

RS/6000 Cluster Technology IBM

Group Services Programming
Guide and Reference

 SA22-7355-00

RS/6000 Cluster Technology IBM

Group Services Programming
Guide and Reference

 SA22-7355-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition (October 1998)

This edition applies to:

� Version 3 Release 1 of the IBM Parallel System Support Programs for AIX (PSSP) Licensed Program, program number
5765-D51, and to all subsequent releases and modifications until otherwise indicated in new editions, and

� The Enhanced Scalability feature of Version 4 Release 3 of the IBM High Availability Cluster Multi-Processing for AIX (HACMP)
Licensed Program, program number 5765-D28, and to all subsequent releases and modifications

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+914+432-9405
FAX (Other Countries):

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.rs6000.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Trademarks . vii
Publicly Available Software . viii

About This Book . ix
Checking Which Level(s) of Code You Have . ix

PSSP . ix
HACMP . x
RSCT . x

Who Should Use This Book . x
Typographic Conventions . x

Chapter 1. Understanding Group Services . 1
High Availability in a Multicomputer Environment 1
Introduction to Group Services . 2

Synchronization within an Application . 2
Coordination among Applications . 2

Using Group Services . 3
Overview of Group Services Concepts . 3
A Detailed Look at Group Services Concepts . 5

Group Services Domains . 6
Group Creation . 7
Responsiveness Checks . 8
Protocols and Voting . 10
The Expel Protocol . 22
Deactivate-On-Failure Handling . 26
Deactivate Scripts . 28
Notifications . 29
An Illustration of a Multi-Phase Protocol . 31
One-Phase and n-Phase Changes . 32
Active Protocol Proposals . 35
Failures . 37
Provider Actions during Voting . 37
Subscribing to a Group . 39
Provider and Subscriber Tokens . 39
Source-Target Group Relationships . 39
Host and Adapter Membership Groups . 42
Quorum . 43
Sundered Networks . 43

GSAPI Design Considerations . 44
Coding Callback Routines . 44
Coding for Performance . 45
Migration and Coexistence . 46

Chapter 2. Group Services Subroutine Reference 47
GSAPI Summary . 47

GSAPI Commands . 47
GSAPI Routines for Handling Notifications 48
GSAPI Deactivate Scripts . 48

ha_gs_announcement_callback Subroutine . 49

 Copyright IBM Corp. 1998 iii

ha_gs_change_attributes Subroutine . 52
ha_gs_change_state_value Subroutine . 57
ha_gs_delayed_error_callback Subroutine . 60
ha_gs_dispatch Subroutine . 63
ha_gs_expel Subroutine . 67
ha_gs_goodbye Subroutine . 71
ha_gs_init Subroutine . 73
ha_gs_join Subroutine . 78
ha_gs_leave Subroutine . 85
ha_gs_n_phase_callback Subroutine . 88
ha_gs_protocol_approved_callback Subroutine 97
ha_gs_protocol_rejected_callback Subroutine 100
ha_gs_quit Subroutine . 104
ha_gs_responsiveness_callback Subroutine 106
ha_gs_send_message Subroutine . 108
ha_gs_subscribe Subroutine . 112
ha_gs_subscriber_callback Subroutine . 118
ha_gs_unsubscribe Subroutine . 122
ha_gs_vote Subroutine . 124

Chapter 3. Group Services Files Reference 129
GSAPI Errors (err_gsapi) . 130
ha_gs.h File . 134

Chapter 4. Using the GSAPI: A Group Services Client Example 143
The sample_schg.c Sample Program . 144
The sample_utility.c Utility Functions . 162
The sample_utility.h Header File . 215
The sample_deactive_ksh.sh Deactivate Script 218
The sample_deactive_c_prog.c Deactivate Script 221

Appendix A. Subscription Special Data . 225
Formats . 225
General Representation Structure . 225
Reporting Adapter Death Events . 227
Dealing With Adapter Events with Multiple Aliases 228
Multiple ha_gs_special_block_t Elements . 229
Prerequisite System Conditions for Receiving Subscription Special Data . . 230

Bibliography . 231
Finding Documentation on the World Wide Web 231
Accessing PSSP Documentation Online . 231
Manual Pages for Public Code . 231
RS/6000 SP Planning Publications . 232
RS/6000 SP Hardware Publications . 232
RS/6000 SP Switch Router Publications . 232
RS/6000 SP Software Publications . 232
AIX and Related Product Publications . 234
Red Books . 234
Non-IBM Publications . 235

Glossary of Terms and Abbreviations . 237

Index . 245

iv RS/6000 Cluster Technology Group Services Programming

 Figures

1. A One-Phase Protocol . 33
2. A Two-Phase Commit Protocol . 33
3. Barrier Synchronization in a Multi-Phase Protocol 34
4. The Serialization of a Pending Join Request 36
5. Actions during a Membership Change Protocol 38

 Copyright IBM Corp. 1998 v

vi RS/6000 Cluster Technology Group Services Programming

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

 AIX
 AIX/6000
 DATABASE 2
 DB2
 ES/9000
 ESCON
 HACMP/6000
 IBM
 IBMLink
 LoadLeveler
 NQS/MVS
 POWERparallel

 Copyright IBM Corp. 1998 vii

 POWERserver
 POWERstation
 RS/6000

RS/6000 Scalable POWERparallel Systems
Scalable POWERparallel Systems

 SP
 System/370
 System/390
 TURBOWAYS

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Publicly Available Software
PSSP includes software that is publicly available:

expect Programmed dialogue with interactive programs

Kerberos Provides authentication of the execution of remote commands

NTP Network Time Protocol

Perl Practical Extraction and Report Language

SUP Software Update Protocol

Tcl Tool Command Language

TclX Tool Command Language Extended

Tk Tcl-based Tool Kit for X-windows

This book discusses the use of these products only as they apply specifically to the
RS/6000 SP system. The distribution for these products includes the source code
and associated documentation. (Kerberos does not ship source code.)
/usr/lpp/ssp/public contains the compressed tar files of the publicly available
software. (IBM has made minor modifications to the versions of Tcl and Tk used in
the SP system to improve their security characteristics. Therefore, the IBM-supplied
versions do not match exactly the versions you may build from the compressed tar
files.) All copyright notices in the documentation must be respected. You can find
version and distribution information for each of these products that are part of your
selected install options in the /usr/lpp/ssp/README/ssp.public.README file.

viii RS/6000 Cluster Technology Group Services Programming

About This Book

This book contains conceptual, guidance, and reference information to help you
write programs that use the Group Services APIs that are part of RS/6000 Cluster
Technology (RSCT). RSCT is provided by IBM Parallel System Support Programs
for AIX (PSSP) and by the Enhanced Scalability feature of IBM High Availability
Cluster Multi-Processing for AIX (HACMP/ES). Specifically, this book contains
information to help you write Group Services client programs.

For a list of related books and information about accessing online information, see
the bibliography in the back of the book.

Checking Which Level(s) of Code You Have
This book applies to PSSP Version 3 Release 1 and to HACMP/ES at the HACMP
Version 4 Release 3 level. To find out which level(s) of code you have running on
your system, follow the instructions in the sections below.

 PSSP
To find out what version of PSSP is running on your control workstation (node 0),
enter the following:

splst_versions -t -nð

In response, the system displays something similar to:

ð PSSP-3.1

If the response indicates PSSP-3.1, this book applies to the version of PSSP that is
running on your system.

To find out what version of PSSP is running on the nodes of your system, enter the
following from your control workstation:

splst_versions -t -G

In response, the system displays something similar to:

1 PSSP-3.1
2 PSSP-3.1
7 PSSP-2.4
8 PSSP-2.2

If the response indicates PSSP-3.1, this book applies to the version of PSSP that is
running on your system.

If you are running mixed levels of PSSP, be sure to maintain and refer to the
appropriate documentation for whatever versions of PSSP you are running.

 Copyright IBM Corp. 1998 ix

 HACMP
To find out which version of HACMP is running on a particular node, enter the
following:

lslpp -L | grep cluster.es.server.rte

 RSCT
To find out which code version of IBM RS/6000 Cluster Technology is running on a
particular node, enter the following:

lslpp -L rsct.basic.rte

Who Should Use This Book
This book is intended for programmers of applications that manage system
resources (which may or may not be subsystems) who want to use Group Services
to make their applications highly available. This book contains information for
programmers who want to write new clients that use the GSAPI or add the use of
Group Services to existing programs.

It assumes that you are an experienced C programmer and have a thorough
understanding of RS/6000 SP (SP) hardware, IBM Parallel System Support
Programs for AIX (PSSP) software and/or the Enhanced Scalability feature of IBM
High Availability Cluster Multi-Processing for AIX (HACMP/ES) software, and AIX
operating system fundamentals.

The commands and interfaces described in this book require that you have the
appropriate privileges and authorizations. For example, you may need to be running
with an effective user ID of root . The specific security requirements for each
subroutine and command are listed in the reference material.

For information about managing the Group Services subsystem and its daemons,
see PSSP: Administration Guide, SA22-7348. For information about Group Services
diagnostic commands, see the IBM redbook RS/6000 SP High Availability
Infrastructure, SG24-4838.

 Typographic Conventions
This book uses the following typographic conventions:

x RS/6000 Cluster Technology Group Services Programming

Typographic Usage

Bold � Bold words or characters represent system elements that you must use literally, such as
commands, flags, and path names.

Italic � Italic words or characters represent variable values that you must supply.

� Italics are also used for book titles and for general emphasis in text.

Constant width Examples and information that the system displays appear in constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means “or.”)

< > Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For
example, <Enter> refers to the key on your terminal or workstation that is labeled with the
word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more times.

<Ctrl- x> The notation <Ctrl- x> indicates a control character sequence. For example, <Ctrl-c> means
that you hold down the control key while pressing <c>.

 About This Book xi

xii RS/6000 Cluster Technology Group Services Programming

Chapter 1. Understanding Group Services

This chapter introduces you to the application programming interface (API) for
Group Services that is provided by the IBM Parallel System Support Programs for
AIX (PSSP), which runs on the IBM RS/6000 SP (SP), and by the Enhanced
Scalability feature of the IBM High Availability Cluster Multi-Processing for AIX
Licensed Program (HACMP/ES), which runs on IBM RS/6000 clusters.

It begins with a bit of background on why high availability is important in a
multicomputer environment and how Group Services can help you achieve it.

It continues with an introduction to Group Services functions and how you can use
them, followed by an explanation of the concepts and operation of the Group
Services subsystem.

A section on design considerations helps you make design choices as you plan
your application's use of the Group Services Application Programming Interface
(GSAPI).

For the definitions of terms and concepts that are introduced in this chapter, see
“Glossary of Terms and Abbreviations” on page 237.

For information about managing the Group Services subsystem, see PSSP:
Administration Guide, SA22-7348.

High Availability in a Multicomputer Environment
Applications that can best exploit a multicomputer such as the RS/6000 SP (SP)
typically consist of several cooperating processes running on multiple nodes. These
applications, which may or may not be subsystems, can be structured as:

 � Client/server processes

Examples include a distributed file system and the SP's Virtual Shared Disk
(VSD) recovery subsystem. For more information on the latter, see PSSP:
Managing Shared Disks, SA22-7279 .

 � Peer processes

Many scientific applications are structured as peer processes.

Most multicomputer environments are subject to node, process, network, and
device failures. Such failures arise from a combination of hardware failures,
software failures, resource exhaustion, and operator error.

To be competitive, multicomputer applications must be highly available. This
means that the application continues to execute after the failure, perhaps after a
brief interruption of service to accommodate recovery from the failure, and perhaps
also with degraded performance. While dealing with a failure, an application should
never break any correctness requirement. For example, a database should never
violate the integrity of customer data.

Hardware techniques form an essential component of a comprehensive suite of
system support for high availability. These include the use of multi-tailed disks,
using which a node can “take over” the data that was previously owned by a failed

 Copyright IBM Corp. 1998 1

node, and the use of network address takeover (for example, IP takeover), using
which a node can assume the “identity” of a failed node.

Hardware techniques, however, make up only part of a complete solution.
Additional aspects of the solution include the detection of component (process and
node) failures, the recovery from communication partitions, the coordination of
activities among the processes of an application, and the coordination of activities
between applications. It is these additional requirements that the Group Services
subsystem and its Application Programming Interface (GSAPI) are designed to
satisfy.

Introduction to Group Services
The Group Services subsystem is a system-wide, fault-tolerant, and highly available
service that provides a general purpose facility for coordinating and monitoring
changes to the state of an application that is running on a set of nodes. Group
Services helps both in the design and implementation of fault-tolerant applications,
and in the consistent recovery of multiple applications. Group Services
accomplishes these two distinct tasks in an integrated framework.

Group Services offers a simple programming model because it is based on a small
number of core concepts: it is a clusterwide group membership and synchronization
service based on the publish/subscribe model, that maintains an application-specific
state for each group.

Synchronization within an Application
Group Services encapsulates a collection of software abstractions that are
commonly used in the design of fault-tolerant systems. Specifically, Group Services
provides process groups (simply called groups), state data, barrier synchronization,
one-phase protocol, and multi-phase commit.

By using the Group Services abstractions, application developers do not have to
develop their own synchronization and commit protocols. This is important because
such protocols tend to be complex, error-prone, and expensive to duplicate.
Developers who use Group Services interfaces are free to use only those
abstractions that are suitable for their application, and do not have to buy into the
entire toolkit. For example, developers of applications that have historically relied on
their own methods for fault-tolerance, such as database servers, are free to restrict
their use of Group Services interfaces to interapplication coordination services.

Coordination among Applications
The Group Services subsystem supports the following features that enhance its use
for interapplication coordination:

 � Extensibility

Suppose a new application is being added to a functioning cluster. The
synchronization of this application with respect to other applications can be
seamlessly managed by Group Services without disturbing existing
applications.

� No required operator knowledge

Using Group Services interfaces, the programmers of each application
determine the appropriate degree of synchronization between that application

2 RS/6000 Cluster Technology Group Services Programming

and other applications in the cluster. There is no need for an operator to
understand all of the interactions between all of the components, as may be the
case with other facilities such as scripts.

� Different synchronization at different times

Group Services allows applications to have different dependencies on each
other at different times. For example, these dependencies may change during
initialization, recovery, and shutdown.

It is equally important to understand what Group Services is not. Group Services is
not intended to replace the current collection of communications libraries and
services; it was not designed to provide a high-volume, high-bandwidth,
general-purpose messaging facility. Also, Group Services does not perform
application recovery per se; rather, it helps applications orchestrate their recovery.

Using Group Services
If you are writing a new application or are considering updating an existing
application, you can use the GSAPI to improve SP system availability in a number
of ways. You can use the GSAPI to:

� Coordinate among peer processes.

� Create a "bulletin board" to display the state of your application to other
applications.

� Subscribe to changes in the state of other applications.

Overview of Group Services Concepts
An application may consist of multiple processes that run on multiple nodes of an
SP system. The set of nodes that is defined to Group Services is called a Group
Services domain. A Group Services domain consists of the set of nodes that makes
up a system partition. If there is only one system partition in the SP system, the
Group Services domain consists of all of the nodes in the SP system. From the
point of view of the Group Services subsystem, the system partition in which it is
running is "the system."

Each group that is maintained by the Group Services subsystem is uniquely
named. Any authorized process in a Group Services domain may create a new
group. Any authorized process in the domain may ask to become a member of a
group. This request is called a join request or joining the group. If the join request
is successful, the process becomes a provider for the group.

Any authorized process in the domain can ask to monitor the group. This request is
called a subscribe request or subscribing to the group. If the subscribe request is
successful, the process becomes a subscriber for the group.

The term "GS client" is used to refer to both providers and subscribers. A process
that has registered to use the Group Services subsystem, but has not yet become
a provider or subscriber, is also referred to as a GS client.

The HA_SYSPAR_NAME environment variable must be set and exported in a GS
client's environment to the name of the system partition in which the GS client and
the Group Services daemon are running. On a node, this is the system partition to

 Chapter 1. Understanding Group Services 3

which the node belongs. On the control workstation, there is a Group Services
daemon for each system partition, and the setting of HA_SYSPAR_NAME identifies
the system partition and the particular Group Services daemon to which the GS
client will connect.

A group may have members on multiple nodes in the domain, and each node may
have multiple members.

For each group, the Group Services subsystem maintains consistent group state
data. A group's state consists of two pieces of information:

� The membership list

The membership list of a group is the list of providers in the group. Each
provider is identified by a provider identifier. The Group Services subsystem
maintains the list in the following order: the oldest provider (that is, the first
provider to join the group) is at the head of the list and the youngest is at the
end. All of the group's providers and subscribers see the same ordering of the
list.

� The group state value

The state value of a group is defined by the application that is using the GSAPI
and is controlled by the providers in a way that is meaningful to the application.
It is a byte field whose length may vary between 1 and 256 bytes. The state
value is not interpreted by the Group Services subsystem.

The group state is available to surviving providers despite node, communication
adapter, and network failures. However, the group state does not survive the
dissolution of a group. If all of the providers fail, the group state is lost.

Providers cause the membership list to be modified by joining or leaving the group.
In addition to voluntarily leaving a group, a provider may leave involuntarily, due to
the failure of the provider process itself or the failure of the node on which it is
running. An involuntary leave is called a failure leave and is initiated by the Group
Services subsystem. Finally, a provider may be expelled from the group at the
request of a provider.

Any provider in the group can ask Group Services to modify the state value and
can also specify the level of consistency that is to be associated with the
modification. Specifically, the provider can subject the proposed change to a voting
protocol, or request that the change be approved without putting it to a vote. The
voting protocol unifies the multi-phase commit and barrier synchronization
abstractions.

A GS client that asks to become a provider of a group must have the correct
authorization and must be admitted to the group by the current providers of the
group. This is accomplished by the same voting protocol as the one used to
mediate state changes.

A provider may leave a group in a number of ways:

� It may leave voluntarily.

� It may be expelled at the request of another provider.

� It may leave involuntarily when its process, or the node on which it is running,
fails.

4 RS/6000 Cluster Technology Group Services Programming

All changes to a group, in state value or in membership, appear to the providers
and subscribers of the group to be logically serialized; that is, one change
completes before another begins. The Group Services subsystem processes all
outstanding membership changes before it accepts any proposals to change the
state value. If one or more providers fail during an ongoing protocol execution, then
as soon as the protocol completes, Group Services runs a failure leave protocol to
remove the failed providers from the group.

Subscribers are notified of the approved results of a state value change or a
provider membership change. However, they do not participate in approving a state
value change, admitting a new provider, or removing a leaving provider. Thus, a
subscriber cannot affect the group state. In addition, subscribers do not appear in
any group membership lists; they are known only to the Group Services subsystem.
The providers of a group and the other subscribers of the group are unaware of
any of the subscribers to the group.

A Detailed Look at Group Services Concepts
This section expands on the concepts outlined in “Overview of Group Services
Concepts” on page 3. It provides more information on the following topics:

Topic Page

Group Services Domains 6

Group Creation 7

Responsiveness Checks 8

Protocols and Voting 10

The Expel Protocol 22

Deactivate-On-Failure Handling 26

Deactivate Scripts 28

Notifications 29

An Illustration of a Multi-Phase Protocol 31

One-Phase and n-Phase Changes 32

Active Protocol Proposals 35

Failures 37

Provider Actions during Voting 37

Subscribing to a Group 39

Provider and Subscriber Tokens 39

Source-Target Group Relationships 39

Host and Adapter Membership Groups 42

Quorum 43

Sundered Networks 43

 Chapter 1. Understanding Group Services 5

Group Services Domains
The Group Services subsystem provides services within the boundaries of what it
calls a domain . A Group Services domain includes an SP control workstation and
the set of nodes defined to be within an SP Partition. This means that an SP
control workstation can be within multiple Group Services domains. An application
wishing to become a GS client on the control workstation or on an SP node must
set one or more environment variables to ensure that it is able to connect to the
proper Group Services domain.

An SP will be divided into one or more Group Services domains, based on the
number of SP partitions defined. Each of these domains is referred to as a “Group
Services PSSP domain.” To connect to the Group Services PSSP domain a GS
client must ensure that the environment variable HA_DOMAIN_NAME is set to the
name of the SP partition in which the GS client is executing prior to the GS client
executing the ha_gs_init subroutine. This must be done on a node (which can only
be in one Group Services PSSP domain) as well as on the control workstation
(which will be in multiple Group Services PSSP domains if there are multiple
defined SP partitions).

Refer to the description of the ha_gs_init subroutine for more information about
connecting to the Group Services subsystem and the meaning of error codes that
may be returned.

In addition to the Group Services PSSP domain, if HACMP/ES is installed on a
node, then that node will also be part of a Group Services HACMP/ES domain,
which is separate from that node's Group Services PSSP domain. The Group
Services HACMP/ES domain consists of all nodes that are part of the HACMP/ES
cluster, which may include SP nodes, non-SP AIX workstations, and possibly even
SP nodes from a physically separate SP.

A GS client may connect to only one domain, regardless of whether a node (or the
control workstation) is part of multiple Group Services domains. All services
provided by the Group Services subsystem are within a single domain only. A GS
client only gets information about the nodes and groups that are in the Group
Services domain to which it is connected.

If a GS client wishes to connect to the Group Services HACMP/ES domain on its
node, it needs to set two environment variables:

� HA_DOMAIN_NAME must be set to the name of the HACMP/ES cluster.

� HA_GS_SUBSYS must be set to grpsvcs .

These environment variables must be set before the GS client executes the
ha_gs_init subroutine.

All of the Group Services interfaces and semantics work identically and are
supported within both Group Services PSSP domains and Group Services
HACMP/ES domains.

6 RS/6000 Cluster Technology Group Services Programming

 Group Creation
Typically, an application defines one or more group names that are known to all of
the processes that are part of the application.

During initialization of the application, as each process in the application starts up,
it asks to join the group. On receipt of the first join request, the Group Services
subsystem creates the group. The subsequent join requests result in new providers
joining the group.

The first join request creates the group and defines its attributes. All subsequent
requests to join this group also include group attribute information, and the
information must match the group's established attributes. Otherwise, the
subsequent join request is rejected.

The attributes of a group are:

� The name of the group

� An application-defined version code

� The number of phases (one or multiple) for join and failure leave protocols.

� A time limit, in seconds, for voting in each phase of a join or failure leave
n-phase protocol. If a time limit of 0 is specified, no limit is enforced.

� A default vote to use as a proxy for a provider that fails to vote or fails to vote
in time. The default vote may be to either approve or reject. If none is specified,
the default value of the default vote is to reject.

� A batch control field that specifies how requests may be batched. Join requests
may be batched with other join requests, and failure leave requests may be
batched with other failure leave requests. Join requests are never batched with
failure leave requests.

� Attributes related to a source-target relationship, if any:

– The name of the source-group for this group. Specifying a source-group
name defines this group as a target-group.

– The number of phases to use for the source-reflection protocols, which run
in the target-group when the source-group changes its state value.

– The voting phase time limit for source-reflection protocols, if they are
n-phase.

All of the topics related to these attributes are discussed in greater detail later in
this chapter.

Mutability of Group Attributes
Certain group attributes are mutable ; that is, they can be dynamically changed by
the group's providers, using the ha_gs_change_attributes asynchronous interface.
(See “ha_gs_change_attributes Subroutine” on page 52.)

The following group attribute fields are mutable (and therefore can be dynamically
changed):

gs_client_version

Client-specified “version” number

 Chapter 1. Understanding Group Services 7

gs_batch_control

Batch control setting for membership (join/failure protocols)

gs_num_phases

Phase control setting for membership (join/failure protocols)

gs_source_reflection_num_phases

Phase control setting for source-state reflection protocols

gs_group_default_vote

Group's base default vote for all N-phase protocols

gs_merge_control

Behavior of group in a merge situation

gs_time_limit

Voting time limit for N-phase join/failure protocols

gs_source_reflection_time_limit

voting time limit for N-phase source-state reflection protocols

The following group attribute fields are not mutable (cannot be dynamically
changed). To change these group attribute fields, the providers must all leave the
group, then rejoin the group with the desired new attribute field:

gs_group_name

The name of the provider's group.

gs_source_group_name

The name of the source group for the provider's group. (See
“Source-Target Group Relationships” on page 39.)

 Responsiveness Checks
Responsiveness checks allow the Group Services subsystem to inspect the state of
the GS client periodically when there are no ongoing group activities. Group
Services always monitors the GS client for exit. A responsiveness check allows
Group Services to query the actual responsiveness of the GS client. When the
group is active, that is, when a protocol is running, Group Services can determine
the responsiveness of the GS client by the client's response to the running protocol.
Accordingly, Group Services suspends responsiveness checking during ongoing
protocols.

When the GS client initializes itself with Group Services, it must specify the
following information:

� Information about the protocol, if any, to be used to perform responsiveness
checks for the GS client

� The path name of a callback routine to be called if the GS client fails its
responsiveness check

The GS client can specify one of the following responsiveness protocols:

 � No protocol.

In this case, Group Services acts only if the GS client process exits.

8 RS/6000 Cluster Technology Group Services Programming

� A ping-like protocol.

In this case, Group Services periodically sends a responsiveness notification to
the GS client and expects a response. The notification calls the responsiveness
callback routine specified by the GS client. Group Services expects the
responsiveness callback routine to return a code that indicates whether the GS
client is operational or has detected an internal problem that prevents its
correct operation.

This protocol is available to both single-threaded and multi-threaded GS clients.

� A counter-checking protocol.

In this case, Group Services periodically checks an arithmetic counter that is
specified by a multi-threaded client. If the counter is changing, Group Services
assumes that the GS client is responsive.

If the counter does not change within a time limit specified by the GS client,
Group Services calls the responsiveness callback routine before assuming that
the GS client is nonresponsive.

This protocol works properly only for multi-threaded GS clients, and a thread
must be dedicated to performing Group Services operations. The dedicated
thread should handle responsiveness checking as well as the receipt of
notifications from Group Services.

The responsiveness callback routine is intended to provide the Group Services
subsystem with a means of quiescing a provider that fails a responsiveness check.
The routine should perform any cleanup actions that are required by the GS client.
It also allows the GS client to perform any periodic validity checks on its own
operation or its environment that may be needed.

Group Services performs responsiveness checks once the GS client has initialized.
If a responsiveness check fails and the GS client is a provider, Group Services
places it in a list of nonresponsive providers. Then, Group Services sends an
announcement notification containing the list to all of the group's providers. Group
Services takes no other direct action.

On receipt of the announcement notification, a provider could initiate an expel
protocol to remove the nonresponsive providers from the group, if appropriate. For
more information, see “The Expel Protocol” on page 22. Group Services tries to
contact nonresponsive providers. If a previously nonresponsive provider responds,
Group Services places it in a list of "rejuvenated" providers. Then, Group Services
sends an announcement notification containing the list to all of the group's
providers.

Note that because Group Services continues to perform responsiveness checks for
nonresponsive providers, the group can determine how quickly it should respond to
announcement notifications. A group can expel a nonresponsive provider after
receiving the first announcement notification or it can wait to see if the provider
becomes responsive again.

 Chapter 1. Understanding Group Services 9

Protocols and Voting
The work of the Group Services subsystem is accomplished through a variety of
protocols. A protocol is the mechanism that coordinates membership and state
value changes within a group.

The GSAPI provides a flexible n-phase voting protocol to mediate provider joins
and departures, and state value changes. Different applications have different
synchronization and coordination requirements for membership and state changes.
Programmers can tailor their applications to meet these requirements by choosing
the appropriate number of voting phases, as follows:

� A one-phase protocol is the special case in which no voting is allowed. Here,
the proposed membership or state value change is automatically approved,
without voting.

� An n-phase proposal puts the group through at least one phase of voting
before the change can be approved. The number of phases required is not
specified explicitly in advance to the Group Services subsystem. Instead, in
each phase of voting, the providers can request another phase of voting, or
end the protocol by approving or rejecting the proposal.

The votes of the providers cause a proposed change to be approved or rejected. If
it is approved, a final notification describing the change is sent to all of the group's
providers and subscribers. If it is rejected, only the providers receive the final
notification, and the group state reverts to its value at the beginning of the protocol.

When a protocol is proposed, the proposal indicates whether it is one-phase or
n-phase.

Protocols can be grouped into four categories:

Membership change protocols

These protocols are used when a provider joins or leaves a group. If
approved, the membership of the group changes. In addition, the group
state value may also be changed during all phases of n-phase
membership change protocols, as discussed in “Submitting Changes
with Voting Responses” on page 19.

Membership change protocols include:

 � Join
� Leave (also called "voluntary leave")

 � Expel
� Failure leave (including clients that execute ha_gs_goodbye)
� Cast-out, a form of failure leave that is associated with source-target

relationships (see “Source-Target Group Relationships” on
page 39).

The state value change protocol

This protocol is used when a provider wants to change the state value
of the group, but wants to leave the membership unchanged.

As for n-phase membership change protocols, n-phase state value
change protocols may also change the group state value during the
voting phases. State value change protocols do not affect the group
membership.

10 RS/6000 Cluster Technology Group Services Programming

The provider-broadcast message protocol

If one-phase, this protocol allows a provider to broadcast a message to
all other providers in the group, with no voting.

If n-phase, this protocol allows a provider to broadcast the message to
the other providers in the group, and also initiates the standard voting
phases. The group state value may be changed during each voting
phase. Provider-broadcast message protocols do not affect the group
membership.

The change-attributes protocol

If one-phase, this protocol allows a provider to change a group's
attributes with no voting.

If n-phase, this protocol allows a provider to propose to change the
group attributes and initiates the standard voting phases.
Change-attributes protocols do not affect the group membership.

The remainder of this section discusses general mechanisms for handling protocols
and includes the following topics:

� Voting on an n-phase protocol

� Approving and rejecting protocols

� Proposing, voting, and phases for protocols

 � Initiating protocols

� Submitting changes with voting responses

 � Simultaneous protocols

� Ending a protocol

Voting on an n-Phase Protocol
When a provider receives an n-phase protocol proposal notification, it is being
asked to vote to either approve or reject the proposed change. Voting can occupy
any number of phases, based on the wishes of the providers.

For each phase, each provider must provide one of the following vote values:

� APPROVE – the provider approves the proposed change.

If all providers vote to APPROVE the proposal in the same voting phase, the
change proposed by the protocol is approved and the group state is changed
accordingly. If the vote tally indicates the protocol should continue, the provider
must continue to vote in each subsequent phase.

� CONTINUE – the provider conditionally approves the proposed change, but
wants to continue to another phase of voting.

If at least one provider votes to CONTINUE, the protocol continues to another
voting phase.

� REJECT – the provider rejects the proposed change.

Like CONTINUE, only one provider needs to vote to REJECT to reject the
proposed change. A REJECT vote on a failure leave protocol requires special
consideration, as described in “Rejection of the Protocols” on page 17.

 Chapter 1. Understanding Group Services 11

At the start of every phase of voting, the Group Services subsystem informs all of
the providers in the group of the proposed state value change, and the current
phase number. Each provider then votes either to approve the proposed change
(APPROVE), to subject the proposed change to another round of voting
(CONTINUE), or to reject it and end the protocol (REJECT). The voting can have
one of the following outcomes:

� The proposed change is approved if every provider that was a member of the
group at the start of the protocol votes to APPROVE the proposal, either
explicitly or implicitly.

� The protocol continues for another round if no provider votes to REJECT, and
at least one provider votes to CONTINUE. The proposed change remains
pending.

� The proposed change is rejected if at least one provider that was a member of
the group at the start of the protocol votes to REJECT the proposal, either
implicitly or explicitly

Normally, providers vote explicitly by responding to the Group Services subsystem
by calling the ha_gs_vote subroutine. However, if a provider fails before it submits
a vote or if it fails to vote within the group's voting time limit, the Group Services
subsystem enters a default vote on behalf of that provider. The default vote is also
called an implicit vote.

By default, the default vote is REJECT. However, when it joins the group, the
provider can set the default vote to APPROVE instead. The Group Services
subsystem does not permit an implicit vote to CONTINUE, because it could lead to
a non-terminating protocol.

After the proposal is approved or rejected, the Group Services subsystem notifies
all of the providers of the outcome of the vote. The providers do not vote in this last
phase of the protocol. Thus, unlike the other phases, in the last phase, no
information flows from the providers to the Group Services subsystem. Finally, and
only if the proposal was approved, the Group Services subsystem informs the
subscribers of the outcome of the vote.

In certain cases, an approved proposal also generates notifications related to
source-target handling. For more information, see “Source-Target Group
Relationships” on page 39.

Specifying the Provider's Default Vote: All providers within a group have the
same default vote. Its value is set as follows:

1. The Group Services subsystem assigns REJECT as the default value for each
group.

2. As part of their request to join a group, the providers may specify a default vote
value as part of the group attributes. They may specify either REJECT or
APPROVE. All providers must specify the same value.

3. Finally, during each voting phase, any provider may specify a new default vote
to be used for the group, if any provider fails during this voting phase. The
provider may specify either REJECT or APPROVE.

If no new default vote is specified, the current default vote carries over to the
next phase. At the end of the protocol, the default vote reverts to the original
value that was specified during the join of the providers.

12 RS/6000 Cluster Technology Group Services Programming

If more than one provider specifies an updated default vote value with its vote,
the Group Services subsystem arbitrarily chooses one of them. If different
values are specified by different providers, it is unpredictable which one the
Group Services subsystem will choose.

As discussed in “Submitting Changes with Voting Responses” on page 19, to
ensure consistency, the group should ensure that:

� All providers submit the same updated default vote value, or

� Only one provider submits it, or

� No providers submit it, allowing the current value to carry over.

Approving and Rejecting Protocols
Every protocol must be either approved or rejected as described, based on the
desires of the providers in the group. A protocol is approved when the providers
vote to approve it. A protocol is rejected when the protocol is voted down or is
ended for some reason. In a nutshell, a protocol proceeds as follows:

1. The protocol is proposed by a provider or by the Group Services subsystem.

2. If necessary, voting proceeds for the desired number of phases.

3. If the protocol is approved, the updated information is broadcast to all providers
and subscribers, as well as any appropriate target-groups.

4. If the protocol is rejected, a notice of the rejection is broadcast to all providers.
Subscribers receive no notification of a rejected protocol.

A one-phase protocol proposal is automatically approved. It cannot be rejected.

If a voluntary leave is rejected, whether by an explicit or implicit vote to REJECT,
the protocol ends.

Proposing, Voting, and Phases for Protocols
A protocol starts with a proposal. The proposal can be initiated by either a provider
or the Group Services subsystem itself.

Every protocol takes place in some number of phases. A one-phase protocol is an
atomic multicast to the group members. An n-phase protocol is a mechanism that
allows barrier synchronization. All providers in the group involved in the protocol
proposal must arrive at the barrier (that is, submit a vote) before the protocol can
proceed to the next phase. This guarantees that the group remains synchronized
during the protocol. A provider's arrival at a barrier is signalled by its submission of
a vote to approve, continue, or reject the proposal.

Each protocol proposal indicates whether it is a one-phase or an n-phase protocol.
A one-phase protocol is a nonvoting protocol and is completed in a single phase,
as described below.

A protocol that requires one or more voting phases is defined as an n-phase
protocol. The exact number of phases is not defined in advance. Instead, the
providers determine by their votes the exact number of voting phases.

The following sections describe the two types of protocols in more detail.

 Chapter 1. Understanding Group Services 13

One-Phase Protocols: A one-phase protocol is simply a notification that the
change proposed by the protocol is automatically approved.

For a membership change proposal, all providers and subscribers are notified of
the updated membership (the join of a new provider or the leave of an old
provider). The list of providers that are notified includes the providers that just
joined, but does not include any providers that just left. Joins and leaves are not
batched together in any one membership change proposal.

For a state value change proposal, all providers and subscribers are notified of the
updated state.

For a provider-broadcast message proposal, all providers are notified of the
message.

If it is detected that a provider has failed during the protocol, all remaining members
receive the protocol notification and the Group Services subsystem immediately
proposes a membership change protocol to handle the failed provider.

All providers (and subscribers) see a series of one-phase protocol notifications in
the same order. However, any individual recipient may see a second or subsequent
notification before all recipients have seen the first.

n-Phase Protocols: An n-phase protocol establishes a series of barrier
synchronization voting phases for the providers in the group.

The proposal indicates that the protocol requires one or more voting phases, but it
does not specify the exact number of phases that will be used. The actual number
of voting phases that will be held is determined by the voting results.

The provider that proposes the protocol may specify a time limit for each voting
phase. Each provider must register its vote within the given time limit. If a provider
fails to register its vote in time, the Group Services subsystem:

� Applies the group's default vote value for that provider

� Notifies all providers of the lateness and includes a list of any providers that
failed to respond in time.

Any protocol may be proposed as an n-phase protocol.

The Group Services subsystem starts the protocol by broadcasting the proposal to
all providers, which starts the first phase, and ends each phase by tallying the
votes.

In response to the initial notification, each provider must vote. Each vote response
contains:

� The actual vote value, as described in “Voting on an n-Phase Protocol” on
page 11.

� Optionally, an updated state value and/or a provider-broadcast message. For
details, see “Submitting Changes with Voting Responses” on page 19.

� Optionally, a default vote to be used by the group if a provider fails during this
voting phase. For details, see “Specifying the Provider's Default Vote” on
page 12.

14 RS/6000 Cluster Technology Group Services Programming

If at least one provider votes to REJECT the proposal, the Group Services
subsystem broadcasts to all providers a notification that the proposal was rejected.

If no provider votes to reject the proposal, but at least one provider votes to
CONTINUE the voting, the Group Services subsystem broadcasts a notification that
another vote is expected on the proposal. Once again, each provider must respond
by voting.

Once all providers vote in the same phase to approve the proposal, the Group
Services subsystem broadcasts to all providers and subscribers a notification of the
approved change. This final broadcast is equivalent to the one-phase notification.

Failure of a provider during any phase of voting is handled by using the group's
default vote for the provider. The Group Services subsystem automatically includes
the default vote (REJECT or APPROVE) in the vote tally. Once the protocol
completes (that is, is either approved or rejected), the Group Services subsystem
immediately proposes a membership change to handle the failed provider.

The final notification of the protocol's rejection or approval also indicates whether
any default votes were used during the protocol.

The voting phase allows each provider to take any action desired, such as running
scripts, issuing commands to manipulate resources, or displaying graphics on the
screen. The provider then submits its vote. If a provider fails during a voting phase,
the Group Services subsystem enters the default vote into the tally on behalf of the
failed provider.

Once each provider has submitted its vote, the Group Services subsystem tallies
the votes. If all of the providers voted to APPROVE the protocol in the same voting
phase, the voting phases end and the proposal is approved. During the protocol,
the providers determine the number of voting phases that are used by voting to
CONTINUE the protocol. This mechanism allows the providers to adapt to
unexpected occurrences during each protocol, rather than having to know in
advance the exact number of phases that will be required.

Initiating the Protocols
Proposals are initiated by either a provider or the Group Services subsystem itself.

The Group Services subsystem proposes protocols to handle a join, a failure leave
or a cast-out of a provider, or a source-group reflection protocol when a
source-group state value change needs to be reflected to its target-group(s).

It is up to the providers to initiate proposals to voluntarily leave a group, to expel a
provider, to change the state value of a group, or to initiate a provider-broadcast
message.

Please note carefully the difference here between initiating the protocol proposal
and notifying the providers that a protocol has been proposed. The Group Services
subsystem always issues the notification. However, the Group Services subsystem
actually initiates a proposal only for the cases listed above.

For a provider to initiate a protocol proposal, then, it is simply a matter of calling the
proper GSAPI subroutine. The Group Services subsystem takes care of notifying
the other providers in the group that a proposal has been made and proceeds as

 Chapter 1. Understanding Group Services 15

described in “Proposing, Voting, and Phases for Protocols” on page 13, based on
the number of phases and the nature of the proposal.

Group Services Subsystem-Initiated Protocols: The protocols that the Group
Services subsystem initiates are join, failure leave, and source-target proposal
protocols. Once it initiates the protocols, the Group Services subsystem notifies the
providers and the protocols proceed in a manner quite similar to other proposals.

The protocols that the Group Services subsystem initiates cover the following
situations:

� A membership change proposal to join a group by a potential provider

� A membership change proposal for a failure leave of one or more failed
providers

� A membership change proposal to cast out one or more providers, due to
source-target processing

� A source-state reflection proposal to reflect to a target-group when its
source-group has changed its state value through a non-membership change
protocol.

The number of phases for these protocols is determined as follows:

� For a join proposal, the provider must specify either a one-phase or an n-phase
join protocol. The first join request to a group by the first provider places the
phase setting in the gs_num_phases field of the group attributes block for the
group. All subsequent membership change protocols must match the setting.

� For failure leaves and cast-out proposals, the Group Services subsystem uses
the gs_num_phases setting from the group attributes block.

� For source-state reflection protocols, the Group Services subsystem uses the
gs_source_reflection_num_phases setting from the group attributes block to
control the number of phases.

Time limits for voting phases are determined as follows:

� For join, failure leave, and cast-out protocols, the gs_time_limit field in the
group attributes block is used.

� For source reflection protocols, the gs_source_reflection_time_limit field in
the group attributes block is used.

The notification procedure varies slightly, depending on the proposal that is being
made, as follows:

� For a join proposal, the Group Services subsystem notifies all of the providers,
including the "old" providers that are already in the group and the provider(s)
asking to join the group. The notification specifies the old and joining providers.

� For a failure leave proposal, the Group Services subsystem notifies the
remaining providers of the protocol proposal.

� For a cast-out proposal, the Group Services subsystem notifies all of the
providers except those that are being cast out. A provider that is being cast out
receives a final notification but does not receive interim notifications that occur
while the cast-out is being voted on.

16 RS/6000 Cluster Technology Group Services Programming

Membership changes may be batched, which means that multiple providers can be
handled in a single join or leave protocol.

Once the Group Services subsystem has initiated the protocol, the providers
execute it in the usual manner based on the number of phases. One-phase
protocols are a single notification. n-phase protocols proceed to the first voting
phase.

Once voting has completed, the providers are notified of the result.

Approval of the Protocols: In all cases, if the protocol is approved, the following
actions are taken.

� All providers receive an updated membership list and/or state value. They may
also receive a provider-broadcast message, if one was included in the final
vote.

� Subscribers receive the updated membership list and/or state value, depending
on their subscription request

� An approved source-state reflection protocol results in a notification that the
protocol has completed. The state value is updated only if a provider submitted
a state value with a voting response.

Rejection of the Protocols: If a join is rejected for any reason, the rejected GS
clients receive a notification that their application to join the group has been
rejected. The existing providers also receive the notification. The subscribers
receive no notification.

The failure leave and cast-out proposals require some special handling for rejecting
the protocols, because the failing providers must be removed in any case.

� If any provider explicitly votes to REJECT a failure leave or cast-out proposal,
the execution of the protocol stops. The membership list is updated to show the
removal of the targeted provider(s). The providers and subscribers receive this
updated list. The state value reverts to its value at the beginning of the
protocol.

� If any provider implicitly votes to REJECT a failure leave or cast-out proposal,
the execution of the protocol stops. If failure leave requests are allowed to be
batched, the Group Services subsystem immediately proposes another failure
leave protocol, adding the newly-failed provider into the list of leaving providers.

If failure leave requests are not allowed to be batched, the Group Services
subsystem handles this as an explicit vote to REJECT. To handle the
newly-failed provider, Group Services initiates a failure leave protocol.

A rejection of a source-state reflection protocol simply ends the protocol, and the
providers are notified that the protocol is rejected.

Provider-Initiated Protocols: Provider-initiated proposals include proposals made
by a provider to:

� Leave a group voluntarily

� Expel one or more providers from the group

� Change the group state value

� Broadcast a provider-broadcast message to all providers.

 Chapter 1. Understanding Group Services 17

 � Change attributes

A provider calls a GSAPI subroutine to propose one of these protocols, specifying
either a one-phase or an n-phase protocol. If an n-phase protocol is specified for
one of these protocols, the provider must also specify a voting phase time limit as
well. However, if no time limit is desired, a time limit of 0 may be specified.

The Group Services subsystem checks the proposal for errors. If the proposal is
syntactically invalid, the provider receives a synchronous syntax error code. If the
group currently has an executing protocol, the provider receives a synchronous
error code that indicates a collision between competing protocols. (Only one
protocol may execute at a time.)

If the synchronous checks pass, the Group Services subsystem tentatively accepts
the proposal and the provider receives a synchronous successful return code.
However, if collision errors are detected asynchronously (because other providers
or the Group Services subsystem itself submits a proposal at the same time), the
Group Services subsystem returns an error code asynchronously.

If multiple providers submit proposals at the same time, only one proposal is
accepted by the Group Services subsystem. The other proposals are returned to
the providers that made them, asynchronously returning a collision error code.

Whichever proposal the Group Services subsystem chooses, the providers are
notified. If the protocol is a one-phase protocol, the proposal is automatically
approved. If the protocol is an n-phase protocol, the proposal notification requests a
vote from the providers.

At the end of the protocol, the Group Services subsystem notifies the providers of
the results of the protocol, that is, its approval or rejection.

For voluntary leave protocols:

� If a leave protocol is approved, all remaining providers receive the updated
membership list and, if it changed, the updated state value. Subscribers
receive the updated membership list and/or state value, based on their
subscription. The provider targeted by the protocol is sent the initial notification
that its leave protocol is running.

� If a leave is rejected, it ends the execution of the protocol. However, the
provider who proposed the leave is still removed from the group. The
membership list is updated to show the removal of the targeted provider(s).
The providers and subscribers receive this updated list. The state value reverts
to its value at the beginning of the protocol.

For expel protocols, see “The Expel Protocol” on page 22.

For state value change protocols:

� If a state value change is approved, the providers and subscribers receive the
updated state value. If the group is a source-group, its target-group(s) also
receive notification of the change.

� If a state value change protocol is rejected, the state value remains unchanged.
The providers receive notification of the rejection. The subscribers receive no
notification.

18 RS/6000 Cluster Technology Group Services Programming

For provider-broadcast message protocols:

� If it is a one-phase protocol, the message contained in the proposal is
broadcast to all providers. Subscribers receive no notification.

� If it is an n-phase protocol:

– If it is approved, and if the group state value was changed during the voting
phases, the providers and subscribers receive the updated state value.

– If it is approved, but the group state value was not changed during the
voting phases, the providers receive notice that the protocol is completed.
Subscribers receive no notification.

– If it is rejected, the state value remains unchanged. The providers receive
notification of the rejection. The subscribers receive no notification.

For change-attributes protocols:

� If a change-attributes protocol is approved, the providers receive the updated
group attributes. Subscribers receive no notification of the attribute change.

� If a change-attributes protocol is rejected, the group attributes remain
unchanged. The providers receive notification of the rejection. The subscribers
receive no notification.

Note that any n-phase protocol can propose a change to the group state value. If
the group state value change is accepted:

� The providers and subscribers receive the updated state value.

� If the group is a source-group, its target-group(s) also receive notification of the
change.

Submitting Changes with Voting Responses
The voting response to each phase of an n-phase protocol may contain any of the
following:

� A proposed new group state value

� A provider-broadcast message

� A proposed new default vote for the group.

These choices give providers quite a bit of flexibility in managing their actions
during an n-phase protocol. When one or more of these items is submitted during a
voting response, the Group Services subsystem broadcasts it to all providers as
part of the notification for the next phase of the protocol.

Changing the state value during the voting phases of a protocol can be very useful.
As an example, it would allow a group to update the state value during membership
change protocols, which may be very important in determining group quorum or
active/inactive status.

Similarly, by submitting a provider-broadcast message with their voting response,
instead of or along with, an updated state value, the providers can pass data
among themselves during the protocol, without having to actually manipulate the
state value field.

Because each provider must issue a vote response, each provider could submit
with its vote a proposed updated state value, a provider-broadcast message, or a

 Chapter 1. Understanding Group Services 19

new default vote. In case of multiple submissions, the Group Services subsystem
chooses only one of each of the values to propagate to the providers for the next
phase notification. The Group Services subsystem considers only the providers who
do not specify a null pointer to a state value or message. For these, the Group
Services subsystem arbitrarily chooses one of the responses it receives from the
group. Because the providers cannot control which response is chosen, they should
guarantee that:

� Only one provider submits a state value and/or message and/or new default
vote value during each phase, or

� All providers submit the same new state value and/or message and/or new
default vote value.

If these rules are not followed, it is indeterminate which will be chosen to be
propagated for the next phase.

The Voting Phase Time Limit: The voting phase time limit allows the providers to
determine if their peers are not responding "quickly enough" during voting
protocols.

Once the Group Services subsystem has delivered its notification for each voting
phase, it sets a timer. If it has not received a voting response from the provider
within that time, the Group Services subsystem assumes that the provider is not
going to respond, and applies the group's default vote for this provider. Note that
the default vote applies only to the currently running protocol. If the provider votes
later, the vote is ignored, and the provider is given an error code that indicates that
the time limit was exceeded.

The Group Services subsystem specifies that a default vote was applied because
the time limit was exceeded, but does not specify, at this time, the provider (or
providers) that were slow. If the application of the default vote causes the protocol
to be rejected, or the time limit is exceeded in the last voting phase of an approved
protocol, the Group Services subsystem delivers an announcement notification to
the providers that lists the providers that exceeded the time limit. The Group
Services subsystem takes no further action. However, a provider may initiate an
expel protocol to remove any providers that exceeded the time limit, if appropriate.

The voting phase time limit is also used to time the execution of deactivate scripts
during expel protocols. For more details, see “The Expel Protocol” on page 22.

 Simultaneous Protocols
Because there may be multiple providers in a group, more than one provider may
submit a proposal at the same time. However, the Group Services subsystem does
not execute more than one protocol at a time within a group. (Of course, multiple
protocols may be running simultaneously in a domain, one for each of the groups in
the domain.)

What are simultaneous proposals? There is always a lag time between the call of a
GSAPI subroutine by a provider to initiate a protocol and the actual broadcast of
any resultant notification for that subroutine. The lag time allows the Group
Services subsystem to batch multiple join requests, because the Group Services
subsystem may receive multiple such requests before it has actually broadcast a
notification. In this case, the Group Services subsystem collects all of the joins and
issues a single notification. Similarly, the Group Services subsystem batches

20 RS/6000 Cluster Technology Group Services Programming

together multiple failure leaves or cast-outs into a single protocol. In all other cases,
it deals with proposals one at a time.

The Group Services subsystems handles simultaneous proposals as follows:

� In general, the first proposal to be made after an executing protocol completes
is the one that is chosen to execute next. If multiple providers all attempt to
submit proposals, the Group Services subsystem chooses one arbitrarily.

� For provider-initiated proposals, all proposals that are not chosen to be
executed immediately are returned to the providers, with an asynchronous
collision error code. The notification of the collision may arrive before or after
the protocol that was chosen begins. The provider may resubmit the proposal
at a later time, if appropriate.

� All the Group Services subsystem-initiated proposals remain pending until they
have been executed within the group. No provider-initiated proposals are
accepted until all of the pending Group Services subsystem-initiated proposals
have been executed. A provider that attempts to submit a proposal receives a
synchronous or asynchronous collision error code.

� When choosing among multiple proposals, the Group Services subsystem
chooses a proposal based on the following priority order:

1. Failure leaves and cast-outs

 2. Source-state reflection

 3. Joins

4. Leaves and expels

5. State value change, provider-broadcast message, or change-attributes
protocols.

Within these categories, if there are multiple simultaneous proposals of the
chosen type, the Group Services subsystem arbitrarily chooses one of them,
except for those that may be batched together.

� If batching is allowed, membership changes are batched. Joins are batched
only with joins, failure leaves are batched only with failure leaves.

� No provider is allowed to cycle invisibly. If a provider should fail and then
restart and try to join the group, the Group Services subsystem ensures that
the leave of that provider is proposed before the subsequent join of that
provider.

� A running protocol is always completed.

The protocol could complete successfully or unsuccessfully. An unsuccessful
completion could be caused by a provider voting to REJECT the protocol, by
an explicit or implicit vote. The protocol might also end unsuccessfully if one or
more providers fail to submit their votes within the specified time limit.

� A rejected provider-initiated protocol is not automatically resubmitted. The
providers must resubmit the protocol, if it is required.

 Chapter 1. Understanding Group Services 21

Ending a Protocol
The end of the protocol is signalled by the end of the voting phases of the protocol.

In the case of a one-phase protocol, the end phase is the only phase.

In the case of an n-phase protocol, the voting phases can end in one of the
following ways:

� If any provider votes to REJECT the proposal in any voting phase, the proposal
is rejected.

� If a default vote of REJECT is entered, the proposal is rejected.

� If all providers vote to APPROVE the proposal (or default votes of APPROVE
are entered) in the same voting phase, the proposal is approved.

In all cases, the end phase consists of a broadcast of the results of the protocol
just processed.

For approved proposals, a notification is sent to all providers and subscribers. The
notification contains the following information:

� If there was a membership change, the notification contains the updated
membership list. Both providers and subscribers receive this information.

� If there was a proposal to change the group state value, the notification
contains the new group state value. Both providers and subscribers receive this
information.

� If a provider-broadcast message was submitted on the final vote, the
notification contains the message. Providers receive this information;
subscribers do not.

� The notification contains a flag that specifies whether any default votes were
used to approve the protocol. Providers receive this information; subscribers do
not.

For rejected proposals, a notification is sent only to providers. The notification
contains the following information:

� An indication that the proposal was rejected

� A flag that specifies why the proposal was rejected. Reasons include: there
was an explicit vote to REJECT, a default vote to REJECT was submitted on
behalf of a failed provider, or the protocol was ended because a provider
exceeded the specified time limit.

The Expel Protocol
The expel protocol allows a provider to propose the removal from the group of one
or more providers. Some situations in which this could be useful include:

� A provider has received an announcement notification that another provider is
not responsive or has detected an internal error.

� A provider has received an announcement notification that another provider
failed to submit a vote during a previously completed n-phase protocol within
the specified time limit.

� A provider has detected through some other means that another provider is not
behaving as expected in the context of the application the group is running.

22 RS/6000 Cluster Technology Group Services Programming

During the execution of the expel protocol, Group Services executes a deactivate
script against each provider that is being expelled. The deactivate script, which is
specified by each GS client when it initializes itself to use Group Services, can be
used to perform any cleanup actions that may be required.

The deactivate script does not need to be a shell script but can be any kind of
executable file. For each provider that is targeted for expulsion, on the node on
which the provider is running, the Group Services daemon forks a child process
that attempts to execute the deactivate script. For details about the environment in
which the deactivate script executes and the input and output specifications to
which it must conform, see “Deactivate Scripts” on page 28 and “ha_gs_expel
Subroutine” on page 67.

The expel protocol is a provider-initiated protocol. Therefore, if it collides with
another already-executing protocol, Group Services returns it to the proposer. The
proposer must resubmit the protocol; the protocol is not automatically queued.

A provider uses the ha_gs_expel subroutine to request an expel protocol. On
input, the provider specifies the following information:

� The number of phases for the protocol

An expel protocol may be either a one-phase or an n-phase protocol.

� The voting time limit for each phase

Providers that are not being expelled must vote within this time limit. For
providers that are being expelled, the deactivate script must complete its
execution within this time limit, or be considered unsuccessful.

� The list of providers to be expelled

These providers do not take part in the protocol and receive no notice of it,
unless it is approved.

All providers that are not targeted for expulsion take part in the execution of the
protocol, even if they had been declared nonresponsive before the protocol
began.

� A deactivate phase specifier

This value tells Group Services in which voting phase it should execute the
deactivate script. A value of 0 indicates that the deactivate script should not be
executed.

� An expel flag

This flag is passed to the deactivate script. A null value indicates that no flag
should be passed to the deactivate script.

For each provider that is targeted for expulsion, Group Services executes the
deactivate script that was specified by that provider when it initialized itself with
Group Services. The deactivate script executes on the node on which the provider
that is targeted for expulsion is running. It executes during the phase and using the
flag that was specified on the expel protocol, and, to be successful, must complete
within the voting time limit for the phase. To execute the deactivate script, Group
Services acts as a "stand-in" for each provider that is being expelled.

The expel protocol operates as follows:

 Chapter 1. Understanding Group Services 23

� During the protocol, providers that are not being expelled treat this as a normal
protocol and take any action they deem appropriate. If this is an n-phase
protocol, their voting responses are tallied as for any other n-phase protocol.

� If the value of the deactivate phase specifier is 0, no deactivate script is
executed during the protocol.

If the protocol is approved, the providers that are targeted for expulsion are
removed from the group. Because one-phase protocols are always approved, a
one-phase expel protocol with a deactivate phase specifier of 0 simply removes
the targeted providers from the group.

If the protocol is rejected, the targeted providers are not removed from the
group.

� At the start of the voting phase given by a non-zero deactivate phase specifier,
Group Services executes the deactivate script against each targeted provider.

If at least one voting provider votes to reject the protocol before this phase, the
targeted providers are not removed from the group and no deactivate scripts
are executed.

� If the expel protocol is a one-phase protocol and the value of the deactivate
phase specifier is 1, the deactivate script is executed immediately after the
protocol begins execution.

Providers that are not targeted for expulsion receive the usual protocol approval
notification, informing them that the targeted providers are now out of the
group.

Providers that are targeted for expulsion are sent the protocol approval
notification after the Group Services daemon has forked a child process to
execute the deactivate script. The Group Services daemon does not wait for
the script to complete execution before it sends the notification. Therefore, it is
unpredictable whether the provider will receive the notification before or after
the script executes.

The exit code of the deactivate script is not inspected, and the result is not
returned to the providers that remain in the group.

If a provider targeted for expulsion by a one-phase expel protocol fails after the
the protocol has begun, no failure protocol is initiated in the group for that
provider.

� If a deactivate script executes successfully, it is expected to exit with an exit
code of 0. Group Services treats the successful execution of the deactivate
script as a vote to approve the protocol. If the protocol requires more voting
phases, Group Services continues to vote APPROVE for each subsequent
voting phase.

� If a deactivate script does not exit with an exit code of 0, Group Services enters
the group's current default vote value as the provider's vote for the phase. If the
protocol requires more voting phases, Group Services continues to enter the
current default vote value as the provider's vote for each subsequent voting
phase.

� If the deactivate script is to be executed in a future voting phase, Group
Services enters a vote of CONTINUE as the provider's vote for each interim
voting phase.

24 RS/6000 Cluster Technology Group Services Programming

� If one or more providers that are targeted for expulsion did not specify a
deactivate script, or specified a script that was not executable, but a non-zero
deactivate phase specifier was given, then for those providers, the group's
default vote value is entered for this and each subsequent voting phase.
However, for providers that did specify an executable deactivate script, the
script is executed and its result is used to drive the voting, as previously
described.

� If a provider fails after the expel protocol begins but before the Group Services
daemon has forked a child process to execute the deactivate script, Group
Services passes a process ID of 0 to the deactivate script. The deactivate
script is still executed and the exit code is used to determine the vote for this
provider, as previously described.

� Group Services tallies the votes as usual for voting phases.

� If the expel protocol is approved, the providers that are targeted for expulsion
are removed from the group. Remaining providers and subscribers are notified.

Expelled providers that did not exit in the course of executing the deactivate
script are sent the protocol approval notification by Group Services. However,
Group Services does not verify that such providers receive or process the
notification.

Because they are no longer in the group, expelled providers cannot submit
protocols and do not receive notifications related to the group.

� If the protocol is rejected for any reason, the providers that are targeted for
expulsion are not removed from the group. However, if the deactivate script
causes a provider to exit, Group Services initiates a failure leave protocol for
that provider.

� If a single process is joined as providers to multiple groups, and one of those
provider instances has been expelled from a group, the effect on the other
instances is as follows:

– If the process no longer exists (it is killed or has failed) as a result of the
expel protocol, the other provider instances of the process are handled
through failure leave protocols in their groups.

– If the process still exists, the other provider instances of the process are
not affected and continue as full participants in their groups.

� If a single process is joined as providers to multiple groups, and more than one
of the groups are simultaneously executing expel protocols that target those
providers (because the process is unresponsive, for example), it is undefined
by Group Services the order in which deactivate scripts are executed against
the process.

Because each group's expel protocol proceeds independently, Group Services
does not coordinate the execution of the deactivate script for each group's
protocol. If all groups approve their expel protocols and the process is killed, no
failure leave protocols are executed. If one or more groups reject their expel
protocols, but the process is killed in the course of executing the deactivate
script, those groups initiate failure leave protocols to remove the failed provider.

 Chapter 1. Understanding Group Services 25

 Deactivate-On-Failure Handling
The same deactivate script will be executed in the case of a local provider's
process failure as well as in the case of the expel protocol. When a provider is
failing, its group is forced into a failure leave protocol. Deactivate-on-failure
handling will allow recovery/clean-up actions on the failed provider's node, although
the failed provider's process no longer exists.

If the protocol is an N-phase protocol, the results of the script's execution will be
used in subsequent voting for the protocol. For a one-phase protocol, it will be a
fire-and-forget situation, and the results will not be relayed to the remaining group
members. Unlike expel, the group cannot specify in which voting phase the script
will be executed. It will always be executed in the first phase. The failure leave
protocol with the deactivate-on-failure operates as follows:

� If batching of failures is not allowed, the deactivate script is executed for every
provider.

� If batching of failures is allowed, and:

– if there are multiple failed providers on one node in one protocol, the
deactivate script will be executed once.

– if there are multiple failed providers in separate protocols, the deactivate
script will be executed once per protocol.

The deactivate script will be executed on each node with a failed provider.

� If the failure protocol is a one-phase protocol:

– The deactivate script is executed immediately after the protocol begins
execution and the Group Services daemon does not wait for the script to
complete execution. Non-failed providers receive the usual protocol
approval notification, informing them that the failed providers are now out of
the group.

– The exit code of the deactivate script is not inspected, and the result is not
returned to the providers that remain in the group.

� If the failure protocol is an n-phase protocol:

– The results of the deactivate script will be used to guide the “vote”
submitted for the failed providers. Note that the deactivate script will always
be executed during the first phase of the failure protocol.

– If a deactivate script executes successfully, it is expected to exit with an
exit code of 0. Group Services treats the successful execution of the
deactivate script as a vote to approve the protocol. If the protocol requires
more voting phases, Group Services continues to vote APPROVE for each
subsequent voting phase.

– If a deactivate script does not exit with an exit code of 0, Group Services
enters the group's current default vote value as the failure provider's vote
for the phase. If the protocol requires more voting phases, Group Services
continues to enter the current default vote value as the failed provider's
vote for each subsequent voting phase.

– If the group has specified a time limit for failure protocols, and if the script
does not complete within the time specified by the voting phase time limit,
Group Services daemon will treat this as a normal “voting time out” and
apply the group's current default vote. If voting phases continue in the

26 RS/6000 Cluster Technology Group Services Programming

protocol, Group Services daemon will continue to apply the group's current
default vote value each subsequent voting phase.

– Group Services tallies the votes as usual for voting phases.

– If the failure protocol is approved, the failed providers are removed from the
group. Remaining providers and subscribers are notified.

– If the failure protocol is rejected, there are special conditions that apply to
rejection of any failure protocol.

- If batching of failures is not allowed, and the rejection is caused by
either an explicit reject vote or a default reject vote, the protocol ends
and the failed providers are removed from the group. Remaining
providers and subscribers will be notified.

- If batching of failures is allowed, and the rejection is caused by an
explicit reject vote, the protocol ends and the failed providers are
removed from the group. Remaining providers and subscribers will be
notified.

- If batching of failures is allowed, and the rejection is caused by a
default reject vote, the protocol ends, but the failed providers are not
removed. The group will be immediately put into a new failure protocol,
with any newly-failed providers added to the list of already-failed
providers from the previous protocol. A deactivate script will be
executed only once against any single failed provider instance. Thus,
during the subsquent failure protocol(s), only the newly-failed providers
will have their deactivate scripts executed, but no deactivate scripts will
be executed against the already-failed providers. During any
subsequent failure protocols, the Group Services daemon will vote
APPROVE on behalf of the old failed providers. This avoids the group
being put into an infinitely-looping situation, where the failure protocol is
ended via a default REJECT vote caused by a failed deactivate script,
and would otherwise be continually restarted.

� In the case where a failed GS client process had been joined as providers to
multiple groups, each group continues to execute independent failure protocols.

– If multiple groups specify deactivate-on-failure, then the deactivate script
will be executed during each group's failure protocol.

– Group Services does not define the order in which the deactivate scripts
will be executed by each group, as the order in which the individual groups
will execute the failure protocols is not defined.

� If a group has enabled deactivate-on-failure, and a provider (or more than one)
is to be cast out, the decision will be:

– If the targeted provider's process exists at the time the cast-out protocol
begins execution, the deactivate script will not be executed.

– If the targeted provider's process does not exist at the time the cast-out
protocol begins execution, the deactivate script will be executed.

– If the targeted provider's process exists at the time the cast-out protocol
begins execution, but fails during the cast-out protocol, the deactivate script
will not be executed.

 Chapter 1. Understanding Group Services 27

 Deactivate Scripts
This section provides information about the execution environment, input
parameters, and exit codes of deactivate scripts.

Deactivate Scripts—Execution Environment
To handle a situation in which it must be expelled, or in which it is failing, a
provider can specify a deactivate script on the ha_gs_init subroutine when it first
registers with Group Services. The script may be a shell script or any kind of
executable file that conforms to the input and output rules that are specified later in
this section.

Group Services does not verify that a deactivate script actually exists on a node or
that it is executable until an expel protocol executes. If the specified deactivate
script is not found or is not executable, Group Services applies the group's default
vote value for the phase in which the deactivate script should have been executed,
and for each subsequent voting phase, if there are any.

A valid deactivate script is executed as follows. For each provider targeted by the
expel protocol, the Group Services daemon on the provider's node forks a child
process that tries to execute the deactivate script, using the following environment:

Effective uid and gid

The forked process executes with the effective uid and gid of the
targeted provider that the provider had when it registered with Group
Services by its call to the ha_gs_init subroutine. If the provider changed
its uid or gid after calling ha_gs_init , the deactivate script still uses the
effective uid and gid from the time when ha_gs_init was called. A
deactivate script with a set uid bit in its file permissions executes with
those values.

Working directory

The forked process begins execution in the current working directory of
the targeted provider that the provider had when it registered with Group
Services by its call to the ha_gs_init subroutine. If the provider changed
its current working directory after calling ha_gs_init , the deactivate
script still uses the current working directory that existed when
ha_gs_init was called. A deactivate script that wants to execute in
another directory must change to that directory.

Environment variables

The forked process inherits the environment variables from the Group
Services daemon's environment. Therefore, the deactivate script must
not make any assumptions about the environment variables (for
example, the path) or access to specific directories or file systems
except for those that are normally accessible to the provider's effective
uid and gid.

STDIN, STDOUT, and STDERR file descriptors

On input, the STDIN, STDOUT, and STDERR file descriptors are closed
(not associated with any files). To perform input or output, the deactivate
script must explicitly open any input or output file that it wants to use.

28 RS/6000 Cluster Technology Group Services Programming

Deactivate Scripts—Input Parameters
On input, Group Services supplies the following parameters to a deactivate script:

� The process ID parameter is always zero when the script is executed for
deactivate-on-failure handling. (See “The Expel Protocol” on page 22.)

� The voting time limit of the expel protocol, in seconds, as an int (4 bytes)

The deactivate script must complete and exit within this limit.

� The name of the failed provider's group, as a null-terminated string

� The deactivate flag is the null-terminated string “providerdied.” The deactivate
script can distinguish when it is called by checking this deactivate flag.

� The comma(,)-delimited list of failed provider's instance numbers

This parameter will be presented only for deactivate-on-failure handling. When
batching of failures is enabled, the deactivate script can be executed once for
the multiple providers' failure. This fifth parameter will tell which providers were
failing. Note that each provider instance number does not contain the node
number.

Deactivate Scripts—Exit Codes
On output, the deactivate script must supply an exit code of 0 for a successful
completion. Any other exit code indicates an unsuccessful completion. It is up to
the deactivate script to decide what constitutes a successful completion.

On receipt of an exit code indicating a successful completion before the time limit
expires, Group Services votes APPROVE for this voting phase of the protocol.

On receipt of an exit code indicating an unsuccessful completion before the time
limit expires, Group Services applies the group's default vote for this voting phase
of the protocol, and each subsequent voting phase of the protocol, if any.

If the deactivate script does not exit before the time limit expires, Group Services
applies the group's default vote for this voting phase of the protocol, and each
subsequent voting phase of the protocol, if any.

 Notifications
A GS client can receive several types of messages, called notifications, from Group
Services. These include notifications for:

� Protocol proposals and ongoing protocols

 � Protocol approvals

 � Protocol rejections

 � Announcements

 � Responsiveness checks

All messages are sent in a fault tolerant-manner. That is, providers and subscribers
are guaranteed to receive notifications despite failures.

 Chapter 1. Understanding Group Services 29

Protocol Proposal and Ongoing Protocol Notifications
These notifications are sent to the providers of a group to indicate that an n-phase
protocol has been proposed or is in progress. As a response to these notifications,
the Group Services subsystem typically expects a vote.

Protocol proposal notifications are not sent for one-phase membership or state
value changes because these proposals are automatically approved.

There are three types of proposals for which notifications are sent:

� Membership change proposals

A membership change proposal notification is sent when a provider has
requested to voluntarily join or leave a group, a provider has requested the
expulsion of one or more providers from a group, a provider has left the group
involuntarily either because the process itself failed, or because the node on
which it was running failed. An involuntary leave is called a failure leave and is
initiated by Group Services.

� State value change proposals

A state value change proposal notification is sent when a provider has
requested a change to the group's state value.

� Provider-broadcast message proposals

A provider-broadcast message proposal notification is sent when a provider has
issued a request to broadcast a message and may also initiate voting.

The only GS clients that are concerned with protocol proposal and ongoing protocol
notifications are providers. Subscribers do not participate in proposing, approving,
or rejecting membership or state value changes for the group. Also, when
subscribers join or leave the group, no notification is sent to any GS client.

 Protocol Approvals
These notifications are sent to the providers of a group to indicate that a proposal
has been approved. It is also sent to the subscribers of the group.

Note that a protocol approval notification is sent as the first and only notification for
a one-phase protocol.

 Protocol Rejections
These notifications are sent to the providers of a group to indicate that a proposed
membership or state value change has been rejected. Subscribers are not notified
when proposals are rejected.

 Announcement Notifications
These notifications are sent to the providers of a group to announce an item of
interest within the group. They include warnings that individual providers have not
voted in time or responded to a responsiveness check.

30 RS/6000 Cluster Technology Group Services Programming

 Responsiveness Notifications
These notifications are sent to each of the providers of a group to determine
whether the provider is active. If a provider does not respond to this
responsiveness check within the time limit it specified previously, Group Services
sends an announcement notification to all providers.

An Illustration of a Multi-Phase Protocol
The figures that follow illustrate a state change protocol for a group with two
providers, P1 and P2, and two subscribers, S1 and S2. P2 proposes a change to
the group's state value, and specifies whether the change requires voting phases or
is handled as a single broadcast. Figure 1 on page 33 shows the sequence of
events for a one-phase protocol. Figure 2 on page 33 shows the sequence of
events for a two-phase commit protocol. Figure 3 on page 34 shows the sequence
of events for a three-phase protocol.

Upon receipt of the state change proposal from P2, the Group Services subsystem
sends a notification to all of the providers in the group, namely P1 and P2,
informing them of the proposed change. If P2 requested a one-phase protocol, the
change is approved, S1 and S2 are notified, and the protocol terminates. If P2
requested a multi-phase protocol, P1 and P2 are instructed to vote on the outcome
of the protocol.

Figure 2 on page 33 shows the execution of a multi-phase protocol in which the
providers vote to approve the change after one round of voting. Figure 3 on
page 34 shows the providers extending the voting to three rounds. When the
change is approved, all of the providers and the subscribers, that is, P1, P2, S1,
and S2, are informed of the change.

Note that if both P1 and P2 submit state change requests concurrently, the Group
Services subsystem chooses one of the requests for execution and returns the
other to its proposer.

The n-phase agreement protocol that the GSAPI provides is flexible and powerful
enough to handle a variety of synchronization and coordination requirements:

� A one-phase protocol is invoked when a provider submits a state change
requesting that there be no voting by the providers, and therefore another
provider cannot stop this state change. The first phase of such a protocol is
also the last phase of the protocol, as shown in Figure 1 on page 33.

� A two-phase state change protocol is essentially the well-understood two-phase
commit protocol with a reliable "coordinator".

� An n-phase state change protocol gives the providers the framework to perform
n-1 rounds of barrier synchronization. For example, the four-phase protocol
shown in Figure 3 on page 34 yields three rounds of barrier synchronization, at
the end of voting phases one, two, and three.

If any provider is notified that the state change is approved, the GSAPI guarantees
that all (non-failed) providers and subscribers are notified of the approved state
change without regard to failures within the system.

 Chapter 1. Understanding Group Services 31

One-Phase and n-Phase Changes
It is the responsibility of the providers in a group to determine the level of
consistency that is required for managing changes to the group membership and
state value. As described previously, providers may use either one-phase or
n-phase protocols. In all cases, all providers see all protocols in the same order.
However, the level of consistency differs in an important way, as follows.

Assume that two proposals occur rapidly one after the other.

� For one-phase protocols, although all providers see both protocols in the same
order, some providers may see both the first and the second protocol before
another provider has seen the first. This leads to a loosely synchronous
consistency level, because the providers loosely catch up to each other in
seeing the "latest and greatest" group state.

� For n-phase protocols, the group state is managed in a strongly-consistent
manner. Because an n-phase protocol forces all participating providers to
submit votes, that is, to reach the barrier synchronization points, no provider
can see the second protocol before all have seen and reacted to the first.

Subscribers have no choice but to receive the notifications of approved group
changes in a loosely synchronous manner. The GSAPI guarantees that all
subscribers to a group see the approved changes in the same order as do the
group's providers. However, one subscriber may see multiple notifications before
another subscriber has seen any.

32 RS/6000 Cluster Technology Group Services Programming

P1 P2

Providers

P2 proposes the change

G
R
O
U
P

S
E
R
V
I
C
E
S

S2S1

Subscribers are informed of
the state change

Subscribers

Providers are informed of
the final result

Figure 1. A One-Phase Protocol

P1 P2

Providers

P2 proposes the change

Providers are asked to vote

G
R
O
U
P

S
E
R
V
I
C
E
S

S2S1

Subscribers are informed of
the state change

Subscribers

Begin voting

Providers vote

End of voting phase 1

Providers are informed of
the final result

Figure 2. A Two-Phase Commit Protocol

 Chapter 1. Understanding Group Services 33

P1 P2

Providers

P2 proposes the change

Providers are asked to vote

G
R
O
U
P

S
E
R
V
I
C
E
S

S2S1

Subscribers are informed of
the state change

Subscribers

Begin voting

Providers vote

End of voting phase 1

Providers are informed of
the final result

End of voting phase 2

End of voting phase 3

Providers are asked to vote again

Providers vote

Providers vote

Providers are asked to vote again

Figure 3. Barrier Synchronization in a Multi-Phase Protocol

34 RS/6000 Cluster Technology Group Services Programming

Active Protocol Proposals
The GSAPI guarantees that only one protocol that affects the group's membership
or state value is executed at any time. If more than one proposal is submitted
within the group simultaneously, the Group Services subsystem chooses one for
execution and returns the others to the providers that submitted them. It is the
responsibility of a provider that receives a returned proposal to resubmit it for
execution, if appropriate.

When providers join or involuntarily leave a group, this processing is modified. In
these cases, the membership protocol to deal with the join or involuntary leave
request is held until the currently running protocol has been approved or rejected
and the membership change protocol is then started immediately. Figure 4 on
page 36 shows how a new provider join request is delayed until the completion of
an ongoing three-phase state change protocol.

 Chapter 1. Understanding Group Services 35

P1

P3

Providers

P2 proposes the change

P2

Providers are asked to vote

G
R
O
U
P

S
E
R
V
I
C
E
S

S2S1

Subscribers are informed of
the state change

Subscribers

Begin voting

Providers vote

End of voting phase 1

Providers are informed of
the final result

End of voting phase 2

Start of join proposal

Providers are asked to vote again

Providers vote

Provider P3 asks
to join
the group

The join request
is queued
by Group Services

Figure 4. The Serialization of a Pending Join Request

36 RS/6000 Cluster Technology Group Services Programming

 Failures
When a node fails, Group Services assumes that all providers on that node have
also failed. The GSAPI supports process failure detection by detecting the loss of a
socket connection.

When a provider leaves due to a failure, either a node failure or the failure of the
process itself, Group Services proposes a failure leave protocol for that provider. If
the group had been using a one-phase protocol to handle joins, the failure leave is
specified as one-phase. If the join had been n-phase, the failure leave is specified
as n-phase.

As long as one provider is active, Group Services continues to keep the group
going.

The Group Services subsystem itself has been designed to survive failures, such
as node failures, that lead to the loss of one or more Group Services processes,
and network failures and communications adaptor failures, that can hinder the
communication between Group Services processes.

If the Group Services subsystem fails, any surviving GS client receives an
announcement notification that Group Services has died horribly. In addition, if a
protocol is running, it is terminated.

See “Deactivate-On-Failure Handling” on page 26.

Provider Actions during Voting
As shown in Figure 5 on page 38, a provider can perform any sequence of actions
that it chooses between the time that it receives a ongoing protocol notification (that
is, a request for a vote) and the time that it votes.

However:

� Providers should submit their votes within the voting time limit.

When a provider has been asked to vote on a proposed change, the proposal
may include a time limit within which the vote must be submitted. The time limit
includes any message delays. If any provider fails to submit its vote in time, the
Group Services subsystem applies the group's current default vote in lieu of
that provider's vote. The Group Services subsystem supplies a list of the
providers that failed to vote in time to the other providers.

� Providers should wait until an executing protocol has completed before
submitting a new proposal.

During the execution of any protocol, no provider is allowed to submit another
protocol proposal. The Group Services subsystem simply returns an error code
to the provider if it tries to do so and ignores the new proposal. The provider
must wait until the executing protocol has completed before it resubmits the
proposal.

 Chapter 1. Understanding Group Services 37

P1

Providers

Membership proposal
due to a provider failure

Providers are asked to vote

P1 recovers disk or file data
(or takes some other action)

G
R
O
U
P

S
E
R
V
I
C
E
S

Begin voting

P1 approves the proposal

End of voting phase 1

End of phase 2

Group Services sends final notification
that change was approved

Figure 5. Actions during a Membership Change Protocol

38 RS/6000 Cluster Technology Group Services Programming

Subscribing to a Group
When it is desirable for a process to monitor a group without playing a part in the
control of the group's state, the GSAPI allows the process to subscribe to the
group. A subscriber may subscribe to receive approved membership changes,
approved state changes, or both.

Subscribers do not participate in any of the voting protocols. In fact, they are not
notified that any such activity is taking place. If a state or membership change is
not approved, no notification is sent to the subscribers.

Notifications to all subscribers to any single group are serialized, so all subscribers
receive all notifications in the same order. However, it is not guaranteed that all
subscribers will receive any one notification before any other subscribers receive
subsequent notifications. No notifications or protocol proposals are made when
subscribers join or leave a group.

Subscription allows one group to maintain a loose synchronization with one or more
other groups. For example, a subscriber could be used to monitor and display
information about the state of a number of groups and the members of those
groups. As the subscribed-to groups change state or membership, the monitor can
collect the changes and display or log the updated information.

Provider and Subscriber Tokens
The GSAPI uses integers called provider and subscriber tokens to identify providers
and subscribers. These tokens are assigned, invalidated, and reassigned in a
manner similar to the way in which file descriptors are assigned, invalidated, and
reassigned as files are opened and closed.

Here are some examples.

A GS client joins group foo and receives provider token 0. When the same client
leaves group foo , Group Services invalidates provider token 0 and makes it
available for reassignment. When the next GS client (it could be the same or a
different GS client) joins the next group (it could be the same or a different group),
Group Services assigns provider token 0 to that client.

As another example, a GS client subscribes to group bar and receives subscriber
token 2. When the same client unsubscribes from group bar or becomes
unsubscribed because group bar is dissolved, Group Services invalidates
subscriber token 2 and makes it available for reassignment. When the next GS
client (it could be the same or a different GS client) subscribes to the next group (it
could be the same or a different group), Group Services assigns subscriber token 2
to that client.

Source-Target Group Relationships
It is sometimes convenient to associate several groups with a single application,
and to allow a process to be a member of multiple groups. Such relationships are
not normally tracked by Group Services, except when the source-target facility is
used. To understand this facility, consider the following scenario.

If a node crashes, all of the groups with providers on that node are sent a
membership change proposal notification "simultaneously." The notification causes
each group to begin reacting independently to the membership change. However,

 Chapter 1. Understanding Group Services 39

it may be better for some applications to wait until after another group has
completed processing this change. Such a relationship might exist, for example,
between a disk recovery subsystem and a distributed database application. If the
database is on a disk on the failed node, the database application must wait for the
disk recovery subsystem to recover from the node failure before it can begin its
recovery.

Although it is possible to deal with such relationships using subscriptions,
subscriptions are loosely synchronized and may not provide the degree of timing
control that is required. Instead, the source-target facility can be used.

The source-target facility allows a target group to tie itself to a source group as
follows. If a failure leads to the failure of a provider in both the source and the
target groups, then the source group completes its membership change protocol
before the target group begins its membership change protocol. Thus, the
providers in the target group can execute with the knowledge that the providers in
the source group have already handled the failure. This knowledge is particularly
useful when the recovery of the target group depends on the completion of
recovery by the source group.

In the recovery scenario just described, the disk recovery subsystem would be
defined as the source group and the database application would be defined as the
target group.

With source-target groups, joins and leaves operate a little differently than with
other groups. Here are some key differences.

� A group defines itself as a target-group by listing a source-group name in the
set of group attributes specified on the ha_gs_join subroutine by each
target-group provider.

A source-group is not notified that it has been "sourced" by any groups.

� For every node on which a target-group provider wants to run, there must exist
a source-group provider.

If there is no source-group provider on a node, a potential target-group provider
is not allowed to join the target group, and no membership change is proposed.
The GS client attempting to join the target-group receives an asynchronous
return code that indicates that there is no source-group provider active on this
node.

If there is a source-group provider on a node, a potential target-group provider
is allowed to join the target-group in the normal manner, that is, by a
membership change proposal to the target-group.

� There may be multiple source-group and/or target-group providers on a node.

A source-group may have any number of target-groups. A target-group may
source only one group.

� If the last remaining source-group provider on a node leaves the source-group,
voluntarily or involuntarily, all of the target-group providers on that node must
leave the target-group.

The source-group processes the leave(s) as a normal membership change
proposal.

Once the source-group has approved the leave protocol, a membership change
is proposed to the target-group as a cast-out of the affected providers(s) from

40 RS/6000 Cluster Technology Group Services Programming

the target-group. As a failure leave, the cast-out protocol cannot be rejected. As
part of the notification initiating this target-group membership change, the
target-group receives the source-group's state value. If there is no target-group
provider on that node, no notification is sent to the target-group providers.

The provider(s) that are being cast out receive a notification that they have
been cast out of the group. They do not otherwise participate in the cast-out
protocol.

� If a target-group is running a protocol, and a source-group provider process
fails on a node that also contains a target-group provider, the source-group
runs a failure leave protocol.

In this case, only the process of the source-group provider has failed, not the
node on which it is running. Because the target-group provider process still
exists, the target-group protocol could continue. However, once the
source-group completes its leave protocol, the target-group provider may no
longer validly belong to the target-group.

Therefore, the Group Services subsystem considers the target-group
provider(s) that will be cast-out as having "failed" during the protocol, and treats
them accordingly, as follows:

– If the target-group's default vote is REJECT, the protocol is rejected, and
the Group Services subsystem initiates a cast-out protocol.

– If the default vote is APPROVE, the protocol is approved or, if a provider
votes CONTINUE, continues.

– If the protocol continues, the "failed" target-group provider(s) are no longer
allowed to participate. Instead, the default vote (APPROVE in this case) is
registered for them for each voting phase.

Whatever the outcome of the target-group's running protocol, once it ends, the
Group Services subsystem immediately initiates a cast-out protocol for the
target-group.

� When a source-group leave prevents the last target-group provider(s) from
executing protocols, those providers are given a cast-out final notification and
the target-group is, in effect, dissolved.

� If a node fails, rather than the last source-group provider on the node, it is
handled in the same way as if the source-group provider itself had failed: the
source-group completes its protocol before the target-group is notified. In this
case, the target-group receives a cast-out protocol, rather than a failure leave.

� If a source-group changes its state value during protocols that do not result in a
target-group cast-out (for example, through a state value change protocol or a
voting response during any other n-phase protocol), its associated
target-group(s) receive the committed state value.

The notification appears to the target-group as a source-state reflection
protocol. The number of phases and a voting time limit are controlled by values
specified in the group attributes of the target-group.

The target-group treats this as a normal protocol and takes whatever actions
are required.

If the target-group is running a protocol when a source-group state value
change is ready to be reflected, the running protocol continues normally, and

 Chapter 1. Understanding Group Services 41

the source-state reflection protocol is queued, to be initiated later when the
running protocol completes.

If a subsequent source-group state value change appears, only the most recent
one is reflected to the target-group, and the earlier change is simply dropped.
In addition, if a cast-out is necessary, and a source-state reflection protocol is
queued, the queued protocol is dropped, because the cast-out protocol reflects
the most recent source-group state value.

Because a source-state reflection protocol is initiated by Group Services, it is
always initiated before any pending provider-initiated protocols for the group. In
addition, there is no interface for a provider to request this protocol. It is
automatically initiated as a consequence of a source-group's state value
change.

� As part of any cast-out protocol in a target group, it will receive in the
notification the source-group's current state value.

Host and Adapter Membership Groups
The Group Services subsystem provides several system-defined groups to which
GS clients can subscribe to keep track of hardware status. Refer to “Description”
on page 112 for a complete listing of the different system-defined groups available
for subscription.

The Host Membership Group
The Group Services subsystem keeps track of node status to determine when
nodes are no longer reachable. A node that is fully isolated due to network or
communications adapter failures is not distinguishable from a node that has failed.
Accordingly, a fully isolated or failed node triggers such actions as notifications to
groups that have one or more providers on the failed node or nodes.

The state of the nodes is reflected by the Group Services subsystem in a special
system-defined group called the host membership group, which is represented by
HA_GS_HOST_MEMBERSHIP . By subscribing to this group, a GS client can
obtain information about which nodes are currently active, and about any transitions
that occur as nodes become active or fail.

A node will appear active in the host membership group when the Group Services
subsystem is active on that node. All such active nodes that can communicate with
each other will thus appear in this group.

The Adapter Membership Groups
The Group Services subsystem also keeps track of the status of Ethernet and SP
Switch adapters. The state of the adapters is reflected by the Group Services
subsystem in two system-defined groups called the Ethernet adapter membership
group and the SP Switch adapter membership group. By subscribing to these
groups, a GS client can obtain adapter membership information which it can use to
determine communications paths to nodes, for example.

The view of adapter membership implies that all of the nodes in the membership
are able to communicate with each other over the IP network to which the adapters
are connected. On the SP, this means for ethernet membership
(HA_GS_ENET_MEMBERSHIP) that the view from any one node is the set of all
other nodes reachable from that node via the SP ethernet. If the SP ethernet is
sundered (i.e., broken such that only subsets of nodes can communicate with each

42 RS/6000 Cluster Technology Group Services Programming

other), a node's view of ethernet membership will be only the subset of nodes with
which it can communicate.

Within the Group Services PSSP domain, adapter membership information is
available for only a single ethernet adapter on the SP control workstation, even if
multiple ethernet adapters are connected to the SP nodes.

For the SP Switch (HA_GS_CSS_MEMBERSHIP), the hardware does not allow
sundering; if a node is on the switch, it can communicate with any other node on
the switch. Thus, a local node's view of cssMembership is the global view of all
nodes that are on the switch. A node must look at the given membership to
determine if it is listed.

If HACMP/ES is installed on a node, and a GS client is connected to the Group
Services HACMP/ES domain, then there may be more adapter membership groups
than simply the two described above. This is because heartbeating may take place
on additional networks for HACMP/ES if the networks are installed and are defined
to HACMP/ES. In this case, the semantics for these adapter membership groups
match those as described for the ethernet membership group. When a GS client
receives a subscription notification for an adapter membership group it will indicate
the set of nodes with which this node can communicate across the given adapter
type.

In summary, the information presented to a GS client for adapter membership
subscriptions is not globally consistent (except for the
HA_GS_CSS_MEMBERSHIP group). Since each node is presented with the set of
nodes to which it can communicate for the given adapter type, then different nodes
will see different views if the different networks are not fully connected to all nodes
in the domain, or if there are failures of various routers between sections of the
networks.

See “ha_gs_subscribe Subroutine” on page 112.

 Quorum
Many applications require a form of quorum to ensure that the proper resources are
available before the application begins operation. For example, one application may
require a certain percentage of nodes to be up and running before it begins, while
another requires particular nodes.

Because different groups have significantly different requirements for quorum, the
GSAPI does not provide a predefined quorum as part of its support. It is the
responsibility of the application that is using the GSAPI to form groups that define
and implement any required quorum mechanisms. By manipulating the state
information of the group, an application can build the required quorum mechanism.

 Sundered Networks
The Group Services subsystem provides a single group namespace within each
system partition. Given the right set of multiple network failures, a system partition
with multiple networks can become split. In this case of a sundered namespace, the
nodes become split in such a way that they can no longer communicate with any
nodes on the other side of the split. However, it is possible for each sundered
portion to maintain enough information to reconstruct the groups that were in

 Chapter 1. Understanding Group Services 43

existence previously, at least those groups that still have members within any
particular portion.

When a namespace is sundered, it is possible to get two instances of what should
be one group. For example, in a sundered network, two nodes that own the two
tails of a twin-tailed disk could end up on separate sides of the split. Because the
processes of the subsystem coordinating the disk on each node would believe that
the other process had disappeared, the process might want to activate its tail,
which could lead to data corruption. As this example shows, it is important that
each group determine if it needs a form of quorum, and use it to guide when a
group is ready to perform its services.

Although the Group Services subsystem does not provide a quorum mechanism, it
does provide some assistance to groups when a network is sundered. When a
system partition is sundered, the providers receive membership protocol proposals
from Group Services that all of the providers on the "other side" of the split have
failed. The providers can then execute those protocols as they normally would,
taking into account such factors as quorum to protect resources as necessary.

If a sundered network becomes healed and Group Services discovers separate
domains, it dissolves the smaller domain, which is defined as the domain with the
smaller number of nodes. Group Services sends an announcement notification that
it has "died horribly" to the clients on the smaller domain. Upon receipt of the
notification, the clients on the smaller domain can join the larger domain or perform
any other appropriate recovery action.

GSAPI Design Considerations
This section includes some things to think about as you design your application to
use the GSAPI. It includes guidelines for:

� Coding callback routines

� Coding for performance

� Migration and coexistence

Coding Callback Routines
The GSAPI provides a number of separate callback routines, each of which expects
to receive a different type of notification. However, each notification block also
specifies its type. This design allows you to code callback routines using either of
two strategies, or a combination of the two:

� Code a number of specialized callback routines.

This reduces the amount of checking each callback routine must perform when
it receives a notification. You might want to use this approach if performance
and path length are considerations when your application handles a notification.

� Code a general callback routine that parses the notifications it receives.

This reduces the number of callback routines you need to code, but increases
the amount of work each must do to determine the type of notification it has
received.

44 RS/6000 Cluster Technology Group Services Programming

Refer to the ha_gs_dispatch Subroutine Description on page 63 for additional
information related to executing callback functions and handling notifications.

Coordination of Multiple Notifications
The following discussion of multiprocessing considerations applies to all callback
routines.

The Group Services subsystem presents all notifications to all providers in a single
group in the same order. The providers should try to execute the same callback
routines in the same order.

However, only for n-phase protocols does the Group Services subsystem verify that
all of the group's providers have reached the same execution point before
continuing to the next notification. In other cases, the providers may not receive
and react to the notifications at the same time. For example, a provider might not
receive a notification immediately because it is busy and not reading the socket.

If GS clients are providers in multiple groups, there is no guarantee that every
provider will receive the notifications from different groups in the same order.

For multi-threaded clients, it is assumed that the callback routines are thread-safe
and reentrant. If the same callback routines are specified for multiple groups, a
multi-threaded client can process notifications by executing the callback routines for
more than one group at a time. For single-threaded providers, if they are acting as
providers for multiple groups, they must also be coded to handle simultaneously
executing protocols in all groups.

In all cases where GS clients are acting as providers in multiple groups, it is the
responsibility of the providers to ensure that they do not create deadlock situations
across groups. An example of a deadlock that could occur is when one provider
blocks before voting, waiting for another provider to take some action; and the
second provider is blocked on another group protocol, waiting for the first provider
to take some action.

All of that said, the Group Services subsystem executes callback routines only on
the same thread or threads that are used to call the ha_gs_dispatch subroutine.

Coding for Performance
To get the best performance from your application, keep the following guidelines in
mind:

� Minimize the number of groups, providers, and nodes your application requires.

The performance of your application will be sensitive to its size and distribution
in the system. The greater the number of groups, the number of providers
joined to those groups, and the number of nodes across which each group is
spread, the longer it will take to coordinate your application's activities.

So, to the extent possible, keep your application as small as possible.

� Minimize the size of the provider-broadcast messages that your application
uses.

The larger the messages, the greater the load on the network, particularly when
a message must be broadcast to every provider in a group and a large number
of subscribers as well.

 Chapter 1. Understanding Group Services 45

� If possible, select the batching option to allow the Group Services subsystem to
batch multiple join requests together.

During group initialization, when all of the providers are joining their groups,
each join request requires the execution of a separate protocol. To decrease
the load on the system, batch them together whenever possible.

� The actions taken during the barriers that are imposed by an n-phase protocol
should be idempotent, that is, they should be designed so that they can
execute one or more times with no loss of correctness.

Suppose that the providers of an application have been taking external actions
during the barriers that are imposed by a multi-phase protocol, and that these
actions must be completed for the application to be operational. Now suppose
that the protocol is terminated because of a failure.

If the actions that the providers have already taken are not designed to be
idempotent, the providers must explicitly undo the actions before they restart
the protocol. Such an undo phase can be expensive and may require additional
phases of coordination among the providers.

However, if the actions are idempotent, there is no need for an explicit undo
phase. The protocol can simply be restarted.

Migration and Coexistence
This book documents the level of Group Services provided by PSSP 3.1 and by
HACMP/ES at the HACMP 4.3 level. The changes from the previous level (provided
by PSSP 2.3 and by HACMP/ES at the HACMP 4.2.2 level) are:

� Addition of the change-attributes protocol

� Support of the ability for a provider to exit the group immediately with the
ha_gs_goodbye subroutine

� Ability to do cleanup on provider failure (deactivate on failure support)

GS clients that were written to any previous level of Group Services execute
without recompilation and without change on the latest level.

However, if you wish your GS client to take advantage of the new support available
in the latest level of Group Services, you must change the code to use the function,
recompile it, and relink it using the latest Group Services library and header. In
addition, your GS client must run on nodes at the latest level of PSSP or
HACMP/ES , and all of the nodes in the system partition must be running the latest
level of PSSP or HACMP/ES. It is the responsibility of the GS client to ensure that
all binaries are at the same level. GS clients can use group attributes, provider
instance numbers, and group state values to ensure this.

46 RS/6000 Cluster Technology Group Services Programming

Chapter 2. Group Services Subroutine Reference

This chapter contains the reference material for each of the subroutines in the
Group Services Application Programming Interface (GSAPI). The chapter begins
with a summary of GSAPI routines by function. Following the summary, the man
pages for the subroutines and callback routines appear in alphabetical order.

 GSAPI Summary
The GSAPI contains these types of routines:

� Routines to issue commands that request an action from the Group Services
subsystem

� Routines that define callback routines that handle notifications from the Group
Services subsystem.

� Deactivate scripts that the Group Services subsystem executes against
providers that are targeted for expulsion from a group.

 GSAPI Commands
The following GSAPI subroutines request an action from the Group Services
subsystem:

Subroutine Action

ha_gs_change_state_value
Propose a change to the group's state value

ha_gs_change_attributes
Dynamically changes certain group attributes

ha_gs_dispatch Check for notifications

ha_gs_expel Expel one or more providers from the group

ha_gs_goodbye Leave a group immediately

ha_gs_init Register with Group Services

ha_gs_join Join a group as a provider

ha_gs_leave Leave a group (as a provider)

ha_gs_quit Terminate the connection to the Group Services
subsystem

ha_gs_send_message Send data to all of the providers in the group

ha_gs_subscribe Subscribe to a group

ha_gs_unsubscribe Unregister as a subscriber to a group

ha_gs_vote Vote on a proposed change to a group's membership
or state value by approving, rejecting, or continuing

 Copyright IBM Corp. 1998 47

GSAPI Routines for Handling Notifications
The following GSAPI subroutines define callback routines to handle notifications
from the Group Services subsystem that something is happening:

Subroutine Response

ha_gs_announcement_callback
Respond to an announcement that:

� One or more providers failed a responsiveness check

� One or more providers that previously failed
responsiveness checks are now responding successfully

� The Group Services daemon has died or is about to die

� The voting time limit has expired.

ha_gs_delayed_error_callback
Handle an asynchronously presented error

ha_gs_n_phase_callback
Respond to a request for a vote on a proposed join, leave,
expel, cast-out, failure leave, or group state change request.

ha_gs_protocol_approved_callback
Respond to a notification that a proposal has been approved.

ha_gs_protocol_rejected_callback
Respond to a notification that a proposal has been rejected.

ha_gs_responsiveness_callback
Respond to a responsiveness check

ha_gs_subscriber_callback
Receive a notification that a subscribed-to group's
membership or state has been changed.

GSAPI Deactivate Scripts
For the specifications of deactivate scripts to use with expel protocols and with
deactivate-on-failure handling, see “ha_gs_expel Subroutine” on page 67 and
“Deactivate-On-Failure Handling” on page 26.

48 RS/6000 Cluster Technology Group Services Programming

 ha_gs_announcement_callback

 ha_gs_announcement_callback Subroutine

 Purpose
ha_gs_announcement_callback – A callback routine that the Group Services
subsystem calls to deliver an announcement notification to a GS client

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

void
 ha_gs_announcement_callback(
 const ha_gs_announcement_notification_t \notification)

 Parameters
notification A pointer to an announcement notification block.

 Description
The ha_gs_announcement_callback subroutine defines a GS client's
announcement callback routine. The GS client uses it to handle announcement
notifications from the Group Services subsystem. The process provides the address
of the announcement callback routine to the Group Services subsystem on the
ha_gs_join subroutine when it joins the group as a provider. The Group Services
subsystem then calls the announcement callback routine when it has an
announcement notification to deliver to the GS client. Announcements provide
detailed information about abnormal conditions, other than complete failure, that
affect one or more providers in the group.

On input, the announcement callback routine receives a pointer to the
announcement notification block. The announcement notification block has the
following definition:

typedef struct {
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_summary_code_t gs_summary_code;
 ha_gs_membership_t \gs_announcement;
} ha_gs_announcement_notification_t;

The gs_notification_type field contains the type of notification. For an
announcement notification, it contains a value of
HA_GS_ANNOUNCEMENT_NOTIFICATION .

The gs_provider_token field contains a token that identifies the caller as a
provider of the group. This token was previously initialized when the provider joined
the group using the ha_gs_join subroutine.

 Chapter 2. Group Services Subroutine Reference 49

 ha_gs_announcement_callback

The gs_summary_code field contains one or more flags that indicate the type of
announcement that is being delivered. It can contain one or more of the following
flags:

HA_GS_TIME_LIMIT_EXCEEDED
This flag is set for an announcement notification when one or more
providers failed to vote in time during a voting protocol. The
gs_announcement field of the announcement notification block points
to the list of providers that failed to vote in time.

HA_GS_RESPONSIVENESS_NO_RESPONSE
This flag is set for an announcement notification when one or more
providers failed a responsiveness check. The gs_announcement field
of the announcement notification block points to the list of providers that
failed the responsiveness check.

HA_GS_RESPONSIVENESS_RESPONSE
This flag is set for an announcement notification when one or more
providers that previously failed responsiveness checks are now
responding successfully. The gs_announcement field of the
announcement notification block points to the list of providers that are
now responding successfully.

HA_GS_GROUP_DISSOLVED
This flag is reserved for IBM use.

HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY
This flag is set for an announcement notification when the Group
Services daemon has died.

HA_GS_VOTING_TIME_LIMIT_EXCEEDED
This flag is set for an announcement notification when the voting time
limit has expired.

The gs_announcement field points to a list of providers that are affected by the
condition that is being reported by this announcement. It has the following
definition:

typedef struct {
 ulong gs_count;
 ha_gs_provider_t \gs_providers;
} ha_gs_membership_t;

The gs_count field contains the number of providers in the list.

The gs_providers field points to the list of providers. Each provider is described by
a provider information block, which is defined in the ha_gs_n_phase_callback
man page.

 Restrictions
For important information about multiprocessing considerations that apply to all
callback routines, see the ha_gs_n_phase_callback man page.

50 RS/6000 Cluster Technology Group Services Programming

 ha_gs_announcement_callback

 Return Values
None.

 Error Values
None.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_change_state_value ,
ha_gs_send_message , ha_gs_leave , ha_gs_expel , ha_gs_change_attributes

 Chapter 2. Group Services Subroutine Reference 51

 ha_gs_change_attributes

 ha_gs_change_attributes Subroutine

 Purpose
ha_gs_change_attributes – Called by a provider of a group to propose a change
to the group's attributes

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_change_attributes(
 ha_gs_token_t provider_token,

const ha_gs_proposal_info_t \proposal_info)

 Parameters
provider_token A token that identifies the caller as a provider of the group. This

token was previously initialized when the provider joined the group
using the ha_gs_join subroutine.

proposal_info A pointer to a buffer that contains a proposal information block,
which describes the proposed state change request.

 Description
The ha_gs_change_attributes subroutine is used by a provider of a Group
Services group to propose a change to the group's state value.

If the request is specified as a one-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal protocol
approval procedures.

If the request is specified as an n-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal n-phase
voting procedures.

If the Group Services subsystem chooses not to execute this protocol (because
another protocol is already in progress), the HA_GS_COLLIDE error number is
returned either synchronously or asynchronously, depending on when the error is
detected. Asynchronous errors are delivered through the delayed error callback
routine. Otherwise, the proposal will initiate a protocol within the group.

Information about the attribute change request is supplied through the attribute
change request block, which is a type of proposal information block. On the
ha_gs_change_attributes subroutine, specify the proposal information block as an
attribute change request block. For the definition of the proposal information block,
see the ha_gs_delayed_error_callback man page.

The change attributes request block has the following definition:

52 RS/6000 Cluster Technology Group Services Programming

 ha_gs_change_attributes

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_group_attributes_t \gs_group_attributes;
 ha_gs_membership_t \gs_backlevel_providers;
} ha_gs_change_attributes_t;

The gs_num_phases field specifies whether the attribute change protocols are to
be n-phase or one-phase protocols. It can take one of the following values:

HA_GS_1_PHASE
The protocols are to be one-phase protocols. One-phase protocols are
automatically approved.

HA_GS_N_PHASE
The protocols are to be n-phase protocols, which put the group into
multi-phase voting.

The gs_time_limit field contains the voting phase time limit, in seconds. This is the
number of seconds within which each provider must register its vote for each phase
of an n-phase protocol. If the field is set to a value of 0, no limit is enforced.

The group attributes block describes the attributes of the group, including the
group's name, and is specified as input to a change attribute request using the
ha_gs_change_attribute subroutine. It has the following definition:

typedef char \ha_gs_group_name_t;

typedef struct {
 short gs_version;
 short gs_sizeof_group_attributes;
 unsigned gs_client_version;
 ha_gs_group_name_t gs_group_name;
 ha_gs_batch_ctrl_t gs_batch_control;
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_num_phases_t gs_source_reflection_num_phases;
 ha_gs_vote_value_t gs_group_default_vote;
 ha_gs_merge_ctrl_t gs_merge_control;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_time_limit_t gs_source_reflection_time_limit;
 ha_gs_group_name_t gs_source_group_name;
} ha_gs_group_attributes_t;

The group attributes block contains the name of the group and the set of group
attributes that are passed to the Group Services subsystem on the
ha_gs_change_attributes subroutine call.

The following attributes can be changed via an ha_gs_change_attributes
subroutine call:

 � gs_client_version

 � gs_batch_control

 � gs_num_phases

 � gs_source_reflection_num_phases

 � gs_group_default_vote

 � gs_merge_control

 Chapter 2. Group Services Subroutine Reference 53

 ha_gs_change_attributes

 � gs_time_limit

 � gs_source_reflection_time_limit

For attribute descriptions, see the complete list of group attributes under the
ha_gs_join Subroutine on page 80.

The gs_backlevel_providers field in the change attributes request block should be
set to NULL when it is submitted to the ha_gs_change_attributes subroutine.

If the request is returned with an asynchronous error of
HA_GS_BACKLEVEL_PROVIDERS , the gs_backlevel_providers field will point
to a list of providers that are in the group that were compiled and linked against a
version of PSSP earlier than 3.1 (for RS/6000 SP systems) or against a version of
HACMP/ES earlier than HACMP 4.3 (for RS/6000 workstation clusters). In this
case, the request will be returned asynchronously via the
ha_gs_delayed_error_callback function.

For the group to successfully use the ha_gs_change_attributes subroutine to
dynamically change the group's attributes, all providers in the group must be
compiled (or recompiled) against the proper level of the Group Services subsystem
library, as described above.

 Restrictions
The calling process must be a provider. The group must not already be running an
n-phase protocol.

 Return Values
If the ha_gs_change_attributes subroutine is successful, it returns a value of 0
(HA_GS_OK). Group Services has accepted the request and will asynchronously
attempt to execute the proposed protocol.

 Error Values
If the ha_gs_change_attributes subroutine is unsuccessful, it returns an error
number. If the error is detected immediately, an error is returned synchronously. If
the error is detected after the call has been accepted, an error is returned
asynchronously.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Synchronous Errors
The following errors may be returned synchronously by the
ha_gs_change_attributes subroutine:

HA_GS_BAD_GROUP_ATTRIBUTES
One or more of the fields specified in the proposal_info block
contain invalid values for a group attribute value.

HA_GS_BAD_PARAMETER
The number of phases specified for the protocol is not allowable; it
must be HA_GS_1_PHASE or HA_GS_N_PHASE .

54 RS/6000 Cluster Technology Group Services Programming

 ha_gs_change_attributes

HA_GS_BAD_MEMBER_TOKEN
The given provider_token does not specify a valid provider joined
to a group.

HA_GS_COLLIDE
The provider's group is already executing a protocol or this
provider has already submitted a protocol request.

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_NOT_A_MEMBER
The given provider_token does not specify a valid group.

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

HA_GS_NOT_SUPPORTED
The GS client was not compiled against the proper level of the GS
library to use this function.

 Asynchronous Errors
The following errors may be returned asynchronously by the
ha_gs_change_attributes subroutine:

HA_GS_BACKLEVEL_PROVIDERS

One or more providers in the group were compiled and linked against a
version of PSSP earlier than PSSP 3.1 (for RS/6000 SP systems) or
against a version of HACMP/ES earlier than HACMP 4.3 (for RS/6000
workstation clusters); this error code is sent with a delayed-error
notification to the provider proposing to change the attributes. The
delayed-error notification contains a list of the back-level providers, to
identify which processes need to be upgraded.

In this case, to change the attributes for a group, all providers must
leave the group and rejoin with the new attributes.

HA_GS_COLLIDE

Another protocol is already active for this group. In this case, to change
the attributes for a group, the provider must resubmit the request.

HA_GS_NOT_SUPPORTED

The Group Services subsystem on one or more machines in the domain
is not at the PSSP 3.1 level (for RS/6000 SP systems) or is not at the
HACMP 4.3 level of HACMP/ES (for RS/6000 workstation clusters); this
error code is sent with a delayed-error notification to the provider
proposing to change the group attributes.

In this case, to change the attributes for a group, all providers must
leave the group and rejoin with the new attributes.

 Chapter 2. Group Services Subroutine Reference 55

 ha_gs_change_attributes

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_send_message , ha_gs_leave ,
ha_gs_expel , ha_gs_subscribe , ha_gs_change_state_value , ha_gs_goodbye

56 RS/6000 Cluster Technology Group Services Programming

 ha_gs_change_state_value

 ha_gs_change_state_value Subroutine

 Purpose
ha_gs_change_state_value – Called by a provider of a group to propose a
change to the group's state value

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_change_state_value(
 ha_gs_token_t provider_token,

const ha_gs_proposal_info_t \proposal_info)

 Parameters
provider_token A token that identifies the caller as a provider of the group. This

token was previously initialized when the provider joined the group
using the ha_gs_join subroutine.

proposal_info A pointer to a buffer that contains a proposal information block,
which describes the proposed state change request.

 Description
The ha_gs_change_state_value subroutine is used by a provider of a Group
Services group to propose a change to the group's state value.

If the request is specified as a one-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal protocol
approval procedures.

If the request is specified as an n-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal n-phase
voting procedures.

If the Group Services subsystem chooses not to execute this protocol (because
another protocol is already in progress), the HA_GS_COLLIDE error number is
returned either synchronously or asynchronously, depending on when the error is
detected. Asynchronous errors are delivered through the delayed error callback
routine. Otherwise, the proposal will initiate a protocol within the group.

Information about the state change request is supplied through the state change
request block, which is a type of proposal information block. On the
ha_gs_change_state_value subroutine, specify the proposal information block as
a state change request block. For the definition of the proposal information block,
see the ha_gs_delayed_error_callback man page.

The state change request block has the following definition:

 Chapter 2. Group Services Subroutine Reference 57

 ha_gs_change_state_value

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_state_value_t \gs_new_state;
} ha_gs_state_change_request_t;

The gs_num_phases field specifies whether the state change protocols are to be
n-phase or one-phase protocols. It can take one of the following values:

HA_GS_1_PHASE
The protocols are to be one-phase protocols. One-phase protocols are
automatically approved.

HA_GS_N_PHASE
The protocols are to be n-phase protocols, which put the group into
multi-phase voting.

The gs_time_limit field contains the voting phase time limit, in seconds. This is the
number of seconds within which each provider must register its vote for each phase
of an n-phase protocol. If the field is set to a value of 0, no limit is enforced.

The gs_new_state field points to a buffer that contains the proposed new value for
the group's state. The group state value has the following definition:

typedef struct {
 int gs_length;
 char \gs_state;
} ha_gs_state_value_t;

The gs_length field contains the length, in bytes, of the state value. It must be a
value between 1 and 256.

The gs_state field points to a buffer that contains the actual state value bytes. The
state value of a group is defined by the application that is using the GSAPI and is
controlled by the providers in a way that is meaningful to the application. The state
value is not interpreted by the Group Services subsystem.

 Restrictions
The calling process must be a provider. The group must not already be running an
n-phase protocol.

 Return Values
If the ha_gs_change_state_value subroutine is successful, it returns a value of 0
(HA_GS_OK). Group Services has accepted the request and will asynchronously
attempt to execute the proposed protocol.

 Error Values
If the ha_gs_change_state_value subroutine is unsuccessful, it returns an error
number. If the error is detected immediately, an error is returned synchronously. If
the error is detected after the call has been accepted, an error is returned
asynchronously.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

58 RS/6000 Cluster Technology Group Services Programming

 ha_gs_change_state_value

 Synchronous Errors
The following errors may be returned synchronously by the
ha_gs_change_state_value subroutine:

HA_GS_BAD_MEMBER_TOKEN
The given provider_token does not specify a valid provider joined
to a group.

HA_GS_BAD_PARAMETER
The number of phases specified for the protocol is not allowable; it
must be HA_GS_1_PHASE or HA_GS_N_PHASE .

HA_GS_COLLIDE
The provider's group is already executing a protocol or this
provider has already submitted a protocol request.

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_NOT_A_MEMBER
The given provider_token does not specify a valid group.

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

 Asynchronous Errors
The following errors may be returned asynchronously by the
ha_gs_change_state_value subroutine:

HA_GS_NOT_A_MEMBER
The provider that is proposing the protocol is no longer a provider
for the specified group.

HA_GS_BAD_PARAMETER
The specified parameter was not valid.

HA_GS_COLLIDE
Another protocol is already active for this group.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_send_message , ha_gs_leave ,
ha_gs_expel , ha_gs_subscribe , ha_gs_change_attributes , ha_gs_goodbye

 Chapter 2. Group Services Subroutine Reference 59

 ha_gs_delayed_error_callback

 ha_gs_delayed_error_callback Subroutine

 Purpose
ha_gs_delayed_error_callback – A callback routine that the Group Services
subsystem calls to deliver an asynchronous error notification to a GS client

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

void
 ha_gs_delayed_error_callback(
 const ha_gs_delayed_error_notification_t \notification)

 Parameters
notification A pointer to a delayed error notification block.

 Description
Delayed errors are asynchronous errors that occur when a GS client has submitted
a proposal, (such as to join a group, broadcast a message, or change the group's
state value) and the Group Services subsystem later discovers a problem with the
proposal. When such an error occurs, Group Services delivers it to the GS client by
invoking a callback routine.

The ha_gs_delayed_error_callback subroutine defines a GS client's delayed error
callback routine. The GS client uses it to handle delayed error notifications from the
Group Services subsystem. The process provides the address of the delayed error
callback routine to the Group Services subsystem on the ha_gs_init subroutine
during GSAPI initialization. The Group Services subsystem then calls the delayed
error callback routine when it has a delayed error notification to deliver to the GS
client.

On input, the delayed error callback routine receives a pointer to the delayed error
notification block. The delayed error notification block has the following definition:

typedef struct {
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_request_t gs_protocol_type;
 ha_gs_rc_t gs_delayed_return_code;
 ha_gs_proposal_ info_t \gs_failing_request;
} ha_gs_delayed_error_notification_t;

The gs_notification_type field contains the type of notification. For a delayed
error notification, it contains a value of
HA_GS_DELAYED_ERROR_NOTIFICATION .

The gs_protocol_type field contains the type of request for which this delayed
error is being delivered.

60 RS/6000 Cluster Technology Group Services Programming

 ha_gs_delayed_error_callback

HA_GS_JOIN
This provider's join request is invalid because its group attributes do not
match those that were specified by the group.

HA_GS_LEAVE
A provider is voluntarily leaving the group. If the error is
HA_GS_COLLIDE , then the Group Services subsystem has chosen
another protocol to execute instead of this one.

HA_GS_EXPEL
A provider is attempting to expel one or more providers from the group.
If the error is HA_GS_COLLIDE , then the Group Services subsystem
has chosen another protocol to execute instead of this one.

HA_GS_STATE_VALUE_CHANGE
A provider is trying to change the group's state value. If the error is
HA_GS_COLLIDE , then the Group Services subsystem has chosen
another protocol to execute instead of this one.

HA_GS_PROVIDER_MESSAGE
A provider is broadcasting a message to the group. If the error is
HA_GS_COLLIDE , then the Group Services subsystem has chosen
another protocol to execute instead of this one.

HA_GS_SUBSCRIBE
This subscriber's request is invalid because the group specified on the
request does not exist.

The gs_delayed_return_code field contains error number of the delayed error.
The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

The gs_failing_request field points to the proposal information block for the
proposal that is in error.

The proposal information block has the following definition:

#define gs_join_request _gs_protocol_info._gs_join_request
#define gs_state_change_request _gs_protocol_info._gs_state_change_request
#define gs_message_request _gs_protocol_info._gs_message_request
#define gs_leave_request _gs_protocol_info._gs_leave_request
#define gs_expel_request _gs_protocol_info._gs_expel_request
#define gs_subscribe_request _gs_protocol_info._gs_subscribe_request
#define gs_attribute_change_request _gs_protocol_info._gs_attribute_change_request
typedef struct
{
 union {
 ha_gs_join_request_t _gs_join_request;
 ha_gs_state_change_request_t _gs_state_change_request;
 ha_gs_message_request_t _gs_message_request;
 ha_gs_leave_request_t _gs_leave_request;
 ha_gs_expel_request_t _gs_expel_request;
 ha_gs_subscribe_request_t _gs_subscribe_request;
 ha_gs_attribute_change_request_t _gs_attribute_change_request;
 } _gs_protocol_info;
} ha_gs_proposal_info_t;

For details on the block that defines each type of proposal, see the subroutine that
is used to initiate the proposal, as follows:

 Chapter 2. Group Services Subroutine Reference 61

 ha_gs_delayed_error_callback

Proposal Subroutine

Joining a group ha_gs_join

Changing the group's attributes
ha_gs_change_attributes

Changing the group's state value
ha_gs_change_state_value

Broadcasting a message to all of a group's providers
ha_gs_send_message

Leaving a group ha_gs_leave

Expelling one or more providers from the group
ha_gs_expel

Subscribing to a group ha_gs_subscribe

 Restrictions
For important information about multiprocessing considerations that apply to all
callback routines, see the ha_gs_n_phase_callback man page.

 Return Values
None.

 Error Values
None.

For information about GSAPI synchronous and asynchronous errors, see “GSAPI
Errors (err_gsapi)” on page 130.

 Synchronous Errors
None.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_change_state_value ,
ha_gs_send_message , ha_gs_leave , ha_gs_expel , ha_gs_subscribe ,
ha_gs_change_attributes

62 RS/6000 Cluster Technology Group Services Programming

 ha_gs_dispatch

 ha_gs_dispatch Subroutine

 Purpose
ha_gs_dispatch – Called by a GS client to handle messages that have arrived
from the Group Services Application Programming Interface (GSAPI)

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_dispatch(

const ha_gs_dispatch_flag_t dispatch_flags)

 Parameters
dispatch_flags A flag that indicates how messages from the Group Services

Application Programming Interface (GSAPI) are to be processed. It
can be one of the following values:

HA_GS_NON_BLOCKING
The GSAPI should check for messages that have
arrived on the GSAPI socket. If any messages have
arrived, the GSAPI should call the appropriate callback
routines. If no messages have arrived, the GSAPI
should return control immediately.

HA_GS_BLOCKING
The GSAPI should check for messages that have
arrived on the GSAPI socket. As messages arrive, the
GSAPI will call the appropriate callback routines, and it
will continue to do so until an error occurs or the
connection is broken.

 Description
The ha_gs_dispatch subroutine is used by a process to handle messages from
the Group Services Application Programming Interface (GSAPI). It is vital that the
GS client call this subroutine on a regular basis to be able to receive messages
from the GSAPI for delivery as notifications by executing the appropriate callback
routines. This allows the GS client to respond to any protocols that may be
executing in the group. The parameter to this routine controls the behavior of
ha_gs_dispatch once all outstanding messages have been delivered.

Although ha_gs_dispatch needs to be called regularly, exactly how often it is
necessary will differ for each GS client. The most important factor is that the GS
client should be ready to respond to arriving messages as quickly as possible, to
allow it to respond to changes in its group or the system as quickly as possible.
Once ha_gs_dispatch is called, it will process all messages that have arrived,
which may result in multiple GS client callback routines being executed. The

 Chapter 2. Group Services Subroutine Reference 63

 ha_gs_dispatch

dispatch_flags parameter controls the behavior of ha_gs_dispatch once all
messages have been processed.

To assist in this, there are two general models of execution for a GS client, and the
different settings for the dispatch_flags parameter to ha_gs_dispatch correlate to
these:

1. The first model can be loosely described as the “non-blocking” model. This
matches to the flag HA_GS_NON_BLOCKING , and is most appropriate to
singly-threaded (or non-threaded) GS clients. In this model, it is expected that
the GS client will remain responsive to arriving messages using one of the
following mechanisms:

a. The system subroutine select() . In this case, the GS client should set up a
select mask containing the file descriptor returned during the ha_gs_init
subroutine in the ha_gs_descriptor field. When select() indicates that a
message has arrived on this file descriptor from Group Services, the GS
client should execute ha_gs_dispatch with the HA_GS_NON_BLOCKING
flag.

b. The GS client may set the socket_options flag on the ha_gs_init call to
HA_GS_SOCKET_SIGNAL . In this case, any messages arriving on the file
descriptor from Group Services will cause a SIGIO signal to be delivered to
the client process. The client process must have established a handler to
deal with this signal. The GS client should not call ha_gs_dispatch directly
from the signal handler, but must remember to call it as soon as possible
after returning from the signal handler.

c. Although it is not recommended, the GS client may set a fixed timer and
simply call ha_gs_dispatch after some fixed time interval. This is not
recommended, as it may be much more often than necessary, and most
times will result in no actions being taken as no messages have arrived; or
it may cause the GS client to be very slow to respond to messages if the
time period is too long, or if a number of messages arrive quickly.

2. The second model is, alternately, a “blocking” model, and is indicated with the
HA_GS_BLOCKING flag. This model is normally just appropriate to
multi-threaded GS clients, although it may be used by singly-threaded (or
non-threaded) GS clients.

The HA_GS_BLOCKING flag causes all threads that enter ha_gs_dispatch to
never return from ha_gs_dispatch , unless they encounter an error, in which
case they will return from ha_gs_dispatch with an HA_GS_NOT_OK return
code. These threads simply remain in ha_gs_dispatch , and as soon as a
message arrives from Group Services a thread will read the message and
execute the appropriate callback function.

If the GS client has multiple threads call ha_gs_dispatch , then all of these
threads will queue up to read messages as they arrive in Group Services. The
GSAPI library will handle synchronization of these threads to assure that they
properly read and process messages; the GS client need only have as many
threads as desired call ha_gs_dispatch with the HA_GS_BLOCKING flag.

A multi-threaded GS client may certainly use the non-blocking model described
above, using select() or signals as desired. In this case, it is still valid for multiple
threads to execute ha_gs_dispatch . If a thread calls ha_gs_dispatch with the
HA_GS_NON_BLOCKING flag and there are no pending messages to process, it
will simply return from ha_gs_dispatch with an HA_GS_OK return code.

64 RS/6000 Cluster Technology Group Services Programming

 ha_gs_dispatch

A key concern for multi-threaded GS clients is in dealing with parallel execution of
callback functions. Since it is possible for a single GS client process to join multiple
groups, or to subscribe to multiple groups, or to both join and subscribe to groups,
the GSAPI library will enforce the following synchronization rules:

1. There will never be more than one active callback function being executed for
any one group in parallel.

2. However, where appropriate, callback functions for different groups will be
executed in parallel if there are multiple threads that have executed
ha_gs_dispatch and messages have arrived at the GS client for the different
groups.

This leads to a general rule that a multi-threaded GS client that deals with multiple
groups should be prepared to dedicate the same number of threads to
ha_gs_dispatch as the number of groups with which the GS client is concerned.
This keeps such a GS client as responsive as possible for all of its groups.

A singly-threaded (or non-threaded) GS client may also deal with multiple groups,
although it will only be able execute a single callback function at any one time. This
may keep it from being able to be more responsive if messages arrive for multiple
groups within a small amount of time.

A limitation for threaded GS clients is that any thread that has executed
ha_gs_dispatch should never be cancelled (via the pthread_cancel subroutine) or
killed (via the pthread_kill subroutine) until after the thread has returned from
ha_gs_dispatch . The behavior of the client will be unpredictable if such a thread
is killed or cancelled.

A multi-threaded client must issue ha_gs_quit to disconnect from Group Services,
and it must then wait for any threads that had executed ha_gs_dispatch to return
from ha_gs_dispatch before they can be killed or cancelled.

 Restrictions
The caller must be a GS client.

 Return Values
If the ha_gs_dispatch subroutine is successful, it returns a value of 0
(HA_GS_OK).

 Error Values
If the ha_gs_dispatch subroutine is unsuccessful, it returns an error number
synchronously

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_dispatch
subroutine:

 Chapter 2. Group Services Subroutine Reference 65

 ha_gs_dispatch

HA_GS_BAD_PARAMETER

The given parameter must be HA_GS_BLOCKING or
HA_GS_NON_BLOCKING .

HA_GS_NOT_OK

The connection to the GS daemon has been lost. The GS client needs
to reinitialize (via ha_gs_init()).

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutine: ha_gs_init

66 RS/6000 Cluster Technology Group Services Programming

 ha_gs_expel

 ha_gs_expel Subroutine

 Purpose
ha_gs_expel – Called by a provider of a group to request the expulsion of one or
more providers of the group

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_expel(
 ha_gs_token_t provider_token,

const ha_gs_proposal_info_t \proposal_info)

 Parameters
provider_token A token that identifies the caller as a provider of the group. This

token was previously initialized when the provider joined the group
using the ha_gs_join subroutine.

proposal_info A pointer to a buffer that contains a proposal information block,
which describes the proposed expel request.

 Description
The ha_gs_expel subroutine is used by a provider of a Group Services group to
propose the expulsion of one or more providers of the group. A provider may
propose the expulsion of itself.

A group might decide that a provider should be expelled for a number of reasons.
Examples include:

� The provider is not responsive or has detected an internal error, as determined
by a responsiveness check.

� The provider failed to submit a vote during a previously completed n-phase
protocol within the specified time limit.

� The provider is not behaving as expected in the context of the application the
group is running.

If the request is specified as a one-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal protocol
approval procedures.

If the request is specified as an n-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal n-phase
voting procedures.

 Chapter 2. Group Services Subroutine Reference 67

 ha_gs_expel

If the Group Services subsystem chooses not to execute this protocol (because
another protocol is already in progress), the HA_GS_COLLIDE error number is
returned either synchronously or asynchronously, depending on when the error is
detected. Asynchronous errors are delivered through the delayed error callback
routine. Otherwise, the proposal will initiate a protocol within the group.

Information about the expel request is supplied through the expel request block,
which is a type of proposal information block. On the ha_gs_expel subroutine,
specify the proposal information block as an expel request block. For the definition
of the proposal information block, see the ha_gs_delayed_error_callback man
page.

The expel request block has the following definition:

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_membership_t \gs_expel_list;
 unsigned int gs_deactivate_phase;
 char \gs_deactivate_flag;
} ha_gs_expel_request_t;

The gs_num_phases field specifies whether the expel protocols are to be n-phase
or one-phase protocols. It can take one of the following values:

HA_GS_1_PHASE
The protocols are to be one-phase protocols. One-phase protocols are
automatically approved.

HA_GS_N_PHASE
The protocols are to be n-phase protocols, which put the group into
multi-phase voting.

The gs_time_limit field contains the voting phase time limit, in seconds.

For providers that are not being expelled, this is the number of seconds within
which each provider must register its vote for each phase of an n-phase protocol. If
the field is set to a value of 0, no limit is enforced.

For providers that are being expelled, this is the number of seconds within which
the deactivate script must complete its execution. Otherwise, the deactivate script is
considered unsuccessful. The deactivate script that is executed is the one that was
specified on the ha_gs_init subroutine when the provider that is being expelled first
registered with Group Services.

The gs_expel_list field points to a list of providers that are targeted to be expelled.
It has the following definition:

typedef struct {
 ulong gs_count;
 ha_gs_provider_t \gs_providers;
} ha_gs_membership_t;

The gs_count field contains the number of providers in the list.

The gs_providers field points to the list of providers. Each provider is described by
a provider information block, which is defined in the ha_gs_n_phase_callback
man page.

68 RS/6000 Cluster Technology Group Services Programming

 ha_gs_expel

The providers in the expel list do not take part in the protocol and receive no notice
of it, unless it is approved.

All of the providers that are not targeted for expulsion take part in the protocol,
even if they were declared non-responsive before the protocol began.

The gs_deactivate_phase field contains the phase number in which the deactivate
script should be executed against the providers that are being expelled. If this field
contains 0, no deactivate script will be executed.

The gs_deactivate_flag field contains a flag that is to be passed to the deactivate
script. It is a pointer to a null-terminated string with a maximum length of 256 bytes.
If you specify a string that is longer than 256 bytes, it will be truncated. If the
pointer is null, no flag will be passed to the deactivate script.

Deactivate Scripts

For information about deactivate scripts, see “Deactivate Scripts” on page 28.

 Restrictions
The calling process must be a provider. The group must not already be running an
n-phase protocol.

 Return Values
If the ha_gs_expel subroutine is successful, it returns a value of 0 (HA_GS_OK).
Group Services has accepted the request and will asynchronously attempt to
execute the proposed protocol.

 Error Values
If the ha_gs_expel subroutine is unsuccessful, it returns an error number. If the
error is detected immediately, an error is returned synchronously. If the error is
detected after the call has been accepted, an error is returned asynchronously.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Asynchronous Errors
The following errors may be returned asynchronously by the ha_gs_expel
subroutine:

HA_GS_NOT_A_MEMBER
The provider that is proposing the protocol is no longer a provider
for the specified group.

HA_GS_BAD_PARAMETER
The specified parameter was not valid.

HA_GS_COLLIDE
Another protocol is already active for this group.

HA_GS_UNKNOWN_PROVIDER
At least one of the providers that was specified in an expel
protocol is not a member of the specified group.

 Chapter 2. Group Services Subroutine Reference 69

 ha_gs_expel

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_expel
subroutine:

HA_GS_BAD_MEMBER_TOKEN
The given provider_token does not specify a valid provider joined
to a group.

HA_GS_BAD_PARAMETER
The number of phases specified for the protocol is not allowable (it
must be HA_GS_1_PHASE or HA_GS_N_PHASE); or no
providers were specified to be expelled.

HA_GS_COLLIDE
The provider's group is already executing a protocol or this
provider has already submitted a protocol request.

HA_GS_INVALID_DEACTIVATE_PHASE
The specified gs_deactivate_phase is less than zero; or the
protocol is specified as a one phase (gs_num_phases is
HA_GS_1_PHASE) and gs_deactivate_phase is greater than
one.

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_NOT_A_MEMBER
The given provider_token does not specify a valid group.

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

HA_GS_NOT_SUPPORTED
The GS client was not compiled against the proper level of the GS
library to use this function.

HA_GS_PROVIDER_APPEARS_TWICE
A provider to be expelled is listed twice in the given gs_expel_list .

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_change_state_value ,
ha_gs_send_message , ha_gs_subscribe , ha_gs_change_attributes ,
ha_gs_goodbye

70 RS/6000 Cluster Technology Group Services Programming

 ha_gs_goodbye

 ha_gs_goodbye Subroutine

 Purpose
ha_gs_goodbye – Called by a provider of a group to immediately leave the group

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_goodbye(
 ha_gs_token_t provider_token

 Parameters
provider_token A token that identifies the caller as a provider of the group. This

token was previously initialized when the provider joined the group
using the ha_gs_join subroutine.

 Description
The ha_gs_goodbye() subroutine enables a provider to immediately leave its
group as if it had failed, while informing the group that it “failed” voluntarily. This is
a synchronous interface.

If this call returns with an HA_GS_OK return code, then the calling provider is no
longer in the group.

If the group is in an n-phase protocol, then the provider issuing the
ha_gs_goodbye protocol is considered to have failed, and the Group Services
subsystem will apply the group's default vote for any subsequent voting phases in
that protocol.

The result of a provider successfully issuing this call is that when the remaining
providers in the group see this provider's failure protocol, the leave reason for this
provider will be set to HA_GS_PROVIDER_SAID_GOODBYE . (See the discussion
of gs_leave_info in the section about the ha_gs_n_phase_callback subroutine on
page 92.)

 Restrictions
The calling process must be a provider.

 Chapter 2. Group Services Subroutine Reference 71

 ha_gs_goodbye

 Return Values
If the ha_gs_goodbye subroutine is successful, it returns a value of 0
(HA_GS_OK).

 Error Values
If the ha_gs_goodbye subroutine is unsuccessful, it returns an error number. If the
error is detected immediately, an error is returned synchronously.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_goodbye
subroutine:

HA_GS_BACKLEVEL_PROVIDERS
The group contains providers who were compiled against an older
level of the GS library. They must leave the group before
ha_gs_goodbye() can be used by this provider.

HA_GS_BAD_MEMBER_TOKEN
The given provider_token does not specify a valid provider joined
to a group.

HA_GS_NOT_SUPPORTED
The GS client was not compiled against the proper level of the GS
library to use this function.

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_send_message , ha_gs_leave ,
ha_gs_expel , ha_gs_subscribe , ha_gs_change_attributes

72 RS/6000 Cluster Technology Group Services Programming

 ha_gs_init

 ha_gs_init Subroutine

 Purpose
ha_gs_init – Called by a process to register with the Group Services Application
Programming Interface (GSAPI)

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_init(
 ha_gs_descriptor_t \ha_gs_descriptor,
 const ha_gs_socket_ctrl_t socket_options,
 const ha_gs_responsiveness_t \responsiveness_control,
 const char \deactivate_script,
 ha_gs_responsiveness_cb_t \responsiveness_callback,
 ha_gs_delayed_error_cb_t \delayed_error_callback,
 ha_gs_query_cb_t \query_callback)

 Parameters
ha_gs_descriptor

A pointer to a buffer in which the Group Services subsystem will
return the file descriptor that the process will use to communicate
with the Group Services Application Programming Interface
(GSAPI).

The process itself must not read or write directly on this file
descriptor.

socket_options A flag that indicates whether the process will allow SIGIO signals
to be generated when messages arrive. It must be one of the
following values:

HA_GS_SOCKET_NO_SIGNAL
Do not generate SIGIO signals. The process will use
non-signal I/O mechanisms, such as the select or poll
system calls.

HA_GS_SOCKET_SIGNAL
Generate SIGIO signals when messages arrive. The
process will catch SIGIO and call the ha_gs_dispatch
subroutine.

responsiveness_control
A pointer to a buffer that contains a responsiveness control
structure. The responsiveness control structure specifies the
method, if any, that will be used to perform responsiveness checks
for this process.

 Chapter 2. Group Services Subroutine Reference 73

 ha_gs_init

deactivate_script
The path name to a "deactivate script" to be called during an expel
protocol. This field is optional. For more information on deactivate
scripts, see the ha_gs_expel man page.

responsiveness_callback
A pointer to a callback routine that will be called when the GSAPI
delivers a responsiveness notification to the GS client. For
information on the responsiveness callback routine, see the
ha_gs_responsiveness_callback man page.

delayed_error_callback
A pointer to a callback routine that will be called when the GSAPI
needs to deliver a delayed error number for a request that is
discovered asynchronously to be invalid. A delayed error number
can be delivered in response to any protocol or subscription
request.

query_callback This field is reserved for IBM use.

 Description
The ha_gs_init subroutine is used by a process to register itself with the Group
Services Application Programming Interface (GSAPI). The subroutine allows the
GSAPI to initialize itself as necessary and establishes a connection between the
GSAPI and the GS client. This subroutine returns synchronously.

Only processes with root authority or whose user IDs belong to an AIX group
called hagsuser are allowed to initialize themselves with the GSAPI. Refer to
PSSP: Administration Guide, SA22-7348 for information about setting up the
Group Services subsystem to enable support for use of hagsuser .

As described in “Group Services Domains” on page 6, a GS client must indicate
the Group Services domain to which it wants to attach by setting the following
environment variables prior to executing ha_gs_init . Normally this domain will be
the group Services PSSP domain; however, it may also be a Group Services
HACMP/ES domain if HACMP/ES is installed.

� HA_DOMAIN_NAME should be the name of the SP partition, to connect to the
Group Services PSSP domain, or the name of the HACMP/ES cluster to
connect to the Group Services HACMP/ES domain.

Note: Earlier releases of Group Services supported the HA_SYSPAR_NAME
environment variable, and this is still supported for compatibility, but all
new applications should use HA_DOMAIN_NAME .

� HA_GS_SUBSYS should be set to grpsvcs if the GS client is connecting to
the Group Services HACMP/ES domain. It does not need to be set if
connecting to the Group Services PSSP domain, althrough if desired in this
case it should be set to hags .

The HA_DOMAIN_NAME environment variable must be set and exported in a GS
client's environment to the name of the domain in which the GS client and the
Group Services daemon are running. On a node, this is the domain to which the
node belongs. On the control workstation, there is a Group Services daemon for
each domain , and the setting of HA_DOMAIN_NAME identifies the domain and
the particular Group Services daemon to which the GS client will connect.

74 RS/6000 Cluster Technology Group Services Programming

 ha_gs_init

Note: On the RS/6000 SP, the HA_SYSPAR_NAME environment variable is still
supported; however, the HA_DOMAIN_NAME environment variable is more
versatile because it can be used to refer to a domain either on an RS/6000
SP or on an HACMP/ES cluster. (On an RS/6000 SP, a domain is a system
partition; on an HACMP/ES cluster, a domain is the entire cluster.)

The responsiveness control structure has the following definition:

typedef struct
{
 ha_gs_responsiveness_type_t gs_responsiveness_type;
 unsigned int gs_responsiveness_interval;
 ha_gs_time_limit_t gs_responsiveness_response_time_limit;
 void \gs_counter_location;
 unsigned int gs_counter_length;
} ha_gs_responsiveness_t; /\ responsiveness attributes \/

The responsiveness control structure is used to specify whether the process wants
the GSAPI to check it periodically for responsiveness and, if so, the protocol to be
used. It should be noted that the GSAPI will always be able to detect the actual exit
(intentional or otherwise) of all GS clients. However, this check allows the GSAPI to
determine if the GS client is able to respond in a reasonable fashion. It also allows
the GS client to perform any periodic validity checks on its own operation or
environment that might be needed.

If the GS client fails a responsiveness check and it is joined to any groups as a
provider, the other providers in the groups receive an announcement that a provider
has failed its responsiveness protocol.

The responsiveness protocol is executed only when the GS client is idle. If the GS
client is involved in group actions (for example, executing protocols) and it is
responding as expected, the GSAPI does not perform the responsiveness protocol.

The gs_responsiveness_type field contains the type of responsiveness protocol
that is to be performed for this GS client. It may take one of the following values:

HA_GS_NO_RESPONSIVENESS
The GSAPI should not perform a responsiveness protocol for this GS
client. The remaining fields in the structure are ignored.

HA_GS_PING_RESPONSIVENESS
The GSAPI should "ping" the GS client periodically, by delivering a
notification to the GS client and expecting a response. The notification
will call the responsiveness callback routine specified on input by the GS
client.

HA_GS_COUNTER_RESPONSIVENESS
The GSAPI should periodically check an arithmetic counter specified by
a multithreaded GS client. If the counter is changing, the GS client is
assumed to be responsive. If the counter does not change, the GSAPI
will call the responsiveness callback routine specified by the GS client
before assuming that the GS client is nonresponsive.

The gs_responsiveness_interval field contains the number of seconds that the
GSAPI should wait between executions of the specified responsiveness protocol.

 Chapter 2. Group Services Subroutine Reference 75

 ha_gs_init

The gs_responsiveness_response_time_limit field contains the number of
seconds that the GSAPI should wait for a return from the responsiveness callback
routine. If the routine fails to return, the GSAPI assumes that the GS client has
become nonresponsive.

The gs_counter_location field points to the counter that the GSAPI should monitor
for the HA_GS_COUNTER_RESPONSIVENESS protocol. The counter must reside
in the GS client's address space. If the HA_GS_PING_RESPONSIVENESS
protocol is specified, this field is ignored.

The gs_counter_length field contains the length, in bytes, of the counter to be
monitored. It may be a value of 2, 4 or 8. If the HA_GS_PING_RESPONSIVENESS
protocol is specified, this field is ignored.

 Security
The effective user ID of the calling process must be root or the user ID must
belong to an AIX group called hagsuser .

 Return Values
If the ha_gs_init subroutine is successful, it returns a value of 0 (HA_GS_OK) and
the ha_gs_descriptor field contains the file descriptor of the GSAPI socket.

 Error Values
If the ha_gs_init subroutine is unsuccessful, it returns an error number
synchronously. The contents of the ha_gs_descriptor field are undefined.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_init subroutine:

HA_GS_BAD_PARAMETER
A null delayed error callback value was given; or invalid
responsiveness control information was given; or an invalid socket
control flag was given (it must be HA_GS_SOCKET_SIGNAL or
HA_GS_SOCKET_NO_SIGNAL).

HA_GS_EXISTS
This GS client has already successfully executed ha_gs_init() .

HA_GS_NO_MEMORY
The GS library is unable to allocate memory. The GS client should
re-try the request.

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

HA_GS_NOT_SUPPORTED
The GS client was compiled against a newer version of the GS
library than is currently installed on this node.

76 RS/6000 Cluster Technology Group Services Programming

 ha_gs_init

HA_GS_CONNECT_FAILED
The GS daemon on this node is not running; or this GS client is
not a root process; or this client is not a root process, but has an
effective group ID of “hagsuser” and the GS daemon is not set up
to allow access by non-root hagsuser processes.

HA_GS_SOCK_CREATE_FAILED
Internal error. Retry request.

HA_GS_SOCK_INIT_FAILED
Internal error. Retry request.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Structures in the ha_gs.h header file: ha_gs_responsiveness_t type definition

Subroutines: ha_gs_init , ha_gs_join , ha_gs_send_message , ha_gs_leave ,
ha_gs_expel , ha_gs_subscribe , ha_gs_change_attributes ,
ha_gs_change_state_value , ha_gs_goodbye

 Chapter 2. Group Services Subroutine Reference 77

 ha_gs_join

 ha_gs_join Subroutine

 Purpose
ha_gs_join – Called by a GS client to join a group as a provider

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_join(
 ha_gs_token_t \provider_token,

const ha_gs_proposal_info_t \proposal_info)

 Parameters
provider_token A pointer to a token that will be returned by the Group Services

subsystem that is used to identify the membership of the GS client
in the group as a provider.

The GS client must pass a copy of the token on all subsequent
GSAPI calls that refer to the group. The GSAPI passes a copy of
the token to the GS client on all subsequent callbacks that refer to
the group.

proposal_info A pointer to a buffer that contains a proposal information block,
which describes the proposed join.

 Description
The ha_gs_join subroutine is used by a GS client to join a group as a provider. If
the named group does not already exist, it is created.

This section describes:

� The input to the ha_gs_join subroutine

� The ha_gs_join subroutine's synchronous and asynchronous operation.

On input, information about the join request is supplied through the join request
block, which is a type of proposal information block. On the ha_gs_join subroutine,
specify the proposal information block as a join request block. For the definition of
the proposal information block, see the ha_gs_delayed_error_callback man page.

The join request block has the following definition:

78 RS/6000 Cluster Technology Group Services Programming

 ha_gs_join

typedef struct {
 ha_gs_group_attributes_t \gs_group_attributes;
 short gs_provider_instance;
 char \gs_provider_local_name;
 ha_gs_n_phase_cb_t \gs_n_phase_protocol_callback;
 ha_gs_approved_cb_t \gs_protocol_approved_callback;
 ha_gs_rejected_cb_t \gs_protocol_rejected_callback;
 ha_gs_announcement_cb_t \gs_announcement_callback;
 ha_gs_merge_cb_t \gs_merge_callback;
} ha_gs_join_request_t;

The gs_group_attributes field contains a pointer to a group attributes block, which
is described later in this section.

The gs_provider_instance field contains the instance number to be used by this
provider. If it is not unique on this node for this group, the join is rejected
asynchronously with an error number of
HA_GS_DUPLICATE_INSTANCE_NUMBER .

The gs_provider_local_name field points to an optional byte string that contains a
local "name" for the provider. The name is used only locally, when logging errors or
messages related to the provider. The provider local name is not distributed to the
other providers.

The gs_n_phase_protocol_callback field points to the callback routine that is to
be called during each voting phase of any n-phase protocol.

The gs_protocol_approved_callback field points to the callback routine that is to
be called when the Group Services subsystem has an announcement to deliver that
a protocol (one-phase or n-phase) has been approved in this group.

The gs_protocol_rejected_callback field points to the callback routine that is to
be called when the Group Services subsystem has an announcement to deliver that
a protocol (one-phase or n-phase) has been rejected in this group.

The gs_announcement_callback field points to the callback routine that is to be
called when the Group Services subsystem has other announcements to deliver
that are related to this group.

All of the above fields that point to callback routines should point to valid functions.
If a NULL pointer is given in any of them, a warning will be issued to the GS
client's STDERR. If a pointer is NULL, or if it is not NULL but does not point to an
executable function, then unpredictable results (such as fatal program failure) may
occur during execution of your program.

The gs_merge_callback field is reserved for IBM use. It should be set to NULL.

The group attributes block describes the attributes of the group, including the
group's name, and is specified as input to a join request using the ha_gs_join
subroutine. It has the following definition:

 Chapter 2. Group Services Subroutine Reference 79

 ha_gs_join

typedef char \ha_gs_group_name_t;

typedef struct {
 short gs_version;
 short gs_sizeof_group_attributes;
 unsigned gs_client_version;
 ha_gs_group_name_t gs_group_name;
 ha_gs_batch_ctrl_t gs_batch_control;
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_num_phases_t gs_source_reflection_num_phases;
 ha_gs_vote_value_t gs_group_default_vote;
 ha_gs_merge_ctrl_t gs_merge_control;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_time_limit_t gs_source_reflection_time_limit;
 ha_gs_group_name_t gs_source_group_name;
} ha_gs_group_attributes_t;

The group attributes block contains the name of the group and the set of group
attributes that are passed to the Group Services subsystem on the ha_gs_join
subroutine call.

If the group does not already exist, a new group is defined with the specified
attributes.

If the group already exists, the specified attributes must match the group's existing
attributes. All of the attributes must match except those that are contained in the
gs_version and gs_sizeof_group_attributes fields. Otherwise, the call fails with
an error number of HA_GS_BAD_GROUP_ATTRIBUTES .

The gs_version field contains the version level of the Group Services library. It is
set by the Group Services subsystem.

The gs_sizeof_group_attributes field contains the size of the group attributes
block.

The gs_client_version field contains a user-defined version code.

The gs_group_name field points to a string that contains the name of the group.
Its maximum length is 32 bytes, as defined by the
HA_GS_MAX_GROUP_NAME_LENGTH constant.

The gs_batch_control field controls the batching of multiple group joins and failure
leaves. Either alone may be batched, or both. A failure leave occurs when a
provider process is forced to leave a group because the process, or the node on
which it is running, fails.

The gs_batch_control field can take one of the following values:

HA_GS_NO_BATCHING
No batching is allowed. Joins and failure leaves are serialized and
presented to the group one at a time.

HA_GS_BATCH_JOINS
Any number of joins may be batched with other joins. Failure leaves are
not batched.

80 RS/6000 Cluster Technology Group Services Programming

 ha_gs_join

HA_GS_BATCH_FAILURES
Any number of failure leaves may be batched with other failure leaves.
Joins are not batched.

HA_GS_BATCH_BOTH
Any number of joins may be batched with other joins, and any number
of failure leaves may be batched with other failure leaves.

HA_GS_DEACTIVATE_ON_FAILURE
Enables the execution of a deactivate script when the provider is failing.

See “Deactivate-On-Failure Handling” on page 26.

The gs_num_phases field specifies whether join protocols and failure leave
(including cast-out) protocols are to be n-phase or one-phase protocols. It can take
one of the following values:

HA_GS_1_PHASE
The protocols are to be one-phase protocols. One-phase protocols are
automatically approved.

HA_GS_N_PHASE
The protocols are to be n-phase protocols, which put the group into
multi-phase voting.

The gs_source_reflection_num_phases field contains the number of phases for
source-reflection protocols, which are run in the target-group when the
source-group changes its state value. If no gs_source_group_name is given, this
field is ignored.

The gs_source_reflection_num_phases field can take one of the following
values:

HA_GS_1_PHASE
The protocols are to be one-phase protocols. One-phase protocols are
automatically approved.

HA_GS_N_PHASE
The protocols are to be n-phase protocols, which put the group into
multi-phase voting.

The gs_group_default_vote field contains the default vote to use for the providers
in this group. It can take on a value of HA_GS_VOTE_APPROVE to approve or
HA_GS_VOTE_REJECT to reject.

The gs_merge_control field specifies how the merging of groups should be
handled. It must be set to a value of HA_GS_DISSOLVE_MERGE .

The gs_time_limit field contains the voting phase time limit, in seconds. This is the
number of seconds within which each provider must register its vote for each phase
of an n-phase join or failure leave protocol. If the field is set to a value of 0, no
limit is enforced.

The gs_source_reflection_time_limit field contains the time limit, in seconds, for
each voting phase of a source-reflection protocol, which is run in the target-group
when the source-group changes its state value. If no gs_source_group_name is
specified, or if it is specified and the gs_source_reflection_phases field contains a
value of HA_GS_1_PHASE , this field is ignored.

 Chapter 2. Group Services Subroutine Reference 81

 ha_gs_join

The gs_source_group_name field points to a string that contains the name of the
source-group for this group. If there is no source-group, this field should be null.

The ha_gs_join subroutine operates as follows.

First, it verifies that all of the required fields have been specified. If this checking
succeeds, it submits a join request to initiate a join protocol within the specified
group and returns synchronously with a successful return value (HA_GS_OK).

The join request is processed asynchronously and, if errors are detected
asynchronously, they are returned through the delayed error callback routine that
was previously specified on the call to the ha_gs_init subroutine.

Upon receipt of the join request, Group Services checks the group attributes that
were specified on input. If the named group already exists, it checks to see that the
input group attributes match those that have already been established for the
group. If they do not match, the HA_GS_BAD_GROUP_ATTRIBUTES error
number is returned asynchronously by the delayed error callback routine.

If the join request is for a new group, Group Services uses the attributes specified
on the join request to establishes the new group's attributes.

If the asynchronous checks succeed, Group Services initiates a membership
change protocol within the group to enable the provider to join. Each provider in the
group, including the joiner, is notified and the appropriate callback is executed,
based on the number of phases that are required for the join request.

 Restrictions
The calling process must be a GS client.

 Return Values
If the ha_gs_join subroutine is successful, it returns a value of 0 (HA_GS_OK) and
the provider_token field is set to the token that identifies this provider's connection
to the group.

Note that provider tokens are assigned, invalidated, and reassigned in a manner
similar to the way in which file descriptors are assigned, invalidated, and
reassigned as files are opened and closed.

Here is an example.

A GS client joins group foo and receives provider token 0. When the same client
leaves group foo , Group Services invalidates provider token 0 and makes it
available for reassignment. When the next GS client (it could be the same or a
different GS client) joins the next group (it could be the same or a different group),
Group Services assigns provider token 0 to that client.

If the ha_gs_join subroutine returns HA_GS_OK synchronously, that means only
that the Group Services subsystem has accepted the join request. The GS client is
not fully joined to the group as a provider until the join protocol has executed and
has been approved by the group.

82 RS/6000 Cluster Technology Group Services Programming

 ha_gs_join

 Error Values
If the ha_gs_join subroutine is unsuccessful, it returns an error number and the
contents of the provider_token field are undefined.

If either an asynchronous error is reported by the delayed error callback routine, or
the join protocol is rejected by the group, the GS client is not a provider in the
group and the provider token that was returned is not valid for any requests.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_join subroutine:

HA_GS_BAD_PARAMETER
A null pointer was given for the merge callback but the merge
control setting is not HA_GS_DISSOLVE_MERGE .

HA_GS_GROUP_ATTRIBUTES
Values specified for the group attributes are not valid.

HA_GS_INVALID_GROUP
The name of the group to be joined was NULL or zero length; or
the name of the host membership group
(HA_GS_HOST_MEMBERSHIP_GROUP) or an adapter
membership group was given as the group to be joined.

HA_GS_INVALID_SOURCE_GROUP
The name of the source group to be joined was NULL or zero
length; or the name of the host membership group
(HA_GS_HOST_MEMBERSHIP_GROUP) or an adapter
membership group was given as the source group.

HA_GS_NAME_TOO_LONG
The name of the group to be joined or the source group is too
long.

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_NO_MEMORY
The GS library is unable to allocate memory. The GS client should
re-try the request.

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

 Asynchronous Errors
The following errors may be returned asynchronously by the ha_gs_join
subroutine:

HA_GS_BAD_PARAMETER
The specified parameter was not valid.

 Chapter 2. Group Services Subroutine Reference 83

 ha_gs_join

HA_GS_INVALID_GROUP
The process does not have permission to join the group that was
specified on the call to the ha_gs_join subroutine. For example,
this error number would be returned in response to an attempt to
join a system-defined group such as the host membership group or
an adapter membership group.

HA_GS_NO_SOURCE_GROUP_PROVIDER
A call to the ha_gs_join subroutine specified a source-group
name, and there is no provider from that source-group already
active on this node.

HA_GS_BAD_GROUP_ATTRIBUTES
The group attributes that were specified on a call to the
ha_gs_join subroutine are either invalid or do not the match the
group attributes that were specified by the providers that already
belong to the group.

HA_GS_DUPLICATE_INSTANCE_NUMBER
The provider instance number that was specified on a call to the
ha_gs_join subroutine is already in use for this group on this
node.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_change_state_value , ha_gs_send_message ,
ha_gs_leave , ha_gs_expel , ha_gs_send_message , ha_gs_subscribe ,
ha_gs_change_attributes , ha_gs_goodbye

84 RS/6000 Cluster Technology Group Services Programming

 ha_gs_leave

 ha_gs_leave Subroutine

 Purpose
ha_gs_leave – Called by a provider of a group to leave the group voluntarily

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_leave(
 ha_gs_token_t provider_token,

const ha_gs_proposal_info_t \proposal_info)

 Parameters
provider_token A token that identifies the caller as a provider of the group. This

token was previously initialized when the provider joined the group
using the ha_gs_join subroutine.

proposal_info A pointer to a buffer that contains a proposal information block,
which describes the proposed leave request.

 Description
The ha_gs_leave subroutine is used by a provider of a Group Services group to
leave the group.

If the request is specified as a one-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal protocol
approval procedures.

If the request is specified as an n-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal n-phase
voting procedures.

If the Group Services subsystem chooses not to execute this protocol (because
another protocol is already in progress), the HA_GS_COLLIDE error number is
returned either synchronously or asynchronously, depending on when the error is
detected. Asynchronous errors are delivered through the delayed error callback
routine. Otherwise, the proposal will initiate a protocol within the group.

Information about the leave request is supplied through the leave request block,
which is a type of proposal information block. On the ha_gs_leave subroutine,
specify the proposal information block as a leave request block. For the definition of
the proposal information block, see the ha_gs_delayed_error_callback man page.

The leave request block has the following definition:

 Chapter 2. Group Services Subroutine Reference 85

 ha_gs_leave

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 unsigned int gs_leave_code;
} ha_gs_leave_request_t;

The gs_num_phases field specifies whether the leave protocols are to be n-phase
or one-phase protocols. It can take one of the following values:

HA_GS_1_PHASE
The protocols are to be one-phase protocols. One-phase protocols are
automatically approved.

HA_GS_N_PHASE
The protocols are to be n-phase protocols, which put the group into
multi-phase voting.

The gs_time_limit field contains the voting phase time limit, in seconds. This is the
number of seconds within which each provider must register its vote for each phase
of an n-phase protocol. If the field is set to a value of 0, no limit is enforced.

The gs_leave_code field contains a four-byte value that is defined by the
application that is using the GSAPI and is controlled by the providers in a way that
is meaningful to the application. When a provider leaves a group, the leave code is
passed to the other providers with the leave protocol notification. Leave codes are
not interpreted by the Group Services subsystem.

 Restrictions
The calling process must be a provider.

 Return Values
If the ha_gs_leave subroutine is successful, it returns a value of 0 (HA_GS_OK).
Group Services has accepted the request and will asynchronously attempt to
execute the proposed protocol.

Once a voluntary leave protocol is started within the group by the Group Services
subsystem, the provider who proposed the leave will receive only the first
notification of the protocol (the n-phase notification of an n-phase protocol or the
approved notification of a one-phase protocol). After this point, this provider is
removed from the group and receives no more notifications. Even if the protocol is
rejected, the provider is still removed from the group.

 Error Values
If the ha_gs_leave subroutine is unsuccessful, it returns an error number. If the
error is detected immediately, an error is returned synchronously. If the error is
detected after the call has been accepted, an error is returned asynchronously.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

86 RS/6000 Cluster Technology Group Services Programming

 ha_gs_leave

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_leave
subroutine:

HA_GS_BAD_MEMBER_TOKEN
The given provider_token does not specify a valid provider joined
to a group.

HA_GS_BAD_PARAMETER
The number of phases specified for the protocol is not allowable; it
must be HA_GS_1_PHASE or HA_GS_N_PHASE .

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_COLLIDE
The provider's group is already executing a protocol; or this
provider has already submitted a protocol request.

HA_GS_NOT_A_MEMBER
The given provider_token does not specify a valid group.

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

 Asynchronous Errors
The following errors may be returned asynchronously by the ha_gs_leave
subroutine:

HA_GS_NOT_A_MEMBER
The provider that is proposing the protocol is no longer a provider
for the specified group.

HA_GS_BAD_PARAMETER
The specified parameter was not valid.

HA_GS_COLLIDE
Another protocol is already active for this group.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_change_state_value ,
ha_gs_send_message , ha_gs_subscribe , ha_gs_expel ,
ha_gs_change_attributes , ha_gs_goodbye

 Chapter 2. Group Services Subroutine Reference 87

 ha_gs_n_phase_callback

 ha_gs_n_phase_callback Subroutine

 Purpose
ha_gs_n_phase_callback – A callback routine that the Group Services subsystem
calls to deliver an n-phase notification to a GS client

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

void
 ha_gs_n_phase_callback(
 const ha_gs_n_phase_notification_t \notification)

 Parameters
notification A pointer to an n-phase notification block.

 Description
The ha_gs_n_phase_callback subroutine defines a GS client's n-phase callback
routine. The GS client uses it to handle n-phase notifications from the Group
Services subsystem. The process provides the address of the n-phase callback
routine to the Group Services subsystem on the ha_gs_join subroutine when it
joins the group as a provider. The Group Services subsystem then calls the
n-phase callback routine when it has an n-phase notification to deliver to the GS
client, which occurs during each voting phase of an n-phase protocol.

On input, the n-phase callback routine receives information that specifies the
proposed changes to the group, such as its membership or its state value, as well
as other control information for the protocol, such as the phase number and the
voting time limit.

In response to this notification, it is expected that the provider will vote on the
proposal by calling the ha_gs_vote subroutine. The call to submit the vote may be
made either before or after the callback routine returns. The notification contains an
identifying token that must be passed on the call to the ha_gs_vote subroutine so
that the Group Services subsystem can match the vote to the protocol.

On input, the n-phase callback routine receives a pointer to the n-phase notification
block. The n-phase notification block has the following definition:

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_request_t gs_protocol_type;
 ha_gs_summary_code_t gs_summary_code;
 ha_gs_time_limit_t gs_time_limit;

88 RS/6000 Cluster Technology Group Services Programming

 ha_gs_n_phase_callback

 ha_gs_proposal_t \gs_proposal;
} ha_gs_n_phase_notification_t;

The gs_notification_type field contains the type of notification. For an n-phase
notification, it contains a value of HA_GS_N_PHASE_NOTIFICATION .

The gs_provider_token field contains a token that identifies the caller as a
provider of the group. This token was previously initialized when the provider joined
the group using the ha_gs_join subroutine.

The gs_protocol_type field contains the type of request for which this n-phase
notification is being delivered.

HA_GS_JOIN
One or more providers is attempting to join the group.

HA_GS_FAILURE_LEAVE
One or more providers has failed and is leaving the group.

HA_GS_LEAVE
A provider is voluntarily leaving the group.

HA_GS_EXPEL
A provider is attempting to expel one or more providers from the group.

HA_GS_STATE_VALUE_CHANGE
A provider is trying to change the group's state value.

HA_GS_PROVIDER_MESSAGE
A provider is broadcasting a message to the group.

HA_GS_CAST_OUT
One or more source-group providers have left the source-group,
requiring these target-group providers to leave also. The source-group's
state value is contained in the gs_source_state_value field of the
proposal information block.

HA_GS_SOURCE_STATE_REFLECTION
The source-group has modified its state value, and this is being
reflected to the target-group(s). The source-group's state value is
contained in the gs_source_state_value field of the proposal
information block.

HA_GS_MERGE
This value is reserved for IBM use.

HA_GS_GROUP_ATTRIBUTE_CHANGE
A provider has requested to change the group's attributes via the
ha_gs_change_attributes() interface.

The gs_summary_code field contains one or more flags that indicate whether any
default votes were recorded during any previous voting phase. It can contain one or
more of the following flags:

HA_GS_DEFAULT_APPROVE
This flag is set for a protocol approved notification if one or more
approval votes in the tally were recorded by default. If this flag is set,
the HA_GS_TIME_LIMIT_EXCEEDED flag, the
HA_GS_PROVIDER_FAILED flag, or both flags are also set.

 Chapter 2. Group Services Subroutine Reference 89

 ha_gs_n_phase_callback

HA_GS_DEFAULT_REJECT
This flag is set for a protocol rejected notification if one or more rejection
votes in the tally were recorded by default. If this flag is set, the
HA_GS_TIME_LIMIT_EXCEEDED flag, the
HA_GS_PROVIDER_FAILED flag, or both flags are also set.

HA_GS_TIME_LIMIT_EXCEEDED
This flag is set when a default approval vote or a default rejection vote
was recorded because one or more providers failed to vote in time.

HA_GS_PROVIDER_FAILED
This flag is set when a default approval vote or a default rejection vote
was recorded because one or more providers failed (because the node
or process failed). The reason for the failure will be provided during the
subsequent failure leave protocol.

The gs_time_limit field contains the time limit, in seconds, within which the
provider must submit its vote for this voting phase. If the field is set to a value of 0,
no limit is enforced.

The gs_proposal field points to the proposal block for the proposal on which the
vote is requested.

The proposal block is common to the notifications that carry proposal information
for one-phase and n-phase protocols. It is provided on input to protocol callback
functions and has the following definition:

typedef struct {
 ha_gs_phase_info_t gs_phase_info;
 ha_gs_provider_t gs_proposed_by;
 ha_gs_updates_t gs_whats_changed;
 ha_gs_membership_t \gs_current_providers;
 ha_gs_membership_t \gs_changing_providers;
 ha_gs_leave_array_t \gs_leave_info;
 ha_gs_expel_info_t \gs_expel_info;
 ha_gs_state_value_t \gs_current_state_value;
 ha_gs_state_value_t \gs_proposed_state_value;
 ha_gs_state_value_t \gs_source_state_value;
 ha_gs_provider_message_t \gs_provider_message;
 ha_gs_group_attributes_t \gs_new_group_attributes;
} ha_gs_proposal_t;

The gs_phase_info field contains information about the type of protocol that is
executing and the phase number to which this notification applies. It has the
following definition:

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_num_phases_t gs_phase_number;
} ha_gs_phase_info_t;

The gs_num_phases field contains

HA_GS_1_PHASE
The executing protocol is a one-phase protocol.

HA_GS_N_PHASE
The executing protocol is an n-phase protocol.

90 RS/6000 Cluster Technology Group Services Programming

 ha_gs_n_phase_callback

The gs_phase_number field contains the phase number to which this notification
applies.

The gs_proposed_by field contains the provider information block that identifies
the provider (or the Group Services subsystem itself) that initiated the executing
proposal. The provider information block is defined later in this section.

On all join protocols, this field always contains the provider information block for the
GS client that is executing the callback rather than the provider that initiated the
join. This allows each provider to capture its own provider information block. For
protocols (such as the cast-out protocol) that are initiated by the Group Services
subsystem itself, this field contains the values that so identify it. For more details,
see the description of the provider information block later in this section.

The gs_whats_changed field contains one or more flags that indicate whether the
membership or the state values contained in the proposal are changes from the
base group values at the beginning of the protocol, and if the notification contains a
provider-broadcast message. It can contain one or more of the following flags:

HA_GS_NO_CHANGE
No fields have been updated from a previous voting phase notification.

HA_GS_PROPOSED_MEMBERSHIP
Membership changes are proposed. The gs_changing_providers field
points to a list of joining or leaving providers. For joining providers, the
gs_current_providers field points to a list of the current members of
the group.

HA_GS_ONGOING_MEMBERSHIP
An ongoing membership change protocol is executing. The
gs_changing_providers field points to a list of joining or leaving
providers and this field will not change during the protocol.

HA_GS_PROPOSED_STATE_VALUE
A change to the group state value is proposed. The
gs_proposed_state_value field points to a proposed new group state
value. If providers submit state changes with their voting responses, this
field may be updated during the protocol. The gs_current_state_value
field contains the group's current (last approved) state value.

HA_GS_ONGOING_STATE_VALUE
The gs_proposed_state_value field points to a proposed new group
state value, but the value is unchanged from a previous notification. The
gs_current_state_value field contains the group's current (last
approved) state value.

HA_GS_UPDATED_PROVIDER_MESSAGE
The gs_provider_message field points to a provider-broadcast
message. This flag may be set on both voting-phase notifications and
final notifications. A message is presented only once.

HA_GS_REFLECTED_SOURCE_STATE_VALUE
The source-group updated its group state value, during either a
membership change protocol or a state value change protocol. The
source-group's state value is presented only with the first notification
that is given to the target-group(s). It is the responsibility of the
target-group providers to remember it, if it is necessary for their correct
operation.

 Chapter 2. Group Services Subroutine Reference 91

 ha_gs_n_phase_callback

HA_GS_PROPOSED_GROUP_ATTRIBUTES
The gs_new_group_attributes field contains the new group attributes
that were proposed via an ha_gs_change_attributes() interface call.

HA_GS_ONGOING_GROUP_ATTRIBUTES
The gs_new_group_attributes field contains the new group attributes
that were proposed via an ha_gs_change_attributes() interface call,
and these are unchanged from a previous notification.

HA_GS_UPDATED_GROUP_ATTRIBUTES
This flag is set on the final notification for an approved change attributes
protocol, proposed via an ha_gs_change_attributes() interface call.
The gs_new_group_attributes field contains the new group attributes.

HA_GS_REJECTED_GROUP_ATTRIBUTES
This flag is set on the final notification for a rejected change attributes
protocol, proposed via an ha_gs_change_attributes() interface call.
The gs_new_group_attributes field contains the rejected group
attributes.

The gs_current_providers field points to a list of providers that currently belong to
the group. It has the following definition:

typedef struct {
 ulong gs_count;
 ha_gs_provider_t \gs_providers;
} ha_gs_membership_t;

The gs_count field contains the number of providers in the list.

The gs_providers field points to the list of providers. Each provider is described by
a provider information block, which is defined later in this section.

The gs_changing_providers field points to a list of providers that are joining or
leaving the group through this protocol. If none are joining or leaving, the field is
null.

The gs_leave_info field points to an array that contains the reason codes for each
provider specified in the gs_changing_providers field that is leaving the group.
This leave information field, which is used for voluntary and failure leave protocols
only, has the following definition:

typedef struct {
 unsigned long gs_count;
 ha_gs_leave_info_t \gs_leave_codes;
} ha_gs_leave_array_t;

The gs_count field contains the number of providers that are leaving.

The gs_leave_codes field points to an entry for each provider that is leaving the
group that specifies whether it is a voluntary or failure leave and the reason or
reasons for the leave. The leave reason entries are in the same order in which the
providers are listed in the gs_changing_providers list.

The leave reason entries have the following definition:

92 RS/6000 Cluster Technology Group Services Programming

 ha_gs_n_phase_callback

typedef struct {
 unsigned int voluntary_or_failure;
 unsigned int voluntary_leave_code;
} ha_gs_leave_info_t;

The voluntary_or_failure field contains one or more of the following flags:

HA_GS_VOLUNTARY_LEAVE
The provider has requested to leave voluntarily. If this flag is set, it is
the only flag in the voluntary_or_failure field.

The voluntary_leave_code field contains the application-defined leave
code that was specified on input to the ha_gs_leave subroutine.

HA_GS_PROVIDER_FAILURE
The provider is leaving the group because its process has failed.

If the Group Services subsystem detected that the provider's process
failed and its node also failed before the process failure could be
reported, this flag could be set with the HA_GS_HOST_FAILURE flag.

If this flag is set, the voluntary_leave_code field is not used and is
undefined.

HA_GS_HOST_FAILURE
The provider is leaving the group because its node has failed.

If the Group Services subsystem detected that the provider's process
failed and its node also failed before the process failure could be
reported, this flag could be set with the HA_GS_PROVIDER_FAILURE
flag.

If this flag is set, the voluntary_leave_code field is not used and is
undefined.

HA_GS_PROVIDER_EXPELLED
The provider is leaving the group because a provider has requested its
expulsion by the ha_gs_expel subroutine.

If this flag is set, the voluntary_leave_code field is not used and is
undefined.

HA_GS_SOURCE_PROVIDER_LEAVE
The provider is being cast out of the group because it belongs to a
target-group and the source-group provider on its node has left the
source-group. If a node failure causes both a source-group and a
target-group to lose providers, this flag could be set with the
HA_GS_HOST_FAILURE flag.

If this flag is set, the voluntary_leave_code field is not used and is
undefined.

HA_GS_PROVIDER_SAID_GOODBYE
The provider issued the ha_gs_goodbye() interface and has left the
group.

The gs_expel_info field points to a structure that contains expel information. This
expel information field, which is used for expel protocols only, has the following
definition:

 Chapter 2. Group Services Subroutine Reference 93

 ha_gs_n_phase_callback

typedef struct {
 int gs_deactivate_phase;
 int gs_expel_flag_length;
 char \gs_expel_flag;
} ha_gs_expel_info_t;

The gs_deactivate_phase field contains the phase number in which the deactivate
script should be executed against any providers that are being expelled. If this field
contains 0, no deactivate script is executed.

The gs_expel_flag_length field contains the length of the expel flag.

The gs_expel_flag field contains a flag that is to be passed to the deactivate
script. It is a pointer to a null-terminated string with a maximum length of 256 bytes.
If the pointer is null, no flag is passed to the deactivate script.

The gs_current_state_value field points to a buffer that contains the current state
value of the group. This is the latest approved state value of the group, which is the
state value as it was at the beginning of the protocol. For the definition of the group
state value, see the ha_gs_change_state_value man page.

The gs_proposed_state_value field points to a buffer that contains the proposed
new value for the group's state. The gs_whats_changed field contains a value of
either HA_GS_PROPOSED_STATE_VALUE or
HA_GS_ONGOING_STATE_VALUE . If there is no new state value for this
protocol, this field is null. For the definition of the group state value, see the
ha_gs_change_state_value man page.

The gs_source_state_value field points to a buffer that contains the updated state
value of this group's source-group, if this proposal is the result of a change in the
source-group. The gs_whats_changed field contains a value of
HA_GS_REFLECTED_SOURCE_VALUE . Otherwise, this field is null. For the
definition of the group state value, see the ha_gs_change_state_value man page.

The gs_provider_message field points to a buffer that contains the
provider-broadcast message, if any. The gs_whats_changed field contains a value
of HA_GS_UPDATED_PROVIDER_MESSAGE . Otherwise, the field is null. For
information on the definition of the provider-broadcast message, see the
ha_gs_send_message man page.

The provider information block identifies each provider to the other providers in a
group. It contains an application-defined instance number and the number of the
node on which the provider is executing. It has the following definition:

94 RS/6000 Cluster Technology Group Services Programming

 ha_gs_n_phase_callback

const short HA_GS_node_number = -1;
const short HA_GS_instance_number = -1;

#define gs_node_number _gs_provider_info._gs_node_number
#define gs_instance_number _gs_provider_info._gs_instance_number

typedef union {
 struct {
 short _gs_instance_number;
 short _gs_node_number;
 } _gs_provider_info;
 int gs_provider_id;
} ha_gs_provider_t;

The gs_instance_number field contains the instance number of the provider. This
instance number is specified by the provider and must be unique for each provider
on a single node within a group.

When Group Services itself is acting as a "provider," the gs_instance_number
field contains a value of HA_GS_instance_number .

The gs_node_number field contains the node number of the provider. This node
number is specified by the Group Services subsystem.

When Group Services itself is acting as a "provider," the gs_node_number field
contains a value of HA_GS_node_number .

The gs_provider_id field contains the gs_instance_number and the
gs_node_number in a single word.

 Restrictions
The following discussion of multiprocessing considerations applies to all callback
routines, not just those for handling n-phase notifications.

The Group Services subsystem presents all notifications to all providers in a single
group in the same order. The providers should try to execute the same callback
routines in the same order.

However, only for n-phase protocols does the Group Services subsystem verify that
all of the group's providers have reached the same execution point before
continuing to the next notification. In other cases, the providers may not receive
and react to the notifications at the same time. For example, a provider might not
receive a notification immediately because it is busy and not reading the socket.

If GS clients are providers in multiple groups, there is no guarantee that every
provider will receive the notifications from different groups in the same order.

For multi-threaded clients, it is assumed that the callback routines are thread-safe
and reentrant. If the same callback routines are specified for multiple groups, a
multi-threaded client can process notifications by executing the callback routines for
more than one group at a time. For single-threaded providers, if they are acting as
providers for multiple groups, they must also be coded to handle simultaneously
executing protocols in all groups.

 Chapter 2. Group Services Subroutine Reference 95

 ha_gs_n_phase_callback

In all cases where GS clients are acting as providers in multiple groups, it is the
responsibility of the providers to ensure that they do not create deadlock situations
across groups. An example of a deadlock that could occur is when one provider
blocks before voting, waiting for another provider to take some action; and the
second provider is blocked on another group protocol, waiting for the first provider
to take some action.

All of that said, the Group Services subsystem executes callback routines only on
the same thread (or threads) that are used to call the ha_gs_dispatch subroutine.

 Return Values
None.

 Error Values
None.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_change_state_value ,
ha_gs_send_message , ha_gs_leave , ha_gs_expel , ha_gs_change_attributes ,
ha_gs_goodbye

96 RS/6000 Cluster Technology Group Services Programming

 ha_gs_protocol_approved_callback

 ha_gs_protocol_approved_callback Subroutine

 Purpose
ha_gs_protocol_approved_callback – A callback routine that the Group Services
subsystem calls to deliver a protocol approved notification to a GS client

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

void
 ha_gs_protocol_approved_callback(
 const ha_gs_protocol_approved_notification_t \notification)

 Parameters
notification A pointer to a protocol approved notification block.

 Description
The ha_gs_protocol_approved_callback subroutine defines a GS client's protocol
approved callback routine. The GS client uses it to handle protocol approved
notifications from the Group Services subsystem. The process provides the address
of the protocol approved callback routine to the Group Services subsystem on the
ha_gs_join subroutine when it joins the group as a provider.

The Group Services subsystem then calls the protocol approved callback routine
when it has a protocol approved notification to deliver to the GS client, which
occurs after a protocol has been approved. For an n-phase protocol, this
notification is delivered after the protocol has been approved by voting. All
one-phase protocols are automatically approved.

On input, the protocol approved callback routine receives information that specifies
the changes that have been made to the group, such as its membership or its state
value, as well as other control information for the protocol, such as the number of
phases that were executed.

On input, the protocol approved callback routine receives a pointer to the protocol
approved notification block. The protocol approved notification block has the
following definition:

typedef struct {
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_request_t gs_protocol_type;
 ha_gs_summary_code_t gs_summary_code;
 ha_gs_proposal_t \gs_proposal;
} ha_gs_approved_notification_t;

 Chapter 2. Group Services Subroutine Reference 97

 ha_gs_protocol_approved_callback

The gs_notification_type field contains the type of notification. For a protocol
approved notification, it contains a value of HA_GS_APPROVED_NOTIFICATION .

The gs_provider_token field contains a token that identifies the caller as a
provider of the group. This token was previously initialized when the provider joined
the group using the ha_gs_join subroutine.

The gs_protocol_type field contains the type of request for which this protocol
approved notification is being delivered.

HA_GS_JOIN
One or more providers is attempting to join the group.

HA_GS_FAILURE_LEAVE
One or more providers has failed and is leaving the group.

HA_GS_LEAVE
A provider is voluntarily leaving the group.

HA_GS_EXPEL
A provider is attempting to expel one or more providers from the group.

HA_GS_STATE_VALUE_CHANGE
A provider is trying to change the group's state value.

HA_GS_PROVIDER_MESSAGE
A provider is broadcasting a message to the group.

HA_GS_CAST_OUT
One or more source-group providers have left the source-group,
requiring these target-group providers to leave also. The source-group's
state value is contained in the gs_source_state_value field of the
proposal information block.

HA_GS_SOURCE_STATE_REFLECTION
The source-group has modified its state value, and this is being
reflected to the target-group(s). The source-group's state value is
contained in the gs_source_state_value field of the proposal
information block.

HA_GS_GROUP_ATTRIBUTE_CHANGE
A provider has requested to change the group's attributes via the
ha_gs_change_attributes() interface.

The gs_summary_code field contains one or more flags that indicate whether any
default votes were recorded during any previous voting phase. It can contain one or
more of the following flags:

HA_GS_EXPLICIT_APPROVE
This flag is set for a protocol approved notification if all approval votes in
the tally were explicitly submitted by the providers. No other flags are
set with this flag.

HA_GS_DEFAULT_APPROVE
This flag is set for a protocol approved notification if one or more
approval votes in the tally were recorded by default. If this flag is set,
the HA_GS_TIME_LIMIT_EXCEEDED flag, the
HA_GS_PROVIDER_FAILED flag, or both flags are also set.

98 RS/6000 Cluster Technology Group Services Programming

 ha_gs_protocol_approved_callback

HA_GS_TIME_LIMIT_EXCEEDED
This flag is set when a default approval vote was recorded because one
or more providers failed to vote in time.

HA_GS_PROVIDER_FAILED
This flag is set when a default approval vote was recorded because one
or more providers failed (because the node or process failed). The
reason for the failure will be provided during the subsequent failure
leave protocol.

HA_GS_DEACTIVATE_UNSUCCESSFUL
This flag is set when a deactivate script exited with an unsuccessful
return value.

HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED
This flag is set when a deactivate script did not exit within the specified
time limit.

The gs_proposal field points to the proposal block for the proposal on which the
vote is requested. For information about this block, see the
ha_gs_n_phase_callback man page.

 Restrictions
For important information about multiprocessing considerations that apply to all
callback routines, see the ha_gs_n_phase_callback man page.

 Return Values
None.

 Error Values
None.

 Synchronous Errors
None.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_change_state_value ,
ha_gs_send_message , ha_gs_leave , ha_gs_expel , ha_gs_change_attributes ,
ha_gs_goodbye

 Chapter 2. Group Services Subroutine Reference 99

 ha_gs_protocol_rejected_callback

 ha_gs_protocol_rejected_callback Subroutine

 Purpose
ha_gs_protocol_rejected_callback – A callback routine that the Group Services
subsystem calls to deliver a protocol rejected notification to a GS client

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

void
 ha_gs_protocol_rejected_callback(
 const ha_gs_protocol_rejected_notification_t \notification)

 Parameters
notification A pointer to a protocol rejected notification block.

 Description
The ha_gs_protocol_rejected_callback subroutine defines a GS client's protocol
rejected callback routine. The GS client uses it to handle protocol rejected
notifications from the Group Services subsystem. The process provides the address
of the protocol rejected callback routine to the Group Services subsystem on the
ha_gs_join subroutine when it joins the group as a provider. The Group Services
subsystem then calls the protocol rejected callback routine when it has a protocol
rejected notification to deliver to the GS client, which occurs after a n-phase
protocol has been rejected by voting. (One-phase protocols cannot be rejected;
they are all automatically approved.)

On input, the protocol rejected callback routine receives information that specifies
the proposed changes to the group, such as its membership or its state value, as
well as other control information for the protocol, such as the reason for the
rejection.

A protocol can be rejected for several reasons, which include:

� At least one of the providers explicitly voted to reject it

� A default reject vote was recorded for a failing provider

� A default reject vote was recorded because a provider failed to vote within the
specified time limit.

When a protocol is rejected because a provider failed, the Group Services
subsystem initiates a separate failure leave protocol to allow the group to handle
the failure. The failure leave protocol specifies the list of failing providers.

100 RS/6000 Cluster Technology Group Services Programming

 ha_gs_protocol_rejected_callback

When a protocol is rejected because votes were not submitted within the voting
time limit, the Group Services subsystem delivers an announcement notification that
lists the tardy providers.

On input, the protocol rejected callback routine receives a pointer to the protocol
rejected notification block. The protocol rejected notification block has the following
definition:

typedef struct {
 ha_gs_notification_type_t ha_gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_request_t gs_protocol_type;
 ha_gs_summary_code_t gs_summary_code;
 ha_gs_proposal_t \gs_proposal;
} ha_gs_rejected_notification_t;

The gs_notification_type field contains the type of notification. For a protocol
rejected notification, it contains a value of HA_GS_REJECTED_NOTIFICATION .

The gs_provider_token field contains a token that identifies the caller as a
provider of the group. This token was previously initialized when the provider joined
the group using the ha_gs_join subroutine.

The gs_protocol_type field contains the type of request for which this protocol
rejected notification is being delivered.

HA_GS_JOIN
One or more providers is attempting to join the group.

HA_GS_FAILURE_LEAVE
One or more providers has failed and is leaving the group.

HA_GS_LEAVE
A provider is voluntarily leaving the group.

HA_GS_EXPEL
A provider is attempting to expel one or more providers from the group.

HA_GS_STATE_VALUE_CHANGE
A provider is trying to change the group's state value.

HA_GS_PROVIDER_MESSAGE
A provider is broadcasting a message to the group.

HA_GS_CAST_OUT
One or more source-group providers have left the source-group,
requiring these target-group providers to leave also. The source-group's
state value is contained in the gs_source_state_value field of the
proposal information block.

HA_GS_SOURCE_STATE_REFLECTION
The source-group has modified its state value, and this is being
reflected to the target-group(s). The source-group's state value is
contained in the gs_source_state_value field of the proposal
information block.

HA_GS_GROUP_ATTRIBUTE_CHANGE
A provider has requested to change the group's attributes via the
ha_gs_change_attributes() interface.

 Chapter 2. Group Services Subroutine Reference 101

 ha_gs_protocol_rejected_callback

The gs_summary_code field contains one or more flags that indicate whether any
default votes were recorded during any previous voting phase. It can contain one or
more of the following flags:

HA_GS_EXPLICIT_REJECT
This flag is set for a protocol rejected notification if one or more rejection
votes in the tally were explicitly submitted by the providers.

HA_GS_DEFAULT_APPROVE
This flag is set for a protocol approved notification if one or more
approval votes in the tally were recorded by default. If this flag is set,
the HA_GS_TIME_LIMIT_EXCEEDED flag, the
HA_GS_PROVIDER_FAILED flag, or both flags are also set.

HA_GS_DEFAULT_REJECT
This flag is set for a protocol rejected notification if one or more rejection
votes in the tally were recorded by default. If this flag is set, the
HA_GS_TIME_LIMIT_EXCEEDED flag, the
HA_GS_PROVIDER_FAILED flag, or both flags are also set.

HA_GS_TIME_LIMIT_EXCEEDED
This flag is set when a default approval vote or a default rejection vote
was recorded because one or more providers failed to vote in time.

HA_GS_PROVIDER_FAILED
This flag is set when a default approval vote or a default rejection vote
was recorded because one or more providers failed (because the node
or process failed). The reason for the failure will be provided during the
subsequent failure leave protocol.

HA_GS_DEACTIVATE_UNSUCCESSFUL
This flag is set when a deactivate script exited with an unsuccessful
return value.

HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED
This flag is set when a deactivate script did not exit within the specified
time limit.

The gs_proposal field points to the proposal block for the proposal on which the
vote is requested. For information about this block, see the
ha_gs_n_phase_callback man page.

 Restrictions
For important information about multiprocessing considerations that apply to all
callback routines, see the ha_gs_n_phase_callback man page.

 Return Values
None.

 Error Values
None.

102 RS/6000 Cluster Technology Group Services Programming

 ha_gs_protocol_rejected_callback

 Synchronous Errors
None.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_change_state_value ,
ha_gs_send_message , ha_gs_leave , ha_gs_expel , ha_gs_change_attributes
ha_gs_goodbye

 Chapter 2. Group Services Subroutine Reference 103

 ha_gs_quit

 ha_gs_quit Subroutine

 Purpose
ha_gs_quit – Called by a GS client to terminate its connection to the Group
Services subsystem

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

void
 ha_gs_quit(void)

 Parameters
None.

 Description
When a GS client no longer needs to use the Group Services subsystem, it should
call the ha_gs_quit subroutine to terminate its connection to the Group Services
subsystem. This allows Group Services to release the resources associated with
the GS client.

If the GS client is still joined as a provider to any groups, the Group Services
subsystem will notify the groups that the provider has failed, and the groups will
execute a failure leave protocol. If the GS client wants to leave a group without
terminating its connection, it should use the ha_gs_leave subroutine or the
ha_gs_goodbye subroutine.

See the discussion of multi-threaded GS clients under “ha_gs_dispatch
Subroutine” on page 63.

 Restrictions
The calling process must be a GS client.

 Return Values
None.

 Error Values
None.

104 RS/6000 Cluster Technology Group Services Programming

 ha_gs_quit

 Synchronous Errors
None.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_dispatch

 Chapter 2. Group Services Subroutine Reference 105

 ha_gs_responsiveness_callback

 ha_gs_responsiveness_callback Subroutine

 Purpose
ha_gs_responsiveness_callback – A callback routine that the Group Services
subsystem calls to deliver a responsiveness notification to a GS client

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_callback_rc_t
 ha_gs_responsiveness_callback(
 const ha_gs_responsiveness_notification_t \notification)

 Parameters
notification A pointer to a responsiveness notification block.

 Description
The ha_gs_responsiveness_callback subroutine defines a GS client's
responsiveness callback routine. The GS client uses it to handle responsiveness
notifications from the Group Services subsystem. The process provides the address
of the responsiveness callback routine to the Group Services subsystem on the
ha_gs_init subroutine during GSAPI initialization. The Group Services subsystem
then calls the responsiveness callback routine when it has a responsiveness
notification to deliver to the GS client.

The responsiveness callback routine is called at intervals. Therefore, in addition to
responding to the Group Services subsystem, the GS client can also use the
routine to perform validity checks on its own operation or its environment.

On input, the responsiveness callback routine receives a pointer to the
responsiveness notification block. The responsiveness notification block has the
following definition:

typedef struct {
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_responsiveness_t gs_responsiveness_information;
} ha_gs_responsiveness_notification_t;

The gs_notification_type field contains the type of notification. For a
responsiveness notification, it contains a value of
HA_GS_RESPONSIVENESS_NOTIFICATION .

The gs_responsiveness_information field contains the responsiveness control
structure that was specified on input to the ha_gs_init subroutine when this
process initialized itself with the Group Services subsystem. This structure specifies
the method, if any, that will be used to perform responsiveness checks for this

106 RS/6000 Cluster Technology Group Services Programming

 ha_gs_responsiveness_callback

process and how frequently the checks should be performed. For details on the
responsiveness control structure, see ha_gs_init .

 Restrictions
For important information about multiprocessing considerations that apply to all
callback routines, see the ha_gs_n_phase_callback man page.

 Return Values
On output, the Group Services subsystem expects the responsiveness callback
routine to return a code that indicates whether the GS client is operational. If it is,
the ha_gs_responsiveness_callback subroutine should return a value of
HA_GS_CALLBACK_OK .

 Error Values
If the GS client has detected an internal problem that prevents its correct operation,
the ha_gs_responsiveness_callback subroutine should return a value of
HA_GS_CALLBACK_NOT_OK . In response, the Group Services subsystem
considers the process to be nonresponsive and sends an announcement
notification to the group's providers that lists the nonresponsive providers.

 Synchronous Errors
None.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutine: ha_gs_init , ha_gs_expel

 Chapter 2. Group Services Subroutine Reference 107

 ha_gs_send_message

 ha_gs_send_message Subroutine

 Purpose
ha_gs_send_message – Called by a provider of a group to broadcast message
data to all of the providers in the group

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_send_message(
 ha_gs_token_t provider_token,

const ha_gs_proposal_info_t \proposal_info)

 Parameters
provider_token A token that identifies the caller as a provider of the group. This

token was previously initialized when the provider joined the group
using the ha_gs_join subroutine.

proposal_info A pointer to a buffer that contains a proposal information block,
which describes the proposed provider-broadcast message
request.

 Description
The ha_gs_send_message subroutine is used by a provider of a Group Services
group to broadcast message data to all of the providers of the group.

If the request is specified as a one-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal protocol
approval procedures.

If the request is specified as an n-phase protocol, and Group Services chooses to
execute this protocol, the group's providers are notified using normal n-phase
voting procedures.

If the Group Services subsystem chooses not to execute this protocol (because
another protocol is already in progress), the HA_GS_COLLIDE error number is
returned either synchronously or asynchronously, depending on when the error is
detected. Asynchronous errors are delivered through the delayed error callback
routine. Otherwise, the proposal will initiate a protocol within the group.

Information about the provider-broadcast message request is supplied through the
provider-broadcast message request block, which is a type of proposal information
block. On the ha_gs_send_message subroutine, specify the proposal information
block as a provider-broadcast message request block. For the definition of the
proposal information block, see the ha_gs_delayed_error_callback man page.

108 RS/6000 Cluster Technology Group Services Programming

 ha_gs_send_message

The provider-broadcast message request block has the following definition:

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_provider_message_t \gs_message;
} ha_gs_message_request_t;

The gs_num_phases field specifies whether the provider-broadcast message
protocols are to be n-phase or one-phase protocols. It can take one of the following
values:

HA_GS_1_PHASE
The protocols are to be one-phase protocols. One-phase protocols are
automatically approved.

HA_GS_N_PHASE
The protocols are to be n-phase protocols, which put the group into
multi-phase voting.

The gs_time_limit field contains the voting phase time limit, in seconds. This is the
number of seconds within which each provider must register its vote for each phase
of an n-phase protocol. If the field is set to a value of 0, no limit is enforced.

The gs_message field points to a buffer that contains the message that is to be
broadcast to providers by a message-with-voting proposal. The provider-broadcast
message has the following definition:

typedef struct {
 int gs_length;
 char \gs_message;
} ha_gs_provider_message_t;

The gs_length field contains the length, in bytes, of the message to be broadcast
to providers. It must be a value between 1 and 2048.

The gs_message field points to a buffer that contains the message.
Provider-broadcast messages are defined by the application that is using the
GSAPI and are controlled by the providers in a way that is meaningful to the
application. Provider-broadcast messages are not interpreted by the Group
Services subsystem.

 Restrictions
The calling process must be a provider.

 Return Values
If the ha_gs_send_message subroutine is successful, it returns a value of 0
(HA_GS_OK). Group Services has accepted the request and will asynchronously
attempt to execute the proposed protocol.

 Chapter 2. Group Services Subroutine Reference 109

 ha_gs_send_message

 Error Values
If the ha_gs_send_message subroutine is unsuccessful, it returns an error
number. If the error is detected immediately, an error is returned synchronously. If
the error is detected after the call has been accepted, an error is returned
asynchronously.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_send_message
subroutine:

HA_GS_BAD_MEMBER_TOKEN
The given provider_token does not specify a valid provider joined
to a group.

HA_GS_BAD_PARAMETER
The number of phases specified for the protocol is not allowable; it
must be HA_GS_1_PHASE or HA_GS_N_PHASE .

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_COLLIDE
The provider's group is already executing a protocol; or this
provider has already submitted a protocol request.

HA_GS_NOT_A_MEMBER
The given provider_token does not specify a valid group.

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

 Asynchronous Errors
The following errors may be returned asynchronously by the
ha_gs_send_message subroutine:

HA_GS_NOT_A_MEMBER
The provider that is proposing the protocol is no longer a provider
for the specified group.

HA_GS_BAD_PARAMETER
The specified parameter was not valid.

HA_GS_COLLIDE
Another protocol is already active for this group.

 Files
ha_gs.h

110 RS/6000 Cluster Technology Group Services Programming

 ha_gs_send_message

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_join , ha_gs_change_state_value , ha_gs_leave ,
ha_gs_expel , ha_gs_subscribe , ha_gs_change_attributes , ha_gs_goodbye

 Chapter 2. Group Services Subroutine Reference 111

 ha_gs_subscribe

 ha_gs_subscribe Subroutine

 Purpose
ha_gs_subscribe – Called by a GS client to join a group as a subscriber

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_subscribe(
 ha_gs_token_t \subscriber_token,

const ha_gs_proposal_info_t \proposal_info)

 Parameters
subscriber_token

A pointer to a token that will be returned by the Group Services
subsystem that is used to identify the membership of the GS client
in the group as a subscriber. The GS client must pass a copy of
the token on all subsequent GSAPI calls that refer to the group.
The GSAPI passes a copy of the token to the GS client on all
subsequent callbacks that refer to the group.

proposal_info A pointer to a buffer that contains a proposal information block,
which describes the proposed subscribe request.

 Description
The ha_gs_subscribe subroutine is used by a GS client to register as a subscriber
for a Group Services group. If the named group does not already exist, the
HA_GS_UNKNOWN_GROUP error number is returned asynchronously by the
delayed error callback routine.

Note that subscribers are known only to the Group Services subsystem. The
providers of the group and the other subscribers of the group are unaware of any of
the subscribers to the group.

In addition to groups defined by providers, a GS client can subscribe to a number
of system-defined groups. These provide status information about nodes and
various communications adapters. A listing of these groups appears later in this
section. Additional information about these concepts is in the section “Host and
Adapter Membership Groups” on page 42 .

Information about the subscribe request is supplied through the subscribe request
block, which is a type of proposal information block. On the ha_gs_subscribe
subroutine, specify the proposal information block as a subscribe request block. For
the definition of the proposal information block, see the
ha_gs_delayed_error_callback man page.

112 RS/6000 Cluster Technology Group Services Programming

 ha_gs_subscribe

The subscribe request block has the following definition:

typedef struct {
 ha_gs_subscription_ctrl_t gs_subscription_requested;
 ha_gs_group_name_t gs_subscription_group;
 ha_gs_subscriber_cb_t \gs_subscription_callback;
} ha_gs_subscribe_request_t;

The gs_subscription_requested field contains one or more flags that indicate the
types of information that the subscriber wishes to receive about changes to the
subscribed-to group. A GS client may subscribe to changes in the group's state, its
membership list, or both.

The flags are not exclusive and may be specified in any combination by ORing the
individual flags together. The flags that may be specified are:

HA_GS_SUBSCRIBE_STATE
The subscriber wants to receive the group's state value whenever the
state value is updated.

HA_GS_SUBSCRIBE_DELTA_JOINS
The subscriber wants to receive the set of providers that are joining the
group, whenever a join occurs.

HA_GS_SUBSCRIBE_DELTA_LEAVES
The subscriber wants to receive the set of providers that are leaving the
group, whenever a voluntary leave or an involuntary leave (failure leave)
occurs.

HA_GS_SUBSCRIBE_DELTAS_ONLY
The subscriber wants to receive both the set of providers that are joining
the group, whenever a join occurs, and the set of providers that are
leaving the group, whenever a leave occurs.

HA_GS_SUBSCRIBE_MEMBERSHIP
The subscriber wants to receive a full list of providers in the group,
whenever a membership change (either join or leave) occurs. If this flag
is specified along with either of the delta flags, the delta list and the full
membership list are given as two separate lists during membership
changes. The delta flags free the subscriber from having to determine
the changing members by comparing full membership lists after getting
notifications.

If HA_GS_SUBSCRIBE_MEMBERSHIP is not specified, but at least
one of the delta flags is specified, the subscriber still receives the full list
of providers in the group on the first subscription notification that
contains membership data for the group. Subsequent notifications
contain only the delta list of joining or leaving providers.

HA_GS_SUBSCRIBE_ALL_MEMBERSHIP
The subscriber wants to receive on all subscription notifications that
contain membership information both the full set of providers in the
group and the delta list of joining or leaving providers.

HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP
The subscriber wants to receive all of the information described by the
other flags.

 Chapter 2. Group Services Subroutine Reference 113

 ha_gs_subscribe

The gs_subscription_group field points to a string that contains the name of the
group to which the caller wishes to subscribe.

The gs_subscription_callback field points to the callback routine that is to be
called when Group Services has a notification to deliver that contains data that
satisfies this subscription request. A pointer to a valid function must be given in the
gs_subscription_callback field. If a NULL pointer is given, a synchronous error of
HA_GS_BAD_PARAMETER will be returned on the call to ha_gs_subscribe . If
the pointer is not NULL but does not point to an executable function, then
unpredictable results, such as fatal program failure, may occur during execution of
your program.

A process can also subscribe for host or adapter membership information as
follows.

These groups are specified for subscription by using the following constants:

� If a GS client is executing in the Group Services PSSP domain (refer to
'ha_gs_init Subroutine' on page 73 for more information), the following four
system-defined groups may be specified for subscription:

� The HA_GS_HOST_MEMBERSHIP_GROUP constant, for subscriptions for
host membership information

� The HA_GS_ENET_MEMBERSHIP_GROUP constant, for subscriptions for
ethernet adapter information

� The HA_GS_CSS_MEMBERSHIP_GROUP constant, for subscriptions for
globally-consistent SP Switch adapter information

� The HA_GS_CSSRAW_MEMBERSHIP_GROUP constant, for subscriptions for
non–globally consistent SP Switch adapter information

� If a GS client is executing within the HACMP/ES Group Services domain (refer
to 'ha_gs_init Subroutine' on page 73 for more information), the following
system-defined groups may also be available in addition to the above:

– The HA_GS_TOKENRING_MEMBERSHIP_GROUP constant, for
subscriptions for token ring adapter information

– The HA_GS_ATM_MEMBERSHIP_GROUP constant, for subscriptions for
ATM adapter information

– The HA_GS_FDDI_MEMBERSHIP_GROUP constant, for subscriptions for
fddi adapter information

– The HA_GS_RS232_MEMBERSHIP_GROUP constant, for subscriptions
for rs232 heartbeating adapter information

– The HA_GS_TMSCSI_MEMBERSHIP_GROUP constant, for subscriptions
for target-mode SCSI heartbeating adapter information

– The HA_GS_TMSSA_MEMBERSHIP_GROUP constant, for subscriptions
for target-mode SSA heartbeating adapter information

If the SP on which the GS client is executing does not have an SP Switch, or the
SP Switch is not currently active on any nodes, a request to subscribe to
HA_GS_CSS_MEMBERSHIP_GROUP will result in an asynchronous
HA_GS_UNKNOWN_GROUP delayed error.

114 RS/6000 Cluster Technology Group Services Programming

 ha_gs_subscribe

If the node on which the GS client is executing does not have an active SP Switch
adapter, then a request to subscribe to
HA_GS_CSSRAW_MEMBERSHIP_GROUP will result in an asynchronous
HA_GS_UNKNOWN_GROUP delayed error. It is also possible to receive
subscription “special” data on notifications for this group. (See Appendix A,
“Subscription Special Data” on page 225.)

If a GS client is executing in the Group Services PSSP domain and attempts to
subscribe to one of the Group Services HACMP/ES domain system-defined groups,
it will result in an asynchronous HA_GS_UNKNOWN_GROUP delayed error.

The availability of information from the adapter membership groups supported
within the HACMP/ES Group Services domain depends upon the set of networks
defined to HACMP/ES for heartbeating. You can specify any of the
above-mentioned groups; however, the GS client will receive an asynchronous
HA_GS_UNKNOWN_GROUP delayed error in the following cases:

1. The requested adapter type is not installed on any of the nodes in this
HACMP/ES cluster.

2. The requested adapter type is installed on one or more of the nodes in this
HACMP/ES cluster, but the adapter type is not specified to HACMP/ES for use
in heartbeating.

3. The requested adapter type is installed on one or more of the nodes in this
HACMP/ES cluster and the adapter type is specified to HACMP/ES for use in
heartbeating, but one of the following two cases exist:

a. None of the adapters of that type on any nodes within the domain are
currently active.

b. None of the adapters of that type are active on this node.

In any case where the GS client receives an asynchronous delayed error on a
subscription request, it may want to wait a period of time and reissue the request,
as adapters may have become active in the interim.

For all subscriptions to system-defined groups, all controls and notifications act very
much like those for subscriptions to user-defined groups. The subscription control
flags in the gs_subscription_requested field may be used to control the level of
information received by the subscriber for the host or adapter membership group
notifications.

Notifications for host or adapter membership look the same as notifications for any
other group; each active node or adapter is represented as a provider. The
instance number for each node “provider” is a value of 0 and the node number for
each node “provider” is its node number. The instance number for each adapter
“provider” is its adapter interface number (for example, a value of 2 for en2) and
the node number for each adapter “provider” is the node on which it is installed.

Nodes and adapters are ordered from "oldest" to "youngest," The oldest node or
adapter (that is, the first node or adapter to join its membership group) is at the
head of the list and the youngest is at the end.

 Chapter 2. Group Services Subroutine Reference 115

 ha_gs_subscribe

 Restrictions
The calling process must be a GS client.

 Return Values
If the ha_gs_subscribe subroutine is successful, it returns a value of 0
(HA_GS_OK) and the subscriber_token field is set to the token that identifies this
subscriber's connection to the group.

Note that subscriber tokens are assigned, invalidated, and reassigned in a manner
similar to the way in which file descriptors are assigned, invalidated, and
reassigned as files are opened and closed.

Here is an example.

A GS client subscribes to group bar and receives subscriber token 2. When the
same client unsubscribes from group bar or becomes unsubscribed because group
bar is dissolved, Group Services invalidates subscriber token 2 and makes it
available for reassignment. When the next GS client (it could be the same or a
different GS client) subscribes to the next group (it could be the same or a different
group), Group Services assigns subscriber token 2 to that client.

 Error Values
If the ha_gs_subscribe subroutine is unsuccessful, it returns an error number and
the contents of the subscriber_token field are undefined. If the error is detected
immediately, an error is returned synchronously. If the error is detected after the
call has been accepted, an error is returned asynchronously.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_subscribe
subroutine:

HA_GS_BAD_PARAMETER
The subscription control flags contain invalid values; or the group
name is not specified or is zero length.

HA_GS_NAME_TOO_LONG
The group name specified is too long.

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_NO_MEMORY
The GS library is unable to allocate memory. The GS client should
re-try the request.

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

116 RS/6000 Cluster Technology Group Services Programming

 ha_gs_subscribe

 Asynchronous Errors
The following errors may be returned asynchronously by the ha_gs_subscribe
subroutine:

HA_GS_BAD_PARAMETER
The specified parameter was not valid.

HA_GS_UNKNOWN_GROUP
The group that was specified on the call to the ha_gs_subscribe
subroutine does not exist.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_unsubscribe

 Chapter 2. Group Services Subroutine Reference 117

 ha_gs_subscriber_callback

 ha_gs_subscriber_callback Subroutine

 Purpose
ha_gs_subscriber_callback – A callback routine that the Group Services
subsystem calls to deliver a subscription notification to a GS client

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

void
 ha_gs_subscriber_callback(
 const ha_gs_subscription_notification_t \notification)

 Parameters
notification A pointer to a subscription notification block.

 Description
The ha_gs_subscriber_callback subroutine defines a GS client's subscriber
callback routine. The GS client uses it to handle subscription notifications from the
Group Services subsystem. The process provides the address of the subscriber
callback routine to the Group Services subsystem on the ha_gs_subscribe
subroutine when it joins the group as a subscriber. The Group Services subsystem
then calls the subscriber callback routine when it has a subscription notification to
deliver to the GS client. A subscription notification is delivered when a protocol is
approved in a group to which the process is subscribed and the protocol modifies
the group's membership or state value.

If the gs_subscription_type field has a value of
HA_GS_SUBSCRIPTION_DISSOLVED , the subscriber's connection to the Group
Services subsystem will be closed as soon as the subscriber callback routine
returns.

On input, the subscriber callback routine receives a pointer to the subscription
notification block. The subscription notification block has the following definition:

typedef struct {
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_subscriber_token;
 ha_gs_subscription_type_t gs_subscription_type;
 ha_gs_state_value_t \gs_state_value;
 ha_gs_membership_t \gs_full_membership;
 ha_gs_membership_t \gs_changing_membership;
 ha_gs_special_data_t \gs_subscription_special_data;
} ha_gs_subscription_notification_t;

The gs_notification_type field contains the type of notification. For a subscription
notification, it contains a value of HA_GS_SUBSCRIPTION_NOTIFICATION .

118 RS/6000 Cluster Technology Group Services Programming

 ha_gs_subscriber_callback

The gs_subscriber_token field contains a token that identifies the caller as a
subscriber of the group. This token was previously initialized when the subscriber
joined the group using the ha_gs_subscribe subroutine. If the
gs_subscription_type field has a value of
HA_GS_SUBSCRIPTION_DISSOLVED , this token no longer specifies a valid
subscription.

The gs_subscription_type field contains one or more flags that indicate the type
of change for which this subscription notification is being delivered. It can contain
one or more of the following flags:

HA_GS_SUBSCRIPTION_STATE
The notification contains the updated group state value. This flag may
appear with any of the other flags.

HA_GS_SUBSCRIPTION_DELTA_JOIN
The notification contains the set of joining providers.

Joining and leaving providers are not listed together in a single
notification. Therefore, no notification will contain both the
HA_GS_SUBSCRIPTION_DELTA_JOIN and
HA_GS_SUBSCRIPTION_DELTA_LEAVE flags.

HA_GS_SUBSCRIPTION_DELTA_LEAVE
The notification contains the set of leaving providers.

Joining and leaving providers are not listed together in a single
notification. Therefore, no notification will contain both the
HA_GS_SUBSCRIPTION_DELTA_JOIN and
HA_GS_SUBSCRIPTION_DELTA_LEAVE flags.

HA_GS_SUBSCRIPTION_MEMBERSHIP
The notification contains the complete updated membership list. This
flag may appear with either the HA_GS_SUBSCRIPTION_DELTA_JOIN
and HA_GS_SUBSCRIPTION_DELTA_LEAVE flags.

HA_GS_SUBSCRIPTION_DISSOLVED
The group that was subscribed to has dissolved; all providers have left
the group. This flag may appear with any of the other flags.

The subscription is deactivated. To start receiving notifications again, the
subscriber must resubscribe to the group. If the group does not exist
because providers have not rejoined it, each subscription request
receives an asynchronous error code of HA_GS_UNKNOWN_GROUP .

HA_GS_SUBSCRIPTION_GS_HAS_DIED
The group that was subscribed to has dissolved because the Group
Services daemon has died. This flag appears with the
HA_GS_SUBSCRIPTION_DISSOLVED flag.

The subscription is deactivated and the subscriber's connection to the
Group Services daemon is terminated. Before calling any Group
Services subroutines, the (former) subscriber must wait until control
returns from the ha_gs_dispatch subroutine. Failure to do so may
result in an application hang.

After the ha_gs_dispatch subroutine returns, the former subscriber
must reinitialize the connection to Group Services by calling the
ha_gs_init subroutine and then take any other necessary actions to
resubscribe to the group.

 Chapter 2. Group Services Subroutine Reference 119

 ha_gs_subscriber_callback

If the HA_GS_SUBSCRIPTION_STATE flag is set in the gs_subscription_type
field, the gs_state_value field points to a buffer that contains the new value for the
group's state. For the definition of the group state value, see the
ha_gs_change_state_value man page.

If the HA_GS_SUBSCRIBE_MEMBERSHIP flag is set in the
gs_subscription_type field, the gs_full_membership field points to the full
updated list of providers that currently belong to the group. It has the following
definition:

typedef struct {
 ulong gs_count;
 ha_gs_provider_t \gs_providers;
} ha_gs_membership_t;

The gs_count field contains the number of providers in the list.

The gs_providers field points to the list of providers. Each provider is described by
a provider information block, which is defined in the ha_gs_n_phase_callback
man page.

If the HA_GS_SUBSCRIBE_DELTA_JOIN or
HA_GS_SUBSCRIBE_DELTA_LEAVE flag is set in the gs_subscription_type
field, the gs_changing_membership field points to the list of changing (either
joining or leaving) providers rather than the full membership list. The membership
list has the following definition:

typedef struct {
 ulong gs_count;
 ha_gs_provider_t \gs_providers;
} ha_gs_membership_t;

The gs_count field contains the number of providers in the list.

The gs_providers field points to the list of providers. Each provider is described by
a provider information block, which is defined in the ha_gs_n_phase_callback
man page.

The gs_subscription_special_data field contains the special group-specific
subscription data; it is valued only if gs_subscription_type has
HA_GS_SUBSCRIPTION_SPECIAL_DATA set on.

For more details, see Appendix A, “Subscription Special Data” on page 225.

 Restrictions
For important information about multiprocessing considerations that apply to all
callback routines, see the ha_gs_n_phase_callback man page.

 Return Values
None.

120 RS/6000 Cluster Technology Group Services Programming

 ha_gs_subscriber_callback

 Error Values
None.

 Synchronous Errors
None.

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_init , ha_gs_subscribe

 Chapter 2. Group Services Subroutine Reference 121

 ha_gs_unsubscribe

 ha_gs_unsubscribe Subroutine

 Purpose
ha_gs_unsubscribe – Called by a subscriber to unregister as a subscriber for a
group

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_unsubscribe(
 ha_gs_token_t subscriber_token)

 Parameters
subscriber_token

A token that identifies the subscription to be removed. This token
was previously initialized when the subscriber requested the
subscription using the ha_gs_subscribe subroutine.

 Description
The ha_gs_unsubscribe subroutine is used by a subscriber to unregister as a
subscriber for a group.

Note that subscribers are known only to the Group Services subsystem. The
providers of the group and the other subscribers of the group are unaware of any of
the subscribers to the group.

 Restrictions
The calling process must be a subscriber.

 Return Values
If the ha_gs_unsubscribe subroutine is successful, it returns a value of 0
(HA_GS_OK).

 Error Values
If the ha_gs_unsubscribe subroutine is unsuccessful, it returns an error number.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

122 RS/6000 Cluster Technology Group Services Programming

 ha_gs_unsubscribe

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_unsubscribe
subroutine:

HA_GS_BAD_MEMBER_TOKEN
The given subscriber_token does not specify a valid subscription
to a group.

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

 Asynchronous Errors
None.

 Files
ha_gs.h

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutine: ha_gs_subscribe , ha_gs_init

 Chapter 2. Group Services Subroutine Reference 123

 ha_gs_vote

 ha_gs_vote Subroutine

 Purpose
ha_gs_vote – Called by a provider of a group to submit its vote on a proposal
during a voting phase of an executing protocol

 Library
GSAPI Thread-Safe Library (libha_gs_r.a)

GSAPI Library (not thread-safe) (libha_gs.a)

 Syntax
#include <ha_gs.h>

ha_gs_rc_t
 ha_gs_vote (
 ha_gs_token_t provider_token,
 ha_gs_vote_value_t vote_value,
 const ha_gs_state_value_t \proposed_state_value,
 const ha_gs_provider_message_t \provider_message,
 ha_gs_vote_value_t default_vote_value)

 Parameters
provider_token A token that identifies the caller as a provider of the group. This

token was previously initialized when the provider joined the group
using the ha_gs_join subroutine.

vote_value A field that contains the value of the vote. It can take one of the
following values:

HA_GS_VOTE_APPROVE
Approve the proposal.

HA_GS_VOTE_CONTINUE
Neither approve nor reject the proposal right now, but
propose another voting phase (continue to another
voting phase).

HA_GS_VOTE_REJECT
Reject the proposal.

proposed_state_value
An optional updated state value for the group. If the provider does
not wish to propose an updated state value, specify a null pointer.

For information on the definition of a group's state value, see the
ha_gs_change_state_value man page.

provider_message
An optional provider-broadcast message to be sent to the
providers as part of the next notification for this protocol. If the
provider does not wish to send a message, specify a null pointer.
For information on the definition of this message, see the
ha_gs_send_message man page.

124 RS/6000 Cluster Technology Group Services Programming

 ha_gs_vote

default_vote_value
The default vote value to be used by the group if any provider fails
to vote during this phase. It can take one of the following values:

HA_GS_NULL_VOTE
A null vote. This value keeps the default vote at its
previous value.

HA_GS_VOTE_APPROVE
Approve the proposal.

HA_GS_VOTE_REJECT
Reject the proposal.

 Description
The ha_gs_vote subroutine is used by a provider of a Group Services group to
submit its vote on a proposal during a voting phase of an executing protocol.

When an application has selected an n-phase protocol, providers will be expected
to vote on proposed changes to the group. A change in either the group's state or
its membership may be voted on. When a vote is requested, the appropriate
callback routine is called for each of the providers, and each of the providers is
expected to return a vote using this subroutine within the time limit previously
established by the group.

This subroutine operates synchronously.

Voting results are tallied as follows:

� If all providers vote to APPROVE the proposal in the same voting phase, the
protocol is approved.

� If any one provider votes to CONTINUE to another voting phase, the protocol
proceeds to another voting phase.

� If any one provider votes to REJECT the proposal, the protocol is rejected and
ends, regardless of any other votes.

Default votes are applied as if they were specified by the providers, except in the
case of failure leave protocols.

If multiple providers, in the same voting phase, submit state value changes and/or
provider messages, the Group Services subsystem chooses only one of each.
Therefore, if different providers submit different values, it is arbitrary which values
the Group Services subsystem will choose.

� If all providers submit the same values, then it does not matter which values
are chosen.

� If only one provider submits values (that is, all of the other providers submit null
values), then the Group Services subsystem chooses that provider's
submission.

� If different providers can submit different values, they must be prepared to see
other values chosen.

 Chapter 2. Group Services Subroutine Reference 125

 ha_gs_vote

 Restrictions
The calling process must be a provider. The group must be executing an n-phase
protocol.

 Return Values
If the ha_gs_vote subroutine is successful, it returns a value of 0 (HA_GS_OK).

 Error Values
If the ha_gs_vote subroutine is unsuccessful, it returns an error number
synchronously.

The GSAPI error numbers are defined in the ha_gs.h header file. For more
information on GSAPI errors, see “GSAPI Errors (err_gsapi)” on page 130.

 Synchronous Errors
The following errors may be returned synchronously by the ha_gs_vote subroutine:

HA_GS_BAD_MEMBER_TOKEN
The given provider_token does not specify a valid provider joined
to a group.

HA_GS_NO_INIT
The GS client has not yet successfully initialized itself with Group
Services by calling ha_gs_init() .

HA_GS_BAD_PARAMETER
The given vote value is invalid (it must be one of
HA_GS_VOTE_APPROVE , HA_GS_VOTE_CONTINUE, or
HA_GS_VOTE_REJECT); or the given default vote value is invalid
(it must be one of HA_GS_NULL_VOTE ,
HA_GS_VOTE_APPROVE , HA_GS_VOTE_CONTINUE, or
HA_GS_VOTE_REJECT).

HA_GS_NOT_OK
The connection to the GS daemon has been lost. The GS client
needs to reinitialize (via ha_gs_init()).

HA_GS_VOTE_NOT_EXPECTED
The group to which this provider is joined is not currently executing
a protocol.

 Asynchronous Errors
None.

 Files
ha_gs.h

126 RS/6000 Cluster Technology Group Services Programming

 ha_gs_vote

 Prerequisite Information
Chapter 1, “Understanding Group Services” on page 1.

 Related Information
Subroutines: ha_gs_join , ha_gs_change_state_value , ha_gs_send_message ,
ha_gs_change_attributes , ha_gs_goodbye

 Chapter 2. Group Services Subroutine Reference 127

 ha_gs_vote

128 RS/6000 Cluster Technology Group Services Programming

Chapter 3. Group Services Files Reference

This chapter contains the reference material for the error numbers and header files
in the Group Services Application Programming Interface (GSAPI). The files are
listed alphabetically.

 Copyright IBM Corp. 1998 129

 GSAPI Errors and Return Codes

GSAPI Errors (err_gsapi)

 Purpose
GSAPI Errors and Return Codes – Error numbers and return codes for the Group
Services Application Programming Interface (GSAPI)

 Description
The Group Services Application Programming Interface (GSAPI) provides error
numbers and return codes that may be returned either synchronously (that is,
immediately upon return from a subroutine when it is unsuccessful) or
asynchronously through the delayed error callback routine when the error condition
is detected at a later time.

The GSAPI error numbers and return codes are defined in the ha_gs.h header file,
as follows:

HA_GS_BAD_GROUP_ATTRIBUTES
The group attributes that were specified on a call to the ha_gs_join
subroutine are either invalid or do not the match the group attributes that
were specified by the providers that already belong to the group.

This error number can be returned either synchronously or
asynchronously, depending on when the error was detected.

HA_GS_BAD_MEMBER_TOKEN
The specified token does not represent a valid provider or subscriber
instance for this client.

This error number is returned synchronously.

HA_GS_BAD_PARAMETER
The specified parameter was not valid.

This error number can be returned either synchronously or
asynchronously, depending on when the error was detected.

HA_GS_BACKLEVEL_PROVIDERS
A protocol request was made, and the group contains active providers
that were compiled against an older level of the Group Services client
interface library that does not support the new protocol request.

This error number is returned asynchronously.

HA_GS_COLLIDE
Another protocol is already active for this group.

This error number can be returned either synchronously or
asynchronously, depending on when the error was detected. This error
number is returned in response to the protocol requests resulting from
calls to the following subroutines: ha_gs_change_state_value ,
ha_gs_send_message , and ha_gs_leave .

HA_GS_CONNECT_FAILED
The Group Services subsystem could not complete the connection.
Possible causes are: the Group Services daemon is not running or it is
not ready to accept connections.

This error number is returned synchronously.

130 RS/6000 Cluster Technology Group Services Programming

 GSAPI Errors and Return Codes

HA_GS_DUPLICATE_INSTANCE_NUMBER
The provider instance number that was specified on a call to the
ha_gs_join subroutine is already in use for this group on this node.

This error number is returned asynchronously through the delayed error
callback routine.

HA_GS_EXISTS
The GSAPI has already been initialized by a previous call to the
ha_gs_init subroutine.

This error number is returned synchronously.

HA_GS_INVALID_DEACTIVATE_PHASE
The process specified a phase other than 0 or 1 on the call to the
ha_gs_expel subroutine for a one-phase expel protocol.

This error number is returned synchronously.

HA_GS_INVALID_GROUP
The process does not have permission to join the group that was
specified on the call to the ha_gs_join subroutine. For example, this
error number would be returned in response to an attempt to join a
system-defined group such as the host membership group or an adapter
membership group.

This error number is returned asynchronously through the delayed error
callback routine.

HA_GS_INVALID_SOURCE_GROUP
The process specified an invalid source group on the call to the
ha_gs_join subroutine. For example, this error number would be
returned in response to an attempt to specify as a source group a
system-defined group such as the host membership group or an adapter
membership group.

This error number is returned synchronously.

HA_GS_NAME_TOO_LONG
A name string was specified that was longer than that given by the
HA_GS_MAX_GROUP_NAME_LENGTH symbolic constant.

This error number is returned synchronously.

HA_GS_NO_INIT
An attempt was made to use the GSAPI without initializing it by calling
the ha_gs_init subroutine.

This error number is returned synchronously.

HA_GS_NO_MEMORY
The Group Services subsystem could not allocate required memory.

This error number is returned synchronously.

HA_GS_NO_SOURCE_GROUP_PROVIDER
A call to the ha_gs_join subroutine specified a source-group name, and
there is no provider from that source-group already active on this node.

This error number is returned asynchronously through the delayed error
callback routine.

 Chapter 3. Group Services Files Reference 131

 GSAPI Errors and Return Codes

HA_GS_NOT_A_MEMBER
The provider that is proposing the protocol is no longer a provider for
the specified group.

This error number is returned asynchronously through the delayed error
callback routine. It can be returned in response to the protocol requests
resulting from calls to the following subroutines:
ha_gs_change_state_value , ha_gs_send_message , and
ha_gs_leave .

HA_GS_NOT_OK
An error occurred.

This error number is returned synchronously.

HA_GS_NOT_SUPPORTED
The requested function is not currently supported.

This error number is returned synchronously.

HA_GS_OK
The subroutine was successful.

This return code is returned synchronously.

HA_GS_SOCK_CREATE_FAILED
The Group Services subsystem could not create a socket for
communication.

This error number is returned synchronously.

HA_GS_SOCK_INIT_FAILED
The Group Services subsystem could not initialize the socket for
communication.

This error number is returned synchronously.

HA_GS_UNKNOWN_GROUP
The group that was specified on the call to the ha_gs_subscribe
subroutine does not exist.

This error number is returned asynchronously through the delayed error
callback routine.

HA_GS_UNKNOWN_PROVIDER
At least one of the providers that was specified in an expel protocol is
not a member of the specified group.

This error number can be returned either synchronously or
asynchronously, depending on when the error was detected. This error
number is returned in response to the protocol requests resulting from
calls to the ha_gs_expel subroutine.

HA_GS_VOTE_NOT_EXPECTED
A vote was received but was not expected. Either no protocol was in
progress or the Group Services subsystem already received a vote for
this protocol.

This error number is returned synchronously.

132 RS/6000 Cluster Technology Group Services Programming

 GSAPI Errors and Return Codes

 Related Information
GSAPI subroutines: ha_gs_change_state_value , ha_gs_dispatch , ha_gs_expel ,
ha_gs_init , ha_gs_join , ha_gs_leave , ha_gs_quit , ha_gs_send_message ,
ha_gs_subscribe , ha_gs_unsubscribe , ha_gs_vote , ha_gs_change_attributes ,
ha_gs_goodbye

GSAPI header file: ha_gs.h

 Chapter 3. Group Services Files Reference 133

 ha_gs.h

 ha_gs.h File

 Purpose
ha_gs.h – Header file for the Group Services Application Programming Interface
(GSAPI)

 Description
The ha_gs.h header file provides data types and structures for use with the Group
Services Application Programming Interface (GSAPI) subroutines, which reside in
the libha_gs.a library. Any program that uses the GSAPI subroutines must include
this file, which resides in the /usr/include directory.

The following listing shows the contents of the ha_gs.h file.
#ifndef _HA_GS_H_
#define _HA_GS_H_
/\\\/
/\ \/
/\ CPRY PGM \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ 5765-529 PSSP \/
/\ \/
/\ (C) Copyright IBM Corp. 1996 All Rights Reserved. \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or disclosure \/
/\ restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ CPRY \/
/\\\/

#ifdef __cplusplus
extern "C" {
#endif

#define HA_GS_RELEASE 4

typedef enum
{
 HA_GS_OK,

HA_GS_OK_SO_FAR = HA_GS_OK,
 HA_GS_NOT_OK,
 HA_GS_EXISTS,
 HA_GS_NO_INIT,
 HA_GS_NAME_TOO_LONG,
 HA_GS_NO_MEMORY,
 HA_GS_NOT_A_MEMBER,
 HA_GS_BAD_CLIENT_TOKEN,
 HA_GS_BAD_MEMBER_TOKEN,
 HA_GS_BAD_PARAMETER,
 HA_GS_UNKNOWN_GROUP,
 HA_GS_INVALID_GROUP,
 HA_GS_NO_SOURCE_GROUP_PROVIDER,
 HA_GS_BAD_GROUP_ATTRIBUTES,
 HA_GS_WRONG_OLD_STATE,
 HA_GS_DUPLICATE_INSTANCE_NUMBER,
 HA_GS_COLLIDE,
 HA_GS_SOCK_CREATE_FAILED,
 HA_GS_SOCK_INIT_FAILED,
 HA_GS_CONNECT_FAILED,
 HA_GS_VOTE_NOT_EXPECTED,
 HA_GS_NOT_SUPPORTED,
 HA_GS_INVALID_SOURCE_GROUP,
 HA_GS_UNKNOWN_PROVIDER,

134 RS/6000 Cluster Technology Group Services Programming

 ha_gs.h

 HA_GS_INVALID_DEACTIVATE_PHASE,
 HA_GS_PROVIDER_APPEARS_TWICE,
 HA_GS_BACKLEVEL_PROVIDERS
}ha_gs_rc_t; /\ Return Codes \/

typedef enum
{
 HA_GS_NO_BATCHING = ðxðððð,
 HA_GS_BATCH_JOINS = ðxððð1,
 HA_GS_BATCH_LEAVES = ðxððð2,
 HA_GS_BATCH_BOTH = ðxððð3,

 HA_GS_DEACTIVATE_ON_FAILURE = ðxððð4
} ha_gs_batch_ctrl_t; /\ Controls Batching of Requests \/

typedef enum
{
 HA_GS_1_PHASE = ðxððð1,
 HA_GS_N_PHASE = ðxððð2
} ha_gs_num_phases_t; /\ Protocol number of Phases selection \/

typedef enum
{
 HA_GS_FIRST_MERGE_TYPE,

HA_GS_DISSOLVE_MERGE = HA_GS_FIRST_MERGE_TYPE,
 HA_GS_LARGER_MERGE,
 HA_GS_SMALLER_MERGE,
 HA_GS_DONTCARE_MERGE,

HA_GS_LAST_MERGE_TYPE = HA_GS_DONTCARE_MERGE
} ha_gs_merge_ctrl_t; /\ Controlling Merges \/

typedef enum
{
 HA_GS_NULL_VOTE,
 HA_GS_VOTE_APPROVE,
 HA_GS_VOTE_CONTINUE,
 HA_GS_VOTE_REJECT
} ha_gs_vote_value_t; /\ Allowable Vote Responses \/

typedef enum
{
 HA_GS_SOCKET_NO_SIGNAL,
 HA_GS_SOCKET_SIGNAL
} ha_gs_socket_ctrl_t; /\ Socket Control \/

typedef enum
{
 HA_GS_NON_BLOCKING,
 HA_GS_BLOCKING
} ha_gs_dispatch_flag_t; /\ Modify behavior of ha_gs_dispatch \/

typedef enum
{
 HA_GS_RESPONSIVENESS_NOTIFICATION,
 HA_GS_QUERY_NOTIFICATION,
 HA_GS_DELAYED_ERROR_NOTIFICATION,
 HA_GS_N_PHASE_NOTIFICATION,
 HA_GS_APPROVED_NOTIFICATION,
 HA_GS_REJECTED_NOTIFICATION,
 HA_GS_ANNOUNCEMENT_NOTIFICATION,
 HA_GS_SUBSCRIPTION_NOTIFICATION,
 HA_GS_MERGE_NOTIFICATION
} ha_gs_notification_type_t; /\ Identify types of notifications \/

typedef enum
{
 HA_GS_RESPONSIVENESS,
 HA_GS_JOIN,
 HA_GS_FAILURE_LEAVE,
 HA_GS_LEAVE,
 HA_GS_EXPEL,
 HA_GS_STATE_VALUE_CHANGE,
 HA_GS_PROVIDER_MESSAGE,

 Chapter 3. Group Services Files Reference 135

 ha_gs.h

 HA_GS_CAST_OUT,
 HA_GS_SOURCE_STATE_REFLECTION,
 HA_GS_MERGE,
 HA_GS_SUBSCRIPTION,
 HA_GS_GROUP_ATTRIBUTE_CHANGE,

MAX_REQUEST = HA_GS_GROUP_ATTRIBUTE_CHANGE
} ha_gs_request_t; /\ Type of request a notification was for \/

typedef enum
{
 HA_GS_NO_RESPONSIVENESS,
 HA_GS_PING_RESPONSIVENESS,
 HA_GS_COUNTER_RESPONSIVENESS
} ha_gs_responsiveness_type_t; /\ Type of responsiveness checking \/

typedef enum
{
 HA_GS_NO_CHANGE = ðxðððð,
 HA_GS_PROPOSED_MEMBERSHIP = ðxððð1,
 HA_GS_ONGOING_MEMBERSHIP = ðxððð2,
 HA_GS_PROPOSED_STATE_VALUE = ðxððð4,
 HA_GS_ONGOING_STATE_VALUE = ðxððð8,
 HA_GS_UPDATED_PROVIDER_MESSAGE = ðxðð1ð,
 HA_GS_UPDATED_MEMBERSHIP = ðxðð2ð,
 HA_GS_REJECTED_MEMBERSHIP = ðxðð4ð,
 HA_GS_UPDATED_STATE_VALUE = ðxðð8ð,
 HA_GS_REFLECTED_SOURCE_STATE_VALUE = ðxð1ðð,
 HA_GS_EXPEL_INFORMATION = ðxð2ðð,
 HA_GS_PROPOSED_GROUP_ATTRIBUTES = ðxð4ðð,
 HA_GS_ONGOING_GROUP_ATTRIBUTES = ðxð8ðð,
 HA_GS_UPDATED_GROUP_ATTRIBUTES = ðx1ððð,
 HA_GS_REJECTED_GROUP_ATTRIBUTES = ðx2ððð
} ha_gs_updates_t; /\ Whats Changed \/

typedef enum
{
 HA_GS_MIN_SUMMARY_CODE = ðxððð1,
 HA_GS_EXPLICIT_APPROVE = ðxððð1,
 HA_GS_EXPLICIT_REJECT = ðxððð2,
 HA_GS_DEFAULT_APPROVE = ðxððð4,
 HA_GS_DEFAULT_REJECT = ðxððð8,
 HA_GS_TIME_LIMIT_EXCEEDED = ðxðð1ð,
 HA_GS_PROVIDER_FAILED = ðxðð2ð,
 HA_GS_RESPONSIVENESS_NO_RESPONSE = ðxðð4ð,
 HA_GS_RESPONSIVENESS_RESPONSE = ðxðð8ð,
 HA_GS_GROUP_DISSOLVED = ðxð1ðð,
 HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY = ðxð2ðð,
 HA_GS_DEACTIVATE_UNSUCCESSFUL = ðxð4ðð,
 HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED = ðxð8ðð,
 HA_GS_GROUP_ATTRIBUTES_CHANGED = ðx1ððð,
 HA_GS_MAX_SUMMARY_CODE = ðx1ððð
} ha_gs_summary_code_t; /\ Notification summary \/

typedef enum
{
 HA_GS_CALLBACK_NOT_OK,
 HA_GS_CALLBACK_OK
} ha_gs_callback_rc_t; /\ Callback Return Codes \/

typedef enum
{
 HA_GS_VOLUNTARY_LEAVE = ðxððð1,
 HA_GS_PROVIDER_FAILURE = ðxððð2,
 HA_GS_HOST_FAILURE = ðxððð4,
 HA_GS_PROVIDER_EXPELLED = ðxððð8,

HA_GS_SOURCE_PROVIDER_LEAVE = ðxðð1ð,
HA_GS_PROVIDER_SAID_GOODBYE = ðxðð2ð

} ha_gs_leave_reasons_t;

typedef enum
{
 HA_GS_QUERY_ALL,

136 RS/6000 Cluster Technology Group Services Programming

 ha_gs.h

 HA_GS_QUERY_GROUP
} ha_gs_query_type_t;

typedef enum
{
 HA_GS_SUBSCRIBE_STATE = ðxð1,
 HA_GS_SUBSCRIBE_DELTA_JOINS = ðxð2,
 HA_GS_SUBSCRIBE_DELTA_LEAVES = ðxð4,
 HA_GS_SUBSCRIBE_DELTAS_ONLY = ðxð6,
 HA_GS_SUBSCRIBE_MEMBERSHIP = ðxð8,
 HA_GS_SUBSCRIBE_ALL_MEMBERSHIP = ðxðe,
 HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP = ðxðf
 } ha_gs_subscription_ctrl_t;
typedef enum
{
 HA_GS_SUBSCRIPTION_STATE = ðxð1,
 HA_GS_SUBSCRIPTION_DELTA_JOIN = ðxð2,
 HA_GS_SUBSCRIPTION_DELTA_LEAVE = ðxð4,
 HA_GS_SUBSCRIPTION_MEMBERSHIP = ðxð8,
 HA_GS_SUBSCRIPTION_SPECIAL_DATA = ðx4ð,
 HA_GS_SUBSCRIPTION_DISSOLVED = ðx8ð,
 HA_GS_SUBSCRIPTION_GS_HAS_DIED = ðx1ðð
} ha_gs_subscription_type_t;

typedef int ha_gs_token_t;
typedef int ha_gs_descriptor_t;
typedef unsigned short ha_gs_time_limit_t;

#define HA_GS_MAX_GROUP_NAME_LENGTH 32
typedef char \ha_gs_group_name_t;

/\ Use this name to subscribe to processor membership. \/
#define HA_GS_HOST_MEMBERSHIP_GROUP "HostMembership"

#define HA_GS_ENET_MEMBERSHIP_GROUP "enMembership"
#define HA_GS_CSS_MEMBERSHIP_GROUP "cssMembership"
#define HA_GS_CSSRAW_MEMBERSHIP_GROUP "cssRawMembership"
#define HA_GS_TOKENRING_MEMBERSHIP_GROUP "trMembership"
#define HA_GS_FDDI_MEMBERSHIP_GROUP "fddiMembership"
#define HA_GS_RS232_MEMBERSHIP_GROUP "rs232Membership"
#define HA_GS_TMSCSI_MEMBERSHIP_GROUP "tmscsiMembership"
#define HA_GS_SLIP_MEMBERSHIP_GROUP "slipMembership"
#define HA_GS_ATM_MEMBERSHIP_GROUP "atmMembership"

typedef struct
{
 short gs_version;
 short gs_sizeof_group_attributes;
 short gs_client_version;
 ha_gs_batch_ctrl_t gs_batch_control;
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_num_phases_t gs_source_reflection_num_phases;
 ha_gs_vote_value_t gs_group_default_vote;
 ha_gs_merge_ctrl_t gs_merge_control;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_time_limit_t gs_source_reflection_time_limit;
 ha_gs_group_name_t gs_group_name;
 ha_gs_group_name_t gs_source_group_name;
} ha_gs_group_attributes_t; /\ Identify Group Attributes \/

const short HA_GS_node_number = -1;
const short HA_GS_instance_number = -1;

#define gs_node_number _gs_provider_info._gs_node_number
#define gs_instance_number _gs_provider_info._gs_instance_number

typedef union
{
 struct
 {
 short _gs_instance_number;
 short _gs_node_number;

 Chapter 3. Group Services Files Reference 137

 ha_gs.h

 } _gs_provider_info;
 int gs_provider_id;
} ha_gs_provider_t; /\ Provider ID \/

typedef struct
{
 int gs_length;
 char \gs_state;
} ha_gs_state_value_t; /\ State Vector \/

typedef struct
{
 short gs_version;
 ha_gs_state_value_t gs_group_state_value;
} ha_gs_group_state_t; /\ encapsulation of state vector \/

typedef struct
{
 int gs_length;
 char \gs_message;
} ha_gs_provider_message_t; /\ provider message \/

typedef struct
{
 ha_gs_responsiveness_type_t gs_responsiveness_type;
 unsigned int gs_responsiveness_interval;
 ha_gs_time_limit_t gs_responsiveness_response_time_limit;

void \gs_counter_location;
 unsigned int gs_counter_length;
} ha_gs_responsiveness_t; /\ responsiveness attributes \/

typedef union
{
 struct {
 ha_gs_state_value_t _gs_info_state;
 ha_gs_provider_t _gs_info_providers;
 } _gs_group_info;
 ha_gs_group_name_t gs_groups;
} ha_gs_group_info_t;

#define gs_group_info_state _gs_group_info._gs_info_state
#define gs_group_info_providers _gs_group_info._gs_info_providers

typedef struct
{
 ha_gs_query_type_t gs_query_type;
 ha_gs_rc_t gs_query_return_code;
 int gs_number_of_groups;
 ha_gs_group_info_t \gs_group_info;
} ha_gs_query_info_t;

typedef struct
{
 unsigned long gs_count;
 ha_gs_provider_t \gs_providers;
} ha_gs_membership_t; /\ Membership List \/

typedef struct {
 int gs_deactivate_phase;
 int gs_expel_flag_length;
 char \gs_expel_flag;
} ha_gs_expel_info_t;

typedef struct
{
 unsigned int gs_voluntary_or_failure;
 unsigned int gs_voluntary_leave_code;
} ha_gs_leave_info_t;

typedef struct
{

138 RS/6000 Cluster Technology Group Services Programming

 ha_gs.h

 unsigned long gs_count;
 ha_gs_leave_info_t \gs_leave_codes;
} ha_gs_leave_array_t;

typedef struct {
 unsigned short gs_num_phases;
 unsigned short gs_phase_number;
} ha_gs_phase_info_t;

typedef enum {
 HA_GS_ADAPTER_DEATH_ARRAY = ðxð1,
 HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY = ðxð2,
 HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY = ðxð4
} ha_gs_subscription_special_type_t;

typedef enum
{
 HA_GS_ADAPTER_DEAD = ðxððð1,
 HA_GS_ADAPTER_REMOVED = ðxððð2
} ha_gs_adapter_death_t;

typedef struct {
 int gs_length;
 unsigned int gs_flag;
 void \gs_special_data;
} ha_gs_special_data_t;

typedef struct ha_gs_special_block_t {
 unsigned int gs_special_flag;
 struct ha_gs_special_block_t \gs_next_special_block;
 int gs_special_num_entries;
 int gs_special_length;
 void \gs_special;
} ha_gs_special_block_t;

typedef struct
{
 ha_gs_phase_info_t gs_phase_info;
 ha_gs_provider_t gs_proposed_by;
 ha_gs_updates_t gs_whats_changed;
 ha_gs_membership_t \gs_current_providers;
 ha_gs_membership_t \gs_changing_providers;
 ha_gs_leave_array_t \gs_leave_info;
 ha_gs_expel_info_t \gs_expel_info;
 ha_gs_state_value_t \gs_current_state_value;
 ha_gs_state_value_t \gs_proposed_state_value;
 ha_gs_state_value_t \gs_source_state_value;
 ha_gs_provider_message_t \gs_provider_message;
 ha_gs_group_attributes_t \gs_new_group_attributes;
} ha_gs_proposal_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_responsiveness_t gs_responsiveness_information;
} ha_gs_responsiveness_notification_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 unsigned int gs_number_of_queries;
 ha_gs_query_info_t \gs_query_info;
} ha_gs_query_notification_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_request_t gs_protocol_type;
 ha_gs_summary_code_t gs_summary_code;
 ha_gs_time_limit_t gs_time_limit;

 Chapter 3. Group Services Files Reference 139

 ha_gs.h

 ha_gs_proposal_t \gs_proposal;
} ha_gs_n_phase_notification_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_request_t gs_protocol_type;
 ha_gs_summary_code_t gs_summary_code;
 ha_gs_proposal_t \gs_proposal;
} ha_gs_approved_notification_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_request_t gs_protocol_type;
 ha_gs_summary_code_t gs_summary_code;
 ha_gs_proposal_t \gs_proposal;
} ha_gs_rejected_notification_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_summary_code_t gs_summary_code;
 ha_gs_membership_t \gs_announcement;
} ha_gs_announcement_notification_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_provider_token;
 ha_gs_request_t gs_protocol_type;

ha_gs_proposal_t \gs_proposal;
 ha_gs_merge_ctrl_t gs_merge_control;
 ha_gs_group_state_t gs_alpha_group_state;
 ha_gs_group_state_t gs_omega_group_state;
} ha_gs_merge_notification_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_subscriber_token;
 ha_gs_subscription_type_t gs_subscription_type;
 ha_gs_state_value_t \gs_state_value;
 ha_gs_membership_t \gs_full_membership;
 ha_gs_membership_t \gs_changing_membership;
 ha_gs_special_data_t \gs_subscription_special_data;
} ha_gs_subscription_notification_t;

typedef void (ha_gs_subscription_cb_t)(const ha_gs_subscription_notification_t\);

typedef void (ha_gs_query_cb_t)(const ha_gs_query_notification_t\);

typedef ha_gs_callback_rc_t (ha_gs_responsiveness_cb_t)(const ha_gs_responsiveness_notification_t\);

typedef void (ha_gs_n_phase_cb_t)(const ha_gs_n_phase_notification_t\);

typedef void (ha_gs_approved_cb_t)(const ha_gs_approved_notification_t\);

typedef void (ha_gs_rejected_cb_t)(const ha_gs_rejected_notification_t\);

typedef void (ha_gs_announcement_cb_t)(const ha_gs_announcement_notification_t\);

typedef void (ha_gs_merge_cb_t)(const ha_gs_merge_notification_t\);

typedef struct {
 ha_gs_group_attributes_t \gs_group_attributes;
 short gs_provider_instance;
 char \gs_provider_local_name;
 ha_gs_n_phase_cb_t \gs_n_phase_protocol_callback;

140 RS/6000 Cluster Technology Group Services Programming

 ha_gs.h

 ha_gs_approved_cb_t \gs_protocol_approved_callback;
 ha_gs_rejected_cb_t \gs_protocol_rejected_callback;
 ha_gs_announcement_cb_t \gs_announcement_callback;
 ha_gs_merge_cb_t \gs_merge_callback;
} ha_gs_join_request_t;

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_state_value_t gs_new_state;
} ha_gs_state_change_request_t;

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_provider_message_t gs_message;
} ha_gs_message_request_t;

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 unsigned int gs_leave_code;
} ha_gs_leave_request_t;

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_membership_t gs_expel_list;
 int gs_deactivate_phase;
 char \gs_deactivate_flag;
} ha_gs_expel_request_t;

typedef struct {
 ha_gs_subscription_ctrl_t gs_subscription_control;
 ha_gs_group_name_t gs_subscription_group;
 ha_gs_subscription_cb_t \gs_subscription_callback;
} ha_gs_subscribe_request_t;

typedef struct {
 ha_gs_num_phases_t gs_num_phases;
 ha_gs_time_limit_t gs_time_limit;
 ha_gs_group_attributes_t \gs_group_attributes;
 ha_gs_membership_t \gs_backlevel_providers;
} ha_gs_attribute_change_request_t;

#define gs_join_request _gs_protocol_info._gs_join_request
#define gs_state_change_request _gs_protocol_info._gs_state_change_request
#define gs_message_request _gs_protocol_info._gs_message_request
#define gs_leave_request _gs_protocol_info._gs_leave_request
#define gs_expel_request _gs_protocol_info._gs_expel_request
#define gs_subscribe_request _gs_protocol_info._gs_subscribe_request
#define gs_attribute_change_request _gs_protocol_info._gs_attribute_change_request

typedef struct {
 union {
 ha_gs_join_request_t _gs_join_request;
 ha_gs_state_change_request_t _gs_state_change_request;
 ha_gs_message_request_t _gs_message_request;
 ha_gs_leave_request_t _gs_leave_request;
 ha_gs_expel_request_t _gs_expel_request;
 ha_gs_subscribe_request_t _gs_subscribe_request;
 ha_gs_attribute_change_request_t _gs_attribute_change_request;
 } _gs_protocol_info;
} ha_gs_proposal_info_t;

typedef struct
{
 ha_gs_notification_type_t gs_notification_type;
 ha_gs_token_t gs_request_token;
 ha_gs_request_t gs_protocol_type;
 ha_gs_rc_t gs_delayed_return_code;

 Chapter 3. Group Services Files Reference 141

 ha_gs.h

 ha_gs_proposal_info_t \gs_failing_request;
} ha_gs_delayed_error_notification_t;

typedef void (ha_gs_delayed_error_cb_t)(const ha_gs_delayed_error_notification_t\);

ha_gs_rc_t ha_gs_init(ha_gs_descriptor_t \,
 const ha_gs_socket_ctrl_t,
 const ha_gs_responsiveness_t \,
 const char \,
 ha_gs_responsiveness_cb_t\,
 ha_gs_delayed_error_cb_t\,
 ha_gs_query_cb_t\);

ha_gs_rc_t ha_gs_dispatch(const ha_gs_dispatch_flag_t);
ha_gs_rc_t ha_gs_join(ha_gs_token_t \,
 const ha_gs_proposal_info_t \);

ha_gs_rc_t ha_gs_change_state_value(ha_gs_token_t,
 const ha_gs_proposal_info_t \);

ha_gs_rc_t ha_gs_send_message(ha_gs_token_t,
 const ha_gs_proposal_info_t \);

ha_gs_rc_t ha_gs_leave(ha_gs_token_t,
 const ha_gs_proposal_info_t \);

ha_gs_rc_t ha_gs_expel(ha_gs_token_t,
 const ha_gs_proposal_info_t \);

ha_gs_rc_t ha_gs_change_attributes(ha_gs_token_t,
const ha_gs_proposal_info_t \);

ha_gs_rc_t ha_gs_goodbye(ha_gs_token_t);

ha_gs_rc_t ha_gs_vote(ha_gs_token_t,
 ha_gs_vote_value_t,
 const ha_gs_state_value_t \,
 const ha_gs_provider_message_t \,
 ha_gs_vote_value_t);

ha_gs_rc_t ha_gs_quit(void);

ha_gs_rc_t ha_gs_query_group_list(void);

ha_gs_rc_t ha_gs_query_group_info(const ha_gs_group_name_t);

ha_gs_rc_t ha_gs_subscribe(ha_gs_token_t \,
const ha_gs_proposal_info_t \);

ha_gs_rc_t ha_gs_unsubscribe(ha_gs_token_t);

void ha_gs_copy_group_attributes(ha_gs_group_attributes_t \gAttrsTarg,
 ha_gs_group_attributes_t \gAttrsSrc);

#ifdef __cplusplus
} /\ end extern "C" \/
#endif

#endif /\ _HA_GS_H_ \/

 Related Information
GSAPI subroutines: ha_gs_change_state_value , ha_gs_dispatch , ha_gs_init ,
ha_gs_expel , ha_gs_join , ha_gs_leave , ha_gs_quit , ha_gs_send_message ,
ha_gs_subscribe , ha_gs_unsubscribe , ha_gs_vote , ha_gs_change_attributes ,
ha_gs_goodbye

142 RS/6000 Cluster Technology Group Services Programming

Chapter 4. Using the GSAPI: A Group Services Client
Example

This chapter contains listings of the files required by a sample Group Services
client (GS client) program called sample_schg.c . It also contains two sample
deactivate scripts.

The sample_schg.c program, as a simple GS client, performs the following
functions:

� Reads command-line arguments to set various options, including the group
name, protocol controls, and timing options

� Initializes itself as a Group Services client

� Joins the group as a provider

� Proposes a group state value change at the interval specified on input

� Continues running until the program is killed (through the kill command or by
otherwise sending it a signal).

For details on setting up the environment and starting the program on several
nodes, see the comments in the program listing.

The program requires the following files:

� “The sample_schg.c Sample Program” on page 144 contains the main()
function, all of the necessary callback functions, and some utility functions for
the application.

� “The sample_utility.c Utility Functions” on page 162 contains utility functions
that are used by the sample_schg program.

� “The sample_utility.h Header File” on page 215 contains declarations for the
utility functions in the sample_utility.c program.

� “The sample_deactive_ksh.sh Deactivate Script” on page 218 is a deactivate
script written as a Korn shell script.

� “The sample_deactive_c_prog.c Deactivate Script” on page 221 is a deactivate
script written as a C program.

You can find the sample_schg.c program and its related files online in the PSSP
product samples directory, /usr/sbin/rsct/samples/hags . The hags sample
directory also contains files related to two other test programs, sample_test.c ,
which provides an interactive interface to the Group Services subsystem, and
Sample_Subscribe.C , which provides a sample C++ language client that
subscribes with Group Services for a user-specified group.

 Copyright IBM Corp. 1998 143

 sample_schg.c

The sample_schg.c Sample Program
/\\\/
/\ \/
/\CPRY \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ 5765-529 PSSP \/
/\ \/
/\ (C) Copyright IBM Corporation 1996 All Rights Reserved. \/
/\ \/
/\ US Government Users Restricted Rights - \/
/\ Use, duplication or disclosure restricted by \/
/\ GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\CPRY \/
/\\\/

static char \sccsid = "@(#)92 1.2
src/rsct/pgs/samples/sample_schg.c,
gssamples, rsct_rtro, rtrot1fx 6/27/96 16:39:39";
#if !defined(_HAGSD_COPYRIGHT_H)
#define _HAGSD_COPYRIGHT_H
static char copyright[] = "Licensed Materials - Property of IBM\n\
5765-529 (C) Copyright IBM Corp. 1996. All Rights Reserved.\n\
US Government Users Restricted Rights - Use, duplication or \n\
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.\n";
#endif

/\\\/
/\
 \ Name: sample_schg.c
 \
 \ This module provides a non-interactive program that can be used as
 \ an example for constructing an application that exploits the Group
 \ Services interfaces provided by IBM PSSP.
 \
 \ Components:
 \ sample_schg.c - is the bulk of the program, and contains the main()
 \ function, as well as all necessary callback functions, and some
 \ internal utility functions for the application.
 \
 \ sample_utility.c - provides the definitions for the utility functions
 \ used by the sample_test and sample_schg programs.
 \
 \ sample_utility.h - declarations for the utility functions contained
 \ in sample_utility.c
 \
 \ This program is intended as a "simple" Group Services application.
 \ When started, it will:
 \
 \ - read and validate the command-line arguments to set various
 \ options, such as group name and timing options.
 \ - attempt to initialize itself as a Group Services client.
 \ - once initialized, attempt to join the group as a provider.
 \ - once joined, each provider will use the timing control given
 \ and will propose a group state value change at each desired
 \ time interval.
 \ - this continues until the program is killed (via kill command,
 \ or otherwise sending it a signal.)
 \
 \ The group name, protocol controls, and the various timing aspects
 \ of the program are controllable via command-line arguments.
 \
 \ This program will write out informational messages as it goes along
 \ on stdout. It is recommended to run this program in the background,
 \ and to redirect stdout to a file, and monitor the program by
 \ monitoring the file.
 \/
/\\\/

144 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

/\\\/
/\
 \ To build this program, use the Makefile in this directory:
 \
 \ make all (to build all sample programs)
 \ or
 \ make sample_schg
 \
 \ To execute this program, you need to have Group Services active on
 \ your system. Please refer to the manual if you have questions as to
 \ how you may verify this. Additionally, you need to execute as a
 \ privileged (root) process. Also, you should take care in the group
 \ names you use, to avoid clashing with other groups.
 \
 \ Prior to starting this program, you need to set the name of your SP
 \ partition in the environment of the process running the program.
 \ You should export the variable HA_SYSPAR_NAME to be the name of the
 \ partition. Contact your system administrator if you do not know how
 \ to determine this.
 \
 \ Once all this is done, you can then start up copies of this program
 \ on as many nodes as desired. All of those with the same group name
 \ will attempt to join the same group. For these, you should ensure
 \ that any specified protocol control arguments match, to ensure that
 \ the group attributes all match. If this is not done, then not all
 \ copies of the program will be allowed to join the group.
 \/
/\\\/

/\\\/
/\
 \ Command-line arguments:
 \
 \ -g <groupname> -- name of the group this process should join.
 \ Default is "SampleGroupð1".
 \
 \ -t <time interval (in seconds)> -- number of seconds between attempts
 \ to submit a state value change proposal.
 \ Default is 1ð.
 \
 \ -P <n-phase pctg> -- percentage of the state value change proposals
 \ that should be n-phase. Remainder will be 1-phase.
 \ Default is ð (i.e., all state value change proposals will be 1-phase.)
 \
 \ -T <state time limit> -- voting time limit for n-phase state value
 \ change proposals.
 \ Default is ð.
 \
 \ -r -- randomize the time between making state value change proposals?
 \ If this is given, then the actual time interval between proposals
 \ will use a value inclusive of 1 second as the minimum, and (2 \ the
 \ base time interval (specified by the '-t' flag)) as the maximum.
 \ Default is to not randomize.
 \
 \ -s <seed> -- random number seed. If not specified, then the program
 \ will use the TOD clock to get a seed. This allows you to set up
 \ "random" runs with recreatable series of proposal timing \for any
 \ one process\. Note that if you are running multiple providers in
 \ a group, due to variations in message timing, there is no guarantee
 \ that the overall group timing and protocol execution is guaranteed
 \ to be recreated.
 \
 \ -j <join/failure num phases> -- number of phases (1-phase or n-phase)
 \ for join and failure leave protocols. Specify '1' (the default) to
 \ specify 1-phase protocols, anything else for n-phase protocols.
 \ Default is 1-phase.
 \
 \ -p <provider instance number> -- provider instance number for this
 \ process.
 \ Default is 1.
 \

 Chapter 4. Using the GSAPI: A Group Services Client Example 145

 sample_schg.c

 \ -f <log print frequency> -- how many times per hour should a log status
 \ message be written, assuming debug level (see -d flag) is 1.
 \ Default is 2 (i.e., every 3ð minutes write a status report message.)
 \
 \ -n <notify script> -- path name to "notify" script. Used by the internal
 \ notify() routine to attempt to send information to interested users.
 \ Default is /usr/lpp/ssp/samples/hags/notify.
 \
 \ -d <debug level> -- amount of data to dump out. The program will
 \ write out join and failure notifications, and using the '-f'
 \ flag, periodic status reports (e.g., number of protocols submitted
 \ and executed, etc.) The debug settings:
 \ 1 -- default, as above.
 \ 2 -- as above, plus every protocol submission.
 \ 3 -- as for 1 & 2, plus write out every notification received in
 \ full.
 \ Default is 1.
 \/
/\\\/

/\\\/
/\
 \ Include "standard" system files. Note that pthread.h must be the
 \ first file included, if it is to be included (see the standard AIX
 \ documentation for more information about AIX thread support.)
 \/
/\\\/

#include <stdio.h>
#include <stdlib.h>
#include <sys/select.h>
#include <sys/time.h>
#define _XOPEN_EXTENDED_SOURCE /\ AIX 4.1 \/
#include <arpa/inet.h>
#undef _XOPEN_EXTENDED_SOURCE /\ AIX 4.1 \/
#include <signal.h>
#include <errno.h>
#include <strings.h>
#include <memory.h>
#include <time.h>

/\\\/
/\
 \ Include the Group Services declarations file.
 \/
/\\\/

#include <ha_gs.h>

/\\\/
/\
 \ Include the set of declarations for external utility functions for
 \ this program.
 \/
/\\\/

#include "sample_utility.h"

/\\\/
/\
 \ The set of callback functions used by this program.
 \/
void n_phase_cb(const ha_gs_n_phase_notification_t \note);
void approved_cb(const ha_gs_approved_notification_t \note);
void rejected_cb(const ha_gs_rejected_notification_t \note);
void my_delayed_error_cb(const ha_gs_delayed_error_notification_t \note);
void announce_cb(const ha_gs_announcement_notification_t \note);

void query_cb(const ha_gs_query_notification_t \note);
void delayed_error_cb(const ha_gs_delayed_error_notification_t \note);
ha_gs_callback_rc_t responsive_cb(const ha_gs_responsiveness_notification_t \note);

146 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

/\\\/
/\
 \ Prepare a protocol proposal for submission.
 \/
int submit_state_change_proposal(void);

/\\\/
/\
 \ Internal utility functions.
 \/
void notify(char \message);
int get_node_number(void);
void print_usage(void);

/\\\/
/\
 \ Global variables.
 \/

/\
 \ Keep statistics.
 \/
/\
 \ Number of state value change proposals submitted, number that were
 \ 1-phase/n-phase.
 \/
int nSubmitted, nSubmitted1Phase, nSubmittedNPhase;
/\
 \ Number of our proposals that were returned due to collisions.
 \/
int nCollided, nSynchCollides;
/\
 \ Number of state value change protocols that have executed in the
 \ group and that we have participated in.
 \/
int nStateChangesSeen, nStateChanges1Phase, nStateChangesNPhase;

/\
 \ Keep track of group membership, state value.
 \/
int state; /\ Current group state value, from the \/

/\ last successfully-executed protocol. \/
int proposed_state; /\ Our to-be-proposed state value. \/
int joined; /\ Have we joined the group yet? \/
struct timeval proposal_time; /\ Keep track of time last proposal \/
 /\ submitted. \/

/\
 \ These are the variables that hold values determined by the various
 \ command-line flags. Most are initialized here, but may be overridden
 \ once we parse the command line.
 \/
char \theGroupName = "SampleGroupð1"; /\ -g flag: name of the group we should \/
 /\ join. \/

int testInterval = 1ð; /\ -t flag: number of seconds between \/
/\ making state value change proposals. \/
/\ Used as time limit for select() call. \/

int providerInstanceNumber = 1; /\ -p flag: provider instance number for \/
/\ this process. \/

int debug = 1; /\ -d flag: debug level. Higher dumps \/
/\ more info. \/

int freq = 2; /\ -f flag: how many times per hour to \/
/\ print out status messages to log? \/

int printfreq; /\ How often to print log msg? \/
/\ calculated as number of log prints/hour \/

int randomize = ð; /\ -r flag: should the wait time between \/
/\ making state value change proposals \/

 Chapter 4. Using the GSAPI: A Group Services Client Example 147

 sample_schg.c

/\ be randomized or fixed? \/

int nphasestates = ð; /\ -P flag: percentag of time to make our \/
/\ state value change proposals n-phase. \/
/\ Remainder will be 1-phase. \/

int stateTimeLimit = ð; /\ -T flag: voting time limit for n-phase \/
/\ state value change protocols. \/

ha_gs_num_phases_t jfphases = HA_GS_1_PHASE; /\ -j flag: number of phases for \/
/\ join and failure protocols. \/

/\
 \ The "notify" script is a small shell script that can be modified
 \ to mail important error/status messages to an interested user.
 \ If you want to place this script elsewhere, you can dynamically
 \ specify the path name via the '-n' command-line flag.
 \
 \ The script is used by the notify() routine in this program.
 \/
char \theNotifyScript = "/usr/sbin/rsct/samples/hags/notify"
;

/\
 \ The following are set during our join protocol.
 \/
ha_gs_provider_t ourProviderId; /\ Our provider ID, returned asynchronously \/

/\ when our join protocol executes. \/

ha_gs_token_t provider_token; /\ Our provider token, returned \/
/\ synchronously by ha_gs_join(). \/

/\
 \ The arguments, program name, handy buffer.
 \/
char \args;
char \progname;
char buffer[256];

/\\\/
/\
 \ Main() function. Parse command-line arguments, initialize with Group
 \ Services, join the group, then drop into the while() loop until we
 \ get killed. Use select() to wait for messages from Group Services,
 \ and propose state value changes every so often. Simple as that.
 \/
int main(int argc, char \\ argv)
{
 ha_gs_descriptor_t socket_fd;

ha_gs_responsiveness_t responsiveness = {HA_GS_PING_RESPONSIVENESS,
 36ðð,
 1ð,
 (char \)ð,
 ð};
 char \script="/dev/null";
 ha_gs_rc_t rc;
 ha_gs_proposal_info_t info;
 char input;
 char \function;
 time_t overdue;
 char theArgs[1ð24];

 int i, found;
 int phase;
 int init_tries;
#define MAX_TRIES 1ð
 int argCtr;
 int seedGiven;
 uint randSeed;
 struct timeval current_time;

struct timezone tz;
 float p;

148 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

/\ select stuff \/
 int select_rc;
 int highestDescriptor;
 int howMany;

fd_set socketsForSelect; /\ Maintain all registered sockets in mask. \/
fd_set socketSelectMask; /\ Used for the actual select. \/
struct timeval nextJob; /\ Wait time for select. \/

seedGiven = ð;

 /\
\ Parse the command-line arguments. Copy them to "args" to preserve
\ them so we can easily write them to the log.

 \/
progname = argv[ð];
args = theArgs;
args[ð] = '\ð';
for(argCtr=1;argCtr < argc;argCtr++) {

if(!strcmp(argv[argCtr], "-g")) {
theGroupName = argv[++argCtr];
strcat(args, " -g ");

 strcat(args, theGroupName);
} else if(!strcmp(argv[argCtr], "-n")) {

theNotifyScript = argv[++argCtr];
strcat(args, " -n ");

 strcat(args, theNotifyScript);
} else if(!strcmp(argv[argCtr], "-t")) {

testInterval = atoi(argv[++argCtr]);
strcat(args, " -t ");

 strcat(args, argv[argCtr]);
} else if (!strcmp(argv[argCtr], "-p")) {

providerInstanceNumber = atoi(argv[++argCtr]);
strcat(args, " -p ");

 strcat(args, argv[argCtr]);
} else if (!strcmp(argv[argCtr], "-d")) {

debug = atoi(argv[++argCtr]);
strcat(args, " -d ");

 strcat(args, argv[argCtr]);
} else if (!strcmp(argv[argCtr], "-j")) {

phase = atoi(argv[++argCtr]);
if (1 == phase) {

jfphases = HA_GS_1_PHASE;
} else {

jfphases = HA_GS_N_PHASE;
 }

strcat(args, " -j ");
 strcat(args, argv[argCtr]);

} else if (!strcmp(argv[argCtr], "-f")) {
freq = atoi(argv[++argCtr]);
strcat(args, " -f ");

 strcat(args, argv[argCtr]);
} else if (!strcmp(argv[argCtr], "-s")) {

randSeed = atoi(argv[++argCtr]);
seedGiven = 1;
strcat(args, " -s ");

 strcat(args, argv[argCtr]);
} else if (!strcmp(argv[argCtr], "-r")) {

randomize = 1;
strcat(args, " -r ");

} else if (!strcmp(argv[argCtr], "-P")) {
nphasestates = atoi(argv[++argCtr]);
strcat(args, " -P ");

 strcat(args, argv[argCtr]);
} else if (!strcmp(argv[argCtr], "-T")) {

stateTimeLimit = atoi(argv[++argCtr]);
strcat(args, " -T ");

 strcat(args, argv[argCtr]);
} else {

 print_usage();
 exit(3);
 }

 Chapter 4. Using the GSAPI: A Group Services Client Example 149

 sample_schg.c

 }

 /\
\ Calculate time between logging via determining number of state changes per hour
\ divided by number of log entries to be made per hour. Ensure no less than one.
\ Use this to then cut log entry every "printfreq" state changes.

 \/
if (ð >= freq) {

printfreq = 1;
} else {

printfreq = ((36ðð / testInterval) / freq);
if (ð >= printfreq) {

printfreq = 1;
 }
 }

 /\
\ If no random seed given (-s) then use the (TOD seconds \ node_number).
\ In any case, print out the seed being used in case we want to use it
\ again, whatever it is.

 \/
if (!seedGiven) {

 gettimeofday(¤t_time, &tz);
randSeed = current_time.tv_sec \ get_node_number();

 }
 srandom(randSeed);

printf("Random seed is [%d]\n", randSeed);
 fflush(stdout);

 /\
\ This variable tells us how many seconds to wait between making each
\ state value change proposal. Note that we may override this later,
\ if we are "randomizing" this time interval.

 \/
nextJob.tv_sec = testInterval;
nextJob.tv_usec = ð;

 /\
\ No sockets yet.

 \/
highestDescriptor = ð;

 FD_ZERO(&socketsForSelect);

 /\
\ This outer while() loop is used in case we have to reconnect
\ to Group Services.

 \
\ In this loop, try to initialize (ha_gs_init()). Once we
\ do that, set up our select() handling information (socket
\ file descriptor, etc.).

 \
\ Then, attempt to join the group.

 \
\ After that, fall into the inner loop, which is basically just a
\ select(), where we wait to either receive messages from Goup
\ Services, or time out when it is time to make our next state value
\ change proposal.

 \/
 while(1) {

joined = ð; /\ Not yet joined to the group. \/
state = ð; /\ Start with a state value of ð. \/
proposal_time.tv_sec = ð; /\ No outstanding proposal. \/

 /\
\ Attempt to initialize with Group Services.

 \/
for(init_tries = 1; MAX_TRIES > init_tries; init_tries++) {

rc = ha_gs_init(&socket_fd,
 HA_GS_SOCKET_NO_SIGNAL,
 &responsiveness,
 script,

150 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

 responsive_cb,
 my_delayed_error_cb,
 query_cb);
 /\

\ Set up to use the select() system call.
 \/

if (HA_GS_OK == rc) {
 FD_SET(socket_fd, &socketsForSelect);

if (socket_fd > highestDescriptor) {
highestDescriptor = socket_fd;

 }
 break;

} else if (HA_GS_EXISTS == rc) {
printf("You have already initialized! Why do it again?\n");

 break;
} else {

printf("Bad news - ha_gs_init() returned rc:[%s]\n", write_an_rc(rc));
 sleep(1ð);
 }
 }

if (MAX_TRIES <= init_tries) {
sprintf(buffer, "ABORT \"Can't get started after %d tries!\n\"", init_tries);
notify(buffer);

 exit(rc);
 }
 fflush(stdout);

 /\
\ Prepare group attributes, join/failure phases set by
\ command-line 'j' argument.

 \/
gattr[1] = malloc(sizeof(ha_gs_group_attributes_t));
gattr[1]->gs_version = 1;
gattr[1]->gs_sizeof_group_attributes = sizeof(ha_gs_group_attributes_t);
gattr[1]->gs_client_version = 1;
gattr[1]->gs_batch_control = HA_GS_BATCH_BOTH;
gattr[1]->gs_num_phases = jfphases;
gattr[1]->gs_source_reflection_num_phases = HA_GS_1_PHASE;
gattr[1]->gs_group_default_vote = HA_GS_VOTE_APPROVE;
gattr[1]->gs_merge_control = HA_GS_DISSOLVE_MERGE;
gattr[1]->gs_time_limit = ð;
gattr[1]->gs_source_reflection_time_limit = ð;
gattr[1]->gs_group_name = theGroupName;
gattr[1]->gs_source_group_name = NULL;
instance_numbers[1] = providerInstanceNumber;

 write_join_information(1);

info.gs_join_request.gs_group_attributes = gattr[1];
info.gs_join_request.gs_provider_instance = providerInstanceNumber;

info.gs_join_request.gs_provider_local_name = "SampleProvider";
info.gs_join_request.gs_n_phase_protocol_callback = n_phase_cb;
info.gs_join_request.gs_protocol_approved_callback = approved_cb;
info.gs_join_request.gs_protocol_rejected_callback = rejected_cb;
info.gs_join_request.gs_announcement_callback = announce_cb;
info.gs_join_request.gs_merge_callback = NULL;

 /\
\ Attempt to join the group.

 \/
rc = ha_gs_join(&gid[1], &info);

 /\
\ Save the provider token returned by ha_gs_join().

 \/
provider_token = gid[1];

printf("ha_gs_join returned rc:[%s]\n", write_an_rc(rc));

rc = HA_GS_OK;

 /\

 Chapter 4. Using the GSAPI: A Group Services Client Example 151

 sample_schg.c

\ This inner while() loop will simply wait on select() for
\ notifications to arrive, and when ready, will attempt to
\ submit a state value change proposal.

 \/
while (HA_GS_NOT_OK != rc) {

 /\
\ Determine the random interval until we should attempt to
\ make the our next state value change proposal.

 \/
if (randomize) {

nextJob.tv_sec = randomn(2 \ testInterval);
 }

 /\
\ select(). See AIX documentation.

 \
\ The "nextJob" parameter is at timeval struct. It is set to
\ the number of seconds until our next state value change
\ proposal should be made. If no input appears on our socket
\ connection from Group Services, then we will wake up and
\ go to make the proposal.

 \/
memcpy(&socketSelectMask, &socketsForSelect, sizeof(socketsForSelect));
select_rc = select(highestDescriptor + 1,

 &socketSelectMask,
 ð,
 ð,
 &nextJob);

 /\
\ If anything other than "select interrupted (EINTR)" just exit.

 \/
if (select_rc < ð) {

if (errno == EINTR) {
printf("Got EINTR during the select.\n");

 continue;
} else {

perror("Error on select");
 exit(errno);
 }

} else if (ð < (howMany = NFDS(select_rc))) {
 /\

\ Input arrived on socket. Should only ever be our one
 \ socket.
 \/

if (1 < howMany) {
printf("Input on more than our socket?? Have [%d]!\n",

 howMany);
 exit(howMany);
 }
 /\

\ OK so far, call ha_gs_dispatch() and process the message(s).
 \/

rc = ha_gs_dispatch(HA_GS_NON_BLOCKING);
if (HA_GS_OK != rc) {

printf("Bad news, bad return code from dispatch[%s]! Exiting.\n",
 write_an_rc(rc));

 /\
\ Something is wrong. Drop out of inner loop, and then
\ reinitialize and start over.

 \/
 break;
 }

} else {
if (!joined) {

 /\
\ We have not yet seen the "approved" notification for our join
\ request, so we cannot yet handle any other proposals. Just
\ wait some more.

 \/

152 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

printf("Select timed out, not joined, nothing arrived in [%d] seconds. Try again.\n",
 nextJob.tv_sec);

} else {
 /\

\ We are part of the group, so it is time to make a
\ proposal. Go do it.

 \/
 submit_state_change_proposal();
 }
 fflush(stdout);
 }

} /\ end while(HA_GS_NOT_OK != rc) \/

 /\
\ Close current connection to Group Services.

 \/
rc = ha_gs_quit();

printf("ha_gs_quit returned rc:[%s]\n", write_an_rc(rc));

if (HA_GS_OK != rc) {
 sprintf(buffer,

"ERROR \"ha_gs_quit returned rc:[%s]\n\"",
 write_an_rc(rc));

notify(buffer);
 }

 /\
\ Need to remove the "old" socket before establishing a new one.

 \/
 FD_CLR(socket_fd, &socketsForSelect);

} /\ end while(1) \/
} /\ end main() \/

/\\\/
/\
 \ Our timer has popped, and is time to submit a state value change
 \ proposal for our group. Determine whether we should submit a 1-phase
 \ or n-phase proposal, optionally display the current counts, and then
 \ prepare the data to call ha_gs_change_state_value().
 \
 \ The data submitted will be the 'current group state value + 1'.
 \
 \ Note that if there are multiple providers in the group, then it is
 \ possible for our proposal to be returned with a delayed error due to
 \ a protocol collision (delayed error code of HA_GS_COLLIDE). That is
 \ fine, as that means another provider's proposal will have executed
 \ to increment the state value. We worry about that later, in the
 \ delayed error callback (my_delayed_error_cb()).
 \/
int submit_state_change_proposal(void)
{
 ha_gs_proposal_info_t info;
 ha_gs_num_phases_t phases;
 ha_gs_token_t group_token;

 int rc;
 struct timezone tz;
 int nphase;

proposed_state = state + 1; /\ Proposed new state value. \/

 /\
\ Use random number to determine how many phases.

 \/
if (randomn(1ðð) > nphasestates) {

phases = HA_GS_1_PHASE;
 nSubmitted1Phase++;

} else {
phases = HA_GS_N_PHASE;

 nSubmittedNPhase++;
 }

 Chapter 4. Using the GSAPI: A Group Services Client Example 153

 sample_schg.c

 gettimeofday(&proposal_time, &tz);

 /\
\ We do not normally display every proposal, but instead just "every
\ so often". However, if 'debug' is set, then always display.

 \/
if((2 <= debug) ||

(ð == (nStateChangesSeen % printfreq)))
printf("state changes: submitted/seen(1-/n-phase) %d(%d/%d)/%d(%d/%d) collided %d.\n",

 nSubmitted,
 nSubmitted1Phase,
 nSubmittedNPhase,
 nStateChangesSeen,
 nStateChanges1Phase,
 nStateChangesNPhase,
 nCollided);

if((2 <= debug) ||
(ð == (nStateChangesSeen % printfreq)))
printf(" submit %s state change to %d on %s",

((HA_GS_1_PHASE == phases) ? "1-phase" : "N-phase"),
 proposed_state,

ctime((time_t \) &proposal_time.tv_sec));

 /\
\ Prepare the proposal data for the call to ha_gs_change_state_value().

 \/
info.gs_state_change_request.gs_num_phases = phases;
info.gs_state_change_request.gs_time_limit = stateTimeLimit;
info.gs_state_change_request.gs_new_state.gs_length = sizeof(int);

 info.gs_state_change_request.gs_new_state.gs_state =
(char \) & proposed_state;

 nSubmitted++;

 /\
\ Submit the request to the Group Services library code.

 \/
rc = ha_gs_change_state_value(provider_token, &info);

 /\
\ HA_GS_OK says that the proposal was accepted, but does NOT necessarily
\ indicate that it will be executed (it may be returned asynchronously
\ via a delayed error). But, HA_GS_OK does indicate that there were no
\ syntactical problems with the proposal.

 \
\ At this point, HA_GS_COLLIDE indicates that another protocol is already
\ executing in the group. It is rather rare to have timing such that we
\ get this, but, since we have providers distributed on many nodes, it is

 \ possible.
 \

\ Any other return codes here indicate serious problems with the program...
 \/

if((3 <= debug) ||
((HA_GS_OK != rc) &&
(HA_GS_COLLIDE != rc))) {

 sprintf(buffer,
"ha_gs_change_state_value returned rc [%s]!\n\"",

 write_an_rc(rc));
 notify(buffer);

printf("ha_gs_change_state_value returned rc:[%s]\n",
 write_an_rc(rc));

if (HA_GS_COLLIDE == rc) {
 nCollided++;
 nSynchCollides++;
 }

} else if (HA_GS_COLLIDE == rc) {
 nCollided++;
 nSynchCollides++;
 }

return(rc);
}

154 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

/\\\/
/\
 \ The callback functions used by this program.
 \/

/\
 \ This callback is executed when we need to "vote" on an n-phase protocol
 \ proposal. This may be a join, failure leave, or more commonly, a state
 \ value change proposal.
 \
 \ For simplicity, we always just vote APPROVE here. Various experiments
 \ here would be to add cases where CONTINUE or REJECT may be voted in
 \ different cases. Exercises left to the reader.
 \
 \ Note that this would be the routine where we would put "actions" that
 \ a "real" recovery program may want to execute. It would perform those
 \ actions here, and vote based upon the result of getting them done.
 \ Additional actions may be taken in the approved and rejected callback
 \ functions, but if we want the subsystem to perform a synchronized set
 \ of steps, we would do it here.
 \/
void n_phase_cb(const ha_gs_n_phase_notification_t \note)
{
 ha_gs_request_t pType;
 ha_gs_token_t noteToken;
 ha_gs_rc_t rCode;

int calledNotify = ð;

 /\
\ Grab the provider token, and the type of the protocol.

 \/
noteToken = note->gs_provider_token;
pType = note->gs_protocol_type;

 /\
\ Process based on protocol type. In all cases, we just want to vote
\ by calling ha_gs_vote(), and getting out. Only interesting thing to
\ do is if we get any sort of error on the vote call.

 \/
 switch(pType) {

 /\
\ Just approve any joins or failures. Nothing else to bother doing
\ here. We have more work to do when the approval notification for
\ a join arrives. See the approved_cb().

 \/
 case HA_GS_JOIN:
 case HA_GS_FAILURE_LEAVE:

if (HA_GS_OK != (rCode = ha_gs_vote(noteToken,
 HA_GS_VOTE_APPROVE,
 NULL,
 NULL,
 HA_GS_NULL_VOTE))) {
 sprintf(buffer,

"Strange error code [%s] attempting to approve join/failure!\n\"",
 write_an_rc(rCode));
 notify(buffer);

write_the_notification(1, (void \)note, HA_GS_N_PHASE_NOTIFICATION);
calledNotify = 1;
printf("Strange error code from approve join/failure ha_gs_vote [%s]\n",

 write_an_rc(rCode));
 }
 break;

 /\
\ Again, just vote approve.

 \/
 case HA_GS_STATE_VALUE_CHANGE:

if (HA_GS_OK != (rCode = ha_gs_vote(noteToken,
 HA_GS_VOTE_APPROVE,
 NULL,
 NULL,

 Chapter 4. Using the GSAPI: A Group Services Client Example 155

 sample_schg.c

 HA_GS_NULL_VOTE))) {
 sprintf(buffer,

"Strange error code [%s] attempting to approve state change!\n\"",
 write_an_rc(rCode));
 notify(buffer);

write_the_notification(1, (void \)note, HA_GS_N_PHASE_NOTIFICATION);
calledNotify = 1;
printf("Strange error code from approve state change ha_gs_vote [%s]\n",

 write_an_rc(rCode));
 }

if ((3 > debug) && (!calledNotify)) {
calledNotify = 1; /\ Do not print these, unless error or high debug. \/

 }
 break;

 /\
\ If this should happen, NOW we want to vote REJECT. As currently
\ written, we will never propose any other protocols (provider-broadcast
\ messages, voluntary leaves) so just reject and get out.

 \/
 default:

notify("ERROR \"N-Phase Callback called but not for join/failure/state! Reject!\n\"");
if (HA_GS_OK != (rCode = ha_gs_vote(noteToken,

 HA_GS_VOTE_REJECT,
 NULL,
 NULL,
 HA_GS_NULL_VOTE))) {
 sprintf(buffer,

"Strange error code [%s] attempting to vote reject!\n\"",
 write_an_rc(rCode));
 notify(buffer);

write_the_notification(1, (void \)note, HA_GS_N_PHASE_NOTIFICATION);
calledNotify = 1;
printf("Strange error code from reject ha_gs_vote [%s]\n",

 write_an_rc(rCode));
 }
 }

if (! calledNotify) {
printf("\nNotifying.... %s\n", time_now());

write_the_notification(1, (void \)note, HA_GS_N_PHASE_NOTIFICATION);
 }

 fflush(stdout);
 return;
}

/\
 \ Deal with the "protocol approved" notifications. If this is for a
 \ state value change protocol, then need to grab the newly-updated state
 \ value, to use in proposing our next state value change protocol.
 \
 \ If this is a join, may need to grab our provider ID for future reference,
 \ as well as set our internal "joined" flag.
 \
 \ If this is a failure, then one of the other providers in our group has
 \ failed (or, the node on which it was running failed). Nothing special
 \ to do here.
 \/
void approved_cb(const ha_gs_approved_notification_t \note)
{
 ha_gs_token_t noteToken;
 ha_gs_num_phases_t phases;
 int new_state;
 struct timeval current_time;
 struct timezone tz;
 ha_gs_provider_t pProposer;
 int i;
 int numberCollided;

 /\
\ Grab the provider token, and the proposer.

156 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

 \/
noteToken = note->gs_provider_token;
pProposer = note->gs_proposal->gs_proposed_by;

if (2 <= debug)
printf("Approved Callback called\n");

 /\
\ For the "unusual" notifications (not those related to state value
\ changes) write out the whole thing, unless debug is high.

 \/
if ((HA_GS_STATE_VALUE_CHANGE != note->gs_protocol_type) || (3 <= debug))

 {
printf("\nApproved callback called on %s", time_now());

write_the_notification(1, (void \)note, HA_GS_APPROVED_NOTIFICATION);
 }

 /\
\ Process based on protocol type.

 \/
switch (note->gs_protocol_type) {

 case HA_GS_STATE_VALUE_CHANGE:
 /\

\ Ours or another providers state value change proposal has been
\ approved. Grab the newly-update state value, and update our
\ various and sundry counters.

 \/
 nStateChangesSeen++;

phases = note->gs_proposal->gs_phase_info.gs_num_phases;
if (HA_GS_1_PHASE == phases) {

 nStateChanges1Phase++;
} else {

 nStateChangesNPhase++;
 }

new_state = \((int \)note->gs_proposal->gs_current_state_value->gs_state);
if ((2 <= debug) ||

(ð == (nStateChangesSeen % printfreq)))
printf("old state %d, new state %d; %s",

state, new_state, time_now());
if (state + 1 != new_state) {

notify("ERROR \"bad state!\n\"");
 }

numberCollided = nCollided;
if ((pProposer.gs_provider_id != ourProviderId.gs_provider_id)

&& proposal_time.tv_sec) {
 /\

\ We made a proposal, but ours wasn't run. Therefore, ours
\ must have collided!

 \/
 numberCollided++;
 }

if((2 <= debug) ||
(ð == (nStateChangesSeen % printfreq)))
printf("state changes: submitted/seen(1-/n-phase) %d(%d/%d)/%d(%d/%d) collided %d.\n",

 nSubmitted,
 nSubmitted1Phase,
 nSubmittedNPhase,
 nStateChangesSeen,
 nStateChanges1Phase,
 nStateChangesNPhase,
 numberCollided);

proposal_time.tv_sec = ð;
state = new_state;

 break;

 case HA_GS_JOIN:
 /\

\ If this is a join, then the "proposer" id will always be us.
 \

\ If we are in the changing providers list, this is "our" join,
\ so grab the provider id from the "proposer" field and keep it.

 Chapter 4. Using the GSAPI: A Group Services Client Example 157

 sample_schg.c

 \/
if (!joined) {

ourProviderId = pProposer;
joined = 1;
state = \((int \)note->gs_proposal->gs_current_state_value->gs_state);
printf("Joining, state is %d\n", state);

 }
 break;

 case HA_GS_FAILURE_LEAVE:
 sprintf(buffer,

"We have lost one or more providers due to failure.");
 notify(buffer);
 break;

 default:
 sprintf(buffer,

"Received unexpected notification for protocol type %s",
 proto_type(note->gs_protocol_type));
 notify(buffer);
 }

if (noteToken != gid[1])
 {

printf("Provider token = %d my provider token is %d\n",
 note->gs_provider_token, gid[1]);
 }
 fflush(stdout);
 return;
}

/\
 \ This should be quite rare, as we do not normally reject protocols, and
 \ we set our group default vote to APPROVE, to approve protocols even if
 \ a provider should fail during a voting protocol.
 \
 \ However, we have to have this callback, and it IS possible that we will
 \ vote to reject unrecognized proposals.
 \
 \ Also, if you decide to add (in n_phase_cb()) the ability to reject the
 \ occasional join or state value change, then this routine becomes more
 \ interesting.
 \/
void rejected_cb(const ha_gs_rejected_notification_t \note)
{
 ha_gs_token_t noteToken;
 ha_gs_num_phases_t phases;
 int new_state;
 struct timeval current_time;
 struct timezone tz;
 ha_gs_provider_t pProposer;
 int i;
 int numberCollided;

 /\
\ Grab the provider token, and the proposer.

 \/
noteToken = note->gs_provider_token;
pProposer = note->gs_proposal->gs_proposed_by;

if (2 <= debug)
printf("Rejected Callback called\n");

voting_phase = 1; /\ reset for next protocol. \/

write_the_notification(1, (void \)note, HA_GS_REJECTED_NOTIFICATION);

if (noteToken != gid[1])
 {

printf("Provider token = %d my provider token is %d\n",
 note->gs_provider_token, gid[1]);
 }

158 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

 fflush(stdout);
 return;
}

/\
 \ Deal with a delayed error notification. We normally expect these to only
 \ occur for collisions with our state value change proposals.
 \
 \ Note that it is also possible for a delayed error to arrive in response
 \ to a join request, if different processes attempting to join the group
 \ have different group attributes (e.g., they specify different join/failure
 \ protocol controls via the '-j' command-line argument.)
 \/
void my_delayed_error_cb(const ha_gs_delayed_error_notification_t \note)
{
 /\

\ The "normal" case, we need to adjust counts, and determine when our
\ next proposal should be made.

 \/
if ((HA_GS_STATE_VALUE_CHANGE == note->gs_protocol_type)

&& (HA_GS_COLLIDE == note->gs_delayed_return_code)) {

 /\
\ It would appear that someone else proposed a state value
\ change, and that ours lost the collision contest.

 \/
if (2 <= debug)

printf("Delayed Error Callback; HA_GS_COLLIDE on HA_GS_STATE_VALUE_CHANGE\n");
 nCollided++;
 return;
 }

notify("ERROR \"Delayed Error Callback called\n\"");

 write_the_delayed_error(note);

 fflush(stdout);
 return;
}

/\
 \ Callback function executed when an announcement notification arrives
 \ for our group from Group Services.
 \/
void announce_cb(const ha_gs_announcement_notification_t \note)
{

if (HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY == note->gs_summary_code){
notify("CRASH \" - die a horrible death!\n\"");

} else {
notify("ERROR \"Announce Callback One called\n\"");

 }

write_the_notification(1, (void \)note, HA_GS_ANNOUNCEMENT_NOTIFICATION);
 fflush(stdout);
 return;
}

/\
 \ Deal with responsiveness notification. Quite simple, just say we are
 \ ok.
 \/
ha_gs_callback_rc_t responsive_cb(const ha_gs_responsiveness_notification_t \note) {

 ha_gs_callback_rc_t _rc;
const ha_gs_responsiveness_t _response;

 ha_gs_time_limit_t _time;

handledResponsiveness = 1;

_response = &(note->gs_responsiveness_information);
_time = _response->gs_responsiveness_response_time_limit;

 Chapter 4. Using the GSAPI: A Group Services Client Example 159

 sample_schg.c

if (2 <= debug) {
write_the_notification(ð, (void \)note, HA_GS_RESPONSIVENESS_NOTIFICATION);

 }

 fflush(stdout);
 return HA_GS_CALLBACK_OK;
}

/\
 \ Query callback function for query response notifications. Not
 \ something we expect to see.
 \/
void query_cb(const ha_gs_query_notification_t \note){
 write_the_time();

printf("Query callback called\n");
 fflush(stdout); return;
}

/\\\/
/\
 \ Used to write out exceptional conditions. It will write the given
 \ "message" to stdout, and it will also attempt to execute an external
 \ shell script named by the variable "theNotifyScript", sending it the
 \ given message. That script may mail the info to an interested user,
 \ log it, or do nothing.
 \/
void notify(char \message)
{

static char buffer[1ð24];
static char msg[1ð24];
printf(message);
sprintf(msg, "\"%s\" \"%s\" \"state: %d settings: -g %s, -t %d, -p %d -d %d -j %d -f %d -n %s\" %s",

progname, args, state,
 theGroupName, testInterval,
 providerInstanceNumber, debug,
 jfphases, freq,
 theNotifyScript,
 message);

printf("\nNotifying.... %s\n", time_now());
sprintf(buffer, "%s %s", theNotifyScript, msg);
printf(buffer);
fflush(stdout);
system(buffer);

}

/\\\/
/\
 \ Internal-usage utility functions.
 \/
/\
 \ Print help, such as it is.
 \/
void print_usage(void)
{
 fprintf(stderr,

"Usage: schg [-g <groupname> -t <time interval (in seconds)> -d <debug level>\n");
 fprintf(stderr,

" -p <provider instance number> -n <notify script> \n");
 fprintf(stderr,

" -j <join/failure num phases> -f <log print frequency>\n");
 fprintf(stderr,

" -r -s <seed> -P <n-phase pctg> -T <state time limit>]\n");
 fprintf(stderr,

"\ndefaults: -g SampleGroupð1 -t 1ð -p 1 -d 1 -n /u/tedkirby/bin/notify -j 1 -f 2\n");
 fflush(stderr);
}

/\
 \ Function to obtain the number of the node upon which schg is executing.
 \ The number is obtained by executing the 'node_number' program.
 \/
#define NODE_NUMBER_PROG "/usr/lpp/ssp/install/bin/node_number"

160 RS/6000 Cluster Technology Group Services Programming

 sample_schg.c

int get_node_number(void)
{
 FILE \fp;
 char inbuf[16];
 int status;
 int node;

fp = popen(NODE_NUMBER_PROG, "r");
if (NULL == fp) {

/\ oh well, not here. return something. \/
 return(1);
 }

if (NULL == fgets(inbuf, sizeof(inbuf), fp)) {
/\ oh well, not here. return something. \/

 return(2);
 }
 fclose(fp);

/\ clean up terminated process created by popen() \/

 wait(&status);

node = atoi(inbuf);

if (ð == node) {
/\ if on CWS, return real high node number \/

 return(2ð49);
 }

 return(node);
}

 Chapter 4. Using the GSAPI: A Group Services Client Example 161

 sample_utility.c

The sample_utility.c Utility Functions
/\\\/
/\ \/
/\CPRY \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ 5765-529 PSSP \/
/\ \/
/\ (C) Copyright IBM Corporation 1996 All Rights Reserved. \/
/\ \/
/\ US Government Users Restricted Rights - \/
/\ Use, duplication or disclosure restricted by \/
/\ GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\CPRY \/
/\\\/

static char \sccsid = "@(#)95 1.19
src/rsct/pgs/samples/sample_utility.c, gssamples, rsct_rtro, rtrot1fx 4/26/98 16:16:5ð";

#if !defined(_HAGSD_COPYRIGHT_H)
#define _HAGSD_COPYRIGHT_H
static char copyright[] = "Licensed Materials - Property of IBM\n\
5765-529 (C) Copyright IBM Corp. 1996. All Rights Reserved.\n\
US Government Users Restricted Rights - Use, duplication or \n\
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.\n";
#endif

/\\\/
/\
 \ Name: sample_utility.c
 \
 \ This program provides the set of utility functions used by the
 \ "sample_test" and "sample_schg" programs.
 \
 \ Components:
 \ sample_utility.c - this module, provides the definitions for the
 \ utility functions used by the sample_test and sample_schg
 \ programs.
 \
 \ sample_callbacks.c - provides the definitions for the callback
 \ functions used for the groups created by the sample_test
 \ program.
 \
 \ sample_test.c - contains the main() function for sample_test, which
 \ supports interaction with the user, and most calls to the Group
 \ Services interfaces.
 \
 \ sample_schg.c - contains the main() function for sample_schg, which
 \ contains the calls to Group Services interfaces, and also the
 \ callback functions used by sample_schg.
 \
 \ sample_callbacks.h - declarations for the callback functions
 \ contained in sample_callbacks.c.
 \
 \ sample_utility.h - declarations for the utility functions contained
 \ in sample_utility.c
 \
 \ The information here assumes that you are familiar with the information
 \ presented in the IBM PSSP Group Services Programming Guide and Reference
 \ manual.
 \
 \ This program is provided for illustrative purposes only, and is not
 \ intended to be an authoritative description of the "best" methods to
 \ use when writing a Group Services application. It is intended to
 \ demonstrate the various interfaces in a relatively verbose manner,
 \ and to allow you to relatively easily manipulate groups and their
 \ members.
 \

162 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 \ To this end, various aspects of this program (in particular its
 \ handling of screen input and output) are neither robust nor
 \ foolproof. Therefore, you should take care when giving input to
 \ this program.
 \/
/\\\/

/\\\/
/\
 \ Please refer to sample_test.c for information about building and
 \ using the sample_test program. Refer to sample_schg.c for such
 \ information for the sample_schg program.
 \
 \ Note that since this file is shared by sample_test and sample_schg,
 \ all data and functions defined here are used only by sample_test.
 \ Those sections NOT included via "#ifdef _SAMPLE_TEST/#endif" are
 \ not used by sample_schg.
 \/
/\\\/

/\\\/
/\
 \ Utility functions.
 \
 \ Ths utility functions handle pedestrian tasks such as formatting
 \ and displaying the information contained in various notifications,
 \ as well as querying the user for input data when creating protocol
 \ proposals or asking for votes.
 \
 \ These functions are used by the various callback functions in
 \ sample_callbacks.c, as well as by the main() function contained in
 \ sample_test.c. The file sample_callbacks.h contains the prototypes
 \ for the utility functions.
 \/
/\\\/

/\\\/
/\
 \ Include "standard" system files. Note that pthread.h must be the
 \ first file included, if it is to be included (see the standard AIX
 \ documentation for more information about AIX thread support.)
 \/
/\\\/

#ifdef _THREAD_SAFE /\ begin _THREAD_SAFE \/
#include <pthread.h>
#endif /\ end _THREAD_SAFE \/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <strings.h>
#include <memory.h>
#include <time.h>
#include <arpa/inet.h>

/\\\/
/\
 \ Include the Group Services declarations file.
 \/
/\\\/

#include <ha_gs.h>

/\\\/
/\
 \ Include the set of declarations for utility functions for this program.
 \/
/\\\/

#include "sample_utility.h"

 Chapter 4. Using the GSAPI: A Group Services Client Example 163

 sample_utility.c

#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/
/\\\/
/\
 \ Include the set of declarations for callbacks for this program.
 \/
/\\\/

#include "sample_callbacks.h"
#endif /\ ifdef _SAMPLE_TEST \/

/\\/
/\
 \ These are "global" variables shared among the modules within the
 \ sample_test program.
 \/

int voting_phase; /\ Which voting phase for the \/
/\ current protocol? \/

int handledResponsiveness = ð; /\ Received responsiveness notification? \/

#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/

int verbose = ð; /\ Verbose prompts? \/

/\
 \ Set up variables to hold the data pertaining to the groups which are
 \ allowed for joining and subscribing. We initializing the token arrays
 \ to -1 to show that no token is yet in that slot (we assume that -1
 \ will never represent a valid token, which is valid in AIX, as all tokens
 \ will be in the range of ð-2ð48.)
 \/

const int num_groups = NUM_GROUPS;
const int num_groups_for_subscribe = NUM_GROUPS_FOR_SUBSCRIBE;
const int predef_groups_for_subscribe = NUM_GROUPS + 8;

#endif /\ ifdef _SAMPLE_TEST \/

/\ ha_gs_tokens_t for each group \/
ha_gs_token_t gid[] = {-1,-1,-1,-1,-1,-1,-1, -1};

/\ provider id's for each group \/
ha_gs_provider_t provId[NUM_GROUPS];

 /\ ha_gs_tokens_t for subscribing to each group \/
ha_gs_token_t sid[] = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,\
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};

/\ subscription controls \/
ha_gs_subscription_ctrl_t subCtrl[] = {ð,\
 ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð,ð};

char \subNames[NUM_GROUPS_FOR_SUBSCRIBE];

#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/

/\
 \ The set of callback functions that are used for subscribing. The
 \ initial 8 entries are for subscribing to the pre-defined and user-
 \ defined groups supported by sample_test for joining, the remaining
 \ are used for subscriptions to other groups.
 \/
ha_gs_subscription_cb_t \subCallbacks[] = {
 subscribe_cbð,
 subscribe_cb1,
 subscribe_cb2,
 subscribe_cb3,
 subscribe_cb4,
 subscribe_cb5,
 subscribe_cb6,
 subscribe_cb7,
 subscribe_cb_HostMbr,

164 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 subscribe_cb_EnetMbr,
 subscribe_cb_CssMbr,
 subscribe_cb_TrMbr,
 subscribe_cb_FddiMbr,
 subscribe_cb_RS232Mbr,
 subscribe_cb_TmScsiMbr,
 subscribe_cb_SlipMbr
 };

int pickIdx = 99;
int listIdx = 999;
ha_gs_subscription_cb_t \pickCallback = subscribe_cb_Pick;

#endif /\ ifdef _SAMPLE_TEST \/

/\ flag for successful join of group \/
int in_group[] = {ð,ð,ð,ð,ð,ð,ð,ð};

 /\ how many successes? \/
int in_group_count = ð;

/\ how many subscriptions? \/
int subscribed_to_count = ð;

/\ are we dealing with responsiveness interactively? \/
int interactiveInit = ð;
int interactiveResponse = ð;

char \starz="\\\\\\\\\\++++++++++==========\\\\\\\\\\++++++++++==========\n";
char \asterisks="\\\n";

/\\/
/\
 \ These variables provide the pre-defined names of groups, and portions
 \ of the group attributes for these groups.
 \/

#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/

/\
 \ The names of the "pre-defined" groups for joining.
 \/
char \group_names[] = {
 "theSourceGroup",
 "OnePhaseJoin",
 "theTargetGroup",
 "theLonelyGroup",
 "ifFirstIWin",
 "SourceOrNot",
 "ChainGang",
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 "",
 ""
};

/\
 \ The names of the source-groups to be used by the respectives
 \ groups listed in group_names[].
 \/
char \source_group_names[] = {
 "",
 "",
 "theSourceGroup",
 "theMissingGroup",
 "",
 "theSourceGroup",

 Chapter 4. Using the GSAPI: A Group Services Client Example 165

 sample_utility.c

 "theTargetGroup",
 "",
 ""
};

/\
 \ The provider local names used for the join requests to the
 \ respective groups listed in group_names[].
 \/
char \prov_local_names[] = {
 "SourceJoin",
 "SinglePhase",
 "Existing",
 "Missing",
 "AmIFirstOrALoser",
 "MaybeSourceIt",
 "DaisyChain",
 "NeverBeMe",
 ""
};

#endif /\ ifdef _SAMPLE_TEST \/

/\
 \ The base provider instance numbers used for the join requests
 \ to the respective groups listed in group_names[]. The actual
 \ instance number is built by adding the program's index number
 \ to this base value.
 \/
int instance_numbers[] = {1ðð, 2ðð, 3ðð, 4ðð, 5ðð, 6ðð, 7ðð, 8ðð};

/\
 \ Array to hold the group attributes for the pre-defined groups.
 \/
ha_gs_group_attributes_t \gattr[] = {ð, ð, ð, ð, ð, ð, ð, ð};

/\\\/
/\
 \ We will prepend all submitted state values and provider-broadcast
 \ messages with a tag constructed from the program index, to ensure
 \ that we don't truncate due to finding a null value there, and to
 \ indicate which provider submitted the data.
 \
 \ See sample_test.c for full details of how this "tag" is prepared,
 \ these variables are used by the utility routines to construct the
 \ values.
 \/

int sample_index = 1; /\ what is my index, for numbers, flags, etc? \/

#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/

typedef struct {
 int st_pbm_index;
 char st_pbm_data[25ðð];
} st_pbm_struct;

char \sample_prefix; /\ prepend to msgs, states, etc. \/
int sample_prefix_len = ð;

char \sample_pp = "<";
char \sample_ee = "<";

/\\/

/\
 \ These arrays provide a rotating set of provider-broadcast messages,
 \ proposed group state values, and updated default vote values, all of
 \ which may be submitted along with vote values whenever the user needs
 \ to vote on an n-phase protocol.
 \

166 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 \ The entry is chosen by taking the phase number for this protocol
 \ modulo with the variable "NUMBER_MSG_ENTRIES", and using the result
 \ as an index into these arrays. An entry of '{ð,ð}' indicates that
 \ no value will be submitted with this vote.
 \/

ha_gs_provider_message_t provider_msg_array[] = {
{ 35, "I am Born! Or, is that, I am Borg?"},
{ 49, "Things do seem to be looking up now, do they not?"},
{ 36, "What a long, strange trip it's been!"},
{ ð, ð},
{ 252, "Fourscore and seven years ago, our fourfeathers brought into existence "\

"that which cannot ever be compared to anything else, that which is to be, "\
"umm, well, something. Anyway, trust us. It was quite a good plan they "\
"had. Plastics. That's the ticket."},

{ ð, ð},
{ 124, "We come in peace. All we want is a peace of what you got, and a peace "\

"of what he's got, and a peace of what they've got..."},
{ 2ð, "Forest for the Cup!"}
};

ha_gs_state_value_t state_value_array[] = {
{ 4, "1111"},
{ ð, ð},
{ 8, "22223333"},
{ 12ð, "hhhhhhhhppppppppppppLL"\
 "LLLLLLLLxx"},
{ ð, ð},
{ 7, "7654321"},
{ ð, ð},
{ 13, "Forza azzuri"}
};

ha_gs_vote_value_t default_vote_array[] = {
HA_GS_NULL_VOTE,
HA_GS_NULL_VOTE,
HA_GS_VOTE_APPROVE,
HA_GS_VOTE_REJECT,
HA_GS_NULL_VOTE,
HA_GS_NULL_VOTE,
HA_GS_NULL_VOTE,
HA_GS_VOTE_APPROVE
};

/\\\/
/\
 \ Display the help information.
 \/
char \instruct1="\nEnter: 'i'(ha_gs_init) '1'(1 phase join) 'j'(n phase join)\n";
char \instruct2=" 'x'(good target join, if 'j' was done) 'm'(bad target join)\n";
char \instruct3=" 'a'(mismatch attributes, if done by both even and odd indexed sample_tests)\n";
char \instruct4=" 't'(state value change) 'p'(provider broadcast message)\n";
char \instruct5=" 's'(subscribe to a group) 'u'(unsubscribe from a group)\n";
char \instruct6=" 'l'(leave a group) 'e'(expel one or more providers from a group)\n";
char \instruct7=" 'g'(even index: source 'theSourceGroup', odd index: no source-group)\n";
char \instruct8=" '3'(good target join, if 'j' and 'x' were done)\n";
char \instruct9=" 'b'(build a group by defining its attributes)\n";
char \instruct1ð=" 'n'(modify a group's attributes)\n";
char \instruct11=" 'y'(say goodbye (\"exit immediately from\") a group)\n";
char \instruct12=" 'z'(toggle HA_GS_DEACTIVATE_ON_FAILURE)\n";
char \instructL=" 'd'(ha_gs_dispatch) 'h' (print these instructions) 'q'(quit)\n";

void write_instructions(int _verbose)
{
 printf(instruct1);
 printf(instruct2);
 printf(instruct3);
 printf(instruct4);
 printf(instruct5);
 printf(instruct6);
 printf(instruct7);
 printf(instruct8);

 Chapter 4. Using the GSAPI: A Group Services Client Example 167

 sample_utility.c

 printf(instruct9);
 printf(instruct1ð);
 printf(instruct11);
 printf(instructL);

if (!_verbose) {
printf("\nTo automatically get these instructions at each prompt, use\n");
printf(" 'verbose' mode via '-v' on the command line.\n\n");

 }
printf("To interactively specify initialization parameters, specify '-i' on\n");
printf(" the command line.\n\n");

 fflush(stdout);
 return;
}

#endif /\ ifdef _SAMPLE_TEST \/

/\\\/
/\
 \ Calculate the current TOD, compare times, generate random numbers.
 \/
char \time_now()
{
 struct timeval current_time;

struct timezone tz;

 gettimeofday(¤t_time, &tz);

return(ctime((time_t \) ¤t_time.tv_sec));
}

time_t time_since(struct timeval \event)
{
 time_t overdue;
 struct timeval current_time;

struct timezone tz;

 gettimeofday(¤t_time, &tz);

overdue = (time_t) (current_time.tv_sec - event->tv_sec);

return (overdue);
}

void write_the_time()
{
 struct timeval current_time;

struct timezone tz;
char tod[32]; /\ extract part of string. \/

 char \cTod;

 gettimeofday(¤t_time, &tz);

/\ Grab month/day/time only. \/
cTod = ctime((time_t \) ¤t_time.tv_sec);
memcpy(tod, cTod+4, 16);
tod[15] = '\ð';

 printf("\n[TOD(%s)]", tod);

 return;
}

float randomp()
{

const unsigned long RANDMAX = 2147483648; /\ 2\\31 \/
/\ random() returns ð to RANDMAX-1 \/

return(((float) random()) / ((float) RANDMAX));
}

long randomn(unsigned long max)
{

168 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

const unsigned long RANDMAX = 2147483648; /\ 2\\31 \/
/\ random() returns ð to RANDMAX-1 \/

 long rand;

if (1 >= max) return ð;

if (RANDMAX < max) {
rand = random();
return 2\rand + rand%2;

 }

while((rand = random()) > max \ (RANDMAX/max));

return(rand % max);
}

/\\/
/\
 \ These functions display various Group Services data types. These are
 \ used to display data from protocol submissions and notifications.
 \/

/\
 \ Display the type of protocol represented by a notification.
 \/
char \proto_type(int req)
{
 switch(req) {
 case HA_GS_RESPONSIVENESS:
 return("HA_GS_RESPONSIVENESS");
 case HA_GS_JOIN:
 return("HA_GS_JOIN");
 case HA_GS_FAILURE_LEAVE:
 return("HA_GS_FAILURE_LEAVE");
 case HA_GS_LEAVE:
 return("HA_GS_LEAVE");
 case HA_GS_EXPEL:
 return("HA_GS_EXPEL");
 case HA_GS_STATE_VALUE_CHANGE:
 return("HA_GS_STATE_VALUE_CHANGE");
 case HA_GS_PROVIDER_MESSAGE:
 return("HA_GS_PROVIDER_MESSAGE");
 case HA_GS_CAST_OUT:
 return("HA_GS_CAST_OUT");
 case HA_GS_SOURCE_STATE_REFLECTION:
 return("HA_GS_SOURCE_STATE_REFLECTION");
 case HA_GS_MERGE:
 return("HA_GS_MERGE");
 case HA_GS_SUBSCRIPTION:
 return("HA_GS_SUBSCRIPTION");
 case HA_GS_GROUP_ATTRIBUTE_CHANGE:
 return("HA_GS_GROUP_ATTRIBUTE_CHANGE");
 default:

printf("?? Unknown protocol request[%d] ??", req);
 return("Unknown");
 }
}

/\
 \ Display the summary code contained in a notification.
 \/
char \sum_code(int sum)
{
 switch(sum) {
 case HA_GS_EXPLICIT_APPROVE:
 return("HA_GS_EXPLICIT_APPROVE");
 case HA_GS_EXPLICIT_REJECT:
 return("HA_GS_EXPLICIT_REJECT");
 case HA_GS_DEFAULT_APPROVE:
 return("HA_GS_DEFAULT_APPROVE");
 case HA_GS_DEFAULT_REJECT:
 return("HA_GS_DEFAULT_REJECT");

 Chapter 4. Using the GSAPI: A Group Services Client Example 169

 sample_utility.c

 case HA_GS_TIME_LIMIT_EXCEEDED:
 return("HA_GS_TIME_LIMIT_EXCEEDED");
 case HA_GS_PROVIDER_FAILED:
 return("HA_GS_PROVIDER_FAILED");
 case HA_GS_RESPONSIVENESS_NO_RESPONSE:
 return("HA_GS_RESPONSIVENESS_NO_RESPONSE");
 case HA_GS_RESPONSIVENESS_RESPONSE:
 return("HA_GS_RESPONSIVENESS_RESPONSE");
 case HA_GS_GROUP_DISSOLVED:
 return("HA_GS_GROUP_DISSOLVED");
 case HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY:
 return("HA_GS_GROUP_SERVICES_HAS_DIED_HORRIBLY");
 case HA_GS_DEACTIVATE_UNSUCCESSFUL:
 return("HA_GS_DEACTIVATE_UNSUCCESSFUL");
 case HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED:
 return("HA_GS_DEACTIVATE_TIME_LIMIT_EXCEEDED");
 default:

printf("?? Unknown summary code[%d] ??", sum);
 return("Unknown");
 }
}

/\
 \ Display the number of phases for a given protocol.
 \/
char \phase_print(int phase)
{
 switch(phase) {
 case HA_GS_1_PHASE:
 return("1_PHASE");
 case HA_GS_N_PHASE:
 return("N_PHASE");
 default:

printf("?? Unknown phase specification[%d] ??", phase);
 return("Unknown");
 }
}

/\
 \ Display the batching control group attribute.
 \/
char \batch_print(int batch)
{ static char msg[1ðð];

if(batch & HA_GS_DEACTIVATE_ON_FAILURE) {
 strcpy(msg, "HA_GS_DEACTIVATE_ON_FAILURE|");

} else {
 strcpy(msg,"");
 }

switch((batch & (HA_GS_DEACTIVATE_ON_FAILURE))) {
 case HA_GS_NO_BATCHING:
 strcat(msg, "HA_GS_NO_BATCHING");
 return msg;
 case HA_GS_BATCH_JOINS:
 strcat(msg, "HA_GS_BATCH_JOINS");
 return msg;
 case HA_GS_BATCH_LEAVES:
 strcat(msg,"HA_GS_BATCH_LEAVES");
 return msg;

 case HA_GS_BATCH_BOTH:
 strcat(msg, "HA_GS_BATCH_BOTH");
 return msg;
 default:

printf("?? Unknown batch control[%d] ??", batch);
 return("Unknown");
 }
}

/\
 \ Display the merge control group attribute.

170 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 \/
char \merge_print(int merge)
{
 switch(merge) {
 case HA_GS_DISSOLVE_MERGE:
 return("HA_GS_DISSOLVE_MERGE");
 case HA_GS_LARGER_MERGE:
 return("HA_GS_LARGER_MERGE");
 case HA_GS_SMALLER_MERGE:
 return("HA_GS_SMALLER_MERGE");
 case HA_GS_DONTCARE_MERGE:
 return("HA_GS_DONTCARE_MERGE");
 default:

printf("?? Unknown merge control[%d] ??", merge);
 return("Unknown");
 }
}

/\
 \ Display the type of responsiveness specified.
 \/
char \responsive_print(int resp)
{
 switch(resp) {
 case HA_GS_NO_RESPONSIVENESS:
 return("HA_GS_NO_RESPONSIVENESS");
 case HA_GS_PING_RESPONSIVENESS:
 return("HA_GS_PING_RESPONSIVENESS");
 case HA_GS_COUNTER_RESPONSIVENESS:
 return("HA_GS_COUNTER_RESPONSIVENESS");
 default:

printf("?? Unknown responsiveness type [%d] ??", resp);
 return("Unknown");
 }
}

/\
 \ Display the contents of the whats changed field from a notification.
 \/
char \what_changed(int what)
{
 switch(what) {
 case HA_GS_NO_CHANGE:
 return("HA_GS_NO_CHANGE");
 case HA_GS_PROPOSED_MEMBERSHIP:
 return("HA_GS_PROPOSED_MEMBERSHIP");
 case HA_GS_ONGOING_MEMBERSHIP:
 return("HA_GS_ONGOING_MEMBERSHIP");
 case HA_GS_PROPOSED_STATE_VALUE:
 return("HA_GS_PROPOSED_STATE_VALUE");
 case HA_GS_ONGOING_STATE_VALUE:
 return("HA_GS_ONGOING_STATE_VALUE");
 case HA_GS_UPDATED_PROVIDER_MESSAGE:
 return("HA_GS_UPDATED_PROVIDER_MESSAGE");
 case HA_GS_UPDATED_MEMBERSHIP:
 return("HA_GS_UPDATED_MEMBERSHIP");
 case HA_GS_REJECTED_MEMBERSHIP:
 return("HA_GS_REJECTED_MEMBERSHIP");
 case HA_GS_UPDATED_STATE_VALUE:
 return("HA_GS_UPDATED_STATE_VALUE");
 case HA_GS_REFLECTED_SOURCE_STATE_VALUE:
 return("HA_GS_REFLECTED_SOURCE_STATE_VALUE");
 case HA_GS_EXPEL_INFORMATION:
 return("HA_GS_EXPEL_INFORMATION");
 case HA_GS_PROPOSED_GROUP_ATTRIBUTES:
 return("HA_GS_PROPOSED_GROUP_ATTRIBUTES");
 case HA_GS_ONGOING_GROUP_ATTRIBUTES:
 return("HA_GS_ONGOING_GROUP_ATTRIBUTES");
 case HA_GS_UPDATED_GROUP_ATTRIBUTES:
 return("HA_GS_UPDATED_GROUP_ATTRIBUTES");
 case HA_GS_REJECTED_GROUP_ATTRIBUTES:
 return("HA_GS_REJECTED_GROUP_ATTRIBUTES");

 Chapter 4. Using the GSAPI: A Group Services Client Example 171

 sample_utility.c

 default:
printf("?? Unknown what's changed control[%d] ??", what);

 return("Unknown");
 }
}

/\
 \ Display the subscription control flag.
 \/
char \write_sub_ctrl(ha_gs_subscription_ctrl_t subCtrl)
{
 switch(subCtrl) {
 case ð:
 return("No subscriptions!");
 case HA_GS_SUBSCRIBE_STATE:
 return("HA_GS_SUBSCRIBE_STATE");
 case HA_GS_SUBSCRIBE_DELTA_JOINS:
 return("HA_GS_SUBSCRIBE_DELTA_JOINS");
 case HA_GS_SUBSCRIBE_DELTA_LEAVES:
 return("HA_GS_SUBSCRIBE_DELTA_LEAVES");
 case HA_GS_SUBSCRIBE_DELTAS_ONLY:
 return("HA_GS_SUBSCRIBE_DELTAS_ONLY");
 case HA_GS_SUBSCRIBE_MEMBERSHIP:
 return("HA_GS_SUBSCRIBE_MEMBERSHIP");
 case HA_GS_SUBSCRIBE_ALL_MEMBERSHIP:
 return("HA_GS_SUBSCRIBE_ALL_MEMBERSHIP");
 case HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP:
 return("HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP");
 default:

printf("?? Unknown subscription control[%d] ??", subCtrl);
 return("Unknown");
 }
}

/\
 \ Display the type of a specified subscription request.
 \/
void write_sub_type(ha_gs_subscription_type_t subType)
{
 int foo;

foo = ð;

 printf("Subscription data[");
if (HA_GS_SUBSCRIPTION_STATE & subType) {

 printf("HA_GS_SUBSCRIPTION_STATE");
 foo++;
 }

if (HA_GS_SUBSCRIPTION_DELTA_JOIN & subType) {
if (foo) {

 printf("\n ");
foo = ð;

 }
 printf("HA_GS_SUBSCRIPTION_DELTA_JOIN");
 foo++;
 }

if (HA_GS_SUBSCRIPTION_DELTA_LEAVE & subType) {
if (foo) {

 printf("\n ");
foo = ð;

 }
 printf("HA_GS_SUBSCRIPTION_DELTA_LEAVE");
 foo++;
 }

if (HA_GS_SUBSCRIPTION_MEMBERSHIP & subType) {
if (foo) {

 printf("\n ");
foo = ð;

 }
 printf("HA_GS_SUBSCRIPTION_MEMBERSHIP");
 foo++;
 }

if (HA_GS_SUBSCRIPTION_DISSOLVED & subType) {

172 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

if (foo) {
 printf("\n ");

foo = ð;
 }
 printf("HA_GS_SUBSCRIPTION_DISSOLVED");
 foo++;
 }

if (HA_GS_SUBSCRIPTION_GS_HAS_DIED & subType) {
if (foo) {

 printf("\n ");
foo = ð;

 }
 printf("HA_GS_SUBSCRIPTION_GS_HAS_DIED");
 }
 printf("]\n");
 fflush(stdout);
}

/\
 \ Display the "name" of a Group Services return code.
 \/
char \write_an_rc(ha_gs_rc_t pRC)
{
 switch(pRC) {
 case HA_GS_OK:
 return("HA_GS_OK");
 case HA_GS_NOT_OK:
 return("HA_GS_NOT_OK");
 case HA_GS_EXISTS:
 return("HA_GS_EXISTS");
 case HA_GS_NO_INIT:
 return("HA_GS_NO_INIT");
 case HA_GS_NAME_TOO_LONG:
 return("HA_GS_NAME_TOO_LONG");
 case HA_GS_NO_MEMORY:
 return("HA_GS_NO_MEMORY");
 case HA_GS_NOT_A_MEMBER:
 return("HA_GS_NOT_A_MEMBER");
 case HA_GS_BAD_CLIENT_TOKEN:
 return("HA_GS_BAD_CLIENT_TOKEN");
 case HA_GS_BAD_MEMBER_TOKEN:
 return("HA_GS_BAD_MEMBER_TOKEN");
 case HA_GS_BAD_PARAMETER:
 return("HA_GS_BAD_PARAMETER");
 case HA_GS_UNKNOWN_GROUP:
 return("HA_GS_UNKNOWN_GROUP");
 case HA_GS_INVALID_GROUP:
 return("HA_GS_INVALID_GROUP");
 case HA_GS_NO_SOURCE_GROUP_PROVIDER:
 return("HA_GS_NO_SOURCE_GROUP_PROVIDER");
 case HA_GS_BAD_GROUP_ATTRIBUTES:
 return("HA_GS_BAD_GROUP_ATTRIBUTES");
 case HA_GS_WRONG_OLD_STATE:
 return("HA_GS_WRONG_OLD_STATE");
 case HA_GS_DUPLICATE_INSTANCE_NUMBER:
 return("HA_GS_DUPLICATE_INSTANCE_NUMBER");
 case HA_GS_COLLIDE:
 return("HA_GS_COLLIDE");
 case HA_GS_SOCK_CREATE_FAILED:
 return("HA_GS_SOCK_CREATE_FAILED");
 case HA_GS_SOCK_INIT_FAILED:
 return("HA_GS_SOCK_INIT_FAILED");
 case HA_GS_CONNECT_FAILED:
 return("HA_GS_CONNECT_FAILED");
 case HA_GS_VOTE_NOT_EXPECTED:
 return("HA_GS_VOTE_NOT_EXPECTED");
 case HA_GS_NOT_SUPPORTED:
 return("HA_GS_NOT_SUPPORTED");
 case HA_GS_INVALID_SOURCE_GROUP:
 return("HA_GS_INVALID_SOURCE_GROUP");
 case HA_GS_UNKNOWN_PROVIDER:
 return("HA_GS_UNKNOWN_PROVIDER");

 Chapter 4. Using the GSAPI: A Group Services Client Example 173

 sample_utility.c

 case HA_GS_INVALID_DEACTIVATE_PHASE:
 return("HA_GS_INVALID_DEACTIVATE_PHASE");
 case HA_GS_PROVIDER_APPEARS_TWICE:
 return("HA_GS_PROVIDER_APPEARS_TWICE");
 case HA_GS_BACKLEVEL_PROVIDERS:
 return("HA_GS_BACKLEVEL_PROVIDERS");
 default:

printf("?? Unknown return code[%d] ??", pRC);
 return("Unknown");
 }
}

/\
 \ Display the value of the given vote value.
 \/
char \write_a_vote(ha_gs_vote_value_t vote)
{
 switch(vote) {
 case HA_GS_NULL_VOTE:
 return("HA_GS_NULL_VOTE");
 case HA_GS_VOTE_APPROVE:
 return("HA_GS_VOTE_APPROVE");
 case HA_GS_VOTE_CONTINUE:
 return("HA_GS_VOTE_CONTINUE");
 case HA_GS_VOTE_REJECT:
 return("HA_GS_VOTE_REJECT");
 default:

printf("?? Unknown vote value[%d] ??", vote);
 return("Unknown");
 }
}

/\
 \ Display the leave reason as given in a notification.
 \/
char \write_leave_reason(ha_gs_leave_reasons_t why)
{
 switch(why) {
 case HA_GS_VOLUNTARY_LEAVE:
 return("HA_GS_VOLUNTARY_LEAVE");
 break;
 case HA_GS_PROVIDER_FAILURE:
 return("HA_GS_PROVIDER_FAILURE");
 break;
 case HA_GS_HOST_FAILURE:
 return("HA_GS_HOST_FAILURE");
 break;
 case HA_GS_PROVIDER_EXPELLED:
 return("HA_GS_PROVIDER_EXPELLED");
 break;
 case HA_GS_SOURCE_PROVIDER_LEAVE:
 return("HA_GS_SOURCE_PROVIDER_LEAVE");
 break; case HA_GS_PROVIDER_SAID_GOODBYE:
 return("HA_GS_PROVIDER_SAID_GOODBYE");
 break;
 default:

printf("Unknown leave code[%d]!", why);
 break;
 }

 return("Unknown");
}

/\
 \ Display the group attributes.
 \/
void write_the_attributes(ha_gs_group_attributes_t \gAttrs)
{

printf("Group attributes: \n");
printf(" version[%d] size[%d] client version[%d]\n",

 gAttrs->gs_version,
 gAttrs->gs_sizeof_group_attributes,

174 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 gAttrs->gs_client_version);
printf(" Batching[%s] Join/Fail phases[%s] Reflection phases[%s]\n",

 batch_print(gAttrs->gs_batch_control),
 phase_print(gAttrs->gs_num_phases),
 phase_print(gAttrs->gs_source_reflection_num_phases));

printf(" Default vote[%s] Merge[%s]\n",
 write_a_vote(gAttrs->gs_group_default_vote),
 merge_print(gAttrs->gs_merge_control));

printf(" Time limits: join/fail[%d] reflection[%d]\n",
 gAttrs->gs_time_limit,
 gAttrs->gs_source_reflection_time_limit);

printf(" Group name[%s]", gAttrs->gs_group_name);
if (gAttrs->gs_source_group_name) {

printf(" Source group name[%s]", gAttrs->gs_source_group_name);
 }
 printf("\n");
 fflush(stdout);
 return;
}

#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/
/\
 \ Copy a set of group attributes to save them.
 \/
void copy_the_attributes(int groupIdx,
 ha_gs_group_attributes_t \gAttrsTarg,
 ha_gs_group_attributes_t \gAttrsSrc)
{

 ha_gs_copy_group_attributes(gAttrsTarg, gAttrsSrc);
gattr[groupIdx] = gAttrsTarg;

 /\
\ The names in the new attributes better match what we have cached!

 \/
if (ð != strcmp(gAttrsTarg->gs_group_name, group_names[groupIdx])) {

printf("Error: New attributes have group name [%s], old have [%s]!\n",
 gAttrsSrc->gs_group_name,
 group_names[groupIdx]);
 }

if (ð != strcmp(gAttrsTarg->gs_source_group_name, source_group_names[groupIdx])) {
printf("Error: New attributes have source group name [%s], old have [%s]!\n",

 gAttrsSrc->gs_source_group_name,
 source_group_names[groupIdx]);
 }

 return;
}
#endif /\ ifdef _SAMPLE_TEST \/

/\
 \ Display the information to be submitted for a join (via ha_gs_join()),
 \ any of the various group join commands.
 \/
void write_join_information(int gIndex)
{
 ha_gs_group_attributes_t \gAttrs;
 int inst_num;

 printf(starz);
if (ð == (gAttrs = gattr[gIndex])) {

printf("No group attributes established for index [%d]! Leaving.\n",
 gIndex);
 printf(starz);
 return;
 }

printf("Attempting JOIN for group[%s]:\n",
 gAttrs->gs_group_name);

inst_num = instance_numbers[gIndex];
#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/

printf(" My instance #[%d] local name[%s]\n",

 Chapter 4. Using the GSAPI: A Group Services Client Example 175

 sample_utility.c

 inst_num,
 prov_local_names[gIndex]);
#else /\ else ifdef _SAMPLE_TEST \/

printf(" My instance #[%d]\n",
 inst_num);
#endif /\ ifdef _SAMPLE_TEST \/
 write_the_attributes(gAttrs);

 printf(starz);
 fflush(stdout);
 return;
}

/\
 \ Display a vote value.
 \/
void write_the_vote(ha_gs_vote_value_t vote)
{

printf("vote value[%s]", write_a_vote(vote));

 return;
}

/\\/
/\
 \ Display the information contained in various notifications.
 \/

/\
 \ Display an arbitrary group state value or provider message. For
 \ those non-predefined groups, we do not know the format of the group's
 \ state value, or any provider messages. Also, certain other routines
 \ may not know which group. At these times, we use this routine to
 \ display these values in a (somewhat) intelligent format.
 \
 \ We first display as characters, representing non-printable characters
 \ as periods ('.'). We then do either or both of the following:
 \ - if the length is equivalent to one or more integers, display each
 \ word as its integral value.
 \ - display the whole value as a raw hex stream.
 \/
void write_arbitrary_value(int which,
 void \value)
{

char _val, _val2;
int _len, _len2, _cnt, _isize, _stpbmint;

 char _buffer;
 char _bufPtr;

 ha_gs_state_value_t _state;
 ha_gs_provider_message_t _pbm;

if (ARBITRARY_STATE_VALUE == which) {
_state = (ha_gs_state_value_t \)value;
_len = _state->gs_length;
_val = _state->gs_state;

 printf("state value[");
} else {

_pbm = (ha_gs_provider_message_t \)value;
_len = _pbm->gs_length;
_val = _pbm->gs_message;

 printf("provider message[");
 }

if (ð >= _len) {

/\ Nothing here. \/

 printf("]\n");
 fflush(stdout);
 return;
 }

176 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

_buffer = (char \)malloc((_len \ 5) + 1); /\ Buffer in which to build string. \/

 /\
\ Display assuming it is actually printable.

 \/
for (_len2 = _len, _val2 = _val, _bufPtr = _buffer;

ð < _len2;
) {

for (_cnt = ð;
((4 > _cnt) && (ð < _len2));
_cnt++, _len2--) {

if (isprint(_val2)) {
sprintf(_bufPtr++, "%c", _val2++);

} else {
_bufPtr++ = '.';

 _val2++;
 }
 }
 }

_bufPtr++ = '\ð';

 printf("[%s]\n",_buffer);
 fflush(stdout);

 /\
\ If integral number of words, display as series of ints.

 \/
_isize = sizeof(_stpbmint);
if (ð == (_len % _isize)) {

 printf("[");
if (_isize == _len) {

/\ assume an int \/
memcpy(&_stpbmint, _val, sizeof(_stpbmint));

 printf("%d", _stpbmint);
} else {

/\ assume series of ints \/
for (_len2 = ð, _val2 = _val;

_len2 < _len;
_len2 += 4, _val2 += 4) {
memcpy(&_stpbmint, _val2, sizeof(_stpbmint));

 printf("%d", _stpbmint);
if (_len2 != (_len - 4)) {

 printf(" ");
 }
 }
 }
 printf("]\n");
 fflush(stdout);
 }

 /\
\ Now, convert to "printable" hex.

 \/
for (_len2 = _len, _val2 = _val, _bufPtr = _buffer;

ð < _len2;
) {

 sprintf(_bufPtr, "ðx");
_bufPtr += 2;

for (_cnt = ð;
((4 > _cnt) && (ð < _len2));
_cnt++, _len2--) {

sprintf(_bufPtr, "%ð2x", _val2++);
_bufPtr += 2;

 }

 Chapter 4. Using the GSAPI: A Group Services Client Example 177

 sample_utility.c

_bufPtr++ = ' ';
 }

_bufPtr++ = '\ð';

 printf("[%s]]\n",_buffer);
 fflush(stdout);

 free(_buffer);

 return;
}

/\
 \ Display a notification received from Group Services.
 \/
void write_the_notification(int groupIdx,

void \ addr,
 ha_gs_notification_type_t whatItBe)
{

unsigned int i, j, mask, whatchanged, which_msg;
int stpbmint, full_proposal, grabbedIt, iHaveLeft;

 int expelledMyself, iBeenExpelled;
 char \ctr;

 ha_gs_proposal_t \proposal;
 ha_gs_responsiveness_t \response;

 ha_gs_request_t pType;
 ha_gs_provider_t pProposer;
 ha_gs_token_t pToken;

 ha_gs_membership_t \membership;
 ha_gs_provider_t \provider;

 ha_gs_summary_code_t summary_code;

 ha_gs_state_value_t \state;
 ha_gs_provider_message_t \pbm;

 ha_gs_n_phase_notification_t \note;
 ha_gs_approved_notification_t \appr;
 ha_gs_rejected_notification_t \rej;
 ha_gs_announcement_notification_t \announce;
 ha_gs_responsiveness_notification_t \resp;

 ha_gs_leave_array_t \leave_array;
 ha_gs_leave_info_t \leave_info;
 ha_gs_expel_info_t \expel_info;

note = (ha_gs_n_phase_notification_t \)addr;
appr = (ha_gs_approved_notification_t \)addr;
rej = (ha_gs_rejected_notification_t \)addr;
announce = (ha_gs_announcement_notification_t \)addr;
resp = (ha_gs_responsiveness_notification_t \)addr;

printf("%.21s %.24s %.21s\n", asterisks, time_now(), asterisks);

full_proposal = 1;
grabbedIt = ð;
iHaveLeft = ð;
iBeenExpelled = ð;
expelledMyself = ð;

 switch(whatItBe) {
 case HA_GS_N_PHASE_NOTIFICATION:

pType = note->gs_protocol_type;
pToken = note->gs_provider_token;
printf("Type[%s] Token[%d] TimeLimit[%d]\n",

 proto_type(pType),
 pToken,
 note->gs_time_limit);

178 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

proposal = note->gs_proposal;
pProposer = proposal->gs_proposed_by;
summary_code = note->gs_summary_code;
membership = proposal->gs_current_providers;

 break;
 case HA_GS_APPROVED_NOTIFICATION:

pType = appr->gs_protocol_type;
pToken = appr->gs_provider_token;

 printf("Type[%s] Token[%d]\n",
 proto_type(pType),
 pToken);

proposal = appr->gs_proposal;
pProposer = proposal->gs_proposed_by;
summary_code = appr->gs_summary_code;
membership = proposal->gs_current_providers;

 break;
 case HA_GS_REJECTED_NOTIFICATION:

pType = rej->gs_protocol_type;
pToken = rej->gs_provider_token;

 printf("Type[%s] Token[%d]\n",
 proto_type(pType),
 pToken);

proposal = rej->gs_proposal;
pProposer = proposal->gs_proposed_by;
summary_code = rej->gs_summary_code;
membership = proposal->gs_current_providers;

 break;
 case HA_GS_ANNOUNCEMENT_NOTIFICATION:
 printf("Type[HA_GS_ANNOUNCEMENT_NOTIFICATION] Token[%d]\n",
 announce->gs_provider_token);

summary_code = announce->gs_summary_code;
membership = announce->gs_announcement;
full_proposal = ð;

 break;

 case HA_GS_RESPONSIVENESS_NOTIFICATION:

response = &(resp->gs_responsiveness_information);

 printf("Type[HA_GS_RESPONSIVENESS_NOTIFICATION] Type[%s]\n",
 responsive_print(response->gs_responsiveness_type));

printf("Interval[%d seconds] Response time limit[%d seconds]\n",
 response->gs_responsiveness_interval,
 response->gs_responsiveness_response_time_limit);

if (HA_GS_COUNTER_RESPONSIVENESS == response->gs_responsiveness_type) {
printf(" Counter location[%x] Counter length[%d] Current value[\n",

 response->gs_counter_location,
 response->gs_counter_length);

ctr = (char \)response->gs_counter_location;
for (i = ð;

i < response->gs_counter_length;
i++, ctr++) {

 printf("%1.1x",
 (void \)ctr);
 }
 printf("]\n");
 }

 printf(asterisks);
 fflush(stdout);
 return;

 default:
printf("Unknown protocol notification type: %d\n", whatItBe);

 fflush(stdout);
 return;

 Chapter 4. Using the GSAPI: A Group Services Client Example 179

 sample_utility.c

 }
 fflush(stdout);

 printf("Summary_Code[");
mask = HA_GS_MIN_SUMMARY_CODE;
for(i=1, j=ð; mask <= HA_GS_MAX_SUMMARY_CODE; i++,mask <<= 1) {

if (summary_code & mask) {
if (2 == j) {

 printf("\n ");
j = ð;

} else if (1 == j) {
 printf(" ");
 }
 printf("%s",sum_code(mask));
 j++;
 }
 else continue;
 }
 printf("]\n");
 fflush(stdout);

if (full_proposal) {
#ifndef _VERBOSE_PROVIDER_OUTPUT

printf("NumPhases[%s] ThisPhase[%d] Proposer[%d/%d]\n",
 phase_print(proposal->gs_phase_info.gs_num_phases),
 proposal->gs_phase_info.gs_phase_number,
 proposal->gs_proposed_by.gs_instance_number,
 proposal->gs_proposed_by.gs_node_number);
#else

/\ do not print out the int value. \/
printf("NumPhases[%s] ThisPhase[%d] Proposer[%d/%d(%d)]\n",

 phase_print(proposal->gs_phase_info.gs_num_phases),
 proposal->gs_phase_info.gs_phase_number,
 proposal->gs_proposed_by.gs_instance_number,
 proposal->gs_proposed_by.gs_node_number,
 proposal->gs_proposed_by.gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 printf("WhatsChanged[");

if (proposal->gs_whats_changed == HA_GS_NO_CHANGE) {
 printf("%s", what_changed(HA_GS_NO_CHANGE));

} else {
j = ð;
for (i=ð;i<31;i++) {

if (proposal->gs_whats_changed & (1<<i)) {
if (2 == j) {

 printf("\n ");
j = ð;

} else if (1 == j) {
 printf(" ");
 }
 printf("%s", what_changed(1<<i));
 j++;
 }
 }
 }
 printf("]\n");
 fflush(stdout);
 }

if (NULL != membership) {
if (full_proposal) {

 printf("CurrentProviders[");
} else {

 printf("AffectedProviders[");
 }

if (membership->gs_count == ð) {
printf("No providers in list!");

} else {
printf("count[%d] Members[", membership->gs_count);
provider = membership->gs_providers;
for (i = ð; i < membership->gs_count; i++) {

#ifndef _VERBOSE_PROVIDER_OUTPUT

180 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 printf("%d/%d ",
 provider->gs_instance_number,
 provider->gs_node_number);
#else

/\ do not print out the int value. \/
 printf("%d/%d(%d) ",
 provider->gs_instance_number,
 provider->gs_node_number,
 provider->gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 provider++;
 }
 printf("]");
 }
 printf("]\n");
 fflush(stdout);
 }

if (!full_proposal) {
 printf(asterisks);
 fflush(stdout);
 return;
 }

whatchanged = proposal->gs_whats_changed;

if ((HA_GS_PROPOSED_MEMBERSHIP & whatchanged) ||
(HA_GS_ONGOING_MEMBERSHIP & whatchanged) ||
(HA_GS_UPDATED_MEMBERSHIP & whatchanged) ||
(HA_GS_REJECTED_MEMBERSHIP & whatchanged)) {
membership = proposal->gs_changing_providers;

 printf("ChangingProviders[");
if (membership->gs_count == ð) {

printf("No changing providers!");
} else {

printf("count[%d] Members[", membership->gs_count);
provider = membership->gs_providers;
for (i = ð; i < membership->gs_count; i++) {

/\ If this is a join, then the "proposer" id will always be us. \/
/\ If we are in the changing providers list, this is "our" join, \/
/\ so grab the provider id. \/
if ((HA_GS_JOIN == pType) &&

(HA_GS_APPROVED_NOTIFICATION == whatItBe) &&
(provider->gs_provider_id == pProposer.gs_provider_id)) {

provId[groupIdx] = pProposer;
grabbedIt = 1;

 }

/\ If this is a "voluntary" leave, then maybe it is us that is \/
/\ leaving. In this case, the proposer should be us, and the changing \/
/\ provider list better also be us. Note that if we are the provider \/
/\ leaving, then this will be the only notification we will get! \/
if (HA_GS_LEAVE == pType) {

if (provId[groupIdx].gs_provider_id == pProposer.gs_provider_id) {
iHaveLeft = 1;

 }
if (provider->gs_provider_id != pProposer.gs_provider_id) {

#ifndef _VERBOSE_PROVIDER_OUTPUT
printf("\nError: proposer is [%d/%d] but changer is:",

 pProposer.gs_instance_number,
 pProposer.gs_node_number);
#else

/\ do not print out the int value. \/
printf("\nError: proposer is [%d/%d(%d)] but changer is:",

 pProposer.gs_instance_number,
 pProposer.gs_node_number,
 pProposer.gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 }
 }

 Chapter 4. Using the GSAPI: A Group Services Client Example 181

 sample_utility.c

/\ If \WE\ have just been the target of an expel, and that expel \/
/\ was approved, bad news! We have been tossed from the group! \/
if ((HA_GS_EXPEL == pType) &&

(provId[groupIdx].gs_provider_id == provider->gs_provider_id)) {
iBeenExpelled = 1;
if (provider->gs_provider_id == pProposer.gs_provider_id) {

expelledMyself = 1;
 }
 }
#ifndef _VERBOSE_PROVIDER_OUTPUT
 printf("%d/%d ",
 provider->gs_instance_number,
 provider->gs_node_number);
#else

/\ do not print out the int value. \/
 printf("%d/%d(%d) ",
 provider->gs_instance_number,
 provider->gs_node_number,
 provider->gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 provider++;
 }
 printf("]");
 }
 printf("]\n");

if (grabbedIt) {
#ifndef _VERBOSE_PROVIDER_OUTPUT

printf(">>>> Grabbed my provider id [%d/%d]\n",
 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number);
#else

/\ do not print out the int value. \/
printf(">>>> Grabbed my provider id [%d/%d(%d)]\n",

 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number,
 provId[groupIdx].gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 }

if (iHaveLeft) {
#ifndef _VERBOSE_PROVIDER_OUTPUT

printf(">>>> I have left the group, provider id was [%d/%d]\n",
 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number);
#else

/\ do not print out the int value. \/
printf(">>>> I have left the group, provider id was [%d/%d(%d)]\n",

 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number,
 provId[groupIdx].gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/

provId[groupIdx].gs_provider_id = -1;
in_group[groupIdx] = ð;

 in_group_count--;
 }

if (iBeenExpelled) {
if (HA_GS_APPROVED_NOTIFICATION == whatItBe) {

if (expelledMyself) {
#ifndef _VERBOSE_PROVIDER_OUTPUT

printf(">>>> I've expelled myself [%d/%d] from the group! Ouch!\n",
 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number);
#else

/\ do not print out the int value. \/
printf(">>>> I've expelled myself [%d/%d(%d)] from the group! Ouch!\n",

 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number,
 provId[groupIdx].gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/

} else {
#ifndef _VERBOSE_PROVIDER_OUTPUT

182 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

printf(">>>> They've expelled me [%d/%d] from the group! The rats!\n",
 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number);
#else

/\ do not print out the int value. \/
printf(">>>> They've expelled me [%d/%d(%d)] from the group! The rats!\n",

 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number,
 provId[groupIdx].gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 }

provId[groupIdx].gs_provider_id = -1;
in_group[groupIdx] = ð;

 in_group_count--;
} else if (HA_GS_REJECTED_NOTIFICATION == whatItBe) {

if (expelledMyself) {
#ifndef _VERBOSE_PROVIDER_OUTPUT

printf("I failed to expel myself [%d/%d]. Strange, but true!\n",
 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number);
#else

/\ do not print out the int value. \/
printf("I failed to expel myself [%d/%d(%d)]. Strange, but true!\n",

 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number,
 provId[groupIdx].gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/

} else {
#ifndef _VERBOSE_PROVIDER_OUTPUT

printf("They tried to expel me [%d/%d] but failed. HA!\n",
 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number);
#else

/\ do not print out the int value. \/
printf("They tried to expel me [%d/%d(%d)] but failed. HA!\n",

 provId[groupIdx].gs_instance_number,
 provId[groupIdx].gs_node_number,
 provId[groupIdx].gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 }
 }
 }
 }

/\ An expel protocol only carries the leave info on the approval notification. \/

if ((HA_GS_FAILURE_LEAVE == note->gs_protocol_type) ||
(HA_GS_LEAVE == note->gs_protocol_type) ||
((HA_GS_EXPEL == note->gs_protocol_type) &&
(HA_GS_APPROVED_NOTIFICATION == whatItBe)) ||
(HA_GS_CAST_OUT == note->gs_protocol_type)) {

 printf("LeaveInfo[");
if (NULL == (leave_array = proposal->gs_leave_info)) {

printf("No leave info?!?");
} else {

leave_info = leave_array->gs_leave_codes;
for (i = ð; i < leave_array->gs_count; i++) {

printf("[%d: reason[%s] code[%d]]\n",
 i,
 write_leave_reason(leave_info->gs_voluntary_or_failure),
 leave_info->gs_voluntary_leave_code);
 leave_info++;
 }
 }
 printf("]\n");
 }

 /\
\ For an expel, we would have already written the list of targeted
\ providers earlier (they are in the "changing providers" field). Here,
\ display the deactivate script information - phase and flag.

 \/

 Chapter 4. Using the GSAPI: A Group Services Client Example 183

 sample_utility.c

if (HA_GS_EXPEL_INFORMATION & whatchanged) {
if (HA_GS_EXPEL == note->gs_protocol_type) {

 printf("ExpelInfo[");
if (NULL == (expel_info = proposal->gs_expel_info)) {

printf("No expel info?!?");
} else {

printf("Deactivate script execution phase [%d]\n flag:[%s]",
 expel_info->gs_deactivate_phase,
 expel_info->gs_expel_flag);
 }
 printf("]\n");

} else {
printf("Have expel information but not an expel protocol notification?!?\n");

 }
 }

 /\
\ We make the assumption that we only join the pre-defined set of groups,
\ which will always enforce a set format to their state values:

 \ int
 \ tag

\ rest of the data.
\ Therefore, we simply display the state value using this format. If
\ you modify this program to join arbitrary groups, this display method
\ may not properly work.

 \
\ Please refer to the routine "write_arbitrary_value()" where we attempt
\ (weakly) to deal with displaying arbitrary group state values.

 \/

state = proposal->gs_current_state_value;
 printf("CurrentState[");

if (ð >= state->gs_length) {
printf("No current state!?!");

} else {
printf("Length[%d] Value[", state->gs_length);
memcpy(&stpbmint, &state->gs_state[ð], sizeof(stpbmint));

 printf("%d", stpbmint);
for (i=sizeof(stpbmint); i<state->gs_length; i++) {

 printf("%c", state->gs_state[i]);
 }
 printf("]");
 }
 printf("]\n");

if ((HA_GS_PROPOSED_STATE_VALUE & whatchanged) ||
(HA_GS_ONGOING_STATE_VALUE & whatchanged) ||
(HA_GS_UPDATED_STATE_VALUE & whatchanged)) {
if ((state = proposal->gs_proposed_state_value) != ð) {

 printf("ProposedState[");
if (state->gs_length == ð) {

printf("No proposed state");
} else {

printf("Length[%d] Value[", state->gs_length);
memcpy(&stpbmint, &state->gs_state[ð], sizeof(stpbmint));

 printf("%d", stpbmint);
for (i=sizeof(stpbmint); i<state->gs_length; i++) {

 printf("%c", state->gs_state[i]);
 }
 printf("]");
 }
 printf("]\n");
 }
 }

if (HA_GS_UPDATED_PROVIDER_MESSAGE & whatchanged) {
if ((pbm = proposal->gs_provider_message) != ð) {

 printf("ProviderMessage[");
if (pbm->gs_length == ð) {

 printf("No message");
} else {

printf("Length[%d] Value[", pbm->gs_length);

184 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

memcpy(&stpbmint, &pbm->gs_message[ð], sizeof(stpbmint));
 printf("%d", stpbmint);

for (i=sizeof(stpbmint); i<pbm->gs_length; i++) {
 printf("%c", pbm->gs_message[i]);
 }
 printf("]");
 }
 printf("]\n");
 }
 }

if (HA_GS_REFLECTED_SOURCE_STATE_VALUE & whatchanged) {
if ((state = proposal->gs_source_state_value) != ð) {

 printf("SourceState[");
if (state->gs_length == ð) {

printf("No source state");
} else {

printf("Length[%d] Value[", state->gs_length);
memcpy(&stpbmint, &state->gs_state[ð], sizeof(stpbmint));

 printf("%d", stpbmint);
for (i=sizeof(stpbmint); i<state->gs_length; i++) {

 printf("%c", state->gs_state[i]);
 }
 printf("]");
 }
 printf("]\n");
 }
 }

/\ Do we have a new set of group attributes? \/
if ((HA_GS_UPDATED_GROUP_ATTRIBUTES & whatchanged) ||

(HA_GS_PROPOSED_GROUP_ATTRIBUTES & whatchanged) ||
(HA_GS_ONGOING_GROUP_ATTRIBUTES & whatchanged) ||
(HA_GS_REJECTED_GROUP_ATTRIBUTES & whatchanged)) {

if ((HA_GS_PROPOSED_GROUP_ATTRIBUTES & whatchanged) ||
(HA_GS_ONGOING_GROUP_ATTRIBUTES & whatchanged)) {
printf("New group attributes proposed for the group!\n");

 write_the_attributes(proposal->gs_new_group_attributes);
} else if (HA_GS_UPDATED_GROUP_ATTRIBUTES & whatchanged) {

printf("New group attributes established for the group!\n");
 write_the_attributes(proposal->gs_new_group_attributes);
#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/
 free(gattr[groupIdx]);

gattr[groupIdx] = malloc(sizeof(ha_gs_group_attributes_t));
 copy_the_attributes(groupIdx,
 gattr[groupIdx],
 proposal->gs_new_group_attributes);
#endif /\ ifdef _SAMPLE_TEST \/

} else {
printf("New group attributes rejected for the group!\n");

 write_the_attributes(proposal->gs_new_group_attributes);
 }
 }

 printf(asterisks);
 fflush(stdout);

/\ End: Write out the data received. \/
 return;
}

/\
 \ Display the protocol proposal information contained in a notification.
 \/
void write_the_proposal(ha_gs_request_t eReq,
 ha_gs_token_t eTok,
 ha_gs_proposal_info_t \prop)
{

int i, grpIdx;
 ha_gs_provider_t _expellee;

 Chapter 4. Using the GSAPI: A Group Services Client Example 185

 sample_utility.c

 switch(eReq) {
 case HA_GS_JOIN:

printf("Join proposal: Instance[%d] Local name[%s]\n",
 prop->gs_join_request.gs_provider_instance,
 prop->gs_join_request.gs_provider_local_name);
 write_the_attributes(prop->gs_join_request.gs_group_attributes);
 break;
 case HA_GS_STATE_VALUE_CHANGE:

printf("State change proposal: Number phases[%s] Time limit[%d]\n",
 phase_print(prop->gs_state_change_request.gs_num_phases),
 prop->gs_state_change_request.gs_time_limit);

printf("Proposed state: length[%d]\n",
 prop->gs_state_change_request.gs_new_state.gs_length);
 write_arbitrary_value(ARBITRARY_STATE_VALUE,
 (void \)&(prop->gs_state_change_request.gs_new_state));
 break;
 case HA_GS_PROVIDER_MESSAGE:

printf("Provider message proposal: Number phases[%s] Time limit[%d]\n",
 phase_print(prop->gs_message_request.gs_num_phases),
 prop->gs_message_request.gs_time_limit);

printf("Provider message: length[%d]\n",
 prop->gs_message_request.gs_message.gs_length);
 write_arbitrary_value(ARBITRARY_PROV_MESSAGE,
 (void \)&(prop->gs_message_request.gs_message));
 break;
 case HA_GS_LEAVE:

printf("Voluntary leave proposal: Number phases[%s] Time limit[%d]\n",
 phase_print(prop->gs_leave_request.gs_num_phases),
 prop->gs_leave_request.gs_time_limit);

printf("Leave code: value[%d]\n",
 prop->gs_leave_request.gs_leave_code);
 break;
 case HA_GS_EXPEL:

printf("Expel proposal: Number phases[%s] Time limit[%d]\n",
 phase_print(prop->gs_leave_request.gs_num_phases),
 prop->gs_expel_request.gs_time_limit);

printf("Deactivate phase[%d] Number of providers[%d]\n",
 prop->gs_expel_request.gs_deactivate_phase,
 prop->gs_expel_request.gs_expel_list.gs_count);
 printf("Targeted providers[");

for (i = prop->gs_expel_request.gs_expel_list.gs_count,
_expellee = prop->gs_expel_request.gs_expel_list.gs_providers;

ð < i;
i--, _expellee++) {

#ifndef _VERBOSE_PROVIDER_OUTPUT
 printf("%d/%d ",
 _expellee->gs_instance_number,
 _expellee->gs_node_number);
#else

/\ do not print out the int value. \/
 printf("%d/%d(%d) ",
 _expellee->gs_instance_number,
 _expellee->gs_node_number,
 _expellee->gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 _expellee++;
 }
 printf("]\n");

if (NULL != prop->gs_expel_request.gs_deactivate_flag) {
 printf("Deactivate flag[%s]\n",
 prop->gs_expel_request.gs_deactivate_flag);

} else {
printf("No deactivate flag given.\n");

 }
 fflush(stdout);
 break; case HA_GS_GROUP_ATTRIBUTE_CHANGE:

printf("Change attributes proposal: Number of phases[%s] Time limit[%d]\n",
 phase_print(prop->gs_attribute_change_request.gs_num_phases),
 prop->gs_attribute_change_request.gs_time_limit);
 write_the_attributes(prop->gs_attribute_change_request.gs_group_attributes);
 fflush(stdout);
 break;

186 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 case HA_GS_MERGE:
 case HA_GS_FAILURE_LEAVE:
 case HA_GS_CAST_OUT:
 case HA_GS_SOURCE_STATE_REFLECTION:

printf("Merge/failure/cast out/reflection protocols should never be here!\n");
 break;
 case HA_GS_SUBSCRIPTION:

printf("subscription request:\nGroup[%s] Subscription desired[%s]\n",
 prop->gs_subscribe_request.gs_subscription_group,
 write_sub_ctrl(prop->gs_subscribe_request.gs_subscription_control));
#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/

if (-1 != (i = get_sub_index(eTok))) {
sid[i] = -1;
subCtrl[i] = ð;

 free(subNames[i]);
subNames[i] = ð;

 subscribed_to_count--;
 break;

} else {
printf("Received delayed error on unkown subscription token [%d]\n",

 eTok);
 }
#endif /\ ifdef _SAMPLE_TEST \/
 break;

 default:
printf("Bad news, bucko. I don't understand the given request[%d]!\n",

 eReq);
 }

 fflush(stdout);
 return;
}

/\
 \ Display the information contained in a delayed error notification.
 \/
void write_the_delayed_error(const ha_gs_delayed_error_notification_t \note)
{
 ha_gs_token_t eToken;
 ha_gs_request_t eRequest;
 ha_gs_rc_t eRC;

eToken = note->gs_request_token;
eRequest = note->gs_protocol_type;
eRC = note->gs_delayed_return_code;

 printf(starz);
printf("Very sorry to report that your proposal request is erroneous.\n");
printf(" Token[%d] Request[%s] Return code[%s]\n",

 eToken,
 proto_type(eRequest),
 write_an_rc(eRC));

write_the_proposal(eRequest, eToken, note->gs_failing_request);
 printf(starz);
 fflush(stdout);
 return;
}

#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/

/\
 \ If it is given, display the "special" data from a subscription
 \ notification.
 \/

void write_the_special_flag(unsigned int flag)
{

if (HA_GS_ADAPTER_DEATH_ARRAY & flag) {
 printf(" HA_GS_ADAPTER_DEATH_ARRAY");
 }

if (HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY & flag) {

 Chapter 4. Using the GSAPI: A Group Services Client Example 187

 sample_utility.c

 printf(" HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY");
 }

if (HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY & flag) {
 printf(" HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY");
 }

 return;
}

/\
 \ We have a set of adapter alias (IP) addresses. Print each out.
 \/
void write_special_alias_array(const ha_gs_special_block_t \block)
{

unsigned int \IPaddr;
int count, length, increment, i, j, k;

 char \IPprint;

count = block->gs_special_num_entries;
length = block->gs_special_length;
increment = length / 4;

 /\
\ Write the addresses in the order given.

 \/

IPaddr = (unsigned int \)block->gs_special;
for (i = ð, j = ð; i < count; i++, j += k) {

IPprint = inet_ntoa(\(struct in_addr \)IPaddr);
k = strlen(IPprint) + 1;
if (8ð < (j + k)) {

 printf("\n");
j = ð;

 }
printf("%s ", IPprint);
IPaddr += increment;

 }
if (ð != j) printf("\n");

 fflush(stdout);
 return;
}

/\
 \ We have a set of "death reasons" for each specified adapter.
 \/
void write_special_death_array(const ha_gs_special_block_t \block)
{
 ha_gs_adapter_death_t \why_died;

int count, length, i, j;

count = block->gs_special_num_entries;
length = block->gs_special_length;

why_died = (ha_gs_adapter_death_t \)block->gs_special;
for (i = ð, j = ð; i < count; i++, why_died++) {

if (HA_GS_ADAPTER_REMOVED == \why_died) {
printf("%d:Removed! ", i);
j += 2;

} else if (HA_GS_ADAPTER_DEAD == \why_died) {
printf("%d:Died ", i);
j += 1;

} else {
printf("%d:Unknown? ", i);
j += 2;

 }
if (8 <= j) {

 printf("\n");
j = ð;

 }
 }

if (ð != j) printf("\n");
 fflush(stdout);

188 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 return;
}

/\
 \ Control writing out the special data. Find the individual blocks.
 \/
void write_the_special_data(const ha_gs_special_data_t \special)
{
 ha_gs_special_block_t \special_block;
 int block_count;

printf("\nThe subscription has 'special' data. How special!\n");
printf("Special data contains [%d] block%s Flags:\n",

 special->gs_length,
((1 == special->gs_length) ? "." : "s."));

 write_the_special_flag(special->gs_flag);
 printf("\nDisplaying data:\n");

special_block = (ha_gs_special_block_t \)special->gs_special_data;
block_count = 1;

while (NULL != special_block) {
printf("Special block %d: Flag:",

 block_count);
 write_the_special_flag(special_block->gs_special_flag);

printf("\n Number entries [%d] Entry length [%d] Data pointer [ðx%x]\n",
 special_block->gs_special_num_entries,
 special_block->gs_special_length,
 special_block->gs_special);
 fflush(stdout);

if (HA_GS_ADAPTER_DEATH_ARRAY & special_block->gs_special_flag) {
 write_special_death_array(special_block);

} else if (HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY & special_block->gs_special_flag) {
 write_special_alias_array(special_block);

} else if (HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY & special_block->gs_special_flag) {
 write_special_alias_array(special_block);

} else {
printf("Unknown special data block type [%d] !!!\n",

 special_block->gs_special_flag);
 }

 fflush(stdout);
special_block = special_block->gs_next_special_block;

 block_count++;
 }

 return;
}
/\
 \ Display the information contained in a subscription notification.
 \/
void write_the_subscription(const ha_gs_subscription_notification_t \note)
{

int i, len, isize;
int stpbmint, grpIdx, predefSub;

 ha_gs_membership_t \membership;
 ha_gs_provider_t \provider;
 ha_gs_state_value_t \state;

 printf("\\\n");

printf("Type[%s] Token[%d] GroupName[",
 proto_type(HA_GS_SUBSCRIPTION),
 note->gs_subscriber_token);

predefSub = ð; /\ one of sample_test's predefined groups? \/

if (-1 != (grpIdx = get_sub_index(note->gs_subscriber_token))) {
 printf("%s",
 subNames[grpIdx]);

for (i = ð;

 Chapter 4. Using the GSAPI: A Group Services Client Example 189

 sample_utility.c

((i < num_groups) && (!predefSub));
 i++) {

if (!strcmp(group_names[i], subNames[grpIdx])) {
predefSub = 1;

 }
 }

} else {
 printf("Unknown!!");

grpIdx = -2;
 }
 printf("]\n");

 write_sub_type(note->gs_subscription_type);

if (HA_GS_SUBSCRIPTION_MEMBERSHIP & note->gs_subscription_type) {
membership = note->gs_full_membership;

 printf("CurrentProviders[");
if (membership->gs_count == ð) {

printf("No providers in list!");
} else {

printf("count[%d] Members[", membership->gs_count);
provider = membership->gs_providers;
for (i = ð; i < membership->gs_count; i++) {

#ifndef _VERBOSE_PROVIDER_OUTPUT
 printf("%d/%d ",
 provider->gs_instance_number,
 provider->gs_node_number);
#else

/\ do not print out the int value. \/
 printf("%d/%d(%d) ",
 provider->gs_instance_number,
 provider->gs_node_number,
 provider->gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 provider++;
 }
 printf("]");
 }
 printf("]\n");
 }

if (HA_GS_SUBSCRIPTION_DELTA_JOIN & note->gs_subscription_type) {
membership = note->gs_changing_membership;

 printf("JoiningProviders[");
if (membership->gs_count == ð) {

printf("No changing providers!");
} else {

printf("count[%d] Members[", membership->gs_count);
provider = membership->gs_providers;
for (i = ð; i < membership->gs_count; i++) {

#ifndef _VERBOSE_PROVIDER_OUTPUT
 printf("%d/%d ",
 provider->gs_instance_number,
 provider->gs_node_number);
#else

/\ do not print out the int value. \/
 printf("%d/%d(%d) ",
 provider->gs_instance_number,
 provider->gs_node_number,
 provider->gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 provider++;
 }
 printf("]");
 }
 printf("]\n");
 }

if (HA_GS_SUBSCRIPTION_DELTA_LEAVE & note->gs_subscription_type) {
membership = note->gs_changing_membership;

 printf("LeavingProviders[");
if (membership->gs_count == ð) {

printf("No changing providers!");

190 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

} else {
printf("count[%d] Members[", membership->gs_count);
provider = membership->gs_providers;
for (i = ð; i < membership->gs_count; i++) {

#ifndef _VERBOSE_PROVIDER_OUTPUT
 printf("%d/%d ",
 provider->gs_instance_number,
 provider->gs_node_number);
#else

/\ do not print out the int value. \/
 printf("%d/%d(%d) ",
 provider->gs_instance_number,
 provider->gs_node_number,
 provider->gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 provider++;
 }
 printf("]");
 }
 printf("]\n");
 }

if (HA_GS_SUBSCRIPTION_STATE & note->gs_subscription_type) {
state = note->gs_state_value;

 printf("CurrentState[");
if (ð >= state->gs_length) {

printf("No current state!?!");
} else {

len = state->gs_length;
printf("Length[%d] Value[", len);

if (predefSub) {
 /\

\ For the "pre-defined" set of groups, we know that
\ the format of the state values is predictable.

 \/
memcpy(&stpbmint, &state->gs_state[ð], sizeof(stpbmint));

 printf("%d", stpbmint);
for (i=sizeof(stpbmint); i<state->gs_length; i++) {

 printf("%c", state->gs_state[i]);
 }

} else {
write_arbitrary_value(ARBITRARY_STATE_VALUE, (void \)state);

 }
 printf("]");
 }
 printf("]\n");
 }

if (HA_GS_SUBSCRIPTION_SPECIAL_DATA & note->gs_subscription_type) {
 write_the_special_data(note->gs_subscription_special_data);
 }

if (HA_GS_SUBSCRIPTION_DISSOLVED & note->gs_subscription_type) {
printf("\n Subscription has been DISSOLVED.\n");
if (HA_GS_SUBSCRIPTION_GS_HAS_DIED & note->gs_subscription_type) {

printf(" Group Services has gone away, taking all groups with it...\n\n");
} else {

printf(" Group has gone away...\n\n");
 }

if (-2 != grpIdx) {
sid[grpIdx] = -1;
subCtrl[grpIdx] = ð;

 free(subNames[grpIdx]);
subNames[grpIdx] = ð;

 subscribed_to_count--;
 }
 }

 printf("\\\n");
 fflush(stdout);

 Chapter 4. Using the GSAPI: A Group Services Client Example 191

 sample_utility.c

 return;
}

/\\/
/\
 \ The user wants to subscribe to a group. Find a free slot in our
 \ subscriber token array.
 \/
int find_free_sub_slot()
{

int i, slot;

for (i = ð;
i < num_groups_for_subscribe;

 i++) {
if (-1 == sid[i]) {

slot = i;
 break;
 }
 }

 return(slot);
}

/\
 \ A subscription notification has arrived. Find the given token in
 \ our subscriber token array.
 \/
int get_sub_index(ha_gs_token_t token)
{
 int i, found;

found = ð;
for (i = ð;

i < num_groups_for_subscribe;
 i++) {

if (token == sid[i]) {
found = 1;

 break;
 }
 }

if (!found) {
printf("Received subscriber token [%d], but cannot find it in subscription array!\n",

 token);
i = -1;

 }

 return(i);
}

/\\\/
/\
 \ These routines are used when the user is interactively constructing
 \ a protocol proposal to request the various bits of information
 \ needed.
 \/

/\
 \ Determine to which group this proposal request will be directed.
 \/
ha_gs_token_t get_group_token(int \gAddr)
{
 ha_gs_token_t _gTok;

int _goodGroup, _insultLevel;
 char _input;
 int _numput;

_gTok = -1;
_insultLevel = ð;

if (1 == in_group_count) {
for (_goodGroup = ð;

192 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

num_groups > _goodGroup;
 _goodGroup++) {

if (in_group[_goodGroup]) {
_gTok = gid[_goodGroup];
\gAddr = _goodGroup;

 break;
 }
 }

printf("I would ask you to which group is this proposal to be targeted, but since\n");
printf(" you are only in the group named [%s] you are going to use that one!\n",

 group_names[_goodGroup]);
 fflush(stdout);
 return(_gTok);
 }

while (_gTok == -1) {
printf("You need to specify to which group this proposal is targeted.\n");
printf(" There are [%d] groups to choose from, choose one by its index number:\n",

 in_group_count);
 fflush(stdout);

for (_goodGroup = ð;
num_groups > _goodGroup;

 _goodGroup++) {
if (in_group[_goodGroup]) {

printf(" Index[%d]: Group name[%s]\n",
 _goodGroup,
 group_names[_goodGroup]);
 }
 }

printf("Your choice, please?");
 fflush(stdout);

scanf("%d%c", &_numput, &_input);
if ((num_groups >= (unsigned int)_numput) && in_group[_numput]) {

_gTok = gid[_numput];
\gAddr = _numput;
printf("You have chosen group [%s]. Good luck.\n",

 group_names[_numput]);
} else {

 switch(_insultLevel) {
 case ð:

printf("I'm sorry, there is no valid group at index [%d]! Try again!\n",
 _numput);
 break;
 case 1:

printf("I'm sorry, there is no valid group at index [%d]! Concentrate!\n",
 _numput);
 break;
 case 2:

printf("Look, [%d] is NOT a valid index. Read the instructions...\n",
 _numput);
 break;
 case 3:

printf("I don't know about you, but I have better things to do than to\n");
printf("sit in this silly loop with you giving me invalid index values\n");
printf("such as [%d]!! Please try one more time.\n",

 _numput);
 break;
 default:

printf("I am very sorry. 5 chances to pick %d valid index number. Buut\n",
 in_group_count);

printf("nnoooo. Well, time to give it up. I'm outta here.\n");
 return(_gTok);
 }
 fflush(stdout);
 _insultLevel++;
 }
 }

 return(_gTok);
}

/\

 Chapter 4. Using the GSAPI: A Group Services Client Example 193

 sample_utility.c

 \ Ask for the number of phases (1 or n) for this proposal.
 \/
ha_gs_num_phases_t get_number_of_phases()
{
 int _phases;
 ha_gs_num_phases_t _numPhases;

 char _input, _newline;
 char _inline[8ð];
 char _intest;

_phases = -1;

while(-1 == _phases) {
printf("Number of phases('1' or 'N'): "); fflush(stdout);

 gets(_inline);
_intest = _inline[ð];
_phases = 1;

 switch(_intest) {
 case '1':

_numPhases = HA_GS_1_PHASE;
 break;
 case 'n':
 case 'N':

_numPhases = HA_GS_N_PHASE;
 break;
 default:

printf("Very sorry, but [%c] is not acceptable for number of phases.\n",
 _intest);

_phases = -1;
 }
 }

 return(_numPhases);
}

/\
 \ Constructing our own group attributes, determine the batch control
 \ attribute.
 \/
ha_gs_batch_ctrl_t get_batch_control()
{
 int _numput, _good;

char _input, _newline;

printf("Please specify the group's batch control attribute.\n");
_good = ð;
while (!_good) {

printf("Enter: ð (no batching) 1 (joins only) 2 (failures only) 3 (joins and failures)\n");
printf(" (add 4 for deact-on-failure, i.e., 5=deact-on-failure & joins)\n");

 fflush(stdout);
scanf("%d%c", &_numput, &_newline);

 switch(_numput) {
 case ð:
 return(HA_GS_NO_BATCHING);
 case 1:
 return(HA_GS_BATCH_JOINS);
 case 2:
 return(HA_GS_BATCH_LEAVES);
 case 3:
 return(HA_GS_BATCH_BOTH);
 case 4:
 return HA_GS_DEACTIVATE_ON_FAILURE;
 case 5:
 return HA_GS_DEACTIVATE_ON_FAILURE|HA_GS_BATCH_JOINS;
 case 6:
 return HA_GS_DEACTIVATE_ON_FAILURE|HA_GS_BATCH_LEAVES;
 case 7:
 return HA_GS_DEACTIVATE_ON_FAILURE|HA_GS_BATCH_BOTH;
 default:

printf("Invalid batch control entry [%d]. Try again.\n", _numput);
 }

194 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 }

 return(HA_GS_NO_BATCHING);
}

/\
 \ Constructing our own group attributes, determine the base default
 \ group vote attribute.
 \/
ha_gs_vote_value_t get_default_vote()
{
 int _numput, _good;

char _input, _newline;

printf("Please specify the group's default vote attribute.\n");
_good = ð;
while (!_good) {

printf("Enter: ð (APPROVE) 1 (REJECT)\n");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
 switch(_numput) {
 case ð:
 return(HA_GS_VOTE_APPROVE);
 case 1:
 return(HA_GS_VOTE_REJECT);
 default:

printf("Invalid default vote entry [%d]. Try again.\n", _numput);
 }
 }

 return(HA_GS_VOTE_APPROVE);
}

/\
 \ Ask for the time limit to be applied to a protocol proposal.
 \/
ha_gs_time_limit_t get_time_limit(char _banner)
{

int _numput, _gIndex, _good;
char _input, _newline;

 ha_gs_time_limit_t _time;

printf("Please specify time limit for %s.\n", _banner);
printf(" In seconds, range ð (no time limit) to 65,535: ");

 fflush(stdout);
scanf("%d%c", &_numput, &_newline);
_time = _numput;

 return(_time);
}

/\
 \ Ask for the group name, for defining our own group, or subscribing to
 \ an arbitrary group.
 \/
char \get_group_name(char _banner)
{

int _numput, _gIndex, _good;
char _input, _newline;

 char _pName;
 char _nameWanted[8ð];

printf("Specify %s.\n", _banner);
 fflush(stdout);
 scanf("%s", _nameWanted);

_pName = malloc(strlen(_nameWanted) + 1);
 strcpy(_pName, _nameWanted);

 return(_pName);
}

 Chapter 4. Using the GSAPI: A Group Services Client Example 195

 sample_utility.c

/\
 \ Ask for the socket control setting if the user is interactively
 \ specifying initialization parameters.
 \/
ha_gs_socket_ctrl_t build_socket_control()
{
 int _numput, _good;

char _input, _newline;

printf("Please specify the client's socket control attribute.\n");
printf("Enter: ð (SIGNAL) anything else (NO SIGNAL): ");

 fflush(stdout);
scanf("%d%c", &_numput, &_newline);

 switch(_numput) {
 case ð:
 printf("Using HA_GS_SOCKET_SIGNAL! Brave move.\n");
 return(HA_GS_SOCKET_SIGNAL);
 default:
 printf("Using HA_GS_SOCKET_NO_SIGNAL! Good idea.\n");
 return(HA_GS_SOCKET_NO_SIGNAL);
 }

 return(HA_GS_SOCKET_NO_SIGNAL);
}

/\
 \ Ask for the name of the deactivate script if the user is interactively
 \ specifying initialization parameters.
 \/
char \build_deact_script(char \default_deact)
{

int _numput, _gIndex, _good;
char _input, _newline;

 char _pName;
 char _nameWanted[8ð];

printf("The default deactivate script is[%s].\n Keep it (ð [no] 1 [yes])? ",
 default_deact);

scanf("%d%c", &_numput, &_newline);
if (ð != _numput) {

printf("Keeping default deactivatate script [%s].\n",
 default_deact);
 fflush(stdout);
 return(default_deact);
 }

printf("Specify new deactivate script path name:\n");
 fflush(stdout);
 scanf("%s", _nameWanted);

_pName = malloc(strlen(_nameWanted) + 1);
 strcpy(_pName, _nameWanted);

 return(_pName);
}

/\\/
/\
 \ These routines handle creating the responsiveness parameters if the
 \ user is interactively specifying initialization parameters.
 \/

/\
 \ Display the responsiveness settings to be given on ha_gs_init().
 \/
void display_responsiveness(ha_gs_responsiveness_t \resp)
{
 int i;
 char \ctr;

printf("Responsiveness parameters specified: Type[%s]\n",

196 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 responsive_print(resp->gs_responsiveness_type));

if (HA_GS_NO_RESPONSIVENESS == resp->gs_responsiveness_type) {
 fflush(stdout);
 return;
 }

printf("Interval[%d seconds] Response time limit[%d seconds]\n",
 resp->gs_responsiveness_interval,
 resp->gs_responsiveness_response_time_limit);

if (HA_GS_COUNTER_RESPONSIVENESS == resp->gs_responsiveness_type) {
printf(" Counter location[%x] Counter length[%d] Current value[\n",

 resp->gs_counter_location,
 resp->gs_counter_length);

ctr = (char \)resp->gs_counter_location;
for (i = ð;

i < resp->gs_counter_length;
i++, ctr++) {

 printf("%1.1x",
 (void \)ctr);
 }
 printf("]\n");
 }
 fflush(stdout);

 return;
}

/\
 \ Ask the user for the desired responsiveness settings for submission
 \ on the ha_gs_init() call.
 \/
ha_gs_responsiveness_t \build_responsiveness(ha_gs_responsiveness_t \def_resp)
{
 ha_gs_responsiveness_t _response;
 ha_gs_responsiveness_type_t _type;
 unsigned int _interval;
 ha_gs_time_limit_t _time_limit;

void _location;
 unsigned int _length;

 int i,j,ping;
int _numput, _gIndex, _good;
char _input, _newline;

 char _pName;
 char _nameWanted[8ð];
 char _inline[8ð];
 char _intest;

if (!interactiveInit) {
 display_responsiveness(def_resp);
 return(def_resp);
 }

_response = (ha_gs_responsiveness_t \)malloc(sizeof(ha_gs_responsiveness_t));
memset(_response, '\ð', sizeof(ha_gs_responsiveness_t));

printf("What kind of responsiveness?\n 1 [Ping] 2 [Counter] 3 [None]: ");
scanf("%d%c", &_numput, &_newline);
if (2 == _numput) {

printf("Using HA_GS_COUNTER_RESPONSIVENESS (currently not supported by HAGS)!\n");
 fflush(stdout);

_type = HA_GS_COUNTER_RESPONSIVENESS;
ping = ð;

} else if (1 == _numput) {
 printf("Using HA_GS_PING_RESPONSIVENESS. Good idea.\n");
 fflush(stdout);

_type = HA_GS_PING_RESPONSIVENESS;
ping = 1;

} else {

 Chapter 4. Using the GSAPI: A Group Services Client Example 197

 sample_utility.c

printf("No responsiveness checks? You a coward, or what?\n");
 fflush(stdout);

_type = HA_GS_NO_RESPONSIVENESS;
ping = 2;

 }

if (2 > ping) {

printf("Specify the interval (in seconds) between responsiveness checks: ");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
_interval = _numput;

printf("Specify time limit (in seconds) for response to responsiveness check: ");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
_time_limit = _numput;

if (1 == ping) {
_location = ð;
_length = ð;

} else {
printf("Specify counter location for responsiveness check: ");

 fflush(stdout);
scanf("%x%c", &_location, &_newline);

printf("Specify counter length for responsiveness check: ");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
_length = _numput;

 }

_response->gs_responsiveness_type = _type;
_response->gs_responsiveness_interval = _interval;
_response->gs_responsiveness_response_time_limit = _time_limit;
_response->gs_counter_location = _location;
_response->gs_counter_length = _length;

 }

 display_responsiveness(_response);

if (HA_GS_NO_RESPONSIVENESS == _type) {
 return(_response);
 }

printf("\nDo you want to respond manually or automatically to all responsiveness\n");
printf(" notifications? If auto, then we will always return OK. If manual, you\n");
printf(" will be able to specify OK or NOT_OK at notification time.\n");
printf(" Specify 'A' [auto] or 'M' [manual] (default is auto): ");

 gets(_inline);
_intest = _inline[ð];

 switch(_intest) {
 case 'm':
 case 'M':

printf("Manual responsiveness responses!\n");
interactiveResponse = 1;

 break;
 default:

printf("Automatic responsiveness responses!\n");
interactiveResponse = ð;

 }

 return(_response);
}

/\
 \ A responsiveness notification has arrived. Ask the user if we
 \ should return a "good" (HA_GS_CALLBACK_OK) or "bad" (HA_GS_CALLBACK_NOT_OK)
 \ return code.
 \/
ha_gs_callback_rc_t get_response(ha_gs_time_limit_t _time)
{

198 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 int _numput;
char _input, _newline;

 ha_gs_callback_rc_t _rc;

printf("Manual responsiveness mode!!! You have [%d] seconds to respond!\a\a\a\n",
 _time);

printf("\nSpecify ð [to say NOT OK] or anything else [to say OK]:\n");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
 switch(_numput) {
 case ð:

_rc = HA_GS_CALLBACK_NOT_OK;
 break;
 default:

_rc = HA_GS_CALLBACK_OK;
 }

 return(_rc);
}

/\\/
/\
 \ This routine handles dealing with the user to construct the group
 \ attributes to be submitted:
 \ - on the ha_gs_join() for "user-defined" groups (via the 'b' command).
\ - to change the attributes via ha_gs_change_attributes() (via 'n' command).
 \/
ha_gs_group_attributes_t \build_group_attributes(int _offset, int _changing)
{

int _numput, _gIndex, _good;
char _input, _newline;

 ha_gs_num_phases_t _phases;
 ha_gs_time_limit_t _time;

 ha_gs_group_attributes_t _attributes;

_good = 1;
_attributes = malloc(sizeof(ha_gs_group_attributes_t));

_attributes->gs_version = HA_GS_RELEASE;
_attributes->gs_sizeof_group_attributes = sizeof(ha_gs_group_attributes_t);

if (_changing) {
printf("You desire to change the group's attributes. Brave!\n");

} else {
printf("Awesome! You're going to build a group from scratch! Good move!\n");

 }

printf("Please define your group's attributes in response to each prompt.\n");
printf(" 'Client version' (any integer): ");

 fflush(stdout);
scanf("%d%c", &_numput, &_newline);
_attributes->gs_client_version = _numput;

_attributes->gs_batch_control = get_batch_control();

printf("Please specify the number of phases for joins and failure protocols:\n");
_attributes->gs_num_phases = get_number_of_phases();

if (HA_GS_N_PHASE == _attributes->gs_num_phases) {
_attributes->gs_time_limit = get_time_limit("join/failure protocol time limit");

} else {
_attributes->gs_time_limit = ð;

 }

_attributes->gs_group_default_vote = get_default_vote();

printf("Please specify the merge control setting:\n");
 printf("\t1:HA_GS_DISSOLVE_MERGE\n");
 printf("\t2:HA_GS_LARGER_MERGE\n");

 Chapter 4. Using the GSAPI: A Group Services Client Example 199

 sample_utility.c

 printf("\t3:HA_GS_SMALLER_MERGE\n");
 printf("\t4:HA_GS_DONTCARE_MERGE\n");

printf(" setting desired: ");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
 switch(_numput) {
 case 1:

_attributes->gs_merge_control = HA_GS_DISSOLVE_MERGE;
 break;
 case 2:

_attributes->gs_merge_control = HA_GS_LARGER_MERGE;
 break;
 case 3:

_attributes->gs_merge_control = HA_GS_SMALLER_MERGE;
 break;
 case 4:

_attributes->gs_merge_control = HA_GS_DONTCARE_MERGE;
 break;
 default:

_attributes->gs_merge_control = HA_GS_DISSOLVE_MERGE;
 }

if (_changing) {
_attributes->gs_group_name = NULL;
_attributes->gs_source_group_name = NULL;

printf("Please specify the number of phases for source-reflection protocols:\n");
_attributes->gs_source_reflection_num_phases = get_number_of_phases();

if (HA_GS_N_PHASE == _attributes->gs_source_reflection_num_phases) {
_attributes->gs_source_reflection_time_limit = get_time_limit("source-reflection time limit");

} else {
_attributes->gs_source_reflection_time_limit = ð;

 }

 return(_attributes);
 }

_attributes->gs_group_name = get_group_name("the group's name");
group_names[_offset] = malloc(strlen(_attributes->gs_group_name) + 1);

 strcpy(group_names[_offset], _attributes->gs_group_name);

printf("Do you want to specify a source-group name (ð[no] 1[yes])? ");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
if (_numput) {

_attributes->gs_source_group_name = get_group_name("the source-group's name");
source_group_names[_offset] = malloc(strlen(_attributes->gs_source_group_name) + 1);

 strcpy(source_group_names[_offset], _attributes->gs_source_group_name);

printf("Please specify the number of phases for source-reflection protocols:\n");
_attributes->gs_source_reflection_num_phases = get_number_of_phases();

if (HA_GS_N_PHASE == _attributes->gs_source_reflection_num_phases) {
_attributes->gs_source_reflection_time_limit = get_time_limit("source-reflection time limit");

} else {
_attributes->gs_source_reflection_time_limit = ð;

 }

} else {
_attributes->gs_source_group_name = NULL;
_attributes->gs_source_reflection_num_phases = HA_GS_1_PHASE;
_attributes->gs_source_reflection_time_limit = ð;

 }

printf("Please specify the provider instance number\n");
printf(" (if negative, use as offset and add to [%d]): ",

 instance_numbers[_offset]);
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
if (ð > _numput) {

instance_numbers[_offset] = (-1 \ _numput) + instance_numbers[_offset];

200 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

} else {
instance_numbers[_offset] = _numput;

 }

prov_local_names[_offset] = get_group_name("the provider's local name");

 return(_attributes);
}

/\\/
/\
 \ Request from the user a vote value, in response to an n-phase
 \ notification arriving for a group from Group Services.
 \/
ha_gs_vote_value_t get_a_vote(int phase)
{
 char input, error;
 ha_gs_vote_value_t vote;

char \instruct="nter a vote value: C [Continue] A [Approve] R [Reject]\n";
char \instruct2=" or, to force 'nested' proposals: T [State change] P [PBM]\n";

 char \function;

 ha_gs_proposal_info_t info;
 ha_gs_token_t group_token;
 ha_gs_rc_t rc;

vote = HA_GS_NULL_VOTE;

while (HA_GS_NULL_VOTE == vote) {
 printf(starz);
 printf(starz);

printf("%c%s", 'E', instruct);
 printf("%s", instruct2);
 fflush(stdout);

while (scanf("%c", &input)) {
 switch(input) {
 case 'C':
 case 'c':

vote = HA_GS_VOTE_CONTINUE;
 break;
 case 'A':
 case 'a':

vote = HA_GS_VOTE_APPROVE;
 break;
 case 'R':
 case 'r':

vote = HA_GS_VOTE_REJECT;
 break;
 case 'T':
 case 't':

error = 't';
vote = HA_GS_NULL_VOTE;

 break;
 case 'P':
 case 'p':

error = 'p';
vote = HA_GS_NULL_VOTE;

 break;
 case '\n':
 continue;
 default:

printf("I do not understand your given vote value - %c - try again and please\n");
printf("%c%s", 'e', instruct);

 printf("%s", instruct2);
 fflush(stdout);
 continue;
 }
 break;
 }

if (HA_GS_NULL_VOTE != vote) {
printf("You have chosen well, grasshopper. This protocol will ");
if (HA_GS_VOTE_CONTINUE == vote) {

 Chapter 4. Using the GSAPI: A Group Services Client Example 201

 sample_utility.c

printf("continue yet one more phase!\n");
} else if (HA_GS_VOTE_APPROVE == vote) {

printf("be approved here and now!\n");
} else {

printf("be rejected utterly!\n");
 }

} else {
printf("We're in a bad mood aren't we? Hehehe.\n");
function="could not create";
if ('t' == error) {

if (build_state_change(&group_token, &info)) {
 function="ha_gs_change_state_value";

rc = ha_gs_change_state_value(group_token, &info);
 }

} else {
if (build_pbm(&group_token, &info)) {

 function="ha_gs_send_message";
rc = ha_gs_send_message(group_token, &info);

 }
 }

printf("Your nested %s proposal has been submitted, rc = %s\n",
 function,
 write_an_rc(rc));
 }
 printf(starz);
 fflush(stdout);
 }

 return(vote);
}

/\
 \ Construct a group state value (for submission via a call to
 \ ha_gs_change_state_value()), in response to a 't' command.
 \/
int build_state_change(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal)
{
 int _numput, _gIndex;

char _input, _newline;

 ha_gs_num_phases_t _phases;
 ha_gs_time_limit_t _time;

 st_pbm_struct _state;
 char _state2;
 char _inline[8ð];
 char _intest;
 int _sLen;

_phases = -1;
_time = ð;

 printf(starz);
printf("\nSo, you want to change the group's state value?\n");
if (ð == in_group_count) {

printf("Unfortunately, since you haven't yet joined any groups, that wouldn't be\n");
printf(" a very good idea, would it, bucko? Try again later, after you convince\n");
printf(" some group to allow you to join. Otherwise, leave me alone.\n");

 printf(starz);
 fflush(stdout);
 return(ð);
 }

if (-1 == (\gToken = get_group_token(&_gIndex))) {
 return(ð);
 }

printf("\nNow that you've chosen group [%s], we need the protocol information:\n",
 group_names[_gIndex]);

_phases = get_number_of_phases();

202 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

if (HA_GS_N_PHASE == _phases) {
_time = get_time_limit("for the state value change protocol");

} else {
_time = ð;

 }

printf("Please enter your proposed state value, anything up to 256 bytes:\n");
 fflush(stdout);

_state = malloc(sizeof(st_pbm_struct));

/\ insert prefix. \/
_state2 = &_state->st_pbm_data[sample_prefix_len];
_state->st_pbm_index = sample_index;
memcpy(&_state->st_pbm_data[ð], sample_prefix, sample_prefix_len);

 gets(_state2);
_sLen = sizeof(_state->st_pbm_index) + sample_prefix_len;
if ((_sLen += strlen(_state2)) > 256) {

printf("Your given state value is %d bytes long, I'm truncating it to 256 bytes.\n",
 _sLen);
 fflush(stdout);

_sLen = 256;
 }

printf("You have chosen [%s] with time limit of [%d] and a proposed state of:\n%d%s\n",
 phase_print(_phases),
 _time,
 _state->st_pbm_index,
 _state->st_pbm_data);

printf("Thank you. Will now submit your proposal.\n");

proposal->gs_state_change_request.gs_num_phases = _phases;
proposal->gs_state_change_request.gs_time_limit = _time;
proposal->gs_state_change_request.gs_new_state.gs_length = _sLen;
proposal->gs_state_change_request.gs_new_state.gs_state = (char \)_state;

 printf(starz);
 fflush(stdout);
 return(1);
}

/\
 \ Construct a provider-broadcast message (for submission via a call to
 \ ha_gs_send_message()), in response to a 'p' command.
 \/
int build_pbm(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal)
{
 int _numput, _gIndex;

char _input, _newline;

 ha_gs_num_phases_t _phases;
 ha_gs_time_limit_t _time;

 st_pbm_struct _pbm;
 char _pbm2;
 char _inline[8ð];
 char _intest;
 int _pLen;

_phases = -1;
_time = ð;

 printf(starz);
printf("\nSo, you want to ship a provider message?\n");
if (ð == in_group_count) {

printf("Unfortunately, since you haven't yet joined any groups, that wouldn't be\n");
printf(" a very good idea, would it, bucko? Try again later, after you convince\n");
printf(" some group to allow you to join. Otherwise, leave me alone.\n");

 printf(starz);
 fflush(stdout);
 return(ð);
 }

 Chapter 4. Using the GSAPI: A Group Services Client Example 203

 sample_utility.c

if (-1 == (\gToken = get_group_token(&_gIndex))) {
 return(ð);
 }

printf("\nNow that you've chosen group [%s], we need the protocol information:\n",
 group_names[_gIndex]);

_phases = get_number_of_phases();

if (HA_GS_N_PHASE == _phases) {
_time = get_time_limit("for the provider message protocol");

} else {
_time = ð;

 }

printf("Please enter your provider message, anything up to 2ð48 bytes:\n");
 fflush(stdout);

_pbm = malloc(sizeof(st_pbm_struct));

/\ insert prefix. \/
_pbm2 = &_pbm->st_pbm_data[sample_prefix_len];
_pbm->st_pbm_index = sample_index;
memcpy(&_pbm->st_pbm_data[ð], sample_prefix, sample_prefix_len);

 gets(_pbm2);
_pLen = sizeof(_pbm->st_pbm_index) + sample_prefix_len;
if ((_pLen += strlen(_pbm2)) > 2ð48) {

printf("Your given message is %d bytes long, I'm truncating it to 2ð48 bytes.\n",
 _pLen);
 fflush(stdout);

_pLen = 2ð48;
 }

printf("You have chosen [%s] with time limit of [%d] and a provider_message of:\n%d%s\n",
 phase_print(_phases),
 _time,
 _pbm->st_pbm_index,
 _pbm->st_pbm_data);

printf("Thank you. Will now submit your proposal.\n");

proposal->gs_message_request.gs_num_phases = _phases;
proposal->gs_message_request.gs_time_limit = _time;
proposal->gs_message_request.gs_message.gs_length = _pLen;
proposal->gs_message_request.gs_message.gs_message = (char \)_pbm;

 printf(starz);
 fflush(stdout);
 return(1);
}

/\
 \ Construct the "voluntary leave" (ha_gs_leave()) request, in response
 \ to the 'l' command.
 \/
int build_leave_request(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal)
{
 int _numput, _gIndex;

char _input, _newline;

 ha_gs_num_phases_t _phases;
 ha_gs_time_limit_t _time;

 unsigned int _leaveCode;

 char _inline[8ð];
 char _intest;

_phases = -1;
_time = ð;

 printf(starz);

204 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

printf("So you want to leave a group? You leave me, almost, speechless.\n");
if (ð == in_group_count) {

printf("Unfortunately, since you haven't yet joined any groups, that wouldn't be\n");
printf(" a very good idea, would it, bucko? Try again later, after you convince\n");
printf(" some group to allow you to join. Otherwise, leave me alone.\n");

 printf(starz);
 fflush(stdout);
 return(ð);

} else {
printf("\nQuitter. When your group needs you, you want to run?\n");

 }

if (-1 == (\gToken = get_group_token(&_gIndex))) {
 return(ð);
 }

printf("\nNow that you've chosen group [%s], we need the protocol information:\n",
 group_names[_gIndex]);

_phases = get_number_of_phases();

if (HA_GS_N_PHASE == _phases) {
_time = get_time_limit("for the leave protocol");

} else {
_time = ð;

 }

printf("Please enter your voluntary leave code (any integer value).\n");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
_leaveCode = _numput;

printf("You have chosen [%s] with time limit of [%d] and a leave code of [%d].\n",
 phase_print(_phases),
 _time,
 _leaveCode);

printf("Thank you. Will now submit your proposal.\n");

proposal->gs_leave_request.gs_num_phases = _phases;
proposal->gs_leave_request.gs_time_limit = _time;
proposal->gs_leave_request.gs_leave_code = _leaveCode;

 printf(starz);
 fflush(stdout);
 return(1);
}

/\
 \ Construct the "expel" (ha_gs_expel()) request, in response to the 'e' command.
 \/
int build_expel_request(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal)
{

int _numput, _numput2, _gIndex;
char _input, _newline;

 ha_gs_num_phases_t _phases;
 ha_gs_time_limit_t _time;

 int _numExpelled, _cnt;
 ha_gs_provider_t _targets, _victim;
 short _instance;
 short _node;
 int _deactPhase;
 int _deactFlagLen;
 char _deactFlag;

 char _inline[3ðð];
 char _intest;

_phases = -1;
_time = ð;

 Chapter 4. Using the GSAPI: A Group Services Client Example 205

 sample_utility.c

 printf(starz);
printf("So you want to expel a provider? A heartless, but necessary, act.\n");
if (ð == in_group_count) {

printf("Unfortunately, since you haven't yet joined any groups, that wouldn't be\n");
printf(" a very good idea, would it, bucko? Try again later, after you convince\n");
printf(" some group to allow you to join. Otherwise, just too bad.\n");

 printf(starz);
 fflush(stdout);
 return(ð);

} else {
 printf("\nBrutal. Nuke someone!\n");
 }

if (-1 == (\gToken = get_group_token(&_gIndex))) {
 return(ð);
 }

printf("\nNow that you've chosen group [%s], we need the protocol information:\n",
 group_names[_gIndex]);

_phases = get_number_of_phases();

if (HA_GS_N_PHASE == _phases) {
_time = get_time_limit("for the expel protocol");

} else {
_time = ð;

 }

printf("How many providers do you want to expel?\n");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
_numExpelled = _numput;
while (ð >= _numExpelled) {

printf("An expel protocol with no one (count==%d) to expel is kind of useless!\n",
 _numExpelled);

printf("How many providers to expel?\n");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
_numExpelled = _numput;

 }
_targets = _victim = (ha_gs_provider_t \)malloc(sizeof(ha_gs_provider_t) \ _numExpelled);
for (_cnt = ð;

_cnt < _numExpelled;
 _cnt++) {

printf("Enter 'instance_number/node_number' of provider number %d: ", _cnt+1);
 fflush(stdout);

scanf("%d/%d%c", &_numput, &_numput2, &_newline);
_victim->gs_instance_number = _numput;
_victim->gs_node_number = _numput2;

 _victim++;
 }

printf("In which phase should the deactivate script be executed?\n");
printf(" If ð (zero) is given, the deactivate script will not be executed.\n");
if (HA_GS_1_PHASE == _phases) {

printf(" Since you specified a 1-phase expel, the deactivate script phase\n");
printf(" must be ð (zero) or 1 (one).\n");

 }
while (1) {

printf("Deactivate script execution phase: ");
 fflush(stdout);

scanf("%d%c", &_numput, &_newline);
_deactPhase = _numput;
if (ð > _deactPhase) {

printf("Invalid value [%d] given! Must be greater than or equal to zero!\n",
 _deactPhase);

} else if ((HA_GS_1_PHASE == _phases) &&
(1 < _deactPhase)) {

printf("Invalid value [%d] given for 1-phase expel. Must be ð or 1.\n",
 _deactPhase);

} else {

206 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

 break;
 }
 fflush(stdout);
 }

_deactFlag = NULL;
_deactFlagLen = ð;
if (ð != _deactPhase) {

printf("You specified a non-zero deactivate script execution phase (%d).\n");
printf(" Do you want to specify a deactivate script flag (ð [no] -- 1 [yes]? ");

 fflush(stdout);
scanf("%d%c", &_numput, &_newline);
if ((_numput) && ('n' != _numput)) {

printf(" Enter flag (maximum 256 bytes): ");
 gets(_inline);

_deactFlagLen = strlen(_inline);
_deactFlag = malloc(_deactFlagLen + 1);

 strcpy(_deactFlag, _inline);
 }
 }

printf("You have chosen [%s] with time limit of [%d] and a deactivation phase of [%d].\n",
 phase_print(_phases),
 _time,
 _deactPhase);

if (NULL != _deactFlag) {
printf(" Deactivation script flag: %s\n",

 _deactFlag);
 }

printf("Providers being expelled: count [%d] victim%s[",
 _numExpelled,

((1 != _numExpelled) ? "s " : " "));
_victim = _targets;
for (_cnt = ð; _cnt < _numExpelled; _cnt++) {

#ifndef _VERBOSE_PROVIDER_OUTPUT
 printf("%d/%d ",
 _victim->gs_instance_number,
 _victim->gs_node_number);
#else

/\ do not print out the int value. \/
 printf("%d/%d(%d) ",
 _victim->gs_instance_number,
 _victim->gs_node_number,
 _victim->gs_provider_id);
#endif /\ if ! _VERBOSE_PROVIDER_OUTPUT \/
 _victim++;
 }
 printf("]\n");

printf("Thank you. Will now submit your proposal.\n");

proposal->gs_expel_request.gs_num_phases = _phases;
proposal->gs_expel_request.gs_time_limit = _time;
proposal->gs_expel_request.gs_expel_list.gs_count = _numExpelled;
proposal->gs_expel_request.gs_expel_list.gs_providers = _targets;
proposal->gs_expel_request.gs_deactivate_phase = _deactPhase;
proposal->gs_expel_request.gs_deactivate_flag = _deactFlag;

 printf(starz);
 fflush(stdout);
 return(1);
}

/\
 \ Construct a new set of group attributes (for submission via a call to
 \ ha_gs_change_attributes()), in response to a 'n' command.
 \/
int build_attributes_change(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal)
{
 int _numput, _gIndex;

char _input, _newline;

 Chapter 4. Using the GSAPI: A Group Services Client Example 207

 sample_utility.c

 ha_gs_num_phases_t _phases;
 ha_gs_time_limit_t _time;

 ha_gs_group_attributes_t _attributes;

_phases = -1;
_time = ð;

 printf(starz);
printf("\nSo, you want to change the group's attributes?\n");
if (ð == in_group_count) {

printf("Unfortunately, since you haven't yet joined any groups, that wouldn't be\n");
printf(" a very good idea, would it, bucko? Try again later, after you convince\n");
printf(" some group to allow you to join. Otherwise, leave me alone.\n");

 printf(starz);
 fflush(stdout);
 return(ð);
 }

if (-1 == (\gToken = get_group_token(&_gIndex))) {
 return(ð);
 }

printf("\nNow that you've chosen group [%s], we need the protocol information:\n",
 group_names[_gIndex]);

_phases = get_number_of_phases();

if (HA_GS_N_PHASE == _phases) {
_time = get_time_limit("for the attribute change protocol");

} else {
_time = ð;

 }

_attributes = build_group_attributes(ð, 1);

printf("You have chosen [%s] with time limit of [%d] and attributes:\n",
 phase_print(_phases),
 _time);
 write_the_attributes(_attributes);

printf("Thank you. Will now submit your proposal.\n");

proposal->gs_attribute_change_request.gs_num_phases = _phases;
proposal->gs_attribute_change_request.gs_time_limit = _time;
proposal->gs_attribute_change_request.gs_group_attributes = _attributes;

 printf(starz);
 fflush(stdout);
 return(1);
}

/\
 \ Determine which group we want to separate ourself from, prior to
 \ calling ha_gs_goodbye(), in response to a 'y' command.
 \/
int build_goodbye_request(ha_gs_token_t \gToken)
{
 int _numput, _gIndex;

char _input, _newline;

 printf(starz);
printf("\nSo, you want to say goodbye to a group?\n");
if (ð == in_group_count) {

printf("Unfortunately, since you haven't yet joined any groups, that wouldn't be\n");
printf(" a very good idea, would it, bucko? Try again later, after you convince\n");
printf(" some group to allow you to join. Otherwise, leave me alone.\n");

 printf(starz);
 fflush(stdout);
 return(ð);
 }

208 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

if (-1 == (\gToken = get_group_token(&_gIndex))) {
 return(ð);
 }
 return(1);
}

/\
 \ We received OK from an ha_gs_goodbye() request, thus, we are out
 \ of the group. Glory days are here again! Need to clean up the
 \ various structures that we keep for each group.
 \
 \ The work here is that the gToken is the "provider_id" for the
 \ group we just exited, but, we need a reverse lookup into the
 \ group table, which is not indexed by the provider_id. So, walk
 \ the table until we find the specified provider_id.
 \/
void told_group_goodbye(ha_gs_token_t gToken)
{
 ha_gs_token_t _gTok;

int _goodGroup, _insultLevel;
 int _numput;

for (_goodGroup = ð;
num_groups > _goodGroup;

 _goodGroup++) {
if ((in_group[_goodGroup]) && (gToken == gid[_goodGroup])) {

 break;
 }
 }

printf("You have successfully told group \"%s\" goodbye and are no longer a member in it.\n",
 group_names[_goodGroup]);
 fflush(stdout);

provId[_goodGroup].gs_provider_id = -1;
in_group[_goodGroup] = ð;

 in_group_count--;

 return;
}
/\\/
/\
 \ This routine is used to determine if we will be submitting a changed
 \ state value and/or provider-broadcast message when we submit a vote.
 \
 \ If values are given, then set those to be used. If values are not
 \ given, then get them from the proper arrays:
 \ provider_msg_array[] -- for provider-broadcast messages.
 \ state_value_array[] -- for group state values.
 \/
void create_state_and_pbm(int index,
 ha_gs_state_value_t _sValue,
 ha_gs_provider_message_t _pValue,
 ha_gs_state_value_t _srcState,
 ha_gs_provider_message_t _srcPBM)
{
 ha_gs_state_value_t _s2, _s3;

ha_gs_provider_message_t _p2, _p3;

 char _cPtr;

if (-1 == index) {
_s2 = _srcState; /\ values given. use these. \/
_p2 = _srcPBM;

} else {
_s2 = &state_value_array[index]; /\ pull from array. \/
_p2 = &provider_msg_array[index];

 }

_s3 = malloc(sizeof(ha_gs_state_value_t));
if (ð == _s2->gs_length) {

_s3->gs_length = ð;
_s3->gs_state = ð;

 Chapter 4. Using the GSAPI: A Group Services Client Example 209

 sample_utility.c

} else {
_s3->gs_length = _s2->gs_length + sample_prefix_len + sizeof(sample_index);
_s3->gs_state = _cPtr = malloc(_s3->gs_length);
memcpy(_s3->gs_state, &sample_index, sizeof(sample_index));
memcpy(_s3->gs_state + sizeof(sample_index), sample_prefix, sample_prefix_len);
_cPtr += sample_prefix_len + sizeof(sample_index);
memcpy(_cPtr, _s2->gs_state, _s2->gs_length);

 }
_sValue = _s3;

_p3 = malloc(sizeof(ha_gs_provider_message_t));
if (ð == _p2->gs_length) {

_p3->gs_length = ð;
_p3->gs_message = ð;

} else {
_p3->gs_length = _p2->gs_length + sample_prefix_len + sizeof(sample_index);
_p3->gs_message = _cPtr = malloc(_p3->gs_length);
memcpy(_p3->gs_message, &sample_index, sizeof(sample_index));
memcpy(_p3->gs_message + sizeof(sample_index), sample_prefix, sample_prefix_len);
_cPtr += sample_prefix_len + sizeof(sample_index);
memcpy(_cPtr, _p2->gs_message, _p2->gs_length);

 }
_pValue = _p3;

 return;
}

/\\/
/\
 \ User wants to subscribe to a group. Determine the group name and
 \ also the subscription control setting.
 \/
ha_gs_rc_t subscribe_to_a_group()
{

int i, j, grpIdx, idx;
 char \pName;

 ha_gs_proposal_info_t info;

 ha_gs_subscription_ctrl_t subCtl;
 ha_gs_rc_t subRC;
 ha_gs_token_t subToken;

 int wantToPick;
 char nameWanted[8ð];

grpIdx = -1;

if (NUM_GROUPS_FOR_SUBSCRIBE <= subscribed_to_count) {
printf("\nYou cannot subscribe to any more groups!\n");

 return(HA_GS_NOT_OK);
 }

while (-1 == grpIdx) {
printf("Groups available for subscription. Specify index of group:\n");
printf("%5s %-16s%1ðs %-16s\n", "index", "name", "index", "name");
for (i = ð;

predef_groups_for_subscribe > i;
i += 2) {

 printf("%5d %-16s",
 i,
 group_names[i]);

if (predef_groups_for_subscribe > (i+1)) {
 printf("%1ðd %-16s\n",

i + 1,
 group_names[i+1]);

} else {
 printf("\n");
 }
 }
 printf("%5d %s\n",
 pickIdx,

210 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

"Specify a group name");
 printf("%5d %s\n",
 listIdx,

"List current subscriptions");

printf("Desired index: ");
 fflush(stdout);

 scanf("%d", &j);

if (j == listIdx) {
if (ð == subscribed_to_count) {

printf("No current subscriptions!\n");
} else {

 printf("Current subscriptions:\n%5s %2ðs %s\n",
 "index",
 "group name",
 "current subscriptions");

for (i = ð;
num_groups_for_subscribe > i;

 i++) {
if (-1 != sid[i]) {

 printf("%5d %2ðs %s\n",
 i,
 subNames[i],
 write_sub_ctrl(subCtrl[i]));
 }
 }
 }
 fflush(stdout);

} else if ((j != pickIdx) &&
((ð > j) || (j >= num_groups_for_subscribe))) {

printf("Um, sorry about this, but the index [%d] is invalid. Try again.\n",
 j);

} else {
grpIdx = j;

 }
 }

wantToPick = (grpIdx == pickIdx);

if (wantToPick) {
pName = get_group_name("group name for subscription");
printf("You are subscribing to group [%s]! Specify subscription type:\n",

 pName);
} else {

printf("You are subscribing to group [%s]! Specify subscription type:\n",
 group_names[grpIdx]);
 }

subCtl = (ha_gs_subscription_ctrl_t) ð;

while (ð == subCtl) {
printf("Specify a value between %d and %d. You may specify one of the specific\n",

 HA_GS_SUBSCRIBE_STATE, HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP);
printf("following flag values, or combine them.\n");

 printf("Value: Subscription control:\n");
 printf("%5d %s\n",
 HA_GS_SUBSCRIBE_STATE,
 write_sub_ctrl(HA_GS_SUBSCRIBE_STATE));
 printf("%5d %s\n",
 HA_GS_SUBSCRIBE_DELTA_JOINS,
 write_sub_ctrl(HA_GS_SUBSCRIBE_DELTA_JOINS));
 printf("%5d %s\n",
 HA_GS_SUBSCRIBE_DELTA_LEAVES,
 write_sub_ctrl(HA_GS_SUBSCRIBE_DELTA_LEAVES));
 printf("%5d %s\n",
 HA_GS_SUBSCRIBE_DELTAS_ONLY,
 write_sub_ctrl(HA_GS_SUBSCRIBE_DELTAS_ONLY));
 printf("%5d %s\n",
 HA_GS_SUBSCRIBE_MEMBERSHIP,
 write_sub_ctrl(HA_GS_SUBSCRIBE_MEMBERSHIP));
 printf("%5d %s\n",

 Chapter 4. Using the GSAPI: A Group Services Client Example 211

 sample_utility.c

 HA_GS_SUBSCRIBE_ALL_MEMBERSHIP,
 write_sub_ctrl(HA_GS_SUBSCRIBE_ALL_MEMBERSHIP));
 printf("%5d %s\n",
 HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP,
 write_sub_ctrl(HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP));

printf("\nYour choice: ");
 fflush(stdout);

 scanf("%d", &j);

if ((HA_GS_SUBSCRIBE_STATE > j) || (j > HA_GS_SUBSCRIBE_STATE_AND_MEMBERSHIP)) {
printf("Um, sorry about this, but the index [%d] is out of range. Try again.\n",

 j);
} else {

subCtl = (ha_gs_subscription_ctrl_t)j;
 }
 }

if (wantToPick) {
info.gs_subscribe_request.gs_subscription_control = subCtl;
info.gs_subscribe_request.gs_subscription_group = pName;
info.gs_subscribe_request.gs_subscription_callback = pickCallback;

} else {
info.gs_subscribe_request.gs_subscription_control = subCtl;
info.gs_subscribe_request.gs_subscription_group = group_names[grpIdx];
info.gs_subscribe_request.gs_subscription_callback = subCallbacks[grpIdx];

 }

subRC = ha_gs_subscribe(&subToken,
 &info);

if (HA_GS_OK == subRC) {
idx = find_free_sub_slot();
printf("Subscription request accepted. Token == %d\n", subToken);
sid[idx] = subToken;
subCtrl[idx] = subCtl;

if (wantToPick) {
subNames[idx] = malloc(strlen(pName) + 1);

 strcpy(subNames[idx], pName);
 free(pName);

} else {
subNames[idx] = malloc(strlen(group_names[grpIdx]) + 1);

 strcpy(subNames[idx], group_names[grpIdx]);
 }

 subscribed_to_count++;
if (NUM_GROUPS_FOR_SUBSCRIBE <= subscribed_to_count) {

printf("\nYou cannot subscribe to any more groups!\n");
 }

} else {
printf("Problem with subscription: %s\n",

 write_an_rc(subRC));
 }

 printf(starz);
 fflush(stdout);
 return(subRC);
}

/\
 \ User wants to unsubscribe from a group. Determine which group.
 \/
extern ha_gs_rc_t unsubscribe_from_a_group()
{

int i, j, grpIdx;

 ha_gs_subscription_ctrl_t subCtl;
 ha_gs_rc_t subRC;
 ha_gs_token_t subToken;

grpIdx = -1;

212 RS/6000 Cluster Technology Group Services Programming

 sample_utility.c

if (ð == subscribed_to_count) {
printf("\nYou have no current subscriptions. Cannot unsubscribe!\n\n");

 printf(starz);
 fflush(stdout);
 return(HA_GS_OK);
 }

while (-1 == grpIdx) {
printf("You are currently subscribed to the following. Specify an index:\n");
printf("%5s %2ðs Current subscriptions\n", "index", "name");
for (i = ð;

num_groups_for_subscribe > i;
 i++) {

if (-1 != sid[i]) {
printf("%5d %2ðs %s\n",

 i,
 subNames[i],
 write_sub_ctrl(subCtrl[i]));
 }
 }

printf("Desired index: ");
 fflush(stdout);

 scanf("%d", &j);

if ((ð > j) || (j >= num_groups_for_subscribe) || (-1 == sid[j])) {
printf("Um, sorry about this, but the index [%d] is invalid. Try again.\n",

 j);
} else {

grpIdx = j;
 }
 }

printf("You wish to unsubscribe from group [%s]!\n",
 subNames[grpIdx]);

subRC = ha_gs_unsubscribe(sid[grpIdx]);

if (HA_GS_OK == subRC) {
printf("Unsubscription request accepted. Token[%d], group[%s]\n",

 sid[grpIdx],
 subNames[grpIdx]);

sid[grpIdx] = -1;
subCtrl[grpIdx] = ð;

 free(subNames[grpIdx]);
subNames[grpIdx] = ð;

 subscribed_to_count--;
} else {

printf("Problem with unsubscription: %s\n",
 write_an_rc(subRC));
 }

 printf(starz);
 fflush(stdout);
 return(subRC);
}

/\\/
/\
 \ Initialize the data fields for setting up subscriptions to the
 \ "System Membership" groups.
 \/
void init_membership_subscriptions()
{

/\ Set up names for subscribing to system membership groups. \/

 char _temp;

/\ Only host membership for now. \/

 Chapter 4. Using the GSAPI: A Group Services Client Example 213

 sample_utility.c

_temp = malloc(strlen(HA_GS_HOST_MEMBERSHIP_GROUP) + 1);
 strcpy(_temp, HA_GS_HOST_MEMBERSHIP_GROUP);

group_names[num_groups] = _temp;

_temp = malloc(strlen(HA_GS_ENET_MEMBERSHIP_GROUP) + 1);
 strcpy(_temp, HA_GS_ENET_MEMBERSHIP_GROUP);

group_names[num_groups + 1] = _temp;

_temp = malloc(strlen(HA_GS_CSS_MEMBERSHIP_GROUP) + 1);
 strcpy(_temp, HA_GS_CSS_MEMBERSHIP_GROUP);

group_names[num_groups + 2] = _temp;

_temp = malloc(strlen(HA_GS_TOKENRING_MEMBERSHIP_GROUP) + 1);
 strcpy(_temp, HA_GS_TOKENRING_MEMBERSHIP_GROUP);

group_names[num_groups + 3] = _temp;

_temp = malloc(strlen(HA_GS_FDDI_MEMBERSHIP_GROUP) + 1);
 strcpy(_temp, HA_GS_FDDI_MEMBERSHIP_GROUP);

group_names[num_groups + 4] = _temp;

_temp = malloc(strlen(HA_GS_RS232_MEMBERSHIP_GROUP) + 1);
 strcpy(_temp, HA_GS_RS232_MEMBERSHIP_GROUP);

group_names[num_groups + 5] = _temp;

_temp = malloc(strlen(HA_GS_TMSCSI_MEMBERSHIP_GROUP) + 1);
 strcpy(_temp, HA_GS_TMSCSI_MEMBERSHIP_GROUP);

group_names[num_groups + 6] = _temp;

_temp = malloc(strlen(HA_GS_SLIP_MEMBERSHIP_GROUP) + 1);
 strcpy(_temp, HA_GS_SLIP_MEMBERSHIP_GROUP);

group_names[num_groups + 7] = _temp;

 return;
}

#endif /\ ifdef _SAMPLE_TEST \/

214 RS/6000 Cluster Technology Group Services Programming

 sample_utility.h

The sample_utility.h Header File
#ifndef _SAMPLE_UTILITY_H
#define _SAMPLE_UTILITY_H
/\\\/
/\ \/
/\CPRY \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ 5765-529 PSSP \/
/\ \/
/\ (C) Copyright IBM Corporation 1996 All Rights Reserved. \/
/\ \/
/\ US Government Users Restricted Rights - \/
/\ Use, duplication or disclosure restricted by \/
/\ GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\CPRY \/
/\\\/

static char \sample_utility_sccsid = "@(#)96 1.7
src/rsct/pgs/samples/sample_utility.h,
gssamples, rsct_rtro, rtrot1fx 4/26/98 16:17:34";

/\\\/
/\
 \ Name: sample_utility.h
 \
 \ This program provides the declarations for the set of callback
 \ functions used by the "sample_test" program.
 \
 \ Components:
 \ sample_test.c - contains the main() function, supports interaction
 \ with the user, and most calls to the Group Services interfaces.
 \
 \ sample_utility.c - provides the definitions for the
 \ utility functions used by the sample_test program.
 \
 \ sample_callbacks.c - provides the definitions for the callback
 \ functions used for the groups created by this program.
 \
 \ sample_callbacks.h - declarations for the callback functions
 \ contained in sample_callbacks.c.
 \
 \ sample_utility.h - declarations for the utility functions contained
 \ in sample_utility.c
 \
 \ The information here assumes that you are familiar with the information
 \ presented in the IBM PSSP Group Services Programming Guide and Reference
 \ manual.
 \
 \ This program is provided for illustrative purposes only, and is not
 \ intended to be an authoritative description of the "best" methods to
 \ use when writing a Group Services application. It is intended to
 \ demonstrate the various interfaces in a relatively verbose manner,
 \ and to allow you to relatively easily manipulate groups and their
 \ members.
 \
 \ To this end, various aspects of this program (in particular its
 \ handling of screen input and output) are neither robust nor
 \ foolproof. Therefore, you should take care when giving input to
 \ this program.
 \/
/\\\/

/\\\/
/\
 \ Include the Group Services declarations file.
 \/
/\\\/

 Chapter 4. Using the GSAPI: A Group Services Client Example 215

 sample_utility.h

#include <ha_gs.h>

extern char \time_now();
extern time_t time_since(struct timeval \event);
extern float randomp();
extern long randomn(unsigned long max);

#define ARBITRARY_STATE_VALUE 1
#define ARBITRARY_PROV_MESSAGE 2
extern void write_arbitrary_value(int which, void \value);

extern char \write_leave_reason(ha_gs_leave_reasons_t why);
extern void write_join_information(int gIndex);
extern void write_the_notification(int groupIdx,

void \ addr,
 ha_gs_notification_type_t whatItBe);
extern void write_the_proposal(ha_gs_request_t eReq,
 ha_gs_token_t eTok,
 ha_gs_proposal_info_t \prop);
extern void write_the_attributes(ha_gs_group_attributes_t \gAttrs);

extern ha_gs_token_t gid[];
extern ha_gs_group_attributes_t \gattr[];
extern int voting_phase;
extern int handledResponsiveness;
extern int instance_numbers[];

#define NUM_GROUPS 8
#define NUM_GROUPS_FOR_SUBSCRIBE 32

#ifdef _SAMPLE_TEST /\ _SAMPLE_TEST \/

extern void write_instructions(int _verbose);
extern void init_membership_subscriptions();
extern ha_gs_rc_t subscribe_to_a_group();
extern ha_gs_rc_t unsubscribe_from_a_group();
extern ha_gs_token_t get_group_token(int \gAddr);
extern ha_gs_group_attributes_t \build_group_attributes(int _offset, int _changing);
extern ha_gs_socket_ctrl_t build_socket_control();
extern char \build_deact_script(char \default_deact);
extern ha_gs_responsiveness_t \build_responsiveness(ha_gs_responsiveness_t \def_resp);
extern ha_gs_callback_rc_t get_response(ha_gs_time_limit_t _time);
extern int build_leave_request(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal);
extern int build_expel_request(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal);
extern int build_state_change(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal);
extern int build_attributes_change(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal);
extern int build_goodbye_request(ha_gs_token_t \gToken);
extern void told_group_goodbye(ha_gs_token_t gToken);
extern int build_pbm(ha_gs_token_t \gToken, ha_gs_proposal_info_t \proposal);

extern void write_the_vote(ha_gs_vote_value_t vote);
extern void copy_the_attributes(int groupIdx,
 ha_gs_group_attributes_t \gAttrsTarg,
 ha_gs_group_attributes_t \gAttrsSrc)

extern ha_gs_vote_value_t get_a_vote(int phase);
extern void create_state_and_pbm(int index,
 ha_gs_state_value_t _sValue,
 ha_gs_provider_message_t _pValue,
 ha_gs_state_value_t _srcState,
 ha_gs_provider_message_t _srcPBM);

extern char \group_names[];
extern char \source_group_names[];
extern char \subNames[];
extern char \prov_local_names[];
extern int instance_numbers2[];
extern ha_gs_vote_value_t default_vote_array[];
extern int in_group[];
extern int in_group_count;
extern const int num_groups;

216 RS/6000 Cluster Technology Group Services Programming

 sample_utility.h

extern int sample_index;
extern char \sample_prefix;
extern int sample_prefix_len;

extern char \sample_pp;
extern char \sample_ee;

extern char \starz;
extern int verbose;
extern int interactiveInit;
extern int interactiveResponse;

#define NUMBER_MSG_ENTRIES 8

#endif /\ ifdef _SAMPLE_TEST \/

#endif /\ _SAMPLE_UTILITY_H \/

 Chapter 4. Using the GSAPI: A Group Services Client Example 217

 sample_deactive_ksh.sh

The sample_deactive_ksh.sh Deactivate Script
#!/bin/ksh
IBM_PROLOG_BEGIN_TAG
This is an automatically generated prolog.
#
#
Licensed Materials - Property of IBM
#
(C) COPYRIGHT International Business Machines Corp. 1997,1998 # All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
IBM_PROLOG_END_TAG
##
#
#CPRY #
Licensed Materials - Property of IBM
#
5765-529 PSSP
#
(C) Copyright IBM Corporation 1997 All Rights Reserved.
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#CPRY #
#
##

@(#)62 1.3
src/rsct/pgs/samples/sample_deactive_ksh.sh,
gssamples, rsct_rtro 7/28/98 15:43:22

#/\\\/
#/\
\ Name: sample_deactive_ksh
\
\ This module provides a simple sample deactivation program that can
\ be executed as part of an "expel" protocol against a provider,
\ or an "failure" protocol if the deactivate-on-failure is enabled.
\ It will expect the input parameters described as part of the
\ Expel Protocol and the Deactivate-On-Failure Handling description
\ in the IBM PSSP Group Services Programming Guide and Reference manual.
\/
#/\\\/
#
#/\\\/
#/\
\ Expected input conditions:
\ - effective uid and gid set to that of the client process connected
\ to the Group Services daemon, at the time it issued ha_gs_init().
\ - current directory matches that of the client process connected
\ to the Group Services daemon, at the time it issued ha_gs_init().
\ - path and other environment variables set to those used by the
\ Group Services daemon.
\
\ Expected input parameters:
\ targetPid -- client process pid containing the provider targeted by the expel.
\ timeLimit -- number of seconds within which this program must complete.
\ groupName -- name of the group to which the targeted provider is joined.
\ expelFlag -- flag specified by the provider initiating the expel.
\ or "providerdied" as the deactivate-on-failure handling.
\ failedProviders -- comma(,)-delimited list of the failed providers'
\ local instance numbers. This parameter will be presented
\ only for deactivate-on-failure handling.
\
\ Special conditions:
\ targetPid == ð -- the provider's process id already failed during the
\ expel protocol, or the deactivate-on-failure handling
\ is initiated. Take any other necessary actions.

218 RS/6000 Cluster Technology Group Services Programming

 sample_deactive_ksh.sh

\
\ expelFlag == NULL -- no flag was specified.
\ == "providerdied" -- the deactivate-on-failure handling
\ is initiated.
\
\ Output (exit code):
\ ð -- means this program is "successful". It is up to this program to
\ define "successful".
\ !ð -- means this program is "unsuccessful". It is up to this program to
\ define "unsuccessful".
\/
#/\\\/
#
#/\\\/
#/\
\ In the case of the expel protocol:
\ It is assumed that part of the normal action of a deactivate "script"
\ will be to "kill" the targeted provider's process, since if we are
\ running an expel we assume that the process is hung, or otherwise
\ misbehaving.
\
\ For the deactivate-on-failure:
\ It will wait until (timeLimit + 5) to exit. Exit with zero.
\
\ However, this is optional. This program should perform whatever
\ actions make sense for the group and its providers.
\/
#/\\\/
#
#/\\\/
#/\
\ For this sample program, we will use the \expel flag\ as a key to
\ our behavior.
\
\ Flag values:
\ NULL -- (no flag) No action, simply exit with ð exit code.
\ "kill" -- kill given process id (unless it is zero), exit with the
\ return code from the kill command.
\ "kill N" -- kill given process id (unless it is zero), exit with the
\ value given by the integer N.
\ "killwait" -- kill given process id (unless it is zero), but wait
\ to exit until (timeLimit + 5). Always exit with zero.
\ "wait" -- do not try to kill given process id, wait until
\ (timeLimit + 5) to exit. Always exit with zero.
\ "wait N" -- do not try to kill given process id, wait until
\ (timeLimit + 5) to exit. N should be an integer, use it
\ as our exit code.
\ "N" -- N should be an integer, exit immediately with N as our exit
\ code.
\
\ "providerdied" -- wait until (timeLimit + 5) to exit. Exit with zero.
\ This indicates deactivate-on-failure.
\
\/
#/\\\/

extraWait=5 # Used to wait "extra" amount of time.

targetPid=$1 # First three paramaters always there.
timeLimit=$2
groupName=$3
if ((4 <= $#))
then
 expelFlag=$4
else
 expelFlag=""
fi

Check expel flag, and see what to do.

if [[-z ${expelFlag} ““
then

 Chapter 4. Using the GSAPI: A Group Services Client Example 219

 sample_deactive_ksh.sh

exit ð # Null flag, just exit with zero exit code.
fi

if [[$expelFlag = "killwait" ““ # Try to kill target process, then wait.
then
if ((ð != targetPid))

 then
kill -9 $targetPid # Kill the target process.

 fi
((sleepTime=timeLimit + extraWait))# Wait as long as specified.

 sleep $sleepTime

 exit ð
fi

Kill the process? If so, we may have a specific exit code that we
should use, rather than the kill return code.

if [[$expelFlag = "kill" ““
then
 killRc=ð
if ((ð != targetPid)) # Have a pid?

 then
kill -9 $targetPid # Try to kill it.
killRc=$? # Save return code.

 fi
if [[-z $5 ““ # Was a flag given for exit code?

 then
exit $killRc # No, exit with kill return code.

 fi

if ((ð == killRc)) # Good result from kill, use given code.
 then
 exit $5
 else

exit $killRc # Reflect results from kill.
 fi
fi

No killing, but we need to wait for some amount of time before
exiting. If given, use specified value for exit code.

if [[$expelFlag = "wait" ““
then
if [[-z $5 ““ # Was a flag given for exit code?

 then
((sleepTime=timeLimit + extraWait))# Wait as long as specified.

 sleep $sleepTime
exit ð # No special flag.

 else
((sleepTime=timeLimit + extraWait))# Wait as long as specified.

 sleep $sleepTime
 exit $5
 fi
fi

In the case of the deactivate-on-failure:
No killing, but we need to wait for some amount of time before
exiting. If given, use specified value for exit code.

if [[$expelFlag = "providerdied" ““
then
failedProviders=$5 # holds the list of failed providers
((sleepTime=timeLimit + extraWait))# Wait as long as specified.

 sleep $sleepTime
exit ð # No special flag.

fi

Nothing else, simply exit with the given value.

exit $expelFlag

220 RS/6000 Cluster Technology Group Services Programming

 sample_deactive_c_prog.c

The sample_deactive_c_prog.c Deactivate Script
/\ IBM_PROLOG_BEGIN_TAG \/
/\ This is an automatically generated prolog. \/
/\ \/
/\ \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ (C) COPYRIGHT International Business Machines Corp. 1996,1998 \/
/\ All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\ IBM_PROLOG_END_TAG \/
/\\\/
/\ \/
/\CPRY \/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ 5765-529 PSSP \/
/\ \/
/\ (C) Copyright IBM Corporation 1996 All Rights Reserved. \/
/\ \/
/\ US Government Users Restricted Rights - \/
/\ Use, duplication or disclosure restricted by \/
/\ GSA ADP Schedule Contract with IBM Corp. \/
/\ \/
/\CPRY \/
/\\\/

static char \sccsid = "@(#)7ð 1.4
src/rsct/pgs/samples/sample_deactive_c_prog.c,
gssamples, rsct_rtro 7/28/98 15:43:15";

#if !defined(_HAGSD_COPYRIGHT_H)
#define _HAGSD_COPYRIGHT_H
static char copyright[] = "Licensed Materials - Property of IBM\n\
5765-529 (C) Copyright IBM Corp. 1996. All Rights Reserved.\n\
US Government Users Restricted Rights - Use, duplication or \n\
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.\n";
#endif

/\\\/
/\
 \ Name: sample_deactive_c_prog.c
 \
 \ This module provides a simple sample deactivation program that can
 \ be executed as part of an "expel" protocol against a provider,
 \ or an "failure" protocol if the deactivate-on-failure is enabled.
 \ It will expect the input parameters described as part of the
 \ Expel Protocol and the Deactivate-On-Failure Handling description
 \ in the IBM PSSP Group Services Programming Guide and Reference manual.
 \/
/\\\/

/\\\/
/\
 \ Expected input conditions:
 \ - effective uid and gid set to that of the client process connected
 \ to the Group Services daemon, at the time it issued ha_gs_init().
 \ - current directory matches that of the client process connected
 \ to the Group Services daemon, at the time it issued ha_gs_init().
 \ - path and other environment variables set to those used by the
 \ Group Services daemon.
 \
 \ Expected input parameters:
 \ target_pid -- client process pid containing the provider targeted by the expel.
 \ time_limit -- number of seconds within which this program must complete.

 Chapter 4. Using the GSAPI: A Group Services Client Example 221

 sample_deactive_c_prog.c

 \ group_name -- name of the group to which the targeted provider is joined.
 \ expel_flag -- flag specified by the provider initiating the expel,
 \ or "providerdied" as the deactivate-on-failure handling.
 \ failedProviders -- comma(,)-delimited list of the failed providers'
 \ local instance numbers. This parameter will be presented
 \ only for deactivate-on-failure handling.
 \
 \ Special conditions:
 \ target_pid == ð -- the provider's process id already failed during the
 \ expel protocol, or the deactivate-on-failure handling
\ is initiated. Take any other necessary actions.
 \
 \ expel_flag == NULL -- no flag was specified.
 \ == "providerdied" -- the deactivate-on-failure handling
 \ is initiated.
 \
 \ Output (exit code):
\ ð -- means this program is "successful". It is up to this program to
 \ define "successful".
 \ !ð -- means this program is "unsuccessful". It is up to this program to
 \ define "unsuccessful".
 \/
/\\\/

/\\\/
/\
 \ In the case of the expel protocol:
 \ It is assumed that part of the normal action of a deactivate "script"
 \ will be to "kill" the targeted provider's process, since if we are
 \ running an expel we assume that the process is hung, or otherwise
 \ misbehaving.
 \
 \ For the deactivate-on-failure:
 \ It will wait until (timeLimit + 5) to exit. Exit with zero.
 \
 \ However, this is optional. This program should perform whatever
 \ actions make sense for the group and its providers.
 \/
/\\\/

/\\\/
/\
 \ For this sample program, we will use the \expel flag\ as a key to
 \ our behavior.
 \
 \ Flag values:
\ NULL -- (no flag) No action, simply exit with ð exit code.
 \ "kill" -- kill given process id (unless it is zero), exit with the
 \ return code from the kill command.
 \ "kill N" -- kill given process id (unless it is zero), exit with the
 \ value given by the integer N.
 \ "killwait" -- kill given process id (unless it is zero), but wait
 \ to exit until (timeLimit + 5). Always exit with zero.
 \ "wait" -- do not try to kill given process id, wait until
 \ (timeLimit + 5) to eixt. Always exit with zero.
 \ "wait N" -- do not try to kill given process id, wait until
 \ (timeLimit + 5) to exit. N should be an integer, use it
 \ as our exit code.
 \ "N" -- N should be an integer, exit immediately with N as our exit
 \ code.
 \ "providerdied" -- wait until (timeLimit + 5) to exit. Exit with zero.
 \ This indicates deactivate-on-failure.
 \
 \/
/\\\/

#include <sys/types.h>
#include <unistd.h>
#include <errno.h>
#include <signal.h>

#include "ha_gs.h"

222 RS/6000 Cluster Technology Group Services Programming

 sample_deactive_c_prog.c

#define KILL "kill"
#define KILLWAIT "killwait"
#define WAIT "wait"
#define PROVIDERDIED "providerdied"
#define EXTRA_WAIT 5

int main(int argc,
 void \\argv)
{

char \sPid, \sTime, \groupName, \expelFlag;
char \failedProviders = NULL;

 pid_t targetPid;
 int timeLimit;

 int killRC;
 int exitCode, givenExit, haveExit;

haveExit = ð;

sPid = argv[1];
sTime = argv[2];
groupName = argv[3];
if (5 <= argc) {

expelFlag = argv[4];
if (6 <= argc) {

haveExit = 1;
givenExit = atoi(argv[5]);

 }
} else {

expelFlag = NULL;
 }

targetPid = atoi(sPid);
timeLimit = atoi(sTime);

/\ check expel flag, and see what to do. \/

if (NULL == expelFlag) {

exit(ð); /\ No flag given, just exit now. \/

 }

 /\
\ See if we should kill the target process, then wait for some
\ amount of time before exiting.

 \/

if (ð == strncmp(KILLWAIT, expelFlag, strlen(KILLWAIT))) {

if (ð != targetPid) {

kill(targetPid, 9); /\ Have a pid. Kill the process. \/

 }

sleep(timeLimit + EXTRA_WAIT);

exit(ð); /\ Ignore kill return code. \/

 }

 /\
\ Kill the process? If so, we may have a specific exit code that we
\ should use, rather than the kill return code.

 \/

if (ð == strncmp(KILL, expelFlag, strlen(KILL))) {

if (haveExit) {

 Chapter 4. Using the GSAPI: A Group Services Client Example 223

 sample_deactive_c_prog.c

/\ Use given code for exit value unless error. \/
exitCode = givenExit;

} else {
exitCode = ð;

 }

if (ð != targetPid) { /\ Kill the process. \/

if ((-1 == kill(targetPid, 9)) && (!haveExit)) {
exitCode = errno; /\ Error, grab the error return code. \/

 }
 }

exit(exitCode); /\ Exit with whatever code worked out. \/
 }

 /\
\ No killing, but we need to wait for some amount of time before
\ exiting. If given, use specified value for exit code.

 \/

if (ð == strncmp(WAIT, expelFlag, strlen(WAIT))) {

if (haveExit) {
exitCode = givenExit; /\ Use given code for exit value. \/

} else {
exitCode = ð;

 }

sleep(timeLimit + EXTRA_WAIT);

 exit(exitCode);
 }

 /\
\ In the case of the deactivate-on-failure:
\ No killing, but we need to wait for some amount of time before
\ exiting. If given, use specified value for exit code.

 \/

if (ð == strncmp(PROVIDERDIED, expelFlag, strlen(PROVIDERDIED))) {

failedProviders=argv[5]; /\ holds the list of failed providers \/

exitCode = ð;

sleep(timeLimit + EXTRA_WAIT);

 exit(exitCode);
 }

 /\
\ Nothing else, simply exit with the given value.

 \/

exitCode = atoi(expelFlag);

 exit(exitCode);
}

224 RS/6000 Cluster Technology Group Services Programming

Appendix A. Subscription Special Data

This appendix provides information about subscription special data.

 Formats
The subscription special data format is very flexible, due to the wide variety of data
that can be carried in this section. The way to view this data is as a linked list of
ha_gs_special_block_t elements, each containing a single type of special data
related to the overall subscription notification. The other fields of the subscription
notification carry the normal group state value and membership information. The
special data carries additional identification information for the entries listed in the
group state value and/or membership fields. The following subscription special data
items have been added:

� Adapter death or deconfiguration indications

� SP Switch adapter alias information

General Representation Structure
If the HA_GS_SUBSCRIPTION_SPECIAL_DATA flag is set in the subscription
notification, the gs_subscription_special_data field will point to a special data
block of the format:

typedef struct {
 int gs_length;
 unsigned int gs_flag;
 ha_gs_special_block_t \gs_special_data;
} ha_gs_special_data_t;

This block acts as a header to point to a linked list of ha_gs_special_data_t
elements.

gs_length

is the number of ha_gs_special_data_t elements in the list.

gs_flag

contains an OR'ing together of all of the flags defining the types of
ha_gs_special_data_t data included in the list. This allows the
subscriber to quickly investigate this flag. If none of the included
ha_gs_special_data_t types are of interest, it need not continue
investigating the block any further.

gs_special_data points to the first ha_gs_special_data_t element in the list.

Each ha_gs_special_block_t contains a single type of subscription special data
and looks like the following:

 Copyright IBM Corp. 1998 225

typedef struct {
 unsigned int gs_special_flag;
 ha_gs_special_block_t \gs_next_special_block;
 int gs_special_num_entries;
 int gs_special_length;
 void \gs_special;
} ha_gs_special_block_t;

This block contains the actual subscription special data.

gs_special_flag

is the flag identifying the type of this block's special data.

gs_next_special_block

points to the next ha_gs_special_block_t in the list. If this is the last
ha_gs_special_block_t , this value will be NULL.

gs_special_num_entries

is the number of entries contained in the data pointed to by the
gs_special field for this ha_gs_special_block_t . If this entry is one,
then the gs_special_length field is the total size of the data. If this
entry is greater than one, the total number of bytes is this value
multiplied by gs_special_length .

gs_special_length

is the number of bytes in each of the entries in the block pointed to by
the gs_special field for this ha_gs_special_block_t .

gs_special

points to the actual data.

The gs_flag field in the gs_special_data_t block and the gs_special_flag field in
each ha_gs_special_block_t may contain the following flags. The gs_special_flag
field contains only one, whichever kind of data its ha_gs_special_block_t
represents. The gs_flag will contain all of the individual gs_special_flags OR'ed
together.

typedef enum {
 HA_GS_ADAPTER_DEATH_ARRAY = ðxð1,
 HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY = ðxð2,
 HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY = ðxð4
} ha_gs_subscription_special_type_t;

These flags are used to describe the contents of the ha_gs_special_block_t that
may be included.

HA_GS_ADAPTER_DEATH_ARRAY

is set to indicate that there is a ha_gs_special_block_t containing the
“death reasons” for each adapter listed in the
gs_changing_membership field.

HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY

is set to indicate that there is a ha_gs_special_block_t containing the
alias IP addresses of each adapter listed in the
gs_current_membership field.

226 RS/6000 Cluster Technology Group Services Programming

HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY

is set to indicate that there is a ha_gs_special_block_t containing the
alias IP addresses of each adapter listed in the
gs_changing_membership field.

Reporting Adapter Death Events
For dealing with adapter death vs. deconfiguration, the ha_gs_special_block_t , if
included, will contain an array of ha_gs_adapter_death_t entries, each containing
flags specifying the death status of that adapter. The ordering of the array entries
will match that in the gs_changing_membership field.

If all adapters listed in the notification suffered a normal failure (that is, each
adapter is still part of the configuration but is no longer
operational):

there will be no change from the current subscription notifications, and
HA_GS_SUBSCRIPTION_SPECIAL_DATA will not be set into the
gs_subscription_type field in the subscription notification.

� The client should simply assume all reported adapter deaths were
natural, none failed due to being removed from the configuration.

� The gs_subscription_special_data field will be NULL.

If one or more adapters listed in the notification failed due to being removed
from the configuration:

� HA_GS_SUBSCRIPTION_SPECIAL_DATA will be OR'ed into the
gs_subscription_type field in the subscription notification.

� The gs_subscription_special_data field in the subscription
notification will point to an ha_gs_special_data block.

– The gs_special_block_count field will contain the count of
ha_gs_special_block_t elements.

– The gs_special_block_flags field will contain
HA_GS_ADAPTER_DEATH_ARRAY .

– The gs_subscription_special_block field will point to the
ha_gs_special_block_t .

� The ha_gs_special_block_t fields will contain the following values:

gs_special_flag field

will contain HA_GS_ADAPTER_DEATH_ARRAY .

gs_special_num_entries field

will contain the same number of entries as the number of
adapters that were listed in the
gs_changing_membership field.

gs_special_length field

will contain the number 4, to indicate that each entry is
four bytes long.

 Appendix A. Subscription Special Data 227

gs_special field

will point to an array of four-byte entries, listed in the
order matching the order of adapters in the
gs_changing_membership field. Each entry will contain
one of the following flags:

typedef enum
{
 HA_GS_ADAPTER_DEAD = ðxððð1,
 HA_GS_ADAPTER_REMOVED = ðxððð2
} ha_gs_adapter_death_t;

– If an adapter died of natural causes, the flag will be
HA_GS_ADAPTER_DEAD .

– If an adapter was removed from the configuration,
the flag will be HA_GS_ADAPTER_REMOVED.

Dealing With Adapter Events with Multiple Aliases
The representation of adapters in subscription notifications is to use the
provider_id and use the instance number to represent the physical adapter name.
This allows the subscriber to associate the list of adapters from the notification with
the physical adapters the to which the events relate. However, this support is not
sufficient in certain cases, where a single adapter may be represented multiple
times due to IP alias addresses being used.

To allow subscribers to differentiate among the different aliases, if a subscription
notification includes one or more adapters with multiple aliases, then a
ha_gs_special_block_t will be included that has a array of the IP alias address
associated with the adapter listed in the changing membership. The ordering of the
array entries will match that in the gs_current_membership and
gs_changing_membership fields.

If the network is not defined as supporting multiple aliases:

the HA_GS_SUBSCRIPTION_SPECIAL_DATA will not be set into the
gs_subscription_type field in the subscription notification.

� The client should simply act as it currently does, and use the
instance number to associate the listed adapter with the physical
adapter.

� The gs_subscription_special_data field will be NULL.

If the network is defined as supporting multiple aliases:

� HA_GS_SUBSCRIPTION_SPECIAL_DATA will be OR'ed into the
gs_subscription_type field in the subscription notification.

� The gs_subscription_special_data field in the subscription
notification will point to an ha_gs_special_data block.

– The gs_special_block_count field will contain the count of
ha_gs_special_block_t elements.

– The gs_special_block_flags field will contain one or both of the
following: HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY and
HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY .

228 RS/6000 Cluster Technology Group Services Programming

� The gs_subscription_special_data field in the subscription
notification will point to one or more ha_gs_special_block_t
elements.

– If the subscription notification contains a list of providers in the
gs_current_membership field, there will be a
ha_gs_special_block_t with its gs_special_flag field
containing HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY .

– If the subscription notification contains a list of providers in the
gs_changing_membership field, there will be a
ha_gs_special_block_t with its gs_special_flag field
containing HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY .

� For each ha_gs_special_block_t , the following will be true:

– The gs_special_num_entries field will contain the same
number of entries as the number of adapters that were listed in
the gs_changing_membership field.

– The gs_special_length field will contain 4.

– The gs_special field will point to the array of entries, listed in
the order matching the order of adapters in the
gs_current_membership and gs_changing_membership
fields. Each entry will contain the IP address of the adapter's
alias affected by the notification (death or join).

Multiple ha_gs_special_block_t Elements
It is possible for a single subscription notification to contain adapters which were
deconfigured and are mapped with multiple alias addresses. In this case, both of
the above types of special data will be included. In this situation, the following
conditions hold:

� HA_GS_SUBSCRIPTION_SPECIAL_DATA will be OR'ed into the
gs_subscription_type field in the subscription notification.

� The gs_subscription_special_data field in the subscription notification will
point to an ha_gs_special_data block.

– The gs_special_block_count field will contain the count of
ha_gs_special_block_t elements, which in this case may be two (2) or
three (3).

– The gs_special_block_flags field will contain a value of the OR'ed
together flags HA_GS_CURRENT_ADAPTER_ALIAS_ARRAY ,
HA_GS_CHANGING_ADAPTER_ALIAS_ARRAY , and
HA_GS_ADAPTER_DEATH_ARRAY .

– The gs_subscription_special_data field in the subscription notification will
point to the first ha_gs_special_block_t .

- It is unpredictable which ha_gs_special_block_t will be first in the list.

- The gs_next_special_block of each ha_gs_special_block_t will point
to the next ha_gs_special_block_t .

- The gs_next_special_block of the last ha_gs_special_block_t will be
NULL.

 Appendix A. Subscription Special Data 229

Prerequisite System Conditions for Receiving Subscription Special
Data

Once a node has been migrated to PSSP 3.1 or to HACMP/ES at the HACMP 4.3
level for both Group Services and Topology Services, then this support will be
activated on that node, since adapter membership reporting is a purely local issue
for Group Services. However, if clients do not care about the information conveyed
by the special data, they can simply ignore the special data, and all should work
exactly as they expect today.

230 RS/6000 Cluster Technology Group Services Programming

 Bibliography

This bibliography helps you find product documentation related to the RS/6000 SP hardware
and software products.

You can find most of the IBM product information for RS/6000 SP products on the World
Wide Web. Formats for both viewing and downloading are available.

PSSP documentation is shipped with the PSSP product in a variety of formats and can be
installed on your system. The man pages for public code that PSSP includes are also
available online.

You can order hard copies of the product documentation from IBM. This bibliography lists the
titles that are available and their order numbers.

Finally, this bibliography contains a list of non-IBM publications that discuss parallel
computing and other topics related to the RS/6000 SP.

Finding Documentation on the World Wide Web
Most of the RS/6000 SP hardware and software books are available from the IBM RS/6000
web site at http://www.rs6000.ibm.com . You can view a book or download a Portable
Document Format (PDF) version of it. At the time this manual was published, the full path to
the "RS/6000 SP Product Documentation Library" page was
http://www.rs6000.ibm.com/resource/aix_resource/sp_books . However, the structure of
the RS/6000 web site can change over time.

Accessing PSSP Documentation Online
On the same medium as the PSSP product code, IBM ships PSSP man pages, HTML files,
and PDF files. In order to use these publications, you must first install the ssp.docs file set.

To view the PSSP HTML publications, you need access to an HTML document browser such
as Netscape. The HTML files and an index that links to them are installed in the
/usr/lpp/ssp/html directory. Once installed, you can also view the HTML files from the
RS/6000 SP Resource Center.

If you have installed the SP Resource Center on your SP system, you can access it by
entering the /usr/lpp/ssp/bin/resource_center command. If you have the SP Resource
Center on CD-ROM, see the readme.txt file for information about how to run it.

/usr/lpp/ssp/bin/resource_center

To view the PSSP PDF publications, you need access to the Adobe Acrobat Reader 3.0.1.
The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely
available for downloading from the Adobe web site at URL http://www.adobe.com .

Manual Pages for Public Code
The following manual pages for public code are available in this product:

SUP /usr/lpp/ssp/man/man1/sup.1

NTP /usr/lpp/ssp/man/man8/xntpd.8

 /usr/lpp/ssp/man/man8/xntpdc.8

Perl (Version 4.036) /usr/lpp/ssp/perl/man/perl.man

 Copyright IBM Corp. 1998 231

 /usr/lpp/ssp/perl/man/h2ph.man

 /usr/lpp/ssp/perl/man/s2p.man

 /usr/lpp/ssp/perl/man/a2p.man

Perl (Version 5.003) Man pages are in the /usr/lpp/ssp/perl5/man/man1 directory

Manual pages and other documentation for Tcl , TclX , Tk, and expect can be found in the
compressed tar files located in the /usr/lpp/ssp/public directory.

RS/6000 SP Planning Publications
This section lists the IBM product documentation for planning for the IBM RS/6000 SP
hardware and software.

IBM RS/6000 SP:

� Planning, Volume 1, Hardware and Physical Environment, GA22-7280

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

RS/6000 SP Hardware Publications
This section lists the IBM product documentation for the IBM RS/6000 SP hardware.

IBM RS/6000 SP:

� Planning, Volume 1, Hardware and Physical Environment, GA22-7280

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

� Maintenance Information, Volume 1, Installation and Relocation, GA22-7375

� Maintenance Information, Volume 2, Maintenance Analysis Procedures, GA22-7376

� Maintenance Information, Volume 3, Locations and Service Procedures, GA22-7377

� Maintenance Information, Volume 4, Parts Catalog, GA22-7378

RS/6000 SP Switch Router Publications
The RS/6000 SP Switch Router is based on the Ascend GRF switched IP router product
from Ascend Communications, Inc.. You can order the SP Switch Router as the IBM 9077.

The following publications are shipped with the SP Switch Router. You can also order these
publications from IBM using the order numbers shown.

� Ascend GRF Getting Started, GA22-7368

� Ascend GRF Configuration Guide, GA22-7366

� Ascend GRF Reference Guide, GA22-7367

� IBM SP Switch Router Adapter Guide, GA22-7310.

RS/6000 SP Software Publications
This section lists the IBM product documentation for software products related to the IBM
RS/6000 SP. These products include:

� IBM Parallel System Support Programs for AIX (PSSP)

� IBM LoadLeveler for AIX (LoadLeveler)

� IBM Parallel Environment for AIX (Parallel Environment)

232 RS/6000 Cluster Technology Group Services Programming

� IBM General Parallel File System for AIX (GPFS)

� IBM Engineering and Scientific Subroutine Library (ESSL) for AIX

� IBM Parallel ESSL for AIX

� IBM High Availability Cluster Multi-Processing for AIX (HACMP)

� IBM Client Input Output/Sockets (CLIO/S)

� IBM Network Tape Access and Control System for AIX (NetTAPE)

PSSP Publications

IBM RS/6000 SP:

� Planning, Volume 2, Control Workstation and Software Environment, GA22-7281

PSSP:

� Installation and Migration Guide, GA22-7347

� Administration Guide, SA22-7348

� Managing Shared Disks, SA22-7349

� Performance Monitoring Guide and Reference, SA22-7353

� Diagnosis Guide, GA22-7350

� Command and Technical Reference, SA22-7351

� Messages Reference, GA22-7352

RS/6000 Cluster Technology (RSCT):

� Event Management Programming Guide and Reference, SA22-7354

� Group Services Programming Guide and Reference, SA22-7355

As an alternative to ordering the individual books, you can use SBOF-8587 to order the
PSSP software library.

LoadLeveler Publications

LoadLeveler:

� Using and Administering, SA22-7311

� Diagnosis and Messages Guide, GA22-7277

GPFS Publications

GPFS:

� Installation and Administration Guide, SA22-7278

Parallel Environment Publications

Parallel Environment:

� Installation Guide, GC28-1981

� Hitchhiker's Guide, GC23-3895

� Operation and Use, Volume 1, SC28-1979

� Operation and Use, Volume 2, SC28-1980

� MPI Programming and Subroutine Reference, GC23-3894

� MPL Programming and Subroutine Reference, GC23-3893

 � Messages, GC28-1982

 Bibliography 233

As an alternative to ordering the individual books, you can use SBOF-8588 to order the PE
library.

Parallel ESSL and ESSL Publications

� ESSL Products: General Information, GC23-0529

� Parallel ESSL: Guide and Reference, SA22-7273

� ESSL: Guide and Reference, SA22-7272

HACMP Publications

HACMP:

� Concepts and Facilities, SC23-1938

� Planning Guide, SC23-1939

� Installation Guide, SC23-1940

� Administration Guide, SC23-1941

� Troubleshooting Guide, SC23-1942

� Programming Locking Applications, SC23-1943

� Programming Client Applications, SC23-1944

� Master Index and Glossary, SC23-1945

� HANFS for AIX Installation and Administration Guide, SC23-1946

� Enhanced Scalability Installation and Administration Guide, SC23-1972

CLIO/S Publications

CLIO/S:

� General Information, GC23-3879

� User's Guide and Reference, GC28-1676

NetTAPE Publications

NetTAPE:

� General Information, GC23-3990

� User's Guide and Reference, available from your IBM representative

AIX and Related Product Publications
For the latest information on AIX and related products, including RS/6000 hardware
products, see AIX and Related Products Documentation Overview, SC23-2456. You can
order a hard copy of the book from IBM. You can also view it online from the "AIX Online
Publications and Books" page of the RS/6000 web site, at URL
http://www.rs6000.ibm.com/resource/aix_resource/Pubs .

 Red Books
IBM's International Technical Support Organization (ITSO) has published a number of
redbooks related to the RS/6000 SP. For a current list, see the ITSO website, at URL
http://www.redbooks.ibm.com .

234 RS/6000 Cluster Technology Group Services Programming

 Non-IBM Publications
Here are some non-IBM publications that you may find helpful.

� Almasi, G., Gottlieb, A., Highly Parallel Computing, Benjamin-Cummings Publishing
Company, Inc., 1989.

� Foster, I., Designing and Building Parallel Programs, Addison-Wesley, 1995.

� Gropp, W., Lusk, E., Skjellum, A., Using MPI, The MIT Press, 1994.

� Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6, 1995.

� Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface,
Version 2.0, University of Tennessee, Knoxville, Tennessee, July 18, 1997.

� Ousterhout, John K., Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, 1994, ISBN
0-201-63337-X.

� Pfister, Gregory, F., In Search of Clusters, Prentice Hall, 1998.

 Bibliography 235

236 RS/6000 Cluster Technology Group Services Programming

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

� The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies can be purchased from the
American National Standards Institute, 1430
Broadway, New York, New York 10018. Definitions
are identified by the symbol (A) after the definition.

� The ANSI/EIA Standard - 440A: Fiber Optic
Terminology copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are identified
by the symbol (E) after the definition.

� The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

The following cross-references are used in this
glossary:

Contrast with. This refers to a term that has an
opposed or substantively different meaning.
See. This refers the reader to multiple-word terms in
which this term appears.
See also. This refers the reader to terms that have
a related, but not synonymous, meaning.
Synonym for. This indicates that the term has the
same meaning as a preferred term, which is defined
in the glossary.

This section contains some of the terms that are
commonly used in the SP publications.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards

Committee X3. ANSI definitions are preceded by an
asterisk (*).

Other definitions in this glossary are taken from IBM
Vocabulary for Data Processing, Telecommunications,
and Office Systems (SC20-1699) and IBM DATABASE
2 Application Programming Guide for TSO Users
(SC26-4081).

A
adapter . An adapter is a mechanism for attaching
parts. For example, an adapter could be a part that
electrically or physically connects a device to a
computer or to another device. In the SP system,
network connectivity is supplied by various adapters,
some optional, that can provide connection to I/O
devices, networks of workstations, and mainframe
networks. Ethernet, FDDI, token-ring, HiPPI, SCSI,
FCS, and ATM are examples of adapters that can be
used as part of an SP system.

address . A character or group of characters that
identifies a register, a device, a particular part of
storage, or some other data source or destination.

AFS. A distributed file system that provides
authentication services as part of its file system
creation.

AIX. Abbreviation for Advanced Interactive Executive,
IBM's licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

AIX Version 3 . The IBM AIX Version 3 for RS/6000
(also known as AIX/6000). It is based on UNIX System
V, conforms with POSIX IEEE Standard 1003.1, is
compatible with Berkeley Software Distribution 4.3 (4.3
BSD), and is designed to meet Trusted Computing
Base level C2 security.

Amd . Berkeley Software Distribution automount
daemon.

API. Application Programming Interface. A set of
programming functions and routines that provide access
between the Application layer of the OSI seven-layer
model and applications that want to use the network. It
is a software interface.

application . The use to which a data processing
system is put; for example, a payroll application, an
airline reservation application.

 Copyright IBM Corp. 1998 237

application data . The data that is produced using an
application program.

ARP. Address Resolution Protocol.

ATM. Asynchronous Transfer Mode. (See
TURBOWAYS 100 ATM Adapter.)

Authentication . The process of validating the identity
of a user or server.

Authorization . The process of obtaining permission to
perform specific actions.

B
batch processing . * (1) The processing of data or the
accomplishment of jobs accumulated in advance in
such a manner that each accumulation thus formed is
processed or accomplished in the same run. * (2) The
processing of data accumulating over a period of time. *
(3) Loosely, the execution of computer programs
serially. (4) Computer programs executed in the
background.

BMCA . Block Multiplexer Channel Adapter. The block
multiplexer channel connection allows the RS/6000 to
communicate directly with a host System/370 or
System/390; the host operating system views the
system unit as a control unit.

BOS. The AIX Base Operating System.

C
call home function . The ability of a system to call the
IBM support center and open a PMR to have a repair
scheduled.

CDE. Common Desktop Environment. A graphical user
interface for UNIX.

charge feature . An optional feature for either software
or hardware for which there is a charge.

CLI. Command Line Interface.

client . * (1) A function that requests services from a
server and makes them available to the user. * (2) A
term used in an environment to identify a machine that
uses the resources of the network.

Client Input/Output Sockets (CLIO/S) . A software
package that enables high-speed data and tape access
between SP systems, AIX systems, and ES/9000
mainframes.

CLIO/S. Client Input/Output Sockets.

CMI. Centralized Management Interface provides a
series of SMIT menus and dialogues used for defining
and querying the SP system configuration.

connectionless . A communication process that takes
place without first establishing a connection.

connectionless network . A network in which the
sending logical node must have the address of the
receiving logical node before information interchange
can begin. The packet is routed through nodes in the
network based on the destination address in the packet.
The originating source does not receive an
acknowledgment that the packet was received at the
destination.

control workstation . A single point of control allowing
the administrator or operator to monitor and manage the
SP system using the IBM AIX Parallel System Support
Programs.

css . Communication subsystem.

D
daemon . A process, not associated with a particular
user, that performs system-wide functions such as
administration and control of networks, execution of
time-dependent activities, line printer spooling and so
forth.

DASD. Direct Access Storage Device. Storage for
input/output data.

DCE. Distributed Computing Environment.

DFS. distributed file system. A subset of the IBM
Distributed Computing Environment.

DNS. Domain Name Service. A hierarchical name
service which maps high level machine names to IP
addresses.

E
Error Notification Object . An object in the SDR that
is matched with an error log entry. When an error log
entry occurs that matches the Notification Object, a
user-specified action is taken.

ESCON. Enterprise Systems Connection. The ESCON
channel connection allows the RS/6000 to communicate
directly with a host System/390; the host operating
system views the system unit as a control unit.

Ethernet . (1) Ethernet is the standard hardware for
TCP/IP local area networks in the UNIX marketplace. It
is a 10-megabit per second baseband type LAN that
allows multiple stations to access the transmission

238 RS/6000 Cluster Technology Group Services Programming

medium at will without prior coordination, avoids
contention by using carrier sense and deference, and
resolves contention by collision detection (CSMA/CD).
(2) A passive coaxial cable whose interconnections
contain devices or components, or both, that are all
active. It uses CSMA/CD technology to provide a
best-effort delivery system.

Ethernet network . A baseband LAN with a bus
topology in which messages are broadcast on a coaxial
cabling using the carrier sense multiple access/collision
detection (CSMA/CD) transmission method.

event . In Event Management, the notification that an
expression evaluated to true. This evaluation occurs
each time an instance of a resource variable is
observed.

expect . Programmed dialogue with interactive
programs.

expression . In Event Management, the relational
expression between a resource variable and other
elements (such as constants or the previous value of an
instance of the variable) that, when true, generates an
event. An example of an expression is X < 1ð where X
represents the resource variable
IBM.PSSP.aixos.PagSp.%totalfree (the percentage of
total free paging space). When the expression is true,
that is, when the total free paging space is observed to
be less than 10%, the Event Management subsystem
generates an event to notify the appropriate application.

F
failover . Also called fallover, the sequence of events
when a primary or server machine fails and a
secondary or backup machine assumes the primary
workload. This is a disruptive failure with a short
recovery time.

fall back . Also called fall back, the sequence of events
when a primary or server machine takes back control of
its workload from a secondary or backup machine.

FDDI. Fiber Distributed Data Interface.

Fiber Distributed Data Interface (FDDI) . An American
National Standards Institute (ANSI) standard for
100-megabit-per-second LAN using optical fiber cables.
An FDDI local area network (LAN) can be up to 100 km
(62 miles) and can include up to 500 system units.
There can be up to 2 km (1.24 miles) between system
units and/or concentrators.

file . * A set of related records treated as a unit, for
example, in stock control, a file could consist of a set of
invoices.

file name . A CMS file identifier in the form of 'filename
filetype filemode' (like: TEXT DATA A).

file server . A centrally located computer that acts as a
storehouse of data and applications for numerous users
of a local area network.

File Transfer Protocol (FTP) . The Internet protocol
(and program) used to transfer files between hosts. It is
an application layer protocol in TCP/IP that uses
TELNET and TCP protocols to transfer bulk-data files
between machines or hosts.

foreign host . Any host on the network other than the
local host.

FTP. File transfer protocol.

G
gateway . An intelligent electronic device
interconnecting dissimilar networks and providing
protocol conversion for network compatibility. A gateway
provides transparent access to dissimilar networks for
nodes on either network. It operates at the session
presentation and application layers.

H
HACMP. AIX High Availability Cluster
Multi-Processing.

HACMP/ES. Enhanced Scalability feature of the IBM
High Availability Cluster Multi-Processing for AIX
Licensed Program.

HACWS. High Availability Control Workstation function,
based on HACMP, provides for a backup control
workstation for the SP system.

help key . In the SP graphical interface, the key that
gives you access to the SP graphical interface help
facility.

High Availability Cluster Multi-Processing/6000 . An
IBM facility to cluster nodes or components to provide
high availability by eliminating single points of failure.

HiPPI. High Performance Parallel Interface. RS/6000
units can attach to a HiPPI network as defined by the
ANSI specifications. The HiPPI channel supports burst
rates of 100 Mbps over dual simplex cables;
connections can be up to 25 km in length as defined by
the standard and can be extended using third-party
HiPPI switches and fiber optic extenders.

home directory . The directory associated with an
individual user.

 Glossary of Terms and Abbreviations 239

host . A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

HSD. The data striping device for the IBM Virtual
Shared Disk. The device driver lets application
programs stripe data across physical disks in multiple
IBM Virtual Shared Disks, thus reducing I/O bottlenecks
and hot spots.

I
instance vector . Obsolete term for resource identifier.

Intermediate Switch Board . Switches mounted in the
Sp Switch expansion frame.

Internet . A specific inter-network consisting of large
national backbone networks such as APARANET,
MILNET, and NSFnet, and a myriad of regional and
campus networks all over the world. The network uses
the TCP/IP protocol suite.

Internet Protocol (IP) . (1) A protocol that routes data
through a network or interconnected networks. IP acts
as an interface between the higher logical layers and
the physical network. This protocol, however, does not
provide error recovery, flow control, or guarantee the
reliability of the physical network. IP is a connectionless
protocol. (2) A protocol used to route data from its
source to it destination in an Internet environment.

IP address . A 32-bit address assigned to devices or
hosts in an IP internet that maps to a physical address.
The IP address is composed of a network and host
portion.

ISB. Intermediate Switch Board.

K
Kerberos . A service for authenticating users in a
network environment.

kernel . The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in “kernel mode” and is protected from user
tampering by the hardware.

L
LAN . (1) Acronym for Local Area Network, a data
network located on the user's premises in which serial
transmission is used for direct data communication
among data stations. (2) Physical network technology
that transfers data a high speed over short distances.
(3) A network in which a set of devices is connected to

another for communication and that can be connected
to a larger network.

local host . The computer to which a user's terminal is
directly connected.

log database . A persistent storage location for the
logged information.

log event . The recording of an event.

log event type . A particular kind of log event that has
a hierarchy associated with it.

logging . The writing of information to persistent
storage for subsequent analysis by humans or
programs.

M
mask . To use a pattern of characters to control
retention or elimination of portions of another pattern of
characters.

menu . A display of a list of available functions for
selection by the user.

Motif . The graphical user interface for OSF,
incorporating the X Window System. Also called
OSF/Motif.

MTBF. Mean time between failure. This is a measure
of reliability.

MTTR. Mean time to repair. This is a measure of
serviceability.

mutability . The ability of certain group attributes to be
dynamically changed by the group's providers, using the
ha_gs_change_attributes asynchronous interface.

N
naive application . An application with no knowledge
of a server that fails over to another server. Client to
server retry methods are used to reconnect.

network . An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

NFS. Network File System. NFS allows different
systems (UNIX or non-UNIX), different architectures, or
vendors connected to the same network, to access
remote files in a LAN environment as though they were
local files.

NIM. Network Installation Management is provided with
AIX to install AIX on the nodes.

240 RS/6000 Cluster Technology Group Services Programming

NIM client . An AIX system installed and managed by
a NIM master. NIM supports three types of clients:

 � Standalone
 � Diskless
 � Dataless

NIM master . An AIX system that can install one or
more NIM clients. An AIX system must be defined as a
NIM master before defining any NIM clients on that
system. A NIM master managers the configuration
database containing the information for the NIM clients.

NIM object . A representation of information about the
NIM environment. NIM stores this information as objects
in the NIM database. The types of objects are:

 � Network
 � Machine
 � Resource

NIS. Network Information System.

node . In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. The SP system
can house several different types of nodes for both
serial and parallel processing. These node types can
include thin nodes, wide nodes, 604 high nodes, as well
as other types of nodes both internal and external to the
SP frame.

Node Switch Board . Switches mounted on frames
that contain nodes.

NSB. Node Switch Board.

NTP. Network Time Protocol.

O
ODM. Object Data Manager. In AIX, a hierarchical
object-oriented database for configuration data.

P
parallel environment . A system environment where
message passing or SP resource manager services are
used by the application.

Parallel Environment . A licensed IBM program used
for message passing applications on the SP or RS/6000
platforms.

parallel processing . A multiprocessor architecture
which allows processes to be allocated to tightly
coupled multiple processors in a cooperative processing
environment, allowing concurrent execution of tasks.

parameter . * (1) A variable that is given a constant
value for a specified application and that may denote
the application. * (2) An item in a menu for which the
operator specifies a value or for which the system
provides a value when the menu is interpreted. * (3) A
name in a procedure that is used to refer to an
argument that is passed to the procedure. * (4) A
particular piece of information that a system or
application program needs to process a request.

partition . See system partition.

Perl . Practical Extraction and Report Language.

perspective . The primary window for each SP
Perspectives application, so called because it provides
a unique view of an SP system.

pipe . A UNIX utility allowing the output of one
command to be the input of another. Represented by
the | symbol. It is also referred to as filtering output.

PMR. Problem Management Report.

POE. Formerly Parallel Operating Environment, now
Parallel Environment for AIX.

port . (1) An end point for communication between
devices, generally referring to physical connection. (2) A
16-bit number identifying a particular TCP or UDP
resource within a given TCP/IP node.

predicate . Obsolete term for expression.

Primary node or machine . (1) A device that runs a
workload and has a standby device ready to assume
the primary workload if that primary node fails or is
taken out of service. (2) A node on the SP Switch that
initializes, provides diagnosis and recovery services,
and performs other operations to the switch network. (3)
In IBM Virtual Shared Disk function, the node at which
the logical volume is actually local and that acts as
server node to I/O requests from other nodes.

Problem Management Report . The number in the
IBM support mechanism that represents a service
incident with a customer.

process . * (1) A unique, finite course of events
defined by its purpose or by its effect, achieved under
defined conditions. * (2) Any operation or combination
of operations on data. * (3) A function being performed
or waiting to be performed. * (4) A program in
operation. For example, a daemon is a system process
that is always running on the system.

protocol . A set of semantic and syntactic rules that
defines the behavior of functional units in achieving
communication.

 Glossary of Terms and Abbreviations 241

R
RAID. Redundant array of independent disks.

rearm expression . In Event Management, an
expression used to generate an event that alternates
with an original event expression in the following way:
the event expression is used until it is true, then the
rearm expression is used until it is true, then the event
expression is used, and so on. The rearm expression is
commonly the inverse of the event expression (for
example, a resource variable is on or off). It can also be
used with the event expression to define an upper and
lower boundary for a condition of interest.

rearm predicate . Obsolete term for rearm expression

remote host . See foreign host.

resource . In Event Management, an entity in the
system that provides a set of services. Examples of
resources include hardware entities such as processors,
disk drives, memory, and adapters, and software
entities such as database applications, processes, and
file systems. Each resource in the system has one or
more attributes that define the state of the resource.

resource identifier . In Event Management, a set of
elements, where each element is a name/value pair of
the form name=value, whose values uniquely identify the
copy of the resource (and by extension, the copy of the
resource variable) in the system.

resource monitor . A program that supplies
information about resources in the system. It can be a
command, a daemon, or part of an application or
subsystem that manages any type of system resource.

resource variable . In Event Management, the
representation of an attribute of a resource. An example
of a resource variable is IBM.AIX.PagSp.%totalfree,
which represents the percentage of total free paging
space. IBM.AIX.PagSp specifies the resource name and
%totalfree specifies the resource attribute.

RISC. Reduced Instruction Set Computing (RISC), the
technology for today's high performance personal
computers and workstations, was invented in 1975.
Uses a small simplified set of frequently used
instructions for rapid execution.

rlogin (remote LOGIN) . A service offered by Berkeley
UNIX systems that allows authorized users of one
machine to connect to other UNIX systems across a
network and interact as if their terminals were
connected directly. The rlogin software passes
information about the user's environment (for example,
terminal type) to the remote machine.

RPC. Acronym for Remote Procedure Call, a facility
that a client uses to have a server execute a procedure
call. This facility is composed of a library of procedures
plus an XDR.

RSH. A variant of RLOGIN command that invokes a
command interpreter on a remote UNIX machine and
passes the command line arguments to the command
interpreter, skipping the LOGIN step completely. See
also rlogin.

S
SCSI. Small Computer System Interface.

server . (1) A function that provides services for users.
A machine may run client and server processes at the
same time. (2) A machine that provides resources to
the network. It provides a network service, such as disk
storage and file transfer, or a program that uses such a
service. (3) A device, program, or code module on a
network dedicated to providing a specific service to a
network. (4) On a LAN, a data station that provides
facilities to other data stations. Examples are file server,
print server, and mail server.

shell . The shell is the primary user interface for the
UNIX operating system. It serves as command
language interpreter, programming language, and
allows foreground and background processing. There
are three different implementations of the shell concept:
Bourne, C and Korn.

Small Computer System Interface (SCSI) . An input
and output bus that provides a standard interface for
the attachment of various direct access storage devices
(DASD) and tape drives to the RS/6000.

Small Computer Systems Interface Adapter (SCSI
Adapter) . An adapter that supports the attachment of
various direct-access storage devices (DASD) and tape
drives to the RS/6000.

SMIT. The System Management Interface Toolkit is a
set of menu driven utilities for AIX that provides
functions such as transaction login, shell script creation,
automatic updates of object database, and so forth.

SNMP. Simple Network Management Protocol. (1) An
IP network management protocol that is used to monitor
attached networks and routers. (2) A TCP/IP-based
protocol for exchanging network management
information and outlining the structure for
communications among network devices.

socket . (1) An abstraction used by Berkeley UNIX that
allows an application to access TCP/IP protocol
functions. (2) An IP address and port number pairing.
(3) In TCP/IP, the Internet address of the host computer

242 RS/6000 Cluster Technology Group Services Programming

on which the application runs, and the port number it
uses. A TCP/IP application is identified by its socket.

standby node or machine . A device that waits for a
failure of a primary node in order to assume the identity
of the primary node. The standby machine then runs
the primary's workload until the primary is back in
service.

subnet . Shortened form of subnetwork.

subnet mask . A bit template that identifies to the
TCP/IP protocol code the bits of the host address that
are to be used for routing for specific subnetworks.

subnetwork . Any group of nodes that have a set of
common characteristics, such as the same network ID.

subsystem . A software component that is not usually
associated with a user command. It is usually a
daemon process. A subsystem will perform work or
provide services on behalf of a user request or
operating system request.

SUP. Software Update Protocol.

Sysctl . Secure System Command Execution Tool. An
authenticated client/server system for running
commands remotely and in parallel.

syslog . A BSD logging system used to collect and
manage other subsystem's logging data.

System Administrator . The user who is responsible
for setting up, modifying, and maintaining the SP
system.

system partition . A group of nonoverlapping nodes on
a switch chip boundary that act as a logical SP system.

T
tar . Tape ARchive, is a standard UNIX data archive
utility for storing data on tape media.

Tcl . Tool Command Language.

TclX . Tool Command Language Extended.

TCP. Acronym for Transmission Control Protocol, a
stream communication protocol that includes error
recovery and flow control.

TCP/IP. Acronym for Transmission Control
Protocol/Internet Protocol, a suite of protocols designed
to allow communication between networks regardless of
the technologies implemented in each network. TCP
provides a reliable host-to-host protocol between hosts
in packet-switched communications networks and in

interconnected systems of such networks. It assumes
that the underlying protocol is the Internet Protocol.

Telnet . Terminal Emulation Protocol, a TCP/IP
application protocol that allows interactive access to
foreign hosts.

Tk. Tcl-based Tool Kit for X Windows.

TMPCP. Tape Management Program Control Point.

token-ring . (1) Network technology that controls media
access by passing a token (special packet or frame)
between media-attached machines. (2) A network with a
ring topology that passes tokens from one attaching
device (node) to another. (3) The IBM Token-Ring LAN
connection allows the RS/6000 system unit to
participate in a LAN adhering to the IEEE 802.5
Token-Passing Ring standard or the ECMA standard 89
for Token-Ring, baseband LANs.

transaction . An exchange between the user and the
system. Each activity the system performs for the user
is considered a transaction.

transceiver (transmitter-receiver) . A physical device
that connects a host interface to a local area network,
such as Ethernet. Ethernet transceivers contain
electronics that apply signals to the cable and sense
collisions.

transfer . To send data from one place and to receive
the data at another place. Synonymous with move.

transmission . * The sending of data from one place
for reception elsewhere.

TURBOWAYS 100 ATM Adapter . An IBM
high-performance, high-function intelligent adapter that
provides dedicated 100 Mbps ATM (asynchronous
transfer mode) connection for high-performance servers
and workstations.

U
UDP. User Datagram Protocol.

UNIX operating system . An operating system
developed by Bell Laboratories that features
multiprogramming in a multiuser environment. The UNIX
operating system was originally developed for use on
minicomputers, but has been adapted for mainframes
and microcomputers. Note: The AIX operating system
is IBM's implementation of the UNIX operating system.

user . Anyone who requires the services of a
computing system.

User Datagram Protocol (UDP) . (1) In TCP/IP, a
packet-level protocol built directly on the Internet

 Glossary of Terms and Abbreviations 243

Protocol layer. UDP is used for
application-to-application programs between TCP/IP
host systems. (2) A transport protocol in the Internet
suite of protocols that provides unreliable,
connectionless datagram service. (3) The Internet
Protocol that enables an application programmer on one
machine or process to send a datagram to an
application program on another machine or process.

user ID . A nonnegative integer, contained in an object
of type uid_t, that is used to uniquely identify a system
user.

V
Virtual Shared Disk, IBM . The function that allows
application programs executing at different nodes of a
system partition to access a raw logical volume as if it
were local at each of the nodes. In actuality, the logical
volume is local at only one of the nodes (the server
node).

W
workstation . * (1) A configuration of input/output
equipment at which an operator works. * (2) A terminal
or microcomputer, usually one that is connected to a
mainframe or to a network, at which a user can perform
applications.

X
X Window System . A graphical user interface product.

244 RS/6000 Cluster Technology Group Services Programming

 Index

A
about this book ix
adapter membership group

subscription to Ethernet adapter membership
group 42

subscription to SP Switch adapter membership
group 42

system-defined group 42
announcement callback routine, defining 48
announcement notification

definition 30
application program design

for a multicomputer environment 1
application programming interface

GSAPI 2
application size

minimizing for performance 45
applications

in multicomputer environment 1
approval of a protocol

notification 30
asynchronous error handling 48
atomic multicast

and voting 4
attributes of a group, changing 47
attributes, group

changing 7
defining 7
definition 7
mutability 7

audience of this book x

B
barrier synchronization

and voting 4
use in Group Services 2

batch control
definition 7

batching requests
using for performance 45

C
callback routine (Group Services)

announcement 48
avoiding deadlock 45
coordinating multiple notifications 45
delayed error 48
designing 44
ha_gs_announcement_callback 49
ha_gs_delayed_error_callback 60

callback routine (Group Services) (continued)
ha_gs_n_phase_callback 88
ha_gs_protocol_approved_callback 97
ha_gs_protocol_rejected_callback 100
ha_gs_responsiveness_callback 106
ha_gs_subscriber_callback 118
n-phase 48
performance considerations 44
protocol approved 48
protocol rejected 48
responsiveness 9, 48
subscriber 48

change-attributes protocol
introduction 11

changing group attributes 47
checking for notifications 47
client/server applications

in a multicomputer environment 1
coexistence with PSSP 2.3

design considerations 46
COLLIDE error code

for competing protocols 18
collision error code

for competing protocols 18
concepts

Group Services 1
consistency

determining requirements for 32
loosely synchronous 32
strong 32

coordination
in multinode environment 3
of applications using GSAPI 2
of processes using GSAPI 2

counter-like responsiveness protocol
definition 9

D
deactivate script 22
deadlock

avoiding in callback routines 45
default vote

definition 7
when used 125

delayed error callback routine, defining 48
design considerations

actions during voting 37
coding callback routines 44, 45
for a multicomputer environment 1
Group Services 44
migration and coexistence with PSSP 2.3 46

 Copyright IBM Corp. 1998 245

design considerations (continued)
multi-threaded applications 45

domain, Group Services
definition 3

E
errors

GSAPI 130
Ethernet adapter membership group

system-defined group 42
examples

group services example 144, 162, 215, 218, 221
expel protocol

deactivate script 22
description 22

expelling providers 47
expulsion

for a provider 4

F
failure

causes in a multicomputer environment 1
designing for quick recovery from 46
detection using GSAPI 2
undoing actions 46

failure leave
definition 30
for a provider 4

failure leave protocol
removing failed providers 4

failure to responsiveness check
Group Services action 9

failure, node
Group Services handling 37

failure, process
failure leave protocol 37
responsiveness checking 37

fault-tolerant system
design 2

final notification
approval 30
rejection 30

G
goodbye, saying (leaving a group immediately) 47
group attributes

changing 7
defining for a group 7
definition 7
mutability 7

group creation
definition 7

group dissolution
announcement 30

group name
definition 7

group quorum
use with Group Services 43

Group Services domain
definition 3

Group Services subroutines
changing a group's attributes 47
changing a group's state value 47
checking for notifications 47
defining a callback routine

for announcements 48
for delayed errors 48
for handling protocol approved notifications 48
for handling protocol rejected notifications 48
for handling subscriber notifications 48
for responding to n-phase protocols 48
for responding to responsiveness checks 48

expelling providers 47
ha_gs_announcement_callback 49
ha_gs_change_attributes 52
ha_gs_change_state_value 57
ha_gs_delayed_error_callback 60
ha_gs_dispatch 63
ha_gs_expel 67
ha_gs_goodbye 71
ha_gs_init 73
ha_gs_join 78
ha_gs_leave 85
ha_gs_n_phase_callback 88
ha_gs_protocol_approved_callback 97
ha_gs_protocol_rejected_callback 100
ha_gs_quit 104
ha_gs_responsiveness_callback 106
ha_gs_send_message 108
ha_gs_subscribe 112
ha_gs_subscriber_callback 118
ha_gs_unsubscribe 122
ha_gs_vote 124
joining a group as a provider 47
leaving a group (as a provider) 47
leaving a group immediately (saying goodbye) 47
mutability of group attributes 47
registering with Group Services 47
saying goodbye (leaving a group immediately) 47
sending broadcast data 47
subscribing to a group 47
terminating the use of Group Services 47
unsubscribing to a group 47
voting on a proposal 47

Group Services subsystem
concepts 1
coordination among applications 2
definition 2

246 RS/6000 Cluster Technology Group Services Programming

Group Services subsystem (continued)
design considerations 44
programming model 2
protocol priorities 4
summary of subroutines 47
synchronization within an application 2
use of for coordination 3

group state data
definition 4

group state value
definition 4

group, Group Services
changing attributes 7
creation 7
defining attributes 7
definition 3

GS client
definition 3
failure to responsiveness check 9

GSAPI (Group Services Application Programming
Interface)

error reference 130
functions supporting high availability 2
return codes 130

H
ha_gs_announcement_callback subroutine

reference 49
ha_gs_change_attributes subroutine

reference 52
ha_gs_change_state_value subroutine

reference 57
ha_gs_delayed_error_callback subroutine

reference 60
ha_gs_dispatch subroutine

reference 63
ha_gs_expel subroutine

reference 67
ha_gs_goodbye subroutine

reference 71
ha_gs_init subroutine

reference 73
ha_gs_join subroutine

reference 78
ha_gs_leave subroutine

reference 85
ha_gs_n_phase_callback subroutine

reference 88
ha_gs_protocol_approved_callback subroutine

reference 97
ha_gs_protocol_rejected_callback subroutine

reference 100
ha_gs_quit subroutine

reference 104

ha_gs_responsiveness_callback subroutine
reference 106

ha_gs_send_message subroutine
reference 108

ha_gs_subscribe subroutine
reference 112

ha_gs_subscriber_callback subroutine
reference 118

ha_gs_unsubscribe subroutine
reference 122

ha_gs_vote subroutine
reference 124

ha_gs.h header file
reference 134

hardware techniques
for high availability 1

header files
ha_gs.h 134

high availability
definition 1
hardware techniques 1
multicomputer environment 1
software techniques

Group Services subsystem 2
host membership group

subscription to host membership group 42
system-defined group 42

I
idempotent actions

definition 46
initializing with Group Services 47
interapplication dependency

managing with source-target groups 39
IP take over

for high availability 1

J
join request

definition 3
joining a group 47

as a provider 4
membership list change 4

L
leaving a group

as a provider 4, 47
membership list change 4

leaving a group immediately (saying goodbye) 47
loosely synchronous consistency

definition 32

 Index 247

M
manual pages for public code 231
maximum

length of group name 80
membership change proposal

definition 30
membership change protocol

introduction 10
membership in multiple groups

coordination of members 39
membership list

definition 4
merging

of sundered networks 44
message size

minimizing for performance 45
migration

design considerations 46
multi-phase commit

use in Group Services 2
multi-tailed disks

for high availability 1
multi-threaded application

designing callback routines 45
multi-threaded GS client

responsiveness protocol 8, 9
multicomputer environment

design of applications for 1
failure 1
recovery 1
role of high availability 1

multinode environment
coordination 3

N
n-phase callback routine, defining 48
n-phase protocol

definition 10
example 31

n-phase state change protocol
example 31

network address takeover
for high availability 1

networks, sundered
handling of 43
merging of 44

node failure
Group Services handling 37

nodes, SP system
Group Services domain 3

non-voting protocol
one-phase protocol 4

nonresponsive process
handling 8, 22

nonresponsive process (continued)
notification 31

notification
announcement 30
checking for 47
coordinating in callback routines 45
definition 29
for provider 30
for subscriber 30
ongoing protocol 30
protocol approval 30
protocol proposal 30
protocol rejection 30
responsiveness 8, 31

O
one-phase protocol

definition 10
example 31
use in Group Services 2

ongoing protocol notification
definition 30

P
peer process applications

in a multicomputer environment 1
performance considerations

batching multiple requests 45
callback routines 44
minimizing application size 45
minimizing message size 45

ping-like responsiveness protocol
definition 8

prerequisite knowledge for this book x
primary group

definition 7
process failure

failure leave protocol 37
responsiveness checking 37

process group
use in Group Services 2

process termination
and expel protocol 22
and Group Services 8
notification 31

proposal
membership change 30
provider-broadcast message 30
serialization 35
state value change 30
voting on 47

proposing a state change 47
protocol

change-attributes 11

248 RS/6000 Cluster Technology Group Services Programming

protocol (continued)
definition 10
expel 22
membership change 10
n-phase

definition 10
example 31

one-phase 10
provider-broadcast message 10
source-state reflection protocol 41
state value change 10

protocol approval notification
definition 30

protocol approved callback routine, defining 48
protocol proposal notification

definition 30
protocol rejected callback routine, defining 48
protocol rejection notification

definition 30
provider

definition 3
expelling 47
failure to responsiveness check 9
joining a group 4, 47
leaving a group 4, 47
sending a message to 47
tokens 39

provider failure
announcement 30

provider-broadcast message proposal
definition 30

provider-broadcast message protocol
introduction 10

PSSP 2.3
migration and coexistence considerations 46

publish/subscribe programming model
basis for Group Services 2

Q
quitting Group Services 47
quorum

use with Group Services 43

R
recovery

in a multicomputer environment 1
using GSAPI 2

registering with Group Services 47
requests, Group Services

serialization 4
responsiveness callback routine

initializing 8
purpose 9

responsiveness callback routine, defining 48
responsiveness check

definition 31
description 8
initializing for 8

responsiveness notification
definition 31

responsiveness protocol
counter-checking protocol 9
no protocol 8
ping-like protocol 8

return codes
GSAPI 130

S
saying goodbye (leaving a group immediately) 47
script, deactivate 22
sending a message to providers 47
serialization

Group Services requests 4
notifications to subscribers 39
of proposals 35

single-threaded GS client
responsiveness protocol 8

size
application

minimizing for performance 45
message

minimizing for performance 45
software abstractions, Group Services

barrier synchronization 2
multi-phase commit 2
one-phase protocol 2
process group 2
state data 2

software techniques
for high availability

Group Services subsystem 2
source-state reflection protocol

definition 41
source-target groups

choosing over subscription 40
managing interapplication dependency 39
source-state reflection protocol 41

source-target relationship
attributes 7

SP Switch adapter membership group
system-defined group 42

state data
use in Group Services 2

state value change proposal
definition 30

state value change protocol
introduction 10

 Index 249

state value, proposing a change 47
strongly-consistent synchronization

definition 32
subscribe request

definition 3
subscriber

becoming 47
definition 3
participation in group 5
roles 39
tokens 39
unregistering as 47

subscriber callback routine
defining 48

subscribing to a group 47
notifications 39
overview 39
using for interapplication coordination 39

subscription
choosing source-target groups 40

subsystems
in multicomputer environment 1

summary of subroutines
Group Services 47

sundered networks
handling of 43
merging of 44

synchronization, intra-application
Group Services subsystem 2

system partition
domain for Group Services 3

T
tallying votes 125
terminating the use of Group Services 47
time limit

voting 37
tokens

provider 39
reuse 39
subscriber 39

trademarks vii
two-phase commit protocol

example 31

U
undoing actions

definition 46
unsubscribing to a group 47

V
version code

definition 7

votes
default 125
tallying 125

voting
approval 10
callback routine for 48
on a proposal 47
phases 7
protocol 10
rejection 10
response to protocol notification 30
time limit 7, 37

voting protocol
n-phase protocol 4

250 RS/6000 Cluster Technology Group Services Programming

Communicating Your Comments to IBM

RS/6000 Cluster Technology
Group Services Programming
Guide and Reference

Publication No. SA22-7355-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBMLink (United States customers only): S390VM(MHVRCFS)
– IBM Mail Exchange: USIB6TC9 at IBMMAIL

 – Internet: mhvrcfs@vnet.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

RS/6000 Cluster Technology
Group Services Programming
Guide and Reference

Publication No. SA22-7355-00

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SA22-7355-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 SOUTH ROAD
POUGHKEEPSIE NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SA22-7355-00

IBM

Program Number: 5765–D51 (PSSP); 5765–D28 (HACMP)

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7355-ðð

