IBM iDoctor for IBM |
Collection Services Wait Buckets (V5R3/V5R4)

IBM iDoctor for IBM i Development Team
11 January 2009

Licensed Materials - Property of IBM
a Copyright International Business Machines Corporation 2009. All rights

reserved.

Abstract
This document provides a discussion of the Wait Buckets used by Collection
Services and shown within iDoctor Collection Services Investigator.

Changes
11 Jan 2009 — Updated for website
2 Nov 2006 — Initial Creation

Introduction

This document is a discussion of the i5/0S "Wait Buckets" as seen in Collection
Services performance data for OS versions V5R3 and V5R4. This data is found
in performance data files QAPMJOBWTD (bucket descriptions) and
QAPMJOBWT (wait bucket data for each job, task or thread).

Note: In IBM i 6.1 both Collection Services and Job Watcher share the same 32
bucket mapping (not discussed in this document).

Wait Buckets

Wait buckets do not really account for resources used; they are used to account
for elapsed time. The wait buckets for a job, thread or task quantify how long it
has:

1) Been "active" (dispatched on a partition's processing unit) or
2) Been "ready to run" or "CPU queued" or
3) Waited, differentiated into a variety of wait reasons (buckets)

In general, the sum of al these times should match elapsed ("wall-clock™) time,
with two potentially large exceptions:

- The current, "in progress" wait at the time Collection Services takes its interval
sample

- Entire intervals in which a thread or task has not used CPU (Collection
Services' "zero CPU" exclusion)

Through V5R4, Collections Services does not include the current, in progress
wait, into the wait buckets data. It is not included until the wait completes. See
Current Wait and Effects of Long Waits below, after the Wait Buckets

descriptions for more details.

The Wait Buckets (WBs), and information associated with them, are maintained
within the system on a per thread and per Licensed Internal Code (LIC) task
basis. Each individually dispatchable unit of work (a thread of a Job or a LIC
task) has its own set of WBs. Neither the system nor Collections Services
aggregate together the WBs in multi-threaded jobs. Collection Services reports
WBs for all threads and tasks that used CPU during a sample interval. Whenever
a record is written to QAPMJOBMI file representing resources used by thread or
task during the interval, a matching record is written to QAPMJOBWT file,
representing WBs of this thread or task.

There are two metrics associated with each WB: count and time

Count: the number of times the thread or LIC task has experienced a state
covered by the specific WB (more precisely, how many times it has transitioned
out of that state)

Time: the elapsed time (wall-clock time) the thread or LIC task has spent in a

state covered by the specific WB

Collection Services uses a default layout of WBs - approximately 200 individual
wait points are mapped to 16 wait buckets.

However, it should be noted that there is another tool that harvests WBs - Job
Watcher. Job Watcher uses the same individual wait points, but they are mapped
differently - to 32 WBs instead of 16.

Job Watcher WBs are described in detail in a Job Watcher document, different
versions of which are linked from here https://www-912.ibm.com/i_dir/idoctor.nsf.
Job Watcher WBs are reported in a different set of files and should not be
normally a concern for Collection Services users.

However, running Job Watcher on a system will have an impact on how
Collection Services reports WBs.

1) On V5R3 system, Job Watcher will completely redefine the WBs used by the
system.

The WBs reported by Collection Services, will be 32 WBS defined by Job
Watcher. See Job Watcher documentation for the details about that set of WBs.
2) On V5R4 system, Collection Services will always report 16 default WBS. In
addition, if Job Watcher is active, Collection Services will report Job Watcher
buckets 17 to 32. It is important to understand that buckets 1 to 16 always
account for entire lifetime of a thread or task. Buckets 17 to 32 are meant to
provide additional detail. In other words - time reported in buckets 17 to 32 is also
reported in some buckets 1 to 16.

When in doubt, look at the contents of QAPMJOBWTD file. That file reports the
descriptions of all the buckets currently in effect.

The rest of this document describes the default layout that consists of 16 WBs.
OK, what are wait "mappings"?

In an i5/0OS partition, ALL "waiting" is done-at, or controlled-by the LIC. This is
very advantageous, from a performance-monitoring point of view in that it allows
ALL wait points to be instrumented with some type of Wait Accounting.

"ALL" truly means all wait points. These run the gamut from:

- Waiting for a disk read operation due to a page fault

- Waiting for internal serialization(s) during LIC access to an object

- Waiting for a data base record lock

- Waiting for a thread to start or end in Java

- Waiting on a Socket Accept or Receive for a piece on incoming data

- Waiting for a user to "press Enter" in a 5250 interactive application
- Waiting induced by HLDJOB (hold job), or by waiting for an Activity Level slot to
become available

In all, there are approx. 200 such wait points, or wait reasons.

It would be good if all 200 individual wait points had their own pair of (count, time)
accounting. However, this would consume too much system resource,
specifically main memory. Instead, the system maps the 200 wait points into
either 16 or 32 "buckets".

The default 16 Wait Buckets

The titles of the 16 default WBs, as seen in the Collection Services file named
QAPMJOBWTD are:

Ti me di spatched on a CPU
CPU queui ng

Reserved

O her waits

DASD (page faults)

DASD (ot her)

Socket

Idle / waiting for work
Sei ze

10 Obj ect | ock

11 Record | ock

12 Gat e

13 Java

14 Jour na

15 Mut ex and Seraphore

16 Reserved

O©CoO~NOUA,WNPE

WB 1:"Time dispatched on a CPU". This is really not a WAIT bucket!
This is the only one of the 16 that represents any type of "active" time. The
official definition of WB1 is "time dispatched to a virtual processor within the
LPAR". This accumulates the amount of wall-clock time a thread or task has
been “dispatched” to a virtual processor. “Dispatched to a virtual processor”
means the thread or task has been assigned a virtual processor” - not
necessarily that it has been actually using CPU resource.

The dispatched time value can differ from the “CPU Time” as measured by other
means (DSPJOB, WRKACTJOB, WRKSYSACT, job accounting, the JBCPU field
itself in Collection Service's QAPMJOBMI file. True CPU time represents the
Physical Processor time consumed by a thread or task. The difference between
WB1 and CPU time can be large. The main factors that cause these
discrepancies are:

- Both the Processor Hardware Multi-Threading (HMT) and the Simultaneous
Multi Threading (SMT) features. This can cause bucket 1's time to be larger than
the actual CPU time. HMT is when more than one thread or task can be
simultaneously assigned to the same physical processor. In that scenario, they
share the processor’s cycles, mainly during long “off chip” operations, like
memory fetches. Bucket 1 will record the elapsed time a thread or task has been
dispatched. The "real" CPU value will only include the exact number of cycles
used by the thread or task while it was dispatched.

- Background assisting tasks, like those used in the DB Multitasking Feature.
Background assisting tasks, which promote (add) their CPU usage back into the
client job/thread, will cause the client thread’s bucket 1 value to be smaller than
the measured CPU time.

- LPAR shared/partial processors. This is where the tricky concept of Virtual
Processors (VPs) comes into play. Bucket 1 actually records the elapsed time a
thread or task is dispatched to a Virtual Processor, not (necessarily) a Physical
Processor. A VP is known only within the LPAR it is configured. The hypervisor
assigns Physical Processors to VPs. There can be a one-to-one mapping, or
there can be more VPs than there are Physicals. The Physicals can be shared,
wholly or partially, across LPARS. Due to this high degree of VP <-> Physical
configuration options, it's possible that when a thread or task is dispatched to a
VP, the bucket 1 time will be greater than the CPU time. This is because WB1
will include time the thread/task is dispatched, but is “waiting for it's turn” at a
physical processor.

WB 2: "CPU Queuing". This is simply the amount of time a thread/task has
waited... ready to run... for a virtual processor to become available within the
LPAR. Note, in some ways, this bucket is not much different than the "LPAR
shared/partial processor" aspect of bucket 1. It is just that the time waiting for a
physical processor is accounted for differently.

Summary and example of WB1 and WB2:

This graphic shows the relationship between WB1, WB2 and "real" CPU time:

-- >time
--Wait--><-----"ready to run"-------- ><maeee on aVIRTUAL Processor------- >
Lommmmmeme- WB2-------------- >
ommmmmmmmmme e WB1--------m-mmmmememeeee >
cce cce cce

¢ = Real CPU time (msecs in QAPMJOBMI for example).

A thread is ready to execute instructions, because its current wait has ended. For
example, a Socket Receive was satisfied. Call this time A. At time A, the i5/0S
tries to dispatch the thread to a virtual processor. Suppose none are available
until time B. The delta of B-A is added to bucket 2. At time B, this also begins the
timing of what will eventually be added into WB 1. Suppose the virtual processor
is shared or partial and a physical processor is not yet available. During this
period, time is still "accumulating” in what will be added to WB 1. Eventually, a
physical processor becomes available and the virtual processor is assigned to a
physical processor at time C. Suppose the thread uses a little CPU and then
blocks on another Socket Receive at time D. Delta D-C represents the maximum
amount of "real" CPU time that would be "charged" to the thread. Usually, it is
roughly 1/2 of D-C because the processor is running in Multi-Threading mode,
and 2 threads are sharing the cycles of a physical processor. Delta D-B is added
into WB1. This example is the simplest in some ways, depending on how much
real CPU a thread needs before it blocks again, there could be several cycles of
this sequence occurring between blocks.

Note: there may always be minuscule amounts of time reported in WB2; even if
there are virtual processors are readily available. It's an artifact of the fact that
SOME tiny, finite amount of time transpires between when a thread becomes
“ready to run” and when it is dispatched to a processor.

WB 3: "Reserved". No wait points assigned. There may be nonzero values in
the (count, time) for this bucket, but they have no meaning.

WB 4: "Other Waits". In V5R4, there are 27 individual wait points (block
points) mapped into WBA4. This is the unfortunate, but needed "catch all" bucket.
All wait points not otherwise differentiated (via assignment to buckets 4-16) are
included here. As with many of the other buckets described here, if WB4 is a
large percentage of a thread's wait time, it might be necessary to dig deeper. See
How to Dig Deeper below.

There is a particular type of wait that is mapped into the default WB4 worth
mentioning. These are the IFS (Integrated File System) "Pipe" waits. If an
application is known to use IFS Pipe operations, then it's possible that these
waits...in WB4... could be "normal”.

How to Dig Deeper

This applies to all WBs.

There are several options available to gather more information about ambiguous
WBs:

1) Good Run vs. Bad Run approach. Look at Collection Services data from
several time periods. Include those that had good response time and/or
throughput, and those that had poor. You might learn, for example, that during
"good" runs, WB4 and WB7 have high percentages for particular threads.
Without digging into those further, you could draw (the reasonably sound)
conclusion that those waits are "OK". Then, when a run comes by with a
radically different breakdown of waits, you could conclude that the run is either
radically better or more likely, radically worse. In that case, spend the time to dig
into the newly high WBs, not the "normal” ones (yes, the "normal ones" could get
bigger.... it's not an easy "science™!).

2) Exploit Collection Services "Current Wait" information. Current Wait info, in
either Collection Services or Job Watcher, can give clues as to which specific
wait/block point might be involved of all those mapped to any given WB. See the
description of "Current Wait" after the bucket descriptions.

3) Use Job Watcher to harvest Current Wait, Current Wait Object, the Holding
thread or task (if applicable) and the Call Stack of the waiting thread or task. (Of
course, as mentioned above, Job Watcher uses a different waits->buckets
mapping, so be careful).

Further discussion on this is beyond the scope of this document.

WB 5: "DASD (page faults)". In V5R4, there are 6 individual wait points
(block points) mapped into WB5. These represent the various ways a thread or
task can wait for a page fault read from disc. As with all the WBs, some simple
division of the time/count can yield some interesting data. For WB5, this would be
the average time page faults reads had taken for the thread or task.

WB 6: "DASD (other)". In V5R4, there are 51 individual wait points (block
points) mapped into WB6. These represent almost all (see Journal below) other
waits for disc operations, other than page faults. It includes:

- Synchronous, non-fault reads

- Waiting for asynchronous reads to complete
- Synchronous writes

- Waiting for asynchronous writes to complete

WB 7: "Socket". In V5R4, there are 14 individual wait points (block points)
mapped into WB7. These are all the various ways a thread can wait/block on a
Socket. For example:

- Receive
- Accept
- Send

WB 8: "Idle/Waiting-for-work". In V5R4, there are 5 individual wait points

(block points) mapped into WB8. There are so few, they might as well be
itemized here:

- Classic Java Virtual Machine (JVM) "user" waits
- APPN, 5250 display and 5250 printer communications waits
- Data Queue waits

Note: this bucket, like the rest, is far from perfect. The preceding one, WB7-
Socket, in many applications would also represent waiting -for-work. So could an
IFS Pipe wait from WB4.

WB 9: "Seize". In V5R4, there are 17 individual wait points (block points)
mapped into WB9. Think of seizes as the Licensed Internal Code’s (LIC’s)
equivalent of Locks. A seize almost always occurs on/against an Ml object (DB2
Physical File Member, DB2 Access Path, Data Queue, Library, User Profile...).
Seizes can conflict with Locks and can cause Lock waits. There are a large
variety of seizes: shared, exclusive, “fair’, and “intent-exclusive”. It's beyond the
scope of this document to explain all there is to know about seizes. They are,
after all, internal LIC primitives that are subject to change at any time. If seizes
are a significant percentage of a Run/Wait Signature, consider following How to
Dig Deeper above. Job Watcher is especially useful for seizes in that the object
name involved and the Holding thread/task are frequently very useful pieces of
information to have.

WB 10: "Object Lock". In V5R4, there are 22 individual wait points (block
points) mapped into WB10. Object locks are used by i50S, LPPs and
applications (ALCOBJ command) to serialize usage of an object. The same How
to Dig Deeper considerations apply as per WB9-Seizes.

WB 11: "Record Lock". InV5R4, there are 6 individual wait points (block
points) mapped into WB11. This should be self-explanatory. Job Watcher will
resolve the DB2 file/member name AND the relative record involved.

WB 12: "Gate". In V5R4, there are 2 individual wait points (block points)
mapped into WB12. Gates are a low level, high performance serialization
mechanism used by LIC. There are many (far more than the 2 mapped to this
WB) types of waits that have a gate as the actual wait mechanism. Fortunately,
many of these are more granularly identified, and are included in other WBs.
WB12 is the "catch all"... for the gate waits that have not otherwise been
"individualized".

Threads vs. LIC Tasks: WB12 is a good place to briefly talk about the
differences in what is considered "normal” or "abnormal” waits... from the
perspective of them occurring in job threads or LIC tasks. In general, high WB12
times in job Threads is "bad", and warrants further investigation. High WB12
times in LIC tasks are more likely "normal”.

WB 13: "Java". In V5R4, there are 20 individual wait points (block points)
mapped into WB13. These waits are all the Java waits that are not considered
"idle"” (idle ones are included in WB8). Note: this WB only applies to Classic Java
Virtual Machine (JVM) (verses IBM® Technology for Java™ Virtual Machine).

WB 14: "Journal”. In V5R4, there are 4 individual wait points (block points)

mapped into WB14. These waits represent how long a thread has waited for
Journal related activities. Principally, waiting for the bundled Journal disk write(s)
to complete.

Note: there is an incorrect mapping in V5R4. There are 2 non-Journal block
points mapped to WB14:

- Mutex Waits
- Semaphore Waits

Both are ILE Posix style synchronization mechanisms used by LPPs and
application programs. Because of this, they will not be mapped into WB15, as
they should be.

WB 15: "Mutex/Semaphore". In V5R4, there are only 2 individual wait
points (block points) mapped into WB15. However these blocks points are
essentially never used in V5R4. In V5R3 these are used and do represent Mutex
and Semaphore waits. See the description of WB14 above... in V5R4 that is
where Mutex and Semaphore waits will be reported.

The following is a brief description of the four types of wait mechanisms that are
mapped to WB15. These are used in ILE applications and LPPs. Such as
Domino, MQ Series and others.

Mutex: A mutex is a mutual exclusion synchronization mechanism that can be
used to control access to shared data areas, where access to the same data is
needed by multiple threads in a process and/or by threads in multiple processes.
The locking mechanism of a mutex ensures that while one thread has a mutex
locked, no other threads can successfully lock the same mutex at the same time,
thereby controlling access to the data the mutex protects.

Semaphore: In general, a counting semaphore, or semaphore for short, is a
synchronization device which permits serialization of a finite number of
resources. A semaphore consists of two pieces of state information: a count and
max_count. The range of the count varies in the industry, but in no case can the
count exceed the max_count. A semaphore is in its signaled state if count > 0,
and it is nonsignaled otherwise. The two basic operations performed on a
semaphore are wait and post. A wait executed against a semaphore with a count
> 0 causes the count to be decremented by 1. A wait executed against a
semaphore with a count <= 0 causes the calling thread to block until the count is
increased (or effectively increased if there are waiters currently blocked on the
semaphore) by a post operation. A post operation increases (or effectively
increases) the count by a positive amount, n, up to the max_count of the
semaphore. A post operation may unblock up to n threads, in priority order.

WB 16: "Reserved". In V5R4, there are 23 individual wait points (block
points) mapped into WB16. Despite of the name, this WB is not "reserved”. The
wait points mapped to it represent "bad" waits. The include:

- Multiple retries on low-level serializations

- Excessively "busy" wait objects, like queues

- Running low of free frames in a mainstore pool

- Contention on low level LIC Storage Management constructs
- Excessive number of outstanding disc I/O operations

Current Wait

In addition to the WB data, Collection Services also reports a so-called "Current
Wait".

Current wait is reported when thread or task was in the wait state at the moment
of sampling for the data.

Collection Services reports for the current wait:

- Duration of a current wait - since the wait condition started

- The WB that will be updated when the wait will be over

- The individual block point that has a detail reason for the wait.

Effects of long waits.

System updates the WB only after the wait completes.

Remember, that Collection Services does not report thread or task unless it used
CPU in the current sampling interval.

Imagine that thread was in a long wait - the wait that spans one or more sampling
intervals.

Collection Services will not report anything in the intervals where thread was
blocked.

It will only be reported in the interval when wait will be over and thread will be
able to use at least some CPU.

At this time, the entire duration of the wait will be added to the appropriate WB.
As a result, the time value in WB can be significantly larger than an interval
duration.

Trademarks and Disclaimers

& IEM Corporation 1584 2005, AN rights neserved
Feterenoes In this dooument: 20 IBM oroducss o services do not imply Tt I5M imtends: 20 malke Them avalisble in ewery CounT Y

The following terms. are Tade marks of imer national Susiness Machines Conpor ation In e Unied States, ofver coumiries, of bof

BEATT abiy 5Inss 5 on Semand E0E

ERsonaT IEM DR

= Earyar IEM (logo) Eys e 6
I&=rias DE2

Rational s & rademark of Ime mational Susiness Machines Conporation and Ratkonal Sofwer & Corporation In The Unfed Saanes, ofher counmies, of bof
meel, inted (Logo, inted insade, imed Inside koo, imel Centring, Intel Cantring koga, Teleron, imel Xeon, intel SpeedSiep, Ranium, and Perthum are trademariks of regissened
Tademarts of Intel Corporation of s subshdiaries in T Uniied Staes and ofdher counTies.
Ui b5 & Tademark of Linus Tonaids in She UnBed Ssates, oTher countries, of o
Microsoft, Windows., Windows MT. and e Windows 1000 ane Tademarks of Micosoft Conporasion in 5 Unfed Stanes, oth e cowntries, of both
UMDY ks m ragissaned Tademark of The Oipan Group in T Unied Stanes mnd omner counTies
Sy mmyd] ey besad Tademarics sne trademarks of Sun Microspsiems, 00 in e Unined Stetes o er SouTTres, oF 00T
Ay COMpATT. (PRodUct O Servion names may D Ta0SMar s OF a7 vioe marks of oTers.

nformation s provided "AS IS wishout warranty of any kind

AN cussomer examples desoribed ane presented as HusTations of how Thoss oustomers e e used ISM products and The resuls ey may Rawe scnbeped. Aciual sryironme real oosts and
periormance characierisSics may vary by cusiomer.

rrormation conoeming non-ISM products was obtained ¥om a suppiler of these products, published announosmen? material, or ofher publicl avallable sources and doss MOt CONSIE a0
endorsement of such produces by IEM. Sources for non-ISM Iist prices and periormancs rambers ane taken Trom pubiicly avallabie inormation, inclading vendor announcements and wendar
woridwide romepages. 1S M has not sesied Tese products and cannot confinm The acowracy of performance, capablisy, or any ofer claims related 0 nonHISM products. Questions on e
capabilty of non-iS M products should be addressed 5o e supplier of Tose oy oducis.

Al ssanements: regarding ISM fumwr e direction and imtent ane subject 0 change of withara wal wishout notios, and represent goals and objectives only. Contact your local ISM office or IEM
aarnorized nesedher for The ful tec of the speciic Statement of Direction

Some Informacion sddresses amticipated ftune capabiities. Such informanion is nod imended a5 & definfie stxtement of & commEmen: to 508 eeis of periormance, function of delivery
sChedules Wi respect 20 any future oroducis. Such commimenss ane only made In ISM product arnouncements. The linforma tion s presemied here o communicats TSNS cument iwesiment
and devsiopmeant SCTNEles a5 & good falh &fiort 30 help With our Cushamens' futune planning

Periormancs is hased on messunements and projecions using standard I5M benchmaris In & conTolied environment. The acousl Troughpu s of Derormancs it any user will experiencs wi

vary depending Lpon Considerations Such &5 The amour o1 muliprogram ming in T usars job sTeam, e VO configuration, Tie sorage configuration, and The workioad procassad. Thanstone
£0 mSSuranOs Can b given TRt an indiidus] usar will schiess ToUgNDN O DRriorma noe Improyameants aquivalant 5 T ratios sTaned han

PrRotaranng shown are of anginearing prototypes. Chang e may be incornorate d in production models

