p + rsp_blk->em_rsp_num_resp;

for (; error_p < last_error_p; error_p++) {

 /\
\ Find the program structure which describes the program associated
\ with the event whose registration failed. The match is made
\ with event identifiers.

 \/

for (prog_p = progs_p; prog_p < progs_p + progs_elems; prog_p++) {
if (prog_p->eid == error_p->em_event_id) {

 break;
 }
 }

if (prog_p == progs_p + progs_elems) {
fprintf(stderr, "%s:\tUnknown event identifier encountered (ðx%x)."

"\n", sess_p->name, error_p->em_event_id);
 exit(1);
 }

 /\

270 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex03.c

\ Extract the program name, user name, and node number from the
 \ resource ID.
 \/

breakdown_rsrc_ID(error_p->em_rsrc_ID, prog_name, user_name, &node);

 /\
\ Print a message about the registration error.

 \/

printf("%s:\tRegistration error for %s run by %s on node %d (%d, %d)."
"\n", sess_p->name, prog_name, user_name, node,

 error_p->em_generr, error_p->em_specerr);

 /\
\ Mark the program as not having an associated event registered.

 \/

prog_p->unreged = 1;

 }

 /\
\ Update the number of events that are registered.

 \/

\reg_cnt_p -= rsp_blk->em_rsp_num_resp;

 return;
}

/\
 \ The format_timestamp() function takes a time stamp returned by the
 \ Event Manager and converts it into 24-hour time.
 \/

static
void format_timestamp(struct timeval \timestamp_p, char \fmt_timestamp_p)
{
 struct tm broken_down_time;

localtime_r((time_t \) ×tamp_p->tv_sec, &broken_down_time);
(void) strftime(fmt_timestamp_p, 2ð, "(%X)", &broken_down_time);

 return;
}

/\
 \ The breakdown_rsrc_ID() function takes a resource ID
 \ associated with the IBM.PSSP.Prog.xpcount resource variable and extracts
 \ from it the program name, user name, and node number.
 \/

static
void breakdown_rsrc_ID(char \rsrc_ID_p,

char \prog_name_p, char \user_name_p, int \node_p)
{
 char \value_p;
 size_t value_len;

find_rsrc_ID_value(rsrc_ID_p, "ProgName=", &value_p, &value_len);
strncpy(prog_name_p, value_p, value_len);
\(prog_name_p + value_len) = '\ð';

find_rsrc_ID_value(rsrc_ID_p, "UserName=", &value_p, &value_len);
strncpy(user_name_p, value_p, value_len);
\(user_name_p + value_len) = '\ð';

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 271

 emapi_v02_ex03.c

find_rsrc_ID_value(rsrc_ID_p, "NodeNum=", &value_p, &value_len);
\node_p = atoi(value_p);

 return;
}

/\
 \ The find_rsrc_ID_value() takes a resource ID and extracts
 \ a value from it.
 \/

static
void find_rsrc_ID_value(char \rsrc_ID_p, char \name_p,

char \\value_pp, size_t \value_len_p)
{
 char \bp;
 char \ep;
 size_t len;

if ((bp = strstr(rsrc_ID_p, name_p)) == NULL) {
fprintf(stderr, "Unexpected resource ID encountered.\n");

 exit(1);
 }

bp += strlen(name_p);

if ((ep = strchr(bp, ';')) != NULL) {
len = ep - bp;

} else {
len = strlen(bp);

 }

 \value_pp = bp;
\value_len_p = len;

 return;
}

/\
 \ The end_session() function terminates a session with the EMAPI by
 \ calling the EMAPI routine ha_em_end_session().
 \/

static
void end_session(struct session \sess_p)
{

struct ha_em_err_blk errb;

if (ha_em_end_session(sess_p->fd, &errb) == -1) {
fprintf(stderr, "%s:\tha_em_end_session() returned EM errno %d:\n%s",

sess_p->name, errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 return;
}

272 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex04.c

The emapi_v02_ex04.c Sample Program
/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/

/\ @(#)44 1.3 src/rsct/pem/emtools/emapi_test/emapi_ex/emapi_vð2_exð4.c, emtools, rsct_rtro 6/3ð/98 1ð:47:45 \/

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>

#define HA_EM_VERSION 2
#include <ha_emapi.h>

/\
 \ emapi_vð2_exð4.c
 \
 \ This program presents an example of using the Event Manager Application
 \ Programming Interface (EMAPI). The program uses the EMAPI to obtain
 \ the definition of some resource variables.
 \
 \ This program can be compiled with the following command:
 \
 \ cc -O emapi_vð2_exð4.c -o emapi_vð2_exð4 -lha_em
 \/

/\
 \ The following array contains query requests that will be sent to the
\ EMAPI. Each array element is of type struct ha_em_rb_query, which is
 \ defined by the EMAPI. Each element specifies a class, a resource
 \ variable, and a resource ID.
 \
 \ Request 1 requests the definitions of resource variables in the
 \ IBM.PSSP.Prog class.
 \
 \ Request 2 requests the definitions of resource variables in the
 \ IBM.PSSP.SP_HW class whose resource variable names start with
 \ IBM.PSSP.SP_HW.Node.
 \
 \ Request 3 requests the definitions of resource variables in all
 \ classes whose resource IDs include a resource ID element
 \ named CPU.
 \/

static struct ha_em_rb_query qry_array[] = {
{"IBM.PSSP.Prog", "", "\"}, /\ Request 1 \/
{"IBM.PSSP.SP_HW", "IBM.PSSP.SP_HW.Node", "\"}, /\ Request 2 \/
{"", "", "CPU;\"} /\ Request 3 \/

};

static int qry_cnt = sizeof qry_array / sizeof qry_array[ð];

/\
 \ Function prototypes for internal functions.

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 273

 emapi_v02_ex04.c

 \/

static void setup_signals(void);
static int start_session(void);
static ha_em_qid_t send_defn_request(int sess_fd,

struct ha_em_rb_query \qry_array,
 int qry_cnt);
static int recv_defn_reply(int sess_fd, ha_em_qid_t qid);
static int process_response_query(ha_em_qid_t qid,

struct ha_em_rsp_blk \rsp_blk);
static int process_response_qerr(ha_em_qid_t qid,

struct ha_em_rsp_blk \rsp_blk);
static void end_session(int sess_fd);

/\
 \ The main() function calls functions to initialize the program, establish
 \ an EMAPI session, send query requests, wait for and process Event Manager
 \ responses, and terminate the EMAPI session.
 \/

int main(int argc, char \\argv)
{

int sess_fd; /\ Session file descriptor \/
ha_em_qid_t qid; /\ Query identifier \/
int qend; /\ Query is finished \/

setup_signals(); /\ Set signal dispositions \/

sess_fd = start_session(); /\ Start EMAPI session \/

qid = send_defn_request(sess_fd, qry_array, qry_cnt);
/\ Send query request \/

 /\
\ Receive query replies until all replies have been received.

 \/

while ((qend = recv_defn_reply(sess_fd, qid)) == ð) {
/\ Nothing to do inside the loop \/

 }

end_session(sess_fd); /\ End EMAPI session \/

 return ð;
}

/\
 \ The setup_signals() function initializes the disposition of a signal.
 \
 \ The disposition of the SIGPIPE signal is set such that the signal is
\ ignored. When a process writes to a pipe or connection-oriented socket for
 \ which there is no reader, the SIGPIPE signal is delivered to the process.
 \ The default disposition for SIGPIPE is to kill the receiving process. If
 \ SIGPIPE is ignored, the SIGPIPE signal does not kill the process, and the
 \ system call used to write to the pipe or connection-oriented socket sets
 \ errno to EPIPE and returns an error indication. It is recommended that
 \ clients of the EMAPI ignore the SIGPIPE signal, since the EMAPI uses
 \ connection-oriented sockets to communicate with the Event Manager.
 \/

static
void setup_signals(void)
{
 struct sigaction sa;

sa.sa_handler = SIG_IGN; /\ SIGPIPE to be ignored \/
sigemptyset(&sa.sa_mask); /\ No signals to mask off \/
sa.sa_flags = ð; /\ No flags needed \/

274 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex04.c

if (sigaction(SIGPIPE, &sa, NULL) == -1) { /\ Change SIGPIPE disposition\/
 perror("sigaction(SIGPIPE)");
 exit(1);
 }

 return;
}

/\
 \ The start_session() function establishes a session with the EMAPI by
 \ calling the EMAPI routine ha_em_start_session(). If a session cannot be
 \ established, the program is terminated.
 \/

static
int start_session(void)
{

int sess_fd; /\ Session file descriptor \/
struct ha_em_err_blk errb; /\ EMAPI error block \/

 /\
\ Since no specific partition name is passed to the
\ ha_em_start_session() routine, it attempts to establish a session
\ with the default partition. The routine returns a file
\ descriptor with which the session can be used.

 \/

sess_fd = ha_em_start_session(HA_EM_DOMAIN_SP, "", &errb);

 /\
\ If ha_em_start_session() indicates a session could not be established,
\ print the error information returned by the routine, and exit the

 \ program.
 \/

if (sess_fd == -1) {
fprintf(stderr, "ha_em_start_session() returned EM errno %d:\n%s",

 errb.em_errno, errb.em_errmsg);
 exit(1);
 }

return sess_fd; /\ Return session fd \/
}

/\
 \ The send_defn_request() function uses the EMAPI routine
 \ ha_em_send_command() to send the query defined resource variables requests
 \ specified by the qry_array and qry_cnt parameters.
 \/

static
ha_em_qid_t send_defn_request(int sess_fd,

struct ha_em_rb_query \qry_array, int qry_cnt)
{

size_t alloc_size; /\ Size of memory to allocate \/
struct ha_em_cmd_blk \cmd_blk; /\ Pointer to command block \/
struct ha_em_err_blk errb; /\ EMAPI error block \/
int rc; /\ Return code \/
ha_em_qid_t qid; /\ Query identifier \/

 /\
\ Allocate enough memory to hold the command block to be given to the
\ EMAPI. The ha_em_cmd_blk structure contains one ha_em_rb_query
\ structure. Additional space must be allocated when more than one
\ query is to be made.

 \/

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 275

 emapi_v02_ex04.c

alloc_size = sizeof(struct ha_em_cmd_blk) +
((qry_cnt - 1) \ sizeof(struct ha_em_rb_query));

if ((cmd_blk = malloc(alloc_size)) == NULL) {
 perror("malloc()");
 exit(1);
 }

 /\
\ Fill in command block header, specifying number of elements in
\ em_rb_query array, command, and subcommand. Indicate a callback
\ routine will not be used to receive the responses.

 \/

cmd_blk->em_cmd_num_elem = qry_cnt;
 cmd_blk->em_cmd = HA_EM_CMD_QUERY;
 cmd_blk->em_subcmd = HA_EM_SCMD_QDEF;
 cmd_blk->em_qcb = NULL;
 cmd_blk->em_qcb_arg = NULL;

 /\
\ Copy the array of query requests into the command block.

 \/

 memcpy(cmd_blk->em_res_blk.em_rb_query, qry_array,
qry_cnt \ sizeof(struct ha_em_rb_query));

 /\
\ Send the command. A more elaborate program might check for the
\ HA_EM_ECONNLOST Event Manager error number when an error is
\ returned, and attempt to restart the session. But, this program
\ just terminates if ha_em_send_command() detects a lost connection.

 \/

rc = ha_em_send_command(sess_fd, cmd_blk, &errb);

if (rc == -1) {
fprintf(stderr, "ha_em_send_command() returned EM errno %d:\n%s",

 errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 /\
\ Save the query identifier assigned to the query request just sent.

 \/

qid = cmd_blk->em_qid;

free(cmd_blk); /\ Free the allocated command block. \/

return qid; /\ Return the query identifier \/
}

/\
 \ The recv_defn_reply() function processes an Event Manager response
 \ in the specified EMAPI session. First, ha_em_receive_response() is called
 \ to receive the response. If ha_em_receive_response() returns an error
 \ the program is terminated. The ha_em_receive_response() function may
 \ indicate that there really isn't any response for the EMAPI client to
 \ process at this time. In that case, this function just returns. If a
 \ response has been received, it is processed depending on what type of
 \ response it is.
 \
 \ This function returns ð if all query responses have not been received yet.
 \ If all query responses have been received, 1 is returned.
 \/

static
int recv_defn_reply(int sess_fd, ha_em_qid_t qid)
{

struct ha_em_rsp_blk \rsp_blk; /\ Pointer to the response block \/
int rc; /\ Return code \/

276 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex04.c

struct ha_em_err_blk errb; /\ Event Manager error block \/
int qend; /\ Query end flag \/

 /\
\ Receive response from session, if there is one to receive.

 \/

rc = ha_em_receive_response(sess_fd, &rsp_blk, &errb);

if (rc == -1) {

 /\
\ Some error has occurred receiving a response; terminate the
\ program. A more elaborate program might check for the
\ HA_EM_ECONNLOST Event Manager error number when an error is
\ returned, and attempt to restart the session. But, this program
\ just terminates if ha_em_receive_response() detects a lost

 \ connection.
 \/

fprintf(stderr, "ha_em_receive_response() returned EM errno %d:\n%s",
 errb.em_errno, errb.em_errmsg);
 exit(1);

 }

 /\
\ If the ha_em_receive_response() routine returned zero,
\ there is no response for the EMAPI client (this program) to process
\ at this time. The response may have been for the EMAPI itself, or
\ a full response may not be available yet. Just return.

 \/

if (rc == ð) {
return ð; /\ Return indicating query is not ended \/

 }

 /\
\ A response for the EMAPI client (this program) has been returned.
\ The response buffer is pointed to by the rsp_blk variable. Appropriate
\ processing for the response depends on the command type.

 \/

switch (rsp_blk->em_cmd) {

case HA_EM_CMD_QUERY: /\ Query response \/
qend = process_response_query(qid, rsp_blk);

 break;

case HA_EM_CMD_QERR: /\ Query error response \/
qend = process_response_qerr(qid, rsp_blk);

 break;

default: /\ Unexpected response \/
fprintf(stderr, "Program received unexpected command "

"response: %d.\n", rsp_blk->em_cmd);
 exit(1);
 break;

 }

 /\
\ The EMAPI client (this program) must free the memory associated with
\ the returned response block when it is no longer needed.

 \/

 free(rsp_blk);

 return qend;
}

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 277

 emapi_v02_ex04.c

/\
 \ The process_response_query() function processes query responses from the
 \ Event Manager. Several points should be kept in mind:
 \
 \ - The response block may contain multiple query responses. The
 \ number of responses included in the response block is given in
 \ the response block header.
 \
 \ - An query response may be an error response. Such a response
 \ may indicate an error of a temporary nature.
 \
 \ - This routine compares the query identifier in the response block
 \ with the query identifier assigned to the request sent by
 \ this program to the EMAPI. This should not really be necessary.
 \ If the program had sent multiple query requests to the EMAPI,
 \ through multiple calls to ha_em_send_command(), the query identifiers
 \ in the response blocks could be used to associate responses with
 \ requests.
 \
 \ - Multiple response blocks may be associated with one request block.
 \ The response to a query request is not complete until a response
 \ block is received with the em_qend field set to a non-zero value.
 \/

static
int process_response_query(ha_em_qid_t qid, struct ha_em_rsp_blk \rsp_blk)
{

struct ha_em_rpb_qdef \qp; /\ Pointer to query response \/
struct ha_em_rpb_qdef \last_qp; /\ Beyond last query response \/

 /\
\ Check query identifier in response block.

 \/

if (rsp_blk->em_qid != qid) {
fprintf(stderr, "Query response block contains unexpected "

"query identifier: %d.\n", rsp_blk->em_qid);
 exit(1);
 }

 /\
\ Look at all the response elements in the response block.

 \/

qp = rsp_blk->em_resp_blk.em_rpb_qdef;
last_qp = qp + rsp_blk->em_rsp_num_resp;

for (; qp < last_qp; qp++) {

 printf("=="
 "\n\n");

 /\
\ Check for error code.

 \/

if (qp->em_errnum != ð) {
printf("Query response for class \"%s\", "

"resource variable \"%s\", resource ID \"%s\" "
"unexpectedly contains an error (%d, %d).\n\n",
qp->em_class, qp->em_name, qp->em_rsrc_ID,

 qp->em_generr, qp->em_specerr);
 continue;
 }

 /\
\ Print definition of a resource variable.

 \/

printf("Resource Variable Name: \"%s\"\n"

278 RS/6000 Cluster Technology Event Management Programming

 emapi_v02_ex04.c

"Variable Value Type: %s\n"
 "Variable Data Type: %s\n"

"Variable SBS Format: \"%s\"\n"
"Variable Initial Value: \"%s\"\n"

 "Variable Class: \"%s\"\n"
 "Resource ID: \"%s\"\n"
 "PTX Name: \"%s\"\n"
 "Default Expression: \"%s\"\n"
 "Locator: \"%s\"\n"
 "\n"
 "Variable Description\n"
 "--------------------\n"
 "%s\n"
 "\n"

"Resource ID Description\n"
 "-----------------------\n"
 "%s\n"
 "\n"
 "Event Description\n"
 "-----------------\n"
 "%s\n"
 "\n",

 qp->em_name,
qp->em_value_type == ha_emVTcounter ? "Counter" :
qp->em_value_type == ha_emVTquantity ? "Quantity" :
qp->em_value_type == ha_emVTstate ? "State" : "Unknown",

 qp->em_data_type == ha_emDTlong ? "long" :
 qp->em_data_type == ha_emDTfloat ? "float" :
 qp->em_data_type == ha_emDTsbs ? "SBS" : "Unknown",
 qp->em_sbs_format,
 qp->em_init_value,
 qp->em_class,
 qp->em_rsrc_ID,
 qp->em_ptx_name,
 qp->em_dflt_expr,
 qp->em_locator,
 qp->em_descrp,
 qp->em_rsrc_ID_descrp,
 qp->em_event_descrp);

 }

 return rsp_blk->em_qend;
}

/\
 \ The process_response_qerr() function processes query error
 \ responses.
 \/

static
int process_response_qerr(ha_em_qid_t qid, struct ha_em_rsp_blk \rsp_blk)
{

struct ha_em_rpb_qerr \error_p; /\ Pointer to error response \/
struct ha_em_rpb_qerr \last_error_p; /\ Beyond last error response\/

 /\
\ Check query identifier in response block.

 \/

if (rsp_blk->em_qid != qid) {
fprintf(stderr, "Query response block contains unexpected "

"query identifier: %d.\n", rsp_blk->em_qid);
 exit(1);
 }

error_p = rsp_blk->em_resp_blk.em_rpb_qerr;
last_error_p = error_p + rsp_blk->em_rsp_num_resp;

 Chapter 6. Using the EMAPI: Some Event Management Client Examples 279

 emapi_v02_ex04.c

for (; error_p < last_error_p; error_p++) {

 printf("=="
 "\n\n");

 /\
\ Print error information for a resource variable.

 \/

printf("Resource Variable Name: \"%s\"\n"
 "Variable Class: \"%s\"\n"
 "Resource ID: \"%s\"\n"
 "General Error: %d\n"
 "Specific Error: %d\n"

"Additional Error Info: %d\n",

 error_p->em_name,
 error_p->em_class,
 error_p->em_rsrc_ID,
 error_p->em_generr,
 error_p->em_specerr,
 error_p->em_errinfo);

 }

 return rsp_blk->em_qend;
}

/\
 \ The end_session() function terminates a session with the EMAPI by
 \ calling the EMAPI routine ha_em_end_session().
 \/

static
void end_session(int sess_fd)
{

struct ha_em_err_blk errb;

if (ha_em_end_session(sess_fd, &errb) == -1) {
fprintf(stderr, "ha_em_end_session() returned EM errno %d:\n%s",

 errb.em_errno, errb.em_errmsg);
 exit(1);
 }

 return;
}

280 RS/6000 Cluster Technology Event Management Programming

 Bibliography

This bibliography helps you find product documentation related to the RS/6000 SP hardware
and software products.

You can find most of the IBM product information for RS/6000 SP products on the World
Wide Web. Formats for both viewing and downloading are available.

PSSP documentation is shipped with the PSSP product in a variety of formats and can be
installed on your system. The man pages for public code that PSSP includes are also
available online.

You can order hard copies of the product documentation from IBM. This bibliography lists the
titles that are available and their order numbers.

Finally, this bibliography contains a list of non-IBM publications that discuss parallel
computing and other topics related to the RS/6000 SP.

Finding Documentation on the World Wide Web
Most of the RS/6000 SP hardware and software books are available from the IBM RS/6000
web site at http://www.rs6000.ibm.com . You can view a book or download a Portable
Document Format (PDF) version of it. At the time this manual was published, the full path to
the "RS/6000 SP Product Documentation Library" page was
http://www.rs6000.ibm.com/resource/aix_resource/sp_books . However, the structure of
the RS/6000 web site can change over time.

Accessing PSSP Documentation Online
On the same medium as the PSSP product code, IBM ships PSSP man pages, HTML files,
and PDF files. In order to use these publications, you must first install the ssp.docs file set.

To view the PSSP HTML publications, you need access to an HTML document browser such
as Netscape. The HTML files and an index that links to them are installed in the
/usr/lpp/ssp/html directory. Once installed, you can also view the HTML files from the
RS/6000 SP Resource Center.

If you have installed the SP Resource Center on your SP system, you can access it by
entering the /usr/lpp/ssp/bin/resource_center command. If you have the SP Resource
Center on CD-ROM, see the readme.txt file for information about how to run it.

To view the PSSP PDF publications, you need access to the Adobe Acrobat Reader 3.0.1.
The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely
available for downloading from the Adobe web site at URL http://www.adobe.com .

Manual Pages for Public Code
The following manual pages for public code are available in this product:

SUP /usr/lpp/ssp/man/man1/sup.1

NTP /usr/lpp/ssp/man/man8/xntpd.8

 /usr/lpp/ssp/man/man8/xntpdc.8

Perl (Version 4.036) /usr/lpp/ssp/perl/man/perl.man

 /usr/lpp/ssp/perl/man/h2ph.man

 Copyright IBM Corp. 1998 281

 /usr/lpp/ssp/perl/man/s2p.man

 /usr/lpp/ssp/perl/man/a2p.man

Perl (Version 5.003) Man pages are in the /usr/lpp/ssp/perl5/man/man1 directory

Manual pages and other documentation for Tcl , TclX , Tk, and expect can be found in the
compressed tar files located in the /usr/lpp/ssp/public directory.

RS/6000 SP Planning Publications
This section lists the IBM product documentation for planning for the IBM RS/6000 SP
hardware and software.

IBM RS/6000 SP:

� Planning, Volume 1, Hardware and Physical Environment, GA22-7280

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

RS/6000 SP Hardware Publications
This section lists the IBM product documentation for the IBM RS/6000 SP hardware.

IBM RS/6000 SP:

� Planning, Volume 1, Hardware and Physical Environment, GA22-7280

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

� Maintenance Information, Volume 1, Installation and Relocation, GA22-7375

� Maintenance Information, Volume 2, Maintenance Analysis Procedures, GA22-7376

� Maintenance Information, Volume 3, Locations and Service Procedures, GA22-7377

� Maintenance Information, Volume 4, Parts Catalog, GA22-7378

RS/6000 SP Switch Router Publications
The RS/6000 SP Switch Router is based on the Ascend GRF switched IP router product
from Ascend Communications, Inc.. You can order the SP Switch Router as the IBM 9077.

The following publications are shipped with the SP Switch Router. You can also order these
publications from IBM using the order numbers shown.

� Ascend GRF Getting Started, GA22-7368

� Ascend GRF Configuration Guide, GA22-7366

� Ascend GRF Reference Guide, GA22-7367

� IBM SP Switch Router Adapter Guide, GA22-7310.

RS/6000 SP Software Publications
This section lists the IBM product documentation for software products related to the IBM
RS/6000 SP. These products include:

� IBM Parallel System Support Programs for AIX (PSSP)

� IBM LoadLeveler for AIX (LoadLeveler)

� IBM Parallel Environment for AIX (Parallel Environment)

� IBM General Parallel File System for AIX (GPFS)

282 RS/6000 Cluster Technology Event Management Programming

� IBM Engineering and Scientific Subroutine Library (ESSL) for AIX

� IBM Parallel ESSL for AIX

� IBM High Availability Cluster Multi-Processing for AIX (HACMP)

� IBM Client Input Output/Sockets (CLIO/S)

� IBM Network Tape Access and Control System for AIX (NetTAPE)

PSSP Publications

IBM RS/6000 SP:

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

PSSP:

� Installation and Migration Guide, GA22-7347

� Administration Guide, SA22-7348

� Managing Shared Disks, SA22-7349

� Performance Monitoring Guide and Reference, SA22-7353

� Diagnosis Guide, GA22-7350

� Command and Technical Reference, SA22-7351

� Messages Reference, GA22-7352

RS/6000 Cluster Technology (RSCT):

� Event Management Programming Guide and Reference, SA22-7354

� Group Services Programming Guide and Reference, SA22-7355

As an alternative to ordering the individual books, you can use SBOF-8587 to order the
PSSP software library.

LoadLeveler Publications

LoadLeveler:

� Using and Administering, SA22-7311

� Diagnosis and Messages Guide, GA22-7277

GPFS Publications

GPFS:

� Installation and Administration Guide, SA22-7278

Parallel Environment Publications

Parallel Environment:

� Installation Guide, GC28-1981

� Hitchhiker's Guide, GC23-3895

� Operation and Use, Volume 1, SC28-1979

� Operation and Use, Volume 2, SC28-1980

� MPI Programming and Subroutine Reference, GC23-3894

� MPL Programming and Subroutine Reference, GC23-3893

 � Messages, GC28-1982

 Bibliography 283

As an alternative to ordering the individual books, you can use SBOF-8588 to order the PE
library.

Parallel ESSL and ESSL Publications

� ESSL Products: General Information, GC23-0529

� Parallel ESSL: Guide and Reference, SA22-7273

� ESSL: Guide and Reference, SA22-7272

HACMP Publications

HACMP:

� Concepts and Facilities, SC23-1938

� Planning Guide, SC23-1939

� Installation Guide, SC23-1940

� Administration Guide, SC23-1941

� Troubleshooting Guide, SC23-1942

� Programming Locking Applications, SC23-1943

� Programming Client Applications, SC23-1944

� Master Index and Glossary, SC23-1945

� HANFS for AIX Installation and Administration Guide, SC23-1946

� Enhanced Scalability Installation and Administration Guide, SC23-1972

CLIO/S Publications

CLIO/S:

� General Information, GC23-3879

� User's Guide and Reference, GC28-1676

NetTAPE Publications

NetTAPE:

� General Information, GC23-3990

� User's Guide and Reference, available from your IBM representative

AIX and Related Product Publications
For the latest information on AIX and related products, including RS/6000 hardware
products, see AIX and Related Products Documentation Overview, SC23-2456. You can
order a hard copy of the book from IBM. You can also view it online from the "AIX Online
Publications and Books" page of the RS/6000 web site, at URL
http://www.rs6000.ibm.com/resource/aix_resource/Pubs .

 Red Books
IBM's International Technical Support Organization (ITSO) has published a number of
redbooks related to the RS/6000 SP. For a current list, see the ITSO website, at URL
http://www.redbooks.ibm.com .

284 RS/6000 Cluster Technology Event Management Programming

 Non-IBM Publications
Here are some non-IBM publications that you may find helpful.

� Almasi, G., Gottlieb, A., Highly Parallel Computing, Benjamin-Cummings Publishing
Company, Inc., 1989.

� Foster, I., Designing and Building Parallel Programs, Addison-Wesley, 1995.

� Gropp, W., Lusk, E., Skjellum, A., Using MPI, The MIT Press, 1994.

� Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6, 1995.

� Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface,
Version 2.0, University of Tennessee, Knoxville, Tennessee, July 18, 1997.

� Ousterhout, John K., Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994, ISBN
0-201-63337-X.

� Pfister, Gregory, F., In Search of Clusters, Prentice Hall, 1998.

 Bibliography 285

286 RS/6000 Cluster Technology Event Management Programming

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

� The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018. Definitions
are identified by the symbol (A) after the definition.

� The ANSI/EIA Standard - 440A: Fiber Optic
Terminology copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

� The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has an
opposed or substantively different meaning.
See. This refers the reader to multiple-word terms in
which this term appears.
See also. This refers the reader to terms that have
a related, but not synonymous, meaning.
Synonym for. This indicates that the term has the
same meaning as a preferred term, which is defined
in the glossary.

This section contains some of the terms that are
commonly used in the SP publications.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards

Committee X3. ANSI definitions are preceded by an
asterisk (*).

Other definitions in this glossary are taken from IBM
Vocabulary for Data Processing, Telecommunications,
and Office Systems (SC20-1699) and IBM DATABASE
2 Application Programming Guide for TSO Users
(SC26-4081).

A
adapter . An adapter is a mechanism for attaching
parts. For example, an adapter could be a part that
electrically or physically connects a device to a
computer or to another device. In the SP system,
network connectivity is supplied by various adapters,
some optional, that can provide connection to I/O
devices, networks of workstations, and mainframe
networks. Ethernet, FDDI, token-ring, HiPPI, SCSI,
FCS, and ATM are examples of adapters that can be
used as part of an SP system.

address . A character or group of characters that
identifies a register, a device, a particular part of
storage, or some other data source or destination.

AFS. A distributed file system that provides
authentication services as part of its file system
creation.

AIX. Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

Amd . Berkeley Software Distribution automount
daemon.

API. Application Programming Interface. A set of
programming functions and routines that provide access
between the Application layer of the OSI seven-layer
model and applications that want to use the network. It
is a software interface.

application . The use to which a data processing
system is put; for example, a payroll application, an
airline reservation application.

application data . The data that is produced using an
application program.

ARP. Address Resolution Protocol.

ATM. Asynchronous Transfer Mode. (See
TURBOWAYS 100 ATM Adapter.)

 Copyright IBM Corp. 1998 287

Authentication . The process of validating the identity
of a user or server.

Authorization . The process of obtaining permission to
perform specific actions.

B
batch processing . * (1) The processing of data or the
accomplishment of jobs accumulated in advance in
such a manner that each accumulation thus formed is
processed or accomplished in the same run. * (2) The
processing of data accumulating over a period of time. *
(3) Loosely, the execution of computer programs
serially. (4) Computer programs executed in the
background.

BMCA . Block Multiplexer Channel Adapter. The block
multiplexer channel connection allows the RS/6000 to
communicate directly with a host System/370 or
System/390; the host operating system views the
system unit as a control unit.

BOS. The AIX Base Operating System.

C
call home function . The ability of a system to call the
IBM support center and open a PMR to have a repair
scheduled.

CDE. Common Desktop Environment. A graphical user
interface for UNIX.

charge feature . An optional feature for either software
or hardware for which there is a charge.

CLI. Command Line Interface.

client . * (1) A function that requests services from a
server and makes them available to the user. * (2) A
term used in an environment to identify a machine that
uses the resources of the network.

Client Input/Output Sockets (CLIO/S) . A software
package that enables high-speed data and tape access
between SP systems, AIX systems, and ES/9000
mainframes.

CLIO/S. Client Input/Output Sockets.

CMI. Centralized Management Interface provides a
series of SMIT menus and dialogues used for defining
and querying the SP system configuration.

connectionless . A communication process that takes
place without first establishing a connection.

connectionless network . A network in which the
sending logical node must have the address of the
receiving logical node before information interchange
can begin. The packet is routed through nodes in the
network based on the destination address in the packet.
The originating source does not receive an
acknowledgment that the packet was received at the
destination.

control workstation . A single point of control allowing
the administrator or operator to monitor and manage the
SP system using the IBM AIX Parallel System Support
Programs.

css . Communication subsystem.

D
daemon . A process, not associated with a particular
user, that performs system-wide functions such as
administration and control of networks, execution of
time-dependent activities, line printer spooling and so
forth.

DASD. Direct Access Storage Device. Storage for
input/output data.

DCE. Distributed Computing Environment.

DFS. distributed file system. A subset of the IBM
Distributed Computing Environment.

DNS. Domain Name Service. A hierarchical name
service which maps high level machine names to IP
addresses.

E
Error Notification Object . An object in the SDR that
is matched with an error log entry. When an error log
entry occurs that matches the Notification Object, a
user-specified action is taken.

ESCON. Enterprise Systems Connection. The ESCON
channel connection allows the RS/6000 to communicate
directly with a host System/390; the host operating
system views the system unit as a control unit.

Ethernet . (1) Ethernet is the standard hardware for
TCP/IP local area networks in the UNIX marketplace. It
is a 10-megabit per second baseband type LAN that
allows multiple stations to access the transmission
medium at will without prior coordination, avoids
contention by using carrier sense and deference, and
resolves contention by collision detection (CSMA/CD).
(2) A passive coaxial cable whose interconnections
contain devices or components, or both, that are all
active. It uses CSMA/CD technology to provide a
best-effort delivery system.

288 RS/6000 Cluster Technology Event Management Programming

Ethernet network . A baseband LAN with a bus
topology in which messages are broadcast on a coaxial
cabling using the carrier sense multiple access/collision
detection (CSMA/CD) transmission method.

event . In Event Management, the notification that an
expression evaluated to true. This evaluation occurs
each time an instance of a resource variable is
observed.

expect . Programmed dialogue with interactive
programs.

expression . In Event Management, the relational
expression between a resource variable and other
elements (such as constants or the previous value of an
instance of the variable) that, when true, generates an
event. An example of an expression is X < 1ð where X
represents the resource variable
IBM.PSSP.aixos.PagSp.%totalfree (the percentage of
total free paging space). When the expression is true,
that is, when the total free paging space is observed to
be less than 10%, the Event Management subsystem
generates an event to notify the appropriate application.

F
failover . Also called fallover, the sequence of events
when a primary or server machine fails and a
secondary or backup machine assumes the primary
workload. This is a disruptive failure with a short
recovery time.

fall back . Also called fallback, the sequence of events
when a primary or server machine takes back control of
its workload from a secondary or backup machine.

FDDI. Fiber Distributed Data Interface.

Fiber Distributed Data Interface (FDDI) . An American
National Standards Institute (ANSI) standard for
100-megabit-per-second LAN using optical fiber cables.
An FDDI local area network (LAN) can be up to 100 km
(62 miles) and can include up to 500 system units.
There can be up to 2 km (1.24 miles) between system
units and/or concentrators.

File Transfer Protocol (FTP) . The Internet protocol
(and program) used to transfer files between hosts. It is
an application layer protocol in TCP/IP that uses
TELNET and TCP protocols to transfer bulk-data files
between machines or hosts.

file . * A set of related records treated as a unit, for
example, in stock control, a file could consist of a set of
invoices.

file name . A CMS file identifier in the form of 'filename
filetype filemode' (like: TEXT DATA A).

file server . A centrally located computer that acts as a
storehouse of data and applications for numerous users
of a local area network.

File Transfer Protocol (FTP) . The Internet protocol
(and program) used to transfer files between hosts. It is
an application layer protocol in TCP/IP that uses
TELNET and TCP protocols to transfer bulk-data files
between machines or hosts.

foreign host . Any host on the network other than the
local host.

FTP. File transfer protocol.

G
gateway . An intelligent electronic device
interconnecting dissimilar networks and providing
protocol conversion for network compatibility. A gateway
provides transparent access to dissimilar networks for
nodes on either network. It operates at the session
presentation and application layers.

H
HACMP. High Availability Cluster Multi-Processing for
AIX.

HACWS. High Availability Control Workstation function,
based on HACMP, provides for a backup control
workstation for the SP system.

Hashed Shared Disk (HSD) . The data striping device
for the IBM Virtual Shared Disk. The device driver lets
application programs stripe data across physical disks
in multiple IBM Virtual Shared Disks, thus reducing I/O
bottlenecks.

help key . In the SP graphical interface, the key that
gives you access to the SP graphical interface help
facility.

High Availability Cluster Multi-Processing . An IBM
facility to cluster nodes or components to provide high
availability by eliminating single points of failure.

HiPPI. High Performance Parallel Interface. RS/6000
units can attach to a HiPPI network as defined by the
ANSI specifications. The HiPPI channel supports burst
rates of 100 Mbps over dual simplex cables;
connections can be up to 25 km in length as defined by
the standard and can be extended using third-party
HiPPI switches and fiber optic extenders.

home directory . The directory associated with an
individual user.

 Glossary of Terms and Abbreviations 289

host . A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

I
instance vector . Obsolete term for resource ID.

Intermediate Switch Board . Switches mounted in the
Sp Switch expansion frame.

Internet . A specific inter-network consisting of large
national backbone networks such as APARANET,
MILNET, and NSFnet, and a myriad of regional and
campus networks all over the world. The network uses
the TCP/IP protocol suite.

Internet Protocol (IP) . (1) A protocol that routes data
through a network or interconnected networks. IP acts
as an interface between the higher logical layers and
the physical network. This protocol, however, does not
provide error recovery, flow control, or guarantee the
reliability of the physical network. IP is a connectionless
protocol. (2) A protocol used to route data from its
source to it destination in an Internet environment.

IP address . A 32-bit address assigned to devices or
hosts in an IP internet that maps to a physical address.
The IP address is composed of a network and host
portion.

ISB. Intermediate Switch Board.

K
Kerberos . A service for authenticating users in a
network environment.

kernel . The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in “kernel mode” and is protected from user
tampering by the hardware.

L
LAN . (1) Acronym for Local Area Network, a data
network located on the user's premises in which serial
transmission is used for direct data communication
among data stations. (2) Physical network technology
that transfers data a high speed over short distances.
(3) A network in which a set of devices is connected to
another for communication and that can be connected
to a larger network.

local host . The computer to which a user's terminal is
directly connected.

log database . A persistent storage location for the
logged information.

log event . The recording of an event.

log event type . A particular kind of log event that has
a hierarchy associated with it.

logging . The writing of information to persistent
storage for subsequent analysis by humans or
programs.

M
mask . To use a pattern of characters to control
retention or elimination of portions of another pattern of
characters.

menu . A display of a list of available functions for
selection by the user.

Motif . The graphical user interface for OSF,
incorporating the X Window System. Also called
OSF/Motif.

MTBF. Mean time between failure. This is a measure
of reliability.

MTTR. Mean time to repair. This is a measure of
serviceability.

N
naive application . An application with no knowledge
of a server that fails over to another server. Client to
server retry methods are used to reconnect.

network . An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

NFS. Network File System. NFS allows different
systems (UNIX or non-UNIX), different architectures, or
vendors connected to the same network, to access
remote files in a LAN environment as though they were
local files.

NIM. Network Installation Management is provided with
AIX to install AIX on the nodes.

NIM client . An AIX system installed and managed by
a NIM master. NIM supports three types of clients:

 � Standalone
 � Diskless
 � Dataless

NIM master . An AIX system that can install one or
more NIM clients. An AIX system must be defined as a
NIM master before defining any NIM clients on that

290 RS/6000 Cluster Technology Event Management Programming

system. A NIM master managers the configuration
database containing the information for the NIM clients.

NIM object . A representation of information about the
NIM environment. NIM stores this information as objects
in the NIM database. The types of objects are:

 � Network
 � Machine
 � Resource

NIS. Network Information System.

node . In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. The SP system
can house several different types of nodes for both
serial and parallel processing. These node types can
include thin nodes, wide nodes, 604 high nodes, as well
as other types of nodes both internal and external to the
SP frame.

Node Switch Board . Switches mounted on frames
that contain nodes.

NSB. Node Switch Board.

NTP. Network Time Protocol.

O
ODM. Object Data Manager. In AIX, a hierarchical
object-oriented database for configuration data.

P
parallel environment . A system environment where
message passing or SP resource manager services are
used by the application.

Parallel Environment . A licensed IBM program used
for message passing applications on the SP or RS/6000
platforms.

parallel processing . A multiprocessor architecture
which allows processes to be allocated to tightly
coupled multiple processors in a cooperative processing
environment, allowing concurrent execution of tasks.

parameter . * (1) A variable that is given a constant
value for a specified application and that may denote
the application. * (2) An item in a menu for which the
operator specifies a value or for which the system
provides a value when the menu is interpreted. * (3) A
name in a procedure that is used to refer to an
argument that is passed to the procedure. * (4) A

particular piece of information that a system or
application program needs to process a request.

partition . See system partition.

Perl . Practical Extraction and Report Language.

perspective . The primary window for each SP
Perspectives application, so called because it provides
a unique view of an SP system.

pipe . A UNIX utility allowing the output of one
command to be the input of another. Represented by
the | symbol. It is also referred to as filtering output.

PMR. Problem Management Report.

POE. Formerly Parallel Operating Environment, now
Parallel Environment for AIX.

port . (1) An end point for communication between
devices, generally referring to physical connection. (2) A
16-bit number identifying a particular TCP or UDP
resource within a given TCP/IP node.

predicate . Obsolete term for expression.

Primary node or machine . (1) A device that runs a
workload and has a standby device ready to assume
the primary workload if that primary node fails or is
taken out of service. (2) A node on the SP Switch that
initializes, provides diagnosis and recovery services,
and performs other operations to the switch network. (3)
In IBM Virtual Shared Disk function, when physical
disks are connected to two nodes (twin-tailed), one
node is designated as the primary node for each disk
and the other is designated the secondary, or backup,
node. The primary node is the server node for IBM
Virtual Shared Disks defined on the physical disks
under normal conditions. The secondary node can
become the server node for the disks if the primary
node is unavailable (off-line or down).

Problem Management Report . The number in the
IBM support mechanism that represents a service
incident with a customer.

process . * (1) A unique, finite course of events
defined by its purpose or by its effect, achieved under
defined conditions. * (2) Any operation or combination
of operations on data. * (3) A function being performed
or waiting to be performed. * (4) A program in
operation. For example, a daemon is a system process
that is always running on the system.

protocol . A set of semantic and syntactic rules that
defines the behavior of functional units in achieving
communication.

 Glossary of Terms and Abbreviations 291

R
RAID. Redundant array of independent disks.

rearm expression . In Event Management, an
expression used to generate an event that alternates
with an original event expression in the following way:
the event expression is used until it is true, then the
rearm expression is used until it is true, then the event
expression is used, and so on. The rearm expression is
commonly the inverse of the event expression (for
example, a resource variable is on or off). It can also be
used with the event expression to define an upper and
lower boundary for a condition of interest.

rearm predicate . Obsolete term for rearm expression

remote host . See foreign host.

resource . In Event Management, an entity in the
system that provides a set of services. Examples of
resources include hardware entities such as processors,
disk drives, memory, and adapters, and software
entities such as database applications, processes, and
file systems. Each resource in the system has one or
more attributes that define the state of the resource.

resource identifier . In Event Management, a set of
elements, where each element is a name/value pair of
the form name=value, whose values uniquely identify the
copy of the resource (and by extension, the copy of the
resource variable) in the system.

resource monitor . A program that supplies
information about resources in the system. It can be a
command, a daemon, or part of an application or
subsystem that manages any type of system resource.

resource variable . In Event Management, the
representation of an attribute of a resource. An example
of a resource variable is IBM.AIX.PagSp.%totalfree,
which represents the percentage of total free paging
space. IBM.AIX.PagSp specifies the resource name and
%totalfree specifies the resource attribute.

RISC. Reduced Instruction Set Computing (RISC), the
technology for today's high performance personal
computers and workstations, was invented in 1975.
Uses a small simplified set of frequently used
instructions for rapid execution.

rlogin (remote LOGIN) . A service offered by Berkeley
UNIX systems that allows authorized users of one
machine to connect to other UNIX systems across a
network and interact as if their terminals were
connected directly. The rlogin software passes
information about the user's environment (for example,
terminal type) to the remote machine.

RPC. Acronym for Remote Procedure Call, a facility
that a client uses to have a server execute a procedure
call. This facility is composed of a library of procedures
plus an XDR.

RSH. A variant of RLOGIN command that invokes a
command interpreter on a remote UNIX machine and
passes the command line arguments to the command
interpreter, skipping the LOGIN step completely. See
also rlogin.

S
SCSI. Small Computer System Interface.

Secondary node . In IBM Virtual Shared Disk function,
when physical disks are connected to two nodes
(twin-tailed), one node is designated as the primary
node for each disk and the other is designated as the
secondary, or backup, node. The secondary node acts
as the server node for the IBM Virtual Shared disks
defined on the physical disks if the primary node is
unavailable (off-line or down).

server . (1) A function that provides services for users.
A machine may run client and server processes at the
same time. (2) A machine that provides resources to
the network. It provides a network service, such as disk
storage and file transfer, or a program that uses such a
service. (3) A device, program, or code module on a
network dedicated to providing a specific service to a
network. (4) On a LAN, a data station that provides
facilities to other data stations. Examples are file server,
print server, and mail server.

shell . The shell is the primary user interface for the
UNIX operating system. It serves as command
language interpreter, programming language, and
allows foreground and background processing. There
are three different implementations of the shell concept:
Bourne, C and Korn.

Small Computer System Interface (SCSI) . An input
and output bus that provides a standard interface for
the attachment of various direct access storage devices
(DASD) and tape drives to the RS/6000.

Small Computer Systems Interface Adapter (SCSI
Adapter) . An adapter that supports the attachment of
various direct-access storage devices (DASD) and tape
drives to the RS/6000.

SMIT. The System Management Interface Toolkit is a
set of menu driven utilities for AIX that provides
functions such as transaction login, shell script creation,
automatic updates of object database, and so forth.

SNMP. Simple Network Management Protocol. (1) An
IP network management protocol that is used to monitor
attached networks and routers. (2) A TCP/IP-based

292 RS/6000 Cluster Technology Event Management Programming

protocol for exchanging network management
information and outlining the structure for
communications among network devices.

socket . (1) An abstraction used by Berkeley UNIX that
allows an application to access TCP/IP protocol
functions. (2) An IP address and port number pairing.
(3) In TCP/IP, the Internet address of the host computer
on which the application runs, and the port number it
uses. A TCP/IP application is identified by its socket.

standby node or machine . A device that waits for a
failure of a primary node in order to assume the identity
of the primary node. The standby machine then runs
the primary's workload until the primary is back in
service.

subnet . Shortened form of subnetwork.

subnet mask . A bit template that identifies to the
TCP/IP protocol code the bits of the host address that
are to be used for routing for specific subnetworks.

subnetwork . Any group of nodes that have a set of
common characteristics, such as the same network ID.

subsystem . A software component that is not usually
associated with a user command. It is usually a
daemon process. A subsystem will perform work or
provide services on behalf of a user request or
operating system request.

SUP. Software Update Protocol.

Sysctl . Secure System Command Execution Tool. An
authenticated client/server system for running
commands remotely and in parallel.

syslog . A BSD logging system used to collect and
manage other subsystem's logging data.

System Administrator . The user who is responsible
for setting up, modifying, and maintaining the SP
system.

system partition . A group of nonoverlapping nodes on
a switch chip boundary that act as a logical SP system.

T
tar . Tape ARchive, is a standard UNIX data archive
utility for storing data on tape media.

Tcl . Tool Command Language.

TclX . Tool Command Language Extended.

TCP. Acronym for Transmission Control Protocol, a
stream communication protocol that includes error
recovery and flow control.

TCP/IP. Acronym for Transmission Control
Protocol/Internet Protocol, a suite of protocols designed
to allow communication between networks regardless of
the technologies implemented in each network. TCP
provides a reliable host-to-host protocol between hosts
in packet-switched communications networks and in
interconnected systems of such networks. It assumes
that the underlying protocol is the Internet Protocol.

Telnet . Terminal Emulation Protocol, a TCP/IP
application protocol that allows interactive access to
foreign hosts.

Tk. Tcl-based Tool Kit for X Windows.

TMPCP. Tape Management Program Control Point.

token-ring . (1) Network technology that controls media
access by passing a token (special packet or frame)
between media-attached machines. (2) A network with a
ring topology that passes tokens from one attaching
device (node) to another. (3) The IBM Token-Ring LAN
connection allows the RS/6000 system unit to
participate in a LAN adhering to the IEEE 802.5
Token-Passing Ring standard or the ECMA standard 89
for Token-Ring, baseband LANs.

transaction . An exchange between the user and the
system. Each activity the system performs for the user
is considered a transaction.

transceiver (transmitter-receiver) . A physical device
that connects a host interface to a local area network,
such as Ethernet. Ethernet transceivers contain
electronics that apply signals to the cable and sense
collisions.

transfer . To send data from one place and to receive
the data at another place. Synonymous with move.

transmission . * The sending of data from one place
for reception elsewhere.

TURBOWAYS 100 ATM Adapter . An IBM
high-performance, high-function intelligent adapter that
provides dedicated 100 Mbps ATM (asynchronous
transfer mode) connection for high-performance servers
and workstations.

U
UDP. User Datagram Protocol.

UNIX operating system . An operating system
developed by Bell Laboratories that features
multiprogramming in a multiuser environment. The UNIX
operating system was originally developed for use on
minicomputers, but has been adapted for mainframes

 Glossary of Terms and Abbreviations 293

and microcomputers. Note: The AIX operating system
is IBM's implementation of the UNIX operating system.

user . Anyone who requires the services of a
computing system.

User Datagram Protocol (UDP) . (1) In TCP/IP, a
packet-level protocol built directly on the Internet
Protocol layer. UDP is used for
application-to-application programs between TCP/IP
host systems. (2) A transport protocol in the Internet
suite of protocols that provides unreliable,
connectionless datagram service. (3) The Internet
Protocol that enables an application programmer on one
machine or process to send a datagram to an
application program on another machine or process.

user ID . A nonnegative integer, contained in an object
of type uid_t, that is used to uniquely identify a system
user.

V
Virtual Shared Disk, IBM . The function that allows
application programs executing at different nodes of a
system partition to access a raw logical volume as if it
were local at each of the nodes. In actuality, the logical
volume is local at only one of the nodes (the server
node).

W
workstation . * (1) A configuration of input/output
equipment at which an operator works. * (2) A terminal
or microcomputer, usually one that is connected to a
mainframe or to a network, at which a user can perform
applications.

X
X Window System . A graphical user interface product.

294 RS/6000 Cluster Technology Event Management Programming

 Index

A
abnormal error condition

releasing PTX shared memory manually 31
about this book ix
adding registered vaiables to a resource monitor

manager 47
adding resource variables

resource monitor 16
application programming interface

Event Management (EMAPI) 4
Resource Monitor (RMAPI) 4

application types
command-based resource monitor 13
daemon-based resource monitor 13
EM client 2
resource monitor 2

considerations for choosing 14
resource monitor added to another program 14

audience of this book x

C
callback routine (Event Management)

and event errors 59
and query errors 61
and unregister errors 61
for handling events 29, 55
for query responses 29, 57, 59
for unregister responses 29, 56

class, resource variable
definition 11
examples 11
naming convention 11
observation interval 11

command-based resource monitor
characteristics 13
configuring 13
pseudocode example 17

commands
haemcfg

configuring Event Management 15
haemqvar

finding out what resource data is available 22
ipcrm

using to release PTX shared memory
manually 31

SDRCreateObjects
configuring Event Management 15

spevent
getting resource variable information 22
output example 23

communication across nodes
Event Management 3

components
Event Management 1

concepts
Event Management 1

configuration
command-based resource monitor 13
daemon-based resource monitor 13
Event Management 14

haemcfg command 15
SDR classes 15
use of haemloadcfg command 15
use of SDRCreateObjects command 15
use of System Data Repository (SDR) 15

resource monitor logic 14
SDR data for EMAPI 34

considerations
for choosing a resource monitor type 14

control message commands
HA_RR_CMD_ADDALL 18
HA_RR_CMD_ADDV 18
HA_RR_CMD_DELALL 19
HA_RR_CMD_DELV 19
HA_RR_CMD_INSTV 18

Counter value type
and class, resource variable 11
and Event Management subsystem 7
and Performance Monitor subsystem 7
and PTX objects 7
and PTX shared memory 30
definition 7
rate 7
raw value 7

D
daemon-based resource monitor

characteristics 13
configuring 13
pseudocode example 19

data types, Event Management
float 8
long 8
structured byte string (SBS) 8

default expression
definition 27

defining expressions
examples 25
rules 25

defining resource data to be monitored 5

 Copyright IBM Corp. 1998 295

deleting resource variable values
resource monitor 16

deleting resource variables from a resource monitor
manager session 48

domains
support by Event Management 3

dynamic data-supplier
definition (from PTX) 30

dynamic instantiation
definition 10

E
EM client

application types 2
definition 2
diagram 3
ending a session 30
function 2
multiple sessions 4
receiving responses 29
registering for events 28
sending event management queries 29
SIGPIPE signal handling 78
starting a session 27
tasks for writing

coding and testing 27
defining expressions 24
finding out what resource data is available 21
overview 21

unregistering for events 28
EM_Resource_Class SDR class 43
EM_Resource_ID SDR class 42
EM_Resource_Monitor SDR class 43
EM_Resource_Variable SDR class 37
EM_Structured_Byte_String SDR class 41
EMAPI (Event Management Application Programming

Interface)
configuration data (SDR) 34
error reference 124
expression reference 149
resource variable reference 152
use by EM client 2
using 5

EMAPI subroutines
ha_em_get_ecgid subroutine 28
ha_em_receive_response subroutine 29
ha_em_send_command subroutine

HA_EM_CMD_QUERY command 29
HA_EM_CMD_REG command 28
HA_EM_CMD_REG2 command 28
HA_EM_CMD_UNREG command 28

ha_em_start_session subroutine 27
ha_rr_end_session subroutine 30

ending a session
EM client 30

ending a session (continued)
resource monitor 17, 18

ending a session with a resource monitor manager 48
ending a session with Event Management 47
error condition

releasing PTX shared memory manually 31
error responses (EM client)

response block 29
errors

EMAPI 124
RMAPI 159

establishing a session with Event Management 47
establishing the resource monitor as a server 47
event

definition 1, 25
event command group

definition 28
event expression

definition 26
event generation

description 24
example 25

Event Management
application programming interfaces 4
communication across nodes 3
component

EM client 2
Event Management subsystem 2
resource monitor 1

configuration 14
domains 3
event generation 24
graphical user interface 4
introduction 1
multiple sessions 4
name spaces 12
performance considerations 30
SDR classes

EM_Resource_Class 43
EM_Resource_ID 42
EM_Resource_Monitor 43
EM_Resource_Variable 37
EM_Structured_Byte_String 41

software components 1
system partitioning 3

Event Management components
diagram 3

Event Management configuration
haemcfg command 15
SDR classes 15
use of haemloadcfg command 15
use of SDRCreateObjects command 15
use of System Data Repository (SDR) 15

Event Management Configuration Database (EMCDB)
definition 15
refreshing 16

296 RS/6000 Cluster Technology Event Management Programming

Event Management Configuration Database (EMCDB)
(continued)

version number 15
Event Management subroutines

ending a session 47
establishing a session 47
get an event command group ID 47
ha_em_end_session 49
ha_em_get_ecgid 51
ha_em_receive_response 53
ha_em_restart_session 65
ha_em_send_command 68
ha_em_start_session 77
ha_rr_add_var 80
ha_rr_del_var 84
ha_rr_end_session 87
ha_rr_get_ctrlmsg 89
ha_rr_get_interval 94
ha_rr_init 96
ha_rr_makserv 99
ha_rr_reg_var 102
ha_rr_rm_ctl 105
ha_rr_send_val 108
ha_rr_start_session 111
ha_rr_terminate 115
ha_rr_touch 117
ha_rr_unreg_var 119
receiving a response from the Event Management

subsystem 47
restarting a session 47
send a command to the Event Management

subsystem 47
Event Management subsystem

concepts 1
definition 2
diagram 3
function 2
summary of subroutines 47

Event Management terms
Counter value type 7
default expression 27
dynamic instantiation 10
EM client 2
event 1, 25
event command group 28
event expression 26
Event Management subsystem 2
expression 2, 24
float data type 8
instance 1, 9
location, resource variable instance 11
long data type 8
observation 2
Quantity value type 7
raw value 7, 150
rearm expression 26

Event Management terms (continued)
resource 6
resource attribute 6
resource ID 9
resource ID element 9
resource ID element name 9
resource ID element value 9
resource monitor 1
resource name 6
resource variable 1, 6
resource variable class 11
resource variable description 6
resource variable name 6
serial number, structured byte string 8
State value type 7
structured byte string (SBS) data type 8
structured field 8
system resource 1

Event Perspective 5
event responses

callback routine 29
response block 29

examples
class, resource variable 11
event generation 25
event management example

emapi_v02_ex01.c 224
emapi_v02_ex02.c 241
emapi_v02_ex03.c 257
emapi_v02_ex04.c 273

expressions 25
location, resource variable instance 11
rearm expression 26
resource data

using SP Perspectives 23
resource ID 9
resource monitor example

rmapi_smp.loadsdr shell script 214
rmapi_smp.msg message file 212
rmapi_smp.unloadsdr shell script 220
rmapi_smpcmd.c 170
rmapi_smpdae.c 181
rmapi_smpsig.c 196

resource monitor pseudocode
command-based resource monitor 17
daemon-based resource monitor 19

resource variable name 9
resource variables 6
structured bytes string (SBS) definition 8
system resources 6

expression
creating 24
definition 2, 24
EMAPI 149

expressions
examples 25

 Index 297

expressions (continued)
rules for defining 25

F
finding out what resource data is available

using the haemqvar command 22
float data type

definition 8
freeing resources and terminating use of the

RMAPI 48

G
getting a control message

resource monitor 18
getting a control message from a resource monitor

manager 47
getting an event command group ID 47
getting resource variable information

from SP Perspectives 22
getting the reporting interval for a class of resource

variables 47
graphical user interface

Event Management 4

H
ha_em_end_session subroutine

ending a session 30
reference 49

ha_em_get_ecgid subroutine
getting the event command group 28
reference 51

ha_em_receive_response subroutine
receiving responses 29
reference 53

ha_em_restart_session subroutine
reference 65

ha_em_send_command subroutine
reference 68
registering for events

HA_EM_CMD_REG command 28
HA_EM_CMD_REG2 command 28
HA_EM_SCMD_REVAL subcommand 28

sending event management queries
HA_EM_CMD_QUERY command 29

unregistering for events
HA_EM_CMD_UNREG command 28

ha_em_start_session subroutine
reference 77
starting a session 27

ha_emapi_base.h header file
reference 137

ha_emapi.h header file
reference 131

ha_emcommon.h header file
reference 145

ha_rmapi.h header file
reference 164

ha_rr_add_var subroutine
adding resource variables 16
reference 80

HA_RR_CMD_ADDALL command 18
HA_RR_CMD_ADDV command 18
HA_RR_CMD_DELALL command 19
HA_RR_CMD_DELV command 19
HA_RR_CMD_INSTV command 18
ha_rr_del_var subroutine

deleting resource variable values 16
reference 84

ha_rr_end_session subroutine
ending a session 17, 18
reference 87

ha_rr_get_ctrlmsg subroutine
getting a control message 18
reference 89

ha_rr_get_interval subroutine
reference 94

ha_rr_init subroutine
initializing 16, 17
reference 96

ha_rr_makserv subroutine
making a server session 17
reference 99

ha_rr_reg_var subroutine
reference 102
registering resource variables and instances 16, 17

ha_rr_rm_ctl subroutine
reference 105

ha_rr_send_val subroutine
reference 108
sending resource variable values 16

ha_rr_start_session subroutine
reference 111
starting a session 16, 18

ha_rr_terminate subroutine
and PTX shared memory 30
reference 115
terminating 17, 18

ha_rr_touch subroutine
reference 117

ha_rr_unreg_var subroutine
reference 119

haemcfg command
Event Management configuration 15

haemloadcfg command
use for Event Management configuration 15

haemloadlist file 15
haemqvar command

finding out what resource data is available 22

298 RS/6000 Cluster Technology Event Management Programming

header files
ha_emapi_base.h 137
ha_emapi.h 131
ha_emcommon.h 145
ha_rmapi.h 164

I
initializing

resource monitor 16, 17
initializing RMAPI 47
instance

definition 9
instantiation, dynamic

definition 10
ipcrm command

using to release PTX shared memory manually 31

K
killing a resource monitor

releasing PTX shared memory manually 31

L
load list file 15
local data-consumer program

definition (from PTX) 30
location, resource variable instance

definition 11
examples 11

logic, resource monitor
characteristics 14
configuring 14

long data type
definition 8

M
making a server session

resource monitor 17
manual pages for public code 281
maximum

number of resource ID elements 155
meeting "send" frequency requirements 48
multiple sessions

Event Management 4

N
name spaces

Event Management 12
naming convention

class, resource variable 11
resource attribute 6
resource variable name 6

O
observation

definition (Event Management) 2
observation interval

and resource variable class 11
and resource variable value type 11

observation, previous
specifying in an expression 25

P
performance

of Event Management operation 30
Performance Monitor subsystem

and Counter value type 7
and Quantity value type 7
and State value type 7

prerequisite knowledge for this book x
processing a control message

resource monitor 18
PTX object

and Counter value type 7
and Quantity value type 7

PTX shared memory
and Quantity and Counter value types 30
and resource monitors 30
releasing manually 31

Q
Quantity value type

and class, resource variable 11
and Event Management subsystem 7
and Performance Monitor subsystem 7
and PTX objects 7
and PTX shared memory 30
definition 7

query responses
callback routine 29
response block 29

R
raw value 150

definition 7
specifying in an expression 25

rearm expression
definition 26
example 26
using for inverse conditions 26
using for upper and lower boundaries 26

receiving a response from Event Management 47
receiving responses

EM client 29
registering a resource variable instance with the

RMAPI 47

 Index 299

registering for events
EM client 28

registering resource variables
resource monitor 16, 17

resource
definition 6

resource attribute
definition 6

resource data
defining what will be monitored 5
finding out what is available

using SP Perspectives 22
using the haemqvar command 22

resource ID
definition 9
examples 9

resource ID element
definition 9
wildcards 9

resource ID element name
definition 9

resource ID element value
definition 9

resource monitor
abnormal termination

releasing PTX shared memory manually 31
added to another program 14
adding resource variables 16
and PTX shared memory 30
application types 2
command-based 13
control message commands

HA_RR_CMD_ADDALL 18
HA_RR_CMD_ADDV 18
HA_RR_CMD_DELALL 19
HA_RR_CMD_DELV 19
HA_RR_CMD_INSTV 18

daemon-based 13
definition 1
deleting resource variable values 16
diagram 3
ending a session 17, 18
examples

pseudocode for command-based resource
monitor 17

pseudocode for daemon-based resource
monitor 19

function 1
getting a control message 18
initializing 16, 17
making a server session 17
processing a control message 18
registering resource variables and instances 16, 17
sending resource variable values 16
starting a session 16, 18
tasks for writing

choosing the resource monitor type 12

resource monitor (continued)
tasks for writing (continued)

coding and testing 16
configuring 14
defining the resource data 5
overview 5

terminating 17, 18
testing 16

resource name
definition 6

resource variable
definition 1, 6
instance 1
naming convention 6

resource variable description
definition 6

resource variable information, displaying
using the spevent command 22

resource variable name
definition 6
examples 9

resource variables
dynamically instantiable 10
EMAPI 152
RMAPI 152

response block (Event Management)
for error responses 29
for handling events 29
for query responses 29
for unregister responses 29

restarting a session with Event Management 47
RMAPI (Resource Monitor Application Programming

Interface)
error reference 159
pseudocode for command-based resource

monitor 17
pseudocode for daemon-based resource monitor 19
resource variable reference 152
summary of subroutines 47
use by resource monitor 2
using 4

RMAPI control message commands
HA_RR_CMD_ADDALL command 18
HA_RR_CMD_ADDV command 18
HA_RR_CMD_DELALL command 19
HA_RR_CMD_DELV command 19
HA_RR_CMD_INSTV command 18

RMAPI subroutines
adding registered variables to a resource monitor

manager 47
deleting resource variables from a resource monitor

manager session 48
ending a session with a resource monitor

manager 48
establishing the resource monitor as a server 47
freeing resources and terminating use of the

RMAPI 48

300 RS/6000 Cluster Technology Event Management Programming

RMAPI subroutines (continued)
getting a control message from a resource monitor

manager 47
getting the reporting interval for a class of resource

variables 47
ha_rr_add_var subroutine 16
ha_rr_del_var subroutine 16
ha_rr_end_session subroutine 17, 18
ha_rr_get_ctrlmsg subroutine 18
ha_rr_init subroutine 16, 17
ha_rr_makserv subroutine 17
ha_rr_reg_var subroutine 16, 17
ha_rr_send_val subroutine 16
ha_rr_start_session subroutine 16, 18
ha_rr_terminate subroutine 17, 18
initializing 47
meeting "send" frequency requirements 48
registering a resource variable instance with the

RMAPI 47
sending variable values to the RMAPI 47
setting or getting RMAPI attributes 47
starting a session with a resource monitor

manager 47
unregistering a resource variable instance 48

S
SDR (System Data Repository)

classes for Event Management configuration 15
EM configuration data 34
use for Event Management configuration 15

SDR classes
Event Management

EM_Resource_Class 43
EM_Resource_ID 42
EM_Resource_Monitor 43
EM_Resource_Variable 37
EM_Structured_Byte_String 41

SDRCreateObjects command
configuring Event Management 15

sending a command to Event Management 47
sending event management queries

EM client 29
sending resource variable values

resource monitor 16
sending variable values to the RMAPI 47
serial number, structured byte string

definition 8
session with Event Management

ending 47
restarting 47
starting 47

setting or getting RMAPI attributes 47
signal handling

EM client 78

SIGPIPE signal
handling for EM clients 78

SP Perspectives
example of displaying resource data 23
getting resource variable information 22
using for Event Management 5

spevent command
example of output 23
getting resource variable information 22

starting a session
EM client 27
resource monitor 16, 18

starting a session with a resource monitor manager 47
State value type

and Event Management subsystem 7
and Performance Monitor subsystem 7
definition 7

structured byte field
specifying in an expression 25

structured byte string (SBS)
example 8

structured byte string (SBS) data type
definition 8

structured field
definition 8

summary of subroutines
Event Management 47
Resource Monitor API 47

system partition
support by Event Management 3

system resource
definition 1

T
tasks

writing EM clients
coding and testing 27
defining expressions 24
finding out what resource data is available 21
overview 21

writing resource monitors
choosing the resource monitor type 12
coding and testing 16
configuring 14
defining the resource data 5
overview 5

terminating
resource monitor 17, 18
use of the RMAPI 48

termination, abnormal
resource monitor

releasing PTX shared memory manually 31
terms, Event Management

Counter value type 7
default expression 27

 Index 301

terms, Event Management (continued)
dynamically instantiable resource variables 10
EM client 2
EMCDB (Event Management Configuration

Database) 15
event 1, 25
event command group 28
event expression 26
Event Management subsystem 2
expression 2, 24
float data type 8
instance 1, 9
location, resource variable instance 11
long data type 8
observation 2
Quantity value type 7
raw value 7, 150
rearm expression 26
resource 6
resource attribute 6
resource ID 9
resource ID element 9
resource ID element name 9
resource ID element value 9
resource monitor 1
resource name 6
resource variable 1, 6
resource variable class 11
resource variable description 6
resource variable name 6
serial number, structured byte string 8
State value type 7
structured byte string (SBS) data type 8
structured field 8
system resource 1

testing
new resource monitor 16

trademarks vii

U
unregister responses

callback routine 29
response block 29

unregistering a resource variable instance 48
unregistering for events

EM client 28
using application programming interfaces

EMAPI 5
RMAPI 4

using graphical user interfaces
SP Perspectives 5

V
value types, Event Management

Counter 7
Quantity 7
State 7

version number
EMCDB 15

W
wildcard

resource ID element 9

302 RS/6000 Cluster Technology Event Management Programming

Communicating Your Comments to IBM

RS/6000 Cluster Technology
Event Management Programming Guide
and Reference

Publication No. SA22-7354-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBMLink (United States customers only): S390VM(MHVRCFS)
– IBM Mail Exchange: USIB6TC9 at IBMMAIL

 – Internet: mhvrcfs@vnet.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

RS/6000 Cluster Technology
Event Management Programming Guide
and Reference

Publication No. SA22-7354-00

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SA22-7354-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 SOUTH ROAD
POUGHKEEPSIE NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SA22-7354-00

IBM

Program Number: 5765-D51 (PSSP); 5765–D28 (HACMP)

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7354-ðð

