System Automation for z/0S

Version 3 Release 1

Customizing and Programming

SC33-8260-03

System Automation for z/0S

Version 3 Release 1

Customizing and Programming

SC33-8260-03

Note!

Before using this information and the product it supports, be sure to read the general information under

Fourth Edition (December 2005)

This edition applies to IBM Tivoli System Automation for z/OS (Program Number 5698-SA3) Version 3, Release 1,
an IBM licensed program, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. A form for readers’ comments appears at the back of this publication. If the form
has been removed, address your comments to:

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

If you prefer to send comments electronically, use one of the following methods:
FAX (Germany): 07031 + 16-3456
FAX (Other Countries): (+49)+7031-16-3456
Internet: s390id@de.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures . Vvii
Tablesix

Notices. Xi

Web Site Disclaimer. xd
Programming Interface Informatlon P
Trademarksxi
Accessibility . . Xiii
Using assistive technologies . . xiii
Keyboard navigation of the user mterface . . xiii
z/0OS information . . Xxiil
About This Book . XV

Who Should Use This BookXxv

Prerequisites . . . ‘A 4
Where to Find More InformatlonXV
The System Automation for z/OS Lrbrary .. XV
Related Product Information . XVi
Using LookAt to look up message explanat1ons xvi

Chapter 1. How to Add a New
Application to Automation. 1

Step 1: Define an Application Policy Object1
Step 2: Define Outstanding Reply Processing . . .1
Step 3: Build New System Operations Configuration

Files3

Step 4: Code Entrles for Appllcatlon Messages in the

MPF List (Optional) . . .3
Step 5: Add SDF Entries for the Subsystem (Opt1onal) 3
Step 6: Enable the Application for the SA z/OS
Graphical Interface3
Step 7: Reload MPF List and Automatlon
Configuration Files4
Chapter 2. How to Create Automation
Procedures5
Programming Additional SA z / OS Automatlon
Procedures5
How Automation Procedures Are Called5
How CLIST or REXX Automation Procedures Are
Structured . .. - 6
Performing lmtlallzatlon Processmg . 7
Determining whether Automation Is Allowed 8
Performing Automation Processing.38
How to Make Your Automation Procedures Generic 12
Processor Operations Commands13
Developing Messages for Your Automation
Procedures . . B 1)
Example AOCMSG Call A
Example Automation Procedure . . . R
Notes on the Automation Procedure Example . 16
Installing Your Automation Procedures16

© Copyright IBM Corp. 1996, 2005

Testing and Debugging Automation Procedures .17
The Assist Mode Facility17
Using Assist Mode to Test Automatlon
Procedures . 18
Using AOCTRACE to Trace Automatlon
Procedure Processing . . . 20
NetView Testing and Debuggmg Facrl1t1es . .21
Where to Find More Testing Information .22

Coding Your Own Information in the Automation

Status File . .22

Programming Recommendatlons .22

Global Variable Names .23

Chapter 3. How to Add a Message to

Automation. . 25

Conceptual Overview . . . 25

Defining Actions for Messages . . 26
Defining CMD or REP Actions . . 26
Defining AUTO Actions . .27
Defining OVR Actions. .28

Defining the NetView AT Scope . 29

Build . . .29

NetView Automatlon Table Bulld Concept . . 30
When Is an AT Built? . . 30
Predefined Message Automation .31
AT Entry Sequence . . 32

Load .o .33
Enabling Message Automatlon for the
Automation Agent . . 33
Listing ATs .33

A Guide to SA z/0S Automat1on Tables . 33
Automation Table Structure . . 33
Integrating Automation Tables . . 35
Generic Synonyms—AOFMSGSY . . 36
Generic Automation Table Statements . 43

Chapter 4. How to Monitor Applications 45

How to Write Your Own Monitor Routines . . 45

Monitor Resources . . 46
Writing Monitor Resource Commands . 47
Writing a Monitor Routine . 47
Writing a Recovery Routine . . 48

Monitoring JES3 Components . 49
AOFRJ3MN Routine . 50
AOFRJ3RC Routine. . 52

Chapter 5. Exception-Based Monitoring

with OMEGAMON . . 53

Overview . . 53

Scenario . 53

Topologies. . 54

OMEGAMON Interact1on . 55
Programming Interface INGOMX for
OMEGAMON . . 55
Monitor Command INGMTRAP . 56

iii

Health Based Automation Using OMEGAMON . 57
Recovery Techniques Lo . 57
Programming Techniques. . 58
Recommendations . . 59

Chapter 6. How to Automate Your

Resources . . . 61

Using Automation Flags . . 61
Example . . . 61

When SA z/0S Checks Automatlon Flags . . 62
The Automation Manager Global Automation
Flag . .62

Chapter 7. How to Automate Processor

Operations-Controlled Resources . . 65

Automating Processor Operations Resources of

z/0S Target Systems Using Proxy Definitions . . 65
Concept . . .65
Customizing Automatlon for Proxy Resources . 66
Preparing Message Automation. . 68

Automating Linux Console Messages. . . 68
The Linux Console Connection to NetView . . 68
Linux Console Automation with Mixed Case
Character Data . 69
Security Considerations . 69
Restrictions and Limitations . . .69

How to Add a Processor Operations Message to

Automation . . 69
Messages Issued by a Processor Operatlons
Target System . .70
Building the New Automatlon Defmltlons . .74
Loading the Changed Automation Environment 74

VM Second Level Systems Support . 74
Guest Target Systems . . . 74
Customizing Target Systems. .75

Chapter 8. How to Automate USS

Resources . .79

Integration of z/OS UNIX System Serv1ces .79
Infrastructure Overview . .o .79

Setting Up z/0OS UNIX Automatlon . . 80
Customization of z/OS UNIX Resources. . 80
Example: inetd . 84

Hints and Tips . 87
Trapping UNIX syslogd Messages . 87
Debugging . . . 87

Chapter 9. How to Enable Sysplex

Automation. . 89

Sysplex Functions . 89
Managing Couple Data Sets . 89
Managing the System Logger . 90
Managing Coupling Facilities .91
Recovery Actions . .93
Hardware Validation . 97

Enabling Hardware-Related Automatlon . 99
Step 1: Defining the Processor . .99
Step 2: Using the Policy Item PROCESSOR INFO 99
Step 3: Defining Logical Partitions . .99

iv System Automation for z/OS: Customizing and Programming

Step 4: Defining the System

Step 5: Connecting the System to the Processor

Step 6: Defining Logical Sysplexes

Step 7: Defining the Physical Sysplex .
Enabling Continuous Availability of Couple Data
Sets S
Enabling System Log Fallure Recovery .
Enabling WTO(R) Buffer Shortage Recovery .
Enabling System Removal .

Step 1: Defining the Processor and System

Step 2: Defining the Application with

Application Type IMAGE .

Step 3: Automating Messages IXC102A and

IXC402D . . .
Enabling Long Running Enqueues (ENQs)

Step 1: Defining Resources . . .

Step 2: Making Job/ASID Defmltlons

Step 3: Defining IEADMCxx Symbols

Step 4: Defining Commands .

Step 5: Defining Snapshot Intervals .
Enabling Auxiliary Storage Shortage Recovery

Step 1: Defining the Local Page Data Set

Step 2: Defining the Handling of Jobs
Defining Common Automation Items .
Important Processor Operations Considerations
Customizing the System to Use the Functions

Additional Automation Operator IDs

Switching Sysplex Functions On and Off .

Chapter 10. DB2 Automation for
System Automation for z/OS .
Overview .

Line Mode Functlons
Planning Requirements .

IMS

CICS
Installation . .

Automation Control F11e (ACF)
Defining Automation Policy .

Tailoring Your DB2 ACF Entries .
DB2 Automated Functions—Line Command
Functions.

Command Handler
Command Requests

Maintenance Start .

Terminate Threads.

Start/Stop Tablespace
Event-Driven Functions .

Connection Monitoring .

Critical Event Monitoring

Chapter 11. SA z/OS User Exits

Initialization Exits . .
Environmental Setup Ex1ts .
AOFEXDEEF .

AOFEXIO1
AOFEXI02
AOFEXI03
AOFEXI04 .
AOFEXINT .

. 100

100

. 100
. 100

. 100
. 101
. 102
. 104
. 104

. 104

. 105
. 106
. 106
. 107
. 107
. 107
. 107
. 107
. 107
. 107
. 108

108

. 108
. 108
. 109

11
111
111
. 112
. 112
. 112
. 112
. 112
112
. 112

. 115
. 115
. 116
. 116
. 118
. 120
. 122
. 122
. 125

. 129
. 130
. 130
. 131
. 131
. 131
. 132
. 132
. 132

Static Exits132

AOFEXSTA13
AOFEXXo01133
AOFEXX021%4
AOFEXX0314
AOFEXX151%4
AOFEXX161%4
Flag Exits.134
Parameters O e 163
Return Codes N £ V4
Customization Dialog Exits.138
User Exits for BUILD Processing 138
User Exits for COPY Processing 139
User Exits for DELETE Processing 140
User Exits for CONVERT Processing . . . 140
User Exits for MIGRATION, RENAME, and
IMPORT Functions . . .o 14
Invocation of Customrzatron Dralog Ex1ts .o 14
Command Exits142
AOFEXC0014
AOFEXCO01142
AOFEXC0214
AOFEXC0314
AOFEXC0414
AOFEXC05145
AOFEXC061l46
AOFEXC071l46
AOFEXC08146
AOFEXC091l46
AOFEXC101l46
AOFEXC11146
AOFEXC12146
AOFEXC131l46
AOFEXC14147
Pseudo-Exits 147
Automation Control Flle Reload Permlssron Ex1t 147
Automation Control File Reload Action Exit . . 147
Subsystem Up at Initialization Commands . . 147
Testing Exits.147
Chapter 12. Automation Routines. . . 149
LOGREC Data Set Processing150
AOFRSAO1150
AOFRSA02151
SMF Data Set Processing153
AOFRSA03153
SYSLOG Processing155
AOFRSA0815
SVC Dump Processing157
AOFRSAOC 157
Deletion of Processed WTORs from SDF ... L 1el
AOFRSACQE16l
AMREF Buffer Shortage Processmg B (54
AOFRSA0G L. . 1.2
JES2 Spool Recovery Processrng oo . L le4
AOFRSDO1 o (Y
AOFRSD09165
AOFRSDOH B 174
JES2 Shutdown Processrng T ()
HASP099.170
Drain Processing Prior to]ES2 Shutdown 170

AOFRSDO07 . . 170
AOFRSDOF . .17
AOFRSDOG . . 173
JES3 Dump Processing . 173
AOFRSEQ] . . 174
TWS Automation PPI and Gateway Farlures . . 175
EVJEACO1 e . 175
EVJEACO02 . 175
TWS Automation Operatlon and]ob Errors . 175
EVJEACO03 .o . 176
EVJEAC04 . 176
EVJRACO05 . 177
EVJRSJOB . 177
TWS Status Observer Control . 178
EVJEOBSV . 178
TWS Controller Status . 178
EVJRSACT 178
CICS-Related Processing and Recovery . . 178
CICS Region Abend Recovery . . 178
CICSPlex Processing . . 180
CICS Link Monitoring . 181
CICS VSAM RLS Status . . 181
CICS Shutdown . 182
CICS Short on Storage . 182
CICS Startup .o . 183
CICS Transaction Recovery . . 185
CICS Unit of Work Recovery . . . 187
IMS-Related Processing and Recovery . . 188
IMS Region Abend Recovery . . 188
IMS Dependent Region Processing . 188
IMS MSC Link Recovery . 189
IMS OLDS Recovery . . 190
IMS RECON Recovery . 190
IMS Startup . . 191
IMS Shutdown . . 193
IMS Sysplex Support . . 193
IMS TCO Automation . 194
IMS Transaction Recovery . . 194
IMS XRF Processing . . 195
Appendix A. Global Variables . 201
Read-Only Variables . . 201
Read /Write Variables. . . 202
Parameter Defaults for Cornmands . . 211
Appendix B. Customizing the Status
Display Facility (SDF). . 215
Overview of Status Display Fac111ty . 215
How SDF Works . . 215
Types of SDF Panels . . 215
Status Descriptors . . 216
SDF Tree Structures . 217
How Status Descriptors Affect SDF . 218
How SDF Helps Operations to Focus on Specrfrc
Problems . oL 222
How SDF Panels Are Deflned . . 222
Dynamically Loading Tree Structure and Panel
Definition Members 223
Using SDF for Multiple Systems . . 223
SDF Components . . . 224

Contents

A\

How the SDF Task Is Started and Stopped

SDF Definition .

Summary of SDF Def1n1t1on Process

Step 1: Defining SDF Hierarchy

Step 2: Defining SDF Panels

Step 3: Customizing SDF Imt1ahzat10n
Parameters . .

Step 4: Defining SDF in the Customlzatlon
Dialog. .o

Appendix C. Message Automation
FORCED AT Entry Type.
RECOMMENDED AT Entry Type

vi

System Automation for z/OS: Customizing and Programming

. 224
. 225
. 225
. 226
. 227

. 229

. 230

. 231
. 231
. 231

CONDITIONAL AT Entry Type
Known Messages .
Unknown Messages .

Other Forced AT Entries.

Restricted Message IDs .

Appendix D. TSO User Monitoring
Glossary

Index .

. 232
. 232
. 233
. 234
. 234

. 237

. 239

. 259

Figures

1. Example of a WTORS Entry2 | 23. Three Threshold Levels Are Defined in the
2. Automation Procedures for System Operatlons 6 | Automation Policy for MVS Component
3. Automation Procedures for Processor I SYSLOG 156
Operations . . . Lo 7 24. Automation Policy Item MESSAGES/ USER
4. Skeleton of an Automat10n Procedure .. .13 DATA to Entry/Type-Pair MVSESA /SYSLOG
5. SDF Detail Status Dlsplay Panel with Assist Contains One Command without Selection
Mode e Value . . . B £ 74
6. AT Structure . . . I 25. MVSDUMP Thresholds . .. 159
7. Sample Monitor Command . . 48 26. MVSESA/MVSDUMP Command Entr1es 160
8. z/0S UNIX Control Specification Panel for 27. MVSESA/MVSDUMPTAKEN Command
Type INSTANCE.80 Entries. 160
9. Startup Definition for a Process83 28. MVSESA/ MVSDUMPRESET Command
10. Creating a Softlink83 Entries. 160
11. Stop Definitions for a Process84 29. MVSESA AMRF Command Defmrtrons 163
12. Deletea File8 30. JES2 SPOOLSHORT Recovery Definition 168
13. inetd Structure85 31. DISPACF Command Response Panel 169
14. Dependency Graphic86 | 32 JES2 DRAIN Specifications Panel 172
15. Example of a UNIX Message. . . .o 87 33. DISPACF Panel . . . N VA
16. Sample Panel for Command Processmg 106 34. DISPACF JES2 INITDRAIN Panel N V&
17. Sample Panel for Code Processing . . . 106 35. Example SDF Panels216
18. SA z/OS Exit Sequence during SA z/ OS 36. Example SDF Tree Structure 218
Initialization 130 37. Status Descriptors Chained to Status
19. Three Threshold Levels Are Def1ned in the Components 0220
Automation Policy for MVS Component 38. Example Tree Structure Def1n1t1on 226
LOGREC 152 39. Example SDF Panel228
20. Automation Policy Item MESSAGES / USER 40. Example Panel Definition Entry 228
DATA to Entry/Type-Pair MVSESA /LOGREC 41. Sample FORCED AT Entry 231
Contains One Command without Selection 42. Sample FORCED AT Entry with ISSUECMD
Value 152 and ISSUEREP Action. 231
21. Three Threshold Levels Are Defmed in the 43. Sample RECOMMENDED AT Entry Type 232
Automation Policy for MVS Component 44. CONDITIONAL AT Entry for a Specific
SMFDUMP 154 Message 232
22. Automation Policy Item MESSAGES / USER 45. CONDITIONAL AT Entry for a Gener1c
DATA to Entry/Type-Pair Message23
MVSESA /SMFDUMP Contains One 46. BEGIN-END Block Statements ... 234
Command without Selection Value 154

© Copyright IBM Corp. 1996, 2005 vii

viii System Automation for z/OS: Customizing and Programming

Tables

System Automation for z/OS Library .
Health State Return Codes

Automation Flags: Typical Uses in SA z / OS
WTOBUF Recovery Process .

Externalized Common Global Varlables
Global Variables to Enable Advanced
Automation (CGLOBALS)

SANNSLIE I

© Copyright IBM Corp. 1996, 2005

. XV
. 47

62

. 103

201

. 203

Global Variables That Define the Installation
Defaults for Specific Commands

SDF Components .

Panel Definition Entry Descrlptlon .
AT Entries That Are Generated by AUTO
Actions .

. 211
. 224
. 228

. 233

ix

X System Automation for z/OS: Customizing and Programming

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM product, program, or service may be used. Subject to IBM’s
valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland Entwicklung GmbH
Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Web Site Disclaimer

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement. IBM accepts
no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

Programming Interface Information

This publication primarily documents information that is NOT intended to be used
as a Programming Interface of System Automation for z/OS.

This publication also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of System Automation for z/OS.

© Copyright IBM Corp. 1996, 2005 xi

This information is identified where it occurs, either by an introductory statement
to a chapter or section or by the following marking:

| Programming Interface information

This section contains Programming Interface Information.

| End of Programming Interface information

Trademarks

The following terms are trademarks or service marks of the IBM Corporation in
the United States or other countries, or both:

CICS DB2

IBM IMS

MVS NetView

0S/390 Parallel Sysplex

PR/SM Processor Resource/Systems Manager
RACF RMF

S/390 Tivoli

Tivoli Enterprise Console VTAM

WebSphere z/0S

z/VM zSeries

The following terms are trademarks of other companies:
* Linux is a registered trademark of Linus Torvalds.

* UNIX is a registered trademark of The Open Group in the United States and
other countries.

xii System Automation for z/OS: Customizing and Programming

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS™ enable users to:

* Use assistive technologies such as screen readers and screen magnifier software
* Operate specific or equivalent features using only the keyboard
* Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPE. Refer to E/OS TSO/El
[Primer |z/OS TSO/E User’s Guidd, and [z/OS ISPF User’s Guide Vol 1| for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

z/0S information

z/0S information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at:

|http://www.ibm.com/servers/eserver/zseries/zos/bkserv/|

© Copyright IBM Corp. 1996, 2005 xiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

xiv System Automation for z/OS: Customizing and Programming

About This Book

This book describes how to adapt your completed standard installation of IBM®
Tivoli® System Automation for z/OS (SA z/0S) as described in |[BM Tivoli Syster|
[Automation for z/OS Planning and Installation| to your environment. This book
contains information on how to add new applications to automation and how to
write your own automation procedures. It also contains information about how to
add new messages for automated applications.

Who Should Use This Book

This book is primarily intended for automation programmers responsible for:
 Customizing system automation and the operations environment

* Developing automation procedures and other operations capabilities

Prerequisites
Throughout this book, it is expected that readers will be familiar with System
Automation for z/OS and the following documentation:
* [[BM Tivoli System Automation for z/OS Operator’s Commands|
« IBM Tivoli System Automation for z/OS Programmer’s Reference]
* IBM Tivoli System Automation for z/OS Defining Automation Policy)|

Where to Find More Information

The System Automation for z/OS Library

The following table shows the information units in the System Automation for

z/OS library:

Table 1. System Automation for z/OS Library

Title Order Number
lIBM Tivoli System Automation for z/OS Planning and Installation| SC33-8261
[IBM Tivoli System Automation for z/OS Customizing and Programming] SC33-8260
lIBM Tivoli System Automation for z/OS Defining Automation Policy] SC33-8262
[IBM Tivoli System Automation for z/OS User’s Guide| SC33-8263
\IBM Tivoli System Automation for z/OS Messages and Codes| SC33-8264
[IBM Tivoli System Automation for z/OS Operator’s Commands| SC33-8265
lIBM Tivoli System Automation for z/OS Programmer’s Reference| SC33-8266

IBM Tivoli System Automation for z/OS CICS Automation Programmer’s| SC33-8267
Reference and Operator’s Guide]

IBM Tivoli System Automation for z/OS IMS Automation Programmer’s| SC33-8268
Reference and Operator’s Guide|

IBM Tivoli System Automation for z/OS TWS Automation Programmer’s| SC23-8269
Reference and Operator’s Guide]

lIBM Tivoli System Automation for z/OS End-to-End Automation Adapter] SC33-8271

© Copyright IBM Corp. 1996, 2005 XV

xvi

The System Automation for z/OS books are also available on CD-ROM as part of
the following collection kit:

IBM Online Library z/OS Software Products Collection (SK3T-4270)

SA z/OS Home Page
For the latest news on SA z/0S, visit the SA z/OS home page at
[http:/ /www.ibm.com/servers/eserver/zseries /software /sal

Related Product Information

Using

You can find books in related product libraries that may be useful for support of
the SA z/OS base program by visiting the z/OS Internet Library at
[http:/ /www.ibm.com/servers /eserver/zseries/zos /bkserv /|

LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/0S elements and features, z/ VM® VSE/ESA"™, and Clusters for AIX® and

Linux

e The Internet. You can access IBM message explanations directly from the LookAt
Web site at |attp:/ /www.ibm.com/servers/eserver/zseries/zos /bkserv /lookat/ |

* Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e
systems to access IBM message explanations using LookAt from a TSO/E
command line (for example: TSO/E prompt, ISPF, or z/OS UNIX® System
Services).

* Your Microsoft® Windows® workstation. You can install LookAt directly from
the z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS > command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

* Your wireless handheld device. You can use the LookAt Mobile Edition from
[http:/ /www.ibm.com /servers/eserver/zseries / zos /bkserv /lookat /lookatm.html|
with a handheld device that has wireless access and an Internet browser (for
example: Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or
Opera for Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from:

* A CD-ROM in the z/OS Collection (SK3T-4269).
* The z/OS and Software Products DVD Collection (SK3T4271).

* The LookAt Web site (click Download and then select the platform, release,
collection, and location that suit your needs). More information is available in
the LOOKAT.ME files available during the download process.

System Automation for z/OS: Customizing and Programming

http://www.ibm.com/servers/eserver/zseries/software/sa
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

Chapter 1. How to Add a New Application to Automation

This chapter describes the steps that are required to automate and monitor a new
application by SA z/OS.

The main tasks involved in extending automation include:

* Adding or changing values via the SA z/0OS customization dialog

* Building a new automation control file

* Adding or changing entries in the message processing facility (MPF) message list
and the NetView automation table.

* Adding new resources to the status display facility (SDF)

* Reloading the changed files and tables, such as the MPF list, NetView

automation table, and automation control file, to enable the new or changed
automation

Note that messages that have been defined for the automation are automatically
added to the NetView Automation Table and MPFLSTSA member. For more details
see [Chapter 3, “How to Add a Message to Automation,” on page 25

Step 1: Define an Application Policy Object

To add a new application to SA z/0OS, you must create and define a new
Application policy object using the SA z/OS customization dialog. With the
customization dialog, you also define how the new application should be
automated by SA z/0S, for example:

* Setting automation flags for the application
* Specifying startup or shutdown commands for the application

 Linking the application into an application group

How to do this is described in detail in [[BM Tivoli System Automation for z/OS|
[Defining Automation Policy}

Step 2: Define Outstanding Reply Processing

SA z/0S keeps a record of all outstanding Write-to-Operator Replies (WTORs)
that it receives if it does not reply to them immediately through ISSUEREP.
Because some applications may have more than one WTOR at the same time, and
not all WTORs are equally important, they are classified accordingly.

If SA z/OS receives a WTOR through OUTREP, ACTIVMSG, HALTMSG,
TERMMSG, or ISSUEREP, and does not reply to it immediately, it first searches
through the automation control file for ‘application WTORS’, and then '"MVSESA
WTORS’, using the message ID as the first value and the job name as the second.
This produces a value pair where the first word is the priority of the WTOR and
the second is the type of WTOR.

© Copyright IBM Corp. 1996, 2005 1

How to Add a New Application to Automation

2

Performance:

You should define a WTORS entry in the Message Processing panel for
applications that frequently issue WTORs (see . This will improve
performance by reducing searches within the automation control file as
mentioned above.

1. Message Processing Panel:

Action Message ID Cmd Rep Code User Auto Ovr
Description
CODE WTORS 3

Classification of IMS WTORs

2. Code Processing Panel:

Code 1 Code 2 Code 3 Value Returned
DFS9961 NORMAL PRI
DFS31391 NORMAL PRI

*

IMPORTANT SEC

Figure 1. Example of a WTORS Entry

The priority-type value pairs that are specified in the Value Returned field of the
Code Processing Panel can be interpreted as follows:

Priority

Meaning

NORMAL

This is an ordinary message that does not indicate a problem.
Displayed in SDF in GREEN (NWTOR status).

UNUSUAL

This might indicate a problem. It is not a WTOR that is normally
outstanding. Displayed in SDF in YELLOW (UWTOR status). This is
the default if a WTOR is not matched in either table.

IMPORTANT

This indicates a problem. It must be replied to promptly and may
indicate more serious problems. Displayed in SDF in RED (IWTOR
status). It may be abbreviated to IMPORT.

IGNORE

This tells SA z/0S to ignore the WTOR (RWTOR status). The WTOR is
not displayed on the SDF screen and is not recorded in the automation
status file. This priority can only have a type of SEC.

Notes:

1. These priorities are also represented on the WTORs icon on the NMC workstation.
2. The colors are default SA z/OS colors.

Type

Meaning

PRI

This is the primary WTOR for the application. If SA z/OS needs to
issue a reply to the application but the reply number or message ID (or
both) is not specified (such as on a shutdown pass), SA z/OS responds
to the last primary WTOR that it received for the application. This is
the default type. PRI is not applicable if the priority is IGNORE.

SEC

This is the secondary WTOR for the application. SA z/OS does not
reply to this WTOR if it has a primary or an older, secondary WTOR
recorded for the application. SEC is the default if the priority is
IGNORE.

System Automation for z/OS: Customizing and Programming

How to Add a New Application to Automation

SA z/0S uses a list to keep track of the WTORs for each application:
1. New primary WTORs are added to the front of the list
2. New secondary WTORs are added to the back of the list

When SA z/0S needs to get a reply number for an application, it takes the first
reply in the list. If a secondary WTOR has been received but a primary has not,
SA z/0S replies to the secondary WTOR. Generally it replies to the latest primary
WTOR that is still outstanding, or the earliest secondary WTOR that is still
outstanding if there are no primary WTORs.

Step 3: Build New System Operations Configuration Files

When you finish defining the application in the customization dialog, build the
new system operations configuration files (automation control file, automation
manager configuration file, NetView Automation Tables, and the MPFLSTSA
member) from the updated policy database. See [[BM Tivoli System Automation for|
[z/OS Defining Automation Policy] for more information.

After you have completed this step and |“Step 7: Reload MPF List and Automation|
[Configuration Files” on page 4, the application is known to SA z/OS and can

therefore be automated according to the policy that was defined in [“Step 1: Define

fan Application Policy Object” on page 1)

For advanced application automation, you should consider completing some or all
of the following steps.

Step 4: Code Entries for Application Messages in the MPF List

(Optional)

If necessary, code your entries for the application startup, abend, and shutdown
messages in the MPF list, specifying the AUTO(YES) parameter. This step is
optional. If the default is already AUTO(YES) for the messages, bypass this step.

You can use the MPFLSTSA member, which contains all messages that are relevant
to SA z/0S, as a basis for your own messages.

If you are automating a message, you probably also want to suppress the message
from appearing on operator consoles. To mark a message for suppression, code
SUP(YES) in the MPF list entry for the message.

For more information on coding MPF list entries, see [z/0S MVS Initialization and)
[Tuning Referencel

Step 5: Add SDF Entries for the Subsystem (Optional)

If you want the application to appear in SDF status displays, update the SDF tree
structure and SDF panels with information about the new application. Refer to
[Appendix B, “Customizing the Status Display Facility (SDF),” on page 215| for
more details.

Step 6: Enable the Application for the SA z/OS Graphical Interface

If you want the new application to appear in any of the special views on the NMC
workstation, you need to update the member in the DSIPARM data set that holds
the BLDVIEWS cards for the sysplex that your application will run in.

Chapter 1. How to Add a New Application to Automation 3

How to Add a New Application to Automation

If you want the application to appear in an existing view, you need to add a
NONSNA statement:

NONSNA=plexname .subsysname/APL/sysname*,
QUERYFIELD=MYNAME

where plexname is the name of your sysplex, subsysname is the 11-character
subsystem name of your application, and sysname* is a wildcard for the system
names that you want to see the application in this view.

If you want to add a new view, you will need to add a view statement:

VIEW=ING.plexname,
ANNOTATION="'view description'

This needs to be followed by the NONSNA statement for the application as
described above.

Note: By default, the application will be included on NMC within the
automatically generated views representing the application groups that it is
a member of.

Step 7: Reload MPF List and Automation Configuration Files

Reload the MPF list and automation configuration files to enable automation of the
application.

To reload the MPF list, type the following command:
* From the z/OS console:
SET MPF=xx
+ From a NetView console using the MVS™ prefix:
MVS SET MPF=xx

where xx is the suffix of the MPF member in the SYS1.PARMLIB data set to load.

To reload the automation manager configuration file, all updated automation
control files and the automation tables issue:

INGAMS REFRESH
and specify a data set name or an * which means reload the current one.

If SDF tree structures and panels have been loaded dynamically, you do not have
to recycle SDF to have the application reflected in SDF at this point.

When you have completed these steps, the application is added to your
automation policy and environment, and can be monitored using SDF.

4 System Automation for z/OS: Customizing and Programming

Chapter 2. How to Create Automation Procedures

You can write additional automation procedures to supplement the basic
automation procedures that are supplied by SA z/OS. For example, you may want
to develop procedures to automate an application used exclusively on your system
or to perform specialized automated operations for a subsystem.

SA z/0OS generic routines and common routines perform basic functions such as
logging messages and checking automation flags. You can use them in your own
automation procedures.

SA z/0OS generic routines and common routines are convenience routines that
provide your automation procedures with a simple, standard way of interfacing
with the automation control file, automation status file, and NetView log file. It is
strongly recommended that you use these routines wherever possible in your own
code.

["How CLIST or REXX Automation Procedures Are Structured” on page 6| describes
how to structure your automation procedures. Refer to |[[BM Tivoli Systern]|
[Automation for z/OS Programmer’s Reference for detailed descriptions and examples
of the generic routines, common routines and file manager commands you can use
in your automation procedures.

Programming Additional SA z/OS Automation Procedures

You can write additional automation procedures to supplement the basic
automation procedures that are supplied by SA z/OS. For example, you may want
to develop procedures to automate an application used exclusively on your system
or to perform specialized automated operations for a subsystem.

SA z/OS generic routines, common routines, and utility routines perform basic
functions such as logging messages and checking automation flags.

SA z/0S generic routines, common routines, and utility routines are convenience
routines that provide your automation procedures with a simple, standard way of
interfacing with the automation control file, automation status file, and NetView
log file. It is strongly recommended that you use these routines wherever possible
in your own code.

[“How CLIST or REXX Automation Procedures Are Structured” on page 6| describes
how to structure your automation procedures. Refer to [[BM Tivoli System]
[Automation for z/OS Programmer’s Reference| for detailed descriptions and examples
of the generic routines, common routines and file manager commands you can use
in your automation procedures.

How Automation Procedures Are Called

There are several ways to call an automation procedure including;:

* Calling the automation procedure from the NetView automation table using
SA z/0S generic routines

* Keying in the automation procedure name or its synonym into a NetView
command line

© Copyright IBM Corp. 1996, 2005 5

How Automation Procedures Are Called

 Calling the automation procedure from another program
* Starting the automation procedure with a timer
* Starting the automation procedure with the NetView EXCMD command

* Starting the automation procedure on an automation operator with the SA z/0OS
AOFEXCMD command routine

* In the customization dialog, entering your automation procedure name in the
Command text or Command field of the following entry types:

Application
— MVS Component
Timers

Monitor Resources

Note: Not all routines can be called through all interfaces as some require
extensive environmental setup before they are invoked.

I How CLIST or REXX Automation Procedures Are Structured

Automation procedures can be written in the NetView CLIST language or in
REXX. It s recommended that the structure of these automation procedures should
contain three main parts, as shown in the following figures. These parts are:

1. Perform initialization processing
2. Determine whether automation is allowed

3. Perform automation processing.

The following sections provide more details about each part of an automation
procedure.

[Figure 2] illustrates the structure of automation procedures for system operations
and [Figure 3 on page 7] for processor operations.

-

Initialization
processing

v

Automation
check
(AOCQRY)

N>

3 Automation-unique processing

| 1
| 1
' l
1 . .
| Log or notify Check thresholds File manager I
[(AOCMSG) (CHKTHRES) ?XQPF%E{% (ACF) '
| (ASF) (ASFUSER) \
I (AOCUPDT) !
| (INGSET) I
| ¥ :
|
| Status update Issue commands Perform error Customer-written 1
h and log or or replies code matching code for timers, 1
notify messages (ACFCMD) (CDEMATCH) logic and other |
! (AOCUPDT) (ACFREP) functions |
! (INGPOST))
|
1
|

Figure 2. Automation Procedures for System Operations

6 System Automation for z/OS: Customizing and Programming

How CLIST or REXX Automation Procedures Are Structured

11 Initialization
processing

v

2| Automation
check
(ISQCHK)

v

3 Automation-unique processing

v

Initialize or

shutdown a Complete target Issue prodcessor
target system system data commands
(A(%TIVXTE) fields (ISQSEND)
(DEACTIVATE) (ISQSEND) (ISQCCMD)

Figure 3. Automation Procedures for Processor Operations

Performing Initialization Processing

Initialization processing may not be required for simple automation procedures.

Initialization processing is responsible for:

Setting up any error trap routines.

Identifying the automation procedure by setting a local variable either explicitly
or at execution time. This step makes it simpler to code routines that log
messages and send notifications.

From REXX, the name of the CLIST is returned by the “parse source” statement.

Declaring the global variables, such as CGLOBALs and TGLOBALSs, that are
used for subsystem definition values in CLIST.

See|Appendix A, “Global Variables,” on page 201| for descriptions of global
variables. In REXX, you must GET the first time you reference the globals, and
PUT when you update them.

Checking to see if debugging (general or CLIST-specific) is on.
Issuing debugging messages, if debugging is turned on.
Validating the automation procedure call.

This step can help prevent an operator from calling the automation procedure
inappropriately. Automation procedures can also be validated using NetView
scope checking.

Saving NetView message parameters. This step is necessary if your automation
procedure uses the NetView WAIT statement and you need to access the original
message text or control information.

For more information on coding automation procedure initialization sections, refer
to|“Example Automation Procedure” on page 14,|to Tivoli NetView for z/OS
Customization Guide and to Tivoli NetView® for z/OS Automation Guide.

7

Chapter 2. How to Create Automation Procedures

How CLIST or REXX Automation Procedures Are Structured

8

Determining whether Automation Is Allowed

System Operations

Automation procedures for applications and MVS components, which are called
from the NetView automation table should always perform an automation check
by calling the AOCQRY common routine. AOCQRY checks that the automation
flags allow automation. These checks eliminate the risk of automating messages for
applications that should not be automated, or for which automation is turned off.
AOCQRY also initializes most of the CGLOBALs and TGLOBALs used in the
automation procedure with values specific to the application.

Refer to [IBM Tivoli System Automation for z/OS Programmer’s Referencd for more
information on coding the automation check routine.

Processor Operations

Most of the processor operations commands run only when processor operations
has been started. To determine whether processor operations is active, you can use
the ISQCHK command in your automation routines. If processor operations is not
running, ISQCHK returns return code 32 and issues the message:

1SQ0301 Cannot run cmd-name command until Processor Operations has started.

Your application can then issue the ISQSTART command to begin processor
operations.

Performing Automation Processing

Automation processing is performed by any combination of SA z/OS routines and
your own code. The following documentation gives more information on coding
automation procedures:

+ |“Automation Processing in System Operations”]

* |“Automation Processing in Processor Operations” on page 10|

Automation Processing in System Operations
This section contains information on how to customize automation processing for
system operations.

Updating Status Information: You can update status information by calling the
AOCUPDT common routine. This routine is used when a message indicates a
status change. This would normally be done from the generic routines ACTIVMSG,
HALTMSG, and TERMMSG. Making your own status updates may cause
unpredictable results.

For more information, see [[BM Tivoli System Automation for z/OS Programmer’s|

Logging Messages and Sending Notifications: You can log messages and send
notifications by calling the AOCMSG common routine.

AOCMSG will:
 format a message for display or logging
* issue messages as SA z/OS notification messages to notification operators.

For more information, see [[BM Tivoli System Automation for z/OS Programmer’s|

System Automation for z/OS: Customizing and Programming

How CLIST or REXX Automation Procedures Are Structured

Issuing Commands and Replies: You can issue commands and replies by calling
the ACFCMD and ACFREP common routines. You can use these routines to:

* Issue one or more commands in response to a message.
* Issue a single reply in response to a message.

* Use the step-by-step (PASS) concept to react to or recover from an automation
event.

ACFCMD issues one or more commands. It supports both a single reaction and the
step-by-step (PASS) concept. For more information, see [[BM Tivoli System|
[Automation for z/OS Programmer’s Reference}

ACEFREP issues a single reply. It supports both a single reaction and the
step-by-step (PASS) concept. For more information see |[BM Tivoli System]
[Automation for z/OS Programmer’s Reference}

In many cases you may be able to use the ISSUECMD and ISSUEREP generic
routines which also support single and pass processing.

Checking Thresholds: You can check and update thresholds by calling the
CHKTHRES common routine. Use CHKTHRES to track and maintain a threshold,
and to change the recovery action based on the threshold level exceeded. For more
information see [IBM Tivoli System Automation for z/OS Programmer’s Referencel

Checking Error Codes: You can check error codes by calling the CDEMATCH
common routine. Use CDEMATCH to compare error codes in a message to a set of
automation-unique error codes to determine the action to take. For more
information, see |[BM Tivoli System Automation for z/OS Programmer’s Referencel

In some cases you may be able to use the code matching capabilities of the
ISSUEREP and TERMMSG generic routines.

Using File Manager Commands: You can use file manager commands to access
SA z/0S control files such as the automation control file and automation status
file. Use ACF if you need to load or display the automation control file. Use
ACFFQRY to query the automation control file quickly. Use ASF to display the
automation status file. Use ASFUSER to modify the automation status file fields
reserved for your own information. For more information, see [[BM Tivoli Syster|
[Automation for z/OS Programmer’s Reference}

Using External Code for Timers, Logic, and Other Functions: Your automation
procedures may require code to set timers, to perform logic unique to your
enterprise or to the automation procedure itself, and to perform other functions.
Some examples include:

* Issuing commands and trapping responses.

You can issue commands and trap responses using the NetView WAIT or PIPE
commands. You may need to use these commands in your code if it is necessary
to check the value or status of a system component or application before
continuing processing. For more information, see Tivoli NetView for z/OS
Customization Guide

* Setting Common Global and Task Global values to control processing.

You can set Common and Task Global values by using NetView commands. You
may need to set these values if it is necessary to set a flag indicating progress,
message counts, and other indicators that must be kept from one occurrence of a
message to the next. See |[BM Tivoli System Automation for z/OS Defining|
[Automation Policy|for a table of all externalized SA z/0OS global variables.

Chapter 2. How to Create Automation Procedures 9

How CLIST or REXX Automation Procedures Are Structured

10

Also refer to the discussion of CGLOBALs and TGLOBALs in Tivoli NetView for
z/OS Customization Guide

* Setting timer delays to resume processing.

You can set timer delays by using the NetView AT, AFTER, EVERY and CHRON
commands. You can use these commands when an automation procedure must
either resume processing or initiate another automation procedure after a given
time to do additional processing. For example, you could use these commands
to perform active monitoring of subsystems. For more information, see the
discussion of AT, AFTER, EVERY and CHRON commands in Tivoli NetView for
z/OS Automated Operations Network User’s Guide

Automation Processing in Processor Operations
This section contains information on how to customize automation processing for
processor operations.

Initializing a Target System: If your routines need to start target systems
(hardware and/or operating system), issue the ISQCCMD ACTIVATE command.

Shutting Down a Target System: If your routines need to shut down a target
system, issue the ISQCCMD DEACTIVATE OCF command. Before issuing the
command to close the target system, shut down all of your functioning
subsystems. This avoids any unexpected situations at the target system.

Issuing Other OCF Commands: All OCF commands supported by processor
operations can be issued from automation routines. See [[BM Tivoli System]
[Automation for z/OS Operator’s Commands| for details about these commands.

Reserved SA z/OS Commands: The SA z/0S commands ISQISUP, ISQISTAT,
ISQCMMT, ISQSTRT, ISQXIPM, ISQGPOLL, and ISQGSMSG are not intended for
your use. Do not use these in your automation routines. Unexpected results may
occur.

The following commands can only be used from an operator console and should
not be used in your automation routines or with ISQEXEC: ISQXDST, ISQXOPT,
and ISQHELP.

The following commands are for automation and should not be used in your
automation routines: ISQI101, ISQI212, ISOMCLR, ISQI320, ISQIUNX, 1SQI347,
ISQI470, ISQI886, ISQISSS, ISQI8SY, 1SQI128, ISQIVMT, ISOMVMI1, ISQMVMI2,
ISOMWAIT, ISOMDCCE, ISQM020, and ISQIPLC.

Serializing Command Processing: Serializing command processing ensures that
commands and automation routines are processed in the order in which they are
sent to a target system console. It can also prevent the command sequence from
being interrupted by other tasks.

Specific target control tasks are assigned to specific target systems during
initialization of the target system. More than one target system can share a target
control task, but a target system never has more than one target control task
allocated to it to perform work.

When a command or an automation routine is sent to a target system, it can be
processed partly in the issuing task (a logged-on operator or an autotask) and
partially in a target control task. When the command or automation routine is to
be processed by a target control task, it is either allocated to the target control task
and processed, or queued to be processed by the target control task. This serializes

System Automation for z/OS: Customizing and Programming

How CLIST or REXX Automation Procedures Are Structured

the processing of commands and automation routines. Serializing ensures that they
are processed in the order in which they were sent to the target system console.

The NetView program has priority defaults established during its initialization.
Usually, everything running under NetView has a low priority. You can use the
NetView DEFAULTS command to see what the settings are, but you should not
change them. For SA z/OS command processing to be serialized as designed, all
commands used in SA z/0OS must have a priority setting of “low”. If you change
the priorities or have more than one priority for commands used in SA z/OS, the
difference in the priorities may defeat the serialization that results from the
architecture of the target control task.

Sending an Automation Routine to a Target Control Task: If you run the same
series of SA z/0OS commands regularly, you can program the commands into a
NetView automation routine. Follow the guidelines you use for any NetView
automation routine.

A NetView autotask or a logged-on operator can then run this routine or send it to
a target control task. Use the following command to transfer an automation routine
to a target control task:

ISQEXEC target-system-name SC routine-name

When you issue the ISQEXEC command to process an automation procedure, all of
the commands are processed in the order in which they occur in the automation
procedure. This is because the ISQEXEC command sends work to a target control
task, which processes commands serially. Any other commands or automation
routines issued to the same console by the ISQEXEC command are queued for
processing by the target control task and do not start until the previous command
or automation procedure completes.

The ISQEXEC command also frees the original task from any long-running
command sequence. This lets you use the issuing task, such as an OST, for other
work.

The ISQEXEC command does not lock consoles to ensure command serialization;
the command serialization process is due to the target control task allocation
scheme. Commands and automation routines are processed in the order in which
they occur; however, it is possible for commands from other tasks to interrupt the
command sequence.

For more information about the ISQEXEC command, see [[BM Tivoli Syster|
[Automation for z/OS Operator’s Commands|

Locking a Console: Several routines and operators may attempt to address the
same console at the same time. The ISQEXEC command does not prevent other
tasks from interrupting the sequence of commands being processed by the target
control task; it does not lock the console.

To prevent a sequence of commands from being interrupted, use the ISQXLOC and
ISQXUNL commands. The ISQXLOC command locks access to the console. If a
task attempts to issue a command to a locked console, the task is told that the
console is locked, and the command fails. When you are finished with the
sequence of commands that must be processed without interruption, issue the
ISQXUNL command to unlock access to the console.

Chapter 2. How to Create Automation Procedures 11

How CLIST or REXX Automation Procedures Are Structured

You can use the ISQXLOC and ISQXUNL commands within automation routines to
ensure that they complete without interference from other tasks. For automation
routines that issue a number of SA z/0OS commands, put the following command
after the ISQEXEC command and near the beginning of the routine:

ISQXLOC target-system-name SC

This locks access to the target system console to the current task until the lock is
dropped by the command:

ISQXUNL target-system-name SC

Only the task that issued ISQXLOC can successfully issue ISQXUNL. If an
ISQXLOC command is issued from a locked sequence of commands, it is rejected
because the console is already locked.

When you lock a system console for a target system running on a logical partition,
you lock that system console for all other target systems using that processor. A
command sent to a system console for any other target system (logical partition)
on that target hardware definition will not run until the console is unlocked.

If your automation routine cannot wait for a console to be released, use the
ISQOVRD command to gain control of the console. Use the following command
only in critical automation routines:

ISQOVRD target-system-name SC

When the routine issuing the override command completes, the lock is removed
and the console is available.

How to Make Your Automation Procedures Generic

12

By using the SA z/OS common routines, you can make your own automation
procedures generic. A generic automation procedure comprises three parts. For
each part, there are special common routines that help you to fulfill your tasks:

Preparation
Check if automation is allowed and should be done. Use common routine
AOCQRY.

Evaluation
What should be done? Use common routine CDEMATCH.

Execution
Do what should be done. Use common routines ACFCMD or ACFREP.

System Automation for z/OS: Customizing and Programming

How to Make Your Automation Procedures Generic

EE R

*kkkKhhKk Preparation *kkkhkk
T T T

AOCQRY
- check if the resource is controlled by SA z/0S
- check if automation is allowed

- prepare/set task global variables for CDEMATCH, ACFCMD and ACFREP

CDEMATCH
- code matching (table search in ACF)

- find out required action

ACFCMD/ACFREP

- do required action:
issue command / respond reply

Figure 4. Skeleton of an Automation Procedure

For more information on the mentioned common routines refer to m
[System Automation for z/OS Programmer’s Referencel For more information on
command processing or reply processing refer to [[BM Tivoli System Automation for|
[z/OS Defining Automation Policy}

Processor Operations Commands

Whenever possible, your automation routines should make use of SA z/0OS’s
processor operations OCF commands, also called common commands. These
commands are independent of the hardware type of the target system’s processor.
Therefore, the use of these commands minimizes the need for changes to your
automation routines if you need to add new processors to your configuration. See
[[BM Tivoli System Automation for z/OS Operator’s Commands| for a detailed
description of the processor operations commands.

Developing Messages for Your Automation Procedures

Depending on the scope of additional programming, creating new automation
procedures may also require developing additional messages.

Some SA z/0S facilities and commands you can use to develop messages include:

+ The AOCMSG common routine (see [[BM Tivoli System Automation for z/OS|
[Programmer’s Reference)).

+ The AOCUPDT common routine (see [[BM Tivoli System Automation for z/OS|
[Programmer’s Reference)).

The following steps summarize the message development process.
1. Choose a message ID. Make sure it is unique.
2. Use NetView message services to define the message to NetView.

Put an entry for the message in a DSIMSG data set. This data set must be
identified in a DSIMSG data definition (DD) name.

Chapter 2. How to Create Automation Procedures 13

Developing Messages for Your Automation Procedures

3. Use the AOCMSG common routine to issue the message (see |[[BM Tivoli Systen|
[Automation for z/OS Programmer’s Reference).

4. Add an entry for the message to your production copy of the NetView
DSIMSG data set.

Example AOCMSG Call

This example shows how to code AOCMSG to issue message ABC123L.

Entries for messages in DSIMSG member DSIABC12 are as follows:

Sk e ok o ko ook ko ok ok o koo ko ok ko ke ko ke ok ko ko
1201 ...

1211 ...

1221 ...

1231 10 40 THE EAGLE HAS &1

1241 ...

B o T T S T T T e T Tt s Lt

Your automation procedure contains the following AOCMSG call:
<other automation procedure code>

AOCMSG LANDED,ABC123

<other automation procedure code>

When AOCMSG is called as specified in the automation procedure, DSIMSG
member DSIABC12 is searched for message ABC123I. Substitution for variable &1
occurs, and the following message is generated:

ABC123I THE EAGLE HAS LANDED

Note that the message is defined with a 10 and a 40 between the message ID and
the first word of the message. These are the SA z/OS message classes to which the
message belongs. When the message is issued a copy is sent to every notification
operator who is assigned class 10 or class 40 messages.

Refer to Tivoli NetView for z/OS Customization Guide for further information on
developing new messages.

Example Automation Procedure

14

This section provides an example of an application program that handles an z/OS
message. The automation procedure uses a subset of the SA z/OS common
routines or generic routines.

/* Example SA z/0S Automation Procedure */

Signal on Halt Name Aof_Error; Signal on Failure Name Aof_Error
Signal on Novalue Name Aof_Error; Signal on Syntax Name Aof_Error

H rarse source .. ident .

El "GLOBALV GETC AOFDEBUG AOF."||ident||".ODEBUG AOF."||ident||".OTRACE"
If AOFDEBUG = 'Y' Then
"AOCMSG "||ident||",700,L0G,"||time()||"," | opid()|]|","||Arg(1)
loc.0debug = AOF.ident.ODEBUG
loc.0trace = AOF.ident.0TRACE
loc.0Ome ident
If Toc.Otrace <> '' Then Do
loc.0debug = ''
Trace Value loc.Otrace

System Automation for z/OS: Customizing and Programming

Example Automation Procedure

End

save msg = msgid()
save_text = msgstr()
Trc = 0

/* This procedure can only be called for msg IEA099A =/
If save_msg <> 'IEAG99A' Then Do

"AOCMSG "||Toc.Ome||",203,"||time()|]","||opid()

Exit
End

"GLOBALV GETC AOFSYSTEM"
cmd = 'AOCQRY '||save_msg||' RECOVERY '||AOFSYSTEM
cmd
svretcode = rc
If loc.0debug = 'Y' Then
"PIPE LIT /Called AOCQRY; Return Code was "||svretcode||"/" ,
"| LOGTO NETLOG"

T *k
** Check return code from AOCQRY *k
*x 0 = ok 1 = global flag off *k
*x 2 = specific flag off 3 = resource not in ACF *%
*% 4 = bad parms 5 = errors/timeout *K
KK mmmm e m e mm e m e e m e mm e m e m e mm e mm e mm e mm———————— */
Select

When svretcode >= 3 Then Do
"AOCMSG "Toc.Ome",206,,"time()",,,"cmd" ,RETCODE="svretcode
Trc =1
End
When svretcode > 0 Then Do
"GLOBALV GETT AUTOTYPE SUBSAPPL SUBSTYPE SUBSJOB"
"AOCMSG "loc.Ome",580,,"time()","SUBSAPPL","SUBSTYPE"," ,
SUBSJOB", "AUTOTYPE", "save_msg
Trc =1
End
Otherwise Do
Parse Var save_text With . 'JOBNAME=' save_job 'ASID=' save_asid .

ehkvarl = save_job
ehkvar2 = save_asid
"GLOBALV PUTT EHKVAR1 EHKVAR2"
cmd = 'ACFCMD ENTRY="'||AOFSYSTEM||',MSGTYP="||save msg
cmd
svretcode = rc
If loc.0debug = 'Y' Then
"PIPE LIT /Called ACFCMD; Return Code was "||svretcodel||"/" ,
"| LOGTO NETLOG"

J* o e e emcmmmeeaee *k
**% Check return code from ACFCMD *%
x 0 = ok 1 = no commands found in ACF ==
*% 4 = bad parms 5 = errors/timeout *k
KK o — e ————————— */

If svretcode > 1 Then Do
"AOCMSG "Toc.Ome",206,,"time()",,,"'"cmd"',RETCODE="svretcode

Irc =1
End
End
End /* End of Select svretcode =/
Exit Trc
Aof_Error:

Signal Off Halt; Signal Off Failure
Signal Off Novalue; Signal Off Syntax

Chapter 2. How to Create Automation Procedures

15

Example Automation Procedure

errtype = condition('C")

errdesc = condition('D")

Select
When errtype = 'NOVALUE' Then rc = 'N/A'
When errtype = 'SYNTAX' Then errdesc = errortext(rc)
Otherwise Nop

End
"AOCMSG "errtype",760,,"Toc.Ome","sigl","rc","errdesc
Exit -5

Notes on the Automation Procedure Example

This step sets error traps for negative return codes, operator halt
commands, and REXX programming errors.

This step defines the identity of the automation procedure.

This step handles the debug and trace settings (refer to |”Usina
[AOCTRACE to Trace Automation Procedure Processing” on page 20

Save the NetView message variables the automation procedure uses.

Perform authorization check. This procedure can only be called for a
particular message.

This section performs the automation check:

1. Fetch the AOFSYSTEM CGlobal that contains the information under
which entry name the system messages are stored in the automation
control file (ACF).

2. The automation procedure calls the AOCQRY common routine. This
routine performs the automation flag check and presets some TGlobal
variables that are used by other common routines like ACFCMD.

Issue message AOF206I if call to AOCQRY fails.
Issue message AOF580I if automation flag is off.
Get the job name and asid reported in the message.
Set EHKVARn variables for ACFCMD.

Call ACFCMD to issue the command specified in the ACE The
Automation Control File entry for the message IEA099A could look like
this:

EEEES

MVSESA TEAQ99A,
CMD=(,, 'MVS C &EHKVAR1,A=&EHKVAR2')

Issue message AOF206I if call to ACFCMD fails.
Exit with return code that indicates successful or unsuccessful processing.

This code logs a message if an error is trapped at step EY.

Installing Your Automation Procedures

The installation process for a new automation procedure depends on the language
in which the automation procedure is written.

* If the automation procedure uses a compiled language, such as PL/I, C, or
Assembler:

1. Compile or assemble your source into an object module.
2. Link-edit the object module into a NetView load library.

16 System Automation for z/OS: Customizing and Programming

Installing Your Automation Procedures

3. Include an entry for the automation procedure in the DSICMD member of
the NetView DSIPARM data set.

¢ If the automation procedure uses an interpreted language such as NetView
command list or REXX:

1. Copy the automation procedure into a NetView command list library

2. Optionally include an entry for this automation procedure in the DSICMD
member of the NetView DSIPARM data set. Then it is more quickly found
and invoked.

For more information on preparing your code for use and installing it, refer to
Tivoli NetView for z/OS Customization Guide

Testing and Debugging Automation Procedures

This section describes SA z/OS and NetView facilities you can use for testing
automation procedures, including:

* SA z/0S assist mode
* SA z/0OS AOCTRACE operator facility
* NetView testing and debugging facilities

The Assist Mode Facility

SA z/0S provides the assist mode facility, so that you can verify actions of
automation procedures and automation policy before letting them run in a
completely automated environment.

When assist mode is on, actions normally taken by SA z/OS automation
procedures, such as issuing a command or reply or calling a common routine, are
instead written to a log file or displayed through SDFE. Operators using SDF can
view assist mode displays to validate the actions. The operator can choose to have
SA z/0OS do the scheduled automated action, change it, or end it. For example,
SDF might indicate that the current automation procedure issues a command to
restart TSO. You can then continue the automation action as it is, change the
automation action, or cancel it.

Assist settings are associated with specific automation flags (Initstart, Start,
Recovery, Shutdown or Restart). The assist setting used for any action is
determined by the automation flag that is checked to see if the action is permitted.

You can activate assist mode using the automation flag panels of the customization
dialog. You can turn assist mode on and off for all automated resources, resource
groups, or individual resources. You can also use the SETASST command dialog to
change the assist mode settings for a resource.

Cases where you might want to use assist mode include:
* During early stages of developing and using your automation policy

* After changing your automation policy, such as after adding an application to
automation

 After adding a new automation procedure to the SA z/0OS code

Note: Assist mode is unavailable for subsystems controlled by IMS™ Automation.

Chapter 2. How to Create Automation Procedures 17

Testing and Debugging Automation Procedures

Using Assist Mode to Test Automation Procedures

Assist mode can help detect problems with your automation procedures before
they are added to your production code. Assist mode works by intercepting
commands and replies before they are issued through NetView. The intercepted
commands and replies, as coded in the automation control file, are reformatted
into message AOF317A, sent to the NetView log and, optionally, to the SDF.
Message AOF317A has the following format:

AOF317A time : ASSIST: KEY: {type|keyword} - COMMAND: text

Message AOF317A contains detailed information regarding:

* The time the message was generated

* The type field from the automation control file entry that defines the command
* The command selection field from the automation control file entry

* The actual command or reply

Assist mode can be enabled and disabled using the SETASST command. The
DISPASST command can be used to view the current assist settings. You can also
define permanent assist settings in your policy, but it is recommended that you use
SETASST.

The following levels of assist are available:
Value Description

D (Display)
Activates assist mode for a particular automation flag. When Display is
specified, message AOF317A is logged and added to the SDF detail status
information. When you start the SDF user interface you can use assist
mode to take further action. You may choose to:
* Issue the SA z/OS-generated command
¢ Change the command

* End the operation

Note: Do not stop the AOFTDDF task while you are using an application
in assist mode as this will stop automation for your application.

Using assist mode, you can perform a step-by-step validation of commands
and replies specified in the automation policy.

Attention: You should not use Assist mode before VTAM® is up as you
will find it impossible to respond to the assist display dialog through SDEF.
This will cause your automation to stall until VTAM is up.

L (Log)
Sets assist mode in logging-only mode. When an event triggers an
automated action, SA z/OS logs the action in the NetView log. The log
can be reviewed to ensure that automation has run as expected.
Logging-only mode can be used to check your customized automation
policy before putting it into production.

N (None)
Deactivates assist mode.

Assist mode works for all commands or replies issued using the following
common routines:

* ACFCMD

18 System Automation for z/OS: Customizing and Programming

Testing and Debugging Automation Procedures

e ACFREP

Assist mode works for the following generic routines as they call the ACFCMD
and ACFREP common routines (if AOCQRY was called before).

s ACTIVMSG

* HALTMSG

* TERMMSG

¢ ISSUECMD

» ISSUEREP

When assist mode is on interactively (D), it uses SDF to display information on
automation. To access SDEF, type SDF at any NetView command line and press the

ENTER key. For more information on how to use SDF see |[BM Tivoli Syster|
[Automation for z/OS User’s Guide

When assist mode is on for a resource automation flag and an event occurs that
triggers automation, the resource goes into ASSIST status and appears on the SDF
panels in the color associated with the ASSIST status. (The default color for ASSIST
is blinking white.)

When a resource appears in ASSIST status:
1. Move the cursor to the system or resource.
2. Press PF2.

You see the Detail Status Display with the message from assist mode at the
bottom of the panel. This message identifies the resource that is in assist mode
and the command or reply that automation issues.

- N
---- DETAIL STATUS DISPLAY ----
1 OF 1
COMPONENT : RMF SYSTEM : ATLMVS1
COLOR : PINK PRIORITY : 255
DATE : 07/14/05 TIME : 12:05:01
REPORTER : GATCNMO1 NODE : ATLO1

REFERENCE VALUE: RMF

AOF317A 12:04 : ASSIST DISPLAY FROM CNMO1/AUTWRKO1 - FOR:
SUBSYSTEM/RMF - KEY: RMF/SHUTDOWN/PASS1 - CMD: MVS P RMF

==>
\l HELP 3=RETURN 4=DELETE 6=ROLL 7=UP 8=DOWN 9=ASSIST 11=BOTTOM 12=TOP

Figure 5. SDF Detail Status Display Panel with Assist Mode

In this example, the automation operator AUTWRKO1 in system CNMO1 issues
the MVS P RMF command for the RMF"" subsystem. (P is an abbreviation for
STOP. See the MVS/ESA Operations: System Commands for information on MVS
commands.) This action was specified using the Shutdown option for the RMF
subsystem in the customization dialog.

3. To indicate whether you want automation to continue with the command
indicated, press PF9.

You see the Operator Assist panel.

Chapter 2. How to Create Automation Procedures 19

Testing and Debugging Automation Procedures

20

4. You now have three options. You can:
* Route the command to the original operator with or without modifications.

To do this, type ROUTE, and if you want to modify the command, type in
your changes over the command text that is there. When you have finished
modifying the command press the Enter key.

* Delete the command from the SDF display so you are no longer in assist
mode. The command is not issued and the shutdown will hang until an
operator intervenes. This also changes the subsystem to the status it was in
before it entered assist mode (in this case, AUTOTERM).

Note: While the subsystem is in Assist mode, no further shutdown passes
will be issued for it. This means you must action (either ISSUE or
DELETE) all Assist panels from the first pass before any are generated
for the second.

* Return to the SDF without taking any action. This suspends the automation
until you do take an action. (Assist mode does not time out.)

To do this, press PF3.

In the example, if you choose to issue the command, you type a character
beside the first option. This issues the command to MVS and RMF shuts down.

Using AOCTRACE to Trace Automation Procedure Processing

The AOCTRACE command dialog maintains both global execution flow traces and
automation procedure (CLIST) specific debugging flags. Setting the global flag
causes all routines that support tracing and all message IDs to record a statement
in the NetView log whenever they are invoked. The AOFDEBUG global variable is
used to pass the global flag information to the CLIST. The global flag is set to null
if the global trace is off, or Y if the global trace is on.

Setting the CLIST-specific flags lets you obtain information about what the CLIST
is doing when it executes, or lets you activate a REXX trace. The debug flag is
either null or Y, and is stored in the AOF.clist.ODEBUG common variable (where
clist is the true CLIST name).

The trace flag is set to null or a valid REXX trace type, which are as follows:
A (All)

* R (Results)

e I (Intermediate)

* C (Commands)

* E (Errors)

* F (Failures)

* L (Labels)

O (Off)

* N (Normal)

The S (Scan) trace type cannot be used.

The trace flag is stored in the common global variable AOF. clist.)TRACE (where
clist is the true CLIST name).

Message tracing can only be set from the command line, using the command
AOCTRACE MSG/id,ON|OFF where id is the message to be traced.

AOCTRACE is documented in |[BM Tivoli System Automation for z/OS Operator’s|

Commands

System Automation for z/OS: Customizing and Programming

Testing and Debugging Automation Procedures

REXX Coding Example

The following statements are sample code that can be placed at the beginning of
your REXX automation routines to handle trace and debug settings:

/* REXX example of trace and debug processing */

Parse Source . . ident .
'GLOBALV GETC AOFDEBUG AOF.'||ident]||'.ODEBUG AOF.'||ident||'.OTRACE'
If aofdebug = 'Y' Then
'AOCMSG' ident|]|',700,L0G,"||time()|]|","|lopid()||","||Arg(1)
loc.0debug = aof.ident.0debug
loc.0Ome = ident
If aof.ident.Otrace <>'' Then Do
loc.0debug = '
Trace Value aof.ident.Otrace
End
If loc.0debug = 'Y' Then
'PIPE LIT /' ident ' called with >' Arg(1) '</' ,
"| LOGTO NETLOG'

In this example, CLIST-specific debugging is disabled when the REXX tracing is
activated. This is intended to reduce extraneous information that may otherwise be
generated by the trace. A message is logged that shows the CLIST name, the trace
setting, the operator ID and the parameters.

When writing code to support the debug feature you should expose loc. on all
your procedures and insert fragments of code to check the value of the loc.0debug
flag and output relevant information. The loc.0me assignment makes the CLIST
name available everywhere, so you can prefix all debug messages with it. You can
then tell where the messages are coming from. For example:
Myproc:
Procedure expose Tloc.
If Toc.0debug = 'Y' Then
'"PIPE LIT /' Toc.0debug ' has called procedure MYPROC/',

"| LOGTO NETLOG'
Return

NetView Testing and Debugging Facilities

NetView provides several facilities to assist in testing and debugging automation
procedures.

To do detailed testing, you may want to trace every statement issued from
automation procedures. This type of testing is enabled through the &CONTROL
statement for NetView command lists and through the TRACE statement for REXX
procedures.

You can also specify less detailed tracing on the TRACE and &CONTROL
statements, so that only commands are traced. A comparable facility, the interactive
debugging aid, is available for programs coded in PL/I and C.

Perform specific tracing by issuing NetView MSG LOG, PIPE LOGTO NETLOG
commands at appropriate points throughout a NetView command list, REXX
procedure, or PL/I routine.

To test for proper parsing and reaction to a message, write a short automation
procedure to issue a NetView WTO command. This WTO is processed by the
NetView automation table and triggers the appropriate automation procedure. If
the automation procedure requires the job name, the job name must be temporarily
hard-coded to the appropriate name. In this case, because the WTO was issued

Chapter 2. How to Create Automation Procedures 21

Testing and Debugging Automation Procedures

from the NetView region, the job name associated with the message is the NetView
region. A sample automation procedure follows:

WRITEWTO CLIST
WTO &PARMSTR
&EXIT

The sample automation procedure can issue any single-line message by calling the
routine. For example, to issue message ABC123I, which indicates the start of a
program, the command is:

WRITEWTO ABC123I My testprogram PRGTEST has started.

Where to Find More Testing Information
More information on testing can be found in the following books:
* Tivoli NetView for z/OS Customization Guide

This book lists requirements for your programs, including preparing your code
for use, and detailed information on writing exit routines and command
processors.

* Tivoli NetView for z/OS Automation Guide

This book has guidelines for creating new automation procedures, including a
recommended development process.

Coding Your Own Information in the Automation Status File

You can code your own information in the automation status file with the
ASFUSER command.

The automation status file has 40 user data fields that are associated with each
resource that is defined within it. You may use these fields to store persistent
information about resources that your code needs to access later. The information
in the ASF is not lost when SA z/OS is shut down. It will last until either of the
following occurs:

e The ASF VSAM data set is deleted and redefined,

* You bring SA z/OS up with an automation control file that does not include the
application that the information has been defined for

Note that you should verify that the information you have stored in the
automation status file is accurate whenever SA z/OS initializes, as circumstances
may have changed while SA z/OS was down.

Each automation status file field reserved for your data can contain up to 20
characters. The ASFUSER command allows you to update and display data in
these fields. See |[BM Tivoli System Automation for z/OS Programmer’s Referencel for
the ASFUSER command description.

Programming Recommendations

This section contains tips and techniques that may help to reduce the coding effort
required when writing your own automation procedures, and to improve
performance of your automation procedures.

» Use variables, such as &IDENT, &SUBSAPPL, &SUBSTYPE, and &SUBSJOB in
place of parameter values.

Using &IDENT for automation procedure names allows for changes to
automation procedure names (only the &IDENT variable value needs changing).

22 System Automation for z/OS: Customizing and Programming

Programming Recommendations

The &SUBSxxx variables allow for subsystem and job name changes (changes to
subsystem and job names need only be made in automation policy).

Using NetView command list language variable JOBNAME for the resource field
on an AOCQRY call, an automation procedure can be written to support a
known message for any job that can issue a message.

* Use defaults when possible to minimize coding.
* Use generic error codes (see CDEMATCH).
* Use available message parsing techniques:

— Use the NetView command PARSEL2R or REXX PARSE command to parse a
message without relying on a field position in a message.

— Parse a message in the NetView automation table and send only necessary
fields to an automation procedure.

* Consider not coding the ENTRY field in CDEMATCH calls (default is the
SUBSAPPL returned from the last AOCQRY call).

* Use appropriate automation flags.

* Review the coding requirements in Tivoli NetView for z/OS Customization Guide
including restrictions to consider when writing code, such as:
— Restrictions when TVBINXIT is on

Variable names

— Macro use

— Register use

— Re-entering programs

* Use SA z/0OS generic routines where possible, because they:
1. Reduce your maintenance overhead.
2. Often use internal interfaces that are more efficient than the common

routines. Similarly, it is better to use a common routine than to write your
own code to process the response from an ACF display request.

* Use SA z/0S’s processor operations common commands where possible,
because these:

1. Are independent of the hardware type of the target system’s processor

2. Minimize the need for changes to your automation routines as you add new
processors to your enterprise

* Consider using the NetView VIEW command to display online help text
associated with new code, and to develop a fullscreen interface for new
commands that are a part of the new code. Refer to Tivoli NetView for z/OS
Customization Guide for information on the VIEW command.

Global Variable Names

When creating your own automation procedures, you must ensure that the names
of any global variables you create do not clash with SA z/OS external or internal
global variable names. SA z/OS external global variables are documented in
[Tivoli System Automation for z/OS Defining Automation Policy} In addition, you
should not use names beginning with:

* CFG
* AOF
* ING
* ISQ
* EVI
* EVE

Chapter 2. How to Create Automation Procedures 23

Global Variable Names

< EVJ

24 System Automation for z/OS: Customizing and Programming

Chapter 3. How to Add a Message to Automation

SA z/0S exploits the NetView automation table (AT) technique. The ATs contain
traps for messages that must be automated. If an action must be taken in response
to a message, this action needs to be defined in the customization dialog. A related
AT entry is required to call a routine to execute the action.

SA z/0S automatically generates the ATs.

Conceptual Overview

This section gives a brief overview of the main aspects of SA z/OS message
automation:

* A list of messages that are involved in SA z/OS automation is generated by
SA z/0S. This can then be used as an MPF member.

* Message automation is a NetView AT-based process.

e ATs are generated by SA z/OS.

* AT entries will be created for messages where actions are defined for.
* Messages can be defined to indicate a status change.

* Messages can be marked to be ignored or suppressed, thus not generating an AT
entry.

* Messages can be marked to be captured for further display

* Most AT entries trap messages independent of the issuing product instance,
component or module.

¢ Predefined AT entries can be changed.

* You can define the AT scope to determine precisely if and what kind of ATs are

built.
* The following action codes are available in message processing:
CMD (O)
Allows you to enter a command in response to a message.
REP (R)
Allows you to enter a reply in response to a message.
CODE (K)
Allows you to enter codes which can be checked within a message to
prompt a certain command.
USER (U)
Allows you to enter any user data in keyword-data pairs.
AUTO (A)
Allows you to enter a resource status indicated by a message.
OVR (O)
Allows you to override a default AT entry that is generated for a
message.

Note that AUTO cannot be defined in combination with OVR.

© Copyright IBM Corp. 1996, 2005 25

Defining Actions for Messages

Defining Actions for Messages

26

AT entries are generated by SA z/OS for messages that are defined for APL, MTR
or MVC policy entries and that have actions (for example, CMD or REPLY)
defined.

Note: Throughout this chapter, whenever the term policy entry is used, it implies
either an APL, MTR or MVC policy entry, unless otherwise stated.

There are two kinds of messages that influence the build of AT entries:

* Known messages — These are messages where SA z/OS provides specific
automation that is unique for the given message (for example, IAT3011). Thus
this message is known to SA z/0S). A single AT entry is predefined just for this
known message.

* Unknown messages — These are messages where SA z/OS provides automation
that is generic for messages that are unknown to SA z/0S. SA z/0OS maintains
wildcard message automation for those messages not having a specific
automation defined. (For example, message IAT9999 is unknown to SA z/0S.) A
wildcard niche within an AT is the place where unknown messages are placed.

The first step in defining actions is to select a policy entry from the Policy Selection
panel. From its policy selection list, select the MESSAGES/USER DATA policy
item. This leads to the Message Processing panel, where you can then define
actions for message IDs. If an AT entry is built according to the action, it will only
check for the message ID by default, independently of the product instance,
component or module issuing that message. If this is not intended, you can use the
OVR action (see |"Defining OVR Actions” on page 28).

There are many messages that are known to SA z/0OS. For these messages specific
AT entries are predefined by SA z/OS. Here, the action defined in the
customization dialog does not determine the AT entry. If you want to know what
kind of AT entry is built for automating a particular message, you can check the
generated AT fragment member after generating the AT.

Note: SA z/OS symbols (AOCCLONESs) and System Symbols should not be used
for or within message IDs. Otherwise the correct sequence of entries within
a generated AT cannot be guaranteed.

Defining CMD or REP Actions

Define a CMD or REP action for message XYZ222I in the CMD Processing or
Reply Processing panel, where XYZ222] is a message that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ222I using the
generic routine ISSUECMD or ISSUEREP after the next Configuration Build
process.

Note that for MVC entries, unknown messages will have the parameter
SYSTEMMSG=YES added to the SA z/OS generic routine (ISSUECMD or ISSUEREP).If
the same message ID is defined for MVC and APL, the APL entry will cause the
AT entry to be generated. No additional AT entry is built for the message ID that
is defined for MVC.

System Automation for z/OS: Customizing and Programming

Defining Actions for Messages

Defining AUTO Actions

Defining Status Messages

Many messages that indicate a state change of APL, MTR, and MVC resources are
known to SA z/0OS. The related AT entries are already predefined. For these
messages there is no need to define them in the policy database.

If necessary, you can define additional application messages that indicate a state
change. You must do this for non-IBM or user application messages that indicate a
state change. The AUTO action therefore leads to a selection panel that lists
resource states.

The Status Message Report shows all Status Messages. It lists all user-defined and
predefined Status Messages and their associated statuses.

Status messages can be defined for MVC policy entries as well as for APL and
MTR instances or classes. The following description is for an UP status message
based on an APL resource definition.

As an example, define an UP state indicated by message XYZ444I in the Message
Type Selection panel. Here, XYZ444] is a message that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ444I using the
generic routine ACTIVMSG after the next Configuration Build process.

Notes:

1. There are certain messages that can be used as Status Messages, but for some
messages, CODE definitions are required (for example, IEF4501, HASP(95, etc.).
TERMMSG will set the status depending on these definitions. For more details
about TERMMSG, see |IBM Tivoli System Automation for z/OS Programmer’s|

2. The status (AUTO) action is mutually exclusive with the OVR action.

Defining Captured Messages
If messages only need to be captured to be displayed but not automated, the
AUTO selection panel provides an additional CAPTURE function.

Messages that have a CMD or REPLY action defined for them or that are defined
as Status Message are implicitly captured. There is no need to explicitly define
these messages to be captured.

Define message XYZ555I to be captured in the Message Type Selection panel. Here
XYZ5551 is a message that is unknown to SA z/OS.

This definition leads to the creation of an AT entry for message XYZ555I using the
generic routine AOFCPMSG after the next Configuration Build process.

Note: The status (AUTO) action is mutually exclusive with the OVR action.
Preventing the Building of AT Entries

Inhibiting AT and MPFLSTSA Entries: Using the AUTO action you can select
IGNORE or SUPPRESS for certain messages:

* Messages that are marked IGNORE will not cause an AT entry or an MPFLSTSA
entry to be generated.

Chapter 3. How to Add a Message to Automation 27

Defining Actions for Messages

28

* Messages that are marked SUPPRESS will not cause an AT entry to be

generated. An MPFLSTSA entry is generated with the options
SUP(YES),AUTO(NO).

IGNORE and SUPPRESS overrule other actions (except OVR) that are defined for
the same message, even though these actions are defined on other PDB entries.

The MPFLSTSA member is built for each PDB. Because IGNORE and SUPPRESS
affect the build of the MPFLSTSA member, these definitions also have a PDB-wide
scope.

For example, if the following definitions are made within the same PDB then no
MPFLSTSA entry is generated for ABC1111 even though this entry is required for
SYSPLEX1 or SYS1:

e The AT scope is set to SYSPLEX or SYSTEM

* A CMD is defined for message ABC111I on APL1 that is linked to SYS1 within
SYSPLEX1

* IGNORE is defined for message ABC111I on APL2 that is linked to SYS2 within
SYSPLEX2

AT Entries That Are Never Built: There are many keywords that can be entered
as message IDs in the Customization Dialog (for example, message
MVSDUMPFULL). No AT entry is built for these keywords. A list of these
keywords is given in [“Restricted Message IDs” on page 234

Defining OVR Actions

You can apply an OVR action in the Message Processing panel to a message ID for
an APL instance, APL class or an MVC PDB entry.

The OVR action allows you to preview an AT entry as it would be built according
to the actions that are defined for a message of an APL or MVC policy entry.

If you are using the OVR action to preview an AT entry for a message that is
unknown to SA z/0S and where no other action (CMD, REPLY or AUTO) is
defined, then no AT entry is predefined. The condition and action fields of the
Automation Processing panel are empty.

The OVR action allows you to override an AT entry. The condition and action
statements of an AT entry can be changed. Action statements can be added or
deleted. Deleting the condition statement will remove the AT override.

AT entries cannot be changed by an OVR action if an AT entry is forced by
SA z/0OS or if there is already an AUTO action defined for that message on the
same policy entry.

You can define '&SUBSJOB’ as part of an AT condition statement that will be
replaced by the job name of the given policy entry when building the AT. This is
very valuable when defining an AT entry for an APL class. Then each APL instance
linked to that class will have its own AT entry with its job name in the AT
condition statement. Checking for the job name may also be required if different
instances of a product issue the same message but you want only certain jobs to be
affected by that message.

SA z/0S symbols (AOCCLONESs) and system symbols may be contained in an AT
override definition. They will be resolved at AT load time.

System Automation for z/OS: Customizing and Programming

Defining Actions for Messages

Defining an OVR action for message XYZ666I (that is unknown to SA z/OS) in the
Message Processing panel leads to the Automation Processing panel. Here you can
either change a predefined AT entry that then becomes a user-defined AT entry, or,
if no predefinitions are available, you can define a user specific AT entry. If
message XYZ666I should be trapped, enter MSGID = 'XYZ6661' in the NetView AT
condition field. If routine MYREXX1 should be called in that case, enter for
example:

EXEC (CMD('MYREXX1')ROUTE (ONE %AOFOPWTORS%))

This definition leads to the creation of an AT entry for message XYZ666I using the
routine MYREXX1 after the next Configuration Build process.

Note: The status (AUTO) action is mutually exclusive with the OVR action.

Defining the NetView AT Scope

In the Edit Policy Data Base Entry panel in the customization dialog, the entry
field AT Scope allows you to define the scope of a NetView Automation Table.
Valid AT scope values are:

NONE
No AT or MPFLSTSA member will be built at configuration build time.
Use this value if you want to maintain ATs yourself.

ENTERPRISE
One AT will be built to be shared within the whole enterprise.

SYSPLEX
One AT will be built to be shared within a sysplex.

SYSTEM
One AT will be built for each system of the selected PDB. (This is the
default.)

If the AT scope changes from NONE to SYSTEM, a build of type ALL is
required.

If the AT Scope is set to SYSPLEX, a standalone system must be linked to a sysplex
group otherwise no AT is built for that system.

The AT Scope for MPFLSTSA is always ENTERPRISE or NONE.

Build

Once you have made all the message definitions you need, you can start the
Configuration Build Process to build the configuration files containing the NetView
Automation Table. For more information about the build function, refer to
[Tivoli System Automation for z/OS Defining Automation Policy}

When building the NetView ATs for the first time, the Build Type field in the Build
Options section of the Build Parameters panel must be set to ALL, for example:

Build options:

Output Data Set 'OPER.OUTPUT.CONFIG'

Mode ONLINE (ONLINE BATCH)
TYPE e e ALL (MODIFIED ALL)
Configuration NORMAL (NORMAL ALTERNATE)

The AT fragments and the MPFLSTSA member will be built into the configuration
data output data set.

Chapter 3. How to Add a Message to Automation 29

Build

This may require more space than you have allocated for the output data set. Thus
enlarging the output data set may be required.

This also applies to the DSILIST data set where the AT listings are stored.

It is recommended that you copy the build output to a Generation Data Group
(GDG) to avoid token mismatch conditions and AT load errors.

NetView Automation Table Build Concept

This section covers the following:
» When is an AT built? (See ["When Is an AT Built?.”)

. P.redefined message automation (see [“Predefined Message Automation” on page|
B1)

e The AT entry sequence (see [“AT Entry Sequence” on page 32)

When Is an AT Built?

An AT is built depending on the following conditions:

* If the AT Scope has not been set to NONE. (If it has been set to NONE then
neither an AT nor an MPF list is built.)

* Depending on the Build Type, ATs will either always be built or only be built in
the case of a policy modification:
ALL All ATs will be built.
MOD Only ATs are built where changes have been made in the PDB that affect
those ATs.
* For any Build Option:
1. Build a complete enterprise
2. Build sysplex group or standalone system

3. Build entry type or entry name (if changes have been made to the AT, a
complete enterprise build is made)

The following changes may affect the AT, thus causing an AT rebuild:

* Defining the first CMD, REPLY, CODE, USER, AUTO, or OVR action for a
message ID, or deleting the last action

* Changing or deleting a message ID that has at least one of the above actions
defined for it

¢ Changing AUTO or OVR definitions
* Changing the link between an APL, MVC, or MTR and a system
* Changing the link between an APL instance and a class

¢ Installing a new version of the internal AT build template (when applying
service)

* Changing the job name
* Changing the AT Scope to SYSTEM, SYSPLEX or ENTERPRISE

These changes only affect the AT build if the APL, MVC, or MTR entries are linked
to a system.

Note: If the MPF Header of Footer definitions have changed, an automatic AT
build is not performed.

30 System Automation for z/OS: Customizing and Programming

NetView Automation Table Build Concept

Predefined Message Automation

SA z/0S provides predefined message automation for messages that are known to
SA z/0S.

The type of AT entry defines whether an AT entry is built for a particular message.
There are three AT entry types:

* Forced AT entries—Always builds an AT entry. Modifications are not allowed.
See [“FORCED AT Entry Type” on page 231

* Recommended AT entries—Always builds an AT entry. Modifications are allowed.
See ['/RECOMMENDED AT Entry Type” on page 231/

* Conditional AT entries—Only builds an AT entry if the message is defined in the
Customization Dialog.

CODE and USER actions generate AT entries only for those messages that are
known to SA z/0S. See ["CONDITIONAL AT Entry Type” on page 232

There are also other specialized AT entries (for example, for message IEF403I) that:

* Are always built because they are critical to the structure of the AT, see |Al|
Entries Built for Messages Known to SA z/0S”|and [“AT Entries for SA z/0S|
Internal Messages”|

* Are never built because they contain SA z/0OS keywords, see [“AT Entries That
[Are Never Built” on page 28|

* Are related to specialized activities, see [“AT Entry Specialties”|

* Have multiple actions defined per policy database entry, see |“AT Entries foﬂ
[Messages That Have Multiple Actions Defined” on page 32|

AT Entries Built for Messages Known to SA z/0S

A messages that is known to SA z/OS will always cause an AT entry to be
generated if it is defined as a forced entry. These entries are critical to SA z/OS for
proper functioning. In certain cases CMD and REPLY actions are allowed and will
cause an additional (optional) AT entry action statement to be built.

There are many forced and recommended AT entries that require a CMD, REPLY,
CODE, or USER action to be defined on the related message ID in the policy. Note
that no warning is issued if an action is defined for a message where a forced or
recommended AT entry does not honor the action. See also [“Other Forced AT|
[Entries” on page 234

AT Entries for SA z/OS Internal Messages

SA z/0S predefines automation for specific internal AOF, HSA, ING, EVE, EVI
and EV] messages and builds the corresponding AT entries. For non-predefined
SA z/0S internal messages (for example, AOF*, HSA*, ING*, EVE*, EVI*, EVJ¥),
AT entries will be created that will not honor a CMD, REPLY, CODE, or USER
action. These entries are created to avoid any interference with SA z/0S
automation.

AT Entry Specialties

Defining message IEF403I, IEF4041, or IEF4501 as a status message for a resource
will generate an AT statement that contains a check for the job name in the AT
statement condition.

Note: It is not recommended that you define the IEF403] message as a generic UP
message under MVC, because this may cause the resource to be placed in an
UP state at a time that is not accurate. Dependent resources may start too
early and may fail.

Chapter 3. How to Add a Message to Automation 31

NetView Automation Table Build Concept

32

AT Entries for Messages That Have Multiple Actions Defined
For certain messages there may be multiple actions defined for a single PDB entry
or for several PDB entries. This influences the way ATs are built:

If an Override (OVR) action is defined for any policy entry, a corresponding AT
entry is created at build time.

If there is an OVR action in conflict with a Type/Status Selection (AUTO action)
for one message that is defined on several application instances, the AUTO action
will cause a conflict warning to be issued at build time.

For messages known to SA z/0S, an AT entry is created as predefined by SA z/0S
and not according to the AUTO, CMD, REPLY, CODE, or USER actions that may
be defined.

For messages unknown to SA z/0OS, then the behavior is as follows:

e If an AUTO action has been defined together with a CMD, REPLY, CODE, or
USER action for the same message ID, then an AT entry is created honoring the
AUTO action.

Note: The generic routines (ACTIVMSG, HALTMSG, TERMMSG) check for
optional commands or replies that are to be issued.

* If there is a CMD action defined together with a REPLY action for the same
message ID, then an AT entry is created to issue a reply and then the command.

* If there is a CMD or REPLY action defined together with a CODE or USER
action for the same message ID, then an AT entry is created to issue a command
or reply.

¢ If there is a CODE action defined together with a USER action for the same
message ID, or if there are only CODE or only USER actions defined for the
same message 1D, then no AT entry is built. If an AT entry is needed, then an
override is required.

AT Entry Sequence

The sequence of AT entries for messages that are known to SA z/0OS cannot be
changed.

The location of wildcard niches (AT entries for unknown message IDs) cannot be
changed.

AT entries in the same wildcard niche are sorted in a particular sequence, first by
action and then by policy entry type. AT entries are created in order for the
following actions:

1. OVR actions, then

2. AUTO actions, then

3. CMD or REPLY actions

Then the next level of sequencing within each of the above actions depends on the
policy entry type:

1. APL instances, then

2. APL classes, then

3. MVS components (MVC)

System Automation for z/OS: Customizing and Programming

Load

Load

After the NetView automation tables have been generated using the customization
dialog, they are ready to be loaded. INGAMS REFRESH can be used to refresh the
complete SA z/OS configuration, that is, the Automation Manager Configuration
(AMC), the agent’s Automation Control Files (ACFs) and the related NetView
Automation Tables (ATs) as they are defined in the SA z/OS Policy Database.

Alternatively, ATs can be loaded using ATLOAD.

Enabling Message Automation for the Automation Agent

READ authority must be given to AUTO1, AUTO2 and user tasks that will load the
AT.

You can define those ATs in the PDB that are to be loaded by SA z/OS at
initialization. Only those ATs defined in the PDB in entry type SYS, policy item
SYSTEM INFO are refreshed.

Listing ATs
The DSILIST data set is used to store the AT listings, so if you want to view the
listing of INGMSGO1, issue the command:
br dsilist.ingmsg01

An AT listing is produced when SA z/0OS loads an AT. You can use the advanced
automation option (AAO) AOFMATLISTING to suppress listing by setting it to
zero (see[Appendix A, “Global Variables,” on page 201)).

The AT can be reloaded at configuration refresh (INGAMS, ACF ATLOAD)

Because of this you should:
* Use a separate DSILIST data set for each NetView
 Allocate the DSILIST data set as a PDSE in order to prevent Sx37 errors

A Guide to SA z/OS Automation Tables

Automation Table Structure

SA z/0S provides a ready-to-use AT, INGMSGO1. To activate the AT, perform the
following steps:

1. Define the AT member INGMSGO01 in the SYSTEM INFO policy of the system
in the customization dialogs

2. Build the automation configuration files
3. Refresh the configuration using INGAMS REFRESH
4. Restart NetView with the new configuration

The SA z/0OS AT contains:
e All entries for the SA z/0OS basic automation

* Entries for subsystems and resources, such as MVS messages, JES2, JES3, OMVS,
VTAM, TSO, NetView SSI, NetView Application, Automation Manager, SysOps,
ProcOps, 1/0 Ops, SA z/0OS Product Automation, OMEGAMON, RODM,
GMFHS, TCP/IP, OMPROUTE, RESOLVER, ZFS, RMF, RMF Monitor III, VLF,

Chapter 3. How to Add a Message to Automation 33

Automation Table Structure

34

DLF, LLA, APPC, ASCH, TWS, RACF®, DFHSM, DFRMM, MQ, DB2®, IMS,
FDR, CICS®, CMAS, IRLM, NFS Server, TPX (Terminal Productivity Executive),
WebSphere®, LDAP, etc.

* AT entries for messages that are defined in the PDB
* User include fragments

You do not have to customize this AT. All unused entries are disabled
automatically according to the configuration that you use. If you want to have
additional entries that are valid only for your environment, you can use either a
separate AT (specified in the customization dialog) or use one of the user includes.

shows the structure of the AT:

INGMSGO1

%INCLUDE AOFMSGSY

%INCLUDE INGMSGU1

%INCLUDE INGMSGU2

Figure 6. AT Structure

For information about how to use the INCLUDE fragments that SA z/0OS
provides, refer to [“Using SA z/0S %INCLUDE Fragments” on page 35

The following fragments are used by the AT:

Synonym Definitions
There is one fragment, AOFMSGSY, that is used to initialize the various
synonyms used throughout the rest of the table. SA z/OS requires the
synonyms to be suitably customized to reflect your environment.

SA z/OS Functional Definitions
These definitions (located in the fragment that is loaded as INGMSGO02)
contain automation table statements for specific functions of SA z/OS. You
should not change these statements. Any modifications can be made in
INGMSGUL.

Master Automation Tables
This section discusses the three master automation tables that SA z/OS provides.

INGMSGO00: The automation table INGMSGOO is used for SA z/OS initialization.
INGMSGO0 should not have be modified by the user.

This table makes use of the synonyms defined in AOFMSGSY.
INGMSGO01: INGMSGOL1 is suitable for use as a primary automation table.

INGMSGO1 should not be included into any other table but should be activated as
a separate table.

AOFMSGST: This is a table suitable for a NetView with a SA z/OS Satellite
installed.

System Automation for z/OS: Customizing and Programming

Integrating Automation Tables

Integrating Automation Tables

If you have any user-written automation table statements that you still want to
use, you must now combine your primary table with SA z/OS’s. There are several
approaches to achieve this.

Refer to the NetView documentation for more information on how to use NetView
automation tables.

Multiple Master Automation Tables

Besides INGMSGO1, you can specify multiple additional NetView automation
tables for a system in the customization dialog. The tables are concatenated as
entered in this panel and processed in this concatenation order.

You need not modify the INGMSGO1 automation table or any of the fragments,
except AOFMSGSY. It is easy to maintain SA z/OS automation table fragments.
However, you have to watch for new messages. It is easy to maintain your entries,
because they are independent from SA z/OS entries.

Using SA 2/0S %INCLUDE Fragments

INGMSGO1 is the master include member. It provides some message suppression
that is necessary to prevent mismatches and duplicate automation before the first
%INCLUDE.

The fragment INGMSGUI can be used for user entries. These entries have
precedence over the SA z/0OS entries. The default INGMSGUI1 is an empty
member.

The fragment INGMSGU2 can be used for all entries that SA z/OS does not
provide any entries for. The default INGMSGU?2 is an empty member. During ACF
COLD/WARM start the AT (or ATs) is (or are) loaded and write a listing to the
DSILIST data set. This enables the use of the NetView AUTOMAN command to
monitor and manage the AT (or ATs). Make sure that the size of your DSILIST data
set is sufficient to store these listings. Without these listings you can just
monitor/manage the ATs using AUTOTBL. It is recommended that you define
your DSILIST data set as a PDSE so that regular data set compression is not
required. Also you should make sure that the DSILIST DSN is unique to your
NetView procedure.

An example output of AUTOTBL STATUS:

BNH361I THE AUTOMATION TABLE CONSISTS OF THE FOLLOWING LIST OF MEMBERS:
AUTO2 COMPLETED INSERT FOR TABLE #1: INGMSGOl AT 04/16/02 19:34:59
AUTO2 COMPLETED INSERT FOR TABLE #2: HAIMSGOl AT 04/16/02 19:35:00

IPSNO

BNH3631 THE AUTOMATION TABLE CONTAINS THE FOLLOWING DISABLED STATEMENTS:
TABLE: INGMSGO1 INCLUDE: _ n/a___ GROUP : INGCICS

TABLE: INGMSGO1 INCLUDE: _n/a_ GROUP : INGIMAGE

TABLE: INGMSGO1 INCLUDE: __ n/a___ GROUP : INGIMS

TABLE: INGMSGO1 INCLUDE: _ n/a__ GROUP : INGJES3

TABLE: INGMSGO1 INCLUDE: __ n/a___ GROUP : INGOPC

An example of the AUTOMAN panel:

Chapter 3. How to Add a Message to Automation 35

Integrating Automation Tables

36

e N
EZLKATGB AUTOMATION TABLE MANAGEMENT
MEMBER TYPE LABEL/BLOCK/GROUP NAME(S) STATUS NUMBER OF STATEMENTS
INGMSGO2 GROUP INGCICS DISABLED 222
INGMSGO2 GROUP INGDB2 ENABLED 120
INGMSGO2 GROUP INGIMAGE DISABLED 1
INGMSGO2 GROUP INGIMS DISABLED 107
INGMSGO2 GROUP INGJES2 ENABLED 1
INGMSGO2 GROUP INGJES3 DISABLED 1
INGMSGO2 GROUP INGOPC DISABLED 10
INGMSGO2 GROUP INGUSS ENABLED 1
- J

In this example the configuration loaded does not use the IMS, CICS, OPC product
automation and the IXC102A automation. It uses JES2, DB2 and USS automation.

Generic Synonyms—AOFMSGSY

This automation table fragment contains a number of synonyms that must be
appropriately set. It is used in most master automation tables to set up the
environmental parameters for the other fragments. The AOFMSGSY member is
supplied by SA z/0S (in the SINGNPRM data set). You must customize it for each
of your systems. The customized copy should be placed in the domain-specific
data set for that system.

Note that many values in this table fragment are enclosed in triple single quotation
marks. This means that the value of the synonym is the value entered surrounded
by a single set of single quotation marks. This is necessary so that the value is
treated as a literal and not an automation table variable.

Synonym Usage and Default

%AOFALWAYSACTION% | This synonym contains the action statement used for all the
messages within a Begin-End block that SA z/OS does not
trigger any action for.

Default: NULL

The default is that no action will be taken and the message
does not continue to search for further matches within the
same AT.

%AOFDOM% This synonym should contain the domain ID of the SA z/OS
NetView on the system that it is automating. The synonym is
used to screen messages to prevent the SA z/OS on this
machine from reacting to a message that originated on

another machine. If not set correctly, your automation will
fail.

Default: &DOMAIN.

This is a default domain name used in a number of the
samples.

System Automation for z/OS: Customizing and Programming

Generic Synonyms—AOFMSGSY

Synonym

Usage and Default

%AOFSYS%

This synonym should contain the system name used in the
last IPL of the system. It is used to screen messages to
prevent the SA z/OS on this machine from reacting to
events that have occurred on other machines. It is important
if you are running on a JES3 global or in a sysplex with
EMCS consoles. If not set correctly, your automation will fail.

Default: &SYSNAME.

This is a default system name used in a number of the
samples.

%AOFSIRTASK %

NetView has a CNMCSSIR task that handles
communications between the main NetView task and its SSI
address space. This synonym should be set to the name of
the task. If the synonym is not set properly, SA z/OS fails to
initialize.

Default: &DOMAIN.SIR

%AOFARMPPI%

This synonym should contain the name of the NetView
autotask that is running the PPI interface from SA z/OS to
z/0S. It is used to route commands from the NetView
automation table to the autotask.

Default: AOFARCAT

%AOFGMFHSWAIT%

The time interval SA z/OS waits after GMFHS initialization
is complete before issuing the command to update the
RODM with the current application automation states.
Following the issuing of message DUI4003] GMFHS
NETWORK CONFIGURATION INITIALIZED
SUCCESSFULLY, GMFHS resets the color of all SA z/0OS
icons to grey (unknown). To set the SA z/OS icons’ color to
the current automation states after the initialization of
GMFHS, SA z/0OS must wait and issue the update
command AFTER GMFHS has reset the colors to grey.

Default: 00:02:00

SA z/OS Message Presentation—AOFMSGSY

The presentation of SA z/OS messages (prefixed with AOF, ING, HSA, EV], EVE
and EVI) under NetView is controlled by the automation table. This uses a number
of synonyms and task globals indicating your message display characteristics. The
following synonyms determine the display characteristics for each type of message.
There is one set for the normal presentation of the message (AOFNORMX) and a
second set for the held presentation (AOFHOLDx).

Synonym

Usage and Default

%AOFHOLDI%

This synonym defines the actions taken for SA z/0S
information (type I) messages that are held on your NCCF
console.

Default: HOLD(Y) COLOR(GRE) XHILITE(REV)

This:
* Ensures that the message is held

* Causes the message to be displayed in reverse video green

Chapter 3. How to Add a Message to Automation 37

SA z/OS Message Presentation—AOFMSGSY

38

Synonym

Usage and Default

%AOFHOLDA%

This synonym defines the actions taken for SA z/OS
immediate action (type A) messages that are held on your
NCCEF console. As a rule, you should specify HOLD(Y) in
the action.

Default: HOLD(Y) COLOR(RED) XHILITE(REV) BEEP(Y)

This:
* Ensures that the message is held
¢ Causes the message to be displayed in reverse video red

¢ Sounds the terminal alarm when the message is displayed

%AOFHOLDD%

This synonym defines the actions taken for SA z/OS
decision (type D) messages that are held on your NCCF
console. As a rule, you should specify HOLD(Y) in the
action.

Default: HOLD(Y) COLOR(WHI) XHILITE(REV) BEEP(Y)

This:

* Ensures that the message is held

* Causes the message to be displayed in reverse video white
¢ Sounds the terminal alarm when the message is displayed

%AOFHOLDE%

This synonym defines the actions taken for SA z/OS
eventual action (type E) messages that are held on your
NCCEF console. As a rule, you should specify HOLD(Y) in
the action.

Default: HOLD(Y) COLOR(YEL) XHILITE(REV) BEEP(Y)
This:
* Ensures that the message is held

¢ Causes the message to be displayed in reverse video
yellow

¢ Sounds the terminal alarm when the message is displayed

%AOFHOLDW %

This synonym defines the actions taken for SA z/OS wait
state (type W) messages that are held on your NCCF
console. As a rule, you should specify HOLD(Y) in the
action.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:
* Ensures that the message is held
* Causes the message to be displayed in reverse video pink

* Sounds the terminal alarm when the message is displayed

% AOFNORMI%

This synonym defines the actions taken for SA z/OS
information (type I) messages that are not held on your
NCCEF console. As a rule, you should not specify HOLD(Y)
in the action.

Default: COLOR(GRE)
This:
* Ensures that the message is not held

¢ Causes the message to be displayed in green

System Automation for z/OS: Customizing and Programming

SA z/OS Message Presentation—AOFMSGSY

Synonym

Usage and Default

%AOFNORMA %

This synonym defines the actions taken for SA z/OS
Immediate Action (type A) messages that are held on your
NCCF console. As a rule, you should not specify HOLD(Y)
in the action.

Default: COLOR(YEL) XHILITE(REV) BEEP(Y)

This:
* Ensures that the message is held
¢ Causes the message to be displayed in yellow

¢ Sounds the terminal alarm when the message is displayed

%AOFNORMD%

This synonym defines the actions taken for SA z/OS
Decision (type D) messages that are held on your NCCF
console. You may find it beneficial to force these messages to
be held.

Default: COLOR(WHI) XHILITE(BLI)

This:
* Ensures that the message is held

* Causes the message to be displayed in blinking white

%AOFNORME%

This synonym defines the actions taken for SA z/OS
Eventual Action (type E) messages that are not held on your
NCCEF console. As a rule, you should not specify HOLD(Y)
in the action.

Default: COLOR(YEL)
This:
* Ensures that the message is not held

* Causes the message to be displayed in yellow

%AOFNORMW %

This synonym defines the actions taken for SA z/OS Wait
State (type W) messages that are held on your NCCF
console. You may find it beneficial to force these messages to
be held.

Default: HOLD(Y) COLOR(PIN) XHILITE(REV) BEEP(Y)

This:
* Ensures that the message is held

* Causes the message to be displayed in reverse video pink

* Sounds the terminal alarm when the message is displayeD

Operator Cascades—AOFMSGSY

The next set of synonyms defines a series of operator cascades. A cascade is basically
a list of automation operators used in many of the fragments to route commands.
If %CASCADE% is defined as a synonym for 'AUTMON AUTBASE AUTO1' and you route a
command to it with ROUTE (ONE %CASCADE%) on an EXEC statement, the command is
run on the first autotask in the cascade that is logged on. This provides you with a
flexible, controllable means of providing backup processing tasks in case one of
your normal tasks is unavailable.

Chapter 3. How to Add a Message to Automation 39

Operator Cascades—AOFMSGSY

40

Synonym

Usage and Default

%AOFLOPAUTOX%

This cascade defines the actions taken for SA z/0S
information (type I) messages that are being held on your
NCCEF console. Given the number of informational messages
that SA z/OS produces you may find it beneficial HOLD(N)
to stop them from being held even if the user has asked for
them to be held.

Default: ' 'AUTOX "'

%AOFOPAUTO1%

This cascade is used to route commands to AUTOL. If you
have renamed AUTO1 you must change the synonym.

Default: AUTO1

There is no backup for AUTOLI. If it fails when it is needed,
many other things will probably fail as well.

%AOFOPAUTO2

This cascade is used to route commands to AUTO2. If you
have renamed AUTO2 you must change this synonym.

Default: AUT02 AUTO1

If AUTO2 is not active, AUTO1 does its work.

%AOFOPBASEOPER %

This cascade is used to send commands to BASEOPER. If
you are not using the standard names for SA z/0S
autotasks you must change this synonym. BASEOPER is
mainly defined as a fallback operator and has very little
work directly routed to it.

Default: AUTBASE AUTO1

AUTBASE is the operator ID that SA z/OS uses for
BASEOPER in its other samples. If AUTBASE is not active,
AUTOL1 is tried.

%AOFOPRPCOPER%

This cascade is used for XCF communication management. If
you are not using the standard names for SA z/0S
autotasks you must change this synonym.

Default: AUTRPC AUTSYS AUTBASE AUTO1

%AOFOPSYSOPER%

This cascade is used to send commands to SYSOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. SYSOPER is mainly defined
as a fallback operator and has very little work directly
routed to it.

Default: AUTSYS AUTBASE AUTO1

AUTSYS is the operator ID that SA z/OS uses for SYSOPER
in its other samples.

%AOFOPMSGOPER%

This cascade is used to send commands to MSGOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. MSGOPER is mainly
defined to respond to miscellaneous messages.

Default: AUTMSG AUTSYS AUTBASE AUTO1

AUTMSG is the operator ID that SA z/OS uses for
MSGOPER in its other samples.

System Automation for z/OS: Customizing and Programming

Operator Cascades—AOFMSGSY

Synonym

Usage and Default

%AOFOPNETOPER%

This cascade is used to send commands to NETOPER. If you
are not using the standard names for SA z/0S autotasks
you must change this synonym. NETOPER is defined for
VTAM automation.

Default: AUTNET1 AUTNET2 AUTSYS AUTBASE AUTOL

AUTNET1 and AUTNET?2 are the operator IDs that SA z/OS
uses for NETOPER in its other samples. NETOPER is the
only sample automation function to have a backup defined
in the samples.

%AOFOPJESOPER%

This cascade is used to send commands to JESOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. JESOPER is mainly defined
for JES automation.

Default: AUTJES AUTSYS AUTBASE AUTO1

AUTIJES is the operator ID that SA z/OS uses for JESOPER
in its other samples.

%AOFOPMONOPER%

This cascade is used to send commands to MONOPER. If
you are not using the standard names for SA z/0S
autotasks you must change this synonym. MONOPER is
used for regular monitoring and subsystem startups.

Default: AUTMON AUTSYS AUTBASE AUTO1

AUTMON is the operator ID that SA z/OS uses for
MONOPER in its other samples.

%AOFOPRECOPER%

This cascade is used to send commands to RECOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. RECOPER is used for
recovery processing.

Default: AUTREC AUTSYS AUTBASE AUTO1

AUTREC is the operator ID that SA z/OS uses for
RECOPER in its other samples.

%AOFOPSHUTOPER%

This cascade is used to send commands to SHUTOPER. If
you are not using the standard names for SA z/0S
autotasks you must change this synonym. SHUTOPER
coordinates automated shutdowns.

Default: AUTSHUT AUTSYS AUTBASE AUTO1

AUTSHUT is the operator ID that SA z/OS uses for
SHUTOPER in its other samples.

Chapter 3. How to Add a Message to Automation 41

Operator Cascades—AOFMSGSY

42

Synonym

Usage and Default

%AOFOPGSSOPER %

This cascade is used to send commands to GSSOPER. If you
are not using the standard names for SA z/OS autotasks
you must change this synonym. GSSOPER is used for
generic subsystem automation.

Default: * AUTGSS AUTSYS AUTBASE AUTO1

AUTGSS is the operator ID that SA z/OS uses for GSSOPER
in its other samples.

If you want to turn off the "ASSIGN BY JOBNAME" feature,
that is, the advanced automation CGLOBAL variable
AOF_ASSIGN_JOBNAME (see|[Appendix A, “Global
[Variables,” on page 201) has been set to 0, you must remove
the asterisk (*), because this may cause serialization
problems.

Note: NetView’s ASSIGN-BY-JOBNAME command that
occurs prior to the automation-table processing will only
affect messages that are associated with an MVS job name.

%AOFOPWTORS%

This cascade is used to route commands concerning WTORS.
If you are not using the standard names for SA z/0S
autotasks you must change this synonym. Its use ensures
that all WTOR processing is done on the same task and this
is serialized.

Default: AUTSYS AUTBASE AUTO1

This specifies that AUTSYS is to do all the WTOR
processing.

%AOFOPGATOPER%

This cascade is used to route commands to this domain’s
gateway autotask. As the autotask name contains the domain
ID you must modify this synonym.

Default: GATAOFO1

AOF01 is the default domain used in the other samples.
There is no backup as the gateway CLISTs expect to be
running on GATOPER.

TEC Notification—AOFMSGSY

These synonyms are being used for notification of the Tivoli Enterprise Console®

(TEC).

Synonym Usage and Default

%AOFTECTASKQ% This is the name of the autotask for sending SA z/OS events
to the Tivoli Enterprise Console (TEC) with quotes.
Default: ' 'AUTOTEC"'

%AOFTECTASK% This is the name of the autotask for sending SA z/OS events

to the Tivoli Enterprise Console (TEC) without quotes.
AOFTECTASK and AOFTECTASKQ must contain the same
name (with and without quotes).

Default: AUTOTEC

System Automation for z/OS: Customizing and Programming

TEC Notification—AOFMSGSY

Synonym Usage and Default

%AOFTECPPI% This is the NetView PPI Receiver ID of the NetView message
adapter (with quotes).

Default: ' ' THSATEC"'
%AOFTECMODE% Event generation mode (with quotes). Possible values are:
LOCAL

The NetView message adapter is running on this
system. LOCAL is valid for the local configuration
and for the focal point in the distributed
configuration.

REMOTE
The NetView message adapter is running on a
remote automation focal point. SA z/OS messages
will be generated on this target system and
forwarded to a remote automation focal point
system. There is no local NetView message adapter
that can process SA z/0S messages. REMOTE is
valid for the target system in a distributed
configuration.

Default: ''LOCAL"'

SA z/OS Topology Manager for NMC—AOFMSGST
These synonyms are used and defined in the AOFMSGST fragment.

Synonym Usage and Default

%AOFOPTOPOMGR% This is the name of the autotask that the SA z/OS topology
manager runs on this system.

Default: &DOMAIN.TPO

%AOFINITOPOCMD% This is the command issued to initialize the SA z/OS
topology manager.

Default: INGTOPO INIT &DOMAIN.TPO
% AOFOPHB% This is the name of the heart beat task needed on focal point.

Default: AUTHB

Generic Automation Table Statements

The basic automation table contains a number of generic automation table entries
that can reduce your automation table overhead considerably. These samples use

some of the advanced features of SA z/0OS to make automating your applications
as simple and reliable as possible.

For some of these entries (IEF403I and IEF404I in particular) the message flow may
be quite high. To handle this, you can insert additional entries in INGMSGU1 to
suppress a block of messages. For example, if all your batch jobs started with the
characters BAT or JCL, then the following entry would suppress them:

IF MSGID = 'IEF40'. & DOMAINID = %AOFDOM% THEN BEGIN;

*
IF (TOKEN(2) = 'BAT'. | TOKEN(2) = 'JCL'.)
THEN DISPLAY(N) NETLOG(N);

*

END;

Chapter 3. How to Add a Message to Automation 43

Generic Automation Table Statements

44 System Automation for z/OS: Customizing and Programming

Chapter 4. How to Monitor Applications

This chapter provides information about the different ways that you can monitor
your applications:

* Using monitor routines, see [“How to Write Your Own Monitor Routines”]

+ The monitor resource (MTR), see ["Monitor Resources” on page 46|

* JES3 monitoring, see [“Monitoring JES3 Components” on page 49|

How to Write Your Own Monitor Routines

SA z/0OS determines the status of an application by running a routine identified
by the policy administrator in the customization dialog. The routine can be
specified for an individual application (refer to [[BM Tivoli System Automation for]

[z/OS Defining Automation Policy)), and a default monitor routine can be specified for

all applications on an entire system (see policy item AUTOMATION INFO in the
customization dialog).

The routines that can be specified as application monitors are:.

AOFADMON

This routine determines the status of an application by issuing the MVS
D A, jobname command. The job name used is the job name defined in
the customization dialog for the application. Possible values for the
application monitor status as determined by this routine are Active,
Starting, Inactive.

AOFATMON

This routine is used to determine the status of a task operating within
the NetView environment. The task status is determined by issuing the
NetView LIST taskname command.

AOFAPMON

This routine determines the status of a program-to-program interface
(PPI) receiver. It calls DISPPI and checks if a specific PPI receiver is
active.

AOFCPSM

This routine is a dedicated routine used to monitor the status of the
SA z/0OS processor operations applications using the ISQCHK service.

AOFUXMON

This routine determines the status of a resource with application type
USS. This resource can either be a z/OS UNIX process, a file system in
the UNIX file system (HFS), or a TCP port. Depending on the nature of
the resource (process, file, or port) AOFUXMON decides which internal
monitoring method to use.

INGPJMON

This routine determines the status of an application by running a
routine that searches the MVS address space control blocks (ASCBs) for
address spaces with a particular job name. The job name used is the job
name defined in the customization dialog for the application.

INGMTSYS

With this routine, IMAGE applications for BCPII usage can be
monitored.

ISQOMTSYS

With this routine, a processor operations target system resource
represented by its proxy can be monitored. You can find examples of
how to use a proxy definition in |[BM Tivoli System Automation for z/OS|
[Customizing and Programming} Active operator console connections are
mandatory and will be used for sending a z/OS command (for
example, d t) and receiving the related response.

© Copyright IBM Corp. 1996, 2005

45

SA z/0S expects certain return codes from all monitor routines, either from
SA z/0S provided ones or from your own routines. These can be one of the

following:

RC Meaning
0 Active

4 Starting
8 Inactive
12 Error

Monitor Resources

46

Monitor resources are policy objects used to obtain the health state of other
resources, typically Applications or Application Groups. The health state is useful
when you need to know how well the resource is performing and not just that it is
active. The Health Status can be used to provide application specific performance
and health monitoring information. For example, an Application may be active but
it is failing to meet performance objectives defined by the system administrator.

The health status can be used for information or by the automation manager to
make decisions and, if necessary, trigger automation for the application.

With application-specific performance and health monitoring, a separate status
shows up to inform you about an application’s health. This health status can be
used for information or by the automation manager to make decisions and, if
necessary, trigger automation for the application.

The MTR policy object is an SA z/OS resource and, as such, is treated like all
other SA z/0OS resources. MTRs are started and stopped using the INGREQ
command and can have a Service Period defined for them.

Monitor resources obtain the health state of an object in two different ways:
* Actively, by polling—that is executing a monitoring command periodically

* DPassively, by processing events

Monitor resources (MTRs) are connected to application resources (APLs) or
application group resources (APGs). The health status of the monitored object is
propagated to the APLs and APGs and results in a combined health status there.
You can define and connect MTRs in the customization dialog (see
[System Automation for z/OS Defining Automation Policyj).

Monitors can be Active or Passive. Passive monitors do not have a monitor interval
defined but might have a monitor command assigned for initial health status
determination. They rely on other events to set the Health Status using the
INGMON command. Active monitors are scheduled periodically based on the
interval defined in the MTR policy. Instead of using a monitor routine to
proactively determine the MTR status, a Passive monitor waits for an event to
trigger a predefined action for example an INGMON STATUS= command.

Associated with each health status (NORMAL, WARNING, MINOR, CRITICAL
and FATAL) can be one or multiple commands (referred to as recovery routine)
that are invoked by SA z/0OS when the monitor resource switches to the
corresponding health status.

System Automation for z/OS: Customizing and Programming

Monitor resources are displayed and controlled with the DISPMTR command.

Writing Monitor Resource Commands

When defining an MTR you can specify activate, deactivate and monitor
commands. Any command is suitable that can be executed in the NetView
environment. These commands are divided into two groups:

e NetView activate and deactivate commands that expect a certain return code

e Monitor commands

The main difference between these two groups is that the activate and deactivate
commands are executed only once, and SA z/OS expects a return code of zero.
The activate and deactivate commands are optional.

¢ The activate command establishes the environment the monitoring routine can
run in. The command is executed every time the monitor is started. The
command must exit with return code 0.

* The deactivate command can be used to cleanup the environment. The
command is executed every time the monitor is stopped. The command must
exit with return code 0.

* The monitor command is executed after the activate command and then
periodically if a monitoring interval is given. SA z/OS expects the monitor
command to return a valid health status code. Additionally the monitor
command can issue a message that is then attached to the health status.

The command can be a command procedure written in any language that is
supported by NetView: REXX, Assembler, PL/I, C, or the NetView Command List
(Clist) language. Writing a monitor routine can be simple or it can be complex. The
complexity depends upon the Application that you are attempting to monitor.

Writing a Monitor Routine

In general, the monitor routine will need to issue one or more commands to
generate data, process the data, and set a return code. The return code is then used
by SA z/OS to determine the health state for the resource. The possible return
codes and the corresponding Health Status are given in

Table 2. Health State Return Codes

Return code Health Status Description

1 BROKEN The monitor detected an unrecoverable error.
SA z/0S will stop monitoring.

2 FAILED The monitor is currently unable to obtain a health
state. SA z/OS will keep the monitor active because
the problem might disappear.

3 NORMAL The monitor detected normal operation of the
monitored object.

4 WARNING The monitor detected a certain degree of
degradation in the operation of the monitored object.

5 MINOR The same as WARNING, but more severe.

6 CRITICAL The same as MINOR, but more severe.

7 FATAL The same as CRITICAL, but more severe.

8 DEFER Used internally.

Chapter 4. How to Monitor Applications 47

The Health Status values (with the exception of unknown) will affect the
Compound Status in the Automation Manager.

Most monitor routines will use unknown, normal, and warning statuses. The
minor, critical, and fatal statuses can be used as gradients to indicate that a
problem is getting worse. BROKEN and FAILED are states that describe the status
of the monitor itself and may be seen if an error is encountered with the monitor
routine.

Optionally, the monitor routine can issue a message describing the condition that
will be trapped by the SA z/OS process which invoked the monitor. The message
will be seen on the DISPMTR panel.

Every monitor routine will need several basic steps:
1. Issue one or more commands to collect data and interrogate the results.

2. Based on the results from the command(s), set the return code to a value from
one (1) to eight (8) and, optionally, perform processing based on that value.

3. Optionally, supply more descriptive information about the Health Status in a
message that can be seen with the DISPMTR command.

4. Exit with the return code so SA z/OS can set the Health Status appropriately.

is an example using the NetView PING command within a PIPE to query
the status of a TCP/IP stack on a remote system. The IP address is passed on
input. The routine uses the average round trip time (RTT) for the request provided
in message BNH770I to determine the health.

/*REXX MYMON =/
Arg parm
monrcs="'BROKEN FAILED NORMAL WARNING MINOR CRITICAL FATAL DEFER'
'"PIPE (STAGESEP | NAME PING)',
"| NETV PING' parm,
'"| LOCATE 1.8 /BNH770I /',
"| STEM out.'
if out.0 = 0 then
Trc = wordpos ('FATAL',monrcs)
else
do
parse var out.l . 'averaging' ms 'ms' .
say 'PING lasted' ms 'ms'

select
when ms < 10 then Trc = wordpos('NORMAL',monrcs)
when ms < 20 then 1rc = wordpos('WARNING',monrcs)
when ms < 30 then Trc = wordpos('MINOR',monrcs)
when ms < 40 then Trc = wordpos('CRITICAL',monrcs)
otherwise 1rc = wordpos('FATAL',monrcs)

end

end
Return Trc

Figure 7. Sample Monitor Command

Writing a Recovery Routine

The "health” recovery routine is invoked every time the monitor resource switches
to the health state that the recovery routine is defined for. The goal of the recovery
routine is to bring the monitored resources back to normal.

The following task globals can be accessed by the recovery routine:

System Automation for z/OS: Customizing and Programming

EHKVAR1

Contains the monitor name

EHKVAR2

Contains the current health status

EHKVAR3

Contains the old health status

EHKVAR4

Contains the message associated with the health status

Monitoring JES3 Components

The concept of a Monitor Resource is used to monitor the health of various JES3
components. SA z/OS provides two commands that support a strict separation of
the monitoring part and the resulting recovery processing:

¢ AOFRJ3MN—used to monitor components in the JES3 environment, for example

spool space.

¢ AOFRJ3RC—used to perform recovery actions against the monitored JES3 object.

The following example defines a spool space monitor:

1.

2.
3.

Define a monitor resource with a “HasParent” relationship to the corresponding
JES3 since it only makes sense to monitor the spool space when JES3 is active.

Activate and deactivate commands are not necessary for the spool monitor.

Use the AOFRJ3MN command as the monitor command and setup the
monitoring interval as desired. In this example, spool usage of up to 60% is
NORMAL, 61-70% WARNING, 71-80% MINOR, 81-90% CRITICAL and greater
than 90% FATAL.

QOFRJ?)MN JES3_subys SPOOLSHORT 60,70,80,90)

Define the recovery action in the HEALTHSTATE policy, for example:

NORMAL : AOFR3RC ~ JES3_subsys SPOOLSHORT RESET
CRITICAL: AOFRJ3RC JES3_subsys SPOOLSHORT 05
FATAL : AOFRJ3RC JES3_subsys SPOOLSHORT 01

Issue one recovery command every minute. The commands are read from the
SPOOLSHORT policy of the JES3 subsystem. When the spool usage goes down
to 60% or less, the health status will go to NORMAL. This causes to invoke the
AOFR3RC command but now with the RESET option - the RESET option stops
recovery. It is recommended that you use JESOPER as the auto-operator for the
recovery commands. Note, that the recovery commands for the SPOOLSHORT
condition must be defined for the JES3 subsystem.

5. For the JES3 subsystem, define the necessary actions that should be performed
for SPOOLSHORT in the Message/User data policy:
Pass | Automated Function | Command
1 JESOPER MVS &SUBSCMDPEXF U,Q=HOLD,AGE=30D,N=ALL,C
2 |JESOPER MVS &SUBSCMDPEXF U,Q=HOLD,AGE=10D,N=ALL,C
3 |JESOPER MVS &SUBSCMDPEXF U,Q=HOLD,AGE=3D,N=ALL,C
10 |JESOPER MVS &SUBSCMDPEXF U,Q=HOLD,AGE=1D,N=ALL,C

This will purge all jobs from the hold queue that are older than 30 days in the

Chapter 4. How to Monitor Applications 49

50

first pass. On pass 2, all jobs older than 10 days are purged. On pass 3 all jobs
older than 3 days are purged. Finally, after 10 times the pass interval (in our
example 5 minutes), all jobs older than 1 day will be deleted if the recovery
action is not reset meanwhile.

AOFRJ3MN Routine

Use this routine to monitor various objects in a JES3 environment. The following
objects can be monitored:

* MDS queues (Fetch queue, Verify queue, Wait volume queue, Error queue,
Allocation queue, Breakdown queue, Unavailable queue, Restart queue, System
select queue, System verify queue)

* Current setup depth
* Spool space

For each of the 10 JES3 MDS queues, thresholds may be set for each of the 4 health
states (Warning, Minor, Critical and Fatal) indicating the number of jobs that
particular queue may contain causing to set the corresponding health status. If, for
example, the WARNING threshold for the Error queue is set to 5, if 5 or more jobs
are pending on the MDS Error queue, the health status is set to Warning.

For the spool space the thresholds define the amount of used space that when
exceeded causes to set the corresponding health status.

Whenever AOFRJ3MN is called, it issues the appropriate JES3 command (*1,Q,S for
SPOOLSHORT and *I,S for the MDS queues) and parses the response. The value
extracted from the message text is compared with the thresholds and then the
return code is set to the corresponding health status. This simply sets the health
status of the Monitor resource (MTR). No recovery action is taken by AOFRJ3MN
routine. Use the HEALTHSTATE policy of the Monitor resource to define a
recovery action for each health status, if necessary.

The syntax of the AOFRJ3MN routine is as follows:

»—AOFRJ3MN—jes3apl—| object |—| threshold-Tist i ><

object:

—-MDSCOUNTQ |
MDSCOUNTF—
—MDSCOUNTV—
—MDSCOUNTH—
MDSCOUNTE—
MDSCOUNTA—
MDSCOUNTB—
—MDSCOUNTU—
MDSCOUNTR—
MDSCOUNTSS—
—MDSCOUNTSV—
L-SPOOLSHORT—

threshold-list:

f—warning—,—minor—,—critical—,—fatal I

System Automation for z/OS: Customizing and Programming

jes3apl Specifies the name of an APL of category JES3 for which this monitor
works.

monitor
Specifies the JES3 object to be monitored:

MDSCOUNTQ
Current setup depth

MDSCOUNTF
Fetch queue

MDSCOUNTV
Verify queue

MDSCOUNTW
Wait volume queue

MDSCOUNTE
Error queue

MDSCOUNTA
Allocation queue

MDSCOUNTB
Breakdown queue

MDSCOUNTU
Unavailable queue

MDSCOUNTR
restart queue

MDSCOUNTSS
System select queue

MDSCOUNTSV
System verify queue

SPOOLSHORT
Spool

threshold-list
Specifies a list of four threshold values separated by commas:

warning Set health status to WARNING if this value is exceeded
minor Set health status to MINOR if this value is exceeded
critical Set health status to CRITICAL if this value is exceeded
fatal Set health status to FATAL if this value is exceeded

If warning is not exceeded the health status is set to NORMAL.

Note that for SPOOLSHORT the values are in percent but for the MDS
queues they are absolute numbers. No value checking is done by
AOFR]J3MN except for whole numbers.

Note also that the thresholds are tested from FATAL to WARNING. So if

you want to go directly from NORMAL to FATAL, you could specify
50,50,50,50

Chapter 4. How to Monitor Applications 51

52

AOFRJ3RC Routine

This routine performs the recovery action against a monitored object in a JES3
environment.

When AOFR]3RC is called, it checks whether the system that it is running that
holds the JES3 global processor. If not AOFRJ3RC terminates without any further
action.

The syntax of the AOFR]J3RC routine is as follows:

v
A

»»—AOFRJ3RC—jes3apl—msg- type—[pass- interval
RESETg

jes3apl Specifies the name of an APL of category JES3.

msg-type
Specifies the message type within the given JES3 APL that the recovery
commands are to be read from:

pass-interval
Specifies the time interval that AOFR]J3RC should wait before
executing the next pass. The format is in NetView notation (mm,
hh:mm, hh:mm:ss or :ss).

RESET
If RESET is specified AOFRJ3RC stops the recovery.

AOFRJ3RC looks into the MESSAGE /USER DATA policy definition of the specified
JES3 APL. It issues the command that is defined for PASS1 of the given message
type. As long as there are commands in higher passes it sets up a NetView timer
that re-calls AOFRJ3RC after the given pass interval. Whenever AOFRJ3RC is
executed the command that is defined for the next pass is issued as long as one
exists.

If RESET is specified instead of a pass interval any pending timer is killed and
processing stops.

The return code is always zero.

Note: AOFR]3RC issues the recovery commands in a fire-and-forget manner. It does
not check whether the recovery action has the desired result. This is done by
the monitor. After one or more monitor intervals the health status will
change to a less severe one if the recovery shows an effect. If you want to
stop recovery actions when the health status returns to NORMAL, for
example, you have to code a HEALTHSTATE command that calls
AOFR]J3RC with RESET.

System Automation for z/OS: Customizing and Programming

Chapter 5. Exception-Based Monitoring with OMEGAMON

SA z/0S has been enhanced to enable you to use Monitor Resources to connect to
classic OMEGAMON® monitors to send commands and receive responses.

Overview

The OMEGAMON interface lets you gather a wide range of performance data on a
system. You can gather data from the following performance monitoring products:

* OMEGAMON for MVS

* OMEGAMON for CICS

* OMEGAMON for IMS

* OMEGAMON for DB2

Exception analysis is an OMEGAMON feature that monitors predefined thresholds in
a system. Each time exception analysis is invoked, an exception is displayed on the
OMEGAMON console if a threshold is exceeded. Using SA z/OS, you can then act

on these exception alerts by running execs or issuing commands, including issuing
commands back to the host OMEGAMON.

You can set up Monitor Resources to:
* Monitor sets of exceptions that may be of interest
* Set an application’s health state based on the existence of such exceptions

* React to and resolve conditions that cause those exceptions

Scenario

To illustrate how SA z/OS and OMEGAMON operate together, consider the
following scenario.

Suppose there is a DB2 application that should be continuously monitored. Of
particular interest is the availability of primary active logs. The LOGN exception
indicates that fewer primary active logs exist than specified by the respective
threshold value. This is considered a critical health indicator because it can cause a
DB2 hang situation if the last primary active log becomes 100% full. Such a
situation can only be resolved by making one or more additional primary active
logs available again.

In order to monitor this situation and react accordingly, the automation policy has
to be changed. First, define the session attributes for the OMEGAMON for DB2
monitor, if they do not yet exist, to be able to establish a VTAM connection. The
OMEGAMON session is referred to by its session name. Then review the number of
session operators (automation operators) that will be started to handle the VTAM
session traffic and add an additional one if a higher degree of parallelism is
required. You need to ensure that the number of session operators and predefined
NetView tasks are identical.

Next, add a new monitor resource (MTR) that periodically requests exception
information from this OMEGAMON session. Add the MTR by means of a
HasParent relationship to the DB2 subsystem to be monitored. This ensures that the
MTR will be activated when the DB2 subsystem is started, and deactivated when

© Copyright IBM Corp. 1996, 2005 53

Exception-Based Monitoring with OMEGAMON

the DB2 subsystem is stopped. Also define the MTR via a HasMonitor relationship
to the DB2 subsystem to ensure that the monitor’s health state can be propagated
to the application.

While the MTR is active, it uses the new monitor command, INGMTRAP, to gather
OMEGAMON exceptions that currently exist, based on the thresholds that are
defined in the OMEGAMON for DB2 installation profile. INGMTRAP analyses all
exceptions returned by OMEGAMON and filters out those exceptions that the
MTR is interested in, in this example, LOGN. SA z/OS subsequently issues
message INGO80I to initiate exception processing.

Finally, also add a new rule to the automation table (via the SA z/OS policy) that
executes a REXX exec to add a new log data set to the pool of primary active data
sets whenever the LOGN exception is reported and the health state is CRITICAL
(6). The MTR’s health state is considered CRITICAL if the number of available
primary active logs is equal to 1. If the LOGN exception is reported again in the
next monitor interval, a second rule in the automation table sets the MTR’s health
state to FATAL (7), which triggers an application move since normal recovery
handling doesn’t seem to work anymore. In addition, an alert is sent to the
operator to inform him about this situation. If the LOGN exception is no longer
reported, the MTR'’s health state will be set to NORMAL (3).

The health state assigned to the MTR by means of the automation table is
propagated to the DB2 application that owns this MTR. Thus, you can see at a
glance whether the DB2 subsystem is okay or not.

Topologies

Various topologies are possible for SA z/0OS with OMEGAMON:

* There can be one or more systems

¢ There can be one or more OMEGAMON monitors per system

* Connectivity is through VTAM and the NetView Terminal Access Facility (TAF)
* SA z/OS can act as a focal point either:

— globally, monitoring data from OMEGAMON monitors running on different
systems

— locally, monitoring data from OMEGAMON monitors running on the local
system

The following assumptions are made about the topologies that can be adopted:

1. The OMEGAMON product is installed on each system where MVS and CICS,
DB2, or IMS is installed.

2. OMEGAMON monitors are installed and configured already to support
multiple VTAM-based connections to it. For interoperability with SA z/0OS,
logical units of type 3270 model 2 (24x80) are required.

3. OMEGAMON monitors are setup to interact with an external security product
such as IBM SecureWay Security Server for z/OS (formerly RACEF).

4. OMEGAMON exceptions are reported when the threshold that is defined in
OMEGAMON is exceeded. That threshold must be agreed within an
installation because it must cater for the least severe condition that there might
be an alert for.

54 System Automation for z/OS: Customizing and Programming

Exception-Based Monitoring with OMEGAMON

OMEGAMON Interaction

The following subsections assume that you have defined one or more
OMEGAMON sessions and automated functions that are designated to handle
network communication using the SA z/OS customization dialog. For details on
defining OMEGAMON sessions, refer to the OMEGAMON SESSIONS and
AUTHENTICATION policies within entry type Network (NTW) and to the
OPERATORS policy within entry type Auto Operators (AOP) described in
[Tivoli System Automation for z/OS Defining Automation Policy}

Programming Interface INGOMX for OMEGAMON

INGOMX acts as the interface between operators (or auto-operators) and any of
the classic OMEGAMON monitors for CICS, DB2, IMS, and MVS.

It can be used to issue OMEGAMON major, minor, and immediate commands, and
to filter one or more exceptions of interest from the list of exceptions reported by
OMEGAMON exception analysis. Each request is written to the console (but not
exposed to NetView) in the format as produced by the OMEGAMON monitor.
When exception filtering is requested, multiple exception lines for one exception
are combined into a single line and written to the console as a single message if
the filter criteria (XTYPE) matches. INGOMX is best used within a NetView PIPE.

The following examples illustrate the use of INGOMX. They are based on an
OMEGAMON for MVS session with the name OMSY4MVS. The same techniques
also apply to other OMEGAMON monitors. For more details, refer to
[System Automation for z/OS Programmer’s Reference

Example 1: Returning Information on Common Storage
Utilization Using the CSAA Command

4 N
INGOMX EXECUTE,NAME=0MSY4MVS,CMD=CSAA
IPXNG CSAA SUMMARY
IPXNG +
IPXNG i System
IPXNG + Maximum Pre-CSAA Orphan Usage
MPIE & 2= ooooooo oooooooo coooooo cooooooocoocooe 0 2 4 68 100
IPXNG + CSA 3312K 1247K 0 1247K 37.6%|------ >
IPXNG + ECSA 307740K 78797K 0 78797K 25.6%|---->
IPXNG + SQA 1620K 660K 0 660K 40.8%|------- >
IPXNG + ESQA 145696K 23930K 0 23930K 16.4%|-->
o J
Example 2: Using OMEGAMON command modifiers
INGOMX EXECUTE,NAME=0MSY4MVS,CMD=ALLJ,MOD=#
| IPXNG #ALLJ 166
INGOMX EXECUTE,NAME=0MSY4MVS,CMD=ALLJ,MOD=<
| IPXNG <ALLJ *MASTER* PCAUTH RASP TRACE DUMPSRV XCFAS GRS SMSPDSE+
I IPXNG + CONSOLE WLM ANTMAIN ANTAS000 OMVS IEFSCHAS ~ JESXCF ALLOCAS+
IPXNG

Example 3: Trapping outstanding operator replies
[INGOMX TRAP,NAME=0MSY4MVS ,XTYPE= (XREP) j

| IPXNG ~ + XREP Number of Outstanding Replies = 5

Chapter 5. Exception-Based Monitoring with OMEGAMON 55

Exception-Based Monitoring with OMEGAMON

56

Example 4: Issuing OMEGAMON minor commands

4 ™\
/* REXX-Routine EXMINOR */
cmd.1 = "CMD=SYS" /* Major command, issued ahead of its minors */
cmd.2 = "CMD=FCSA" /% Minor: CSA frames below 16M */
cmd.3 = "CMD=FCOM" /% Minor: CSA, LPA, SQA, and nucleus below 16M */
cmd.0 = 3
'PIPE STEM cmd. COLLECT',
"| NETV INGOMX EXECUTE,NAME=0MSY4MVS,CMD=+"',
'] CONSOLE ONLY'
* IPXNG EXMINOR
| TPXNG SYS >> LM Goal mode OPT=00 SYSRES=(150526,8812) <<
| 1PXNG fcsa 328 1312 K
| 1PXNG fcom 849 3396 K
o J

There is no need to explicitly establish a session between an operator and a
particular OMEGAMON monitor before using INGOMX; such sessions are
established automatically on their first use.

Selective protection of individual OMEGAMON sessions and commands, or both,
is possible based on the NetView Command Authorization Table. Details can be
found in the appendix "Security and Authorization” in [[BM Tivoli System]
[Automation for z/OS Planning and Installation)

Monitor Command INGMTRAP

INGMTRAP is a customized interface to INGOMX that provides filtering
capabilities for exceptions of interest as reported by OMEGAMON exception
analysis and triggering of automation on behalf of such exceptions. For each
exception that matches the XTYPE filter that is provided by the caller, INGMTRAP
issues message INGO80I, which is exposed to NetView. For example:

INGO8OI CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4

If no exception matches the XTYPE filter that is provided by the caller,
INGMTRAP creates a ING0811 message that is not exposed to NetView but written
to the Monitor Resource’s log to document that no exception has been found. For
example:

INGO81I CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS NO EXCEPTION FOUND

INGMTRAP can only be used as a monitor command. This means that it has to be
specified directly as a monitor command in the definition of a Monitor Resource,
or it has to be called on behalf of such a monitor command. The following
example illustrates what you need to specify on the MONITOR INFO policy in
entry type Monitor Resource (MTR) in order to trap outstanding operator replies
that are reported by OMEGAMON for MVS session OMSY4MVS:

INGMTRAP NAME=0OMSY4MVS,XTYPE=(XREP)

Be careful when specifying a list of exceptions: each exception may cause an
INGO80I message to be issued. Because each occurrence of an ING080I message
will trigger health state processing of the Monitor Resource, make sure you
understand the impact that this may have on the Monitor Resource’s final health
state.

For more details about INGMTRAP refer to [[BM Tivoli System Automation for z/OS|
Programmer’s Referencel For more details about defining Monitor Resources, refer to
IBM Tivoli System Automation for z/OS Defining Automation Policy}

System Automation for z/OS: Customizing and Programming

Exception-Based Monitoring with OMEGAMON

Health Based Automation Using OMEGAMON

By combining Monitor Resources and the OMEGAMON interaction methods
described in |“OMEGAMON Interaction” on page 55]automation can be triggered
as a result of analyzing the output reported by OMEGAMON and by the setting of
an appropriate health state.

OMEGAMON exceptions can be periodically monitored using a Monitor Resource
and the monitor command INGMTRAP. There are a variety of ways to handle such
exceptions:

1. In the customization dialog, the MESSAGES/USER DATA policy of a given
Monitor Resource needs to state the health state of each exception that
INGMTRAP has been set up to monitor. Unlike messages, OMEGAMON
exceptions are denoted by a '+’ sign, followed by a blank and then a
4-character OMEGAMON exception ID.

2. In addition to the health state, a series of one or more commands can be
specified to handle that particular exception. Commands are processed in the
same way as for any other resources that a MESSAGES/USER DATA policy is
provided for, such as applications (APL). This includes escalation processing
based on a PASS count, or processing based on a selection value that can be
defined using CODEs that are derived from a message.

3. The HEALTHSTATE policy can be used to issue recovery commands on behalf
of an OMEGAMON exception each time the health state changes.

No matter which method or combination of method are chosen, the process of
handling an exception is triggered by the occurrence of an ING080I message for a
particular Monitor Resource and exception. The automation table that is built from
the definitions in the MESSAGES/USER DATA policy contains statements that
invoke the generic routine INGMON to set the Monitor Resource’s health state and
to issue commands in response to exceptions. In most cases, the necessary entries
in the NetView Automation Table are created automatically by SA z/OS. In some
rare cases when, for example, command selection should be based on CODEs, it is
necessary to override the automation table definition of the exception, and to
specify up to 3 codes (CODE1, CODE2, and CODE3) on the invocation of
INGMON.

Alternatively, an installation-written monitor command can be used to issue
INGOMKX for a series of exceptions to one or more OMEGAMON monitor. Such a
monitor command then returns with an appropriate health state that is based on
the analysis of the output produced by INGOMX. The recovery commands that are
issued when the health state changes are specified in the HEALTHSTATE policy of
that Monitor Resource.

Recovery Techniques

User data in the MESSAGES/USER DATA policy can be used to disable additional
recovery processing while other recovery is already in progress. In combination
with the predefined keyword DISABLETIME, the recovery disable time can be
specified in the formats hh:mm:ss, mm:ss, :ss, or mm. While recovery is disabled,
no commands are processed on behalf of this Monitor Resource for messages and
exceptions that are specified in the MESSAGES/USER DATA policy.

Recovery is automatically enabled after the recovery disable time has expired.
Recovery can also be enabled prematurely by calling the generic routine INGMON
with the option CLEARING=YES, for example:

INGMON CIZ2XREP MSGTYPE=XREP CLEARING=YES

Chapter 5. Exception-Based Monitoring with OMEGAMON 57

Exception-Based Monitoring with OMEGAMON

In some cases, it is necessary to force increasingly strong recovery actions over a
period of time. This can be accomplished using a PASS count that starts at 1 and
runs to 99. SA z/0OS maintains the PASS count individually per message or
exception, and increments the PASS count each time that message or exception is
processed. Upon successful recovery, it is the installation’s responsibility to reset
the PASS count. When specified with option CLEARING=YES, INGMON enables
command processing for messages and exceptions, and resets the PASS count.

Programming Techniques

Commands that are called by INGMON have access to the message that triggered
the invocation using the NetView SAFE, AOFMSAFE, for example:

/* REXX */

'PIPE SAFE AOFMSAFE | VAR triggerMsg'

If Symbol('triggerMsg') \= 'LIT' Then Do

Parse Var triggerMsg tokl, tok2, ...
End

INGMON fills the task global variables &EHKVARO, &EHKVARI1-9, and
&EHKVART with certain tokens that are derived from the message or exception
that INGMON was invoked by. For messages, the assignment starts with the
message ID, and for exceptions, it starts with the exception ID. The following two
examples illustrate how message and exception tokens are assigned to these task
global variables.

Example 1:

$HASP9211 JES MAIN TASK NOT RUNNING. DURATION- hh:mm:ss.xx
Task Global Value
&EHKVARO $HASP9211
&EHKVAR1 JES
&EHKVAR2 MAIN
&EHKVAR3 TASK
&EHKVAR4 NOT
&EHKVAR5 RUNNING.
&EHKVARG6 DURATION-
&EHKVAR7 hh:mm:ss.xx
&EHKVARS NULL
&EHKVAR9

&EHKVART
Example 2:
INGO8OI CI2XREP/MTR/KEYA OMSY4MVS OMIIMVS XREP Number of Outstanding Replies = 4
Task Global Value
&EHKVARO XREP
&EHKVAR1 Number
&EHKVAR2 of
&EHKVARS3 Outstanding
&EHKVAR4 Replies
&EHKVAR5 =

58 System Automation for z/OS: Customizing and Programming

Exception-Based Monitoring with OMEGAMON

Task Global Value
&EHKVAR6 4

&EHKVAR7 NULL
&EHKVARS
&EHKVAR9
&EHKVART

Recommendations

You should consider the following recommendations when using OMEGAMON in
combination with Monitor Resources:

* Avoid monitoring multiple exceptions using INGMTRAP. Note that there can be
more than one exception that may trip and thus multiple ING080I messages may
be generated. The Monitor Resource’s health state, however, depends on the last
INGO80I message.

* Avoid setting different health states for the same exception that is monitored by
different Monitor Resources using INGMTRAP. Note that only one automation
table entry will be generated by SA z/OS to process message INGO080I for such
an exception.

In these cases, the use of INGOMYX, invoked from an installation-written monitor
command, to determine a combined health state from multiple exceptions or to
determine an individual health state for each Monitor Resource, is preferred to
using INGMTRAP .

Chapter 5. Exception-Based Monitoring with OMEGAMON 59

60 System Automation for z/OS: Customizing and Programming

Chapter 6. How to Automate Your Resources

This chapter contains information on how to customize your SA z/OS installation
by programming various routines and procedures. It describes various ways of
how to adapt your installation to your requirements.

Using Automation Flags

SA z/0S extended automation flags (automation flags for minor resources) give
you the ability to control the automation for individual messages and status
changes. You cannot use extended automation flags to stop a status change from
occurring, but you can use them to stop commands or replies being issued in
response to a change to a particular status.

You can define messages and status information as minor resources with a major
resource that is either:

* The application that issued the message or changed status
e MVSESA, if the message or status change is not associated with an application.

To define messages or status information as minor resources, use the customization
dialog to edit the Minor Resources policy item of the appropriate Application policy
object or the MVS Component policy object. See [IBM Tivoli System Automation for]
[z/OS Defining Automation Policy| for more information.

When an application is about to change to a new status, the status change routines
(ACTIVMSG, HALTMSG and TERMMSG) check whether the new status has been
defined as a minor resource for the application before they issue any commands
associated with the status change. See [‘Programming Additional SA z/OS|
Automation Procedures” on page 5|and |[BM Tivoli System Automation for z/OS|
Programmer’s Referencel for more information about SA z/OS routines.

The command and reply routines (ISSUECMD and ISSUEREP) check to see if the
message ID of the message that triggered them is defined as a minor resource
under the associated application (or under MVSESA for a system message).

Note: Calling either ISSUECMD or ISSUEREP with AUTOTYP=NOCHECK
disables this checking, but as it causes a number of incongruities, this is not
recommended.

By default a minor resource inherits the automation flag settings of its major
resource. You can use the customization dialog or INGAUTO to set specific flags
for minor resources. You can see the current automation flag settings for both
major and minor resources on the DISPFLGS panel.

Example

When TSO issues message IKT001D and this is trapped by an automation table
statement that runs ISSUEREP AUTOTYP=START, the following actions are taken:

1. The TSO Start flag will be checked

2. If either the TSO Start flag is turned on or minor resource checking is enabled,
the TSO.IKT001D Start flag is checked.

© Copyright IBM Corp. 1996, 2005 61

Using Automation Flags

3. If the TSO.IKT001D Start flag is turned on, ISSUEREP issues any replies
appropriate to the message.

4. If the TSO.IKT001D Start flag is turned off (even though the TSO Start flag may
be turned on), SA z/OS does not attempt to reply to the message.

When SA z/0OS Checks Automation Flags

This section describes how SA z/OS uses automation flags. It provides
background information to help you customize SA z/OS-provided automation and
to help you write your own automation procedures.

summarizes how SA z/0S typically uses automation flags. SA z/0S
provides a common routine, AOCQRY, to perform automation flag checking. See
[[BM Tivoli System Automation for z/OS Programmer’s Reference for a description of
AOCQRY.

Table 3. Automation Flags: Typical Uses in SA z/OS

Automation Flag Typical Use In SA z/OS

Automation Checked before any other automation flag to determine if overall
automation for the resource is on or off. If it is off, none of the
following flags will be checked.

Initstart Checked after the SA z/OS initialization for the first start of an
application. If this is on, SA z/OS will start the resource - provided
its goal is to be available.

Recovery Checked to determine whether to proceed with performing recovery
actions other than restarting a resource.

Restart If this is on, SA z/0S checks whether or not the resource is eligible
for restart.

Shutdown Checked to determine whether to proceed with a shutdown for the
specified resource.

Start Checked after the initial application start command or commands are
issued and additional commands or replies are issued for the
subsystem, to determine if startup is to be automated. This flag can
be used to control how much of the complete resource startup
process is automated.

Note: SA z/0OS will invoke an exit only if it needs to in order to evaluate a flag.
For example, if an exit is specified on a subsystem restart flag but the global
SUBSYSTEM Automation flag is off, SA z/OS does not invoke the exit
when it checks the restart flag because the setting for the subsystem
Automation flag (inherited from the SUBSYSTEM Automation flag) is off.

If the situation is reversed (exit for the subsystem Automation flag and the
SUBSYSTEM Restart flag is off) the exit would also not be invoked. See
[Exits” on page 134 for more information on automation flag exits.

Do not rely on SA z/OS to invoke an exit every time a flag is checked. You can
only rely on SA z/OS to invoke an exit before it concludes that a flag is turned on.

The Automation Manager Global Automation Flag

Using the INGLIST or the INGSET command (see [[BM Tivoli System Automation for|
[z/OS User’s Guide or [IBM Tivoli System Automation for z/OS Operator’s Commands))

62 System Automation for z/OS: Customizing and Programming

When SA z/OS Checks Automation Flags

you can set an automation flag for the individual resources, which is checked by
the automation manager before it sends any order to the automation agent to start
or stop the specific resource.

The purpose of this flag is to prevent (if flag is set to NO) or enable (YES) the
starting or stopping of resources. This can be done for resources that reside on
systems that are currently inactive, for example, to prevent the startup of the
resource at IPL time of the system.

Chapter 6. How to Automate Your Resources 63

When SA z/OS Checks Automation Flags

64 System Automation for z/OS: Customizing and Programming

Chapter 7. How to Automate Processor Operations-Controlled
Resources

This chapter contains information on how to customize your SA z/OS installation
to enable the automation of messages coming from target systems that are
controlled by processor operations. These target systems or resources are referred
to as processor operations resources in the following.

Notes:

1. VM guest systems are treated as any other target systems which is controlled
by ProcOps (see [[BM Tivoli System Automation for z/OS Operator’s Commands| for
details).

2. PSMs are "virtual” hardware and therefore not all Target hardware commands
apply (see [BM Tivoli System Automation for z/OS Operator’s Commands| for
details).

With the method described in this chapter, you can use SA z/OS system
operations to react on these messages. This information is contained in

" Automating Processor Operations Resources of z/OS Target Systems Using Proxyl
Definitions,”| which introduces the general process how to achieve such message
automation.

Automating Processor Operations Resources of z/OS Target Systems
Using Proxy Definitions

SA z/OS processor operations can be used to automate messages which cannot be
automated on the target systems themselves. Typically these messages include
those appearing at IPL time.

In a sysplex environment there are additional messages (XCF WTORs) being
displayed at IPL time when joining the sysplex and at shutdown time when a
system is leaving a sysplex. These WTOR messages cannot be automated yet
because SA z/OS system operations is not active at that time.

With the XCF message automation framework described in this chapter, you have
a method of exploiting your own XCF message automation. SA z/0OS will also
deliver samples in the sample policy database exploiting this framework.

Note: There are XCF WTOR messages which are automatable by Sysplex Failure
Management (SFM). In these cases, to avoid conflicting automation, it is not
recommended that you automate these messages by SA z/OS.

Concept

You can use the SA z/OS standard interface and routines to handle system
external messages in almost the same way as system internally generated
messages. This applies to the way of defining message automation in the
customization dialog as well as to the means available for controlling message
automation at automation time.

© Copyright IBM Corp. 1996, 2005 65

How to Automate Processor Operations Controlled Resources

To exploit the system operations mechanism for message automation, a proxy
resource representing the processor operations resources must be generated in the
customization dialog as entry type Application (APL).

There is a one-to-one relation between a proxy and a processor operations resource
(target system). How to implement this relation in the customization dialog is
described in the following subsections.

Messages which are generated on external systems, where no SA z/OS is active or
not yet active, can also be automated. Therefore, these resources generating these
messages are called processor operations resources. They are defined in the
customization dialog as entry type System (SYS).

Customizing Automation for Proxy Resources

It is assumed that you have already used the customization dialog to define
processor operations target systems and made these systems accessible to the
processor operations focal point via the Processor Control file (see also m
[System Automation for z/OS Defining Automation Policy). So for every processor
operations target system defined on the processor operations focal point, you
should define a proxy resource. You do this by defining the proxy resource as
entry type Application (APL) in the customization dialog.

Note: If you want to define many proxy resource applications, you can use the
application class concept as described in [I[BM Tivoli System Automation for|
lz/OS Defining Automation Polict).

The rules that you need to obey when defining the proxy resource are described in
the subsequent list.

Defining the proxy resource as Application (APL) has another advantage: The
system is then visible in the INGLIST panel and it can be managed and monitored
like an application resource. SA z/OS users will be able to not only use message
automation for target system messages, they also can issue start and stop
commands to IPL and to shutdown systems. These commands can be defined like
any start and stop command for an application. But other than application
resources, target systems are managed by processor operations commands (e.g.
ISQCCMD target_system_name ACTIVATE FORCE(NO) or ISQSEND
target_system_name OC vary xcf target_system_name,off retain=yes). Processor
operations commands allow you to send MVS commands to target systems as well
as to send hardware commands to the processor (support element).

Here is the list of rules:

1. As mentioned , you need to define (or have defined) the processor operations
target systems that you want to automate. For those systems, the following
rule applies:

MVS SYSNAME = ProcOps name
FThe MVS SYSNAME must be identical with the ProcOps name.

If this is not the case, you need to change it subsequently.

66 System Automation for z/OS: Customizing and Programming

N

10.

How to Automate Processor Operations Controlled Resources

Job Name = ProcOps name
The Job Name of the application for the proxy resource must match the
processor operations target system’s name as defined when creating this
system in the customization dialog.

Job Type = NONMVS
FThe Job Type for the proxy application must be NONMVS.

. The Monitor Routine for the proxy application must be ISQMTSYS.

Sysname = MVS SYSNAME
The Sysname for the proxy application must match the MVS SYSNAME
defined for the processor operations target system. This definition is
used for resource monitoring.

Note:
If you want to inhibit operators from performing a startup or shutdown
for a target system resource using the INGREQ command, External
Startup and External Shutdown must be set to "ALWAYS'.

If you do not want the proxy resource to be started at an IPL or on NetView
recycle of the processor operations focal point, you should specify NO for
both fields Start on IPL and Start on RECYCLE.

As you can only automate applications by linking them to systems via an
application group, you need to define an application group for the proxy
applications. Do not merge the proxy applications with other applications into
this application group because destructive requests applied to a merged
application group would also affect the proxy resources contained in that
group.

You may choose PASSIVE behavior to not forward requests against the
application group to each member. This will prevent you from unintentionally
sending requests to processor operations target systems represented by their
proxies.

In the Message Processing panel for the proxy application define the messages
to be automated in column Message ID. Do not specify message ID I1SQ900I,
as this message is used as a carrier for the original target system message.

Enter ‘emd’ in the Action column to specify the command to be processed if
the defined message occurs.

If the message to be automated is a WTOR, then the variable &EHKVAR1 will
contain the reply ID. This variable may then be used as a parameter to the
ISQSEND command:

ISQSEND &SUBSJOB OC R &EHKVAR1,COUPLE=00

Chapter 7. How to Automate Processor Operations-Controlled Resources 67

How to Automate Processor Operations Controlled Resources

Startup and Shutdown Considerations

Processor operations commands must be used to start or stop processor operations
resources, for example:

Start example:
ISQCCMD &SUBSJOB LOAD FORCE(NO)
Stop example:

Pass 1 ISQSEND &SUBSJOB 0C Z EOD

Pass 2 ISQSEND &SUBSJOB OC VARY XCF,&SUBSAPPL,OFF,RETAIN=YES

Note:
If the delay time between sending the commands in pass 1 and pass 2 is not
appropriate, you may define a resource specific Shut Delay in the Application
Automation Definition panel.

For more details about processor operations commands refer to [[BM Tivoli System|
[Automation for z/OS Operator’s Commands|

Preparing Message Automation

The interaction with target systems is based on the SA z/OS processor operations
component. Therefore the installation and customization of this component must
be complete at this point.

Operating System messages from processor operations target systems receiving at
the focal point will be transferred to ISQ900I messages.

ISQ901I is not relevant. It is used to inform interested operators about target
system messages. It is not used for automation purposes.

— MSCOPE() parameter in CONSOLxx member
MSCOPE allows you to specify those systems in the sysplex from which this
console is to receive messages not explicitly routed to this console. An
asterisk (*) indicates the system on which this CONSOLE statement is
defined. Since the default is *ALL, indicating that unsolicited messages from
all systems in the sysplex are to be received by this console, this parameter
must be set to "*’ for correct automation by SA z/OS processor operations.

Automating Linux Console Messages

68

The Linux Console Connection to NetView

When a Linux target system IPLs, its boot messages are displayed on the Console
Integration facility (CI) of the zSeries® or 390-CMOS processor Support Element
(SE). For SA z/0OS processor operations, CI is the only supported interface to
communicate with the Linux operating system. The communication between the
processor operations focal point and CI is based on the NetView RUNCMD and
the Support Element’s Operator Command Facility (OCF), an SNA application. In
SA z/0OS processor operations, this connection path is referred to as a NetView
Connection (NVC).

System Automation for z/OS: Customizing and Programming

How to Automate Processor Operations Controlled Resources

Linux Console Automation with Mixed Case Character Data

Unlike operating systems which translate console command input into uppercase
characters, Linux is case sensitive. The NetView automation table syntax allows the
use of mixed case characters in compare arguments of an IF statement. When an
automation command is to be scheduled as a result of such a comparison, any
message token arguments passed, are not translated into uppercase by NetView.
Make sure that your automation routine does not do an uppercase translation of
parameters passed. For example, in REXX use the statement 'PARSE ARG P1 P2’
instead of 'ARG P1 P2’, which implicitly performs a translation into uppercase. If a
Linux message invokes your automation code and the message information is
retrieved using NetView’s GETMLINE function, no uppercase translation will
occur. In order to send mixed case command data to the Linux console consider
the following REXX statement:

Address Netvasis 'ISQsend MY1linux Oc whoami'

The addressed REXX command environment ‘Netvasis’ passes the command string
without doing an uppercase translation. The ISQSEND command internally
translates its destination parms into 'MYLINUX" and "OC’ but leaves command
‘'whoami” as is.

Security Considerations

After Linux system initialization, usually a LOGIN prompt message is displayed
allowing users defined to the system to login. The ISQSEND command interface
does not suppress any password data from being displayed. You may use the
NetView LOG suppression character to avoid the password information to be
visible in the NetView log. In SNA/VTAM traces or Support Element log files,
such password data can be viewed in text form.

Restrictions and Limitations
The following Linux systems are supported:

* Linux systems running in an LPAR of a zSeries or 390-CMOS processor
hardware

* Linux systems running on a zSeries or 390-CMOS processor hardware,
configured in Basic mode

* Linux systems running as VM guest machines under z/VM Version 4.3 or higher

Linux systems running under a VM, which itself runs as a VM guest, are not
supported.

In the command shell environments of a Linux console it is possible to pass control
keys as character strings instead of pressing the keyboard control key combination
to perform functions like Control-C. The current Linux support of SA z/0OS
processor operations has not been tested using this Linux capability. Any Linux
program or command script that requires a user interaction with control keys
should not be invoked using the SA z/OS processor operations ISQSEND
interface.

How to Add a Processor Operations Message to Automation

Use the NetView automation table (AT) and the SA z/0OS command set to
implement console automation. You can automate the routine functions that an
operator performs when a particular message is generated. For more information
see |IBM Tivoli System Automation for z/OS Defining Automation Policy}, SC33-7039.

Chapter 7. How to Automate Processor Operations-Controlled Resources 69

How to Automate Processor Operations Controlled Resources

70

Messages Issued by a Processor Operations Target System

When a target system issues a message, the message is forwarded to the processor
operations focal point system. The focal point system repackages the message
within an SA z/0S ISQ900I message, an ISQ9011 message, or both, and routes the
message to the appropriate task:

* ISQ900I messages are routed to SA z/OS processor operations autotasks. If you
want automation that you write to receive ISQ900I messages, use the ISQEXEC
command to run the automation in a target control task. For information about
using the ISQEXEC command, see section Sending an Automation Routine to a
Target Control Task in [“Issuing Other OCF Commands” on page 10| Your
NetView automation table entries for SA z/OS should acknowledge the ISQ900I
identifier for all target system messages forwarded to the processor operations
focal point system. You can specify your ISQ900I automation table entries to be
target system specific, however, this is not recommended.

* 1SQ901I messages are routed to all logged-on operators identified as interested
operators by the ISQXMON command or marked as such in the customization
dialog.

For information about the ISQEXEC and ISQXMON commands, see |[BM Tivolj
[System Automation for z/OS Operator’s Commands)

A message forwarded from a NetView connection or an SNMP connection consists
of the following:

* ISQ900I or ISQ901I message identifier

* Name of target system where the message originated

* Console designator form describing where the message originated

* Message identifier and text of the original message from the target system

For example, if a NetView connection forwards the message IEA101A SPECIFY
SYSTEM PARAMETERS from the operating system to the focal point system, SA z/OS
creates one or both of the following SA z/OS messages:

1SQ900I target-system-name OC IEA1Q1A SPECIFY SYSTEM PARAMETERS
1SQ901I target-system-name OC IEA1Q1A SPECIFY SYSTEM PARAMETERS

This message format applies to all processor operations target system messages. It
is independent of the target system resource that generated the original message.

The processor operations target system message is sent in the same format as it
would be displayed on the processor Support Element (SE) or Hardware
Management Console (HMC).

— Specifics of VM second level systems:
Messages from guest machine operating system appear in the following
format:

I1SQ900I psm-name.guest-name OC IEA101A SPECIFY SYSTEM PARAMETERS

Messages from CP on the virtual machine appear in the following format:

ISQ900I psm-name.guest.name OC HCPGSP26271 The virtual machine is
placed in CP mode due to a SIGP initial CPU reset from CPU 00.

Messages from the PSM itself appear in the following format:
1SQ700I psm-name SC ISQCSO314E Message Handler has failed.

System Automation for z/OS: Customizing and Programming

How to Automate Processor Operations Controlled Resources

Note:
Make sure your consoles issue messages in the format that you expect and
write your NetView automation table entries accordingly.

Sample NetView Automation Table Statements
The following message response example presents a request for system parameters
when the message ID string contains 'TEA101A":
IF TEXT = . 'IEA101A SPECIFY SYSTEM PARAMETERS'
& MSGID = 'ISQ900I" .

THEN EXEC(CMD('ISQI101 ') ROUTE (ONE *))
DISPLAY(N) NETLOG(Y);

This NetView automation table statement initiates the ISQI101 routine when the
message condition is true.

Note: Text within messages may be in mixed case. Be sure your coding accounts
for mixed case text.

Message 1SQ211l

Some SA z/0OS commands attempt to lock and unlock ports. Where an operator
owns the lock for a port, the SA z/OS unlock command, ISQXUNL, returns RC=12
associated with message ISQ211I Unable to unlock target name console.

In such a case, you have the choice of either using the ISQOVRD command to
force an unlock or you may end your automation with a message. Thereafter, you
can view your NetView log to find out the reason for the lock of the port.

Your automation may encounter this message 15Q2111 frequently. Attempting to
unlock a locked port is not an error condition; however, it may be a sign that the
calling command did not succeed. Schedule your automation from messages that
indicate positively that a command did not run, not from the ISQ211I message.

Processor Operations Command Messages

Some SA z/OS commands run on the target system. The message returned from
these commands indicates only that the support element was told to schedule the
operation. Consequently, the operation at the target system may not complete even
though the SA z/0OS message indicates a successful completion.

SA z/0S acknowledges only that the command was successfully forwarded to the
support element. An unsuccessful operation at the target system generates an
unsolicited message that the support element forwards to the focal point system in
an ISQ900I message. Schedule your automation from the message that positively
indicates that a target system operation did or did not complete.

The SINGSAMP SA z/0OS sample library contains the PL/I source code for several
automation routines that issue responses to selected messages. You can select the
response that is most appropriate for your enterprise. You can also use them as
models to create your own automation routines. The following list summarizes
these routines, the messages they respond to, and the responses they issue initially:

Chapter 7. How to Automate Processor Operations-Controlled Resources 71

How to Automate Processor Operations Controlled Resources

72

Member
INGEI120

INGEI357

INGEI426

INGEI502

INGEI877

INGEI956

SINGSAMP

Routine

ISQI120

ISQI357

ISQI426

1SQI502

ISQI877

ISQI956

Description

Responds to the following messages:
IEA120A Device ddd volid read, reply cont or wait.

I10S120A Device ddd shared (PR volid not read.)
the recovery task, reply cont or wait.

Issues the following response to the target: CONT
Responds to the following message:

IEE357A Reply with SMF values or U.

Issues the following response to the target: U
Responds to the following message:

$HASP426 Specify options - subsystem id.

Issues the following response to the target: WARM, NOREQ.
Responds to the following message:

ICH502A Specify name for primary/backup
RACF data set sequence nnn or none.

Issues the following response to the target: NONE
Responds to the following message:
IEA877A Specify full DASD SYS1.DUMP data sets

to be emptied, tape units to be used as
SYS1.DUMP data sets or GO.

Issues the following response to the target: GO
Responds to the following message:
IEE956A Reply - ftime = hh.mm.ss,

name = operator,reason = (ipl,reason)
or u.

Issues the following response to the target: U

The SA z/0OS automation table entries in the ISQMSG0 member of the

SINGNPRM data set include inactive entries that call these automation routines. To

incorporate these routines into your automation, do the following:

1. Remove the comments from the corresponding automation table entries for the
messages that initiate the automation routines you want to use. If you perform

these steps as part of the initial SA z/OS installation, make these changes
before you incorporate the SA z/OS entries. If you do this after the initial
SA z/0S installation, change the NetView automation table.

2. Code the routines you will be using to issue the responses you want.

3. Compile the PL/I source code for the routines you want to use, and link the
resulting object code to your PL/I library.

4. Recycle the NetView program to activate the new entries.

For automation processing to occur, each message in the NetView automation table
at the focal point system and at each target system must be made available to the

system’s NetView program. In z/OS, MPF controls message availability to the

NetView program. Examine the MPF list member in the SYS1.PARMLIB data set to
ensure that the necessary messages are marked for automation. For target systems

using other operating systems, check the message suppression facilities used on

those systems.

System Automation for z/OS: Customizing and Programming

How to Automate Processor Operations Controlled Resources

Testing Messages

SA z/0OS provides a collection of NetView automation table entries for your

SA z/0S configuration. NetView automation table entries are in the AOFCMD
member of the SA z/0OS SINGNPRM installation data set. When these entries are
moved to your NetView automation table, they may need additional editing.

For example, you may already test for a particular message in your production
NetView automation table. If you add an entry that tests for that same message,
your automation table will not run as you expect. After a match with the test
criteria is found, the search of the automation table is aborted. The second
NetView Automation Table statement is not found. Consequently, the message
does not drive all of your required actions.

To avoid this, combine entries into a single test condition. This ensures that all
required actions are scheduled for all messages. For the following message:

IEA320A RESPECIFY PARAMETERS OR CANCEL

your NetView automation table may already have the following entry: ()

IF MSGID = 'IEA320A'
THEN EXEC (CMD('USERJOB') ROUTE(ONE *)) CONINUE(Y);

With SA z/OS installed, the following message appears when forwarded from a
PC

ISQ900I TSCF30 A IEA320A RESPECIFY PARAMETERS OR CANCEL

With SA z/OS installed, the following message appears when forwarded from
zSeries or 390-CMOS processor hardware:

1SQ900I TAR30 OC IEA320A RESPECIFY PARAMETERS OR CANCEL

After the SA z/0S entries are added, the NetView automation table includes the
following entry:
IF TEXT = . 'IEA320A RESPECIFY PARAMETERS' .
& MSGID = 'ISQ900I" .
THEN
EXEC (CMD('ISQI320 ') ROUTE(ONE =))
DISPLAY(N) NETLOG(Y);

In this case, the first entry satisfies the IF test and the command USERJOB runs
(). The second command, ISQI320, is not scheduled to run because once the
message matches a table entry, the autotask stops searching. Combine these two
entries into a single entry, such as:
IF TEXT = . 'IEA320A RESPECIFY PARAMETERS' .
& MSGID = 'ISQ900I' .

THEN

EXEC(CMD('ISQI320 ') ROUTE(ONE =*))

EXEC(CMD('USERJOB ') ROUTE(ONE *))

DISPLAY(N) NETLOG(Y);

When you use the second example, both commands are scheduled.
If your NetView automation table tests the text of SA z/OS messages, the message
format must match the character case for which you test. This can be done by

requiring all sites to use the same format for their messages, or by duplicating AT
entries in uppercase and in mixed formats.

Chapter 7. How to Automate Processor Operations-Controlled Resources 73

Building the New Automation Definitions

Building the New Automation Definitions

When you are finished using the customization dialog to add message response

and automation operator information to the automation policy, you need to build
the system operations control files. The complete description of how to build and
distribute these files is provided in [I[BM Tivoli System Automation for z/OS Defining|
[Automation Policy}

The SA z/OS build function will place the new automation definitions in the data
set defined in the Build Parameters panel.

Copy the new automation definitions into the SA z/OS NetView DSIPARM
concatenation in the NetView startup procedures, or concatenate it to the NetView
DSIPARM data set.

Loading the Changed Automation Environment

To reload the AMC file, automation control file and the AT perform the actions
described in [“Step 7: Reload MPF List and Automation Configuration Files” on|

|Eage 4.|

VM Second Level Systems Support

74

This feature provides ProcOps support to control and monitor guest machines
running under VM.

ProcOps allows an operating system to be IPLed into a processor, amongst other
facilities. Such an operating system is VM. Within VM other operating systems can
be IPLed as guest machines. Of particular interest are LINUX guest machines, but
MVS, VSE and even VM guest machines may be possible. (Lower levels of guest
machines are not considered). Previously there was no effective way to enter
commands to and receive messages from such a guest target system in order to
validate that it had IPLed correctly, or that it is behaving correctly.

With second level guest machine support you can:

* Capture messages issued by the guest machine itself and route these back to the
ProcOps process for display or automated processing, or both

* Send commands to the guest machine from ProcOps, either as operator requests
or automated actions

Guest Target Systems

The most likely guest machine that is used as a target system is a LINUX system.
When a LINUX machine has a secondary user, the secondary user can use CP
SEND commands to:

* Issue CP commands to the guest machine
* Log on as a user to LINUX
* Enter LINUX commands (after logging on)

(It is also possible to set up the LINUX system in such a way that LINUX
commands can be entered on the VM console without logging on to LINUX.)

The secondary user receives:

* All "boot up messages”

* Responses to CP commands that are run on the guest machine
* Responses to logon and LINUX commands

System Automation for z/OS: Customizing and Programming

Loading the Changed Automation Environment

MYVS machines are more complex. When an MVS machine is running, the original
VM user first becomes an NIP console and then an MCS console. In these console
modes MVS takes over all I/O to and from the console, and MVS messages to it
cannot be intercepted by any CP facilities. Hence the SCIF SEND command cannot
be used to send commands to MVS, nor can MVS messages to this console be
intercepted.

However a "virtual SCLP console” for the guest machine can be used. During the
NIP phase of initialization, use of this console can be forced by configuring the
guest virtual machine so that it has no usable 3270 consoles. NIP then directs its
messages to the guest machine as line mode commands. This is analogous to the
stream of messages sent to the Operating System Messages (OSM) window on an
HMC by an MVS system running in a logical partition.

Responses to any NIP messages are entered using the CP VINPUT command.
Internally this is done when an ISQSEND command is issued to the operator
console (OC) of the target system. To ensure that such VINPUT commands are
processed correctly, the guest machine must be operating in RUN ON state at this
time.

To ensure that RUN ON state is set, a CP SET RUN ON command is sent to all
MVS guest machines at the time when the guest machine is started by the PSM.

Once MCS operation is established, important messages requiring operator action
are directed to the guest machine. Again, these are analogous to the stream of
messages directed to the OSM window of the HMC. Initially, commands cannot be
entered to MVS. To do so, it is necessary to enter "Problem Determination Mode".
To enter this mode, a VARY CONSOLE(*),ACTIVATE command must be entered.
Once this is done:

* All MVS messages that are displayed are routed to the guest machine
¢ Commands may be entered using the CP VINPUT command.

Problem Determination is not generally recommended.

To enter LINUX commands it is normally necessary to log on to LINUX. This
requires a user ID and a password. So, to provide for LINUX commands would
require the specification of a user ID and a password to ProcOps, with all the
attendant difficulties in the area of security. At present the LINUX system is
considered IPL COMPLETE when specified messages have appeared. These do not
require a user logon.

VM machines may also be guest machines. Third level guest machines are not
supported.

VSE machines may also be guest machines.

Customizing Target Systems

LINUX

The LINUX target system should have in its VM Directory entry, a CONSOLE
statement that sets its PSM as its default secondary user. For example, if the virtual
machine LNXAOL is controlled by a PSM running in virtual machine ISQPSM1,
then its CONSOLE statement might be:

CONSOLE 009 3215 T ISQPSM1

Chapter 7. How to Automate Processor Operations-Controlled Resources 75

Loading the Changed Automation Environment

76

When a LINUX target system is to be deactivated a FORCE command is used to
shut it. The default guest signal timeout interval values (set by the SET SIGNAL
command) and values defined for the guest machine determine the interval used
when allowing the LINUX system to shut in an orderly fashion. If this function is
required for a guest, you must ensure that this is set accordingly.

Such actions may include updating the etc/inittab entry on the LINUX system
itself, and setting up a SHUTTRAP module on the VM host.

MVS
This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:

CONSOLE 0O1F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:

SET RUN ON

DETACH OIF
IPL 7700

The SET RUN ON is needed so that when a response is to be sent to a NIP console
the VINPUT command used is effective.

The DETACH is used so that when the MVS system IPLs it will find none of its
defined 3270 consoles available to it. (You should also ensure that no user issues a
VM DIAL to an address that is defined as a NIP or MCS console.)

The IPL command is used to IPL the MVS system.

The MVS system itself should have included in its active CONSOLxx definition a
CONSOLE statement for the SYSCONS so that commands can be entered to MVS
after it is IPLed, for example:

CONSOLE DEVNUM(SYSCONS)
ROUTCODE (ALL)
AUTH (MASTER)
MSCOPE (*)
CMDSYS (*)
MONITOR(JOBNAMES-T)
ub(y)

VM
This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:

CONSOLE 0O1F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:

SET RUN ON

DETACH OIF
IPL 7700

The SET RUN ON is needed so that when a response is to be sent to a console the
VINPUT command used is effective.

System Automation for z/OS: Customizing and Programming

Loading the Changed Automation Environment

The DETACH is used so that when the VM system IPLs it will find none of its
defined 3270 consoles available to it. (You should also ensure that no user issues a
VM DIAL to an address that is defined as a Operator Console)

The IPL command is used to IPL the VM system.

The VM system itself should include within its OPERATOR_CONSOLES statement
in the SYSTEM CONFIG file (which resides on the "parm disk”) a specification for
the emulated system console, for example:

OPERATOR _CONSOLES O1F 020 System_Console

This ensures that when VM IPLs and finds no regular consoles available, it then
uses the emulated system console. This in turn directs the messages to the
secondary user as a stream of line-mode messages.

VSE
This too should have a CONSOLE statement in its VM directory entry that defines
its PSM as its secondary user:

CONSOLE 01F 3270 T ISQPSM1

It should also IPL a CMS system as its initial action. Once this CMS system is
IPLed it should run a PROFILE EXEC that includes the statements similar to the
following:

TERM CONMODE 3215

IPL 7700

The TERM CONMODE 3215 command sets the console into line mode.

Chapter 7. How to Automate Processor Operations-Controlled Resources 77

78 System Automation for z/OS: Customizing and Programming

Chapter 8. How to Automate USS Resources

Note: USS tasks behave differently when started as STCs rather than directly in

the USS environment.

When started as an STC, the starting user ID may differ so that the
AOFUXMON monitor routine is in most cases not able to internally trigger
ACTIVMSG UP=YES.

Thus it is much simpler for automation to start these applications with
INGUSS. There is then no AT entry required for the UP message. SA z/OS
is able to internally simulate this so that you do not have to worry about UP
messages.

Job names (at least the last character of the jobname) are not predictable for
USS resources. However, AOFUXMON is able to handle this by monitoring
the path within USS and changing the defined job name in SA z/0OS
accordingly. For the syslog daemon you would define the job name as
SYSLOGD. When the application is started and changes the jobname to, say,
SYSLOGD?7, AOFUXMON adjusts the SA z/OS data model to reflect this.

This cannot be handled in the AT with a generic entry for SYSLOGD*
because the change in job name is caused by the USS process that creates a
new address space with the new name, whereby the "old” address space
with the ‘old” name terminates. This means that you get an ended message
for the old address space and an up message for the new address space.
Again the sequence of these messages is unpredictable.

Integration of z/OS UNIX System Services

The following functions are supported by SA z/OS for z/OS UNIX applications:

* Starting and stopping of applications

* Monitoring of:

Processes (represented by the command or path and user 1ID)
TCP Ports
Files and file systems

Generic User Monitoring (the user supplies a z/OS UNIX monitoring routine
or script)

* Using an API to execute z/OS UNIX commands (INGUSS command)

Infrastructure Overview

The z/0OS UNIX resources that should be automated must run in the z/0OS UNIX
of a z/OS system that is already automated by SA z/OS. From the automation
manager’s perspective the NetView agent of this system is responsible for the
z/0S UNIX resources.

For command execution through INGUSS or user-defined monitoring, a z/OS
UNIX program (provided by SA z/OS) is directly invoked by SA z/OS. This
program (ingccmd) executes UNIX commands and runs when started by SA z/0S
with the jobname INGCUNIX. ingccmd is the extension of the NetView-based

© Copyright IBM Corp. 1996, 2005 79

Setting Up z/OS UNIX Automation

agent into z/OS UNIX. To monitor the standard z/OS UNIX resources (process,
port, or file) an SA z/OS internal routine is started.

Setting Up z/OS UNIX Automation

80

Customization of z/0OS UNIX Resources

z/0S UNIX resources are introduced to SA z/OS by defining them in the
SA z/0S customization dialogs.

The customization dialogs support the application type USS. If USS is selected, you
can enter z/OS UNIX-specific data such as a UNIX user ID, command or path,
filename, or monitored port. Choose one of these fields to enter the data.

The start and stop definitions can be varied between MVS and z/0OS UNIX
commands. For example, to stop an application you can issue a UNIX kill
command first and (if this was not successful) you can perform an MVS cancel
later.

Definitions for Automation Setup

The HFS path where the program shipped with SA z/OS is located must be
defined in the SA z/OS setup panel. This has to be the same path that was used
as the destination in the sample job INGUSCPY. When user-defined UNIX
monitoring is used and no absolute path is specified for the monitoring routine,
SA z/0S tries to start the user-defined monitoring routine in this directory.

Definitions for z/0OS UNIX Resources

To define a new application entry (APL, class, or instance), specify the application
type USS on the Define New Entry panel. When choosing the application type
USS, the option USS Control is displayed on the Policy Selection panel.

When selecting USS Control on the Policy Selection panel, you can enter the data
for the new z/OS UNIX resource. For a class only the user ID and the z/OS UNIX
monitoring routine can be specified on this panel. All other definitions (for
example, from/to, dependencies, etc.) can be entered as usual.

USS applications must be defined with a HASPARENT relationship to JES.

For object type INSTANCE you can define whether this resource is one of a
process, a TCP port, or a file or file system, as shown in

Monitoring Command. . .

Enter or update one of the following fields:

Command/Path. . .
/u/camp/usstest/usstest

File Name

Monitored Port. .

Figure 8. z/OS UNIX Control Specification Panel for Type INSTANCE

System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

Note: There are two monitoring routines:

¢ AOFUXMON, which is called by SA z/OS for UNIX System Services
resources. (This must always be specified.)

* A program in the HFS that is entered in the Monitoring Command field of
the z/OS UNIX Control Specification panel, and is called by
AOFUXMON. This means that if you specify this monitoring command,
you also have to specify AOFUXMON.

If this program does not begin with a "/" it must reside in the same directory as
the SA z/0OS-supplied z/OS UNIX routine ingccmd. Otherwise the name specified
is considered to be an absolute path identifier.

The UNIX monitoring routine must have an exit value. It can be one of the
following:

0 Resource is available
4 Resource is starting
8 Resource is unavailable

12 Error occurred

If the user-specified monitoring routine loops, it will receive a SIGKILL after the
AOFUSSWAIT time (defined in AOFEXDEF).

Hint:
It is possible to write a message from this UNIX monitoring routine to the
MVS system log, in order to trigger an action or perform a status change
through the NetView Automation Table (AT).

The monitoring routine AOFUXMON must be specified, otherwise the default
monitoring routine (usually INGPJMON) will be called, which is not sufficient for
z/0S UNIX resources.

The Job Type field can be either MVS or NONMVS:

MVS Is only used for resources that represent a process with a unique jobname.
For these resources SA z/0OS accepts the following messages for status
changes:

» TEF403I Job started
» IEF4041 Job ended
» IEF4501 Job abended

If no start command is specified, the default MVS start method
(s <JOBNAME>) is used.

NONMVS
SA z/0S ignores the messages listed above for status changes. This is
necessary if the jobname is not unique.

For z/0OS UNIX resources the Start Timeout interval begins when SA z/OS issues

a start command for an application. After the start timeout the monitoring method
is triggered. When the monitor detects the resource as available, the agent status is
set to "ACTIVE'. After another start timeout interval and successful monitoring, the

Chapter 8. How to Automate USS Resources 81

Setting Up z/OS UNIX Automation

ACTIVMSG generic routine is triggered which sets the agent status to "UP’. The
default value for Start Timeout is 2 minutes.

Automated Resources

Process Monitoring: No UNIX process identifiers (PIDs) can be monitored. The
monitoring routine needs the start command and the user ID that the process
belongs to. This information can be obtained with the UNIX command ps. In the
following example all processes belonging to user CAMP are displayed:
CAMP:/u/camp/ingcmd>ps -e -0 comm

COMMAND

/bin/sh

/usr/sbin/rlogind2

/bin/ps

/bin/sh

/usr/sbin/rlogind2

CAMP: /u/camp/ingcmd>

This means that automation could not distinguish between the two processes
started by /usr/sbin/rlogind2. Processes started by identical commands must
have different user IDs.

If it is necessary to automate processes running multiple instances, a user could
use softlinks to distinguish between the different processes. For example, the
process:

/u/camp/usstest/testme

should be started more than once. In this case, create some softlinks:

CAMP:/u/camp/usstest> Tn -s testme testl
CAMP:/u/camp/usstest> In -s testme test2

This results in:

CAMP: /u/camp/tt>1s -al

total 216

drwxrwxr-x 2 CAMP DE#03243 8192 Jan 24 16:24 .

drwxr-xr-x 19 CAMP DE#03243 8192 Jan 24 16:23 ..

Trwxrwxrwx 1 CAMP DE#03243 6 Jan 24 16:24 testl -> testme
Trwxrwxrwx 1 CAMP DE#03243 6 Jan 24 16:24 test2 -> testme
-rwxrwxr-x 1 CAMP DE#03243 94208 Jan 24 16:23 testme

These three programs (being the same "real” program) can be automated with the
three different start commands testl, test2, and testme. These links may be created
as a prestart command and deleted as a shutfinal command.

Note: Only the command is used, not the parameters that were used to start the
program. This is because a program may be started by SA z/OS with
different startup parameters, depending on what the automation manager
told the automation agent to do. In this case, the only constant value is the
command, not the parameters.

TCP Port Monitoring: Exactly one TCP port number can be entered for one
resource. SA z/OS monitors the local host as returned by the function
gethostid(). When this port has a state of 'listening,” this resource is considered to
be “available’ in terms of SA z/OS. All other states of the port will map to
‘unavailable.’

File or File-System Monitoring: The existence of a file (belonging to a certain
user) is verified. Many applications create files at startup and delete these files

82 System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

when terminating normally. If more than one file should be monitored, this can be
modeled as an application group (APG) in the automation manager.

This monitoring can be used to determine if a certain file system is mounted. The
start command for this resource would be a UNIX ‘mount” command, the stop
command a UNIX "umount’.

Start and Stop Definitions (INGUSS Command)

If the resource is to be controlled by traditional MVS commands, this could be
done in the same way as for all other MVS applications. Issuing commands in the
z/0S UNIX environment is done by specifying the INGUSS command at the start
or stop definitions.

To issue commands in the USS environment use the INGUSS command (for more
details see |[BM Tivoli System Automation for z/OS Programmer’s Reference).

Note: INGUSS can only be used if the primary JES is available. Therefore, z/OS
UNIX resources using INGUSS need a HASPARENT dependency to JES.
Most z/OS UNIX applications have this dependency. If you want to issue
prestart commands, an additional PREPAVAILABLE dependency is
necessary.

z/0S UNIX and MVS commands can be mixed in different shutdown passes.
Command Examples:
Start Command for a Process: To start a process with the command and jobname

specified in the customization dialogs, enter INGUSS JOBNAME=&SUBSJOB &SUBSPATH
on the Startup Command Processing panel, as shown in

Type Automated Function/'=*'
Command text

INGUSS JOBNAME=&SUBSJOB &SUBSPATH

Figure 9. Startup Definition for a Process

Only the command that was used to start an application or a process can be
monitored. If the same program is to be started multiple times, a softlink as
prestart command could be used to distinguish the processes.

Use a Softlink to Distinguish Processes that Run the same Executable as Prestart
Command: shows an example to create a softlink for &SUBSPATH (the
path parameter of the resource issuing the command, for example, /u/userl/ussl)
and link to the file /u/userl/usstest.

Type Automated Function/'=*'
Command text
*

INGUSS /bin/In -s /u/userl/usstest &SUBSPATH

Figure 10. Creating a Softlink

When looking at the HFS, this results in:

Chapter 8. How to Automate USS Resources 83

Setting Up z/OS UNIX Automation

84

USER1:/u/userl>1s -1

total 408

Trwxrwxrwx 1 USER1 DE#03243 7 Feb 13 12:44 ussl -> usstest
-rwxrwxr-x 1 USERI1 DE#03243 163840 Jan 29 14:55 usstest

Stop Commands for a Process: An z/OS UNIX process may be stopped in different
ways (escalation passes). For example, you can first use the z/OS UNIX ki1l
command, if that does not work use z/OS UNIX kill -9, and finally enter an MVS
cancel command.

Enter the definitions for this example as shown in
%PID% is replaced at run time by the real PID of the process.
4] N
Pass Automated Function/'s*'
Command Text
1
INGUSS /bin/kiTl %PID%

3
INGUSS /bin/kill -9 %PID%

g
MVS C &SUBSUSSJOB,A=&SUBSASID

o J
Figure 11. Stop Definitions for a Process

Stop Command for a File: A stop command for a file may be deleting the file. The
filename entered in the customization dialogs can be found in &SUBSFILE, as

shown in |Figure 1

Pass Automated Function/'s*'
Command Text

1

INGUSS /bin/rm &SUBSFILE

Figure 12. Delete a File

Example: inetd

The inetd is the UNIX internet daemon. It allows you to invoke several others and
it should be started at IPL time (normally through /etc/rc). It then listens for
connections on certain internet sockets. Its configuration file is /etc/inetd.conf

The following is a sample inetd configuration file:

login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

exec stream tcp nowait OMVSKERN /usr/sbin/orexecd orexecd -d
otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -k -t
daytime stream tcp nowait OMVSKERN internal

time stream tcp nowait OMVSKERN internal

netbios-ssn stream tcp nowait OMVSKERN /local/samba/bin/smbd smbd

When a service request is detected at one of its sockets, it decides what service the
socket corresponds to and invokes a program to service the request. Then it

normally continues to listen on the socket the last request came in at (see
i

n page 85).

System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

File listen
letc/inetd.conf %‘
Port 13 >
Port 37 >
start «— .
services DE— inetd Port 139 >
ondemand Je——M Process
Port 512 >
. Port 513 >
write
/etc/inetd.pid eeoo

Figure 13. inetd Structure

The inetd started with the configuration file above will listen on the following
sockets:

CAMP:/etc>netstat -a | grep INET

INETD1 00006B80 0.0.0.0..13 0.0.0.0..0 Listen
INETD1I 00006B7D 0.0.0.0..513 0.0.0.0..0 Listen
INETD1 00006B7E 0.0.0.0..512 0.0.0.0..0 Listen
INETD1 00006B7F 0.0.0.0..623 0.0.0.0..0 Listen
INETD1I 00006B82 0.0.0.0..139 0.0.0.0..0 Listen
INETD1 00006B81 0.0.0.0..37 0.0.0.0..0 Listen

Whereas the services and the real port numbers correspond according to
/etc/services:

daytime 13/tcp #Daytime

time 37/tcp timserver #Time

netbios-ssn 139/tcp #NETBIOS Session Service
exec 512/tcp #remote process execution;
Togin 513/tcp #remote login a la telnet;
otelnet 623/tcp #0E telnet

The UNIX internet daemon (inetd) can be defined in the customization dialogs, for
example:
Application Name: INETD/APL Application Type: USS

Command/Path: /usr/sbin/inetd User ID: OMVSKERN
Port: - File:

Application Name: INETFILE/APL Application Type: USS
Command/Path: User ID: OMVSKERN
Port: - File: /tmp/inetd.pid

Application Name: INETPORT/APL Application Type: USS
Command/Path: User ID: OMVSKERN
Port: 513 File:

Define a basic group containing all resources with relationships which indicate
that:

* The file is created by the inetd process and can never be started or created
directly by SA z/OS.

Chapter 8. How to Automate USS Resources 85

Setting Up z/OS UNIX Automation

* The inetd process listening on the port can never be started or created directly
by SA z/0S.

INETD/APG/KEY1

hasParent/
StartsAndStopsMe

externally/
StartsAndStopsMe

INETPORT/APL/KEY1
port

External Startup=always
External Shutdown=always

INETFILE/APL/KEY1
file

External Startup=always
External Shutdown=final

INETD/APL/KEY1
process

makeUnavailable/ makeAvailable/
whenDown whenAvailable

Figure 14. Dependency Graphic

The example above recognizes the inetd (modeled as a group) as up and running
when the process /usr/shin/inetd started by user OMVSKERN shows up, the file
/tmp/inetd.pid exists and port 513 is in status ‘listen” (inetd will listen to this port
for incoming login requests).

You can only choose a port that is defined in inetd/conf.

Start definition for INETFILE/APL
None.

Start definition for INETPORT/APL
None.

Start definition for INETD/APL
CMD: INGUSS JOBNAME=&SUBSJOB &SUBSPATH /etc/inetd.conf

(&SUBSPATH is substituted at run time by the parameter command/path.)

Stop definitions for INETFILE/APL
CMD: INGUSS /bin/rm &SUBSFILE

(This will remove the file if not yet removed by the inetd process.)

Stop definition for INETPORT/APL
None.

Stop definitions for INETD/APL
CMD: INGUSS /bin/kill %PID%
CMD: INGUSS /bin/kill -9 %PID%
CMD: MVS C &SUBSUSSJOB,A=&SUBSASID

%PID% will be replaced by the z/OS UNIX command routine with the real
PID that matches the parameters command/path and user ID. In the
following example this is 33554821:
CAMP: /u/camp/ingcmd>ps -e -o pid,comm -u OMVSKERN

PID COMMAND

33554481 /bin/sh
50331698 /usr/sbin/rlogind2

86 System Automation for z/OS: Customizing and Programming

Setting Up z/0S UNIX Automation

33554486 /usr/lpp/netview/bin/cnmeunix
67108927 /bin/sh

83886176 /bin/ps

33554821 /usr/sbin/inetd

83886472 FTPD

67109276 /bin/sh

16777629 /usr/sbhin/rlogind2

33554924 HSAPYTCP

Hints and Tips

Trapping UNIX syslogd Messages

To trap UNIX syslogd messages, an entry must be added to the syslogd
configuration file /etc/syslog.conf in order to forward the messages to the MVS
system log. Thus, messages can be processed by the Automation Table (AT).

To forward all messages to the MVS log add the following entry:
*.% [dev/console

To send special messages to the MVS log only, follow the syslog message naming
guidelines (for example, for warning messages use *.warn). /dev/console can be
used as an ordinary file to write to.

The UNIX messages have the MVS message ID BPXF024I and are multiline
messages.

shows an example of a UNIX message:

M 13:45:21.34 STC03602 00000090 BPXF024I (CAMP) Feb 13 13:45:21 BOEKEY1 syslogtest 67109100 : This is
S 498
D 498 00000090 a test message

Figure 15. Example of a UNIX Message
Debugging
Debugging can be activated for z/OS UNIX monitoring and command execution

on the AOCTRACE panel. The clist for monitoring is AOFUXMON and for
command execution AOFRSUSS.

Turning on debugging for AOFRSUSS implicitly turns on debugging for ingccmd
(the SA z/0OS command server).

The debugging messages will be written to the netlog and to the z/OS UNIX
system log (syslogd).

Chapter 8. How to Automate USS Resources 87

Hints and Tips

88 System Automation for z/OS: Customizing and Programming

Chapter 9. How to Enable Sysplex Automation

This chapter describes the enhancements to Parallel Sysplex® automation, how to
use the SA z/OS customization dialogs to enable them, and how to customize
your system.

Note: If you use a host code page other than 037, the hexadecimal representation
of the at sign (@) can be different. Use the letter represented by the hex code
X'7C' for the at sign.

Sysplex Functions

Managing Couple Data Sets

Couple data sets (CDSs) contain control information about the sysplex and its
resources, and are of crucial importance for the functioning of a Parallel Sysplex.
Particularly important are the SYSPLEX couple data set, which contains
information about the systems and the communication structure (XCF groups) of
the sysplex, and the CFRM couple data set, which specifies its coupling facilities
(CFs) and structures (see [‘Managing Coupling Facilities” on page 91). Every MVS
system in a Parallel Sysplex must have access to these CDSs, and to those of all
other implemented sysplex functions, such as SFM and Application Response
Measurement (ARM).

If a member system cannot access a CDS, the corresponding sysplex function is
impacted, and in some cases the sysplex will go down. It is therefore
recommended that you define two CDSs to XCF for every CDS type required for
the implementation of the sysplex. One of these, the primary CDS, is the one that is
actually used. The other, which is called the alternate CDS, serves as a backup copy.
The two CDSs contain the same data. Whenever the primary CDS changes, XCF
updates the alternate CDS accordingly. If an alternate CDS is available for a certain
type, XCF automatically switches to this alternate CDS whenever a member can no
longer access the primary CDS.

All CDSs except the sysplex couple data set contain one or more user-defined
configurations, called policies. For each CDS type, only one policy can be active.
However, it is possible to switch the active policy at run time. Refer to m
[System Automation for z/OS Operator’s Commands| for further information about the
INGPLEX command.

SA z/0S offers two functions for easier CDS management:

* Automated creation and recovery of alternate couple data sets for continuous
availability

* INGPLEX CDS, which simplifies management of couple data sets

Ensuring Continuous Availability of Couple Data Sets

When an alternate CDS exists for a given CDS type and the current primary CDS
fails, XCF makes this alternate the primary CDS. After this switch, however, an
alternate CDS no longer exists, and if the current primary CDS also fails, the
problems that were to be avoided by the creation of an alternate occur again. To

© Copyright IBM Corp. 1996, 2005 89

Managing Couple Data Sets

90

avoid this single-point-of-failure situation, SA z/OS provides a recovery
mechanism that tries to ensure that an alternate CDS is always available for every
CDS type used.

SA z/0OS creates a new alternate CDS in the following two situations:

* During initialization, SA z/OS checks that an alternate CDS is specified for
every primary CDS. If there is a primary CDS for which no alternate CDS exists,
SA z/0OS automatically creates it.

e At run time, SA z/OS ensures that a new alternate is created whenever the
current alternate has been removed or switched to the primary one.

Customization

Recovery of alternate CDSs is initiated either by the CDS function of INGPLEX or
in the background (for example, at initialization time). Background recovery can be
switched on and off by using the SA z/OS customization dialogs. Automatic
re-creation with INGPLEX CDS is always enabled.

You must specify the spare volumes that SA z/OS may use for creating missing
alternate CDSs (using the policy item SYSPLEX from the Policy Selection panel for
sysplex groups). This is also required for automatic creation with INGPLEX CDS.
Every CDS type has its own pool of spare volumes. Note that if you do not define
spare volumes for a CDS type, no recovery will be performed for this type. For
details on the use of the customization dialogs, see [“Enabling Continuous|
[Availability of Couple Data Sets” on page 100.|

You can control access to those functions of INGPLEX CDS that modify the sysplex
configuration. Refer to Appendix A of [BM Tivoli System Automation for z/OS|
[Planning and Installation| for details.

Managing the System Logger

Terms and Concepts

The system logger provides a sysplex-wide logging facility. Applications that use the
system logger write their log data into log streams. Within a Parallel Sysplex, these
log streams are usually associated with a coupling facility structure. For further
information about coupling facility structures, refer to ["Managing Coupling]
[Facilities” on page 91|By using a coupling facility log stream, members of a
multisystem application can merge their logs even when residing on different
systems.

When an application writes data to a log stream this data is stored at first
temporarily in the associated structure (coupling facility log stream) or a local
buffer (DASD-only log stream). From there, it is off-loaded into a log stream data
set which is automatically allocated by the system logger. When this log stream
data set is full, the system logger allocates a second one, and so on.

The control information for the system logger, which includes a directory for the
log stream data sets of every log stream, is contained in the LOGR couple data set.
The total number of log stream data sets that can be allocated by the system logger
is determined when the LOGR couple data set is formatted.

Two problems that can arise in connection with the log stream data sets are a
shortage of directory space in the LOGR CDS and incorrect share options for the
log stream data sets. SA z/OS provides the following recovery actions for these
problems:

System Automation for z/OS: Customizing and Programming

Managing the System Logger

¢ The primary and alternate LOGR CDSs are automatically re-sized if there is a
directory shortage

* The operator is notified if the share options for log stream data sets are not
defined correctly

Re-sizing the LOGR Couple Data Sets in Case of Directory
Shortage

The LOGR CDS contains information about the log stream data sets used by the
system logger. This information is stored in directory extents. Every directory extent
record can hold information about up to 168 log stream data sets. The number of
directory extents available in a LOGR CDS is specified when the CDS is formatted
(DSEXTENT parameter). When all available directory extents are used up the system
logger can no longer allocate new log stream data sets. This can cause considerable
problems for applications that use the system logger.

With SA z/0S, you can avoid this situation. If you switch on logger recovery,
SA z/0S automatically reformats your primary and alternate LOGR CDS with an
increased DSEXTENT parameter whenever the system reports a directory shortage.

Customization
Automation of system logger recovery is enabled through the SA z/0S

customization dialogs. For more details, see [“Enabling System Log Failure]
[Recovery” on page 101}

Managing Coupling Facilities
A coupling facility (CF) is a logical partition that provides storage for data exchange
between components of an application that is distributed across different systems
in a Parallel Sysplex. A Parallel Sysplex can contain more than one CF. The storage
of a coupling facility is divided into areas that are called structures. You can
imagine a structure as a special kind of data set. It is these structures, which are
identified by their name, that are accessed for reading and writing by the
application components.

The association between CFs and structures is dynamic. A structure that is used by
an application need not be allocated at all (for example, when the application is
not running), and can be allocated on different CFs at different points in time. For
every structure, there exists a preference list that defines the CFs on which it may be
allocated. The order of the CFs in that list determines which CF is selected when
more than one member of the list satisfies all allocation requirements (for example,
provides enough space).

The preference list, the space requirements, and other properties of the structures
are defined in the active CFRM policy. This policy is contained in the CFRM
couple data set. Refer to [“Managing Couple Data Sets” on page 89| for further
information.

XES allocates a structure that does not yet reside on any CF when an application
component needs to be connected to it. Note that the application component only
specifies the name of the structure that it wants to access. It is XES that decides on
which CF the structure is allocated. This decision is influenced by the structure
definition in the active CFRM policy. After the structure has been allocated, the
requesting application component can access it, and further components of this
application can require to connect to it. An application component that has access
to an allocated structure is referred to as an active connector to this structure.

Chapter 9. How to Enable Sysplex Automation 91

Managing Coupling Facilities

92

In the simplest case, XES deallocates a structure when all connected application
components have disconnected from the structure. However, an application
component can require that the structure or its own connection to the structure be
persistent. When the structure is persistent it remains allocated even when the
application component is no longer connected to it. When a connection is persistent
the structure remains allocated after a failure of that connection. The application
component in question remains a connector to the structure, although not an active
one. It is now a failed persistent connector. In both cases, you can force the
deallocation of the structure as soon as it no longer has active connectors.

Allocated structures can be rebuilt. Rebuilding is the process of reconstructing a
structure on the same or another CE. A rebuild consists of three main steps. First,
XES allocates the new structure instance. Then, the data of the old structure is
reconstructed in the new structure. Finally, XES deallocates the old structure
instance. Note that you cannot specify the target CF in your rebuild request. As
with structure allocation, XES selects it from the preference list.

There are two methods for rebuild: user-managed and (from OS/390® 2.8 onward)
system-managed. With user-managed rebuild, the active connectors are responsible
for reconstructing the data. With system-managed rebuild, XES transfers the data
to the new structure instance. System-managed rebuild is thus also available for
structures without active connectors. These structures can either themselves be
persistent or have failed persistent connections.

When an application component connects to a structure, it specifies whether it
allows the structure to be rebuilt through user-managed or system-managed
rebuild. For structures with active connectors, both rebuild methods require that all
active connectors allow the respective rebuild method.

You can also duplex structures. Duplexing means maintaining two instances of the
same structure on different CFs at the same time. Duplexing serves to increase
availability and usability of a structure.

Typical management tasks for CFs are removing a CF from the sysplex and
reintegrating it again. These tasks have several steps that must be performed in a
certain order and can be quite complex. To simplify these operations, SA z/0OS
offers the INGCF command. INGCF has several functions, which serve to
manipulate structures and the CFs themselves. For more information, see
[Tivoli System Automation for z/OS Operator’s Commands|and the online help.

Some functions deal with the sender paths of a coupling facility. They have the
following limitations. First, at least one system in the sysplex that is running the
automation must know the control unit id (CUID) of the coupling facility. If this is
not the case, no missing sender paths can be resolved.

A missing sender path occurs when a coupling facility is deactivated prior to a
system IPL (or relPL) and then activated afterwards. The system that has been
IPLed (or relPLed) does not recognize the coupling facility. To determine the
missing sender paths, the automation calls the HOM interface of HCD. Resolving
the missing path information is only possible when either the complete network
address is defined in HCD along with the processor id, or you provide the CPC
synonym used by the automation as the processor id. However, it is recommended
that you define both. If neither is defined, the system that misses the sender paths
must run the automation.

System Automation for z/OS: Customizing and Programming

Recovery Actions

Recovery Actions

Resolving a System Log Failure

SYSLOG message automation has been enhanced with a recovery function. Both
functions (recovery and automation of message IEE043]) exist in parallel. Recovery
takes place if the system log becomes inactive. It responds to message IEE037D
following one of the messages IEE043], IEE533E, or IEE769E, and it responds to
message IEE0411. For details refer to [“Enabling System Log Failure Recovery” on|
Except for the decision message, you can define individual action
commands in the customization dialogs for the above messages.

Because the recovery and the former automation of message IEE043] affect the
same resource SYSLOG, only one threshold can be defined in the policy SYSLOG
THRESHOLDS. To allow the separate control of SYSLOG recovery from the former
SYSLOG message automation, use the minor resource flag LOG. For the run time
environment, two thresholds are generated from the single threshold definition.
The names of these thresholds correspond to the names of the minor resource
flags.

Note: Action commands that are executed for the old SYSLOG message
automation are defined in the customization dialog using the entry SYSLOG
in the messages policy for the entry type MVS Components. Action
commands that are executed for the new SYSLOG recovery of message
IEE043I are defined in the customization dialog in entry IEE043I in the same
policy. If SYSLOG message and recovery commands are defined, both action
commands will be issued, if message IEE043I followed by message IEE037D
is trapped.

Customization: Automation of system log recovery is enabled through the
SA z/0S customization dialogs. For more details, see [“Enabling System Log]
[Failure Recovery” on page 101

Resolving WTO(R) Buffer Shortages

When all WTO(R) buffers are in use, it is possible that commands can no longer be
processed. To resolve this, there are several options: you can extend the buffer,
change the properties of the affected consoles, or cancel jobs that issue WTO(R)s.

SA z/0S provides recovery of buffer shortage in two stages. It first tries to extend
the buffer and modify the console characteristics, if applicable. If this does not
help, it then cancels jobs that issue WTO(R)s. You must specify which jobs can be
canceled by SA z/OS if there is a buffer shortage.

Customization: Automation of buffer shortage recovery is enabled using the
SA z/0S customization dialogs. For more information, see [“Enabling WTO(R)|
[Buffer Shortage Recovery” on page 102

Handling Long-Running Enqueues (ENQs)

This type of recovery is divided into the following individual functions:
* Long-running enqueue recovery

* SYSIEFSD resource recovery

* "Hung” command recovery

¢ Command flooding recovery

All these recoveries can be enabled and disabled individually or globally.

The long-running enqueue recovery function lets you:

Chapter 9. How to Enable Sysplex Automation 93

Recovery Actions

* Check which resources are blocked
* Customize automation to cancel or keep the jobs that block the resource

¢ Customize automation to dump the jobs before they are canceled

You can determine which resources you want to monitor. You can define a value
for the maximum time a job can lock a resource while other jobs are waiting for it.
If this amount of time is exceeded, recovery takes place. Identification of and
elimination of these potential bottlenecks helps to reduce the risk of a Parallel
Sysplex outage.

While the time definition describes an inclusion list, you also have the possibility
to define an exclusion list of resources that are not monitored at all.

For more information about enabling the ENQ function, see [“Enabling Long]
[Running Enqueues (ENQs)” on page 106

This function has been extended by three supplementary functions:
* |“SYSIEFSD Resource Recovery”|

+ [”"Hung” Command Recovery”|

+ “Command Flooding Recovery” on page 95|

SYSIEFSD Resource Recovery: The purpose of this function is to detect critical
ENQ resources that, if held for extended periods of time, can cause commands to
hang. Hung commands often result in multisystem outages. The focus of this
function is on the SYSIEFSD family of resources that are involved in 98% of hung
command outages:

* SYSIEFSD Q10 - this resource is required for every command. It is used to
serialize changes to the CSCB chain. If any task gets this resource and then
hangs, all commands will be locked out of the system. This also means that all
consoles will be locked out of the system. This is because, as soon as a console
issues a command after Q10 has hung, it will be waiting behind Q10, and that
locks out the task that handles all MCS consoles. EMCS consoles will then also
get locked out one by one as they issue a command and also get hung behind
Q10. Actions taken to free up this hang cannot include issuing a command (for
example, D GRS)—the task has to be terminated via CALLRTM.

* SYSIEFSD Q4 - this resource is used to serialize changes to the UCB by
allocation and VARY command processing. Allocation obtains the resource as
SHARED, while the VARY command obtains it exclusively. If a VARY command
hangs while holding this resource, all allocations will also hang. The VARY
command that is hung can be displayed and abended with the CMDS command.

If any of these resources do not execute within 10 seconds, they are considered to
have hung.

"Hung"” Command Recovery: The purpose of this function is to detect hung
commands that often result in multisystem outages. We distinguish two situations:

1. Commands that inhibit other commands from completing execution

2. Jobs that inhibit commands from completing execution

In either case only locked resources are taken into consideration. The recovery
looks for blocked resources that have not been defined during customization. If the

long-running ENQ recovery is disabled all resources, even those that have been
defined during customization, are considered as not having been defined.

94 System Automation for z/OS: Customizing and Programming

Recovery Actions

Because commands are executed by the master and the console address space, the
recovery first looks for blockers and waiters of these address spaces. As with
resources you can make similar definitions for commands (see [“Enabling Long]
[Running Enqueues (ENQs)” on page 106).

In the second case the recovery does not take place immediately. Only after the
threshold—the invocation after next—has been reached is the recovery action
performed.

In both cases the action is identical to the long-running ENQ recovery action.

Command Flooding Recovery: The purpose of this function is to detect jobs that
flood a command class. Command flooding can cause log buffer shortages and
inhibits other commands from executing. Both can lead to a multisystem outage.

When all (50) TCBs that are reserved for command processing are in use, new
commands are queued to the waiting queue. In this case the system issues message
IEE806A which triggers this function to evaluate what jobs are causing the
situation.

Jobs that just issue a set of commands, such as 200 (or more) "VARY dev,ONLINE"
commands should not be considered during the evaluation. This is achieved by
comparing the current and the previous snapshot of the affected command class.

Snapshot processing is scheduled when message IEES806A is trapped. The interval
time between the snapshots is 3 seconds by default (see [“Enabling Long Running|
[Enqueues (ENQs)” on page 106|for details about adjusting this value if necessary).
The interval should give these jobs enough time to finish issuing commands before
the first snapshot is taken. Only jobs that issue commands on two consecutive
snapshots become subject of the recovery action.

Before the recovery action takes place, the number of commands that are issued by
the job must exceed a threshold (see below) and at least one of the commands
must not be involved in a lock contention that is handled by the "hung”
commands recovery.

The recovery action depends on the job definitions (see [“Enabling Long Running]
[Enqueues (ENQs)” on page 106). If the job can be canceled, the recovery also
removes its waiting commands and terminates its executing commands. The
recovery action is completed either with message ING922E or with message
ING924E. The latter message is repeatedly issued approximately every minute until
the waiting queue becomes empty.

The threshold is calculated by subtracting the number of jobs that are issuing
commands in the command class from the total number of TCBs (50) that are
reserved for command processing. This prevents jobs that repeatedly issue few
commands from being evaluated .

The recovery ends when the message IEE061I is issued.
Note: The dump definitions are not in effect if a dump should be taken when the

job is canceled. This is because the recovery routine of the job that is being
canceled can suppress the dump.

Chapter 9. How to Enable Sysplex Automation 95

Recovery Actions

Customization: Automation of handling long-running enqueues is enabled
through the SA z/0S customization dialogs. For more details, see [“Enabling Long]|
[Running Enqueues (ENQs)” on page 106

SYSIEFSD resource recovery needs no further customization; it is enabled and
disabled whenever you enable or disable the recovery of long-running enqueues.

System Removal

The purpose of this function is to isolate failed systems from a Parallel Sysplex by
removing them as quickly as possible. It also ensures fast mean time to recovery
(MTTR) for those system images that you wish to restart immediately if an
unavoidable outage occurs.

Note: This function is unavailable when running on a z/OS image which runs
under z/VM, even if the function is enabled.

In particular, the function automates the messages IXC102A and IXC402D.

The automation of the first message completes the Sysplex Failure Management
(SFM). Under certain circumstances SFM cannot complete the isolation of a failed
system. This is because SFM’s HW isolation, resetting the channel subsystem (CSS)
of the failed system, is driven through the CF. When connectivity between the
system image and the coupling facility is lost, SFM cannot perform the hardware
isolation (ISOLATE command) and defers resetting the system image until manual
operator intervention occurs. Message IXC102A tells the operator to manually reset
the HW and then reply "DOWN" to the message, after which SFM safely partitions
the system image out of the sysplex. The longer the delay lasts, the more the
components and applications that rely on XCF messaging are impacted. The delay
can eventually lead to a sysplex outage when the failed system has 1/O operations
pending. Automation of this message minimizes the delay.

The second message has the same impact as the first one. However, this message
indicates a possible temporary inoperative status of the system due to a missing
status update. For this reason the automation gives the system the chance to
recover before the removal takes place by replying "INTERVAL=sss" to the first
occurrence of message IXC402D. The interval time, sss, is the failure detection
interval that is displayed by the command D XCF,CPL.

The automation does the removal of a system in two stages. The first stage clears
any pending I/O operations by sending a hardware command to the Support
Element. This requires information about the software running on the hardware.
Because the system issuing message IXC102A or IXC402D does not necessarily
have access to the hardware of the failed system, the automation needs predefined
mapping between software and hardware. Depending on this mapping, it then
routes the hardware command to the system that has access to the hardware of the
failed system. For information about how to do the mapping refer to
[System Removal” on page 104 For further information about the hardware

requirements refer to |[[BM Tivoli System Automation for z/OS Planning and|
nstallation|

The second stage replies to the outstanding WTOR with "DOWN" triggering the
removal of the system from the sysplex.

Customization: Automation of message IXC102A is enabled through the SA z/0S
customization dialogs. For more details, see [“Step 3: Automating Messages|
[[XC102A and IXC402D” on page 105

96 System Automation for z/OS: Customizing and Programming

Recovery Actions

Recovering Auxiliary Storage Shortage

With the automation of local page data sets, SA z/OS prevents auxiliary storage
shortage outages by dynamically allocating spare local page data sets when
needed. The function checks which jobs cause the shortage condition and whether
additional page data sets can be added. If this is not possible, the job that is
causing the shortage will be canceled if this has been defined.

To enable local page data set automation customize the PAGTOTL parameter
(defined in one of the IEASYSxx PARMLIB members used during IPL). Make sure
to set the PAGTOTL parameter to a value greater than the number of local page
data sets currently used.

Local page data sets must be defined in the master catalog and should not be
SMS-managed. It is recommended to use preallocated local data sets instead of
dynamically allocated ones. This makes the process faster because formatting
newly allocated page data sets is timeconsuming (10sec./35MB). Each predefined
local page data set should be allocated with 10% space of local page space
currently used by the system. If predefined page data sets can no longer be
allocated, new local page data sets will be created dynamically.

Customization: Automation of the recovery of auxiliary storage shortage is
enabled through the SA z/0OS customization dialogs. For more details, see
[“Enabling System Removal” on page 104

Hardware Validation

This function performs cross-validation of the hardware configuration mapped out
in the customization dialogs against the actual hardware configuration that is
running. This information is critical to accurately control logical partitions (LPARs)
on any supported CPC within the HMC/SE LAN over the BCP Internal Interface.

Hardware validation uses the CPC name, Partition name and Partition number to
ensure that the LPARs defined in the customization dialogs are on the correct CPC
and located on the correct partition number. However, this helps only for coupling
facilities because their partition identifiers must be defined in the active CFRM

policy.

For MVS images, information from the HMC/SE (such as system name and
sysplex name that are stored during initialization) is used to verify the
corresponding customization dialog definitions. During initialization of the
automation’s Hardware Command Interface and just before a disruptive request is
sent to a partition, new checks are made to ensure that everything matches
correctly.

Note: Only active images can be verified. For inactive images we must still rely on
definitions made in the customization dialogs.

An active system in this context is a system belonging to the same sysplex

as the system that runs the hardware validation, that is SA z/OS checks

only systems and coupling facilities within its own sysplex.
Hardware validation runs on an SA z/OS system primarily during startup, and
subsequently when changes to the definition in the customization dialogs are
applied through the ACF command (ACF COLD, and ACF REFRESH when any
CPC or image data has changed). The validation checks the definitions of all
registered systems, that is whenever an SA z/OS system performs the hardware
validation, it validates all systems and coupling facilities that are active in the

Chapter 9. How to Enable Sysplex Automation 97

Hardware Validation

98

sysplex at this point in time. Registered systems are systems running msys for
Operations or SA z/OS that have joined the same XCF group.

The validation of active systems and coupling facilities requires that the CPCs that
host the active systems must all be defined in the customization dialogs.

The data for inactive systems cannot be verified. However, these definitions are
checked for consistency across all registered systems. As soon as one of these
inactive systems or coupling facilities joins the sysplex or is made available for use,
the validation is run for the particular image only.

Retrieving actual hardware information can take up to 5 minutes per CPC
depending on the model and its LPARs. During the time that the hardware
validation takes place all other hardware-related automation is either delayed or
cannot be performed, depending on the type of recovery. For this reason the
validation carries out "delta” processing. That is validating only the data that has
changed. This also includes the absence of data resulting in terminating CPC
connections when CPC definitions are missing that have been applied by a prior
validation. The actions resulting from the validation are performed on ALL
registered systems. This has two advantages:

* you don’t need to recycle NetView for changes in hardware definitions.
* you only need to make the changes available to one system.

The first part of the hardware validation triggered by the ACF command or the
automation startup determines what CPC connections must be terminated and
initiated, namely in this sequence. The resulting actions are performed on all
registered systems. When this step has been completed successfully the image
validation is performed.

The image validation collects actual hardware information, and verifies the current
hardware definitions against the actual data and the definitions found on all other
registered systems. It informs you if:

* A real system or coupling facility could not be validated because either actual
hardware information or user definitions are not available

* The image definitions could not be evaluated because the actual hardware
information is not available

* The real system or coupling facility is not active and the image definitions of
some of the registered systems are different

* Any definition value has been corrected that was improperly defined or not
defined at all

Changes in hardware definitions can be made available to all registered systems by

simply invoking the command INGAMS REFRESH on only one of the these

systems. There is one exception: the change of the authorization token value used

for the communication with a particular CPC. A change of this value requires 3

steps:

1. In the first step you must remove the particular CPC definition and then
invoke the ACF command as above.

2. When the command completes successfully the next step is to change the
authorization token value of the CPC at the Support Element.

3. The final step is to define the CPC again with the new token value and invoke
the ACF command again.

System Automation for z/OS: Customizing and Programming

Hardware Validation

Note: This behavior of the INGAMS command applies to the hardware definitions
only.

The second part of the validation is triggered by either the message IXC517I that is
issued when a coupling facility is made available for use, or by the automation
itself when notified that a system joined the sysplex. Both trigger the automation
to perform only the validation of the new system or coupling facility. Multiple
occurrences of messages for the same system or coupling facility are ignored while
this system or coupling facility is validated. In case of a new system, the advantage
here is that the real hardware is validated before the system starts NetView and
the automation. If this automation then detects no difference between its current
definitions and the definitions of the other registered systems—which is the normal
case—only a consistency check takes place. This check does not require any real
hardware information.

Prerequisites
Hardware validation has the following prerequisites:

* All coupling facilities that are used in the sysplex must reside on a
CMOS-5S/390® G5 processor or higher. Only these processors return the partition
identifier that is required for validating coupling facilities.

e The BCP Internal Interface must have been initialized to accept requests. Or,
when unavailable, at least one other registered system must have access to the
hardware. Registered systems are systems running msys for Operations or
SA z/OS that have joined the same XCF group.

Note: Hardware validation is not supported on MVS systems running under
z/VM.

Enabling Hardware-Related Automation

To enable the sysplex automation that SA z/OS provides for recovery actions and
coupling facility management, the following definitions must be made in the
customization dialog.

Step 1: Defining the Processor

Use the customization dialog to define a new processor of Entry Type PRO. The
name should be the real physical name of the processor defined in HCD. For more
information, refer to the online help or the section "Creating a New Processor” in
[IBM Tivoli System Automation for z/OS Defining Automation Policy}

Step 2: Using the Policy Item PROCESSOR INFO

Use the Processor Information panel, to define a processor using entry type PRO.

Note: The connection type protocol must be INTERNAL

For more information, refer to the online help or the section "More about Policy
Item PROCESSOR INFO" in [IBM Tivoli System Automation for z/OS Definingl
[Automation Policy}

Step 3: Defining Logical Partitions

If the processor that you have defined runs in LPAR mode, define its logical
partitions using the LPAR Definitions panel. You should define all LPARs that are
physically available on your processor, together with the systems that run on them.

Chapter 9. How to Enable Sysplex Automation 99

Enabling Hardware-Related Automation

For more information, refer to the online help or the section "More about Policy
Item LPARS AND SYSTEMS" in |IBM Tivoli System Automation for z/OS Defining|
[Automation Policy}

Step 4: Defining the System

Define a system using entry type SYS, and the Define New Entry panel.

Note: To avoid receiving hardware validation messages during SA z/0OS
initialization, you should define all your systems (including your coupling
facilities).

For more information, refer to the online help or the section "Creating a New

System” in [IBM Tivoli System Automation for z/OS Defining Automation Policy}

Step 5: Connecting the System to the Processor

Connect this system to the processor that you defined in [“Step 2: Using the Policy]
[[tem PROCESSOR INFO” on page 99 and to its logical partition (if you set the
processor mode as LPAR).

Connect this system to the sysplex or standard group (see|“Step 6: Defining]|
[Logical Sysplexes”| and [“Step 7: Defining the Physical Sysplex”).

Note: MVS SYSNAME and the Image/ProcOps Name must be the same.
Restriction:
Usually, the MVS SYSNAME may begin with a number. However, in this case, it

must be the same as the Image/ProcOps Name, which cannot begin with a number.
Therefore, this naming restriction also applies to the MVS SYSNAME.

Step 6: Defining Logical Sysplexes

Define EACH logical sysplex (systems within the same XCF group ID) using entry
type GRP with group type SYSPLEX.

Use policy SYSPLEX to enter the real physical sysplex name. You can use the same
name in several SYSPLEX GRPs.

Use policy SYSTEMS to connect all systems within the same XCF group ID to the
SYSPLEX GRP. A system can only be connected to one SYSPLEX GRP.

Step 7: Defining the Physical Sysplex

Define your real physical sysplex using entry type GRP with group type
STANDARD.

Use policy SYSTEMS to connect all systems of your physical sysplex to the
STANDARD GRP.

Enabling Continuous Availability of Couple Data Sets

100

Couple data sets (CDSs) contain important information about how to manage
certain aspects of your sysplex. For example, the SEFM CDS (sysplex failure
management couple data set) defines how the system manages system and
signalling connectivity failures and PR/SM™" (Processor Resource/Systems
Manager) reconfiguration actions.

System Automation for z/OS: Customizing and Programming

Enabling Continuous Availability of Couple Data Sets

The following couple data sets are particularly important for the functioning of
your Parallel Sysplex:

¢ The SYSPLEX couple data set, which defines the systems and the XCF groups of
the sysplex

* The CFRM couple data set, which defines the coupling facilities and structures
of the sysplex

It is recommended that you define alternate couple data sets for all couple data
sets in your sysplex. These alternate couple data sets serve as backups when the
primary CDS fails.

With the customization dialog you can specify a series of spare volumes for every
CDS type, for example, SYSPLEX, ARM, CFRM. The first volume in the series is
used to create an alternative CDS if one of the primary alternate CDSs fails.

In the customization dialog you define the potential alternate couple data sets
using the Group entry type. Select a sysplex group, then select its policy item
SYSPLEX (define sysplex policy) from the panel Policy Selection.

The Sysplex Policy Definition panel is displayed if you select policy item SYSPLEX
from the Policy Selection panel for sysplex groups.

For a description of this panel refer to the online help or the section "More About
Polici Item SYSPLEX" in [IBM Tivoli System Automation for z/OS Defining Automation]

Enabling System Log Failure Recovery

The SA z/0OS customization dialog supports the automation of the system log
failure recovery by defining commands for the following messages:

» JEE0411
» IEE0431
» JEE533E
» IEE769E

Use the MVS Component entry type to specify the commands that will be issued
in case of a SYSLOG problem. Select the MESSAGES/USER DATA policy item of a
selected MVS Component policy object to display the Message Processing panel.
Enter CMD in the Action column and the message ID in the Message ID column.

Press Enter to display the CMD Processing panel. On this panel you specify in the
Command Text field the MVS command that will be executed in case of message
IEEO411. For example, enter MVS VARY SYSLOG,HARDCPY to have the SYSLOG receive
the hardcopy log. (This action is recommended by IBM.)

In case of message IEE043I, the IBM recommended action is to enter the MVS
command MVS WRITELOG START to restart the system log.

For the remaining messages repeat the steps as shown in the preceding panels.

You can use the customization dialog Minor Resource Selection to disable the
system log recovery by setting the automation flag of the minor resource LOG to
NO. For details refer to the section "More About Policy Item MINOR RESOURCE
FLAGS" in |IBM Tivoli System Automation for z/OS Defining Automation Policy}

Chapter 9. How to Enable Sysplex Automation 101

Enabling WTO(R) Buffer Shortage Recovery

Enabling WTO(R) Buffer Shortage Recovery

The SA z/OS customization dialog supports the automation of WTO(R) buffer
shortage recovery.

When using the MVS Component entry type (MVC), you can specify jobs that will
be canceled or kept in case a WIO(R) buffer shortage is threatening. The jobs that
you select for cancellation will then no longer issue WTO(R)s.

Select the MESSAGES/USER DATA policy item of a selected MVS Component
policy object to display the Message Processing panel.

Enter CODE in the Action column and WTOBUF in the Message ID column

After pressing Enter, the Code Processing panel is displayed. For more information
about this panel, refer to the online help or to the section "More About Policy Item
MESSAGES/USER DATA" in [[BM Tivoli System Automation for z/OS Defining]

[Automation Policy}

WTO Recovery is performed when different messages are received by SA z/OS.
The action taken when each of these messages is received is described inTable 4 o
|o: e 103

102 System Automation for z/OS: Customizing and Programming

Enabling WTO(R) Buffer Shortage Recovery

Table 4. WTOBUF Recovery Process

Recovery |Message |Actions in sequence Command
WTO IEA405E | Set console attributes.
If the deletion mode is not roll or wrap, set the mode to roll. K S,DEL=R,L=x
If any out-of-line display area exists, delete the status display. K E,D,L=x
If the interval between message rolls is not *” or less than or K S,RTME=1/4,L=x
equal to 1 second, set the interval to 0.25 seconds.
If the console receives messages not only from the local system |V CN(x),MSCOPE=(1)
and the WTO message buffer size has reached its maximum,
remove the buffering systems from the list and add the local
system to the list.
IEA404A | Suspend the console.
Requeue the messages to the hardcopy log. K Q,L=x
Vary the active console (COND=A) offline. For SMCS consoles, |V {CN(x),0FFLINE
issue the appropriate VTAM command (OA05706). [NET,TERM, LU1=x,
TYPE=FORCE
}
Cancel the job or TSO user that caused the shortage, but only when |C {jobnm,A=asid
defined as a candidate during the customization. 1U=user1'd
IEA4061 Resume the console if it was suspended and if it is not a SMCS V CN(x),ONLINE

console. (OA05706)

Restore console attributes.

Set the deletion mode to the value before the buffer shortage
occurred (OA05706).

K S,DEL=01d,L=x

Set the interval between message rolls to the value before the
buffer shortage occurred.

K S,RTME=01d, L=x

Set the list from which the console is to receive unsolicited
messages to the list before the buffer shortage occurred.

V CN(x),MSCOPE=(1)

Increase the WTO message buffer size to minimize future shortages
as follows:

new = min (9999
,max (1500
,1.2 * current MLIM
)
)

K M,MLIM=new

Issue message AOF929 for permanent changes (MLIM). (OA05706.)

Chapter 9. How to Enable Sysplex Automation 103

Enabling WTO(R) Buffer Shortage Recovery

Table 4. WTOBUF Recovery Process (continued)

Recovery

Message

Actions in sequence Command

WTOR

IEA230E

Increase the maximum number of reply IDs to the maximum K M,RMAX=9999
allowable value if the maximum number of systems in the sysplex is
greater than 8 or the system runs in local mode.

Increase the WTOR message buffer size if the current RMAX value is | K M,RLIM=new
greater than the current RLIM value as follows:
new = min(9999
,max (10 + 2 * maxsys_in_sysplex
,1.2 = current RLIM

)
)

IEA231A

Cancel all jobs and TSO users that have outstanding WTORs and C {jobnm,A=asid
that are defined as candidates during the customization. |U=userid

}

IEA2321

Issue message AOF928 for irreversible changes (RMAX).

Issue message AOF929 for permanent changes (RLIM).

Enabling System Removal

The SA z/OS Parallel Sysplex enhancements help you to resolve pending I/Os for
systems being removed from the sysplex.

Because the automation must know where the system is located to send the
command to the appropriate Support Element, you must use the customization
dialog to define its hardware configuration.

Step 1: Defining the Processor and System

The processor and system must be defined as described in
[Hardware-Related Automation” on page 99

Step 2: Defining the Application with Application Type IMAGE

Use entry type APL to define a new application with Application Type IMAGE and
subsystem name that is the same as the Image Name of the system that this
application represents (as defined in|“Step 4: Defining the System” on page 100).

Use entry type APL and select policy item APPLICATION INFO for your system.
On the panel Application Informationyou can define a new application type IMAGE.
For more information, refer to the online help or the section "Policy Items for
Applications” in [[BM Tivoli System Automation for z/OS Defining Automation Policy}

Because the application has been defined as type IMAGE, the job name is set by
default to the subsystem name and cannot be changed.

The Subtype, Scheduling Subsystem, JCL Procedure Name, ARM Element Name,
and WLM Resource Name are forced to be blank.

Some other definitions in the policy item AUTOMATION INFO are also defaulted:
* the Job Type is defaulted to NONMVS
* the Monitor Routine is defaulted to INGMTSYS if nothing is specified

* the External Startup is defaulted to ALWAYS if the Monitor Routine is
INGMTSYS

104 System Automation for z/OS: Customizing and Programming

Enabling System Removal

e the External Shutdown is defaulted to ALWAYS if the Monitor Routine is
INGMTSYS

For more information, refer to the online help or the section "More About Policy
Item AUTOMATION INFO" in [IBM Tivoli System Automation for z/OS Defining|
[Automation Policy}

Step 3: Automating Messages IXC102A and IXC402D

You can automate messages IXC102A and IXC402D to avoid sysplex outages.

Note: The following shows examples for defining commands and codes for
message IXC102A.

You can specify one of the following four hardware commands for each system in
the sysplex that is automated.

* SYSRESET [CLEAR]

« DEACTIVATE

* ACTIVATE [P(image_profile_name)]

¢ LOAD [P(load_profile_name)] [CLEAR]

where
CLEAR indicates that the storage will be cleared
p specifies the profile to be used. The name can consist of up to 16
alphanumeric characters. If the parameter is omitted, the last
profile is used.
— Note:
The following restriction applies to the hardware commands ACTIVATE and
LOAD:

Both commands invoke processor functions that can cause asynchronous
events such as operator messages at BCP (Basic Control Program) Internal
Interface initialization time or processor hardware wait states. Currently, the
BCP Internal Interface does not allow the monitoring and control of these
events.

Use policy item MESSAGES/USER DATA of the SA z/OS customization dialog to
define commands and codes for message IXC102A and IXC402D. Enter CMD in the
Action column and IXC102A in the Message ID Description column (or IXC402D for
IXC402D message automation). For more information, refer to the online help or
the section "More About Policy Item MESSAGES/USER DATA” in
[System Automation for z/OS Defining Automation Policyl The definitions here also
apply to message IXC402D.

Pressing Enter will bring up the CMD Processing panel, as shown in
‘a ge 106

Use this panel to specify a valid command for the image and a
"Pass/Selection” value that must match the "Value Returned” definition specified
on the Code Processing panel.

Chapter 9. How to Enable Sysplex Automation 105

Enabling System Removal

ACTCODE
LOAD P(LOADPROF) CLEAR

Figure 16. Sample Panel for Command Processing

On the Code Processing panel, as shown in specify the following:

Code 1 Code 2 Code 3 Value Returned
IXC102A BCPII ACTCODE

Figure 17. Sample Panel for Code Processing

If you want to automate messages IXC102A and IXC402D using the Parallel
Sysplex enhancements, you must enter IXC102A for Code 1 and BCPII for Code 2.
Refer to [“Important Processor Operations Considerations” on page 108| for more
information.

Enabling Long Running Enqueues (ENQs)

106

If you automate long running ENQs, you must define the following:
* The resource(s) being checked
¢ The time frame when a long ENQ is detected

If you automate "hung” commands, you must define the following;:

¢ The command (or commands) that are being monitored or excluded from
monitoring

* The time frame for each command that a command is granted for completion or,
if commands are to be excluded from monitoring, the exclusion keyword

In addition, the following definitions can be made:

* The names of jobs that should be canceled or kept when detecting a long ENQ,
a "hung” command, or command flooding

* The snapshot interval for a command class

¢ The title of the dump taken before the job is cancelled

* The default storage areas to be dumped

* Symbol definitions to be used when the dump specifications are provided by a
PARMLIB member

Use the dialog support via entry type GRP to define the following policies:

* Resource definition

* JOB/ASID definitions

* IEADMCxx symbols

* Command definition

* Snapshot interval definition

Step 1: Defining Resources

Use the Long Running ENQ Resource Definition panel to define your resources.
This panel is displayed if you select policy item RESOURCE DEFINITIONS from
the Long Running Enqueue Policy section of the Policy Selection panel for sysplex
groups. For more information, refer to the online help or the section "More About
Policy Item RESOURCE DEFINITIONS" in [[BM Tivoli System Automation for z/OS|
[Defining Automation Polici}

System Automation for z/OS: Customizing and Programming

Enabling Long Running Enqueues (ENQs)

Step 2: Making Job/ASID Definitions

Use the Long Running ENQ Job/ASID Definitions panel that is displayed if you
select policy item JOB/ASID DEFINITIONS from the Long Running Enqueue
Policy section of the Policy Selection panel for sysplex groups. For more
information, refer to the online help or the section "More About Policy Item
JOB/ASID DEFINITIONS" in [IBM Tivoli System Automation for z/OS Defining]
[Automation Policy}

Step 3: Defining IEADMCxx Symbols

Use the Long Running ENQ IEADMCxx Symbols panel that is displayed if you select
policy item IEADMCxx SYMBOLS from the Long Running Enqueue Policy section

of the Policy Selection panel for sysplex groups. For more information, refer to_the

online help or the section "More About Policy Item IEADMCxx SYMBOLS'" in [IBM|
[Tivoli System Automation for z/OS Defining Automation Policy}

Step 4: Defining Commands

Use the Long Running Command Definition panel to define your commands. This
panel is displayed if you select policy item COMMAND DEFINITIONS from the
Long Running Enqueue Policy section of the Policy Selection panel for sysplex
groups. For more information, refer to the online help or the section "More About
Policy Item COMMAND DEFINITIONS” in [BM Tivoli System Automation for z/OS|
[Defining Automation Polici}

Step 5: Defining Snapshot Intervals

Use the Command Flooding Definition panel to define the individual snapshot
times. This panel is displayed if you select policy item COMMAND FLOODING
from the Long Running Enqueue Policy section of the Policy Selection panel for
sysplex groups. For more information, refer to the online help or the section "More
About Policy Item COMMAND FLOODING" in [[BM Tivoli System Automation for|
[z/OS Defining Automation Polici}

Enabling Auxiliary Storage Shortage Recovery

To prevent auxiliary storage shortage outages you can predefine local page data
sets, using the SA z/OS customization dialog for entry type GRP to define the
following:

* local page data set
* job definitions

Step 1: Defining the Local Page Data Set
Use the Local Page Data Set Recovery panel that is displayed if you select policy
item LOCAL PAGE DATA SET from the Local Page Data Set Policy section of the
Policy Selection panel for sysplex groups. For more information, refer to the online
help or the section "More About Policy Item LOCAL PAGE DATA SET” in
[Tivoli System Automation for z/OS Defining Automation Policy

Step 2: Defining the Handling of Jobs

Use the Local Page Data Set Recovery Job Definition panel that is displayed if you
select policy item JOB DEFINITIONS from the Local Page Data Set Policy section
of the Policy Selection panel for sysplex groups. For more information, refer to the
online help or the section "More About Policy Item JOB DEFINITIONS” in
[Tivoli System Automation for z/OS Defining Automation Policy}

Chapter 9. How to Enable Sysplex Automation 107

Defining Common Automation ltems

Defining Common Automation ltems

There are definitions that relate to utilities running as a started task. The first one
(Temporary Data Set HLQ/TEMPHLQ) replaces the usage of the first qualifier of
the automation status file. The second definition (Started Task Job
Name/STCJOBNM) allows the unique assignment of started task job names
scheduled by the automation in case you have dedicated job name assignments
that conflict with the procedure names provided by the automation.

It is recommended that you define the Temporary Data Set HLQ/TEMPHLQ. If it
is not defined, the automation uses the first qualifier of the automation status file.

You can define both of these items using the Sysplex Policy Definition panel that is
displayed if you select the policy item SYSPLEX from the Policy Selection panel for
sysplexes. For more information, refer to the online help or the section "More
About Policy Item SYSPLEX" in [IBM Tivoli System Automation for z/OS Defining|
[Automation Policy}

Important Processor Operations Considerations

Currently, the IXC102A automation and Coupling Facility activation or deactivation
is the product automation that uses the BCP (Basic Control Program) Internal
Interface to control the processor hardware.

If you use the automation capabilities of SA z/OS processor operations in your
environment, make sure they do not conflict with the automation supplied by the
Parallel Sysplex enhancements.

With the Parallel Sysplex enhancements, IXC102A and IXC402D automation uses
the BCP Internal Interface, which is currently not compatible with processor
operations.

If you want to use the IXC102A automation that is supplied as part of the Parallel
Sysplex enhancements, make sure there is no processor operations related IXC102A
automation defined in your automation policy.

Likewise, if you want to continue to use the processor operations based
automation of messages IXC102A and IXC402D, the IXC102A automation flag
provided by the Parallel Sysplex enhancements must be disabled.

Processor operations, which is a Focal Point type function, allows you to monitor
and control processor hardware, including Coupling Facility images, from a single
NetView, the processor operations Focal Point.

The BCP Internal Interface of the Parallel Sysplex enhancements allows you to
perform hardware operations from each NetView in your sysplex member, as long
as its processor hardware supports this. Refer to [[BM Tivoli System Automation for]
[z/0S Planning and Installation| for more information.

Customizing the System to Use the Functions

Additional Automation Operator IDs

To support the Parallel Sysplex enhancements, you must define the following
automation operators:

108 System Automation for z/OS: Customizing and Programming

Customizing the System to Use the Functions

Automation Operator ID Automated Function Profile

AUTXCF XCFOPER AOFPRFAO
AUTXCF2 XCFOPER2 AOFPRFAO
AUTPLEX PLEXOPER AQOFPRFAO
AUTPLEX2 PLEXOPR2 AOFPRFAO
AUTPLEX3 PLEXOPR3 AOFPRFAO
AUTHWO001 HWOPERO01 AOFPRFAO
AUTHWO02 ... AUTHWO033 | HWOPERO02 ... HWOPER33 | AOFPRFHW

After you made the definitions, you have to build the new definition files via the
customization dialog build function. Recycle your automation NetViews to activate
the changes in the DSIPARM members.

Note: If you have different naming conventions in your setup and you change the
NetView autotask IDs in the parmlib member AOFOPFA, you have to
change the Primary Automation Operator fields of the AOP definitions
accordingly.

Switching Sysplex Functions On and Off

Use the SA z/0S customization dialog to specify the following minor resource

names:

CDS For the recovery of alternate CDSs.

ENQ Enables the handling of the next four individual recoveries.
ENQ.CMDFLOOD

Enables the handling of commands that flood a particular
command class.

ENQ.HUNGCMD
Enables the handling of jobs and commands that inhibit other
commands from completing execution.

ENQ.LONGENQ
Enables the handling of long-running ENQs.

ENQ.SYSIEFSD
Enables the handling of ENQs related to the major resource
SYSIEFSD and the minor resources Q4 and Q10.

HEALTHCHK For checking active sysplex settings and definitions.

LOG For the recovery of the system log.

LOGGER For the recovery of the system logger.

PAGE For the recovery of auxiliary storage shortage.
WTO For the recovery of WTO(R) buffer shortages.
XCF For automating messages IXC102A and IXC402D.

By default, all recovery actions are enabled. If you want to disable them, use the
customization dialog Flag Automation Specification and set the recovery flag to NO.

Note: You can change the automation recovery flag during run time by using the
command INGAUTO.

Chapter 9. How to Enable Sysplex Automation 109

Customizing the System to Use the Functions

110 System Automation for z/OS: Customizing and Programming

Chapter 10. DB2 Automation for System Automation for z/OS

Automation has been produced to provide automated functions for the DB2
software product.

Unlike other SA z/OS automation products (CICS, IMS and OPC), DB2
Automation has been designed as part of base automation. Consequently DB2 is
treated as a normal SA z/OS application, relying heavily on base functionality.
Therefore the material provided here should be read in conjunction with base
documentation. Only DB2 Automation-specific information is provided in this
document.

Overview

Automated functions provided by DB2 Automation are implemented using two
distinct methods. The first being line mode invocation which allows for an
operator (or OPC) initiated task to be performed on an on-demand basis. The
second method is via event-driven functions such as timer expiration and NetView
automation table traps. Timed commands are mainly used to provide for
connection monitoring of links to IMS and CICS. Automation table commands
support the dynamic discovery of IMS and CICS connections as well as Critical
Event Monitoring.

Line Mode Functions
DB2 Automation offers the following operator line command functions:
* maintenance start

This provides the ability to start DB2 in a non-standard mode. This is a
command line function that will allow for an ACCESS(MAINT) type start
and/or a PARM(modname) start.

* terminate threads

This provides the ability to stop threads attached to DB2 in order to free DB2 to
perform special tasks (backup).

* start/stop tablespace
This provides the ability to stop or start a specific Tablespace.
* event-driven functions

DB2 Automation event driven functions are via Timer commands or NetView
automation table (AT) Traps.

e connection monitoring (timer and AT driven)

This function will facilitate the monitoring of IMS and CICS connections. This is
done at connection level via either an ACF entry definition or via dynamic self
discovery, or both. If required, a recovery command will be issued to re-establish
a lost connection.

* critical events (AT driven)
This function is handled at 2 levels, each of which can forward messages to SDEF:
1. Specific event (for example, excessive logging).

2. General events using a NetView AT entry to drive a message
threshold /recovery process.

© Copyright IBM Corp. 1996, 2005 111

DB2 Automation for System Automation for z/0S

Planning Requirements

DB2 Automation requires SA OS/390 2.2 and its associated prerequisites. For more
information on this topic refer to |[[BM Tivoli System Automation for z/OS Planning|

and Installation

For dynamic discovery of connections, certain messages must be available:

IMS

For IMS, connection monitoring requires that messages DSNM0011, DSNM002I and
DSNMO03I are available to automation in order to detect the current status of a
DB2 connection with IMS. This requires that IMS Automation is installed. For non
DBCTL regions the IMS Automation EVISPINM member must be updated with the
above mentioned messagelDs so as to expose them to automation via the IMS
Automation AOI user exit. For more information please refer to [[BM Tivoli Syster|
[Automation for z/OS IMS Automation Programmer’s Reference and Operator’s Guide
The IMS non-DBCTL regions should also be defined to SA z/OS in order for the
dynamically discovered connections to have recovery commands issued as a reply
to the correct subsystem.

CICS

For CICS V4, connection monitoring requires that messages DSN2023I, DSN20251
and DSN2016I are available to automation. As this is not possible dynamic
discovery is not available to this level of CICS and the ACF CONN entry must be
used. For CICS TS, connection monitoring requires that messages DFHDB2023],
DFHDB20251 and DFHDB2037 are available to automation. These are exposed to
automation automatically and therefore dynamic discovery is available.

Installation

Automation Control File (ACF)

Samples of DB2 Automation are contained in the policy database samples (all
except the *DEFAULT sample). The DB2 entries are contained in
CLASS/INSTANCE application (APL) relationships. Please refer to
[Automation Policy”| for detailed information on how to implement these and other
(SCR) entries into your automation policy.

Defining Automation Policy

Tailoring Your DB2 ACF Entries

After you have created your PDB you will need to edit it in order to add your
specific DB2 Automation requirements. To do this, follow the subsequent steps:

1. Select option 4 Policies from the Customization Dialog Primary Menu.

2. Select the required policy database that is to contain the DB2 subsystem from
the Policy Database Selection panel.

3. Select entry type Application from the Entry Type Selection panel.

4. From the Entry Name Selection panel for Applications, enter "NEW
entryname” on the command line and press ENTER in order to create a new
policy object that will represent the DB2 MSTR subsystem.

5. On the Define New Entry panel, you will need to enter the DB2 master
subsystem name, an application type of DB2, the subtype (one of: MSTR SPAS

112 System Automation for z/OS: Customizing and Programming

11.
12.

13.
14.

15.

DB2 Automation for System Automation for z/0S

IRLM DBM1 DIST WLMS) and the MVS jobname, where the db2id represents
the prefix used when you defined your DB2 jobnames to z/OS:

Subsystem Name. subsystem
Application Type. DB2
Subtypeo MSTR
Job Name. db2idMSTR

Press END to save this information. This will bring you to the Policy Selection
panel for Applications.

From here select policy item LINK TO CLASS.

Note: One policy item that is inherited at this point is the SHUTDOWN
NORM command. This command looks like:

INGRDTTH &SUBSAPPL S

This has the effect of notifying of, and cancelling, any outstanding
threads prior to DB2 shutdown. If you would prefer that threads are
not cancelled then this command should be changed to read:
INGRDTTH &SUBSAPPL S N

From the list presented, select CLASS_DB2_MASTER and press END,

returning to the Policy Selection panel.

From here select policy item AUTOMATION INFO.

When presented with panel Application Automation Definition, enter the
command prefix character(s) for this DB2 subsystem in the entry:

(Command Prefix . . cmdprfx Console command character(s))

Press END to save this information.

For connection monitoring you must enter CMD and CODE entries for a CONN
message to describe any connections that require a forced monitoring action at
each monitoring cycle (for example, CICS V4 connection). Refer to
[‘Connection Monitoring” on page 122| for further details on how to add these
entries to the MESSAGES/USER DATA policy item:

G’IESSAGES Define Application messages)

If you wish to force connection status refresh at NetView restart, then add an
extra parameter "Y” to the end of the command to be issued for the
ACORESTART message entry, for example:

AFTER 00:00:10,INGRDCNM &SUBSAPPL Y

This has the effect of ensuring that any lost connections during a NetView
outage are recovered. This option is not required if you can rely on
connections being automatically re-established (that is, CICS/TS).

Press END to save this information.
Select the extended DB2 subsystem information policy:

(DB2 CONTROL Define DB2 Control entries)

On the DB2 control entries panel define DB2 specific subsystem information.
The DB2Id should be defined to indicate the subsystem ID and the Active log
data set name should be entered.

Chapter 10. DB2 Automation for System Automation for z/OS 113

DB2 Automation for System Automation for z/0S

114

16.
17.
18.

19.
20.
21.

22.
23.

24.
25.

26.

27.

28.

29.

30.

31.

DB2 subsystem id db2id
Active Tog dataset name. . . . dsname

Press END to return to the Policy Selection panel.

Press END again to return to the Entry Name Selection panel for Applications.
Now enter "NEW entryname” on the command line and press ENTER in order
to create a new policy object that will represent the DB2 DBM1 subsystem. On
Define New Entry panel AOFGLNOO you will need to enter the subsystem
name and the MVS jobname:

Subsystem Name. subsystem
Job Name. db2idDBM1

Press END to save this information and the Policy Selection panel will appear.
From here select policy item LINK TO CLASS.

From the list presented select CLASS_DB2_DATABASE and press END,
returning to the Policy Selection panel.

From here select policy item RELATIONSHIPS.

Enter "New HASPARENT" on the command line and press Enter. In the
Supporting Resource field of the upcoming Define Relationship panel, enter the
subsystem name that you gave for the db2idMSTR job and press Enter. For the
Condition field enter "StartsMeAndStopsMe". The relevant entries on the
Define Relationship panel should now look like:

Relationship Type. HASPARENT
Supporting Resource. subsystem/APL/=
Condition StartsMeAndStopsMe

Press END until you reach the Entry Name Selection panel for Applications.

Now enter "NEW entryname” on the command line and press ENTER to create
a new policy object that will represent the DB2 DIST subsystem. Perform the
steps described for the DBM1 subsystem accordingly now for the DIST
subsystem.

Create a new policy object that will represent the DB2 IRLM subsystem.
Perform the steps described for the DBM1 subsystem accordingly now for the
IRLM subsystem.

Create a new policy object that will represent the DB2 SPAS subsystem.
Perform the steps described for the DBM1 subsystem accordingly now for the
SPAS subsystem.

After the MSTR, DBM1, DIST, IRLM, and SPAS subsystems have been created,
they must be linked to an application group (APG).

The application group should be linked to the required system(s) that this
DB2 subsystem is to be automated on.

To support the SDF requirements of DB2 Automation, the status details (SCR)

settings are required and should be linked to the same system(s). The policy
item is:

G)BZ_SDF_STATUSES DB2 Automation status settings)

After all the relevant ACF definitions have been entered, the ACF can be
created using the BUILDF command.

System Automation for z/OS: Customizing and Programming

DB2 Automation for System Automation for z/0S

DB2 Automated Functions—Line Command Functions

Once a DB2 subsystem has been defined to automation, then there are a number of
functions that can be performed against it. These are either invoked by a line
command or are event-driven (timer or NetView AT).

Command Handler

Purpose
“INGDB2” is the only line command delivered by DB2 Automation. This is
referred to as the “Command Handler”.

Syntax

»»>—INGDB2—request—subsystem >«
l—,par‘m—| I—,TARG.ET=domid—|

Parameters

request

START-- DB2 startup (in non-standard mode)
TERM -- Terminate threads
TABLE -- Start/Stop Tablespace

For more information refer to [‘Command Requests” on page 116

subsystem
The DB2 subsystem that the request is for

parm
A comma delimited positional parameter string.

The number of parameters depends on the command request.
START

parml MAINT (for maintenance startup)
or an asterisk (*, for standard start)

parm2 An optional module name for a non-standard startup.

TERM
None

TABLE

parml
START (to start a tablespace) or
STOP (to stop a tablespace)

parm2
a database name

parm3
a tablespace name

domid
A domain within the sysplex on which you wish this command to be invoked
(default is current domain). DB2 Automation must be installed on each of the
domains that would be required to act as a target.

Chapter 10. DB2 Automation for System Automation for z/OS 115

Command Handler

Messages

AOFO10I ~ WRONG NUMBER OF PARAMETERS ENTERED

AOF2041 time : EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST clist_name
-parameter_name

AOF332I SUBSYSTEM name COULD NOT BE LOCATED ON target

Command Requests

This is a detailed description of each of the requests that can be invoked via the
Command Handler.

Maintenance Start

Purpose
This function will start a DB2 subsystem in a non-standard startup mode.

Using this function, a DB2 subsystem may be started in the following non-standard
startup modes:

* Maintenance mode using the default module
* Maintenance mode using a custom module
* Normal startup mode using a custom module.

If a DB2 subsystem is started in maintenance mode then:
* The DDF will be stopped to inhibit any further connections
* Connection monitoring will be suppressed

To perform a standard startup (normal startup mode using default module) the
SA z/0S SETSTATE command should be used to take full advantage of base
automation features.

By using the INGREQ command it is possible to start DB2 with the necessary
maintenance parameters entered on the "Appl Parms” field. For instance an
applparm field value of:

ACCESS(MAINT), PARM(DSNxxxxx)

for a normal start would be the equivalent of a command line maintenance start,
through substitution of the EHKVARI parameter. If the maintenance start
parameters are consistent, then they may be entered into the ACF via the flexible
startup policy. This provides for a variety of start types to be identified and
initiated from the INGREQ request panel. See the INGREQ command
documentation for further information.

The Maintenance Start function may also be invoked from TWS Automation as a
Non subsystem Operation. For further information regarding invocation from the
OPC product, refer to [[BM Tivoli System Automation for z/OS TWS Automation
[Programmer’s Reference and Operator’s Guidel

Syntax
INGDB2 START subsystem,start_type,modname

Parameters

subsystem
Name of the DB2 subsystem to be started in a non-standard startup mode.

116 System Automation for z/OS: Customizing and Programming

Maintenance Start

start_type
Specify MAINT for a DB2 subsystem to be started in maintenance mode.

Specify * for a DB2 subsystem to be started in maintenance mode (modname
must be specified for this option.)

modname
If modname is supplied then this module name will be used to start up DB2
subsystem, otherwise the default module name will be used to start up the
DB2 subsystem (this parameter must be specified if start_type is *.

Restrictions and Limitations

Maintenance Start can only be used when

e SA z/0S is initialized

* The DB2 subsystem is defined to SA z/0OS

* When a standard start is not required

* The OPC interface can only be used if TWS Automation is installed.

Note: When DB2 is started in maintenance mode, the SPAS (stored procedures)
address space is not started by DB2. However, SA z/OS is not aware of this
and expects it to be an external startup. As a result the status of SPAS goes
into an ambiguous STARTING status. The status will return to normal,
when DB2 is next re-started in normal mode. For sites that frequently start
up DB2 in maintenance mode, a separate DB2 application group could be
defined and used in which the SPAS application is excluded.

Usage

This command may be used to start a DB2 subsystem in a non-standard startup
mode, it may be invoked by the INGDB2 command handler or via TWS
Automation.

Input parameters are validated for accuracy and any errors found are logged and
the process is terminated. The requested subsystem is then checked to determine if
automation is enabled. Once these preliminary checks have been successfully
completed the requested function is initiated.

Examples
The type of startup performed will depend on the invocation parameters.

To startup a DB2 subsystem called DB2P in a non-standard startup mode, enter
one of the following commands on the command line:

Example 1
INGDB2 START DB2P MAINT

Start a DB2 subsystem DB2P in maintenance mode using the default module.

Example 2
INGDB2 START DB2P MAINT,DSNMOD1

Start a DB2 subsystem DB2P in maintenance mode using custom module
DSNMOD1.

Example 3
INGDB2 START DB2P =*,DSNMOD1

Chapter 10. DB2 Automation for System Automation for z/OS 117

Maintenance Start

Start a DB2 subsystem DB2P in normal mode using custom module DSNMODI.

Policy Entries
The following DB2 startup command can be found in the sample
CLASS_DB2_MASTER subsystem class STARTUP policy:

MVS &SUBSCMDPFX START DB2 &EHKVAR1

The specified command is appended with the required invocation parameters
depending on the parameters provided.

To invoke the maintenance start function via the TWS Automation interface, the
following startup command is required to be coded against an "Automation
Function” of UXxxxxxx.

INGRDMST &EHKVAR1

Where UXxxooxx must match the first token of the operation text as specified in
the OPC plan.

The SHUTDLY ACF entry is used to delay maintenance start should the DB2
subsystem be ACTIVE when this function is invoked.

The STRTDLY ACF entry is used to decide how long to wait before checking to see
if the DB2 subsystem is UP once this function is invoked.

Messages

AOFO14I SPECIFIED PARAMETER parameter INVALID
AOF146I PARAMETER MUST BE NUMERIC
AOF2041 EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST INGRDMST - text
AOF2891 SUBSYSTEM subsystem HAS EXCEEDED NORMAL STARTUP INTERVAL.
AOF3131 START FOR SUBSYSTEM subsystem (JOB jobname) WAS NOT ATTEMPTED - text
AOF3321 SUBSYSTEM subsystem COULD NOT BE LOCATED ON domain
AOF5831 AUTOMATION FOR SUBSYSTEM subsystem (JOB jobname) IS SET OFF -
AUTOMATION NOT ATTEMPTED

Return Codes

8 Process failure -- see accompanying message.

4 Automation not allowed.

0 Normal End.

-1 Command, instruction or nested command list encountered an error.
-5 Command list cancelled.

Error Codes Posted to TWS

UX21 Automation not allowed.

UX22 Automation control file error.

UX23 DB2 subsystem cannot be started, incorrect status.
UX24 DB2 subsystem is already started.

UX25 DB2 subsystem did not start.

UX26 Error response from AOCQRY.

Terminate Threads

Purpose

The terminate threads command will terminate all active threads for a DB2
subsystem. These include REMOTE, DB2CALL, BATCH, TSO, CICS/IMS
connections and all remaining ('Other’) threads.

TSO users will be issued with a message informing them that their thread is about
to be terminated prior to actual thread termination.

118 System Automation for z/OS: Customizing and Programming

Terminate Threads

The Terminate Threads function may also be invoked from the TWS Automation as
a Non-subsystem Operation. For further information regarding invocation from
TWS Automation, refer to [[BM Tivoli System Automation for z/OS TWS Automation|
[Programmer’s Reference and Operator’s Guidel

Syntax
INGDB2 TERM subsystem

Parameters

subsystem
Name of DB2 subsystem for which all active threads are to be terminated.

Restrictions and Limitations

Terminate threads can only be used when:

e SA z/O0S is initialized

* The DB2 subsystem is defined to SA z/0OS

* The status of the DB2 subsystem is "UP’

¢ The OPC interface can only be used if TWS Automation is installed.

Usage

Use this command to terminate all active threads for a DB2 subsystem. It may be
invoked by the INGDB2 command issued from the command line or via TWS
Automation.

Input parameters are validated for accuracy and any errors found are logged and
the process is terminated. The requested subsystem is then checked to determine if
automation is enabled. Once these preliminary checks have been successfully
completed the requested function is initiated.

Example
To terminate threads for a DB2 subsystem called DB2P, enter the following from
the command line:

INGDB2 TERM DB2P

Policy Entries
DB2 Control policy item entries can be used to control the length of time to
Terminate Threads.

"Terminate Threads Delay” represents the delay between each iteration of the
terminate threads request.

"Cycles” represents the maximum number of iterations of the terminate threads
request automation is to attempt.

To invoke the terminate threads function via the TWS Automation interface, the
following startup command is required to be coded against an "Automation
Function” of UXxxxxxx.

INGRDTTH &EHKVAR1

Where UXxxoooxx must match the first token of the operation text as specified in
the OPC plan.

IMS BMP threads can be handled separately by requesting this via the Connection
Monitoring Policy Entries. Using the CONN Message Policy entry for the DB2
subsystem, create a coded entry as required by the CDEMATCH common routine.

Chapter 10. DB2 Automation for System Automation for z/OS 119

Terminate Threads

Code 1 Code 2 Code 3 Value Returned
IMSCONID IMSCTLJB STOPBMP YES/NO
where
Code 1

is the IMS connection ID
Code 2

is the IMS Control Region job name
Code 3

is a fixed request identifier

Value Returned
is Yes or No, to indicate if this IMS job’s BMPs should be stopped using
the IMS /STOP REG ABDUMP command or not.

Messages

AOFOO4I PROCESSING FAILED FOR dbZcmd
AOFO141 SPECIFIED PARAMETER cycle INVALID
AOF1441 PARAMETER parameter_name INVALID
AOF1461 PARAMETER MUST BE NUMERIC
AOF2041 EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST INGRDTTH - text
AOF3321 SUBSYSTEM subsystem COULD NOT BE LOCATED ON domain
AOF5831 AUTOMATION FOR SUBSYSTEM subsystem (JOB jobname) IS SET OFF -

AUTOMATION NOT ATTEMPTED
ING107E INDOUBT THREADS EXIST - SHUTDOWN OF subsystem WILL NOT PROCEED
ING108I NO THREADS LEFT IN subsystem
ING109E thread_number THREADS COULD NOT BE TERMINATED FROM subsystem.
ING112I YOUR TSO DB2 (subsystem) THREAD IS ABOUT TO BE TERMINATED BY AUTOMATION.
INGI13I YOUR TSO DB2 (subsystem) THREAD HAS BEEN TERMINATED BY AUTOMATION.
ING114E jobname CANCELLED BY AUTOMATION DUE TO subsystem THREAD TERMINATION.
ING127A THREADS FOUND AFTER LAST CYCLE OF DB2 (subsystem), FORCE SHUTDOWN.

Return Codes

8 Process failure -- see accompanying message.

4 Automation not allowed.

0 Normal End.

-1 Command, instruction or nested command list encountered an error.
-5 Command list cancelled.

Error Codes Posted to TWS

UX41 Automation not allowed.

UX43 Termination of connections unsuccessful.
UX44 Error response from DB2 command.

Start/Stop Tablespace

Purpose
For DB2 Tablespace Start, the necessary Tablespace start command will be issued.

For DB2 Tablespace Stop, certain active threads that use the Tablespace will be
terminated. These include REMOTE, DB2CALL, BATCH and TSO. TSO users will
be issued with a message informing them that their thread is about to be
terminated prior to actual thread termination.

The Tablespace Start/Stop function may also be invoked from the TWS
Automation as a Non-subsystem Operation. For further information regarding

120 System Automation for z/OS: Customizing and Programming

Start/Stop Tablespace

invocation from TWS Automation, refer to |[BM Tivoli System Automation for z/OS|
[TWS Automation Programmer’s Reference and Operator’s Guide]

Syntax
INGDB2 TABLE subsystem,request_type,dbname,tsname

Parameters

subsystem
Name of DB2 subsystem

request type
'START’ (start Tablespace)
'STOP’ (stop Tablespace)

dbname
Database name

tsname Tablespace name to be started/stopped

Restrictions and Limitations

Tablespace Start/Stop can only be used when:

* SA z/0S is initialized

¢ The DB2 subsystem is defined to SA z/OS.

¢ The OPC interface can only be used if TWS Automation is installed.

Usage
Use this command to start/stop a Tablespace for a DB2 subsystem. It may be
invoked by the INGDB2 command handler or via TWS Automation.

Input parameters are validated for accuracy and any errors found are logged and
the process is terminated. The requested subsystem is then checked to determine if
automation is enabled. Once these preliminary checks have been successfully
completed the requested function is initiated.

Examples
Example 1

To start a Tablespace where the DB2 subsystem is DB2P, the database name is
DB2PDBN and the Tablespace name is DB2PTSN, then enter the following
command on the command line:

INGDBZ TABLE DB2P,START,DB2PDBN,DB2PTSN
Example 2

To stop a Tablespace where the DB2 subsystem is DB2P, the database name is
DB2PDBN and the Tablespace name is DB2PTSN, then enter the following
command on the command line:

INGDB2 TABLE DB2P,STOP,DB2PDBN,DBZ2PTSN

Policy Entries
DB2 Control policy item entries can be used to control the length of time to
Terminate Threads.

"STOP tablespace delay” represents the delay between each iteration of stop
Tablespace attempt.

Chapter 10. DB2 Automation for System Automation for z/OS 121

Start/Stop Tablespace

TSO logoff delay represents the delay before issuing the TSO logoff message to
users of the Tablespace.

To invoke the start/stop Tablespace function via the TWS Automation interface, the
following startup command is required to be coded against an "Automation
Function” of UXxxxxxx.

INGRDSTS &EHKVARL[START|STOP]

Where UXxxooxxx must match the first token of the operation text as specified in
the OPC plan. The STOP or START request parameter is optional and can be used
if all of the required parameters cannot fit in the operation text field.

Messages

AOFOO4I PROCESSING FAILED FOR db2cmd
AOF1441 PARAMETER parameter_name INVALID
AOF204I EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST INGRDSTS - text
AOF3321 SUBSYSTEM subsystem COULD NOT BE LOCATED ON domain
AOF5831 AUTOMATION FOR SUBSYSTEM subsystem (JOB jobname) IS SET OFF -
AUTOMATION NOT ATTEMPTED
ING109E thread_no THREADS COULD NOT BE TERMINATED FROM subsystem
ING129E jobname CANCELLED. TABLESPACE dbname.tsname (subsystem)
NEEDED TO BE STOPPED.
ING130I TABLESPACE dbname. tsname (subsystem) IS TO BE STOPPED. PLEASE STOP USING IT.
ING131I YOU WERE CANCELLED BECAUSE TABLESPACE dbname.tsname (subsystem)
IS TO BE STOPPED.
ING132I thread_no THREADS CANCELLED DUE TO STOP OF TABLESPACE
dbname. tsname (subsystem)

Return Codes

8 Process failure -- see accompanying message.

4 Automation not allowed.

0 Normal End.

-1 Command, instruction or nested command list encountered an error.
-5 Command list cancelled.

Error Codes Posted to TWS
UXA1l Automation not allowed.

UXA2 Error response from DB2 command.
UXA4 Tablespace is still allocated.

Event-Driven Functions

122

This is a detailed description of each of the commands that can be invoked as the
result of an event, either a NetView AT trap or a NetView Timer expiration.

Connection Monitoring

Purpose

Connection monitoring is designed to, where possible, dynamically discover CICS
and IMS connections to a DB2 subsystem. Once discovered the status of a
connection can be maintained by tracking the relevant messages generated as the
connection is affected by the operating environment.

When dynamic discovery is not feasible (due to the inability of automating the
relevant messages) then the connection information can be read from ACF CONN
entry-type entries, and the status checked by issuing the relevant MVS commands.

System Automation for z/OS: Customizing and Programming

Connection Monitoring

In all cases, should the connection be found in the “DOWN” status then the
necessary restart command will be automatically issued.

Restrictions and Limitations
Connection Monitoring can only be used when:

* SA z/0S is initialized.

¢ The DB2 connection is defined to SA z/OS.

* The CICS and IMS application is defined to SA z/OS.

¢ The CICS or IMS attachment facility is installed for the relevant subsystems.

Usage

This function is driven by a NetView Timer expiration in order to check the
connections that are being monitored to be "UP” and, if necessary, issue a recovery
command. This function can also be driven from the NetView AT trap in order to
update the connection status.

Input parameters are validated for accuracy and any errors found are logged and
the process is terminated. The requested subsystem is then checked to determine if
automation is enabled. Once these preliminary checks have been successfully
completed the requested function is initiated.

For the NetView AT event driven process the automation flag for the connection
minor resource is not checked and, depending on the message that was trapped,
the relevant CGlobal information for the particular connection will be updated.

If the process is driven as a result of a NetView Timer expiration then all known
connections are checked for availability. The connections to check are identified
from the ACF CONN entry-type entries, as well as the Cglobals built from the
NetView AT driven process. The individual connection’s automation flags are
checked to see if recovery should be considered. For each connection, if automation
is "ON" and the connection status is “DOWN” (all ACF CONN connection entries
are assumed to be “DOWN” for this purpose) then the connection is checked for
its current status. If the connection is confirmed to be “DOWN" then a recovery
command will be issued. For ACF entry identified connections the recovery
command is issued from the ACF, otherwise a command is built from discovered
information and then issued.

Policy Entries
DB2 Control policy item entries can be used to control the length of time between
Connection Monitoring cycles.

"Connection monitor delay” represents the delay between each NetView Timer
expiration which will trigger the connection status checking cycle.

Connection monitoring is initially invoked to run on a timer initiated by the DB2
UP or NetView restart messages.

You can control Connection Monitoring by using the CONN and CONN.connid
minor resource automation flags, where connid represents the name of a connection
that requires automation to be switched off.

The connection identification entries can be entered into your automation policy
using the Customization Dialog MESSAGES/USER DATA policy item for the DB2
subsystem. The Message ID should be CONN against which the CODE and CMD
entries should be made:

Chapter 10. DB2 Automation for System Automation for z/OS 123

Connection Monitoring

Code 1 Code 2 Code 3 Value Returned
CICONID CICS4A CICS CICS4A ENTRY
where

Code 1 is the connection ID (CICS applid)

Code 2 is the CICS jobname

Code 3 is the connection type (CICS or IMS)

Code 4 is the connection description.

and this could be the CMD entry required:

Pass or Selection Automated Function Command Text
CICONID MVS F CICS4A,DSNC STRT Z
where

Pass or Selection
is the connection ID

Automated Function
is not used

Command Text
is the required recovery command to be issued.

AT Entries
Messages DSNMO001I, DSNMO002I, and DSNMO003I will trigger connection
monitoring (INGRDCNM) to run from the NetView automation table.

These messages require IMS Automation to be installed, as they are required to be
added to the EVISPINM table and be available to IMS Automation AOI exit in the
case of non-DBCTL regions, or pre-message set to “YES” for DBCTL regions. Please
refer to the chapter “Optional Additions to the PPI”, in the |[BM Tivoli Syster|
[Automation for z/OS IMS Automation Programmer’s Reference and Operator’s Guide,

Messages

AOFOO4TI PROCESSING FAILED FOR db2cmd

AOF1441 PARAMETER parameter_name INVALID

AOF2041 EXPECTED PARAMETERS MISSING OR INVALID FOR REQUEST INGRDCNM - text

AOF205A time : command COMMAND FAILED FOR clist_name : interval -
WAIT TIME EXPIRED

AOF3321 SUBSYSTEM subsystem COULD NOT BE LOCATED ON domain

AOF5831 AUTOMATION FOR SUBSYSTEM subsystem (JOB jobname) IS SET OFF -
AUTOMATION NOT ATTEMPTED

ING101A subsystem CONNECTION TO conn_desc (conn_id) DOWN. RECOVERY
COMMAND ISSUED

ING102I subsystem CONNECTION TO conn_desc (conn_id) IS UP.

Return Codes

8 Process failure -- see accompanying message.

4 Automation not allowed.

0 Normal End.

-1 Command, instruction or nested command list encountered an error.
-5 Command list cancelled.

124 System Automation for z/OS: Customizing and Programming

Critical Event Monitoring

Critical Event Monitoring

Purpose
Critical Event Monitoring handles specific critical events that may occur during
normal day-to-day running of DB2.

These include:

Message Description

DSNB250E, DSNB311], Recover failed dataspace (for data sharing only)
DSNB312I, DSNB320,

DSNB3211I, DSNB322I,

DSNB3231, DSNB350],

DSNB3511

DSNB3091 Recover failed group buffer pool
DSNVO086E Unrecoverable/Recoverable DB2 abends
DSNJ002I Switch active log data sets

DSNRO0041 Restart process completed

DSNP0071 Data set could not be extended
DSNJ110E Last active log data set is % full
DSNJ111E All active log data sets full

DSNJ1151 Archive data set could not be allocated
DSNT500I/DSNT5011 Resource unavailable

Required recovery commands are to be defined for the message in the automation
policy item MESSAGES/USER DATA for any DB2 subsystem that requires DB2
critical event message recovery.

If the DB2 subsystem is known to SA z/OS as an application of type DB2, event
message recovery can be controlled by parameters entered via the DB2 CONTROL
policy item for the subsystem.

AT statements that call the generic routine ISSUECMD or a DB2-specific routine
are only created during the build process for messages that have commands
defined in the automation control file. If a recovery action is only to be processed
when the triggering message is issued by a subsystem of type DB2, the created
automation table statement is labeled with the group name DB2. Otherwise the
automation table statement is created without a label.

Created automation table statements that call the generic routine ISSUECMD are
conditional and can be overwritten via automation policy item MESSAGES/USER
DATA.

Restrictions and Limitations
Critical event monitoring is only done if the DB2 subsystem is defined to SA z/0S
and if recovery is enabled for the invoking message ID minor resource.

Critical event monitoring with DB2-specific routines is only done if the DB2
subsystem is known to SA z/OS as an application of type DB2

For some recovery actions SYSOPR needs SYSCTRL authority.

Chapter 10. DB2 Automation for System Automation for z/OS 125

Critical Event Monitoring

126

Usage

For each of the Event Monitoring processes, the input parameters are validated for
accuracy and any errors that are found are logged and the process is terminated.
The requested subsystem is then checked to determine if automation is enabled for
the major resource, and also that recovery is enabled for the invoking message 1D
minor resource. Once these preliminary checks have been successfully completed,
the requested recovery action is performed.

DSNB250E, DSNB3111, DSNB3121, DSNB320I, DSNB321I, DSNB322I, DSNB323],
DSNB350I, DSNB351I - Recover Failed Dataspace:

Description: Affected dataspaces are identified by using the DIS DB() SPACE()
RESTRICT LIMIT() command. Using the returned DSNT397I message, the status of
each dataspace is checked for LPL or GRECP. If matched then the dataspace is
tagged for recovery. This is achieved by issuing the STA DB() SPACENAM() ACCESS()
command for each tagged database or dataspace. Priority is given to databases
DSNDBO01 and DSNDBO6 if necessary.

Policy Entries: Any database or tablespace that is to be excluded from recovery
should be entered using the MESSAGES/USER DATA policy item. The Message ID
should be "DATABASE" against which the "CODE" entry should be made. For
example:

Code 1 Code 2 Code 3 Value Returned
Database Tablespace IGNORE

Refer to CDEMATCH in |[BM Tivoli System Automation for z/OS Programmer’s|

for code matching rules.

DSNB309I - Recover Failed Group Buffer Pool:

Description: This function will stop DB2 on receipt of the DSNB309I for Group
Buffer Pool GBPO. This is triggered using an AT trap that will invoke INGRDTTH
to perform the INGREQ STOP command. SA z/OS will then attempt to start any
other DB2 that is defined within the sysplex, based on preference values.

DSNVO086E - Unrecoverable/Recoverable DB2 Abends:

Description: This function will identify specific DB2 abends as non-recoverable.
This will cause the DB2 subsystem to break DB2. SA z/OS will then attempt to
start any other DB2 that is defined within the sysplex, based on preference values.
Other DB2 abends will be recoverable.

DSNJ002I - Switch Active Log Data Sets:

Description: If commands are defined in the automation policy item
MESSAGES/USER DATA for this message to an application of type DB2, these
commands are only issued when the triggering message is for the log data set that
is specified by the "Active log data set name” in the DB2 CONTROL policy item.

If the application is not of type DB2, the defined commands are issued
unconditionally.

DSNRO04I - Restart Process Completed:

System Automation for z/OS: Customizing and Programming

Critical Event Monitoring

Description: If the message reports an INDOUBT counter greater than zero at the
end of a DB2 restart process, ISSUECMD is called to issue commands that are
defined in the automation policy item MESSAGES/USER DATA of the DB2
application for this message.

DSNPO007I - Data Set Could Not Be Extended:

Description: The created automation table statement calls ISSUECMD with its code
specifications as the parameters. The code values are extracted from the message
text. The data set name is passed as the CODE1 value, the return code is passed as
the CODE2 value, and the connection ID is passed as the CODE3 value. If a code
match is found with the ID of the triggering message in policy item
MESSAGES/USER DATA, the value that is returned is used to select and issue the
related commands as defined in the automation policy.

DSNJ110E- Last Active Log Data Set Is % Full:

Description: If commands are defined in the automation policy item
MESSAGES/USER DATA for this message to an application of type DB2, these
commands are only issued when the message reports a percentage full figure that
is equal to or greater than the critical threshold that is defined in the "Log full
threshold” field of the DB2 CONTROL policy item.

If the application is not of type DB2, the defined commands are issued
unconditionally.

DSNJ111E - All Active Log Data Sets Full:

Description: If commands are defined in the automation policy item
MESSAGES/USER DATA for this message to an application of type DB2, these
commands are only issued when the number of received messages within a time
period exceeds a given threshold. The time period and the threshold can be
entered via the DB2 CONTROL policy item in the "Active log alerts” field and the
related "Threshold” field.

If the application is not of type DB2, the defined commands are issued
unconditionally.

DSNJ115I - Archive Data Set Could Not Be Allocated:

Description: If commands are defined in the automation policy item
MESSAGES/USER DATA for this message to an application of type DB2, these
commands are only issued when the elapsed time since having been triggered by
this message is greater than a given time interval, as specified in the "Log offload
interval” field in the DB2 CONTROL policy item.

If the application is not of type DB2, the defined commands are issued
unconditionally.

DSNT5001/5011 - Generate DSNT500I/DSNT5011 Alert:

Description: The created automation table statement calls ISSUECMD with its code
specifications as the parameters. The code values are extracted from the message
text. The name is passed as CODE], the reason is passed as CODE2 and the type is
passed as CODES3. If a code match is found with the ID of the triggering message
in policy item MESSAGES/USER DATA, the value that is returned is used to select
and issue the related commands as defined in the automation policy.

Chapter 10. DB2 Automation for System Automation for z/OS 127

128 System Automation for z/OS: Customizing and Programming

Chapter 11. SA z/OS User Exits

To allow customer-specific activities that are not covered by the customization

dialogs, SA z/OS provides support for the following classes of user exits:

 Initialization exits that are called at the start of SA z/OS initialization, before
message AOF603D is issued, see [“Initialization Exits” on page 130|

e Static exits that are called at fixed points during SA z/OS processing, see
[Exits” on page 132|

* Flag exits that are called when SA z/OS needs to evaluate an automation flag,
see [“Flag Exits” on page 134

¢ Customization Dialog exits that can be called during certain phases when
working with the customization dialog, see [‘Customization Dialog Exits” on|
page 138

¢ Command exits that can be called during the processing of certain commands,
see [‘Command Exits” on page 142

Additionally, SA z/OS has a number of facilities that behave in an exit-like
manner.

[Figure 18 on page 130| shows the sequence in which exits may be invoked during
SA z/0S initialization.

© Copyright IBM Corp. 1996, 2005 129

Initialization Exits

NetView initialized

AOFEXDEF invoked MVSESA.RELOAD. CONFIRM
AOFEXIO1 MVSESA.RELOAD.ACTION

AOF603D WTOR
...initialization process...

AOFEXTI02

>
‘ h

» AOFEXSTA may be
AOF110I message issued invoked from here

———————p Flag exits

Environmental setup may be invoked

exits invoked

AOF5111 message issued

AOFEXINT 1invoked or
‘ scheduled

AOF5401 message issued

initialized

Figure 18. SA z/OS Exit Sequence during SA z/OS Initialization

Initialization Exits

These exits are invoked at the start of SA z/OS initialization, before message
AQOF603D is issued.

Environmental Setup Exits

The SA z/0OS customization dialog allows you to define a string of exits which are
invoked during SA z/OS initialization processing. These exits are defined using
the AUTOMATION SETUP policy item of the System policy object. See
[System Automation for z/OS Defining Automation Policy| for more information.
Environmental setup exits are invoked after SA z/OS has started its various tasks,
but before the primary automation table has been loaded. You can use these exits
to initiate your own automation, but some SA z/OS services may be unavailable
as SA z/0S has not yet finished initializing when these exits are called. In

particular, status information may be inaccurate as SA z/OS may not have
finished resynchronization. Environmental setup exits runs on AUTO1.

Parameters

Parameters are passed in sequence, delimited by blanks.

130 System Automation for z/OS: Customizing and Programming

Initialization Exits

INITIALIZATION
INITTIALIZATION is a constant.

Either RELOAD or REFRESH or IPL or RECYCLE

RELOAD indicates that the automation control file has been reloaded.
REFRESH indicates that the automation control file has been refreshed.
IPL indicates that SA z/OS has just been restarted after a system IPL.
RECYCLE indicates that NetView has been restarted.

Return Codes

0 is expected. If you return a non-zero return code you may prevent other exits
from being invoked or disrupt SA z/OS initialization.

Usage Notes
* These exits are not driven if you run RESYNC.

* Unlike the other static exits, you must specify the name of the routine or
routines to invoke in the automation control file.

AOFEXDEF

This exit is called at the start of SA z/OS initialization, before message AOF603D
is issued. This exit should be used to change your advanced automation options.
For example, using AOFEXDEF you can:

* Load a different MPF table
* Set advanced automation options

See [Appendix A, “Global Variables,” on page 201 for information on advanced
automation options.

This exit is run on AUTOL.
Parameters: None.

Return Codes: 0 is expected.

AOFEXIO01
This exit is invoked before the AOF603D ENTER AUTOMATION OPTIONS reply
is issued. It is invoked in a NetView PIPE and gets the data that is displayed in the
AOQF7671 message as input in the default SAFE. With this exit you can add or
remove lines from the message and add additional options to the reply.
Parameters: None.

Return Codes: 0 is expected.

AOFEXI02
This exit is invoked after the operator has replied to the AOF603D reply. It gets the

operator’s response to the reply as input in the default safe and it can remove,
add, or change the options that the operator has entered.
Parameters: None.

Return Codes: 0 is expected.

Chapter 11. SA z/0S User Exits 131

Initialization Exits

AOFEXI03

This exit is invoked before SA z/0S loads NetView automation table. It can be
used to create statistics of the currently loaded ATs. Together with the AT listings
that SA z/OS produces at load, these statistics can be used for any purpose.

Parameters: None.

Return Codes: 0 is expected.

AOFEXI04

This exit is invoked after SA z/OS loads NetView automation tables. It can be
used to store the AT listings that SA z/OS produces at load.

Parameters: None.

Return Codes: 0 is expected.

AOFEXINT

This exit is called when SA z/OS initialization is complete, before message
AOF540I is issued. You can use AOFEXINT to call your own initialization
processing after SA z/OS has finished. Refer also to the description of the global
variable AOFSERXINT in [“AOFSERXINT global variable” on page 208

Parameters: The input parameter is the Starttype which is one of the following;:
RESYNC, IPL, REFRESH, RELOAD, RECYCLE.

Return Codes: 0 is expected.

Static Exits

These exits are invoked at fixed points in SA z/OS processing. They are always
invoked if they are found in the DSICLD concatenation. Positive return codes from
these exits are generally ignored, though it is recommended that you always exit
with a return code of 0.

The main purpose of static exits is to allow you to take your own actions at
specific points during SA z/OS processing. The static exits available are described
below.

AOFEXSTA

This exit is called from AOCUPDT every time the automation status of an
application is updated.

Note: It is not necessary for AOCUPDT to change an application automation status
for this exit to be called. The exit is still invoked if the update does not
result in a change of status.

AOFEXSTA can be used to perform any special status transition processing that

cannot be triggered by other methods.

Note: This exit is invoked frequently, and will be invoked at times when SA z/0OS
is not fully initialized. Your exit code should be as robust and efficient as
possible.

SA z/0S will attempt to load AOFEXSTA into storage at initialization. If this

132 System Automation for z/OS: Customizing and Programming

Static Exits

attempt fails, AOFEXSTA will not be invoked on any AOCUPDT calls. To activate
the exit it must be present in the DSICLD concatenation when the automation
control file is loaded or reloaded.

AOFEXSTA runs on the task that called AOCUPDT, after all other processing has
finished.

Attention: AOFEXSTA is scheduled with EXCMD opid(). If your operators are
issuing commands which change application statuses and you wish to use
AOFEXSTA, you may have to modify your scope definitions.

Parameters: Parameters are passed in sequence, delimited by commas.

Resource type
SA z/0S uses types of SUBSYSTEM, MVSESA, WTORS, and SPOOL. Other
users may use other resource types.

Resource Name
For an application, this is the name of the subsystem it is defined as.

Automation Status
For an application, this is one of the twenty six SA z/OS-supported
automation statuses.

SDF Root
This is the SDF Root, as specified in the customization dialog, for the system
that originated the status update. Generally the exit is driven only for status
changes on other systems on the automation focal point.

Return Codes: 0 is expected.

Restrictions:
* Because the exit is scheduled with EXCMD, the status update and subsequent
processing in the caller will have completed before the exit is invoked.

* Check the resource type and the SDF root to ensure you are only trying to
process the right things.

* Plan carefully before you take any action to change the status of an application
from this exit. If you are not careful you may create a loop (AOCUPDT to
AOFEXSTA to AOCUPDT to AOFEXSTA).

— Note:
Consider using ISSUEREP, ISSUECMD or status change commands as
alternatives to AOFEXSTA, since AOFEXSTA is invoked for every status
update which seriously degrades performance.

The generic routines ACTIVMSG and TERMMSG will, if the advanced
automation options are set up appropriately, issue commands whenever an
application changes to a particular status. It may be more appropriate to
place commands here, rather than in the status change exit, which gets driven
for every status update of every resource. It is recommended to use status
change commands for better performance.

AOFEXXO01
This sample can be used as model for exit AOFEXINT.

Chapter 11. SA z/0S User Exits 133

Static Exits

The exit obtains a list of the resources that are in the CTLDOWN state by calling
the DISPSTAT command. Then the exit uses the ACFFQRY interface to determine
which of the resources have the StartOnIPL option set to NOSTART.

For all resources that are not supposed to be started at IPL, the exit issues a stop
request via the INGREQ command, and then sets the agent status to AUTODOWN
using the SETSTATE command.

AOFEXX02

The exit allows the installation to decide whether or not an SDF update should be
performed for the specified resource.

A non-zero return code from the exit causes the SDF update processing to be
skipped, both locally as well as for the focal point.

This exit is called prior to posting entries to SDF to provide the facility to filter out
specific events.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX03

The exit allows the installation to decide whether or not status change notification
should be forwarded to the NMC focal point for the specified resource.

A non-zero return code from the exit causes status change forwarding to be
skipped.

This exit is called prior to posting entries to NMC to provide the facility to filter
out specific events.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXX15

This exit allows you to write a log entry for each status change notification
arriving on the NMC focal point.

Refer to the sample exit for details of the parameters passed to the exit.

AOFEXX16

This exit allows you to repair your own minor resources following a topology
resync or rebuild.

No parameters are passed to this exit.

Flag Exits

Using automation flag exits you can cause your automated operations code to exit
normal SA z/OS processing to an external source, such as a scheduling function,
to determine whether automation should be on or off for a given resource at that
particular instant.

Flag exits can be defined for :

134 System Automation for z/OS: Customizing and Programming

Flag Exits

* Any flag (Automation, Initstart, Start, Recovery, Shutdown or Restart).
* Any resource.

* Any minor resource. See the description of the policy item MINOR RESOURCES
in [BM Tivoli System Automation for z/OS Defining Automation Policy| for more
information on minor resources.

You can specify multiple exits for each flag. A flag exit is invoked only if SA z/OS
needs an “opinion” on the current flag setting. Flag exits and flags all work on a
“veto” basis. A flag is ON when all flags and flag exits agree that it is on.

Flags are set to YES, NO, or EXIT.

* When a flag is set to YES, exits are not called.

* When a flag is set to NO, exits are not called.

* When a flag is set to EXIT, the exits are checked.

Specifying FORCE=YES on your AOCQRY call will force the exits to be called
when the flag is set to ON or OFF. In this case a flag exit can turn an ON flag OFF,
but it cannot turn an OFF flag ON.

Flag settings are determined by:

¢ The automation control file

* NOAUTO periods (the flag is OFF during a NOAUTO period)
* User-entered INGAUTO command

For example, if the following flag settings are entered:

Resource Flag Setting

DEFAULTS AUTOMATION ON

SUBSYSTEM RESTART OFF

JES2 AUTOMATION Call Exit J2AUT

JES?2 START Call Exit J2STR

JES2 SHUTDOWN Call Exits J2SD1 and J2SD2
JES? RECOVERY OFF

the effective flags for JES2 are:
Flag Effective setting

AUTOMATION Call Exit J2AUT
INITSTART ON

START Call Exit J2STR

RECOVERY OFF

SHUTDOWN Call Exits J2SD1 and J2SD2
RESTART OFF

When SA z/OS checks the current value of any flag for the JES2 application, the
process is as follows:

AUTOMATION - Call Exit J2AUT
If OFF,
AUTOMATION flag is OFF
If ON,
AUTOMATION flag is ON

INITSTART - Call Exit J2AUT
If OFF,
INITSTART flag is OFF
If ON,
INITSTART flag in ON

Chapter 11. SA z/0S User Exits 135

Flag Exits

START - Call Exit J2AUT

If OFF,
START flag is OFF

If ON,
Call Exit J2STR
If OFF,

START flag is OFF

If ON,

START flag is ON
RECOVERY - The RECOVERY flag is OFF

SHUTDOWN - Call Exit J2AUT
If OFF,
SHUTDOWN flag is OFF
If ON,
Call Exit J2sD1
If OFF,
SHUTDOWN flag is OFF
If ON,
Call Exit J2SD2
If OFF,
SHUTDOWN flag is OFF
If ON,
SHUTDOWN flag is ON

RESTART - The RESTART flag is OFF
Notes:

1. No exit is called for the Recovery and Restart flags. This is because the specific
flags have been turned off. The Recovery flag is OFF at the application level.
The Restart flag is OFF at the application defaults (SUBSYSTEM) level. The
exits cannot change the state of these flags, so SA z/OS does not invoke them.

2. The J2STR and J2SD1 exits are called only if the J2AUT exits indicate that
automation is allowed.

3. The J2SD2 exit is called only if the J25D1 exits indicate that automation is
allowed. The J2SD1 exit is called only if the J2AUT exit indicates that
automation is allowed.

As this example shows, you should not assume that an exit is called every time
SA z/0OS needs to evaluate the flag that it is defined on. You can assume that an
exit is called before SA z/OS decides that a given flag is ON and takes action on
the basis of the flag setting. Additionally, you should think carefully about
initiating processes from within flag exits as a later exit may give a return code
which will indicate that the flag is turned OFF.

Parameters
Parameters are supplied in sequence, delimited by blanks.

Flag
This is the name of the flag that is being checked. Possible values are
Automation, Initstart, Start, Recovery, Terminate or Restart.

Note: The Terminate flag is referred to as the Shutdown flag elsewhere.

Time Setting
Time Setting is a constant. It can be either:
* AUTO - automation is currently turned on.

¢ NOAUTO - automation is currently turned off by a NOAUTO period.

A value of NOAUTO is possible only if AOCQRY is called with FORCE=YES
specified.

136 System Automation for z/OS: Customizing and Programming

Flag Exits

Note: This ensures that the exit is invoked, but it is not possible for an exit to
override a NOAUTO period.

Resource Name

This is the name of the resource that the flag is being checked for. For minor
resources it will contain the fully qualified minor resource name that the exit
has been defined for. Given no definition for TSO.USER.MAGI1 and an exit
defined for TSO.USER, the resource name passed to the exit would be
TSO.USER if a check was made for TSO.USER.MAGI.

This behavior is slightly different for exits that are defined for DEFAULTS or
SUBSYSTEM. In this case the resource name passed is the name of the
application that the flag is being evaluated for. Given no definition for TSO
AUTOMATION and an exit defined for SUBSYSTEM AUTOMATION, the exit
is invoked with a resource name of TSO.

Resource Type

This is always SUBSYSTEM, regardless of the actual type of the resource.

Target Prefix

This is the TGPFX value with which AOCQRY was invoked. If TGPFX is not
specified, the value SUB is passed.

Return Codes

0

Automation is allowed by the exit.

greater than 0

Automation is not allowed.

Attention: You should not return a return code of -5 as this will cause multiple
CLIST abends (AOFRAEXI, AOFRSCHK, caller, and others) and may seriously
disrupt automation. Symptoms of this are AOF760 messages for the SA z/0OS
CLIST that invoked the exit, for any CLIST that invoked the SA z/OS CLIST, to
the initiating CLIST.

Notes:

1.

Flag exits are always called through AOCQRY. This means that the
TGLOBALS for the application have been primed and are available for use.
Normally the set of globals are found in the SUB task globals, but if AOCQRY
is called with TGPEX then they will be in a different set. You should use the
TGPFX parameter that is passed to locate the globals.

AOCQRY can be invoked in a manner that will determine a flag value but not
set up the globals. You should be careful if you write code which invokes
AOCQRY in this way and you have exits which rely on the task globals being
set up.

Your exit should not assume that AOCQRY has been called without TGPEX
being specified. That is, do not assume that the SUB task globals refer to the
resource it has been invoked for.

If an exit is invoked for a minor resource, the task globals are set for the major
resource associated with that minor resource.

If an exit is invoked for a non-subsystem resource, most of the task globals
will be meaningless.

If you call AOCQRY from inside your exit you must specify a TGPFX value.
You cannot use SUB. The TGPFX value you specify should be different from
the TGPFX parameter you were passed. You are responsible for ensuring the
uniqueness of all TGPFXs if you nest AOCQRY exits. Since this can become

quite complex, it is recommended you avoid nesting exits.

Chapter 11. SA z/0S User Exits 137

Flag Exits

7. Do not code calls to ACFCMD, ACFREP, or CDEMATCH as these use the SUB

task globals, which may not be set up for the application that you want to
process.

8. Do not change any of the AOCQRY task globals.
9. Flag exits may be called frequently, so performance is important.

10. If AOCQRY is specified with FORCE and multiple exits are defined for a flag,

the exits are called in order. If an exit indicates that the flag is OFF,
subsequent exits will not be called.

Customization Dialog Exits

138

SA z/0S provides a series of user exits that can be invoked during certain phases
while working with the customization dialog. They are:

* |“User Exits for BUILD Processing’]

+ [“User Exits for COPY Processing” on page 139|

* |“User Exits for DELETE Processing” on page 140

» |“User Exits for CONVERT Processing” on page 140|

* [“User Exits for MIGRATION, RENAME, and IMPORT Functions” on page 141

[“Invocation of Customization Dialog Exits” on page 141| provides information on

how to activate the user exits.

User Exits for BUILD Processing

The following user exits are provided for the process of building the automation
control file (BUILDE).

INGEX10, which is called before the automation control file build function starts.
This exit is only available when the build process is initiated from the
customization dialogs.

INGEXO01, which is called before the automation control file build function starts.
starts. This exit is available when the build process is initiated from the
customization dialogs, from a batch job submitted via the customization dialogs,
or from a batch job submitted independently from the customization dialogs.

When a BUILD mode of BATCH is selected in the customization dialogs, the
JCL for the batch job is submitted and INGEXO1 is called when the job begins
execution and before the automation control file build function starts in batch.

INGEX02, which is called after the automation control file build function
(BUILDF) has ended. This exit is available when the BUILD process is initiated
from the customization dialogs, from a batch job submitted through the
customization dialogs, or from a batch job submitted independently from the
customization dialogs.

The following parameters are passed to both INGEX01 and INGEXO02 exits,
separated by commas:

Parm1 = PolicyDB name

Parm?2 = Enterprise name

Parm3 = BUILD output data set

Parm4 = entry type (or blank)

Parm5 = entry name (or blank)

Parmé6 = BUILD type (MOD/ALL)

Parm?7 = BUILD mode (ONLINE/BATCH)

System Automation for z/OS: Customizing and Programming

Customization Dialog Exits

¢ Parm8 = Configuration (0=NORMAL/1=ALTERNATE)
* Parm9 = Sysplex name (or blank)

* Parm10 = Build option (1,2, or 3)

¢ Parm1ll = return code (for INGEXO02 only)

If user exit INGEX10 produces return code RC = 0, BUILDF processing continues.
If a return code RC > 0 is produced, an error message is returned and the BUILDF
processing terminates.

If user exit INGEX10 ends with return code RC > 0, user exits INGEX01 and
INGEXO02 are not called. Processing terminates.

If user exit INGEX10 ends with return code RC > 0 and a BUILD mode of BATCH
was selected in the customization dialogs, no JCL is submitted to run the build in
batch (because BUILDF does not start). Processing terminates.

If user exit INGEX01 produces return code RC = 0, BUILD processing continues. If
a return code RC > 0 is produced, an error message is returned. BUILDF
processing terminates. If the build is run in batch mode, and a return code RC > 0
is produced, the job finishes with a return code RC 08.

If user exit INGEX01 ended with return code RC > 0, user exit INGEX02 are not
(because BUILDF does not start). Processing terminates.

User exit INGEXO02 is always called when the BUILD process has started,
irrespective of whether it has completed or not.

If user exit INGEX02 produces a return code RC > 0, an error message is
displayed. If the build is run in batch mode, and a return code RC > 0 is produced,
the job completes with a return code RC 04. If a severe build error occurred, the
job completes with a return code RC 20.

The return codes and their meaning are as follows:
0 Successful

4 Build with minor errors

12 No build (data is inconsistent)

20 No build (severe errors)

User Exits for COPY Processing
Two user exits are implemented for the COPY processing.

1. INGEXO03, which is called before the COPY function starts. The following
parameters are passed:
* Entry name of the entry to be copied to (target)
¢ Entry name of the entry to be copied from (source)
e Entry type (e.g. APL)
2. INGEXO04, which is called after the COPY function has ended. The following
parameters are passed:
¢ Entry name of the entry to be copied to (target)
¢ Entry name of the entry to be copied from (source)
* Entry type (e.g. APL)
¢ Indicator whether the COPY process was successful or not (S=successful,
U=unsuccessful)

Chapter 11. SA z/0S User Exits 139

Customization Dialog Exits

140

If user exit INGEX03 produces return code RC = 0, the COPY processing continues.
If a return code RC > 0 is produced, an error message is displayed, the COPY
function will not start, and processing terminates.

If user exit INGEX03 ended with return code RC > 0, the user exit INGEX04 will
not be called as the COPY processing will terminate.

User exit INGEX04 is always called once the COPY function has started. The
information about the success or failure of the COPY function is passed as a
parameter.

If user exit INGEX04 produces a return code RC > 0, an error message is
displayed.

User Exits for DELETE Processing

Two user exits are implemented for the DELETE processing.

1. INGEXO05, which is called before the DELETE process starts. The following
parameters are passed:
* Entry name of the entry to be deleted
* Entry type (e.g. APL)
2. INGEXO06, which is called after the DELETE process has ended. The following
parameters are passed:
* Entry name of the entry to be deleted
* Entry type (e.g. APL)
¢ Indicator whether the DELETE process was successful or not (S=successful,
U=unsuccessful)

If user exit INGEXO05 produces return code RC = 0, the DELETE processing
continues. If a return code RC > 0 is produced, an error message is displayed, the
DELETE function will not start and the processing terminates.

If user exit INGEX05 ended with a return code RC > 0, user exit INGEX06 will not
be called as the DELETE processing will terminate.

User exit INGEX06 will always be called once the DELETE function has started.
The information about the success or failure of the DELETE function will be
passed as a parameter.

If user exit INGEX06 produces a return code RC > 0, an error message will be
displayed.

User Exits for CONVERT Processing

Two user exits are implemented for the CONVERT processing.
1. INGEX07, which is called before the CONVERT process starts. No parameters
are passed.

2. INGEXO08, which is called after the CONVERT process has ended. No
parameters are passed.

If user exit INGEX07 produces return code RC = 0, the CONVERT processing
continues. If a return code RC > 0 is produced, an error message is displayed, the
CONVERT function will not start and the processing terminates.

If user exit INGEX07 ended with a return code RC > 0, user exit INGEX08 will not
be called as the CONVERT processing will terminate.

System Automation for z/OS: Customizing and Programming

Customization Dialog Exits

User exit INGEX08 will always be called once the CONVERT function has started.

If user exit INGEX08 produces a return code RC > 0, an error message will be
displayed.

User Exits for MIGRATION, RENAME, and IMPORT Functions

The following user exits are provided for the migration, rename, and import
functions.

1.

©

INGEX(09—-called when log data set is switched, usually because the current
data set is full. One parameter is passed:

* Name of current log data set, for example, the data set that went out of
space

INGEX12—-called after the MIGRATION function has ended. The following

parameters are passed:

* MIGRATE mode (ONLINE / BATCH)
¢ Target system entry name
¢ Source data set name with member (enclosed in quotes)

INGEX14—called after an entry has been deleted while the MIGRATION
function is running. The following parameters are passed:

* Entry Name

* Entry Type

INGEX15—called before an entry is renamed. The following parameters are
passed:

* Entry Name

¢ Entry Type

INGEX16—called after an entry has been renamed. The following parameters
are passed:

* Entry Type

¢ Old Entry Name

¢ New Entry Name

INGEX17—called during the IMPORT function, when reading data from the
source policy database. One parameter is passed:

* Name of copy data work table, this table contains the entry types and entry
names of the data to be copied

INGEX18—called after the IMPORT function has ended. One parameter is
passed:

* Indicator whether the IMPORT process was successful or not
(S=successful /U=unsuccessful)

INGEX20—called after the links have been changed. No parameters are passed.
INGEX21—called before the PDB report is invoked. No parameters are passed.

Invocation of Customization Dialog Exits
The user exits are part of the SA z/OS product. Therefore they are supplied in the
same data set as all other ISPF REXX modules (part of SINGIREX). The supplied
samples for ACF BUILD, DELETE, and COPY processing just do a 'RETURN" with
return code RC=0.

You have two possibilities to apply your user modifications:

Chapter 11. SA z/0S User Exits 141

Customization Dialog Exits

. Edit the user exit(s) in the supplied library. Your changes will not have any

consequences on the code of the SA z/0S, product. These exits will not be
serviced (via PTF) by IBM as they do not include any code at the time of
product delivery.

Supply the modified user exit in a private data set. Then you have to
concatenate your private data set to your SYSEXEC library chain. As INGDLG
supports multiple data set names specified for ddname SYSEXEC, this can be
done in the following way:

INGDLG SELECT(ADMIN) ALLOCATE(YES) HLQ(SYS1)

SYSEXEC(usr.private.dsn SYS1.SINGIREX)

This example assumes that the high level qualifier of the data sets where the
IBM supplied parts exist is SYS1.

If you specify the SYSEXEC parameter in the INGDLG call, you need to specify
the IBM supplied library explicitly with its fully qualified data set name.

Command Exits

142

These exits can be called during the processing of certain commands.

AOFEXCO00

The AOFEXCO0 exit routine will be called if the selection L has been entered in the
AOFPOPER panel. No parameters are passed to the routine. The purpose of this
routine is to act as the starting point for installation provided local functions.

AOFEXCO1

If this exit is defined, it will be invoked during INGREQ processing before
"Precheck” and "Verification” processing.

The exit allows you to modify the passed parameters. The following INGREQ
parameters can be modified:

APPLPARMS
CMT
EXPIRE
INTERRUPT
OVERRIDE
PRECHECK
PRI
REMOVE
RESTART
SCOPE
SOURCE
TIMEOUT
TYPE
VERIFY

Modified parameters are specified by their keyword/value pair and returned to
the INGREQ command by sending a message (single or multiline message) to the
console. For example: PRI=HIGH REMOVE=SYSGONE

Parameters: The following parameters are passed from the INGREQ command and
are positional:

System Automation for z/OS: Customizing and Programming

Command Exits

Request
The request type.

SCOPE
The scope of the command.

OVERRIDE
The override specification.

RESTART
The restart specification.

TYPE Contains the start/stop type.

PRIORITY
The priority given to the request.

SOURCE
Identifies the originator of the request.

REMOVE
Indicates the condition under which the request is automatically removed.

TO_INTERVAL
Specifies the timeout interval.

TO_OPTION

Specifies the timeout option.
EXPIRATION

Specifies the date and time when the request is removed.
APPL_PARMS

Specifies the application parameters. It is enclosed in quotation marks.
COMMENT

The comment — given by the operator — associated with the request.
INTERRUPT

Specifies the interrupt. It is enclosed in quotation marks.
PRECHECK

Specifies whether or not the startup or shutdown process should
pre-validate any actions before actually performing them.

VERIFY
Specifies whether the startup or shutdown process should be verified.

Note: The parameters are separated by a comma.

Return Codes:

0 OK - continue.

1 Error - reject command.

The list of resources that are involved in the INGREQ command is passed to the

exit by using the default SAFE. Each resource is described by its location and
name. The format of the location is:

sysplex_name.domain_ID.system_name\sa_version\xcf_groupname
Specifying the xcf_groupname is optional.

The format of the resource name is:

Chapter 11. SA z/0S User Exits 143

Command Exits

name/type/system_name

For example:
AOCPLEX.IPUFA.SA1D\V2R1MO RMFGAT/APL/SA1D

The user exit is called in a PIPE. If the user exit returns a bad RC and additional
data is written to the console, this data is shown in a message panel. If no
additional data is passed in the exit, then message AOF2271 is issued.

A typical example for modifying the priority of an INGREQ REQ=STOP request is
for the sysname/SYG/sysname resource (SHUTSYS ALL). Here, the priority can be
forced to FORCE by returning the PRI=FORCE string and setting the return code
to zero.

AOFEXCO02

If this exit routine is defined, it is invoked during INGSCHED processing before
the schedule override file is updated. The parameters are positional and separated
by a comma. The following parameters are passed to the exit:

Parameters:

user ID
is the user ID making the update or delete

resource
The resource is described by two words. The first word is the location of
the resource. The second word is the resource name. The format of the
location is:

sysplex_name.domain_ID.system_name\sa_version

The format of the resource name is:
name/type/system_name

For example:
AOCPLEX.IPUFA.AOC8\V2RIMO TSO/APL/AOC8

action can be UPD or DEL
date specifies the date in the format YYYYMMDD

UP priority
specifies the priority. It can be L or H

UP time slots
specifies the time slots when the application is up. The format is
hhmm-hhmm... hhmm-hhmm

DOWN priority
specifies the priority.

DOWN
specifies the time slots when the application is down. The format is
hhmm-hhmm... hhmm-hhmm

Return Codes:

0 OK - continue

1 error - reject command

144 System Automation for z/OS: Customizing and Programming

Command Exits

The user exit is called in a PIPE. If the user exit returns a bad return code and
additional data is written to the console, this data is shown in a message panel. If
no additional data is passed in the exit, then message AOF227 is issued.

The format of the location is:

sysplex_name.domain_ID.system_name\sa_version\xcf_groupname

Specifying the xcf_groupname is optional.

AOFEXCO03

If this exit routine is defined, it is invoked by the DISPINFO command slave to
retrieve user-supplied information about the subsystem. The input for the routine

is the subsystem name. The data returned by the exit is shown as part of the
DISPINFO output.

Note: Certain special symbols are interpreted as panel attribute symbols. For more
information about attribute symbols, refer to the NetView Customization
Guide. The DISPINFO panel uses the default attribute set 1. This allows the
exit to color the data to be displayed. To display a particular symbol, place a
double quotation mark (“) in front of the character.

Parameters:

subsystem name
Is the name of the subsystem.

Return Codes:
0 OK.

1 An error occurred.

AOFEXCO04

If this exit routine is defined, the command code U is supported for the DISPSTAT
and INGLIST commands. The input for the AOFEXC04 exit is the resource name
(subsystem name for DISPSTAT) and the location of the resource. The location is
either the system name if the resource resides on a system member of the local
sysplex, or the domain ID if the resource resides on a system which is outside of
the local sysplex. The parameters are separated by a comma.

Parameters:

subsystem name
Is the location of the subsystem. It is either the system name if the
subsystem resides on a system member of the local sysplex, or the domain
ID if the subsystem resides on a system which is outside of the local
sysplex.

AOFEXCO05

This exist is called on entry of the INGLIST command. The exit allows you to
modify the input parameters. The modified input parameters are returned to the
INGLIST command by sending a message (single or multiline) to the console.

Example: OBSERVED=* DESIRED=*

Chapter 11. SA z/0S User Exits 145

Command Exits

146

AOFEXCO06

This exist is called on entry of the INGSET command. The exit allows you to
perform authorization checking of the resources for the INGSET command. Refer
to the sample exit for details of the parameters that are passed to the exit and the
return codes.

AOFEXCO07

This exist is called on entry of the INGIMS command. The exit allows you to
perform authorization checking of the IMS subsystem that is the subject of the
INGIMS command. Refer to the sample exit for details of the parameters that are
passed to the exit and the return codes.

AOFEXCO08

This exit is called on entry of the INGVOTE command. The exit allows you to
perform authorization checking of the resources for the INGVOTE command. Refer
to the sample exit for details of the parameters that are passed to the exit and the
return codes.

AOFEXCO09

This exit is called on entry of the SETSTATE command. The exit allows you to
perform authorization checking of the resources for the SETSTATE command. Refer
to the sample exit for details of the parameters that are passed to the exit and the
return codes.

AOFEXC10

This exit is called on entry of the INGEVENT command. The exit allows you to
perform authorization checking of the resources for the INGEVENT command.
Refer to the sample exit for details of the parameters that are passed to the exit
and the return codes.

AOFEXC11

This exit is called on entry of the INGCICS command. The exit allows you to
perform authorization checking of the resources for the INGCICS command. Refer
to the sample exit for details of the parameters that are passed to the exit and the
return codes.

AOFEXC12

This exit is called on entry to the command slave (EVJRVCMD) for TWS/OPC
command server (EVJRVCMO). The exit allows you to perform authorization
checking of the commands scheduled via the TWS/OPC batch interface
(EVJRYCMD) against the user ID of the batch job requesting the command.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

AOFEXC13

This exit is called on entry to the INGGROUP command. The exit allows you to
perform authorization checking of the user ID that issues the command.

Refer to the sample exit for details of the parameters passed to the exit and the
return codes.

System Automation for z/OS: Customizing and Programming

Command Exits

AOFEXC14

This exit is called by the SA GDPS termination routine (INGRGDPS) after stopping
the PAM or selecting a SAM to become the PAM.

Refer to the sample exit for details of the return codes.

Pseudo-Exits

This section discusses a number of places where SA z/OS either makes special use
of a flag exit or has a function with certain, exit-like, qualities.

Automation Control File Reload Permission Exit

When an operator asks SA z/OS to reload the automation control file, SA z/OS
checks the automation flag of minor resource MVSESA.RELOAD.CONFIRM. If the
flag is set to NO, the automation control file reload is not allowed. If the flag is set
to YES, the task global AOFCONFIRM is checked. If AOFCONFIRM has been set
to a non-null value, the user is prompted to confirm that they want the automation
control file to be reloaded.

Notes:

1. Note that an exit can be associated with the automation flag for this resource.

2. An automation control file cannot be loaded if the automation flag for major
resource MVSESA is set to 'N’. If the automation flag for minor resource
MVSESA RELOAD.CONFIRM is set to "Y’, reload of the ACF is permitted.

Automation Control File Reload Action Exit

After the automation control file reload permission exit is checked, when SA z/0S
is committed to reloading the automation control file, it will check the automation
flag for minor resource MVSESA . RELOAD.ACTION. The actual setting of this flag
(ON or OFF) is ignored, but any exits defined for it are invoked. All exits should
return a return code of 0.

Subsystem Up at Initialization Commands

Using the customization dialog you can specify commands that are run if

SA z/O0S finishes resynchronizing statuses and an application is found to be up.
These commands can be useful for synchronizing local automation that has been
built on top of SA z/0OS.

Testing Exits

Exits should be well tested with a variety of different input parameters before they
are put into production. For exits that need AOCQRY task globals, you can call
AOCQRY to set up the globals without evaluating the flag exits, and then invoke
the exit on its own for testing purposes. This method saves the overhead of calling
AOCQRY every time you run the exit.

Attention!
If you have a syntax error or a no-value-condition in your exit it can cause
parts of SA z/OS to abend, resulting in severe disruption of your
automation.

Chapter 11. SA z/0S User Exits 147

Testing Exits

148 System Automation for z/OS: Customizing and Programming

Chapter 12. Automation Routines

System Automation for z/OS provides automation routines that enable automatic
processing of z/OS components, data sets and job scheduling systems as well as
automation procedures that are useful tools in the automation processing context.
By using these prefabricated automation procedures you can save the time to
develop your own procedures to handle the processing in corresponding situations.

In particular these automation routines provide solutions for:
* LOGREC data set processing

e SMF data set processing

* SYSLOG processing

e SVC dump processing

* AMREF buffer shortage automation

* JES2 spool recovery

* JES2 shutdown

* JES3 dump processing

* JES3 start option automation

* JES3 monitoring

* Deletion of processed WTORs from SDF

* TWS Automation PPI and gateway failures
¢ TWS Automation operation and job errors
¢ CICS-related processing and recovery

* IMS-related processing and recovery

The solutions for automatic processing of these situations include definitions in the
automation configuration files and automation procedures.

It is common to all these provided solutions that the automation procedures first
determine whether automation is allowed by checking the corresponding
automation flags with common routine AOCQRY. See [[BM Tivoli System Automation|
[for z/OS Defining Automation Policy] for further information concerning types and
settings of automation flags. Use the DISPFLGS command to display or
temporarily change the actual settings of the automation flags.

Some of the automation routines respond to messages by issuing commands from
the ACE. Most of these automation routines keep track of the reception of these
messages and compare the frequency of the incoming messages with predefined
thresholds of infrequent, frequent and critical level. If such a defined threshold is
exceeded, it is taken as option for selecting the appropriate commands according to
the first field in the command entry of policy item MESSAGES/USER DATA of the
ACEF. If no threshold is exceeded the commands to selection option ALWAYS are
issued. Refer to the section "How SA z/OS Uses Error Thresholds" in
[System Automation for z/OS Defining Automation Policy| for further information on
setting up thresholds.

This chapter describes the details of the automation functions that are provided
with SA z/0OS.

© Copyright IBM Corp. 1996, 2005 149

LOGREC Data Set Processing

LOGREC Data Set Processing

The logrec recovery function responds to system messages saying that the logrec
data set is full or nearly full by issuing predefined commands to dump and clear
the logrec data sets. While the recovery function is in progress, it prevents the
automation processing being started a second time.

The logrec recovery function includes the following items:
¢ Automation routines AOFRSA01 and AOFRSA02

* Automation table entries for system messages IFB040I, IFBO60E, IFBOSOE,
IFB081I, and IFC0011

* Error threshold definitions for MVS component LOGREC

* Command specification in automation policy item MESSAGES/USER DATA of
the entry/type-pair MVSESA /LOGREC in the ACF

AOFRSAO01

Purpose

You can use the AOFRSAQ1 automation routine to respond to logrec data set
nearly full or full messages from your system by issuing commands from the ACF
to dump and clear the contents of the logrec data set.

AOFRSAQ1 keeps track of the incoming logrec data set messages and compares
their occurrence with predefined thresholds of infrequent, frequent and critical
level. An exceeded threshold is taken as the option to select the appropriate
commands according to the first field in the command entry of the entry/type-pair
MVSESA /LOGREC in the ACE. If no threshold is exceeded the commands to
selection option ALWAYS are issued.

AOFRSAOQ1 is expected to be called from the NetView automation table.
Format

»—AQFRSAO1 ><

Restrictions
* Actions are only taken in AOFRSAOQ1 if the recovery automation flag for
LOGREC is on.

* Processing in AOFRSAO01 is only done if it is called from NetView automation
table by one of the expected messages IFB040I, IFBO60E, IFBOSOE or IFBO811.

e The commands from automation policy to dump and clear the LOGREC data set
are only issued if a LOGREC recovery function is not already in progress.

Usage
Automation routine AOFRSAO0L1 is intended to respond to the following messages:

IFBO40OI SYS1.LOGREC AREA IS FULL, hh.mm.ss
IFBO6OE SYS1.LOGREC NEAR FULL

IFBO8OE LOGREC DATA SET NEAR FULL, DSN=dsname
IFBO81I LOGREC DATA SET IS FULL,hh.mm.ss, DSN=dsn

The commands to issue are selected from the command entry of the
entry/type-pair MVSESA /LOGREC in the ACE.

150 System Automation for z/OS: Customizing and Programming

LOGREC Data Set Processing

If no threshold is reached when one of the expected messages arrive, all
commands to entries with no selection option and to selection option ALWAYS are
selected. If the threshold at level infrequent is exceeded, all commands to entries
with no selection specification option and to selection option INFR are selected. In
the same way a level of frequent corresponds to selection option FREQ and a level
of critical corresponds to selection option CRIT.

Make sure that the automation routine AOFRSAQ2 is issued by message IFC001I
from the NetView automation table, to indicate the completion of the LOGREC
recovery function.

Global Variables

&EHKVAR1
When defining the commands in the ACF to dump and clear the contents
of the LOGREC data set, the variable &EHKVAR1 can be used for the
name of the LOGREC data set. This variable will be substituted with the
complete data set name of the LOGREC data set name.

AOFRSAO02

Purpose

You can use the AOFRSA(Q2 automation routine to respond to the initialization
message of the LOGREC data set to reset the flag, which indicates that the
LOGREC recovery function is in progress

AOFRSAQ2 is expected to be called from the NetView automation table.

Format

»»>—AQFRSAO2 >

Restrictions

* Actions are only taken in AOFRSAQ?2 if the recovery automation flag for
LOGREC is on.

* Processing in AOFRSAQ2 is only done if it is called from NetView automation
table.

Usage
Automation routine AOFRSAQ?2 is intended to respond to the message:
IFCO01I D=devtyp N=x F=trackl* L=track2* S=recd** DIP COMPLETE

which is produced during the initialization of the LOGREC data set and describes
the limits of the data set.

The flag, indicating that the LOGREC recovery function is in progress, is used by
automation routine AOFRSAQ1.

Examples
This example shows a sample scenario to the LOGREC data set processing;:

The following entries in the NetView automation table are created by Easy

Message Management to issue the appropriate automation routine when one of the
expected messages arrives:

Chapter 12. Automation Routines 151

LOGREC Data Set Processing

152

IF MSGID = 'IFBO40I' | MSGID = 'IFBOGOE' |
MSGID = 'IFBO8OI' | MSGID = 'IFBO81I'
THEN

EXEC(CMD('AOFRSAO1')ROUTE(ONE %AOFOPRECOPER%));

IF MSGID = 'IFCOOLI'
THEN
EXEC(CMD('AOFRSA02"')ROUTE (ONE %AOFOPRECOPER%));

~
COMMANDS HELP
Thresholds Definition
Command ===>
Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE
Resource : LOGREC
Specify the number of times an event must occur to define a particular Tlevel.
————————————————————————— Threshold Levels -------=---mmmmmmmmmmo oo
Critical Frequent Infrequent
Number Interval Number Interval Number Interval
(hhzmm) (hhzmm) (hhzmm)
3 00:05 3 00:30 3 24:00
___— — — — — — J

Figure 19. Three Threshold Levels Are Defined in the Automation Policy for MVS Component
LOGREC

Pass/Selection Automated Function/'=*'
Command Text

MVS S CLRLOG,DSN=&EHKVAR1

Figure 20. Automation Policy Item MESSAGES/USER DATA to Entry/Type-Pair
MVSESA/LOGREC Contains One Command without Selection Value

Assume that the following message arrives the first time for one day:
IFBOBOE LOGREC DATA SET NEAR FULL, DSN=SYS1.AOCI1.MAN3

Since none of the defined thresholds is exceeded, the automation routine
AOFRSAQ1 searches for defined commands without selection option and to
selection option ALWAYS to be issued. With the control file shown above the
command MVS S CLRLOG,DSN=&EHKVARL is selected. Before issuing this command,
the variable &EHKVARLI is substituted by the data set name of the received
message resulting in MVS S CLRLOG,DSN=SYS1.AOC1.MAN3.

If message IFBOSOE continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical threshold, the automation
routine AOFRSAQ1 searches for defined commands without selection option and to
selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined
command with no selection option is selected and issued, as in the previous case.

Message AOF5891, AOF588I or AOF5871 is issued in cases, where an infrequent,
frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

System Automation for z/OS: Customizing and Programming

LOGREC Data Set Processing

If the recovery processing for a LOGREC data set is still in progress when an
expected error message arrives, the following message is issued:

AOF585I 15:45 : RECOVERY OF LOGREC IS ALREADY IN PROGRESS -

The recovery process is considered to be finished, when message IFC001I arrives
telling that the LOGREC data set has been initialized.

SMF Data Set Processing

The provided SMF recovery function responds to system messages telling that the
SMF data set is full or has been switched. Predefined commands from the ACF are
selected to dump and clear the contents of the SMF data set. The commands to be
selected can be defined depending on the occurrence of the incoming messages.
The SMF recovery function includes the following items:

* Automation routine AOFRSA03

* Automation table entries for system messages IEE362A, IEE3621, IEE391A and
IEE3921

* Error threshold definitions for MVS component SMFDUMP

* Command specification in automation policy item MESSAGES/USER DATA to
entry/type-pair MVSESA /SMFDUMP of the ACF

AOFRSAO03

Purpose

You can use the AOFRSAQ3 automation routine to respond to SMF data set full or
switch messages from your system. AOFRSAQ3 issues commands from the ACF to
dump and clear the contents of the SMF data set.

AOFRSAQ3 keeps track of the incoming SMF data set messages and compares their
occurrence with predefined thresholds at level infrequent, frequent and critical. An
exceeded threshold is taken as option for selecting the appropriate commands
according to the first field in the command entry of the entry/type-pair

MVSESA /SMFDUMP in the ACE. If no threshold is exceeded the commands to
selection option ALWAYS are issued.

AOFRSAQ3 is expected to be called from the NetView automation table.
Format

»>—AQFRSAO3 ><

Restrictions
¢ Actions in AOFRSAOQ3 are only taken if the recovery automation flag for
SMFDUMP is on.

* Processing in AOFRSAOQ3 is only done if it is called from NetView automation
table by one of the expected messages IEE362A, IEE2621, IEE391A or IEE392I.

Usage
Automation routine AOFRSAQ3 is intended to respond to the following messages:

IEE362A SMF ENTER DUMP FOR SYS1.MANn ON ser
IEE362I SMF ENTER DUMP FOR SYS1.MANn ON ser
IEE391A SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname
IEE392I SMF ENTER DUMP FOR DATA SET ON VOLSER ser, DSN=dsname

Chapter 12. Automation Routines 153

SMF Data Set Processing

154

which indicates that the SMF data set is ready to be dumped.

Global Variables

&EHKVAR1
When defining the commands in the ACF to dump and clear the contents
of the SMF data set, the variable &EHKVARI can be used for the name of
the SMF data set. This variable will be substituted with the complete data
set name by AOFRSA03 when message IEE391A or IEE392I is received. In
case of message IEE362A or IEE362I this variable will be substituted with
MANDN, the second part of the SMF data set name.

&EHKVAR2
When defining the commands in the ACF to dump and clear the contents
of the SMF data set, the variable &EHKVAR?2 can be used for the name of
the SMF data set. This variable will be substituted with the complete data
set name by AOFRSA03 when message IEE391A, IEE392I, IEE362A, or
IEE362I is received.

Examples
This example shows a sample scenario to the SMF data set processing:

The following entries in the NetView automation table are created by Easy
Message Management to issue the appropriate automation routine when one of the
expected messages arrives:
IF (MSGID = 'IEE362I' | MSGID
MSGID = 'IEE391A' | MSGID

THEN
EXEC(CMD('AOFRSAO3')ROUTE (ONE %AOFOPRECOPER%)) ;

'"TEE362A" |
'"IEE3921")

~
COMMANDS HELP
Thresholds Definition
Command ===>
Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE
Resource : SMFDUMP
Specify the number of times an event must occur to define a particular Tlevel.
————————————————————————— Threshold Levels -==-=-m-mmmmmmmmmeeeo
Critical Frequent Infrequent
Number Interval Number Interval Number Interval
(hhzmm) (hh:mm) (hh:mm)
3 00:05 3 00:30 3 24:00
___— — — — — — J

Figure 21. Three Threshold Levels Are Defined in the Automation Policy for MVS Component
SMFDUMP

Pass/Selection Automated Function/'s'
Command Text

MVS S SMFDUMP1,DA=''&EHKVAR1"'"'

Figure 22. Automation Policy ltem MESSAGES/USER DATA to Entry/Type-Pair
MVSESA/SMFDUMP Contains One Command without Selection Value

Assume that the following message arrives the first time for one day:

System Automation for z/OS: Customizing and Programming

SMF Data Set Processing

IEE391A SMF ENTER DUMP FOR DATASET ON VOLSER 123, DSN=SYS1.A0C1.MAN3

Since none of the defined thresholds is exceeded, the automation routine
AOFRSAQ1 searches for defined commands without selection option and to
selection option ALWAYS to be issued. With the control file shown above the
command MVS S SMFDUMP1,DA="'&EHKVARL' is selected. Before issuing this command,
the variable &EHKVARLI is substituted by the data set name of the received
message resulting in MVS S SMFDUMP1,DA="SYS1.AOC1.MAN3'.

If message IEE391A continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical threshold, the automation
routine AOFRSAQ3 searches for defined commands without selection option and to
selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined
command with no selection option is selected and issued, as in the previous case.

Message AOF5891, AOF588I or AOF5871 is issued in cases, where an infrequent,
frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

SYSLOG Processing

The provided syslog function responds to syslog being queued messages by
starting an external writer to save the syslog that was queued. The commands to
be selected can be defined depending on the occurrence of the incoming messages.

The provided syslog function includes the following items:
* Automation routine AOFRSA08

e Automation table entry for system message IEE043I1
 Error threshold definitions for MVS component SYSLOG

* Command specification in automation policy item MESSAGES/USER DATA to
entry/type-pair MVSESA/SYSLOG of the ACF

AOFRSA08

Purpose
You can use the AOFRSA(8 automation routine to respond to syslog being queued
messages by starting an external writer to save the syslog that was queued.

AOFRSAOQS keeps track of the incoming syslog queued messages and compares
there occurrence with predefined thresholds at level infrequent, frequent and
critical. An exceeded threshold is taken as option for selecting the appropriate
commands according to the first field in the command entry of the entry/type-pair
MVSESA /SYSLOG in the ACF. If no threshold is exceeded the commands to
selection option ALWAYS are issued.

AOFRSAQS is expected to be called from the NetView automation table.

Format

»»>—AQFRSA08 >

Chapter 12. Automation Routines 155

SYSLOG Processing

156

Restrictions
* Processing in AOFRSAO08 is only done if it is called from NetView automation
table by the expected message IEE043L

* Actions are only taken in AOFRSAO0S if the recovery automation flag for
SYSLOG is on and if the status of JES is UP or HALTED.

Usage
Automation routine AOFRSAOS is intended to respond to the message:
IEEQ43I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS class

which indicates that the system closed the system log (SYSLOG) data set and
queued the data set to a SYSOUT class.

The commands to issue are selected from the command entry of the
entry/type-pair MVSESA /SYSLOG in the ACE

If no threshold is reached when one of the expected messages arrive, all
commands to entries with no selection option and to selection option ALWAYS are
selected. If the threshold at level infrequent is exceeded, all commands to entries
with no selection specification option and to selection option INFR are selected. In
the same way a level of frequent corresponds to selection option FREQ and a level
of critical corresponds to selection option CRIT.

Examples
This example shows a sample scenario to the SYSLOG processing;:

The following entry in the NetView automation table is created by Easy Message
Management to issue AOFRSA08 as response to incoming message IEE043I:
IF MSGID = 'IEEQ43I"

THEN
EXEC(CMD('AOFRSA®8')ROUTE (ONE %AOFOPRECOPER%));

~
COMMANDS HELP
Thresholds Definition
Command ===>
Entry Type : MVS Component PolicyDB Name : DATABASE_NAME
Entry Name : MVS_COMPONENTS Enterprise Name : YOUR_ENTERPRISE
Resource : SYSLOG
Specify the number of times an event must occur to define a particular Tevel.
------------------------- Threshold Levels -=--=--=c-cmmmmmmmmmmoem
Critical Frequent Infrequent
Number Interval Number Interval Number Interval
(hh:mm) (hhzmm) (hh:mm)
3 00:05 3 00:30 3 24:00
N — — — _ — J

Figure 23. Three Threshold Levels Are Defined in the Automation Policy for MVS Component
SYSLOG

System Automation for z/OS: Customizing and Programming

SYSLOG Processing

Pass/Selection Automated Function/'x'
Command Text

MVS S SAVELOG

Figure 24. Automation Policy Item MESSAGES/USER DATA to Entry/Type-Pair
MVSESA/SYSLOG Contains One Command without Selection Value

Assume that the following message arrives the first time for one day:
EEQ43I A SYSTEM LOG DATA SET HAS BEEN QUEUED TO SYSOUT CLASS A

Since none of the defined thresholds is exceeded, the automation routine
AOFRSAQS8 searches for defined commands without selection option and to
selection option ALWAYS to be issued. With the control file shown above the
command MVS S SAVELOG is selected.

If message IEE043I continues to arrive and the occurrence of the expected
messages thus exceeds the infrequent, frequent or critical threshold, the automation
routine AOFRSAO08 searches for defined commands without selection option and to
selection option INFR, FREQ or CRIT to be issued.

Because no command is defined with any selection option, only the defined
command with no selection option is selected and issued, as in the previous case.

Message AOF5891, AOF588I or AOF5871 is issued in cases, where an infrequent,
frequent or critical threshold has been exceeded. These messages indicate that an
infrequent, frequent or critical threshold action has been processed.

SVC Dump Processing

The SVC dump processing function that is provided responds to an SVC
dump-taken message by issuing predefined commands from the ACF to handle the
dump. The commands to be selected can be defined depending on the occurrence
of the incoming messages.

The provided SVC dump processing function includes the following items:
* Automation routine AOFRSAOC

* Automation table entries for system messages IEA6111 and IEA911E

* Error threshold definitions for MVS component MVSDUMP

* Command specification in automation policy item MESSAGES/USER DATA to
entry/type-pair MVSESA/MVSDUMP, MVSESA /MVSDUMPTAKEN and
MVSESA/MVSDUMPRESET of the ACF

AOFRSAO0C

Purpose

You can use the AOFRSAQC automation routine to respond to a SVC dump taken
to a dump data set message by issuing commands from the ACF to format the
dump, to clear the dump data sets or to prevent further dumping. The commands
to issue are taken from the entry/type-pair MVSESA/MVSDUMP and

MVSESA /MVSDUMPTAKEN and selected according to the frequency of the
incoming messages and the thresholds defined in the automation policies. The first
field in the command entry gives detailed criteria to select the appropriate
commands from the ACF.

Chapter 12. Automation Routines 157

SVC Dump Processing

158

AOFRSAQC is expected to be called from the NetView automation table.

Format

»>—AOFRSAOC >

Restrictions

* Actions in AOFRSAQC are only taken if the recovery automation flag for
MVSDUMP is on.

* Processing in AOFRSAOQC is only done if it is called from NetView automation
table by one of the expected messages IEA6111 or IEA911E.

Usage
Automation routine AOFRSAQC is intended to respond to the messages:
IEA6111 {COMPLETE|PARTIAL} DUMP ON dsname

DUMPID=dumpid REQUESTED BY JOB (jobname)
FOR ASIDS(id,id,...)

TIEA911E {COMPLETElPARTIAL} DUMP ON SYS1.DUMPnn
DUMPid=dumpid REQUESTED BY JOB (jobname)
FOR ASIDS(id,id,...)

which indicates that the system wrote a complete or partial SVC dump to an
automatically allocated or pre-allocated dump data set on a direct access storage
device or a tape volume.

AOFRSAQC keeps track on the reception of these messages and compares the
frequency of the incoming messages with predefined thresholds of infrequent,
frequent and critical level, where the thresholds to MVS component MVSDUMP
are considered. The commands to issue are selected according to the frequency of
the incoming messages.

If no threshold is reached, all commands to entries with no selection option and to
selection option ALWAYS are selected. If the threshold at level infrequent is
exceeded, all commands to entries with no selection option and to selection option
INFR are selected. In the same way a level of frequent corresponds to selection
option FREQ and a level of critical corresponds to selection option CRIT.

The commands to issue are taken from entry/type-pair MVSESA /MVSDUMP of
the ACF with respect to the frequency of the incoming of these messages.

If AOFRSAOC has been triggered on receipt of message IEA911E, additionally all
commands from entry/type-pair MVSESA/MVSDUMPTAKEN of the ACF are
selected and issued, as long as the critical threshold is not exceeded.

After dump processing has been done, AOFRSAQC further monitors the frequency
of messages IEF6111 and IEF911E in intervals of 15 minutes. As soon as the
frequency falls below the infrequent threshold, all commands of entry/type-pair
MVSESA/MVSDUMPRESET are issued.

Global Variables
When defining the commands in the ACF to handle the SVC dump data set, the
variables &EHKVARI to &EHKVARG6 can be used to be substituted by variable

System Automation for z/OS: Customizing and Programming

SVC Dump Processing

contents of message IEA6111 or IEA911E. The variables &EHKVARI to &EHKVARG6
are not available in command entries of type MVSDUMPRESET. These variables
will be substituted as follows:

&EHKVAR1
dsname of IEA6111 or suffix of SYS1.DUMPnn in IEA911E

&EHKVAR2
data set name

&EHKVAR3
dumpid

&EHKVAR4
jobname

&EHKVARS5
id of address space

&EHKVARG6
dump type (PARTIAL or COMPLETE)

Examples
This example shows the use of automation routine AOFRSAOQC in a sample
context:

An entry in the NetView automation table is used to issue AOFRSAOC when one
of the expected messages arrives:
IF MSGID = 'IEA611I' | MSGID = 'IEA911E'

THEN
EXEC(CMD('AOFRSAOC ')ROUTE(ONE %AOFOPRECOPER%));

Three threshold levels are defined in the automation policy for MVS component
MVSDUMP:

é N\
AOFKAASR SA z/0S - Command Dialogs
Domain ID = IPSNO ---------- INGTHRES ---------- Date = 08/28/03
Operator ID = SAUSER Time = 09:38:02
Specify thresholds and resource changes:
Resource => MVSDUMP Group or specific resource
System => KEY3 System name, domain ID, sysplex name or =*all
Critical => 6 errors in 00:30 Time (HH:MM)
Frequent => 4 errors in 00:20 Time (HH:MM)
Infrequent => 2 errors in 00:20 Time (HH:MM)
Pressing ENTER will set the THRESHOLD values
Command ===>
PF1=Help PF2=End PF3=Return PF6=Ro11
PF12=Retrieve
N\ %

Figure 25. MVSDUMP Thresholds

Chapter 12. Automation Routines 159

SVC Dump Processing

160

Automation policy item MESSAGES/USER DATA of entry/type-pair
MVSESA /MVSDUMP contains the following command entries with selection
options at different levels:

/'Command = ACF ENTRY=MVSESA,TYPE=MVSDUMP,REQ=DISP h
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
TYPE IS MVSDUMP
CMD = (FREQ,,'MVS DD ALLOC=INACTIVE')
CMD = (INFR,,'MVS DD ALLOC=ACTIVE')
CMD = (CRIT,,'MVS DD ALLOC=INACTIVE')
END OF MULTI-LINE MESSAGE GROUP
- J

Figure 26. MVSESA/MVSDUMP Command Entries

Automation policy item MESSAGES/USER DATA to entry/type-pair
MVSESA /MVSDUMPTAKEN contains the following command entries with no
selection options:

Command = ACF ENTRY=MVSESA,TYPE=MVSDUMPTAKEN,REQ=DISP

SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

TYPE IS MVSDUMPTAKEN

CMD = (,,'MVS DD CLEAR,DSN=&EHKVAR1"')

END OF MULTI-LINE MESSAGE GROUP

Figure 27. MVSESA/MVSDUMPTAKEN Command Entries

Automation policy item MESSAGES/USER DATA to entry/type-pair
MVSESA /MVSDUMPRESET contains the following command entries with no
selection options:

Command = ACF ENTRY=MVSESA, TYPE=MVSDUMPRESET,REQ=DISP

SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA

TYPE IS MVSDUMPRESET

CMD = (,,'MVS DD ALLOC=ACTIVE')

END OF MULTI-LINE MESSAGE GROUP

Figure 28. MVSESA/MVSDUMPRESET Command Entries

As long as no threshold is exceeded at receipt of one of the IEA611I and IEA911E
messages, no action is taken.

If dumps have been taken more often than defined with the infrequent threshold,
command MVS DD ALLOC=ACTIVATE, specified in entry type MVSDUMP is issued,
which makes sure that automatic dump data set allocation is enabled. In case
when the dump has been written to a pre-allocated SYS1.DUMP data set,
additionally the data set will be cleared by command MVS DD CLEAR,DSN=&EHKVARIL,
specified in entry type MVSDUMPTAKEN. Variable &EHKVAR1 will be
substituted by the numeric suffix of the SYS1.DUMP data set.

The same processing will be done in case, when the incoming dump data set
messages exceeds the frequent level.

As soon as the critical threshold is exceeded, the automation routine stops clearing
pre-allocated SYS1.DUMP data sets.

System Automation for z/OS: Customizing and Programming

SVC Dump Processing

After commands having been issued by the automatic processing of dump data
sets, automation routine AOFRSAQC checks every 15 minutes whether the
infrequent threshold is satisfied again. As soon as this situation is reached,
automatic dump data set allocation will be enabled again by command MVS DD
ALLOC=ACTIVE, as defined in entry type MVSDUMPRESET.

Deletion of Processed WTORs from SDF

The WTOR processing function that is provided deletes WTORs from SDF when
replied to or cancelled.

The provided WTOR processing function includes the following items:
* Automation routine AOFRSAOE
* Automation table entries for system messages IEE400I and IEE600I

AOFRSAOE
Purpose
Automation routine AOFRSAQE deletes WTORs from SDF when replied to or
cancelled.
Format
»>—AOFRSAOE—T ><
Lo
Parameters
id The reply identifiers for cancelled messages.

Restrictions

Processing in AOFRSAQE is only done if it is called from NetView automation
table by message IEE400I or IEE600I or if one of these messages are passed by
parameter.

Usage
Automation routine AOFRSAQE is intended to respond to the following messages:

IEE400I THESE MESSAGES CANCELED- id,id,id
IEE6OOI REPLY TO id IS; text

Message IEE400I says that the system cancelled messages because the issuing task
ended or specifically requested that the messages be cancelled. Message IEE6001
notifies all consoles that received a message that the system accepted a reply to the
message.

As well AOFRSAQE can extract the identifiers of the messages to delete from
passed parameters.

Example
The following example shows how to issue AOFRSAQE from the NetView
automation table:

IF MSGID = 'IEE400I' | MSGID = 'IEE600I'
THEN
EXEC (CMD (' AOFRSAOE ')ROUTE (ONE %AOFOPWTORS%));

Chapter 12. Automation Routines 161

AMRF Buffer Shortage Processing

AMRF Buffer Shortage Processing

162

The AMREF bulffer shortage processing function that is provided responds to
messages, reporting buffer shortage of the action message retention facility (AMRF)
by issuing commands from the ACF to process buffer shortage automation.

The provided AMRF buffer shortage processing function includes the following
items:

* Automation routine AOFRSA0G

¢ Automation table entries for system messages IEA359E, IEA360A and IEA3611
* Command specification in automation policy item MESSAGES/USER DATA to

entry/type-pair MVSESA /AMRFSHORT, MVSESA /AMRFFULL and
MVSESA/AMRFCLEAR of the ACF

AOFRSA0G

Purpose

You can use the AOFRSAOG automation routine to respond to messages, reporting
buffer shortage of the action message retention facility (AMRF) by issuing
commands from the ACF to process buffer shortage automation. In case of an
incoming buffer shortage message the commands to issue are taken from the
entry/type-pair MVSESA /AMRFSHORT with selection option PASS1 and reissued
in 1 minute intervals with incremented pass count. In case of buffer full message
the commands to issue are taken from entry/type-pair MVSESA /AMRFFULL. If
buffer shortage relieved is reported, the commands to entry/type-pair

MVSESA /AMRFCLEAR are selected.

AOFRSAOQG is expected to be called from the NetView automation table.
Format

»>—AOFRSAOG ><

Restrictions
* Actions are only taken in AOFRSAOG if the recovery automation flag for AMRF
is on.

* Processing of system messages in AOFRSAOG is only done if it is called from
NetView automation table by message IEA3591, IEA360A or IEA3611.

Usage
Automation routine AOFRSA(QG is intended to respond to the messages:
IEA359E BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 80% FULL

IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL
TEA3611 BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

IEA359E and IEA360A reports buffer shortage of the buffer area for immediate
action messages, non-critical and critical eventual action messages and WTOR
messages. IEA361I indicates the reduction of the number of retained action
messages so that the buffer is now less than 75% full.

If AOFRSAOG has been triggered on receipt of message IEA3591 the commands to
issue are taken from entry/type-pair MVSESA /AMRFSHORT, starting at selection
option PASS1 and continuing with incremented selection options in 1 minute

System Automation for z/OS: Customizing and Programming

AMRF Buffer Shortage Processing

intervals until message IEA361 reports that buffer shortage has relieved. After
arriving the maximal used selection option for a defined command processing
restarts at selection option PASS1.

If AOFRSAOG has been triggered on receipt of message IEA360A all commands
from entry/type-pair MVSESA /AMRFFULL are issued.

If AOFRSAOG has been triggered on receipt of message IEA3611 all commands
from entry/type-pair MVSESA /AMRFCLEAR are issued.

Examples
The following example shows a sample scenario to the AMRF shortage processing;:

Entries in the NetView automation table are used to issue AOFRSAOG when
message IEA359E, IEA360E or IEA361I arrives:

IF MSGID = 'IEA359I'

THEN

EXEC(CMD('AOFRSAOG')ROUTE(ONE %AOFOPRECOPER%)) ;
IF MSGID = 'IEA360A'

THEN

EXEC(CMD (' AOFRSAQGG') ROUTE (ONE %AOFOPRECOPER%));
IF MSGID = 'IEA361I'

THEN

EXEC (CMD('AOFRSAOG')ROUTE(ONE %AOFOPRECOPER%));

To specify how to respond to message IEA359E and IEA361], the following
command definitions are made in the automation policy under the entry/type-pair
MVSESA/AMRFFULL and MVSESA /AMRFCLEAR:

/Command = ACF ENTRY=MVSESA,TYPE=AMRF=*,REQ=DISP
SYSTEM = AOC1 AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
AUTOMATION CONFIGURATION DISPLAY - ENTRY= MVSESA
TYPE IS AMRFCLEAR
CMD = (,,'MVS CONTROL M,AMRF=Y")
TYPE IS AMRFULL
CMD = (,,'MVS CONTROL M,AMRF=N")
END OF MULTI-LINE MESSAGE GROUP

Figure 29. MVSESA AMRF Command Definitions

If for example message
IEA360A SEVERE BUFFER SHORTAGE FOR RETAINED ACTION MESSAGES - 100% FULL

arrives, AOFRSAQG is issued by the shown statement in the NetView automation
table, which causes the command CONTROL M,AMRF=N to be issued to clear the
AMREF bulffers.

After AMRF buffer shortage is relieved, the incoming message
IEA361I BUFFER SHORTAGE RELIEVED FOR RETAINED ACTION MESSAGES

causes command CONTROL M,AMRF=Y to be issued to reactivate AMREFE.

Chapter 12. Automation Routines 163

JES2 Spool Recovery Processing

JES2 Spool Recovery Processing

164

The JES2 spool recovery processing function that is provided responds to JES2
spool shortage and spool full messages by JES2 spool recovery processing to
downgrade the problem of excessive spool usage.

The provided JES2 spool recovery processing function includes the following items:
¢ Automation routines AOFRSD01, AOFRSD09, AOFRSDOH
* Automation table entries for system messages HASP050 and HASP355

* Configuration parameters for the JES2 spool recovery process in policy item JES2
SPOOLSHORT and JES2 SPOOLFULL of the ACF

* Recovery commands defined in policy item JES2 SPOOLSHORT and JES2
SPOOLFULL of the ACF

Spool Usage Predictions: The automation routines of JES2 spool recovery
processing makes predictions about spool usage which
are presented through the SDF status update. There are
three different predictions made: See appropriate section
of SA for z/0OS: Defining Automation Policy, page 166

AOFRSDO1

Purpose

You can use the AOFRSDO01 automation routine for JES2 spool recovery processing.
It responds to JES2 spool shortage messages by initiating the recovery process for
JES2 spool shortage. It responds to JES2 spool full messages by initiating the
recovery process for JES2 spool full to downgrade the problem of excessive spool
usage.

For this purpose AOFRSDO1:

* Makes linear and first order predictions of spool usage, based on actual and
historical values

* Posts the spool status to SDF

* Determines the target of recovery process as difference between the actual
warning threshold for TG and the buffer value from the ACF. Achieving this
target by the recovery process the spool shortage condition will be considered as
relieved

* Initiates pass processing to execute the recovery commands of the ACF, defined
via policy item JES2 SPOOLSHORT or JES2 SPOOLFULL. The pass processing
itself is done by automation routine AOFRSD09 which is issued every retry
interval. The retry interval is taken from the ACE.

Recovery commands and configuration parameters like buffer value and retry
interval for the JES2 recovery processing can be defined via automation policy item
JES2 SPOOLSHORT for spool shortage recovery processing and JES2 SPOOLFULL
for spool full recovery processing.

For further information on the automation policy items JES2 SPOOLSHORT and
JES2 SPOOLFULL refer to section Defining JES Subsystem in System Automation
for z/OS Automation Policy.

AOEFRSDO1 is expected to be called from the NetView automation table.

System Automation for z/OS: Customizing and Programming

JES2 Spool Recovery Processing

Format

»—AQFRSDO1

A\
A

Restrictions
* Processing in AOFRSDO1 is only done if it is called from NetView automation
table by JES2 messages HASP050 or HASP355.

e Message HASP355 is only processed if it reports a shortage of track groups (TG).
Usage

Automation routine AOFRSDO1 is intended to respond to the following messages:
HASPO50 JES2 RESOURCE SHORTAGE OF TGs - nnn% UTILIZATION REACHED

HASP355 SPOOL VOLUMES ARE FULL

HASPO050 indicates that JES2 has a shortage of track groups and the current spool
utilization exceeds the current TGWARN value on this JES. TGNWARN is defined
in the SPOOLDEF statement in the JES initialization member and can be changed
dynamically. HASP355 indicates that a request for JES2 direct access spool space
cannot be processed, because all available space has been allocated to JES2
functions or no spool volumes are available. Therefore the recovery targets in this
case are based on a figure of 100% spool utilization.

You should code TGWARN in the SPOOLDEF statement in the JES initialization
member so that a SPOOLSHORT recovery will be initiated before a SPOOLFULL
condition is reached. If this is not done, the recovery process may become
unpredictable. When resetting after a SPOOLFULL condition, the problem is
downgraded to a SPOOLSHORT. SA z/0OS expects the previously running
SPOOLSHORT recovery to activate and try to downgrade the problem to an OK.
Without the prior SPOOLSHORT recovery, the spool status will remain in
SPOOLSHORT after a successful SPOOLFULL recovery.

The NetView automation table entries for JES2 messages have to respect the one
character prefix in front of the message identifier of JES2 messages, identifying the
issuing JES.

The spool status is posted to SDF under the SPOOL generic, with the name of the
subsystem as its specific name. To get these displayed on an SDF panel, you need
status fields for xxxx.SPOOL, elements 1 through n, where n is the number of
different subsystems that use the spool.

see section Spool Recovery Limitations of SA Defining Automation Policy, page 166

AOFRSDO09

Purpose
Automation routine AOFRSD09 is used for JES2 spool recovery. It is called by
AOFRSDO1 via a timer every retry interval to monitor spool utilization of JES2 and

to successive issue the recovery commands of policy item JES2 SPOOLSHORT or
JES2 SPOOLFULL.

For this purpose AOFRSD09 processes the following steps:

* AOFRSDO09 issues the JES2 command D SPOOL to obtain the current spool
usage.

Chapter 12. Automation Routines 165

JES2 Spool Recovery Processing

166

* AOFRSDO09 re-evaluates the target of recovery process based on the actual
warning threshold for TG and the buffer value from the ACE

* If the recovery target has not yet been achieved and the own JES2 subsystem is
responsible for the spool recovery, AOFRSD09 increments the pass count and
issues the appropriate commands from the ACE To determine the responsible
JES2 subsystem for spool recovery in a shared JES2 environment, where all JES2
subsystems receive a copy of the spool shortage message, AOFRD09 compares
the list of cpuids, defined in ACFE, with the response to JES2 command D
MEMBER,STATUS=ACTIVE. The first active cpuid of the list is considered to be
the responsible JES2 subsystem for spool recovery.

* In case the spool shortage problem has already relieved, AOFRSD(9 stops the
recovery process and sets a timer to reset the pass count for the recovery
commands after the reset interval.

Recovery commands and configuration parameters like buffer value, reset interval
and cpuid list for the JES2 recovery processing can be defined via automation
policy item JES2 SPOOLSHORT for spool shortage recovery processing and JES2
SPOOLFULL for spool full recovery processing.

For further information on the automation policy items JES2 SPOOLSHORT and
JES2 SPOOLFULL refer to section Defining JES Subsystem in System Automation
for z/OS Automation Policy.

Format

v
A

»»>—AQFRSDO9subsystemrecovery type

Parameters

subsystem
The subsystem name of JES2. This parameter is required.

recovery type
This parameter is used to distinguish between a JES2 spool shortage and a
JES2 spool full condition. This parameter is required.

SHORT
The automatic recovery from a JES2 spool shortage condition is to be
processed.

FULL The automatic recovery from a JES2 spool full condition is to be
processed.

Restrictions

* Processing of recovery commands in AOFRSD(Q9 is only done if the recovery
automation flag for JES2 is on. Otherwise the recovery process is suspended and
the pass count for selection recovery commands from the ACF is not
incremented.

* Automation routine AOFRSDO09 is expected to be processed by JESOPER. If it is
called on another task it is routed back to JESOPER.

* Processing in AOFRSD09 is only done if the specified type of spool recovery
process has been initiated by automation routine AOFRSDO1.

e During a SPOOLFULL recovery condition, the processing for SPOOLSHORT
recovery is suspended.

System Automation for z/OS: Customizing and Programming

JES2 Spool Recovery Processing

Usage

The recovery commands to issue are selected from the command entry of policy
item JES2 SPOOLSHORT or JES2 SPOOLFULL. A pass count is used as selection
option and incremented at each successive processing of automation routine

AOFRSD09. At initialization of the recovery process, the pass count is set to value
PASS1 by automation routine AOFRSDO1.

If pass processing runs out of defined recovery commands before the spool
shortage condition is resolved, AOFRSD(9 re-executes the recovery sequence from
PASS1. You can change this behaviour by setting the appropriate advanced
automation option at start up of System Automation. You can use the
AOFSPOOLSHORTCMD variable (for SPOOLSHORT conditions) and the
AOFSPOOLFULLCMD variable (for SPOOLFULL conditions) to tell automation
routine AOFRSD09 to stop recovery attempts when all commands have been
executed and to issue message AOF294I to inform the operator that manual
intervention is required in order to resolve the spool condition. For more
information on advanced automation options refer to ‘Global Variables to Enable
Advanced Automation” in System Automation for z/OS: Customization and
Programming.

Global Variables

When defining the commands in the SPOOLFULL or SPOOLSHORT
processing panel of the ACF to handle the recovery, the variables
&EHKVARI1 and &EHKVAR2 can be used to be substituted by variable
contents. Variable &EHKVAR1 will be substituted by the current spool
utilization and &EHKVAR?2 contains the recovery target.

AOFRSDOH

Purpose

Automation routine AOFRSDOH is used for JES2 spool recovery. It is called by
AOFRSD09 via a timer command after the reset interval and cleans up the pass
counter for the pass processing of the recovery commands of the ACF.

Format

A\
A

»»>—AQFRSDOHsubsystemrecovery type

Parameters

subsystem
The subsystem name of JES2. This parameter is required.

recovery type
This parameter is used to distinguish between a JES2 spool shortage and a
JES2 spool full condition. This parameter is required.

SHORT
The pass counter for spool shortage recovery processing is to be reset.

FULL The pass counter for spool full recovery processing is to be reset.

Restrictions

¢ Automation routine AOFRSDOH is expected to be processed by JESOPER. If it is
called on another task it is routed back to JESOPER.

* Each recovery action during the reset interval

Chapter 12. Automation Routines 167

JES2 Spool Recovery Processing

168

* AOFRSDOH is only scheduled after the reset interval if no new recovery action
of the corresponding type SHORT or FULL has been taken during this time.

* The pass counter for spool full recovery processing is reset by AOFRSDOH after
the reset interval, even if spool short recovery is still in progress.

Examples
The following example shows a sample scenario to JES2 spool recovery processing:

The following entries in the NetView automation table are used to issue
automation routine AOFRSDO01 from the NetView automation table, when one of
the expected messages arrives:

IF MSGID(2) = 'HASPO50' & TEXT = .'TGS'.

THEN

EXEC(CMD('AOFRSDO1')ROUTE(ONE %AOFOPJESOPER%)) ;
IF MSGID(2) = 'HASP355'

THEN

EXEC(CMD('AOFRSDO1"')ROUTE (ONE %AOFOPJESOPER%));

The SPOOLSHORT recovery is configured via automation policy item JES2
SPOOLSHORT as shown in

COMMANDS HELP
SPOOLSHORT Processing
Command ===>
Entry Type : Application PolicyDB Name : DATABASE_NAME
Entry Name : JES2 Enterprise Name : YOUR_ENTERPRISE
Enter SPOOLSHORT settings.
Retry Time 00:05:00 Spool recovery attempt interval (hh:mm:ss)
Buffer 5 Recovery target below TGWARN (0->50)
Reset Time 00:15:00 Recovery reset interval (hh:mm:ss)
Priority of systems for spool recovery:
CPUID 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
\\Edit Spoolshort Pass Commands . . YES YES NO

Figure 30. JES2 SPOOLSHORT Recovery Definition

Because no cpuids are defined, the own JES2 subsystem is responsible for JES2
spool recovery processing. Entering YES in field Edit Spoolshort Pass Commands
allows you to edit the pass recovery commands that are defined as shown by the
following response panel to command DISPACF JES2:

System Automation for z/OS: Customizing and Programming

JES2 Spool Recovery Processing

/Command = ACF ENTRY=JES2,TYPE=+,REQ=DISP A
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS SPOOLSHORT
CMD = (PASS1,,'MVS $PQ,Q=N,A=3")
CMD = (PASS1,,'MVS $0Q,Q=N,A=3,CANCEL")
CMD = (PASS1,,'MVS $PQ,Q=V,A=3")
CMD = (PASS1,,'MVS $0Q,Q=V,A=3,CANCEL")
CMD = (PASS2,,'MVS $PQ,ALL,A=4")
CMD = (PASS2,,'MVS $0Q,ALL,A=4,CANCEL')
CMD = (PASS3,,'MVS $PQ,ALL,A=3")
CMD = (PASS3,,'MVS $0Q,ALL,A=3,CANCEL")
CMD = (PASS4,,'AORRSPLS RANGE=J0B1-5000,NAME=T*")
CMD = (PASS4,,'AORRSPLS RANGE=J0B5000-10000,NAME=T=*")
CMD = (PASS4,,'AORRSPLS RANGE=J0B10000-15000,NAME=Tx")
CMD = (PASS4,,'AORRSPLS RANGE=J0B15000-20000,NAME=Tx")

- J
Figure 31. DISPACF Command Response Panel

Assume, a JES2 spool shortage problem is reported by message
$HASPO50 JES RESOURCE SHORTAGE OF TGS - 80% UTILIZATION REACHED

issuing automation routine AOFRSDO01 by the appropriate NetView automation
table entry, which initiates the JES2 SPOOLSHORT recovery process and sets an
every timer, to call the pass processing routine by issuing AOFRSD09 JES2 SHORT
every 5 minutes, as defined in the customization dialog for SPOOLSHORT
processing shown above.

AOFRSD09 redetermines the actual spool usage, compares it with the defined
TGWARN of 80% and calculates the target of recovery as difference of TGWARN
and the buffer value resulting in a value of 75.

If this value is exceeded by the actual spool usage, all recovery commands with
selection option PASS1 of the ACF to recovery type SPOOLSHORT are issued.
After the retry interval of 5 minutes, AOFRSDQ9 is re-issued again by the timer.

If AOFRSD09 now determines that the JES2 spool shortage problem has been
relieved, it stops recovery processing and sets a timer to issue AOFRSDOH JES2 SHORT
after the reset interval of 15 minutes.

If none of the expected JES2 messages arrives by the end of the reset interval,
automation routine AOFRSDOH resets the pass count to 1, so that the next
SPOOLSHORT recovery process issues recovery commands beginning again at
selection option PASS].

JES2 Shutdown Processing

The JES2 shutdown processing function that is provided responds to an all
function complete message at JES2 shutdown by issuing the corresponding ACF
commands that are defined in automation policy item MESSAGES/USER DATA
for JES2 message HASP099.

The shutdown type is used as option to select the commands.

This JES2 shutdown processing function is included in the generic routine
ISSUECMD, which is expected to be called from the NetView automation table.

Chapter 12. Automation Routines 169

JES2 Shutdown Processing

HASP099

Restrictions
Shutdown processing of the JES2 message HASP099 is only done if:

e Shutdown automation for JES2 is on
» JES2 is in the process of being shut down

Usage
The generic routine ISSUECMD responds to message:
HASPO99 ALL AVAILABLE FUNCTIONS COMPLETE

This indicates that all JES2 job processors have become dormant, and no JES2 RJE
lines are active.

Drain Processing Prior to JES2 Shutdown

170

SA z/0S provides functions for drain processing of JES2 resources prior to JES2
shutdown.

The provided JES2 drain processing function includes the following items:
¢ Automation routines AOFRSD07, AOFRSDOF, AOFRSD0G
* Automation table entries for system message HASP607

* Specifications in automation policy item JES2 DRAIN to which JES2 resources
are to be drained and how they are to be drained prior to JES2 shutdown.

AOFRSDO07

Purpose

You can use the AOFRSD07 automation routine to respond to a JES2 not dormant
message during JES2 shutdown by issuing commands for resources that are not
drained.

The commands to issue are taken from the automation policy item JES2 DRAIN of
application JES2.

Additionally AOFRSDO07 calls AOFRSDOF which outputs a list of all active jobs and
started tasks and a list of all resources not yet drained.

AOFRSDO7 is expected to be called from the NetView automation table.
Format

»»—AOFRSDO7 e

Restrictions
Processing in AOFRSDO7 is only done if:

* It is called from NetView automation table by JES2 message HASP607
e The terminate automation flag for JES2 is on

* JES2 is in shutdown progress

AOFRSAQ7 performs no processing under z/OS 1.7 and above because Console
IDs are not valid in that environment.

System Automation for z/OS: Customizing and Programming

Drain Processing Prior to JES2 Shutdown

Usage
Automation routine AOFRSDO07 is intended to respond to message
HASP607 JES2 NOT DORMANT -- MEMBER DRAINING, RC=rc text

which indicates in case the P JES2 command was entered to withdraw JES2 from
the system that not all of JES2’s functions have completed.

To find out all resources not drained, the response to JES2 command DU,STA is
processed. For each resource in status DRAINING the corresponding command
from the automation policy item JES2 DRAIN for this resource type to force drain
is issued. Resources in status ACTIVE are first stopped with JES2 command P
resource, before the command from the automation policy item to force drain is
issued. Resources in status INACTIVE are only stopped with JES2 command P
resource.

In cases, where the automation is unable to issue actions on not yet drained
resources, JES2 is set to status STUCK and a message is issued which tells that an
operator action is required. Those situations occur if no command is specified in
automation policy item JES2 DRAINED of JES2 to drain a resource or if a not yet
drained resource is in an unknown status

AOFRSDOF

Purpose

Automation routine AOFRSDOF is used by AOFRSDO07 for drain processing prior
to JES2 shutdown. Every shutdown delay interval, AOFRSDOF displays all JES2
resources not yet drained. For this purpose it scans the response to JES2 command
DA,S for executing tasks, the response to JES2 command DA,J for executing jobs
and the response to JES2 command DU,STA for started devices or lines not yet
drained and displays the result in a message.

Format

»»>—AQFRSDOF—subsystem »<

Parameters

subsystem
The subsystem name of JES2.

Restrictions
Processing in AOFRSDOF is only done

¢ The subsystem is of type JES2
* JES2 is in shutdown progress
e The terminate automation flag is on

Usage
This automation routine is performed as part of the SHUTDOWN processing.

Examples
This example shows a sample scenario to JES2 drain processing prior to JES2
shutdown.

The following statement shows how AOFRSDO7 is issued from the NetView
automation table by JES2 message

Chapter 12. Automation Routines 171

Drain Processing Prior to JES2 Shutdown

172

$HASP607: IF MSGID(2) = 'HASP607'
THEN
EXEC(CMD('AOFRSDO7 ') ROUTE(ONE %AOFOPJESOPER%)) ;

Assume the following drain processing specifications in automation policy item
JES2 DRAIN:

~
COMMANDS HELP
JES2 DRAIN Specifications
Command ===>
Entry Type : Application PolicyDB Name : DATABASE_NAME
Entry Name : JES2 Enterprise Name : YOUR_ENTERPRISE
Subsystem: JES2
Enter information (Yes or No) for initial drain to bring down JES2 facilities.
LIN YES Drain Tines
W8 6 6 0 0 o YES Drain JES2-VTAM interface
OFF ¢ o 0 o o NO Drain spool offloaders
PRT YES Drain printers
RDR YES Drain readers
PUN YES Drain punches
Enter information (Command or No) for force drain if normal drain fails.
LIN $E Force drain lines
LG $E Force drain JES2-VTAM interface
OFF NO Force drain spool offloaders
PRT $1 Force drain printers
RDR $C Force drain readers
F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE Y
Figure 32. JES2 DRAIN Specifications Panel
The list of commands to force drain of JES2 resources are passed to
entry/type-pair JES2/FORCEDRAIN in the ACF and can be displayed with the
DISPACF command:
4 N
Command = ACF ENTRY=JES2,TYPE=FORCEDRAIN,REQ=DISP
SYSTEM = KEY3 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS FORCEDRAIN
LIN = ""$E""
LOG = IIII$EIIII
OFF = "UNO""
PRT = IIII$IIIII
RDR = IIII$CIIII
PUN = ""$E""
END OF MULTI-LINE MESSAGE GROUP Y

Figure 33. DISPACF Panel

Assume that during a shutdown of JES2 message $HASP607 arrives, indicating
that not all of JES2’s functions have completed and that JES2’s response to
command $DU, STATUS is:

$HASP636 13.53.22 $DU,STA
LINE1 UNIT=0FF3,STATUS=ACTIVE/BOEVM9,DISCON=NO

Automation routine AOFRSDO07 first issues JES2 command $PLINE1 to stop the line
and then issues JES2 command $E, according to the policy specifications FOR
entry/type-pair JES2/FORCEDRAIN.

Then automation routine AOFRSDOF is executed every shutdown delay interval, to
list all JES2 resources not drained.

System Automation for z/OS: Customizing and Programming

Drain Processing Prior to JES2 Shutdown

AOFRSDOG

Purpose

You can use the AOFRSD0OG automation routine to drain JES2 resources prior to
JES2 shutdown. AOFRSDO0G issues commands to drain the initiators, offloader
tasks, lines, printers, punches and readers, depending on which resources are listed
and enabled in the automation policy item JES2 DRAIN of application JES2.

AOFRSDOG is used by the DRAINJES command.
Format

»»>—AQFRSDOG—subsystem

A\
A

Parameters

subsystem
The subsystem name of JES2.

Restrictions
* Processing in AOFRSDOG is only done if the subsystem is of type JES2.

Usage
For all resources enabled to initial drain in automation policy item JES2 DRAIN of
application JES2 the JES2 command P is issued.

Example
Call AOFRSDOG JES?2 to stop all resources enabled in JES2 DRAIN for init drain.

These resources can be listed with command DISPACF JES2 INITDRAIN.

/Command = ACF ENTRY=JES2,TYPE=INITDRAIN,REQ=DISP h
SYSTEM = AOC1 AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
AUTOMATION CONFIGURATION DISPLAY - ENTRY= JES2
TYPE IS INITDRAIN
LIN = uwnyggum
LOG = "oyESt
OFF = ||N0||||
PRT = uwnyggum
RDR = wnyggun
PUN = uwnygguu
END OF MULTI-LINE MESSAGE GROUP
- /

Figure 34. DISPACF JES2 INITDRAIN Panel

JES3 Dump Processing

The provided JES3 dump processing function initiates recovery automation
processing as response to a specify dump option message. It includes the following
items:

* Automation routine AOFRSEOQ].
* Automation table entry for JES3 message IAT3714.

* Error threshold definitions for JES3, defined in automation policy item JES3
ABEND.

* Recovery command and reply specifications in automation policy item
MESSAGES/USER DATA to entry/type-pair JES3/JESABEND of the ACE.

Chapter 12. Automation Routines 173

JES3 Dump Processing

174

AOFRSEOJ

Purpose

You can use the AOFRSE(] automation routine for JES3 dump processing to
respond to a specify dump option message at JES3 abend by replying a dump
option and by initiating recovery automation processing.

AOFRSEQ] keeps track of the incoming expected JES3 messages and compares their
occurrence with predefined thresholds at level infrequent, frequent and critical. An
exceeded threshold is taken as option for selecting corresponding recovery
commands and replies from the entry/type-pair JES3/JESABEND in the ACF. If no
threshold is exceeded the commands or replies to selection option ALWAYS are
issued together with the commands without selection option.

AOFRSEQ] is expected to be called from the NetView automation table.
Format

»»—AOFRSEOJ ><

Restrictions

* Actions are only taken in AOFRSEQ], if the recovery automation flag for JES3 is
on.

* Processing in AOFRSEQ] is only done, if it is called from NetView automation
table by message IAT3714 from JES3.

Usage
Automation routine AOFRSE(] is intended to respond to message:
id IAT3714 SPECIFY DUMP OPTION FOR__ JES3 GLOBAL,main ><

_JES3 LOCAL,main

FSS fssname,ASID=asid

which requests the operator to specify the type of dump. The thresholds for
comparing purpose are to be defined in the automation policy item JES3 ABENDS
of entry JES3.

If the incoming messages do not reach a predefined threshold, all replies and
commands to entries of entry/type-pair JES3/JESABEND with selection option
ALWAYS and to entries with no selection option are selected to be issued.

If the threshold at level infrequent is exceeded, all replies and commands to entries
with no selection option and to selection option INFR are selected.

In the same way a level of frequent corresponds to selection option FREQ and a
level of critical corresponds to selection option CRIT.

Example

The following example shows how to issue AOFRSEQ] from the NetView
automation table:

IF MSGID = 'IAT3714'

THEN
EXEC(CMD('AOFRSEQJ')ROUTE(ONE %AOFOPJESOPER%)) ;

System Automation for z/OS: Customizing and Programming

TWS Automation PPl and Gateway Failures

| TWS Automation PPl and Gateway Failures

There are two routines that are provided by SA z/OS to deal with PPI and
gateway timeouts or failures.

EVJEACO1

Purpose
This routine is called to determine the TWS operations that have previously ended

in error because the NetView PPI was not available (the error code is UNTV) and
reset them using OPCAPOST.

Usage

The routine should be called in the following cases:

* From UP processing for the TWS Controller, coded in the control file as:
UP,CMD=(OPCAOPR2, ,"EVJEACO1")

e From ACORESTART for the TWS Controller, coded in the control file as:
ACORESTART, CMD=(OPCAOPR2, , "EVJEACO1")

The routine uses the Operation reset delay (defined in the OPC SYSTEM DETAILS

policy) that specifies how long the NetView interface to TWS may be unavailable
before TWS Automation resets operations that ended in error while it was down.

If either no value or OPRESET=NEVER is coded, then no operations are reset
when the interface becomes available again. The default value is NEVER.

It is expected that the routine will be used in the policy database.

EVJEACO02

Purpose
This routine is called to reset TWS operations that are in error due to Gateway
timeouts or failures.

Usage
This routine is called when:

e The TWS controller comes UP, coded in the control file as:
UP,CMD=(,, 'EVJEACO2")
* A gateway is connected, or reconnected
If the routine runs on a TWS Controller node, it determines the operations that

have previously ended in error due to gateway failures (with an error code of
5999). If this is the case, the routine will issue an OPCAPOST to RESET them.

It is expected that the routine will be used in the policy database.

TWS Automation Operation and Job Errors

SA z/0S provides functions to respond to errors with TWS operations and jobs.

The functions that are provided include the following routines and AT entries for
associated messages:

* EVJEACO03 and EQQE0361
* EVJEAC04 and EV]J120I

Chapter 12. Automation Routines 175

TWS Automation Operation and Job Errors

176

« EVJRACO5 and EQQE0261
« EVJRSJOB and EQQE107I, EQQE107I, and EQQW079W

EVJEACO03

Purpose

This routine is called when message EQQEQ0361 is trapped. This message is issued
by TWS when a TWS operation has detected a job error. This causes an entry to be
added to SDF and the error situation to be posted to NMC.

The EVJEACO3 routine is expected to be called from the NetView automation table.
Format

»»—EVJEACO3

v
A

Usage
The automation routine EVJEACO3 is intended to respond to message:

EQQEO36I JOB JOBNAME(JNUM), OPERATION (OPERNUM) ENDED IN ERROR EC.
PRTY=PRI, APPL = APPL, WORK STATION = WSID, IA = IA

This requests the operator to perform error recovery actions for the current job.

EVJEACO04

Purpose
This routine is called when message EV]120I is trapped. The message is issued by
SA z/0OS when a TWS operation has been put into or reset from TWS error status.

The EVJEAC04 routine is expected to be called from the NetView automation table.

Format

»>—EVJEACO4

v
A

Usage
The automation routine EVJEAC04 is intended to respond to message:

EVJ120I applid iatime opnum job status wsname errcode
abcode usrcode

This causes a Status Display Facility update and an NMC update to occur.
For an operation changing to error status the update will add an entry to SDF and
NMC while an operation changing from error status will remove an entry from

SDF and NMC.

SDF entries are added to the OPC Automation Application in Error panel
(OPCERR).

System Automation for z/OS: Customizing and Programming

TWS Automation Operation and Job Errors

EVJRACO05

Purpose

This routine is called when message EQQE0261 is trapped. This message is issued
by TWS when a TWS operation has detected a job error. This causes an entry to be
added to SDF and the error situation to be posted to NMC.

The EVJRACO5 routine is expected to be called from the NetView automation table.

Format

A\
A

»>—EVJRACO5

Usage
The automation routine EVJRACO5 is intended to respond to message:

EQQEO026I APPLICATION APPL ENDED IN ERROR EC. OPER = OPERNUM,
PRTY = PRI, IA = IA

This requests the operator to perform error recovery actions for the current job.

EVJRSJOB

Purpose
This routine is called when trapping the following messages:

« EQQE1071
« EQQWO079W
« EQQE037I

These messages are issued by TWS when the state of a batch job has changed. This
causes an entry to be added to SDF and the error situation to be posted to NMC.

The EVJRSJOB routine is expected to be called from the NetView automation table.

Format

»—EVJRSJOB ><

Usage
The automation routine EVJRSJOB is intended to respond to messages:

EQQE107I OPC-WLM SUCCESSFULLY PROMOTED JBNAM: JBNUM IN
HI PERFORMANCE CLASS

EQQWO79W JBNAM WILL NOT BE SUBMITTED TO WLM FOR
PROMOTION. WLM REQUEST IS TOO OLD

EQQEO37I JOB JOBNAME (JNUM), OPERATION (OPERNUM) IN

APPLICATION APPL, IS LATE, WORK STATION = WSID,
IA = ARRTIME

This requests the operator to investigate what is keeping the job from starting and
take appropriate actions to enable it to start.

Chapter 12. Automation Routines 177

TWS Status Observer Control

I TWS Status Observer Control

EVJEOBSV

Purpose
This routine is used to start and stop the TWS status observer.

The EVJEOBSV routine called from within the Policy definitions when starting or
stopping the status observer. It is also called internally at SA z/OS initialization
time and when an automation manager takeover has been completed as indicated
by message HSAM13091.

Format

»»—FVJ EOBSV—ESTART
STOPJ

v
A

Parameters

START
Establishes the subscription for the list of special resources defined in the

policy.
STOP Removes the subscription.

TWS Controller Status

EVJRSACT

Purpose
This routine keeps track of whether or not the TWS controller is active or in
standby. The information is stored in the automation manager.

The routine is called when trapping the following messages:
* EQQNO13I
* EQQZ128I
+ EQQZ2011

Format

»>—EVJRSACT ><

CICS-Related Processing and Recovery

178

CICS Region Abend Recovery

EVEETO003

Purpose: This routine is a part of the Abend Recovery for CICS Regions. It is
intended to be invoked from the Automation Table.

Format:

System Automation for z/OS: Customizing and Programming

CICS-Related Processing and Recovery

A\
A

»»—FEVEET003
l—s ystem- abcode—| I—user‘-abcode—|

Parameters:

system-abcode
Optional System abend code.

user-abcode
Optional User abend code.

Usage: The automation routine EVEETO003 is intended to respond to messages:

DFHCCO001 applid An abend (code aaa/bbbb) has occurred at offset X"offset" in
the {local | global} catalog, module modname

DFHPC0401 applid Abend abcode issued by yyy task.

DFHPCO405 applid Abend abcode2 has been issued while processing abend abcodel
for the same task, transaction tranid.

DFHPCO408 applid Abend abcode has been issued during post commit processing,
transaction tranid.

DFHPCO409 applid Abends abcode? and abcode3 have been issued while processing
abend abcodel for the same task, transaction tranid.

DFHSRO601 applid Program interrupt occurred with system task taskid in control

DFHSR0O602 applid Program interrupt routine has been entered while processing
program interrupt for same task

DFHSRO603 applid Program interrupt has occurred

DFHSRO605 applid Error from KE Domain - DFHSRP initialization

DFHSR0606 applid Abend (code aaa/bbbb) has been detected.

DFHSRO612 applid Abend recovery has been entered by same task

DFHSRO613 applid Abend has occurred with system task taskid in control

DFHSRO615 applid Program interrupt has occurred in recovery task

DFHTC1001 applid Terminal control initialization failed (modname).

DFHTM1797 applid System termination program has abended.

DFHDMO106 applid The Domain Manager records on the CICS Catalog may have been
corrupted.

DFHKE1800 applid ABNORMAL TERMINATION OF CICS IS COMPLETE.

DFHLGO736 applid A failure has occurred while reading from the system Tog
(journalname). The requested data could not be found. CICS will be
quiesced allowing some tasks to complete. Further work requires an
initial start.

DFHLGO738 applid A failure has occurred while reading the system log (journalname).
The requested data could not be found. CICS will be terminated. Further
work requires an initial start.

DFHLGO740 applid While writing data to the system log (journalname), a lost data
warning was received. CICS will be quiesced without Togging, allowing
tasks to complete. Further work requires an initial start.

DFHSI1542 applid Takeover by the CICS alternate system has failed. Emergency
restart could not be performed.

This informs an operator that a CICS region has abended.

This routine will stop health check monitors and write an SMF record (optionally)
to log the abend.

In addition the routine does a CDEMATCH for message id ABCODESYSTEM with
codel set to the messageid that invoked the routine, code2 set to the system-abcode
and code3 set to the user-abcode. The result of the match is used as the determine
the parameters to TERMMSG. If NORESTART is returned then the BREAK=YES
parameter is used on TERMMSG. If RESTART is returned then the ABEND=YES
parameter is used on TERMMSG. If neither of these values are returned, NO
TERMMSG command is invoked.

Chapter 12. Automation Routines 179

CICS-Related Processing and Recovery

180

CICSPlex Processing

EVERCMRC

Purpose: This routine is a part of the CICSPlex Event notification. This routine
will capture CICSPlex SM events that have actions of WTO and will display them
in SDF or NMC, or both.

This routine is intended to be invoked from the Automation Table. The format of
the NMC and SDF resource names are detailed in [[BM Tivoli System Automation for]
[-/OS CICS Automation Programmer’s Reference and Operator’s Guide]

Format:

»»—EVERCMRC >«

Usage: The automation routine EVERCMRC is intended to respond to messages:

EYUPNOOO5W Notify created for SAM, Context=plexname, Target=targetsys, Sev=level,
Event=evntname, Text=usertxt.

EYUPNOOO6W Notify created for RTADEF defname by APM, Context=plexname,
Target=targetsys, Sev=level, Resource=restype Key=resname, Text=usertxt.

EYUPNOOO7W Notify created for deftype defname by MRM, Context=plexname,
Target=targetsys, Sev=level, Resource=restype Key=resname, Text=usertxt.

EYUPNOOO8W Notify updated for SAM, Context=plexname, Target=targetsys, Sev=Tevel,
Event=evntname, Text=usertxt.

EYUPNOOO9W Notify updated for RTADEF defname by APM, Context=plexname,
Target=targetsys, Sev=level, Resource=restype Key=resname, Text=usertxt.

EYUPNOO1OW Notify updated for deftype defname by MRM, Context=plexname,
Target=targetsys, Sev=level, Resource=restype Key=resname, Text=usertxt.

EYUPNOOL1W Notify action for SAM, Context=plexname, Target=targetsys, Sev=level,
Event=evntname, Text=usertxt.

EYUPNOO12W Notify action for RTADEF defname by APM, Context=plexname,
Target=targetsys, Sev=level, Resource=restype, Key=resname, Text=usertxt.

EYUPNOO13W Notify action for deftype defname by MRM, Context=plexname,
Target=targetsys, Sev=level, Resource=restype, Key=resname, Text=usertxt.

This informs SA z/0OS that a CICSPlex SM event has occurred or been resolved.
EVERSCMI

Purpose: This routine is a part of the CICSPlex SM topology management. This
routine maintains a map of CICSPlex SM MAS names against the System
Automation resource names.

This routine is intended to be invoked from the Automation Table.

Format:

»»—FVERSCMI

A\
A

|—subs yS tem—|

Parameters:

subsystem
Optional Subsystem name. If not supplied the SUBSAPPL task global will
be used.

Usage: The automation routine EVERSCMI is intended to respond to messages:

System Automation for z/OS: Customizing and Programming

CICS-Related Processing and Recovery

EYUTS0003I Topology event for sysname Complete - APPLID (applid) CICSplex (plexname)
EYUXLOO1OI CMAS initialization complete

In addition the EVERSCMI routine should be invoked from the ACORESTART
MESSAGES/USER DATA policy for the CICSPlex CMASs defined to SA z/OS.

CICS Link Monitoring

EVEEDO004

Purpose: This routine will post or remove Link Monitoring events for links that
are defined to be monitored to SDF or NMC, or both. The resource name formats
are defined in [[BM Tivoli System Automation for z/OS CICS Automation Programmer’s|
[Reference and Operator’s Guidel

This routine is intended to be invoked from the Automation Table.
Format:

»>—EVEEDOO4 ><

|—message—|

Parameters:

message
The full message text from the Automation Table trap.

Usage: The automation routine EVEEDO004 is intended to respond to the following
messages for Link recovery:

EVEB11I procname : connid - Critical connection to applid in trouble.

EVE812I procname : connid - Connection to applid in trouble.

EVE813I procname : connid - Critical conn. to applid repaired, actions = countl

EVE814I procname : connid - Connection to applid repaired, actions = countl.

EVE815I procname : connid - Critical connection to applid is up.

EVE816I procname : connid - Connection to applid is up.

EVE817I procname : connid - Critical connection to applid, AV=countl MX=count2 AC=count3.
EVE818I procname : connid - Connection to applid, AV=countl MX=count2 AC=count3.

EVEB19I procname : connid - Critical connection to applid is down.

EVE820I procname : connid - Connection to applid is down.

CICS VSAM RLS Status

EVEERLSI

Purpose: This routine is a routine to track the CICS VSAM RLS status.

This routine is intended to be invoked from the Automation Table.

Format:

>>——EVEERLSI——I:RLSACTIVE »<
RLSINACTIVE—-|

Parameters:

RLSACTIVE

Specifies that CICS is using RLS.

Chapter 12. Automation Routines 181

CICS-Related Processing and Recovery

182

RLSINACTIVE
Specifies that CICS is not using RLS.

Usage: The automation routine EVEECOO05 is intended to respond to the
following messages for VSAM RLS status processing:

DFHFCO153 applid The previous instance of the SMSVSAM server has failed. File
control RLS access is being closed down.

DFHFCO0501 applid RLS OPEN of file filename failed. VSAM has returned code 16 in
R15. RLS access has been disabled.

DFHFC0504 applid RLS OPEN of file filename failed. The VSAM SHOWCB macro has
detected a RLS VSAM server failure. RLS access has been disabled.

DFHFCO0508 applid RLS OPEN of file filename failed. VSAM has returned code X'AA'
in register 15. RLS access has been disabled.

DFHFCO0563 applid The RLS control ACB has been successfully unregistered by CICS.

DFHFCO0562 applid The RLS control ACB has been successfully registered by CICS.

DFHFC0564 applid The register of the RLS control ACB has failed. VSAM macro
IDAREGP return code X'rrrr', reason code X'cccc', error data X'dddd'.

DFHFCO565 applid The unregister of the RLS control ACB has failed. VSAM macro
IDAUNRP return code X'rrrr', reason code X'cccc', error data X'dddd'.

DFHFCO566 applid The register of the RLS control ACB has failed. VSAM macro
IDAREGP return code X'rrrr', reason code X'cccc'.

DFHFC0567 applid The unregister of the RLS control ACB has failed. VSAM macro
IDAUNRP return code X'rrrr', reason code X'cccc'.

DFHFCO571 applid RLS access cannot be restarted.

DFHFCO570 applid File control RLS access has been enabled.

DFHFCO577 applid RLS offsite recovery is now complete. RLS access is allowed.

CICS Shutdown

EVERSPPI

Purpose: This routine is sets the shutdown status for the PPI running in a CICS
address space.

This routine is intended to be invoked from the Automation Table.
Format:

»>—FEVERSPPI ><

Usage: The automation routine EVERSPPI is intended to respond to the following
messages for PPI shutdown processing;:

EVE173I applid : PPI inactive.

CICS Short on Storage

EVEEYO00S

Purpose: This routine is a generic routine that invokes state table processing
based on the message id it is invoked with. In this case the message id’s cause the
routine to handle the CICS Short on Storage events.

This routine is intended to be invoked from the Automation Table.

Format:

»—EVEEY00S ><

System Automation for z/OS: Customizing and Programming

CICS-Related Processing and Recovery

Usage: The automation routine EVEEY00S is intended to respond to the following
messages for CICS Short on Storage events:

DFHSMO131 applid CICS is under stress (short on storage below 16MB).
DFHSMO132 applid CICS is no longer short on storage below 16MB.
DFHSMO133 applid CICS is under stress (short on storage above 16MB).
DFHSM0134 applid CICS is no longer short on storage above 16MB.

CICS Startup

EVEEARMW

Purpose: This routine will reply to the DFHKE0408D message. This message is
issued when CICS is started with TYPE=COLD or INITIAL and attempts to
register with ARM and fails to do so. The appropriate reply is ASIS or AUTO.
This routine is intended to be invoked from the Automation Table.

Format:

»>—EVEEARMW

v
A

Usage: The automation routine EVEEARMW is intended to respond to the
following message.

DFHKEQ408D applid PLEASE SPECIFY START TYPE, 'ASIS' OR 'AUTO'.

The automation routine will reply with the data specified in the MESSAGES/USER
DATA reply policy for the message. The Selection field is set to ARMSTART if
CICS was started by ARM or NOARMSTART if CICS was started manually.

EVEEI15

Purpose: This routine will reply to the DFHPA1104 message. This message is
issued to get system start up parameters.

This routine is intended to be invoked from the Automation Table.
Format:

»»—EVEEI115 >

Usage: The automation routine EVEEI115 is intended to respond to the following
messages.

DFHPA1104 applid SPECIFY ALTERNATIVE SIT PARAMETERS, IF ANY, AND THEN TYPE '.END'.
DFHPA1105 applid CONTINUE SPECIFYING SIT PARAMETERS AND THEN TYPE '.END'.

The automation routine will reply with the data specified in the INGREQ
command, INGSET command or the CICSOVRD command. The START=
parameter is always specified and is the start type as coded in the INGREQ
command. Data from the INGREQ applparms field is appended. Alternatively, data
from the CICSOVRD command or INGSET command is appended. Please note,
there is only one field for this override, order of processing is INGREQ applparms
take precedence over INGSET or CICSOVRD which both update the same field.

Chapter 12. Automation Routines 183

CICS-Related Processing and Recovery

184

EVEEI004

Purpose: This routine will determine the version number of the CICS subsystem
being started.

This routine is intended to be invoked from the Automation Table.

Format:

v
A

»»—EVEEIQOO4—version

Parameters:

version CICS version in version.release.modlevel format.

Usage: The automation routine EVEEI004 is intended to process the following
message.

DFHSI1500 applid element startup is in progress for CICS Transaction Server Version version
The automation routine will get the version number and store it for later use. In
addition the routine will optionally write an SMF record to record the start of the
CICS subsystem.

EVEEI006

Purpose: This routine will determine the start type of the CICS subsystem being
started.

This routine is intended to be invoked from the Automation Table.
Format:

»—EVEEIO06 ><

Usage: The automation routine EVEEI006 is intended to process the following
message.

DFHSI15021 applid CICS startup is {Cold | Warm | Emergency | Initial}.
EVEEIO09

Purpose: This routine will set the CICS, CICSPlex CMAS or the PPI associated
with the CICS subsystem to UP.

This routine is intended to be invoked from the Automation Table.
Format:

»»—EVEEI009

v
A

|—PPI—|

Parameters:

PPI Specifies that the PPI not the CICS Subsystem is in UP state.

System Automation for z/OS: Customizing and Programming

CICS-Related Processing and Recovery

Usage: The automation routine EVEEIO09 is intended to process the following
messages.

DFHSI1517 applid Control is being given to CICS.
EYUXLOO1OI CMAS initialization complete
EVE172I applid : PPI active.

EVEEIO10

Purpose: This routine will start active monitoring for Link Monitoring and Health
Checking.

This routine is intended to be invoked from the Automation Table.
Format:

»>—EVEEIO10 ><

Usage: The automation routine EVEEIO10 is intended to process the following
message.

EVE172I applid : PPI active.
EVEECMSI

Purpose: This routine will detect that the CICS subsystem being started is actually
a CICSPlex CMAS instead of a normal CICS subsystem.

This routine is intended to be invoked from the Automation Table.
Format:

»>—FEVEECMSI

A\
A

Usage: The automation routine EVEECMSI is intended to process the following
message.

EYUXS1002I Interval Timing initialization complete

CICS Transaction Recovery
EVEERTRN
Purpose: This routine will handle transaction recovery.
This routine is intended to be invoked from the Automation Table.

Format:

»>—FEVEERTRN ><

l—t ranz’d—| |—abend_code—| I—program—|

Parameters:
tranid Optional transaction id that has abended.

abend_code
Optional abend code.

Chapter 12. Automation Routines 185

CICS-Related Processing and Recovery

186

program

Optional program name of abending program.

If no parameters are specified, these values are derived from the message that
invoked this routine.

Usage: The automation routine EVEERTRN is intended to respond to the
following messages.

DFHAC2231

DFHAC2232

DFHAC2233

DFHAC2236

DFHAC2245

DFHAC2246

DFHAC2247

DFHAC2248

DFHAC2249

DFHAC2251

DFHAC2252

DFHAC2253

date time applid Transaction tranid running program program name term
termid has lost contact with its coordinator system during syncpoint and
has abended with code ASP1. The unit of work is shunted until contact is
restored{. EXCI job = }exci_id. condmsg

date time applid Transaction tranid running program program name term
termid has lost contact with its coordinator system during syncpoint and
has abended with code ASPO. A1l updates will be unilaterally

committed{. EXCI job = }exci_id. condmsg

date time applid Transaction tranid running program program name term
termid has lost contact with its coordinator system during syncpoint and
has abended with code ASPP. A1l updates will be unilaterally backed

out{. EXCI job = }exci_id. condmsg

date time applid Transaction tranid abend secondary abcode in program
program name term termid. Updates to Tocal recoverable resources will be
backed out{. EXCI job = }exci_id. condmsg

date time applid A CICS-generated syncpoint request could not be completed
normally because a connected system has requested that the unit of work be
rolled back. Transaction tranid running program program name term termid
has been abnormally terminated with code ASPF{. EXCI job = }exci_id. condmsg
date time applid Transaction termination processing could not be completed
normally because a connected system has requested that the unit of work be
rolled back. Transaction tranid, terminal termid has been abnormally
terminated with code ASPN{. EXCI job = }exci_id. condmsg

date time applid Transaction tranid running program program name term
termid has requested rollback, but was using a type of processing for which
rollback is not supported. The transaction has been abnormally terminated
with code ASP8 {. EXCI job = }exci_id. condmsg

date time applid Transaction tranid running program program name term
termid has failed with abend ASP7 following the failure of a local
resource owner in the prepare phase of syncpoint. Updates will be backed
out{. EXCI job = }exci_id. condmsg

date time applid Transaction tranid running program program name term
termid has failed with abend ASP7 following the failure of a remote system
in the prepare phase of syncpoint. Updates will be backed

out{. EXCI job = }exci_id. condmsg

date time applid Transaction tranid running program program name term
termid has failed with abend ASPQ. Syncpoint commit processing has failed
while communicating with a remote system{. EXCI job = }exci_id. condmsg
date time applid Transaction tranid in program program name term termid
has lost contact with its coordinator system during syncpoint processing.
No updates have been performed by this system; it has abended with code
ASPR{. EXCI job = }exci_id. condmsg

date time applid Transaction tranid running program program name term
termid has failed with abend ASP2 due to the links to the remote systems
being in an invalid state. Updates will be backed out{. EXCI job = }exci_id.
condmsg

Note, these messages are not normally issued to the system console, so if
transaction recovery is required the messages should be included in the
MESSAGES/USER DATA policy so that the CICS message exit will force CICS to
WTO them.

System Automation for z/OS: Customizing and Programming

CICS-Related Processing and Recovery

CICS Unit of Work Recovery

EVEETUOW

Purpose: This routine will process messages to handle the status of the UOW
processing. It provides two services:

1. Detecting if units of work are outstanding at CICS shutdown and optionally
forcing an AUTO start for the next start up of the CICS subsystem.

2. Detecting if an INITIAL start is required and optionally forcing an INITIAL
start at the next start up of the CICS subsystem.

This routine is intended to be invoked from the Automation Table.
Format:

»>—EVEETUOW ><

|-—INITIAL——|

Parameters:

INITTAL
Optional, specified when INITIAL restart is to be forced.

Usage: The automation routine EVEETUOW is intended to respond to the
following messages.

DFHDMO106 applid The Domain Manager records on the CICS Catalog may have been
corrupted.

DFHLGO736 applid A failure has occurred while reading from the system log
(journalname). The requested data could not be found. CICS will be
quiesced allowing some tasks to complete. Further work requires an
initial start.

DFHLGO738 applid A failure has occurred while reading the system Tog (journalname).
The requested data could not be found. CICS will be terminated. Further
work requires an initial start.

DFHLGO740 applid While writing data to the system log (journalname), a lost data
warning was received. CICS will be quiesced without Togging, allowing
tasks to complete. Further work requires an initial start.

DFHRMO130 applid Recovery manager has successfully quiesced.

DFHRMO134 applid Recovery manager domain failed reading the global catalog, or
did not find its control record.

DFHRMO136 applid The applid has changed from old_applid to new_applid. Recovery
cannot continue.

DFHRMO144 applid Recovery manager catalog record indicates that no recovery is
possible. An initial start is required.

DFHRM0203 applid There are indoubt uows indoubt, cfail _uows commit-failed and
bfail_uows backout-failed UOWs.

DFHRMO204 applid There are no indoubt, commit-failed or backout-failed UOWs.

DFHRMO400 applid A unit of work was incompletely reconstructed from the system log.

DFHRMO401 applid There is no system log or an empty system log has been detected.

EVEETO002

Purpose: This routine will process messages to handle the status of the UOW
processing.

This routine is intended to be invoked from the Automation Table.

Format:

Chapter 12. Automation Routines 187

CICS-Related Processing and Recovery

»»—EVEET002

v
A

Usage: The automation routine EVEET002 is intended to respond to the following
message.

DFHRMO130 applid Recovery manager has successfully quiesced.

IMS-Related Processing and Recovery

188

IMS Region Abend Recovery

EVIER000

Purpose: This routine is a part of the Abend Recovery for IMS Regions.
This routine is intended to be invoked from the Automation Table.
Format:

»>—EVIEROOO ><

Usage: The automation routine EVIER00O is intended to respond to message:
DFS6291 IMS CTL TCB ABEND IMS | SYS user | sys

This informs an operator that a TCB in an IMS region has abended.
EVIEROO1

Purpose: This routine is a part of the Abend Recovery for IMS Regions.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIEROO1

v
A

Usage: The automation routine EVIER001 is intended to respond to the following
message.

DFS6271 IMS RTM CLEANUP (type) status FOR task jobname.stepname.procstepname RC=xx |x

This informs an operator that z/OS Recovery Termination Manager has finished
cleanup for the specified task. It signifies that the task has ended.

IMS Dependent Region Processing

EVIES002

Purpose: This routine is a part of the IMS Dependent Region processing. This
routine handles dependent regions starting up and notifies SA z/OS that the
subsystem is up.

This routine is intended to be invoked from the Automation Table.

System Automation for z/OS: Customizing and Programming

IMS-Related Processing and Recovery

Format:

»>—EVIESO02

A\
A

Usage: The automation routine EVIES002 is intended to respond to message:

DFS5511 {IFP | MESSAGE | BATCH | JMP | JBP} REGION xxxxxxxx STARTED. ID=yyyyy
TIME=Zzzzz CLASSES=XXX, XXX, XXX XXX

This informs SA z/OS that a Dependent Region is UP.

EVIES003

Purpose: This routine is a part of the IMS Dependent Region processing. This
routine handles dependent regions shutting down and notifies SA z/OS that the
subsystem is down.

This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIES003

v
A

Usage: The automation routine EVIES003 is intended to respond to the following
message.

DFS5521 {IFP | MESSAGE | BATCH | JMP|JBP} REGION xxxxxxxx STOPPED. ID=yyyyy TIME=zzzz

This informs SA z/OS that a Dependent Region is DOWN.

IMS MSC Link Recovery

EVIEY00S

Purpose: This routine is a generic routine that invokes state table processing
based on the message ID it is invoked with. In this case the message IDs cause the
routine to handle the MSC link events and to recover the MSC link if required.

This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIEYO0S >

Usage: The automation routine EVIEYO00S is intended to respond to the following
messages for MSC Link recovery:

DFS2140 DESTINATION name STOPPED, REASON CODE xxx.

DFS2142 MSNAME xxxxxxxx STOPPED LINK yyy.

DFS2160I LINK nnn STARTED BY PARTNER XX NODE nodename.

DFS21611 LINK xxx STOPPED BY PARTNER.

DFS2162 TERMINAL IN RESPONSE MODE\u2014ENTER PAl or PA2 THEN AWAIT REPLY.

DFS21681 CONNECTION ESTABLISHED ON LINK xxx [CONT].

DFS21691 DISCONNECTION COMPLETED ON LINK xxx.

DFS22361 MSVERIFY COMMAND IN PROGRESS FOR REMOTE SYSID(S) P1, P2, P3...Pn. yyddd/hhmmss

Chapter 12. Automation Routines 189

IMS-Related Processing and Recovery

190

IMS OLDS Recovery

EVIECOO05

Purpose: This routine is a generic routine to manage IMS OLDS.
This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIECO05

v
A

Usage: The automation routine EVIECOO5 is intended to respond to the following
messages for OLDS processing:

DFS9941 rtype START COMPLETED

DFS25001 DATABASE |DATASET xxxxxxxx SUCCESSFULLY ALLOCATED|DEALLOCATED| CREATED| DELETED
DFS32561 OPEN/ALLOCATION FAILED ON ddname

DFS32561 OPEN FAILED ON ddname - DD CARD SPECIFICATION ERROR

DFS32561 OPEN FAILED ON ddname - DURING ONLINE LOG READ (xx)

DFS32571 ONLINE LOG NOW OPENED ON ddname

DFS32571 ONLINE LOG NOW SWITCHED - FROM ddnamel TO ddname2

DFS32571 ONLINE LOG CLOSED ON ddname

DFS32571 OLDS|WADS DEALLOCATED ON ddname

EVIEY00S

Purpose: This routine is a generic routine that invokes state table processing
based on the message ID it is invoked with. In this case the message IDs cause the
routine to handle the OLDS events and to recover the OLDS if required.

This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIEYOOS

A\
A

Usage: The automation routine EVIEY0OS is intended to respond to the following
messages for OLDS recovery:
DFS3258A LAST ONLINE LOG DATA SET IS BEING USED - NEED ARCHIVE

DFS3258A SYSTEM WAITING FOR AN ONLINE LOG DATA SET - NEED ARCHIVE
DFS32601 ONLINE LOG DATA SET SHORTAGE - NEED ANOTHER DATA SET

IMS RECON Recovery

EVIECR04

Purpose: This routine is a generic routine to manage IMS RECON.
This routine is intended to be invoked from the Automation Table.
Format:

»>—EVIECRO4 ><

Usage: The automation routine EVIECR04 is intended to respond to the following
messages for RECON processing:

System Automation for z/OS: Customizing and Programming

IMS-Related Processing and Recovery

DFS994I rtype START COMPLETED
DSPO381I COPY COMPLETE, RC = nnn

IMS Startup

EVIDISCQ

Purpose: This routine will determine if the IMS Control region is running with a
Fast Dump Restore environment or also running in a Shared Queue environment.

This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIDISCQ

A\
A

Usage: The automation routine EVIDISCQ is intended to respond to message:
DFS41901 IMS SYSTEM IS FDR CAPABLE

EVIEIO0A

Purpose: This routine gets the check point information and optionally the HSBID
information from the messages that invoke it.

This routine is intended to be invoked from the Automation Table.

Format:

»>—EVIEIOOA ><

Parameters:
Restrictions:

Usage: The automation routine EVIEIOOA is intended to respond to the following

messages:

DFS38041 LATEST RESTART CHKPT: yyddd/hhmmss, LATEST BUILDQ CHKPT: yyddd/hhmmss

DFS38041 [LATEST] [RESTART] CHKPT: yyddd/hhmmss, HSBID=xx \u2013 [LATEST] BUILDQ
CHKPT: yyddd/hhmmss, HSBID=xx

DFS38041 LOG READ CHKPT: yyddd/hhmmss \u2013 RESTART CHKPT: yyddd/hhmmss ,
HSBID=xx \u2013 BUILDQ CHKPT: yyddd/hhmmss, HSBID=xx

EVIEIOOC

Purpose: This routine handles the IMS control region start up complete message.
It will set the status of the control region to UP, gather IMS resource information
and invoke user post start up commands.

This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIEIOOC > <

Chapter 12. Automation Routines 191

IMS-Related Processing and Recovery

192

Usage: The automation routine EVIEIO0C is intended to respond to the following
message:

DFS9941 rtype START COMPLETED
EVIEIO0Q

Purpose: This routine handles the IMS control region start up initializing. It resets
IMS information held by System Automation and gathers the version number of
the IMS control region.

This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIEI00Q <

Usage: The automation routine EVIEIO0Q is intended to respond to the following
messages:

DFS34101 DATA SETS USED ARE DDNAME 'acblib-name' 'format-name' 'MODBLKS-name'
(time/date stamps if they exist)
INGI1010I Automated Operator Exit Initialized for IMS Level vrm .

EVIEI0O06

Purpose: This routine handles the IMS control region restart errors.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIEIOO6

v
A

Usage: The automation routine EVIEI006 is intended to respond to the following

messages:

DFS166 CHECKPOINT ID NOT ON LOG RE-ENTER RESTART COMMAND

DFSO331 DUPLICATE ENTRY ON SIGNON REQUEST, RESTART ABORTED

DFS0618A A RESTART OF A NON-ABNORMALLY TERMINATED SYSTEM MUST SPECIFY EMERGENCY
BACKUP OR OVERRIDE.

DFS31311 A COLD START OR EMERGENCY RESTART REQUIRED

DFS36261 RESTART HAS BEEN ABORTED

EVIEI20B

Purpose: This routine handles the IMS DB control region start options. It will
issue commands to respond to the DFS9891 message from an IMS DB control
region.

This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIEI20B ><

Usage: The automation routine EVIEI20B is intended to respond to the following
message:

System Automation for z/OS: Customizing and Programming

IMS-Related Processing and Recovery

DFS9891 IMS (DBCTL) READY (CRC=x)
EVIEI200

Purpose: This routine gets the Command Recognition Character for the IMS DB
control region.

This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIEI200

A\
A

Usage: The automation routine EVIEI200 is intended to respond to the following
message:

DFS9891 IMS (DBCTL) READY (CRC=x)

IMS Shutdown
EVIET006

Purpose: This routine will set the IMS Control Region to AUTODOWN state.
This routine is intended to be invoked from the Automation Table.
Format:

»>—EVIET006 ><

Usage: The automation routine EVIET006 is intended to respond to the following
messages:

DFS9941 IMS SHUTDOWN COMPLETED
DFS9941 IMS SHUTDOWN (DBCTL) COMPLETED
DFS9941 IMS SHUTDOWN (DCCTL) COMPLETED

IMS Sysplex Support
EVISTRCT

Purpose: This routine will Post the IMS sysplex event to both SDF and NMC.
This routine is intended to be invoked from the Automation Table.
Format:

»»>—EVISTRCT »><

Usage: The automation routine EVISTRCT is intended to respond to the following
message:

CQS0205E STRUCTURE structurename 1S FULL

Chapter 12. Automation Routines 193

IMS-Related Processing and Recovery

194

EVISTRNM

Purpose: This routine will reset the posted IMS sysplex event to both SDF and
NMC.

This routine is intended to be invoked from the Automation Table.
Format:

»>—EVISTRNM

v
A

Usage: The automation routine EVISTRNM is intended to respond to the
following message:

CQS02061 CQS structurename percentage BELOW THRESHOLD LEVEL

IMS TCO Automation

EVIEETO0

Purpose: This routine is a generic routine to process IMS TCO Automation.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIEETOO

\4
A

Usage: The automation routine EVIEET00 is intended to respond to the following
messages:

DFS3343E CANNOT PROCESS DFSTCF LOAD COMMAND, REASON=xx
DFS3350E TCO ABNORMALLY TERMINATED, SEE DUMP

DFS3351E TCO ABNORMALLY TERMINATED, SYSTEM ABEND, SEE DUMP
DFS36131 xxx TCB INITIALIZATION COMPLETE.

IMS Transaction Recovery

EVIEY00S

Purpose: This routine is a generic routine that invokes state table processing
based on the message ID it is invoked with. In this case the message IDs cause the
routine to handle the Transaction Recovery events and to recover the failing
transaction if required.

This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIEYQ0S >«

Usage: The automation routine EVIEY00S is intended to respond to the following
messages for Transaction recovery:

System Automation for z/OS: Customizing and Programming

IMS-Related Processing and Recovery

DFS5521 {IFP | MESSAGE | BATCH | JMP|JBP} REGION xxxxxxxx STOPPED. ID=yyyyy TIME=zzzz
DFS554A jobname.region.stepname. prog /PSBname(x) transaction-code
sys-completion-code user-completion-code SMB PSB
LTERM=| LUNAME: | RTKN=token originating terminal

IMS XRF Processing

EVIAVMO6

Purpose: This routine replies to the AVM005 UNLOCK message.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIAVMO6

A\
A

Usage: The automation routine EVIAVMO06 is intended to respond to the
following message:

AVMOO6E TELL OPERATOR AT BACKUP TO REPLY 'UNLOCK' TO MESSAGE AVMOO5A. I/0 PREVENTION
IS COMPLETE FOR SUBSYSTEM ssid, FAILING ACTIVE ELEMENT OF RSE rsename.

EVIEIOOD

Purpose: This routine forces a SNAPQ on the ACTIVE element of an IMS XRF
system.

This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIEIOOD

v
A

Usage: The automation routine EVIEIOOD is intended to respond to the following
message:

DFS3801 CHKPT SNAPQ REQUIRED ON ACTIVE SYSTEM
EVIEIOOF

Purpose: This routine forces an Alternate IMS control region to stop if it is not a
member of an XRE.

This routine is intended to be invoked from the Automation Table.

Format:

»—EVIEIOOF

A\
A

Usage: The automation routine EVIEIOOF is intended to respond to the following
messages:

DFS3806 BACKUP KEYWORD INVALID - NO XRF CAPABILITY
DFS3866 BACKUP KEYWORD INVALID - NO MODSTATZ

Chapter 12. Automation Routines 195

IMS-Related Processing and Recovery

196

EVIEIO0G

Purpose: This routine sets an Alternate IMS Control region to UP.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIEIOOG

v
A

Usage: The automation routine EVIEIOOG is intended to respond to the following
messages:

DFS38381 XRF INITIAL DB PRE-OPEN COMPLETE
DFS38391 XRF INITIAL DC PRE-OPEN COMPLETE

EVIEIO05

Purpose: This routine sets XRF automation off for a control region that is
generated with XRF but not started in XRF mode.

This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIEIOO5 >«

Usage: The automation routine EVIEI005 is intended to respond to the following
messages:

DFS3802W XRF NOT POSSIBLE - ONLY ONE RDS ALLOCATED.
DFS3898W NO HSB PROCLIB MEMBER - NO XRF CAPABILITY
DFS3899W HSBID NOT SPECIFIED IN EXEC PARM - NO XRF CAPABILITY

EVIEIO08

Purpose: This routine sets the XRF status for the subsystem based on the value in
the message that triggered it.

This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIEIOO8

A\
A

Usage: The automation routine EVIEIO08 is intended to respond to the following
message:

DFS38731 JOINRSE MODE=ACTIVE|BACKUP WAS SUCCESSFUL

EVIEIO09

Purpose: This routine sets the AVM status for the XRF partner to OFF.
This routine is intended to be invoked from the Automation Table.

Format:

System Automation for z/OS: Customizing and Programming

IMS-Related Processing and Recovery

»»—EVIEIOO9

A\
A

Usage: The automation routine EVIEIO09 is intended to respond to the following
messages:

DFS38721 AVM CONNECTION FAILED
DFS38771 JOINRSE FAILED

EVIEO000

Purpose: This routine starts the XRF takeover Automation sequence.
This routine is intended to be invoked from the Automation Table.
Format:

»>—EVIEO0OO ><

Usage: The automation routine EVIEO000 is intended to respond to the following
message:

DFS38901 TAKEOVER REQUESTED REASON CODE=
EVIEOO001

Purpose: This routine is part of the XRF takeover automation.
This routine is intended to be invoked from the Automation Table.

Format:

»»—EVIEO001 ><

Usage: The automation routine EVIEOQ01 is intended to respond to the following
message:

DFS38911 TAKEOVER IN PROGRESS
EVIEO002

Purpose: This routine is part of the XRF takeover automation.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIE0002

v
A

Usage: The automation routine EVIEO(02 is intended to respond to the following
message:

DFS38911 TAKEOVER IN PROGRESS

Chapter 12. Automation Routines 197

IMS-Related Processing and Recovery

198

EVIEO006

Purpose: This routine is part of the XRF takeover automation.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIE0006

v
A

Usage: The automation routine EVIEOQ06 is intended to respond to the following
message:

DFS9941 XRF TAKEOVER COMPLETED
EVIEO007

Purpose: This routine is part of the XRF takeover automation.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIE00O7

Y
A

Usage: The automation routine EVIEO(07 is intended to respond to the following
message:

AVMOO5A REPLY UNLOCK WHEN I/0 PREVENTION COMPLETES FOR RSE rsename
EVIEO008

Purpose: This routine is part of the XRF takeover automation.
This routine is intended to be invoked from the Automation Table.
Format:

»—EVIE00O8 ><

Usage: The automation routine EVIEOQ08 is intended to respond to the following
messages:

10S0711 dev,chp,jobname, START PENDING
I0SO71E dev,chp,jobname, text

EVIEOO10

Purpose: This routine is part of the XRF takeover automation.
This routine is intended to be invoked from the Automation Table.
Format:

»»—EVIE0O10

v
A

System Automation for z/OS: Customizing and Programming

IMS-Related Processing and Recovery

Usage: The automation routine EVIEOO010 is intended to respond to the following
messages:

DFS616I SYSTEM LOG DATASET NOT CLOSED\u2014 LOG WRITE ERROR
DFS6161 SYSTEM LOG DATASET NOT CLOSED\u2014 LOG WRITE ERROR. LAST LOG SEQ
NUMBER=XxXXXXXXX

EVIETOOE

Purpose: This routine is part of the XRF takeover automation.
This routine is intended to be invoked from the Automation Table.
Format:

»—EVIETOOE ><

Usage: The automation routine EVIETOOE is intended to respond to the following
message:

AVMO1OE AVM ENDED ABNORMALLY (ABEND=Scde REASON=reason-code)

Chapter 12. Automation Routines 199

IMS-Related Processing and Recovery

200 System Automation for z/OS: Customizing and Programming

Appendix A. Global Variables

You must ensure that the names of any global variables you create do not clash
with SA z/OS external or internal global variable names. You should check the
following tables before creating any global variables of your own.

Read-Only Variables

There are two different classes of variables, based on the level of access available to
the programmer:

Class 1:

Class 2:

Read-only variables. These variables are set by SA z/OS and require at
minimum an automation control file reload to be changed.

Read-only variables. These variables are set by SA z/OS CLISTs. They
should not be changed except by calling the appropriate CLISTs.

Table 5. Externalized Common Global Variables

or SA z/0S.

* For SA OS/390 2.2, the value is
V2R2MO.

e For SA z/0S 2.3, the value is V2R3MO.

e For SA z/0S 3.1, the value is V3R1MO.

Variable Name Description Class | Reference

AOF.clist. ODEBUG Contains either a Y or blank. If it contains |2
Y then an intermediate level of debug
supported by SA z/OS CLISTs is turned
on.

AOQOF.clist.)DTRACE Contains a REXX trace setting to be used |2
by the CLIST clist.

AOFAOCCLONEXx Where n either does not exist 1 See the description of the
(AOFAOCCLONE) or is a value from 1 System policy object in |IBM|
through 9 or A through Z. The Tivoli System Automation for]
AOFAOCCLONE global variables contain -/OS Defining Automation|
the values specified for the Policy}

&AOCCLONE. IDs for this system.

AOFCOMPL Contains YES if initialization is complete. |2

AOFDEBUG Contains a REXX trace setting to be used |2 See |IBM Tivoli System|
globally. [Automation for z/OS Planning|

and Installationl

AOFINITIALSTARTTYP Contains the value 'IPL” or 'RECYCLE’ 1
depending on whether SA z/OS has
been started the first time after an IPL or
after a NetView recycle.

AOF_NETWORK_ DOMAIN _ID | Contains the domain name for the 1 See the description of the
NetView that runs network automation as System policy object inlIBT/II
defined in the customization dialog. If Tivoli System Automation for|
not defined, the value of this variable is 2/OS Defining Automation|
null. PoliC]A

AOF_PRODLVL Contains the release level of AOC/MVS |1

© Copyright IBM Corp. 1996, 2005

201

Global Variables

Table 5. Externalized Common Global Variables (continued)

Variable Name Description Class | Reference
AOFJESPREFX The command prefix for the primary 1
scheduling subsystem.
AOFSUBSYS The subsystem name of the primary 1
scheduling subsystem.
AOFSYSNAME Contains the name of the system. 1 See AOCUPDT in |iBM Tivolzl
System Automation for z/OS)|
Programmer’s Referencel
AOFSYSTEM Contains the system type (MVSESA) as 1 The SYSTEM INFO panel of

defined in the customization dialog. the customization dialog.

Read/Write Variables

[Table 6 on page 203|lists the common global variables that can be user-defined. You
can set them in your startup exit to change the way that SA z/0OS behaves. These
variables should be set only once for an SA z/OS system. You can enable or
disable advanced automation options (AAOs) by changing the settings of the
global variables in your initialization defaults exit (AOFEXDEF).

The following is an example on how to use the AOFEXDEEF exit to assign a value
to the CGLOBAL AOFRPCWAIT:

aofrpcwait = '30'
'"GLOBALV PUTC AOFRPCWAIT'

Alternatively you can use the CNM stylesheet:

kkhkkkkhkkhkhkkhkhkkhhkkhhkhkhhkhhkhkhhkhkhkkhhkkhhkhkhhkhkhkkhkhkkhhkkhkkhkhkkhkk*
* System Automation AAO CGlobals
kkhkkkkhkkkhkkhkhkkhhkkhhkkhkhkkhhkkhhkhkhhkkhhkkhhkkhhkhkhkkhkhkkhhkkhkkkhkkhkk*x
COMMON.AOFCNMASK = 290CODOEOF101518

COMMON.INGREQ ORIGINATOR =1

COMMON.AOFRESTARTALWAYS = 0

COMMON.AOFUPDRODM = NO

COMMON.AOFUPDAM = NO

COMMON.AOFSMARTMAT = 0

After modifying the exit, an SA z/OS COLD START is required for these changes
to take effect.

202 System Automation for z/OS: Customizing and Programming

Global Variables

‘PoIqesIp oq [[IM NOLHOOOV pueuios
3y} pue S[SO I0J aweu anbrun e y3rm S[0SU0d GOHA PAPU)Xa Ue Urejqo jou [[Im §O/Z VS

*3uras Jneyop ays st |

‘paseafar aq [[IMm 31 ‘A[snotadid 1GO ayj 10§ paure}qo sem J[OSU0d SATA Ue J “(SLSO) S¥Sel
uone)s 10jerado 103 awreu anbrun e yrm S[0SU0d GO PIPUIX Uk Urelqo [[IM SO/Z VS

INANNDISSY ND SONH 40V

Jmegep ay st o

HALLOV 10 JHISVIN
JO SNJE)S S[OSUOD € LM SI[OSU0D GDJA PIPuLlXe 0} sejone ue USISse Jou [[IM §O/Z VS

HALLDV 10 YALSVIN
JO SNJE)S S[OSUOD B JIM SI[OSU0D GO PIPULIXa 0 ysejone ue udisse [[IM §O/Z VS

INHANDISSV MSVIOLNV SONA 40V

“UOTJRWIOINE [OAS[-1SIL] Y} UIIM JZIUOIYIUASI
03 sey pue 23eno dY) JNoge PIULIOJUT ST JFeULW UOLEWOINEe PUa-03-pud A} ‘S[qeLieA
STy} ur paymwads anfea ayy ueyy 123u0] saxe} 93U UOTIEWOINE A} JO 11€1SaI J0U e J]

sstuu:Y

LNOHNWILL JAONL d2H 40V

‘13depe uorjewoNe pus-0}-pud A} 0} PIPILMIOJ 3] O} PIULSIP
dIk SJUSAd I, "9DTAISS UOIJRWOINE JUaAd dY) jo 1eydepe adessowr oy} 03 F1LNOYDAL Idd
BIA SJUSAD I9JSUeI} O} Pasn aIe Jey)} ‘Puodas SUO JO STRAISIUL Je ‘SILNAI JO Iaquunu aY) saryoadg

uoy|

AIHY LAT HZH 40V

‘1a3depe uorjewone pus-o03-pus
dY) 0] SJUIAD PILMIO] 0} Pasn 3] 0} IIIAIDS UOILWOINE /JUIA 3} JO (J[JOATAI [JJ

paunep-19sn

Idd Svd d¢d A0V

‘syrore Surpueysino Aue £ysnes 03 aessowr (qHNINOC 243 JO 3dreoax uo A1 M HIV.INONI

0

‘J19Te gLV oy 03 Jorrd Surrojruowr junowr adey [[e 10 SpUBWIWIODd GAJA] 9SN 0} J)ELdIpUr
OSTe [[IM AIJUd 0I9Z-UOU Y "Payoeal Uadq sey JIo[e V] 9y} I8k I9)je Spueuruod AN Suisn
Gurroyruowr anuURUOd 03 IVINONI 10§ SUOTJRISN JO Idquuinu Y} judsardar o3 anfea siy) 395

NOWHIVISAW OVV 40V

myed) FINVNIO[Ad NOISSV,, MIIAIRN T[0ALL 110[dXe j0u [[IM SO/Z VS

*3ur)39s J[neyop ayj St Sy L

-amyes) , FINVNIO[Ad NDISSV, MIIAIPN T[OAIL JI0[dX? [[ImM SO/Z V'S ey} S23edIpur sty

HANVNIO[NDISSV 10V

MVAMHA reowered ur payads jou Jr “sajqerrea
AVAMHY Ul pa1o3s oq 03 jou a1e a8essowr 3urta33ri} oy} JO SUIN0} 9} ey} So}edIpur SI [

ON

‘H[nejep 9y} St SHA

NVAIHA 193ouwrered

ur paypads jou JTINVANHA PUe IVANHE YSnomy 0 VANHI S9[qeliea ur paioys aq
0} are adessow Jur1a83L oy} JO SUSNO} A} ‘SaUNNOI dLIUAS SUI[[ed USYM Jey) Sa3edIpul STy

SHA

AVAIHA DS OVV 40V

Py

anfep

aqemeA

(STYd0T52) uolewolny peoueApy 8jqeus o} s9jqeleA [eqols 9 ajqeL

203

Appendix A. Global Variables

Global Variables

‘T St inejop ayL

"dA0qe aNTeA
SAYLAIAYANONAVAOV 3y} Ul paymads se sarnal Usamiaq Jrem 03 SpUodas Jo Iaquinu ayL,

"aN[eA dLIdWNU

paunep-19s

LIVMAIZINOWIVIOV

‘0T ST 3nejop AL

‘Pa[qeUR-JARV 10U ST JUSWI[d

ay} swmsse pue Jurssadoid aNUPUOD [[IM §O/Z VS ‘PIISNEYXD SI SOLIDI JO IOqUINU Y} 910J9q
snjeis Ioyjoue 0 UL J0U S0P SNJe)s ARV U3 I "pauIniar st NMONIINN JO snieis e
JI9)Je JUSUIS[d Uk JO snje)s JAR[Y 9y} A1enb 03 pajres aq [m DOIARIVIJIOV Sown Jo Iaquinu oy,

‘anjeA duLwnu

paunep-19sn

SAIITIAIINONI VIOV

‘s10110 yons uodn ssadoxd uonezieniur ayy dois [im 50/z VS

0

*3um39s Jneyop ay st |

*3[1j [0IyU0d uoTjewoNe) jo Jurssadoid ayy Surmp [ggZIOV St yons sadessowr
10119 9)1dsap uonezIenIul Yiim pasdoxd o} dwene [[IM §O/Z VS 1Y) SajedIpul Sy,

1

LINIIOVAOV

Py

anyep

d[qerrep

(penunuos) (STYGOTOHD) UOHEBWIOINY PIOUBADY 9|GEUT O} SB|qBLEA [BJO[D ‘9 |qEL

System Automation for z/OS: Customizing and Programming

204

Global Variables

safessaw uonde [eNJUAAd 10§ 9p0od 103dISAT | 0O0TO0000TO00TO0 Rl (ah(0)Y
so3essaw UOISIOAP 10§ 9p0d 103dLdsaT | 000T00000T0000L0 ansaddov
soBessaw uonde 10§ apod 103dLdsaq 000T00000TO000TO vOosiddov
‘pasn st 1o3owered SIy} a19ym spuewwiod [[e 10§ 1ejurered JHOYVL 94} I0J JNeJap € $19G pauyap-19s) 1A9YVL I'1INVIIddIOV
“3urpes ymeyep 9y st ON
‘uonezifenIul §O/z V¢S e suonmuyap uondo gIOADAY PUe IdI [[e I0uoy [[IM SO/Z VS ON
UOLRZI[ENIUL SO /Z VS ¥e NMOQLLD JO sniess e sey jeys waysAsqns
e 10§ pauyap suondo FIOADHY 10 TdI Aue 210uSL [[IM SO/Z VS 1Ry} SjedIpur Sy, SHA LdOT1O40V
Ve
pue ¢z suonisod Ul SweuSAS Y} JO SINORILYD 0M] ISE[9} J09[3s XQ[Pue X/ ‘G 03 T suonisod
ur prdo ayj Jo sIv30RIRYD 9AT ISIY A} SIB[AS XG() - XT() ‘Th uonisod Ul g Isjoereyd syod[es Xyg
8141S070€020TOVT MISVINNDIOV
:9rdurexa 10
‘(puewUIod ay} JO UOTJEDOAUL [eIIUL 9} woxj pasderd
sapnurwr GT) sassed G JO WNWIXEW € 10§ Y}I0J OS PUe [BAISJUL UL OM) € Aq PIMO[[O]
‘[EAIDJUL SJNUIW | B Id9}Je S[0SU0d GIJA papualxe anbrun e urejqo 03 3dwene [tm NDIIODOV
U ST YSYINNDAOV 1 $2 pue ¢z suonisod ur sweusAs ay} Jo SIajoeIeyd oM} 1sef oy}
309[9s XQT pue X/ ‘91 03 ¢T suonisod ur pido ay3 Jo s1ejoeIeYD 9ATJ ISE AU} SIB[ES X(T - X0
‘1% uontsod ur v 1ejRIeY $1998 X6T “81LT0TI0H0A0D06C ST MSVINNDAOV 10§ I[Mejap YL
aWeu N7 WYLA SU4N3d4 YyoLym uoLjouny e si ()pridde
oweu wa3SAs ay3
S9J401S YOLYM |BQO|B UOWWOD B SL dUWeusAsjoe
aueu
%Se} IS0 9Y} Suaniad yolym uotjouny e si ()pido 19UdYM
L1 O#5GST#8$68/9GVEZTOZAXMANLSYDIONWTINCTHIA3ADEY
“(8°()ptidde)3ybLa] | (8° ()pLidde)1sal
¢ (paweusAsjor)ybLd| | (¢ aweusAsioe)1ya|
(8°()ptdo)aubLuf| (8 ()pLdo)1yal
'‘NDLIDOOV puewuod
Im sawreu afosuod anbrun Surjerousd uaym 3urns SUIMOT[0F 9} WOIJ SID)ORILYD JORNXD
0] ySsew X3y e sk pasn sI [eqo[3 ST “MSVIANDIOV d[qeLiea eqo[3 uourwod ay} Sunepdn
Aq pazo[re} aq ued sawreu 9[osuod anbrun JUTUTULINSP UT Pasn aIe jeu} SIpdeIeyd Sy SMSYIANDLIOV
13539 anfeA d[qerreA

(penunuoo) (STYGOTDO) UoHBWOINY PEOUBADY 8jqeuS O SSIqBLIEA [BqO]S "9 8qEL

205

Appendix A. Global Variables

Global Variables

QW) peo[J[qe], Uuorjewony je 19s ejep
ISITIS 2y ur paoerd jou st 3unsi] 9[qe], UOPWOINY S} Je} SUBSW JqeLIeA S1y} Sumjeg

ONILSTI'TIVINAOV

‘poxoaut %:mﬁﬁma oq Isnwu (TOHILAS

"Gumes Jmeyop ayj st

-103erodo Aynou
9y} uo puewrwiod OINV ATOHLAS 24} 21nd9xd [[IM UonezIfeniul 5O /z VS pue XLLNODNI

dTOHTVOOTd0V

10, STA[Neep ay],

‘uonezIenIul SULNP SO/Z VS
Aq pansst a1e yey) SYOLM Pue SOLM I0j pasn st yeyi qINODSAS U} SUIeJUOd d[qeLIeA SIY],

anfea
pIfeA pauyep-19s0)

AINODSAS LINI 4OV

00000001, St 3Neyop YL

‘uonezifeniur SuLmp g0 /z yS Aq pansst are
yeu} SYOLM Pue SOLM I0j pasn st jeys (9pod Supnor) FADLNOY Y} SUIeIU0d [qeLIeA SIY],

anfea
pI[eA pauyap-19s()

HAD1INOW LINT 40V

00010000, St 3neyop ayL

‘uonezifenIul 3uLnp SO/z VS
Aq pansst aze jey} SYOLM PUt SOLM I0j pasn St jey} HYTISDIA Y} SUTRJUOd S[qeLiea siy[

anfea
pifeA pauyep-19sn)

OVTIASOW LINI 40V

‘10ye1r0do ayy Sunyse noym
}I€)S J[NEJap A} YIIM SINUTIU0D UOTIeWOojne pue pansst aq 10U [[Im q£09J0V A1dar renrur ayy,

‘3umyes Jneyep a3 SI (SNUI g) 00:20:00

“wuryy 1ayje papuodsar A[eorjewoine pue pansst st (J¢09:10V Afdar renrur ay,

SSIUUL Y

ATdHILINIHOV

"saBessowt [Z9IAH PU® T169IAH ‘T069IAT ‘I0ZIAH 2y 2npoxd [im QINDSINI

*3ur3as Jnejop ayj st

"SINIONI Aq pajersuad sadessowr sonpoxd AJuo [rm (ADSIAT

OSINANOSINIAOV

‘pakerdsip st [oued djay peajemosse ayj ‘os J

“ULI9} POULOP UOHR[[EISUL UB ST JT IOUISUYM OdUD [[IM SUHNOI PUBWIWOD d} ‘SNels §O/Z VS
PI[BA B JOU ST pueurod NIV IJIXH oY} ul snjes pagoads ayy J1 uelq e £q pajeredss
suonyeoyads jauvd djayjuiag jo sired arow 10 auo proy ued 3 ‘sure} parddns uoryereisur
1awoisnd 10§ 310ddns djay apnpur 03 o[qeriea sy sydedde puewruod NIV TIXT Y.L

paunap-1asn

AASN NIV TIXHIOV

sa8essaw jrem 10§ 9pod 103dLsa | 000T00000T00000T MOSIAIOV
sa8essaw [euoneurIojuT 10§ 9pod 103d1dSAC | 000TO0000TLO0000 1DSAAI0V
Py anfep aqemes

(penunuos) (STYGOTOHD) UOHEBWIOINY PIOUBADY 9|GEUT O} SB|qBLEA [BJO[D ‘9 |qEL

System Automation for z/OS: Customizing and Programming

206

Global Variables

"'NMOATILD 03 39S 9q [[IM wdjsAsqns aAndeUl Ue uay) ON
STHTDADHY UO HeIS J] “Peoar IOV ue Sutmp uondo FTOADHY UO HEIS ay) mouoy [[IM

S9X

J[eyep ay) St I

‘peopar 1OV ue Surmp uondo FTOADTY o Irelg ayy a10ut M

ON

LdOAVOTIII0V

"3umias Jmeyep ayy St |

‘Gurssadoad Ada1 YOIM 0] STVIOTOD 94 Isniy,

‘Gurpueysino
SI 31 JT Y23y 0} Pansst SI puewwiod Aedsip GAJN ue ‘03 papuodsar st A[da1 YOI M © 21059g

JOLMIDINOIOV

"3umes Jmeyop ays st

"SAIN Aq waisAs oy woxy
paxea]d udaq sey uonesridde ayy ey ams st 50O/z VS [HUN NMOA'LLD 10 NMOAOLNY
03 pajepdn aq jou [im snieys uonedrdde ays 49s ST HGNVIIOV MOY 1938w ON

“Iowr} Ae[op UOT)RUIULId} B JSN 0} PIsu A} PIOAR PINOD PaILd[d udaq Sey

uoryeorjdde ayy J1 sY0OUD §O/Z VS 210Joq OM] IO PUOIIS BIXd Ue SUIMO[[E dIdYM ‘DUIydewt
MOTS © U0 [njasn aq Aewr gSNVJIIOV ‘Trews 1dey aq pmoys i1 suorjeoridde [re 03 pardde

St anfea gSNVIIOV 93 SV ‘Ae[op UoneuIwIa) I9y) 0} UOHIppe Ul ‘GATA Aq pares]d aq 0}
umop nys aaey jeyy suoneordde 105 MO[[e [[IM SO/Z VS JeY} SPUOISS JO I9qUINU 3y} ST ST,

a010

ASAVIIOV

‘sadessawt [eZH(AT Pue ‘10TF(AT ‘ICTFIAT ‘TI10[AT @onpoid [t AOINVIIO

*3ur39s Jnejop Ay St

“DIOONI Aq pajersua8 sadessawr aonpord A[uo [m qONVIIO

OSINAINDDJOI0V

*3ur39s Jneyop Ay st ON

‘uonezIfenIul §O/z VS e suontuyap uondo gIOADAY PUe dI [[e I0uoy [[IM SO/Z VS

ON

"JO dIEME ST §O/Z VS ey} IoSeue|y 11e)soy dIIeWOoINy 0} pauyap SI Jey) walsAsqns
Aue 0y A1dde jou ssop snyy, ‘uonezifenIur je (qIAQIA JO SNJE)S © sey jey) wajsAsqns
e 10§ pauyap suondo FIOADHY 10 I Aue 210uSt [[IM SO/Z VS Jey} SjedIpur SIy],

SdA

LIOAOWAOV

Py

anfep

aqemeA

(penunuoo) (STYGOTDO) UoHBWOINY PEOUBADY 8jqeuS O SSIqBLIEA [BqO]S "9 8qEL

207

Appendix A. Global Variables

Global Variables

*3ur)39s Jneyop ayj SI o

‘pansst aq jou [[IM gG6H/JOV 23essaw ‘() jo Sumes
© A "0 Se pojean) are a8uel SIY} 9pISIno sanjea Auy 'sseoord umopinys ayj Sumunguod
910j0(9JeSSouWl UOHRUIULIS} B I0J JIEM [[IM GO /Z VS Jey} SOINUIW JO IdqUINU dU} ST SIYL

65 010

AVTHALNHSAOV

"UOTJRWLIOJUT SIOW 10J [Lopjvjjpisu] puv suiuuvld SO/z 40f uoyvuiojny wajshs ool INdI|
0 19Ja1 3sed[J TdqudW XXOHONJ I TINAVI ISAS Y} UT 39S 9q 0} SPIaU JIXd 11e1Sal INAY UL

Mmejep o St T

JUSWUOIIAUD
UOHEWOINE Y} JO UOIRZI[ERIUT Y} SULINP JIXd }18)SAI NAY Y} 39S [[IM SO /Z VS

IIXd INVISHI WAV 13S 40V

"$59001d UOLEZI[ENIUL S} UM PIZI[RLISS ST UOHNAXS [NIXHAOV X2 YL

‘Jnejop ayj st siyJ, ‘ssedoxd uonezienur
ay 1epun 1ojerado uonewone Y JOISYI 9} 1opun passadord st INIXTIOV X2 9L

INIXIISAOV

*3ur)19s Jnejap Yy SI SaX

‘Jutod [e20] 9y} 03 eJep PIEMIO] 0}
pasn st (ON) Io[purY PURWWOD Y} 10 (SHA) SUTPIEMIO] JI9[E MITIAIDN] IOIOUM SSULIP ST

ON IO S3ax

TIHTVANHSIOV

*3ur39s Jneyop ay st 0L

"xa[dsAs a3 ur swaysAs
IS0 WO Sasuodsal puewiuiod J0j J1em [[IM GO /Z VS 1€y} SpUodas Jo Iaquinu ayj St SIyL,

uolQ

LIVMOJIA0V

"ANDLINY 10§ SUras JNejop ayj St Spuodds 9

“UOTedTUNWIWOD I0J Pasn ST (TADLIAR USUM W} JTeM UOTJe[[eisul oy} surejuo))

ANDLIINY
MIIARN 995

LIVMANDLNIIOV

*3ur39s Jneyop Ay St

"PIOYSOI} 10113 [EORLID S} PAYdLaL SeY 1 JT Pa3IeIsal 3q 10U [[IM ‘SAVMTV=1dOLIV.IST
UM ‘S0 /Z VS JO [OIIU0D A} 9PISiNo “AJ[euriou umop jnys uaaq sey jey; uoneoridde uy

“PIOYSaIy} 01D [EdTLID
S} PaYPDeEaI Sk 3T JOU IO I9YIdYM JO SS[pIe3al pajresar aq [[IM ‘SAVM IV=LIOLIVISTI
UM ‘S0 /Z VS JO [OIIU0D d} 9PISiNo “AJ[euriou umop jnys uaaq sey jey; uoneoridde uy

1

SAVMIVIIVISHIAOV

Py

anyep

d[qerrep

(penunuos) (STYGOTOHD) UOHEBWIOINY PIOUBADY 9|GEUT O} SB|qBLEA [BJO[D ‘9 |qEL

System Automation for z/OS: Customizing and Programming

208

Global Variables

‘3umes Jneyop oy st oN

xo[dsAs e unpim wojshs yoeo
10§ 9NJeA dWes Ay} 0} 39S 9 ISNW pue Oy Ul dpeur a1e sajepdn I9Yjoym S[OIUO0D SIY],

ON 1O S9X

Waodadndov

“3umas Jneyop oy st oN

198euew UoEWOINE S} UI dpeW a1k sajepdn J9yjoym S[OIU0D ST,

ON 10 Sox

NWVddNdov

‘pansst a1e
adAydoys 10 adAyae)s oY) Yyim pajemdosse spuewruiod AJUO UsY} ‘() UBL) I9Y}0 an[ea e 0} }as 10
498 30U ST THSANDSNLVISIOV J1 "SNIeIS MaU o} YIM PIJeIdOSSe SPUBLIOD SNje)s [[e dnss|

THSANOSNIVISAOV

*3uras Jnejop ay; st

‘SpuBWIWOd A19A091 [00dg 9} 9NIAXI-AI [[IM SO /Z VS

syststad uonIpuod [YOHSTOOJS 243 J1 pansst aq
MM [TF62I0V 3essay "9ouo uey) arouwr sassed A19400a1 [00dg ay) 9)ndaxa J0U [[IM SO /Z VS

ANDIMOHSTOOdSIOV

*3ur)3as Jnejop ayj st

‘spuewod £19A0091 J0odg a3 9ndaxa-ar [[IM §O/Z VS

systszod uonIpUod TINATOOIS Y} I Pansst aq
M TTF6ZI0V 93essaA -adouo ueyy} arow sassed A19A0091 [0odg ayy 9ndexe jou [[Im §O/Z VS

ANDTINATOOdSIOV

"anJeA jnejap ayj St sy, 'ysaryar uoneindyuod ayy Surddoys snyy
‘aInyrey peo[Iy Ue Jo AV ay} wurojur Aewr juade ay[Iy o9y} jo wajqoid peo e jnoqe NV
Ay} wroyur 03 Juade Ay} MO[[e [[IM ST, "Peo[1S3) [NJSSIDONS B Id)Je Papeo] aq [[IM SLY L

‘Juawdery Z0OSINONI a3} st 93e10)s OJul papeo] Afedrureuip st 30Terp UOT}eZIWo)snd

oy £q 31mq ST 3ew Iy YL "Pansst st HSTATT SINVONI Ue Uaym Sy YsdIja1 0} pue
Sorerp uonezioysnd ay) Aq pajerauad st jey} [V 94} peo[0} pa[qeus st juely SO /Z VS YL

“ysamya1 uonemn3yuod ay) Surddols snip
‘@In[rey peo[Iy Ue Jo NV 9y} uLiojur Aew jua8e ayJ "1y 9y jo wafqoid peor e jnoqe ANV
9} WLIOJUT 0} JudSe 3y} MO[[e [[IM SIU], "PeO[1S9} [NJSSA00NS € I9}Je PIpeo] 9] [[IM STV YL

"peejsur pasn st ‘S0/Z VS
UHM PIIDAT[IP ST FeUs ‘ZODSINONI ‘Papeo jou st S0[erp uoneziuosnd ayy £q 3mq juswdery
1V YL "Ponsst ST HSTMAMI SINVONI Ue Udym SLy ysaijal 0} pajqeud st juady §0/Z VS oYL

"TODSINONI SPeo[A[[EHIUT SO/Z VS USYM PIpNUI ST (SO/Z VS WM PIIdATEP
se) ZODSINONI Juswidely [V YL SLV Surysaijar woiy paqestp st Juady SO/Z VS YL

0

LVINIIVINSIOV

Py

anfep

aqemeA

(penunuoo) (STYGOTDO) UoHBWOINY PEOUBADY 8jqeuS O SSIqBLIEA [BqO]S "9 8qEL

209

Appendix A. Global Variables

Global Variables

*3ur)39s Jneyop Ay SI

NMOIVIAJO il 1oyeurduio epun padnoid are siojerado [y

“puewIwod OHYDNI
ue Gumsst 10jerado yoes 105 ST 10jeurdrio fenprarpur sudisse g0 /z VS Jey} sajedrpuy

AOLVNIDORIO OTADNI

‘dn Burar8 azojaq jrem o3 Suog
MOY AUILINAP 0} ITVMOJIIIOV PUe LIVMANDLARAOVY YiM Uonounfuod ur pasn st syL,

uo}|

AATTAILTINN DdODNI

*3uras Jneyop ays st 0L

‘sosuodsax
PUBWIWOD 10 JIEM [[IM PUewwod JINMOHS Y} 18y} SPU0das JO Iaquuinu ayj ST Sy,

uo}|

HNILMEIOV

"3urpas Jneyop ays st 0L

aunpnoI SuLIo)IUOW 3y} 0} TIIOIS © SPUSs pue sunnox SULIOUOW Yy}

woxy asuodsar e 10y j1eM 13UO[OU S0P §O/Z VS ‘SINDD0 JNOIWI} Y} UIYAA ‘Jnoswn e s)o3
31 [un (pued uoryeoyadg [orpuo) XINN SO/Z Y3 ur paynads) surnor Surrojruowr XN
S0/Z pauygap-1asn e Jo uond[dwod Y} 10§ S}lem §O/Z VS SPU0dIS JO Ioquuinu Yy ST S,

uoyg

LIVMSSNAOV

Py

anyep

d[qerrep

(penunuos) (STYGOTOHD) UOHEBWIOINY PIOUBADY 9|GEUT O} SB|qBLEA [BJO[D ‘9 |qEL

System Automation for z/OS: Customizing and Programming

210

Global Variables

Parameter Defaults for Commands

Table 7. Global Variables That Define the Installation Defaults for Specific Commands

Variable Name Description Reference '

AOFSETSTATEOVERRIDE | Sets the default OVERRIDE value for the SETSTATE command. SETSTATE

AOFSETSTATESCOPE Allows you to override the predefined default for the SCOPE SETSTATE
parameter of the SETSTATE command.

AOFSETSTATESTART Allows you to override the predefined default for the START SETSTATE
parameter of the SETSTATE command.

AOFSHUTCHK Sets the default PRECHECK parameter for the SHUTSYS command. SHUTSYS

AOFSHUTOVERRIDE Will set the default OVERRIDE value for the INGREQ command. INGREQ

AOFSHUTSCOPE Sets the default SCOPE parameter for the SHUTSYS command. SHUTSYS

DISPEVT_WAIT Sets the WAIT parameter of the DISPEVT command to the specified DISPEVT
value.

DISPEVTS_WAIT Sets the WAIT parameter of the DISPEVTS command to the specified | DISPEVTS
value.

DISPTRG_WAIT Sets the WAIT parameter of the DISPTRG command to the specified DISPTRG
value.

INGAUTO_INTERVAL Sets the default for the INTERVAL parameter of the INGAUTO INGAUTO
command.

INGEVENT_WAIT Sets the WAIT parameter of the INGEVENT command to the specified | INGEVENT
value. The parameter specifies whether or not to wait until the request
is complete.

INGGROUP_WAIT Sets the WAIT parameter of the INGGROUP command to the specified | INGGROUP
value. The parameter specifies whether or not to wait until the request
is complete.

INGHIST_MAX Sets the MAX parameter of the INGHIST command to the specified INGHIST
value.

INGRELS_SHOW Sets the SHOW parameter of the INGHIST command to the specified |INGHIST
value.

INGINFO_WAIT Sets the WAIT parameter of the INGINFO command to the specified INGINFO
value.

INGLIST_WAIT Sets the WAIT parameter of the INGLIST command to the specified INGLIST
value.

INGRELS_WAIT Sets the WAIT parameter of the INGRELS command to the specified |INGRELS
value.

INGREQ_EXPIRE Sets the default EXPIRE parameter of the INGREQ command to the INGREQ
specified value.

INGREQ_INTERRUPT Sets the default INTERRUPT parameter of the INGREQ command to | INGREQ
the specified value. The parameter specifies whether or not the
automation manager should wait until the resource has reached its UP
state, but the resource is still in the startup phase when the higher
priority stop request is given.

INGREQ_OVERRIDE Sets the default OVERRIDE parameter of the INGREQ command to INGREQ
the specified value.

INGREQ_PRECHECK Sets the default PRECHECK parameter of the INGREQ command to INGREQ
the specified value.

INGREQ_PRI Sets the default priority (PRI parameter) of the INGREQ command to |INGREQ

the specified value.

Appendix A. Global Variables 211

Global Variables

Table 7. Global Variables That Define the Installation Defaults for Specific Commands (continued)

Variable Name

Description

Reference *

INGREQ_PRIL.E2EMGR

Specifies the priority that incoming requests from the end-to-end
automation manager are executed at. Default: LOW

INGREQ

INGREQ_REMOVE

Sets the default value for the REMOVE parameter of the INGREQ
command to the specified value. It the resource reaches the specified
status (condition), the request is automatically removed.

INGREQ

INGREQ_REMOVE.START

Sets the default value for the REMOVE parameter of the INGREQ
START command. If not specified the value set by INGREQ_REMOVE
will be used.

INGREQ

INGREQ_REMOVE.STOP

Sets the default value for the REMOVE parameter of the INGREQ
STOP command. If not specified the value set by INGREQ_REMOVE
will be used.

INGREQ

INGREQ_RESTART

Sets the default for the RESTART parameter of the INGREQ command
when shutting down the resource.

INGREQ

INGREQ_SCOPE

Sets the SCOPE parameter of the INGREQ command to the specified
value.

INGREQ

INGREQ_SOURCE

Sets the default SOURCE parameter of the INGREQ command to the
specified value. The parameter specifies the originator of the request.

INGREQ

INGREQ_TIMEOUT

Sets the interval in minutes used to check for the INGREQ command
used to check whether the request has been successfully completed,
and whether to send a message or cancel the request if it has not been
satisfied after that time.

INGREQ

INGREQ_TYPE

Sets the default startup/shutdown type (TYPE parameter) of the
INGREQ command to the specified value.

INGREQ

INGREQ_VERIFY

Sets the default VERIFY parameter of the INGREQ command to the
specified value.

INGREQ

INGREQ_WAIT

Sets the WAIT parameter of the INGREQ command to the specified
value.

INGREQ

INGSCHED_WAIT

Sets the WAIT parameter of the INGSCHED command to the specified
value. The parameter specifies whether or not to wait until the request
is complete.

INGSCHED

INGSET_VERIFY

Sets the default VERIFY parameter of the INGSET command to the
specified value.

INGSET

INGSET_WAIT

Sets the WAIT parameter of the INGSET command to the specified
value. The parameter specifies whether or not to wait until the request
is complete.

INGSET

INGTRIG_WAIT

Sets the WAIT parameter of the INGTRIG command to the specified
value.

INGTRIG

INGVOTE_EXCLUDE

Sets the EXCLUDE parameter of the INGVOTE command to the
specified value. The parameter specifies the resource types (for
example SVP or GRP) to be excluded when showing all requests.
Resources of that type are filtered out.

INGVOTE

INGVOTE_STATUS

Sets the STATUS parameter of the INGVOTE command to the
specified value. The parameter specifies which requests should be
displayed - winning, losing or all.

INGVOTE

INGVOTE_VERIFY

Sets the default VERIFY parameter of the INGVOTE command to the
specified value.

INGVOTE

INGVOTE_WAIT

Sets the WAIT parameter of the INGVOTE command to the specified
value.

INGVOTE

1. See the specified command in |[BM Tivoli System Automation for z/OS Operator’s Commands}

212 System Automation for z/OS: Customizing and Programming

Global Variables

Appendix A. Global Variables 213

Global Variables

214 System Automation for z/OS: Customizing and Programming

Appendix B. Customizing the Status Display Facility (SDF)

Overview of Status Display Facility

This appendix explains how to customize SDF panels, descriptors, and operations.

How SDF Works

The SA z/OS Status Display Facility (SDF) uses colors and highlighting to
represent subsystem resource states. Typically, a subsystem shown in green on the
SDF status panel indicates it is up, while red indicates a subsystem in a stopped or
problem state. SDF can be tailored to present the status of system components in a
hierarchical manner.

Note: SDF works only with MVS systems and resources.

Types of SDF Panels

[Figure 35 on page 216 shows several SDF screens for system CHIO1. This figure
shows the main types of panels used in SDE.

* The root component

* The status component

¢ The detail status display

In addition to these panel types, you can create other types of panels according to
your system requirements and the applications you are monitoring.

Note: All SDF panels must contain 24 rows and 80 columns. Because SDF uses

only the display’s default screen size, the default size must be defined as 24
x 80.

© Copyright IBM Corp. 1996, 2005 215

Overview of Status Display Facility

-

DATA CENTER SYSTEMS
CHIO1
/ CHIOT SYSTEM STATUS
JES2
RMF / - DETAIL STATUS DISPLAY --- LoF 3
VIAM COMPONENT : JES2 SYSTEM : CHIO]
150 COLOR :GREEN PRIORITY : 550
—==> NETVIEW
DATE . 09, 9 TIME : 09:02:17
\ e 09/08/90 09:0
REPORTER :GATACOS6 NODE : CHIO1
_J_jglp | REFERENCE VALUE: JES2
AOF5711 08:59 : JES2 SUBSYSTEM STATUS FOR
JOB JES2 IS UP - AT NETVIEW INITALIZATION
===>
Root &:HELP 3=RETURN 6=ROLL 7=UP 8=DOWN /

Component

System Panel
Gy g‘rofus Component
(Monitored Resources

Detail Status Display

Figure 35. Example SDF Panels

Root Component

The root component is typically an element appearing on the first screen displayed
when SDF is started. In the CHIO1 system is the root component.

Status Component

Resources monitored by SDF are called status components. In system
CHIO1 has JES2, RMF, VTAM, TSO, and NetView status components, as shown on
the CHIO1 System Status panel. The status component panel displays all monitored
resources in a system. Each monitored resource is shown in the color of its current
status. For example, JES2 is shown in green if it is up.

Detail Status Display

A detail status display is built from information in a status descriptor (see
. This panel is displayed by tabbing to the appropriate resource on
the status component panel and pressing the detail PF key. Each status component
can have one or more status descriptors, or detail records, associated with it.

shows an example detail status display for a JES2 status descriptor. The 1
of 3 on the panel indicates that JES2 currently has three status descriptors, and
therefore three detail status displays, associated with it.

Status Descriptors

A status descriptor is a detailed record of information about a resource status. In its
raw form, a status descriptor is a multiline SA z/OS message containing
information such as:

* Root component and status component to which the status descriptor applies

System Automation for z/OS: Customizing and Programming

Overview of Status Display Facility

* Priority, color, and highlighting associated with the status descriptor (see
[Status Descriptors Affect SDE” on page 218| for more information)

* Date and time the status descriptor was generated

* Actual resource status information; for example, an SA z/0OS message indicating
the resource is up

SDF uses information in a status descriptor to generate a detail status display (see
[‘Detail Status Display” on page 216). You do not usually look directly at a status
descriptor; rather, you look at portions of it through a detail status display. For
example, in [Figure 35 on page 216 the detail status display presents information
from a status descriptor for status component JES2. The 1 of 3 on the panel
indicates that JES2 currently has three status descriptors associated with it.

SDF generates, displays, and deletes status descriptors.

SDF Tree Structures

SDF uses tree structures to set up the hierarchy of monitored resources displayed on
SDF status panels. An SDF tree structure always starts with the system name as
the root node and has a level number of one. Tree structure levels subordinate to
the root node are the monitored resources. The level numbers of these resources
reflect their dependency on each other.

You define SDF tree structures in NetView DSIPARM data set member AOFTREE.

[Figure 36 on page 218 shows an example SDF tree structure. Following the tree
structure definition statements is a diagram showing how these statements result
in a tree structure.

Appendix B. Customizing the Status Display Facility (SDF) 217

Overview of Status Display Facility

1 SY1
2 SYSTEM
3 WTOR
3 APPLIC
4 AOFAPPL
5 AOFSSI
4 JES
4 VTAM
3 TSO
3 RMF
2 GATEWAY

-

DATA CENTER SYSTEMS
CHIO1
/ CHIOT SYSTEM STATUS
JES2
RMF / —-- DETAIL STATUS DISPLAY --- O 3
VIAM COMPONENT : JES2 SYSTEM : CHIO1
180 COLOR :GREEN PRIORIY: 550
o NEVIEW |DATE :09/08/90 TIME : 09:02:17
REPORTER : GATACOS6 NODE : CHIOT
| vElp | REFERENCE VALUE: JES2
AOF5711 08:59 : JES2 SUBSYSTEM STATUS FOR
JOB JES2 IS UP - AT NETVIEW INITALIZATION
===>
Root &=HELP 3=RETURN 6=ROLL 7=UP 8=DOWN /
Component

System Panel
(g’ro‘rus Component
(Monitored Resources|

Detail Status Display

Figure 36. Example SDF Tree Structure

SA z/0S supplies a sample SDF tree structure in the SA z/OS sample library. This
tree structure is referenced by a %INCLUDE statement in member AOFTREE in the
NetView DSIPARM data set. You can customize this sample tree structure to meet
your requirements. This order of dependency does not have to be the same as that
used for system startup or shutdown using SA z/OS.

For example, using the tree structure in if there is a problem with TSO,
it is not desirable to also change the VTAM status color, because VTAM is not
having any problems. In contrast, in the SA z/OS startup and shutdown
procedures, TSO is dependent on VTAM.

More details on SDF tree structure definitions are in [“Step 1: Defining SDH
[Hierarchy” on page 226

How Status Descriptors Affect SDF

Status descriptors are the main units of information SDF uses. The information in
status descriptors determines how your SDF status displays look at any point in
time. This section explains how SDF uses status descriptors.

218 System Automation for z/OS: Customizing and Programming

Overview of Status Display Facility

Priority and Color Assignments

Status descriptors are assigned both a priority number and a color. These color and
priority assignments determine the colors in which status components are
displayed. In SDF, a lower number indicates a higher priority. Status descriptors
are connected to the status component in ascending order of priority.

Color and priority assignments for status descriptors are defined in two places:

* In the PRIORITY parameter in the AOFINIT member of the NetView DSIPARM
data set. This parameter defines initial priority and color assignments used for
status descriptors. The values defined in AOFINIT are used if no further
customization is done to priority and color assignments. The default priority
ranges and colors used in AOFINIT are:

Priority Range Color
001 to 199 Red

200 to 299 Pink

300 to 399 Yellow
400 to 499 Turquoise
500 to 599 Green
600 to 699 Blue

White is used as the default status descriptor color (the DCOLOR parameter in
member AOFINIT, described in [[BM Tivoli System Automation for z/OS|
[Programmer’s Reference) and as the default color for a status component without a
tree structure entry (the ERRCOLOR parameter in member AOFINIT, described
in IBM Tivoli System Automation for z/OS Programmer’s Referenced). For more
information on the PRIORITY parameter, see [[BM Tivoli System Automation for]
[z/OS Programmer’s Referencel

* In the SDF definitions in the Status Details policy object. These entries define
colors, highlighting, and priorities used for particular resource statuses. Color
and priority assignments defined in the customization dialog can be used to
override assignments in the AOFINIT member.

Note: Some of the resource statuses that appear in SDF displays do not directly
correspond to resource statuses used in the automation status file.

[IBM Tivoli System Automation for z/OS User’s Guide| shows the default resource

status types, colors, highlighting, and priorities provided with SA z/OS. These

settings define to SA z/OS the parameters used when adding status descriptors

to SDE.

For more information on the SDF Status Details definition, see [“Step 4: Defining]|
[SDF in the Customization Dialog” on page 230

Chaining of Status Descriptors to Status Components

A resource status change causes a status descriptor to be generated. SDF adds this
status descriptor to a chain of status descriptors. Chained status descriptors
determine the status and color of status components. The highest-priority status
descriptor in a chain determines the initial color in which the status component is
displayed. The underlying chained priority numbers determine the color in which
successive detail status displays will be shown.

Status descriptors are chained off each level of status component in a tree

structure. Status descriptors chained to lower-level status components are also
chained to a higher-level status component, again in order of priority. Status

Appendix B. Customizing the Status Display Facility (SDF) 219

Overview of Status Display Facility

descriptors are also chained off the root component. These status descriptors are all

the status descriptors that currently exist at all levels of the tree structure.

For example, shows status descriptors currently generated for system
SY1. The priority for each status descriptor is shown by a number.

Status descriptors for SY1 root component

‘100H 50 H 10 H 7 H 5 H 1 }—@ <4—— Root Component

Status descriptors for SYSTEM status component

(5o} {10 - 7 H s {1 2sysTeEm |

‘ 2 GATEWAY ‘

100 <4—— Status descriptor
for GATEWAY

‘ 3 RMF ‘

Status descriptors
for JES2 status
component

?

Status descriptor
for RMF status
component

status component

?

Status descriptor
for VTAM status
component

220

Figure 37. Status Descriptors Chained to Status Components

The status components at the lowest level in this tree structure, JES2, RMF, and
VTAM, have status descriptors chained off them. Status component JES2 has three
status descriptors chained, with priorities 1, 10, and 50. Because 1 is the highest
priority, the status descriptor with priority 1 is organized first in the chain. This
highest-priority status descriptor determines the color in which JES2 is displayed
on the status panel. If an operator uses the detail PF key to view detail status
displays for JES2, the information contained in the status descriptor with priority 1
will be displayed first, then the detail status display for the status descriptor with
priority 10, and so on.

At the SYSTEM status component level in the tree structure, all status descriptors
from the lower-level status components are also chained. Because the status
descriptors chained to RMF and VTAM have higher priorities than the priority 10
and 50 status descriptors for JES2, they are organized after the priority 1 status
descriptor in the chain. An operator using the detail PF key at the SYSTEM level
could view five detail status displays, ranging from priority 1 to priority 50.

Similarly, at the SY1 level in the tree structure, all status descriptors chained to all
status components in the tree structure are chained in order of priority. An
operator using the detail PF key at the SY1 level could view six detail status
displays, ranging from priority 1 to priority 100.

If a status component has multiple status descriptors with equal priorities, the
status descriptors are chained off the status component in order of arrival time.

When a status descriptor no longer accurately reflects the actual status of a
resource, SDF automatically deletes it from status descriptor chains. As an example
of how priority determines order of status descriptors, suppose two status
descriptors currently exist for status component JES2. If there are two status

System Automation for z/OS: Customizing and Programming

Overview of Status Display Facility

descriptors for JES2 with priorities of 120 and 140, the status descriptor with
priority 120 is displayed first. In both cases, JES displays in red on the SDF status
panel.

In SA z/0S, all status types are defined in the automation control file. When an
automation event occurs, the SA z/0OS AOCUPDT common routine scans the
automation control file for the SDF entry for that status. SA z/OS issues a request
to add the status using the information from the automation control file.

For example, suppose subsystem RMF, shown on the example SDF panels in
[Figure 35 on page 216} is set to a STOPPING state. The SA z/OS AOCUPDT
common routine scans the automation control file for the STOPPING state entry
for SDF and generates a status descriptor, specifying a priority of 330. SDF adds
the status descriptor to the RMF status component. RMF appears as yellow and
blinking on the status panel. Once RMF is in a stopped state, the AOCUPDT
common routine scans the automation control file for the STOPPED state SDF
entry and generates a status descriptor with priority 130. SDF adds this new status
descriptor to the RMF status component. Now, RMF appears in red on the SDF
status panel.

Propagating Status Descriptors Upward and Downward in a Tree
Structure

Based on the order of dependencies defined in a tree structure, status descriptors
can be propagated upward or downward to status components in a tree structure.
This propagation of status descriptors affects the color in which status components
are displayed, as well as the detail status displays operators can view by using the
detail PF key on a particular status component.

Propagation of status upward and downward in a tree structure is defined by the
PROPUP and PROPDOWN parameter in the AOFINIT member (see [[BM Tivoli

[System Automation for z/OS Programmer’s Reference for descriptions).

The SA z/0OS-provided defaults for status propagation in the AOFINIT member
are to propagate status upward (PROPUP=YES) but not downward
(PROPDOWN=NO).

When status is propagated upward in a tree structure, if a status descriptor is
added or deleted at a lower level in the tree structure, it is also added or deleted
from the cumulative chain of status descriptors at a higher-level node in the tree
structure.

Propagation of status upward in a tree structure consolidates the status of all
monitored resources in the system at the root node. In this way, the color of the
root node reflects the most important or critical status in a computer operations
center. For example, in [Figure 36 on page 218} any color changes for AOFSSI are
reflected in AOFAPPL, APPLIC, SYSTEM, and SY1, if SDF propagates status
changes upward in the tree structure. In[Figure 35 on page 216} if all monitored
resources are green, the root node CHIO1 on the Data Center Systems panel is also
shown in green.

When status is propagated downward in a tree structure, if a status change occurs
at a higher level in a tree structure, the changes are sent downward in the tree
structure. This propagating downward could cause status descriptors at lower
levels in the tree structure to be added or deleted.

Appendix B. Customizing the Status Display Facility (SDF) 221

Overview of Status Display Facility

Propagating status downward can be useful when an entire system is down. In
such a case, you want SDF status panels to accurately reflect the system status. You
do not want status components lower in the tree structure to retain previously
generated status descriptors indicating that the components are up and running,
because these status descriptors do not accurately reflect the status of the
components. You can configure your SDF implementation to propagate status
downward, and remove all status descriptors from all status components in a tree
structure. If an operator tries displaying detailed status about any of the status
components lower in the tree structure, they receive "NO DETAIL INFO
AVAILABLE" messages. The empty chain color, defined by the EMPTYCOLOR
parameter in member AOFINIT with a default color of blue, is also used to
indicate that no detail information is available. See [BM Tivoli System Automation for]
[z/0S Programmer’s Referencel for the EMPTYCOLOR description.

How SDF Helps Operations to Focus on Specific Problems

SDF structure and processing allows the program identifying a problem to be
concerned only with the specific problem.

For example, suppose an application program detects a warning message for status
component JES on CHIO1. The following processing steps occur:

1. The application program issues a request to SDF to add a status descriptor for
JES.

2. The status entry for JES on system CHIO1 now indicates there is a problem
with JES. If the SDF is configured to propagate status up the hierarchical tree
structure, the status for system CHIO1 also reflects the problem state. See
[Tivoli System Automation for z/OS Programmer’s Reference for details on the
PROPUP SDF initialization parameter.

3. Now, suppose another more serious problem occurs. The application program
which detects this new problem issues another request to SDF to add a status
descriptor having a lower priority number than the status descriptor for the
first problem.

4. Because status descriptors are chained in order of priority, the JES status now
reflects the status descriptor color of the more serious problem.

5. When the more serious problem is resolved, the application program detecting
the problem resolution issues a request to SDF to remove the status descriptor
for this problem from the chain of JES status descriptors.

6. The status panel is updated to reflect the first problem.

How SDF Panels Are Defined

All SDF status panels, apart from detail status display panels, are defined in the
AOFPNLS member of the NetView DSIPARM data set.

Member AOFPNLS can contain either one or both of the following;:

* %INCLUDE statements referencing other NetView DSIPARM members
containing definitions of panels. The %INCLUDE statement causes the named
panel definition member to be loaded. This is the recommended method, and
the method used in the SA z/OS-provided version of AOFPNLS.

* Panel structure definitions for all SDF panels.

Panel members defined or referenced in AOFPNLS are loaded into system
memory, and may be deleted, replaced, or temporarily made resident using the
SDFPANEL command (see |[[BM Tivoli System Automation for z/OS Programmer’s|
for command description).

222 System Automation for z/OS: Customizing and Programming

Overview of Status Display Facility

Panels that are to be dynamically loaded as needed (see [“Dynamically Loading]|
[Tree Structure and Panel Definition Members”) must be defined in a NetView
DSIPARM member having the same member name as the panel itself.

It is recommended that you include only frequently used panels in AOFPNLS, to
conserve system memory. Other panels can be dynamically loaded when needed,
either by pressing a SDF function key or by using the SCREEN command.

Note: Dynamic refresh will only work with panels defined in AOFPNLS.

SDF internally formats and builds detail status display panels from the information
in a status descriptor. You do not have to define and format detail status display
panels. Status components defined in the panel definitions must also be defined in
the corresponding tree structure. However, not all status components defined in
the tree structure require a corresponding entry on the SDF status panel. For
example, in [Figure 36 on page 218} the APPLIC status component is only a
pseudo-entry and may not actually be displayed on any SDF status display panel.

SDF status panels can be customized to reflect any environment. For example, you
can define a panel to show the status of all JES subsystems on all processors in a
computer operations center. The JES operator can view the panel to determine the
status of any JES subsystem in the complex.

For detailed information on defining SDF panels, see [“Step 2: Defining SDH
[Panels” on page 227

Dynamically Loading Tree Structure and Panel Definition
Members

Using %INCLUDE statements in the main SDF tree structure and panel definition
members allows you to dynamically load tree structure and panel definition
members without restarting SDF (see |[BM Tivoli System Automation for z/OS|
[Programmer’s Reference). The SDFTREE command loads a tree structure definition
member. The SDFPANEL command loads a panel definition member. You can
dynamically reload members AOFTREE and AOFPNLS themselves.

Using SDF for Multiple Systems

You can configure SDF so that multiple systems in an automation network can
forward their resource status information to the SDF on the focal point system. In a
multiple-system environment, the following must be defined:

* The tree structure for each system must be defined in the AOFTREE member of
NetView DSIPARM on the focal point system SDF. The root name must be
unique for each system tree structure.

* The focal point root name must match the SYSNAME value defined in the
automation policy. This value is specified in the customization dialog.

Note: The SYSNAME for each system under SA z/OS control must be the same
as the system name under which the system was IPLed

* For target system SDF status update to occur on a focal point SDF, SA z/OS
focal point services must already be implemented.

Because each root name must be unique in a multiple-system environment, any
status component on any system defined to the focal point SDF can be uniquely
addressed by prefixing the status component with the root component name:

ROOT_COMPONENT . STATUS_COMPONENT

Appendix B. Customizing the Status Display Facility (SDF) 223

Overview of Status Display Facility

For example:
SY1.JES2

Similarly, any SDF status descriptors forwarded from the target system to the focal
point SDF are prefixed with the root name of the target system by SA z/0S
routines.

SDF Components

SDF consists of the following components:

Table 8. SDF Components

Name Type Purpose

AOFTDDF Task Initializes SDF and maintains the status database. This
initialization is an automated function.

SDF Command Starts an SDF operator session.

SDFTREE Command Dynamically loads or deletes an SDF tree structure

definition member from the NetView DSIPARM data set.

SDFPANEL Command Dynamically loads or deletes an SDF panel definition
member from the NetView DSIPARM data set.

AOFINIT Input file Contains SDF initialization parameters defined with the
statements described in|[BM Tivoli System Automation for]
lz/0S Programmer’s Reference AOFINIT is in the NetView
DSIPARM data set.

AOFTREE Input file Contains tree structures described in [[BM Tivoli Syster]|
|Automation for z/OS Programmer’s Referencel This member
usually consists of a list of %INCLUDE statements
referencing other members containing tree structures.
AOFTREE is in the NetView DSIPARM data set.

AOFPNLS Input file Contains SDF panel parameters defined by the statements
described in [“Step 2: Defining SDF Panels” on page 227
This member usually consists of a list of %INCLUDE
statements referencing other members containing panel
definitions. AOFPNLS is in the NetView DSIPARM data
set.

panel_name Input file A DSIPARM member containing the definition of one or
more SDF panels or %INCLUDE statements identifying
other DSIPARM panel definition members. It is highly
recommended that panel definition members contain the
definition of a single panel having the same name as the
member.

tree_name Input file A DSIPARM member containing the definition of one or
more tree structures. It is highly recommended that tree
definition members contain the definition of a single tree
having the same root component name as the member
name.

How the SDF Task Is Started and Stopped

During SA z/O0S initialization, the AOFTDDF task loads members defining panel
format, panel flow, and tree structures. Member AOFINIT defines parameters
common to all SDF panels and basic initialization specifications, such as screen
size, default PF keys, and the initial screen displayed when a SDF session is
started. These AOFINIT parameters are described in |[BM Tivoli System Automation|
[for z/OS Programmer’s Referencel

224 System Automation for z/OS: Customizing and Programming

Overview of Status Display Facility

Starting the SDF Task
In SA z/0S code, the AOFTDDF task is started by the following command:
START TASK=AOFTDDF

Stopping the SDF Task
In SA z/0S code, the AOFTDDF task is stopped by the following command:
STOP TASK=AOFTDDF

Note: When SDF is restarted, all existing SDF status descriptors are lost, as they
are kept only in memory.

SDF Definition

The following section describes the SDF definition process.

Summary of SDF Definition Process

This section summarizes the steps for defining the SDF. Use this procedure to
define the panels displayed in an SDF session. Details on each step are provided
later in this chapter and in [IBM Tivoli System Automation for z/OS Programmer’s|

1. Define the hierarchy of monitored resources used for your SDF panels, using
tree structure statements in NetView DSIPARM data set members. These tree
structure definition members should be referenced by %INCLUDE statements
in the main SDF tree structure definition member, AOFTREE, in the NetView
DSIPARM data set. See |IBM Tivoli System Automation for z/OS Programmer’s|

eference| for details.

2. Define SDF status panels using panel definition statements in NetView
DSIPARM data set members. Panels can either be automatically loaded when
SDF starts, or dynamically loaded using the SDFPANEL command. For panels
to be automatically loaded, add a %INCLUDE statement specifying the panel
definition member to the main panel definition member, AOFPNLS, in the
NetView DSIPARM data set. See [’Step 2: Defining SDF Panels” on page 227| for
details.

Define and customize SDF status panels in the following general order:
a. Root panel

b. Status component panel for each entry on the root panel

C. Any other customized status panels.

3. Customize the SDF initialization parameters in NetView DSIPARM member
AQFINIT, if necessary (optional), or use defaults. See [[BM Tivoli Syster]
[Automation for z/OS Programmer’s Reference| for detailed descriptions of SDF
initialization parameters. Using defaults is recommended.

4. Define SDF resource status, color, highlight and priority values using the
customization dialog to edit the SDF Status Details policy object, or use
defaults. This step is optional. See |[BM Tivoli System Automation for z/OS)
[Defining Automation Policy for the description of the Status Details policy object.
Using defaults is recommended.

Notes:
1. Resources that SA z/0S is not currently automating are not displayed on SDF
panels.

2. To display the status of multiple systems and forward status from target
systems to SDF on a focal point system, SA z/OS focal point services must
already be implemented. See |[BM Tivoli System Automation for z/OS Defining|
[Automation Policy| for details on configuring focal point services.

Appendix B. Customizing the Status Display Facility (SDF) 225

SDF Definition

Step 1: Defining SDF Hierarchy

Member AOFTREE in the NetView DSIPARM data set contains a set of definitions
that define the propagation hierarchy for status color changes. When the status
changes for a component, the corresponding color change is propagated up or
down the tree to the next higher or lower level component. The level is determined
by the level number assigned to each component. The type of propagation is
determined either by the entry in the AOFINIT member or by individual requests
to add a status descriptor to a status component.

Note: SA z/OS does not use this SDF hierarchy for subsystem shutdown or
startup procedures. Instead, SA z/OS uses subsystem entries defined in the
automation policy to determine startup and shutdown relationships and
hierarchies.

Tree Structure Definitions
AOFTREE contains tree structure definitions. To define tree structures, you can:

* Use %INCLUDE statements referencing other members containing definitions for
specific tree structures. This is the recommended method, and the method used
in the SA z/OS-provided version of AOFTREE.

On the %INCLUDE statement, the name of the referenced member must be
enclosed in parentheses.

e Place all tree structure definitions in AOFTREE.
e Use a combination of both.

shows a typical tree structure definition:

1Syl

2 APPLIC
3 AOFAPPL
4 AOFSSI

3 JES

3 VTAM

3 TS0

3 RMF

2 GATEWAY

Figure 38. Example Tree Structure Definition

In this tree structure, SY1 is the root component. This definition is in a separate
member, named SY1. It is referenced by the following statement in the AOFTREE
member:

%INCLUDE (SY1TREE)

Loading Tree Structures: All tree structures need not be loaded during
initialization. Some can be loaded dynamically after SDF is started. To do this, use
AOFTREE to define those tree structure entries that will be loaded during
initialization, then, use the SDFTREE command to load additional tree structures as
needed. For more information, see [[BM Tivoli System Automation for z/OS|
[Programmer’s Reference

Tree structures loaded after SDF is started must be contained in separate members.
Each member must be named after the root component for which the tree structure
is defined.

226 System Automation for z/OS: Customizing and Programming

Step 2: Defining SDF Panels

SDF status panels are defined in NetView DSIPARM member AOFPNLS. SA z/0S
loads the panel definitions in AOFPNLS when SDF is initialized.

Panel Definition Methods

To define panels in AOFPNLS, you can:

* Use %INCLUDE statements referencing separate NetView DSIPARM members
containing panel definitions. This is the recommended method, and the method
used in the SA z/OS-provided version of AOFPNLS. See
[Statement for SDF Panels” on page 229|for details on using the %INCLUDE
statement for SDF panel definition members.

* Include actual definitions for all panels.
* Use a combination of both %INCLUDE statements and panel definitions.

* Include a subset of panel entries to load during initialization, so that additional
panel definitions can be loaded only when needed (see [[BM Tivoli Systern|
[Automation for z/OS Programmer’s Reference).

Panel Definition Structure

The structure of each panel definition is as follows:

* Begin panel definition statement (PANEL)

* Status component definition statements, consisting of pairs of the following
statements:
— STATUSFIELD: defines location of a status component on a panel
— STATUSTEXT: defines the text displayed in the STATUSFIELD

 Text fields and data definition statements, consisting of pairs of the following
statements:
— TEXTFIELD: defines locations and attributes for constant fields on panels
— TEXTTEXT: defines text displayed in the TEXTFIELD

* Status panel PF key definitions (PFKnn)

* End panel statement (ENDPANEL)

Descriptions of these panel definition statements are in [[BM Tivoli Systen|
[Automation for z/OS Programmer’s Reference}

Recommended Order for Defining Panels

When defining panels, it is recommended that you define them in the following
order:

1. The root panel

2. The status components for each item listed on the root panel

3. Any other customized status panels

Note: This order of defining panels is a recommendation only. You can define your
SDF panels in any order desired.

Example Panel Definition
[Figure 39 on page 228 shows how an SDF panel looks when displayed:

Appendix B. Customizing the Status Display Facility (SDF) 227

-
SYSTEM

Syl

===
1=HELP 2=DETAIL 3=RET
-

DATA CENTER SYSTEMS

GATEWAY

6=ROLL 7=UP 8=DN 10=LF 11=RT 12=TOP

Figure 39. Example SDF Panel

Figure 40| shows the panel definition statements required to define the panel in

Figure 39

PANEL (SYSTEM, 24,80)

TEXTFIELD(01,02,10,WHITE,NORMAL)

TEXTTEXT (SYSTEM)

TF(01,25,57 ,WHITE,NORMAL)
TT(DATA CENTER SYSTEMS)
STATUSFIELD(SY1,04,04,11,N,,SYISYS)

STATUSTEXT(SY1)
SF(SY1.GATEWAY, 02,40,
ST(GATEWAY)
TF(24,01,79,T,NORMAL)

TT(1=HELP 2=DETAIL 3=

10=LF 11=RT 12=TOP)
PFK1(AOCHELP SDF)
PFK2 (DETAIL)

PFK3 (RETURN)

PFK6 (ROLL)

PFK7 (UP)

PFK8 (DOWN)

PFK10 (LEFT)
PFK11(RIGHT)
PFK12 (TOP)
ENDPANEL

47,N, ,GATEWAY)

RET 6=ROLL 7=UP 8=DN s

Figure 40. Example Panel Definition Entry

In the panel name is SYSTEM. This panel definition can either be in a
separate member referenced by a %INCLUDE statement in AOFPNLS or be
directly coded in AOFPNLS. The recommended method is to use a separate
member and a %INCLUDE statement. If it is in a separate member, the member
name is SYSTEM. You do not have to explicitly define every PF key for the panel.
PF key definitions not specified are picked up from definitions in NetView
DSIPARM member AOFINIT.

describes each statement in

Table 9. Panel Definition Entry Description

Statement

Description and Example Value

PANEL (SYSTEM, 24,80)

The panel definition statement. The panel name is SYSTEM, the
panel length is 24, and the panel width is 80.

TEXTFIELD(01,02,10,WHITE,NORMAL)

The text location statement defining constant panel fields. This field
starts on line 01 in position 02 and ends in position 10. The color of
the field is white and highlighting is normal.

TEXTTEXT (SYSTEM)

The text data statement specifying the actual data that goes in the
text field just defined. This field contains the word SYSTEM.

TEXTFIELD and TEXTTEXT are always grouped in pairs.

228 System Automation for z/OS: Customizing and Programming

Table 9. Panel Definition Entry Description (continued)

Statement

Description and Example Value

TF(01,25,57 ,WHITE,NORMAL) Another TEXTFIELD statement for another constant field.

TT(DATA CENTER SYSTEMS)

Another TEXTTEXT statement for the text field just defined.

STATUSFIELD(SY1,04,04,11,N,,SY1SYS) The location of the status component field. The status component is

SY1. This field starts on line 04 in position 04 and ends in position
11. The highlighting level is normal. The next panel displayed when
the Up PF key is pressed is SY1SYS.

STATUSTEXT(SY1) The text data used for the name of the field just defined with the
STATUSFIELD statement. In this case, the field name is SY1.
STATUSFIELD and STATUSTEXT statements are grouped in pairs.

SF(SY1.GATEWAY,02,40,47,N, ,GATEWAY) Another STATUSFIELD definition.

ST(GATEWAY) Another STATUSTEXT definition.

TF(24,01,79,T,NORMAL)

TT(1=HELP 2=DETAIL 3=RET 6=ROLL 7=UP, definitions. For this panel, these are the default definitions defined

8=DN 10=LF 11=RT 12=TOP) in AOFINIT. If you need values differing from the defaults, there is

Here, TEXTFIELD and TEXTTEXT are used to display PF key

a statement for defining PF keys unique to this panel, DPFKnn. See
lIBM Tivoli System Automation for z/OS Programmer’s Reference| for a
description of this statement.

PFK1(AOCHELP SDF)

PFK2 (DETAIL)
PFK3 (RETURN)
PFK6 (ROLL)
PFK7 (UP)
PFK8 (DOWN)
PFK10(LEFT)
PFK11(RIGHT)
PFK12 (TOP)

PF key definition statements.

ENDPANEL

The end panel statement, indicating that this is the end of definitions
for this panel.

%INCLUDE Statement for SDF Panels

The %INCLUDE statement for SDF has the following features:

The SDF %INCLUDE statement allows specifying a list of members rather than
a single member only. Each member name in the list represents a DSIPARM
member be loaded. Member names in the list are delimited by a comma.

The SDF %INCLUDE statement requires parentheses around the specified
member or members.

The target DSIPARM members may contain only complete panel definitions or
additional %INCLUDE statements. Panel definitions must be contained within a
single member, and therefore cannot be built using commonly defined segments.

Step 3: Customizing SDF Initialization Parameters

Member AOFINIT allows you to define parameters common to all SDF panels and
SDF initialization specifications, such as:

Initial screen shown when SDF is started
Maximum operator logon limit

Default PF key definitions

Detail status display panel PF key definitions
Detail status display panel PF key descriptions

Appendix B. Customizing the Status Display Facility (SDF) 229

* Default priorities and colors
These parameters define values for SDF when it is started.

This step of SDF customization is optional. Using SA z/OS-provided default
values for these parameters is recommended.

Note: User-defined statuses are not saved across a recycle or a monitor cycle. This
means the status of a subsystem will change from the user-defined status to
an appropriate SA z/0OS status.

Step 4: Defining SDF in the Customization Dialog

The SDF entries in the Status Details policy object allow you to define statuses and
the priorities assigned to those statuses. These entries are used by SA z/OS
common routines to gather data for requests to add status descriptors to status
components. The format and values used in SDF Status Detail definitions are
described in |[BM Tivoli System Automation for z/OS Programmer’s Referencel

This step of SDF customization is optional. Using SA z/OS-provided definitions
for SDF is recommended.

230 System Automation for z/OS: Customizing and Programming

Appendix C. Message Automation

FORCED AT Entry Type

This AT entry must be generated in the predefined way. An AT entry is generated
as shown in INGMSGO02 (see [Figure 41) even though the message may not appear
in the Customization Dialog. The AT entry cannot be overridden. No AUTO action
is valid.

INGMSGO2

* - FORCED AT ENTRY
IF

MSGID = 'EVE1721'

THEN

EXEC(CMD('AOCFILT * EVEEIO10 ')ROUTE(ONE %AOFOPGSSOPER%))
EXEC(CMD('AOCFILT * EVEEIO09 PPI')ROUTE(ONE %AOFOPGSSOPER%))
EXEC(CMD('AOCFILT * EVEEYOOS MSGID=PPIOPN')ROUTE(ONE %AOFOPGSSOPER%))

*

Figure 41. Sample FORCED AT Entry

Because you may need to issue a command or a reply in response to a forced
message, you can define a CMD or REPLY for several (but not all) forced
messages. This will append an ISSUECMD or ISSUEREP action to the AT entry, as

shown in

INGMSGO2

*

* Tape mount monitoring

* - FORCED AT ENTRY
IF (GROUP:INGTAPE)

MSGID = 'IEF233A'

THEN

EXEC(CMD(' INGRTAPE ')ROUTE (ONE %AOFOPSYSOPER%))

DOMACTION (AUTOMATE)

* - CONDITIONAL AT ACTION ENTRY
EXEC(CMD (' ISSUEREP ')ROUTE (ONE %AOFOPWTORS%))

* - CONDITIONAL AT ACTION ENTRY

EXEC(CMD('ISSUECMD ')ROUTE(ONE %AOFOPGSSOPER%)) ;

*

Figure 42. Sample FORCED AT Entry with ISSUECMD and ISSUEREP Action

It is recommended that you refer to INGMSGO2 to obtain those AT entries where
optional actions are or are not supported.

RECOMMENDED AT Entry Type

You are recommended to use this AT entry in the predefined way. An AT entry is
generated as shown in INGMSG02 (see [Figure 43 on page 232) even though the
message may not have been defined in the Customization Dialog. The AT entry can
be overridden (using the OVR action) in the Customization Dialog.

© Copyright IBM Corp. 1996, 2005 231

INGMSGO2

*

* AMRF Buffer recovery

* - RECOMMENDED AT ENTRY
IF

MSGID = 'IEA359E'

THEN

EXEC(CMD('AOFRSAOG ')ROUTE(ONE %AOFOPRECOPER%));

*

* AMRF Buffer recovery

* - RECOMMENDED AT ENTRY
IF

MSGID = 'IEA360A'

THEN

EXEC(CMD('AOFRSAOG ')ROUTE(ONE %AOFOPRECOPER%));

*

* AMRF Buffer recovery

* - RECOMMENDED AT ENTRY
IF

MSGID = 'IEA361I'

THEN

EXEC(CMD('AOFRSAOG ')ROUTE(ONE %AOFOPRECOPER%));

*

Figure 43. Sample RECOMMENDED AT Entry Type

Defining a CMD, REPLY, CODE or USER action does not change the recommended
AT entry. AUTO(IGNORE) and AUTO(SUPPRESS) prevent an AT entry being
created. For other AUTO actions the recommended AT entry is built.

CONDITIONAL AT Entry Type

A CONDITIONAL AT entry can be defined for either known or unknown
messages.

Known Messages

This AT entry is optional. It is only generated if the message has been defined in
the Customization Dialog together with a CMD, REPLY, CODE, USER, AUTO, or
OVR action (see [Figure 44)).

INGMSGO2

*

* JES2 shutdown

* - CONDITIONAL AT ENTRY
IF

MSGID(2) = 'HASP099'

THEN

EXEC(CMD('AOFRSDOD ')ROUTE(ONE %AOFOPGSSOPER%));

*

Figure 44. CONDITIONAL AT Entry for a Specific Message

The AT entry is generated as predefined in INGMSGO02 for the known message but
can be overridden with an OVR action. Defining a CMD, REPLY, CODE, USER, or
AUTO action does not overrule the predefined behavior (that is, a stop message
will still be a stop message, for example).

232 System Automation for z/OS: Customizing and Programming

Unknown Messages

This AT entry is optional. It is only generated if the message has been defined in
the Customization Dialog together with a CMD, REPLY, AUTO, or OVR action (see

Figure 45).

INGMSGO2
*
*
*

- IEA* MESSAGES ARE PLACED HERE

Figure 45. CONDITIONAL AT Entry for a Generic Message

You can refer to the INGMSGO02 to see where entries for unknown messages (for
example, IEA*) would be placed in the generated AT.

The action statement of the AT entry depends on the action as defined in the
Customization Dialog, that is:

Action Statement | Defined Action

ISSUECMD CMD

ISSUEREP REPLY

ACTIVMSG AUTO(UP, ACTIVE)

TERMMSG AUTO(ABENDED, BROKEN, TERMINATED, etc.)
HALTMSG AUTOMHALTED

This will produce a different AT entry to the standard, specific entry.

able 10| shows which default AT entry is generated for a particular AUTO action.
Table 10. AT Entries That Are Generated by AUTO Actions

Status Automation Table Action Statement

ACTIVE EXEC(CMD('ACTIVMSG UP=NO')ROUTE(ONE %AOFOPGSSOPER%))

ABENDED EXEC(CMD('TERMMSG FINAL=YES,ABEND=YES')ROUTE(ONE %AOFOPGSSOPER%))
ABENDING EXEC(CMD('TERMMSG FINAL=NO,ABEND=YES')ROUTE(ONE %AOFOPGSSOPER%))
BREAKING EXEC(CMD('TERMMSG FINAL=NO,BREAK=YES')ROUTE(ONE %AOFOPGSSOPER%))
BROKEN EXEC(CMD('TERMMSG FINAL=YES,BREAK=YES')ROUTE(ONE %A0FOPGSSOPER%))
CAPTURE EXEC(CMD('AOFCPMSG ')ROUTE(ONE %AOFOPGSSOPER%)) DOMACTION (AUTOMATE)
HALTED EXEC(CMD('HALTMSG ')ROUTE(ONE %AOFOPGSSOPER%))

TERMINATED EXEC(CMD('TERMMSG FINAL=YES')ROUTE(ONE %AOFOPGSSOPER%))
TERMINATING EXEC(CMD('TERMMSG FINAL=YES')ROUTE(ONE %AOFOPGSSOPER%))

UP EXEC(CMD('ACTIVMSG UP=YES')ROUTE(ONE %AOFOPGSSOPER%))

The AT entry can also be defined using the OVR action with the following

conditions for its generation:

* If OVR is supported for a predefined AT entry, it will be replaced by the
override.

e If OVR is defined multiple times for the same message ID but for different APL
instances in the PDB, then multiple AT entries are generated.

¢ If OVR is defined for a message that other actions have also been defined for,
only the OVR AT entry will be generated.

Appendix C. Message Automation 233

* If OVR is defined for a message at APL CLASS level where no check is done for

the Jobname (&SUBSJOB), only one OVR AT entry will be generated. (The
prerequisite is that at least one instance is linked to that class.)

* If OVR is defined for a message at APL CLASS level where a check for the
Jobname (&SUBSJOB) is done, one OVR AT entry will be generated for each
instance linked to that class.

Other Forced AT Entries

The following AT entries are always built:

* BEGIN-END block statements (for performance and design reasons)
* ALWAYS statements

* Capture WTORs

See for examples.

INGMSGO2

* Supervisor Messages

IF
MSGID = 'IEA'
THEN BEGIN;

*

*

IF

IFRAUWF1(6) = '1'

THEN

. & DOMAINID = %AOFDOM%

- FORCED AT ENTRY

EXEC(CMD('OUTREP ')ROUTE(ONE %AOFOPWTORS%)) s

*

ALWAYS

%AOFALWAYSACTION?%;

Figure 46. BEGIN-END Block Statements

Restricted Message IDs

The following restricted message IDs will not create an AT entry:

ABCODEPROG
ABENDED
ACTIVE
AMRFCLEAR
BREAKING
CHE

CQSET
DOWN
FALLBACK
HALTED
INACTIVE
LOGGER

ABCODES
ABENDING
ALTCODES
AUTODOWN
BRO
CICSINFO
CTLDOWN
ENDED
FORCE
HEALTHCHK
JESABEND
MDSCOUNTA

234 System Automation for z/OS: Customizing and Programming

ABCODESYSTM
ACORESTART
AMRFSHORT
AUTOTERM
BROKEN
CITIME
BATABASE
ENDING
FPABEND
HOLDQ
LISTSHUT
MDSCOUNTB

ABCODETRAN
ACTCODES
AMRFFULL
BMPABEND
CAPMSGS
CONN
DOMAINID
EXTSTART
HALFDOWN
IMSINFO
LOGREC
MDSCOUNTE

MDSCOUNTF
MDSCOUNTSV
MOVED

NOJSM
OPCAPARM
REVRALFO
RECONS
RUNNING
SNAPQ

START
STOPFPREGION
STUCK
TERMINATING
UNLOCK
VTAMUP
VTAMDOWN

MDSCOUNTQ
MDSCOUNTU
MVSDUMP
OLDS
POSTCHKP
RCVRSOS
RELEASEQ
SHUTFORCEDDF
SPOOLFULL
STARTED
STOPPED
SYSLOG
TERMINATED
upP
WORKSTATION

MDSCOUNTR
MDSCOUNTV
MVSDUMPTAKEN
OPCA
PPIACTIVE
RCVRTRAN
RESTART
SHUTTYPES
SPOOLSHORT
STARTED2
STOPPING
TAPES
TPABEND
USERSTART
WTORS

Appendix C. Message Automation

MDSCOUNTSS
MDSCOUNTW
MVSDUMPRESET
OPCACMD
PRECHKP
RSEVRIOE
RESTARTABORT
SMFDUMP
STADC
STOPBMPREGION
STOPREGION
TCO

UNLKAVM
VTAMTERMS
ZOMBIE

235

236 System Automation for z/OS: Customizing and Programming

Appendix D. TSO User Monitoring

Active TSO users can be monitored in NMC and SDF using the SA z/0OS
command DFTSOU (EVJETSOU). To enable TSO user monitoring add the

following entry to user AT member INGMSGUI (or to your own user message
table):

IF (MSGID='IEF125I' | MSGID='IEF1261' | MSGID='IEF4501') & TEXT=MESSAGE
THEN EXEC(CMD('DFTSOU UPDATE') ROUTE(ALL *))
DISPLAY(N) NETLOG(N) CONTINUE(Y);

Also, put 'DFTSOU SCAN’ in the ACORESTART message for the TSO subsystem.

When DFTSOU is called with the UPDATE parameter then:

* For IEF125I, an ADD request is sent to SDF and NMC for the TSO user that
produces the message.

* For IEF126l, a DELETE request is sent to SDF and NMC for the TSO user that
produces the message.

 For IEF4501, a DELETE request is sent to SDF and NMC for the failing TSO user.
When IEF4501 is specified, and the trap is coded in INGMSGU1, then
CONTINUE(Y) must also be coded.

When DFTSOU is called with the SCAN parameter, an MVS D TS,L command is
issued to identify all currently active TSO users. This data is then passed to SDF
and NMC.

NMC updates are associated with NMC object TSO. SDF updates are associated
with SDF tree entry TSOUSERS.

© Copyright IBM Corp. 1996, 2005 237

238 System Automation for z/OS: Customizing and Programming

Glossary

This glossary includes terms and definitions from:

* The IBM Dictionary of Computing New York:
McGraw-Hill, 1994.

* The American National Standard Dictionary for
Information Systems , ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Definitions are identified by
the symbol (A) after the definition.

* The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

The following cross-references are used in this
glossary:
Contrast with. This refers to a term that has
an opposed or substantively different
meaning.
Deprecated term for. This indicates that the
term should not be used. It refers to a
preferred term, which is defined in its proper
place in the glossary.
See. This refers the reader to multiple-word
terms in which this term appears.
See also. This refers the reader to terms that
have a related, but not synonymous, meaning.
Synonym for. This indicates that the term has
the same meaning as a preferred term, which
is defined in the glossary.
Synonymous with. This is a backward
reference from a defined term to all other
terms that have the same meaning.

A

ACFE. Automation control file.

© Copyright IBM Corp. 1996, 2005

ACF/NCP. Advanced Communications Function for
the Network Control Program. See Advanced
Communications Function and Network Control Program.

ACF/VTAM. Advanced Communications Function for
the Virtual Telecommunications Access Method.
Synonym for VTAM. See Advanced Communications
Function and Virtual Telecommunications Access Method.

active monitoring. In SA z/O0S, the acquiring of
resource status information by soliciting such
information at regular, user-defined intervals. See also
passive monitoring.

adapter. Hardware card that enables a device, such as
a workstation, to communicate with another device,
such as a monitor, a printer, or some other I/O device.

Address Space Workflow. In RMF, a measure of how
a job uses system resources and the speed at which the
job moves through the system. A low workflow
indicates that a job has few of the resources it needs
and is contending with other jobs for system resources.
A high workflow indicates that a job has all the
resources it needs to execute.

adjacent hosts. Systems connected in a peer
relationship using adjacent NetView sessions for
purposes of monitoring and control.

adjacent NetView. In SA z/OS, the system defined as
the communication path between two SA z/OS
systems that do not have a direct link. An adjacent
NetView is used for message forwarding and as a
communication link between two SA z/OS systems.
For example, the adjacent NetView is used when
sending responses from a focal point to a remote
system.

Advanced Communications Function (ACF). A group
of IBM licensed programs (principally VTAM, TCAM,
NCP, and SSP) that use the concepts of Systems
Network Architecture (SNA), including distribution of
function and resource sharing.

advanced program-to-program communication
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in a Systems Network Architecture (SNA) network.
APPC is the implementation, on a given system, of
SNA’s logical unit type 6.2.

alert. (1) In SNA, a record sent to a system problem
management focal point or to a collection point to
communicate the existence of an alert condition. (2) In
NetView, a high-priority event that warrants immediate

239

attention. A database record is generated for certain
event types that are defined by user-constructed filters.

alert condition. A problem or impending problem for
which some or all of the process of problem
determination, diagnosis, and resolution is expected to
require action at a control point.

alert focal-point system. See entry for NPDA
focal-point system under focal—point system.

alert threshold. An application or volume service
value that determines the level at which SA z/0S
changes the associated icon in the graphical interface to
the alert color. SA z/OS may also issue an alert. See
warning threshold.

AMC. (1) Automation Manager Configuration (2) The
Auto Msg Classes entry type

APF. Authorized program facility.
API. Application programming interface.

APPC. Advanced program-to-program
communications.

application. An z/OS subsystem or job monitored by
SA z/0S.

Application entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an application.

application group. A named set of applications. An
application group is part of an SA z/OS enterprise
definition and is used for monitoring purposes.

ApplicationGroup entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an application group.

application program. (1) A program written for or by
a user that applies to the user’s work, such as a
program that does inventory or payroll. (2) A program
used to connect and communicate with stations in a
network, enabling users to perform application-oriented
activities.

ARM. Automatic restart management.
ASCB. Address space control block.

ASCB status. An application status derived by

SA z/0S running a routine (the ASCB checker) that
searches the z/OS address space control blocks
(ASCBs) for address spaces with a particular job name.
The job name used by the ASCB checker is the job
name defined in the customization dialog for the
application.

ASCII (American National Standard Code for
Information Interchange). The standard code, using a
coded character set consisting of 7-bit coded characters

(8-bit including parity check), for information
interchange among data processing systems, data
communication systems, and associated equipment. The
ASCII set consists of control characters and graphic
characters. (A)

ASF. Automation status file.

assist mode facility. An SA z/OS facility that uses
SDF and enables interaction with automation before

SA z/0S takes an automation action. SDF prompts the
operator with a suggested action, then provides options
for using that action, modifying and using the action,
or canceling the action. Also called assist mode, it is
enabled using the customization dialogs, or
dynamically.

authorized program facility (APF). A facility that
permits identification of programs that are authorized
to use restricted functions.

automated function. SA z/0S automated functions
are automation operators, NetView autotasks that are
assigned to perform specific automation functions.
However, SA z/OS defines its own synonyms, or
automated function names, for the NetView autotasks,
and these function names are referred to in the sample
policy databases provided by SA z/OS. For example,
the automation operator AUTBASE corresponds to the
SA z/0S automated function BASEOPER.

automated console operations (ACO). The concept
(versus a product) of using computers to perform a
large subset of tasks ordinarily performed by operators,
or assisting operators in performing these tasks.

automatic restart management. A z/OS recovery
function that improves the availability of specified
subsystems and applications by automatically restarting
them under certain circumstances. Automatic restart
management is a function of the Cross-System
Coupling Facility (XCF) component of z/OS.

automatic restart management element name. In MVS
5.2 or later, z/OS automatic restart management
requires the specification of a unique sixteen character
name for each address space that registers with it. All
automatic restart management policy is defined in
terms of the element name, including SA z/OS’s
interface with it.

automation. The automatic initiation of actions in
response to detected conditions or events. SA z/OS
provides automation for z/OS applications, z/OS
components, and remote systems that run z/OS.
SA z/0S also provides tools that can be used to
develop additional automation.

automation agent. In SA z/0OS, the automation
function is split up between the automation manager
and the automation agents. The observing, reacting and
doing parts are located within the NetView address

240 System Automation for z/OS: Customizing and Programming

space, and are known as the automation agents. The
automation agents are responsible for:

* recovery processing
* message processing

* active monitoring: they propagate status changes to
the automation manager

automation configuration file. The data set that
consists of:

* the automation control file (ACF)

* the automation manager configuration file (AMC)
* the NetView automation table (AT)

* the MPFLSTSA member

automation control file (ACF). In SA z/0S, a file that
contains system-level automation policy information.
There is one master automation control file for each
NetView system on which SA z/OS is installed.
Additional policy information and all resource status
information is contained in the policy database (PDB).
The SA z/0S customization dialogs must be used to
build the automation control files. They must not be
edited manually.

automation flags. In SA z/OS, the automation policy
settings that determine the operator functions that are
automated for a resource and the times during which
automation is active. When SA z/OS is running,
automation is controlled by automation flag policy
settings and override settings (if any) entered by the
operator. Automation flags are set using the
customization dialogs.

automation manager. In SA z/0S, the automation
function is split up between the automation manager
and the automation agents. The coordination, decision
making and controlling functions are processed by each
sysplex’s automation manager.

The automation manager contains a model of all of the
automated resources within the sysplex. The
automation agents feed the automation manager with
status information and perform the actions that the
automation manager tells them to.

The automation manager provides sysplex-wide
automation.

Automation Manager Configuration. The Automation
Manager Configuration file (AMC) contains an image
of the automated systems in a sysplex or of a
standalone system.

Automation NetView. In SA z/0S the NetView that
performs routine operator tasks with command
procedures or uses other ways of automating system
and network management, issuing automatic responses
to messages and management services units.

automation operator. NetView automation operators
are NetView autotasks that are assigned to perform
specific automation functions. See also automated

function. NetView automation operators may receive
messages and process automation procedures. There are
no logged-on users associated with automation
operators. Each automation operator is an operating
system task and runs concurrently with other NetView
tasks. An automation operator could be set up to
handle JES2 messages that schedule automation
procedures, and an automation statement could route
such messages to the automation operator. Similar to
operator station task. SA z/OS message monitor tasks
and target control tasks are automation operators.

automation policy. The policy information governing
automation for individual systems. This includes
automation for applications, z/OS subsystems, z/OS
data sets, and z/OS components.

automation policy settings. The automation policy
information contained in the automation control file.
This information is entered using the customization
dialogs. You can display or modify these settings using
the customization dialogs.

automation procedure. A sequence of commands,
packaged as a NetView command list or a command
processor written in a high-level language. An
automation procedure performs automation functions
and runs under NetView.

automation status file. In SA z/0OS, a file containing
status information for each automated subsystem,
component or data set. This information is used by
SA z/0S automation when taking action or when
determining what action to take. In Release 2 and
above of AOC/MVS, status information is also
maintained in the operational information base.

automation table (AT). See NetView automation table.

autotask. A NetView automation task that receives
messages and processes automation procedures. There
are no logged-on users associated with autotasks. Each
autotask is an operating system task and runs
concurrently with other NetView tasks. An autotask
could be set up to handle JES2 messages that schedule
automation procedures, and an automation statement
could route such messages to the autotasks. Similar to
operator station task. SA z/OS message monitor tasks
and target control tasks are autotasks. Also called
automation operator.

available. In VTAM programs, pertaining to a logical
unit that is active, connected, enabled, and not at its
session limit.

B

basic mode. A central processor mode that does not
use logical partitioning. Contrast with logically
partitioned (LPAR) mode.

Glossary 241

BCP Internal Interface. Processor function of
CMOS-390, zSeries processor families. It allows the
communication between basic control programs such as
z/0S and the processor support element in order to
exchange information or to perform processor control
functions. Programs using this function can perform
hardware operations such as ACTIVATE or SYSTEM
RESET.

beaconing. The repeated transmission of a frame or
messages (beacon) by a console or workstation upon
detection of a line break or outage.

BookManager. An IBM product that lets users view
softcopy documents on their workstations.

C

central processor (CP). The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load (IPL), and
other machine operations.

central processor complex (CPC). A physical
collection of hardware that consists of central storage,
one or more central processors, timers, and channels.

central site. In a distributed data processing network,
the central site is usually defined as the focal point for
alerts, application design, and remote system
management tasks such as problem management.

CFR/CFS and ISC/ISR. 1/O operations can display
and return data about integrated system channels (ISC)
connected to a coupling facility and coupling facility
receiver (CFR) channels and coupling facility sender
(CFS) channels.

channel. A path along which signals can be sent; for
example, data channel, output channel. See also link.

channel path identifier. A system-unique value
assigned to each channel path.

CHPID. In SA z/O0S, channel path ID; the address of
a channel.

CHPID port. A label that describes the system name,
logical partitions, and channel paths.

channel-attached. (1) Attached directly by I/O
channels to a host processor (for example, a
channel-attached device). (2) Attached to a controlling
unit by cables, rather than by telecommunication lines.
Contrast with link-attached. Synonymous with local.

CI. Console integration.

CICS/VS. Customer Information Control System for
Virtual Storage.

CLIST. Command list.

clone. A set of definitions for application instances
that are derived from a basic application definition by
substituting a number of different system-specific
values into the basic definition.

clone ID. A generic means of handling system-specific
values such as the MVS SYSCLONE or the VTAM
subarea number. Clone IDs can be substituted into
application definitions and commands to customize a
basic application definition for the system that it is to
be instantiated on.

CNC. A channel path that transfers data between a
host system image and an ESCON control unit. It can
be point-to-point or switchable.

command. A request for the performance of an
operation or the execution of a particular program.

command facility. The component of NetView that is
a base for command processors that can monitor,
control, automate, and improve the operation of a
network. The successor to NCCF.

command list (CLIST). (1) A list of commands and
statements, written in the NetView command list
language or the REXX language, designed to perform a
specific function for the user. In its simplest form, a
command list is a list of commands. More complex
command lists incorporate variable substitution and
conditional logic, making the command list more like a
conventional program. Command lists are typically
interpreted rather than being compiled. (2) In

SA z/0S, REXX command lists that can be used for
automation procedures.

command procedure. In NetView, either a command
list or a command processor.

command processor. A module designed to perform a
specific function. Command processors, which can be
written in assembler or a high-level language (HLL),
are issued as commands.

Command Tree/2. An OS/2-based program that helps
you build commands on an OS/2 window, then routes
the commands to the destination you specify (such as a
3270 session, a file, a command line, or an application
program). It provides the capability for operators to
build commands and route them to a specified
destination.

common commands. The SA z/OS subset of the CPC
operations management commands.

common routine. One of several SA z/OS programs
that perform frequently used automation functions.
Common routines can be used to create new
automation procedures.

Common User Access (CUA) architecture. Guidelines
for the dialog between a human and a workstation or
terminal.

242 System Automation for z/OS: Customizing and Programming

communication controller. A type of communication
control unit whose operations are controlled by one or
more programs stored and executed in the unit or by a
program executed in a processor to which the controller
is connected. It manages the details of line control and
the routing of data through a network.

communication line. Deprecated term for
telecommunication line.

connectivity view. In SA z/0S, a display that uses
graphic images for I/O devices and lines to show how
they are connected.

console automation. The process of having NetView
facilities provide the console input usually handled by
the operator.

console connection. In SA z/0S, the 3270 or ASCII
(serial) connection between a PS/2 computer and a
target system. Through this connection, the workstation
appears (to the target system) to be a console.

console integration (CI). A hardware facility that if
supported by an operating system, allows operating
system messages to be transferred through an internal
hardware interface for display on a system console.
Conversely, it allows operating system commands
entered at a system console to be transferred through
an internal hardware interface to the operating system
for processing.

consoles. Workstations and 3270-type devices that
manage your enterprise.

Control units. Hardware units that control I/O
operations for one or more devices. You can view
information about control units through I/O
operations, and can start or stop data going to them by
blocking and unblocking ports.

controller. A unit that controls I/O operations for one
or more devices.

couple data set. A data set that is created through the
XCF couple data set format utility and, depending on
its designated type, is shared by some or all of the
z/0S systems in a sysplex. See also sysplex couple data
set and XCF couple data set.

coupling facility. The hardware element that provides
high-speed caching, list processing, and locking
functions in a sysplex.

CP. Central processor.

CPC. Central processor complex.

CPC operations management commands. A set of
commands and responses for controlling the operation
of System/390 CPCs.

CPC subset. All or part of a CPC. It contains the
minimum resource to support a single control program.

CPCB. Command processor control block; an I/O
operations internal control block that contains
information about the command being processed.

CPU. Central processing unit. Deprecated term for
processor.

cross-system coupling facility (XCF). XCF is a
component of z/OS that provides functions to support
cooperation between authorized programs running
within a sysplex.

CTC. The channel-to-channel (CTC) channel can
communicate with a CTC on another host for
intersystem communication.

Customer Information Control System (CICS). A
general-purpose transactional program that controls
online communication between terminal users and a
database for a large number of end users on a real-time
basis.

customization dialogs. The customization dialogs are
an ISPF application. They are used to customize the
enterprise policy, like, for example, the enterprise
resources and the relationships between resources, or

the automation policy for systems in the enterprise.
How to use these dialogs is described in [[BM Tivold

System Automation for z/OS Customizing and)

ngmmmingj

CVC. A channel operating in converted (CVC) mode
transfers data in blocks and a CBY channel path
transfers data in bytes. Converted CVC or CBY channel
paths can communicate with a parallel control unit.
This resembles a point-to-point parallel path and
dedicated connection, regardless whether it passes
through a switch.

D

DASD. Direct access storage device.

data services task (DST). The NetView subtask that
gathers, records, and manages data in a VSAM file or a
network device that contains network management
information.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

data set members. Members of partitioned data sets
that are individually named elements of a larger file
that can be retrieved by name.

DBCS. Double-byte character set.
DCCE. Disabled console communication facility.

DCFE. Document composition facility.

Glossary 243

DELAY Report. An RMF report that shows the
activity of each job in the system and the hardware and
software resources that are delaying each job.

Devices. You can see information about all devices
(such as printers, tape or disk drives, displays, or
communications controllers) attached to a particular
switch, and control paths and jobs to devices.

DEVR Report. An RMF report that presents
information about the activity of I/O devices that are
delaying jobs.

dialog. Interactive 3270 panels.

direct access storage device (DASD). A device in
which the access time is effectively independent of the
location of the data; for example, a disk.

disabled console communication facility (DCCF). A
z/0OS component that provides limited-function console
communication during system recovery situations.

display. (1) To present information for viewing,
usually on the screen of a workstation or on a
hardcopy device. (2) Deprecated term for panel.

disk operating system (DOS). (1) An operating
system for computer systems that use disks and
diskettes for auxiliary storage of programs and data. (2)
Software for a personal computer that controls the
processing of programs. For the IBM Personal
Computer, the full name is Personal Computer Disk
Operating System (PCDOS).

distribution manager. The component of the NetView
program that enables the host system to use, send, and
delete files and programs in a network of computers.

domain. (1) An access method and its application
programs, communication controllers, connecting lines,
modems, and attached workstations. (2) In SNA, a
system services control point (SSCP) and the physical
units (PUs), logical units (LUs), links, link stations, and
associated resources that the SSCP can control by
means of activation requests and deactivation requests.

double-byte character set (DBCS). A character set,
such as Kanji, in which each character is represented by
a 2-byte code.

DP enterprise. Data processing enterprise.

DSIPARM. This file is a collection of members of
NetView’s customization.

DST. Data Services Task.

E

EBCDIC. Extended binary-coded decimal interchange
code. A coded character set consisting of 8-bit coded
characters.

ECB. Event control block. A control block used to
represent the status of an event.

EMCS. Extended multiple console support.

enterprise. An organization, such as a business or a
school, that uses data processing.

enterprise monitoring. Enterprise monitoring is used
by SA z/0S to update the NetView Management Console
(NMC) resource status information that is stored in the
Resource Object Data Manager (RODM). Resource status
information is acquired by enterprise monitoring of the
Resource Measurement Facility (RMF) Monitor III service
information at user-defined intervals. SA z/OS stores
this information in its operational information base,
where it is used to update the information presented to
the operator in graphic displays.

entries. Resources, such as processors, entered on
panels.

entry type. Resources, such as processors or
applications, used for automation and monitoring.

environment. Data processing enterprise.

error threshold. An automation policy setting that
specifies when SA z/OS should stop trying to restart
or recover an application, subsystem or component, or
offload a data set.

ESA. Enterprise Systems Architecture.

eServer. Processor family group designator used by
the SA z/0OS customization dialogs to define a target
hardware as member of the zSeries or 390-CMOS
processor families.

event. (1) In NetView, a record indicating irregularities
of operation in physical elements of a network. (2) An
occurrence of significance to a task; for example, the
completion of an asynchronous operation, such as an
input/output operation. (3) Events are part of a trigger
condition, in a way that if all events of a trigger
condition have occurred, a STARTUP or SHUTDOWN
of an application is performed.

exception condition. An occurrence on a system that
is a deviation from normal operation. SA z/OS
monitoring highlights exception conditions and allows
an SA z/0S enterprise to be managed by exception.

extended recovery facility (XRF). A facility that
minimizes the effect of failures in z/OS, VTAM, the
host processor, or high availability applications during
sessions between high availability applications and
designated terminals. This facility provides an alternate
subsystem to take over sessions from the failing
subsystem.

244 System Automation for z/OS: Customizing and Programming

F

fallback system. See secondary system.

field. A collection of bytes within a record that are
logically related and are processed as a unit.

file manager commands. A set of SA z/OS
commands that read data from or write data to the
automation control file or the operational information
base. These commands are useful in the development
of automation that uses SA z/OS facilities.

focal point. In NetView, the focal-point domain is the
central host domain. It is the central control point for
any management services element containing control of
the network management data.

focus host. A processor with the role in the context of
a unified system image

focal point system. (1) A system that can administer,
manage, or control one or more target systems. There
are a number of different focal point system associated
with IBM automation products. (2) NMC focal point
system. The NMC focal point system is a NetView
system with an attached workstation server and LAN
that gathers information about the state of the network.
This focal point system uses RODM to store the data it
collects in the data model. The information stored in
RODM can be accessed from any LAN-connected
workstation with NetView Management Console
installed. (3) NPDA focal point system. This is a
NetView system that collects all the NPDA alerts that
are generated within your enterprise. It is supported by
NetView. If you have SA z/OS installed the NPDA
focal point system must be the same as your NMC
focal point system. The NPDA focal point system is
also known as the alert focal point system. (4) SA z/OS
Processor Operations focal point system. This is a
NetView system that has SA z/OS host code installed.
The SA z/OS Processor Operations focal point system
receives messages from the systems and operator
consoles of the machines that it controls. It provides
full systems and operations console function for its
target systems. It can be used to IPL these systems.
Note that some restrictions apply to the Hardware
Management Console for an S/390 microprocessor
cluster. (5) SA z/OS SDF focal point system. The

SA z/0S SDF focal point system is an SA z/0S
NetView system that collects status information from
other SA z/0OS NetViews within your enterprise. (6)
Status focal point system. In NetView, the system to
which STATMON, VTAM and NLDM send status
information on network resources. If you have a NMC
focal point, it must be on the same system as the Status
focal point. (7) Hardware Management Console.
Although not listed as a focal point, the Hardware
Management Console acts as a focal point for the
console functions of an S/390 microprocessor cluster.
Unlike all the other focal points in this definition, the

Hardware Management Console runs on a
LAN-connected workstation,

frame. For a System/390 microprocessor cluster, a
frame contains one or two central processor complexes
(CPCs), support elements, and AC power distribution.

full-screen mode. In NetView, a form of panel
presentation that makes it possible to display the
contents of an entire workstation screen at once.
Full-screen mode can be used for fill-in-the-blanks
prompting. Contrast with line mode.

G

gateway session. An NetView-NetView Task session
with another system in which the SA z/OS outbound
gateway operator logs onto the other NetView session
without human operator intervention. Each end of a
gateway session has both an inbound and outbound
gateway operator.

generic alert. Encoded alert information that uses
code points (defined by IBM and possibly customized
by users or application programs) stored at an alert
receiver, such as NetView.

generic routines. In SA z/0S, a set of self-contained
automation routines that can be called from the
NetView automation table, or from user-written
automation procedures.

group. A collection of target systems defined through
configuration dialogs. An installation might set up a
group to refer to a physical site or an organizational or
application entity.

group entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a group.

group entry type. A collection of target systems
defined through the customization dialog. An
installation might set up a group to refer to a physical
site or an organizational entity. Groups can, for
example, be of type STANDARD or SYSPLEX.

H

Hardware Management Console. A console used by
the operator to monitor and control a System /390
microprocessor cluster.

Hardware Management Console Application
(HWMCA). A direct-manipulation object-oriented
graphical user interface that provides single point of
control and single system image for hardware elements.
HWMCA provides customer grouping support,
aggregated and real-time system status using colors,
consolidated hardware messages support, consolidated
operating system messages support, consolidated

Glossary 245

service support, and hardware commands targeted at a
single system, multiple systems, or a customer group of
systems.

heartbeat. In SA z/0S, a function that monitors the
validity of the status forwarding path between remote
systems and the NMC focal point, and monitors the
availability of remote z/OS systems, to ensure that
status information displayed on the SA z/OS
workstation is current.

help panel. An online panel that tells you how to use
a command or another aspect of a product.

hierarchy. In the NetView program, the resource
types, display types, and data types that make up the
organization, or levels, in a network.

high-level language (HLL). A programming language
that does not reflect the structure of any particular
computer or operating system. For the NetView
program, the high-level languages are PL/I and C.

HLL. High-level language.

host system. In a coupled system or distributed
system environment, the system on which the facilities
for centralized automation run. SA z/OS publications
refer to target systems or focal-point systems instead of
hosts.

host (primary processor). The processor at which you
enter a command (also known as the issuing processor).

HWMCA. Hardware Management Console
Application. Application for the graphic hardware
management console that monitors and controls a
central processor complex. It is attached to a target
processor (a system 390 microprocessor cluster) as a
dedicated system console. This microprocessor uses
OCEF to process commands.

images. A grouping of processors and I/O devices
that you define. You can define a single-image mode
that allows a multiprocessor system to function as one
central processor image.

IMS/VS. Information Management System/Virtual
Storage.

inbound. In SA z/OS, messages sent to the
focal-point system from the PC or target system.

inbound gateway operator. The automation operator
that receives incoming messages, commands, and
responses from the outbound gateway operator at the
sending system. The inbound gateway operator handles
communications with other systems using a gateway
session.

Information Management System/Virtual Storage
(IMS/VS). A database/data communication (DB/DC)
system that can manage complex databases and
networks. Synonymous with IMS.

INGEIO PROC. The I/O operations default procedure
name; part of the SYST.PROCLIB.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a workday or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs.

initialize automation. SA z/OS-provided automation
that issues the correct z/OS start command for each
subsystem when SA z/OS is initialized. The
automation ensures that subsystems are started in the
order specified in the automation control file and that
prerequisite applications are functional.

input/output support processor IOSP). The hardware
unit that provides I/O support functions for the
primary support processor and maintenance support
functions for the processor controller.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogs between the
application programmer and the terminal user.

interested operator list. The list of operators who are
to receive messages from a specific target system.

internal token. A logical token (LTOK); name by which
the I/O resource or object is known; stored in IODF.

IOCDS. 1/0 configuration data set. The data set that
describes the I/O configuration.

I/O Ops. 1/0 operations.
IOSP. Input/Output Support Processor.

I/0 operations. The part of SA z/OS that provides
you with a single point of logical control for managing
connectivity in your active I/O configurations. I/O
operations takes an active role in detecting unusual
conditions and lets you view and change paths
between a processor and an I/O device, using dynamic
switching (the ESCON director). Also known as I/O
Ops.

I/0 resource number. Combination of channel path
identifier (CHPID), device number, etc. See internal
token.

IPL. Initial program load.

ISA. Industry Standard Architecture.

246 System Automation for z/OS: Customizing and Programming

ISPE. Interactive System Productivity Facility.

ISPF console. From this 3270-type console you are
logged onto ISPF to use the runtime panels for I/O
operations and SA z/OS customization panels.

issuing host. See primary host; the base program at
which you enter a command for processing.

J

JCL. Job control language.
JES. Job entry subsystem.

job. (1) A set of data that completely defines a unit of
work for a computer. A job usually includes all
necessary computer programs, linkages, files, and
instructions to the operating system. (2) An address
space.

job control language (JCL). A problem-oriented
language designed to express statements in a job that
are used to identify the job or describe its requirements
to an operating system.

job entry subsystem (JES). A facility for spooling, job
queuing, and managing I/O. In SA z/OS publications,
JES refers to JES2 or JES3, unless distinguished as being
either one or the other.

K

Kanji. An ideographic character set used in Japanese.
See also double-byte character set.

L

LAN. Local area network.

line mode. A form of screen presentation in which the
information is presented a line at a time in the message
area of the terminal screen. Contrast with full-screen
mode.

link. (1) In SNA, the combination of the link
connection and the link stations joining network nodes;
for example, a System /370 channel and its associated
protocols, a serial-by-bit connection under the control
of synchronous data link control (SDLC). (2) In

SA z/0S, link connection is the physical medium of
transmission.

link-attached. Describes devices that are physically
connected by a telecommunication line. Contrast with
channel-attached.

Linux for zSeries and S$/390. UNIX-like open source
operating system conceived by Linus Torvalds and
developed across the internet.

local. Pertaining to a device accessed directly without
use of a telecommunication line. Synonymous with
channel-attached.

local area network (LAN). (1) A network in which a
set of devices is connected for communication. They
can be connected to a larger network. See also token
ring. (2) A network in which communications are
limited to a moderately-sized geographic area such as a
single office building, warehouse, or campus, and that
do not generally extend across public rights-of-way.

logical partition (LP). A subset of the processor
hardware that is defined to support an operating
system. See also logically partitioned (LPAR) mode.

logical switch number (LSN). Assigned with the
switch parameter of the CHPID macro of the IOCP.

logical token (LTOK). Resource number of an object
in the IODE.

logical unit (LU). In SNA, a port through which an
end user accesses the SNA network and the functions
provided by system services control points (SSCPs). An
LU can support at least two sessions — one with an
SSCP and one with another LU — and may be capable
of supporting many sessions with other LUs. See also
physical unit (PU) and system services control point
(SSCP).

logical unit (LU) 6.2. A type of logical unit that
supports general communications between programs in
a distributed processing environment. LU 6.2 is
characterized by (a) a peer relationship between session
partners, (b) efficient use of a session for multiple
transactions, (c) comprehensive end-to-end error
processing, and (d) a generic application program
interface (API) consisting of structured verbs that are
mapped into a product implementation. Synonym for
advanced program-to-program communications
(APPC).

logically partitioned (LPAR) mode. A central
processor mode that enables an operator to allocate
system processor hardware resources among several
logical partitions. Contrast with basic mode.

LOGR. The sysplex logger.

LP. Logical partition.

LPAR. Logically partitioned (mode).
LU. Logical unit.

LU-LU session. In SNA, a session between two logical
units (LUs) in an SNA network. It provides
communication between two end users, or between an
end user and an LU services component.

LU 6.2. Logical unit 6.2.

Glossary 247

LU 6.2 session. A session initiated by VTAM on behalf
of an LU 6.2 application program, or a session initiated
by a remote LU in which the application program
specifies that VTAM is to control the session by using
the APPCCMD macro.

M

MAT. Deprecated term for NetView Automation Table.
MCA. Micro Channel* architecture.
MCS. Multiple console support.

member. A specific function (one or more
modules/routines) of a multisystem application that is
defined to XCF and assigned to a group by the
multisystem application. A member resides on one
system in the sysplex and can use XCF services to
communicate (send and receive data) with other
members of the same group.

message automation table (MAT). Deprecated term
for NetView Automation Table.

message class. A number that SA z/OS associates
with a message to control routing of the message.
During automated operations, the classes associated
with each message issued by SA z/OS are compared to
the classes assigned to each notification operator. Any
operator with a class matching one of the message’s
classes receives the message.

message forwarding. The SA z/OS process of sending
messages generated at an SA z/OS target system to the
SA z/0S focal-point system.

message group. Several messages that are displayed
together as a unit.

message monitor task. A task that starts and is
associated with a number of communications tasks.
Message monitor tasks receive inbound messages from
a communications task, determine the originating target
system, and route the messages to the appropriate
target control tasks.

message processing facility (MPF). A z/OS table that
screens all messages sent to the z/OS console. The MPF
compares these messages with a customer-defined list
of messages on which to automate, suppress from the
z/0S console display, or both, and marks messages to
automate or suppress. Messages are then broadcast on
the subsystem interface (SSI).

message suppression. The ability to restrict the
amount of message traffic displayed on the z/OS
console.

Micro Channel architecture. The rules that define
how subsystems and adapters use the Micro Channel
bus in a computer. The architecture defines the services
that each subsystem can or must provide.

microprocessor. A processor implemented on one or a
small number of chips.

migration. Installation of a new version or release of a
program to replace an earlier version or release.

MP. Multiprocessor.
MPE. Message processing facility.

MPFLSTSA. The MPFLST member that is built by
SA z/0S.

Multiple Virtual Storage (MVS). An IBM licensed
program. MVS, which is the predecessor of OS/390, is
an operating system that controls the running of
programs on a System/390 or System/370 processor.
MYVS includes an appropriate level of the Data Facility
Product (DFP) and Multiple Virtual Storage/Enterprise
Systems Architecture System Product Version 5
(MVS/ESA SP5).

multiprocessor (MP). A CPC that can be physically
partitioned to form two operating processor complexes.

multisystem application. An application program that
has various functions distributed across z/OS images in
a multisystem environment.

multisystem environment. An environment in which
two or more z/OS images reside in one or more
processors, and programs on one image can
communication with programs on the other images.

MYVS. Multiple Virtual Storage, predecessor of z/OS.

MYVS image. A single occurrence of the MVS/ESA
operating system that has the ability to process work.

MYVS/JES2. Multiple Virtual Storage/Job Entry System
2. A z/OS subsystem that receives jobs into the system,
converts them to internal format, selects them for
execution, processes their output, and purges them
from the system. In an installation with more than one
processor, each JES2 processor independently controls
its job input, scheduling, and output processing.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N

NAU. (1) Network accessible unit. (2) Network
addressable unit.

NCCFE. Network Communications Control Facility.

NCP. (1) Network Control Program (IBM licensed
program). Its full name is Advanced Communications
Function for the Network Control Program.
Synonymous with ACF/NCP. (2) Network control
program (general term).

248 System Automation for z/OS: Customizing and Programming

NetView. An IBM licensed program used to monitor a
network, manage it, and diagnose network problems.
NetView consists of a command facility that includes a
presentation service, command processors, automation
based on command lists, and a transaction processing
structure on which the session monitor, hardware
monitor, and terminal access facility (TAF) network
management applications are built.

network accessible unit (NAU). A logical unit (LU),
physical unit (PU), control point (CP), or system
services control point (SSCP). It is the origin or the
destination of information transmitted by the path
control network. Synonymous with network addressable
unit.

network addressable unit (NAU). Synonym for
network accessible unit.

NetView automation procedures. A sequence of
commands, packaged as a NetView command list or a
command processor written in a high-level language.
An automation procedure performs automation
functions and runs under the NetView program.

NetView automation table (AT). A table against
which the NetView program compares incoming
messages. A match with an entry triggers the specified
response. SA z/OS entries in the NetView automation
table trigger an SA z/OS response to target system
conditions. Formerly known as the message automation
table (MAT).

NetView Command list language. An interpretive
language unique to NetView that is used to write
command lists.

NetView (NCCF) console. A 3270-type console for
NetView commands and runtime panels for system
operations and processor operations.

NetView Graphic Monitor Facility (NGMF).
Deprecated term for NetView Management Console.

NetView hardware monitor. The component of
NetView that helps identify network problems, such as
hardware, software, and microcode, from a central
control point using interactive display techniques.
Formerly called network problem determination application.

NetView log. The log in which NetView records
events pertaining to NetView and SA z/OS activities.

NetView message table. See NetView automation table.

NetView Management Console (NMC). A function of
the NetView program that provides a graphic,
topological presentation of a network that is controlled
by the NetView program. It provides the operator
different views of a network, multiple levels of
graphical detail, and dynamic resource status of the
network. This function consists of a series of graphic

windows that allows you to manage the network
interactively. Formerly known as the NetView Graphic
Monitor Facility (NGMF).

NetView-NetView task (NNT). The task under which
a cross-domain NetView operator session runs. Each
NetView program must have a NetView-NetView task
to establish one NNT session. See also operator station
task.

NetView-NetView Task session. A session between
two NetView programs that runs under a
NetView-NetView Task. In SA z/0S, NetView-NetView
Task sessions are used for communication between
focal point and remote systems.

NetView paths via logical unit (LU 6.2). A type of
network-accessible port (VTAM connection) that
enables end users to gain access to SNA network
resources and communicate with each other. LU 6.2
permits communication between processor operations
and the workstation.

network. (1) An interconnected group of nodes. (2) In
data processing, a user application network. See SNA
network.

Network Communications Control Facility (NCCEF).
The operations control facility for the network. NCCF
consists of a presentation service, command processors,
automation based on command lists, and a transaction
processing structure on which the network
management applications NLDM and NPDA are built.
NCCEF is a precursor to the NetView command facility.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability. Its full name is
Advanced Communications Function for the Network
Control Program.

Networking NetView. In SA z/OS the NetView that
performs network management functions, such as
managing the configuration of a network. In SA z/0OS
it is common to also route alerts to the Networking
NetView.

Network Problem Determination Application
(NPDA). An NCCF application that helps you identify
network problems, such as hardware, software, and
microcode, from a central control point using
interactive display methods. The alert manager for the
network. The precursor of the NetView hardware
monitor.

NGME. Deprecated term for NetView Management
Console.

NGMF focal-point system. Deprecated term for NMC
focal point system.

NIP. Nucleus initialization program.

Glossary 249

NMC focal point system. See focal point system

NMC workstation. The NMC workstation is the
primary way to dynamically monitor SA z/OS
systems. From the windows, you see messages, monitor
status, view trends, and react to changes before they
cause problems for end users. You can use multiple
windows to monitor multiple views of the system.

NNT. NetView-NetView task.

notification message. An SA z/0OS message sent to a
human notification operator to provide information
about significant automation actions. Notification
messages are defined using the customization dialogs.

notification operator. A NetView console operator
who is authorized to receive SA z/OS notification
messages. Authorization is made through the
customization dialogs.

NPDA. Network Problem Determination Application.
NPDA focal-point system. See focal-point system.
NTRI. NCP/token-ring interconnection.

nucleus initialization program (NIP). The program
that initializes the resident control program; it allows
the operator to request last-minute changes to certain
options specified during system generation.

(0

objective value. An average Workflow or Using value
that SA z/OS can calculate for applications from past
service data. SA z/OS uses the objective value to
calculate warning and alert thresholds when none are
explicitly defined.

OCA. In SA z/0S, operator console A, the active
operator console for a target system. Contrast with
OCB.

OCB. In SA z/0S, operator console B, the backup
operator console for a target system. Contrast with
OCA.

OCF. Operations command facility.

OCF-based processor. A central processor complex
that uses an operations command facility for interacting
with human operators or external programs to perform
operations management functions on the CPC.

OPC/A. Operations Planning and Control/Advanced.

OPC/ESA. Operations Planning and
Control/Enterprise Systems Architecture.

operating system (OS). Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output

control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible. (T)

operations. The real-time control of a hardware device
or software function.

operations command facility (OCF). A facility of the
central processor complex that accepts and processes
operations management commands.

Operations Planning and Control/Advanced
(OPC/A). A set of IBM licensed programs that
automate, plan, and control batch workload. OPC/A
analyzes system and workload status and submits jobs
accordingly.

Operations Planning and Control/ESA (OPC/ESA). A
set of IBM licensed programs that automate, plan, and
control batch workload. OPC/ESA analyzes system and
workload status and submits jobs accordingly. The
successor to OPC/A.

operator. (1) A person who keeps a system running.
(2) A person or program responsible for managing
activities controlled by a given piece of software such
as z/0S, the NetView program, or IMS. (3) A person
who operates a device. (4) In a language statement, the
lexical entity that indicates the action to be performed
on operands.

operator console. (1) A functional unit containing
devices that are used for communications between a
computer operator and a computer. (T) (2) A display
console used for communication between the operator
and the system, used primarily to specify information
concerning application programs and I/O operations
and to monitor system operation. (3) In SA z/OS, a
console that displays output from and sends input to
the operating system (z/OS, LINUX, VM, VSE). Also
called operating system console. In the SA z/OS operator
commands and configuration dialogs, OC is used to
designate a target system operator console.

operator station task (OST). The NetView task that
establishes and maintains the online session with the
network operator. There is one operator station task for
each network operator who logs on to the NetView
program.

operator view. A set of group, system, and resource
definitions that are associated together for monitoring
purposes. An operator view appears as a graphic
display in the graphical interface showing the status of
the defined groups, systems, and resources.

OperatorView entry. A construct, created with the
customization dialogs, used to represent and contain
policy for an operator view.

OS. Operating system.

250 System Automation for z/OS: Customizing and Programming

z/OS component. A part of z/OS that performs a
specific z/OS function. In SA z/0S, component refers
to entities that are managed by SA z/0OS automation.

z/OS subsystem. Software products that augment the
z/0S operating system. JES and TSO/E are examples
of z/OS subsystems. SA z/OS includes automation for
some z/OS subsystems.

z/OS system. A z/OS image together with its
associated hardware, which collectively are often
referred to simply as a system, or z/OS system.

OSA. /0O operations can display the open system
adapter (OSA) channel logical definition, physical
attachment, and status. You can configure an OSA
channel on or off.

OST. Operator station task.

outbound. In SA z/OS, messages or commands from
the focal-point system to the target system.

outbound gateway operator. The automation operator
that establishes connections to other systems. The
outbound gateway operator handles communications
with other systems through a gateway session. The
automation operator sends messages, commands, and
responses to the inbound gateway operator at the
receiving system.

P

page. (1) The portion of a panel that is shown on a
display surface at one time. (2) To transfer instructions,
data, or both between real storage and external page or
auxiliary storage.

panel. (1) A formatted display of information that
appears on a terminal screen. Panels are full-screen
3270-type displays with a monospaced font, limited
color and graphics. (2) By using SA z/OS panels you
can see status, type commands on a command line
using a keyboard, configure your system, and passthru
to other consoles. See also help panel. (3) In computer
graphics, a display image that defines the locations and
characteristics of display fields on a display surface.
Contrast with screen.

parallel channels. Parallel channels operate in either
byte (BY) or block (BL) mode. You can change
connectivity to a parallel channel operating in block
mode.

parameter. (1) A variable that is given a constant value
for a specified application and that may denote the
application. (2) An item in a menu for which the user
specifies a value or for which the system provides a
value when the menu is interpreted. (3) Data passed to
a program or procedure by a user or another program,
namely as an operand in a language statement, as an
item in a menu, or as a shared data structure.

partition. (1) A fixed-size division of storage. (2) In
VSE, a division of the virtual address area that is
available for program processing. (3) On an IBM
Personal Computer fixed disk, one of four possible
storage areas of variable size; one can be accessed by
DOS, and each of the others may be assigned to
another operating system.

partitionable CPC. A CPC that can be divided into 2
independent CPCs. See also physical partition,
single-image mode, MP, side.

partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data.

passive monitoring. In SA z/OS, the receiving of
unsolicited messages from z/OS systems and their
resources. These messages can prompt updates to
resource status displays. See also active monitoring.

PCE. Processor controller. Also known as the “support
processor” or “service processor” in some processor
families.

PDB. Policy Database
PDS. Partitioned data set.

physical partition. Part of a CPC that operates as a
CPC in its own right, with its own copy of the
operating system.

physical unit (PU). In SNA, the component that
manages and monitors the resources (such as attached
links and adjacent link stations) of a node, as requested
by a system services control point (SSCP) through an
SSCP-PU session. An SSCP activates a session with the
physical unit to indirectly manage, through the PU,
resources of the node such as attached links.

physically partitioned (PP) configuration. A mode of
operation that allows a multiprocessor (MP) system to
function as two or more independent CPCs having
separate power, water, and maintenance boundaries.
Contrast with single-image (SI) configuration.

POI. Program operator interface.

policy. The automation and monitoring specifications
for an SA z/0S enterprise. See [[BM Tivoli System)
[Automation for z/OS Defining Automation Policy}

policy database. The database where the automation
policy is recorded. Also known as the PDB.

POR. Power-on reset.

port. (1) System hardware to which the I/O devices
are attached. (2) On an ESCON switch, a port is an
addressable connection. The switch routes data through
the ports to the channel or control unit. Each port has a
name that can be entered into a switch matrix, and you

Glossary 251

can use commands to change the switch configuration.
(3) An access point (for example, a logical unit) for data
entry or exit. (4) A functional unit of a node through
which data can enter or leave a data network. (5) In
data communication, that part of a data processor that
is dedicated to a single data channel for the purpose of
receiving data from or transmitting data to one or more
external, remote devices. (6) power-on reset (POR) (7) A
function that re-initializes all the hardware in a CPC
and loads the internal code that enables the CPC to
load and run an operating system.

PP. Physically partitioned (configuration).
PPT. Primary POI task.

primary host. The base program at which you enter a
command for processing.

primary POI task (PPT). The NetView subtask that
processes all unsolicited messages received from the
VTAM program operator interface (POI) and delivers
them to the controlling operator or to the command
processor. The PPT also processes the initial command
specified to execute when NetView is initialized and
timer request commands scheduled to execute under
the PPT.

primary system. A system is a primary system for an
application if the application is normally meant to be
running there. SA z/OS starts the application on all the
primary systems defined for it.

problem determination. The process of determining
the source of a problem; for example, a program
component, machine failure, telecommunication
facilities, user or contractor-installed programs or
equipment, environment failure such as a power loss,
Or user error.

processor controller. Hardware that provides support
and diagnostic functions for the central processors.

processor operations. The part of SA z/OS that
monitors and controls processor (hardware) operations.
Processor operations provides a connection from a
focal-point system to a target system. Through NetView
on the focal-point system, processor operations
automates operator and system consoles for monitoring
and recovering target systems. Also known as ProcOps.

processor operations control file. Named by your
system programmer, this file contains configuration and
customization information. The programmer records
the name of this control file in the processor operations
file generation panel ISQDPGO1.

Processor Resource/Systems Manager (PR/SM). The
feature that allows the processor to use several
operating system images simultaneously and provides
logical partitioning capability. See also LPAR.

ProcOps. Processor operations.

ProcOps Service Machine (PSM). The PSM is a CMS
user on a VM host system. It runs a CMS multitasking
application that serves as "virtual hardware” for
ProcOps. ProOps communicates via the PSM with the
VM guest systems that are defined as target systems
within ProcOps.

product automation. Automation integrated into the
base of SA z/OS for the products DB2, CICS, IMS,
OPC (formerly called features).

program to program interface (PPI). A NetView
function that allows user programs to send or receive
data buffers from other user programs and to send
alerts to the NetView hardware monitor from system
and application programs.

protocol. In SNA, the meanings of, and the
sequencing rules for, requests and responses used for
managing the network, transferring data, and
synchronizing the states of network components.

proxy resource. A resource defined like an entry type
APL representing a processor operations target system.

PR/SM. Processor Resource/Systems Manager.
PSM. ProcOps Service Machine.

PU. Physical unit.

R

remote system. A system that receives resource status
information from an SA z/OS focal-point system. An
SA z/0S remote system is defined as part of the same
SA z/0S enterprise as the SA z/OS focal-point system
to which it is related.

requester. A requester is a workstation software,
which enables users to log on to a domain, that is, to
the server(s) belonging to this domain, and use the
resources in this domain. After the log on to a domain,
users can access the shared resources and use the
processing capability of the server(s). Because the
bigger part of shared resources is on the server(s), users
can reduce hardware investment.

resource. (1) Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs. (2) In NetView, any hardware or software
that provides function to the network. (3) In SA z/OS,
any z/0S application, z/OS component, job, device, or
target system capable of being monitored or automated
through SA z/0OS.

Resource Access Control Facility (RACF). A program
that can provide data security for all your resources.
RACEF protects data from accidental or deliberate
unauthorized disclosure, modification, or destruction.

252 System Automation for z/OS: Customizing and Programming

resource group. A physically partitionable portion of a
processor. Also known as a side.

Resource Monitoring Facility (RMF) Monitor III. A
program that measures and reports on the availability
and activity of system hardware and software
resources, such as processors, devices, storage, and
address spaces. RMF can issue online reports about
system performance problems as they occur.

Resource Object Data Manager (RODM). A data
cache manager designed to support process control and
automation applications. RODM provides an
in-memory data cache for maintaining real-time data in
an address space that is accessible by multiple
applications. RODM also allows an application to query
an object and receive a rapid response and act on it.

resource token. A unique internal identifier of an
ESCON resource or resource number of the object in
the IODF.

restart automation. SA z/OS-provided automation
that monitors subsystems to ensure that they are
running. If a subsystem fails, SA z/OS attempts to
restart it according to the policy in the automation
control file.

Restructured Extended Executor (REXX). An
interpretive language used to write command lists.

return code. A code returned from a program used to
influence the issuing of subsequent instructions.

REXX. Restructured Extended Executor.

REXX procedure. A command list written with the
Restructured Extended Executor (REXX), which is an
interpretive language.

RME. Resource Measurement Facility.

RODM. Resource Object Data Manager.

S

SAF. Security Authorization Facility.
SA z/OS. System Automation for z/OS

SA z/OS customization dialogs. An ISPF application
through which the SA z/OS policy administrator
defines policy for individual z/OS systems and builds
automation control data and RODM load function files.

SA z/OS customization focal point system. See focal
point system.

SA z/OS data model. The set of objects, classes and
entity relationships necessary to support the function of
SA z/0S and the NetView automation platform.

SA z/OS enterprise. The group of systems and
resources defined in the customization dialogs under
one enterprise name. An SA z/OS enterprise consists
of connected z/OS systems running SA z/OS.

SA z/OS focal point system. See focal point system.

SA z/OS policy. The description of the systems and
resources that make up an SA z/OS enterprise,
together with their monitoring and automation
definitions.

SA z/OS policy administrator. The member of the
operations staff who is responsible for defining
SA z/0S policy.

SA z/OS satellite. If you are running two NetViews
on an z/0S system to split the automation and
networking functions of NetView, it is common to route
alerts to the Networking NetView. For SA z/OS to
process alerts properly on the Networking NetView,
you must install a subset of SA z/OS code, called an
SA z/OS satellite on the Networking NetView.

SA z/OS SDF focal point system. See focal point
system.

SCA. In SA z/OS, system console A, the active
system console for a target hardware. Contrast with
SCB.

SCB. In SA z/OS, system console B, the backup
system console for a target hardware. Contrast with
SCA.

screen. Deprecated term for display panel.

screen handler. In SA z/OS, software that interprets
all data to and from a full-screen image of a target
system. The interpretation depends on the format of the
data on the full-screen image. Every processor and
operating system has its own format for the full-screen
image. A screen handler controls one PS/2 connection
to a target system.

SDE. Status Display Facility.
SDLC. Synchronous data link control.
SDSE. System Display and Search Facility.

secondary system. A system is a secondary system for
an application if it is defined to automation on that
system, but the application is not normally meant to be
running there. Secondary systems are systems to which
an application can be moved in the event that one or
more of its primary systems are unavailable. SA z/0OS
does not start the application on its secondary systems.

server. A server is a workstation that shares resources,
which include directories, printers, serial devices, and
computing powers.

Glossary 253

service language command (SLC). The line-oriented
command language of processor controllers or service
processors.

service processor (SVP). The name given to a
processor controller on smaller System /370 processors.

service period. Service periods allow the users to
schedule the availability of applications. A service
period is a set of time intervals (service windows),
during which an application should be active.

service threshold. An SA z/OS policy setting that
determines when to notify the operator of deteriorating
service for a resource. See also alert threshold and
warning threshold.

session. In SNA, a logical connection between two
network addressable units (NAUSs) that can be
activated, tailored to provide various protocols, and
deactivated, as requested. Each session is uniquely
identified in a transmission header by a pair of
network addresses identifying the origin and
destination NAUs of any transmissions exchanged
during the session.

session monitor. The component of the NetView
program that collects and correlates session-related data
and provides online access to this information. The
successor to NLDM.

shutdown automation. SA z/OS-provided automation
that manages the shutdown process for subsystems by
issuing shutdown commands and responding to
prompts for additional information.

side. A part of a partitionable CPC that can run as a
physical partition and is typically referred to as the
A-side or the B-side.

Simple Network Management Protocol (SNMP). An
IP based industry standard protocol to monitor and
control resources in an IP network.

single image. A processor system capable of being
physically partitioned that has not been physically
partitioned. Single-image systems can be target
hardware processors.

single-image (SI) mode. A mode of operation for a
multiprocessor (MP) system that allows it to function as
one CPC. By definition, a uniprocessor (UP) operates in
single-image mode. Contrast with physically partitioned
(PP) configuration.

SLC. Service language command.
SMP/E. System Modification Program Extended.
SNA. Systems Network Architecture.

SNA network. In SNA, the part of a user-application
network that conforms to the formats and protocols of
systems network architecture. It enables reliable

transfer of data among end users and provides
protocols for controlling the resources of various
network configurations. The SNA network consists of
network addressable units (NAUs), boundary function
components, and the path control network.

SNMP. Simple Network Management Protocol (a
TCP/IP protocol). A protocol that allows network
management by elements, such as gateways, routers,
and hosts. This protocol provides a means of
communication between network elements regarding
network resources.

solicited message. An SA z/OS message that directly
responds to a command. Contrast with unsolicited
message.

SSCP. System services control point.
SSI. Subsystem interface.

start automation. SA z/OS-provided automation that
manages and completes the startup process for
subsystems. During this process, SA z/OS replies to
prompts for additional information, ensures that the
startup process completes within specified time limits,
notifies the operator of problems, if necessary, and
brings subsystems to an UP (or ready) state.

startup. The point in time at which a subsystem or
application is started.

status. The measure of the condition or availability of
the resource.

status focal-point system. See focal—point system.

status display facility (SDF). The system operations
part of SA z/OS that displays status of resources such
as applications, gateways, and write-to-operator
messages (WTORs) on dynamic color-coded panels.
SDF shows spool usage problems and resource data
from multiple systems.

steady state automation. The routine monitoring, both
for presence and performance, of subsystems,
applications, volumes and systems. Steady state
automation may respond to messages, performance
exceptions and discrepancies between its model of the
system and reality.

structure. A construct used by z/OS to map and
manage storage on a coupling facility. See cache
structure, list structure, and lock structure.

subgroup. A named set of systems. A subgroup is part
of an SA z/OS enterprise definition and is used for
monitoring purposes.

SubGroup entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a subgroup.

254 System Automation for z/OS: Customizing and Programming

subplex. Situations where the physical sysplex has
been divided into subentities, for example, a test
sysplex and a production sysplex. This may be done to
isolate the test environment from the production
environment.

subsystem. (1) A secondary or subordinate system,
usually capable of operating independent of, or
asynchronously with, a controlling system. (2) In

SA z/0S, an z/0OS application or subsystem defined to
SA z/0S.

subsystem interface. The z/OS interface over which
all messages sent to the z/OS console are broadcast.

support element. A hardware unit that provides
communications, monitoring, and diagnostic functions
to a central processor complex (CPC).

support processor. Another name given to a processor
controller on smaller System/370 processors; see service
processor.

SVP. Service processor.

switches. ESCON directors are electronic units with
ports that dynamically switch to route data to I/O
devices. The switches are controlled by I/O operations
commands that you enter on a workstation.

switch identifier. The switch device number
(swchdevn), the logical switch number (LSN) and the
switch name

symbolic destination name (SDN). Used locally at the
workstation to relate to the VTAM application name.

synchronous data link control (SDLC). A discipline
for managing synchronous, code-transparent,
serial-by-bit information transfer over a link connection.
Transmission exchanges may be duplex or half-duplex
over switched or nonswitched links. The configuration
of the link connection may be point-to-point,
multipoint, or loop. SDLC conforms to subsets of the
Advanced Data Communication Control Procedures
(ADCCP) of the American National Standards Institute
and High-Level Data Link Control (HDLC) of the
International Standards Organization.

SYSINFO Report. An RMF report that presents an
overview of the system, its workload, and the total
number of jobs using resources or delayed for
resources.

SysOps. System operations.

sysplex. A set of z/OS systems communicating and
cooperating with each other through certain
multisystem hardware components (coupling devices
and timers) and software services (couple data sets).

In a sysplex, z/OS provides the coupling services that
handle the messages, data, and status for the parts of a
multisystem application that has its workload spread

across two or more of the connected processors, sysplex
timers, coupling facilities, and couple data sets (which
contains policy and states for automation).

A Parallel Sysplex is a sysplex that includes a coupling
facility.

sysplex application group. A sysplex application
group is a grouping of applications that can run on any
system in a sysplex.

sysplex couple data set. A couple data set that
contains sysplex-wide data about systems, groups, and
members that use XCF services. All z/OS systems in a
sysplex must have connectivity to the sysplex couple
data set. See also couple data set.

Sysplex Timer. An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor sides. External Time Reference (ETR) is the
z/0S generic name for the IBM Sysplex Timer (9037).

system. In SA z/OS, system means a focal point
system (z/OS) or a target system (MVS, VM, VSE,
LINUX, or CF).

System Automation for z/OS. The full name for
SA z/08S.

System Automation for OS/390. The full name for
SA 0S/390, the predecessor to System Automation for
z/OS.

system console. (1) A console, usually having a
keyboard and a display screen, that is used by an
operator to control and communicate with a system. (2)
A logical device used for the operation and control of
hardware functions (for example, IPL, alter/display,
and reconfiguration). The system console can be
assigned to any of the physical displays attached to a
processor controller or support processor. (3) In

SA z/0S, the hardware system console for processor
controllers or service processors of processors
connected using SA z/0S. In the SA z/OS operator
commands and configuration dialogs, SC is used to
designate the system console for a target hardware
processor.

System Display and Search Facility (SDSF). An IBM
licensed program that provides information about jobs,
queues, and printers running under JES2 on a series of
panels. Under SA z/OS you can select SDSF from a
pull-down menu to see the resources’ status, view the
z/0S system log, see WTOR messages, and see active
jobs on the system.

System entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a system.

System Modification Program/Extended (SMP/E). An
IBM licensed program that facilitates the process of
installing and servicing an z/OS system.

Glossary 255

system operations. The part of SA z/OS that
monitors and controls system operations applications
and subsystems such as NetView, SDSEF, JES, RMEF, TSO,
RODM, ACF/VTAM, CICS, IMS, and OPC. Also known
as SysOps.

system services control point (SSCP). In SNA, the
focal point within an SNA network for managing the
configuration, coordinating network operator and
problem determination requests, and providing
directory support and other session services for end
users of the network. Multiple SSCPs, cooperating as
peers, can divide the network into domains of control,
with each SSCP having a hierarchical control
relationship to the physical units and logical units
within its domain.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

System/390 microprocessor cluster. A configuration
that consists of central processor complexes (CPCs) and
may have one or more integrated coupling facilities.

T

TAFE. Terminal access facility.

target. A processor or system monitored and
controlled by a focal-point system.

target control task. In SA z/OS, target control tasks
process commands and send data to target systems and
workstations through communications tasks. A target
control task (a NetView autotask) is assigned to a target
system when the target system is initialized.

target hardware. In SA z/OS, the physical hardware
on which a target system runs. It can be a single-image
or physically partitioned processor. Contrast with target
system.

target system. (1) In a distributed system
environment, a system that is monitored and controlled
by the focal-point system. Multiple target systems can
be controlled by a single focal-point system. (2) In

SA z/0S, a computer system attached to the
focal-point system for monitoring and control. The
definition of a target system includes how remote
sessions are established, what hardware is used, and
what operating system is used.

task. (1) A basic unit of work to be accomplished by a
computer. (2) In the NetView environment, an operator
station task (logged-on operator), automation operator
(autotask), application task, or user task. A NetView
task performs work in the NetView environment. All

SA z/0S tasks are NetView tasks. See also
communications task, message monitor task, and target
control task.

telecommunication line. Any physical medium, such
as a wire or microwave beam, that is used to transmit
data.

terminal access facility (TAF). (1) A NetView function
that allows you to log onto multiple applications either
on your system or other systems. You can define TAF
sessions in the SA z/OS customization panels so you
don’t have to set them up each time you want to use
them. (2) In NetView, a facility that allows a network
operator to control a number of subsystems. In a
full-screen or operator control session, operators can
control any combination of subsystems simultaneously.

terminal emulation. The capability of a
microcomputer or personal computer to operate as if it
were a particular type of terminal linked to a
processing unit to access data.

threshold. A value that determines the point at which
SA z/0S automation performs a predefined action. See
alert threshold, warning threshold, and error threshold.

time of day (TOD). Typically refers to the time-of-day
clock.

Time Sharing Option (TSO). An optional
configuration of the operating system that provides
conversational time sharing from remote stations. It is
an interactive service on z/0S, MVS/ESA, and
MVS/XA.

Time-Sharing Option/Extended (TSO/E). An option
of z/OS that provides conversational timesharing from
remote terminals. TSO/E allows a wide variety of users
to perform many different kinds of tasks. It can handle
short-running applications that use fewer sources as
well as long-running applications that require large
amounts of resources.

timers. A NetView command that issues a command
or command processor (list of commands) at a specified
time or time interval.

TOD. Time of day.

token ring. A network with a ring topology that
passes tokens from one attaching device to another; for
example, the IBM Token-Ring Network product.

TP. Transaction program.

transaction program. In the VTAM program, a
program that performs services related to the
processing of a transaction. One or more transaction
programs may operate within a VTAM application
program that is using the VTAM application program
interface (API). In that situation, the transaction
program would request services from the applications

256 System Automation for z/OS: Customizing and Programming

program using protocols defined by that application
program. The application program, in turn, could
request services from the VTAM program by issuing
the APPCCMD macro instruction.

transitional automation. The actions involved in
starting and stopping subsystems and applications that
have been defined to SA z/OS. This can include
issuing commands and responding to messages.

translating host. Role played by a host that turns a
resource number into a token during a unification
process.

trigger. Triggers, in combination with events and
service periods, are used to control the starting and
stopping of applications in a single system or a parallel
sysplex.

TSO. Time Sharing Option.

TSO console. From this 3270-type console you are
logged onto TSO or ISPF to use the runtime panels for
I/0 operations and SA z/OS customization panels.

TSO/E. TSO Extensions.

U

UCB. The unit control block; an MVS/ESA data area
that represents a device and that is used for allocating
devices and controlling I/O operations.

unsolicited message. An SA z/OS message that is not
a direct response to a command. Contrast with solicited
message.

user task. An application of the NetView program
defined in a NetView TASK definition statement.

Using. An RMF Monitor III definition. Jobs getting
service from hardware resources (processors or devices)
are using these resources. The use of a resource by an
address space can vary from 0% to 100% where 0%
indicates no use during a Range period, and 100%
indicates that the address space was found using the
resource in every sample during that period. See also
Workflow.

\'}

view. In the NetView Graphic Monitor Facility, a
graphical picture of a network or part of a network. A
view consists of nodes connected by links and may also
include text and background lines. A view can be
displayed, edited, and monitored for status information
about network resources.

Virtual Storage Extended (VSE). An IBM licensed
program whose full name is Virtual Storage
Extended/Advanced Function. It is an operating
system that controls the execution of programs.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability. Its full name is Advanced
Communications Function for the Virtual
Telecommunications Access Method. Synonymous with
ACF/VTAM.

VM/ESA. Virtual Machine/Enterprise Systems
Architecture.

VM Second Level Systems Support. With this
function, Processor Operations is able to control VM
second level systems (VM guest systems) in the same
way that it controls systems running on real hardware.

volume. A direct access storage device (DASD)
volume or a tape volume that serves a system in an
SA z/0S enterprise.

volume entry. A construct, created with the
customization dialogs, used to represent and contain
policy for a volume.

volume group. A named set of volumes. A volume
group is part of a system definition and is used for
monitoring purposes.

volume group entry. An construct, created with the
customization dialogs, used to represent and contain
policy for a volume group.

Volume Workflow. The SA z/0OS Volume Workflow
variable is derived from the RMF Resource Workflow
definition, and is used to measure the performance of
volumes. SA z/OS calculates Volume Workflow using:
accumulated
Using
Volume S - * 100
Workflow % accumulated + accumulated
Using Delay

The definition of Using is the percentage of time when
a job has had a request accepted by a channel for the
volume, but the request is not yet complete.

The definition of Delay is the delay that waiting jobs
experience because of contention for the volume. See
also Address Space Workflow.

VSE. Virtual Storage Extended.

VTAM. Virtual Telecommunications Access Method.

w

warning threshold. An application or volume service
value that determines the level at which SA z/OS
changes the associated icon in the graphical interface to
the warning color. See alert threshold.

Glossary 257

workflow. See Address Space Workflow and Volume
Workflow.

workstation. In SA z/0S workstation means the
graphic workstation that an operator uses for day-to-day
operations.

write-to-operator (WTO). A request to send a message
to an operator at the z/OS operator console. This
request is made by an application and is handled by
the WTO processor, which is part of the z/OS
supervisor program.

write-to-operator-with-reply (WTOR). A request to
send a message to an operator at the z/OS operator
console that requires a response from the operator. This
request is made by an application and is handled by
the WTO processor, which is part of the z/OS
supervisor program.

WTO. Write-to-Operator.
WTOR. Write-to-Operator-with-Reply.

WWYV. The US National Institute of Standards and
Technology (NIST) radio station that provides standard
time information. A second station, known as WWVB,
provides standard time information at a different
frequency.

X

XCE. Cross-system coupling facility.

XCF couple data set. The name for the sysplex couple
data set prior to MVS/ESA System Product Version 5
Release 1. See also sysplex couple data set.

XCF group. A set of related members that a
multisystem application defines to XCF. A member is a
specific function, or instance, of the application. A
member resides on one system and can communicate
with other members of the same group across the
sysplex.

XREF. Extended recovery facility.

Numerics

390-CMOS. Processor family group designator used in
the SA z/OS processor operations documentation and
in the online help to identify any of the following
5/390 CMOS processor machine types: 9672, 9674, 2003,
3000, or 7060. SA z/OS processor operations uses the
OCEF facility of these processors to perform operations
management functions. See OCF-based processor.

258 System Automation for z/OS: Customizing and Programming

Index

Special characters

"hung” command recovery 94
\AOFRSA0G 162

A

abend recovery
CICS region 178
IMS region 188
accessibility xiii
ACF entries, for DB2 automation 112
active connector 91
adding
application to automation 1
processor operations message to
automation 69

additional automation operator IDs 108

additional SA z/OS automation
procedures, programming 5

advanced automation options

exits 131

external global variables 201, 202
alternate CDS 89

turning into primary CDS 89
alternate CDS recovery

customizing 90
alternate couple data set

specifying 100
AMREF buffer shortage processing 162
AOCMSG call 14
AOCMSG generic routine 8
AOCQRY common routine

automation availability 8

message automation 22
AOCTRACE

use in testing 17

use in traces 20
AOCUPDT common routine

and the AOFEXSTA exit 132

to update status information 8
AOF_AAO_MSG_EHKVAR 203
AOF_AAO_MVSTAPEMON 203
AOF_ASSIGN_JOBNAME 203
AOF_E2E_EAS_PPI 203
AOF_E2E_EVT_RETRY 203
AOF_E2E_TKOVR_TIMEOUT 203
AOF_EMCS_AUTOTASK _... 203
AOF_EMCS_CN_ASSIGNMENT 203
AOF_INIT_MCSFLAG 206
AOF_INIT_ROUTCDE 206
AOF_INIT_SYSCONID 206
AOF_NETWORK_DOMAIN_ID 201
AOF_PRODLVL 201
AOF_SET_AVM_RESTART_EXIT 208
AOF.0DEBUG 201
AOFOTRACE 201
AOF3WTIME 210
AOFACFINIT 204
AOFAOCCLONE 201
AOFARMQUERYRETRYS 204

© Copyright IBM Corp. 1996, 2005

AOFARMQUERYWAIT 204
AOFCNMASK 205
AOFCOMPL 201
AOFCONFIRM global variable 147
AOFCTLOPT 205
AOFDEBUG 201
AOFDEBUG global variable 20
AOFDEFAULT_TARGET 205
AOFDOM 36, 38
AOFEXC00 exit 142
AOFEXCO01 exit 142
AOFEXCO03 exit 145
AOFEXC04 exit 145
AOFEXCO05 exit 145
AOFEXC06 exit 146
AOFEXCO07 exit 146
AOFEXC08 exit 146
AOFEXC09 exit 146
AOFEXCI11 exit 146
AOFEXC12 exit 146
AOFEXC13 exit 146
AOFEXC14 exit 147
AOFEXC2 exit 144
AOFEXDEF exit 131, 202
AOFEXIO01 exit 131
AOFEXIO02 exit 131
AOFEXIO3 exit 132
AOFEXI04 exit 132
AOFEXINT exit 132, 149, 208
AOFEXPLAIN_USER 206
AOFEXSTA exit 132
AOFEXXO01 exit 133
AOFEXX02 exit 134
AOFEXX03 exit 134
AOFEXX15 exit 134
AOFEXX16 exit 134
AOFIMSCMDMSG 206
AOFINITIALSTARTTYP 201
AOFINITREPLY 206
AOFJESPREFX 202
AOFLOCALHOLD 206
AOFMATLISTING 206
AOFMOVOPT 207
AOFMSGST 34
AOFMSGSY 36
AOFOPCCMDMSG 207
AOFPAUSE 207
AOFQUICKWTOR 207
AOFRELOADOPT 207
AOFRESTARTALWAYS 208
AOFR]J3MN monitoring routine 50
AOFRJ3RC monitoring routine 52
AOFRMTCMDWAIT 208
AOFRPCWAIT 208
AOFRSA01 150

AOFRSAQ02 151

AOFRSA03 153

AOFRSA08 155

AOFRSAQC 157
AOFRSAQE 161

AOFRSDO01 164

AOFRSD07 170
AOFRSD09 165
AOFRSDOF 171
AOFRSDOG 173
AOFRSDOH 167
AOFRSE(Q] 174
AOFSENDALERT 208
AOFSERXINT 208
AOFSETSTATEOVERRIDE 211
AOFSETSTATESCOPE 211
AOFSETSTATESTART 211
AOFSHUTCHK 211
AOFSHUTDELAY 208
AOFSHUTOVERRIDE 211
AOFSHUTSCOPE 211
AOFSMARTMAT 209
AOFSPOOLFULLCMD 209
AOFSPOOLSHORTCMD 209
AOFSUBSYS 202
AOFSYS 37, 38
AOFSYSNAME 202
AOFSYSTEM 202
AOFTDDF task 18
AOFUPDAM 209
AOFUPDRODM 209
AOFUSSWAIT 210
application
adding to automation 1
enable for graphical user interface 3
health status 45
application messages, entries in MPF
list 3
application monitor status 45
application monitoring 45
application type IMAGE, defining 104
applications, z/OS UNIX 79
ASCB chaining
and global variables 204
ASFUSER command 22
assist mode
for testing automation procedures 18
monitoring automation interactively
with 19
overview 17
AT build
concept for message automation 30
determining for message
automation 30
message automation 29
AT entries
always built 31
preventing the building of 27
sequence 32
types 31
with multiple actions 32
AT load, message automation 33
AT scope, defining for message
automation 29
AUTO actions, defining for message
automation 27

259

automated resources, z/OS UNIX
Automation 82
automating
auxiliary storage shortage
recovery 107
enqueues, long running 106
IXC102A message 96
IXC402D message 96
Linux console messages 68
Linux console messages, case
sensitive 69
Linux console messages, restrictions
and limitations 69
Linux console messages, security
considerations 69
long running enqueues 106
message IXC102A 105
message IXC402D 105
USS resources 79
automating processor operations
controlled resources 65
automation
adding an application to 1
advanced functions 202
extending 5
messages 25
SYSLOG message 93
sysplex, enabling 89
automation agent
enabling message automation for 33
automation configuration 3
automation control file 3
defining SDF 230
reload action exit 147
reload permission exit 147
automation flag exits
sample 138
automation flags 61
checking 62
example for using 61
extended 61
for minor resources 61
global 62
with individual messages 61
with status changes 61
automation manager configuration file 3
automation manager global automation
flag 62
automation operator IDs
additional 108
automation policy, defining for DB2
automation 112
automation procedures
calling 5
creating 5
debugging 17
description 5
developing messages 13
example 14
external code 9
global variable names 23
initializing 7
installing 16
making generic 12
programming recommendations 22
REXX coding example 21
structure of 6

260

automation procedures (continued)
testing 17
use of common routines in 5
use of generic routines in 5
using AOCTRACE 20
writing your own 5
automation processing
performing 8
automation routines 149
automation setup, definitions for 80
automation status file
coding your own information 22
using commands 9
automation table
See NetView automation table
auxiliary storage shortage recovery 97
automating 107
customizing 97
defining local page data set 107
defining the handling of jobs 107

BASEOPER 208
BLDVIEWS 3
building
new automation definitions 74

C

calling
automation procedures 5
captured messages
defining for message automation 27
cascades 39
case sensitive, Linux console
messages 69
CDEMATCH common routine 22
CDS
See couple data set
CF
See coupling facility
CFRM couple data set 91, 101
CFRM policy 91
CHKTHRES common routine 9
CICS link monitoring 181
CICS region abend recovery 178
CICS short on storage 182
CICS shutdown 182
CICS startup 183
CICS transaction recovery 185
CICS unit of work recovery 187
CICS VSAM RLS status 181
CICSPlex processing 180
clone ID, Automatic Restart
Manager 211
CMD actions, defining for message
automation 26
coding information in automation status
file 22
command flooding recovery 95
command handler, DB2 automation 115
command requests
DB2 automation 116
maintenance start 116
start/stop tablespace 120

System Automation for z/OS: Customizing and Programming

command requests (continued)
terminate threads 118
commands
processor operations 13
commands, defining for long running
enqueues 107
commands, writing for monitor
resources 47
common automation items, defining 108
common global variables 9, 201
common routines 5
use in automation procedures 5
connecting
system to processor 100
connection monitoring
CICS 112
IMS 112
connection monitoring, DB2
automation 111, 122
connector
active 91
failed persistent 92
continuous availability, couple data set
enabling 100
ensuring 89
controller status, TWS 178
couple data set 89
alternate CDS 89
alternate CDS, recovery of 89
alternate, specifying 100
CFRM 101
enabling continuous availability
of 100
ensuring continuous availability
of 89
managing 89
policy 89
primary CDS 89
SYSPLEX 101
coupling facility 91
coupling facility, managing 91
creating automation procedures 5
critical event monitoring 111
critical event monitoring, DB2
automation 125
critical events, DB2 automation 111
customization dialog exits 138
invocation 141
customization of z/0OS UNIX
resources 80
customize automation
for processor operations 10
for system operations 8
customizing
alternate CDS recovery 90
auxiliary storage shortage 97
hung command recovery 96
IXC102A message automation 96
IXC402D message automation 96
LINUX target systems 75
MVS target systems 76
of system log recovery 93
proxy resource automation 66
SDF 215
SYSIEFSD resource recovery 96
system logger recovery 91

customizing (continued)
system to use Parallel Sysplex
enhancements 108
target systems 75
VM target systems 76
VSE target systems 77
WTO(R) buffer shortage recovery 93

D

DB2 automation
ACF entries 112
command requests 116
command requests, maintenance
start 116
command requests, start/stop
tablespace 120
command requests, terminate
threads 118
connection monitoring 111, 122
critical event monitoring 125
critical events 111
defining automation policy 112
event-driven functions 111, 122
installation 112
line command functions 115
line command functions, command
handler 115
line mode functions 111
line mode invocation 111
maintenance start 111
overview 111
planning requirements 112
start/stop tablespace 111
terminate threads 111
debugging
automation procedures 17
NetView facilities 21
z/0OS UNIX Automation 87
defining
actions for message automation 26
application type IMAGE 104

AT scope for message automation 29

AUTO actions for message
automation 27

captured messages for message
automation 27

CMD actions for message
automation 26

commands for long running
enqueues 107

common automation items 108

handling of jobs for auxiliary storage
shortage recovery 107

IEADMCxx symbols for long running
enqueues 107

IMAGE application type 104

local page data set for auxiliary
storage shortage recovery 107

logical partitions 99

logical sysplex 100

message and status as minor
resources 61

OVR actions for message
automation 28

physical sysplex 100

processor 99, 104

defining (continued)
REPLY actions for message
automation 26
resources for long running
enqueues 106
SDF in automation control file 230
snapshot intervals for long running
enqueues 107
started task job name 108
status messages for message
automation 27
SYSPLEX policy item 101
system 100
temporary data set HLQ 108
definitions for automation setup 80
definitions for z/OS UNIX resources 80
deletion of processed WTO(R)s from
SDF 161
developing messages for automation
procedures 13
directory extent 91
disability xiii
DISPASST 18
DISPEVT_WAIT 211
DISPEVTS_WAIT 211
DISPTRG_WAIT 211
drain processing prior to JES2
shutdown 170
DSICMD member 16
DSIPARM data set 16
dump processing, JES3 173

E

element names in Automatic Restart
Manager 211
enabling

continuous availability of Couple Data

Sets 100
message automation for the
automation agent 33
sysplex automation 89
system log failure recovery 101
system removal 104
WTOR(R) buffer shortage
recovery 102

ENQs
See enqueues

enqueues 93
long running, automating 106
long running, customizing recovery
of 96
long running, handling 93

environmental setup exits 130

error codes 9

EVEEARMW 183

EVEECMSI 185

EVEEDO004 181

EVEEIO04 184

EVEEIO06 184

EVEEIO09 184

EVEEIO10 185

EVEEI115 183

EVEERLSI 181

EVEERTRN 185

EVEET002 187

EVEET003 178

EVEETUOW 187
EVEEY00S 182
event-driven functions
connection monitoring 122
critical event monitoring 125
DB2 automation 122
event-driven functions, DB2
automation 111
EVERCMRC 180
EVERSCMI 180
EVERSPPI 182
EVIAVMO06 195
EVIDISCQ 191
EVIECO05 190
EVIECR04 190
EVIEET00 194
EVIEIO05 196
EVIEIO06 192
EVIEIO08 196
EVIEIO09 196
EVIEIO0OA 191
EVIEIOOC 191
EVIEIOOD 195
EVIEIOOF 195
EVIEIOOG 196
EVIEIOOQ 192
EVIEI200 193
EVIEI20B 192
EVIEO000 197
EVIEO001 197
EVIEO002 197
EVIEO006 198
EVIEO007 198
EVIEO008 198
EVIEO010 198
EVIER000 188
EVIER001 188
EVIES002 188
EVIES003 189
EVIET006 193
EVIETO0E 199
EVIEY00S 189, 190, 194
EVISTRCT 193
EVISTRNM 194
EVJEACO1 175
EVJEAC02 175
EVJEACO03 176
EVJEAC04 176
EVJEOBSV 178
EVJRACO05 177
EVJRSACT 178
EVJRSJOB 177
example automation procedure 14
examples of INGUSS command 83
exits 147
AOFEXC00 142
AOFEXC01 142
AOFEXC02 144
AOFEXCO03 145
AOFEXC04 145
AOFEXC05 145
AOFEXC06 146
AOFEXC07 146
AOFEXC08 146
AOFEXC09 146
AOFEXC11 146
AOFEXC12 146

Index

261

exits (continued) G INGEX08 140
AOFEXC13 146 INGGROUP_WAIT 211

AOFEXC14 147 generic INGHIST MAX 211
AOFEXDEF 131 automation 43, 202 INGINFO_WAIT 211
AOFEXIO1 131 gener%c auto.manon procedures 12 INGLIST_WAIT 211
AOFEXI02 131 generic routines 5 INGMSG00 34

AOFEXIO3 132 use in automation procedures 5 INGMSGO1 34

AOFEXI04 132 global automation flag 62 . INGMTRAP monitor command 56
AOFEXINT 132, 149 global variable names, for automation INGOMX APT 55
AOFEXSTA 132 procedures 23 INGOPC_MULTIPLIER 210
AOFEXX01 133 graphlcal user interface, SA Z/OS INGRELS_SHOW 211
AOFEXX02 134 enable an application for 3 INGRELS_WAIT 211
AOFEXX03 134 guest machmes, processor operatlons INGREQiEXPIRE 211
AOFEXX15 134 support 74 INGREQ_INTERRUPT 211
AOFEXX16 134 guest target systems INGREQ ORIGINATOR 210
BUILDF processing 138 LINUX 74 INGREQ OVERRIDE 211
CONVERT processing 140 LINUX, user logon 75 INGREQ PRECHECK 211
COPY processing 139 MVS 75 INGREQ PRI 211
customization dialog exits 138 MVS, NIP console 75 INGREQ_PRIL.E2EMGR 212
DELETE processing 140 MVS, NIP messages 75 INGREQ REMOVE 212
environmental setup exits 130 MVS, problem determination INGREQ_REMOVE.START 212
flag exits 134 mode 75 _ INGREQ_REMOVE.STOP 212
IMPORT functions 141 ProcOps Service Machine = 74 INGREQ_RESTART 212
INGEAXIT 135 VSE 75 INGREQ SCOPE 212
INGEX01 138 INGREQ SOURCE 212
INGEX02 138 INGREQ TIMEOUT 212
INGEX03 139 H INGREQ TYPE 212
INGEX04 139 HASP099 170 INGREQ_VERIFY 212
INGEX05 140 health state return codes 47 INGREQ WAIT 212
INGEX06 140 how to automate USS resources 79 INGSCHED_WAIT 212
INGEX07 140 hung command recovery, INGSET_VERIFY 212
INGEX08 140 customizing 96 INGSET_WAIT 212
INGEX09 141 INGTRIG_WAIT 212
INGEX12 141 INGUSS command 83
INGEX14 141 I examples 83

INGEX16 141 INGVOTE_EXCLUDE 212
INGEX17 141 IDENT 22 o INGVOTE_STATUS 212
INGEX18 141 IEADMCxx symbols, defining INGVOTE_VERIFY 212
MIGRATION functions 141 for long running enqueues 107 initialization processing,
pseudo-exits 147 IGNORE WTOR priority 2 AOFSERXINT 208

RENAME functions 141 FMAGE applica.tion type, defining 104 initializing automation procedures 7
sample automation flag exits 138 Important considerations, processor installing

static exits 132 operations 108 o DB2 automation 112

status change commands 133 IMPORTANT WTOR priority 2 installing automation procedures 16

subsystem up at initialization IMS depem.:lent region processing 188 integration of z/OS UNIX System
commands 147 IMS MSC link recovery 189 Services 79
testing 147 IMS OLDS recovery 190 ISQEXEC command 11, 70
EXPLAIN 206 IMS RECON recovery 190 ISQOVRD 71
extended automation flags 61 IMS region abend recovery 188 ISQOVRD command 12
extending automation 5 IMS shutdown 193 ISOXLOC command 11
external code, automation procedures 9 IMS startup 191 ISQXMON command 70
external common global variables 201 IMS sysplex support 193 ISQXUNL command 11
EXTSTART status 211 IM5 TCO automation 194 ISSUECMD 61
IMS transaction recovery 194 ISSUEREP 61
IMS XRF processing 195 IWTOR 2
F INCLUDE statement 229 IXC102A message
. . INGAUTO_INTERVAL 211 automating 105
failed persistent connector 92 INGCF command 92 automation of 96
failed system, isolation of 96 INGDLG 142 customizing automation of 96
file manager commands 9 INGEAXIT exit 135 IXC402D messi o
file monitoring, z/OS UNIX INGEVENT _WAIT 211 automating gl 05
Automation - 82 INGEX01 138 automation of 96
flag exits 134 INGEX02 138

customizing automation of 96
INGEX03 139

INGEX04 139
INGEX05 140
INGEX06 140
INGEX07 140

262 System Automation for z/OS: Customizing and Programming

J

JES2 shutdown processing 169
JES2 spool recovery processing 164
JES3
dump processing 173
monitoring 49
job handling, defining for auxiliary
storage shortage recovery 107
job/ASID definitions, making
for long running enqueues 107

K

keyboard xiii
known messages, message
automation 26

L

line command functions, for DB2
automation 115
line mode functions, DB2
automation 111
link monitoring, CICS 181
Linux console connection to NetView 68
Linux console messages
automating 68
case sensitive 69
restrictions and limitations 69
security considerations 69
LINUX guest target systems, user
logon 75
LINUX target systems, customizing 75
local page data set, defining
for auxiliary storage shortage
recovery 107
log stream 90
log stream data set 90
logical partition
defining 99
logical sysplex, defining 100
LOGR couple data set 90, 91
LOGREC data set processing 150
long running enqueues
automating 106
defining commands 107
defining IEADMCxx symbols 107
defining resources 106
defining snapshot intervals 107
handling 93
making job/ASID definitions 107
LookAt message retrieval tool xvi

M

maintenance start, DB2 automation 111
major resources 61, 137
making generic automation
procedures 12
making job/ASID definitions
for long running enqueues 107
managing
couple data set 89
coupling facilities 91
system logger 90

master automation tables 34
multiple 35

message
forwarding 70
ISQ9001 70
ISQ9011 70

IXC102A, automation of 96
IXC402D, automation of 96
testing 70, 73
message automation 25
AT build 29
AT build concept 30
AT load 33
defining actions 26
defining AT scope 29
defining AUTO actions 27
defining captured messages 27
defining CMD actions 26
defining OVR actions 28
defining REPLY actions 26
defining status messages 27
determining AT build 30
enabling for the automation agent 33
known messages 26
Linux console messages 68
Linux console messages, case
sensitive 69
Linux console messages, restrictions
and limitations 69
Linux console messages, security
considerations 69
overview 25
predefined 31
preparing for processor operations
resources 68
preventing the building of AT
entries 27
unknown messages 26
use of symbols 26
message automation for processor
operations resources 65
message presentation 37
message processing facility list
adding application messages 3
message retrieval tool, LookAt xvi
message testing 73
messages
automation 25
classifications 33
defining as minor resources 61
developing for automation
procedures 13
trapping UNIX syslogd 87
messages, entries in MPF list 3
minor resources
and INGAUTO 61
and task globals 137
defining message and status as 61
resource name 137
monitor command, INGMTRAP 56
monitor resource (MTR) 45
monitor resources 46
writing commands 47
monitor routine 45
writing 45
writing your own 46

monitoring
automation with interactive assist
mode 19
JES3 49
with OMEGAMON 53
monitoring applications 45
monitoring routines
AOFRJ3MN 50
AOFRJ3RC 52
monitoring routines for z/OS UNIX
resources 81
MPF list 4
adding application messages 3
MTR
See also monitor resource
See monitor resources
MVS Automatic Restart Manager
clone ID 211
element names 211
global variables 211
MVS guest target systems
NIP console 75
NIP messages 75
problem determination mode 75
MVS target systems, customizing 76
MVSESA.RELOAD.ACTION minor
resource 147
MVSESA RELOAD.CONFIRM flag 147
MVSESA RELOAD.CONFIRM minor
resource 147

N

NetView
generic automation table entries 43
Linux console connection to 68
testing and debugging facilities 21
NetView automation table
adding processor operations messages
to 69
adding SDF entries 3
AOFMSGSY 36
fragments 36
generic entries 43
integrating 35
ISQEXEC 11, 70
ISQOVRD 12
ISQXLOC 11
ISOQXMON 70
ISQXUNL 11
master automation tables 34
merging entries 73
multiple master automation tables 35
production 73
reloading tables 4
sample entry 71
samples 33
structure 33
user-written statements 35
new automation definitions
building 74
NMC workstation 3
NONSNA statement 4
NORMAL WTOR priority 2
notifications 8
NWTOR 2

263

Index

(0

OMEGAMON
exception analysis 53
monitoring with 53
monitoring, overview 53
session management, INGMTRAP 56
session management, INGOMX 55
topologies 54
usage scenario 53
operation and job errors, TWS
Automation 175
operator cascades 39
outstanding reply processing 1
overview
message automation 25
monitoring with OMEGAMON 53
OVR actions
defining for message automation 28

P

panels
DISPACF 160, 163, 172, 173
INGTHRES 159
JES2 168, 169, 172
LOGREC 152
SMF 154
SYSLOG 156, 157
persistent connection 92
persistent structure 92
physical sysplex, defining 100
planning requirements, DB2
automation 112
policy
CFRM 91
couple data set 89
PPI and gateway failures, TWS
Automation 175
predefined message automation 31
preference list 91
preventing
the building of AT entries 27
PRI WTOR type 2
primary CDS 89
problem determination mode
MVS guest target systems 75
process monitoring, z/OS UNIX
Automation 82
processing
CICSPlex 180
IMS dependent region 188
processor
defining 99, 104
PROCESSOR INFO policy item
using 99
processor operations
guest machines support 74
important considerations 108
processor operations command
messages 71
processor operations commands 13
processor operations controlled resources,
automating 65
processor operations resource 65
processor operations resource message
automation 65

264

ProcOps Service Machine 74
guest target systems 74
programming
additional SA z/OS automation
procedures 5
recommendations for automation
procedures 22
programming recommendations
automation procedures 22
proxy resource 66
proxy resources
customizing automation for 66
shutdown considerations 68
startup considerations 68
pseudo-exits 147
PSM
See ProcOps Service Machine

R

rebuild 92
system-managed 92
user-managed 92
recommendations
programming, for automation
procedures 22
recovery
"hung” command 94
alternate CDS 89
alternate CDS, customizing 90
auxiliary storage shortage 97
auxiliary storage shortage,
automating 107
command flooding 95
handling long-running enqueues 93
IMS MSC link 189
IMS OLDS 190
IMS RECON 190
long running enqueues,
customizing 96
SYSIEFSD resource 94
system log 93
system log failure, enabling 101
system log, customizing 93
system logger, customizing 91
system logger, directory shortage 91
WTO(R) buffer shortage 93
WTO(R) buffer shortage,
customizing 93
WTOR(R) buffer shortage,
enabling 102
reload action exit 147
reload permission exit 147
RELOAD.ACTION flag 147
RELOAD.CONFIRM flag 147
reloading NetView automation table 4
REPLY actions
defining for message automation 26
reply processing
outstanding 1
resolving
system log failure 93
WTO(R) buffer shortages 93
resources, defining for long running
enqueues 106
restrictions and limitations, Linux console
messages 69

System Automation for z/OS: Customizing and Programming

return codes, health state 47
REXX coding example 21
REXX PARSE 22

REXX trace type 20
RWTOR 2

S

SA z/0S
commands ISQXIPM and
ISQCMMT 10

SA z/0S graphical user interface
enable an application for 3
sample
automation tables 33
scenario
OMEGAMON 53
SDF
and specific problems 222
components 224
customizing 215
customizing initialization
parameters 229
defining hierarchy 226
defining in automation control
file 230
defining in customization dialog 230
defining panels 227
definition process 225
for multiple systems 223
how it works 215

panels
definition 222, 226
types 215

starting and stopping 224
status descriptors 216
tree structures 217
SDF entries 3
SEC WTOR type 2
second level systems, VM support 74
security considerations, Linux console
messages 69
sequence
AT entries 32
serialize command processing 10
session management
OMEGAMON, INGMTRAP 56
OMEGAMON, INGOMX 55
SETASST 18
setting up z/OS UNIX automation 80
example 84
SFM
See Sysplex Failure Management
short on storage, CICS 182
shortcut keys xiii
shutdown
CICS 182
IMS 193
shutdown considerations, proxy resource
automation 68
SMF data set processing 153
snapshot intervals, defining for long
running enqueues 107
start definitions for z/OS UNIX
resources 83
start/stop tablespace, DB2
automation 111

started task job name
defining 108
startup
CICS 183
IMS 191
startup considerations, proxy resource
automation 68
status
defining as minor resources 61
status change commands 133
status descriptors 218
chaining to status components 219
propagating 221
status information 8
status messages
defining for message automation 27
status observer control, TWS 178
status, CICS VSAM RLS 181
stop definitions for z/OS UNIX
resources 83
structure 91
allocation 91
automation procedures, of 6
deallocation 92
duplexing 92
persistent 92
preference list 91
rebuild 92
system-managed rebuild 92
user-managed rebuild 92
SUBSAPPL 22

SUBSJOB 22
SUBSTYPE 22
subsystem

adding to automation 1

up at initialization commands 147
SVC dump processing 157
symbols

use with message automation 26
SYSIEFSD resource recovery 94

customizing 96
SYSLOG message automation 93
SYSLOG processing 155
syslogd messages, trapping 87
sysplex automation

enabling 89
SYSPLEX couple data set 101
Sysplex Failure Management 96
sysplex functions 89

switching on and off 109
SYSPLEX policy item

defining 101
sysplex support, IMS 193
system

connecting to processor 100

defining 100
system log 93
system log failure

recovery, enabling 101
system log recovery, customizing 93
system logger

directory extent 91

log stream 90

log stream data set 90

LOGR couple data set 91

managing 90

recovery, customizing 91

system logger (continued)
recovery, directory shortage 91
system operations control files 74
automation control file 3
automation manager configuration
file 3
system removal 96
enabling 104
system-managed rebuild 92

T

target systems, customizing 75
task global variables 9
TCO automation, IMS 194
TCP port monitoring, z/OS UNIX
Automation 82
TEC Notification 42
temporary data set HLQ
defining 108
terminate threads, DB2 automation 111
testing
automation procedures 17
messages 73
more information 22
NetView facilities 21
testing exits 147
topologies
OMEGAMON 54
Topology Manager 43
transaction recovery
CICS 185
IMS 194
trapping UNIX syslogd messages 87
TWS Automation
operation and job errors 175
PPI and gateway failures 175
TWS controller status 178
TWS status observer control 178

U

unit of work recovery, CICS 187
UNIX Automation
automated resources 82
debugging 87
file monitoring 82
hints and tips 87
process monitoring 82
setting up 80
setup example 84
TCP port monitoring 82
UNIX resources
customization of 80
definitions for 80
monitoring routines for 81
start and stop definitions 83
UNIX syslogd messages, trapping 87
UNIX System Services, integration 79
unknown messages, message
automation 26
UNUSUAL WTOR priority 2
user exits 129
static exits 132
user logon, LINUX guest target
systems 75

user-managed rebuild 92
using

PROCESSOR INFO policy item 99
USS resources, automating 79
UWTOR 2

\'

VM second level systems support 74
VM target systems, customizing 76
VSAM RLS status, CICS 181
VSE guest target systems 75
VSE target systems, customizing 77
VTAM

and assist mode 18

w

writing
monitor resource commands 47
monitor routine 45
WTO(R)
processed, deletion from SDF 161
WTO(R) buffer 93
WTO(R) buffer shortage recovery
customizing 93

WTOR
priority 1
type 1

WTOR(R) buffer shortage
recovery, enabling 102

X

XRF processing, IMS 195

V4

z/0OS UNIX applications 79
infrastructure overview 79
z/0S UNIX Automation
automated resources 82
debugging 87
file monitoring 82
hints and tips 87
process monitoring 82
setting up 80
setup example 84
TCP port monitoring 82
z/0S UNIX resources
customization of 80
definitions for 80
monitoring routines for 81
start and stop definitions 83
z/0OS UNIX System Services, integration
of 79

Index 265

266 System Automation for z/OS: Customizing and Programming

Readers’ Comments — We’d Like to Hear from You

System Automation for z/OS
Customizing and Programming
Version 3 Release 1
Publication No. SC33-8260-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]] O O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand O O 0 U u
Well organized O O O] U U
Applicable to your tasks O] | O]

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

SC33-8260-03

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SC33-8260-03

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH
Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

-

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5698-SA3

Printed in USA

SC33-8260-03

Buiwwelbold pue Buiziwolsny

L aseajay € uoIsia\ SO/Z J0J UONBLWONY WaISAS

:uoLjewdojul autds

	Contents
	Figures
	Tables
	Notices
	Web Site Disclaimer
	Programming Interface Information
	Trademarks

	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	About This Book
	Who Should Use This Book
	Prerequisites
	Where to Find More Information
	The System Automation for z/OS Library
	Related Product Information
	Using LookAt to look up message explanations

	Chapter 1. How to Add a New Application to Automation
	Step 1: Define an Application Policy Object
	Step 2: Define Outstanding Reply Processing
	Step 3: Build New System Operations Configuration Files
	Step 4: Code Entries for Application Messages in the MPF List (Optional)
	Step 5: Add SDF Entries for the Subsystem (Optional)
	Step 6: Enable the Application for the SA z/OS Graphical Interface
	Step 7: Reload MPF List and Automation Configuration Files

	Chapter 2. How to Create Automation Procedures
	Programming Additional SA z/OS Automation Procedures
	How Automation Procedures Are Called
	How CLIST or REXX Automation Procedures Are Structured
	Performing Initialization Processing
	Determining whether Automation Is Allowed
	System Operations
	Processor Operations

	Performing Automation Processing
	Automation Processing in System Operations
	Automation Processing in Processor Operations

	How to Make Your Automation Procedures Generic
	Processor Operations Commands

	Developing Messages for Your Automation Procedures
	Example AOCMSG Call

	Example Automation Procedure
	Notes on the Automation Procedure Example

	Installing Your Automation Procedures
	Testing and Debugging Automation Procedures
	The Assist Mode Facility
	Using Assist Mode to Test Automation Procedures
	Using AOCTRACE to Trace Automation Procedure Processing
	REXX Coding Example

	NetView Testing and Debugging Facilities
	Where to Find More Testing Information

	Coding Your Own Information in the Automation Status File
	Programming Recommendations
	Global Variable Names

	Chapter 3. How to Add a Message to Automation
	Conceptual Overview
	Defining Actions for Messages
	Defining CMD or REP Actions
	Defining AUTO Actions
	Defining Status Messages
	Defining Captured Messages
	Preventing the Building of AT Entries

	Defining OVR Actions

	Defining the NetView AT Scope
	Build
	NetView Automation Table Build Concept
	When Is an AT Built?
	Predefined Message Automation
	AT Entries Built for Messages Known to SA z/OS
	AT Entries for SA z/OS Internal Messages
	AT Entry Specialties
	AT Entries for Messages That Have Multiple Actions Defined

	AT Entry Sequence

	Load
	Enabling Message Automation for the Automation Agent
	Listing ATs

	A Guide to SA z/OS Automation Tables
	Automation Table Structure
	Master Automation Tables

	Integrating Automation Tables
	Multiple Master Automation Tables
	Using SA z/OS %INCLUDE Fragments

	Generic Synonyms—AOFMSGSY
	SA z/OS Message Presentation—AOFMSGSY
	Operator Cascades—AOFMSGSY
	TEC Notification—AOFMSGSY
	SA z/OS Topology Manager for NMC—AOFMSGST

	Generic Automation Table Statements

	Chapter 4. How to Monitor Applications
	How to Write Your Own Monitor Routines
	Monitor Resources
	Writing Monitor Resource Commands
	Writing a Monitor Routine
	Writing a Recovery Routine

	Monitoring JES3 Components
	AOFRJ3MN Routine
	AOFRJ3RC Routine

	Chapter 5. Exception-Based Monitoring with OMEGAMON
	Overview
	Scenario
	Topologies
	OMEGAMON Interaction
	Programming Interface INGOMX for OMEGAMON
	Example 1: Returning Information on Common Storage Utilization Using the CSAA Command
	Example 2: Using OMEGAMON command modifiers
	Example 3: Trapping outstanding operator replies
	Example 4: Issuing OMEGAMON minor commands

	Monitor Command INGMTRAP

	Health Based Automation Using OMEGAMON
	Recovery Techniques
	Programming Techniques
	Recommendations

	Chapter 6. How to Automate Your Resources
	Using Automation Flags
	Example

	When SA z/OS Checks Automation Flags
	The Automation Manager Global Automation Flag

	Chapter 7. How to Automate Processor Operations-Controlled Resources
	Automating Processor Operations Resources of z/OS Target Systems Using Proxy Definitions
	Concept
	Customizing Automation for Proxy Resources
	Startup and Shutdown Considerations

	Preparing Message Automation

	Automating Linux Console Messages
	The Linux Console Connection to NetView
	Linux Console Automation with Mixed Case Character Data
	Security Considerations
	Restrictions and Limitations

	How to Add a Processor Operations Message to Automation
	Messages Issued by a Processor Operations Target System
	Sample NetView Automation Table Statements
	Message ISQ211I
	Processor Operations Command Messages
	Testing Messages

	Building the New Automation Definitions
	Loading the Changed Automation Environment

	VM Second Level Systems Support
	Guest Target Systems
	Customizing Target Systems
	LINUX
	MVS
	VM
	VSE

	Chapter 8. How to Automate USS Resources
	Integration of z/OS UNIX System Services
	Infrastructure Overview

	Setting Up z/OS UNIX Automation
	Customization of z/OS UNIX Resources
	Definitions for Automation Setup
	Definitions for z/OS UNIX Resources
	Automated Resources
	Start and Stop Definitions (INGUSS Command)

	Example: inetd

	Hints and Tips
	Trapping UNIX syslogd Messages
	Debugging

	Chapter 9. How to Enable Sysplex Automation
	Sysplex Functions
	Managing Couple Data Sets
	Ensuring Continuous Availability of Couple Data Sets
	Customization

	Managing the System Logger
	Terms and Concepts
	Re-sizing the LOGR Couple Data Sets in Case of Directory Shortage
	Customization

	Managing Coupling Facilities
	Recovery Actions
	Resolving a System Log Failure
	Resolving WTO(R) Buffer Shortages
	Handling Long-Running Enqueues (ENQs)
	System Removal
	Recovering Auxiliary Storage Shortage

	Hardware Validation
	Prerequisites

	Enabling Hardware-Related Automation
	Step 1: Defining the Processor
	Step 2: Using the Policy Item PROCESSOR INFO
	Step 3: Defining Logical Partitions
	Step 4: Defining the System
	Step 5: Connecting the System to the Processor
	Step 6: Defining Logical Sysplexes
	Step 7: Defining the Physical Sysplex

	Enabling Continuous Availability of Couple Data Sets
	Enabling System Log Failure Recovery
	Enabling WTO(R) Buffer Shortage Recovery
	Enabling System Removal
	Step 1: Defining the Processor and System
	Step 2: Defining the Application with Application Type IMAGE
	Step 3: Automating Messages IXC102A and IXC402D

	Enabling Long Running Enqueues (ENQs)
	Step 1: Defining Resources
	Step 2: Making Job/ASID Definitions
	Step 3: Defining IEADMCxx Symbols
	Step 4: Defining Commands
	Step 5: Defining Snapshot Intervals

	Enabling Auxiliary Storage Shortage Recovery
	Step 1: Defining the Local Page Data Set
	Step 2: Defining the Handling of Jobs

	Defining Common Automation Items
	Important Processor Operations Considerations
	Customizing the System to Use the Functions
	Additional Automation Operator IDs
	Switching Sysplex Functions On and Off

	Chapter 10. DB2 Automation for System Automation for z/OS
	Overview
	Line Mode Functions

	Planning Requirements
	IMS
	CICS

	Installation
	Automation Control File (ACF)

	Defining Automation Policy
	Tailoring Your DB2 ACF Entries

	DB2 Automated Functions—Line Command Functions
	Command Handler

	Command Requests
	Maintenance Start
	Terminate Threads
	Start/Stop Tablespace

	Event-Driven Functions
	Connection Monitoring
	Critical Event Monitoring

	Chapter 11. SA z/OS User Exits
	Initialization Exits
	Environmental Setup Exits
	AOFEXDEF
	AOFEXI01
	AOFEXI02
	AOFEXI03
	AOFEXI04
	AOFEXINT

	Static Exits
	AOFEXSTA
	AOFEXX01
	AOFEXX02
	AOFEXX03
	AOFEXX15
	AOFEXX16

	Flag Exits
	Parameters
	Return Codes

	Customization Dialog Exits
	User Exits for BUILD Processing
	User Exits for COPY Processing
	User Exits for DELETE Processing
	User Exits for CONVERT Processing
	User Exits for MIGRATION, RENAME, and IMPORT Functions
	Invocation of Customization Dialog Exits

	Command Exits
	AOFEXC00
	AOFEXC01
	AOFEXC02
	AOFEXC03
	AOFEXC04
	AOFEXC05
	AOFEXC06
	AOFEXC07
	AOFEXC08
	AOFEXC09
	AOFEXC10
	AOFEXC11
	AOFEXC12
	AOFEXC13
	AOFEXC14

	Pseudo-Exits
	Automation Control File Reload Permission Exit
	Automation Control File Reload Action Exit
	Subsystem Up at Initialization Commands

	Testing Exits

	Chapter 12. Automation Routines
	LOGREC Data Set Processing
	AOFRSA01
	Purpose
	Format
	Restrictions
	Usage
	Global Variables

	AOFRSA02
	Purpose
	Format
	Restrictions
	Usage
	Examples

	SMF Data Set Processing
	AOFRSA03
	Purpose
	Format
	Restrictions
	Usage
	Global Variables
	Examples

	SYSLOG Processing
	AOFRSA08
	Purpose
	Format
	Restrictions
	Usage
	Examples

	SVC Dump Processing
	AOFRSA0C
	Purpose
	Format
	Restrictions
	Usage
	Global Variables
	Examples

	Deletion of Processed WTORs from SDF
	AOFRSA0E
	Purpose
	Format
	Parameters
	Restrictions
	Usage
	Example

	AMRF Buffer Shortage Processing
	AOFRSA0G
	Purpose
	Format
	Restrictions
	Usage
	Examples

	JES2 Spool Recovery Processing
	AOFRSD01
	Purpose
	Format
	Restrictions
	Usage

	AOFRSD09
	Purpose
	Format
	Parameters
	Restrictions
	Usage
	Global Variables

	AOFRSD0H
	Purpose
	Format
	Parameters
	Restrictions
	Examples

	JES2 Shutdown Processing
	HASP099
	Restrictions
	Usage

	Drain Processing Prior to JES2 Shutdown
	AOFRSD07
	Purpose
	Format
	Restrictions
	Usage

	AOFRSD0F
	Purpose
	Format
	Parameters
	Restrictions
	Usage
	Examples

	AOFRSD0G
	Purpose
	Format
	Parameters
	Restrictions
	Usage
	Example

	JES3 Dump Processing
	AOFRSE0J
	Purpose
	Format
	Restrictions
	Usage
	Example

	TWS Automation PPI and Gateway Failures
	EVJEAC01
	Purpose
	Usage

	EVJEAC02
	Purpose
	Usage

	TWS Automation Operation and Job Errors
	EVJEAC03
	Purpose
	Format
	Usage

	EVJEAC04
	Purpose
	Format
	Usage

	EVJRAC05
	Purpose
	Format
	Usage

	EVJRSJOB
	Purpose
	Format
	Usage

	TWS Status Observer Control
	EVJEOBSV
	Purpose
	Format
	Parameters

	TWS Controller Status
	EVJRSACT
	Purpose
	Format

	CICS-Related Processing and Recovery
	CICS Region Abend Recovery
	EVEET003

	CICSPlex Processing
	EVERCMRC
	EVERSCMI

	CICS Link Monitoring
	EVEED004

	CICS VSAM RLS Status
	EVEERLSI

	CICS Shutdown
	EVERSPPI

	CICS Short on Storage
	EVEEY00S

	CICS Startup
	EVEEARMW
	EVEEI115
	EVEEI004
	EVEEI006
	EVEEI009
	EVEEI010
	EVEECMSI

	CICS Transaction Recovery
	EVEERTRN

	CICS Unit of Work Recovery
	EVEETUOW
	EVEET002

	IMS-Related Processing and Recovery
	IMS Region Abend Recovery
	EVIER000
	EVIER001

	IMS Dependent Region Processing
	EVIES002
	EVIES003

	IMS MSC Link Recovery
	EVIEY00S

	IMS OLDS Recovery
	EVIECO05
	EVIEY00S

	IMS RECON Recovery
	EVIECR04

	IMS Startup
	EVIDISCQ
	EVIEI00A
	EVIEI00C
	EVIEI00Q
	EVIEI006
	EVIEI20B
	EVIEI200

	IMS Shutdown
	EVIET006

	IMS Sysplex Support
	EVISTRCT
	EVISTRNM

	IMS TCO Automation
	EVIEET00

	IMS Transaction Recovery
	EVIEY00S

	IMS XRF Processing
	EVIAVM06
	EVIEI00D
	EVIEI00F
	EVIEI00G
	EVIEI005
	EVIEI008
	EVIEI009
	EVIEO000
	EVIEO001
	EVIEO002
	EVIEO006
	EVIEO007
	EVIEO008
	EVIEO010
	EVIET00E

	Appendix A. Global Variables
	Read-Only Variables
	Read/Write Variables
	Parameter Defaults for Commands

	Appendix B. Customizing the Status Display Facility (SDF)
	Overview of Status Display Facility
	How SDF Works
	Types of SDF Panels
	Root Component
	Status Component
	Detail Status Display

	Status Descriptors
	SDF Tree Structures
	How Status Descriptors Affect SDF
	Priority and Color Assignments
	Chaining of Status Descriptors to Status Components
	Propagating Status Descriptors Upward and Downward in a Tree Structure

	How SDF Helps Operations to Focus on Specific Problems
	How SDF Panels Are Defined
	Dynamically Loading Tree Structure and Panel Definition Members
	Using SDF for Multiple Systems
	SDF Components
	How the SDF Task Is Started and Stopped
	Starting the SDF Task
	Stopping the SDF Task

	SDF Definition
	Summary of SDF Definition Process
	Step 1: Defining SDF Hierarchy
	Tree Structure Definitions

	Step 2: Defining SDF Panels
	Panel Definition Methods
	Panel Definition Structure
	Recommended Order for Defining Panels
	Example Panel Definition
	%INCLUDE Statement for SDF Panels

	Step 3: Customizing SDF Initialization Parameters
	Step 4: Defining SDF in the Customization Dialog

	Appendix C. Message Automation
	FORCED AT Entry Type
	RECOMMENDED AT Entry Type
	CONDITIONAL AT Entry Type
	Known Messages
	Unknown Messages

	Other Forced AT Entries
	Restricted Message IDs

	Appendix D. TSO User Monitoring
	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

