
Chip Wood
JES2 Design/Development/Service

Poughkeepsie, NY
chipwood@us.ibm.com

Permission is granted to SHARE Inc. to publish
this presentation in the SHARE proceedings. IBM
retains its right to distribute copies of this
presentation to whomever it chooses.

Introduction to
JES2 Exit Writing

SHARE 96, Session 2664

March 1, 2001

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 1

Agenda
Planning and researching your exit thoroughly
Coding your exit
Loading and enabling your exit
Debugging your exit

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 2

From JES2 Installation Exits, page 1:
 Caution!
Defining exits and writing installation exit routines is intended to be
accomplished by experienced system programmers; the reader is assumed
to have knowledge of JES2.

If you want to customize JES2, IBM recommends that you use JES2
installation exits to accomplish the task. IBM does not recommend or
support alteration of JES2 source code.

From JES2 Diagnosis:

CAUTION: IBM does not recommend or support modifications to
JES2 source code. If you assume the risk of modifying JES2, then
also assure that your modifications do not impact JES2 serviceability
using IPCS. Otherwise, LEVEL2 may not be able to read JES2 dumps
for problems unrelated to the modifications.

Disclaimers

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 3

Make sure you need it
Consider the following:

Do you have time, ability, and experience:
To write the exit?
To $upport the exit?

Is the cost involved worth it?
Are there alternatives?

Can you use standard features/automation?
Can you use a manual procedure?
Has someone else solved the same problem
(vendor product, mods tape, ...)?
Can you use table pairs instead?
Can you write an application using a supported
interface (e.g. Extended status, SAPI)?

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 4

Exits vs. inline mods
Exits are typically easier to maintain

Defined interface
Separate module, no interference from service
updates
++HOLD if service changes something we anticipate
an exit using

Exits have limitations
Fixed points in processing
If there’s no exit where you need it

Consider placing $EXIT inline rather than extensive
mods inline
Start with $EXIT 255 and work your way down

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 5

Research your exit
Choose the correct exit(s) for your task
For example:

Set job attributes at input time:
Use exit 2 to set default attributes which can be
overridden later
Use exit 20 to force attributes

Set job attributes at converter time
Use exit 6 to scan C/I text
Use exit 44 to store data in the JQE

Some tasks require a combination of exits
Sample exit HASXJECL has a good example.

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 6

Research your exit
Sources of information

JES2 Exits
Other JES2 Manuals
WSC Technical Bulletins and Flashes
Old SHARE Presentations

How to Write an Error-free Exit (Bob Jinkins,
Session 4321, Summer 1994)
JES2 Short Subjects - Table Pairs (Chip Wood,
Session 2658, Summer 1998)
JES2 Job Related Exits (John Hutchinson,
Summer 2000)

JES2 sample exits from SYS1.SHASSAMP
Exits from a "mods tape"
JES2 source code

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 7

Research your exit
JES2 Exits are system extensions

Supervisor state, Key 0 or Key 1!
Can do as much damage as an inline mod!

Before attempting to write an exit, understand:
JES2 exit environments
JES2 and MVS serialization
What control blocks are available (and when)
What point in processing exit gets control
What fields are set when you get control
What fields you can change
Which exits can $WAIT
Which macros can $WAIT
Which macros can be used in which exits
etc.

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 8

Plan for Migration
Consult JES2 Migration

Exits may need extensive rework
Exits may no longer be needed

Use field names rather than hard-coded offsets
Offsets may change
If field usage changes, IBM will usually change the
name (and your exit will not assemble)

Consider: Can JES2 with and without your
changes coexist in the same MAS?

With exits enabled?
With exits disabled (control block changes only)?
If they can’t coexist, is a cold start required?
Does your data survive a spool offload/reload?

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 9

The Basics

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 10

Code JES2 exits in assembler
Some basic constructs are common to all exits

 COPY $HASPGBL
 $MODULE

ROUTINE1 $ENTRY
 $SAVE
 $ESTAE
...
 $RETURN

 $MODEND

Basic Constructs

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 11

MIT
Module Information Table
Created by $MODULE

MITE
Module Information Table
Entry
Created by $MODEND
One entry per entry point

LMT
Load Module Table
Created by LOAD
initialization statement
Pointer and attributes of load
module

XIT
Exit Information Table
Information about exit

XRT
Exit Routine Table
List of routines called by exit

Name and Address

MIT

Routine 1

Routine 2

MITE 1

MITE 2

Load Module

LMT

XIT 0
XIT 1
XIT 2
XIT 3
XIT 4
XIT 5
XIT 6
XIT 7
XIT 8
XIT 9
XIT 10
XIT 11

XIT 250
XIT 251
XIT 252
XIT 253

XIT 254
XIT 255

XRT
XRT

XRT

JES2 Exit Data
Structures

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 12

$HASPGBL
COPY $HASPGBL
Includes and initializes assembler variables that
are required by later JES2 macros

&J2VERSN SETC ’OS 2.10’
&J2PLVL SETA 32
 AIF (&J2PLVL LT 32).SKIP1
 <code that only runs on JES2 OS/390 R10 and up>
.SKIP1 ANOP

&J2SLVL SETA 0
Includes assembler GBLx statements for other
variables that may be referenced in open code

GBLC &ANVIRON
GBLC &J2SECTN

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 13

$MODULE
$MODULE:

Defines what JES2 environment the exit will run in
Affects register conventions
Affects what you’re allowed to do

Defines what mappings are to be included
Includes all JES2 mapping macros
Includes many MVS mapping macros
Automatically resolves mapping dependencies

Defines RMODE, reentrancy
Defines default print options and TITLE
Creates MIT (Module Information Table)

Contains information validated when module is
LOADed

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 14

Environments
$MODULE ENVIRON= Keyword

Assembly environment (&ANVIRON)
If you get this wrong, the exit will not work!!
Helps catch coding errors

MNOTE form unsupported macro services ($CKPT,
etc).

ENVIRON= should be one of:
JES2 - JES2 main task
SUBTASK - JES2 subtask
USER - JES2 USER environment
FSS - Functional subsystem environment

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 15

ENVIRON=JES2
ENVIRON=JES2 - JES2 Main Task
JES2 address space, JES2 Main task
R11 = HCT address
R13 = PCE address
JES2 Main Task Serialized

Only one PCE runs at a time
Routine should reside in private storage

LOAD(routine) STORAGE=PVT
Routine may reside in common storage

Why use up CSA unnecessarily?
Can’t refresh routine on a hot start

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 16

Avoid MVS waits!
Use $WAIT instead

Note that some exits do not allow $WAIT!
Use JES2 equivalent services that do not MVS WAIT

$WTO, etc.
If calling service which can MVS WAIT, consider
using $SUBIT to $WAIT the PCE while a JES2
subtask does the MVS WAIT.
Exceptions - JES2 Initialization/Termination (Exits 0,
19, 24, 26)

JES2 dispatcher not enabled, so DON’T $WAIT
ENVIRON=(JES2,INIT) can be used in 0, 19, 24
ENVIRON=(JES2,TERM) can be used in 26

ENVIRON=JES2

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 17

ENVIRON=SUBTASK
ENVIRON=SUBTASK - JES2 Subtask
environment
JES2 address space, non-main task

MVS WAIT can be done
$WAIT not allowed

R11 = HCT
R13 = DTE
Multi-tasking considerations apply!

Multiple subtasks can simultaneously be in subtask
Reentrancy is very important

Routine should reside in private storage
Routine may reside in common storage

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 18

ENVIRON=USER
ENVIRON=USER - JES2 USER Environment
Any address space, any task
R11 = HCCT
R13 = Available save area
Multi-tasking considerations:

Multiple tasks in multiple address spaces may be in
exit simultaneously
Reentrancy very important

Routine MUST reside in common storage
LOAD(routine) STORAGE=CSA
LOAD(routine) STORAGE=LPA

Exits may get control when JES2 is down!

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 19

ENVIRON=FSS
ENVIRON=FSS - Functional subsystem
environment
FSS address space
R11 = HFCT
R13 = Save area
Routine MUST reside in common storage

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 20

Exit Environment Description

0 JES2 Initialization
1 JES2 Separator Page
2 JES2 Job Card
3 JES2 Accounting
4 JES2 JECL Card
5 JES2 Command
6 SUBTASK Converter
7 JES2 $CBIO
8 USER $CBIO
9 USER Excession

10 SUBTASK $WTO
11 JES2 $TRACK
12 USER $STRAK
13 JES2 Netmail
14 JES2 $QGET
15 JES2 DS Separator
16 JES2 Notify
17 JES2 BSC Signon
18 JES2 SNA Logon
19 JES2 Init statement
20 JES2 End of input
21 JES2 SMF
22 JES2 Cancel/Status
23 FSS JSPA Separator
24 JES2 Post-initialization

Exit Environment Description

25 FSS JCT I/O
26 JES2 Termination
27 JES2 PCE attach
28 USER Job Termination
29 USER End of Memory
30 USER OPEN
31 USER Allocation
32 USER Job Select
33 USER CLOSE
34 USER Unallocation
35 USER End of Task
36 USER Pre-SAF
37 USER Post-SAF
38 JES2 TSO Receive SAF
39 JES2 NSR SAF
40 JES2 Modify SYSOUT
41 USER Generic Grouping
42 USER Notify SSI
43 USER APPC
44 JES2 Converter
45 USER Pre-SJF
46 JES2 NJE Hdr XMIT
47 JES2 NJE Hdr Recv
48 USER Late Unallocation
49 JES2 QGOT

Exits and
environments

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 21

$ENTRY
$ENTRY - Generates entry point

Entry point defined (and MITE)
Eyecatcher (’$$$$routine-name’)
Using on register(s) specified for BASE=
Optionally, sets base registers (SETBASE=YES)
Optionally, generates $SAVE (SAVE=YES)

Trace $SAVE via SAVE=(YES,TRACE)
Can specify CSECT=YES to put each entry point in a
separate CSECT

Data isolation
Alternatively, specify ENTRIES=(routine,
routine) on $MODULE

Generates ENTRY and MITE only

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 22

$SAVE/$RETURN
$SAVE

Saves registers on entry
Different expansions, depending on environment!

$HASP095 CODE=$S02
$RETURN

Returns to caller
RC= - specifies a return code

Return code can be coded explicitly (RC=0)
Return code can be in register (RC=(R15))

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 23

$ENTRY
Example $ENTRY expansion

 MYRTN $ENTRY BASE=(R12,R8),SAVE=(YES,TRACE)
+ ENTRY MYRTN <--- Entry Statement
+MYRTN DS 0D <--- Entry Point
+ USING MYRTN,R12,R8 <--- Using for BASE=
+ J $EE2185
+ DC C’$$$$’ <--- Eyecatcher
+ DC CL8’MYRTN’
+$EE2185 STM R14,R12,12(R13) <--- $SAVE
+ L R15,$PADDR
+ L R15,P@GETSAVE-PADDR(R15)
+ BASR R14,R15
+ J $CAL2192
+ DC AL1($SAVTRC,0)
+ DC CL8’MYRTN’
+$CAL2192 DS 0H
+ LM R14,R12,12(R13)
+ LR R12,R15 <--- Set base registers
+ LR R8,R12
+ AHI R8,4096

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 24

$MODEND
Defines end of module
Generates MITEs for each $ENTRY

Names and entry points of all routines defined via
$ENTRY
LOAD init statement can identify all routines defined
in module for inclusion via EXITnn ROUTINES=
Entry points that LOAD uses
 COPY $HASPGBL
MYMOD $MODULE ENVIRON=JES2
MYRTN $ENTRY BASE=(R12),SAVE=YES
 $RETURN RC=0
 ...
 $MODEND
+ ...
+ DC CL8’MYRTN’ <--- MITE for MYRTN
+ DC A(MYRTN),AL1(0,MITENVJ,0,0)
+ DC AL2(0),AL1(0,0)
+ ...

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 25

Packaging
Package exits for one function together

For example, HASXJECL
$EXIT 1 to print data on separator page
$EXIT 4 to obtain separator page data from JCL
$EXIT 46,47 to transmit separator page data
across NJE

Package unrelated exits separately
For example

Exit 5 to create 2 separate commands
Different routine for each
Separate load modules

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 26

$ENVIRON
$ENVIRON - changes the current assembly
environment (&ANVIRON)
For example

Need an exit 6 and an exit 44 to accomplish a
function in the converter
Code like this:
 $MODULE ENVIRON=JES2
EXIT44 $ENTRY
 ...
 $ENVIRON SET,ENVIRON=SUBTASK
EXIT6 $ENTRY
 ...
 $MODEND

BE CAREFUL!!! Remember that if ANY
routine is ENVIRON=USER or ENVIRON=FSS,
it needs to be in common storage!!!

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 27

Extending data areas
"Unsupported" way - modify mapping macro

IBM does not recommend expanding control blocks
Consider:

Effects of enabling and disabling exits
Effects on checkpointed or spool control blocks
(COLD start implications!)
Which base JES2 modules require reassembly

Beware of using "reserved" fields
IBM may reclaim them later
There may be an intended purpose for reserved
space in a particular place (e.g. job number)

Keep IPCS formatters in synch
May interfere with LEVEL2 resolution of unrelated
problems for dumps sent to IBM

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 28

"Supported" ways
$UCT control block

Obtain in exit 0, store address in $UCT field
Can contain table pairs, pointers to other CBs

$USERn, PCEUSERn, DCTUSERn, CCTUSERn
fields

Can be used as pointers to your own area if not
enough space

$JCTX services (JCT)
$JCTXADD, $JCTXGET, $JCTXEXP, $JCTXREM

$BERTTABs (JQE and CAT)
$BERTTAB CBOFF=*
$DOGBERT ACTION=GETOFFSET

Extending data areas

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 29

Enabling your exit
LOADmod initialization statement

Loads your load module
STEPLIB, LNKLST, or LPA

LOADmod(name) STORAGE=
PVT - Module is loaded into JES2 private storage
CSA - Module is loaded into common storage
LPA - Version of module in LPA used
ENVIRON=USER or FSS cannot go in private

$D LOADMOD(name) displays
ADDRESS and LENGTH
ROUTINES and TABLES
STORAGE and RMODE

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 30

Enabling your exit
EXIT(nnn) statement

ROUTINES=(routine-name,routine-name)
Lists all routines to be called by exit

ENABLE/DISABLE
Whether exit is initially enabled or disabled
Default: ENABLE if you specified routines

$TEXITnn,ENABLE or $TEXITnn,DISABLE
Enable/disable exits
Exit level only (not individual routines)
Consider implementing router exits to disable
individual functions

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 31

Router exits
Old way

EXIT(5) ROUTINES=(rtn1,rtn2,rtn3)
$TEXIT5,DISABLE disables all 3 routines

New way
EXIT(5) ROUTINES=(router1,router2,router3)
EXIT(253) ROUTINES=(rtn1)
EXIT(254) ROUTINES=(rtn2)
EXIT(255) ROUTINES=(rtn3)

Routine router1 consists of standard linkage and
invokes $EXIT 253 with appropriate parameters
Routines router2 and router3 do likewise

$T EXIT253,DISABLE disables only routine rtn1

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 32

Enabling Exit 0
Enabling exit 0 is a special case

Called BEFORE any EXIT statements can be
processed
Load module name must be HASPXIT0
All routines must begin with the characters EXIT0
Routines are called in the order found in MITE
$DEXIT(0) displays routines that were called by exit

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 33

Debugging

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 34

Debugging aids
$TRACE 13

Traces every exit point on entry and exit
17.43.12.79 ID = 13 $EXIT STC00009 STCINRDR 0667B0D0
 # 4: ENVIRON= JES2 LABEL= RXITCCA PRE INVOCATION
 R0-R7 = 00000004 0667B200 0667B428 00006000 ...
 R8-R15 = 00000000 00000000 06955000 00007000 ...

17.43.12.79 ID = 13 $EXIT STC00009 STCINRDR 0667B0D0
 # 4: ENVIRON= JES2 LABEL= RXITCCA POST INVOCATION
 LAST ROUTINE CALLED = DIAGX04 R15-R1 = 00000000 00000004 ...

17.43.12.81 ID = 13 $EXIT ASID 0017
 # 36: ENVIRON= USER LABEL=EXIT6RTN PRE INVOCATION
 R0-R7 = 00000000 001344E0 83DA33A4A 03A97810 ...
 R8-R15 = 001340D0 00000000 03C490000 00006000 ...

Was the input what was expected?
Are multiple callers in exit simultaneously?

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 35

Debugging aids
$SAVE/$RETURN $TRACE ids

1 and 2 - JES2 and FSS environments
11 and 12 - Only $SAVE/$RETURN calls for specific
PCE types
18 and 19 - USER and SUBTASK environments
12.59.59.08 ID = 1 $SAVE COMM 066690E8 PRKEYWRD

R14-R1 = 800F338E 000F4E70 00000000 7F6F100C
12.59.59.08 ID = 2 $RETURN COMM 066690E8 PRKEYWRD

R14-R1 = 800F338E 00000000 00000000 7F6F100C

14.07.06.28 ID = 18 $SAVE ASID 012E USERSUB
R14-R1 = 85EE8770 05F03C70 7F706AD8 7F6FC58C

14.07.06.29 ID = 19 $RETURN ASID 012E USERSUB
R14-R1 = 85EE8770 00000000 7F706AD8 7F6FC58C

What services were called by exit?
What point in processing was exit called?
What was happening at same time as exit?

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 36

Debugging aids
$HASP088 message

$HASP088 ------------ JES2 ABEND ANALYSIS -----------
$HASP088 FMID = HJE6608 LOAD MODULE = HASJES20
$HASP088 SUBSYS = JES2 OS 2.10
$HASP088 DATE = 2001.050 TIME = 15.14.02
$HASP088 DESC = PROTECTION EXCEPTION
$HASP088 MODULE MODULE OFFSET SERVICE ROUTINE EXIT
$HASP088 NAME BASE + OF CALL LEVEL CALLED ##
$HASP088 -------- -------- ------- ------- ---------- ----
$HASP088 *UNKNOWN 00000004 + 000000 UNKNOWN *ABEND S0C1 7
$HASP088 HASTDIAG 00189000 + 009124 NONE XIT7MSG 7
$HASP088 HASPNUC 00007000 + 00742C NONE DIAGX07 7
$HASP088 HASPNUC 00007000 + 0079F8 NONE $JESEFF
$HASP088 HASPNUC 00007000 + 0076B0 NONE CBMWRTN
$HASP088 HASPRDR 000DC000 + 00430C OW44439 $CBIOM
$HASP088 HASPRDR 000DC000 + 007DCE OW44439 RWRTJOB
$HASP088 HASPRDR 000DC000 + 000C94 OW44439 HASPRJCS
$HASP088 PSW = 071C0600 00000004 ILC = 2 IC = 01
$HASP088 ASID = 0017 (HOME) 0017 (PRIM) 0017 (SCND)
$HASP088 PCE = STCINRDR (066790D0) STC00007 DEALLOC
$HASP088 R0 = 06618284 06953000 002921B0 00000007
$HASP088 R4 = 06679400 06953000 06953000 06953000
$HASP088 R8 = 800E030C 000E3A48 06618284 00007000
$HASP088 R12 = 001994A0 066790D0 001995B0 00000000
$HASP088 --

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 37

Debugging aids
Finding your exit in storage

On a live system:
$D MODULE command

 $dmodule(hastcdia),long
 $HASP468 MODULE(HASTCDIA) ADDRESS=00B3B000,ASSEMBLY=(01/23/01,
 $HASP468 14.25),ENVIRON=USER,EXITPTS=(),
 $HASP468 FMID=HJE7703,IBMJES2=SAMPLE,
 $HASP468 LASTAPAR=NONE,LASTPTF=NONE,
 $HASP468 LENGTH=0010D0,LOADMOD=HASTCDIA,
 $HASP468 MACLEVEL=6,
 $HASP468 ROUTINES=(DIAGXITC=00B3B050,
 $HASP468 DIAG3637=00B3C0D0,RMTWAIT=00B3C790),
 $HASP468 SPLEVEL=CHECK,
 $HASP468 VERSION=OS 2.10,UVERSION=

In a dump
$MIT formatting
$XIT/$XRT formatting

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 38

Debugging aids
SLIP in routine to verify flow
Obtain dumps at strategic points in your exit

SLIP dump
Zap bad opcode (X’0000’)
$ERROR
$DISTERR

Use IPCS to:
Verify register contents
Verify data structures
Look for possible overlays (PCE analysis, etc.)
Look for possible storage leaks ($GETWORK
analysis)

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 39

Summary
Research your exit thoroughly

Investigate alternatives
Understand the costs involved

Understand JES2
Different JES2 environments
Point in processing of exit
What exit can and cannot do

Test your exit thoroughly
Understand all possible inputs and outputs

Protect your production system
Build in recovery
Know effects of disabling/re-enabling exit

Intro to JES2 Exit writing SHARE 96, Session 2661

© IBM Corporation 2001 40

