

GRF 1.4 Addendum

Ascend Communications, Inc.

January, 1998

GRF software version 1.4

2 GRF 1.4 Addendum

GRF is a trademark of Ascend Communications, Inc. Other trademarks and trade names
mentioned in this publication belong to their respective owners.

Copyright © 1998, Ascend Communications, Inc. All Rights Reserved.

This document contains information that is the property of Ascend Communications, Inc. This
document may not be copied, reproduced, reduced to any electronic medium or machine
readable form, or otherwise duplicated, and the information herein may not be used,
disseminated or otherwise disclosed, except with the prior written consent of Ascend
Communications, Inc.

Contents

GRF 1.4 Addendum 3

Contents

Chapter 1 ECMP... 7

Introduction to GRF ECMP ... 7

GateD support ... 8

Static ECMP configuration ... 8

Dynamic ECMP configuration ... 8

Checking ECMP routes... 9

Chapter 2 Frame Relay Configuration ... 11

Introduction to Frame Relay .. 12

Link types.. 12

UNI-DTE link ..12

UNI-DCE link ..12

NNI link ...12

PVCs ... 13

GRF implementation features .. 14

Routing.. 14

Switching .. 14

Multicast service ... 14

Link options .. 14

Circuits.. 15

Traffic shaping .. 15

LICS protocols .. 15

Interoperability.. 16

Specifications.. 16

IS-IS protocol support... 16

Introduction to fred .. 17

PVC and link tables ... 17

Route circuits ...17

Switch circuits ...18

Multicast circuits ...18

LICS processing.. 18

Traffic shaping .. 19

grfr command functions.. 19

Debug and log levels... 19

Multicast service .. 20

One-way multicast .. 20

4 GRF 1.4 Addendum

Contents

Two-way multicast.. 21

N-way multicast .. 21

Before you start... ... 22

IP address assignment ... 22

Interface 0 configuration requirement .. 22

Configure Frame Relay logging.. 22

Configuring link parameters .. 24

Link configuration example.. 25

Link type ..26

T391 - link integrity verification timer.. 26

N391 - full status polling cycle ..26

T392 - polling verification timer ...26

N392 - error threshold ...26

N393 - monitored events count ..27

Link name ..27

LMI type ..27

Configuring circuit parameters .. 28

Route circuits - PVC/PVCR section ... 28

Example ... 29

Switch circuits - PVCS section ... 30

Example ... 30

One-way multicast - PVCM1 section ... 31

Example ... 31

Two-way multicast - PVCM2 section... 33

Example ... 33

N-way multicast - PVCMN section .. 34

Example ... 34

Asymmetrical traffic shapes ... 35

Example ... 35

Configure a link on-the-fly .. 36

Configure a PVC on-the-fly ... 37

Assigning multiple route PVCs to an interface.. 38

Verifying a configuration... 39

grfr command set ... 41

Display commands.. 41

Configuration and debug commands .. 41

States of configured PVCs .. 41

Contents

GRF 1.4 Addendum 5

Chapter 3 Transparent Bridging... 43

GRF bridging implementation ... 44

Specifications.. 44

Simultaneous routing and bridging... 45

Configuration options ... 45

Interoperability.. 45

Spanning tree .. 46

Bridge filtering table ... 46

Fragmentation ... 46

Spamming ... 46

GateD .. 46

Bridging components ... 47

Bridging daemon – bridged .. 47

Configuration file – bridged.conf ... 47

Editing utility – bredit... 47

Management tools .. 48

brstat.. 48

brinfo... 48

Bridging example ... 49

Configuration file and profile overview... 50

1. Create bridge groups in bridged.conf... 51

2. Assign IP addresses to bridge groups .. 52

3. Create an ATM PVC for an encapsulated bridge... 53

Configuration in gratm.conf.. 53

Restrictions .. 54

proto=llc,bridging ..54

proto=vcmux_bridge,yyyy ..54

PVC configuration examples .. 55

LLC encapsulated, restricted to Ethernet..55

VC-based multiplexing options ..55

Installing configuration changes ... 56

Sources of bridging data .. 57

Bridging trace log ... 57

Bridge group information ... 58

Low-level state information.. 58

Route trees and filtering table ... 59

Bridging sockets.. 59

Kernel bridging statistics .. 59

Examining and debugging bridge configurations .. 61

Introduction... 61

Information needed by Ascend support .. 61

Enabling traces via bridged command.. 62

6 GRF 1.4 Addendum

Contents

Displaying useful information .. 62

Using brinfo .. 63

State information - brstat .. 64

MAC addresses and bridge IDs via netstat -ni.. 65

Restarting bridged during debug... 66

GRF 1.4 Addendum 7

ECMP

Introduction to GRF ECMP

The Equal Cost Multi-path (ECMP) feature provides an ability to efficiently modulate traffic to
destination networks. With ECMP enabled, multiple gateways for destination network or host
prefixes (addresses) can be legally installed in the GRF route table. This release supports a
maximum of eight gateways per ECMP group. Rather than use a single "best" route, ECMP
routes packets toward a destination network by splitting the packet load between different, but
similar, paths.

The diagram below shows a simplified ECMP group example. The GRF1 router is running
ECMP. If ECMP is statically configured, ECMP routes are created by configuring entries in

/etc/grroute.conf

. If ECMP is turned on in the

/etc/gated.conf

 file, GateD learns the
routes and allows multiple gateways to be assigned to a single source address. The R300 router
is the gateway for an available but unequal path.

Figure 1. Example of alternate ECMP routes

Destination network
172.22.1

R100 R200 R300 R400 Routes learned dynamically

1. 172.22.1 via R100
2. 172.22.1 via R200
3. 172.22.1 via R400

= in ECMP group

Source router running ECMP

GRF1

by GateD:

Routes configured statically

172.16.11.0 255.255.255.0 R100_addr -ecmp
172.16.11.0 255.255.255.0 R200_addr -ecmp
172.16.11.0 255.255.255.0 R400_addr -ecmp

using grroute.conf:

Path =

8 GRF 1.4 Addendum

ECMP

Introduction to GRF ECMP

For each packet, a determination mechanism selects the nexthop gateway from the ECMP
group. The current determination mechanism selects from the group based on a
source/destination hash. The hash is fixed, and, for most cases, provides a reasonable, equal
distribution of traffic. The hash system uses a core application to provide the fastest processing
possible on a per-packet basis. This method ensures packets from a given source arrive in order
to a given destination.

GateD support

GateD provides these services for ECMP:

– a configuration option to enable/disable dynamic ECMP (default is disabled)

– the ability to insert multiple equal routes into the kernel

– internal OSPF protocol support

The current release supports equal cost multipath prefixes learned via the OSPF and
OSPF_ASE protocols. Also, I/CBGP will resolve prefixes to multiple gateways if the nexthop
resolving protocol is OSPF or OSPF_ASE.

The ECMP parameter is available in a Definition Statement:

multipath

 {

on

 |

yes

 |

off

 |

no

 } ;

This parameter enables/disables the installation of multiple gateways for network or host
prefixes into the kernel route table. The default is off.

The

on

 option is the same as

yes

, and enables GateD to install multiple routes for a single
source with the same destination but different nexthops.

The

off

 option is the same as

no

, and means that each route GateD installs in the kernel will
have a unique destination and nexthop.

Dynamic ECMP configuration

Enable dynamic creation of ECMP routes in

/etc/gated.conf

 by including either of these
statements:

multipath on ;

or

multipath yes ;

Static ECMP configuration

Enter one line for each destination nexthop (gateway) in the

 /etc/grroute.conf

 file. The

-ecmp

 parameter is optional only for the source router’s first entry, it is required for the rest of
the entries:

source_addr

netmask

 next_hop_addr

 -ecmp

172.16.11.0 255.255.255.0

R100_addr

 [-ecmp]

172.16.11.0 255.255.255.0

R200_addr

 -ecmp

172.16.11.0 255.255.255.0

R400_addr

 -ecmp

The source GRF router running ECMP is 172.16.11.0.

ECMP

Introduction to GRF ECMP

GRF 1.4 Addendum 9

Checking ECMP routes

To verify that routes have been installed in the kernel as ECMP routes, use the

netstat -rn

command. The “E” in the flags field is the ECMP identifier:

netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs Use Interface
10.0.0.82 10.0.0.82 UH 0 0 lo0
10.0.0.110 10.8.1.110 UGHE 0 0 go0a0
10.0.0.110 10.8.2.110 UGHE 0 0 go0b0
 Method:CRC16
10.0.0.176 10.8.1.110 UGHE 693 692 go0a0
10.0.0.176 10.8.2.110 UGHE 0 0 go0b0
10.0.0.176 10.8.3.177 UGHE 0 0 go0d0
 Method:CRC16
10.0.0.177 10.8.1.110 UGHE 0 0 go0a0
10.0.0.177 10.8.2.110 UGHE 0 0 go0b0
10.0.0.177 10.8.3.177 UGHE 0 0 go0d0
 Method:CRC16
10.1.5/24 10.8.1.110 UGE 0 0 go0a0
10.1.5 10.8.2.110 UGE 0 0 go0b0
10.1.5 10.8.3.177 UGE 0 0 go0d0
 Method:CRC16
10.1.6/24 10.8.1.110 UGE 0 0 go0a0
10.1.6 10.8.2.110 UGE 0 0 go0b0
10.1.6 10.8.3.177 UGE 0 0 go0d0

Note that destination addresses have been assigned multiple gateways.

10 GRF 1.4 Addendum

ECMP

Introduction to GRF ECMP

GRF 1.4 Addendum 11

 Frame Relay Configuration

This section describes how to configure Frame Relay on GRF HSSI and SONET OC-3c media
cards.

Two options are available:

– UNI, routed Frame Relay

– NNI, switched Frame Relay

Configuring routed and switched Frame Relay circuits is the focus of this material. It is
assumed that you have already configured the media card in the appropriate CLI profiles and
card interfaces in

/etc/grifconfig.conf

 and. Refer to the HSSI and SONET chapters in the

GRF Configuration Guide

 for that information.

These topics are included:

Introduction to Frame Relay . 12

GRF implementation . 14

Introduction to fred . 17

Multicast service . 20

Before you start... . 22

Configuring link parameters . 24

Configuring circuit parameters . 28

Configure a link on-the-fly. 36

Configure a PVC on-the-fly . 37

Assigning multiple route PVCs to an interface . 38

Verifying a configuration . 39

grfr command set . 41

12 GRF 1.4 Addendum

Frame Relay Configuration

Introduction to Frame Relay

Introduction to Frame Relay

In a Frame Relay network, each physical connection is called a link. A link is a point-to-point
physical connection to another piece of Frame Relay equipment, such as a switch or router.

A virtual circuit is a path from an endpoint through one or more frame relay switches to
another endpoint. A circuit goes across one or more links.

Figure 6-1. Frame Relay virtual circuit and links

Link types

You can specify a Frame Relay link to be UNI-DTE, UNI-DCE, or NNI.

UNI = User to Network Interface

NNI = Network to Network Interface

DTE = Data Terminal Equipment

DCE = Data Communications Equipment

UNI-DTE link

A UNI-DTE device is the device at the edge of a Frame Relay network. It connects to a
UNI-DCE device inside the network. Only routing is performed on UNI-DTE links.

UNI-DCE link

A UNI-DCE device is the externally-connecting device at the edge of a Frame Relay network.
It connects to a UNI-DTE device outside the network. Switching and routing can both be
performed on UNI-DCE links.

NNI link

An NNI link is the link between two Frame Relay switches inside the network. Switching and
routing can both be performed on NNI links.

In the example below, endpoint A views the link to B as a UNI-DTE link. Switch B views the
link to A as a UNI-DCE link, and the link to C as NNI.

Switch B

Endpoint A
Switch C

Endpoint D

link link link

virtual circuit

UNI-DTE NNINNIUNI-DCE UNI-DCE UNI-DTE

Endpoint A Switch B Switch C Endpoint D

UNI-DTEUNI-DCENNIUNI-DCE NNIUNI-DTE

Frame Relay Configuration

Introduction to Frame Relay

GRF 1.4 Addendum 13

PVCs

A PVC (Permanent Virtual Circuit) is a logical path through a Frame Relay network from one
endpoint to another endpoint. The path goes across segments that link network devices.

There is a segment for each link between the endpoints. Each segment of a circuit is identified
with a Data Link Circuit Identifier (DLCI). The DLCI field is only 10 bits wide, for a
maximum of 1024 circuits per link. It is important to note that DLCIs have local significance
only. Otherwise, the entire network would be limited to 1024 circuits.

Each link on the path must have a unique DLCI number, as shown in Figure 6-2.

Figure 6-2. Components of a Frame Relay circuit

The circuit from endpoint A to endpoint D passes through two switches, B and C

– from A’s point of view, the circuit to endpoint D uses DLCI 100

– from D’s point of view, the circuit to endpoint A uses DLCI 300

For the switches, each circuit connects two link/DLCI pairs.

– for switch B, the circuit connects DLCI 100 on the A link to DLCI 200 on the C link

– for switch C, the circuit connects DLCI 200 on the B link to DLCI 300 on the D link

Each packet has a Frame Relay header. One of the fields in the header is the DLCI. The DLCI
determines which circuit a packet is traveling on, and allows a switch to forward the packet to
the appropriate next link.

The switches change the DLCI value in the header as the packet crosses the network.

At the ingress endpoint, a packet is encapsulated in a Frame Relay header and then placed on a
link. Conversely, when the egress endpoint receives a packet from a link, it removes the Frame
Relay header before processing. A router is a typical endpoint.

From the router’s point of view, at the end of each circuit is another host with an IP address.
From a switch’s point of view, a circuit is merely a connection between two DLCIs on two
links. In the example, switch C views the circuit as: "Link B-200 goes to Link D-300".

All the stations in a Frame Relay network (endpoints and switches) communicate with each
other using Local In-Channel Signaling (LICS). A DLCI on each link is reserved for this
purpose. LICS messages convey the status of circuits throughout the Frame Relay network.
LICS is also referred to as LMI. On the GRF, the LICS messages are processed on the RMS.

Endpoint A Endpoint D

DLCI 100 DLCI 300

PVC

link link
Switch CSwitch B

DLCI 200

link

14 GRF 1.4 Addendum

Frame Relay Configuration

GRF implementation features

GRF implementation features

A GRF router can be simultaneously configured as a Frame Relay router and as a Frame Relay
switch. In addition to routing IP and IS-IS traffic over Frame Relay, the GRF provides
switching and multicast service features.

The GRF implementation does not support forward explicit congestion notification (FECN) or
backward explicit congestion notification (BECN), and does not provide an automated
re-routing capability. Frame Relay MIB (RFC 1315) is not supported. Standard LMI
(revision 1) is not supported.

Routing

Standard IP routing is supported across Frame Relay links via route circuits (PVCs).

IS-IS is also supported across Frame Relay PVCs.

Switching

The Frame Relay switching feature enables a GRF to function as a switch. When a GRF router
functions as a Frame Relay switch, it performs layer-2 switching and forwards incoming data
from incoming circuits to the appropriate out-going circuits without touching the payload of
the data packets.

Frame Relay switching is supported on the HSSI and SONET media cards. An entire frame
relay network can be built by connecting GRFs using high-speed links.

Multicast service

Multicast service enables a GRF to function as a Frame Relay multicast server. As a multicast
server, the GRF receives multicast data messages from one incoming circuit and forwards the
data messages to a group of outgoing circuits.

(Note that Frame Relay multicast is not the same as IP multicast.)

Link options

A link is a HSSI or SONET interface. Each link can be configured as:

– UNI-DTE (a router link)

– UNI-DCE (an access switch)

– NNI (a switch, internal to a Frame Relay network or between Frame Relay networks)

HSSI and SONET media cards support the configuration of both switch and route circuits on
the same Frame Relay link. Switch and route circuits can both be configured on either a
UNI-DCE or NNI link. Only route circuits can be configured on a UNI-DTE link.

Frame Relay Configuration

GRF implementation features

GRF 1.4 Addendum 15

Circuits

HSSI cards provide two physical interfaces, the SONET card provides a single physical
interface. Each interface supports 975 Data Link Circuit Identifiers (DLCIs), numbered 16
through 991, which excludes those used for Local In-Channel Signaling (LICS).

Circuits are configured to switch, to route, or to multicast.

– A circuit is configured to switch where two segments of a Frame Relay circuit come
together.

– A circuit is configured to route at the endpoint of a Frame Relay circuit.

– A multi cast circuit allows an inbound packet to be replicated to multiple destinations.

A circuit can be enabled or disabled, added or deleted, on-the-fly, via

grfr -c cxx

 commands.
Statistics are individually kept for each circuit and are also displayed using the

grfr -c dxx

commands. The

grfr

 command is described later in his chapter.

Traffic shaping

Traffic shaping is assigned on a per-circuit basis. Three traffic shaping parameters can be
configured:

– Committed Information Rate (CIR)

– Burst Excess (Be)

– Committed Burst (Bc)

Each circuit is guaranteed a certain bandwidth, the Committed Information Rate, or CIR.

Each circuit is allowed to consume bandwidth beyond the CIR to a second threshold, CIR+Be
(Burst Excess), above which all packets are dropped.

Between the CIR and CIR+Be, packets are no longer guaranteed, and may be dropped by a
congested network. These packets are considered Discard Eligible, and are marked as such
with the DE bit set in the Frame Relay header.

The GRF supports asymmetric PVCs such that users can configure a different set of traffic
shaping parameters on each direction of a circuit.

LICS protocols

The GRF implementation supports the following Local In-Channel Signaling (LICS)
protocols:

– ANSI T1.617 Annex D

– CCITT Q.939 Annex A

– LICS disabled

Here are the supported Annex D and Annex A link parameters:

– N391

– N392

– N393

16 GRF 1.4 Addendum

Frame Relay Configuration

GRF implementation features

– T391

– T392

Interoperability

The GRF interoperates with any networking equipment that supports HSSI and SONET media
interfaces. The connecting device can run Annex A, Annex D, or no LICS protocols.

Note: There is no standard mechanism defined for carrying Frame Relay over SONET.

Specifications

The Frame Relay Forum is the primary source of Frame Relay specifications.

These specifications are available at:
http://www.frforum.com/5000/5000index.html.

IS-IS protocol support

HSSI and SONET cards support IS-IS over Frame Relay.

IS-IS is a link state interior gateway protocol (IGP) originally developed for routing
ISO/CLNP (International Organization for Standardization / Connectionless Network
Protocol) packets. In ISO terminology, a router is referred to as an “intermediate system” (IS).
IS-IS intra-domain routing is organized hierarchically so that a large domain may be
administratively divided into smaller areas using level 1 intermediate systems within areas and
level 2 intermediate systems between areas.

Refer to the Introduction to IS-IS chapter for more information.

Frame Relay Configuration
Introduction to fred

GRF 1.4 Addendum 17

Introduction to fred
The GRF Frame Relay daemon is known as fred. This program is responsible for configuring,
administering, and monitoring Frame Relay interfaces and circuits on the media cards. fred is
the source or destination of all Local In-Channel Signaling (LICS) packets.

The Frame Relay link and circuit configuration file is /etc/grfr.conf. . fred reads this file
and other internal data structures to build PVC and link tables.

grfr is the program that changes Frame Relay configuration and also displays current Frame
Relay status. Commands in the format grfr -c cxx add, enable, disable, or delete PVCs and
links, or modify link configurations. Commands in the format grfr -c dxx display link and
PVC status and statistics.

To attach route circuits to logical interfaces, fred reads the GRF IP address file,
/etc/grifconfig.conf. Frame Relay error and event messages are collected by fred and sent
to var/log/fred.log.

PVC and link tables

fred, via grfr, gets configuration data from the /etc/grfr.conf file to build the link table and
a corresponding PVC table. Then fred downloads a copy of the PVC table to each Frame
Relay media card. fred updates the tables from incoming LICS messages and from media card
status (link up/down) messages, and updates the copies on the media cards.

The link table contains 32 entries, two ports for each of 16 possible slots. Each link entry
includes data from the Link section of the grfr.conf file, and has a pointer to a corresponding
PVC table.

PVC table

LICS

grfr

fred

Internal
data
structuresDLCI 0

DLCI 1

DLCI 1022
DLCI 1023

•
•
•

EP
EP

EP
IP

media

/etc/grfr.conf

Network admin

cards

Remote systems

Configuration data

18 GRF 1.4 Addendum

Frame Relay Configuration
Introduction to fred

Route circuits

Route circuits are defined using the pvc or pvcr keyword in grfr.conf. A route circuit may
be configured on any link.

Switch circuits

A switch circuit is composed of two segments, each on a different link. Switch circuits are
defined using the pvcs keyword in grfr.conf. A switch circuit may be configured on a
UNI-DCE or NNI link.

Multicast circuits

A multicast circuit may be configured on a UNI-DCE or NNI link.

For One-Way multicast, a unicast circuit must already exist between the root and each of the
multicast members. These multicast circuits are defined using the pvcm1 keyword in
grfr.conf.

For Two-Way multicast, a unicast circuit is added for each member of the multicast group.
These multicast circuits are defined using the pvcm2 keyword in grfr.conf.

N-Way multicast circuits are defined using the pvcmn keyword in grfr.conf.

LICS processing

Local In-Channel Signaling (LICS) processing is implemented in accordance with
specifications from the Frame Relay Forum, and the Sprint Frame Relay Switch Specification
(5404.03). CCITT Q.933 Annex A and ANSI T1.617 Annex D are implemented. LICS can
also be disabled.

On each link, one circuit is reserved for LICS traffic. LICS procedures are performed on all
link types, UNI-DTE, UNI-DCE, or NNI.

From a link configured as a UNI-DTE, fred sends a poll (status enquiry) to the UNI-DCE to
which it is attached every T391 seconds. Every N391 polls, the status enquiry message is for a
full status report. The event monitoring period is N393 polls (a sliding window). If there is no
response to N392 polls during a monitoring period, the link is considered down. A full status
message contains information about all the circuits on the link.

From a link configured as a UNI-DCE, fred responds to polls from the UNI-DTE to which it is
attached. If a poll is not received within T392 seconds of the last poll, or the sequence number
is incorrect, an error is logged. The event monitoring period is N393 polls received or missed (a
sliding window). If N392 errors are logged during an event monitoring period, the link is
considered down.

From a link configured as an NNI link, fred both polls and answers polls from the switch to
which it is attached.

fred keeps timers for each link to trigger a poll and to note missed polls.

Frame Relay Configuration
Introduction to fred

GRF 1.4 Addendum 19

Traffic shaping

Traffic shaping is performed by monitoring the amount of traffic being transmitted on each
circuit.

Traffic shaping is assigned on a per-circuit basis. The GRF supports asymmetric PVCs such
that users can configure a different set of traffic shaping parameters on each direction of a
circuit. Three traffic shaping parameters can be configured:

– Committed Information Rate (CIR)

– Burst Excess (Be)

– Committed Burst (Bc)

grfr command functions

The grfr command provides a way to display configuration information, status and statistics of
switch circuits, multicast group and modify configurations.

Functions include

• Configuration information to aid debugging includes link parameters, circuit endpoint
parameters, a switch circuit, or a multicast group.

• Status information to aid debugging and provide data for analysis and reports includes
statistics for a link, a switch circuit, and a multicast group.

• Temporary and minor configuration changes, such as enabling or disabling a circuit or
endpoint, adding or deleting a switch circuit can be made using grfr. Permanent and major
changes must be made via the grfr.conf file.

Examples of grfr display and configuration commands are found at the end of this chapter and
in the GRF Reference Guide.

Debug and log levels

Four debug levels (1 to 4) manage event logging. Level 1 logs the lowest number of debug
messages and level 4 provides the highest, level 1 is set by default. Log messages are written
by default to the /var/log/fred.log file. You can set and change debug level on-the-fly using
the grfr command grfr -c csd -d level.

Level 1 - logs error and main transition events such as link active and inactive. Use this level
for normal operations. You can change it on-the-fly.

Level 2 - logs all events related to the LMI protocols. These include sending, receiving, status
enquiries, and status responses.

Level 3 - logs same events as in level 2, but provides more details and includes the contents
(in hex) of all messages sent and received.

Level 4 - log messages include all activities to and from the media card.

20 GRF 1.4 Addendum

Frame Relay Configuration
Multicast service

Multicast service
Frame relay multicast service enables a GRF router to function as a multicast server. A
multicast server is a system (a GRF) or switch that receives multicast data messages from one
incoming circuit and forwards the data messages to a group of out-going circuits. Multicast
services are supported on switch circuits only.

Frame Relay provides the three types of multicast service defined by the Frame Relay Forum
in Frame Relay PVC Multicast Service and Protocol Description:

– One-Way

– Two-Way

– N-Way

In Frame Relay multicast, one switch (a node) within the network is designated as a “Multicast
Server” and provides the multicast service. Messages to be multicast are first sent to the
multicast server and then, at the multicast server, the messages are replicated and sent to
members of the multicast group.

Frame Relay uses the term “upstream circuit” to refer to a circuit where a multicast server
receives multicast messages. The term “downstream circuit” refers to a circuit where a
multicast server sends multicast messages. These terms are also applicable to a switch circuit.

In both One-Way and Two-Way Multicast, one station acts as the root station.

One-way multicast

In One-way multicast, the root station sends traffic on a special circuit that delivers the data to
all the other members of the multicast group.

This method requires that a unicast circuit also exist between the root station and each member
of the group. Each member of the group receives its multicast packets on the unicast circuit, as
if it had been sent by the root on that circuit. If the members of the group wish to communicate
something back to the root, they send that traffic back on the unicast circuit. The root receives
this traffic on the non-multicast circuits, not the unicast circuit.

Figure 6-3. Diagram of one-way multicast circuits

Switch

DLCI

Unicast circuit

Frame relay network

Leaf node

Leaf node

Leaf node

Switch

Root station

DLCI

Leaf node

Leaf node

Multicast from root to all leaf nodes: Response from leaf node:

Leaf node

Multicast circuit
Root station

Frame Relay Configuration
Multicast service

GRF 1.4 Addendum 21

Two-way multicast

In Two-way multicast, unicast circuits are not required between the root station and the
members of the multicast group, but such circuits are permitted.

All members and the root use a special multicast circuit. Data transmitted by the root goes to
all the members. Data transmitted by the members is sent only to the root using the multicast
circuits.

Figure 6-4. Diagram of two-way multicast circuits

N-way multicast

In N-Way multicast, all members of the group are peers. All members have special multicast
circuits. Any data sent on these multicast circuits gets sent to all the other members of the
group.

Figure 6-5. Diagram of N-way multicast circuits

Switch

Root station

Multicast circuits

Frame relay network

Leaf node

Leaf node

Leaf node

Switch

Root station

Leaf node

Leaf node

Multicast from root to all leaf nodes:
Response from leaf node:

Leaf node

Switch

N-way Multicast circuits

Frame relay network

Group

N-way multicast among all nodes:

member
Group

member
Group

member

22 GRF 1.4 Addendum

Frame Relay Configuration
Before you start...

Before you start...

Before you configure the Frame Relay protocol, be sure you configure the media cards
themselves.

Card profile parameters

You must set SONET and/or HSSI parameters in the Card profile.

These parameters include framing protocol, CRC, and internal clock. Refer to the HSSI and
SONET chapters in the GRF Configuration Guide for more information.

IP address assignment

Identify the endpoint router logical interfaces in /etc/grifconfig.conf.

Interface 0 configuration requirement

The following configuration step is required for Frame Relay to operate properly.

When running Frame Relay mode, the first logical interface on each HSSI and SONET
physical interface must be configured. This enables the Frame Relay daemon (fred) to properly
communicate LICS traffic via the card.

For example, if a HSSI card in slot 2 is configured for Frame Relay, then the following
interfaces need to be configured:

gs020 - slot 2, physical interface 0, logical interface 0

gs0280 - slot 2, physical interface 1, logical interface 0

Only one entry is required for a SONET card. Use dashes in place of IP address, netmask and
destination address. Specify up in the argument field. Here is an example:

name address netmask broad_dest argument
gs020 - - - up
gs0280 - - - up

Configure Frame Relay logging

You must start Frame Relay logging the first time you configure Frame Relay.

During site installation, system logging must be configured, it does not begin automatically.
The GRF 400/1600 Getting Started and GRF Configuration Guide both describe how to
configure logging to an external device.

These are the steps specifically required to configure Frame Relay logging.

1 Create the fred.log directory:
super> sh
cd /var/log
touch fred.log

Frame Relay Configuration
Before you start...

GRF 1.4 Addendum 23

2 Edit the /etc/syslog.conf file to have syslogd log to fred.log:
cd /

cd /etc

vi syslog.conf

The entries should look like the following:
.err;.notice;kern.debug;lpr,auth.info;mail.crit /var/log/messages

cron.info /var/log/cron

local0.info /var/log/gritd.packets

local1.info /var/log/gr.console

local2.* /var/log/gr.boot

local3.* /var/log/grinchd.log

local4.* /var/log/gr.conferrs

local5.* /var/log/mib2d.log

Add the following line at the end of the file:
local6.* /var/log/fred.log

Save the file and exit.

3 Modify /etc/grclean.conf to specify a size limit for fred.log:

vi syslog.conf

The file entries should look like the following:
size=10000

logfile=/var/log/cron

size=10000

logfile=/var/log/aitmd.log

size=10000

logfile=var/log

Add a fred.log entry after the var/log entry. An example is shown below.
The file size (in K) you specify will depend upon the available memory resources.

size=1000

logfile=/var/log/fred.log

4 Save all changes and reboot:
grwrite -v

reboot -i

If you are upgrading software rather than doing an initial installation, you will have to signal
(HUP) syslogd to re-read the syslog.conf file so the Frame Relay changes are incorporated.

The next several sections provide configuration examples for sections in the grfr.conf file.

24 GRF 1.4 Addendum

Frame Relay Configuration
Configuring link parameters

Configuring link parameters
Configure link parameters in the /etc/grfr.conf configuration file. Please see the GRF
Reference Guide for a template of this and all other GRF configuration files.

Link parameters are set in the Link Section. On each link you can configure the following:

• Link descriptors - required

Specify link slot and port numbers in decimal.

• Link type - required for UNI-DCE and NNI links, default is UNI-DTE

Specify type.

• LMI type - required for AnnexA and AnnexD, default is none

Specify type.

• Link name - optional

Each link can be named for convenience.

• Enabled Y|N - optional

Enable link, default is Y.

• T391 - optional

Heartbeat poll interval. Default is 10.

• N391 - optional

Status poll intervals. Default is 6.

• T392 - optional

Poll verification timer. Default is 15.

• N392 - optional

Error reporting threshold. Default is 3.

• N393 - optional

Measurement interval for Mn2. Default is 4.

• AutoAddGrif - optional

Enables remote devices to assign a PVC to a GRF interface. Default is no.

Frame Relay Configuration
Configuring link parameters

GRF 1.4 Addendum 25

Link configuration example

In this example, six links need to be configured:

The GRF A, B, C, and D examples below show the Link section entries in /etc/grfr.conf
and the interface/logical interface 0 requirements in /etc/grifconfig.conf. Note that
SONET cards have only one entry in /etc/grifconfig.conf.

GRF A

• /etc/grfr.conf Link entries:

#Slot Port Optional Parameters
#==== ==== ===================
link 3 0 name="to_grf_b-d" LMIType=AnnexD

• /etc/grifconfig.conf Interface entries:

name address netmask broad_dest argument
gs030 - - - up
gs0380 - - - up
gs033 192.168.0.1 255.255.255.0

GRF B

• /etc/grfr.conf Link entries:

#Slot Port Optional Parameters
#==== ==== ===================
link 4 0 name="to_grf_a" Linktype=UNI-DCE LMIType=AnnexD
link 5 0 name="to_grf_c" Linktype=NNI LMIType=AnnexD

• /etc/grifconfig.conf Interface entries:

name address netmask broad_dest argument
gs040 - - - up
gs0480 - - - up
go050 - - - up
gs044 192.168.10.1 255.255.255.0
go055 192.168.10.2 255.255.255.0

GRF C

• /etc/grfr.conf Link entries:

#Slot Port Optional Parameters
#==== ==== ===================
link 6 0 name="to_grf_b" Linktype=NNI LMIType=AnnexD
link 7 0 name="to_grf_d" Linktype=UNI-DCE LMIType=AnnexD

GRF A
GRF B GRF C

GRF D

“to_grf_b-d” “to_grf_c-a”

gs033 gs022go066 gs077go055gs044

“to_grf_a” “to_grf_b”“to_grf_c” “to_grf_d”

UNI-DTE UNI-DCE NNI NNI UNI-DCE UNI-DTE

26 GRF 1.4 Addendum

Frame Relay Configuration
Configuring link parameters

• /etc/grifconfig.conf Interface entries:

name address netmask broad_dest argument
go060 - - - up
gs070 - - - up
gs0780 - - - up
go066 192.168.20.1 255.255.255.0
gs077 192.168.20.2 255.255.255.0

GRF D

• /etc/grfr.conf Link entries:

#Slot Port Optional Parameters
#==== ==== ===================
link 2 0 name="to_grf_c-a" LMIType=AnnexD

• /etc/grifconfig.conf Interface entries:

name address netmask broad_dest argument
gs020 - - - up
gs0280 - - - up
gs022 192.168.30.1 255.255.255.0

Link type

Specify a link to be UNI-DTE, UNI-DCE, or NNI.

T391 - link integrity verification timer

T391 represents the Link Integrity Verification timer. This link option specifies how long (T391
seconds) a device waits before sending a poll (a status inquiry message).

– A UNI-DTE sends polls to the connected UNI-DCE.

– Two NNIs send polls to each other.

– A UNI-DCE does not send polls to a UNI-DTE.

N391 - full status polling cycle

N391 represents the Full Status Polling cycle. This link option specifies that every N391 polls,
a full status report is requested.

T392 - polling verification timer

T392 represents the Polling Verification timer. This link option specifies the number of seconds
to wait for an expected poll. If a poll is not received within T392 seconds of the previous poll, a
missed poll error is logged.

N392 - error threshold

N392 represents the Error Threshold number. This link option specifies the number of missed
poll errors in a single monitoring period before the link is taken down.

Frame Relay Configuration
Configuring link parameters

GRF 1.4 Addendum 27

N393 - monitored events count

N393 represents the Monitored Events count. This link option determines the length of a
monitoring period. Each period is actually a sliding window that is N393 events long, where an
event is a received poll, or a missed poll.

Link name

Each link can be named for administrative convenience, a name is optional.

LMI type

Specify a link to be AnnexA or AnnexD, default is none.

28 GRF 1.4 Addendum

Frame Relay Configuration
Configuring circuit parameters

Configuring circuit parameters

You automatically specify circuit type by the section of /etc/grfr.conf file in which you
configure the circuit:

– Route - PVC section

– Switch - PVCS section

– 1-way multicast - PVCM1 section

– 2-way multicast - PVCM2 section

– N-way multicast - PVCMN section

– Endpoint parameters - PVCEP section

You can also configure ATMP PVCs in the PVCATMP section of /etc/grfr.conf.

Route circuits - PVC/PVCR section

The keywords PVC and PVCR are interchangeable and are processed for configuration
purposes in exactly the same way.

Configure these route circuit parameters in the PVC Section of grfr.conf:

• Logical Interface (lif) - required

Circuits are grouped onto logical interfaces. You can have all circuits on a given link on the
same logical interface, or each circuit on its own logical interface, or any grouping in
between.

• Endpoint - required

Specify the DLCI of this circuit, which ends here at the router.

• Peer IP Address - required

Specify the IP address of the host or router at the other end of this circuit. If this parameter
is set to 0.0.0.0, Inverse ARP is used to determine the IP address.

• Name - optional

Each route circuit can be named for convenience.

• Enabled Y|N - optional

Enable circuit, default is Y.

• IS-IS Y|N - optional

Enable IS-IS, default is N.

• Traffic shaping parameters - optional

– CIR - Committed Information Rate

Specify the bits per second that the network should be able to deliver on this circuit
without dropping packets.

The sum of the CIR values on all circuits on a link should not exceed the bandwidth of the
link. Default is 55Mb (55000000).

– Bc - Committed Burst Size

Specify the amount of data (in bits) that the network should be able to deliver on this
circuit without dropping packets during a fixed period of time: Tc. Tc = Bc/CIR.

Frame Relay Configuration
Configuring circuit parameters

GRF 1.4 Addendum 29

Typically, Bc is set to be the same as CIR, for a Tc of 1 second. Default is 55Mb
(55000000).

– Be - Excess Burst Size

Specify the amount of data (in bits) above Bc that the network will attempt to deliver on
this circuit during the time period Tc.

This data is eligible for discard if the network becomes congested. Default is 0.

Example

In this example, two route circuits need to be configured. One from GRF A to GRF B, and
another from GRF D to GRF C:

Figure 6-6. Route circuit configuration example

The GRF A and GRF D examples below show the Link section entries in /etc/grfr.conf and
the interface/logical interface 0 requirements in /etc/grifconfig.conf files.

GRF A

• /etc/grfr.conf Link entries:

#lif DLCI Peer IP Address Optional Parameters
#=== ==== =============== ===================
pvcr gs033 100 192.168.8.8 Name="to_chicago" isis=Y

• /etc/grifconfig.conf Interface entries:

name address netmask broad_dest argument
gs030 - - - up
gs0380 - - - up
gs033 192.168.2.2 255.255.255.0

GRF D

• /etc/grfr.conf Link entries:

#lif DLCI Peer IP Address Optional Parameters
#=== ==== =============== ===================
pvcr gs022 300 192.168.2.2 Name="to_minnesota" isis=Y

• /etc/grifconfig.conf Interface entries:

name address netmask broad_dest argument
gs020 - - - up
gs0280 - - - up
gs022 192.168.8.8 255.255.255.0

“to_chicago” “to_minnesota”

DLCI 100 DLCI 300

GRF A
GRF B GRF C

GRF D

gs033 gs022go055gs044

UNI-DTE UNI-DCE NNI UNI-DTE

go066 gs077

NNI UNI-DCE

Cloud

30 GRF 1.4 Addendum

Frame Relay Configuration
Configuring circuit parameters

Switch circuits - PVCS section

Configure these switch circuit parameters in the PVCS Section of grfr.conf:

• Segments (endpoints) - required

Specify the chassis slot, card port, and DLCI of each of the two segments of the circuit
that meet here at the switch.

• Name - optional

Each switch circuit can be named for convenience.

• Enabled Y|N - optional

Enable circuit, default is Y.

• Traffic shaping parameters - optional

Same as for route circuit (PVC) above.

Example

In this example, two switch circuits need to be configured. A switch circuit is composed of two
segments, each on a different link.

One circuit is the segment pair, GRF B–GRF A and GRF B–GRF C.
The other is the segment pair GRF C–GRF B and GRF C–GRF D:

Figure 6-7. Switch circuit configuration example

Here are the PVCS section entries in /etc/grfr.conf for each GRF:

GRF B
EPA EPB Optional Parameters

=== ==== ===================

pvcs 4:0:100 5:0:200 Name="minn_chi" CIR=1500000 Bc=1500000 Be=75000

GRF C
EPA EPB Optional Parameters

=== ==== ===================

pvcs 6:0:200 7:0:300 Name="chi_minn" CIR=1500000 Bc=1500000 Be=75000

“minn_chi” “chi_minn”
“to_chicago” “to_minnesota”

DLCI 100 DLCI 300

GRF A
GRF B GRF C

GRF D

gs033 gs022go055gs044

UNI-DTE UNI-DCE NNI UNI-DTE

go066 gs077

NNI UNI-DCE
DLCI 200

Frame Relay Configuration
Configuring circuit parameters

GRF 1.4 Addendum 31

One-way multicast - PVCM1 section

In one-way multicast, the root node can send to all leaf nodes. A leaf node can respond to only
the root, and only on its unicast circuit.

Configure these one-way multicast parameters in the PVCM1 Section of grfr.conf:

• First entry (EPR) must be root circuit endpoint - required

Specify the chassis slot, card port, and DLCI of root endpoint.

• Next n entries are the endpoints of each member of the group - required

Specify the chassis slot, card port, and DLCI of n leaf endpoints.

• Name - optional

Each multicast group can be named for convenience.

• Enabled Y|N - optional

Enable multicast group, default is Y.

• Traffic shaping parameters - optional

Same as for route circuit (PVC) above.

Example

In this example, a node is the root station for a one-way multicast group consisting of the two
leaf nodes. GRF 2 is a Frame Relay switch, and forms a one-node network.

Figure 6-8. One-way multicast example

There are three configuration steps:

1 Configure the unicast circuits in the PVCS section of /etc/grfr.conf.

 EPA EPB Optional Parameters
 ==== === ===================
pvcs 6:0:102 3:0:200
pvcs 6:0:103 3:1:300

root station

GRF 2

leaf node

300
DLCI

200
DLCI

leaf node

go065

gs032 gs0383

100
DLCI

Multicast circuit
Unicast circuit

“grf2_1way” switch

UNI-DCE
UNI-DTE

UNI-DCE

UNI-DCE

UNI-DTE

U
N

I-
D

T
E

103

102
DLCI

DLCI

32 GRF 1.4 Addendum

Frame Relay Configuration
Configuring circuit parameters

2 Configure the PVCM1 entry in /etc/grfr.conf to create the multicast group.

 EPR EP1 EP2 Optional Parameters
 === ==== === ===================
pvcm1 6:0:100 3:0:200 3:1:300 Name="grf2_1way" CIR=64000 Bc=64000 Be=0

3 Configure the interface and logical interface 0 entries in /etc/grifconfig.conf.

name address netmask broad_dest argument
go060 - - - up
gs030 - - - up
gs0380 - - - up

Frame Relay Configuration
Configuring circuit parameters

GRF 1.4 Addendum 33

Two-way multicast - PVCM2 section

Configure these two-way multicast parameters in the PVCM2 Section of grfr.conf:

• First entry (EPR) must be root circuit endpoint - required

Specify the chassis slot, card port, and DLCI of root endpoint.

• Next n entries are the endpoints of each member of the group - required

Specify the chassis slot, card port, and DLCI of n leaf endpoints.

• Name - optional

Each multicast group can be named for convenience.

• Enabled Y|N - optional

Enable multicast group, default is Y.

• Traffic shaping parameters - optional

Same as for route circuit (PVC) above.

Example

In this example, a node is the root station for a two-way multicast group consisting of two leaf
nodes. GRF 2 is a Frame Relay switch, and functions as a one-node network.

Figure 6-9. Two-way multicast example

1 Configure the PVCM2 entry in /etc/grfr.conf to create the group:
 EPR EP1 EP2 Optional Parameters

 === ==== === ===================

pvcm2 6:0:100 3:0:200 3:1:300 Name="grf2_1way" CIR=64000 Bc=64000 Be=0

2 Configure the logical interface 0 entries in /etc/grifconfig.conf:
name address netmask broad_dest argument

go060 - - - up

go0680 - - - up

gs030 - - - up

gs0380 - - - up

root station

GRF 2

leaf node

300
DLCI

200
DLCI

leaf node

go065

gs032 gs0383

100

UNI-DCE
UNI-DTE

UNI-DCE

UNI-DCE

UNI-DTE

U
N

I-
D

T
E

DLCI

(switch)

34 GRF 1.4 Addendum

Frame Relay Configuration
Configuring circuit parameters

N-way multicast - PVCMN section

In N-way multicast thare are no leaves, no root, all are equivalent multicast nodes.

Configure these N-way multicast parameters in the PVCMN Section of grfr.conf:

• Enter the endpoints of n members of the group - required

Specify the chassis slot, card port, and DLCI of n member endpoints.

• Name - optional

Each multicast group can be named for convenience.

• Enabled Y|N - optional

Enable multicast group, default is Y.

• Traffic shaping parameters - optional

Same as for route circuit (PVC) above.

Example
In this example, three nodes are in an N-way multicast group. GRF 2 is a Frame Relay switch.

Figure 6-10. N-way multicast example

1 Configure the PVCMN entry in /etc/grfr.conf to create the group:

 EPR EP1 EP2 Optional Parameters

 === ==== === ===================

pvcmn 6:0:100 3:0:200 3:1:300 Name="grf2_nway" CIR=64000 Bc=64000 Be=0

2 Configure the logical interface 0 entries in /etc/grifconfig.conf:

name address netmask broad_dest argument

go060 - - - up

go0680 - - - up

gs030 - - - up

gs0380 - - - up

GRF 2

node

300
DLCI

200
DLCI

node

go065

gs032 gs0383

100

UNI-DCE
UNI-DTE

UNI-DCE

UNI-DCE

UNI-DTE

U
N

I-
D

T
E

DLCI

(switch)

node

Frame Relay Configuration
Configuring circuit parameters

GRF 1.4 Addendum 35

Asymmetrical traffic shapes

Configure different traffic shaping parameters for each individual endpoint on a link (an
asymmetric circuit) in the PVCEP Section of grfr.conf:

• Define target endpoint - required

Specify the chassis slot, card port, and DLCI of endpoint.

• Traffic shaping parameters - required

Same as for route circuit (PVC) above.

Example

This example gives the circuit going to GRF 4 about 2Mb of bandwidth, the traffic coming
back to GRF 3 gets 64 Kb.

Figure 6-11. Asymmetrical traffic shape example

1 Configure the switch circuit that connects GRF 3 and GRF 4 in the PVCS section of
/etc/grifconfig.conf:

EPA EPB Optional Parameters
=== ==== ===================
pvcs 4:0:100 5:0:200 Name="grf3-grf4" CIR=64000 Bc=64000 Be=2400

2 Configure the endpoint circuit that sends to GRF 3 in the PVCEP section of
/etc/grifconfig.conf:

EP CIR Bc Be
=== ==== === ===
pvcep 4:0:100 CIR=2000000 Bc=2000000 Be=9600

GRF 1

gs045 gs055

(switch)

200
DLCI

100
DLCI

gs032 gs0383

GRF 3
node

GRF 4
node

UNI-DTEUNI-DTE UNI-DTE UNI-DTE

36 GRF 1.4 Addendum

Frame Relay Configuration
Configure a link on-the-fly

Configure a link on-the-fly

You can add or delete Frame Relay links, or modify a link parameter, without resetting the
media card. This example adds a UNI-DTE link on interface gs073, DLCI 122.

Here are the steps:

1 In the appropriate Card profile, specify framing protocol, CRC, and clock as required.

2 Configure the logical interface in /etc/grifconfig.conf.

Remember that you must also create an entry for logical interface 0 in this file.

Start the UNIX shell and edit /etc/grifconfig.conf:

super> sh
vi /etc/grifconfig.conf
name address netmask broad_dest argument
#
gs070 - - - up
gs073 192.168.3.3 0.0.0.0

Save the file and exit vi.

3 Edit the /etc/grfr.conf file to add the link in the Link section.

vi /etc/grfr.conf

#Slot Port Optional Parameters
#==== ==== ===================
link 7 1 name="new_link" LMIType=AnnexD

Add the logical interface 0 as an active PVC:
lif DLCI Peer IP Address Optional Parameters
=== ==== =============== ===================
pvc gs073 122 0.0.0.0 Name="new_link"

Save the file and exit vi.

4 Use the grfr -c ccl command to enable link on slot 7, port 1.

grfr -c ccl -s 7 -l 1

Use another grfr command to check the status of the new link:
grfr -c dlc

C O N F I G U R E D L I N K S :

=================================

Name: S/P: LMI: Link: Autogrif: N391: N392: N393: T391: T392: S:

---- --- --- ---- -------- ---- ---- ---- ---- ---- --

new_lnk 7/1 ANNEX-D UNI-DTE None 6 3 4 10 15 Ae

Total: 1 links configured

Frame Relay Configuration
Configure a PVC on-the-fly

GRF 1.4 Addendum 37

Configure a PVC on-the-fly
You can add or delete PVCs without resetting the media card by editing the /etc/grfr.conf
file and then using grfr -c ccp to add a PVC or grfr -c crp to disable a PVC.

To add a PVC to the HSSI card in slot 13, start the UNIX shell and edit /etc/grfr.conf.

To add any additional interfaces, you must edit /etc/grifconfig.conf.

super> sh
vi /etc/grfr.conf

Then make the PVC entry as usual:
lif DLCI Peer IP Address Optional Parameters
=== ==== =============== ===================
pvc gs0d0 606 0.0.0.0 Name="test606"

Save the file and exit vi.

Use the grfr -c ccp command to add a PVC. The configuration file and the PVC DLCI, slot,
and link must be specified:

grfr -c ccp -f /etc/grfr.conf -i 606 -s 13 -l 0

Here is the response:

grfr Adding type 1, lif=gs0d0, dlci=606, peer_ip=0.0.0.0
 Slot =13, link =0, name=test606
PVC slot 13, link 0, dlci 606 defined

To delete (disable) a PVC, you do not need to edit the /etc/grfr.conf file, the grfr -c crp
command is sufficient. Specify the target DLCI, slot, and port number to be disabled:

grfr -c crp -i 600 -s 13 -l 0

Here is the response:

PVC slot 13, link 0, dlci 600 deleted

38 GRF 1.4 Addendum

Frame Relay Configuration
Assigning multiple route PVCs to an interface

Assigning multiple route PVCs to an interface
DLCIs map point-to-point. One DLCI maps a unique circuit between two endpoints, and so
only one destination can be assigned on a given DLCI.

The 0.0.0.0 notation is treated specially in that it says instead of hard-coding the ARP entry for
the other end of the circuit, obtain it by sending an inverse ARP to the other end and see what
comes back.

If the peer IP addresses are in the same subnet, you can assign multiple DLCIs to the interface:

lif DLCI Peer IP address
PVC gs047e 405 222.222.10.5
PVC gs047e 406 222.222.10.6
PVC gs047e 407 222.222.10.7
PVC gs047e 408 222.222.10.8

If the peer IP addresses are in different subnets, you need multiple interfaces:

lif DLCI Peer IP address
PVC gs040 405 222.222.10.5
PVC gs041 406 222.222.11.5
PVC gs042 407 222.222.12.5
PVC gs043 408 222.222.13.5

Frame Relay Configuration
Verifying a configuration

GRF 1.4 Addendum 39

Verifying a configuration

The grfr display commands return system and interface levels of information that can help you
review a Frame Relay configuration.

The grfr -c dsc command displays the system-wide Frame Relay configuration.

S Y S T E M P A R A M E T E R S :

===================================

Name:.......................... X

Start Time Wed Jan 28 11:13:52 CST 1998

Up-time 4 days, 20 hours, 10 mins, 57 secs

Configuration File /etc/grfr.conf

grif Configuration File /etc/grifconfig.conf

Debug Level.................... 1

Statistics Interval............ 10

Portcard Heartbeat Interval.... 10

Media Types Supported.......... HSSI, SONET-OC3

Boards configured 2

Links configured 4

PVCs configured 9

 Routed PVCs configured 5

 Switched PVCs configured .. 4

 Mcasted PVCs configured .. 0

 ATMP PVCs configured 0

Active Links XX

Active PVCs XX

Active link and PVC data are not available using this command option.

The grfr -c -dpc command displays a list of configured PVCs and their configuration
parameters.

#grfr -c dpc

C O N F I G U R E D P V C s :

=================================

(A* = Autoadded, D* = Deleted)

Name Slot Port DLCI Type CIR Bc Be State EPs/ISIS

---- --- ---- ---- ---- ---- --- --- ----- --------

13:0:0 13 0 0 Switch 56K 56K 56K Active 13:0:0

M1-Group 13 0 311 Mcast-R 56K 56K 56K Active 13:0:312

 13:0:313

 13:0:314

M1-Group 13 0 312 Mcast-L 56K 56K 56K Active 13:0:311

M1-Group 13 0 313 Mcast-L 56K 56K 56K Active 13:0:311

40 GRF 1.4 Addendum

Frame Relay Configuration
Verifying a configuration

M1-Group 13 0 314 Mcast-L 56K 56K 56K Active 13:0:311

Circ-1 13 0 600 Route 56K 56K 56K Active ISIS

Circ-2 13 0 601 Route 56K 56K 56K Active ISIS

Circ-3 13 0 602 Route 56K 56K 56K Active NO-ISIS

Circ-4 13 0 603 Route 56K 56K 56K Active NO-ISIS

Circ-5 13 0 604 Route 56K 56K 56K Inact NO-ISIS

atmp-1 13 0 609 ATMP 56K 56K 56K Active

Total 10 PVCs configured

 5 Routed PVCs

 1 Switched PVCs

 4 Multicast PVCs

 1 ATMP PVCs

The grfr -c dps command displays PVC statistics.

C O N F I G U R E D P V C s S T A T s:

===

(S=Slot, P=Port, R=receive, T=Transmit)

(TP=Transmitted Packets, TO=Transmitted Octets)

Name S/P/DLCI Type R-Packets R-Octets T-Packets T-Octets TPed

---- -------- ---- --------- -------- --------- -------- ---

0:0:0 00:0:0 Switch 0 0 0 0 0

0:1:0 00:1:0 Switch 0 0 0 0 0

1:0:0 01:0:0 Switch 63925 1001710 63926 948134 0

south-0 01:0:100 Route 44 3872 41 3608 0

lunar 01:0:101 Route 0 0 0 0 0

1:1:0 01:1:0 Switch 0 0 0 0 0

south-1 01:1:16 Route 0 0 0 0 0

regulu 01:1:101 Route 0 0 0 0 0

south-2 01:1:102 Route 0 0 0 0 0

The grfr -c dlc command displays the link configuration.

C O N F I G U R E D L I N K S :

=================================

Name: S/P: LMI: Link: Autogrif: N391: N392: N393: T391: T392: S:

---- --- --- ---- -------- ---- ---- ---- ---- ---- --

jan0 1 /0 ANNEX-D NNI None 6 3 4 10 15 Ae

acme 1 /1 ANNEX-D UNI-DTE None 6 3 4 10 15 Ae

Jan 2 /0 ANNEX-D UNI-DCE None 6 3 4 10 15 Ie

mike 2 /1 ANNEX-A UNI-DCE None 6 3 4 10 15 Ie

Total: 4 links configured

Frame Relay Configuration
grfr command set

GRF 1.4 Addendum 41

grfr command set

Display commands

The grfr command has display options that return useful information about Frame Relay links.
Display commands are prefaced with the -c flag and begin with the letter d:

-c dsc, display system configuration and status

-c dlc, display link configuration and status

-c dpc, display PVC configuration and status

-c dic, display interface configuration and status

-c dss, display system status

-c dls, display link status

-c dps, display PVC statistics

-c dbs, display board status

Configuration and debug commands

Configuration commands are prefaced with the -c flag and begin with the letter c:

-c cel, enable link.

Example: enable a link on slot 3, port 1 # grfr -c cel -s 3 -l 1

-c cdl, disable link.

Example: disable link on slot 3, port 0 # grfr -c cdl -s 3 -l 0

-c cep, enable PVC.

Example: enable PVC slot port DLCI # grfr -c cep -i 888 -s 3 -l 0

-c cdp, disable PVC.

Example: disable PVC slot port DLCI # grfr -c cdp -i 888 -s 3 -l 0

-c ccp, configure PVC configuration file slot port DLCI:

Example: config PVC # grfr -c ccp -f /etc/grfr.conf -i dlci

-c crp, remove PVC, requires the PVC to be specified.

Example: remove PVC # grfr -c crp -i dlci

-c ddl, display debug level. Example: # grfr -c ddl

-c csd, set debug level, requires -d option to specify level 0–4.

Example: # grfr -c csd -d 3

Refer to the GRF Reference Guide for more information about the grfr command.

42 GRF 1.4 Addendum

Frame Relay Configuration
grfr command set

States of configured PVCs

Some grfr commands return state information, these are the current state options:

Active

An active PVC is correctly configured on both endpoints and the circuit is up.

Inactive

An inactive PVC is correctly configured on both endpoints, but the circuit is not up. If all
the PVCs on a port show inactive, the cable could be the problem. If only one is reported
inactive, it is likely that the endpoint PVC is down.

Deleted

This state is assigned if the configuration exists on the GRF endpoint but is not configured
from the remote endpoint.

Disabled

This is a user-initiated state (via grfr) that keeps the configuration information in place
but does not let the circuit activate. May also be used when doing an on-the-fly
configuration via grfr.

Enabled

This is a user-initiated state (via grfr) that activates a pre-configured circuit. May also be
used when doing an on-the-fly configuration via grfr.

GRF 1.4 Addendum 43

Transparent Bridging

This section describes the 1.4 GRF bridging implementation and provides configuration
information.

These topics are covered:

GRF bridging implementation . 44

Bridging components . 47

Management tools . 48

Bridging example . 49

Configuration file and profile overview . 50

1. Create bridge groups in bridged.conf . 51

2. Assign IP addresses to bridge groups . 52

3. Create an ATM PVC for an encapsulated bridge . 53

Sources of bridging data . 57

Examining and debugging bridge configurations . 61

44 GRF 1.4 Addendum

Transparent Bridging
GRF bridging implementation

GRF bridging implementation

The GRF implements IEEE 802.1D transparent bridging on GRF Ethernet and FDDI
interfaces, and on ATM OC-3c interfaces using RFC 1483 encapsulated bridging over PVCs.

Transparent bridging provides a mechanism for interconnecting stations attached to physically
separate Local Area Networks (LANs) as if they are attached to a single LAN. This
interconnection happens at the 802 MAC layer, and is transparent to protocols operating above
this boundary in the Logical Link Control (LLC) or Network layers. Participating stations are
unable to identify that peers are on anything other than the directly-attached physical media.

The GRF implementation consists of the transparent bridging function described in 802.1D,
and does not include any capability for Source Route or Source Route Transparent (SRT)
bridge operation.

Feature summary:

– bridging on FDDI, Ethernet, and ATM OC-3c per the 802.1D standard

– participation in 802.1D spanning tree protocol

– layer-2 transparent bridging of MAC frames through the GRF from one interface to
another.

– conversion of frames between Ethernet and FDDI formats as necessary

– fragmentation of IPv4 frames if necessary

– simultaneous bridging and routing over the same interface
(a GRF interface participating in a bridge group can still route normally)

– routing IP to or from a bridge group from any GRF media

– RFC 1483 encapsulated bridging over ATM OC-3c PVCs with either VC-based
multiplexing or LLC encapsulation

– multiple independent bridge groups per GRF

– up to 255 GRF interfaces per bridge group

Specifications

The GRF bridging implementation reflects the following documents:

– International Standard ISO/IEC 10038: 1993;
ANSI/IEEE Standard 802.1D, 1993 edition

– International Standard ISO 8802-2;
ANSI/IEEE Standard 802-2, 1989 edition

– RFC 1483, J. Heinanen,
Multiprotocol Encapsulation over ATM Adaptation Layer 5, 07/20/1993.
Available via ftp at: ftp://nic.ddn.mil/rfc/rfc1483.txt

Transparent Bridging
GRF bridging implementation

GRF 1.4 Addendum 45

Simultaneous routing and bridging

Ascend’s transparent bridging does not preclude the use of IP packet routing on the same
physical interface.

Bridging as well as IP version 4 (IPv4) routing can both be enabled on the same physical
interface. In this circumstance, the GRF exchanges traffic between bridging domains and
routing domains that exist on the same physical media.

A GRF interface may simultaneously bridge layer-2 frames and route layer-3 packets--that is,
forward frames destined to a system attached to another LAN at the MAC layer, but still
receive IP packets destined for a remote system attached to a non-broadcast GRF interface and
route those packets at the IP layer.

This unique capability eliminates the need for separate pieces of routing equipment to transport
packets inter-domain.

To perform the simultaneous functions, the GRF bridging interface examines the destination
MAC address of each arriving frame. If the address is other than a GRF MAC address for any
interface participating in the assigned bridge group, the packet is submitted to the bridging
engine for forwarding. When the MAC address is a GRF MAC address, the packet is
forwarded to the GRF protocol forwarding engine for routing at the protocol layer. Multicast
and broadcast frames are submitted to both engines.

Configuration options

The GRF supports the configuration items specified in 802.1D. A GRF functioning as a bridge
will interoperate with other bridges, including equipment of vendors in conformance with the
IEEE 802.1D standard, to allow forwarding of frames across multiple LAN hops.

Additionally, the GRF supports up to 64 independent 802.1D bridge groups, and separates
traffic between groups. For example, on a GRF with six attached FDDI rings, rings A, B, and C
could form one bridge group, rings D and E could form a second bridge group, and ring F
could stand alone, using only IP routing for its packets.

A GRF functioning as a bridge also will interoperate with other bridges to forward frames from
one bridge to the other over ATM. This will allow two independent bridged LANs at remote
locations to function as one logical network transparently connected by ATM. This
encapsulated bridging follows the Internet standard specification in RFC 1483.

Interoperability

FDDI - Frame forwarding is compatible with any station sending and receiving FDDI LLC
frames.

Ethernet - Frame forwarding is compatible with any station using either DIX Ethernet or
IEEE 802.3 frames.

ATM OC-3c - Frame forwarding is compatible with any remote bridge using RFC 1483
bridging encapsulation.

Spanning tree - GRF transparent bridging will interoperate with any other bridge (including
other GRFs) compliant with the IEEE 802.1D spanning tree protocols.

46 GRF 1.4 Addendum

Transparent Bridging
GRF bridging implementation

Spanning tree

The GRF implementation supports the full Spanning Tree Algorithm specified in the IEEE
802.1D standard.

Using the Spanning Tree, network topologies can contain cycles that can be used as redundant
or back-up links. The Spanning Tree controls the bridge's flow of traffic over all potential links
to prevent packet storms (bridges repeating a packet or packets to each other, without end).

Consistent with basic GRF architecture, the Spanning Tree Algorithm and all controlling
configuration and bridging information is maintained on the control board. A copy of the
bridging filtering table is maintained on each media card.

Bridge filtering table

Media card bridge ports forward new MAC source addresses to the operating system for
insertion in the global bridge filtering table that is maintained on the control board. Each
bridging media card type (FDDI, Ethernet, and ATM OC-3c) also has copy of this table.
Batches of table updates are sent out to all bridging media cards in the same way IP route table
updates are dispersed to the media cards.

Bridge ports also “age” entries according to the 802.1D protocol. When no activity is
associated with a MAC address for the specified time-out interval, the interface sends the
operating software a delete request and the address is removed first from the global bridge
filtering table and then, via the update packets, from media cards’ tables.

Fragmentation

IPv4 frames are fragmented as necessary, as when bridging an FDDI frame of more than 1500
bytes to an Ethernet interface.

A frame may be too large for the maximum transmission unit of the sending GRF interface.
One example is when forwarding a 4500-byte frame from FDDI to an Ethernet interface with
an MTU of 1500 bytes. The GRF bridge will attempt to break such a frame into fragments that
will fit the sending interface. This is possible if the frame contains an IP datagram; then the
GRF may use the fragmentation rules of IP to split the frame. Otherwise, the GRF must drop
the frame.

Spamming

Spamming is when a bridging interface forwards a frame to all active interfaces in the bridge
group. On the GRF, spamming is done when a broadcast or multicast address is received, or
when a frame arrives whose destination address is not in the bridge filtering table.

GateD

GateD treats a bridge group interface as a single interface. Individual member interfaces are
not considered in GateD operation.

Transparent Bridging
Bridging components

GRF 1.4 Addendum 47

Bridging components

Bridging daemon – bridged

The bridging daemon, bridged, configures and manipulates bridging interfaces on the GRF. It
operates the spanning tree algorithm specified in IEEE 802.1D and ensures interoperability
with other 802.1D bridges.

bridged reads the /etc/bridged.conf configuration file to build an initial bridging topology.
The bridged.conf file is read whenever bridged is restarted. Refer to the bridged man page
for more information.

bridged is started by the system script /etc/grstart. This script monitors the bridged
daemon and restarts it if bridged stops. bridged is run from its installed location
/usr/sbin/bridged.

Configuration file – bridged.conf

The bridging configuration file is /etc/bridged.conf. A utility, bredit, is used to access the
file and create bridge groups and bridging settings.

Parameters in bridged.conf can be set to:

– name bridge groups

– assign interfaces (bridge ports) to a group

– assign priority, root path cost, and forwarding addresses to individual interfaces

– assign hello time and forwarding delay values, priority, maximum age, and discard
addresses to individual groups

A copy of the /etc/bridged.conf file is in the GRF Reference Guide.

Editing utility – bredit

The bredit utility is used to access and edit the bridged.conf configuration file.

bredit opens the configuration file in the vi editor. After you make changes, you exit the file
with the vi exit file :q command.

At this point bredit asks if you want to make the changes permanent. You also have the option
of signaling bridged to re-read the updated file immediately. When this option is taken,
bridged restarts as if it was stopped and restarted for the first time. If you change the file in vi
but do not choose either of the options, bredit tells you that your changes were not committed.

48 GRF 1.4 Addendum

Transparent Bridging
Management tools

Management tools
A set of tools are provided to manage bridging, primarily through bridged. Brief descriptions
are provided here, more detail is given in the Examining and debugging bridge configurations
section near the end of this chapter.

These tools include:

– brstat, displays relevant bridged status and bridging information

– brinfo, displays relevant kernel-based bridging information

brstat

The brstat command provides a snapshot of state information directly from bridged. A short
lag occurs between the time a request is made and when an active bridged returns the
information.

super> brstat

brinfo

The brinfo command is used to retrieve bridging interface information for administrative
debugging and other situations where a simple checking of bridge group or bridge port
information is needed.

super> brinfo bridge_group | all

or

super> brinfo bridge_port | all

If a bridge group is specified, brinfo prints information about the group and the bridge ports
(underlying interfaces) that are members of the specified group. If a bridge port (interface
name) is specified, brinfo displays the specified interface. If no parameters are specified, all
groups are reported on by default.

brinfo gets its information directly from the BSD kernel whereas brstat gets its information
from bridged.

Transparent Bridging
Bridging example

GRF 1.4 Addendum 49

Bridging example

In this example, bridge group bg0 is one shaded area. Two GRF interfaces, one Ethernet and
one FDDI (ge003 and gf010), form the bridge between the IPX services and the Ethernet
LAN. Bridge group bg2 has two LANs, each with a GRF interface, one Ethernet (ge007) and
one ATM (ga030). Interface gf022 is IP routing only. Station A can route to any station in
either bridge group.

Figure 2. Bridging example diagram

The GRF currently supports up to 64 bridge groups with as many as 255 logical GRF
interfaces assigned to each group. A logical interface can be a member of only one bridge
group.

From a GRF perspective, a bridge group equals a virtual LAN.

LAN
Ethernet

FDDI

ATM

Station A

bg0

PC
Station

AppleTalk

gf010

ga030gf022

ge003

GRF

221.221. ...

FDDI

Ethernet

Network A

Ethernet
Hub

FDDI
Switch

IPX
192.168.01

Network Description:

Configuration tasks:

1. Enter IP addresses in grifconfig.conf:

3. Set Network A for normal routed network.

2. Define bridge groups in bridged.conf:

4. Configure a PVC on ga030 in gratm.conf.

Station BStation C

bg2
192.168.02

bg2
192.168.02

bridge_group bg2
port ge007, ga030

bridge_group bg0
port ge003, gf010

222.222.02.4

222.222.80.2

ge007

Network B
Network C

bg0
bg2

192.168.01
192.168.02

gf022 221.221. ...

50 GRF 1.4 Addendum

Transparent Bridging
Configuration file and profile overview

Configuration file and profile overview
When a new GRF system is installed or a site upgrades to a bridging software release, the
bridging daemon, bridged, is automatically started.

These are the steps to configure bridging interfaces and parameters:

1. Create bridge groups in bridged.conf
Run bredit to access and edit the /etc/bridged.conf configuration file. Create and
name the bridge groups, and assign bridge ports and parameters to each.

2. Assign an IP address to each bridge group
Step 2 is necessary only if you want to do simultaneous bridging and routing.

Edit /etc/grifconfig.conf to identify each bridge group by assigning:

– an IP address

– the GRF interface name

– a netmask, required

– a broadcast address, as required

Note: Members of bridge groups are not assigned IP addresses in /etc/grifconfig.conf.
In the example from the preceding page, only the FDDI interface, gf022, and the bridge
groups, bg0 and bg2, are assigned IP addresses.

3. Create ATM OC-3c PVCs for encapsulated bridges

To configure an encapsulated bridge on an ATM circuit, edit the /etc/gratm.conf file to
create a PVC on the ATM OC-3c logical interface.

Transparent Bridging
1. Create bridge groups in bridged.conf

GRF 1.4 Addendum 51

1. Create bridge groups in bridged.conf

The bredit utility is used to access and edit the bridged.conf configuration file.

bredit opens the configuration file in the vi editor. After you make changes, you exit the file
with the vi exit file :q command.

Here are the syntax conventions in the /etc/bridged.conf file:

{ - the brace after the group name indicates the start of the group’s parameters

; - a semi-colon indicates the end of the arguments for a statement

}; - a closing brace and semi-colon indicate the end of the block

The format of a group name is:

bridge_group bgA { arguments } ;

where A is a decimal number from 0 through 63

The only required parameter is the list of GRF interfaces you are assigning to the group.

The format of the group list is:

bridge_group bgA {

port interface_name;
};

where interface_name is in the standard GRF interface name format gx0yz that uniquely
describes a logical FDDI, Ethernet, or ATM OC-3c interface.

Figure 3. Interface name for FDDI, Ethernet, and ATM OC-3cinterfaces

List one port on a line, or list them all on one line as shown in these examples:

port ge003;

port gf010;

or

port ge003 gf010;

g f 0 y z

1st:

4th:
5th:

3rd:
2nd:

always “g” for GRF
media type is f (FDDI), e (Ethernet) or a (ATM)
chassis number, always “0” (zero)
slot number in hex
logical interface number in hex

52 GRF 1.4 Addendum

Transparent Bridging
2. Assign IP addresses to bridge groups

A simple bridge group entry is:

bridge_group bg0 {

port ge003;

port gf010;

};

An empty bridge group is defined in this way:

bridge_group bg5 {

 ;

};

2. Assign IP addresses to bridge groups
To do simultaneous bridging and routing, assign an IP address to each bridge group in the
/etc/grifconfig.conf file.

These are the entries in grifconfig.conf for bridge group bg0 and bg2 and the non-bridging
interfaces shown in the example in Figure 2:

name address netmask broad_dest argument
#
bg0 192.168.01.1 255.255.255.0
bg2 192.168.02.1 255.255.255.0

gf022 222.222.80.2 255.255.255.0
ga030 222.222.02.4 255.255.255.0

A netmask entry is required for each bridge group.

Transparent Bridging
3. Create an ATM PVC for an encapsulated bridge

GRF 1.4 Addendum 53

3. Create an ATM PVC for an encapsulated bridge

Bridging over ATM can be configured in two ways:

– LLC Encapsulation (RFC 1483, section 4)

– VC Based Multiplexing (RFC 1483, section 5)

When LLC Encapsulation is used, a single PVC is configured to carry all traffic.

When VC Based Multiplexing is used, multiple PVCs are defined for the logical interface.
Each PVC carries a specific type of traffic. For example, one PVC carries Ethernet PDUs while
another carries FDDI.

Configuration in gratm.conf

Configuration over ATM also requires that new entries be made to three sections of the regular
ATM configuration file, /etc/gratm.conf.

The next three steps describe ATM bridging configuration requirements and options. Examples
of configured PVCs follow.

1 In the Traffic Shaping section of the /etc/gratm.conf file, set traffic shaping name and
quality of service parameters, use any string. Set a name for each type of service that will
be assigned.

The /etc/gratm.conf file itself describes how to specify a range of traffic shaping
parameters.

Traffic shaping parameters
Lines beginning with the keyword "Traffic_Shape" define
traffic shapes which may be used to configure the performance
characteristics of ATM Virtual Circuits.
#
Traffic_Shape name=high_speed_high_quality \
 peak=155000 sustain=155000 burst=2048 qos=high

2 To configure a logical interface for bridging, you create an Interface entry in the Interface
section of the /etc/gratm.conf file. This entry must include the intended bridging
method, specify this with the bridge_method= keyword.

Here is a sample Interface entry:

Interface ga030 traffic_shape=high_speed_high_quality \

bridge_method=vc_multiplexed,broute_to_ether

There are two types of bridging methods that can be specified:

– VC Based Multiplexing, bridge_method=vc_multiplexed

The configuration must include one or more PVCs for this interface specified in the
PVC section and defined (as described below) with proto=vcmux_bridge.

– LLC Encapsulation, bridge_method=llc_encapsulated

The configuration must include one PVC for this interface specified in the PVC sec-
tion and defined with proto=llc,bridging.

54 GRF 1.4 Addendum

Transparent Bridging
3. Create an ATM PVC for an encapsulated bridge

Restrictions

Media and transmission restrictions can be specified using these alternate
bridge_method,xxxx keywords:

– bridge_method=xxxx,broute_to_ether

IP and ISO datagrams are transmitted as Ethernet frames.

– bridge_method=xxxx,ether_only

All frames except BPDUs (routed datagrams and all bridged LAN frame types) are
transmitted as Ethernet frames.

– bridge_method=xxxx,broute_to_fddi

IP and ISO datagrams are transmitted as FDDI frames.

– bridge_method=xxxx,fddi_only

All frames except BPDUs (routed datagrams and all bridged LAN frame types) are
transmitted as FDDI frames.

If an interface cannot be used to transmit a particular frame type directly, the GRF attempts to
translate the frame to a permitted type. For example, if an interface is defined to send Ethernet
frames only and the GRF has an FDDI frame to transmit, the GRF translates the frame to an
Ethernet frame first. Similarly, if the GRF has a routed IP datagram to transmit, the GRF adds
an Ethernet header and transmits the datagram as an Ethernet frame.

3 One or more Permanent Virtual Circuits (PVCs) must be defined in the PVCs section for
each logical interface specified for bridging in the Interfaces section.

A bridging PVC is assigned a protocol value. This value must be consistent with the bridging
method defined for the logical interface. Bridging PVCs are assigned either one of these
protocol values:

– proto=llc,bridging

– proto=vcmux_bridge,yyyy

proto=llc,bridging

This type of PVC is used for logical interfaces defined with
bridge_method=llc_encapsulated. The PVC uses LLC encapsulation for each PDU.

For example, this PVC entry enables bridging on an LLC PVC:

PVC ga030 0/32 proto=llc,bridging traffic_shape=high_speed_high_quality

proto=vcmux_bridge,yyyy

This type of PVC is used only for logical interfaces defined with
bridge_method=vc_multiplexed. The PVC carries bridged traffic of a single type.

The ,yyyy represents a second protocol qualifier required for the proto= parameter. This
qualifier defines the type of bridged traffic the PVC can carry. Traffic types include:

– proto=vcmux_bridge,ether_fcs

Specifies that each PDU is an Ethernet frame, including a Frame Check Sequence.

Transparent Bridging
3. Create an ATM PVC for an encapsulated bridge

GRF 1.4 Addendum 55

– proto=vcmux_bridge,ether_nofcs

Specifies that each PDU is an Ethernet frame, without a Frame Check Sequence.

– proto=vcmux_bridge,fddi_fcs

Specifies that each PDU is an FDDI frame, including a Frame Check Sequence.

– proto=vcmux_bridge,fddi_nofcs

Specifies that each PDU is an FDDI frame, without a Frame Check Sequence.

– proto=vcmux_bridge,bpdu

Specifies that each PDU is an 802.1D Bridge Protocol Data Unit.

PVC configuration examples

LLC encapsulated, restricted to Ethernet

Here is a sample LLC Encapsulated configuration, restricted to Ethernet. Note that any IP or
ISO routed traffic transmitted on the PVC will be encapsulated as an Ethernet frame.

Traffic shape

Traffic_Shape name=high_speed_high_quality peak=155000 sustain=155000
burst=2048 qos=high

Logical interface

Interface ga030 traffic_shape=high_speed_high_quality
bridge_method=llc_multiplexed,broute_to_ether

PVC

PVC ga030 0/32 proto=llc,bridging

VC-based multiplexing options

Here is a sample VC Based Multiplexing configuration. Note that routed IP or ISO datagrams
are encapsulated as Ethernet frames.

Traffic shape

Traffic_Shape name=high_speed_high_quality peak=155000 sustain=155000
burst=2048 qos=high

Logical interface

Interface ga030 traffic_shape=high_speed_high_quality
bridge_type=vc_multiplexed,broute_to_ether

PVCs for bridging

PVC ga030 0/32 proto=vcmux_bridge,ether

PVC ga030 0/33 proto=vcmux_bridge,ether_fcs

PVC ga030 0/34 proto=vcmux_bridge,bpdu

56 GRF 1.4 Addendum

Transparent Bridging
3. Create an ATM PVC for an encapsulated bridge

Installing configuration changes

When you enter configuration information or make changes, you must do a grwrite command
to save the /etc directory to permanent storage. In the CLI, or from the CLI UNIX shell, enter:

grwrite -v

That command saves the /etc directory. You can find out at any time if there are unsaved files
in that directory, use this version of grwrite to get a list of unsaved files:

grwrite -vn

You must also reset the media card for the changes to take place. Enter:

grreset <slot_number>

Transparent Bridging
Sources of bridging data

GRF 1.4 Addendum 57

Sources of bridging data

Bridging trace log

The -d level option for the bridged command controls the type of messages collected in the
/var/tmp/bridged.trace log.

The output shown here reflects level 5, the default, and adequate for most debugging. Enter:

cd /var/tmp

cat bridged.trace

Figure 4. Output from bridging trace file

1997.11.25.11:39:46 NOTICE main.c:188 main() started

1997.11.25.11:39:46 NOTICE br_init.c:421 add_modify() adding group 'bg0' 1997.11.25.11:39:46 NOTICE
br_init.c:460 add_modify() adding 'ga030' to 'bg0'

1997.11.25.11:39:46 NOTICE br_init.c:460 add_modify() adding 'ge020' to 'bg0'

1997.11.25.11:39:46 NOTICE br_init.c:460 add_modify() adding 'ge021' to 'bg0'

1997.11.25.11:39:46 NOTICE br_init.c:460 add_modify() adding 'gf000' to 'bg0'

1997.11.25.11:39:46 NOTICE br_init.c:460 add_modify() adding 'gf002' to 'bg0'

1997.11.25.11:39:46 NOTICE standard.c:1103 std_initialisation() bg0 root [me]

1997.11.25.11:39:46 NOTICE standard.c:658 std_become_designated_port() ga030 desig bridge [me] port 1/1

1997.11.25.11:39:46 NOTICE standard.c:658 std_become_designated_port() ge020 desig bridge [me] port 128/2

1997.11.25.11:39:46 NOTICE standard.c:658 std_become_designated_port() ge021 desig bridge [me] port 128/3

1997.11.25.11:39:46 NOTICE standard.c:658 std_become_designated_port() gf000 desig bridge [me] port 2/4

1997.11.25.11:39:46 NOTICE standard.c:658 std_become_designated_port() gf002 desig bridge [me] port 128/5

1997.11.25.11:39:46 NOTICE standard.c:741 std_make_forwarding() bg0.ga030 Listening(1)

1997.11.25.11:39:46 NOTICE standard.c:741 std_make_forwarding() bg0.ge020 Listening(1)

1997.11.25.11:39:46 NOTICE standard.c:741 std_make_forwarding() bg0.ge021 Listening(1)

1997.11.25.11:39:46 NOTICE standard.c:741 std_make_forwarding() bg0.gf000 Listening(1)

1997.11.25.11:39:46 NOTICE standard.c:741 std_make_forwarding() bg0.gf002 Listening(1)

1997.11.25.11:40:01 NOTICE standard.c:997 std_forward_delay_timer_expiry() bg0.ga030 Learning(2)

1997.11.25.11:40:01 NOTICE standard.c:997 std_forward_delay_timer_expiry() bg0.ge020 Learning(2)

1997.11.25.11:40:01 NOTICE standard.c:997 std_forward_delay_timer_expiry() bg0.ge021 Learning(2)

1997.11.25.11:40:01 NOTICE standard.c:997 std_forward_delay_timer_expiry() bg0.gf000 Learning(2)

1997.11.25.11:40:01 NOTICE standard.c:997 std_forward_delay_timer_expiry() bg0.gf002 Learning(2)

1997.11.25.11:40:16 NOTICE standard.c:1000 std_forward_delay_timer_expiry() bg0.ga030 Forwarding(3)

1997.11.25.11:40:16 NOTICE standard.c:799 std_topology_change_detection() bg0 top_change ON

1997.11.25.11:40:16 NOTICE standard.c:1000 std_forward_delay_timer_expiry() bg0.ge020 Forwarding(3)

1997.11.25.11:40:16 NOTICE standard.c:1000 std_forward_delay_timer_expiry() bg0.ge021 Forwarding(3)

1997.11.25.11:40:16 NOTICE standard.c:1000 std_forward_delay_timer_expiry() bg0.gf000 Forwarding(3)

1997.11.25.11:40:16 NOTICE standard.c:1000 std_forward_delay_timer_expiry() bg0.gf002 Forwarding(3)

1997.11.25.11:40:51 NOTICE standard.c:1062 std_topology_change_timer_expiry() bg0 top_change OFF

58 GRF 1.4 Addendum

Transparent Bridging
Sources of bridging data

Bridge group information

brinfo returns configuration information about a bridge group and each of its member ports.
The number of ports in a group is stated in the Ports: line. Enter:

brinfo bridge_group

brinfo bg0
Bridge Daemon: Running
Bridge_group: bg0

Flags: (0x43) up broadcast running
Ports: 2
port ge003

State: (0xf):Forwarding
Flags: 0x9143 up broadcast running promisc link0 multicast
Bridging media: ethernet bpdu
MAC Address: 0:c0:80:00:55:d1

port gf010
State: (0xf):Forwarding
Flags: 0x9143 up broadcast running promisc link0 multicast
Bridging media: fddi bpdu
MAC Address: 0:c0:80:00:55:d2

Low-level state information

brstat obtains low-level state information from bridged. Enter:

brstat

Bridged Information:

 Debug Level: 5, Trace Mask: 0xffffffff, Spanning Tree: Enabled

 Log File: "/var/tmp/bridged.trace", Config File: "/etc/bridged.conf"

 bridged started at: Fri Jan 9 14:39:58 1998

Bridge Group bg12

 Spanning Tree: Enabled

 Designated Root: 32768 00:c0:80:0c:65:53

 Bridge ID: 32768 00:c0:80:83:43:f9

 Root Port: ge066, Root Path Cost: 10

 Topology Change Detected: No

 Root Max Age: 20, Hello Time: 2, Forward Delay: 15

 Bridge Max Age: 20, Hello Time: 2, Forward Delay: 15, Hold Time: 1

 Path Desig Desig Desig

 Interface Port ID Con State Cost Cost Bridge Port

 --------- ------- --- ---------- ----- ----- ----------------------- -------

 gf080 128 1 No Disabled 10

 gf081 128 2 No Disabled 10

 gf082 128 3 No Disabled 10

 gf082 128 4 No Disabled 10

 ge065 128 5 Yes Blocking 10 0 32768 00:c0:80:0c:65:53 128 5

 *ge066 128 6 Yes Listening 10 0 32768 00:c0:80:0c:65:53 128 6

Dump snapshot finished at Fri Jan 9 14:40:01 1998

Transparent Bridging
Sources of bridging data

GRF 1.4 Addendum 59

Route trees and filtering table

The netstat -rn command returns the bridging filtering table of MAC addresses and other
related information.

Since the filtering table itself tends to be lengthy, pipe the netstat command with more to view
it easily. Enter:

netstat -rn

Routing tables

Internet:
Destination Gateway Flags Refs Use Interface
198.174.11 198.174.11.33 U 22 21575 ef0
198.174.11.33 127.0.0.1 UGH 2 765 ef0
204.221.156 204.221.156.33 U 1 5 gh010

Bridging:
Destination Gateway Flags Refs Use Interface
00:c0:f2:00:1e:a0 00:c0:80:00:55:d2 UHD 0 827173499 gf081
 • • • • • •
 • • • • • •
 • • • • • •
 • • • • • •
 • • • • • •
 • • • • • •
Source MAC address Port MAC address Port interface name

Bridging ARP:
Destination Gateway Flags Refs Use Interface
198.174.59.101 00:03:01:80:62:82 UHD 0 0 bg0
#

Bridging sockets

The command netstat -f bridge displays all active bridging sockets. Sockets are used by
bridged to transmit and receive Bridge Protocol Data Units:

 $ netstat -f bridge

 Active bridging sockets

 Proto Recv-Q Send-Q Group Port (flags)

 bridg 0 0 bg0 * 3

Kernel bridging statistics

The command netstat -s -f bridge displays kernel statistics for bridging:
 $ netstat -s -f bridge

 bridging:

 37 packets received

 0 packets received before bridging configured

 0 packets received for unknown interface(s)

 0 packets dropped for pullup failures

60 GRF 1.4 Addendum

Transparent Bridging
Sources of bridging data

 0 packets dropped for socket full

 0 packets dropped for no endpoint

 37 packets delivered

 0 packets dropped for no memory

 147052 packets sent

 169701 output packets dropped for interface down

 0 output packets dropped for link down

 44119 output packets unicast

 102933 output packets multicast

 0 output packets dropped for no memory

 9536 output packets copied

 93397 output packet copy avoided

 1080 copied output packets dropped for no memory

 0 output packets with too many copies

Transparent Bridging
Examining and debugging bridge configurations

GRF 1.4 Addendum 61

Examining and debugging bridge configurations

Introduction

There are several places to start debugging bridging problems. To begin, it is probably most
useful to try to determine which piece of the system seems to have the problem.

Three pieces of software need to work together for bridging to work correctly:

– bridged software (user space)

– GRF kernel software

– media card software

This section describes how tools such as brinfo and brstat can be helpful in debugging
bridged and the GRF kernel software. If a problem cannot be isolated using these tools, or if
the tools indicate the problem to be elsewhere, then debugging on the media card side needs to
be pursued.

This section also describes how to gather traces from bridged to help diagnose possible
problems. In specific bridging configurations, traces can help to understand bridged behavior
based on the IEEE 802.1D standard.

Before attempting to debug bridging software, it is helpful to have read the IEEE 802.1D
standard, especially those sections describing the behavior of the spanning tree. This bridging
implementation uses the spanning tree functionality described in that standard.

Information needed by Ascend support

When you need to send Ascend support information about bridging problems, please include
the following:

– a complete description of the problem

– brinfo output

– brstat output

– a description of the network (text or picture)

– bridged trace file(s)

– contents of /etc/bridged.conf

– contents of /etc/gratm.conf

– contents of /etc/grifconfig.conf

62 GRF 1.4 Addendum

Transparent Bridging
Examining and debugging bridge configurations

Enabling traces via bridged command

bridged writes traces to the /var/tmp/bridged.trace file.

This file is periodically archived and saved off in a compressed form to files in the form:
/var/tmp/bridged.trace.x.gz in which x is 0–5.

By default, bridged runs with minimal tracing enabled. This saves the system overhead of
writing every trace entry and the disk space used by the log file.

Sometimes it is necessary to gather additional bridged trace information for a given problem.
When this needs to be done, edit /etc/bridged.conf using bredit, and change the
debug_level line to read:

debug_level 6 ;

When this change is committed and bridged is reconfigured, additional traces are written to
the bridged trace file. Once the error condition has been recreated, save the traces and then
change the traces level back to 5.

The debug levels correspond to the following list:

– Level 0 (LOG_EMERG): Unusable

– Level 1 (LOG_ALERT): Action must be taken immediately

– Level 2 (LOG_CRIT): Critical conditions

– Level 3 (LOG_ERR): Error conditions

– Level 4 (LOG_WARNING): Warning conditions

– Level 5 (LOG_NOTICE): Normal but significant condition

– Level 6 (LOG_INFO): Informational (basic internal logic)

– Level 7 (LOG_DEBUG): Debugging (low-level internal logic)

Debug level 5, the default, provides more than enough information to resolve most bridged
issues. Levels 6 and 7 are rarely used.

Note: Error conditions (fatal and non fatal) are always traced.

Displaying useful information

Two commands, brinfo and brstat, display a majority of the available bridging information.

brinfo queries the kernel to determine state and topology information about the current bridge
groups and their operating environment.

brstat queries bridged for a superset of this and other information.

Transparent Bridging
Examining and debugging bridge configurations

GRF 1.4 Addendum 63

Using brinfo

In the example, two bridge groups are configured in the kernel: "bg0" and "bg1".
While bg1 has no interfaces defined, bg0 has two interfaces defined, gf080 and gf081.

Here is the brinfo output for the two groups:

Bridge group name: bg1

Flags:(0x43) up broadcast running

Ports : 0

Bridge group name: bg0

Flags:(0x43) up broadcast running

Ports : 2

 Port gf080 : State (0) Blocking

 Flags : (0x9343) : up broadcast running promisc link0 multicast

 Bridging media: fddi bpdu

 MAC address: 0:c0:80:0:55:d1

 Port gf081 : State (0X) Forwarding

 Flags : (0x9343) : up broadcast running promisc link0 multicast

 Bridging media: fddi bpdu

 MAC address: 0:c0:80:0:55:d3

Each interface is in one of the following states:

– disabled, usually by configuration, or if there is no connection on this port

– blocking, by spanning tree logic

– listening, spanning tree intermediate state

– learning, spanning tree intermediate state

– forwarding, spanning tree stable state

The flags correspond to the flags seen when the ifconfig interface command is used. Flags tell
us about the state of the interface from the kernel's perspective. From a bridging perspective,
the flags shown in the example are the flags that should be set for normal bridge operations.

All flags should get set automatically when bridged starts and interfaces are configured in the
bridged configuration file.

If the link0 flag is not set, as in:

 Flags : (0x9343) : up broadcast running promisc multicast

then there is no connection at this interface. Either no wire is connected to the interface, or no
host is on the other end of the wire.

64 GRF 1.4 Addendum

Transparent Bridging
Examining and debugging bridge configurations

State information - brstat

The brstat command signals bridged to dump out its internal state into the file
/var/tmp/bridged.dump. This file is massaged by brstat to display information of interest.
See the bridged man page for details about the debug level, log file, and configuration files.

Here is an example of brstat output:
brstat

Bridged Information:

 Debug Level: 5, Trace Mask: 0xffffffff, Spanning Tree: Enabled

 Log File: "/var/tmp/bridged.trace", Config File: "/etc/bridged.conf"

 bridged started at: Thu Apr 27 18:43:12 1997

Bridge Group bg0

 Spanning Tree: Enabled

 Designated Root: 7 08:00:2b:b6:38:80

 Bridge ID: 27 00:c0:80:00:55:d1

 Root Port: gf081, Root Path Cost: 10

 Topology Change Detected: No

 Root Max Age: 20, Hello Time: 2, Forward Delay: 15

 Bridge Max Age: 20, Hello Time: 2, Forward Delay: 15, Hold Time: 1

 Path Desig Desig Desig

 Interface Port ID Con State Cost Cost Bridge Port

 --------- ------- --- ---------- ----- ----- ----------------------- -------

 gf080 128 1 Yes Disabled 10 0 32768 08:00:2b:b6:38:80 128 4

 *gf081 138 2 Yes Forwarding 10 0 32768 08:00:2b:b6:38:80 128 6

Dump snapshot finished at Fri Apr 28 15:20:00 1997

The configuration information starts at the Bridge Group section. The Designated Root line
shows the MAC address of the root bridge.

In the example above, the root bridge is transmitting BPDUs with a priority of 7. The GRF
(bridge ID 00:c0:80:00:55:d1) is transmitting BPDUs at a priority of 27. If the priorities
were equal, the MAC address would be used to determine the root bridge.

The MAC address of the GRF bridge is selected as the numerically lowest MAC address of all
the ports in the bridge group, or the MAC address of the maintenance Ethernet port.

The Root Path Cost and other values displayed in the second set of descriptors are spanning
tree values that describe spanning tree configuration variables. See the IEEE 802.1D standard
for more information about these variables.

The example also shows two configured interfaces, gf080 and gf081. Each interface displays a
priority, a unique id, a state, a status, and spanning tree variables associated with the 802.1D
standard. Port priority is used to set up redundant bridge connections to the same LAN. An
asterisk (*) indicates the root port.

Transparent Bridging
Examining and debugging bridge configurations

GRF 1.4 Addendum 65

MAC addresses and bridge IDs via netstat -ni

Bridge IDs are listed as <Bridge> in the network column.

Use the netstat -ni command to check which interfaces have bridge IDs. An excerpt from
netstat output is shown below:

netstat -ni

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll

de0 1500 <link1> 00:c0:80:0c:65:53 58217 0 231408 0 287

de0 1500 206.146.164 206.146.164.9 58217 0 231408 0 287

rmb0 616 <link2> 00:00:00:00:00:00 3177659 15624 3278448 0 0

rmb0 616 <GRIT> 0:0x40:0 3177659 15624 3278448 0 0

lo0 1536 <link3> 61134 0 61134 0 0

lo0 1536 127 127.0.0.1 61134 0 61134 0 0

lo0 1536 <GRIT> 0:0x48:0 61134 0 61134 0 0

atmp0* 1536 <link4> 0 0 0 0 0

bg0 1500 <link147> 22410 0 0 0 0

bg0 1500 <Bridge> 00:c0:80:0c:65:53 22410 0 0 0 0

bg0 1500 222.222.169 222.222.169.9 22410 0 0 0 0

bg0 1500 47.0000.8000.0900.0900.0900 22410 0 0 0 0

gl000* 1496 <link5> 0 0 0 0 0

gf000* 4352 <link142> 00:c0:80:89:24:0e 0 0 0 0 0

gf001* 4352 <link137> 00:c0:80:89:24:0f 0 0 0 0 0

gf002* 4352 <link136> 00:c0:80:89:24:10 5 0 116 0 0

gf002* 4352 <Bridge> 00:c0:80:89:24:10 5 0 116 0 0

gf003* 4352 <link140> 00:c0:80:89:24:11 0 0 0 0 0

ge020 1500 <link141> 00:c0:80:89:09:9d 0 0 35831 0 0

ge020 1500 <Bridge> 00:c0:80:89:09:9d 0 0 35831 0 0

ge021 1500 <link130> 00:c0:80:89:09:9e 1029 0 35763 0 0

ge021 1500 <Bridge> 00:c0:80:89:09:9e 1029 0 35763 0 0

The Address field provides the MAC address. Note that the bridge port and the associated link
for that interface have the same address.

66 GRF 1.4 Addendum

Transparent Bridging
Examining and debugging bridge configurations

Restarting bridged during debug

The brsig command provides a way to signal bridged. brsig takes the following parameters:

0 (zero)

USR1
USR2
HUP

This command is not needed for normal operations. It is a low-level debug tool, and should be
used carefully. When a signal is received by bridged, you see a message similar to this:

bridged signalled successfully.

Use brsig 0 to verify that bridged is running.

Use brsig USR1 to cause bridged to write a dump file, /var/tmp/bridged.dump. This dump
contains detailed information about the state of internal timers and bridging configuration.
bridged rewrites the dump file each time it receives USR1.

Use brsig USR2 to cause bridged to check the state of a bridging interface from the kernel's
perspective.

Use brsig HUP to cause bridged to reread the bridged.conf configuration file or an alternate
file specified in the bridged command line (usually reserved for debugging purposes). The
bredit command sends a HUP to bridged.

