
IMS
Version 14

Application Programming APIs
(January 30, 2018 edition)

SC19-4209-03

IBM

IMS
Version 14

Application Programming APIs
(January 30, 2018 edition)

SC19-4209-03

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page 829.

January 30, 2018 edition.

This edition applies to IMS 14 (program number 5635-A05), IMS Database Value Unit Edition, V14.01.00 (program
number 5655-DSE), IMS Transaction Manager Value Unit Edition, V14.01.00 (program number 5655-TM3), and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information vii
Prerequisite knowledge vii
How new and changed information is identified viii
How to read syntax diagrams viii
Accessibility features for IMS 14 x
How to send your comments x

Chapter 1. DL/I calls reference 1
Database management 1

DL/I calls for database management 1
DL/I calls for IMS DB system services 35

Transaction management 81
DL/I calls for transaction management 81
DL/I calls for IMS TM system services 124

EXEC DLI commands 163
Summary of EXEC DLI commands 164
ACCEPT command 165
CHKP command 166
DEQ command 167
DLET command 168
GN command 170
GNP command. 175
GU command 181
ISRT command 186
LOAD command 191
LOG command 192
POS command 193
QUERY command 194
REFRESH command 195
REPL command 196
RETRIEVE command 200
ROLB command 201
ROLL command 202
ROLS command 203
SCHD command 205
SETS command. 206
SETU command 207
STAT command 208
SYMCHKP command 209
TERM command 210
XRST command 211

Command code reference 213
A command code 215
C command code 215
D command code 216
F command code 218
G command code 219
L command code 219
N command code 220
O command code 221
P command code 222
Q command code 222
U command code 225
V command code 226
NULL command code 227

DEDB command codes for DL/I 227
Relationship between calls, AIBs, and PCBs . . . 235
DL/I test program (DFSDDLT0) reference 236

Control statements 236
ABEND statement 237
CALL statement 238
COMMENT statement 259
COMPARE statement. 260
IGNORE statement 266
OPTION statement 266
PUNCH CTL statement 268
STATUS statement. 270
WTO statement. 273
WTOR statement 273
JCL requirements for the DL/I test program
(DFSDDLT0). 274
Execution of DFSDDLT0 in IMS regions . . . 277
Explanation of DFSDDLT0 return codes . . . 278
DFSDDLT0 operations 278

Chapter 2. DRDA DDM command
architecture reference. 281
Overview of the syntax for DDM terms supported
by IMS 281

DSSHDR syntax 282
DDM commit and rollback processing 282
DDM commands and command objects 283

ACCRDB command (X'2001') 283
ACCSEC command (X'106D') 285
CLSQRY command (X'2005') 286
CNTQRY command (X'2006') 287
DEALLOCDB command (X'C801') 289
DLIFUNC command object (X'CC05') 290
DLIFUNCFLG command object (X'CC09') . . . 291
EXCSAT command (X'1041') 292
EXCSQLIMM command (X'200A') 294
EXCSQLSET command (X'2014') 298
FLDENTRY command object (X'CC03') 300
FLDENTRYREL command object (X'CC0C') . . 301
IMSCALL command (X'C803') 301
INAIB command object (X'CC01') 302
MONITORRD command (X'1C00') 303
OPNQRY command (X'200C') 304
PRPSQLSTT command (X'200D') 308
RLSE command (X'C802') 310
RTRVFLD command object (X'CC04') 312
RTRVFLDREL command object (X'CC0B') . . . 312
SECCHK command (X'106E') 313
SEGMLIST command object (X'CC0A') 314
SQLATTR command (X'2450') 315
SQLCARD command (X'2408'). 316
SQLDARD command (X'2411'). 318
SQLDTA command (X'2412') 322
SQLSTT command (X'2414') 324
SSALIST command object (X'CC06') 325

© Copyright IBM Corp. 1974, 2017 iii

DDM reply messages and reply objects 326
ABNUOWRM reply message (X'220D') 326
ACCRDBRM reply message (X'2201') 327
ACCSECRD reply object (X'14AC') 329
AGNPRMRM reply message (X'1232') 330
CMDVLTRM reply message (X'221D') 330
DEALLOCDBRM reply message (X'CA01') . . 331
ENDQRYRM reply message (X'220B') 332
ENDUOWRM reply message (X'220C') 333
EXCSATRD reply object (X'1443') 334
IMSCALLRM reply message (X'CA04') 336
OPNQFLRM reply message (X'2212') 337
OPNQRYRM reply message (X'2205') 338
QRYDSC reply object (X'241A') 339
QRYDTA reply object (X'241B') 340
QRYPOPRM reply message (X'220F') 341
RDBAFLRM reply message (X'221A') 342
RDBATHRM reply message (X'2203') 343
RDBNACRM reply message (X'2204') 344
RDBNFNRM reply message (X'2211') 345
RDBUPDRM reply message (X'2218') 346
RLSERM reply message (X'CA03') 347
RSCLMTRM reply message (X'1233') 348
SECCHKRM reply message (X'1219') 349
SQLERRRM reply message (X'2213') 350

DDM parameters used by IMS 350
AIBOALEN parameter (X'C904') 351
AIBRSNM1 parameter (X'C901') 351
AIBRSNM2 parameter (X'C902') 351
AIBSFUNC parameter (X'C903') 352
aibStream data structure. 352
dbpcbStream data structure 353
iopcbStream data structure 354
OUTAIBDBPCB parameter (X'CC02') 355
OUTAIBIOPCB parameter (X'CC08') 356
RDBNAM parameter (X'2110') 357
SSA parameter (X'C906') 357
SSACOUNT parameter (X'C905') 358
UPDCNT parameter (X'C90A') 358

Chapter 3. IMS Adapter for REXX
reference 359
IMS Adapter for REXX overview 360
Sample exit routine (DFSREXXU). 361
Addressing other environments 361
REXX transaction programs 361
REXXTDLI commands 363
REXXTDLI calls 364
REXXIMS extended commands 369

DLIINFO 369
IMSRXTRC 370
MAPDEF 371
MAPGET. 373
MAPPUT. 374
SET. 375
SRRBACK and SRRCMIT 376
STORAGE 377
WTO, WTP, and WTL 378
WTOR. 379
IMSQUERY extended functions 379

Sample execs using REXXTDLI 381

SAY exec: for expression evaluation 382
PCBINFO exec: display available PCBs in
current PSB 383
PART execs: database access examples 384
DOCMD: IMS commands front end 387
IVPREXX sample application 391

Chapter 4. Java programming
reference 395
IMS Universal drivers support for JDBC 395

javax.sql.Clob methods supported 395
java.sql.Connection methods supported . . . 395
java.sql.DatabaseMetaData methods supported 396
javax.sql.DataSource methods supported . . . 400
java.sql.Driver methods supported 401
java.sql.ParameterMetaData methods supported 401
java.sql.PreparedStatement methods supported 402
java.sql.Statement methods supported 403
java.sql.ResultSet methods supported 404
java.sql.ResultSetMetaData methods supported 408

IMS Universal drivers support for the Common
Client Interface 409

javax.resource.cci.Connection methods
supported 409
javax.resource.cci.ConnectionFactory methods
supported 410
javax.resource.cci.ConnectionMetaData methods
supported 410
javax.resource.cci.Interaction methods supported 410
javax.resource.cci.LocalTransaction methods
supported 411
javax.resource.cci.ResultSetInfo methods
supported 411
javax.resource.cci.ResourceAdapterMetaData
methods supported 412
javax.resource.cci.RecordFactory methods
supported 412

Java API documentation (Javadoc) 412

Chapter 5. Message Format Service
(MFS) reference 417
MFS application program design 417

Relationships between MFS control blocks. . . 417
Format library member selection 424
3270 or SLU 2 screen formatting 427
Device compatibility with previous versions of
MFS 431
Enhancing system performance of MFS message
and device formats 437
MFS definitions for intersystem communication 442

MFS message formats 444
Input message formats 444
Output message formats. 446
MFS message formatting functions 480

Chapter 6. OTMA Callable Interface
API reference 551
OTMA Callable Interface API calls 551

OTMA C/I hints and tips 551
otma_create API 553

iv Application Programming APIs

otma_open API. 554
otma_openx API 556
otma_alloc API 557
otma_send_receive API 558
otma_send_receivex API. 561
otma_send_async API 562
otma_receive_async API 564
otma_free API 566
otma_close API 566

OTMA C/I sample programs 567
Warranty and distribution for OTMA C/I
sample programs 567
OTMA C/I sample program for synchronous
processing 567
OTMA C/I sample program for asynchronous
processing 579

Chapter 7. WSDL-to-PL/I segmentation
APIs for web service development . . 593
Include file DFSPWSH 593
DFSQGETS 602
DFSQSETS 604
DFSXGETS 607
DFSXSETS 609
Return codes from the DFSPWSIO APIs 612

Chapter 8. SQL programming
reference 615
SQL concepts for IMS 615

Structured query language 615
IMS data structures for SQL 616

Language elements 617
Characters 617
Tokens 617
Identifiers 618
Naming conventions 618
Data types 619
Assignment and comparison 623
Constants 625
Field names 627
References to variables 628
Host structures in COBOL 629
Predicates 629
Search conditions 633

SQL statements 634
How SQL statements are invoked 635
ALTER DATABASE 638
ALTER TABLE 652
ALTER TABLESPACE 684
CLOSE 690
COMMENT ON 691
CREATE DATABASE 694
CREATE PROGRAMVIEW 708
CREATE TABLE 726
CREATE TABLESPACE 773
DECLARE CURSOR 788
DECLARE STATEMENT 789
DELETE 790
DESCRIBE OUTPUT 791
DROP DATABASE 792
DROP PROGRAMVIEW. 792
DROP TABLE 793
DROP TABLESPACE 794
EXECUTE 795
FETCH 796
INCLUDE 798
INSERT 799
OPEN 802
PREPARE 804
SELECT 806
UPDATE 817
WHENEVER 820

SQL communication area (SQLIMSCA) 821
Description of SQLIMSCA fields 821
The included SQLIMSCA 823

SQL descriptor area (SQLIMSDA) 823
Description of SQLIMSDA fields 824
The included SQLIMSDA 826

Notices 829
Programming interface information 831
Trademarks 831
Terms and conditions for product documentation 832
IBM Online Privacy Statement. 832

Bibliography. 835

IndexX-1

Contents v

||
||
||

||
||
||
||
||

||
||
||
||

vi Application Programming APIs

About this information

These topics provide reference information for the IMS™ application programming
interfaces (APIs). The topics also provide reference information for SQL
programming for IMS, the IMS Adapter for REXX, the DL/I test program
(DFSDDLT0), and the IMS Message Format Service (MFS). Guidance information
for writing IMS application programs is in IMS Version 14 Application Programming.

This information is available in IBM® Knowledge Center.

Prerequisite knowledge
This book is an API (application programming interface) reference for IMS
application programming in any of the following environments:
v IMS Database Manager (IMS DB), including IMS Database Control (DBCTL)
v IMS Transaction Manager (IMS TM)
v CICS® EXEC DLI
v WebSphere® Application Server for z/OS®

v WebSphere Application Server for distributed platforms
v Java™ dependent regions (JMP and JBP)
v Any environment for stand-alone Java application development

This book provides reference information for the IMS application programming
interfaces (APIs), including DL/I, EXEC DLI, the IMS Universal drivers, and the
Java class libraries for IMS. It also provides reference information for the IMS
Adapter for REXX, the DL/I test program (DFSDDLT0), and the IMS Message
Format Service (MFS). Guidance information for writing IMS application programs
is in IMS Version 14 Application Programming.

Before using this book, you should understand the concepts of application design
described in IMS Version 14 Application Programming, which assumes that you
understand basic z/OS and IMS concepts and the IMS environments. You should
also know how to use assembler language, C language, COBOL, Pascal, or PL/I.
CICS programs can be written in assembler language, C language, COBOL, PL/I,
and C++.

To write Java applications, you must thoroughly understand the Java language and
JDBC. This book assumes that you know Java and JDBC. It does not explain any
Java or JDBC concepts.

To create the Java database metadata class, which is a required step in writing Java
applications for IMS using the IMS Universal drivers or the Java class libraries, you
must understand IMS databases. IMS database concepts are described in IMS
Version 14 Database Administration.

To write applications that store or retrieve XML, you must understand XML and its
related technologies, such as XML schemas.

You can learn more about z/OS by visiting the “z/OS basic skills” topics in IBM
Knowledge Center.

© Copyright IBM Corp. 1974, 2017 vii

http://www-01.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the IBM Skills Gateway and
search for IMS.

How new and changed information is identified
New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:
v Only technical changes are marked; style and grammatical changes are not

marked.
v If part of an element, such as a paragraph, syntax diagram, list item, task step,

or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

v If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:
– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next

line.
– The >--- symbol indicates that a syntax diagram is continued from the

previous line.
– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

►► required_item ►◄

v Optional items appear below the main path.

►► required_item
optional_item

►◄

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

►►
optional_item

required_item ►◄

viii Application Programming APIs

https://www-03.ibm.com/services/learning/content/ites.wss/zz-en?pageType=page&c=a0011023

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path.

►► required_item
optional_choice1
optional_choice2

►◄

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

►► required_item
default_choice

optional_choice
optional_choice

►◄

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

►► required_item ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

►► required_item ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

►► required_item fragment-name ►◄

fragment-name:

required_item
optional_item

v In IMS, a b symbol indicates one blank position.

About this information ix

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

v Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS 14
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS 14. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS 14 ISPF panel functions by using a keyboard or keyboard
shortcut keys.

For information about navigating the IMS 14 ISPF panels using TSO/E or ISPF,
refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS ISPF
User's Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information

Online documentation for IMS 14 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more
information about the commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:
v Click the Contact Us tab at the bottom of any IBM Knowledge Center topic.
v Send an email to imspubs@us.ibm.com. Be sure to include the book title and the

publication number.

x Application Programming APIs

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

To help us respond quickly and accurately, please include as much information as
you can about the content you are commenting on, where we can find it, and what
your suggestions for improvement might be.

About this information xi

xii Application Programming APIs

Chapter 1. DL/I calls reference

These topics contain reference information for IMS DL/I calls.

Database management
Use the following DL/I calls to access and administer IMS databases.

DL/I calls for database management
Use these DL/I calls with IMS DB to perform database management functions in
your application program.

Each call description contains:
v A syntax diagram
v Definitions for parameters that are available to the call
v Details on how to use the call in your application program
v Restrictions on call usage, where applicable

Each parameter is described as an input parameter or output parameter. “Input”
refers to input to IMS from the application program. “Output” refers to output
from IMS to the application program.

Database management calls must use either db pcb or aib parameters. The syntax
diagrams for these calls begin with the function parameter. The call, call interface
(xxxTDLI), and parmcount (if it is required) are not included in the syntax
diagrams.

Related reading: For specific information about coding your program in assembler
language, C language, COBOL, Pascal, and PL/I, see the topic "Defining
Application Program Elements" in IMS Version 14 Application Programming.
Related reference:
“DL/I calls for IMS TM system services” on page 124
“DL/I calls for transaction management” on page 81
“EXEC DLI commands” on page 163

Database management call summary
The following table shows the parameters that are valid for each database
management call.

Optional parameters are enclosed in brackets ([]).

Restriction: Language-dependent parameters are not shown here. The variable
parmcount is required for all PLITDLI calls. Either parmcount or VL is required for
assembler language calls. Parmcount is optional in COBOL, C, and Pascal
programs.

Related reading: For more information on language-dependent application
elements, see the topic "Defining Application Program Elements" in IMS Version 14
Application Programming.

© Copyright IBM Corp. 1974, 2017 1

Table 1. Summary of DB calls

Function Code Meaning and Use Options Parameters Valid for

CIMS Initializes and
terminates the ODBA
interface in a z/OS
application region.

aib DB/DC, DBCTL,
ODBA

CLSE Close Closes a GSAM
database explicitly

function, gsam pcb or
aib

DB/DC, DBCTL, DB
batch, ODBA

DEQ� Dequeue Releases segments
reserved by Q
command code

function, i/o pcb (full
function only), or aib,
i/o area (full function
only)

DB batch, BMP, MPP,
IFP, DBCTL, ODBA

DLET Delete Removes a segment
and its dependents
from the database

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

FLD� Field Accesses a field
within a segment

function, db pcb or
aib, i/o area, rootssa

DB/DC, ODBA

GHN� Get Hold Next Retrieves subsequent
message segments

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

GHNP Get Hold Next in
Parent

Retrieves dependents
sequentially

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

GHU� Get Hold Unique Retrieves segments
and establishes a
starting position in
the database

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

GN�� Get Next Retrieves subsequent
message segments

function, db pcb or
aib, i/o area, [ssa or
rsa]

DB/DC, DBCTL, DB
batch, ODBA

GNP� Get Next in Parent Retrieves dependents
sequentially

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

GU�� Get Unique Retrieves segments
and establishes a
starting position in
the database

function, db pcb or
aib, i/o area, [ssa or
rsa]

DB/DC, DBCTL, DB
batch, ODBA

GUR Get Unique Record Retrieves a complete
record from the IMS
catalog in XML
format

function, aib, i/o area,
[ssa]

DB/DC, DBCTL, DB
batch, ODBA

ISRT Insert Loads and adds one
or more segments to
the database

function, db pcb or
aib, i/o area, [ssa or
rsa]

DB/DC, DCCTL, DB
batch, ODBA

OPEN Open Opens a GSAM
database explicitly

function, gsam pcb or
aib, [i/o area]

DB/DC, DBCTL, DB
batch, ODBA

POS� Position Retrieves the location
of a specific
dependent or
last-inserted
sequential dependent
segment

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

REPL Replace Changes values of
one or more fields in
a segment

function, db pcb or
aib, i/o area, [ssa]

DB/DC, DBCTL, DB
batch, ODBA

2 Application Programming APIs

Table 1. Summary of DB calls (continued)

Function Code Meaning and Use Options Parameters Valid for

RLSE Release Locks Releases all locks held
for unmodified data

function, db pcb DB/DC, DBCTL, DB
batch, ODBA

CIMS call
The CIMS call is used to initialize and terminate the ODBA interface in a z/OS
application region.

Format

►► CIMS aib ►◄

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

CIMS X X

Parameters

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID
Eye-catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Character value.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction
codes as follows:

INIT
AIBRSNM2. A 4-character ID of the ODBA startup table.

CONNECT
AIBRSA1. Address of the CONNECT parameter list.

The following table shows the CIMS CONNECT parameter list format.

Table 2. CIMS CONNECT parameter list format

Offset Length Field Usage description

X'00' X'04' Input Count of connect
request table entries.

X'04' X'04' Input Address of the
connect request table.

TERM
AIBRSNM2. A 4-character ID of the ODBA startup table that represents
the IMS connection that is to be terminated.

Chapter 1. DL/I calls reference 3

TALL
Terminate all IMS connections.

Usage

The CIMS call is used by an application program that is running in an application
address space to establish or terminate the ODBA environment.

INITbbbb
The CIMS subfunction INIT must be issued by the application to establish the
ODBA environment in the z/OS application address space.

Optionally, AIBRSNM2 can specify the 4-character ID of the ODBA Startup
table member. This member is named DFSxxxx0 where xxxx is equal to the
4-character ID. If AIBRSNM2 is specified, ODBA tries to establish a connection
to the IMS specified in the DFSxxxx0 member after the ODBA environment is
initialized in the z/OS application address space.

CONNECTb
Use the CIMS CONNECT call to establish multiple ODBA connections to IMS
systems from the CSL Open Database Manager (ODBM).

A CIMS CONNECT call can be issued instead of, or in addition to, a CIMS
INIT call. A CIMS CONNECT call will initialize ODBA if ODBA has not
already been initialized. To complete initialization only, issue a CIMS
CONNECT call with AIBRSA1 set to -1 (X'FFFFFFFF').

The connect request table contains one or more connect request entries in
contiguous storage. Each entry contains the following fields:
v A 1- to 4-character alias name, left justified and padded on the right with

blanks. The alias name is the value (cccc) taken from the startup properties
table DFScccc0. This parameter is required.

v A 4-byte address of the connection properties table (DFSPRP) or 0.
A value of 0 indicates that ODBA must load DFScccc0 to obtain the IMS
connection properties. This member is constructed by specifying the DFSPRP
macro in DFScccc0, and then assembling and linking the member. This
member must be in the STEPLIB or JOBLIB of the ODBA application job.
A nonzero value indicates that the caller is passing the address of the
connection properties parameter table. The connection properties parameters
are mapped by the DFSPRP macro.

v A 4-byte field to contain the connection request return code. The return code
is one of the AIBRETRN codes.

v A 4-byte field to contain the connection request reason code. The reason
code is one of the AIBREASN codes.

v A 4-byte field to contain the connection request error extension information
code. The error extension contains additional diagnostic information specific
to the return and reason codes.

The following table summarizes the CIMS CONNECT table entry format.

Table 3. CIMS CONNECT table entry format

Offset Length Field Usage description

X'00' X'04' Input 1- to 4-character IMS
alias name (cccc) from
the startup properties
table DFScccc0, where
cccc is the alias name.

4 Application Programming APIs

Table 3. CIMS CONNECT table entry format (continued)

Offset Length Field Usage description

X'04' X'04 Input 0 or the address of an
ODBA startup
properties table.

A value of 0 indicates
that ODBA must load
a startup properties
table named
DFScccc0, where cccc
is the supplied alias
name.

An address indicates
that the caller is
supplying the startup
properties table. The
table is mapped by
the DFSPRP macro.

X'08' X'04' Output Connect request
return code for this
entry.

X'0C' X'04' Output Connect request
reason code for this
entry.

X'10' X'04' Output Connect request error
extension code for
this entry.

TERMbbbb
The CIMS subfunction TERM can be issued to terminate one IMS connection.
AIBRSNM2 specifies the 4-character ID of the startup table member that
represents the IMS connection to be terminated. On completion of the TERM
subfunction, the ODBA environment remains intact in the z/OS application
address space.

Note: If the application that issued CIMS INIT chooses to return to the
operating system following completion of the CIMS TERM, the address space
will terminate with a system abend A03. This can be avoided by issuing the
CIMS TALL prior to returning to the operating system

TALLbbbb
The CIMS subfunction TALL must be issued to terminate all IMS connections
and terminate the ODBA environment in the application address space.

CLSE call
The close (CLSE) call is used to explicitly close a GSAM database.

For more information on GSAM, see the topic "Processing GSAM Databases" in
IMS Version 14 Application Programming.

Format

►► CLSE gsam pcb
aib

►◄

Chapter 1. DL/I calls reference 5

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: CLSE X X X X X

Parameters

gsam pcb
Specifies the GSAM PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB length. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
GSAM PCB.

Usage

For information on using CLSE, see the topic "Explicit Open and Close Calls to
GSAM" in IMS Version 14 Application Programming.

DEQ call
The Dequeue (DEQ) call is used to release a segment that is retrieved using the Q
command code.

Format (full function)

►► DEQ i/o pcb
aib

i/o area ►◄

Format (Fast Path DEDB)

►► DEQ DEDB pcb
aib

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function and
DEDB:

DEQ X X X

Parameters

DEDB pcb (Fast Path only)
Specifies any DEDB PCB for the call.

i/o pcb (full function only)
Specifies the I/O PCB for the DEQ call. This is an input and output parameter.

6 Application Programming APIs

aib
Specifies the AIB for the call. This is an input and output parameter. These
fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area (full function only)
Specifies the 1-byte area containing a letter (A-J), which represents the lock
class of the locks to be released. This is a mandatory input parameter.

Usage

The DEQ call releases all segments that are retrieved using the Q command code,
except:
v Segments modified by your program, until your program reaches a commit

point
v Segments required to keep your position in the hierarchy, until your program

moves to another database record
v A class of segments that has been locked using a different lock class

If your program only reads segments, it can release them by issuing a DEQ call. If
your program does not issue a DEQ call, IMS releases the reserved segments when
your program reaches a commit point. By releasing the segments with a DEQ call
before your program reaches a commit point, you make them available to other
programs more quickly.

For more information on the relationship between the DEQ call and the Q command
code, see the topic "Reserving Segments for the Exclusive Use of Your Program" in
IMS Version 14 Application Programming.

Restrictions

In a CICS DL/I environment, calls made from one CICS (DBCTL) system are
supported in a remote CICS DL/I environment, if the remote environment is also
CICS (DBCTL).

DLET call
The Delete (DLET) call is used to remove a segment and its dependents from the
database.

Chapter 1. DL/I calls reference 7

Format

►► DLET db pcb
aib

i/o area

▼ ssa

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: DLET X X X

For DEDB: DLET X X

For MSDB: DLET X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the I/O area in your program that communicates with IMS. This
parameter is an input parameter. Before deleting a segment, you must first
issue a Get Hold call to place the segment in the I/O area. You can then issue
the DLET call to delete the segment and its dependents in the database.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input
parameter. The SSA that you supply in the call point to data areas in your
program where the SSAs have been defined for the call. You can use only one
SSA in the parameter. This parameter is optional for the DLET call.

Usage

The DLET call must be preceded by one of the three Get Hold calls. When you issue
the DLET call, IMS deletes the held segment, along with all its physical dependents
from the database, regardless of whether your program is sensitive to all of these
segments. IMS rejects the DLET call if the preceding call for the PCB was not a Get

8 Application Programming APIs

Hold, REPL, or DLET call. If the DLET call is successful, the previously retrieved
segment and all of its dependents are removed from the database and cannot be
retrieved again.

If the Get Hold call that precedes the DLET call is a path call, and you do not want
to delete all the retrieved segments, you must indicate to IMS which of the
retrieved segments (and its dependents, if any) you want deleted; to do this,
specify an unqualified SSA for that segment. Deleting a segment this way
automatically deletes all dependents of the segment. Only one SSA is allowed in
the DLET call, and this is the only time a SSA is applicable in a DLET call.

No command codes apply to the DLET call. If you use a command code in a DLET
call, IMS disregards the command code.

FLD call
The Field (FLD) call is used to access a field within a segment for MSDBs or
DEDBs.

Format

►► FLD db pcb
aib

i/o area

▼ ssa

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For MSDB: FLD X

For DEDB: FLD X X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies your program's I/O area, which contains the field search argument
(FSA) for this call. This parameter is an input parameter.

Chapter 1. DL/I calls reference 9

ssa
Specifies the SSA, if any, that you want to use in this call. You can use up to 15
SSAs in this input parameter. The SSA that you supply will point to those data
areas that you have defined for the call. This parameter is optional for the FLD
call.

Usage

Use the FLD call to access and change the contents of a field within a segment.

The FLD call does two things for you: it compares the value of a field to the value
you supply (FLD/VERIFY), and it changes the value of the field in the way that you
specify (FLD/CHANGE).

All DL/I command codes are available to DEDBs, using the FLD call. The FLD call
formats for DEDBs are the same as for other DL/I calls. So, if your MSDBs have
been converted to DEDBs, you do not need to change application programs that
use the FLD call.

You can also use the FLD call in application programs for DEDBs, instead of the
combination of GHU, REPL, and DL/I calls.

FSAs

The field search argument (FSA) is equivalent to the I/O area that is used by other
DL/I database calls. For a FLD call, data is not moved into the I/O area; rather, the
FSAs are moved into the I/O area.

Multiple FSAs are allowed on one FLD call. This is specified in the FSA's connector
field. Each FSA can operate on either the same or different fields within the target
segment.

The FSA that you reference in a FLD call contains five fields. The rules for coding
these fields are as follows:

Field name
This field must be 8 bytes long. If the field name you are using is less than 8
bytes, the name must be left-justified and padded on the right with blanks.

FSA status code
This field is 1 byte. After a FLD call, IMS returns one of these status codes to
this area:

� Successful

A Invalid operation

B Operand length invalid

C Invalid call—program tried to change key field

D Verify check was unsuccessful

E Packed decimal or hexadecimal field is invalid

F Program tried to change an unowned segment

G Arithmetic overflow

H Field not found in segment

10 Application Programming APIs

Op code
This 1-byte field contains one of these operators for a change operation:

+ To add the operand to the field value

- To subtract the operand from the field value

= To set the field value to the value of the operand

For a verify operation, this field must contain one of the following:

E Verify that the field value and the operand are equal.

G Verify that the field value is greater than the operand.

H Verify that the field value is greater than or equal to the operand.

L Verify that the field value is less than the operand.

M Verify that the field value is less than or equal to the operand.

N Verify that the field value is not equal to the operand.

Operand
This variable length field contains the value that you want to test the field
value against. The data in this field must be the same type as the data in the
segment field. (You define this in the DBD.) If the data is hexadecimal, the
value in the operand is twice as long as the field in the database. If the data is
packed decimal, the operand does not contain leading zeros, so the operand
length might be shorter than the actual field. For other types of data, the
lengths must be equal.

Connector
This 1-byte field must contain a blank if this is the last or only FSA, or an
asterisk (*) if another FSA follows this one.

The format of SSA in FLD calls is the same as the format of SSA in DL/I calls. If no
SSA exists, the first segment in the MSDB or DEDB is retrieved.
Related concepts:

Commit-point processing in MSDBs and DEDBs (Application Programming)

Updating segments: REPL, DLET, ISRT, and FLD (Application Programming)

GN/GHN call
The Get Next (GN) call is used to retrieve segments sequentially from the database.
The Get Hold Next (GHN) is the hold form for a GN call.

Format

►►

▼

▼

GN db pcb i/o area
aib

ssa
rsa

GHN db pcb i/o area
aib

ssa

►◄

Chapter 1. DL/I calls reference 11

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_commitprocessingmsdbanddedb.htm#ims_commitprocessingmsdbanddedb
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_updatesegments.htm#ims_updatesegments

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GN/GHN X X X

For GSAM: GN X X X X X

For DEDB: GN X X X

For MSDB: GN X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the I/O area. This parameter is an output parameter. When you issue
one of the Get calls successfully, IMS returns the requested segment to this
area. If your program issues any path calls, the I/O area must be long enough
to hold the longest path of concatenated segments following a path call. This
area always contains left-justified segment data. The I/O area points to the first
byte of this area.

When you use the GN call with GSAM, the area named by the i/o area
parameter contains the record you are retrieving.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input
parameter. The SSA that you supply in the call point to data areas in your
program where the SSA have been defined for the call. You can use up to 15
SSAs in the parameter. This parameter is optional for the GN call.

rsa
Specifies the area in your program where the RSA for the record should be
returned. This output parameter is used for GSAM only and is optional. See
the topic "GSAM Data Areas" in IMS Version 14 Application Programming for
more information on RSAs.

12 Application Programming APIs

Usage: Get Next (GN)

A Get Next (GN) call is a request for a segment, as described by the SSA you
supply, that is linked to the call that was issued prior to the GN call. IMS starts its
search at the current position.

When you use the GN call:
v Processing moves forward from current position (unless the call includes the F

command code).
v IMS uses the current position (that was set by the previous call) as the search

starting point.
v The segment retrieved is determined by a combination of the next sequential

position in the hierarchy and the SSA included in the call.
v Be careful when you use GN, because it is possible to use SSAs that force IMS to

search to the end of the database without retrieving a segment. This is
particularly true with the “not equal” or “greater than” relational operators.

A GN call retrieves the next segment in the hierarchy that satisfies the SSA that you
supplied. Because the segment retrieved by a GN call depends on the current
position in the hierarchy, GN is often issued after a GU call. If no position has been
established in the hierarchy, GN retrieves the first segment in the database. A GN call
retrieves a segment or path of segments by moving forward from the current
position in the database. As processing continues, IMS looks for segments at each
level to satisfy the call.

For example, sequential retrieval in a hierarchy is always top to bottom and left to
right. For example, if you repeatedly issue unqualified GN calls against the
hierarchy in the following figure, IMS returns the segment occurrences in the
database record in this order:
1. A1 (the root segment)
2. B1 and its dependents (C1,D1,F1,D2,D3,E1,E2, and G1)
3. H1 and its dependents (I1,I2,J1, and K1).

If you issue an unqualified GN again after IMS has returned K1, IMS returns the
root segment occurrence whose key follows segment A1 in the database.

A GN call that is qualified with the segment type can retrieve all the occurrences of
a particular segment type in the database.

Chapter 1. DL/I calls reference 13

For example, if you issue a GN call with qualified SSAs for segments A1 and B1,
and an unqualified SSA for segment type D, IMS returns segment D1 the first time
you issue the call, segment D2 the second time you issue the call, and segment D3
the third time you issue the call. If you issue the call a fourth time, IMS returns a
status code of GE, which means that IMS could not find the segment you
requested.

You can use unqualified GN calls to retrieve all of the occurrences of a segment in a
hierarchy, in their hierarchic sequence, starting at the current position. Each
unqualified GN call retrieves the next sequential segment forward from the current
position. For example, to answer the processing request:

Print out the entire medical database.

You would issue an unqualified GN call repeatedly until IMS returned a GB status
code, indicating that it had reached the end of the database without being able to
satisfy your call. If you issued the GN again after the GB status code, IMS would
return the first segment occurrence in the database.

Like GU, a GN call can have as many SSAs as the hierarchy has levels. Using fully
qualified SSAs with GN calls clearly identifies the hierarchic path and the segment
you want, thus making it useful in documenting the call.

A GN call with an unqualified SSA retrieves the next occurrence of that segment
type by going forward from the current position.

GN with a qualified SSA retrieves the next occurrence of the specified segment type
that satisfies the SSAs.

When you specify a GN that has multiple SSAs, the presence or absence of
unqualified SSAs in the call has no effect on the operation unless you use
command codes on the unqualified SSA. IMS uses only qualified SSAs plus the last
SSA to determine the path and retrieve the segment. Unspecified or unqualified

Figure 1. Hierarchic sequence

14 Application Programming APIs

SSAs for higher-level segments in the hierarchy mean that any high-level segment
that is the parent of the correct lower-level, specified or qualified segment will
satisfy the call.

A GN call with a SSA that is qualified on the key of the root can produce different
results from a GU with the same SSA, depending on the position in the database
and the sequence of keys in the database. If the current position in the database is
beyond a segment that would satisfy the SSA, the segment is not retrieved by the
GN. GN returns the GE status code if both of these conditions are met:
v The value of the key in the SSA has an upper limit that is set, for example, to

less-than-or-equal-to the value.
v A segment with a key greater than the value in the SSA is found in a sequential

search before the specified segment is found.

GN returns the GE status code, even though the specified segment exists and would
be retrieved by a GU call.

Usage: Get Hold Next (GHN)

Before your program can delete or replace a segment, it must retrieve the segment
and indicate to IMS that it is going to change the segment in some way. The
program does this by issuing a Get call with a “hold” before deleting or replacing
the segment. When the program has successfully retrieved the segment with a Get
Hold call, it can delete the segment or change one or more fields (except the key
field) in the segment.

The only difference between Get calls with a hold and Get calls without a hold is
that the hold calls can be followed by REPL or DLET.

The hold status on the retrieved segment is canceled and must be reestablished
before you reissue the DLET or REPL call. After issuing a Get Hold call, you can
issue more than one REPL or DLET call to the segment if you do not issue
intervening calls to the same PCB.

If you find out that you do not need to update it after issuing a Get Hold call, you
can continue with other processing without releasing the segment. The segment is
freed as soon as the current position changes—when you issue another call to the
same PCB that you used for the Get Hold call. In other words, a Get Hold call
must precede a REPL or DLET call. However, issuing a Get Hold call does not
require you to replace or delete the segment.

Usage: HDAM, PHDAM, or DEDB database with GN

For database organizations other than HDAM, PHDAM, and DEDB, processing the
database sequentially using GN calls returns the root segments in ascending key
sequence. However, the order of the root segments for a HDAM, PHDAM, or
DEDB database depends on the randomizing routine that is specified for that
database. Unless a sequential randomizing routine was specified, the order of the
root segments in the database is not in ascending key sequence.

For a hierarchic direct access method (HDAM, PHDAM) or a DEDB database, a
series of unqualified GN calls or GN calls that are qualified only on the root segment:
1. Returns all the roots from one anchor point
2. Moves to the next anchor point
3. Returns the roots from the anchor point

Chapter 1. DL/I calls reference 15

Unless a sequential randomizing routine was specified, the roots on successive
anchor points are not in ascending key sequence. One situation to consider for
HDAM, PHDAM, and DEDB organizations is when a GN call is qualified on the
key field of the root segment with an equal-to operator or an equal-to-or-greater-
than operator. If IMS has an existing position in the database, it checks to ensure
that the requested key is equal to or greater than the key of the current root. If it is
not, a GE status code is returned. If it is equal to or greater than the current key
and is not satisfied using the current position, IMS calls the randomizing routine to
determine the anchor point for that key. IMS tries to satisfy the call starting with
the first root of the selected anchor.

Restrictions

You can use GN to retrieve the next record of a GSAM database, but GHN is not valid
for GSAM.
Related reference:
“GNP/GHNP call”

GNP/GHNP call
The Get Next in Parent (GNP) call is used to retrieve dependents sequentially. The
Get Hold Next in Parent (GHNP) call is the hold form for the GNP call.

Format

►► GNP
GHNP

db pcb
aib

i/o area

▼ ssa

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GNP/GHNP X X X

For DEDB: GNP/GHNP X X X

For MSDB: GNP/GHNP X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

16 Application Programming APIs

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the I/O area. This parameter is an output parameter. When you issue
the Get call successfully, IMS returns the requested segment to this area. If
your program issues any path calls, the I/O area must be long enough to hold
the longest path of concatenated segments following a path call. The segment
data that this area contains is always left-justified. The I/O area points to the
first byte of this area.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input
parameter. The SSA you supply in the call point to data areas in your program
in which you have defined the SSAs for the call. You can use up to 15 SSAs for
this parameter. This parameter is optional for the GNP call.

Usage: Get Next in Parent (GNP)

A GNP call retrieves segments sequentially. The difference between a GN and a GNP is
that GNP limits the segments that can satisfy the call to the dependent segments of
the established parent.

An unqualified GNP retrieves the first dependent segment occurrence under the
current parent. If your current position is already on a dependent of the current
parent, an unqualified GNP retrieves the next segment occurrence.

If you are moving forward in the database, even if you are not retrieving every
segment in the database, you can use GNP to restrict the returned segments to only
those children of a specific segment.

Linking with previous DL/I calls

A GNP call is linked to the previous DL/I calls that were issued by your program in
two ways:
v Current position: The search for the requested segment starts at the current

position established by the preceding GU, GN, or GNP call.
v Parentage: The search for the requested segment is limited to the dependents of

the lowest-level segment most recently accessed by a GU or GN call. Parentage
determines the end of the search and is in effect only following a successful GU
or GN call.

Processing with parentage

You can set parentage in two ways:
v By issuing a successful GU or GN call. When you issue a successful GU or GN call,

IMS sets parentage at the lowest-level segment returned by the call. Issuing
another GU or GN call (but against a different PCB) does not affect the parentage
that you set using the first PCB in the previous call. An unsuccessful GU or GN
call cancels parentage.

v By using the P command code with a GU, GN, or GNP call, you can set parentage at
any level.

How DL/I calls affect parentage

Chapter 1. DL/I calls reference 17

A GNP call does not affect parentage unless it includes the P command code.

Unless you are using a secondary index, REPL does not affect parentage. If you are
using a secondary index, and you replace the indexed segment, parentage is lost.

A DLET call does not affect parentage unless you delete the established parent. If
you do delete the established parent, you must reset parentage before issuing a GNP
call.

ISRT affects parentage only when you insert a segment that is not a dependent of
the established parent. In this case, ISRT cancels parentage. If the segment you are
inserting is a dependent at some level of the established parent, parentage is
unaffected. For example, in the topic "Position after ISRT" in IMS Version 14
Application Programming, assume segment B11 is the established parent. Neither of
these two ISRT calls would affect parentage:
ISRT Abbbbbbb(AKEYbbbb=A1)

Bbbbbbbb(BKEYbbbb=bB11)
Cbbbbbbbb

ISRT Abbbbbbbb(AKEYbbbb=bA1)
Bbbbbbbbb(BKEYbbbb=bB11)
Cbbbbbbb(CKEYbbbb=bC111)
Dbbbbbbbb

The following ISRT call would cancel parentage, because the F segment is not a
direct dependent of B, the established parent:
ISRT Abbbbbbbb(AKEYbbb=bA1)

Fbbbbbbbb

You can include one or more SSAs in a GNP call. The SSA can be qualified or
unqualified. Without SSAs, a GNP call retrieves the next sequential dependent of the
established parent. The advantage of using SSAs with GNP is that they allow you to
point IMS to a specific dependent or dependent type of the established parent.

A GNP with an unqualified SSA sequentially retrieves the dependent segment
occurrences of the segment type you have specified under the established parent.

A GNP with a qualified SSA describes to IMS the segment you want retrieved or the
segment that is to become part of the hierarchic path to the segment you want
retrieved. A qualified GNP describes a unique segment only if it is qualified on a
unique key field and not a data field or a non-unique key field.

A GNP with multiple SSAs defines the hierarchic path to the segment you want. If
you specify SSAs for segments at levels above the established parent level, those
SSAs must be satisfied by the current position at that level. If they cannot be
satisfied using the current position, a GE status code is returned and the existing
position remains unchanged. The last SSA must be for a segment that is below the
established parent level. If it is not, a GP status code is returned. Multiple
unqualified SSAs establish the first occurrence of the specified segment type as
part of the path you want. If some SSAs between the parent and the requested
segment in a GNP call are missing, they are generated internally as unqualified
SSAs. This means that IMS includes the first occurrence of the segment from the
missing SSAs as part of the hierarchic path to the segment you have requested.

18 Application Programming APIs

Usage: Get Hold Next in Parent (GHNP)

Retrieval for the GHNP call is the same as for the GHN call.
Related concepts:

How secondary indexing affects your program (Application Programming)
Related reference:
“GN/GHN call” on page 11

GU/GHU call
The Get Unique (GU) call is used to directly retrieve segments and to establish a
starting position in the database for sequential processing. The Get Hold Unique
(GHU) is the hold form for a GU call.

Format

►►

▼

▼

GU db pcb i/o area
aib

ssa
rsa

GHU db pcb i/o area
aib

ssa

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: GU/GHU X X X

For GSAM: GU X X X X X

For DEDB: GU X X X

For MSDB: GU X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

Chapter 1. DL/I calls reference 19

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_secondaryindexaffect.htm#ims_secondaryindexaffect

i/o area
Specifies the I/O area. This parameter is an output parameter. When you issue
one of the Get calls successfully, IMS returns the requested segment to this
area. If your program issues any path calls, the I/O area must be long enough
to hold the longest path of concatenated segments following a path call. The
segment data that this area contains is always left-justified. The I/O area
points to the first byte of this area.

When you use the GU call with GSAM, the area named by the i/o area
parameter contains the record you are retrieving.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input
parameter. The SSA you supply in the call point to data areas in your program
where you have defined the SSAs for the call. You can use up to 15 SSAs for
the parameter. This parameter is optional for the GU call.

rsa
Specifies the area in your program that contains the record search argument.
This required input parameter is only used for GSAM. See the topic "GSAM
Data Areas" in IMS Version 14 Application Programming for more information on
RSAs.

Usage: Get Unique (GU)

GU is a request for a segment, as described by the SSAs you supply. You use it
when you want a specific segment. You can also use it to establish your position in
the database.

The GU call is the only call that can establish position backward in the database.
(The GN and GNP calls, when used with the F command code, can back up in the
database, but with limitations. Unlike GN and GNP, a GU call does not move forward
in the database automatically.

If you issue the same GU call repeatedly, IMS retrieves the same segment each time
you issue the call. If you want to retrieve only particular segments, use fully
qualified GUs for these segments instead of GNs. If you want to retrieve a specific
segment occurrence or obtain a specific position within the database, use GU.

If you want to retrieve a specific segment or to set your position in the database to
a specific place, you generally use qualified GU calls. A GU call can have the same
number of SSAs as the hierarchy has levels, as defined by the DB PCB. If the
segment you want is on the fourth level of the hierarchy, you can use four SSAs to
retrieve the segment. (No reason would ever exist to use more SSAs than levels in
the hierarchy. If your hierarchy has only three levels, you would never need to
locate a segment lower than the third level.) The following is additional
information for using the GU call with SSAs:
v A GU call with an unqualified SSA at the root level attempts to satisfy the call by

starting at the beginning of the database. If the SSA at the root level is the only
SSA, IMS retrieves the first segment in the database.

v A GU call with a qualified SSA can retrieve the segment described in the SSA,
regardless of that segment's location relative to current position.

v When you issue a GU that mixes qualified and unqualified SSAs at each level,
IMS retrieves the first occurrence of the segment type that satisfies the call.

20 Application Programming APIs

v If you leave out an SSA for one of the levels in a GU call that has multiple SSAs,
IMS assumes an SSA for that level. The SSA that IMS assumes depends on
current position:
– If IMS has a position established at the missing level, the SSA that IMS uses is

derived from that position, as reflected in the DB PCB.
– If IMS does not have a position established at the missing level, IMS assumes

an unqualified SSA for that level.
– If IMS moves forward from a position established at a higher level, IMS

assumes an unqualified SSA for that level.
– If the SSA for the root level is missing, and IMS has position established on a

root, IMS does not move from that root when trying to satisfy the call.

Usage: Get Hold Unique (GHU)

Before your program can delete or replace a segment, it must retrieve the segment
and indicate to IMS that it is going to change the segment in some way. The
program does this by issuing a Get call with a “hold” before deleting or replacing
the segment. Once the program has successfully retrieved the segment with a Get
Hold call, it can delete the segment or change one or more fields (except the key
field) in the segment.

The only difference between Get calls with a hold and without a hold is that the
hold calls can be followed by a REPL or DLET call.

The hold status on the retrieved segment is canceled and must be reestablished
before you reissue the DLET or REPL call. After issuing a Get Hold call, you can
issue more than one REPL or DLET call to the segment if you do not issue
intervening calls to the same PCB.

If you find out that you do not need to update it after issuing a Get Hold call, you
can continue with other processing without releasing the segment. The segment is
freed as soon as the current position changes—when you issue another call to the
same PCB you used for the Get Hold call. In other words, a Get Hold call must
precede a REPL or DLET call. However, issuing a Get Hold call does not require you
to replace or delete the segment.

Restrictions

You can use GU to retrieve the record with the RSA you provide with a GSAM
database, but GHU is not valid for GSAM.
Related concepts:
“F command code” on page 218

GUR call
The Get Unique Record (GUR) call is used to retrieve entire records from the IMS
catalog database. The records are returned as XML instance documents.

Format

►► GUR aib i/o area header ssa
resource ssa

►◄

Chapter 1. DL/I calls reference 21

Parameters

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-aligned field must contain the name of a
DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

AIBRTKN
AIB return token. This 8-byte field contains a token value when a GUR call
returns more data than can fit in the I/O area. You can retrieve the rest of
the data by setting this field to the returned value when you issue a
subsequent GUR call. IMS returns the next block of data, and you can
continue to issue sequential calls by continuing to set the AIBRTKN field
until all of the data is retrieved.

When the AIBRTKN field is non-zero, all SSAs are ignored for the call.

If an invalid or unrecognized token value is specified, the call fails.

AIBOAUSE
Specifies the total length of the XML instance document returned by the
GUR call. This value is set by IMS after a successful GUR call. The value is
given in bytes.

When the value of the AIBOAUSE field is less than the value of the
AIBOALEN field, the application program can retrieve the entire XML
document from the I/O area.

When the value of the AIBOAUSE field is greater than the value of the
AIBOALEN field, the application program must make additional GUR calls
with the AIBRTKN value set to the returned token value of the first call to
retrieve the entire XML instance document.

The size of the last GUR call in a linked series might not match the size of
the remaining data. For example, a GUR call that returns 9000 bytes of
data for a request with AIBOALEN=4096 requires three linked GUR calls
to retrieve all of the data. The third call returns only 808 bytes of data in
the I/O area.

The AIBOAUSE value is returned for all GUR calls in a linked series, and
always reflects the total size of the XML instance document.

AIBRETRN
Return code.

AIBREASN
Reason code.

i/o area
Specifies the I/O area where IMS places the XML instance document returned

22 Application Programming APIs

by the call. This parameter is an output parameter. When you issue the calls
successfully, IMS returns the requested record to this area. The XML instance
document that this area contains is always left-aligned. The I/O area parameter
points to the first byte of this area.

header ssa

Specifies the name of the HEADER segment to search for. This parameter is
required.

resource ssa

Specifies the name of the DBD or PSB segment to search for. This parameter is
optional and is only valid if a HEADER SSA is specified.

IMS uses the timestamp for the active resource, either a DBD or PSB, in the
ACBLIB to find the corresponding resource in the catalog.

Usage

The Get Unique Record (GUR) call is a request for a complete record from the IMS
catalog.

Catalog records are returned as XML instance documents, and can be larger than
the available I/O area. IMS stores a complete XML instance document for a
successful GUR call in an internal retrieval cache and can return it to an
application program in pieces that are each the size of the available I/O area. Each
subsequent GUR call to retrieve another piece of the XML instance document must
use the token value set by IMS in the AIBRTKN field after the original call.

The XML schemas for the documents returned as responses to this call are
included in the IMS.ADFSSMPL data set:
v DFS3XDBD.xsd (for DBD records)
v DFS3XPSB.xsd (for PSB records)

You can use z/OS XML System Services to parse the response document. The
z/OS XML parser is started as a callable service. The services stubs are shipped in
CSSLIB.

A GUR call SSA must start with the HEADER segment.

A GUR call that is issued with an unqualified SSA attempts to satisfy the request
by starting at the beginning of the target database. If the SSA at the root level is
the only SSA, IMS retrieves the first segment in the database. A GUR call with a
qualified SSA can retrieve the segment described in the SSA, regardless of the
location of the segment relative to the current position of the cursor. The two levels
of SSA qualification that can be used with a GUR call correspond to the levels of
the DBD or PSB stored in the catalog.

The IMS catalog has a structure that uses a header segment as the root for each
record. Each header segment instance has either a PSB or DBD child segment
instance. This structure is important to understand because an unqualified GUR
call (such as the following example) might not return the expected record.
GUR HEADER

PSB

This call locates the first record, which is always a DBD record because DBD
precedes PSB in alphanumeric order. Because the first record does not contain a

Chapter 1. DL/I calls reference 23

PSB segment instance, the call does not return the first PSB record as expected. You
must qualify the wanted record type at the level of the segment header:
GUR HEADER (TYPE = PSB)

PSB

A GUR call that is issued without a qualification at the PSB or DBD level retrieves
the record for the member that is currently active in the ACB library. If no catalog
record is found that corresponds to the active member, the call fails with return
code X’108’ and reason code X’338’ This error occurs even if there are one or more
catalog records for inactive members of the ACB library or records for members
that do not currently exist in the ACB library. To retrieve those catalog records, you
must determine the ACB generation timestamp for the member corresponding to
the wanted catalog record and include it as a PSB or DBD-level qualification.

For example, the following GUR call fails if there is no active ACB library member
for BMP255:
GUR HEADER (RHDRSEQ ==PSB BMP255)

To retrieve the record for an inactive or removed ACB library member, add an SSA
qualification for the correct ACB generation timestamp:
GUR HEADER (RHDRSEQ ==PSB BMP255)

PSB (TSVERS ==xxxxxxxxxxxxx)

Note: A GUR call that is not qualified with a timestamp always fails in
environments without an active ACB library, such as batch regions.

Special AIB return and reason codes

The following combinations of AIB return and reason codes have specific meanings
for the GUR call:

AIBRETRN = X’000’ (CALLCOMP)
AIBREASN = X’000’ (CALLOK)

The GUR call completed successfully.

AIBRETRN = X’100’ (CALLOKWE)
AIBREASN = X’00C’ (PARTDATA)

The XML response document did not fit in the I/O area. A GUR
continuation token is set in the AIBRTKN field.

AIBRETRN = X’004’ (CALLOKWI)
AIBREASN = X’004’ (LASTSEG)

This GUR call contains the last portion of response data for a continued
GUR call that was previously issued. The GUR continuation token for the
call is now invalid.

AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’224’ (INVAOITK)

The GUR continuation token passed with the call is invalid.

AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’248’ (INVPCBN)

The correct PCB name specified to access the IMS™ catalog was not found.

AIBRETRN = X’104’ (APPLERR)
AIBREASN = X’404’ (INVFUNC)

The function code specified on the DL/I call was unknown or invalid.

24 Application Programming APIs

|
|
|

|
|
|

AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’338’ (NOCATMBR)

The requested catalog member is not in the catalog. IMS searched for a
member with the timestamp of the active ACBLIB member, but no member
with a matching timestamp was found.

AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’340’ (NOGURDLI)

The GUR call did not find the specified IMS catalog resource in the batch
region.

AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’342’ (NOGURXML)

The GUR call was unable to build a valid XML response document.

AIBRETRN = X’108’ (SYSERROR)
AIBREASN = X’344’ (NOGURNFD)

The requested catalog member is not in the catalog.

Example

The following GUR example retrieves the catalog record for the DBD named
DX41SK01
GUR HEADER (RHDRSEQ==DBD DX41SK01)

Restrictions

The GUR call is valid only for retrieving records from the IMS catalog database.
The IMS catalog database must be available.

The GUR call is only supported by the AIB interface.

SSA command codes are not allowed.
Related concepts:

Application programming with the IMS catalog (Application Programming)

Overview of the IMS catalog (Database Administration)
Related reference:

AIB return and reason codes (Messages and Codes)

ISRT call
The Insert (ISRT) call is used to load a database and to add one or more segments
to the database. You can use ISRT to add a record to the end of a GSAM database
or for an alternate PCB that is set up for IAFP processing.

Format

►► ISRT db pcb
aib

i/o area ▼ ssa
rsa

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: ISRT X X X

Chapter 1. DL/I calls reference 25

|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_catalog_prog.htm#ims_catalog_prog
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_cat_db_overview.htm#ims_cat_db_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/compcodes/ims_aibretandreasoncodes_ims.htm#ims_aibretandreasoncodes_ims

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: ISRT X X X X X

For DEDB: ISRT X X X

For MSDB: ISRT X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the I/O area. This parameter is an input parameter. When you want
to add a new segment to the database, you place the new segment in this area
before issuing the ISRT call. This area must be long enough to hold the longest
segment that IMS returns to this area. For example, if none of the segments
your program retrieves or updates is longer than 48 bytes, your I/O area
should be 48 bytes.

If your program issues any path calls, the I/O area must be long enough to
hold the longest concatenated segment following a path call. The segment data
that this area contains is always left-justified. The I/O area points to the first
byte of this area.

When you use the ISRT call with GSAM, the area named by the i/o area
parameter contains the record you want to add. The area must be long enough
to hold these records.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input
parameter. The SSA you supply in the call point to data areas in your program
where you have defined the SSAs for the call. You can use up to 15 SSAs on
the call. This parameter is required.

rsa
Specifies the area in your program where the RSA should be returned by DL/I.
This output parameter is used for GSAM only and is optional. See the topic
"GSAM Data Areas" in IMS Version 14 Application Programming for more
information on RSAs.

26 Application Programming APIs

Usage

Your program uses the ISRT call to initially load a database and to add information
to an existing one. The call looks the same in either case. However, the way it is
used is determined by the processing option in the PCB.

ISRT can add new occurrences of an existing segment type to a HIDAM, PHIDAM,
HISAM, HDAM, PHDAM, DEDB, or MSDB database.

Restriction: New segments cannot be added to a HSAM database unless you
reprocess the whole database or add the new segments to the end of the database.

Before you issue the ISRT call, build the new segment in the I/O area. The new
segment fields must be in the same order and of the same length as defined for the
segment. (If field sensitivity is used, they must be in the order defined for the
application program's view of the segment.) The DBD defines the fields that a
segment contains and the order in which they appear in the segment.

Root segment occurrence

If you are adding a root segment occurrence, IMS places it in the correct sequence
in the database by using the key you supply in the I/O area. If the segment you
are inserting is not a root, but you have just inserted its parent, you can insert the
child segment by issuing an ISRT call with an unqualified SSA. You must build the
new segment in your I/O area before you issue the ISRT call. Also, you use an
unqualified SSA when you insert a root. When you are adding new segment
occurrences to an existing database, the segment type must have been defined in
the DBD. You can add new segment occurrences directly or sequentially after you
have built them in the program's I/O area. At least one SSA is required in an ISRT
call; the last (or only) SSA specifies the segment being inserted. To insert a path of
segments, you can set the D command code for the highest-level segment in the
path.

Insert rules

If the segment type you are inserting has a unique key field, the place where IMS
adds the new segment occurrence depends on the value of its key field. If the
segment does not have a key field, or if the key is not unique, you can control
where the new segment occurrence is added by specifying either the FIRST, LAST,
or HERE insert rule. Specify the rules on the RULES parameter of the SEGM
statement of DBDGEN for this database.

The rules on the RULES parameter are as follows:

FIRST IMS inserts the new segment occurrence before the first existing occurrence
of this segment type. If this segment has a nonunique key, IMS inserts the
new occurrence before all existing occurrences of that segment that have
the same key field.

LAST IMS inserts the new occurrence after the last existing occurrence of the
segment type. If the segment occurrence has a nonunique key, IMS inserts
the new occurrence after all existing occurrences of that segment type that
have the same key.

HERE IMS assumes you have a position on the segment type from a previous
IMS call. IMS places the new occurrence before the segment occurrence
that was retrieved or deleted by the last call, which is immediately before

Chapter 1. DL/I calls reference 27

current position. If current position is not within the occurrences of the
segment type being inserted, IMS adds the new occurrence before all
existing occurrences of that segment type. If the segment has a nonunique
key and the current position is not within the occurrences of the segment
type with equal key value, IMS adds the new occurrence before all existing
occurrences that have equal key fields.

You can override the insert rule of FIRST with the L command code. You can
override the insert rule of HERE with either the F or L command code. This is true
for HDAM and PHDAM root segments and for dependent segments in any type of
database that have either nonunique keys or no keys at all.

An ISRT call must have at least one unqualified SSA for each segment that is
added to the database. Unless the ISRT is a path call, the lowest-level SSA specifies
the segment being inserted. This SSA must be unqualified. If you use the D
command code, all the SSAs below and including the SSA containing the D
command code must be unqualified.

Provide qualified SSAs for higher levels to establish the position of the segment
being inserted. Qualified and unqualified SSAs can be used to specify the path to
the segment, but the last SSA must be unqualified. This final SSA names the
segment type to be inserted.

If you supply only one unqualified SSA for the new segment occurrence, you must
be sure that current position is at the correct place in the database to insert that
segment.

Mix qualified and unqualified SSA

You can mix qualified and unqualified SSAs, but the last SSA must be unqualified.
If the SSAs are unqualified, IMS satisfies each unqualified SSA with the first
occurrence of the segment type, assuming that the path is correct. If you leave out
a SSA for one of the levels in an ISRT with multiple SSAs, IMS assumes an SSA for
that level. The SSA that IMS assumes depends on current position:
v If IMS has a position established at the missing level, the SSA that IMS uses is

derived from that position, as reflected in the DB PCB.
v If IMS does not have a position established at the missing level, IMS assumes an

unqualified SSA for that level.
v If IMS moves forward from a position established at a higher level, IMS assumes

an unqualified SSA for that level.
v If the SSA for the root level is missing, and IMS has position established on a

root, IMS does not move from that root when trying to satisfy the call.

Using SSA with the ISRT call

Using SSA with ISRT is a good way to check for the parent segments of the
segment you want to insert. You cannot add a segment unless its parent segments
exist in the database. Instead of issuing Get calls for the parents, you can define a
fully qualified set of SSAs for all the parents and issue the ISRT call for the new
segment. If IMS returns a GE status code, at least one of the parents does not exist.
You can then check the segment level number in the DB PCB to find out which
parent is missing. If the level number in the DB PCB is 00, IMS did not find any of
the segments you specified. A 01 means that IMS found only the root segment; a
02 means that the lowest-level segment that IMS found was at the second level;
and so on.

28 Application Programming APIs

OPEN call
The OPEN call is used to explicitly open a GSAM database.

Format

►► OPEN gsam pcb
aib i/o area

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For GSAM: OPEN X X X X X

Parameters

gsam pcb
Specifies the GSAM PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
of a GSAM PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the kind of data set you are opening. This parameter is an input
parameter.

Usage

For more information, see the topic "Explicit Open and Close Calls to GSAM" in
IMS Version 14 Application Programming.

POS call
A qualified Position (POS) call is used to retrieve the location of a specific
sequential dependent segment. In addition to location, a qualified POS call using
an SSA for a committed segment will return the sequential dependent segment
(SDEP) time stamp and the ID of the IMS owner that inserted it.

For more information about the qualified POS call, refer to the topic "Processing
Fast Path Databases" in IMS Version 14 Application Programming.

An unqualified POS points to the logical end of the sequential dependent segment
(SDEP) data. By default, an unqualified POS call returns the DMACNXTS value,

Chapter 1. DL/I calls reference 29

which is the next SDEP CI to be allocated. Because this CI has not been allocated,
its specification without the EXCLUDE keyword will often result in a DFS2664A
message from the SDEP utilities.

Format

►► POS db pcb
aib
keyword

i/o area
ssa

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For DEDB: POS X X

Parameters

db pcb
Specifies the DB PCB for the DEDB that you are using for this call. This
parameter is an input and output parameter.

aib
Specifies the AIB for the DEDB that you are using for this call. This parameter
is an input and output parameter. These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

keyword
Specifies the Keyword for the DEDB that you are using for this call. Returns
six words containing field codes to I/O area. The following table lists the five
keywords and the corresponding output.

i/o area
Specifies the I/O area in your program that you want to contain the
positioning information that is returned by a successful POS call. This
parameter is both an input and an output parameter. The I/O area must be
long enough to contain all the returned entries. IMS returns an entry for each
area in the DEDB.

The I/O area returned on POS call contained six words with nine potential
fields of data for each return output. Each field is four or eight bytes. When
the successful POS is an unqualified call, the I/O area consists of a 2 byte field
that contains the length of the data area (LL), followed by 24 bytes of
positioning information. The I/O data area will have 24 bytes of positioning
information for every area in the DEDB. By selecting one of the five keywords
in position zero of the input I/O area, the user specifies the kind of data in the

30 Application Programming APIs

return I/O area. The following table lists the five keywords and the data that
an unqualified POS call returns based on the keyword you choose for position
zero of the input I/O area.

Table 4. Unqualified POS call: keywords and map of the I/O area return output

Keyword byte 2 word 0 word 1 word 2 word 3 word 4 word 5

<null> LL Field 1 Field 2 Field 4 Field 5

V5SEGRBA LL Field 1 Field 3 <null>

PCSEGRTS LL Field 1 Field 3 Field 6

PCSEGHWM LL Field 1 Field 3 Field 7

PCHSEGTS LL Field 1 Field 8 Field 6

PCLBSGTS LL Field 1 Field 9 Field 6

Field 1

Area name
This 8-byte field contains the ddname from the AREA statement.

Field 2

Sequential dependent next to allocate CI
This field is the default if no keyword is specified in position zero of
the I/O area. The data returned is the 8-byte cycle count and RBA
(CC+RBA) acquired from the global DMACNXTS field. This data
represents the next pre-allocated CI as a CI boundary.

Field 3

Local sequential dependent next segment
The data returned is the 8-byte CC+RBA segment boundary of the
most recently committed SDEP segment. This data is specific to only
the IMS that executes the POS call. Its scope is for local IMS use only.

Field 4

Unused CIs in sequential dependent part
This 4-byte field contains the number of unused control intervals in the
sequential dependent part.

Field 5

Unused CIs in independent overflow part
This 4-byte field contains the number of unused control intervals in the
independent overflow part.

Field 6

Sequential dependent segment time stamp
The data returned is the 8-byte time stamp of the most recently
committed SDEP segment across all IMS partners, or for a local SDEP,
the time stamp of the first pre-allocated SDEP CI dummy segment of
the local IMS. If the area (either local or shared) has not been opened,
or a /DBR was performed without any subsequent SDEP segment
inserts, the current time is returned.

Field 7

Sequential dependent High Water Mark (HWM)
This 8-byte field contains the cycle count plus RBA (CC+RBA) of the
last pre-allocated SDEP CI which is the High Water Mark (HWM) CI.

Chapter 1. DL/I calls reference 31

Field 8

Highest committed SDEP segment
The data returned is the 8-byte cycle count plus RBA (CC+RBA) for the
most recently committed SDEP segment across all IMS partners, or for
a local SDEP, the CC+RBA of the most recently committed SDEP
segment of the local IMS. If the area (either local or shared) has not
been opened, or a /DBR was performed without any subsequent SDEP
segment inserts, the HWM CI is returned.

Field 9

Logical begin time stamp
This 8-byte field contains the logical begin time stamp from the
DMACSDEP_LOGICALBEGIN_TS field.

ssa
Specifies the SSA that you want to use in this call. This parameter is an input
parameter. The format of SSA in POS calls is the same as the format of SSA in
DL/I calls. You can use only one SSA in this parameter. This parameter is
optional for the POS call.

Usage

The POS call:
v Retrieves the location of a specific sequential dependent segment.
v Retrieves the location of last-inserted sequential dependent segment, its time

stamp, and the IMS ID.
v Retrieves the time stamp of a sequential dependent segment or Logical Begin.
v Tells you the amount of unused space within each DEDB area. For example, you

can use the information that IMS returns for a POS call to scan or delete the
sequential dependent segments for a particular time period.

If the area which the POS call specifies is unavailable, the I/O area is unchanged,
and the status code FH is returned.

Restrictions

You can only use the POS call with a DEDB.

REPL call
The Replace (REPL) call is used to change the values of one or more fields in a
segment.

Format

►► REPL db pcb
aib

i/o area

▼ ssa

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: REPL X X X

For DEDB: REPL X X

For MSDB: REPL X

32 Application Programming APIs

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the area in your program that communicates with IMS. This
parameter is an input parameter. When you want to replace an existing
segment in the database with a new segment, you first issue a Get Hold call to
place the new segment in the I/O area. You can modify the data in the I/O
area, and then issue the REPL call to replace the segment in the database.

ssa
Specifies the SSA, if any, to be used in the call. This parameter is an input
parameter. The SSA you supply in the call point to data areas in your program
in which you have defined the SSA for the call. You can use up to 15 SSAs in
this parameter. This parameter is optional for the REPL call.

Usage

A REPL call must be preceded by one of the three Get Hold calls. After you retrieve
the segment, you modify it in the I/O area, and then issue a REPL call to replace it
in the database. IMS replaces the segment in the database with the segment you
modify in the I/O area. You cannot change the field lengths of the segments in the
I/O area before you issue the REPL call.

For example, if you do not change one or more segments that are returned on a
Get Hold call, or if you change the segment in the I/O area but do not want the
change reflected in the database, you can inform IMS not to replace the segment.
Specify an unqualified SSA with an N command code for that segment, which tells
IMS not to replace the segment.

The N command enables you to tell IMS not to replace one or more of the multiple
segments that were returned using the D command code. However, you can
specify an N command code even if there were no D command codes on the
preceding Get Hold call.

You should not include a qualified SSA on a REPL call. If you do, you receive an AJ
status code.

Chapter 1. DL/I calls reference 33

For your program to successfully replace a segment, the segment must have been
previously defined as replace-sensitive by PROCOPT=A or PROCOPT=R on the
SENSEG statement in the PCB.

If no fields in the segment were changed by the REPL call, the lock is released
when the application moves to another database record. Use the Q command code
if you need to preserve the segment for the exclusive use of your program.

Related reading: For more information on the PROCOPT option, see IMS Version
14 System Utilities.

If your program attempts to do a path replace of a segment where it does not have
replace sensitivity, and command code N is not specified, the data for the segment
in the I/O area for the REPL call must be the same as the segment returned on the
preceding Get Hold call. If the data changes in this situation, your program
receives the status code, AM, and data does not change as a result of the REPL call.

RLSE call
The Release Locks (RLSE) call is used to release all locks held for unmodified data.

Format

►► RLSE db pcb
aib

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

For Full-Function: RLSE X X X

For DEDB: RLSE X X X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
DB PCB.

Usage

For Fast Path databases, use the RLSE call to release all locks held for unmodified
data that are owned by an application. For full-function databases, use the RLSE
call to release the locks held by the DB PCB that is referenced in the call. If the
lock is protecting a resource that has been updated, the lock will not be released.

34 Application Programming APIs

After the RLSE call, all database position information is lost.

Restrictions

The RLSE call has to be issued using a DB PCB. The PCB cannot be an I/O PCB or
an MSDB PCB.

DL/I calls for IMS DB system services
Use these DL/I calls to obtain IMS DB system services.

Each call description contains:
v A syntax diagram
v Definitions for parameters that are available to the call
v Details on how to use the call in your application program
v Restrictions on call usage, where applicable

Each parameter is described as an input parameter or output parameter. “Input”
refers to input to IMS from the application program. “Output” refers to output
from IMS to the application program.

Syntax diagrams for these calls begin with the function parameter. The call interface
(xxxTDLI) and parmcount (if it is required) are not included in the syntax diagrams.

Related reading: For specific information about coding your program in assembler
language, C language, COBOL, Pascal, and PL/I, see the topic "Defining
Application Program Elements" inIMS Version 14 Application Programming for the
complete structure.
Related reference:
“DL/I calls for IMS TM system services” on page 124
“DL/I calls for transaction management” on page 81
“EXEC DLI commands” on page 163
“IMSCALL command (X'C803')” on page 301

System service call summary
The following table summarizes which system service calls you can use in each
type of IMS DB application program and the parameters for each call. Optional
parameters are enclosed in brackets ([]).

Exception: Language-dependent parameters are not shown here.

For more information on language-dependent application elements, see the topic
"Defining Application Program Elements" in IMS Version 14 Application
Programming.

Table 5. Summary of system service calls.

Function Code Meaning Use/Options Parameters Valid for

APSB Allocate PSB Allocates a PSB for
an ODBA
application

aib DB/DC, IMS DB

DPSB Deallocate PSB Deallocates a PSB for
an ODBA
application

aib DB/DC, IMS DB

Chapter 1. DL/I calls reference 35

Table 5. Summary of system service calls (continued).

Function Code Meaning Use/Options Parameters Valid for

CHKP (Basic) Basic checkpoint Prepares for
recovery

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP

CHKP (Symbolic) Symbolic checkpoint Prepares for
recovery. Specifies
up to seven program
areas to be saved

function, i/o pcb or
aib, i/o area len, i/o
area[, area len, area]

DB batch, TM batch,
BMP

GMSG Get Message Retrieves a message
from the AO exit
routine. Waits for an
AOI message when
none is available

function, aib, i/o area DB/DC and DCCTL
(BMP, MPP, IFP),
DB/DC and DBCTL
(DRA thread), DBCTL
(BMP non-message
driven), ODBA

GSCD1 Get System Contents
Directory

Gets address of
system contents
directory

function, db pcb, i/o
pcb or aib, i/o area

DB Batch, TM Batch

ICMD Issue Command Issues an IMS
command and
retrieves the first
command response
segment

function, aib, i/o area DB/DC and DCCTL
(BMP, MPP, IFP),
DB/DC and DBCTL
(DRA thread), DBCTL
(BMP non-message
driven), ODBA

INIT Initialize application Receives data
availability and
deadlock occurrence
status codes and
checks each PCB
database for data
availability

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP,
DBCTL, ODBA

INQY Inquiry Returns information
and status codes
about I/O or
alternate PCB
destination type,
location, and session
status

function, aib, i/o area,
AIBFUNC=FIND|
DBQUERY| ENVIRON

DB batch, TM batch,
BMP, MPP, IFP, ODBA

LOG� Log Writes a message to
the system log

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP,
DBCTL, ODBA

PCB� Program
Communication Block

Specifies and
schedules another
PSB

function, psb name,
uibptr, [,sysserve]

CICS (DBCTL or
DB/DC)

RCMD Retrieve Command Retrieves the second
and subsequent
command response
segments resulting
from an ICMD call

function, aib, i/o area DB/DC and DCCTL
(BMP, MPP, IFP),
DB/DC and DBCTL
(DRA thread), DBCTL
(BMP non-message
driven), ODBA

ROLB Roll back Eliminates database
updates and returns
last message to i/o
area

function, i/o pcb or
aib, i/o area

DB batch, TM batch,
BMP, MPP, IFP

ROLL Roll Eliminates database
updates

function DB batch, TM batch,
BMP, MPP, IFP

36 Application Programming APIs

Table 5. Summary of system service calls (continued).

Function Code Meaning Use/Options Parameters Valid for

ROLS Roll back to SETS Issues call using
name of DB PCB or
i/o PCB and backs
out database changes
to SETS points

function, db pcb, i/o
pcb or aib, i/o area,
token

DB batch, TM batch,
BMP, MPP, IFP,
DBCTL, ODBA

SETS/SETU Set a backout point Cancels all existing
backout points and
establishes as many
as nine intermediate
backout points

function, i/o pcb or
aib, i/o area, token

DB batch, TM batch,
BMP, MPP, IFP,
DBCTL, ODBA

SNAP2 Collects diagnostic
information; choose
SNAP options

function, db pcb or aib,
i/o area

DB batch, BMP, MPP,
IFP, CICS (DBCTL or
DB/DC), ODBA

STAT3 Statistics Retrieves IMS
system statistics;
choose type and
format

function, db pcb or aib,
i/o area, stat function

DB batch, BMP, MPP,
IFP, DBCTL, ODBA

SYNC Synchronization Releases locked
resources and
requests
commit-point
processing

function, i/o pcb or aib BMP

TERM Terminate Releases a PSB so
another can be
scheduled to commit
database changes

function CICS (DBCTL or
DB/DC)

XRST Extended restart Specifies up to seven
areas to be saved.
Works with symbolic
checkpoint to restart
application program

function, i/o pcb or
aib, i/o area len, i/o
area[, area len, area]

DB batch, TM batch,
BMP

Note:

1. GSCD is a Product-sensitive Programming Interface.

2. SNAP is a Product-sensitive Programming Interface.

3. STAT is a Product-sensitive Programming Interface.

APSB call
The Allocate PSB (APSB) calls are used to allocate a PSB for an ODBA application.

Format

►► APSB aib ►◄

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

APSB X X

Chapter 1. DL/I calls reference 37

Parameters

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

AIBRSNM2
This is the 4-character ID of ODBA startup table representing the target
IMS of the APSB.

Usage

The ODBA application must load or be link edited with the ODBA application
interface AERTDLI.

The APSB call must be issued prior to any DLI calls.

The APSB call uses the AIB to allocate a PSB for ODBA application programs.

z/OS Resource Recovery Services (RRS) must be active at the time of the APSB
call. If RRS is not active, the APSB call will fail and the application will receive:
AIBRETRN = X’00000108’
AIBREASN = X’00000548’

CHKP (basic) call
A basic Checkpoint (CHKP) call is used for recovery purposes.

The ODBA interface does not support this call.

Format

►► CHKP i/o pcb
aib

i/o area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters

i/o pcb
Specifies the I/O PCB for the call. A basic CHKP call must refer to the I/O PCB.
This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

38 Application Programming APIs

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies your program's I/O area that contains the 8-byte checkpoint ID. This
parameter is an input parameter. If the program is an MPP or a
message-driven BMP, the CHKP call implicitly returns the next input message to
this I/O area. Therefore, the area must be large enough to hold the longest
returned message.

Usage

Basic CHKP commits the changes your program has made to the database and
establishes places in your program from which you can restart your program, if it
terminates abnormally.

CHKP (symbolic) call
A symbolic Checkpoint (CHKP) call is used for recovery purposes. If you use the
symbolic Checkpoint call in your program, you also must use the XRST call.

The ODBA interface does not support this call.

Format

►► CHKP i/o pcb
aib

i/o area length i/o area

▼ area length area

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters

i/o pcb
Specifies the I/O PCB for the call. This parameter is an input and output
parameter. A symbolic CHKP call must refer to the I/O PCB.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

Chapter 1. DL/I calls reference 39

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this
parameter must be included in the call, and it must contain a valid address.
You can get a valid address by specifying the name of any area in your
program.

i/o area
Specifies the I/O area in your program that contains the 8-byte ID for this
checkpoint. This parameter is an input parameter. If the program is a
message-driven BMP, the CHKP call implicitly returns the next input message
into this I/O area. Therefore, the area must be large enough to hold the longest
returned message.

area length
Specifies a 4-byte field in your program that contains the length (in binary) of
the area to checkpoint. This parameter is an input parameter. You can specify
up to seven area lengths. For each area length, you must also specify the area
parameter. All seven area parameters (and corresponding length parameters)
are optional. When you restart the program, IMS restores only the areas you
specified in the CHKP call.

area
Specifies the area in your program that you want IMS to checkpoint. This
parameter is an input parameter. You can specify up to seven areas. Each area
specified must be preceded by an area length parameter.

Usage

The symbolic CHKP call commits the changes your program has made to the
database and establishes places in your program from which you can restart your
program, if it terminates abnormally. In addition, the CHKP call:
v Works with the Extended Restart (XRST) call to restart your program if it

terminates abnormally
v Enables you to save as many as seven data areas in your program, which are

restored when your program is restarted

An XRST call is required before a CHKP call to indicate to IMS that symbolic check
points are being taken.

Restrictions

The Symbolic CHKP call is allowed only from batch and BMP applications.

DPSB call
The DPSB call is used to deallocate IMS DB resources.

40 Application Programming APIs

Format

►► DPSB aib ►◄

Call Name DB/DC IMS DB DCCTL DB Batch TM Batch

DPSB X X

Parameters

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction
codes as follows:
bbbbbbbb (Null)
PREPbbbb

Usage

The DPSB call is used by an application running in a z/OS application region to
deallocate a PSB. If the PREP subfunction is not used, the application must activate
sync-point processing prior to issuing the DPSB. Use the z/OS Resource Recovery
Services (RRS) SRRCMIT/ATRCMIT calls to activate the sync-point process. Refer
to z/OS MVS Programming: Resource Recovery for more information on these calls.

If the DPSB is issued before changes are committed, and, or locks released, the
application will receive:
AIBRETRN = X’00000104’
AIBREASN = X’00000490’

The thread will not be terminated. The application should issue a SRRCMIT or
SRRBACK call, and retry the DPSB.

The PREP sub-function allows the application to issue the DPSB prior to activating
the sync-point process. The sync-point activation can occur at a later time, but still
must be issued.

GMSG call
A Get Message (GMSG) call is used in an automated operator (AO) application
program to retrieve a message from an AO exit routine (DFSAOE00 or another
AOIE type exit routine).

Chapter 1. DL/I calls reference 41

|
|
|

Format

►► GMSG aib i/o area ►◄

Parameters

aib
Specifies the application interface block (AIB) to be used for this call. This
parameter is an input and output parameter.

You must initialize the following fields in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the length of the AIB the application
actually obtained.

AIBSFUNC
Subfunction code. This field must contain one of these 8-byte subfunction
codes:

8-blanks (null)
When coded with an AOI token in the AIBRSNM1 field, indicates IMS
is to return when no AOI message is available for the application
program.

WAITAOI
When coded with an AOI token in the AIBRSNM1 field, WAITAOI
indicates IMS is to wait for an AOI message when none is currently
available for the application program. This subfunction value is invalid
if an AOI token is not coded in AIBRSNM1. In this case, error return
and reason codes are returned in the AIB.

The value WAITAOI must be left justified and padded on the right
with a blank character.

AIBRSNM1
Resource name. This field must contain the AOI token or blanks. The AOI
token identifies the message the AO application is to retrieve. The token is
supplied for the first segment of a message. If the message is a
multisegment message, set this field to blanks to retrieve the second
through the last segment. AIBRSNM1 is an 8-byte alphanumeric
left-justified field that is padded on the right with blanks.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of the data returned in the I/O area. This parameter is an output
parameter.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data, and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area should be large enough to hold the largest segment

42 Application Programming APIs

that is passed from IMS to the AO application program. If the I/O area is not
large enough to contain all the data, IMS returns partial data.

Usage

GMSG is used in an AO application program to retrieve a message associated with
an AOI token. The AO application program must pass an 8-byte AOI token to IMS
in order to retrieve the first segment of the message. IMS uses the AOI token to
associate messages from an AO exit routine of type AOIE, with the GMSG call
from an AO application program. IMS returns to the application program only
those messages associated with the AOI token. By using different AOI tokens, the
AOIE type exit routine can direct messages to different AO application programs.
Note that your installation defines the AOI token.

To retrieve the second through the last segments of a multisegment message, issue
GMSG calls with no token specified (set the token to blanks). If you want to
retrieve all segments of a message, you must issue GMSG calls until all segments
are retrieved. IMS discards all nonretrieved segments of a multisegment message
when a new GMSG call that specifies an AOI token is issued.

Your AO application program can specify a wait on the GMSG call. If no messages
are currently available for the associated AOI token, your AO application program
waits until a message is available. The decision to wait is specified by the AO
application program, unlike a WFI transaction where the wait is specified in the
transaction definition. The wait is done on a call basis; that is, within a single
application program some GMSG calls can specify waits, while others do not. The
following table shows, by IMS environment, the types of AO application programs
that can issue GMSG. GMSG is also supported from a CPI-C driven program.

Table 6. GMSG support by application region type

Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

Restrictions

A CPI-C driven program must issue an allocate PSB (APSB) call before issuing GMSG.

GSCD call
A Get System Contents Directory (GSCD) call retrieves the address of the IMS
system contents directory for batch programs.

This topic contains Product-sensitive Programming Interface information.

The ODBA interface does not support this call.

Chapter 1. DL/I calls reference 43

|
|
|
|
|
|
|
|

Format

►► GSCD db pcb
i/o pcb
aib

i/o area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GSCD X X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

i/o pcb
Specifies the I/O PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
The these fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCBbbb (if the I/O PCB is used), or the name of a DB PCB (if a DB PCB
is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the I/O area, which must be 8 bytes long. IMS places the address of
the system contents directory (SCD) in the first 4 bytes and the address of the
program specification table (PST) in the second 4 bytes. This parameter is an
output parameter.

Usage

IMS does not return a status code to a program after it issues a successful GSCD
call. The status code from the previous call that used the same PCB remains
unchanged in the PCB.

Restrictions

The GSCD call can be issued only from batch application programs.

44 Application Programming APIs

ICMD call
An Issue Command (ICMD) call enables an automated operator (AO) application
program to issue an IMS command and retrieve the first command response
segment.

Format

►► ICMD aib i/o area ►◄

Parameters

aib
Specifies the application interface block (AIB) for this call. This parameter is an
input and output parameter.

These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output
parameter.

Your program must check this field to determine whether the ICMD call
returned data to the I/O area. When the only response to the command is
a DFS058 message indicating that the command is either in progress or
complete, the response is not returned.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data, and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an input and
output parameter. The I/O area should be large enough to hold the largest
command that is passed from the AO application program to IMS, or the
largest command response segment that is passed from IMS to the AO
application program. If the I/O area is not large enough to contain all the data,
IMS returns partial data.

Usage

ICMD enables an AO application to issue an IMS command and retrieve the first
command response segment.

When using ICMD, put the IMS command that is to be issued in your application
program's I/O area. After IMS has processed the command, it returns the first
segment of the response message to your AO application program's I/O area. To
retrieve subsequent segments (one segment at a time) use the RCMD call.

Chapter 1. DL/I calls reference 45

Some IMS commands that complete successfully result in a DFS058 message
indicating that the command is complete. Some IMS commands that are processed
asynchronously result in a DFS058 message indicating that the command is in
progress. For a command entered on an ICMD call, neither DFS058 message is
returned to the AO application program. In this case, the AIBOAUSE field is set to
0 to indicate that no segment was returned. So, your AO application program must
check the AIBOAUSE field along with the return and reason codes to determine if
a response was returned.

Related reading: For more information on the AOI exits, see IMS Version 14 Exit
Routines.

The following table shows, by IMS environment, the types of AO application
programs that can issue ICMD. ICMD is also supported from a CPI-C driven
program.

Table 7. ICMD support by application region type

Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

See IMS Version 14 Operations and Automation for a list of commands that can be
issued using the ICMD call.

Restrictions

Before issuing ICMD, a CPI-C driven program must issue an allocate PSB (APSB) call.

INIT call
The Initialize (INIT) call allows an application to receive status codes regarding
deadlock occurrences and data availability (by checking each DB PCB).

For GSAM databases, you can use the Initialize (INIT) call to tell IMS that the
program can accept a 12-byte record search argument (RSA) when retrieving a
record for a large format data set.

Format

►► INIT i/o pcb
aib

i/o area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INIT X X X X X

46 Application Programming APIs

Parameters

i/o pcb
Specifies the I/O PCB for the call. INIT must refer to the I/O PCB. This
parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the I/O area in your program that contains the character string or
strings indicating which INIT functions are requested. This parameter is an
input parameter.

The functions that you can specify include:
v DBQUERY
v RSA12
v STATUS GROUPA
v STATUS GROUPB
v VERSION

Usage

You can use the call in any application program, including IMS batch in a sharing
environment.

Specify the function in your application program with a character string in the I/O
area.

For example, use the format LLZZ Character-String, where LL is the length of the
character string including the length of the LLZZ portion; ZZ must be binary 0.
For PL/I, you must define the LL field as a fullword; the value is the length of the
character string including the length of the LLZZ portion, minus 2. If the I/O area
is invalid, an AJ status code is returned. The following tables contain sample I/O
areas for INIT when it is used with assembler language, COBOL, C language,
Pascal, and PL/I.

Determining database availability: INIT DBQUERY

When the INIT call is issued with the DBQUERY character string in the I/O area,
the application program can obtain information regarding the availability of data
for each PCB.

Chapter 1. DL/I calls reference 47

Application programs that use the language-independent AIB interface or the
language-specific interfaces for the assembler, COBOL, C, or Pascal programming
languages use a 2-byte LL field to specify the length of the I/O area. The following
table shows an example of the INIT call I/O area with the LLZZ length field and
DBQUERY specified.

Table 8. INIT DBQUERY example for the AIB, ASMTDLI, CBLTDLI, CTDLI, and PASTDLI
interfaces

L L Z Z Character String

00 0B 00 00 DBQUERY

Note: The LL value of X'0B' is a hexadecimal representation of decimal 11. ZZ fields are
binary.

The following table contains a sample I/O area for the INIT call with DBQUERY
for PL/I. The PLITDLI interface uses a 4-byte LLLL field for the length of the I/O
area.

Table 9. INIT DBQUERY: I/O area example for PLITDLI

L L L L Z Z Character String

00 00 00 0B 00 00 DBQUERY

Note: The LL value of X'0B' is a hexadecimal representation of decimal 11. ZZ fields are
binary.

LL or LLLL
A 2-byte field that contains the length of the character string, plus two
bytes for LL. For the PLITDLI interface, use the 4-byte field LLLL. When
you use the AIB interface (AIBTDLI), PL/I programs require only a 2-byte
field.

ZZ A 2-byte field of binary zeros.

One of the following status codes is returned for each database PCB:

NA At least one of the databases that can be accessed using this PCB is not
available. A call made using this PCB probably results in a BA or BB status
code if the INIT STATUS GROUPA call has been issued, or in a DFS3303I
message and 3303 pseudoabend if it has not. An exception is when the
database is not available because dynamic allocation failed. In this case, a
call results in an AI (unable to open) status code.

In a DCCTL environment, the status code is always NA.

NU At least one of the databases that can be updated using this PCB is
unavailable for update. An ISRT, DLET, or REPL call using this PCB might
result in a BA status code if the INIT STATUS GROUPA call has been issued,
or in a DFS3303I message and 3303 pseudoabend if it has not. The
database that caused the NU status code might be required only for delete
processing. In that case, DLET calls fail, but ISRT and REPL calls succeed.

bb The data that can be accessed with this PCB can be used for all functions
that the PCB allows. DEDBs and MSDBs always have the bb status code.

In addition to data availability status, the name of the database organization of the
root segment is returned in the segment name field of the PCB. The segment name

48 Application Programming APIs

field contains one of the following database organizations: DEDB, MSDB, GSAM,
HDAM, PHDAM, HIDAM, PHIDAM, HISAM, HSAM, INDEX, SHSAM, or
SHISAM.

For a DCCTL environment, the database organization is UNKNOWN.

Important: If you are working with a High Availability Large Database (HALDB),
you need to be aware that the feedback on data availability at PSB schedule time
only shows the availability of the HALDB master, not of the HALDB partitions.
However, the error settings for data unavailability of a HALDB partition are the
same as those of a non-HALDB database, namely status code 'BA' or pseudo abend
U3303.

Automatic INIT DBQUERY

When the program is initially scheduled, the status code in the database PCBs is
initialized as if the INIT DBQUERY call were issued. The application program can
therefore determine database availability without issuing the INIT call.

Performance considerations for the INIT call (IMS online only)

For a DCCTL environment, the status code is NA.

For performance reasons, the INIT call should not be issued before the first GU call
to the I/O PCB. If the INIT call is issued first, the GU call is not processed as
efficiently.

Determining data availability status without abends

To avoid abendu3303, first use INIT STATUS GROUPx (x=A or B). IMS will give you
a status code for unavailable databases (or HALDB partitions). Then, use INIT
DBQUERY, which will set a status code in each DB PCB. Before attempting any DB
call, you can test all PCBs for non-blank status.

Enabling data availability status codes: INIT STATUS GROUPA

The following table contains a sample I/O area for the INIT call for assembler
language, COBOL, C language, and Pascal.

Table 10. INIT I/O area examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character String

00 11 00 00 STATUS GROUPA

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are
binary.

The following table contains a sample I/O area for the INIT call for PL/I.

Table 11. INIT I/O area examples for PLITDLI

L L L L Z Z Character String

00 00 00 11 00 00 STATUS GROUPA

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are
binary.

Chapter 1. DL/I calls reference 49

LL or LLLL
LL is a halfword-length field. For non-PLITDLI calls, LLLL is a
fullword-length field for PLITDLI.

ZZ A 2-byte field of binary zeros.

The value for LLZZ data or LLLLZZ data is always 4 bytes (for LLZZ or LLLLZZ),
plus data length.

Recommendation: You should be familiar with data availability.

When the INIT call is issued with the character string STATUS GROUPA in the I/O
area, the application program informs IMS that it is prepared to accept status codes
regarding data unavailability. IMS then returns a status code rather than a resultant
pseudoabend if a subsequent call requires access to unavailable data. The status
codes that are returned when IMS encounters unavailable data are BA and BB.
Status codes BA and BB both indicate that the call could not be completed because
it required access to data that was not available. DEDBs can receive the BA or BB
status code.

In response to status code BA, the system backs out only the updates that were
done for the current call before it encountered the unavailable data. If changes
have been made by a previous call, the application must decide to commit or not
commit to these changes. The state of the database is left as it was before the
failing call was issued. If the call was a REPL or DLET call, the PCB position is
unchanged. If the call is a Get type or ISRT call, the PCB position is unpredictable.

In response to status code BB, the system backs out all database updates that the
program made since the last commit point and cancels all nonexpress messages
that were sent since the last commit point. The PCB position for all PCBs is at the
start of the database.

Enabling deadlock occurrence status codes: INIT STATUS GROUPB

The following table contains a sample I/O area for the INIT call for assembler
language, COBOL, C language, and Pascal.

Table 12. INIT I/O area examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character String

00 11 00 00 STATUS GROUPB

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are
binary.

The following table contains a sample I/O area for the INIT call for PL/I.

Table 13. INIT I/O area examples for PLITDLI

L L L L Z Z Character String

00 00 00 11 00 00 STATUS GROUPB

Note: The LL value of X'11' is a hexadecimal representation of decimal 17. ZZ fields are
binary.

LL or LLLL
LL is a halfword-length field. For non-PLITDLI calls, LLLL is a
fullword-length field for PLITDLI.

50 Application Programming APIs

ZZ A 2-byte field of binary zeros.

The value for LLZZ data or LLLLZZ data is always four bytes (for LLZZ or
LLLLZZ), plus data length.

When the INIT call is issued with the character string STATUS GROUPB in the I/O
area, the application program informs IMS that it is prepared to accept status codes
regarding data unavailability and deadlock occurrences. The status codes for data
unavailability are BA and BB, as described under “Enabling data availability status
codes: INIT STATUS GROUPA”.

When a deadlock occurs in batch and the INITSTATUS GROUPB call has been issued,
the following occurs:
v If no changes were made to the database, the BC status code is returned.
v If updates were made to the database, and if a datalog exists and BKO=YES is

specified, the BC status code is returned.
v If changes were made to the database, and a disklog does not exist or BKO=YES

is not specified, a 777 pseudoabend occurs.

When the application program encounters a deadlock occurrence, IMS:
v Backs out all database resources (with the exception of GSAM and DB2®) to the

last commit point. Although GSAM PCBs can be defined for pure batch or BMP
environments, GSAM changes are not backed out. Database resources are backed
out for DB2 only when IMS is the sync-point coordinator.
When you use INIT STATUS GROUPB in a pure batch environment, you must
specify the DISKLOG and BACKOUT options.

v Backs out all output messages to the last commit point.
v Requeues all input messages as follows:

Environment
Action

MPP and BMP
All input messages are returned to the message queue. The application
program no longer controls its input messages.

IFP All input messages are returned to IMS Fast Path (IFP) balancing group
queues (BALGRP), making them available to any other IFP region on the
BALGRP. The IFP that is involved in the deadlock receives the next
transaction or message that is available on the BALGRP.

DBCTL
Action is limited to resources that are managed by DBCTL, for example,
database updates.

v Returns a BC status code to the program in the database PCB.

Determining GSAM databases for large format data sets: INIT RSA12

When you issue the INIT call with the character string “RSA12” set in the I/O
area, the GSAM application program tells IMS that the program can accept a
12-byte RSA when retrieving a record for a large format data set. The following
table contains a sample I/O area for the INIT call with RSA12 for assembler
language, COBOL, C language, and Pascal.

Chapter 1. DL/I calls reference 51

Table 14. INIT RAS12: Examples for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character string

00 09 00 00 RSA12

Note: The LL value of X'09' is a hexadecimal representation of decimal 9. ZZ fields are
binary.

The following table contains a sample I/O area for the INIT call with RSA12 for
PL/I.

Table 15. INIT RSA12: Example for PLITDLI

L L L L Z Z Character string

00 00 00 09 00 00 RSA12

Note: The LL value of X'09' is a hexadecimal representation of decimal 9. ZZ fields are
binary.

LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/O area. For
PL/I, the length of the LLLL field is considered 2 bytes even though it is a
4-byte field. When you use the AIBTDLI interface, the length of the record
is equal to the total length of LL + ZZ + character string. For the PLITDLI
interface, the length of the record is equal to the total length of LLLL + ZZ
+ character string, where LLLL is considered 2 bytes.

ZZ A 2-byte field of binary zeros.

Specify a database version number: INIT VERSION(dbname=version)

When database versioning is enabled, an application program can use the
“VERSION” function to request a version of a database that is different from the
version number that is specified for the application program on the PCB or from
the default version that is returned by IMS. A version number specified on the
INIT VERSION call takes precedence over all other version specifications and
defaults.

When the INIT VERSION call is not issued prior to a DL/I to access a database,
the version of the database that is returned to the application program is
determined by the DBVER keyword of the PCB statement. If the DBVER keyword
is not specified, IMS returns either the version of the database that is active in the
ACB library or version 0 of the database, as determined by the DBLEVEL keyword
in either the PSBGEN statement or the database section of the DFSDFxxx PROCLIB
member.

In the I/O area, the VERSION function is specified by using the following format:

►► ▼

,

VERSION(dbname=version) ►◄

Each database name is specified by using alphabetic characters and can be
specified only once. Specify only names of physical databases. The names of logical
databases are not supported.

52 Application Programming APIs

Each version is specified as a numeric value from 0 to 2147483647. The number
that is specified must match a version number that is defined on a DBD for the
named database and stored in the IMS catalog.

Calculate the size that is required for the I/O area by multiplying the number of
databases that are specified in the input I/O area by 20.

For example, the following table contains a sample I/O area for the INIT
VERSION call for assembler language, COBOL, C language, and Pascal. In the
table, the LL value of X'3C' is the hexadecimal representation of decimal 60, the
length in bytes that is required to hold the output in the I/O area when three
database names are specified on input. The ZZ fields are binary.

Table 16. INIT VERSION: Example format for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character string

00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

The following table contains a sample I/O area for the INIT call with VERSION for
PL/I. In the table, the LL value of X'3C' is the hexadecimal representation of
decimal 60. The ZZ fields are binary.

Table 17. INIT VERSION: Example format for PLITDLI

L L L L Z Z Character string

00 00 00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/O area. For
PL/I, the length of the LLLL field is considered 2 bytes even though it is a
4-byte field. When you use the AIBTDLI interface, the length of the record
is equal to the total length of LL + ZZ + character string. For the PLITDLI
interface, the length of the record is equal to the total length of LLLL + ZZ
+ required length for output, where LLLL is considered 2 bytes.

ZZ A 2-byte field of binary zeros.

Character string
The function specification on input. The length that is specified in the LL
or LLLL is the length that is required for the output: 20 bytes for each
database that is specified in the input character string.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must
both be DBCTL.

You should be familiar with deadlock occurrences as described in IMS Version 14
System Administration.
Related concepts:

Retrieving and inserting GSAM records (Application Programming)

Converting HDAM and HIDAM databases to HALDB (Database
Administration)

Data availability considerations (Application Programming)

Chapter 1. DL/I calls reference 53

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_retrieveinsertgsamdb.htm#ims_retrieveinsertgsamdb
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_convhdam2phdam.htm#ims_conv_2_haldb
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_convhdam2phdam.htm#ims_conv_2_haldb
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dataavailconsid.htm#ims_dataavailconsid

INQY call
The Inquiry (INQY) call is used to request information regarding execution
environment, destination type and status, and session status. INQY is valid only
for application interfaces that use the AIB structure.

Format

►► INQY aib i/o area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INQY X X X X X

Parameters

aib
Specifies the address of the application interface block (DFSAIB) for the call.
This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction
codes as follows:
v bbbbbbbb (Null)
v DBQUERYb
v ENVIRONb
v FINDbbbb
v LERUNOPT
v MSGINFOb
v PROGRAMb (Not supported with the ODBA interface)

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of
any named PCB in the PSB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list. This field is not changed by IMS.

i/o area
Specifies the data output area to use with the call. This parameter is an output
parameter. An I/O area is required for INQY subfunctions ENVIRONb,
MSGINFOb and PROGRAMb. It is not required for subfunctions DBQUERYb,
FINDbbbb, and LERUNOPT.

Restrictions

The INQY call is valid only when using the AIB. An INQY call issued through the
PCB interface is rejected with an AD status code.

54 Application Programming APIs

|

|
|
|
|

Usage

The INQY call operates in both batch and online IMS environments. IMS
application programs can use the INQY call to request information regarding the
output destination, the session status, the current execution environment, the
availability of databases, and the PCB address, which is based on the PCB name.
You must use the AIB when issuing an INQY call. Before you can issue an INQY
call, initialize the fields of the AIB.

When you use the INQY call, specify an 8-byte subfunction code, which is passed
in the AIB. The INQY subfunction determines the information that the application
program receives.

The INQY call returns information to the caller's I/O area. The length of the data
that is returned from the INQY call is passed back to the application program in
the AIB field, AIBOAUSE.

You specify the size of the I/O area in the AIB field, AIBOALEN. The INQY call
returns only as much data as the area can hold in one call. If the area is not large
enough for all the information, an AG status code is returned, and partial data is
returned in the I/O area. In this case, the AIB field AIBOALEN contains the actual
length of the data returned to the I/O area, and the AIBOAUSE field contains the
output area length that would be required to receive all the data.

Querying data availability: INQY DBQUERY

When the INQY call is issued with the DBQUERY subfunction, the application
program obtains information regarding the data for each PCB. The only valid PCB
name that can be passed in AIBRSNM1 is IOPCBbbb. The INQY DBQUERY call is
similar to the INITDBQUERY call. The INQY DBQUERY call does not return
information in the I/O area, but like the INIT DBQUERY call, it updates status
codes in the database PCBs.

The application program is not made aware of the status of each PCB until an
INQY FIND call is issued. To retrieve the status for a database, you must pass the
DB PCB for that database in the INQY FIND call.

In addition to the INIT DBQUERY status codes, the INQY DBQUERY call returns
these status codes in the I/O PCB:

bb The call is successful and all databases are available.

BJ None of the databases in the PSB are available, or no PCBs exist in the
PSB. All database PCBs (excluding GSAM) contain an NA status code as
the result of processing the INQY DBQUERY call.

BK At least one of the databases in the PSB is not available or availability is
limited. At least one database PCB contains an NA or NU status code as
the result of processing the INQY DBQUERY call.

The INQY call returns the following status codes in each DB PCB:

NA At least one of the databases that can be accessed using this PCB is not
available. A call that is made using this PCB probably results in a BA or BB
status code if the INIT STATUS GROUPA call has been issued, or in a
DFS3303I message and 3303 pseudoabend if the call has not been issued.

Chapter 1. DL/I calls reference 55

An exception is when the database is not available because dynamic
allocation failed. In this case, a call results in an AI (unable to open) status
code.

In a DCCTL environment, the status code is always NA.

NU At least one of the databases that can be updated using this PCB is
unavailable for update. An ISRT, DLET, or REPL call using this PCB might
result in a BA status code if the INIT STATUS GROUPA call has been
issued, or in a DFS3303I message and 3303 pseudoabend if it has not been
issued. The database that caused the NU status code might be required
only for delete processing. In that case, DLET calls fail, but ISRT and REPL
calls succeed.

bb The data that can be accessed with this PCB can be used for all functions
the PCB allows. DEDBs and MSDBs always have the bb.

Querying the environment: INQY ENVIRON

When the INQY call is issued with the ENVIRON subfunction, the application
program obtains information regarding the current execution environment. The
only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb. This includes
the IMS identifier, release, region, and region type.

The INQY ENVIRON call returns character-string data. The output is left justified
and padded with blanks on the right.

Recommendations: To account for expansion in the length of the reply data,
specify an I/O area length of 512 bytes.

To reference the field that contains the recovery token or the application parameter
string, code your application programs to locate the field by using the address of
the field that is returned in the data output of the INQY ENVIRON call. This is the
only valid programming technique to reference the recovery token field and the
application parameter string field. No other programming technique should be
used to reference these fields.

The recovery token or the application parameter string are optional and therefore
are not always returned. If they are not returned, the value in the address field is
zero.

For more information about the recovery token and application parameter fields,
see note 2 after the following table.

The following table lists the output that is returned from the INQY ENVIRON call.
Included with the information returned is the outputs byte length, the actual value,
and an explanation.

Table 18. INQY ENVIRON data output

Information returned
Length
in bytes

Actual
value Explanation

IMS Identifier 8 Provides the identifier from the execution parameters.

IMS Release Level 4 Provides the release level for IMS. For example, X'00000410'.

56 Application Programming APIs

Table 18. INQY ENVIRON data output (continued)

Information returned
Length
in bytes

Actual
value Explanation

IMS Control Region Type

8 BATCH Indicates that an IMS batch region is active.

DB Indicates that only the IMS Database Manager is active. (DBCTL
system)

TM Indicates that only the IMS Transaction Manager is active.
(DCCTL system)

DB/DC Indicates that both the IMS Database and Transaction managers
are active. (DB/DC system)

IMS Application Region
Type

8 BATCH Indicates that the IMS Batch region is active.

BMP Indicates that the Batch Message Processing region is active.

DRA Indicates that the Database Resource Adapter Thread region is
active.

IFP Indicates that the IMS Fast Path region is active.

JBP Indicates that the Java batch processing region is active.

JMP Indicates that the Java message processing region is active.

MPP Indicates that the Message Processing region is active.

Region Identifier 4 Provides the region identifier. For example, X'00000001'.

Application Program
Name

8 Provides the name of the application program being run.

PSB Name (currently
allocated)

8 Provides the name of the PSB currently allocated.

Transaction Name 8 Provides the name of the transaction.

b Indicates that no associated transaction exists.

User Identifier1 8 Provides the user ID.

b Indicates that the user ID is unavailable.

Group Name 8 Provides the group name.

b Indicates that the group name is unavailable.

Status Group Indicator 4 A Indicates an INIT STATUS GROUPA call is issued.

B Indicates an INIT STATUS GROUPB call is issued.

b Indicates that a status group is not initialized.

Address of Recovery
Token2

4 Provides the address of the LL field, followed by the recovery
token.

0 Indicates that the recovery token is not available.

Address of the
Application Parameter
String2

4 Provides the address of the LL field, followed by the application
program parameter string.

0 Indicates that the APARM= parameter is not coded in the
execution parameters of the dependent region JCL.

Shared Queues Indicator 4 Indicates IMS is not using Shared Queues.

SHRQ Indicates IMS is using Shared Queues.

User ID of Address
Space

8 User ID of dependent address space.

Chapter 1. DL/I calls reference 57

Table 18. INQY ENVIRON data output (continued)

Information returned
Length
in bytes

Actual
value Explanation

User ID Indicator 1 Contains one of the following possible values to indicate the
contents of the userid field:

U Indicates the user’s identification from the source
terminal during sign-on.

L Indicates the LTERM name of the source terminal in
sign-on is not active.

P Indicates the PSBNAME of the source BMP or
transaction.

O Indicates some other name.

z/OS Resource Recovery
Services (RRS) Indicator

3 b Indicates that IMS has not expressed interest in the UR with RRS.
Therefore, the application should refrain from performing any
work that causes RRS to become the syncpoint manager for the
UR because IMS will not be involved in the commit scope. For
example, the application should not issue any outbound protected
conversations.

RRS Indicates IMS has expressed interest in the UR with RRS.
Therefore, IMS will be involved in the commit scope if RRS is the
syncpoint manager for the UR.

IMS catalog enablement
indicator

7 b Indicates that the IMS catalog is not enabled in the DFSDFxxx
PROCLIB member.

For information about setting up and enabling an IMS catalog, see
IMS catalog definition and tailoring (System Definition).

For information about enabling the IMS catalog in the DFSDFxxx
PROCLIB member, see DFSDFxxx member of the IMS PROCLIB
data set (System Definition).

CATALOG Indicates that the IMS catalog is enabled. Database and
application metadata is available in IMS.

Notes:

1. The user ID is derived from the PSTUSID field of the PST that represents the region making the INQY ENVIRON
call. The PSTUSID field is one of the following:

v For message-driven BMP regions that have not completed successful GU calls to the IMS message queue and
for non-message-driven BMP regions, the PSTUSID field is derived from the name of the PSB that is currently
scheduled into the BMP region.

v For message-driven BMP regions that have completed a successful GU call and for any MPP region, the
PSTUSID field is derived which is usually the input terminal's RACF® ID. If the terminal has not signed on to
RACF, the ID is the input terminal's LTERM.

2. The pointer is an address that identifies a length field (LL) which contains the length of the recovery token or
application program parameter string in binary, including the two bytes required for LL. Use this pointer to set
up addressability of the AIB between releases in a batch program.

Querying the input message information: INQY MSGINFO

To obtain information regarding the current input message, use the INQY call with
the MSGINFO subfunction. The only valid PCB name that can be passed in the
AIBRSNM1 field is IOPCBbbb. The output returns the version number and the
output fields for the message information. The INQY MSGINFO call returns the
response in the I/O area.

58 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

The following table lists the output that is returned from the INQY MSGINFO call.
Included with the information returned is the byte length, the actual value, and an
explanation of the output.

Table 19. INQY MSGINFO data output

Information returned Length in bytes Actual value Explanation

Version number 4 1 Output response
version 1.

Origin IMSID 8 The IMS identifier
from which the input
message originated.

Reserved for IMS 68 This field is reserved
for future output
expansion.

Querying the PCB: INQY FIND

When the INQY call is issued with the FIND subfunction, the application program
is returned with the PCB address of the requested PCB name. The only valid PCB
names that can be passed in AIBRSNM1 are IOPCBbbb or the name of an alternate
PCB or DB PCB, as defined in the PSB. The PCB address is returned in the
AIBRSA1 field of the AIB mask. When the INQY call is completed, the AIBRSA1
field contains call-specific information.

To retrieve the status for a database, you must pass the DB PCB for that database
in the INQY FIND call. You must issue one call for each PCB required.

On a FIND subfunction, the requested PCB remains unmodified, and no
information is returned in an I/O area.

The FIND subfunction is used to get a PCB address following an INQY DBQUERY
call. This process allows the application program to analyze the PCB status code to
determine if either an NA or NU status code is set in the PCB.

The following PL/I code sample shows how to retrieve the database status values.
II00_INITSTAT: PROC;

DCL DUMMY_LENGTH CHAR(4) INIT(’ ’); /* TO PLEASE IMS */
AIB.PCBNAME = ’IOPCB’;
CALL AIBTDLI($3,INIT,AIB,STATUS_CALL2);
IF AIB.RETURN = 0 THEN

PUT SKIP LIST(’INIT ISSUED’);
ELSE
DO;
PUT SKIP LIST (’AIB RETURN CODE ’,AIB.RETURN);
PUT SKIP LIST (’AIB REASON CODE ’,AIB.REASON);
PUT SKIP LIST (’IOPCB STATUS CODE ’,IO_PCB.STATUS_CODE);
PUT SKIP LIST (’INIT UNSUCCESSFULL’);
END;

SELECT (IO_PCB.STATUS_CODE);
WHEN (’ ’)

GROUPA_STATUS = ’ ’;
WHEN (’NA’)

GROUPA_STATUS = ’NA’;
WHEN (’NU’)

GROUPA_STATUS = ’NU’;
OTHERWISE

DO;
PUT SKIP LIST

Chapter 1. DL/I calls reference 59

(’INIT STATUS GROUPA FAILED ’,IO_PCB.STATUS_CODE);
END;

END;
PUT SKIP LIST

(’INIT STATUS GROUPA = ’,IO_PCB.STATUS_CODE);
END II00_INITSTAT;
JJ00_INQY: PROC;

DCL DUMMY_LENGTH CHAR(4) INIT(’ ’); /* TO PLEASE IMS */
AIB.PCBNAME = ’IOPCB’;
AIB.SUB_FUNC = ’DBQUERY ’;
AIB.OUT_LEN_TOT = 2000;
CALL AIBTDLI($3,INQY,AIB,IO_AREA);
PUT SKIP LIST(’INQY ISSUED ON IOPCB BEFORE CHECK OF AIB RETURN’);
IF AIB.RETURN = 0 THEN

PUT SKIP LIST(’INQY ISSUED - 0 RC ON AIB.RETURN’);
ELSE

DO;
PUT SKIP LIST (’AIB RETURN CODE ’,AIB.RETURN);
PUT SKIP LIST (’AIB REASON CODE ’,AIB.REASON);
PUT SKIP LIST (’IOPCB STATUS CODE ’,IO_PCB.STATUS_CODE);
PUT SKIP LIST (’INQY IOPCB DBQUERY UNSUCCESSFULL’);
END;

SELECT (IO_PCB.STATUS_CODE);
WHEN (’ ’)
DO;
PUT SKIP DATA (IO_AREA);
PUT SKIP DATA (IO_PCB.STATUS_CODE);

END;
WHEN (’NA’)
PUT SKIP LIST (’NA STATUS ON IO_PCB.STATUS_CODE’);

WHEN (’NU’)
PUT SKIP LIST (’NU STATUS ON IO_PCB.STATUS_CODE’);

OTHERWISE
DO;
PUT SKIP LIST
(’INQY FAILED ’,IO_PCB.STATUS_CODE);

END;
END;
PUT SKIP LIST (’START B1CSTP FIND CALL’);
AIB.PCBNAME = ’B1CSTP’;
AIB.SUB_FUNC = ’FIND ’;
AIB.OUT_LEN_TOT = 2000;
CALL AIBTDLI($3,INQY,AIB,IO_AREA);
PUT SKIP LIST(’INQY B1CSTP FIND READY TO BE CALLED’);
IF AIB.RETURN = 0 THEN

PUT SKIP LIST(’INQY B1CSTP FIND CALLED - 0 RC’);
ELSE

DO;
PUT SKIP LIST (’AIB RETURN CODE ’,AIB.RETURN);
PUT SKIP LIST (’AIB REASON CODE ’,AIB.REASON);
PUT SKIP LIST (’CSTP_PCB STATUS CODE ’,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST (’INQY B1CSTP FIND UNSUCCESSFULL’);
END;
PUT SKIP LIST (’CSTP STATUS ’ ,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST (’IO PCB ’, IO_PCB.STATUS_CODE);

SELECT (CSTP_PCB.STATUS_CODE);
WHEN (’ ’)
DO;
PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
PUT SKIP DATA (IO_AREA);

END;
WHEN (’NA’)
PUT SKIP LIST (’NA STATUS ON B1CSTP CSTPPCB.STATUS_CODE’);

WHEN (’NU’)
PUT SKIP LIST (’NU STATUS ON B1CSTP CSTPPCB.STATUS_CODE’);

OTHERWISE
DO;

60 Application Programming APIs

PUT SKIP LIST
(’INQY FAILED ’,IO_PCB.STATUS_CODE);

END;
END;
PUT SKIP LIST (’START D1CSTP FIND CALL’);
AIB.PCBNAME = ’D1CSTP’;
AIB.SUB_FUNC = ’FIND ’;
AIB.OUT_LEN_TOT = 2000;
CALL AIBTDLI($3,INQY,AIB,IO_AREA);
PUT SKIP LIST(’INQY D1CSTP FIND READY TO BE CALLED’);
IF AIB.RETURN = 0 THEN

PUT SKIP LIST(’INQY D1CSTP FIND CALLED - 0 RC’);
ELSE
DO;
PUT SKIP LIST (’AIB RETURN CODE ’,AIB.RETURN);
PUT SKIP LIST (’AIB REASON CODE ’,AIB.REASON);
PUT SKIP LIST (’CSTP_PCB STATUS CODE ’,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST (’INQY D1CSTP FIND UNSUCCESSFULL’);
END;
PUT SKIP LIST (’CSTP STATUS ’ ,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST (’IO PCB ’, IO_PCB.STATUS_CODE);

SELECT (CSTP_PCB.STATUS_CODE);
WHEN (’ ’)

DO;
PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
PUT SKIP DATA (IO_AREA);

END;
WHEN (’NA’)

PUT SKIP LIST (’NA STATUS ON D1CSTP CSTPPCB.STATUS_CODE’);
WHEN (’NU’)

PUT SKIP LIST (’NU STATUS ON D1CSTP CSTPPCB.STATUS_CODE’);
OTHERWISE

DO;
PUT SKIP LIST
(’INQY FAILED ’,IO_PCB.STATUS_CODE);

END;
END;
PUT SKIP LIST (’START S1CSTP FIND CALL’);
AIB.PCBNAME = ’XXCSTP’;
AIB.SUB_FUNC = ’FIND ’;
AIB.OUT_LEN_TOT = 2000;
CALL AIBTDLI($3,INQY,AIB,IO_AREA);
PUT SKIP LIST(’INQY S1CSTP FIND READY TO BE CALLED’);
IF AIB.RETURN = 0 THEN

PUT SKIP LIST(’INQY S1CSTP FIND CALLED - 0 RC’);
ELSE
DO;
PUT SKIP LIST (’AIB RETURN CODE ’,AIB.RETURN);
PUT SKIP LIST (’AIB REASON CODE ’,AIB.REASON);
PUT SKIP LIST (’CSTP_PCB STATUS CODE ’,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST (’INQY S1CSTP FIND UNSUCCESSFULL’);
END;
PUT SKIP LIST (’CSTP STATUS ’ ,CSTP_PCB.STATUS_CODE);
PUT SKIP LIST (’IO PCB ’, IO_PCB.STATUS_CODE);

SELECT (CSTP_PCB.STATUS_CODE);
WHEN (’ ’)

DO;
PUT SKIP DATA (CSTP_PCB.STATUS_CODE);
PUT SKIP DATA (IO_AREA);

END;
WHEN (’NA’)

PUT SKIP LIST (’NA STATUS ON S1CSTP CSTPPCB.STATUS_CODE’);
WHEN (’NU’)

PUT SKIP LIST (’NU STATUS ON S1CSTP CSTPPCB.STATUS_CODE’);
OTHERWISE

DO;

Chapter 1. DL/I calls reference 61

PUT SKIP LIST
(’INQY FAILED ’,IO_PCB.STATUS_CODE);

END;
END;

Querying for LE overrides: INQY LERUNOPT

When the LERUNOPT call is issued with the LERUNOPT subfunction, IMS
determines if LE overrides are allowed based on the LEOPT system parameter. The
LE override parameters are defined to IMS through the UPDATE LE command. IMS
checks to see if there are any overrides applicable to the caller based on the
specific combinations of transaction name, lterm name, userid, or program name in
the callers environment. IMS will return the address of the string to the caller if an
override parameter is found. The LE overrides are used by the IMS supplied
CEEBXITA exit, DFSBXITA, to allow dynamic overrides for LE runtime parameters.

The call string must contain the function code and the AIB address. The I/O area
is not a required parameter and will be ignored if specified. The only valid PCB
name that can be passed in AIBRSNM1 is IOPCB. The AIBOALEN and AIBOAUSE
fields are not used.

The rules for matching an entry that results in it being returned on a DL/I INQY
LERUNOPT call are:
v An MPP or JMP region uses transaction name, lterm, userid, and program to

match with each entry.
v An IFB, JBP, or non-message driven BMP uses program name to match with

each entry. If an entry has a defined filter for transaction name, lterm, or userid,
it does not match. Message driven BMPs also use transaction name.

v The entries are scanned to find the entry with the most filter matches. The first
entry in the list with the most exact filter matches is selected. The scan stops
with an entry found with all of the filters matching the entry.

Note: Searching table entries may cause user confusion because of the way
entries are built and searched. For example, assume there are two entries in the
table that match on the filters specified on the DL/I INQY call. The first
transaction matches on transaction name and lterm name. The second entry
matches on transaction name and program name. IMS chooses the first entry
because it was the first entry encountered with highest number of filter matches.
If the second entry is now updated with a longer parameter string, which causes
a new entry to be built, it will be added to the head of the queue. The next
search would result in the entry with transaction name and program name being
selected. This could result in a set of runtime options being selected that were
not expected by the user.

Querying the program name: INQY PROGRAM

When you issue the INQY call with the PROGRAM subfunction, the application
program name is returned in the first 8 bytes of the I/O area. The only valid PCB
name that can be passed in AIBRSNM1 is IOPCBbbb.

INQY return codes and reason codes

When you issue the INQY call, return and reason codes are returned to the AIB.
Status codes can be returned to the PCB. If return and reason codes other than
those that apply to INQY are returned, your application should examine the PCB
to see what status codes are found.

62 Application Programming APIs

Map of INQY subfunction to PCB type

Table 20. Subfunction, PCB, and I/O area combinations for the INQY call

Subfunction I/O PCB Alternate PCB DB PCB
I/O Area
Required

FIND OK OK OK NO

ENVIRON OK NO NO YES

DBQUERY OK NO NO NO

LERUNOPT OK NO NO NO

PROGRAM OK NO NO YES

MSGINFO OK NO NO YES

LOG call
The Log (LOG) call is used to send and write information to the IMS system log.

Format

►► LOG io pcb
aib

i/o area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

LOG X X X X X

Parameters

i/o pcb
Specifies the I/O PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the area in your program that contains the record that you want to
write to the system log. This is an input parameter. This record must follow
the format shown in the following tables.

Chapter 1. DL/I calls reference 63

|||||

Table 21. Log record formats for COBOL, C, assembler, Pascal, and PL/I programs for the
AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces

LL ZZ C Text

2 2 1 Variable

Table 22. Log record formats for COBOL, C, assembler, Pascal, and PL/I programs for the
PLITDLI interface

LLLL ZZ C Text

4 2 1 Variable

The fields must be:

LL or LLLL
Specifies a 2-byte field (or, for PL/I, a 4-byte-long field) to contain the
length of the record. The length of the record is equal to LL + ZZ + C
+ text of the record. When you calculate the length of the log record,
you must account for all fields. The total length you specify includes:
v 2 bytes for LL or LLLL. (For PL/I, include the length as 2, even

though LLLL is a 4-byte field.)
v 2 bytes for the ZZ field.
v 1 byte for the C field.
v n bytes for the length of the record itself.

If you are using the PLITDLI interface, your program must define the
length field as a binary fullword.

ZZ Specifies a 2-byte field of binary zeros.

C Specifies a 1-byte field containing a log code, which must be equal to
or greater than X'A0'.

Text Specifies any data to be logged.

Usage

An application program can write a record to the system log by issuing the LOG
call. When you issue the LOG call, specify the I/O area that contains the record you
want written to the system log. You can write any information to the log, and you
can use different log codes to distinguish between different types of information.

You can issue the LOG call:
v In a batch program, and the record is written to the IMS log
v In an online program in the DBCTL environment, and the record is written to

the DBCTL log
v In the IMS DB/DC environment, and the record is written to the IMS log

Restrictions

The length of the I/O area (including all fields) cannot be larger than the logical
record length (LRECL) for the system log data set, minus four bytes, or the I/O
area specified in the IOASIZE keyword of the PSBGEN statement of the PSB.

For function shipping in the CICS environment, the local and remote CICS must
both be DBCTL.

64 Application Programming APIs

PCB call (CICS online programs only)
The PCB call is used to schedule a PSB call.

The ODBA interface does not support this call.

Format

►► PCB psb name uibptr
sysserve

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

PCB X X

Parameters

The AIB is not valid for PCB calls.

psb name
Specifies the PSB. An asterisk can be used for the parameter to indicate the
default. This parameter is an input parameter.

uibptr
Specifies a pointer, which is set to the address of the UIB after the call. This
parameter is an output parameter.

sysserve
Specifies an optional 8-byte field that contains either IOPCB or NOIOPCB. This
parameter is an input parameter.

Usage

Before a CICS online program can issue any DL/I calls, it must indicate to DL/I its
intent to use a particular PSB. A PCB call accomplishes this and also obtains the
address of the PCB list in the PSB. When you issue a PCB call, specify:
v The call function: PCB�
v The PSB you want to use, or an asterisk to indicate that you want to use the

default name. The default PSB name is not necessarily the name of the program
issuing the PCB call, because that program could have been called by another
program.

v A pointer, which is set to the address of the UIB after the call.
For more information on defining and establishing addressability to the UIB, see
the topic "Specifying the UIB (CICS Online Programs Only)" in IMS Version 14
Application Programming.

v The system service call parameter that names an optional 8-byte field that
contains either IOPCB or NOIOPCB.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must
both be DBCTL.

Chapter 1. DL/I calls reference 65

RCMD call
A Retrieve Command (RCMD) call enables an automated operator (AO)
application program retrieve the second and subsequent command response
segments after an ICMD call.

Format

►► RCMD aib i/o area ►◄

Parameters

aib
Specifies the application interface block (AIB) used for this call. This parameter
is an input and output parameter.

These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output
parameter.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data, and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area should be large enough to hold the largest command
response segment that is passed from IMS to the AO application program. If
the I/O area is not large enough for all of the information, partial data is
returned in the I/O area.

Usage

RCMD lets an AO application program retrieve the second and subsequent command
response segments resulting from an ICMD call.

Related reading For more information on the AOI exits, see IMS Version 14 Exit
Routines.

The following table shows, by IMS environment, the types of AO application
programs that can issue RCMD. RCMD is also supported from a CPI-C driven program.

Table 23. RCMD support by application region type

Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

66 Application Programming APIs

Table 23. RCMD support by application region type (continued)

Application region type

IMS environment

DBCTL DB/DC DCCTL

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

RCMD retrieves only one response segment at a time. If you need additional
response segments, you must issue RCMD one time for each response segment
that is issued by IMS.

Restrictions

An ICMD call must be issued before an RCMD call.

ROLB call
The Roll Back (ROLB) call is used to dynamically back out database changes and
return control to your program.

For more information on the ROLB call, see the topic "Maintaining Database
Integrity" in IMS Version 14 Application Programming.

The ODBA interface does not support this call.

Format

►► ROLB i/o pcb
aib i/o area

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLB X X X X X

Parameters

i/o pcb
Specifies the I/O PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCB���.

Chapter 1. DL/I calls reference 67

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the area in your program where IMS returns the first message
segment. This parameter is an output parameter.

Restrictions

The AIB must specify the I/O PCB for this call.

ROLL call
The Roll (ROLL) call is used to abnormally terminate your program and to
dynamically back out database changes.

For more information on the ROLL call, see the topic "Maintaining Database
Integrity" in IMS Version 14 Application Programming.

The ODBA interface does not support this call.

Format

►► ROLL ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLL X X X X X

Parameters

The only parameter required for the ROLL call is the call function.

Usage

When you issue a ROLL call, IMS terminates the application program with a U0778
abend.

Restrictions

Unlike the ROLB call, the ROLL call does not return control to the program.

ROLS call
The Roll Back to SETS (ROLS) call is used to back out to a processing point set by a
prior SETS or SETU call.

For more information on the ROLS call, see the topic "Maintaining Database
Integrity" in IMS Version 14 Application Programming.

Format

►► ROLS i/o pcb
aib
db pcb

i/o area token
►◄

68 Application Programming APIs

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLS X X X X X

Parameters

db pcb
Specifies the DB PCB for the call. This parameter is an input and output
parameter.

i/o pcb
Specifies the I/O PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCBbbb, or the name of a DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the I/O area has the same format as the I/O area supplied on the
SETS call. This parameter is an output parameter.

token
Specifies the area in your program that contains a 4-byte identifier. This
parameter is an input parameter.

Usage

When you use the Roll Back to SETS (ROLS) call to back out to a processing point
set by a prior SETS or SETU, the ROLS enables you to continue processing or to back
out to the prior commit point and place the input message on the suspend queue
for later processing.

Issuing a ROLS call for a DB PCB can result in the user abend code 3303.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must
both be DBCTL.

The ROLS call is not valid when the PSB contains a DEDB or MSDB PCB, or when
the call is made to a DB2 database.

Chapter 1. DL/I calls reference 69

SETS/SETU call
The Set a Backout Point (SETS) call is used to set an intermediate backout point or
to cancel all existing backout points.

The SET Unconditional (SETU) call operates like the SETS call, except that the SETU
call is accepted even if unsupported PCBs exist or an external subsystem is used.
For more information on the SETS and SETU calls, see the topic "Maintaining
Database Integrity" in IMS Version 14 Application Programming.

Format

►► SETS
SETU

i/o pcb
aib i/o area token

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETS/SETU X X X X X

Parameters

i/o pcb
Specifies the I/O PCB for the call. SETS and SETU must refer to the I/O PCB.
This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the area in your program that contains the data to be returned on the
corresponding ROLS call. This parameter is an input parameter.

token
Specifies the area in your program that contains a 4-byte identifier. This
parameter is an input parameter.

Usage

The SETS and SETU format and parameters are the same, except for the call
functions, SETS and SETU.

The SETS and SETU calls provide the backout points that IMS uses in the ROLS call.
The ROLS call operates with the SETS and SETU call backout points.

70 Application Programming APIs

The meaning of the SC status code for SETS and SETU is as follows:

SETS The SETS call is rejected. The SC status code in the I/O PCB indicates that
either the PSB contains unsupported options or the application program
made calls to an external subsystem.

SETU The SETU call is not rejected. The SC status code indicates either that
unsupported PCBs exist in the PSB or the application program made calls
to an external subsystem.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must
both be DBCTL.

The SETS call is not valid when the PSB contains a DEDB or MSDB PCB, or when
the call is made to a DB2 database. The SETU call is valid, but not functional, if
unsupported PCBs exist in the PSB or if the program uses an external subsystem.

Before a ROLS call, you can specify a maximum of 255 SETS calls with the same
token and still back out to the correct message level. After 255 SETS calls, the
messages continue to back out, but only to the same message level as at 255th
SETS call. The SETS token count resets to zero during sync point processing.

SNAP call
The SNAP call is used to collect diagnostic information.

This topic contains Product-sensitive Programming Interface information.

Format

►► SNAP db pcb
aib

i/o area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SNAP X X X

Parameters

db pcb
Specifies the address that refers to a full-function PCB that is defined in a
calling program PSB. This parameter is an input and output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
full-function DB PCB.

Chapter 1. DL/I calls reference 71

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies the area in your program that contains SNAP operation parameters.
This parameter is an input parameter. The following figure shows the SNAP
operation parameters you specify, including:
v Length for bytes 1 through 2
v Destination for bytes 3 through 10
v Identification for bytes 11 through 18
v SNAP options for bytes 19 through 22

The following table explains the values that you can specify.

Table 24. SNAP operation parameters

Byte Value Meaning

1-2 xx This 2-byte binary field specifies the length of the SNAP operation
parameters. The length must include this 2-byte length field.

When you do not specify operation parameters, IMS uses default
values. This chart lists the lengths that result from your parameter
specifications.

If you supply values
for:

And IMS supplies
default values for:

Then the length (in
hexadecimal) is:

Destination,
Identification, SNAP
options

16

Destination,
Identification

SNAP options 12

Destination Identification, SNAP
options

10

Destination,
Identification, SNAP
options

2

If you specify another length, IMS uses default values for the
destination, identification, and SNAP operation parameters.

Length field
Destination
Identification
SNAP options

1 2 3 10 11 18 19 22

Figure 2. I/O area for SNAP operation parameters

72 Application Programming APIs

Table 24. SNAP operation parameters (continued)

Byte Value Meaning

3-10 This 8-byte field tells IMS where to send SNAP output. You can
direct output to the IMS log by specifying LOG or �����

Directs the output to the IMS log. This is the default destination.

dcbaddr Directs the output to the data set defined by this DCB address.

The application program must open the data set before the SNAP
call refers to it. This option is valid only in a batch environment.
The output data set must conform to the rules for a z/OS SNAP
data set.

ddname Directs the output to the data set defined by the corresponding DD
statement. The DD statement must conform to the rules for a z/OS
SNAP data set. The data set specified by ddname is opened and
closed for this SNAP request.

In a DB/DC environment, you must supply the DD statement in
the JCL for the control region.

If the destination is invalid, IMS directs output to the IMS log.

11-18 cccccccc This is an eight-character name you can supply to identify the
SNAP. If you do not supply a name, IMS uses the default value,
NOTGIVEN.

19-22 cccc This four-character field identifies which data elements you want
the SNAP output to include. YYYN is the default.

19 Buffer Pool:

Y Dump all buffer pools and sequential buffering control blocks with
a SNAP call.

N Do not dump buffer pools or sequential buffering control blocks
with a SNAP call.

20 Control Blocks:

Y Dump control blocks related to the current DB PCB with a SNAP
call.

N Do not dump control blocks related to the current DB PCB with a
SNAP call.

21 Y Dump all control blocks for this PSB with a SNAP call. Specifying Y
in byte 21 produces a snap dump for the current DB PCB request
in byte 20 to Y, regardless of the current value.

N Do not dump all control blocks for this PSB with a SNAP call. In
this case, the current DB PCB SNAP request in position 20 is used as
specified.

19-21 ALL This is equivalent to specifying YYY in positions 19-21.

22 Region:

Y Dump the entire region on the DCB address or data set ddname
that you supplied in bytes 3-10 with a SNAP call. IMS processes this
request before it acts on any SNAP requests made in bytes 19-21. If
the destination is the IMS log, IMS does not dump the entire
region. Instead, it processes the request as if you had specified
ALL.

N Do not dump the entire region with a SNAP call.

S Dump subpools 0-127 with a SNAP call.

Chapter 1. DL/I calls reference 73

After the SNAP call, IMS can return the AB, AD, or �� (blank) status code. For a
description of these codes and the response required, see IMS Version 14 Messages
and Codes, Volume 4: IMS Component Codes.

Usage

Any application program can issue this call.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must
both be DBCTL.

STAT call
The Statistics (STAT) call is used in a CICS, IMS online, or batch program to obtain
database statistics that might be useful for performance monitoring.

This topic contains Product-sensitive Programming Interface information.

Format

►► STAT db pcb
aib

i/o area stat function ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

STAT X X X

Parameters

db pcb
Specifies the DB PCB used to pass status information to the application
program. The VSAM statistics used by the data sets associated with this PCB
are not related to the type of statistics that is returned from the STAT call. This
PCB must reference a full-function database. This parameter is an input and
output parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
full-function DB PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list.

i/o area
Specifies an area in the application program that is large enough to hold the

74 Application Programming APIs

requested statistics. This parameter is an output parameter. In PL/I, this
parameter should be specified as a pointer to a major structure, array, or
character string.

stat function
Specifies a 9-byte area whose content describes the type and format of the
statistics required. The first 4 bytes define the type of statistics requested and
byte 5 defines the format to be provided. The remaining 4 bytes contain
EBCDIC blanks. If the stat function that is provided is not one of the defined
functions, an AC status code is returned. This parameter is an input parameter.
The 9-byte field contains:
v 4 bytes that define the type of statistics you want:

DBAS OSAM database buffer pool statistics

DBES OSAM database buffer pool statistics, enhanced or extended

VBAS VSAM database subpool statistics

VBES VSAM database subpool statistics, enhanced or extended
v 1 byte that gives the format of the statistics:

F Full statistics to be formatted. If you specify F, your I/O area must
be at least 360 bytes for DBAS or VBAS and 600 bytes for DBES or
VBES.

O Full OSAM database subpool statistics in a formatted form. If you
specify O, your I/O area must be at least 360 bytes.

S Summary of the statistics to be formatted. If you specify S, your I/O
area must be at least 120 bytes for DBAS or VBAS and 360 bytes for
DBES or VBES.

U Full statistics to be unformatted. If you specify U, your I/O area
must be at least 72 bytes.

v 4 bytes of EBCDIC blanks for normal or enhanced STAT call, or �E1�
Restriction: The extended format parameter is supported by the DBESO,
DBESU, and DBESF functions only.
Extended OSAM buffer pool statistics can be retrieved by including the
parameter �E1� following the enhanced call function. The extended STAT call
returns all of the statistics returned with the enhanced call, plus the statistics
on the coupling facility buffer invalidates, OSAM caching, and sequential
buffering IMMED and SYNC read counts.

Usage

The STAT call can be helpful in debugging because it retrieves IMS database
statistics. It is also helpful in monitoring and tuning for performance. The STAT call
retrieves OSAM database buffer pool statistics and VSAM database buffer
supports.

When you request VSAM statistics, each issued STAT call retrieves the statistics for
a subpool. Statistics are retrieved for all VSAM local shared resource pools in the
order in which they are defined. For each local shared resource pool, statistics are
retrieved in ascending order based on buffer size. Statistics for index subpools
always follow those for data subpools if any index subpool exists in the shared
resource pool. The index subpools are also retrieved in ascending order based on
buffer size.

Chapter 1. DL/I calls reference 75

For more information on the STAT call, see IMS Version 14 Application Programming.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must
both be DBCTL.
Related concepts:

Retrieving database statistics: the STAT call (Application Programming)

SYNC call
The Synchronization Point (SYNC) call is used to release resources that IMS has
locked for the application program.

The ODBA interface does not support this call.

Format

►► SYNC i/o pcb
aib

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SYNC X X X

Parameters

i/o pcb
Specifies the IO PCB for the call. This parameter is an input and output
parameter.

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCBbbb.

Usage

SYNC commits the changes your program has made to the database, and establishes
places in your program from which you can restart, if your program terminates
abnormally.

Restrictions

The SYNC call is valid only in non-message driven BMPs; you cannot issue a SYNC
call from an CPI-C driven application program.

76 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_statcalldbstatistics.htm#ims_statcalldbstatistics

For important considerations about using the SYNC call, see IMS Version 14 Database
Administration.

TERM call (CICS online programs only)
The Terminate (TERM) call is used to terminate a PSB in a CICS online program.

The ODBA interface does not support this call.

Format

►► TERM ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

TERM X X

Usage

If your program needs to use more than one PSB, you must issue a TERM call to
release the first PSB it uses and then issue a second PCB call to schedule the second
PSB. The TERM call also commits database changes.

The only parameter in the TERM call is the call function: TERM or ��� When your
program issues the call, CICS terminates the scheduled PSB, causes a CICS sync
point, commits changes, and frees resources for other tasks.

Restrictions

For function shipping in the CICS environment, the local and remote CICS must
both be DBCTL.

XRST call
The Extended Restart (XRST) call is used to restart your program.

If you use the symbolic Checkpoint call in your program, you must precede it with
an XRST call that specifies checkpoint data of blanks.

The ODBA interface does not support this call.

Format

►► XRST i/o pcb
aib

i/o area length i/o area

▼ area length area

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

XRST X X X X X

Parameters

i/o pcb
Specifies the I/O PCB for the call. XRST must refer to the I/O PCB. This
parameter is an input and output parameter.

Chapter 1. DL/I calls reference 77

aib
Specifies the AIB for the call. This parameter is an input and output parameter.
These fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name,
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list. This parameter is not used during the XRST call.
For compatibility reasons, this parameter must still be coded.

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this
parameter must still be included in the call, and it must contain a valid
address. You can get a valid address by specifying the name of any area in
your program.

i/o area
Specifies a 14-byte area in your program. This area must be either set to blanks
if you are starting your program normally or, if performing an extended
restart, have a checkpoint ID.

area length
Specifies a 4-byte field in your program that contains the length (in binary) of
the area to restore. This parameter is an input parameter. You can specify up to
seven area lengths. For each area length, you must specify the area parameter.
All seven area parameters (and corresponding area length parameters) are
optional. When you restart the program, IMS restores only the areas specified
on the CHKP call.

The number of areas you specify on an XRST call must be less than or equal to
the number of areas you specify on a CHKP call.

area
Specifies the area in your program that you want IMS to restore. You can
specify up to seven areas. Each area specified must be preceded by an area
length. This is an input parameter.

Usage

Programs that want to issue Symbolic Checkpoint calls (CHKP) must also issue the
Extended Restart call (XRST). The XRST call must be issued only once and should be
issued early in the execution of the program. It does not need to be the first call in
the program. However, it must precede any CHKP call. Any Database calls issued
before the XRST call are not within the scope of a restart.

To determine whether to perform a normal start or a restart, IMS evaluates the I/O
area provided by the XRST call or CKPTID= value in the PARM field on the EXEC
statement in your program's JCL.

Starting your program normally

78 Application Programming APIs

When you are starting your program normally, the I/O area pointed to in the XRST
call must contain blanks and the CKPTID= value in the PARM field must be nulls.
This indicates to IMS that subsequent CHKP calls are symbolic checkpoints rather
than basic checkpoints. Your program should test the I/O area after issuing the
XRST call. IMS does not change the area when you are starting the program
normally. However, an altered I/O area indicates that you are restarting your
program. Consequently, your program must handle the specified data areas that
were previously saved and that are now restored.

Restarting your program

You can restart the program from a symbolic checkpoint taken during a previous
execution of the program. The checkpoint used to perform the restart can be
identified by entering the checkpoint ID either in the I/O area pointed to by the
XRST call (left-most justified, with the rest of the area containing blanks) or by
specifying the ID in the CKPTID= field of the PARM= parameter on the EXEC
statement in your program's JCL. (If you supply both, IMS uses the CKPTID=
value specified in the parameter field of the EXEC statement.)

The ID specified can be:
v A 1- to 8-character extended checkpoint ID.
v A 14-character "time stamp" ID from message DFS0540I, where:

– IIII is the region ID.
– DDD is the day of the year.
– HHMMSST is the time in hours, minutes, seconds, and tenth of a second.

v The 4-character constant "LAST". (BMPs only: this indicates to IMS that the last
completed checkpoint issued by the BMP will be used for restarting the
program.)

The system message DFS0540I supplies the checkpoint ID and the time stamp.

The system message DFS682I supplies the checkpoint ID of the last completed
checkpoint which can be used to restart a batch program or batch message
processing program (BMP) that was abnormally terminated.

At completion of the XRST call the I/O area always contains the 8-character
checkpoint ID used for the restart. An exception exists when the checkpoint ID is
equal to 8 blank characters; the I/O area then contains a 14-character time stamp
(IIIIDDDHHMMSST).

If the program being restarted is in a DL/I batch region, the IMSLOGR DD
statement that defines the log data set must be supplied in the JCL. IMS reads
these data sets and searches for the checkpoint records that have the ID that was
specified.

However, if the program being restarted is in a BMP region and all of the
following conditions are met, an IMSLOGR DD statement is not required:
v The BMP program is restarted with CKPTID=LAST.
v The BMP program is restarted on the same IMS system with the same job name,

same PSB, and same program name that was used when it abended.
v IMS has not been cold-started since the BMP program abended.

Chapter 1. DL/I calls reference 79

v The checkpoint records that are needed to restart the program are on an OLDS
data set that has not been archived and reused since the time of the abend, or
the SLDSREAD logger function is active in IMS.

If any of the preceding conditions are not met, you must supply an IMSLOGR DD
statement that points to the data set that contains the required checkpoint records.

If an IMSLOGR DD statement is supplied, it must contain the required checkpoint
log records. IMS does not automatically locate and retrieve checkpoint records for
a BMP if an IMSLOGR DD statement is present. Only the IMSLOGR DD data set is
searched and, if the record is not found, the BMP program terminates with abend
U0102.

Note: A DD DUMMY statement is permissible for an IMSLOGR DD statement and
is treated as if no IMSLOGR DD statement was supplied.

At the completion of the XRST call, the I/O area always contains the 8-character
checkpoint ID used for the restart. An exception exists when the checkpoint ID is
equal to 8 blank characters; the I/O area then contains a 14-character time stamp
(IIIIDDDHHMMSST).

Also check the status code in the I/O PCB. The only successful status code for an
XRST call are blanks.

Position in the database after issuing XRST

The XRST call attempts to reposition all databases to the position that was held
when the last checkpoint was taken. This is done by including each PCB and PCB
key feedback area in the checkpoint record. Issuing XRST causes the key feedback
area from the PCB in the checkpoint record to be moved to the corresponding PCB
in the PSB that is being restarted. Then IMS issues a GU call, qualified with the
concatenated key (using the C command code), for each PCB that held a position
when the checkpoint was taken.

After the XRST call, the PCB reflects the results of the GU repositioning call, not the
value that was present when the checkpoint was taken. The GU call is not made if
the PCB did not hold a position on a root or lower-level segment when the
checkpoint was taken. A GE status code in the PCB means that the GU for the
concatenated key was not fully satisfied. The segment name, segment level, and
key feedback length in the PCB reflect the last level that was satisfied on the GU
call. A GE status code can occur because IMS is unable to find a segment that
satisfies the segment search argument that is associated with a Get call for one of
the following reasons:
v The call preceding the checkpoint call was a DLET call issued against the same

PCB. In this case, the position is correct because the position after the Get call
does not find its target is the same position that would exist following the DLET
call.

Restriction: Avoid taking a checkpoint immediately after a DLET call.
v The segment was deleted by another application program between the time your

program terminated abnormally and the time you restarted your program. A GN
call issued after the restart returns the first segment that follows the deleted
segment or segments.

80 Application Programming APIs

This explanation assumes that position at the time of checkpoint was on a segment
with a unique key. XRST cannot reposition to a segment if that segment or any of
its parents have a non-unique key.

For a DEDB, the GC status code is received when position is not on a segment but
at a unit-of-work (UOW) boundary. Because the XRST call attempts to reestablish
position on the segment where the PCB was positioned when the symbolic
checkpoint was taken, the XRST call does not reestablish position on a PCB if the
symbolic checkpoint is taken when the PCB contains a GC status code.

If your program accesses GSAM databases, the XRST call also repositions these
databases.

During GSAM XRST processing, a check is made to determine if the GSAM output
data set to be repositioned is empty and if the abending job had previously
inserted records in the data set.

Restrictions

If your program is being started normally, the first 5 bytes of the I/O area must be
set to blanks.

If your program is restarted and the CKPTID= value in the PARM field of the
EXEC statement is not used, then the right-most bytes beyond the checkpoint ID
being used in the I/O area must be set to blanks.

The XRST call is allowed only from Batch and BMP application programs.

Transaction management
Use the following reference information to make DL/I calls for transaction
management.

DL/I calls for transaction management
Use these DL/I calls with IMS TM to perform transaction management functions
in your application programs.

Transaction management calls must use either i/o pcb or aib parameters.

Each call description contains:
v A syntax diagram
v A definition for each parameter that can be used in the call
v Details on how to use the call in your application program
v Restrictions on the use of the call

Each parameter is described as an input or output parameter. “Input” refers to
input to IMS from the application program. “Output” refers to output from IMS to
the application program.

The syntax diagrams for the transaction managment calls do not contain the
complete call structure. Instead, the calls begin with the function parameter. The
call, the call interface (xxxTDLI), and parmcount (if it is required) are not included
in the syntax diagrams. See language-specific information (for COBOL, C language,

Chapter 1. DL/I calls reference 81

Pascal, PL/I, and assembler language) in the topic "Defining Application Program
Elements" inIMS Version 14 Application Programming for the complete structure.

Transaction Management Call Summary

The following table summarizes the parameters that are valid for each of
the transaction management message calls. The following table lists the
function code, its meaning, use, parameters, and in which regions it is
valid. Optional parameters are enclosed in brackets, [].

Exception: Language-dependent parameters are not shown here. The
variable parmcount is required for all PLITDLI calls. Either parmcount or VL
is required for assembler language calls. Parmcount is optional in COBOL,
C, and Pascal programs. See the topic "Formatting DL/I Calls for
Language Interfaces" in IMS Version 14 Application Programming for
language-specific information.

Related reading: For information on writing calls with programming
language interfaces, see the topic "Defining Application Program Elements"
in IMS Version 14 Application Programming.

Table 25. Summary of TM message calls

Function Code Meaning Use Parameters Valid for

AUTH Authorization Verifies user's security
authorization

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

CHNG Change Sets destination on
modifiable alternate
PCB

function, alt pcb or
aib, destination
name[, options list,
feedback area]

DB/DC, DCCTL

CMD Command Used by a program to
issue IMS commands

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GCMD Get Command Retrieves second and
any subsequent
responses to a
command

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GN Get Next Retrieves second and
any subsequent
message segments

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

GU Get Unique Retrieves the first
segment of a message

function, i/o pcb or
aib, i/o area

DB/DC, DCCTL

ICAL IMS Call Sends a synchronous
request for data or
services to a non-IMS
application program
or service that runs in
a distributed
environment

aib, request area,
response area

DB/DC, DCCTL

ISRT Insert Builds an output
message in a
program's I/O area

function, i/o or alt
pcb or aib, i/o area
[,mod name.]

DB/DC, DCCTL

PURG Purge Enqueues messages
from a PCB to
destinations

function, i/o or alt
pcb or aib[, i/o area,
mod name.]

DB/DC, DCCTL

82 Application Programming APIs

Table 25. Summary of TM message calls (continued)

Function Code Meaning Use Parameters Valid for

SETO Sets processing
options for advanced
print functions and
APPC/IMS message
processing

Feedback area returns
information about
errors in the options
list

function, i/o pcb or
alternate pcb or aib,
i/o area, options list[,
feedback area]

BMP, MPP, IFP
DB/DC, DCCTL

Related reading: DCCTL users can issue calls using GSAM database PCBs, which
are described in IMS Version 14 Application Programming.
Related reference:
“DL/I calls for IMS DB system services” on page 35
“DL/I calls for database management” on page 1
“EXEC DLI commands” on page 163

AUTH call
An Authorization (AUTH) call verifies each user's security authorization. It
determines whether a user is authorized to access the resources specified on the
AUTH call.

Format

►► AUTH i/o-pcb
aib

i/o_area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

AUTH X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the
program. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

Chapter 1. DL/I calls reference 83

i/o area
Specifies the I/O area used for the call. This parameter is an input and output
parameter.

I/O Area

The following tables show the format of the parameter list in the I/O area before
the AUTH call is issued.

I/O area before the AUTH call

Table 26. I/O area before the AUTH call is issued for AIBTDLI, ASMTDLI, CBLTDLI,
CEETDLI, CTDLI, and PASTDLI interfaces

Field Name Field Length

LL 2

ZZ 2

CLASSNAME 8

RESOURCE 8

USERDATA 8

Table 27. I/O area before the AUTH call is issued for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

CLASSNAME 8

RESOURCE 8

USERDATA 8

LL or LLLL
specifies a 2-byte field that contains the length of the parameter list, including
two bytes for LL. For the PLITDLI interface, use the 4-byte field LLLL.
However, if you use the AIBTDLI interface, PL/I programs require only a
2-byte field.

ZZ specifies a 2-byte field that contains binary zeros.

CLASSNAME
specifies an 8-byte field that contains one of the following values:

TRAN����
DATABASE
SEGMENT��
FIELD���
OTHER���

All parameters are 8 bytes in length, left-justified, and must be padded to the
right with blanks.

The use of a generic class name in the call parameter list eliminates the need
for the application to be sensitive to the actual Resource Access Control Facility
(RACF) class names being used. Since transaction authorization must be active,
only the RACF class associated with the generic class name identifier for the

84 Application Programming APIs

transaction class must be defined. The generic class name in the call parameter
list causes the authorization function to select the proper RACF class and
request access checking for that class.

RESOURCE
specifies the 8-byte field that contains the name of the resource to be checked.
Except for the generic class TRAN, the resource name can be whatever the
application designates because the name has no meaning for IMS TM.

IMS TM performs no validity checking of the resource name.

USERDATA
specifies the 8-byte keyword constant USERDATA is the only value supported.
Its presence in the parameter list means that the application program wants
any RACF installation data that exists in the RACF accessor environment
element (ACEE).

The following tables show the I/O area after the AUTH call.

I/O area after the AUTH call

Table 28. I/O area after the AUTH call is issued for AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI,
CTDLI, and PASTDLI interfaces

Field Name Field Length

LL 2

ZZ 2

FEEDBACK 2

EXITRC 2

STATUS 2

RESERVED 16

UL 2

USERDATA Variable

Table 29. I/O area after the AUTH call is issued for the PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

FEEDBACK 2

EXITRC 2

STATUS 2

RESERVED 16

UL 2

USERDATA Variable

LL or LLLL
A 2-byte field that contains the length of the character string, plus 2 bytes for
LL. For the PLITDLI interface, use the 4-byte field LLLL. However, if you use
the AIBTDLI interface, PL/I programs require only a 2-byte field.

ZZ specifies a 2-byte field that contains binary zeros.

Chapter 1. DL/I calls reference 85

FEEDBACK
specifies a 2-byte field that contains one of the following RACF return codes:

0000 User is authorized.

0004 Resource or class not defined.

0008 User is not authorized.

000C RACF is not active.

0010 Invalid installation exit return code.

EXITRC
specifies a 2-byte field that contains the return code from the user exits if they
were used. The EXITRC field contains the return code from the last user exit
that was entered. If none of the user exits are present or invoked, the field
contains binary zeros. If installation data is returned from the exit, the EXITRC
field is set to zero to indicate an authorized return code from the exit.

STATUS
specifies a 2-byte field that contains the hexadecimal status code indicating
installation data status:

0000 RACF installation data is present in the I/O area.

0004 Security exit installation data present in then I/O area.

0008 User is not currently signed on.

000C User is not authorized, so installation data is not made available, or
user is authorized, but no installation data has been defined.

0010 User was authorized, but installation data was not requested.

0014 USERDATA exceeds PSBWORK area length.

0018 RACF not active and TRN=N defined.

RESERVED
Binary zeros (reserved)

UL specifies a 2-byte field that specifies the length of the installation data,
including the length of the UL parameter.

USERDATA
specifies a variable-length field that contains installation data from ACEE or a
user security exit. The length of the installation data is limited to 1026 bytes,
including the length (UL) field. If a security exit returns a value greater than
1026, IMS truncates the installation data and adjusts the length field to
represent the amount of installation data actually returned to the application
program. If security exit installation data is returned, IMS passes it to the
application program even if the parameter list did not contain the USERDATA
parameter.

Any available installation data is returned if the return code from RACF
indicates that the user is authorized to the resource named in the call
parameter list. No installation data is returned if the user who originated the
transaction is no longer signed on to the terminal associated with the
transaction. Installation data might or might not be provided by the security
exits when they are involved in the security decision. However, when either of
the exits returns installation data, IMS passes it on to the application program.

If provided, installation data is returned from a security exit to the application
even when the call parameter list does not specify the USERDATA parameter.

86 Application Programming APIs

In that case, the STATUS field of the I/O area contains the code X'0004'
indicating the presence of the installation data.

Usage

The AUTH call determines whether a user is authorized to access the resources
specified on the AUTH call. AUTH is issued with an I/O PCB and its function depends
on the application program. Authorization checking depends on the dependent
region type and whether a GU call has been issued. The call functions are as
follows:
v In BMPs, AUTH uses the user ID of the IMS control region or installation specific

user exits to determine the status of the call.
v For BMPs that have issued a successful GU call to the I/O PCB, AUTH functions as

it does in an MPP.
v In MPPs, AUTH verifies user authorization with RACF for the specified resource

classes of those resources used by the application program.

Because the call can request RACF user data to be passed back in the I/O area as
installation data, the processing of the call always results in changes to the STATUS
field in the I/O area. This STATUS field notifies the application of the status of
installation data in the I/O area: available or not available. It might not be
available because the installation data is not defined or the originating user is no
longer signed on to the IMS system.

Either of the supported security exits for transaction authorization (DFSCTRN0 or
DFSCTSE0) can present installation data upon return to IMS. If an exit returns
installation data, the data is returned to the application even if the parameter list
did not contain the USERDATA parameter. The STATUS field is set to indicate the
origination of the installation data. The STATUS field indicates the presence of
either RACF installation data or security exit installation data.

The application program also receives notification of the actual RACF return code.
This return code, presented as FEEDBACK in the I/O area, can be used by the
application program to detect inconsistent operational modes and take alternate
action. Examples of inconsistent operational modes are the proper RACF classes
not being defined or the requested resource not properly defined to RACF.

By checking the FEEDBACK, EXITRC, and STATUS in the I/O area, the application
program can be sensitive to issues such as the proper RACF definitions and
resources not being defined. If RACF is being used, and the AUTH call references
any resources that are not defined, the PCB status code is set to blanks and the
FEEDBACK field of the I/O area is set to indicate that the resource is not
protected.

Because the value for EXITRC is provided by a user security exit, use of this field
must be made with an understanding of exit operation and the knowledge that
any changes to the exit can result in application errors. If due to operational errors,
the proper resources are not protected, the application can deal with the error in
any way. This feedback can make operational control simpler and give the
application more flexibility.

Related reading: RACF terms and concepts are discussed in more detail in other
information units. For additional information, see IMS Version 14 System
Administration and IMS Version 14 Exit Routines.

Chapter 1. DL/I calls reference 87

Restrictions

The AUTH call must not be issued before a successful GU call to the I/O PCB.

CHNG call
The Change (CHNG) call sets the destination of a modifiable alternate PCB to the
logical terminal, LU 6.2 descriptor, or transaction code that you specify. You can
also use the CHNG call with the Spool Application Program Interface (Spool API) to
specify print data set characteristics.

Format

►► CHNG alternate_pcb
aib

destination_name ►

►
options_list

feedback_area

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHNG X X

Parameters

alternate pcb
Specifies the modifiable alternate PCB to use for this call. This parameter is an
input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of a
modifiable alternate PCB.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

destination name
Specifies an 8-byte field containing the destination name (the logical terminal
or transaction code) to which you want messages sent. This parameter is an
input parameter. The destination name can be up to 8 bytes. When you specify
LU 6.2 options, IMS TM sets the destination name in the alternate PCB to
DFSLU62b. If an LU 6.2 options list is specified the destination name
parameter is ignored.

For more information on LU 6.2, see IMS Version 14 Communications and
Connections.

88 Application Programming APIs

The destination name may also be used to implement message switches from
OTMA to non-OTMA destinations. In this case, the destination name must
match the name of the routing descriptor in the DFSYDTx member of
IMS.PROCLIB.

Restriction: Some destination names are invalid. For more information on
resource naming rules, see IMS Version 14 Communications and Connections.

options list
Specifies one of several option keywords. This parameter is an input
parameter. The options in the list are separated by commas and cannot contain
embedded blanks. Processing for the options list terminates when the first
blank in the list is reached or when the specified options list length has been
processed. You can specify options for advanced print functions or for APPC.

For more information on APPC, see IMS Version 14 Communications and
Connections.

The format for the options list is shown here:

LL or LLLL 1, 2, 3 ZZ keyword1=variable1

Halfword length of the
options string, including the
4-byte length of LLZZ or
LLLLZZ.

Halfword of zero. CHNG options separated by
commas.

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered four bytes.

2. If the length field is set to zero, the options list is ignored. IMS TM processes the CHNG
call as if the options list parameter was not specified.

3. A keyword must be separated from the following variable by an equal sign (=). A
keyword with no variable must be delimited by a comma or blank.

feedback area
Specifies an optional parameter used to return error information about the
options list to the application program. This parameter is an output parameter.
The amount of information that the application program receives is based on
the size of the feedback area. If no feedback area is specified, the status code
returned is the only indication of an options list error. If you specify a feedback
area 1½ to 2 times the size of the specified options list (a minimum of eight
words), IMS TM returns more specific information about errors in the options
list.

The following table shows the format for the feedback area passed to IMS in
the call list:

LL or LLLL 1, 2 ZZ

Halfword length of the feedback area,
including the 4-byte length of the LLZZ
fields.

Halfword of zero.

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered 4 bytes.

2. If the length field is set to zero, the feedback area is ignored. IMS TM processes the
CHNG call as if the feedback area parameter was not specified.

Chapter 1. DL/I calls reference 89

The output format returned to the application program from IMS for the
feedback area is as follows:

LLZZ or LLLLZZ LL feedback data

The length field as specified
in the input format for the
feedback area.

Halfword length of the
feedback data returned by
IMS TM, including the 2-byte
LL field.

Data returned by IMS TM.
The feedback data generally
includes the option keyword
found to be in error and a
4-byte EBCDIC code in
parentheses that indicates the
reason for the error. Multiple
errors are separated by
commas.

Usage

Use the CHNG call to send an output message to an alternate destination in your
system or in another system. When you issue the CHNG call, you supply the name
of the destination to which you want to send the message. The alternate PCB you
name then remains set to that destination until you do one of the following:
v Issue another CHNG call to reset the destination.
v Issue a Get Unique (GU) call to the message queue to start processing a new

message. In this case, the name of the PCB you specify with the CHNG call still
appears in the alternate PCB, even though it is no longer valid.

v Terminate the application program. When you terminate the application, IMS
TM resets the destination to blanks.

You can use the CHNG call to perform Spool API functions.

For Spool API functions, each CHNG call to a nonexpress, alternate PCB, creates a
separate JES spool data set. (PURG calls have no effect when issued against a
nonexpress, alternate PCB.) If the destination of the PCB is the JES spool, it cannot
be CHNGed to a non-JES spool destination until the data set(s) have been released
by a sync point. Keywords that can be specified on the CHNG call are discussed
below.

In the OTMA environment

If an IMS application program issues a CHNG call to an alternate PCB and specifies
an options list, then the output destination cannot be an IMS Open Transaction
Manager client.

An IMS application program that issues a CHNG call to an alternate PCB (specifying
an options list) does not cause IMS to call the OTMA Prerouting and Destination
Resolution exit routines to determine the destination. But an IMS application
program that issues a CHNG call to an alternate PCB (specifying an APPC
descriptor) does cause IMS to call the OTMA exit routines to determine the
destination. For information on these exit routines, see IMS Version 14 Exit Routines.

The application program can still issue ISRT calls to the I/O PCB to send data to
an OTMA destination.

OTMA application programs can use CHNG and ISRT calls for APPC destinations.
For more information, see IMS Version 14 Communications and Connections.

90 Application Programming APIs

Advanced print function options

The IAFP keyword identifies the CHNG call as a request for Spool API functions. The
parameters of the IAFP keyword are:

Keyword
Description

IAFP=abc
a — specifies carriage control options

b — specifies integrity options

c — specifies message processing options

These options specify advanced print functions for the CHNG call.

Carriage control options: The 1-character carriage control options indicate the type of
carriage control that is present in the message data when the ISRT or PURG call is
issued. Your application program must insert the proper carriage control characters
in the data stream. You can specify one of the following values for the IAFP
keyword:

A The data stream contains ASA carriage control characters.

M The data stream contains machine carriage control characters.

N The data stream does not contain carriage control characters.

Integrity options: The 1-character integrity options indicate the method IMS TM uses
in allocating the IMS Spool data set that contains the IAFP message. You can
specify one of the following options for the IAFP keyword:

0 IMS TM attempts no data set protection. Your application program must
provide any disposition or hold status by using the appropriate OUTPUT
descriptor options. IMS TM does attempt to prevent a partial message from
printing and to deallocate data sets that contain messages that have
already reached a sync point. To control whether error messages about the
IMS Spool data set are issued, use the message processing options for the
IAFP keyword.

1 The IMS Spool data set is placed on the SYSOUT HOLD queue when it is
allocated. If IMS TM issues message DFS00121 or DFS00141, the operator
must query the SYSOUT HOLD queue to locate the appropriate data sets.
IMS TM releases the data set and deallocates it to be printed at sync point.

When you specify 1 for the integrity option, you must specify M for the
message processing option of the IAFP keyword.

2 A remote destination is specified in the destination name parameter on the
CHNG call. The IMS Spool data set, when allocated, is placed on a SYSOUT
remote workstation, IMSTEMP. This destination must be included in the
definitions as nonselectable so that the data set is not automatically
selected to be printed. If IMS TM issues message DFS00121 or DFS00141,
the operator must query IMSTEMP to locate the appropriate data sets. At
sync point, IMS TM releases the data set and deallocates it to the remote
workstation ID specified in the destination name parameter. The value 2
overrides any destination specified in the IAFP OUTPUT options.

Chapter 1. DL/I calls reference 91

Message processing options: The 1-character message processing options indicate
whether IMS TM issues message DFS00141 during restart and message DFS00121
for dynamic allocation failures. You can specify one of the following options:

0 DFS00121 and DFS00141 are not issued. Your application program controls
IAFP message integrity.

M DFS00121 and DFS00141 are issued if necessary. IMS TM controls IAFP
message integrity.

The CHNG call can provide the data set characteristics by:
v Directly, using the PRTO= option
v Referencing prebuilt text units, using the TXTU= option
v Referencing an OUTPUT JCL statement in the dependent region's JCL, using the

OUTN= option

When you use the IAFP keyword, you must also specify the PRTO, TXTU, or
OUTN option. (The options PRTO, TXTU, and OUTN are mutually exclusive.) If
you do not specify one of these additional options, or if you specify more than one
of these options, or if you specify IAFP with an invalid value, IMS TM returns an
AR status code to your application program.

Keyword
Description

PRTO=outdes options
Describes the data set processing options as they are specified on the TSO
OUTDES statement.

The format for the PRTO= keyword is as follows:

LL outdes options

Halfword length of the total OUTDES printer
options, including the 2-byte length of LL.

Any valid combination of OUTDES printer
options.

Note: Some options depend on the release level of MVS™.

TXTU=address
specifies the address of a list of text-unit pointers. The list (with the
associated text units) can be created by a previous SETO call, or it can be
created by your application program. The LLZZ or LLLLZZ prefix must be
included on the buffer that contains the list. TXTU allows your application
program to issue a SETO call to build the text units for the OUTDES options
before the CHNG call is issued.

If your application program issues several CHNG calls with the same
OUTDES printer options, the TXTU option means you do not need to
build OUTDES options for each CHNG call.

OUTN=name
specifies a character string up to eight characters long that contains the
name of an OUTPUT JCL statement that identifies the printer processing
options to be used. If the specified OUTPUT DD statement is not included
in the JCL for the region in which the application program runs, a dynamic
allocation error occurs when the application attempts to insert data to the
data set.

APPC options: The following APPC options are available for the CHNG call:

92 Application Programming APIs

Keyword
Description

LU=logical unit name
Specifies the logical unit (LU) name of a partner for an LU 6.2 conversation
with a partner application program. It is used in conjunction with the
MODE and TPN options to establish the conversation. The LU name can
be any alphanumeric string including national characters, but the first
character cannot be a number. If the LU name is a network-qualified name,
it can be up to seventeen characters long and consist of the network ID of
the originating system, followed by '.', then the LU name. (for example,
netwrkid.luname). The LU name and the network ID are both one to eight
characters long. The default for this option is DFSLU.

MODE=mode name
Specifies the mode of the partner for an LU 6.2 conversation with a partner
application program. It is used in conjunction with the LU and TPN
options to establish the conversation. The mode name can be any
alphanumeric string up to eight characters long, including national
characters, but the first character cannot be a number. If both MODE and
SIDE options are specified, the mode name specified in the SIDE entry is
ignored but is not changed. The default for this option is DFSMODE.

TPN=transaction program name
Specifies the transaction program (TP) name of the partner application
program in an LU 6.2 conversation. The option is used in conjunction with
the LU and MODE keywords to establish the conversation.

TP names can be up to 64 characters long and can contain any character
from the 00640 character set except a blank. The 00640 character set
includes the letters A-Z, the digits 0-9, and 20 special characters. The
default for this option is DFSASYNC. For more information on the 00640
character set, see CPI Communications Reference. The format for the TPN
option is as follows:

LL tpn

Halfword length of the TP name, including
the 2-byte length of LL.

The TP name, which can be up to 64
characters long.

TP names that are processed with the IMS command processor must
contain characters that are valid to IMS. For example, names that contain
lower case letters cannot be processed and are rejected if they are used as
operands for IMS commands.

SIDE=side information entry name
Specifies the side information entry name that can be used to establish an
LU 6.2 conversation with a partner application program. The SIDE name
can contain up to eight characters, including the uppercase alphabet (A-Z),
and the digits 0-9. If the LU, MODE, or TPN keywords are specified, they
override the SIDE keyword, but they do not change the side information
entry name. This option has no default.

SYNC=NC
Overrides the APPC/IMS conversation synchronization level. N sets the
synchronization level to NONE. C sets the synchronization level to
CONFIRM. The default for this option is C.

Chapter 1. DL/I calls reference 93

TYPE=BM
Overrides the APPC/IMS conversation type. B sets the conversation type
to BASIC. M sets the conversation type to MAPPED. The default for this
option is M.

Related reading: For more information on APPC and the default options, see IMS
Version 14 Communications and Connections.

Options list feedback area:When errors are encountered in the options list, the options
list feedback area is used to return error information to the application.

IMS attempts to parse the entire options list and return information on as many
errors as possible. If the feedback area is not large enough to contain all the error
information, only as much information is returned as space permits. The status
code is the only indication of an option list error if you do not specify the area.

The feedback area must be initialized by the application with a length field
indicating the length of the area. A feedback area approximately 1.5 to 2 times the
length of the options list or a minimum of 8 words should be sufficient.

Error codes

This section contains information on error codes that your application can receive.

Error Code
Reason

(0002) Unrecognized option keyword.

Possible reasons for this error are:
v The keyword is misspelled.
v The keyword is spelled correctly but is followed by an invalid delimiter.
v The length specified field representing the PRTO is shorter than the

actual length of the options.
v A keyword is not valid for the indicated call.

(0004) Either too few or too many characters were specified in the option
variable. An option variable following a keyword in the options list for the
call is not within the length limits for the option.

(0006) The length field (LL) in the option variable is too large to be contained in
the options list. The options list length field (LL) indicates that the options
list ends before the end of the specified option variable.

(0008) The option variable contains an invalid character or does not begin with an
alphabetic character.

(000A) A required option keyword was not specified.

Possible reasons for this error are:
v One or more additional keywords are required because one or more

keywords were specified in the options list.
v The specified length of the options list is more than zero but the list

does not contain any options.

(000C) The specified combination of option keywords is invalid. Possible causes
for this error are:
v The keyword is not allowed because of other keywords specified in the

options list.

94 Application Programming APIs

v The option keyword is specified more than once.

(000E) IMS found an error in one or more operands while it was parsing the print
data set descriptors. IMS usually uses z/OS services (SJF) to validate the
print descriptors (PRTO= option variable). When IMS calls SJF, it requests
the same validation as for the TSO OUTDES command. Therefore, IMS is
insensitive to changes in output descriptors. Valid descriptors for your
system are a function of the MVS release level. For a list of valid
descriptors and proper syntax, use the TSO HELP OUTDES command.

IMS must first establish that the format of the PRTO options is in a format
that allows the use of SJF services. If it is not, IMS returns the status code
AS, the error code (000E), and a descriptive error message. If the error is
detected during the SJF process, the error message from SJF will include
information of the form (R.C.=xxxx,REAS.=yyyyyyyy), and an error
message indicating the error.

The range of some variables is controlled by the initialization parameters.
Values for the maximum number of copies, allowable remote destination,
classes, and form names are examples of variables influenced by the
initialization parameters.

Restrictions

Before you can use the CHNG call to set or alter the destination of an alternate PCB,
you must issue the PURG call to indicate to IMS that the message that you have
been building with that PCB is finished.

LU 6.2 architecture prohibits the use of the ALTRESP PCB on a CHNG call in an LU
6.2 conversation. The LU 6.2 conversation can only be associated with the IOPCB.
The application sends a message on the existing LU 6.2 conversation (synchronous)
or has IMS create a new conversation (asynchronous) using the IOPCB. Since there
is no LTERM associated with an LU 6.2 conversation, only the IOPCB represents
the original LU 6.2 conversation.

For Spool API functions, each CHNG call to a nonexpress, alternate PCB, creates a
separate JES spool data set. (PURG calls have no effect when issued against a
nonexpress, alternate PCB.) If the destination of the PCB is the JES spool, it cannot
be CHNGed to a non-JES spool destination until the data set(s) have been released
by a sync point.
Related reference:
“ISRT call” on page 113
“PURG call” on page 116

CMD call
The Command (CMD) call enables an application program to issue IMS commands.

Format

►► CMD i/o_pcb
aib

i/o_area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CMD X X

Chapter 1. DL/I calls reference 95

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the
program. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an input and
output parameter. The I/O area must be large enough to hold the largest
segment passed between the program and IMS TM.

Usage

Use the CMD call with the GCMD call to send commands to and receive responses
from IMS TM. After the CMD call issues the command to IMS TM, IMS TM
processes the command and returns the first segment of the response message to
the application program's I/O area, but only if a CC status code is returned on the
CMD call. Your application program must then issue GCMD calls to retrieve all
subsequent message segments one segment at a time. The CMD and GCMD command
calls are typically used to perform functions that are usually handled by someone
at a terminal. These programs are called automated operator (AO) applications.

Before you issue a CMD call, the IMS command that you want to execute must be in
the I/O area that you refer to in the call. When you issue a CMD call, IMS TM
passes the command from the I/O area to the IMS control region for processing.
IMS TM places your application program in a wait state until the command is
processed. The application program remains in a wait state until IMS TM returns a
response. (Response means that IMS TM has received and processed the command.)
For asynchronous commands, you receive a response when the command is
processing, but not when it is complete.

You can also issue DB2 commands from your IMS TM application program. Issue
the command call and use the /SSR command, followed by the DB2 command. IMS
TM routes the command to DB2. DB2 issues a response to the command, and IMS
TM routes the DB2 response to the master terminal operator (MTO).

Restrictions

The AIB must specify the I/O PCB for this call.

96 Application Programming APIs

Any application program that uses this call must be authorized by the security
administrator.

You cannot issue a CMD call from a CPI-C driven application program.

This call is not supported in an IFP or non-message-driven BMP.
Related reference:
“GCMD call”

GCMD call
The Get Command (GCMD) call retrieves the response segments from IMS TM when
your application program processes IMS commands using the CMD call.

Format

►► GCMD i/o_pcb
aib

i/o_area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GCMD X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the
program. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area must be large enough to hold the largest segment
passed between the program and IMS TM.

Usage

When you issue a CMD call, IMS TM returns the first command response segment to
the application program's I/O area. If you are processing commands that return
more than one command response segment, use the GCMD call to retrieve the second

Chapter 1. DL/I calls reference 97

and subsequent command response segments. IMS TM returns one command
response segment to the I/O area of your application program each time the
application program issues a GCMD call. The I/O area must be large enough to hold
the longest message segment expected by your application program. IMS allows a
maximum segment size of 132 bytes (including the 4-byte LLZZ field).

The CMD and GCMD calls are typically used to perform functions that are usually
performed by someone at a terminal. These programs are called automated
operator (AO) applications.

PCB status codes indicate the results of a GCMD call. The status codes are similar to
those that result from a message GN call. A QD status indicates that there are no
more segments in the response. A QE status indicates that a GCMD call was issued
after a CMD call that did not produce response segments. A blank status ('bb')
indicates that a segment was retrieved successfully.

Restrictions

The AIB must specify the I/O PCB for this call.

Any AO application that uses this call must be authorized by the security
administrator.

You cannot issue a GCMD call from a CPI-C driven application program.

This call is not supported in an IFP, or non-message driven BMP.
Related reference:
“CMD call” on page 95

GN call
If an input message contains more than one segment, a Get Unique (GU) call
retrieves the first segment of the message and Get Next (GN) calls retrieve the
remaining segments.

Format

►► GN i/o_pcb
aib

i/o_area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GN X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the
program. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

98 Application Programming APIs

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area must be large enough to hold the largest segment
passed between the program and IMS TM.

Usage

If you are processing messages that contain more than one segment, you use the GN
call to retrieve the second and subsequent segments of the message. IMS TM
returns one message segment to the I/O area of your application program each
time the application program issues a GN call.

You can issue a GN call from a BMP program.

Restrictions

The AIB must specify the I/O PCB for this call.

You cannot issue a GN call from a CPI-C driven application program.
Related reference:
“GU call”

GU call
The Get Unique (GU) call retrieves the first segment of a message.

Format

►► GU i/o_pcb
aib

i/o_area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GU X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the
program. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

Chapter 1. DL/I calls reference 99

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area must be large enough to hold the largest segment
passed between the program and IMS TM.

Usage

An MPP or message-driven BMP uses two calls to retrieve input message from the
host: GN and GU. A GU call retrieves the first segment of a message. The Get Next
(GN) call retrieves subsequent segments.

When you issue a successful GU or GN, IMS TM returns the message segment to the
I/O area that you specify in the call. Message segments are not all the same length.
Because the segment length varies, your I/O area must be long enough to hold the
longest segment that your program can receive. The first two bytes of the segment
contain the length of the segment.

Your application program must issue a GU call to the message queue before issuing
other DL/I calls. When IMS TM schedules an MPP, the Transaction Manager
transfers the first segment of the first message to the message processing region.
When the MPP issues the GU for the first message, IMS TM already has the
message waiting. If the application program does not issue a GU message call as the
first call of the program, IMS TM has to transfer the message again, and the
efficiency provided by message priming is lost.

If an MPP responds to more than one transaction code, the MPP has to examine
the text of the input message to determine what processing the message requires.

After a successful GU call, IMS TM places the following information in the I/O PCB
mask:
v The name of the logical terminal that sent the message.
v The status code for this call. (See the topic "I/O PCB mask" in IMS Version 14

Application Programming)
v The input prefix, giving the date, time, and sequence number of the message at

the time it was first queued. IMS returns both an 8-byte local date containing a
2-digit year and a 12-byte time stamp (local or UTC time) containing a 4-digit
year.

v The MOD name (if you are using MFS).
v The user ID of the person at the terminal, or if user IDs are not used in the

system, the logical terminal name. If the message is from a BMP, IMS TM places
the PSB name of the BMP in this field.

100 Application Programming APIs

v Group name, used by DB2 to provide security for SQL calls.

Related reading: For more information on the format of the I/O PCB mask, see the
topic "Specifying the I/O PCB Mask" in IMS Version 14 Application Programming.

Restrictions

The AIB must specify the I/O PCB for this call.

You cannot issue a GU call from a CPI-C driven application program.
Related reference:
“GN call” on page 98

ICAL call
The IMS Call (ICAL) call allows an application program that runs in the IMS TM
environment to send a synchronous request for data or services to a non-IMS
application program or service that runs in a z/OS or distributed environment, or
to initiate a synchronous program switch to an IMS transaction.

Format for the SENDRECV subfunction

►► ICAL aib request_area response_area
control_data_area

►◄

Format for the RECEIVE subfunction

►► ICAL aib response_area ►◄

Call name DB/DC DBCTL DCCTL DB batch TM batch

ICAL X X

Parameters

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

You must initialize the following fields in the AIB:

AIBERRXT
This 4-byte length field contains the additional error information that is
returned by OTMA, IMS Connect, IMS TM Resource Adapter, the IMS
Enterprise Suite SOAP Gateway server, or user-written IMS Connect client
applications. The default is 0.

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBOALEN
A 4-byte field that, when an ICAL call is issued, must contain the length of
the request area.

Chapter 1. DL/I calls reference 101

|

|||||||||||||||||||

|

|

When a response to an ICAL call is received, if the response data is too
large to fit in the response area, the AIBOALEN field contains the total
length of the entire response data. When the response area is too small to
fit all of the response data, the AIB return code is X'100' and the AIB
reason code is X'00C'. For any other return codes that are received with a
response, this field is unchanged.

When partial data is returned, you can use the value of this field to
determine how much space is required in the response data buffer. Your
application program can then expand the buffer and issue an ICAL call
with the RECEIVE subfunction code to retrieve the complete response
message.

AIBOAUSE
A 4-byte field that, when an ICAL is issued, contains the length of the
output response area that is specified in the call list.

When a response to an ICAL call is received, IMS updates the field to
contain the length of the response message that is returned in the response
area. If only partial data is returned because the response area is not large
enough, AIBOAUSE contains the length of the data that is returned in the
response area, and AIBOALEN contains the total length of the response
message.

AIBOPLEN
A 4-byte field that, when an ICAL call is issued, contains the total length of
the control data area that is specified in the call list. This parameter is
ignored if control area is not specified on the ICAL call. The control area
can consist of 1 to many control data items. The total length of the control
data area cannot be larger than 8,160,000.

AIBREASN
AIB reason code.

AIBRETRN
AIB return code.

AIBRSFLD
The time to wait for the synchronous call process to complete. This 4-byte
field contains a time value in 100th of a second.

The valid range is 0 - 999999. The system default is 10 seconds.
v If the specified value is larger than the maximum value, the maximum

value is used.
v If the value is set to 0, then the timeout value that is specified in the

OTMA descriptor is used. If there is no timeout value in the OTMA
descriptor, the system default is used for the timeout.

v If the timeout value specified on the OTMA destination descriptor
differs from the timeout value specified on the ICAL call, OTMA uses
the smaller of the two values.

When the timeout value is reached, the IMS application that issues the
synchronous callout request receives a return code of X'0100' and a reason
code of X'0104'. The message is discarded.

AIBRSNM1
OTMA descriptor name. This 8-byte, alphanumeric, left-aligned field must
contain the name of the OTMA descriptor that defines the destination of
the IMS call.

AIBRSNM2

102 Application Programming APIs

|
|
|
|
|
|

This 8-byte, alphanumeric, left-aligned field contains the logical terminal
name used to override the LTERM name in the I/O PCB of the IMS
application program for the target transaction of an ICAL call for
synchronous program switch. The name specified in the AIB is used
instead of any name specified in the OTMA destination descriptor.
However, if no name is specified in AIBRSNM2, the name from the OTMA
descriptor is used. If no name is found in the descriptor or in the AIB, the
IMS application terminal symbolic (PSTSYMBO) is used as the default
logical terminal name for the target transaction.

AIBSFUNC
Subfunction code. This field must contain an 8-byte subfunction code. The
valid subfunction codes are:

SENDRECV
The IMS application program uses this subfunction to send a message
and wait for the response. This subfunction is used for synchronous
program-to-program communication.

RECEIVE
The IMS application program uses this subfunction to retrieve the
complete response data from a previous incomplete ICAL call. If a
SENDRECV subfunction call completes with AIB return code X'0100'
and reason code X'000C', the response data did not fit in the response
area. The application program can expand the response area and then
retrieve the complete response with the RECEIVE subfunction call.

AIBUTKN
Map name. If specified, this 1- to 8-byte alphanumeric, left-justified field
contains the 1- to 8-character map name used for message formatting or
service identification purpose. This map name is included in the OTMA
state data prefix sent to the destination for callout.

request_area
Specifies the request area to use for this call. This parameter is an input
parameter.

This request area contains the request message data that is sent from the IMS
application program to the application that is specified in the OTMA
descriptor. The AIBOALEN field specifies the length of the request message
data. Because the ICAL call bypasses the IMS TM message queue, the format
of the request area does not require the LLZZ fields.

If the OTMA descriptor specifies that the request message must be routed to
another IMS application program (TYPE=IMSTRAN), the LLZZ fields and
transaction code must be specified in the first 8 bytes of the data area that
follows the LLZZ. For transactions specified with MULTSEG, the request data
must include the entire multi-segment message. The standard IMS LLZZ
format is required for each segment, but the transaction code is only required
for the first segment.

LL Specifies the length of the segment.

ZZ Sets the segment to binary zeros.

response_area
Specifies the response area to use for this call. This parameter is an output
parameter.

If the response area is not large enough to contain all of the returned data, IMS
returns partial data. When partial data is returned, the AIBOAUSE field

Chapter 1. DL/I calls reference 103

contains the length of the returned data in the response area, and AIBOALEN
contains the actual length of the response message.

Because an ICAL call for synchronous callout bypasses the IMS TM message
queue, the format of the response area does not require the LLZZ fields.
However, ICAL calls for synchronous program switch to another IMS
application do require the LLZZ fields. The LLZZ fields for a synchronous
program switch are populated by the output from the target IMS application.
Synchronous program switch requests do not bypass the message queue.

If the original request message was routed to another IMS application
program, the response data follows the standard LLZZ format for each
segment in the response message.

control_data_area
Specifies the control area to use for this call. This parameter is an optional
input parameter. This control area is sent from the IMS application program to
the target client application that is specified in the OTMA descriptor. The
AIBOPLEN field must specify the length of the control data. The ICAL control
data can consist of 1 to many control data items so that a number of services
and operations can be specified on the same ICAL call.

Each control data item starts with a 4-byte length field, which is followed by a
tag, data, and the end tag. Tags can be of any length. The beginning tag
consists of a less than sign (<), a tag name, and a greater than sign (>). The
ending tag consists of a less than sign (<), a slash (/), and the tag name that
matches the beginning tag name, and a greater than sign (>). You must
specify a less than sign (<) and a greater than sign prefixed by a slash (/>) in
EBCDIC. The tag name and data contents are treated as binary and passed "as
is" to the target client.

The format of a control data item in the ICAL control data is as follows:
LLLL | <tag> | data ... | </tag>

There might be IBM-initiated control data items, which start with DFS in the
tag. The DFS prefix is restricted to IBM-specified control data items.

For SOAP Gateway messages, you can specify a converter name in the control
data by using the tags <DFSCNVTR>CONVERTER_NAME</DFSCNVTR>. The converter
name and the tags must be in uppercase EBCDIC. If a converter name is
specified, it overrides the name of the converter that IMS Connect would have
used to process the message.

The following table contains the IBM-initiated control data tag names and their
descriptions:

Table 30. IBM-initiated control data tags

Begin tag Data End tag Description

<DFSCNVTR> Converter name </DFSCNVTR> Specifies the name of the converter
that IMS Connect will use to
process the message.

Usage: SENDRECV subfunction

An ICAL call is used in an IMS application program for synchronous callout that
does not use the IMS message queue. Because the IMS message queue is not used,
synchronous callout messages are not constrained to the 32 KB message segment
restriction.

104 Application Programming APIs

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|
|

|
|
|
|
|

|
|

||

||||

||||
|
|
|

|

However, An ICAL call that is used in an IMS application program for
synchronous program switch processing to an IMS transaction does use the IMS
message queue. The 32 KB message limit applies to synchronous program switch
requests.

Before you run the IMS application that issues this call:
v The OTMA descriptor for the outbound destination routing information must be

already defined.
v If the ICAL request is for synchronous callout, the external application or server

that the IMS application is calling out to must be configured to listen for callout
messages with the IMS OTMA RESUME TPIPE function. If the RESUME TPIPE
is not set up before the ICAL call times out, a timeout error is returned to the
IMS application.

v If the ICAL request is for synchronous program switch, the target is an IMS
transaction that is defined with the TRANSACT macro or the equivalent type-2
commands CREATE TRAN and UPDATE TRAN. The transaction must be
started.

v For a synchronous program switch request in a shared queues environment, all
of the IMS systems in the same shared queues group must have a MINVERS
value of 13.1.

When the synchronous callout timeout value is specified in both the OTMA
destination descriptor and the DL/I ICAL call, IMS uses the lower value of the
two.

For a synchronous program switch, the target transaction can be in the same IMS
system, in an IMS that is accessible through shared queues, or in a remote IMS that
is accessible with MSC. The synchronous program switch request is queued as an
OTMA transaction, but OTMA is not required.

The target application of a synchronous program switch can issue an additional
synchronous program switch request before returning to the original application
program. You can chain together any number of synchronous program switch
requests. However, consider the timeout value for each ICAL call when making
nested synchronous program switch requests. Also, there must be an IMS
dependent region available for each of the target transactions to be scheduled.
Lastly, consider that a multi-switch program flow can hold database locks until the
entire sequence of switches is resolved. Two or more applications in the same
synchronous program switch chain can encounter database locking contention with
each other.

If the ICAL call for a synchronous program switch request times out, or if more
than one response is returned after the first one, IMS treats further responses as
late messages. The default response to a late message is to dequeue it. If you want
to retain late messages, you can configure a tpipe in the OTMA destination
descriptor for request to hold the late responses, or you can code a DFSMSCE0 exit
routine to reroute them.

Synchronous program switch requests made from Fast Path regions do not support
late response messages. Any late response message is discarded, including
subsequent redundant responses.

If a late response message for a synchronous program switch request is routed to
an OTMA client, but the original request was not initiated from an OTMA client,

Chapter 1. DL/I calls reference 105

you must use the DFSYIOE0 exit routine to re-build the default 1 KB OTMA
message user data prefix for the response message.

If the destination descriptor for a synchronous program switch request is
configured to queue late messages to a tpipe or reroute them with a DFSMSCE0
user exit routine, OTMA transaction expiration checking at the application GU time
is disabled for the message.

Depending on the transaction security specifications (TRN=Y), the IMS region that
is running the application that issues an ICAL request calls RACF and the
DFSCTRN0 user exit to determine if the user is authorized to issue the ICAL call.
For APPC or OTMA transactions, additional security specifications are checked. If
the security level for APPC or OTMA is set to NONE, then RACF and the
DFSCTRN0 user exit are not called even if TRN=Y is specified.

For a synchronous program switch request, IMS schedules the transaction as an
OTMA transaction. The OTMA security configuration (NONE, CHECK, FULL, or
PROFILE) is used even if OTMA is not active. The default security setting is FULL,
which is also used if OTMA is not enabled for the IMS system.

You can change the synchronous program switch security configuration with by
issuing the following command:
/SECURE OTMA TMEMBER DFSYICAL value

DFSYICAL is the dedicated synchronous program switch processing TMEMBER. It
is not used for other types of requests. Replace value with NONE, CHECK, FULL,
or PROFILE as appropriate.

When OTMA security is set to FULL for DFSYICAL, IMS always creates an ACEE
in the dependent region when it is scheduled. IMS uses this ACEE if security
checks are necessary.

When OTMA security is set to CHECK for DFSYICAL, IMS does not create an
ACEE at scheduling time. IMS creates an ACEE in the control region if security
checks are necessary.

When OTMA security is to set to NONE for DFSYICAL, no security check is
performed.

Usage: RECEIVE subfunction

When a SENDRECV subfunction call returns too much data to fit in the allocated
response buffer (AIB return code X'0100' and reason code X'000C'), the value of the
AIBOLEN field is updated with the length of the complete response message.
Expand the size of the response area and then issue an ICAL call with the
RECEIVE subfunction code to retrieve the complete response message.

The complete response data for the original ICAL call is held in the IMS control
region until one of the following events occurs:
v The application issues a new ICAL call with the SENDRECV subfunction code is

issued
v The IMS application reaches a sync point or terminates abnormally
v The IMS application issues a ROLB or CHECKPOINT call

106 Application Programming APIs

Restrictions

ICAL calls for external callout have the following restrictions:
v Coordinated two-phase commit between the IMS application program and the

external application program is not supported.
v An ICAL call cannot be issued from IMS in a shared-queues environment that is

not connected to IMS Connect.

Synchronous program switch requests have the following restrictions:
v The OTMA Input/Output Edit exit routine (DFSYIOE0) is not called for a

synchronous program switch request or response message.
v The TM and MSC Message Routing and Control exit routine (DFSMSCE0) is not

called for a synchronous program switch request.
v The target transaction is not part of the RRS commit scope of the initiating

application program.
v BMP and JBP applications cannot make synchronous program switch requests in

a DBCTL environment.
v The target transaction has read-only access to Fast Path MSDBs.
v The target transaction cannot be an IMS conversational transaction.
v All of the participating IMS systems in a shared queues environment must have

a DBRC MINVERS value of 13.1 or greater.

Return codes and reason codes

The following table lists the return codes and reason codes for the ICAL call.

Table 31. Return codes and reason codes for the ICAL call

Return code Reason code Extended reason code Description

X'0000' X'0000' X'0000' Call was completed successfully.
Proceed.

X'0100' X'000C' X'0000' Partial output response data was
returned.

Issue a new ICAL call with the
RECEIVE subfunction code and an
expanded response data area to
retrieve the complete response
message.

X'0100' X'000C' X'000D' An IMS informational or error
message was returned in response
to a synchronous program switch
request.

X'0100' X'0100' The default value is 0. If the value
is non-zero, it is set by the external
application.

Error message was returned in the
output response data.

X'0100' X'0100' X'000D' The synchronous program switch
request was returned with an IMS
message.

X'0100' X'0100' X'0004' An IMS informational or error
message was returned in response
to a synchronous program switch
request.

Chapter 1. DL/I calls reference 107

Table 31. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0104' X'0004' The request timed out. The ICAL
was not sent to the external
application.

X'0100' X'0104' X'0008' The request timed out. The ICAL
was sent, but the ACK was not
received.

X'0100' X'0104' X'000C' The request timed out. The ICAL
was sent, but the response was not
received.

X'0100' X0104' X'0010' The request timed out. The ICAL
was sent, but IMS failed to process
the response.

X'0100' X'0104' X'0020' The request timed out. The ICAL
request for synchronous program
switch was sent, but no response
was received.

X'0100' X'0108' The default value is 0. If the value
is non-zero, it is set by the external
application.

Request message was rejected by
the external application.

X'0100' X'010C' X'0000' The synchronous call was cleared
by a command (such as a /STOP
or /PSTOP command).

X'0100' X'0110' X'0000' The request message was rejected
because the specified transaction is
not supported. Either the trancode
was not found or the specified
transaction was an IMS
conversational transaction, a CPIC
transaction, or an IMS command
transaction.

X'0100' X'0110' X'0004' The request message was rejected
because the user is not authorized
to issue a synchronous program
switch request.

X'0100' X'0110' X'0005' The request message was rejected
because the tmember that IMS uses
to process synchronous program
switch requests (DFSYICAL) is
stopped. Issue the command
/START TMEMBER DFSYICAL to
resolve the problem.

X'0100' X'0110' X'0006' The request message was rejected
because the tpipe that IMS uses to
process synchronous program
switch requests (DFSTPIPE of the
OTMA tmember DFSYICAL) is
stopped. Issue the command
/START TMEMBER DFSYICAL TPIPE
DFSTPIPE to resolve the problem.

X'0100' X'0110' X'000D' The request message was rejected
because IMS failed to get an
internal storage YTIB to process
the message.

108 Application Programming APIs

Table 31. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110' X'000E' The request message was rejected
because IMS failed to activate
DFSYTIB0 to process the message.

X'0100' X'0110' X'0010' The TMEMBER or TPIPE name for
late response message routing is
invalid because it contains invalid
characters. Check the destination
descriptor.

X'0100' X'0110' X'0011' The TMEMBER or TPIPE name for
late response message routing is
missing from the destination
descriptor. If either value is
specified, both must be included.

X'0100' X'0110' X'0012' The TMEMBER or TPIPE name for
late response message routing is
incorrect. Check the destination
descriptor.

X'0100' X'0110' X'0013' The SMEM and SYNCTP
parameters are mutually exclusive.

X'0100' X'0110' X'0014' The TPIPE name for late message
processing is either missing or
invalid in the destination
descriptor.

X'0100' X'0110' X'0015' The request message was rejected
because the request was made in a
shared queues environment with
different IMS MINVERS values.
The IMS systems in the shared
queues group must have the
MINVERS value 13.1.

X'0100' X'0110' X'0016' The request is rejected due to
OTMA global message flood
condition. Too many OTMA
message blocks (TIB) were
allocated in the system.

X'0100' X'0110' X'0020' The request message was rejected
because the input data length is
incorrect. The length of the
segment must match the LLZZ
value specified on the request. The
total length of all segments in the
request must match the
AIBOALEN value in the AIB.

X'0100' X'0110' X'0030' The request message was rejected
because the transaction is currently
unavailable.

X'0100' X'0110' X'0031' The request message was rejected
because the transaction is stopped.

X'0100' X'0110' X'0033' The request message was rejected
because the destination name for
the program switch is an RCNT.

Chapter 1. DL/I calls reference 109

Table 31. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110' X'0034' The request message was rejected
because the destination name for
the program switch is a CNT.

X'0100' X'0110' X'0035' The request message was rejected
because the destination transaction
can only accept a single input
segment. Multiple input segments
were specified for the request.

X'0100' X'0110' X'0036' The request message was rejected
because an IMS queue manager
encountered an insert error.

X'0100' X'0110' X'0037' The request message was rejected
because an IMS queue manager
encountered an internal error.

X'0100' X'0110' X'0038' The request message was rejected
because a queue overflow was
detected.

X'0100' X'0110' X'0039' The request message was rejected
because IMS failed to process the
Fast Path transaction.

X'0100' X'0110' X'003A' The request message was rejected
because IMS queue manager failed
to update the message prefix.

X'0100' X'0110' X'003B' The request message was rejected
because IMS failed to enqueue the
transaction.

X'0100' X'0110' X'0060' The request message was rejected
because the synchronous program
switch was canceled before a reply
was received.

X'0100' X'0110' X'0061' The request message was rejected
because the target transaction does
not reply to the IOPCB and does
not perform a program-to-program
switch. The ICAL is rejected to
avoid a timeout. This rejection
occurs when the REPLYCHK
descriptor is set to YES for the
destination transaction. If there is
an asynchronous response for the
ICAL, you can set REPLYCHK to
NO and this ICAL is treated as
valid.

X'0100' X'0110' X'0070' IMS failed to process the response
message for the synchronous
program switch ICAL call. The
length of an output message
segment was greater than the 32K
limit.

110 Application Programming APIs

Table 31. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0100' X'0110' X'0071' IMS failed to process the response
message for the synchronous
program switch ICAL call. IMS is
running out of LUMP storage
space to process the response
message.

X'0100' X'0110' X'0072' IMS failed to process the response
message for the synchronous
program switch ICAL call. IMS
failed to allocate storage from
subpool 231, which is required to
process the response message.

X'0100' X'0110' X'0073' IMS failed to retrieve the response
message from the IMS message
queue.

X'0104' X'0210' X'0000' Input area length (AIBOALEN) is
set to zero.

X'0104' X'0214' X'0000' Output area length (AIBOAUSE) is
set to zero.

X'0104' X'0218' X'0000' Subfunction code is not known or
invalid.

X'0104' X'0610' X'0000' Request input area address
parameter is missing

X'0104' X'0614' X'0000' Response output area address
parameter is missing.

X'0104' X'1020' X'0000' Descriptor name is invalid.

X'0104' X'1024' X'0000' Timeout value is invalid.

X'0104' X'1028' X'0000' The ICAL RECEIVE call was
rejected because no additional
response data is available. Either
the additional response data from
a previous ICAL SENDRECV call
was already retrieved, or a
subsequent ICAL SENDRECV call
cleared the response buffer.

X'0104' X'102C' X'0000' Incorrect ICAL call with control
data. The AIBOPLEN value is zero.

X'0104' X'102C' X'0004' Incorrect ICAL call with control
data. Additional data area is found
following control data area.

X'0104' X'102C' X'0008' Incorrect ICAL call with control
data. OTMA destination descriptor
is not TYPE=IMSCON.

X'0104' X'102C' X'000C' Incorrect ICAL call with control
data. Resume TPIPE cannot receive
control data (TMAMCRHQ_MODE
does not have
TMAMCRHQ_CTLDATA)

X'0104' X'102C' X'0010' Incorrect ICAL call with control
data. Control data length does not
match control data items.

Chapter 1. DL/I calls reference 111

||||
|

||||
|
|

||||
|
|

||||
|
|
|
|

||||
|
|

Table 31. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0104' X'102C' X'0014' Incorrect ICAL call with control
data. Control data tag error.

X'0104' X'102C' X'0018' Incorrect ICAL call with control
data. The AIBOPLEN value is
larger than the maximum allowed
length, 8,160,000.

X'0108' X'0008' X'0000' IMS failed to release PSTICALO
(internal storage) for the ICAL call.

X'0108' X'0010' X'0000' Unable to obtain private storage.
The size of the input request data
might be too large.

X'0108' X'0570' X'0000' The ICAL RECEIVE call was
rejected because the internal buffer
storage at PSTICALO is invalid.

X'0108' X'0580' X'0004' Unable to send the request
message to the external
application. IMS is shutting down.

X'0108' X'0580' X'0008' Unable to send the request
message to the external
application. The IMS callout
function is disabled.

X'0108' X'0580' X'000C' Unable to send the request
message to the external
application. The OTMA member
was not found or is inactive.

X'0108' X'0580' X'0010' Unable to send the request
message to the external
application. The OTMA TPIPE was
not found or is stopped.

X'0108' X'0580' X'0014' Unable to send the request
message to the external
application. IMS failed to obtain
storage to queue a request.

X'0108' X'0580' X'0018' Unable to send the request
message to the external
application. IMS failed to obtain
LUMP storage to process the
message.

X'0108' X'0580' X'001C' Unable to send the request
message to the external
application. IMS failed to contact
OTMA to process the ICAL call.

X'0108' X'0580' X'0100' IMS failed to obtain the required
LUMP storage space to process the
synchronous program switch
request.

X'0108' X'0580' X'0104' OTMA failed to process the
synchronous program switch. See
the associated X'67D0' log record.

112 Application Programming APIs

||||
|

||||
|
|
|

Table 31. Return codes and reason codes for the ICAL call (continued)

Return code Reason code Extended reason code Description

X'0108' X'0584' X'0004' Unable to process the response
output message from the external
application. No data in the
response message.

X'0108' X'0584' X'0008' Unable to process the response
output message from the external
application. The XCF buffer length
for the response message is
incorrect.

X'0108' X'0584' X'000C' Unable to process the response
message from the external
application. IMS failed to allocate
storage for the response message
processing.

X'0108' X'0584' X'0010' Unable to process the response
message from the external
application. A null segment was
found in a multi-segment response
message.

X'0108' X'0588' The default value is 0. If the value
is non-zero, it is set by IMS
Connect.

IMS Connect failed to process the
response. No response data
returned.

X'0108' X'058C' The default value is 0. If the value
is non-zero, it is set by IMS
Connect.

IMS Connect failed to process the
response. Complete or partial raw
data from the external client
application is returned.

Related concepts:

OTMA descriptors (Communications and Connections)
Related reference:

AIB return and reason codes set by IMS (Messages and Codes)

ISRT call
The Insert (ISRT) call sends one message segment to the destination that you
specify in the call. The destination is represented by the I/O PCB, alternate PCB, or
AIB you specify in the call parameters.

For Spool API functions, the ISRT call is also used to write data to the JES Spool.

Format

►► ISRT i/o_pcb
alternate_pcb
aib

i/o_area
mod_name

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ISRT X X

Chapter 1. DL/I calls reference 113

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_otma_admin_004.htm#ims_otma_admin_004
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/compcodes/ims_aibcodes_ims.htm#ims_aibcodes_ims

Parameters

i/0 pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the
program. This parameter is an input and output parameter.

alternate pcb
Specifies the PCB to use for this call. These parameters are input and output
parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb (if the TP PCB is used), or the name of an alternate PCB (if an
alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an input
parameter. The I/O area must be large enough to hold the largest segment
passed between the application program and IMS TM.

mod name
Specifies the MOD you want used for this output message. This parameter is
an input parameter. The 8-byte MOD name must be left-justified and padded
with blanks as necessary. If the terminal receiving the output does not use
MFS, this parameter is ignored. If you specify a valid MOD name, IMS TM
uses that MOD to format the screen for the output message you are sending.

Usage

To issue the ISRT call successfully, your application program must first build the
message you want to send in the application program's I/O area. The ISRT uses
the destination name in the I/O PCB or alternate PCB, and the I/O area that you
specify in the call, to locate the message to be sent. The ISRT call then sends the
output message from your application program to another terminal. ISRT sends
one message segment per issue, so your application program must issue one ISRT
call for each segment of the message in the I/O area.

You can also specify a MOD name if you want to change the screen format. For
example, if the application program detects an error and must notify the person at
the terminal, you can specify a MOD name that formats the screen to receive the
error message. ISRT and PURG are the only DL/I calls that allow you to specify a
MOD name on the first segment of an output message.

114 Application Programming APIs

When your application program issues one or more ISRT calls, IMS TM groups the
message segments to be sent in the message queue. IMS TM sends the message
segments to the destination when the application program does one of the
following:
v Issues a GU call to retrieve the first segment of the next message
v Reaches a commit point
v Issues a PURG call on an express alternate PCB

Your application must also use the ISRT call to issue replies to other terminals in
conversational programs and to pass a conversation between application programs.

In the shared queues environment

A STATUSQF can be received on an ISRT call in a shared queues environment if
the MSGQ structure is full. If the MSGQ structure is full, one of the following can
happen:
v If the ISRT is for a multi-segment message, STATUSQF will be received.
v If the ISRT for a multi-segment message still completes correctly (enough space)

but not enough space is found to be available at PURG or CHKP time, the
application will abend with ABENDU0370.

v If the ISRT is for a single segment message, STATUSQF can be received. If the
program continues to insert further messages that cause all available device
relative record number (DRRN) to be exhausted, IMS will fail with
ABENDU0758. If the program issues a checkpoint before exhausting all available
DRRN, queue buffers will be freed and the messages will be written on the log
as “unresolved UOWEs.” Logs containing the original type01 and type03 log
records are needed to later insert the messages in the structure if space becomes
available and must not be reused. IMS will issue message DFS1994I to remind
the user at every check point time.

Spool API functions

You can use the ISRT call to write data to the JES Spool. These writes are done
using BSAM and, if possible, each BSAM “write” is done directly from the
application program's buffer area.

Restriction: BSAM does not support the I/O area for sysout data sets above the
16-MB line. If IMS finds an I/O area above the 16-MB line, it moves the
application data to a work area below the line before it performs the BSAM write.
If the I/O area is already below the line, the write is done directly from the I/O
area. Do not take unusual steps to place the I/O area below the line unless
performance indicates a need to do so.

When you issue the ISRT call for an alternate PCB set up for IAFP processing,
prefix the I/O area with a BSAM block descriptor word for variable length records.

LL or LLLL1,2 ZZ2 II3 zz3

Halfword length of
the I/O area or block,
including the 4-byte
length of the LLZZ
fields.

Halfword of zero Halfword length of
the logical record or
segment, including
the 4-byte length of
the llzz fields.

Halfword of zero

Chapter 1. DL/I calls reference 115

LL or LLLL1,2 ZZ2 II3 zz3

Notes:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered 4 bytes.

2. LLZZ is the equivalent of the BSAM Block Descriptor Word (BDW).

3. llzz is the equivalent of the BSAM Record Descriptor Word (RDW).

Restrictions

A CPI-C driven application program can only issue the ISRT call to an alternate
PCB.

If you want to send message segments before retrieving the next message or
issuing a commit point, you must use the PURG call.

MOD name can be specified only once per message, on the first ISRT or PURG call
that begins the message.

BSAM does not support the I/O area for sysout data above the 16 MB line.
Related reference:
“CHNG call” on page 88
“PURG call”

PURG call
The Purge (PURG) call allows your application program to send one or more output
message segments (specified with the ISRT call) to the specified destination before
the application program retrieves the next input message or issues a commit point.

For Spool API functions, the PURG call can also be used to release a print data set
for immediate printing.

Format

►► PURG i/o_pcb
alternate_pcb
aib

i/o_area
mod_name

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

PURG X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the
program. This parameter is an input and output parameter.

alternate pcb
Specifies the PCB to use for the call. These parameters are input and output
parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

116 Application Programming APIs

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb (if the TP PCB is used), or the name of an alternate PCB (if an
alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for this call. This parameter is an input parameter.
The I/O area must be large enough to hold the largest segment passed
between the program and IMS TM.

mod name
Specifies the MOD you want used for this output message. This parameter is
an input parameter. The 8-byte MOD name must be left justified and padded
with blanks as necessary. PURG can specify the MOD name for the first message
segment for an output message. If the terminal receiving the output does not
use MFS, this parameter is ignored. If you specify a valid MOD name, IMS TM
uses that MOD to format the screen for the output message you are sending.

Usage

Use the PURG call to send output messages to several different terminals. A PURG
call tells IMS TM that the message built against the specified I/O PCB, or alternate
PCB (with the ISRT call) is complete. IMS TM collects the message segments that
have been inserted into one PCB as one message and sends the message to the
destination specified by the destination name of the alternate PCB listed in the
PURG call.

If you specify an I/O area in the PURG call parameters, PURG acts as an ISRT call to
insert the first segment of the next message. When you identify the I/O area, you
can also specify a MOD name to change the screen format.

In the OTMA environment

An IMS application program that issues a PURG call causes IMS to call the Open
Transaction Manager Access (OTMA) Prerouting and Destination Resolution exit
routines to determine the destination. For information on these exit routines, see
IMS Version 14 Exit Routines.

In the shared queues environment

A STATUSQF can be received on a PURG call in a shared queues environment if
the MSGQ structure is full. If the MSGQ structure is full, one of the following can
happen:
v If the PURG is for a multi-segment message, STATUSQF will be received.

Chapter 1. DL/I calls reference 117

v If the PURG for a multi-segment message still completes correctly (enough
space) but not enough space is found to be available at PURG or CHKP time,
the application will abend with ABENDU0370.

Spool API functions

You can use the PURG call with an express alternate PCB to release a print data set
for immediate printing. When you issue the PURG call with an I/O area, IMS treats
the call as two functions: the purge request, and the insertion of data provided by
the I/O area.

If you issue the PURG call:
v Against an express alternate PCB, the data set is closed, unallocated, and

released for printing. The destination is reset.
v With an I/O area against a non-express alternate PCB, the purge function is

ignored and the data in the insert portion of the call is put into the print data
set. This means that the call behaves like an ISRT call.

v With no I/O area against an express alternate PCB, the data set is closed,
unallocated, and released for printing. IMS returns a status code of blanks.

v With no I/O area against a non-express alternate PCB, no action is taken.

Restrictions

CPI-C driven application programs can only issue the PURG call to alternate PCBs.

MOD name can be specified only once per message, in the first ISRT or PURG call
that begins the message. For conversational transactions, if the first ISRT is the
SPA, the MOD name can either be provided on the SPA ISRT or on the first ISRT
of a message segment.

This call is not supported in an IFP.

For synchronized APPC/OTMA conversations or OTMA commit-then-send (CM0)
transactions with TMAMIPRG indicator set in the OTMA prefix, PURG calls on the
TP PCB are ignored. The next ISRT call is processed for the next segment of the
current message.
Related reference:
“CHNG call” on page 88
“ISRT call” on page 113

SETO call
The SET Options (SETO) call allows IMS application programs to set processing
options. The SETO call can also be used to set processing options for Spool API
functions.

Format

►► SETO i/o_pcb
alternate_pcb
aib

(1)
i/o_area options_list

feedback_area
►◄

118 Application Programming APIs

Notes:

1 The I/O area parameter is not used for calls that specify APPC options.

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETO X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list that is passed to the
program. This parameter is an input and output parameter.

alternate pcb
Specifies the TP or alternate PCB to be used for the call. These parameters are
input and output parameters.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb (if the TP PCB is used), or the name of an alternate PCB (if an
alternate PCB is used).

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an output
parameter. If you specify an options list that contains advanced print functions,
you must specify an I/O area. If you use APPC options, the I/O area
parameter is optional.

For advanced print function options the I/O area must be at least 4 KB. If the
I/O area including the LLZZ or LLLLZZ prefix is less than 4096 bytes in
length, an AJ status code is returned. Once the text units area built in the I/O
area, the area must not be copied to a new area. The I/O area passed on the
SETO call must contain a LLZZ or, if PL/I, a LLLLZZ prefix.

LLLL applies only to DL/I call interface.

options list
Specifies several option keywords. This input parameter is required. The
options in the list are separated by commas and cannot contain embedded
blanks. Processing for the options list terminates when the first blank in the list
is reached or when the specified options list length has been processed. You
can specify options for advanced print functions or for APPC. The options you
can specify are described in "Advanced print function options" and "APPC
options".

Chapter 1. DL/I calls reference 119

The format for the options list is as follows:

LL or LLLL1,2 ZZ keyword=variable1

Halfword length of the
options string, including the
4-byte length of LLZZ or
LLLLZZ.

Halfword of zero. SETO options separated by
commas.

Note:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered 4 bytes.

2. If the length field is set to zero, the options list is ignored. IMS TM processes the SETO
call as if the options list parameter was not specified.

feedback area
Specifies an optional parameter used to return error information about the
options list to the application program. This parameter is an output parameter.
The amount of information that the application program receives is based on
the size of the feedback area. If no feedback area is specified, the status code
returned is the only indication of an options list area. If you specify a feedback
area 1½ to 2 times the size of the specified options list (a minimum of eight
words), IMS TM returns more specific information about errors in the options
list.

The format for the feedback area passed to IMS TM in the call list is as follows:

LL or LLLL1, 2 ZZ

Halfword length of the feedback area,
including the 4-byte length of the LLZZ
fields.

Halfword of zero.

Note:

1. For application programs that use the PLITDLI interface, the length field is a fullword
(LLLL). However, the length of the LLLLZZ field is still considered four bytes.

2. If the length field is set to zero, the feedback area is ignored. IMS TM processes the
SETO call as if the feedback area parameter was not specified.

The output format returned to the application program from IMS TM for the
feedback area is as follows:

LLZZ or LLLLZZ LL feedback area

The length field as specified
in the input format for the
feedback area.

Halfword length of the
feedback data returned by
IMS TM, including the 2-byte
LL field.

Data returned by IMS TM.
The feedback data generally
includes the option keyword
found to be in error and a
4-byte EBCDIC code in
parentheses that indicates the
reason for the error. Multiple
errors are separated by
commas.

Usage

The SETO call allows you to set processing options.

You can use the SETO call to reduce the overhead necessary to perform parsing and
text construction of the OUTPUT descriptors for a data set. If your application

120 Application Programming APIs

program can use a set of descriptors more than once during an installation, the
application can use the SETO call to provide print data set characteristics to the
Spool API. When the SETO call is processed, it parses the OUTPUT options and
constructs the dynamic OUTPUT text units in the work area provided by the
application. After the application has received the prebuilt text units, you can use
the CHNG call and TXTU= option to provide the print characteristics for the data set
without incurring the overhead of parsing and text unit build.

It is not necessary to use the SETO call to prebuild the text units if they can be
prebuilt with another programming technique.

Related reading: For more information about Spool API, see IMS Version 14
Application Programming.

In the OTMA environment

An IMS application program that issues a SETO call does not cause IMS to call the
Open Transaction Manager Access (OTMA) Prerouting and Destination Resolution
exit routines to determine the destination. For information on these exit routines,
see IMS Version 14 Exit Routines.

Existing IMS application programs that issue SETO calls might not run as expected
because a return code is returned to the program if it is processing an
OTMA-originated transaction. Also, APPC/IMS application programs that issue
SETO calls might not need modification if they require implicit OTMA support.

A solution to this problem is to use an INQY call before issuing the SETO call. The
application program can use the output from the INQY call to determine if a
transaction is an OTMA-originated one, to bypass the SETO call.

Advanced print function options

The PRTO= keyword identifies the SETO call as a Spool API request:

Keyword
Description

PRTO=outdes options
Describes the data set processing options as they are specified on the TSO
OUTDES statement. The format for the PRTO keyword is as follows:

LL outdes options

Halfword length of the total OUTDES printer
options, including the 2-byte length of LL.

Any valid combination of OUTDES printer
options, separated by commas.

Note: For information about TSO OUTDES options, see z/OS MVS Programming: Authorized
Assembler Services Reference. Some options depend on the release level of MVS.

If z/OS detects an error in the OUTDES printer options, an AS status code is
returned to the application program.

APPC options

The following options are available for the SETO call:

SEND_ERROR
causes the IMS LU Manager to issue SEND_ERROR on the conversation

Chapter 1. DL/I calls reference 121

associated with the I/O or alternate PCB when a message is sent. Messages for
express PCBs are sent during the PURG call or sync point processing, whichever
comes first. Messages for nonexpress PCBs are sent during sync point
processing.

This option is only used by LU 6.2 devices, and it is ignored if specified for a
non-LU 6.2 device.

The option is mutually exclusive with the DEALLOCATE_ABEND option. If
both options are coded in the options list, an AR status code is returned to the
application.

DEALLOCATE_ABEND
deallocates a conversation by issuing a SEND_ERROR followed by a
DEALLOCATE_ABEND at the time the message is sent. Once a SETO call with
the DEALLOCATE_ABEND option is issued, any subsequent ISRT calls made
to the PCB are rejected with a QH status code.

This option is applicable only to LU 6.2 devices. If specified for a non-LU 6.2
device, any subsequent ISRT calls made to the PCB are rejected with a QH
status code.

When the SETO call is issued on a TP PCB in an IFP region, the
DEALLOCATE_ABEND option is not valid. If you attempt to use the option
under these conditions, an AD status code is returned to the application.

The option is mutually exclusive with the SEND_ERROR option. If both
options are coded in the options list, an AR status code is returned to the
application.

Related reading: For more information about APPC and LU 6.2, see IMS Version 14
Communications and Connections.

Options list feedback area

When errors are encountered in the options list, the options list feedback area is
used to return error information to the application.

IMS attempts to parse the entire options list and return information on as many
errors as possible. If the feedback area is not large enough to contain all the error
information, only as much information is returned as space permits. The status
code is the only indication of an option list error if you do not specify the area.

The feedback area must be initialized by the application with a length field
indicating the length of the area. A feedback area approximately 1½ to 2 times the
length of the options list or a minimum of 8 words should be sufficient.

Error codes

This section contains information on error codes that your application can receive.

Error Code
Reason

(0002) Unrecognized option keyword.

Possible reasons for this error are:
v The keyword is misspelled.
v The keyword is spelled correctly but is followed by an invalid delimiter.

122 Application Programming APIs

v The length specified field representing the PRTO is shorter than the
actual length of the options.

v A keyword is not valid for the indicated call.

(0004) Either too few or too many characters were specified in the option
variable. An option variable following a keyword in the options list for the
call is not within the length limits for the option.

(0006) The length field (LL) in the option variable is too large to be contained in
the options list. The options list length field (LL) indicates that the options
list ends before the end of the specified option variable.

(0008) The option variable contains an invalid character or does not begin with an
alphabetic character.

(000A) A required option keyword was not specified.

Possible reasons for this error are:
v One or more additional keywords are required because one or more

keywords were specified in the options list.
v The specified length of the options list is more than zero but the list

does not contain any options.

(000C) The specified combination of option keywords is invalid. Possible causes
for this error are:
v The keyword is not allowed because of other keywords specified in the

options list.
v The option keyword is specified more than once.

(000E) IMS found an error in one or more operands while it was parsing the print
data set descriptors. IMS usually uses z/OS services (SJF) to validate the
print descriptors (PRTO= option variable). When IMS calls SJF, it requests
the same validation as for the TSO OUTDES command. Therefore, IMS is
insensitive to changes in output descriptors. Valid descriptors for your
system are a function of the MVS release level. For a list of valid
descriptors and proper syntax, use the TSO HELP OUTDES command.

IMS must first establish that the format of the PRTO options is in a format
that allows the use of SJF services. If it is not, IMS returns the status code
AS, the error code (000E), and a descriptive error message. If the error is
detected during the SJF process, the error message from SJF will include
information of the form (R.C.=xxxx,REAS.=yyyyyyyy), and an error
message indicating the error.

The range of some variables is controlled by the initialization parameters.
Values for the maximum number of copies, allowable remote destination,
classes, and form names are examples of variables influenced by the
initialization parameters.

Restrictions

A CPI-C driven application program can issue SETO calls only to an alternate PCB.
Related reference:
“REXXTDLI calls” on page 364

Chapter 1. DL/I calls reference 123

DL/I calls for IMS TM system services
Use these DL/I calls with IMS Transaction Manager system services.

The calls are listed in alphabetical order. Each call description contains:
v A syntax diagram
v A definition for each parameter that can be used in the call
v Details on how to use the call in your application program
v Restrictions on the use of the call

Each parameter is described as an input or output parameter. “Input” refers to
input to IMS from the application program. “Output” refers to output from IMS to
the application program.

System service calls must refer only to TP PCBs. The system service calls are
described only as they pertain to IMS TM functions.

Syntax diagrams for these calls begin with the function parameter. The call, the call
interface, (xxxTDLI), and parmcount (if it is required) are not included in the
following syntax diagrams. See specific information for assembler language,
COBOL, Pascal, and PL/I in the topic "Defining Application Program Elements" in
IMS Version 14 Application Programming for the complete structure.

System Service Call Summary

The following table is a summary of which system service calls you can
use in each type of IMS TM application program, and the parameters for
each call. The following table lists the function code, its meaning, use,
parameters, and in which regions it is valid. Optional parameters are
shown in brackets ([]).

System service calls issued in a DCCTL environment must refer only to
I/O PCBs or GSAM database PCBs. Calls that cannot be used in a DCCTL
environment are noted.

Language-dependent parameters are not shown here. For language-specific
information, see the topic "Formatting DL/I Calls for Language Interfaces"
in IMS Version 14 Application Programming.

For information on writing calls with programming language interfaces see
the topic "Defining Application Program Elements" in IMS Version 14
Application Programming.

Table 32. Summary of system service calls

Function Code Meaning and Use Options Parameters Valid for

APSB Allocate PSB.
Allocates a PSB for
use in CPI-C driven
application programs.

None function, aib MPP

CHKP (Basic) Basic checkpoint. For
recovery purposes.

None function, i/o pcb or
aib, i/o area

batch, BMP, MPP

CHKP (Symbolic) Symbolic checkpoint.
For recovery
purposes.

Can specify seven
program areas to be
saved.

function, i/o pcb or
aib, i/o area length,
i/o area[, area length,
area]

batch, BMP

124 Application Programming APIs

Table 32. Summary of system service calls (continued)

Function Code Meaning and Use Options Parameters Valid for

DPSB Deallocate PSB. Frees
a PSB in use by a
CPI-C driven
application program.

None function, aib MPP

GMSG Retrieve a message
from the AO exit
routine.

Can wait for an AOI
message when none is
available.

function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP
non-message driven)

GSCD 1 Get the address of the
system contents
directory.

None function, i/o pcb or
aib, i/o area

batch

ICMD Issue an IMS
command and
retrieve the first
command response
segment.

None function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP
non-message driven)

INIT Application receives
data availability
status codes.

Checks each PCB for
data availability.

function, i/o pcb or
aib, i/o area

batch, BMP, MPP, IFP

INQY Inquiry. Retrieves
information about
output destinations,
session status,
execution
environment, and the
PCB address.

None function, aib, i/o area batch, BMP, MPP, IFP

LOGb Log. Write a message
to the system log.

None function, i/o pcb or
aib, i/o area

batch, BMP, MPP, IFP

RCMD Retrieve the second
and subsequent
command response
segments resulting
from an ICMD call.

None function, aib, i/o area DB/DC and
DCCTL(BMP, MPP,
IFP), DB/DC and
DBCTL(DRA thread),
DBCTL(BMP
non-message driven)

ROLB Rollback. Backs out
messages sent by the
application program.

Call returns last
message to i/o area.

function, i/o pcb or
aib[, i/o area]

batch, BMP, MPP, IFP

ROLL Roll. Backs out output
messages and
terminates the
conversation.

None function batch, BMP, MPP

ROLS Returns message
queue positions to
sync points set by the
SETS or SETU call.

Issues call with i/o
PCB or aib

function, i/o pcb or
aib i/o area, token

batch, BMP, MPP, IFP

SETS Sets intermediate sync
(backout) points.

Cancels all existing
backout points. Can
establish up to 9
backout points.

function, i/o pcb or
aib, i/o area, token

batch, BMP, MPP, IFP

Chapter 1. DL/I calls reference 125

Table 32. Summary of system service calls (continued)

Function Code Meaning and Use Options Parameters Valid for

SETU Sets intermediate sync
(backout) points.

Cancels all existing
backout points. Can
establish up to 9
backout points.

function, i/o pcb or
aib, i/o area, token

batch, BMP, MPP, IFP

SYNC Synchronization Request commit point
processing.

function, i/o pcb or
aib

BMP

XRST Restart. Works with
symbolic CHKP to
restart application
program failure.

Can specify up to 7
areas to be saved.

function, i/o pcb or
aib, i/o area length,
i/o area[, area length,
area]

batch, BMP

Note:

1. GSCD is a Product-sensitive Programming Interface.

Related reading: DCCTL users can issue calls using GSAM database PCBs. GSAM
databases are described in IMS Version 14 Application Programming.
Related reference:
“DL/I calls for IMS DB system services” on page 35
“DL/I calls for database management” on page 1
“EXEC DLI commands” on page 163

APSB call
The Allocate PSB (APSB) call is used to allocate a PSB for a CPI Communications
driven application program. These types of application programs are used for
conversations that include LU 6.2 devices.

Format

►► APSB aib ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

APSB X X

Parameters

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

126 Application Programming APIs

Usage

CPI-C driven application programs must be link edited with the IMS language
interface module and must indicate the PSB to be used before the application
program can issue DL/I calls. The APSB call uses the AIB to allocate a PSB for these
types of application programs.

When you issue the APSB call, IMS TM returns a list of PCB addresses contained in
the specified PSB to the application program. The PCB list is returned in the
AIBRSA1 field in the AIB.

IMS TM allows the APSB call to complete even if the databases that the PSB points
to are not available. You can issue the INIT call to inform IMS TM of the
application program's capabilities to accept additional status codes regarding data
availability.

Related reading: For more information on CPI Communications driven application
programs, see IMS Version 14 Communications and Connections.

Restrictions

An application program that uses APSB can allocate only one PSB at a time. If your
application requires more than one PSB, you must first release the PSB in use by
issuing the deallocate PSB (DPSB) call.

CPI Communications driven application programs must issue the APSB call before
issuing any other DL/I calls. If your application program attempts to issue DL/I
calls before a PSB has been allocated with the APSB call, the application program
receives error return and reason codes in the AIB.

CHKP (basic) call
A basic Checkpoint (CHKP) call is used for recovery purposes.

Format

►► CHKP i/o_pcb
aib

i/o_area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list passed to the program,
to use for this call. It is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

Chapter 1. DL/I calls reference 127

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to use for the call. This parameter is an input and
output parameter. For the CHKP call, the I/O area that contains the 8-character
checkpoint ID. If the program is an MPP or a message-driven BMP, the CHKP
call implicitly returns the next input message into this I/O area. Therefore, the
area must be long enough to hold the longest message that can be returned.

Usage

In transaction management application programs, the basic CHKP call can be used to
retrieve the conversational SPA or the initial message segment that was queued
before the application was scheduled. The CHKP call commits all changes made by
the program and, if your application program abends, establishes the point at
which the program can be restarted.

Restrictions

CPI Communications driven application programs cannot issue a basic CHKP call.

CHKP (symbolic) call
A symbolic Checkpoint (CHKP) call is used for recovery purposes.

Format

►► CHKP i/o_pcb
aib

i/o_area_length i/o_area ▼

,

area_length , area
►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

CHKP X X X X X

Parameters

i/o pcb
Specifies the I/O PCB to use for the call, the first PCB address in the list
passed to the program, to use for this call. This parameter is an input and
output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

128 Application Programming APIs

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area length
Is no longer used by IMS. For compatibility reasons, this parameter must still
be included in the call, and it must contain a valid address. You can get a valid
address by specifying the name of any area in your program.

i/o area
Specifies the I/O area to be used for your call. This parameter is an input and
output parameter. For the CHKP call, the I/O area contains the 8-character
checkpoint ID. If the program is a message-driven BMP, the CHKP call implicitly
returns the next input message into this I/O area. Therefore, the area must be
long enough to hold the longest message that can be returned.

area length
Specifies a 4-byte field in your program that contains the length in binary of
the first area to checkpoint. This parameter is an input parameter. Up to seven
area lengths can be specified. For each area length, you must also specify an
area parameter.

area
Specifies the area in your program that you want IMS to checkpoint. This
parameter is an input parameter. You can specify up to seven areas in your
program that you want IMS to checkpoint. Always specify the area length
parameter first, followed by the area parameter. The number of areas you
specify on a XRST call must be less than or equal to the number of areas you
specify on the CHKP calls the program issues. When you restart the program,
IMS restores only the areas you specified in the CHKP call.

Usage

In transaction management application programs, the symbolic CHKP call can be
used to retrieve the conversational SPA or the initial message segment that was
queued before the application was scheduled. The CHKP call commits all changes
made by the program and, if your application program abends, establishes the
point at which the program can be restarted. In addition, the symbolic CHKP call
can:
v Work with the extended restart (XRST) call to restart your program if your

program abends.
v Enables you to save as many as seven data areas in your program, which are

restored when your program is restarted.

Restrictions

A CPI Communications driven application program cannot issue the symbolic CHKP
call. The symbolic CHKP call is only allowed from batch and BMP applications.

Chapter 1. DL/I calls reference 129

You must issue an XRST call before the symbolic CHKP call.
Related reference:
“XRST call” on page 160

DPSB call
The Deallocate PSB (DPSB) call frees a PSB that was allocated with the APSB call.

Format

►► DPSB aib ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

DPSB X X

Parameters

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PSB name.

Usage

The DPSB call must be used in a CPI Communications driven application program
to release a PSB after a commit point occurs and before another PSB can be
allocated. In a CPI Communications driven application program, the commit point
is achieved with the COMMIT verb. For more information on CPI Communications
driven application programs, see the topic "CPI-C Driven Application Programs" in
IMS Version 14 Communications and Connections.

Restrictions

You can issue the DPSB call only after a commit point occurs, and it is valid only
after a successful APSB call.

GMSG call
A Get Message (GMSG) call is used in an automated operator (AO) application
program to retrieve a message from an AO exit routine (DFSAOE00 or another
AOIE type exit routine).

Format

►► GMSG aib i/o_area ►◄

130 Application Programming APIs

|
|
|

Parameters

aib
Specifies the application interface block (AIB) to be used for this call. This
parameter is an input and output parameter.

You must initialize the following fields in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBSFUNC
Subfunction code. This field must contain one of the listed 8-byte
subfunction codes:

8-blanks (null)
When coded with an AOI token in the AIBRSNM1 field, indicates IMS
is to return when no AOI message is available for the application.

WAITAOI
When coded with an AOI token in the AIBRSNM1 field, indicates IMS
is to wait for an AOI message when none is currently available for the
application. This subfunction value is invalid if an AOI token is not
coded in AIBRSNM1. In this case, error return and reason codes are
returned in the AIB.

The value WAITAOI must be left justified and padded with a blank
character.

AIBRSNM1
Resource name. This field must contain the AOI token or blanks. The AOI
token identifies the message the AO application is to retrieve. The token is
supplied for the first segment of a message. If the message is a
multisegment message, set this field to blanks to retrieve the second
through the last segment. AIBRSNM1 is an 8-byte alphanumeric
left-justified field padded with blanks.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of the data returned in the I/O area. This parameter is an output
parameter.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data, and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area should be large enough to hold the largest segment
passed from IMS to the AO application. If the I/O area is not large enough to
contain all of the data, IMS returns partial data.

Chapter 1. DL/I calls reference 131

Usage

GMSG is used in an AO application to retrieve a message associated with an AOI
token. The AO application must pass an 8-byte AOI token to IMS to retrieve the
first segment of the message. IMS uses the AOI token to associate messages from
the AO exit routine of type AOIE, with the GMSG call from an AO application. IMS
returns to the application only those messages associated with the AOI token. By
using different AOI tokens, the AOIE type exit routine can direct messages to
different AO applications. Note that your installation defines the AOI token.

To retrieve the second through the last segments of a multisegment message, issue
GMSG calls with no token specified (set the token to blanks). If you want to retrieve
all segments of a message, you must issue GMSG calls until all segments are
retrieved. IMS discards all non-retrieved segments of a multisegment message
when a new GMSG call specifying an AOI token is issued.

Your AO application can specify a wait on the GMSG call. If no messages are
currently available for the associated AOI token, your AO application waits until a
message is available. The decision to wait is specified by the AO application,
unlike a WFI transaction where the wait is specified in the transaction definition.
The wait is done on a call basis; that is, within a single AO application some GMSG
calls might specify waits while others do not.

The following table shows, by IMS environment, the types of application programs
that can issue GMSG. GMSG is also supported from a CPI-C driven application
program.

Table 33. GMSG support by application region type

Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

Restrictions

A CPI-C driven program must issue an APSB (allocate PSB) call before issuing GMSG.

GSCD call
The Get System Contents Directory (GSCD) call retrieves the address of the IMS
system contents directory (SCD) for batch programs.

This topic contains Product-sensitive Programming Interface information.

Format

►► GSCD i/o_pcb
aib

i/o_area ►◄

132 Application Programming APIs

|
|
|
|
|
|
|

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

GSCD X X

Parameters

i/o pcb
Specifies the PCB, the first PCB address in the list passed to the program, to
use for this call. This parameter is an input and output parameter.

aib
Specifies the address of the application interface block (AIB) that is used for
the call. This parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an output
parameter. For the GCSD call, the I/O area must be 8 bytes in length. IMS TM
places the address of the SCD in the first 4 bytes and the address of the
program specification table (PST) in the second 4 bytes.

Usage

IMS does not return a status code to a program after it issues a successful GSCD
call. The status code from the previous call that used the same PCB remains
unchanged in the PCB.

Restrictions

The GSCD call can be issued only from DLI or DBB batch application programs.

ICMD call
An Issue Command (ICMD) call lets an automated operator (AO) application
program issue an IMS command and retrieve the first command response segment.

Format

►► ICMD aib i/o_area ►◄

Chapter 1. DL/I calls reference 133

Parameters

aib
Specifies the application interface block (AIB) used for this call. This parameter
is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output
parameter.

Your program must check this field to determine whether the ICMD call
returned data to the I/O area. When the only response to the command is
a DFS058 message indicating either COMMAND IN PROGRESS or COMMAND
COMPLETE, the response is not returned.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data, and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an input and
output parameter. The I/O area should be large enough to hold the largest
command passed from the AO application to IMS, or command response
segment passed from IMS to the AO application. If the I/O area is not large
enough to contain all of the data, IMS returns partial data.

The general format of your I/O work area on an ICMD call is:

LLZZ/VERB KEYWORD1 P1 KEYWORD2 P2, P3.

LL Two-byte field containing the length of the command text, including
LLZZ.

ZZ Two-byte field reserved for IMS.

/ or CRC
Indicates an IMS command follows. CRC (Command Recognition
Character) rather than a slash (/) is used in the DBCTL environment.

VERB The IMS command you are issuing.

KEYWORDX
Keywords that apply to the command being issued.

PX Parameters for the keywords you are specifying.

. (Period)
End of the command.

The length of a command is limited by the size of the I/O area; the size is
specified in the IOASIZE parameter in the PSBGEN macro during PCB

134 Application Programming APIs

generation. LL is the length of the command text. The size of the I/O area is
the length of the actual command text, plus 4 bytes for LLZZ. The minimum
size of the I/O work area is 132 bytes.

The fifth byte must be a "/" (or CRC for DBCTL), and the verb must follow
immediately. The /BROADCAST and /LOOPTEST commands must have a
period between the command segment and text segment, and must be
preceded by an LLZZ field that includes the size of the text. Comments can be
added by placing a period (.) after the last parameter.

Restriction: When issuing the /SSR command, do not code an
end-of-command indicator (period) as shown in IMS Version 14 Operations and
Automation. If a period is used, it is considered part of the text.

Usage

ICMD enables an AO application to issue an IMS command and retrieve the first
command response segment.

When using ICMD, put the IMS command that is to be issued in your application's
I/O area. After IMS has processed the command, it returns the first segment of the
response message to your AO application's I/O area to retrieve subsequent
segments (one segment at a time), using the RCMD call.

Some IMS commands that complete successfully result in a DFS058 COMMAND
COMPLETE message. Some IMS commands that are processed asynchronously result
in a DFS058 COMMAND IN PROGRESS message. For a command entered on an ICMD
call, neither DFS058 message is returned to the AO application. The AIBOAUSE
field is set to zero to indicate no segment was returned. So, your AO application
must check the AIBOAUSE field along with the return and reason codes to
determine if a response was returned.

Related reading: For more information on the AOI exits, see IMS Version 14 Exit
Routines.

The following table shows, by IMS environment, the types of application programs
that can issue ICMD. ICMD is also supported from a CPI-C driven application.

Table 34. ICMD support by application region type

IMS environment

Application region type DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

See IMS Version 14 Operations and Automation for a list of commands that can be
issued using the ICMD call.

Restrictions

A CPI-C driven program must issue an APSB (allocate PSB) call before issuing
ICMD.

Chapter 1. DL/I calls reference 135

INIT call
An Initialize (INIT) call allows the application to receive data availability status
codes by checking each DB PCB for data availability.

Format

►► INIT i/o_pcb
aib

i/o_area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INIT X X X X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list passed to the program.
This parameter is an input and output parameter.

aib
Specifies the address of the application interface block (AIB) that is used for
the call. This parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area to be used for the call. This parameter is an input
parameter. The I/O area of an INIT call can contain the character string
“DBQUERY” or “VERSION(dbname1=version,dbname2=version)”.

Usage

The INIT call is valid for all IMS TM application programs.

Performance considerations for the INIT call (IMS online only)

For performance reasons, the INIT call should not be issued in online application
programs before the first GU call to the I/O PCB. If the INIT call is issued first, the
GU call to the I/O PCB is not processed as efficiently.

To specify the database query subfunction in your application program, specify the
character string “DBQUERY” in the I/O area.

Determining database availability: INIT DBQUERY

136 Application Programming APIs

When the INIT call is issued with the DBQUERY character string in the I/O area,
the application program can obtain information regarding the availability of data
for each PCB. The following tables contain sample I/O areas for the INIT call with
DBQUERY.

Table 35. INIT I/O area examples for all xxxTDLI interfaces except PLITDLI

L L Z Z Character String

00 0B 00 00 DBQUERY

Note: The LL and ZZ fields are binary. The LL value X'0B' is a hexadecimal representation
of decimal 11.

Table 36. INIT I/O area examples for the PLITDLI interface

L L L L Z Z Character String

00 00 00 0B 00 00 DBQUERY

Note: The LLLL and ZZ fields are binary. The L value X'0B' is a hexadecimal representation
of decimal 11.

LL or LLLL
A 2-byte field that contains the length of the character string, plus 2 bytes
for LL. For the PLITDLI interface, use the 4-byte field LLLL. When you use
the AIBTDLI interface, PL/I programs require only a 2-byte field.

ZZ A 2-byte field of binary zeros.

One of the following status codes is returned for each database PCB:

NA At least one of the databases that can be accessed using this PCB is not
available. A call made using this PCB probably results in a BA or BB status
code if the INIT STATUS GROUPA call has been issued, or in a DFS3303I
message and 3303 pseudo-abend if it has not. An exception is when the
database is not available because dynamic allocation failed. In this case, a
call results in an AI (unable to open) status code.

In a DCCTL environment, the status code is always NA.

NU At least one of the databases that can be updated using this PCB is
unavailable for update. An ISRT, DLET, or REPL call using this PCB might
result in a BA status code if the INIT STATUS GROUPA call has been issued,
or in a DFS3303I message and 3303 pseudoabend if it has not. The
database that caused the NU status code might be required only for delete
processing. In that case, DLET calls fail, but ISRT and REPL calls succeed.

bb The data that can be accessed with this PCB can be used for all functions
the PCB allows. DEDBs and MSDBs always have the bb.

In addition to data availability status, the name of the database organization of the
root segment is returned in the segment name field of the PCB. In DCCTL
environments, the name of the database organization is UNKNOWN.

Automatic INIT DBQUERY

When the application program is entered initially, the status code in the database
PCBs is initialized as if the INIT DBQUERY call was issued. This enables the
application program to determine database availability without issuing the INIT
call.

Chapter 1. DL/I calls reference 137

In DCCTL environments, the status code is NA.

Specify a database version number: INIT VERSION(dbname=version)

When database versioning is enabled, an application program can use the
“VERSION” function to request a version of a database that is different from the
version number that is specified for the application program on the PCB or from
the default version that is returned by IMS. A version number specified on the
INIT VERSION call takes precedence over all other version specifications and
defaults.

When the INIT VERSION call is not issued prior to a DL/I to access a database,
the version of the database that is returned to the application program is
determined by the DBVER keyword of the PCB statement. If the DBVER keyword
is not specified, IMS returns either the version of the database that is active in the
ACB library or version 0 of the database, as determined by the DBLEVEL keyword
in either the PSBGEN statement or the database section of the DFSDFxxx PROCLIB
member.

In the I/O area, the VERSION function is specified by using the following format:

►► ▼

,

VERSION(dbname=version) ►◄

Each database name is specified by using alphabetic characters and can be
specified only once. Specify only names of physical databases. The names of logical
databases are not supported.

Each version is specified as a numeric value from 0 to 2147483647. The number
that is specified must match a version number that is defined on a DBD for the
named database and stored in the IMS catalog.

Calculate the size that is required for the I/O area by multiplying the number of
databases that are specified in the input I/O area by 20.

For example, the following table contains a sample I/O area for the INIT
VERSION call for assembler language, COBOL, C language, and Pascal. In the
table, the LL value of X'3C' is the hexadecimal representation of decimal 60, the
length in bytes that is required to hold the output in the I/O area when three
database names are specified on input. The ZZ fields are binary.

Table 37. INIT VERSION: Example format for ASMTDLI, CBLTDLI, CTDLI, and PASTDLI

L L Z Z Character string

00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

The following table contains a sample I/O area for the INIT call with VERSION for
PL/I. In the table, the LL value of X'3C' is the hexadecimal representation of
decimal 60. The ZZ fields are binary.

Table 38. INIT VERSION: Example format for PLITDLI

L L L L Z Z Character string

00 00 00 3C 00 00 VERSION (DBa=1,DBb=2,DBc=3)

138 Application Programming APIs

LL or LLLL
A 2-byte or 4-byte field that contains the total length of the I/O area. For
PL/I, the length of the LLLL field is considered 2 bytes even though it is a
4-byte field. When you use the AIBTDLI interface, the length of the record
is equal to the total length of LL + ZZ + character string. For the PLITDLI
interface, the length of the record is equal to the total length of LLLL + ZZ
+ required length for output, where LLLL is considered 2 bytes.

ZZ A 2-byte field of binary zeros.

Character string
The function specification on input. The length that is specified in the LL
or LLLL is the length that is required for the output: 20 bytes for each
database that is specified in the input character string.

INQY call
The Inquiry (INQY) call is used to request information regarding execution
environment, destination type and status, and session status. INQY is valid only
for application interfaces that use the AIB structure.

Format

►► INQY aib i/o area ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

INQY X X X X X

Parameters

aib
Specifies the address of the application interface block (DFSAIB) for the call.
This parameter is an input and output parameter. These fields must be
initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBSFUNC
Subfunction code. This field must contain one of the 8-byte subfunction
codes as follows:
v bbbbbbbb (Null)
v DBQUERYb
v ENVIRONb
v FINDbbbb
v LERUNOPT
v MSGINFOb
v PROGRAMb (Not supported with the ODBA interface)

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the name of
any named PCB in the PSB.

Chapter 1. DL/I calls reference 139

|

AIBOALEN
I/O area length. This field must contain the length of the I/O area
specified in the call list. This field is not changed by IMS.

i/o area
Specifies the data output area to use with the call. This parameter is an output
parameter. An I/O area is required for INQY subfunctions ENVIRONb,
MSGINFOb and PROGRAMb. It is not required for subfunctions DBQUERYb,
FINDbbbb, and LERUNOPT.

Restrictions

A CPI Communications driven application program cannot issue an INQY call
with the null subfunction against an I/O PCB.

A batch program cannot issue an INQY call with a null subfunction.

Usage

The INQY call operates in both batch and online IMS environments. IMS
application programs can use the INQY call to request information regarding the
output destination, the session status, the current execution environment, the
availability of databases, and the PCB address, which is based on the PCB name.
You must use the AIB when issuing an INQY call. Before you can issue an INQY
call, initialize the fields of the AIB.

When you use the INQY call, specify an 8-byte subfunction code, which is passed
in the AIB. The INQY subfunction determines the information that the application
program receives.

The INQY call returns information to the caller's I/O area. The length of the data
that is returned from the INQY call is passed back to the application program in
the AIB field, AIBOAUSE.

You specify the size of the I/O area in the AIB field, AIBOALEN. The INQY call
returns only as much data as the area can hold in one call. If the area is not large
enough for all the information, an AG status code is returned, and partial data is
returned in the I/O area. In this case, the AIB field AIBOALEN contains the actual
length of the data returned to the I/O area, and the AIBOAUSE field contains the
output area length that would be required to receive all the data.

Querying information from the PCB: INQY null

When the INQY call is issued with the null subfunction, the application program
obtains information related to the PCB, including output destination type and
location, and session status. The INQY call can use the I/O PCB or the alternate
PCB. The information you receive regarding destination location and session status
is based on the destination type. The destination types are APPC, OTMA,
TERMINAL, TRANSACT, and UNKNOWN.

Related reading: For more information about APPC and LU 6.2, see IMS Version 14
Communications and Connections.

The INQY null subfunction returns character string data in the I/O area. The
output that is returned for the destination types APPC, OTMA, TERMINAL, and
TRANSACT is left justified and padded with blanks. The UNKNOWN destination

140 Application Programming APIs

|
|
|
|

type does not return any information. The following tables list the output returned
from the INQY null call. Refer to the notes associated with the table for further
information about some of the entries.

Table 39. INQY null data output for terminal-type destinations

Information returned
Length in
bytes Actual value Explanation

Destination Type 8 Terminal The destination of the I/O PCB or alternate
PCB is a terminal.

Terminal Location 8 Local The terminal is defined as local.

Remote The terminal is defined as remote.

Queue Status 8 Started The queue is started and can accept work.

Stopped The queue is stopped and cannot accept
work.

Session Status 8 b The status is not available.

ACTIVE The session is active.

INACTIVE The session is inactive.

Table 40. INQY null data output for transaction-type destinations

Information returned
Length in
bytes Actual value Explanation

Destination Type 8 TRANSACT The destination of the alternate PCB is a
program.

Transaction Location 8 Local The transaction is defined as local.

Remote The transaction is defined as remote.

DYNAMIC The transaction is defined as dynamic.1

Transaction Status 8 STARTED The transaction can be scheduled.2

STOPPED The transaction cannot be scheduled.2

Destination PSB Name 8 This field gives the name of the destination
PSB.

b The Program Routing exit routine has
defined the destination as a transaction not
on this system or the transaction is dynamic.
The transaction destination is not available.

Destination Program or Session
Status

8 b The status is not available.

ACTIVE The MSC link session is active (remote
transaction or a transaction that was
rerouted to a remote IMS by the TM and
Message Routing and Control user exit
routine (DFSMSCE0)).

INACTIVE The MSC link session is inactive (remote
transaction or a transaction that was
rerouted to a remote IMS by the TM and
Message Routing and Control user exit
routine (DFSMSCE0)).

STARTED The program can be scheduled (local
transaction).

STOPPED The program cannot be scheduled (local
transaction).

Chapter 1. DL/I calls reference 141

Table 40. INQY null data output for transaction-type destinations (continued)

Information returned
Length in
bytes Actual value Explanation

Notes:

1. A dynamic transaction is only possible in a shared-queues environment. A transaction is dynamic when it is not
defined to the IMS system that is sending the message, but rather to another IMS system that is sharing the
queues. The dynamic transaction is created when the Destination Creation exit routine (DFSINSX0) indicates a
transaction whose destination is unknown to IMS. The output fields for the destination PSB name and destination
program are set to blanks.

2. If the transaction was rerouted to a remote IMS by the TM and Message Routing and Control user exit routine
(DFSMSCE0, the status returned is the MSNAME status.

Table 41. INQY null data output for APPC-Type destinations

Information returned
Length in
bytes Actual value Explanation

Destination Type 8 APPC The destination is an LU 6.2 device.

APPC/MVS Side Information
Entry Name1

8 This field provides the Side Name.

b The Side Name is not available.

Partner Logical Unit Name2 8 This field provides the partner LU name for
the conversation.

b The partner LU name is not available.

Partner Mode Table Entry
Name3

8 This field provides the Mode Name for the
conversation.

b The Mode Name is not available.

User Identifier 8 This field provides the user ID.

b The user ID is not available.

Group Name 8 This field provides the Group Name.

b The Group Name is not available.

Synchronization Level4 1 C The synchronization level is defined as
CONFIRM.

N The synchronization level is defined as
NONE.

Conversation Type5 1 B The conversation is defined as BASIC.

M The conversation is defined as MAPPED.

Userid Indicator 1 The value of the Userid Indicator field
indicates the contents of the user ID field.
The Userid Indicator field has four possible
values.

U The U value indicates the user's
identification from the source terminal
during signon.

L The L value indicates the LTERM name of
the source terminal if signon is not active.

P The P value indicates the PSBNAME of the
source BMP or transaction.

O The O value indicates some other name.

142 Application Programming APIs

Table 41. INQY null data output for APPC-Type destinations (continued)

Information returned
Length in
bytes Actual value Explanation

Address of TPN6 4 This is the address of the LL field of the
Transaction Program Name. 7

0 The address of the Transaction Program
Name is not available.

Notes:

1. If the call is issued against a TP PCB, the Side Name cannot be used and b is returned. If the call is issued against
an alternate modifiable PCB, the Side Name must be supplied in a CHNG call that is issued before INQY.

2. If the call is issued against a TP PCB, the LU name must be coded. If the call is issued against a modifiable
alternate PCB, the LU name must be supplied in a CHNG call that is issued before INQY.

3. If the call is issued against a TP PCB, the Mode Name cannot be used and b is returned. If the call is issued
against an alternate modifiable PCB, the Mode Name must be supplied in a CHNG call that is issued before INQY.

4. When the synchronization level is not available, IMS uses the default value of CONFIRM.

5. When the conversation type is not available, IMS uses the default value of MAPPED.

6. The pointer identifies a length field (LL), which contains the length of the TPN in binary, including the 2 bytes
required for LL.

7. The TPN can be up to 64 bytes long.

Table 42. INQY null data output for OTMA-Type destinations

Information Returned
Length in
Bytes Actual Value Explanation

Destination Type 8 OTMA The destination is an OTMA client.

tpipe Name 8 This field provides the OTMA transaction
pipe name.

b The tpipe Name is not available.

Member Name 16 This field provides the z/OS cross-system
coupling facility (XCF) member name of the
OTMA client.

b The Member Name is not available.

User Identifier 8 This field provides the User ID.

b The User ID is not available.

Group Name 8 This field provides the group name.

b The Group Name is not available.

Synchronization Level 1 S The OTMA transaction pipe is synchronized.

b The OTMA transaction pipe is not
synchronized.

Message Synchronization
Level1

1 C The synchronization level is defined as
CONFIRM.

N The synchronization level is defined as
NONE.

Chapter 1. DL/I calls reference 143

Table 42. INQY null data output for OTMA-Type destinations (continued)

Information Returned
Length in
Bytes Actual Value Explanation

Userid Indicator 1 The value of the Userid Indicator field
indicates the contents of the user ID field.
The Userid Indicator field has four possible
values.

U The U value indicates the user's
identification from the source terminal
during signon.

L The L value indicates the LTERM name of
the source terminal if signon is not active.

P The P value indicates the PSBNAME of the
source BMP or transaction.

O The O value indicates some other name.

Reserved for IMS 1 This field is reserved.

Notes:

1. When the synchronization level is not available, IMS uses the default value of CONFIRM.

Table 43. INQY null data output for unknown-type destinations

Information returned
Length in
bytes Actual value Explanation

Destination Type 8 UNKNOWN Unable to find destination.

The contents of the output fields vary depending on the type of PCB used for the
INQY call. The following table shows how INQY output for APPC destinations
varies depending on the PCB type. The PCB can be a TP PCB or an alternate PCB.

Table 44. INQY output and PCB type

Output field TP PCB
Alternate PCB
(Non-modifiable) Alternate PCB (Modifiable)

Destination Type APPC APPC APPC

Side Name blanks Side Name if available or
blanks

Side Name if supplied on
previous CHNG call or blanks

LU Name Input LU Name LU Name if available or
blanks

LU Name if supplied on
previous CHNG call or blanks

Mode Name blanks Mode Name if available or
blanks

Mode Name if supplied on
previous CHNG call or blanks

User Identifier USERID if
available or blanks

USERID if available or
blanks

USERID if available or blanks

Group Name Group Name if
available or blanks

Group Name if available or
blanks

Group Name if available or
blanks

Sync Level C or N C or N C or N

Conversation Type B or M B or M B or M

Userid Indicator U or L or P or O U or L or P or O U or L or P or O

TPN Address Address of the
TPN character
string

Address of the TPN
character string or zero

Address of the TPN character
string or zero

144 Application Programming APIs

Table 44. INQY output and PCB type (continued)

Output field TP PCB
Alternate PCB
(Non-modifiable) Alternate PCB (Modifiable)

TPN character string
Note: If your TPN name is
DFSASYNC, the destination
represents an asynchronous
conversation.

Inbound name of
IMS Transaction
that is executing.

Partner TPN, if available. If
not available, address field
is zero.

TP Name if it is supplied on
the previous CHNG call. If
not supplied, the address field
is zero.

Related reading: For more information on APPC and LU 6.2, see IMS Version 14
Communications and Connections.

Querying data availability: INQY DBQUERY

When the INQY call is issued with the DBQUERY subfunction, the application
program obtains information regarding the data for each PCB. The only valid PCB
name that can be passed in AIBRSNM1 is IOPCBbbb. The INQY DBQUERY call is
similar to the INITDBQUERY call. The INQY DBQUERY call does not return
information in the I/O area, but like the INIT DBQUERY call, it updates status
codes in the database PCBs.

The application program is not made aware of the status of each PCB until an
INQY FIND call is issued. To retrieve the status for a database, you must pass the
DB PCB for that database in the INQY FIND call.

In addition to the INIT DBQUERY status codes, the INQY DBQUERY call returns
these status codes in the I/O PCB:

bb The call is successful and all databases are available.

BJ None of the databases in the PSB are available, or no PCBs exist in the
PSB. All database PCBs (excluding GSAM) contain an NA status code as
the result of processing the INQY DBQUERY call.

BK At least one of the databases in the PSB is not available or availability is
limited. At least one database PCB contains an NA or NU status code as
the result of processing the INQY DBQUERY call.

The INQY call returns the following status codes in each DB PCB:

NA At least one of the databases that can be accessed using this PCB is not
available. A call that is made using this PCB probably results in a BA or BB
status code if the INIT STATUS GROUPA call has been issued, or in a
DFS3303I message and 3303 pseudoabend if the call has not been issued.
An exception is when the database is not available because dynamic
allocation failed. In this case, a call results in an AI (unable to open) status
code.

In a DCCTL environment, the status code is always NA.

NU At least one of the databases that can be updated using this PCB is
unavailable for update. An ISRT, DLET, or REPL call using this PCB might
result in a BA status code if the INIT STATUS GROUPA call has been
issued, or in a DFS3303I message and 3303 pseudoabend if it has not been
issued. The database that caused the NU status code might be required
only for delete processing. In that case, DLET calls fail, but ISRT and REPL
calls succeed.

Chapter 1. DL/I calls reference 145

bb The data that can be accessed with this PCB can be used for all functions
the PCB allows. DEDBs and MSDBs always have the bb.

Querying the environment: INQY ENVIRON

When the INQY call is issued with the ENVIRON subfunction, the application
program obtains information regarding the current execution environment. The
only valid PCB name that can be passed in AIBRSNM1 is IOPCBbbb. This includes
the IMS identifier, release, region, and region type.

The INQY ENVIRON call returns character-string data. The output is left justified
and padded with blanks on the right.

Recommendations: To account for expansion in the length of the reply data,
specify an I/O area length of 512 bytes.

To reference the field that contains the recovery token or the application parameter
string, code your application programs to locate the field by using the address of
the field that is returned in the data output of the INQY ENVIRON call. This is the
only valid programming technique to reference the recovery token field and the
application parameter string field. No other programming technique should be
used to reference these fields.

The recovery token or the application parameter string are optional and therefore
are not always returned. If they are not returned, the value in the address field is
zero.

For more information about the recovery token and application parameter fields,
see note 2 after the following table.

The following table lists the output that is returned from the INQY ENVIRON call.
Included with the information returned is the outputs byte length, the actual value,
and an explanation.

Table 45. INQY ENVIRON data output

Information returned
Length
in bytes

Actual
value Explanation

IMS Identifier 8 Provides the identifier from the execution parameters.

IMS Release Level 4 Provides the release level for IMS. For example, X'00000410'.

IMS Control Region Type

8 BATCH Indicates that an IMS batch region is active.

DB Indicates that only the IMS Database Manager is active. (DBCTL
system)

TM Indicates that only the IMS Transaction Manager is active.
(DCCTL system)

DB/DC Indicates that both the IMS Database and Transaction managers
are active. (DB/DC system)

146 Application Programming APIs

Table 45. INQY ENVIRON data output (continued)

Information returned
Length
in bytes

Actual
value Explanation

IMS Application Region
Type

8 BATCH Indicates that the IMS Batch region is active.

BMP Indicates that the Batch Message Processing region is active.

DRA Indicates that the Database Resource Adapter Thread region is
active.

IFP Indicates that the IMS Fast Path region is active.

JBP Indicates that the Java batch processing region is active.

JMP Indicates that the Java message processing region is active.

MPP Indicates that the Message Processing region is active.

Region Identifier 4 Provides the region identifier. For example, X'00000001'.

Application Program
Name

8 Provides the name of the application program being run.

PSB Name (currently
allocated)

8 Provides the name of the PSB currently allocated.

Transaction Name 8 Provides the name of the transaction.

b Indicates that no associated transaction exists.

User Identifier1 8 Provides the user ID.

b Indicates that the user ID is unavailable.

Group Name 8 Provides the group name.

b Indicates that the group name is unavailable.

Status Group Indicator 4 A Indicates an INIT STATUS GROUPA call is issued.

B Indicates an INIT STATUS GROUPB call is issued.

b Indicates that a status group is not initialized.

Address of Recovery
Token2

4 Provides the address of the LL field, followed by the recovery
token.

0 Indicates that the recovery token is not available.

Address of the
Application Parameter
String2

4 Provides the address of the LL field, followed by the application
program parameter string.

0 Indicates that the APARM= parameter is not coded in the
execution parameters of the dependent region JCL.

Shared Queues Indicator 4 Indicates IMS is not using Shared Queues.

SHRQ Indicates IMS is using Shared Queues.

User ID of Address
Space

8 User ID of dependent address space.

User ID Indicator 1 Contains one of the following possible values to indicate the
contents of the userid field:

U Indicates the user’s identification from the source
terminal during sign-on.

L Indicates the LTERM name of the source terminal in
sign-on is not active.

P Indicates the PSBNAME of the source BMP or
transaction.

O Indicates some other name.

Chapter 1. DL/I calls reference 147

Table 45. INQY ENVIRON data output (continued)

Information returned
Length
in bytes

Actual
value Explanation

z/OS Resource Recovery
Services (RRS) Indicator

3 b Indicates that IMS has not expressed interest in the UR with RRS.
Therefore, the application should refrain from performing any
work that causes RRS to become the syncpoint manager for the
UR because IMS will not be involved in the commit scope. For
example, the application should not issue any outbound protected
conversations.

RRS Indicates IMS has expressed interest in the UR with RRS.
Therefore, IMS will be involved in the commit scope if RRS is the
syncpoint manager for the UR.

IMS catalog enablement
indicator

7 b Indicates that the IMS catalog is not enabled in the DFSDFxxx
PROCLIB member.

For information about setting up and enabling an IMS catalog, see
IMS catalog definition and tailoring (System Definition).

For information about enabling the IMS catalog in the DFSDFxxx
PROCLIB member, see DFSDFxxx member of the IMS PROCLIB
data set (System Definition).

CATALOG Indicates that the IMS catalog is enabled. Database and
application metadata is available in IMS.

Notes:

1. The user ID is derived from the PSTUSID field of the PST that represents the region making the INQY ENVIRON
call. The PSTUSID field is one of the following:

v For message-driven BMP regions that have not completed successful GU calls to the IMS message queue and
for non-message-driven BMP regions, the PSTUSID field is derived from the name of the PSB that is currently
scheduled into the BMP region.

v For message-driven BMP regions that have completed a successful GU call and for any MPP region, the
PSTUSID field is derived which is usually the input terminal's RACF ID. If the terminal has not signed on to
RACF, the ID is the input terminal's LTERM.

2. The pointer is an address that identifies a length field (LL) which contains the length of the recovery token or
application program parameter string in binary, including the two bytes required for LL. Use this pointer to set
up addressability of the AIB between releases in a batch program.

Querying the input message information: INQY MSGINFO

To obtain information regarding the current input message, use the INQY call with
the MSGINFO subfunction. The only valid PCB name that can be passed in the
AIBRSNM1 field is IOPCBbbb. The output returns the version number and the
output fields for the message information. The INQY MSGINFO call returns the
response in the I/O area.

The following table lists the output that is returned from the INQY MSGINFO call.
Included with the information returned is the byte length, the actual value, and an
explanation of the output.

Table 46. INQY MSGINFO data output

Information returned Length in bytes Actual value Explanation

Version number 4 1 Output response
version 1.

148 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Table 46. INQY MSGINFO data output (continued)

Information returned Length in bytes Actual value Explanation

Origin IMSID 8 The IMS identifier
from which the input
message originated.

Reserved for IMS 68 This field is reserved
for future output
expansion.

Querying the PCB address: INQY FIND

When the INQY call is issued with the FIND subfunction, the application program
is returned with the PCB address of the requested PCB name. The valid PCB
names that can be passed in AIBRSNM1 are IOPCBbbb or the name of the
alternate PCB (TP PCB) or database PCB as it is defined in the PSB.

On a FIND subfunction, the requested PCB remains unmodified, and no
information is returned in an I/O area.

The FIND subfunction is used to get a PCB address following an INQY DBQUERY
call. This process allows the application to analyze the PCB status code to
determine if an NA or NU status code is set in the PCB.

Querying for LE overrides: INQY LERUNOPT

When the LERUNOPT call is issued with the LERUNOPT subfunction, IMS
determines if LE overrides are allowed based on the LEOPT system parameter. The
LE override parameters are defined to IMS through the UPDATE LE command. IMS
checks to see if there are any overrides applicable to the caller based on the
specific combinations of transaction name, lterm name, userid, or program name in
the callers environment. IMS will return the address of the string to the caller if an
override parameter is found. The LE overrides are used by the IMS supplied
CEEBXITA exit, DFSBXITA, to allow dynamic overrides for LE runtime parameters.

The call string must contain the function code and the AIB address. The I/O area
is not a required parameter and will be ignored if specified. The only valid PCB
name that can be passed in AIBRSNM1 is IOPCB. The AIBOALEN and AIBOAUSE
fields are not used.

The rules for matching an entry that results in it being returned on a DL/I INQY
LERUNOPT call are:
v An MPP or JMP region uses transaction name, lterm, userid, and program to

match with each entry.
v An IFB, JBP, or non-message driven BMP uses program name to match with

each entry. If an entry has a defined filter for transaction name, lterm, or userid,
it does not match. Message driven BMPs also use transaction name.

v The entries are scanned to find the entry with the most filter matches. The first
entry in the list with the most exact filter matches is selected. The scan stops
with an entry found with all of the filters matching the entry.

Note: Searching table entries may cause user confusion because of the way
entries are built and searched. For example, assume there are two entries in the
table that match on the filters specified on the DL/I INQY call. The first
transaction matches on transaction name and lterm name. The second entry

Chapter 1. DL/I calls reference 149

matches on transaction name and program name. IMS chooses the first entry
because it was the first entry encountered with highest number of filter matches.
If the second entry is now updated with a longer parameter string, which causes
a new entry to be built, it will be added to the head of the queue. The next
search would result in the entry with transaction name and program name being
selected. This could result in a set of runtime options being selected that were
not expected by the user.

Environments: The LERUNOPT subfunction can be specified from DB/DC, DBCTL,
and DCCTL environments. Overrides are based on a combination of transaction
name, lterm name, user ID, and program name in MPP and JMP regions. IFP, BMP,
and JBP regions will have overrides based on program name. Message driven BMP
regions can also use transaction name.

Return and reason codes: AIB return and reason codes must be checked to determine
if the call has been successfully completed. AIBRSA2 is used to return the address
of the parameter string if override parameters are available for the caller.

Querying the program name: INQY PROGRAM

When you issue the INQY call with the PROGRAM subfunction, the application
program name is returned in the first 8 bytes of the I/O area. The only valid PCB
name that can be passed in AIBRSNM1 is IOPCBbbb.

INQY return codes and reason codes

When you issue the INQY call, return and reason codes are returned to the AIB.
Status codes can be returned to the PCB. If return and reason codes other than
those that apply to INQY are returned, your application should examine the PCB
to see what status codes are found.

Map of INQY subfunction to PCB type

Table 47. Subfunction, PCB, and I/O area combinations for the INQY call

Subfunction I/O PCB Alternate PCB DB PCB
I/O Area
Required

FIND OK OK OK NO

ENVIRON OK NO NO YES

DBQUERY OK NO NO NO

LERUNOPT OK NO NO NO

PROGRAM OK NO NO YES

MSGINFO OK NO NO YES

LOG call
The Log (LOG) call is used to send and write information to the IMS system log.

Format

►► LOG i/o pcb
aib

i/o area ►◄

150 Application Programming APIs

|||||

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

LOG X X X X X

Parameters

i/o pcb
Specifies the address of the PCB, the first PCB address in the list passed to the
program, to use for this call. This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCB���.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the area in your program that contains the record that you want to
write to the system log. This parameter is an input parameter. This record
must be in the format shown in the following tables.

Table 48. Log record formats for COBOL, PL/I, C language, Pascal, and assembler for
AIBTDLI, ASMTDLI, CBLTDLI, CEETDLI, CTDLI, and PASTDLI interfaces

Field Name Field Length

LL 2

ZZ 2

C 1

Text Variable

Table 49. Log record formats for COBOL, PL/I, C language, Pascal, and assembler for
PLITDLI interface

Field Name Field Length

LLLL 4

ZZ 2

C 1

Text Variable

The fields must be as follows:

LL or LLLL
Specifies a 2-byte field that contains the length of the record. When

Chapter 1. DL/I calls reference 151

you use the AIBTDLI interface, the length of the record is equal to LL
+ ZZ + C + text of the record. For the PLITDLI interface, the length of
the record is equal to LLLL + ZZ + C + the text of the record. When
you calculate the length of the log record, you must account for all of
the fields. The total length you specify includes:
v 2 bytes for LL or LLLL. (For PL/I, include the length as 2, even

though LLLL is a 4-byte field.)
v 2 bytes for the ZZ field.
v 1 byte for the C field.
v n bytes for the length of the record itself.

If you are using the PLITDLI interface, your program must define the
length field as a binary fullword.

ZZ Specifies a 2-byte field of binary zeros.

C Specifies a 1-byte field containing a log code, which must be equal to
or greater than X'A0'.

Text Specifies any data to be logged.

Usage

An application program can write a record to the system log by issuing the LOG
call. When you issue the LOG call, you specify the I/O area that contains the record
you want written to the system log. You can write any information to the log, and
you can use log codes to distinguish among various types of information. You can
issue the LOG:
v In the IMS DB/DC environment, and the record is written to the IMS log.
v In the DCCTL environment, and the record is written to the DCCTL log.

Restrictions

The length of the I/O area (including all fields) cannot be larger than the logical
record length (LRECL) for the system log data set minus 4 bytes and the length of
logrec prefix (which is x'4A' bytes in length), or the I/O area specified in the
IOASIZE keyword of the PSBGEN statement of the PSB.

RCMD call
A Retrieve Command (RCMD) call lets an automated operator (AO) application
program retrieve the second and subsequent command response segments after an
ICMD call.

Format

►► RCMD aib i/o area ►◄

Parameters

aib
Specifies the application interface block (AIB) used for this call. This parameter
is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIB��.

152 Application Programming APIs

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This field is not changed by IMS.

AIBOAUSE
Length of data returned in the I/O area. This parameter is an output
parameter.

When partial data is returned because the I/O area is not large enough,
AIBOAUSE contains the length required to receive all of the data and
AIBOALEN contains the actual length of the data.

i/o area
Specifies the I/O area to use for this call. This parameter is an output
parameter. The I/O area should be large enough to hold the largest command
response segment passed from IMS to the AO application. If the I/O area is
not large enough for all of the information, partial data is returned in the I/O
area.

Usage

RCMD lets an AO application retrieve the second and subsequent command response
segments resulting from an ICMD call.

Related reading: For more information on the AOI exits, see IMS Version 14 Exit
Routines.

RCMD is also supported from a CPI-C driven application program.

Table 50. RCMD support by application region type

Application region type

IMS environment

DBCTL DB/DC DCCTL

DRA thread Yes Yes N/A

BMP (nonmessage-driven) Yes Yes Yes

BMP (message-driven) N/A Yes Yes

MPP N/A Yes Yes

IFP N/A Yes Yes

RCMD retrieves only one response segment at a time. If you need additional
response segments, you must issue RCMD once for each response segment issued
by IMS.

Restrictions

An ICMD call must be issued before an RCMD call.

ROLB call
The Rollback (ROLB) call backs out messages sent by the application program.

Chapter 1. DL/I calls reference 153

Format

►► ROLB i/o pcb
aib i/o area

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLB X X X X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list passed to the program.
This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
An output parameter that specifies the area in your program to which IMS TM
returns the first message segment. For conversational transactions the SPA will
be the first item returned to the application. Your next GN call will then return
the first user segment of the message.

Usage

Issuing a ROLB in a conversational program causes IMS TM to back out the
messages that the application program has sent. If the program issues a ROLB call
and then reaches a commit point without sending the required response to the
originating terminal, IMS TM terminates the conversation and sends the message
DFS2171I NO RESPONSE CONVERSATION TERMINATED to the originating terminal.

If your application program has allocated resources that IMS TM cannot roll back,
the resources are ignored. For example, if your application program issues CPI-C
verbs to allocate resources (for modified DL/I or CPI-C driven programs), ROLB
only affects those resources allocated by IMS. Your application must notify any
CPI-C conversations that a ROLB call was issued.

154 Application Programming APIs

For CPI-C driven application programs, all messages inserted to nonexpress
alternate PCBs are discarded. Messages inserted to express alternate PCBs are
discarded if the PURG call was not issued against the PCB before the ROLB call was
issued.

Any application program that uses Spool API functions and creates print data sets
can issue the ROLB call. This backs out any print data sets that have not been
released to JES.

The following processing considerations apply to modified message-driven IMS
applications issuing the IMS ROLB call that can receive protected input messages
from OTMA or APPC/MVS and issue outbound protected work to other z/OS
Resource Recovery Services (RRS) resource managers:
v If a modified message-driven IMS application program with protected input

issues a ROLB call, the ROLB call is isolated to the IMS application without
affecting the entire protected unit of work. After the ROLB call is issued, the
protected input message remains in process for the IMS application until a
commit point is reached.

v If a modified message-driven IMS application program issues an outbound
protected conversation, the outbound protected conversation is not included in
the ROLB processing (that is, the outbound protected conversation is not backed
out as part of the ROLB call). The modified message-driven IMS application
program is responsible for explicitly cleaning up any outbound protected work
to be backed out.

Restrictions

The AIB must specify the I/O PCB for this call.
Related concepts:

Backing out to a prior commit point: ROLL, ROLB, and ROLS calls
(Application Programming)

ROLL call
The Roll (ROLL) call backs out output messages sent by a conversational application
program and terminates the conversation.

Format

►► ROLL ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLL X X X X X

Parameters

The only parameter required for the ROLL call is the call function.

Usage

IMS terminates the application with a U0778 abend.

Chapter 1. DL/I calls reference 155

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_backingouttopriorcommit.htm#ims_backingouttopriorcommit
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_backingouttopriorcommit.htm#ims_backingouttopriorcommit

If you issue a ROLL call during a conversation, IMS TM backs out the update and
cancels output messages. IMS TM also terminates the conversation with a U0778
abend code.

For applications that use the CPI Communications interface, the original
transaction is discarded if it is classified by IMS as a discardable transaction.

Any remote LU 6.2 conversation transactions generated by a modified DL/I or
CPI-C driven application program are deallocated with TYPE (ABEND_SVC).

Any application program that uses Spool API functions and creates print data sets
can issue the ROLL call. This backs out any print data sets that have not been
released to JES.

Restrictions

The ROLL call cannot use the AIBTDLI interface.
Related concepts:

Backing out to a prior commit point: ROLL, ROLB, and ROLS calls
(Application Programming)

Administering APPC/IMS and LU 6.2 devices (Communications and
Connections)
Related reference:

Non-Discardable Messages user exit (NDMX) (Exit Routines)

ROLS call
The Roll Back to SETS/SETU (ROLS) call returns message queue positions to sync
points established by the SETS/ SETU call.

For more information on the ROLS and SETS/SETU calls, see the topic "Backing out
to a Prior Commit Point: ROLL, ROLB, and ROLS Calls" in IMS Version 14
Application Programming.

Format

►► ROLS i/o pcb
aib i/o area token

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

ROLS X X X X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list passed to the program.
This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

156 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_backingouttopriorcommit.htm#ims_backingouttopriorcommit
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_backingouttopriorcommit.htm#ims_backingouttopriorcommit
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_appcad.htm#ims_appcad
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_appcad.htm#ims_appcad
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/ims_dfsndmx0.htm#ims_dfsndmx0

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the I/O area. It has the same format as the I/O area supplied on the
SETS/SETU call. This parameter is an output parameter.

token
Specifies the name of the area in your program that contains a 4-byte identifier.
This parameter is an input parameter.

Usage

Issuing a ROLS in a conversational program causes IMS TM to back out the
messages that the application program has sent. For conversation transactions, this
means that if the program issues a ROLS call and then reaches a commit point
without sending the required response to the originating terminal, IMS TM
terminates the conversation and sends the message DFS2171l NO RESPONSE,
CONVERSATION TERMINATED to the originating terminal.

When you issue a ROLS call with a token and the messages to be rolled back
include nonexpress messages that are processed by IMS TM, message queue
repositioning might occur. The repositioning can include the initial message
segment, and the original input transaction can be presented again to the IMS TM
application program.

Input and output positioning is determined by the SETS/SETU call in standard and
modified DL/I application programs. Input and output positioning does not apply
to CPI-C driven application programs.

The application program must notify any remote transaction programs of the ROLS.

On a ROLS without a token, IMS issues the APPC/MVS verb, ATBCMTP
TYPE(ABEND), specifying the transaction program instance (TPI). This causes all
conversations associated with the application program to be DEALLOCATED
TYPE(ABEND_SVC). If the original transaction was entered from an LU 6.2 device
and IMS TM received the message from APPC/MVS, a discardable transaction is
discarded. Nondiscardable transactions are placed on the suspend queue.

Related reading: For more information on LU 6.2, see IMS Version 14
Communications and Connections.

Chapter 1. DL/I calls reference 157

Restrictions

When ROLS is issued during a conversational application program that includes
resources outside of IMS TM (for example, a CPI-C driven application program),
only the IMS TM resources are rolled back. The application program notifies the
remote transactions of the ROLS call.

The Spool API functions do not restrict the use of the SETS/SETU and ROLS calls
because these calls can be used by the application program outside the processing
of print data sets. When these commands are issued, the Spool API takes no action
because these commands cannot be used for the partial backout of print data sets.
No special status codes are returned to the application program to indicate that the
SETS/SETU or ROLS call was issued by an application that is using Spool API.

The ROLS call is not valid when the PSB contains a DEDB or MSDB PCB, or when
the call is made to a DB2 database.
Related reference:
“SETS/SETU call”

SETS/SETU call
The Set Backout Point (SETS) call is used to set an intermediate backout point or to
cancel all existing backout points.

The Set Unconditional (SETU) call operates like the SETS call except that the SETU
call is not rejected if unsupported PCBs are in the PSB or if the program uses an
external subsystem.

Format

►► SETS i/o pcb
aib i/o area token

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SETS/SETU X X X X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list passed to the program.
This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

158 Application Programming APIs

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list.

i/o area
Specifies the area in your program that contains the data that is to be kept by
IMS and returned on the corresponding ROLS call. This parameter is an input
parameter.

token
Specifies the name of the area in your program that contains a 4-byte identifier.
This parameter is an input parameter.

Usage

Except for the call names themselves, the SETS and SETU format and parameters are
the same.

The SETS and SETU calls provide the backout points that IMS uses in the ROLS call.
The ROLS call operates consistent with the SETS and SETU call backout points.

The meaning of the SC status code for SETS or SETU is as follows:

SETS The SETS call is rejected. The SC status code in the I/O PCB indicates that
either the PSB contains unsupported options or the application program
made calls to an external subsystem.

SETU The SETU call is not rejected. The SC status code indicates that unsupported
PCBs exist in the PSB or the application made calls to an external
subsystem.

Restrictions

The SETS call is not valid when the PSB contains a DEDB or MSDB PCB, or when
the call is made to a DB2 database.

CPI-C driven transaction programs cannot issue the SETS/SETU call.

The Spool API functions do not restrict the use of the SETS/SETU and ROLS calls.
This is so, because these calls can be used by the application outside the processing
of print data sets. When these commands are issued, the Spool API takes no action
because these commands cannot be used for the partial backout of print data sets.

Before a ROLS call, you can specify a maximum of 255 SETS calls with the same
token and still back out to the correct message level. After 255 SETS calls, the
messages continue to back out, but only to the same message level as at 255th
SETS call. The SETS token count resets to zero during sync point processing.

You may specify a maximum of 255 SETS calls with the same token before a ROLS
call and still be able to back out to the correct message level. After 255 SETS calls,
the messages will continue to back out to the same message level as at 255th SETS
call. The SETS token count is reset to zero during sync point processing.
Related reference:
“ROLS call” on page 156

SYNC call
The Synchronization Point (SYNC) call is used to request commit point processing.

Chapter 1. DL/I calls reference 159

Format

►► SYNC i/o pcb
aib

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SYNC X X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list passed to the program.
This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbbb.

Usage

Issue the SYNC call to request that IMS TM process the application program with
commit points for the application program.

Restrictions

The SYNC call is valid only in batch-oriented BMPs.

You cannot issue a SYNC call from a CPI Communications driven application
program.

XRST call
The Extended Restart (XRST) call is used to restart your program.

If you use the symbolic Checkpoint call in your program, you must use the XRST
call.

Format

►► XRST i/o pcb
aib

i/o area length i/o area

▼ area length area

►◄

160 Application Programming APIs

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

XRST X X X X X

Parameters

i/o pcb
Specifies the I/O PCB, the first PCB address in the list passed to the program.
This parameter is an input and output parameter.

aib
Specifies the application interface block (AIB) that is used for the call. This
parameter is an input and output parameter.

The following fields must be initialized in the AIB:

AIBID
Eye catcher. This 8-byte field must contain DFSAIBbb.

AIBLEN
AIB lengths. This field must contain the actual length of the AIB that the
application program obtained.

AIBRSNM1
Resource name. This 8-byte, left-justified field must contain the PCB name
IOPCBbb.

AIBOALEN
I/O area length. This field must contain the length of the I/O area that is
specified in the call list. This parameter is not used during the XRST call.
For compatibility reasons, this parameter must still be coded.

i/o area length
This parameter is no longer used by IMS. For compatibility reasons, this
parameter must still be included in the call, and it must contain a valid
address. You can get a valid address by specifying the name of any area in
your program.

i/o area
Specifies a 14-byte area in your program. This area must be either set to blanks
if you are starting your program normally or, if you are performing an
extended restart, have a checkpoint ID.

area length
Specifies a 4-byte field in your program containing the length (in binary) of an
area to restore. This input parameter is optional. You can specify up to seven
area lengths. For each area length, you must also specify the area parameter.
The number of areas you specify on a XRST call must be less than or equal to
the number of areas you specify on the CHKP calls the program issues. When
you restart the program, IMS TM restores only the areas you specified in the
CHKP call.

area
Specifies the area in your program that you want IMS TM to restore. You can
specify up to seven areas. Each area specified must be preceded by an area
length value. This parameter is an input parameter.

Usage

Programs that want to issue Symbolic Checkpoint calls (CHKP) must also issue the
Extended Restart call (XRST). The XRST call must be issued only once and should be

Chapter 1. DL/I calls reference 161

issued early in the execution of the program. It does not need to be the first call in
the program. However, it must precede any CHKP call. Any Database calls issued
before the XRST call are not within the scope of a restart.

IMS determines whether to perform a normal start or a restart based on the I/O
area provided by the XRST call or CKPTID= value in the PARM field on the EXEC
statement in your program's JCL.

Starting your program normally

When you are starting your program normally, the I/O area pointed to in the XRST
call must contain blanks and the CKPTID= value in the PARM field must be nulls.
This indicates to IMS that subsequent CHKP calls are symbolic checkpoints rather
than basic checkpoints. Your program should test the I/O area after issuing the
XRST call. IMS does not change the area when you are starting the program
normally.

Restarting your program

You can restart the program from a symbolic checkpoint taken during a previous
execution of the program. The checkpoint used to perform the restart can be
identified by entering the checkpoint ID either in the I/O area pointed to by the
XRST call (leftmost justified, with the rest of the area containing blanks) or by
specifying the ID in the CKPTID= field of the PARM= parameter on the EXEC
statement in your program's JCL. (If you supply both, IMS uses the CKPTID=
value specified in the parameter field of the EXEC statement.)

The ID specified can be:
v A 1 to 8-character extended checkpoint ID.
v A 14-character "time stamp" ID from message DFS05401, where:

IIII is the region ID.
DDD is the day of the year.
HHMMSST is the time in hours, minutes, seconds, and tenth of a second.

v The 4-character constant "LAST". (BMPs only: this indicates to IMS that the last
completed checkpoint issued by the BMP will be used for restarting the
program.)

The system message DFS05401 supplies the checkpoint ID and the time stamp.

The system message DFS6821 supplies the checkpoint ID of the last completed
checkpoint which can be used to restart a batch program or batch message
processing program (BMP) that was abnormally terminated.

If the program being restarted is in a DL/I batch region, the IMSLOGR DD
statement that defines the log data set must be supplied in the JCL. IMS reads
these data sets and searches for the checkpoint records that have the ID that was
specified.

However, if the program being restarted is in a BMP region and all of the
following conditions are met, an IMSLOGR DD statement is not required:
v The BMP program is restarted with CKPTID=LAST.
v The BMP program is restarted on the same IMS system with the same job name,

same PSB, and same program name that was used when it abended.
v IMS has not been cold-started since the BMP program abended.

162 Application Programming APIs

v The checkpoint records that are needed to restart the program are on an OLDS
data set that has not been archived and reused since the time of the abend, or
the SLDSREAD logger function is active in IMS.

If any of the preceding conditions are not met, you must supply an IMSLOGR DD
statement that points to the data set that contains the required checkpoint records.

If an IMSLOGR DD statement is supplied, it must contain the required checkpoint
log records. IMS does not automatically locate and retrieve checkpoint records for
a BMP if an IMSLOGR DD statement is present. Only the IMSLOGR DD data set is
searched and, if the record is not found, the BMP program terminates with abend
U0102.

Note: A DD DUMMY statement is permissible for an IMSLOGR DD statement and
is treated as if no IMSLOGR DD statement was supplied.

At the completion of the XRST call, the I/O area always contains the 8-character
checkpoint ID used for the restart. An exception exists when the checkpoint ID is
equal to 8 blank characters; the I/O area then contains a 14-character time stamp
(IIIIDDDHHMMSST).

Also check the status code in the I/O PCB. The only successful status code for an
XRST call are blanks.

Restrictions

If your program is being started normally, the first 5 bytes of the I/O area must be
set to blanks.

If your program is restarted and the CKPTID= value in the PARM field of the
EXEC statement is not used, then the rightmost bytes beyond the checkpoint ID
being used in the I/O area must be set to blanks.

The XRST call is allowed only from Batch and BMP applications.
Related reference:
“CHKP (symbolic) call” on page 128

EXEC DLI commands
The EXEC DLI commands are the only commands that are allowed for EXEC DLI.
These commands can be used to read and update DL/I databases with a batch
program, a BMP region (running DBCTL or DB/DC), or a CICS program using
DBCTL.

System service commands

The following system service commands require that you first issue the SCHD
command with the SYSSERVE keyword:
v ACCEPT command
v DEQ command
v LOG command
v QUERY command
v REFRESH command
v ROLS command

Chapter 1. DL/I calls reference 163

v SETS command
v SETU command
v STAT command

The following system service commands are valid in batch or BMP regions or
programs without first issuing the SCHD command with the SYSSERVE keyword:
v CHKP command
v ROLB command
v ROLL command
v SYMCHKP command
v XRST command

The following system service commands are valid in an online CICS program
using DBCTL:
v ACCEPT
v DEQ
v LOG
v QUERY
v REFRESH
v ROLS
v SETS
v STAT

To issue system service commands, the input/output PCB (I/O PCB) is required.

The examples in the following topics use the PL/I delimiter. Code the commands
in free form: Where keywords, operands, and parameters are shown separated by
commas, no blanks can appear immediately before or after the comma. Where
keywords, operands, and parameters are shown separated by blanks, you can
include as many blanks as you want. The format of the commands is the same for
users of COBOL, PL/I, or assembler language.
Related reference:
“DL/I calls for IMS TM system services” on page 124
“DL/I calls for IMS DB system services” on page 35
“DL/I calls for database management” on page 1
“DL/I calls for transaction management” on page 81

PCBs and PSB (Application Programming)

Summary of EXEC DLI commands
A summary of all the EXEC DLI commands is provided in the following table.

The table lists the EXEC DLI commands and specifies if they are valid in the Batch,
Batch-Oriented BMP, or CICS with DBCTL environment.

Table 51. Summary of EXEC DLI commands.

Request Type

Program Characteristics

Batch
Batch- Oriented

BMP
CICS with

DBCTL1

ACCEPT command4 Yes Yes Yes

164 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_pcbandpsbs.htm#ims_pcbandpsbs

Table 51. Summary of EXEC DLI commands (continued).

Request Type

Program Characteristics

Batch
Batch- Oriented

BMP
CICS with

DBCTL1

CHKP command4 Yes Yes No

DEQ command4 Yes Yes Yes

DLET command 4 Yes Yes Yes

Get commands (GU, GHU, GN, GHN, GNP, GHNP)4 Yes Yes Yes

GMSG command5 No Yes Yes

ICMD command5 No Yes Yes

ISRT command5 Yes Yes Yes

LOAD command Yes No No

LOG command4 Yes Yes Yes

POS command4 No Yes Yes

QUERY command4 Yes Yes Yes

RCMD command5 No Yes Yes

REFRESH command4 Yes Yes Yes

REPL command4 Yes Yes Yes

RETRIEVE command Yes Yes No

ROLB command Yes Yes No

ROLL command Yes Yes No

ROLS command2,4 Yes Yes Yes

SCHD command No No Yes

SETS command2,4 Yes Yes Yes

SETU command Yes Yes No

STAT command2,4 Yes Yes Yes

SYMCHKP command Yes Yes No

TERM command No No Yes

XRST command Yes Yes No

Notes:

1. In a CICS remote DL/I environment, commands in the CICS with DBCTL column are supported if you are
shipping a function to a remote CICS that uses DBCTL.

2. ROLS and SETS commands are not valid when the PSB contains a DEDB.

3. STAT is a Product-sensitive Programming Interface.

4. These commands are supported in the AIB format.

5. These commands are described in the AOI documentation.

Related concepts:

IMS Automated Operator Interface (AOI) (Operations and Automation)

ACCEPT command
The Accept (ACCEPT) command is used to tell IMS to return a status code to your
program, rather than abend the transaction.

Chapter 1. DL/I calls reference 165

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.oag/ims_automate_aoi.htm#ims_automate_aoi

Format

►► EXEC DLI ACCEPT STATUSGROUP('A')
ACCEPT STATUSGROUP('B')

►◄

Options

STATUSGROUP('A')
Informs IMS that the application is prepared to accept status codes regarding
unavailability. IMS then returns a status code instead of pseudoabending if a
call issued later requires access to unavailable data.

This is a required option.

STATUSGROUP('B')
Informs IMS that the application is prepared to accept status codes regarding
unavailability and deadlock occurrence. IMS returns a status code instead of
pseudoabending if a call issued later requires access to unavailable data or
deadlock occurrence.

Usage

Use the ACCEPT command to tell IMS to return a status code instead of abending
the program. These status codes result because PSB scheduling completed without
all of the referenced databases being available.

Example
EXEC DLI ACCEPT STATUSGROUP(’A’);

This example shows how to specify the ACCEPT command.

CHKP command
The Checkpoint (CHKP) command is used to issue a basic checkpoint and to end a
logical unit of work. You cannot use this command in a CICS program.

Format

►► EXEC DLI CHECKPOINT
CHKP

ID(area)
ID('literal')

►◄

Options

ID(area)
Contains the checkpoint ID. Specifies the name of an area in your program
containing the checkpoint ID. The area pointed to is eight bytes. If you are
using PL/I, specify this option as a pointer to a major structure, an array, or a
character string.

ID('literal')
'literal' is an 8-byte checkpoint ID, enclosed in quotation marks. In CHKP
commands the area pointed to is 8 bytes long.

Usage

The two kinds of commands that allow you to make checkpoints are: the CHKP, or
basic Checkpoint command, and the SYMCHKP, or Symbolic Checkpoint command.

166 Application Programming APIs

Batch programs can use either the symbolic or the basic command.

Both checkpoint commands make it possible for you to commit your program's
changes to the database and to establish places from which the program can be
restarted, should it terminate abnormally.

You must not use the CHKPT=EOV parameter on any DD statement to take an
IMS checkpoint.

Both commands cause a loss of database position at the time the command is
issued. Position must be reestablished by a GU command or other method of
establishing position.

It is not possible to re-establish position in the midst of nonunique keys or
nonkeyed segments.

You can issue the basic CHKP command to commit your program's changes to the
database and establish places from which your program can be restarted. When
you issue a basic CHKP command, you must provide the code for restarting your
program.

When you issue a CHKP command, you specify the ID for the checkpoint. You can
supply either the name of a data area in your program that contains the ID, or you
can supply the actual ID, enclosed in single quotes.

Examples
EXEC DLI CHKP ID(chkpid);

EXEC DLI CHKP ID(’CHKP0007’);

Explanation

These examples show how to specify the CHKP command.

Restrictions

Restrictions for the CHKP command:
v You cannot use this command in a CICS program.
v You must first define an I/O PCB for your program before you can use the CHKP

command.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.

DEQ command
The Dequeue (DEQ) command is used to release a segment that is retrieved with the
LOCKCLASS option.

Format

►► EXEC DLI DEQ LOCKCLASS(data_value) ►◄

Option

LOCKCLASS(data_value)
Specifies that you want to release the lock that is being held as the result of an

Chapter 1. DL/I calls reference 167

earlier GU, GN, or GNP command that had a LOCKCLASS option with the same
data_value. Data_value must be a 1-byte alphabetic character in the range of B
to J.

For full function, specify the LOCKCLASS option followed by the lock class of
that segment (for example, LOCKCLASS(’B’)). If the option is not followed by a
letter (B-J), EXECDLI sets a status code of GL and initiates an ABENDU1041.

DEQ commands are not supported for Fast Path.

Usage

Use the DEQ command to release locks on segments that were retrieved using the
LOCKCLASS option. Using LOCKCLASS on Get commands allows you to reserve
segments for exclusive use by your transaction. No other transaction is allowed to
update these reserved segments until either your transaction reaches a sync point
or the DEQ command has been issued, thereby releasing the locks on these reserved
segments. The LOCKCLASS option lets your application program leave these
segments and retrieve them later without any changes having been added.

Example

Your program can use the LOCKCLASS option as follows:
EXEC DLI DEQ LOCKCLASS(data_value)
EXEC DLI GU SEGMENT(PARTX)

SEGMENT(ITEM1) LOCKCLASS(’B’) INTO(PTAREA1);
EXEC DLI GU SEGMENT(PARTX)

SEGMENT(ITEM2) LOCKCLASS(’C’) INTO(PTAREA2);
EXEC DLI DEQ LOCKCLASS(’B’);

Explanation

This example shows the format of the DEQ command, where data_value is a 1-byte
alphabetic character in the range B to J. The DEQ command releases the lock that
was gotten and held with a LOCKCLASS of 'B' for the PARTX segment as a result
of the first GU. The lock that was gotten with a LOCKCLASS of 'C' on the PARTX
segment during the second GU remains held.

Restriction

Restrictions for the DEQ command:
v To use this command you must first define an I/O PCB for your program.

DLET command
The Delete (DLET) command is used to remove a segment and its dependents from
the database.

Format

►► EXEC DLI DLET
USING PCB(expression) VARIABLE

►

► SEGMENT(name)
SEGMENT((area)) SEGLENGTH(expression)

FROM(area) ►

168 Application Programming APIs

►
SETZERO(data_value)

►◄

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to
retrieve, insert, delete, or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment
type. You can specify an area instead of specifying the name of the segment in
the command.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program
containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted. Use
FROM to insert one or more segments with one command.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

Usage

You use the DLET command to delete a segment and its dependents from the
database. You must first retrieve segments you want to delete, just as if you were
replacing segments, The DLET command deletes the retrieved segment and its
dependents, if any, from the database.

Example

“Evelyn Parker has moved away from this area. Her patient number is 10450.
Delete her record from the database.”

Explanation

You want to delete all the information about Evelyn Parker from the database. To
do this, you must delete the PATIENT segment. When you do this, DL/I deletes all
the dependents of that segment. This is exactly what you want DL/I to do—there
is no reason to keep such segments as ILLNESS and TREATMNT for Evelyn
Parker if she is no longer one of the clinic's patients.

Chapter 1. DL/I calls reference 169

Before you can delete the patient segment, you have to retrieve it:
EXEC DLI GU

SEGMENT(PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1);

To delete this patient's database record, you issue a DLET command and use the
FROM option to give the name of the I/O area that contains the segment you want
deleted:
EXEC DLI DLET SEGMENT(PATIENT) FROM(PATAREA);

When you issue this command, the PATIENT segment, and its dependents—the
ILLNESS, TREATMNT, BILLING, PAYMENT, and HOUSHOLD segments—are
deleted.

Restrictions

You cannot issue any commands using the same PCB between the retrieval
command and the DLET command, and you can issue only one DLET command for
each GET command.

GN command
The Get Next (GN) command is used to retrieve segments sequentially.

Format

►► EXEC DLI GET NEXT
GN USING PCB(expression)

►

►
KEYFEEDBACK(area)

FEEDBACKLEN(expression)

(1)
INTO(area) ►

►
A B

►◄

A For each parent segment (optional):

VARIABLE FIRST
LAST
CURRENT

SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
OFFSET(expression) (2)

INTO(area)
LOCKED
LOCKCLASS(class)

►

►
MOVENEXT(data_value) GETFIRST(data_value) SET(data_value)

►

►
SETCOND(data_value) SETZERO(data_value) SETPARENT

►

170 Application Programming APIs

►
WHERE(qualification statement)

(3)
FIELDLENGTH(expression)

►

►
KEYS(area)

(4)
KEYLENGTH(expression)

B For the object segment (optional):

VARIABLE FIRST
LAST

SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
OFFSET(expression) INTO(area) LOCKED

LOCKCLASS(class)

►

►
MOVENEXT(data_value) GETFIRST(data_value) SET(data_value)

►

►
SETCOND(data_value) SETZERO(data_value)

►

►
WHERE(qualification statement)

(3)
FIELDLENGTH(expression)

►

►
KEYS(area)

(4)
KEYLENGTH(expression)

Notes:

1 If you leave out the SEGMENT option, specify the INTO option as shown.

2 Specify INTO on parent segments for a path command.

3 If you use multiple qualification statements, specify a length for each, using
FIELDLENGTH. For example: FIELDLENGTH(24,8)

4 You can use either the KEYS option or the WHERE option, but not both on
one segment level.

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the

Chapter 1. DL/I calls reference 171

concatenated key retrieved. Its argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment
type, or that you want to insert a segment as the first occurrence.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment
type, or that you want to insert a segment as the last segment occurrence.

CURRENT
Qualifies the command, and specifies that you want to use the level of and
levels above the current position as qualifications for this segment.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area of
your program containing the name of the segment type that you want to
retrieve.

You can have as many levels of qualification for a GN command as there are
levels in the database's hierarchy. Using fully qualified commands with the
WHERE or KEYS option clearly identifies the hierarchical path and the
segment you want, and is useful in documenting the command. However, you
do not need to qualify a GN command, because you can specify a GN command
without the SEGMENT option.

Once you have established position in the database record, issuing a GN
command without a SEGMENT option retrieves the next segment occurrence
in sequential order.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB
retrieves the first occurrence of that segment type it encounters by searching
forward from current position. With an unqualified GN command, the segment
type you retrieve might not be the one you expected, so you should specify an
I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from the
DIB the segment type retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would
retrieve the next segment in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the
segment occurrences that are to be part of the path to the segment you want
retrieved. Omitting the SEGMENT option for a level, or including only the
SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/I uses only the qualified parent segments
and the lowest-level SEGMENT option to satisfy the command. DL/I does not
assume a qualification for the missing level.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program

172 Application Programming APIs

containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. It can be any expression that
converts to the integer data type; you can specify either a number or a
reference to a halfword in your program containing a number. Use OFFSET
when you process concatenated segments in logical relationships. OFFSET is
required whenever the destination parent is a variable-length segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your
program, until a checkpoint or sync point is reached. This option performs the
same function as the Q command code, and it applies to both Fast Path and
full function. A 1-byte alphabetic character of 'A' is automatically appended as
the class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your
program until a DEQ command is issued or until a checkpoint or sync point is
reached. (DEQ commands are not supported for Fast Path.) Class is a 1-byte
alphabetic character (B-J), representing the lock class of the retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J)
designates the class of the lock for the segment. An example is LOCKCLASS(’B’).
If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets
a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full
function and Fast Path, you must specify LOCKCLASS(’x’)), where x is a letter
in the range B to J. An example is LOCKCLASS(’B’). If LOCKCLASS is not followed
by a letter in the range B to J, then EXECDLI sets a status code of GL and
initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in
a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It
can be any expression in the host language that converts to the integer data

Chapter 1. DL/I calls reference 173

type; if it is a variable, it must be declared as a binary halfword value. For IBM
COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the
IBM COBOL for z/OS & VM (or the VS COBOL II) compiler, you must specify
KEYLENGTH with the KEYS option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use
either KEYS or WHERE for a segment level, but not both.

“Area” specifies an area in your program containing the segment's
concatenated key.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one
or more qualification statements, each of which compares the value of a field
in a segment to a value you supply. Each qualification statement consists of:
v The name of a field in a segment
v The relational operator, which indicates how you want the two values

compared
v The name of a data area in your program containing the value that is

compared against the value of the field

Usage

Use the GN command to sequentially retrieve segments from the database. Each
time you issue a GN command, IMS DB retrieves the next segment, as described by
the options you include in the command. Before issuing a GN command, you
should establish position in the database record by issuing a GU command.

You do not have to use a segment option with a GN command. However, you
should qualify your GN commands as much as possible with the KEYS or WHERE
options after the SEGMENT option.

Examples

Example 1

“We need a list of all patients who have been to this clinic.”

Explanation: To answer this request, your program would issue a command
qualified with the segment name PATIENT until DL/I returned a GB status code to
the program. (GB means that DL/I reached the end of the database before being
able to satisfy your command). This command looks like this:
EXEC DLI GN

SEGMENT(PATIENT) INTO(PATAREA);

Each time your program issued this command, the current position moves forward
to the next database record.

Example 2

“What are the names of the patients we have seen since the beginning of this
month?”

Explanation: A GN command that includes one or more WHERE or KEYS options
retrieves the next occurrence of the specified segment type that satisfies the

174 Application Programming APIs

command. To answer this request, the program issues the following GN command
until DL/I returned a GB status code. The example shows the command you use
at the end of April, 1988 (assuming ILLDATE1 contains 198804010):
EXEC DLI GN

SEGMENT(PATIENT) INTO(PATAREA)
SEGMENT(ILLNESS) INTO(ILLAREA) WHERE(ILLDATE>=ILLDATE1);

Example 3
EXEC DLI GN INTO(PATAREA);

Explanation: If you just retrieved the PATIENT segment for patient 04124 and then
issued this command, you retrieve the first ILLNESS segment for patient 04124.

Restrictions

With an unqualified GN command, the retrieved segment type might not be the one
expected. Therefore, specify an I/O area large enough to contain the largest
segment accessible to your program.

Use either the KEYS option or the WHERE option, but not both on one segment
level.

GNP command
The Get Next in Parent (GNP) command is used to retrieve dependent segments
sequentially.

Format

►► EXEC DLI GET NEXT IN PARENT
GNP USING PCB(expression)

►

►
KEYFEEDBACK(area)

FEEDBACKLEN(expression)

(1)
INTO(area) ►

►
A B

►◄

A For each parent segment (optional):

VARIABLE FIRST
LAST
CURRENT

SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
OFFSET(expression) (2)

INTO(area)
LOCKED
LOCKCLASS(class)

►

►
MOVENEXT(data_value) GETFIRST(data_value) SET(data_value)

►

Chapter 1. DL/I calls reference 175

►
SETCOND(data_value) SETZERO(data_value) SETPARENT

►

►
WHERE(qualification statement)

(3)
FIELDLENGTH(expression)

►

►
KEYS(area)

(4)
KEYLENGTH(expression)

B For the object segment (optional):

VARIABLE FIRST
LAST

SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
OFFSET(expression) INTO(area) LOCKED

LOCKCLASS(class)

►

►
MOVENEXT(data_value) GETFIRST(data_value) SET(data_value)

►

►
SETCOND(data_value) SETZERO(data_value)

►

►
WHERE(qualification statement)

(3)
FIELDLENGTH(expression)

►

►
KEYS(area)

(4)
KEYLENGTH(expression)

Notes:

1 If you leave out the SEGMENT option, specify the INTO option as shown.

2 Specify INTO on parent segments for a path command.

3 If you use multiple qualification statements, specify a length for each, using
FIELDLENGTH. For example: FIELDLENGTH(24,8)

4 You can use either the KEYS option or the WHERE option, but not both on
one segment level.

Options

You can qualify your GNP command by using SEGMENT and WHERE options.

If you do not qualify your command, IMS DB retrieves the next sequential
segment under the established parent. If you include a SEGMENT option, IMS DB
retrieves the first occurrence of that segment type that it finds by searching
forward under the established parent.

176 Application Programming APIs

You can have as many levels of qualification for a GNP command as there are levels
in the database's hierarchy. However, you should not qualify your command in a
way that causes DL/I to move off of the segment type you have established as a
parent for the command.

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated. Use this to retrieve a
segment's concatenated key.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read. Use this to retrieve one or
more segments with one command.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment
type, or that you want to insert a segment as the first occurrence. Use this to
retrieve the first segment occurrence of a segment type.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment
type, or that you want to insert a segment as the last segment occurrence. Use
this to retrieve the last segment occurrence of a segment type.

CURRENT
Qualifies the command, and specifies that you want to use the level of and
levels above the current position as qualifications for this segment. Use this to
retrieve a segment based on your current position.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program
containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. The argument can be any
expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.
Use OFFSET when you process concatenated segments in logical relationships.
OFFSET is required whenever the destination parent is a variable-length
segment.

Chapter 1. DL/I calls reference 177

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your
program, until a checkpoint or sync point is reached. Use this to reserve a
segment for the exclusive use of your program. This option performs the same
function as the Q command code, and it applies to both Fast Path and full
function. A 1-byte alphabetic character of 'A' is automatically appended as the
class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your
program until a DEQ command is issued or until a checkpoint or sync point is
reached. (DEQ commands are not supported for Fast Path.) Class is a 1-byte
alphabetic character (B-J), representing the lock class of the retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J)
designates the class of the lock for the segment. An example is LOCKCLASS(’B’).
If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets
a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full
function and Fast Path, you must specify LOCKCLASS(’x’)), where x is a letter
in the range B to J. An example is LOCKCLASS(’B’). If LOCKCLASS is not followed
by a letter in the range B to J, then EXECDLI sets a status code of GL and
initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in
a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one
or more qualification statements, each of which compares the value of a field
in a segment to a value you supply. Each qualification statement consists of:
v The name of a field in a segment
v The relational operator, which indicates how you want the two values

compared
v The name of a data area in your program containing the value that is

compared against the value of the field

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use
either KEYS or WHERE for a segment level, but not both.

178 Application Programming APIs

“Area” specifies an area in your program containing the segment's
concatenated key.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It
can be any expression in the host language that converts to the integer data
type; if it is a variable, it must be declared as a binary halfword value. For IBM
COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the
IBM COBOL for z/OS & VM (or VS COBOL II) compiler, you must specify
KEYLENGTH with the KEYS option.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in
your program containing the name of the segment type that you want to
retrieve, insert, delete, or replace.

You can have as many levels of qualification for a GNP command as there are
levels in the database's hierarchy. Using fully qualified commands with the
WHERE or KEYS option clearly identifies the hierarchic path and the segment
you want, and is useful in documenting the command. However, you do not
need to qualify a GNP command at all, because you can specify a GNP command
without the SEGMENT option.

Once you have established position in the database record, issuing a GNP
command without a SEGMENT option retrieves the next segment occurrence
in sequential order.

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB
retrieves the first occurrence of that segment type it encounters by searching
forward from current position. With an unqualified GNP command, the segment
type you retrieve might not be the one you expected, so you should specify an
I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB
the segment type retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would
retrieve the next segment in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the
segment occurrences that are to be part of the path to the segment you want
retrieved. Omitting the SEGMENT option for a level, or including only the
SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/I uses only the qualified parent segments
and the lowest-level SEGMENT option to satisfy the command. DL/I does not
assume a qualification for the missing level.

Usage

The Get Next in Parent (GNP) command makes it possible to limit the search for a
segment; you can retrieve only the dependents of a particular parent. You must
have established parentage before issuing a GNP command.

Examples

Example 1

“We need the complete record for Kate Bailey. Her patient number is 09080.”

Chapter 1. DL/I calls reference 179

Explanation: To satisfy this request, you want only to retrieve the dependent
segments of the patient whose patient number is 09080; you do not want to
retrieve all the dependents of each patient. To do this, use the GU command to
establish your position and parentage on the PATIENT segment for Kate Bailey.
Then continue to issue a GNP without SEGMENT or WHERE options until DL/I
returns all the dependents of that PATIENT segment. (A GE status code indicates
that you have retrieved all the dependent segments.) To answer this request, your
program can issue these commands:
EXEC DLI GU

SEGMENT(PATIENT) INTO(PATAREA)
WHERE (PATNO=PATNO1);

EXEC DLI GNP
INTO(ILLAREA);

A GNP command without SEGMENT or WHERE options retrieves the first
dependent segment occurrence under the current parent. If your current position is
already on a dependent of the current parent, this command retrieves the next
segment occurrence under the parent.

With an unqualified GNP command, the segment type you retrieve might not be the
one you expected, so you should specify an I/O area large enough to contain the
largest segment your program has access to. (After successfully issuing a GNP
command, you can find out from the DIB the segment type retrieved.)

Example 2

“Which doctors have been prescribing acetaminophen for headaches?”

Explanation: A GNP command with only a SEGMENT option sequentially retrieves
the dependent segments of the segment type you have specified under the
established parent. Suppose that for this example, the key of ILLNESS is
ILLNAME, and the key of TREATMNT is MEDICINE. You want to retrieve each
TREATMNT segment where the treatment was acetaminophen. The name of the
doctor who prescribed the treatment is part of the TREATMNT segment. (Assume
that data area ILLNAME1 contains HEADACHE, and MEDIC1 contains
ACETAMINOP). To answer this request, you can issue these commands:
EXEC DLI GN

SEGMENT(ILLNESS) WHERE (ILLNAME=ILLNAME1);
EXEC DLI GNP

SEGMENT(TREATMNT) WHERE (MEDICINE=MEDIC1);

To process this, your program continues issuing the GNP command until DL/I
returned a GE (not found) status code, then your program retrieves the next
headache segment and retrieves the TREATMNT segments for it. Your program
does this until there were no more ILLNESS segments where the ILLNAME was
headache.

Restrictions

Restrictions for GNP command:
v You must have established parentage before issuing this command.
v You cannot qualify your GNP command in a way that causes DL/I to move off of

the segment type you have established as the parent for the command.
v You can retrieve only the dependents of a particular parent.

180 Application Programming APIs

GU command
The Get Unique (GU) command is used to directly retrieve specific segments, and to
establish a starting position in the database for sequential processing.

Format

►► EXEC DLI GET UNIQUE
GU USING PCB(expression)

►

►
KEYFEEDBACK(area)

FEEDBACKLEN(expression)

INTO(area)
A

►

►
B

►◄

A:

VARIABLE LAST SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
OFFSET(expression) (1)

INTO(area)
LOCKED
LOCKCLASS(class)

►

►
MOVENEXT(data_value) GETFIRST(data_value) SET(data_value)

►

►
SETCOND(data_value) SETZERO(data_value) SETPARENT

►

►
WHERE(qualification statement)

(2)
FIELDLENGTH(expression)

►

►
KEYS(area)

(3)
KEYLENGTH(expression)

B:

VARIABLE LAST SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
OFFSET(expression) INTO(area) LOCKED

LOCKCLASS(class)

►

►
MOVENEXT(data_value) GETFIRST(data_value) SET(data_value)

►

Chapter 1. DL/I calls reference 181

►
SETCOND(data_value) SETZERO(data_value)

►

►
WHERE(qualification statement)

(2)
FIELDLENGTH(expression)

►

►
KEYS(area)

(3)
KEYLENGTH(expression)

Notes:

1 Specify INTO on parent segments for a path command.

2 If you use multiple qualification statements, specify a length for each, using
FIELDLENGTH. For example: FIELDLENGTH(24,8)

3 You can use either the KEYS option or the WHERE option, but not both on
one segment level.

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

INTO(area)
Specifies an area into which the segment is read.

VARIABLE
Indicates that a segment is variable-length.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment
type, or that you want to insert a segment as the last segment occurrence.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in
your program containing the name of the segment type that you want to
retrieve, insert, delete, or replace.

To retrieve the first occurrence of a segment type, you need only specify the
SEGMENT option. You can specify as many levels of qualification as there are
hierarchic levels defined by the PCB you are using.

To establish position at the beginning of the database, issue a GU command
with a SEGMENT option that names the root segment type.

182 Application Programming APIs

If you leave out SEGMENT options for one or more hierarchic levels, DL/I
assumes a segment qualification for that level. The qualification that DL/I
assumes depends on your current position.
v If DL/I has a position established at the missing level, DL/I uses the

segment on which position is established.
v If DL/I does not have a position established at the missing level, DL/I uses

the first occurrence at that level.
v If DL/I moves forward from a position established at a higher level, DL/I

uses the first occurrence at the missing level that falls within the new path.
v If you leave out a SEGMENT option for the root level, and DL/I has position

established on a root, DL/I does not move from that root when trying to
satisfy the command.
You can have as many levels of qualification for a GU command as there are
levels in the database's hierarchy. Using fully qualified commands with the
WHERE or KEYS option clearly identifies the hierarchic path and the
segment you want, and is useful in documenting the command. However,
you do not need to qualify a GU command at all, because you can specify a
GU command without the SEGMENT option.
If you specify a SEGMENT option without a KEYS or WHERE option, IMS
DB retrieves the first occurrence of that segment type it encounters by
searching forward from current position. With an unqualified GU command,
the segment type you retrieve might not be the one you expected, so you
should specify an I/O area large enough to contain the largest segment your
program has access to. (After successfully issuing a retrieval command, you
can find out from DIB the segment type retrieved.)
If you fully qualify your command with a WHERE or KEYS option, you
would retrieve the next segment in sequential order, as described by the
options.
Including the WHERE or KEYS options for parent segments defines the
segment occurrences that are to be part of the path to the segment you want
retrieved. Omitting the SEGMENT option for a level, or including only the
SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/I uses only the qualified parent segments
and the lowest-level SEGMENT option to satisfy the command. DL/I does
not assume a qualification for the missing level.

SEGLENGTH(expression)
Specifies the length of the I/O area into which the segment is retrieved. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program
containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. The argument can be any
expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.
Use OFFSET when you process concatenated segments in logical relationships.
OFFSET is required whenever the destination parent is a variable-length
segment.

LOCKED
Specifies that you want to retrieve a segment for the exclusive use of your

Chapter 1. DL/I calls reference 183

program, until a checkpoint or sync point is reached. This option performs the
same function as the Q command code. It applies to both Fast Path and full
function. A 1-byte alphabetic character of 'A' is automatically appended as the
class for the Q command code.

LOCKCLASS(class)
Specifies that you want to retrieve a segment for the exclusive use of your
program until a DEQ command is issued or until a checkpoint or sync point is
reached. (DEQ commands are not supported for Fast Path.) Class is a 1-byte
alphabetic character (B-J), representing the lock class of the retrieved segment.

For full-function code, the LOCKCLASS option followed by a letter (B-J)
designates the class of the lock for the segment. An example is LOCKCLASS(’B’).
If LOCKCLASS is not followed by a letter in the range B to J, then EXECDLI sets
a status code of GL and initiates an ABENDU1041.

Fast Path does not support LOCKCLASS but, for consistency between full
function and Fast Path, you must specify LOCKCLASS(’x’)), where x is a letter
in the range B to J. An example is LOCKCLASS(’B’). If LOCKCLASS is not followed
by a letter in the range B to J, then EXECDLI sets a status code of GL and
initiates an ABENDU1041.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in
a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

SETPARENT
Sets parentage at the level you want.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option.
The argument can be any expression in the host language that converts to the
integer data type; a variable must be declared as a binary halfword value. For
IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or assembler language,
KEYLENGTH is optional. For COBOL programs that are not compiled with the
IBM COBOL for z/OS & VM (or VS COBOL II) compiler, you must specify
KEYLENGTH with the KEYS option.

WHERE(qualification statement)
Use WHERE to further qualify your GU commands after using SEGMENT. If
you fully qualify a GU command, you can retrieve a segment regardless of your
position in the database record.

KEYS(area)
Use KEYS to further qualify your GU commands and specify the segment
occurrence by using its concatenated key.

184 Application Programming APIs

If you specify a SEGMENT option without a KEYS or WHERE option, IMS DB
retrieves the first occurrence of that segment type it encounters by searching
forward from current position. With an unqualified GU command, the segment
type you retrieve might not be the one you expected, so you should specify an
I/O area large enough to contain the largest segment your program has access
to. (After successfully issuing a retrieval command, you can find out from DIB
the segment type retrieved.)

If you fully qualify your command with a WHERE or KEYS option, you would
retrieve the next segment in sequential order, as described by the options.

Including the WHERE or KEYS options for parent segments defines the
segment occurrences that are to be part of the path to the segment you want
retrieved. Leaving the SEGMENT option out for a level, or including only the
SEGMENT option without a WHERE option, indicates that any path to the
option satisfies the command. DL/I uses only the qualified parent segments
and the lowest level SEGMENT option to satisfy the command. DL/I does not
assume a qualification for the missing level.

Usage

Use the GU command to retrieve specific segments from the database, or to
establish a position in the database for sequential processing.

You must at least specify the SEGMENT option with a GU command to indicate the
segment type you want to retrieve. (IMS DB retrieves the first occurrence of the
segment you named in the SEGMENT argument.)

When you need to retrieve a specific occurrence of a segment type, you can further
qualify the command by using the WHERE or KEYS option after the SEGMENT
option.

You probably want to further qualify your GU commands with the WHERE or
KEYS option, and specify a specific occurrence of a segment type. If you fully
qualify a GU command, you can retrieve a segment regardless of your position in
the database record.

Examples

Example 1

“What illness was Robert James here for most recently? Was he given any
medication on that day for that illness? His patient number is 05136.”

Explanation: This example requests two pieces of information. To answer the first
part of the request and retrieve the most recent ILLNESS segment, issue this GU
command (assuming that PATNO1 contains 05163):
EXEC DLI GU

SEGMENT(PATIENT) WHERE(PATNO=PATNO1)
SEGMENT(ILLNESS) INTO(AREA);

Once you had retrieved the ILLNESS segment with the date of the patient's most
recent visit to the clinic, you can issue another command to find out whether he
was treated during that visit. If the date of his most recent visit was January 5,
1988, you can issue the following command to find out whether or not he was
treated on that day for that illness (assuming PATNO1 contains 05163, and DATE1
contains 19880105):

Chapter 1. DL/I calls reference 185

EXEC DLI GU
SEGMENT(PATIENT) WHERE(PATNO=PATNO1)
SEGMENT(ILLNESS) WHERE(ILLDATE=DATE1)
SEGMENT(TREATMNT) INTO(TRTAREA) WHERE(DATE=DATE1);

Example 2

“What is Joan Carter currently being treated for? Her patient number is 10320.”
EXEC DLI GU

SEGMENT(PATIENT) WHERE(PATNO=PATNO1)
SEGMENT(ILLNESS) INTO(ILLAREA);

Explanation: In this example you want the ILLNESS segment for the patient whose
patient number is 10320.

Example 3
EXEC DLI GU

SEGMENT(PATIENT)
SEGMENT(ILLNESS)
SEGMENT(TREATMNT) INTO(AREA);

Explanation: This example retrieves the first TREATMNT segment and specifies the
three levels of qualification.

Restriction

You must at least specify the SEGMENT option to indicate the segment type you
want to retrieve.

ISRT command
The Insert (ISRT) command is used to add one or more segments to the database.

Format

►► EXEC DLI INSERT
ISRT USING PCB(expression)

A B ►◄

A For each parent segment (optional):

VARIABLE FIRST
LAST
CURRENT

SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
(1)

FROM(area)
MOVENEXT(data_value) GETFIRST(data_value)

►

►
SET(data_value) SETCOND(data_value) SETZERO(data_value)

►

►
WHERE(qualification statement)

(2)
FIELDLENGTH(expression)

►

186 Application Programming APIs

►
KEYS(area)

(3)
KEYLENGTH(expression)

B For the object segment (required):

VARIABLE FIRST
LAST

SEGLENGTH(expression) OFFSET(expression)
►

►
MOVENEXT(data_value) GETFIRST(data_value) SET(data_value)

►

►
SETCOND(data_value) SETZERO(data_value) SEGMENT(name)

SEGMENT((area))

►

►
FROM(area)

Notes:

1 Specify FROM on parent segments for a path command.

2 If you use multiple qualification statements, specify a length for each, using
FIELDLENGTH. For example: FIELDLENGTH(24,8)

3 You can use either the Keys option or the Where option, but not both on one
segment level.

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

VARIABLE
Indicates that a segment is variable-length.

FIRST
Specifies that you want to retrieve the first segment occurrence of a segment
type, or that you want to insert a segment as the first occurrence. Use FIRST to
insert a segment as a first occurrence of a segment type.

LAST
Specifies that you want to retrieve the last segment occurrence of a segment
type, or that you want to insert a segment as the last segment occurrence. Use
LAST to insert a segment as the last occurrence of a segment type.

CURRENT
Qualifies the command, and specifies that you want to use the level of and
levels above the current position as qualifications for this segment. Use
CURRENT to insert a segment based on your current position.

SEGMENT(name), SEGMENT((area))
Qualifies the command, specifying the name of the segment type or the area in
the program containing the name of the segment type that you want to
retrieve, insert, delete, or replace.

Chapter 1. DL/I calls reference 187

You must include at least a SEGMENT option for each segment you want to
add to the database. Unless ISRT is a path command, the lowest level
SEGMENT option specifies the segment being inserted. You cannot use a
WHERE or KEYS option for this level.

If a segment has a unique key, DL/I inserts the segment in its key sequence. (If
the segment does not have a key, or has a nonunique key, DL/I inserts it
according to the value specified for the RULES parameter during DBDGEN.

If you specify a SEGMENT option for only the lowest level segment, and do
not qualify the parent segments with SEGMENT, WHERE, or KEYS options,
you must make sure that the current position is at the correct place in the
database to insert the segment. The SEGMENT option that DL/I assumes
depends on your current position in the database record:
v If DL/I has a position established at the missing level, DL/I uses the

segment on which position is established.
v If DL/I does not have a position established at the missing level, DL/I uses

the first occurrence at that level.
v If DL/I moves forward from a position established at a higher level, DL/I

uses the first occurrence at the missing level that falls within the new path.
v If you leave out a SEGMENT option for the root level, and DL/I has position

established on a root, DL/I does not move from that root when trying to
satisfy the command.

It is good practice to always provide qualifications for higher levels to establish
the position of the segment being inserted.

If you are inserting a root segment, you need only specify a SEGMENT option.
DL/I determines the correct place for its insertion in the database by the key
taken from the I/O area. If the segment you are inserting is not a root
segment, but you have just inserted its immediate parent, the segment can be
inserted as soon as it is built in the I/O area just by using a SEGMENT option
for it in the ISRT command. You need not code the parent level segments to
establish your position.

When you specify multiple parent segments, you can mix segments with and
without the WHERE option. If you include only SEGMENT options on parent
segments, DL/I uses the first occurrence of each segment type to satisfy the
command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program
containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted. Use
FROM to insert one or more segments with one command.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

188 Application Programming APIs

GETFIRST(data_value)
Specifies that you want the search to start with the first segment occurrence in
a subset.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one
or more qualification statements, each of which compares the value of a field
in a segment to a value you supply. Each qualification statement consists of:
v The name of a field in a segment
v The relational operator, which indicates how you want the two values

compared
v The name of a data area in your program containing the value that is

compared against the value of the field

WHERE establishes position on the parents of a segment when you are
inserting that segment. You can do this by specifying a qualification of WHERE
or KEYS for the higher level SEGMENT options.

When you specify multiple parent segments, you can mix segments with and
without the WHERE option. If you include only SEGMENT options on parent
segments, DL/I uses the first occurrence of each segment type to satisfy the
command.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

KEYS(area)
Qualifies the command with the segment's concatenated key. You can use
either KEYS or WHERE for a segment level, but not both.

KEYs can be used to qualify a parent segment. Instead of using WHERE, you
can specify KEYS and use the concatenated key of the segment as qualification.
You can use the KEYS option once for each command, immediately after the
highest level SEGMENT option.

“Area” specifies an area in your program containing the segment's
concatenated key.

KEYLENGTH(expression)
Specifies the length of the concatenated key when you use the KEYS option. It
can be any expression in the host language that converts to the integer data
type; if it is a variable, it must be declared as a binary halfword value. For IBM
COBOL (or VS COBOL II), PL/I, or assembler language, KEYLENGTH is
optional. For COBOL programs that are not compiled with the IBM COBOL for
MVS & VM (or VS COBOL II) compiler, you must specify KEYLENGTH with
the KEYS option.

Usage

To add new segments to an existing database, use the ISRT command. When you
issue the ISRT command, DL/I takes the data from the I/O area you have named

Chapter 1. DL/I calls reference 189

in the FROM option and adds the segment to the database. (The initial loading of a
database requires using the LOAD command, instead of the ISRT command.)

You can use ISRT to add new occurrences of an existing segment type to a
HIDAM, HISAM, or HDAM database. For an HSAM database, you can add new
segments only by reprocessing the whole database or by adding the new segments
to the end of the database.

Before you can issue the ISRT command to add a segment to the database, your
program must build the segment to be inserted in an I/O area. If the segment has
a key, you must place the correct key in the correct location in the I/O area. If field
sensitivity is used, the fields must be in the order defined by the PSB for the
application's view of the segment.

If you are adding a root segment occurrence, DL/I places it in the correct sequence
in the database by using the key you supply in the I/O area. If the segment you
are inserting is not a root, but you have just inserted its parent, you can insert the
child segment by issuing an insert request qualified with only the segment name.
You must build the new segment in your I/O area before you issue the ISRT
request. You also qualify insert requests with the segment name when you add a
new root segment occurrence. When you are adding new segment occurrences to
an existing database, the segment type must have been defined in the DBD. You
can add new segment occurrences directly or sequentially after you have built
them in the program's I/O area.

If the segment type you are inserting has a unique key field, the location where
DL/I adds the new segment occurrence depends on the value of its key field. If
the segment does not have a key field, or if the key is not unique, you can control
where the new segment occurrence is added by specifying either the FIRST, LAST,
or HERE insert rule. Specify the rules on the RULES parameter of the SEGM
statement for the database.

Examples

Example 1

“Add information to the record for Chris Edwards about his visit to the clinic on
February 1, 1993. His patient number is 02345. He had a sore throat.”

Explanation: First, build the ILLNESS segment in your program's I/O area. Your
I/O area for the ILLNESS segment looks like this:
19930201SORETHROAT

Use the command to add this new segment occurrence to the database is:
EXEC DLI ISRT

SEGMENT(PATIENT) WHERE (PATNO=PATNO1)
SEGMENT(ILLNESS) FROM(ILLAREA);

Example 2

“Add information about the treatment to the record for Chris Edwards, and add
information about the illness.”

Explanation: You build the TREATMNT segment in a segment I/O area. The
TREATMNT segment includes the date, the medication, amount of medication, and
the doctor's name:

190 Application Programming APIs

19930201MYOCIN���
0001TRIEB�����
&�

The following command adds both the ILLNESS segment and the TREATMNT
segment to the database:
EXEC DLI ISRT

SEGMENT(PATIENT) WHERE (PATNO=PATNO1)
SEGMENT(ILLNESS) FROM(ILLAREA)
SEGMENT(TREATMNT) FROM(TRETAREA);

Example 3
EXEC DLI ISRT

SEGMENT(ILLNESS) KEYS(CONKEY)
SEGMENT(TREATMNT) FROM(TRETAREA);

Explanation: Using this command is the same as having a WHERE option qualified
on the key field for the ILLNESS and PATIENT segments.

Restrictions

Restrictions the ISRT command:
v You cannot issue the ISRT command until you have built a new segment in the

I/O area.
v You must specify at least one SEGMENT option for each segment being added

to the database.
v When inserting a segment, you must have position established on the parents of

the segment.
v If you specify a SEGMENT option for only the lowest level segment, and do not

qualify the parent segments with SEGMENT, WHERE, or KEYS options, be sure
that current position is at the correct place in the database to insert the segment.

v If you use a FROM option for a segment, you cannot qualify the segment by
using the WHERE or KEYS option; DL/I uses the key field value specified in
the I/O area as qualification.

v You must use a separate I/O area for each segment type you want to add.
v You cannot mix SEGMENT options with and without the FROM option. When

you use a FROM option for a parent segment, you must use a FROM option for
each dependent segment. (You can begin the path at any level, but you must not
leave out any levels.)

v You can only use the FIRST option with segments that have either no keys or
have a nonunique key with HERE specified on the RULES operand of the SEGM
statement in the DBD.

v You can only use the LAST option when the segment has no key or a nonunique
key, and the INSERT rule for the segment is either FIRST or HERE.

LOAD command
The Load (LOAD) command is used to add a segment sequentially while loading the
database.

Format

►► EXEC DLI LOAD
USING PCB(expression) VARIABLE

►

Chapter 1. DL/I calls reference 191

► SEGMENT(name)
SEGMENT((area)) SEGLENGTH(expression)

FROM(area) ►◄

Options

USING PCB(expression)
Specifies the DB PCB you want to use. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a
reference to a halfword in your program containing a number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Specifies the name of the segment type you want to retrieve, insert, delete, or
replace.

SEGMENT((area))
A reference to an area in your program containing the name of the segment
type. You can specify an area instead of the name of the segment in the
command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program
containing a number. (SEGLENGTH is required in COBOL programs for any
SEGMENT level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted.

Usage

The LOAD command is used for database load programs, which are described in
IMS Version 14 Database Administration.

Example
EXEC DLI LOAD

SEGMENT(ILLNESS) FROM(ILLAREA);

LOG command
The Log (LOG) command is used to write information to the system log.

Format

►► EXEC DLI LOG FROM(area) LENGTH(expression) ►◄

Options

FROM(area)
Specifies an area containing the segment to be added, replaced, or deleted.

LENGTH(expression)
Specifies the length of an area.

192 Application Programming APIs

Usage

You use the LOG command to write information to the system log.

Example
EXEC DLI LOG

FROM(ILLAREA) LENGTH(18);

Restriction

Restrictions for the LOG command:
v To use this command you must first define an I/O PCB for your program.

POS command
The Position (POS) command retrieves the location of either a dependent or the
segment.

Format

►► EXEC DLI POSITION
POS

USING PCB(n) INTO(data_area) ►

►
KEYFEEDBACK(area)

FEEDBACKLEN(expression)
SEGMENT(name)
SEGMENT((area))

►

►
WHERE(qualification_statement)
FIELDLENGTH(expression)

►◄

Options

USING PCB(n)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

INTO(data_area)
Specifies an area into which the segment is read.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (FEEDBACKLEN is required
in COBOL programs and optional in PL/I and assembler language programs.)

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to
retrieve, insert, delete, or replace.

Chapter 1. DL/I calls reference 193

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment
type. You can specify an area instead of specifying the name of the segment in
the command.

WHERE(qualification statement)
Qualifies the command, specifying the segment occurrence. Its argument is one
or more qualification statements, each of which compares the value of a field
in a segment to a value you supply.

FIELDLENGTH(expression)
Specifies the length of the field value in a WHERE option.

Usage

Use the POS command to:
v Retrieve the location of a specific sequential dependent segment, including the

last one inserted
v Determine the amount of unused space within each DEDB area

If the area specified by the POS command is unavailable, the I/O area is unchanged
and an FH status code is returned.

Restriction

The POS command is for DEDBs only.

QUERY command
The Query (QUERY) command obtains status code and other information in the
DL/I interface block (DIB), which is a subset of the IMS PCB.

Format

►► EXEC DLI QUERY USING PCB(expression) ►◄

Options

USING PCB(expression) is required. No other options are allowed with the QUERY
command.

Usage

For full-function databases, the DIB should contain NA, NU, TH or blanks. For an
explanation of the codes, see IMS Version 14 Messages and Codes, Volume 4: IMS
Component Codes.

Use the QUERY command after scheduling the PSB but before making the database
call. If the program has already issued a call using the DB PCB, you then use the
REFRESH command to update the information in the DIB.

Example

Example 1
EXEC DLI QUERY USING PCB(expression);

194 Application Programming APIs

Explanation: This example shows how to specify the QUERY command. In this
example, (n) specifies the PCB.

Example 2
EXEC DLI REFRESH DBQUERY;

Explanation: If your program has already issued a call using the DB PCB name, use
the REFRESH command to update the information in the DIB. The REFRESH
command updates all DB PCBs. You can issue it only one time.

Restrictions

Restrictions for the QUERY command:
v To use this command you must first define an I/O PCB for your program.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.

REFRESH command
The Refresh (REFRESH) command is used to obtain the most recent information from
the DIB for the most recently issued command.

Format

►► EXEC DLI REFRESH DBQUERY ►◄

Options

DBQUERY is required. Other options are not allowed with the REFRESH command.

Usage

The REFRESH command is used with the QUERY command.

The QUERY command is used after scheduling the PSB but before making the first
database call. If the program has already issued a call using the DB PCB, use the
REFRESH command to update the information in the DIB.

The REFRESH command updates all DB PCBs. It can be issued only once.

Example
EXEC DLI REFRESH DBQUERY;

Explanation

This example shows how to specify the REFRESH command.

Restrictions

Restrictions for the REFRESH command:
v To use this command, you must first define an I/O PCB for your program.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v You can issue this command only one time.

Chapter 1. DL/I calls reference 195

REPL command
The Replace (REPL) command is used to replace a segment, usually to change the
values of one or more of its fields.

Format

►► EXEC DLI REPLACE
REPL USING PCB(expression)

A B ►◄

A For each parent segment (optional):

VARIABLE SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
OFFSET(expression)

FROM(area)
MOVENEXT(data_value)

►

►
SET(data_value) SETCOND(data_value) SETZERO(data_value)

B For the object segment (required):

VARIABLE SEGMENT(name)
SEGMENT((area))

SEGLENGTH(expression)
►

►
OFFSET(expression)

FROM(area)
MOVENEXT(data_value)

►

►
SET(data_value) SETCOND(data_value) SETZERO(data_value)

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

VARIABLE
Indicates that a segment is variable-length.

SEGMENT(name)
Qualifies the command, specifying the name of the segment type you want to
retrieve, insert, delete, or replace.

SEGMENT((area))
Is a reference to an area in your program containing the name of the segment
type. You can specify an area instead of specifying the name of the segment in
the command.

SEGLENGTH(expression)
Specifies the length of the I/O area from which the segment is obtained. Its
argument can be any expression that converts to the integer data type; you can
specify either a number or a reference to a halfword in your program

196 Application Programming APIs

containing a number. (It is required in COBOL programs for any SEGMENT
level that specifies the INTO or FROM option.)

Requirement: The value specified for SEGLENGTH must be greater than or
equal to the length of the longest segment that can be processed by this call.

OFFSET(expression)
Specifies the offset to the destination parent. It can be any expression that
converts to the integer data type; you can specify either a number or a
reference to a halfword in your program containing a number. You use
OFFSET when you process concatenated segments in logical relationships. It is
required whenever the destination parent is a variable length segment.

FROM(area)
Specifies an I/O area containing the segment to be added, replaced or deleted.
You can replace more than the segment by including the FROM option after
the corresponding SEGMENT option for each segment you want to replace.
Including FROM options for one or more parent segments is called a path
command.

The argument following FROM identifies an I/O area that you have defined in
your program. You must use a separate I/O area for each segment type you
want to replace.

MOVENEXT(data_value)
Specifies a subset pointer to be moved to the next segment occurrence after
your current segment.

SET(data_value)
Specifies unconditionally setting a subset pointer to the current segment.

SETCOND(data_value)
Specifies conditionally setting a subset pointer to the current segment.

SETZERO(data_value)
Specifies setting a subset pointer to zero.

Usage

You must qualify the REPL command with at least one SEGMENT and FROM
option, which together indicate the retrieved segments you want replaced.

If the Get command that preceded the REPL command was a path command, and
you do not want to replace all of the retrieved segments or the PSB does not have
replace sensitivity for all of the retrieved segments, you can indicate which of the
segments are not to be replaced by omitting the SEGMENT option.

If your program attempts to do a path replace of a segment where it does not have
replace sensitivity, the data for the segment in the I/O area for the REPL command
must be the same as the segment returned on the preceding GET command. If the
data changes in this situation, the transaction is abended and no data is changed as
a result of the Replace command.

Notice that the rules for a REPL path command differ from the rules for an ISRT
path command. You cannot skip segment levels to be inserted with an ISRT
command, as you can with a REPL command.

To update information in a segment, you can use the REPL command. The REPL
command replaces data in a segment with data you supply in your application
program. First, you must retrieve the segment into an I/O area. You then modify

Chapter 1. DL/I calls reference 197

the information in the I/O area and replace the segment with the REPL command.
For your program to successfully replace a segment, that segment must already
have been defined as replace-sensitive in the PCB by specifying PROCOPT=A or
PROCOPT=R on the SENSEG statement in the PCB.

You cannot issue any commands using the same PCB between a Get command and
the REPL command, and you can issue only one REPL command for each Get
command.

Examples

Example 1
EXEC DLI GU SEGMENT(PATIENT) INTO(PATAREA);
EXEC DLI REPL SEGMENT(PATIENT) FROM(PATAREA);

Explanation: This example shows that you cannot issue any commands using the
same PCB between the Get command and the REPL command, and you can issue
only one REPL command for each Get command. If you issue this commands and
wanted to modify information in the segment again, you must first reissue the GU
command, before reissuing the REPL command.

Example 2

“We have received a payment for $65.00 from a patient whose ID is 08642. Update
the patient's billing record and payment record with this information, and print a
current bill for the patient.”

Explanation: The four parts to satisfying this processing request are:
1. Retrieve the BILLING and PAYMENT segments for the patient.
2. Calculate the new values for these segments by subtracting $65.00 from the

value in the BILLING segment, and adding $65.00 to the value in the
PAYMENT segment.

3. Replace the values in the BILLING and PAYMENT segments with the new
values.

4. Print a bill for the patient, showing the patient's name, number, address, the
current amount of the bill, and the amount of the payments to date.

To retrieve the BILLING and PAYMENT segments, issue a GU command. Because
you also need the PATIENT segment when you print the bill, you can include
INTO following the SEGMENT options for the PATIENT segment and for the
BILLING segment:
EXEC DLI GU

SEGMENT(PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1)
SEGMENT(BILLING) INTO(BILLAREA)
SEGMENT(PAYMENT) INTO(PAYAREA);

After you have calculated the current bill and payment, you can print the bill, then
replace the billing and payment segments in the database. Before issuing the REPL
command, you must change the segments in the I/O area.

Because you have not changed the PATIENT segment, you do not need to replace
it when you replace the BILLING and PAYMENT segments. To indicate to DL/I
that you do not want to replace the PATIENT segment, you do not specify the
SEGMENT option for the PATIENT segment in the REPL command.

198 Application Programming APIs

EXEC DLI REPL
SEGMENT(BILLING) FROM(BILLAREA)
SEGMENT(PAYMENT) FROM(PAYAREA);

This command tells DL/I to replace the BILLING and PAYMENT segments, but
not to replace the PATIENT segment.

These two examples are called path commands. You use a path REPL command to
replace more than one segment with one command.

Example 3

“Steve Arons, patient number 10250, has moved to a new address in this town. His
new address is 4638 Brooks Drive, Lakeside, California. Update the database with
his new address.”

Explanation: You need to retrieve the PATIENT segment for Steve Arons and
replace the address portion of the segment. To retrieve the PATIENT segment, you
can use this GU command (assuming PATNO1 contains 10250):
EXEC DLI GU

SEGMENT(PATIENT) INTO(PATAREA) WHERE (PATNO=PATNO1);

Since you are not replacing the first two fields of the PATIENT segment (PATNO
and NAME), you do not have to change them in the I/O area. Place the new
address in the I/O area following the PATNO and NAME fields. Then you issue
the REPL command:
EXEC DLI REPL

SEGMENT(PATIENT) FROM(PATAREA);

Example 4
EXEC DLI GU SEGMENT(PATIENT) INTO(PATAREA)

WHERE (PATNO=PATNO1)
SEGMENT(ILLNESS) INTO(ILLAREA)
SEGMENT(TREATMNT) INTO(TRETAREA);

EXEC DLI REPL SEGMENT(PATIENT) FROM(PATAREA)
SEGMENT(TREATMNT) FROM(TRETAREA);

Explanation: This example assumes that you want to replace the PATIENT and
TREATMNT segments for patient number 10401, but you do not want to change
the ILLNESS segment. To do this issue this command (assuming PATNO1 contains
10401).

Restrictions

Restrictions for the REPL command:
v You cannot issue any commands using the same PCB between the Get command

and the REPL command.
v You can issue only one REPL command for each Get command.
v To modify information in a segment, you must first reissue the GU command

before reissuing the REPL command.
v You must qualify the REPL command with at least one SEGMENT option and

one FROM option.
v If you use a FROM option for a segment, you cannot qualify the segment by

using the WHERE or KEYS option; DL/I uses the key field value specified in
the I/O area as qualification.

Chapter 1. DL/I calls reference 199

RETRIEVE command
Use the RETRIEVE command to determine current position in the database in batch
and BMP programs.

Format

►► EXEC DLI RETRIEVE USING PCB(expression) KEYFEEDBACK(area) ►

► FEEDBACKLEN(expression) ►◄

Options

USING PCB(expression)
Specifies the DB PCB you want to use for the command. Its argument can be
any expression that converts to the integer data type; you can specify either a
number or a reference to a halfword in your program containing a number.

expression specifies the PCB for which you want to retrieve the concatenated
key. It can be any expression in the host language that converts to the integer
data type. You can specify either a number or a reference to a halfword
containing a number. The value must be a positive integer not greater than the
number of PCBs generated for the PSB. The first PCB in the list, the I/O PCB,
is 1. The first DB PCB in the list is 2, the second is 3, and so forth.

KEYFEEDBACK(area)
Specifies an area into which the concatenated key for the segment is placed. If
the area is not long enough, the key is truncated.

FEEDBACKLEN(expression)
Specifies the length of the key feedback area into which you want the
concatenated key retrieved. Its argument can be any expression that converts to
the integer data type; you can specify either a number or a reference to a
halfword in your program containing a number. (It is required in COBOL
programs and optional in PL/I and assembler language programs.)

expression is the length of the key feedback I/O area. It can be any expression
in the host language that converts to integer data type; you can specify either a
number or a reference to a halfword containing a number. For IBM COBOL for
z/OS & VM (or VS COBOL II), PL/I, or assembler language, FEEDBACKLEN
is optional. For COBOL programs that are not compiled with the IBM COBOL
for z/OS & VM (or VS COBOL II) compiler, you must specify FEEDBACKLEN
with the KEYFEEDBACK option.

Usage

If your program issues symbolic checkpoint commands it must also issue the
extended RESTART (XRST) command or the RETRIEVE command. The RETRIEVE
command is issued once, at the start of your program. You can use the RETRIEVE
command to start your program normally, or to restart it in case of an abnormal
termination.

You can use the RETRIEVE command from a specific checkpoint id or a time/date
stamp. Because the RETRIEVE command attempts to reposition the database, your
program also needs to check for correct position.

After issuing the RETRIEVE command, the segment type and level on which the
position is established is returned to the DIBSEGM and DIBSEGLV fields in the

200 Application Programming APIs

DIB. The value in DIBKFBL is set to the actual length of the concatenated key. The
DIBSTAT field contains the value returned from the GU repositioning, not the XRST
command.

The RESTART command attempts to reposition DL/I databases by issuing an
internal GU qualified with the concatenated key. It is your responsibility to verify
that your position in the database from the GU repositioning is the correct position
for the checkpoint ID used in the XRST command. You can use the RETRIEVE
command to retrieve the concatenated key used with the GU repositioning, and
determine your current position in all the PCBs your program accesses.

Example
EXEC DLI RETRIEVE USING PCB(2) KEYFEEDBACK(KEYAREA);

EXEC DLI RETRIEVE USING PCB(5) KEYFEEDBACK(KEYAREA);

Explanation

These RETRIEVE commands retrieve the concatenated key for the first and fourth
DB PCBs. (The first PCB in the list is the I/O PCB, so the first DB PCB is the
second one in the list.) After issuing the first RETRIEVE command, you can
determine your position in the first DB PCB by examining the concatenated key in
KEYAREA, and the values returned in the DIBSEGM and DIBSEGLV fields in the
DIB. After issuing the second RETRIEVE command, you can determine your position
in the fourth DB PCB by examining the same fields.

Restrictions

Restrictions for the RETRIEVE command:
v You cannot use this command in a CICS program.
v To use this command, you must first define an I/O PCB for your program.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v You cannot use this command unless the system log is stored on direct access

storage and dynamic backout has been specified. You must also specify BKO=Y
in the parm field of your JCL when you execute the program.

ROLB command
The Rollback (ROLB) command is used to dynamically back out changes and return
control to your program. You cannot use this command in a CICS program.

Format

►► EXEC DLI ROLB ►◄

Options

No options are allowed with the ROLB command.

Usage

When a batch or BMP program determines that some of its processing is invalid,
two commands make it possible for the program to remove the effects of its
inaccurate processing. These are the rollback commands, ROLL and ROLB.

Chapter 1. DL/I calls reference 201

The ROLB command is valid in batch programs when the system log is stored on
direct access storage and dynamic backout has been specified through the use of
the BKO execution parameter.

Issuing the ROLB causes IMS DB to back out any changes your program has made
to the database since its last checkpoint, or since the beginning of the program if
your program has not issued a checkpoint. When you issue a ROLB command, IMS
DB returns control to your program after backing out the changes, so that your
program can continue processing with the next statement after the ROLB command.

Example
EXEC DLI ROLB;

Explanation

This example shows how to dynamically back out changes and return control to
your program with the ROLB command.

Restrictions

Restrictions for the ROLB command:
v You cannot use this command in a CICS program.
v You must first define an I/O PCB for your program before you can use this

command.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v You cannot use this command when the system log is stored on direct access

storage and dynamic backout has not been specified.
Related reference:
“ROLL command”

ROLL command
The Roll (ROLL) command is used to dynamically back out changes. You cannot use
this command in a CICS program;

Format

►► EXEC DLI ROLL ►◄

Options

No options are allowed with the ROLL command.

Usage

When a batch program determines that some of its processing is invalid, two
commands make it possible for the program to remove the effects of its inaccurate
processing. These are the rollback commands, ROLL and ROLB.

You can use ROLL in batch programs.

Issuing the ROLL causes CICS and DL/I to back out any changes your program has
made to the database since its last checkpoint, or since the beginning of the

202 Application Programming APIs

program provided your program has not issued a checkpoint. When you issue a
ROLL command, DL/I terminates your program after backing out the updates.

Example
EXEC DLI ROLL;

Explanation

This example shows how to dynamically back out changes with the ROLL
command.

If you use the ROLL command, IMS terminates the program with user abend code
U0778. This type of abnormal termination does not produce a storage dump.

Restrictions

Restrictions for the ROLL command:
v You cannot use this command in a CICS program.
v You must first define an I/O PCB for your program before you can use this

command.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v You cannot use this command when the system log is stored on direct access

storage and dynamic backout has been specified. You must also specify BKO=Y
in the parm field of your JCL when you execute the program.

Related reference:
“ROLB command” on page 201

ROLS command
The Rollback to SETS or SETU (ROLS) command is used to back out to a processing
point set by an earlier SETS command.

Format

►► EXEC DLI ROLS USING PCB(expression)
TOKEN(token) AREA(data_area)

►◄

Options

USING PCB(expression)
Specifies the DB PCB you want to use. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a
reference to a halfword in your program containing a number.

TOKEN(token)
A 4-byte token associated with the current processing point. If you specify both
TOKEN and AREA, the ROLS command backs out to the SETS or SETU you
specified.

AREA(data_area)
The name of the area to be restored to the program when a ROLS command is
issued. The first 2 bytes of the data-area field contain the length of the

Chapter 1. DL/I calls reference 203

data-area, including the length itself. The second 2 bytes must be set to X'0000'.
If you specify both TOKEN and AREA, the ROLS command backs out to the
SETS you specified.

The ROLS call has two formats: with TOKEN and AREA (for IOPCB only) and
without TOKEN and AREA (for IOPCB or DBPCB).

Usage

Use the SETS and ROLS commands to define multiple points at which to preserve
the state of DL/I full-function databases and to return to these points later. (For
example, you can use them so your program can handle situations that can occur
when PSB scheduling completes without all of the referenced DL/I databases
being available.)

Use of the SETS and ROLS commands apply only to DL/I full-function databases.
This means that if a logical unit of work (LUW) is updating types of recoverable
resources other than full-function databases, for example, VSAM files, the SETS and
ROLS requests have no effect on the non-DL/I resources. The backout points are not
CICS commit points; they are intermediate backout points that apply only to
DBCTL resources. It is up to you to ensure the consistency of all the resources
involved.

You can use the ROLS command to backout to the state all full-function databases
were in before either a specific SETS or SETU request or the most recent commit
point.

Examples

Example 1
EXEC DLI ROLS TOKEN(token1) AREA(data_area)

Explanation: In this example (for IOPCB only), backout takes place to the
corresponding TOKEN, as specified by a prior SETS call, and control returns to the
application.

Example 2
EXEC DLI ROLS USING PCB(PCB5)

Explanation: In this example, for IOPCB or DBPCB, backout takes place to the prior
sync point and the application is pseudoabended with a U3033 status code.
Control does not return to the application.

In this example, PCB5 is the number of a DB PCB that has received a 'data
unavailable' status code. This command results in the same action that would have
occurred had the program not issued an ACCEPT STATUSGROUPA command.
(See the topic "Data Availability Enhancements" in IMS Version 14 Application
Programming.)

Example 3
EXEC DLI ROLS

Explanation: In this example, for IOPCB or DBPCB, backout takes place to the prior
sync point and the application is pseudoabended with a U3033, provided the

204 Application Programming APIs

previous reference to that PCB gave an unavailable status code. Control does not
return to the application.

Restrictions

Restrictions for the ROLS command:
v To use this command you must first define an I/O PCB for your program.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v You cannot use this command when the system log is stored on direct access

storage and dynamic backout has been specified. You must also specify BKO=Y
in the parm field of your JCL when you execute the program.

SCHD command
The Schedule (SCHD) command is used to schedule a PSB in a CICS online
program.

For information on the I/O PCB, see the topic "PCBs and PSB" in IMS Version 14
Application Programming.

Format

►► EXEC DLI SCHEDULE
SCHD

PSB(name)
PSB((area)) SYSSERVE NODHABEND

►◄

Options

PSB(name)
Specifies the name of the PSB available to your application program that you
want to schedule with the SCHD command.

PSB((area))
Specifies an 8-byte data area in your program that contains the name of the
PSB available to your program that you want to schedule with the SCHD
command.

SYSSERVE
Specifies that the application program can handle an I/O PCB and might issue
a system service request in the logical unit of work (LUW).

NODHABEND
Specifies that a CICS transaction does not fail with a DHxx abend.

Should a schedule fail under EXEC DLI, a status code might be returned in the
DIB, causing a CICS transaction to fail with a DHxx abend. This option
prevents this. Following an unsuccessful SCHD command, the control, as well as
the status code in the DIB are passed back to the application program, which
can then take the appropriate action.

Usage

Before you can access DL/I databases from a CICS program, you must notify DL/I
that your program will be accessing a database by scheduling a PSB. Do this by
issuing the SCHD command. When you no longer plan to use a PSB, or you want to
schedule a subsequent PSB (one or more), you must terminate the previous PSB

Chapter 1. DL/I calls reference 205

with the TERM command. (For more information on the I/O PCB and PSB, see the
topic "PCBs and PSB" in IMS Version 14 Application Programming)

The SCHD command can be specified two ways, as shown by the following code
examples.

Example
EXEC DLI SCHD PSB(psbname)SYSSERVE;

EXEC DLI SCHD PSB((AREA));

Explanation

These examples show two ways to schedule a PSB in a CICS program.

SETS command
The Set a Backout Point (SETS) command is used to define points in your
application at which to preserve the state of the DL/I databases before initiating a
set of DL/I requests to perform a function. Your application can issue a ROLS
command later if it cannot complete the function.

Format

►► EXEC DLI SETS
TOKEN(mytoken) AREA(data_area)

►◄

Options

TOKEN(mytoken)
A 4-byte token associated with the current processing point.

AREA(data_area)
The name of the area to be restored to the program when a SETS command is
issued. The first 2 bytes of the data-area field contain the length of the
data-area, including the length itself. The second 2 bytes must be set to X'0000'.

Usage

You can use the SETS command to define multiple points at which to preserve the
state of the DL/I databases and to return to these points later. For example, you
can use the SETS command to allow your program to handle situations that can
occur when PSB scheduling completed without all of the referenced DL/I
databases being available.

The SETS command applies only to DL/I full-function databases. If a logical unit of
work (LUW) is updating types of recoverable resources other than full-function
databases, for example VSAM files, the SETS command has no effect on the
non-DL/I resources. The backout points are not CICS commit points; they are
intermediate backout points that apply only to DBCTL resources. It is up to you to
ensure the consistency of all the resources involved.

Example

EXEC DLI SETS TOKEN(mytoken) AREA(data_area)

Explanation

206 Application Programming APIs

This example shows how to specify the SETS command.

Restrictions

Restrictions for the SETS command:
v To use this command you must first define an I/O PCB for your program.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v In batch, you can only use this command when the system log is stored on

direct access storage and dynamic backout has been specified. You must also
specify BKO=Y in the parm field of your JCL when you execute the program.

v It is rejected when the PSB contains a DEDB or MSDB PCB, or when the call is
made to a DB2 database.

v It is valid, but not functional, if unsupported PCBs exist in the PSB or if the
program uses an external subsystem.

SETU command
The Set a Backout Point Unconditionally (SETU) command is identical to the SETS
command except that it does not get rejected if unsupported PCBs are in the PSB
or if the program uses an external subsystem.

Format

►► EXEC DLI SETU
TOKEN(mytoken) AREA(data_area)

►◄

Options

TOKEN(mytoken)
A 4-byte token associated with the current processing point.

AREA(data_area)
The name of the area to be restored to the program when a SETU command is
issued. The first 2 bytes of the data-area field contain the length of the
data-area, including the length itself. The second 2 bytes must be set to X'0000'.

Usage

You can use the SETU command to define multiple points at which to preserve the
state of the DL/I databases and to return to these points later. For example, you
can use the SETU command to allow your program to handle situations that can
occur when PSB scheduling completed without all of the referenced DL/I
databases being available.

The SETU command applies only to DL/I full-function data bases. If a logical unit
of work (LUW) is updating types of recoverable resources other than full-function
databases, such as VSAM files, the SETU command has no effect on the non-DL/I
resources. The backout points are not CICS commit points; they are intermediate
backout points that apply only to DBCTL resources. It is up to you to ensure the
consistency of all the resources involved.

Chapter 1. DL/I calls reference 207

Example

EXEC DLI SETU TOKEN(mytoken) AREA(data_area)

Explanation

This example shows how to specify the SETU command.

Restrictions

Restrictions for the SETU command:
v You cannot use this command in a CICS program.
v To use this command you must first define an I/O PCB for your program.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v You cannot use this command when the system log is stored on direct access

storage and dynamic backout has been specified. You must also specify BKO=Y
in the parm field of your JCL when you execute the program.

STAT command
The Statistics (STAT) command is used to obtain IMS database statistics that you
can use in debugging your program.

This topic contains Product-sensitive Programming Interface information.

Format

►► EXEC DLI STATISTICS
STAT USING PCB(expression)

INTO(area) ►

►
LENGTH(expression)

VSAM

NONVSAM

FORMATTED

UNFORMATTED
SUMMARY

►◄

Options

USING PCB(expression)
Specifies the DB PCB you want to use. Its argument can be any expression that
converts to the integer data type; you can specify either a number or a
reference to a halfword in your program containing a number.

INTO(area)
Specifies an area into which the data is read.

LENGTH(expression)
Specifies the length of an area.

VSAM/NONVSAM
Specifies database type.

FORMATTED/UNFORMATTED/SUMMARY
Specifies type of output.

208 Application Programming APIs

Usage

The STAT command is described in IMS Version 14 Application Programming.

Example

For examples of the STAT command, see IMS Version 14 Application Programming.

SYMCHKP command
The Symbolic Checkpoint (SYMCHKP) command is used to issue a symbolic
checkpoint and to end a logical unit of work.

Format

►► EXEC DLI SYMCHKP ID(chkpid)
ID('literal')

►

► ▼

AREA#(area#)LENGTH#(expression#)
►◄

Options

ID(chkpid)
Is the name of an 8-byte area in your program containing the checkpoint ID. If
you are using PL/I, specify this parameter as a pointer to a major structure, an
array, or a character string.

ID('literal')
Is the 8-byte checkpoint ID, enclosed in quotation marks.

AREA#(area#)
Specifies the areas in your program you want IMS to checkpoint. You do not
need to specify any area to checkpoint; however, you cannot specify more than
seven areas. If you specify more than one area, you must include all
intervening areas. For example, if you specify AREA3, you must also specify
AREA1 and AREA2. The areas you specify using the SYMCHKP command must
be the same and in the areas specified in the XRST command.

LENGTH#(expression#)
Can be any expression in the host language that converts to the integer data
type; you can specify either a number or a reference to a halfword containing a
number. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or
assembler language programs, LENGTH1 to LENGTH7 are optional. For
COBOL programs that are not compiled with the IBM COBOL for z/OS & VM
(or VS COBOL II) compiler, LENGTHx (where x is 1 to 7) is required for each
AREAx (where x is 1 to 7) that you specify.

Usage

The two kinds of commands that allow you to make checkpoints are: the CHKP, or
basic Checkpoint command, and the SYMCHKP, or Symbolic Checkpoint command.

Batch programs can use either the symbolic or the basic command.

Chapter 1. DL/I calls reference 209

Both checkpoint commands make it possible for you to commit your program's
changes to the database and to establish places from which the program can be
restarted, should it terminate abnormally. You must not use the CHKPT=EOV
parameter on any DD statement to take an IMS checkpoint.

Refer to IMS Version 14 Application Programming for an explanation of when and
why you should issue checkpoints in your program. Both commands cause a loss
of database position at the time the command is issued. Position must be
reestablished by a GU command or other method of establishing position.

In addition to committing your program's changes to the database and establishing
places from which your program can be restarted, the Symbolic Checkpoint
command:
v Works with the Extended Restart (XRST) command to restart your program if it

terminates abnormally.
v Can save as many as seven data areas in your program, which are restored

when your program is restarted. You can save variables, counters, and status
information.

Example
EXEC DLI SYMCHKP

ID(chkpid)
AREA1(area1) LENGTH1(expression1)
...
AREA7(area7) LENGTH7(expression7)

Explanation

This example shows how to issue a symbolic checkpoint and to end a logical unit
of work with a SYMPCHKP command.

Restrictions

Restrictions for the SYMCHKP command:
v If you issue this command, you must also issue the XRST command.
v You cannot use this command in a CICS program.
v To use the SYMCHKP command you must first define an I/O PCB for your

program.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v The areas you specify using the SYMCHKP command must be the same, and in the

same order, as the areas specified in the XRST command.
v If you specify more than one area, you must specify all intervening areas. For

example, if you specify AREA3, you must also specify AREA1 and AREA2.
v When specifying expression1 with a COBOL program that is not compiled with

the IBM COBOL for z/OS & VM (or the VS COBOL II) compiler, LENGTHx
(where x is 1 to 7) is required for each AREAx (where x is 1 to 7) that you
specify.

TERM command
The Terminate (TERM) command is used to terminate a PSB in a CICS online
program.

210 Application Programming APIs

Format

►► EXEC DLI TERMINATE
TERM

►◄

Options

No options are allowed with the TERM command.

Usage

If you want to use a PSB other than the one already scheduled, use the TERM
command to release the PSB.

When you issue the TERM command, all database changes are committed and
cannot be backed out. Because returning to CICS also terminates the PSB and
commits changes, you need not use the TERM command unless you want to
schedule another PSB, or commit database changes before returning to CICS.

No options are allowed with the TERM command. If your program subsequently
needs a PSB that has terminated, it must reschedule that PSB by issuing another
SCHD command.

In most applications, you do not need to use the TERM command.

Example
EXEC DLI TERM

Explanation

This example shows how to terminate a PSB with the TERM command.

XRST command
The Extended Restart (XRST) command is used to issue an extended restart, and to
perform a normal start or an extended restart from a checkpoint ID or time/date
stamp.

If you use Symbolic Checkpoint commands in your program, you must use the
XRST command.

Format

►► EXEC DLI XRST
MAXLENGTH(expression) ID(chkpid)

ID('literal')

►

► ▼

AREA#(area#)LENGTH#(expression#)
►◄

Chapter 1. DL/I calls reference 211

Options

MAXLENGTH(expression)
Specifies the length of an area from which a program is restarted. This
parameter is the longest segment in the PSB, or of all the segments in a path, if
you use path commands in your program. It can be any expression in the host
language that converts to the integer data type. You can specify either a
number or a reference to a halfword containing a number. MAXLENGTH is
not required, and defaults to 512 bytes.

ID(chkpid) ID('literal')
This parameter is either the name of a 30-byte area in your program or a
30-byte checkpoint ID, enclosed in quotation marks. This parameter is optional;
you can specify a checkpoint ID or a time/date stamp in the parm field of
your JCL instead. If you specify both, IMS uses the value in the parm field of
the EXEC statement. If you are starting your program normally, do not specify
a checkpoint ID, or ensure that the field pointed to by the chkpid contains
blanks.

If your program is restarted and the CKPTID= value in the PARM field of the
EXEC statement is not used, then the rightmost bytes beyond the checkpoint
ID being used in the I/O area must be set to blanks.

You can issue a XRST command after supplying a time/date stamp of
IIIIDDDHHMMSST, or from a specific checkpoint in your program by
supplying a checkpoint ID. IIIIDDD is the region ID and day; HHMMSST is
the actual time in hours, minutes, seconds, and tenths of seconds. The system
message DFS0540I supplies the checkpoint ID and time/date stamp.

If you are using PL/I, specify chkpid as a pointer to a major structure, an array,
or a character string.

AREA#(area#)
Area# specifies the first area in your program you want to restore. You can
specify up to seven areas. You are not required to specify any areas; however,
if you specify more than one area, you must include all intervening areas. For
example, if you specify AREA3, you must also specify AREA1, and AREA2.
The areas you specify on the XRST command must be the same—and in the
same order—as the areas you specify on the SYMCHKP command. When you
restart the program, only the areas you specified in the SYMCHKP command are
restored.

LENGTH#(expression#)
Specifies the length of an area from which a program is restarted. Its argument
can be any expression in the host language that converts to the integer data
type; you can specify either a number or a reference to a halfword containing a
number. For IBM COBOL for z/OS & VM (or VS COBOL II), PL/I, or
assembler language programs LENGTH1 to LENGTH7 are optional. For
COBOL programs that are not complied with the IBM COBOL for z/OS & VM
(or VS COBOL II) compiler, LENGTHx (where x is 1 to 7) is required for each
AREAx (where x is 1 to 7) that you specify. Each qualification statement
consists of:
v The name of a field in a segment
v The relational operator, which indicates how you want the two values

compared
v The name of a data area in your program containing the value that is

compared against the value of the field

212 Application Programming APIs

Usage

If your programs issues Symbolic Checkpoint commands it must also issue the
Extended Restart (XRST) command. The XRST is issued once, at the start of your
program. You can use the XRST command to start your program normally, or to
extend restart it in case of an abnormal termination.

You can extend restart your program from a specific checkpoint ID, or a time/date
stamp. Because the XRST attempts to reposition the database, your program also
needs to check for correct position.

After issuing the XRST command, you should test the DIBSEGM field in the DIB.
After a normal start, the DIBSEGM field should contain blanks. At the completion
of an Extended Restart, the DIBSEGM field will contain a checkpoint ID. Normally,
XRST will return the 8-byte symbolic checkpoint ID, followed by 4 blanks. If the
8-byte ID consists of all blanks, then XRST will return the 14-byte time-stamp ID.
The only successful status code for an XRST command is a blank status code. If
DL/I detects any error while processing the XRST command, your program abends.

Example
EXEC DLI XRST MAXLENGTH(expression)

ID(chkpid)
AREA1(area1) LENGTH1(expression1)
...
AREA7(area7) LENGTH7(expression7)

Explanation

This example shows how to specify the XRST command.

Restrictions

Restrictions for the XRST command:
v You cannot use this command in a CICS program.
v To use this command you must first define an I/O PCB for your program.
v You cannot reestablish position in the midst of nonunique keys or nonkeyed

segments.
v You cannot use this command unless the system log is stored on direct access

storage and dynamic backout has been specified. You must also specify BKO=Y
in the parm field of your JCL when you execute the program.

Command code reference
Use the following reference information for the command codes.

Restriction: Command codes cannot be used by MSDB calls.

Restrictions: The following restrictions apply for Fast Path secondary index
command code and multiple SSA support:
v The C command code cannot be specified in any SSA other than the first SSA. If

specified, it will be rejected with a status code of AJ.
v The V command code for an ISRT call is ignored.
v A, G, and subset pointer related command codes (M, R, S, W, and Z) are not

supported. They are rejected with a status code of AJ.

Chapter 1. DL/I calls reference 213

Restrictions: The following restrictions apply for any DL/I call for a physical
parent segment of the target segment where target segment is not the root
segment:
v The P, Q, U, and V command codes are ignored.
v The field name must be the sequence field name for the parent segment if the

SSA contains a qualification statement. If any field name other than the sequence
field name is specified, it will be rejected with a status code of AK.

Table 52. Summary of command codes

Command
code Description

A Clear positioning and start the call at the beginning of the database.

C Use the concatenated key of a segment to identify the segment.

D Retrieve or insert a sequence of segments in a hierarchic path using only
one call, instead of using a separate (path) call for each segment.

F Back up to the first occurrence of a segment under its parent when
searching for a particular segment occurrence. Disregarded for a root
segment.

G Prevent randomization or the calling of the HALDB Partition Selection exit
routine and search the database sequentially.

L Retrieve the last occurrence of a segment under its parent.

M Move a subset pointer to the next segment occurrence after your current
position. (Used with DEDBs only.)

N Designate segments that you do not want replaced when replacing segments
after a Get Hold call. Typically used when replacing a path of segments.

O Either field names or both segment position and lengths can be contained in
the SSA qualification for combine field position.

P Set parentage at a higher level than what it usually is (the lowest-level SSA
of the call).

Q Reserve a segment so that other programs cannot update it until you have
finished processing and updating it.

R Retrieve the first segment occurrence in a subset. (Used with DEDBs only.)

S Unconditionally set a subset pointer to the current position. (Used with
DEDBs only.)

U Limit the search for a segment to the dependents of the segment occurrence
on which position is established.

V Use the hierarchic level at the current position and higher as qualification
for the segment.

W Set a subset pointer to your current position, if the subset pointer is not
already set. (Used with DEDBs only.)

Z Set a subset pointer to 0, so it can be reused. (Used with DEDBs only.)

- Null. Use an SSA in command code format without specifying the
command code. Can be replaced during execution with the command codes
that you want.

The following table shows the list of command codes with applicable calls.

214 Application Programming APIs

Table 53. Command codes and related calls

Command Code GU GHU GN GHN
GNP

GHNP REPL ISRT DLET

A X

C X X X X

D X X X X

F X X X X

G X

L X X X X

M X X X X X

N X

O X X X X

P X X X X

Q X X X X

R X X X X

S X X X X X

U X X X X

V X X X X

W X X X X X

Z X X X X X X

- X X X X X X

A command code
You can use the A command code to cause position in the database to be cleared
which will result in the call starting at the beginning of the database.

If an application had been traversing through a database and not finding the
requested data down a certain path, it could issue a qualified GN or GHN call
with command code A to reset position at the beginning of the database and
search a different path for the data.

C command code
You can use the C command code to indicate to IMS that (instead of supplying a
qualification statement) you are supplying the segment's concatenated key as a
means of identifying it. You can use either the C command code or a qualification
statement, but not both.

You can use the C command code for all Get calls and for the ISRT call. When you
code the concatenated key, enclose it in parentheses following the *C, and place it
in the same position that would otherwise contain the qualification statement.

For example, suppose you wanted to satisfy this request:

Did Joan Carter visit the clinic on March 3, 2009? Her patient number is
07755.

The PATIENT segment's key field is the patient number, and the ILLNESS
segment's key field is the date field, so the concatenated key is 0775520090303. This

Chapter 1. DL/I calls reference 215

number is comprised of four digits for the year, followed by two digits for both
the month and the day. You issue a GU call with the following SSA to satisfy the
request:
GU ILLNESSb*C(0775520090303)

Using the C command code is sometimes more convenient than a qualification
statement because it is easier to use the concatenated key than to move each part
of the qualification statement to the SSA area during program execution. Using the
segment's concatenated key is the equivalent of giving all the SSA in the path to
the segment qualified on their keys.

For example, suppose that you wanted to answer this request:

What treatment did Joan Carter, patient number 07755, receive on March 3,
2009?

Using qualification statements, you would specify the following SSA with a GU call:
GU PATIENTb(PATNObbbEQ07755)

ILLNESSb(ILLDATEbEQ20090303)
TREATMNTb

Using a C command code, you can satisfy the previous request by specifying the
following SSA on a GU call:
GU ILLNESSb*C(0775520090303)

TREATMNTb

If you need to qualify a segment by using a field other than the key field, use a
qualification statement instead of the C command code.

Only one SSA with a concatenated key is allowed for each call. To return segments
to your program in the path to the segment specified by the concatenated key, you
can use unqualified SSA containing the D command code.

For example, if you want to return the PATIENT segment for Joan Carter to your
I/O area, in addition to the ILLNESS segment, use the call:
GU PATIENTb*Db

ILLNESSb*C(0775520090303)

You can use the C command code with the object segment for a Get call, but not
for an ISRT call. The object segment for an ISRT call must be unqualified.

D command code
You can use the D command code to retrieve or insert a sequence of segments in a
hierarchic path with one call rather than retrieving or inserting each segment with
a separate call. A call that uses the D command code is called a path call.

For your program to use the D command code, the P processing option must be
specified in the PCB, unless your program uses command code D when processing
DEDBs.

Related reading: For more information on using the P processing option, see the
description of PSB generation in IMS Version 14 System Utilities.

216 Application Programming APIs

Retrieving a sequence of segments

When you use the D command code with retrieval calls, IMS places the segments
in your I/O area. The segments in the I/O area are placed one after the other, left
to right, starting with the first SSA you supplied. To have IMS return each segment
in the path, you must include the D command code in each SSA. You can,
however, include an intervening SSA without the D command code. You do not
need to include the D command code on the last segment in the path, because IMS
always returns the last segment in the path to your I/O area.

The D command code has no effect on the IMS retrieval logic. The only thing it
does is cause each segment to be moved to your I/O area. The segment name in
the PCB is the lowest-level segment that is retrieved or the last level that is
satisfied in the call in the case of a GE (not-found) status code. Higher-level
segments with the D command code are placed in the I/O area.

If IMS is unable to find the lowest segment your program has requested, it returns
a GE (not-found) status code, just as it does if your program does not use the D
command code and IMS is unable to find the segment your program has
requested. This is true even if IMS reaches the end of the database before finding
the lowest segment your program requested. If IMS reaches the end of the
database without satisfying any levels of a path call, it returns a GB (end of
database) status code. However, if IMS returns one or more segments to your I/O
area (new segments for which there was no current position at the start of the
current call), and if IMS is unable to find the lowest requested segment, IMS
returns a GE status code, even if it has reached the end of the database.

The advantages of using the D command code are significant even if your program
is not sure that it will need the dependent segment returned by D. For example,
suppose that after examining the dependent segment, your program still needs to
use it. Using the D command, your program has the segment if you need it, and
your program is not required to issue another call for the segment.

For an example of the D command code, suppose your program has this request:

Compute the balance due for each of the clinic's patients by subtracting the
payments received from the amount billed; print bills to be mailed to each
patient.

To process this request for each patient, your program needs to know the patient's
name and address, what the charges are for the patient, and the amount of
payment the patient has made. Issue this call until your program receives a GE
status code indicating that no more patient segments exist:
GN PATIENT�*D�

BILLING�*D�
PAYMENT��

Each time you issue this call, your I/O area contains the patient segment, the
billing segment, and the payment segment for a particular person.

Inserting a sequence of segments

With ISRT calls, your program can use the D command code to insert a path of
segments simultaneously. Your program need not include D for each SSA in the
path. Your program just specifies D on the first segment that you want IMS to
insert. IMS inserts the segments in the path that follow.

Chapter 1. DL/I calls reference 217

For example, suppose your program has this request:

Judy Jennison visited the clinic for the first time. Add a record that includes
PATIENT, ILLNESS, and TREATMNT segments.

After building the segments in your I/O area, issue an ISRT call with the following
SSA:
ISRT PATIENT�*D�

ILLNESS��
TREATMNT�

Not only is the PATIENT segment added, but the segments following the PATIENT
segment, ILLNESS and TREATMNT, are also added to the database.

You cannot use the D command code to insert segments if a logical child segment
in the path exists.

F command code
You can use the F command code to start the search with the first occurrence of a
certain segment type or to insert a new segment as the first occurrence in a chain
of segments.

Retrieving a segment as the first occurrence

You can use the F command code for GN and GNP calls. Using it with GU calls is
redundant (and is disregarded) because GU calls can already back up in the
database. When you use F, you indicate that you want the search to start with the
first occurrence of the segment type you indicate under its parent in attempting to
satisfy this level of the call.

You can use the F command code for GN and GNP calls to back up in the database.
You can back up to the first occurrence of the segment type that has current
position, or you can back up to a segment type that is before the current position
in the hierarchy.

Restriction: The parent of the segment that you are backing up from must be in
the same hierarchic path as the segment you are backing up to. IMS disregards F
when you supply it at the root level or with a GU or GHU.

The search must start with the first occurrence of the segment type that you
indicate under the parent. When the search at that level is satisfied, that level is
treated as though a new occurrence of a segment has satisfied the search. This is
true even when the segment that satisfies an SSA where F command code is
specified as the same segment occurrence on which DL/I was positioned before
the call was processed.

When a new segment occurrence satisfies an SSA, the position of all dependent
segments is reset. New searches for dependent segments then start with the first
occurrence of that segment type under its parent.

Inserting a segment as the first occurrence

When you use F with an ISRT call, you are indicating that you want IMS to insert
the segment you have supplied as the first segment occurrence of its segment type.
Use F with segments that have either no key at all or a non unique key, and that
have HERE specified on the RULES operand of the SEGM statement in the DBD. If

218 Application Programming APIs

you specify HERE in the DBD, the F command code overrides this, and IMS
inserts the new segment occurrence as the first occurrence of that segment type.

Using the F command code to override the RULES specification on the DBD
applies only to the path (either logical or physical) that you are using to access the
segment for the ISRT call. For example, if you are using the physical path to access
the segment, the command code applies to the physical path but not to the logical
path. For clarification of using command codes with the RULES specification, ask
the database administrator at your installation.

For example, suppose that you specified RULES=HERE in the DBD for the
TREATMNT segment. You want to satisfy this request:

Mary Martin visited the clinic today and visited a number of different
doctors. Add the TREATMNT segment for Dr. Smith as the first TREATMNT
segment for the most recent illness.

First you build a TREATMNT segment in your I/O area:
19930302ESEDRIXbbb0040SMITHbbbbb

Then you issue an ISRT call with the following SSA. This adds a new occurrence of
the TREATMNT segment as the first occurrence of the TREATMNT segment type
among those with equal keys.
ISRT PATIENTb(PATNObbb=b06439)

ILLNESSb*L
TREATMNT*F

This example applies to HDAM or PHDAM root segments and to dependent
segments for any type of database.
Related reference:
“GU/GHU call” on page 19

G command code
You can use the G command code to indicate to IMS to skip randomization or the
calling of the partition selection exit and search the database sequentially. While
this command code can be used with other database types, it will affect the access
of only HDAM/PHDAM, DEDB, and PHIDAM databases.

When accessing an HDAM/PHDAM, DEDB, or PHIDAM database that is accessed
using a HALDB Partition Selection exit routine, and the records are not in
sequence across partition boundaries, all keys in the requested range of a multiple
qualification SSA might not be returned. If the first call to the database or
command A is used, command code G can be used to sequentially read through
the database until the SSA is satisfied.

L command code
You can use the L command code to retrieve the last occurrence of a particular
segment type or to insert a segment as the last occurrence of a segment type.

Retrieving a segment as the last occurrence

The L command code indicates that you want to retrieve the last segment
occurrence that satisfies the SSA, or that you want to insert the segment occurrence
you are supplying as the last occurrence of that segment type. Like F, L simplifies

Chapter 1. DL/I calls reference 219

your programming because you can go directly to the last occurrence of a segment
type without having to examine the previous occurrences with program logic, if
you know that it is the last segment occurrence that you want. L can be used with
GU or GHU, because IMS normally returns the first occurrence when you use a GU
call. IMS disregards L at the root level.

Using L with GU, GN, and GNP indicates to IMS that you want the last occurrence of
the segment type that satisfies the qualification you have provided. The
qualification is the segment type or the qualification statement of the SSA. If you
have supplied just the segment type (an unqualified SSA), IMS retrieves the last
occurrence of this segment type under its parent.

For example, suppose you have this request using the medical hierarchy:

What was the illness that brought Jennifer Thompson, patient number 10345,
to the clinic most recently?

In this example, assume that RULES=LAST is specified in the DBD for the
database on ILLNESS. Issue this call to retrieve this information:
GU PATIENT�(PATNO���=�10345)

ILLNESS�*L

The first SSA gives IMS the number of the particular patient. The second SSA asks
for the last occurrence (in this case, the first occurrence chronologically) of the
ILLNESS segment for this patient.

Inserting a segment as the last occurrence

Use L with ISRT only when the segment has no key or a non-unique key, and the
insert rule for the segment is either FIRST or HERE. Using the L command code
overrides both FIRST and HERE for HDAM or PHDAM root segments and
dependent segments in any type of database.

Using the L command code to override the RULES specification on the DBD
applies only to the path (either logical or physical) that you are using to access the
segment for the ISRT call. For example, if you are using the physical path to access
the segment, the command code applies to the physical path but not to the logical
path. For clarification of using command codes with the RULES specification, ask
your database administrator.

N command code
The N command code prevents you from replacing a segment on a path call. In
conjunction with the D command code, it lets the application program to process
multiple segments using one call. Alone, the D command code retrieves a path of
segments in your I/O area. With the N command code, the D command code lets
you distinguish which segments you want to replace.

For example, the following code only replaces the TREATMNT segment.
GHU PATIENT*D(PATNObbb=b06439)

ILLNESSb*D(ILLDATEb=19930301)
TREATMNT

REPL PATIENT*N(PATNObbb=b06439)
ILLNESSb*N(ILLDATEb=19930301)
TREATMNT

220 Application Programming APIs

Restriction: If you use D and N command codes together, IMS retrieves the
segment but does not replace it.

The N command code applies only to REPL calls, and IMS ignores it if you include
the code in any other call.

O command code
You can use the O command code to specify a SSA qualification with the position
and length of the target data instead of a DBD-defined field name.

This command code is valid for full function database types (HDAM, HIDAM,
PHIDAM, and PHDAM) and Fast Path DEDBs.

This command code is supported for the following DL/I calls:
v GU SSA
v GHU SSA
v GN SSA
v GNP SSA
v GHNP SSA
v ISRT SSA

When command code O is specified, the SSA qualification can contain either
normal field names or the starting offset and length of the data that you want to
retrieve.

You must specify the offset and length as two 4-byte binary values in place of the
usual 8-byte character value that is used to specify a field name. The starting
position for the offset is 1 and the offset is relative to the physical start of the
segment definition. The maximum length that is supported is the maximum
segment size for the database type. The minimum length is 1.

For example, a segment might have several fields defined in the DBD with the
following offsets and lengths:
Field Offset Length
Labname 1 5
Street 10 20
State 30 2

The application program has a COBOL copy book with the following map:
Field Offset Length
Labname 1 5
Type 6 3
Street 10 20
State 30 2

The database contains two records with the following data:
I 11111111122222222233
I 12345678901234567901235678901

___________I _____________________________
Segment #1 I SVL DEV 555 BAILEY AVE CA
Segment #2 I ARC RSC 650 HARRY RD CA
___________I _____________________________

You can specify a GU call with the O command code in the following format to
retrieve data without needing the fields to be specified in the DBD. The following

Chapter 1. DL/I calls reference 221

example demonstrates how to specify the offset and length values in a DFSDDLT0
test application using hexadecimal edit mode:

00000000
GU IBMLABS*O (’00010005’x=SVL)

00000000
GU IBMLABS*O (’00010005’x=ARC)

00030000
GU IBMLABS*O (’00000002’x=CA)

00000000
GU IBMLABS*O (’000060003’x=DEV)

In the first GU call, the offset is 1 and the length of the target data is 5.

P command code
Ordinarily, IMS sets parentage at the level of the lowest segment that is accessed
during a call. To set parentage at a higher level, you can use the P command code
in a GU, GN, or GNP call.

The parentage that you set with P works just like the parentage that IMS sets: it
remains in effect for subsequent GNP calls, and is not affected by ISRT, DLET, or REPL
calls. It is only affected by GNP if you use the P command code in the GNP call.
Parentage is canceled by a subsequent GU, GHU, GN, or GHN.

Use the P command code at only one level of the call. If you mistakenly use P in
multiple levels of a call, IMS sets parentage at the lowest level of the call that
includes P.

If IMS cannot fully satisfy the call that uses P (for example, IMS returns a GE
status code), but the level that includes P is satisfied, P is still valid. If IMS cannot
fully satisfy the call including the level that contains P, IMS does not set any
parentage. You would receive a GP (no parentage established) if you then issued a
GNP.

If you use P with a GNP call, IMS processes the GNP call with the parentage that was
already set by preceding calls. IMS then resets parentage with the parentage you
specified using P after processing the GNP call.

For example, if you want to send a current bill to all of the patients seen during
the month, the determining value is in the ILLNESS segment. You want to look at
only patients whose ILLNESS segments have dates after the first of the month. For
patients who have been to the clinic during the month, you need to look at their
addresses and the amount of charges in the BILLING segment so that you can
print a bill. For this example, assume the date is March 31, 1993. Issue these two
calls to process this information:
GN PATIENT�*PD

ILLNESS�(ILLDATE�>=19930301)
GNP BILLING��

After you locate a patient who has been to the clinic during the month, you issue
the GNP call to retrieve that patient's BILLING segment. Then you repeat the GN call
to find each patient who has been to the clinic during the month, until IMS returns
a GB status code.

Q command code
Use the Q command code if you want to prevent another program from updating
a segment until your program reaches a commit point. The Q command code tells

222 Application Programming APIs

IMS that your application program needs to work with a segment and that no
other tasks can be allowed to modify the segment until the program has finished.

This means that you can retrieve segments using the Q command code, then
retrieve them again later, knowing that they have not been altered by another
program. (You should be aware, however, that reserving segments for the exclusive
use of your program can affect system performance.)

You can use the Q command code in batch programs in a data-sharing
environment and in CICS and IMS online programs. IMS ignores Q in non-data
sharing batch programs.

Limiting the number of database calls

For full function, before you use the Q command code in your program, you must
specify a MAXQ value during PSBGEN. This establishes the maximum number of
database calls (with Q command codes) that you can make between sync points.

Related reading: For information on PSBGEN, see IMS Version 14 System Utilities.

Fast Path does not support the MAXQ parameter. Consequently in Fast Path, you
can issue as many database calls with Q command codes as you want.

Using segment lock class

For full function, when you use the Q command code to retrieve a segment, you
specify the letter Q followed by a letter (A-J), designating the lock class of that
segment (for example, QA). If the lock class is not a letter (A-J), IMS returns the
status code GL.

Fast Path supports the Q command code alone, without a letter designating the
lock class. However, for consistency between Fast Path and full function, Fast Path
treats the Q command code as a 2-byte string, where the second byte must be a
letter (A-J). If the second byte is not a letter (A-J), IMS returns the status code AJ.

For example, suppose a customer wants to place an order for items 1, 2, and 3, but
only if 50 item 1's, 75 item 2's, and 100 item 3's are available. Before placing this
order, the program must examine all three item segments to determine whether an
adequate number of each item is available. You do not want other application
programs to change any of the segments until your program has determined this
and, if possible, placed the order.

To process this request for full function, your program uses the Q command code
when it issues the Get calls for the item segments. When you use the Q command
code in the SSA, you assign a lock class immediately following the command code
in the SSA.
GU PART X

ITEM 1 *QA
GU PART X

ITEM 2 *QA
GU PART X

ITEM 3 *QA

Exception: For Fast Path, the second byte of the lock class is not interpreted as lock
class 'A'.

Chapter 1. DL/I calls reference 223

After retrieving the item segments, your program can examine them to determine
whether an adequate number of each item are on hand to place the order. Assume
100 of each item are on hand. Your program then places the order and updates the
database accordingly. To update the segment, your program issues a GHU call for
each segment and follows it immediately with a REPL call:
GHU ITEM 1
REPL ITEM 1 with the value 50
GHU ITEM 2
REPL ITEM 2 with the value 25
GHU ITEM 3
REPL ITEM 3 with the value 0

Using the DEQ call with the Q command code

When you use the Q command code and the DEQ call, you reserve and release
segments.

For full function, to issue a DEQ call against an I/O PCB to release a segment, you
place the letter designating the segment's lock class in the first byte of an I/O area.
Then, you issue the DEQ call with the name of the I/O area that contains the
letter.

A DEDB DEQ call is issued against a DEDB PCB. Because Fast Path does not
support lock class, a DEDB DEQ call does not require that a lock class be specified
in the I/O area.

Restriction: The EXEC DL/I interface does not support DEDB DEQ calls, because
EXEC DL/I disallows a PCB for DEQ calls.

Retrieving segments with full-function DEQ calls

The DEQ call releases all segments that are retrieved using the Q command code,
except:
v Segments modified by your program, until your program reaches a commit

point
v Segments required to keep your position in the hierarchy, until your program

moves to another database record
v A class of segments that has been locked again as another class

If your program only reads segments, it can release them by issuing a DEQ call. If
your program does not issue a DEQ call, IMS releases the reserved segments when
your program reaches a commit point. By releasing them with a DEQ call before
your program reaches a commit point, you make them available to other programs
more quickly.

Retrieving buffers with Fast Path DEQ calls

DEQ calls cause Fast Path to release a buffer that satisfies one of the conditions:
v The buffer has not been modified, or the buffer does not protect a valid root

position.
v The buffer has been protected by a Q command code.

Fast Path returns an FW status code when no buffers can be released for a DEQ call.

224 Application Programming APIs

Any CI locking or segment-level locking performed with a Q command code is
protected from other application programs until a DEQ call is issued or a commit
point is reached.

Considerations for root and dependent segments (full function
only)

If you use the Q command code on a root segment, other programs in which the
PCB does not have update capability can access the database record. Programs in
which the PCB has update capability cannot access any of the segments in that
database record. If you use the Q command code on a dependent segment, other
programs can read the segment using one of the Get calls without the hold. If your
program accesses shared databases, and if any of the segments in that block are
reserved with the Q command code, application programs in other IMS systems
cannot update anything in that block. The Q command code does not hold
segments from one step of a conversation to another.

Related Reading: For more information on the relationship between the Q
command code and the DEQ call, see the topic "Reserving Segments for the
Exclusive Use of Your Program" in IMS Version 14 Application Programming.

U command code
As IMS satisfies each level in a retrieval or ISRT call, a position on the segment
occurrence that satisfies that level is established. The U command code prevents
position from being moved from a segment during a search of its hierarchic
dependents.

If the segment has a unique sequence field, using this code is equivalent to
qualifying the SSA so that it is equal to the current value of the key field. When a
call is being satisfied, if the position is moved above the level that the U code was
issued at, the code has no effect for the segment type whose parent changed
position.

U is especially useful when unkeyed dependents or non-unique keyed segments
are being processed. The position on a specific occurrence of an unkeyed or
non-unique keyed segment can be held by using this code.

Example: Suppose you want to find out about the illness that brought a patient
named Mary Warren to the clinic most recently, and about the treatments she
received for that illness. The following figure shows the PATIENT, ILLNESS, and
TREATMNT segments for Mary Warren.

Chapter 1. DL/I calls reference 225

To retrieve this information, retrieve the first ILLNESS segment and the
TREATMNT segments associated with that ILLNESS segment. To retrieve the most
recent ILLNESS segment, you can issue the following GU call:
GU PATIENTb(PATNObbb=b05810

ILLNESSb*L

After this call, IMS establishes a position at the root level on the PATIENT segment
with the key 05810 and on the last ILLNESS segment. Because other ILLNESS
segments with the key 19860412 may exist, you can think of this one as the most
recent ILLNESS segment. You might want to retrieve the TREATMNT segment
occurrences that are associated with that ILLNESS segment. You can do this by
issuing the GN call below with the U command code:
GN PATIENTb*U

ILLNESSb*U
TREATMNT

In this example, the U command code indicates to IMS that you want only
TREATMNT segments that are dependents of the ILLNESS and PATIENT segments
on which IMS has established position. Issuing the above GN call the first time
retrieves the TREATMNT segment with the key of 19860412. Issuing the GN call the
second time retrieves the TREATMNT segment with the key 19860418. If you issue
the call a third time, IMS returns a not-found status code. The U command code
tells IMS that, if it does not find a segment that satisfies the lower qualification
under this parent, it cannot continue looking under other parents. If the U
command code was not in the PATIENT SSA, the third GN call causes IMS to move
forward at the root level in an attempt to satisfy the call. If you supply a U
command code for a qualified SSA, IMS ignores the U.

If used in conjunction with command code F or L, the U command code is
disregarded at the level and all lower levels of SSA for that call.

V command code
Using the V command code on an SSA is similar to using a U command code in
that SSA and all preceding SSA. Specifying the V command code for a segment
level tells IMS that you want to use the position that is established at that level
and above as a qualification for the call.

Using the V command code is analogous to qualifying your request with a
qualified SSA that specifies the current IMS position.

Figure 3. U command code example

226 Application Programming APIs

For example, suppose that you wanted to answer this request:

Did Joan Carter, patient number 07755, receive any treatment on March 3,
2009?

Using a qualified SSA, specify the following call:
GU PATIENTb(PATNObbb=b07755)

ILLNESSb(ILLDATEb=20090303)
TREATMNT

If you have position established on the PATIENT segment for patient number
07755 and on the ILLNESS segment for March 3, 2009, you can use your position
to retrieve the TREATMNT segments in which you are interested. You do this by
specifying the V command code as follows:
GN PATIENTbb

ILLNESSbb*V
TREATMNT

Using the V command code for a call is like establishing parentage and issuing a
subsequent GNP call, except that the V command code sets the parentage for the
call it is used with, not for subsequent calls. For example, to satisfy the previous
request, you could have set parentage at the ILLNESS segment level and issued a
GNP to retrieve any TREATMNT segments under that parent. With the V command
code, you specify that you want the ILLNESS segment to be used as parentage for
that call.

You can specify the V command code for any parent segment. If you use the V
command code with a qualified SSA, it is ignored for that level and for any higher
level that contains a qualified SSA.

NULL command code
The null command code (-) enables you to reserve one or more positions in a SSA
in which a program can store command codes, if they are needed during program
execution.

For example, reserve position for two command codes as follows:
GU PATIENTb*--(PATNObbb=b07755)

ILLNESSbILLDATEb=19930303)
TREATMNT

Using the null command code lets you use the same set of SSAs for more than one
purpose. However, dynamically modifying the SSA makes debugging more
difficult.

DEDB command codes for DL/I
The M, R, S, W, and Z command codes are only used with a DEDB.

Sample application program

The following examples are based on one sample application program—the
recording of banking transactions for a passbook (savings account) account. The
transactions are written to a database as either posted or unposted, depending on
whether they were posted to the customer's passbook.

Chapter 1. DL/I calls reference 227

For example, when Bob Emery does business with the bank but forgets to bring in
his passbook, an application program writes the transactions to the database as
unposted. The application program sets a subset pointer to the first unposted
transaction, so it can be easily accessed later. The next time Bob remembers to
bring in his passbook, a program posts the transactions.

The program can directly retrieve the first unposted transaction using the subset
pointer that was previously set. After the program has posted the transactions, it
sets the subset pointer to 0. An application program that updates the database later
will be able to tell that no unposted transactions exist. The following figure
summarizes the processing that is performed when the passbook is unavailable
and when it is available.

228 Application Programming APIs

M command code
To move the subset pointer forward to the next segment after your current
position, your program issues a call with the M command code.

B6

P1=0

Key

Posted:

Unposted:

1. When the passbook is unavailable . . .

An application program adds the unposted transactions to the database,
setting subset point 2 to the first unposted transaction.

2. When the passbook is available . . .

An application program adds the unposted
transactions to the database, setting subset point 2
to the first unposted transaction.

When the passbook is available . . .

B1

P1

B2

B3

B4

B5

B6

B7

B1

B2

B3

B4

B5

B6

B7

Figure 4. Processing for the passbook example

Chapter 1. DL/I calls reference 229

Using the passbook account example, suppose that you want to post some, but not
all, of the transactions, and that you want the subset pointer to be set to the first
unposted transaction. The following command sets subset pointer 1 to segment B6,
as shown in the figure below.
GU Abbbbbbb(AKEYbbb

Bbbbbbbb*R1M1

If the current segment is the last in the chain, and you use an M command code,
IMS sets the pointer to 0.

R command code
To retrieve the first segment occurrence in the subset, your program issues a Get
call with the R command code. The R command code does not set or move the
pointer. It indicates to IMS that you want to establish position on the first segment

Figure 5. Moving the subset pointer to the next segment after your current position

230 Application Programming APIs

occurrence in the subset. The R command code is like the F command code, except
that the R command code applies to the subset instead of to the entire segment
chain.

Using the passbook account example, suppose that Bob Emery visits the bank and
brings his passbook; you want to post all of the unposted transactions. Because
subset pointer 1 was previously set to the first unposted transaction, your program
uses the following call to retrieve that transaction:
GU Abbbbbbb(AKEYbbbb=bA1)

Bbbbbbbb*R1

As shown by the following figure, this call retrieves segment B5. To continue
processing segments in the chain, you can issue GN calls as you would if you were
not using subset pointers.

If the subset does not exist (subset pointer 1 has been set to 0), IMS returns a GE
status code, and your position in the database will be immediately following the
last segment in the chain. Using the passbook example, the GE status code tells
you that no unposted transactions exist.

You can specify only one R command code for each SSA. If you use more than one
R in a SSA, IMS returns an AJ status code to your program.

You can use R with other command codes, except F and Q. Other command codes
in a SSA take effect after the R command code has been processed, and after
position has been successfully established on the first segment in the subset. If you
use the L and R command codes together, the last segment in the segment chain is
retrieved. (If the subset pointer that was specified with the R command code, IMS
returns a GE status code instead of the last segment in the segment chain.) Do not
use the R and F command codes together. If you do, you will receive an AJ status
code. The R command code overrides all insert rules, including LAST.

S command code
To set a subset pointer unconditionally, regardless of whether it is already set, your
program issues a call with the S command code.

Figure 6. Retrieving the first segment in a chain of segments

Chapter 1. DL/I calls reference 231

When your program issues a call that includes the S command code, IMS sets the
pointer to your current position.

For example, to retrieve the first B segment occurrence in the subset defined by
subset pointer 1 and to reset pointer 1 at the next B segment occurrence, you
would issue the following commands:
GU Abbbbbbb(AKEYbbb=bB1)

Bbbbbbbb*R1
GN Bbbbbbbb*S1

After you issue this call, instead of pointing to segment B5, subset pointer 1 points
to segment B6, as shown in the following figure.

Figure 7. Unconditionally setting the subset pointer to your current position

232 Application Programming APIs

W command code
Like the S command code, the W command code sets the subset pointer
conditionally. Unlike the S command code, the W command code updates the
subset pointer only if the subset pointer is not already set to a segment.

For example, using the passbook example, suppose that Bob Emery visits the bank
and forgets to bring his passbook. You add the unposted transactions to the
database. You want to set the pointer to the first unposted transaction, so that later,
when you post the transactions, you can immediately access the first one. The
following call sets the subset pointer to the transaction you are inserting if it is the
first unposted one.
ISRT Abbbbbbb(AKEYbbbb=bA1)

Bbbbbbbb*W1

As shown by the following figure, this call sets subset pointer 1 to segment B5. If
unposted transactions already exist, the subset pointer is not changed.

Chapter 1. DL/I calls reference 233

Z command code
The Z command code sets the value of the subset pointer to 0. After your program
issues a call with the Z command code, the pointer is no longer set to a segment,
and the subset defined by that pointer no longer exists.

IMS returns a status code of GE to your program if you try to use a subset pointer
having a value of 0.

For example, using the passbook example, suppose that you used the R command
code to retrieve the first unposted transaction. You then process the chain of
segments, posting the transactions. After posting the transactions and inserting any
new ones into the chain, use the Z command code to set the subset pointer to 0 as
shown in the following call:

Figure 8. Conditionally setting the subset pointer to your current position

234 Application Programming APIs

ISRT Abbbbbbb(AKEYbbbb=bA1)
Bbbbbbbb*Z1

After this call, subset pointer 1 is set to 0, which indicates to a program that
subsequently updates the database that no unposted transactions exist.

Relationship between calls, AIBs, and PCBs
The following table shows the relationship of calls to full function (FF), main
storage database (MSDB), data entry database (DEDB), I/O, and general sequential
access method (GSAM) PCBs.

Table 54. Call relationship to PCBs

CALL AIB FF PCBs MSDB
PCBs

DEDB
PCBs

I/O PCBs GSAM
PCBs

APSB X

CHKP X X

CIMS X

CLSE X X

DEQ X X X

DLET X X X X

DPSB X

FLD X X X

GHN X X X X

GHNP X X X X

GHU X X X X

GMSG X

GN X X X X X X

GNP X X X X

GSCD1 X X X X X

GU X X X X X X

ICMD X

INIT X X

INQY X

ISRT X X X X X X

LOG X X

OPEN X X

PCB2

POS X X

RCMD X

REPL X X X X

ROLB X X

ROLL2

ROLS X X X

SETS/SETU X X

SNAP3 X X X X X

Chapter 1. DL/I calls reference 235

Table 54. Call relationship to PCBs (continued)

CALL AIB FF PCBs MSDB
PCBs

DEDB
PCBs

I/O PCBs GSAM
PCBs

STAT4 X X

SYNC X X

TERM2

XRST X X

Note:

1. GSCD is a Product-sensitive Programming Interface.

2. The PCB, ROLL, and TERM calls do not have an associated PCB.

3. SNAP is a Product-sensitive Programming Interface.

4. STAT is a Product-sensitive Programming Interface.

DL/I test program (DFSDDLT0) reference
DFSDDLT0 is an IMS application program test tool that issues calls to IMS based
on control statement information. You can use it to verify and debug DL/I calls
independently of application programs. You can run DFSDDLT0 using any PSB,
including those that use an IMS-supported language. You can also use DFSDDLT0
as a general-purpose database utility program.

The functions that DFSDDLT0 provides include:
v Issuing any valid DL/I call against any database using:

– Any segment search argument (SSA) or PCB, or both

Important: Calls that use a PCB must have specified LIST=YES in the PSB.
– Any SSA or AIB, or both

v Comparing the results of a call to expected results. This includes the contents of
selected PCB fields, the data returned in the I/O area, or both.

v Printing the control statements, the results of calls, and the results of
comparisons only when the output is useful, such as after an unequal compare.

v Dumping DL/I control blocks, the I/O buffer pool, or the entire batch region.
v Punching selected control statements into an output file to create new test data

sets. This simplifies the construction of new test cases.
v Merging multiple input data sets into a single input data set using a SYSIN2 DD

statement in the JCL. You can specify the final order of the merged statements in
columns 73 to 80 of the DFSDDLT0 control statements.

v Sending messages to the z/OS system console (with or without a reply).
v Repeating each call up to 9,999 times.

Control statements
DFSDDLT0 processes control statements to control the test environment.
DFSDDLT0 can issue calls to IMS full-function databases and Fast Path databases,
as well as DC calls.

When you are coding the DFSDDLT0 control statements, keep these items in mind:
v You must fill in column 1 of each control statement. If column 1 is blank, the

statement type defaults to the prior statement type. DFSDDLT0 attempts to use
any remaining characters as it would for the prior statement type.

236 Application Programming APIs

|

v Use of reserved fields can produce invalid output and unpredictable results.
v Statement continuations are important, especially for the CALL statement.
v Sequence numbers are not required, but they can be very useful for some

DFSDDLT0 functions.
v All codes and fields in the DFSDDLTO statements must be left justified followed

by blanks, unless otherwise specified.

Control statement guidelines

The order of control statements is critical in constructing a successful call. To avoid
unpredictable results, follow these guidelines:
v If you are using STATUS and OPTION statements, place them somewhere before

the calls that are to use them.
v Both types of COMMENT statements are optional but, if present, must appear

before the call they document.
v You must code CALL FUNCTION statements and any required SSAs

consecutively without interruption.
v CALL DATA statements must immediately follow the last continuation, if any, of

the CALL FUNCTION statements.
v COMPARE statements are optional but must follow the last CALL (FUNCTION

or DATA) statement.
v When CALL FUNCTION statements, CALL DATA statements, COMPARE DATA

statements, COMPARE PCB statements, and COMPARE AIB statements are
coded together, they form a call sequence. Do not interrupt call sequences with
other DFSDDLT0 control statements.

Exception: IGNORE statements are the only exception to this rule.
v Use IGNORE statements (N or period (.)) to override any statement, regardless

of its position in the input stream. You can use IGNORE statements in either
SYSIN or SYSIN2 input streams.

Related reference:
“SYSIN DD statement” on page 275
“SYSIN2 DD statement” on page 275
“PUNCH CTL statement” on page 268

ABEND statement
The ABEND statement causes IMS to issue an abend and terminate DFSDDLT0.

The following table shows the format of the ABEND statement.

Table 55. ABEND statement

Column Function Code Description

1-5 Identifies control
statement

ABEND Issues abend U252. (No dump is produced unless
you code DUMP on the OPTION statement.)

6-72 Reserved �

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Chapter 1. DL/I calls reference 237

Examples of ABEND statement

If you use ABEND in the input stream and want a dump, you must specify DUMP
on the OPTION statement. The default on the OPTION statement is NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 22100010

Dump will be produced; OPTION statement provided requests dump.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O DUMP 22100010

No dump will be produced; OPTION statement provided requests NODUMP.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O NODUMP 22100010

CALL statement
The CALL control statement has two parts: CALL FUNCTION and CALL DATA.
v The CALL FUNCTION statement supplies the DL/I call function, the segment

search arguments (SSAs), and the number of times to repeat the call. SSAs are
coded according to IMS standards.

v With the CALL DATA statement you provide any data (database segments,
z/OS commands, checkpoint IDs) required by the DL/I call specified in the
CALL FUNCTION statement.

Examples of DFSDDLT0 call functions

STAK/END Call: The following example shows the STAK and END call functions.
//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGA (KEYA =A300) 10001100
L 0003 STAK 10001150
WTO THIS IS PART OF THE STAK 10001200
T THIS COMMENT IS PART OF THE STAK 10001300
L GN 10001400
L END 10001450
U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500
L 0020 GN 10001600
/*

SKIP/START Call: The following example demonstrates the use of the SKIP and
START call functions in SYSIN2 to override and stop the processing of the STAK
and END call functions in SYSIN. DFSDDLT0 executes the GU call function in
SYSIN, skips the processing of STACK, WTO, T comment, GN, and END in SYSIN,
and goes to the COMMENT.
//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGA (KEYA =A300) 10001100
L 0003 STAK 10001150
WTO THIS IS PART OF THE STAK 10001200
T THIS COMMENT IS PART OF THE STAK 10001300
L GN 10001400
L END 10001450
U THIS COMMENT SHOULD GET PRINTED AFTER THE STAK IS DONE 3 TIMES 10001500
L 0020 GN 10001600
/*

238 Application Programming APIs

//BATCH.SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SKIP 10001150
L START 10001450
U THIS COMMENT SHOULD REPLACE THE STAK COMMENT 10001500
U ********THIS COMMENT SHOULD GET PRINTED BECAUSE OF SYSIN2********* 10001650
/*

CALL FUNCTION statement
The following table gives the format for CALL FUNCTION statements, including
the column number, function, code, and description.

This is the preferred format when you are not working with column-specific SSAs.

Table 56. CALL FUNCTION statement

Column Function Code Description

1 Identifies control statement L Issues an IMS call.

2 Reserved b

3 SSA level b SSA level (optional).

n Range of
hexadecimal
characters allowed is
1-F.

4 Reserved b

5-8 Repeat count b If blank, repeat
count defaults to 1.

nnnn 'nnnn' is the number
of times to repeat
this call. Range is 1
to 9999,
right-justified, with
or without leading
zeros.

9 Reserved b

10-13 Identifies DL/I call function b If blank, use function
from previous CALL
statement.

xxxx 'xxxx' is a DL/I call
function.

Continue SSA CONT Continuation
indicator for SSAs
too long for a single
CALL FUNCTION
statement. Column
72 of the preceding
CALL FUNCTION
statement must have
an entry. The next
CALL statement
should have CONT
in columns 10 - 13
and the SSA should
continue in column
16.

14-15 Reserved b

Chapter 1. DL/I calls reference 239

Table 56. CALL FUNCTION statement (continued)

Column Function Code Description

16-23 or SSA name xxxxxxxx Must be left-justified.

16-23 or Token xxxxxxxx Token name
(SETS/ROLS).

16-23 or MOD name xxxxxxxx Modname
(PURG+ISRT).

16-23 or Subfunction xxxxxxxx nulls, DBQUERY,
FIND, ENVIRON,
PROGRAM (INQY).

16-19 and Statistics type xxxx DBAS/DBES-OSAM
or
VBAS/VBES-VSAM
(STAT).2

20 or Statistics format x F - Formatted U-
Unformatted S -
Summary.

16–19 SETO ID1 SETx Where x is 1, 2, or 3.
Specified on SETO
and CHNG calls as
defined in Note.

21-24 SETO IOAREA SIZE nnnn Value of 0000 to
8192.

If a value greater
than 8192 is
specified, it defaults
to 8192.

If no value is
specified, the call is
made with no SETO
size specified.

24–71 Remainder of SSA Unqualified SSAs
must be blank.
Qualified search
arguments should
have either an '*' or
a '(' in column 24
and follow IMS SSA
coding conventions.

72 Continuation column b No continuations for
this statement.

x Alone, it indicates
multiple SSAs each
beginning in column
16 of successive
statements. With
CONT in columns
10-13 of the next
statement, indicates
a single SSA that is
continued beginning
in column 16 of the
following statement.

240 Application Programming APIs

Table 56. CALL FUNCTION statement (continued)

Column Function Code Description

73-80 Sequence indication nnnnnnnn For SYSIN2
statement override.

25-32 OTMA descriptor name xxxxxxxx 8–byte character
field (ICAL).

34-39 The wait time for the
synchronous call to be processed

nnnnnn 6–byte character
field with a range
from 1 to 999999
(ICAL).

41-45 The input message length nnnnn The length of the
input data in the
request area (ICAL).

47-51 The response area length nnnnn The length of the
response area for the
output message
(ICAL).

Note:

1. SETO CALL:

The SETO ID (SET1, SET2, or SET3) is required on the SETO call if DFSDDLT0 is to keep track of the text unit
address returned on the SETO call that would be passed on the CHNG call for option parameter TXTU.

If the SETO ID is omitted on the SETO call, DFSDDLT0 does not keep track of the data returned and is unable to
reference it on a CHNG call.

CHNG CALL:

The SETO ID (SET1, SET2, or SET3) is required on the CHNG call if DFSDDLT0 is to place the address of the
SETO ID I/O area returned on the SETO call. This is the SETO call of the text unit returned on the SETO call with
a matching SETO ID for this CHNG call into the “TXTU=ADDR” field of the option parameter in the CHNG call.

When the SETO ID is specified on the CHNG call, DFSDDLT0 moves the address of that text unit returned on the
SETO call using the same SETO ID.

Code the OPTION statement parameter TXTU as follows: TXTU=xxxx where xxxx is any valid non-blank
character. It cannot be a single quote character.

Suggested value for xxxx could be SET1, SET2, or SET3. This value is not used by DFSDDLT0.

2. STAT is a Product-sensitive Programming Interface.

This information applies to different types of continuations:
v Column 3, the SSA level, is usually blank. If it is blank, the first CALL

FUNCTION statement fills SSA 1, and each following CALL FUNCTION
statement fills the next lower SSA. If column 3 is not blank, the statement fills
the SSA at that level, and the following CALL FUNCTION statement fills the
next lower one.

v Columns 5 through 8 are usually blank, but if used, must be right justified. The
same call is repeated as specified by the repeat call function.

v Columns 10 through 13 contain the DL/I call function. The call function is
required only for the first CALL FUNCTION statement when multiple SSAs are
in a call. If left blank, the call function from the previous CALL FUNCTION
statement is used.

v Columns 16 through 23 contain the segment name if the call uses a SSA.
v If the DL/I call contains multiple SSAs, the statement must have a nonblank

character in column 72, and the next SSA must start in column 16 of the next
statement. The data in columns 1 and 10 through 13 are blank for the second
through last SSAs.

Chapter 1. DL/I calls reference 241

Restriction: On ISRT calls, the last SSA can have only the segment name with
no qualification or continuation.

v If a field value extends past column 71, put a nonblank character in column 72.
(This character is not read as part of the field value, only as a continuation
character.) In the next statement insert the keyword CONT in columns 10
through 13 and continue the field value starting at column 16.

v Maximum length for the field value is 256 bytes, maximum size for a SSA is 290
bytes, and the maximum number of SSAs for this program is 15, which is the
same as the IMS limit.

v If columns 5 through 8 in the CALL FUNCTION statement contain a repeat
count for the call, the call will terminate when reaching that count, unless it first
encounters a GB status code.

Related reference:
“CALL FUNCTION statement with column-specific SSAs”

CALL FUNCTION statement with column-specific SSAs:

In this format, the SSA has intervening blanks between fields. Columns 24, 34, and
37 must contain blanks.

Command codes are not permitted. The following table gives the format for the
CALL FUNCTION statement with column-specific SSAs.

Table 57. CALL FUNCTION statement (column-specific SSAs)

Column Function Code Description

1 Identifies control
statement

L Call statement (see columns 10-13).

2 Reserved b

3 Reserved b

4 Reserved b

5-8 Repeat Count b If blank, repeat count defaults to 1.

nnnn 'nnnn' is the number of times to repeat this call.
Range 1 to 9999, right-justified but need not contain
leading zeros.

10-13 Identifies DL/I call
function

b If blank, use function from previous CALL statement.

xxxx 'xxxx' is a DL/I call function.

CONT Continuation indicator for SSAs too long for a single
CALL FUNCTION statement. Column 72 of
preceding CALL FUNCTION statement must contain
a nonblank character. The next CALL statement
should have CONT in columns 10 through 13 and the
SSA should continue in column 16.

14-15 Reserved b

16-23 SSA name s-name Required if call contains SSA.

24 Reserved b Separator field.

25 Start character for SSA (Required if segment is qualified.

26-33 SSA field name f-name Required if segment is qualified.

34 Reserved b Separator field.

35-36 DL/I call operator(s) name Required if segment is qualified.

242 Application Programming APIs

Table 57. CALL FUNCTION statement (column-specific SSAs) (continued)

Column Function Code Description

37 Reserved b Separator field.

38-nn Field value nnnnn Required if segment is qualified.
Note: Do not use '5D' or ')' in field value.

nn+1 End character for SSA) Required if segment is qualified.

72 Continuation column b No continuations for this statement.

x Alone, it indicates multiple SSAs each beginning in
column 16 of successive statements. With CONT in
columns 10-13 of the next statement, indicates a
single SSA that is continued beginning in column 16
of the following statement

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

If a CALL FUNCTION statement contains multiple SSAs, the statement must have
a nonblank character in column 72 and the next SSA must start in column 16 of the
next statement. If a field value extends past column 71, put a nonblank character in
column 72. In the next statement insert the keyword CONT in columns 10 through
13 and continue the field value starting at column 16. Maximum length for field
value is 256 bytes, maximum size for a SSA is 290 bytes, and the maximum
number of SSAs for this program is 15, which is the same as the IMS limit.
Related reference:
“CALL FUNCTION statement” on page 239

CALL DATA statement
CALL DATA statements provide IMS with information normally supplied in the
I/O area for that type of call function.

CALL DATA statements must follow the last CALL FUNCTION statement. You
must enter an L in column 1, the keyword DATA in columns 10 through 13, and
code the necessary data in columns 16 through 71. You can continue data by
entering a nonblank character in column 72. On the continuation statement,
columns 1 through 15 are blank and the data resumes in column 16. The following
table shows the format for a CALL DATA statement.

Table 58. CALL DATA statement

Column Function Code Description

1 Identifies control
statement

L CALL DATA statement.

2 Increase segment length K Adds 2500 bytes to the length of data defined in
columns 5 through 8.

3 Propagate remaining
I/O indicator

P Causes 50 bytes (columns 16 through 65) to be
propagated through remaining I/O area.
Note: This must be the last data statement and
cannot be continued.

4 Format options � Not a variable-length segment.

V For the first statement describing the only
variable-length segment or the first
variable-length segment of multiple
variable-length segments, LL field is added before
the segment data.

Chapter 1. DL/I calls reference 243

Table 58. CALL DATA statement (continued)

Column Function Code Description

M For statements describing the second through the
last variable-length segments, LL field is added
before the segment data.

P For the first statement describing a fixed-length
segment in a path call.

Z For message segment, LLZZ field is added before
the data.

U Undefined record format for GSAM records. The
length of segment for an ISRT is placed in the DB
PCB key feedback area.

5-8 Length of data in
segment

nnnn This value must be right justified but need not
contain leading zeros. If you do not specify a
length, DFSDDLT0 will use the number of DATA
statements read multiplied by 56 to derive the
length.

9 Reserved �

10-13 Identifies CALL DATA
statement

DATA Identifies this as a DATA statement.

14-15 Reserved �

16-71

or

Data area xxxx Data that goes in the I/O area.

16-23

or

Checkpoint ID Checkpoint ID (SYNC).

16-23

or

Destination name Destination name (CHNG).

16 DEQ option DEQ options (A,B,C,D,E,F,G,H,I, or J).

72 Continuation column � If no more continuations for this segment.

x If more data for this segment or more segments.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

When inserting variable-length segments or including variable-length data for a
CHKP or LOG call:
v You must use a V or M in column 4 of the CALL DATA statement.
v Use V if only one variable-length segment is being processed.
v You must enter the length of the data with leading zeros, right justified, in

columns 5 through 8. The value is converted to binary and becomes the first 2
bytes of the segment data.

v You can continue a CALL DATA statement into the next CALL DATA statement
by entering a nonblank character in column 72. For subsequent statements, leave
columns 1 through 15 blank, and start the data in column 16.

If multiple variable-length segments are required (that is, concatenation of logical
child and logical parent segments, both of which are variable-length) for the first
segment:
v You must enter a V in column 4.

244 Application Programming APIs

v You must enter the length of the first segment in columns 5 through 8.
v If the first segment is longer than 56 bytes, continue the data as described for

inserting variable-length segments.
Exceptions:

– The last CALL DATA statement to contain data for this segment must have a
nonblank character in column 72.

– The next CALL DATA statement applies to the next variable-length statement
and must contain an M in column 4 and the length of the segment in
columns 5 through 8.

You can concatenate any number of variable-length segments in this manner. Enter
M or V and the length (only in CALL DATA statements that begin data for a
variable-length segment).

When a program is inserting or replacing through path calls:
v Enter a P in column 4 to specify that the length field is to be used as the length

the segment will occupy in the user I/O area.
v You only need to use P in the first statement of fixed-length-segment CALL

DATA statements in path calls that contain both variable- and fixed-length
segments.

v You can use V, M, and P in successive CALL DATA statements.

For INIT, SETS, ROLS, and LOG calls:
v The format of the I/O area is

LLZZuser-data

where LL is the length of the data in the I/O area, including the length of the
LLZZ portion.

v If you want the program to use this format for the I/O area, enter a Z in column
4 and the length of the data in columns 5 through 8. The length in columns 5
through 8 is the length of the data, not including the 4-byte length of LLZZ.

OPTION DATA statement
The OPTION DATA statement contains options as required for SETO and CHNG
calls.

The following table shows the format for an OPTION DATA statement, including
the column number, function, code, and description.

Table 59. OPTION DATA statement

Column Function Code Description

1 Identifies control
statement

L OPTION statement.

2-9 Reserved �

10-13 Identifies OPT Identifies this as OPTION statement.

CONT Identifies this as a continuation of an option input.

14-15 Reserved �

16-71 Option area xxxx Options as defined for SETO and CHNG call.

72 Continuation column � If no more continuations for options.

x If more option data exists in following statement.

Chapter 1. DL/I calls reference 245

Table 59. OPTION DATA statement (continued)

Column Function Code Description

73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

FEEDBACK DATA statement
The FEEDBACK DATA statement defines an area to contain feedback data.

The FEEDBACK DATA statement is optional. However, if the FEEDBACK DATA
statement is used, an OPTION DATA statement is required.

The following table shows the format for a FEEDBACK DATA statement, including
the column number, function, code, and description.

Table 60. FEEDBACK DATA statement

Column Function Code Description

1 Identifies control
statement

L FEEDBACK statement.

2-3 Reserved �

4 Format option � Feedback area contains LLZZ.

Z Length of feedback area will be computed and the LLZZ will
be added to the feedback area.

5-8 Length of feedback
area

nnnn This value must be right justified but need not contain
leading zeros. If you do not specify a length, DFSDDLT0
uses the number of FDBK inputs read multiplied by 56 to
derive the length.

2-9 Reserved �

10-13 Identifies FDBK Identifies this as feedback statement and continuation of
feedback statement.

14-15 Reserved �

16-71 Feedback area xxxx Contains user pre-defined initialized area.

72 Continuation
column

� If no more continuations for feedback.

x If more feedback data exists in following statement.

73-80 Sequence number nnnnnnnn For SYSIN2 statement override.

DL/I call functions
The following table shows the DL/I call functions supported in DFSDDLT0 and
which ones require data statements.

Table 61. DL/I call functions.

Call
AIB
Support

PCB
Support Data Stmt 1 Description

CHKP yes yes R Checkpoint.

CHNG yes yes R Change alternate PCB.

R Contains the alternate PCB name option statement and
feedback statement optional.

CMD yes yes R Issue IMS command. This call defaults to I/O PCB.

246 Application Programming APIs

Table 61. DL/I call functions (continued).

Call
AIB
Support

PCB
Support Data Stmt 1 Description

DEQ yes yes R Dequeue segments locked with the Q command code. For full
function, this call defaults to the I/O PCB, provided a DATA
statement containing the class to dequeue immediately follows
the call. For Fast Path, the call is issued against a DEDB PCB.
Do not include a DATA statement immediately following the
DEQ call.

DLET yes yes O Delete. If the data statement is present, it is used. If not, the
call uses the data from the previous Get Hold Unique (GHU).

FLD yes yes R Field—for Fast Path MSDB calls using FSAs. This call
references MSDBs only. If there is more than one FSA, put a
nonblank character in column 34, and put the next FSA in
columns 16-34 of the next statement. A DATA statement
containing FSA is required.

GCMD yes yes N Get command response. This call defaults to I/O PCB.

GHN yes yes O2 Get Hold Next.

GHNP yes yes O2 Get Hold Next in Parent.

GHU yes yes O2 Get Hold Unique.

GMSG3 yes no R Get Message is used in an automated operator (AO)
application program to retrieve a message from an AO exit
routine (DFSAOE00 or another AOIE type user exit). The
DATA statement is required to allow for area in which to
return data. The area must be large enough to hold this
returned data.

GN yes yes O2 Get Next segment.

GNP yes yes O2 Get Next in Parent.

GU yes yes O2 Get Unique segment.

GUR yes no R Get Unique Record from the IMS catalog database.
Tip: Specify LCASE=C on the OPTION statement to make
the records, which are returned as XML instance documents,
more readable.

ICAL yes no R IMS Call enables an application program that runs in the IMS
TM environment to send a synchronous request for data or
services to a non-IMS application program or service that runs
in a z/OS or distributed environment.

ICMD3 yes no R Issue Command enables an automated operator (AO)
application program to issue an IMS command and retrieve
the first command response segment. The DATA statement is
required to contain the input command and to allow for area
in which to return data. The area must be large enough to
hold this returned data.

INIT yes yes R Initialization This call defaults to I/O PCB. A DATA statement
is required. Use the LLZZ format.

Chapter 1. DL/I calls reference 247

|
|
|
|
|
|

|||||
|
|
|

Table 61. DL/I call functions (continued).

Call
AIB
Support

PCB
Support Data Stmt 1 Description

INQY3 yes no R Request environment information using the AIB and the
ENVIRON subfunction. The DATA statement is required to
allow for area in which to return data. The area must be large
enough to hold this returned data.

R Request database information using the AIB and the
DBQUERY subfunction, which is equivalent to the INIT
DBQUERY call. The DATA statement is required to allow for
area in which to return data. The area must be large enough
to hold this returned data.

ISRT yes yes Insert.

R DB PCB, DATA statement required.

O I/O PCB using I/O area with MOD name, if any, in columns
16-23.

R Alt PCB.

LOG yes yes R Log system request. This call defaults to I/O PCB. DATA
statement is required and can be specified in one of two ways.

POS yes yes N Position - for DEDBs to determine a segment location. This
call references DEDBs only.

PURG yes yes Purge.

R This call defaults to use I/O PCB. If column 16 is not blank,
MOD (message output descriptor) name is used and a DATA
statement is required.

O If column 16 is blank, the DATA statement is optional.

RCMD3 yes no R Retrieve Command enables an automated operator (AO)
application program to retrieve the second and subsequent
command response segments after an ICMD call. The DATA
statement is required to allow for area in which to return data.
The area must be large enough to hold this returned data.

REPL yes yes R Replace—This call references DB PCBs only. The DATA
statement is required.

RLSE yes yes N Release all locks held by an application that are for
unmodified data.

ROLB yes yes O Roll Back call.

ROLL no yes O Roll Back call and issue U778 abend.

ROLS yes yes O Back out updates and issue 3303 abend. Uses the I/O PCB.
Can be used with the SETS call function. To issue a ROLS
with an I/O area and token as the fourth parameter, specify
the 4-byte token in column 16 of the CALL statement. Leaving
columns 16-19 blank will cause the call to be made without
the I/O area and the token. (To issue a ROLS using the
current DB PCB, use ROLX.)

ROLX yes yes O Roll call against the DB PCB (DFSDDLT0 call function). This
call is used to request a Roll Back call to DB PCB, and is
changed to ROLS call when making the DL/I call.

SETO yes yes N Set options. OPTION statement required. FEEDBACK
statement optional.

248 Application Programming APIs

Table 61. DL/I call functions (continued).

Call
AIB
Support

PCB
Support Data Stmt 1 Description

SETS/SETU yes yes O Create or cancel intermediate backout points. Uses I/O PCB.
To issue a SETS with an I/O area and token as the fourth
parameter, specify the four-byte token in column 16 of the
CALL statement and include a DATA statement. Leaving
columns 16-19 blank will cause the call to be made without
the I/O area and the token.

SNAP4 yes yes O Sets the identification and destination for snap dumps. If a
SNAP call is issued without a CALL DATA statement, a snap
of the I/O buffer pools and control blocks will be taken and
sent to LOG if online and to PRINTDD DCB if batch. The
SNAP ID will default to SNAPxxxx where xxxx starts at 0000
and is incremented by 1 for every SNAP call without a DATA
statement. The SNAP options default to YYYN. If a CALL
DATA statement is used, columns 16-23 specify the SNAP
destination, columns 24-31 specify the SNAP identification,
and columns 32-35 specify the SNAP options. SNAP options
are coded using ‘Y' to request a snap dump and ‘N' to prevent
it. Column 32 snaps the I/O buffer pools, columns 33 and 34
snap the IMS control blocks and column 35 snaps the entire
region. The SNAP call function is only supported for
full-function database PCB.

STAT5 yes yes O The STAT call retrieves statistics on the IMS system. This call
must reference only full-function DB PCBs. Statistics type is
coded in columns 16-19 of the CALL FUNCTION statement.

DBAS For OSAM database buffer pool statistics.

VBAS For VSAM database subpool statistics.
Statistics format is coded in column 20 of the CALL
FUNCTION statement.

F For the full statistics to be formatted if F is specified,
the I/O area must be at least 360 bytes.

U For the full statistics to be unformatted if U is
specified, the I/O area must be at least 72 bytes.

S For a summary of the statistics to be formatted if S is
specified, the I/O area must be at least 120 bytes.

SYNC yes yes R Synchronization.

XRST yes yes R Restart.

Notes:

1. R = required; O = optional; N = none

2. The data statement is required on the AIB interface.

3. Valid only on the AIB interface.

4. SNAP is a Product-sensitive Programming Interface.

5. STAT is a Product-sensitive Programming Interface.

Examples of DL/I call functions
The following examples show how to use the DL/I call functions.

Basic CHKP Call: Use a CALL FUNCTION statement to contain the CHKP
function and a CALL DATA statement to contain the checkpoint ID.

Chapter 1. DL/I calls reference 249

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHKP 10101400
L DATA TESTCKPT

Symbolic CHKP Call with Two Data Areas to Checkpoint: Use a CALL
FUNCTION statement to contain the CHKP function, a CALL DATA statement to
contain the checkpoint ID data, and two CALL DATA statements to contain the
data that you want to checkpoint.

You also need to use an XRST call when you use the symbolic CHKP call. Prior
usage of an XRST call is required when using the symbolic CHKP call, as the
CHKP call keys on the XRST call for symbolic CHKP.

Recommendation: Issue an XRST call as the first call in the application program.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST
L .
L .
L .
L CHKP
L DATA TSTCHKP2 X
L 8 DATA STRING2- X
L 16 DATA STRING2-STRING2-
U EIGHT BYTES OF DATA (STRING2-) IS CHECKPOINTED AND
U SIXTEEN BYTES OF DATA (STRING2-STRING2-) IS CHECKPOINTED ALSO

CHNG Call: Use a CALL FUNCTION statement to contain the CHNG function
and a CALL DATA statement to contain the new logical terminal name.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHNG SET1
L OPT IAFP=A1M,PRTO=LLOPTION1,OPTION2,
L CONT OPTION4
L Z0023 DATA DESTNAME

LL is the hex value of the length of LLOPTION,.........OPTION4.

The following is an example of a CHNG statement using SETO ID SET2, OPTION
statement, DATA statement with MODNAME, and FDBK statement.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CHNG SET2
L OPT IAFP=A1M,TXTU=SET2
L Z0023 DATA DESTNAME
L Z0095 FDBK FEEDBACK AREA

CMD Call: Use a CALL FUNCTION statement to contain the CMD function and a
CALL DATA statement to contain the Command data.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L CMD
L ZXXXX DATA COMMAND DATA

WHERE XXXX = THE LENGTH OF THE COMMAND DATA

DEQ Call: For full function, use a CALL FUNCTION statement to contain the
DEQ function and a CALL DATA statement to contain the DEQ value
(A,B,C,D,E,F,G,H,I or J).
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DEQ
L DATA A

For Fast Path, use a CALL FUNCTION statement to contain the DEQ function.

250 Application Programming APIs

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DEQ

DLET Call: Use a CALL FUNCTION statement to contain the DLET function. The
data statement is optional. If there are intervening calls to other PCBs between the
Get Hold call and the DLET call, you must use a data statement to refresh the I/O
area with the segment to be deleted.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L DLET

FLD Call: Use a CALL FUNCTION statement to contain the FLD function and
ROOTSSA, and a CALL DATA statement to contain the FSAs.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L FLD ROOTA (KEYA =ROOTA)
L DATA ??????? X
L DATA

GCMD Call: Use a CALL FUNCTION statement to contain the GCMD function;
no CALL DATA statement is required.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GCMD

GHN Call: Use a CALL FUNCTION statement to contain the GHN function; no
CALL DATA statement is required.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHN 10103210

GHNP Call: Use a CALL FUNCTION statement to contain the GHNP function; no
CALL DATA statement is required.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHNP 10103210

GHU Call with a Continued SSA: Use two CALL FUNCTION statements to
contain the single SSA.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GHU SEGG (FILLRG = G131G131G131G131G131G131G131G131G131G*

CONT 131G131G131G131G131G131G131)

GMSG Call: Use a CALL FUNCTION statement to contain the GMSG function.
Use a CALL DATA statement to retrieve messages from AO exit routine.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GMSG TOKEN111 WAITAOI
L Z0132 DATA
L GMSG
L Z0132 DATA

GN Call: Use a CALL FUNCTION statement to contain the GN function; no CALL
DATA statement is required.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GN 10103210

GNP Call: Use a CALL FUNCTION statement to contain the GNP function; no
CALL DATA statement is required.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GNP 10103210

Chapter 1. DL/I calls reference 251

GU Call with a Single SSA and a Relational Operator: Use a CALL FUNCTION
statement to contain the GU function; no CALL DATA statement is required. The
qualified SSA begins in column 24 and is contained in parentheses.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGF (KEYF > F131*KEYF < F400)

GU Call with a Single SSA and a Relational Operator Extended Across Multiple
Inputs with Boolean Operators: Use a CALL FUNCTION statement to contain the
GU function and three additional continuation of CALL FUNCTION input to
continue with Boolean operators. No CALL DATA statement is required. The
qualified SSA begins in column 24 and is contained in parentheses. This type of
SSA can continue over several statements.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGG (FILLRG > G131G131G131G131G131G131G131G131G131G*

CONT 131G131G131G131G131G131G131 &FILLRG < G400G400G4*
CONT 00G400G400G400G400G400G400G400G400G400G400G400G400G400 *
CONT)

GU Path Call: Use a CALL FUNCTION statement to contain the GU function and
three additional continuation of CALL function input to continue with two
additional SSAs. No CALL DATA statement is required. The call uses command
codes in columns 24 and 25 to construct the path call. This type of call cannot be
made with the column-specific SSA format.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGA *D(KEYA = A200) *

SEGF *D(KEYF = F250) *
SEGG *D(KEYG = G251)

GUR Call: Use a CALL FUNCTION statement to contain the GUR function and a
DATA statement to specify the maximum size of the output area for the returned
XML document.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O LCASE=C
S1111 1 1 1 1DFSCAT00 AIB
L U0001 GUR HEADER (RHDRSEQ EQDBD DBOHIDK5)
L Z9999 DATA

The following table shows the key lines and elements in the example of the GUR
call:

Table 62. Explanation of the example

Line in the example Explanation

O LCASE=C Specifies that DFSDDLT0 uses character representation and not
hexademcimal representation for the XML output. Without
character representation, you cannot read the returned XML
document.

S1111 1 1 1 1DFSCAT00
AIB

Specifies that DFSDDLT0 uses the AIB interface and the DB PCB
name is DFSCAT00, which is the system-defined catalog.

L U0001 GUR HEADER Specifies that IMS is to issue one GUR call. The SSA contains the
key field RHDRSEQ, which is used to find a DBD that is named
DBOHIDK5.

L Z9999 DATA Specifies that DFSDDLT0 is to use the maximum data output
area, which is 9999 bytes.

252 Application Programming APIs

|
|
|

|
|
|
|
|

|
|

||

||

||
|
|
|

|
|
|
|

||
|
|

||
|
|

If the GUR call returns an XML document that is too large to fit into the output
area that is specified by the DATA statement, you must modify the GUR call so
that it is repeated. You can repeat the GUR call in one of two ways:
v Set the repeat count on the GUR call (columns 5-8) to the number of times to

repeat the call, which is the recommended way. In the following example, U0002
specifies that IMS is to issue two GUR calls:
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L U0002 GUR HEADER (RHDRSEQ ==PSB BMP255)
L Z9999 DATA

v Use multiple GUR calls:
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L U0001 GUR HEADER (RHDRSEQ ==PSB BMP255)
L Z9999 DATA
L U0001 GUR HEADER (RHDRSEQ ==PSB BMP255)
L Z9999 DATA

Either method produces the same results.

ICAL Call: Use a CALL FUNCTION statement to contain the ICAL function. Use a
CALL DATA statement to contain the message to pass from the IMS application to
the program that is specified in the IMS OTMA descriptor.

The following example demonstrates how to send a synchronous callout request
message to a destination named DESCRPTR with 45 bytes of request data and
expect 100 bytes of response data to be returned in a timeout value of 500 (or 5
seconds).
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ICAL SENDRECV DESCRPTR 000500 00045 00100
L DATA HELLO OUT THERE. THIS IS A MESSAGE FROM IMS.

ICMD Call: Use a CALL FUNCTION statement to contain the ICMD function. Use
a CALL DATA statement to contain the command.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ICMD
L Z0132 DATA /DIS ACTIVE

INIT Call: Use a CALL FUNCTION statement to contain the INIT call and a CALL
DATA statement to contain the INIT function DBQUERY, STATUS GROUPA, or
STATUS GROUPB.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INIT 10103210
L Z0011 DATA DBQUERY

INQY Call: Use a CALL FUNCTION statement to contain the INQY call and either
the DBQUERY or ENVIRON subfunction. The subfunctions are in the call input
rather than the data input as in the INIT call.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INQY ENVIRON 10103210
L V0256 DATA 10103211
L 10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L INQY DBQUERY 10103210
L V0088 DATA 10103211
L 10103212

ISRT Call: Use two CALL FUNCTION statements to contain the multiple SSAs
and a CALL DATA statement to contain the segment data.

Chapter 1. DL/I calls reference 253

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|

|

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT STOCKSEG(NUMFIELD =20011) X10103210

ITEMSSEG 10103211
L V0018 DATA 3002222222222222 10103212

ISRT Containing Only One Fixed-Length Segment: Use a CALL FUNCTION
statement to contain the ISRT function and segment name, and two CALL DATA
statements to contain the fixed-length segment. When inserting only one
fixed-length segment, leave columns 4 through 8 blank and put data in columns 16
through 71. To continue data, put a nonblank character in column 72, and the
continued data in columns 16 through 71 of the next statement.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT JOKESSEG 10103210
L DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR 10103212

ISRT Containing Only One Variable-Length Segment: Use a CALL FUNCTION
statement to contain the ISRT function and segment name, and two CALL DATA
statements to contain the variable-length segment. When only one segment of
variable-length is being processed, you must enter a V in column 4, and columns 5
through 8 must contain the length of the segment data. The length in columns 5
through 8 is converted to binary and becomes the first two bytes of the segment
data. To continue data, put a nonblank character in column 72, and the continued
data in columns 16 through 71 of the next statement.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT JOKESSEG 10103210
L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR 10103212

ISRT Containing Multiple Variable-Length Segments: Use a CALL FUNCTION
statement to contain the ISRT function and segment name, and four CALL DATA
statements to contain the variable-length segments. For the first segment, you must
enter a V in column 4 and the length of the segment data in columns 5 through 8.
If the segment is longer than 56 bytes, put a nonblank character in column 72, and
continue data on the next statement. The last statement to contain data for this
segment must have a nonblank character in column 72.

The next DATA statement applies to the next variable-length segment and it must
contain an M in column 4, the length of the new segment in columns 5 through 8,
and data starting in column 16. Any number of variable-length segments can be
concatenated in this manner. If column 72 is blank, the next statement must have
the following:
v An L in column 1
v An M in column 4
v The length of the new segment in columns 5 through 8
v The keyword DATA in columns 10 through 13
v Data starting in column 16
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT AAAAASEG 10103210
L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR *10103212
M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103213

ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103214

ISRT Containing Multiple Segments in a PATH CALL: Use a CALL FUNCTION
statement to contain the ISRT function and segment name, and seven CALL DATA
statements to contain the multiple segments in the PATH CALL.

254 Application Programming APIs

When DFSDDLT0 is inserting or replacing segments through path calls, you can
use V and P in successive statements. The same rules apply for coding multiple
variable-length segments, but fixed-length segments must have a P in column 4 of
the DATA statement. This causes the length field in columns 5 through 8 to be
used as the length of the segment, and causes the data to be concatenated in the
I/O area without including the LL field.

Rules for continuing data in the same segment or starting a new segment in the
next statement are the same as those applied to the variable-length segment.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT LEV01SEG*D *10103210

LEV02SEG *10103211
LEV03SEG *10103212
LEV04SEG 10103213

L V0080 DATA THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103214
XJUMPEDOVERTHELAZYDOGSIR *10103215

M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103216
ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY *10103217

L P0039 DATA THEQUICKBROWNFOXJUMPEDOVERTHELAZYDOGSIR *10103218
L M0107 DATA NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103219

ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY 10103220

LOG Call Using an LLZZ Format: Use a CALL FUNCTION statement to contain
the LOG function and a CALL DATA statement to contain the LLZZ format of data
to be logged.

When you put a Z in column 4, the first word of the record is not coded in the
DATA statement. The length specified in columns 5 through 8 must include the 4
bytes for the LLZZ field that is not in the DATA statement.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L LOG 10103210
L Z0016 DATA ASEGMENT ONE 10103211

The A in column 16 becomes the log record ID.

POS Call: Use a CALL FUNCTION statement to contain the POS function and
SSA; CALL DATA statement is optional.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L POS SEGA (KEYA =A300)

PURG Call with MODNAME and Data: Use a CALL FUNCTION statement to
contain the PURG function and MOD name. Use the CALL DATA statement to
contain the message data. If MOD name is provided, a DATA statement is
required.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG MODNAME1
L DATA FIRST SEGMENT OF NEW MESSAGE

PURG Call with Data and no MODNAME: Use a CALL FUNCTION statement to
contain the PURG function; a DATA statement is optional.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG
L DATA FIRST SEGMENT OF NEW MESSAGE

PURG Call without MODNAME or Data: Use a CALL FUNCTION statement to
contain the PURG function; CALL DATA statement is optional.

Chapter 1. DL/I calls reference 255

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L PURG

RCMD Call: Use a CALL FUNCTION statement to contain the RCMD function.
Use a CALL DATA statement to retrieve second and subsequent command
response segments resulting from an ICMD call.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L RCMD
L Z0132 DATA

REPL Call: Use a CALL FUNCTION statement to contain the REPL function. Use a
CALL DATA statement to contain the replacement data.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L REPL
L V0028 DATA THIS IS THE REPLACEMENT DATA

RLSE Call: Use a CALL FUNCTION statement to contain the RLSE function.
|----+---1----+----2----+----3----+----4----+----5
L RLSE

ROLB Call Requesting Return of First Segment of Current Message: Use a CALL
FUNCTION statement to contain the ROLB function. Use the CALL DATA
statement to request first segment of current message.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLB
L DATA THIS WILL BE OVERLAID WITH FIRST SEGMENT OF MESSAGE

ROLB Call Not Requesting Return of First Segment of Current Message: Use a
CALL FUNCTION statement to contain the ROLB function. The CALL DATA
statement is optional.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLB

ROLL Call: Use a CALL FUNCTION statement to contain the ROLL function. The
CALL DATA statement is optional.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLL

ROLS Call with a Token: Use a CALL FUNCTION statement to contain the ROLS
function and token, and the CALL DATA statement to provide the data area that
will be overlaid by the data from the SETS call.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLS TOKEN1

L Z0046 DATA THIS WILL BE OVERLAID WITH DATA FROM SETS

ROLS Call without a Token: Use a CALL FUNCTION statement to contain the
ROLS function. The CALL DATA statement is optional.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLS

ROLX Call: Use a CALL FUNCTION statement to contain the ROLX function. The
CALL DATA statement is optional. The ROLX function is treated as a ROLS call
with no token.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ROLX

256 Application Programming APIs

SETO Call: Use a CALL FUNCTION statement to contain the SETO function. The
DATA statement is optional; however, if an OPTION statement is passed on the
call, the DATA statement is required. Also, if a FEEDBACK statement is passed on
the call, then both the DATA and OPTION statements are required. The following
is an example of a SETO statement using the OPTION statement and SETO token
of SET1.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET1 5000
L OPT PRTO=11OPTION1,OPTION2,
L CONT OPTION3,
L CONT OPTION4

11 is the hex value of the length of 11OPTION,.........OPTION4.

The following is an example of a SETO statement using the OPTION statement
and SETO token of SET1.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET1 7000
L OPT PRTO=11OPTION1,OPTION2,OPTION3,OPTION4

11 is the hex value of the length of 11OPTION,.........OPTION4.

The following is an example of a SETO statement using the OPTION statement
and SETO token of SET2 and FDBK statement.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETO SET2 5500
L OPT PRTO=11OPTION1,OPTION2,OPTION3,OPTION4
L Z0099 FDBK OPTION ERROR FEEDBACK AREA

11 is the hex value of the length of 11OPTION,.........OPTION4.

SETS Call with a Token: Use a CALL FUNCTION statement to contain the SETS
function and token; use the CALL DATA statement to provide the data that is to be
returned to ROLS call.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETS TOKEN1

L Z0033 DATA RETURN THIS DATA ON THE ROLS CALL

SETS Call without a Token: Use a CALL FUNCTION statement to contain the
SETS function; CALL DATA statement is optional.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SETS

This topic contains Product-sensitive Programming Interface information.

SNAP Call: Use a CALL FUNCTION statement to contain the SNAP function and
a CALL DATA statement to contain the SNAP data.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SNAP 10103210
L V0022 DATA PRINTDD 22222222 10103212

This topic contains Product-sensitive Programming Interface information.

STAT Call: OSAM statistics require only one STAT call. STAT calls for VSAM
statistics retrieve only one subpool at a time, starting with the smallest. See IMS
Version 14 Application Programming for further information about the statistics
returned by STAT.

Chapter 1. DL/I calls reference 257

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L STAT DBASF
L STAT VBASS
L STAT VBASS
L STAT VBASS
L STAT VBASS

SYNC Call: Use a CALL FUNCTION statement to contain the SYNC function. The
CALL DATA statement is optional.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L SYNC

Initial XRST Call: Use a CALL FUNCTION statement to contain the XRST
FUNCTION and a CALL DATA statement that contains a checkpoint ID of blanks
to indicate that you are normally starting a program that uses symbolic
checkpoints.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST 10101400
L DATA
L CKPT
L DATA YOURID01

Basic XRST Call: Use a CALL FUNCTION statement to contain the XRST function
and a CALL DATA statement to contain the checkpoint ID.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST 10101400
L DATA TESTCKPT

Symbolic XRST Call: Use a CALL FUNCTION statement to contain the XRST
function, a CALL DATA statement to contain the checkpoint ID data, and one or
more CALL DATA statements where the data is to be returned.

The XRST call is used with the symbolic CHKP call.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L XRST
L DATA TSTCHKP2 X
L 8 DATA OVERLAY2 X
L 16 DATA OVERLAY2OVERLAY2
U EIGHT BYTES OF DATA (OVERLAY2) SHOULD BE OVERLAID WITH CHECKPOINTED DATA
U SIXTEEN BYTES OF DATA (OVERLAY2OVERLAY2) IS OVERLAID ALSO

DFSDDLT0 call functions
The DFSDDLT0 call functions were created for DFSDDLT0. They do not represent
“valid” IMS calls and are not punched as output if DFSDDLT0 encounters them
while a CTL (PUNCH) statement is active.

The following table shows the special call functions of the CALL FUNCTION
statement. Descriptions and examples of these special functions follow.

Table 63. CALL FUNCTION statement with DFSDDLT0 call functions

Column Function Code Description

1 Identifies control
statement

L Call statement.

2-4 Reserved b

5-8 Repeat count b If blank, repeat count defaults to 1.

258 Application Programming APIs

Table 63. CALL FUNCTION statement with DFSDDLT0 call functions (continued)

Column Function Code Description

nnnn 'nnnn' is the number of times to repeat
this call. Range is 1 to 9999,
right-justified but need not contain
leading zeros.

9 Reserved b

10-15 Special call
function

STAKb Stack control statements for later
execution.

ENDb Stop stacking and begin execution.

SKIPb Skip statements until START function
is encountered.

START Start processing statements again.

73-80 Sequence
indication

nnnnnnnn For SYSIN2 statement override.

STAK/END (stacking) control statements

With the STAK statement, you repeat a series of statements that were read from
SYSIN and held in memory. All control statements between the STAK statement
and the END statement are read and saved. When DFSDDLT0 encounters the END
statement, it executes the series of calls as many times as specified in columns 5
through 8 of the STAK statement. STAK calls imbedded within another STAK
cause the outer STAK call to be abnormally terminated.

SKIP/START (skipping) control statements

With the SKIP and START statements, you identify groups of statements that you
do not want DFSDDLT0 to process. These functions are normally read from
SYSIN2 and provide a temporary override to an established SYSIN input stream.
DFSDDLT0 reads all control statements occurring between the SKIP and START
statements, but takes no action. When DFSDDLT0 encounters the START statement,
it reads and processes the next statement normally.
Related reference:
“PUNCH CTL statement” on page 268

COMMENT statement
Use the COMMENT statement to print comments in the output data.

The two types of COMMENT statements, conditional and unconditional are
described. The following table shows the format of the COMMENT statement.

Table 64. COMMENT statement

Column Function Code Description

1 Identifies control
statement

T Conditional comment statement.

U Unconditional comment statement.

2-72 Comment data Any relevant comment.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Chapter 1. DL/I calls reference 259

Conditional COMMENT statement

You can use up to five conditional COMMENT statements per call; no continuation
mark is required in column 72. Code the statements in the DFSDDLT0 stream
before the call they are to document. Conditional COMMENTS are read and held
until a CALL is read and executed. (If a COMPARE statement follows the CALL,
conditional COMMENTS are held until after the comparison is completed.) You
control whether the conditional comments are printed with column 3 of the
STATUS statement. DFSDDLT0 prints the statements according to the STATUS
statement in the following order: conditional COMMENTS, the CALL, and the
COMPARE(s). The time and date are also printed with each conditional
COMMENT statement.

Unconditional COMMENT statement

You can use any number of unconditional COMMENT statements. Code them in
the DFSDDLT0 stream before the call they are to document. The time and date are
printed with each unconditional COMMENT statement. The previous table lists the
column number, function, code, and description

Example of COMMENT statement

T/U Comment Calls: The following example shows the T and U comment calls.
//BATCH.SYSIN DD * 10000700
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O SNAP= ,ABORT=0 10000800
S 1 1 1 1 1 10001000
L GU SEGB (KEYA =A400) 10001100
T THIS COMMENT IS A CONDITIONAL COMMENT FOR THE FIRST GN 10001300
L GN 10001400
U THIS COMMENT IS AN UNCONDITIONAL COMMENT FOR THE SECOND GN 10001500
L 0020 GN 10001600
/*

COMPARE statement
The COMPARE statement compares the actual results of a call with the expected
results. The three types of COMPARE statements are the COMPARE PCB,
COMPARE DATA, and COMPARE AIB.

When you use the COMPARE PCB, COMPARE DATA, and COMPARE AIB
statements you must:
v Code COMPARE statements in the DFSDDLT0 stream immediately after either

the last continuation, if any, of the CALL DATA statement or another COMPARE
statement.

v Specify the print option for the COMPARE statements in column 7 of the
STATUS statement.

For all three COMPARE statements:
v The condition code returned for a COMPARE gives the total number of unequal

comparisons.
v For single fixed-length segments, DFSDDLT0 uses the comparison length to

perform comparisons if you provide a length. The length comparison option
(column 3) is not applicable.

When you use the COMPARE PCB statement and you want a snap dump when
there is an unequal comparison, request it on the COMPARE PCB statement. A

260 Application Programming APIs

snap dump to a log with SNAP ID COMPxxxx is issued along with the snap dump
options specified in column 3 of the COMPARE PCB statement.

The numeric part of the SNAP ID is initially set to 0000 and is incremented by 1
for each SNAP resulting from an unequal comparison.

COMPARE AIB statement
The COMPARE AIB statement is optional. You can use it to compare values
returned to the AIB by IMS.

The following table shows the format of the COMPARE AIB statement.

Table 65. COMPARE AIB statement

Column Function Code Description

1 Identifies control statement E COMPARE statement.

2 Hold compare option H Hold COMPARE statement. See note for
COMPARE AIB Statement.

� Reset hold condition for a single
COMPARE statement.

3 Reserved �

4-6 AIB compare AIB Identifies an AIB compare.

7 Reserved �

8-11 Return code xxxx Allow specified return code only.

12 Reserved

13-16 Reason code xxxx Allow specified reason code only.

17-72 Reserved � �

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note for COMPARE AIB Statement: To execute the same COMPARE AIB after a
series of calls, put an H in column 2. When you specify an H, the COMPARE
statement executes after each call. The H COMPARE statement is particularly
useful when comparing with the same status code on repeated calls. The H
COMPARE statement stays in effect until another COMPARE AIB statement is
read.

COMPARE DATA statement
The COMPARE DATA statement is optional. It compares the segment returned by
IMS to the data in the statement to verify that the correct segment was retrieved.

The following table gives the format of the COMPARE DATA statement.

Table 66. COMPARE DATA statement.

Column Function Code Description

1 Identifies control statement E COMPARE statement.

2 Reserved �

3 Length comparison option � For fixed-length segments or if the LL field
of the segment is not included in the
comparison; only the data is compared.

L The length in columns 5-8 is converted to
binary and compared against the LL field
of the segment.

Chapter 1. DL/I calls reference 261

Table 66. COMPARE DATA statement (continued).

Column Function Code Description

4 Segment length option �

V For a variable-length segment only, or for
the first variable-length segment of
multiple variable-length segments in a
path call, or for a concatenated
logical-child–logical-parent segment.

M For the second or subsequent
variable-length segment of a path call, or
for a concatenated logical-child–logical-
parent segment.

P For fixed-length segments in path calls.

Z For message segment.

5-8 Comparison length nnnn Length to be used for comparison.
(Required for length options V, M, and P if
L is coded in column 3.)

9 Reserved �

10-13 Identifies type of statement DATA Required for the first I/O COMPARE
statement and the first statement of a new
segment if data from previous I/O
COMPARE statement is not continued.

14-15 Reserved �

16-71 String of data Data against which the segment in the I/O
area is to be compared.

72 Continuation column � If blank, data is NOT continued.

x If not blank, data will be continued,
starting in columns 16-71 of the
subsequent statements for a maximum of
3840 bytes.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Notes:

v If you code an L in column 3, the value in columns 5 through 8 is converted to binary and compared against the
LL field of the returned segment. If you leave column 3 blank and the segment is not in a path call, then the value
in columns 5 through 8 is used as the length of the comparison.

v If you code column 4 with a V, P, or M, you must enter a value in columns 5 through 8.

v If this is a path call comparison, code a P in column 4. The value in columns 5 through 8 must be the exact length
of the fixed segment used in the path call.

v If you specify the length of the segment, this length is used in the COMPARE and in the display. If you do not
specify a length, DFSDDLT0 uses the shorter value for the length of the comparison and display of:

– The length of data supplied in the I/O area by IMS

– The number of DATA statements read times 56

COMPARE PCB statement
The COMPARE PCB statement is optional. You can use it to compare values
returned to the PCB by IMS or to print blocks or buffer pool.

The following table shows the format of the COMPARE PCB statement.

262 Application Programming APIs

Table 67. COMPARE PCB statement.

Column Function Code Description

1 Identifies control
statement

E COMPARE statement.

2 Hold compare option H Hold compare statement.

b Reset hold condition for a single COMPARE
statement.

3 Snap dump options (if
compare was unequal)

b Use default value. (You can change the default value
or turn off the option by coding the value in an
OPTION statement.)

1 The complete I/O buffer pool.

2 The entire region (batch regions only).

4 The DL/I blocks.

8 Terminate the job step on miscompare of DATA or
PCB.

S To SNAP subpools 0 through 127. Requests for
multiple SNAP dump options can be obtained by
summing their respective hexadecimal values. If
anything other than a blank, 1-9, A-F, or S is coded in
column 3, the SNAP dump option is ignored.

4 Extended SNAP1 options b Ignore extended option.

P SNAP the complete buffer pool (batch).

S SNAP subpools 0 through 127 (batch).

An area is never snapped twice. The SNAP option is a
combination of columns 3 (SNAP dump option) and 4
(extended SNAP option).

5-6 Segment level nn 'nn' is the segment level for COMPARE PCB. A
leading zero is required.

7 Reserved b

8-9 Status code b Allow blank status code only.

xx Allow specified status code only.

XX Do not check status code.

OK blank, GA, GC, or GK allowed.

10 Reserved b

11-18 Segment name
User Identification

xxxxxxxx Segment name for DB PCB compare.

Logical terminal for I/O.

Destination for ALT PCB.

19 Reserved b

20-23 Length of key nnnn 'nnnn' is length of the feedback key.

24-71 or Concatenated key Concatenated key feedback for DB PCB compare.

24-31 User ID User identification for TP PCB.

72 Continuation column b If blank, key feedback is not continued.

x If not blank, key feedback is continued, starting in
columns 16-71 of subsequent statements.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Chapter 1. DL/I calls reference 263

Table 67. COMPARE PCB statement (continued).

Column Function Code Description

Note:

1. SNAP is a Product-sensitive Programming Interface.

Blank fields are not compared to the corresponding field in the PCB, except for the
status code field. (Blanks represent a valid status code.) To accept the status codes
blank, GA, GC, or GK as a group, put OK in columns 8 and 9. To stop
comparisons of status codes, put XX in columns 8 and 9.

To execute the same compare after a series of calls, put an H in column 2. This
executes the COMPARE statement after each call. This is particularly useful to
compare to a blank status code only when loading a database. The H COMPARE
statement stays in effect until another COMPARE PCB statement is read.
Related reference:
“OPTION statement” on page 266

Examples of COMPARE DATA and COMPARE PCB statements
The following examples show how COMPARE DATA and COMPARE PCB
statements are used.

COMPARE PCB Statement for Blank Status Code

The COMPARE PCB statement is coded blank. It checks a blank status code for the
GU.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10101100
E 10101200

COMPARE PCB Statement for SSA Level, Status Code, Segment Name,
Concatenated Key Length, and Concatenated Key

The COMPARE PCB statement is a request to compare the SSA level, a status code
of OK (which includes blank, GA, GC, and GK), segment name of SEGA,
concatenated key length of 0004, and a concatenated key of A100.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU
E 01 OK SEGA 0004A100

COMPARE PCB Statement for SSA Level, Status Code, Segment Name,
Concatenated Key Length, and Concatenated Key

The COMPARE PCB statement causes the job step to terminate based on the 8 in
column 3 when any of the fields in the COMPARE PCB statement are not equal to
the corresponding field in the PCB.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10105100
E 8 01 OK SEGK 0004A100 10105200

COMPARE PCB Statement for Status Code with Hold Compare

The COMPARE PCB statement is a request to compare the status code of OK
(which includes blank, GA, GC, and GK) and hold that compare until the next

264 Application Programming APIs

COMPARE PCB statement. The compare of OK is used on GN following GU and
is also used on a GN that has a request to be repeated six times.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU SEGA (KEYA = A300) 20201100
L GN 20201300
EH OK 20201400
L 0006 GN 20201500

COMPARE DATA Statement for Fixed-Length Segment

The COMPARE DATA statement is a request to compare the data returned. 72
bytes of data are compared.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU
E DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10102200
E A100A100A100A100 10102300

COMPARE DATA Statement for Fixed-Length Data for 64 Bytes

The COMPARE DATA statement is a request to compare 64 bytes of the data
against the data returned.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10101600
E 0064 DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10101700
E A100A100B111B111 10101800

COMPARE DATA Statement for Fixed-Length Data for 72 Bytes

The COMPARE DATA statement is a request to compare 72 bytes of the data
against the data returned.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L GU 10103900
E LP0072 DATA A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10104000
E A100A100A100A100 10104100

COMPARE DATA Statement for Variable-Length Data of
Multiple-Segments Data and Length Fields

The COMPARE DATA statement is a request to compare 36 bytes of the data
against the data returned for segment 1 and 16 bytes of data for segment 2. It
compares the length fields of both segments.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000

DJ (DJSS = DJSS01) X38006100
QAJAXQAJ (QAJASS = QAJASS97) 38006200

E LV0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
E LM0016 DATA QAJSS01*2QAJ** 38006350

COMPARE DATA Statement for Variable-Length Data of Multiple
Segments with no Length Field COMPARE

The COMPARE DATA statement is a request to compare 36 bytes of the data
against the data returned for segment 1 and 16 bytes of data for segment 2 with no
length field compares of either segment.

Chapter 1. DL/I calls reference 265

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000

DJ (DJSS = DJSS01) X38006100
QAJAXQAJ (QAJASS = QAJASS97) 38006200

E V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
M0016 DATA QAJSS01*2QAJ** 38006350

COMPARE DATA Statement for Variable-Length Data of Multiple
Segments and One Length Field COMPARE

The COMPARE DATA statement is a request to compare 36 bytes of the data
against the data returned for segment 1 and 16 bytes of data for segment 2. It
compares the length field of segment 1 only.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
L ISRT D (DSS = DSS01) X38005500
L DJ (DJSS = DJSS01) X38005600
L QAJAXQAJ 38005700
L V0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38005800
L M0016 DATA QAJSS01*IQAJ** 38005850
L GHU D (DSS = DSS01) X38006000

DJ (DJSS = DJSS01) X38006100
QAJAXQAJ (QAJASS = QAJASS97) 38006200

E LV0036 DATA QSS02QASS02QAJSS01QAJASS97*IQAJA** *38006300
M0016 DATA QAJSS01*2QAJ** 38006350

IGNORE statement
DFSDDLT0 ignores any statement with an N or a period (.) in column 1.

You can use the N or . (period) to comment out a statement in either the SYSIN or
SYSIN2 input streams. Using N or . (period) in a SYSIN2 input stream causes the
SYSIN input stream to be ignored as well. The following table gives the format of
the IGNORE statement. An example of the statement follows.

Table 68. IGNORE statement

Column Function Code Description

1 Identifies control
statement

N or . IGNORE statement.

2-72 Ignored

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of IGNORE statement using N or .
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
. NOTHING IN THIS AREA WILL BE PROCESSED. ONLY THE SEQUENCE NUMBER 67101010
N WILL BE USED IF READ FROM SYSIN2 OR SYSIN. 67101020

Related reference:
“SYSIN2 DD statement” on page 275

OPTION statement
Use the OPTION statement to override various default options.

266 Application Programming APIs

Use multiple OPTION statements if you cannot fit all the options you want in one
statement. No continuation character is necessary. Once you set an option, it
remains in effect until you specify another OPTION statement to change the first
parameter. The following table shows the format of the OPTION statement. An
example follows.

Table 69. OPTION statement.

Column Function Code Description

1 Identifies control
statement

O OPTION statement (free-form parameter
fields).

2 Reserved b b

3-72 Keyword parameters:

ABORT= v 0

v 1 to 9999

v Turns the ABORT parameter off.

v Number of unequal compares before
aborting job. Initial default is 5.

LINECNT= 10 to 99 Number of lines printed per page. Must be
filled with zeros. Initial default 54.

SNAP1 x SNAP option default, when results of compare
are unequal. To turn the SNAP option off,
code 'SNAP='. Initial default is 5 if this option
is not coded. This causes the I/O buffer pool
and the DL/I blocks to be dumped with a
SNAP call.

DUMP/NODUMP Produce/do not produce dump if job abends.
Default is NODUMP.

LCASE= v H

v C

v Hexadecimal representation for lower case
characters. This is the initial default.

v Character representation for lower case
characters.

STATCD/NOSTATCD Issue/do not issue an error message for the
internal, end-of-job stat call that does not
receive a blank or GA status code. NOSTATCD
is the default.

ABU249/NOABU249 Issue/do not issue a DFSDDLT0 ABENDU0249
when an invalid status code is returned for
any of the internal end-of-job stat calls in a
batch environment. NOABU249 is the default.

73 - 80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Note:

1. SNAP is a Product-sensitive Programming Interface.

OPTION statement parameters can be separated by commas.

Example of OPTION control statement
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
O ABORT=5,DUMP,LINECNT=54,SPA=4096,SNAP=5 67101010

Related reference:
“COMPARE PCB statement” on page 262

Chapter 1. DL/I calls reference 267

PUNCH CTL statement
The PUNCH CTL statement allows you to produce an output data set consisting of
COMPARE PCB statements, COMPARE DATA statements, COMPARE AIB
statements, other control statements, or combinations of these statements.

The following table shows the format and keyword parameters for the PUNCH
CTL statement.

Table 70. PUNCH CTL statement

Column Function Code Description

1-3 Identifies control
statement

CTL PUNCH statement.

4-9 Reserved b

10-13 Punch control PUNC Begin punching (no default
values).

NPUN Stop punching (default
value).

14-15 Reserved b

16-72 Keyword parameters:

OTHER Reproduces all input control
statements except:

v CTL (PUNCH) statements.

v N or . (IGNORE)
statements.

v COMPARE statements.

v CALL statements with
functions of SKIP and
START. Any control
statements that appear
between SKIP and START
CALLs are not punched.

v CALL statements with
functions of STAK and
END. Control statements
that appear between STAK
and END CALLS are saved
and then punched the
number of times indicated
in the STAK CALL.

DATAL Create a full data COMPARE
using all of the data returned
to the I/O area. Multiple
COMPARE statements and
continuations are produced as
needed.

DATAS Create a single data
COMPARE statement using
only the first 56 bytes of data
returned to the I/O area.

268 Application Programming APIs

Table 70. PUNCH CTL statement (continued)

Column Function Code Description

PCBL Create a full PCB COMPARE
using the complete key
feedback area returned in the
PCB. Multiple COMPARE
statements and continuations
are produced as needed.

PCBS Create a single PCB
COMPARE statement using
only the first 48 bytes of the
key feedback area returned in
the PCB.

SYNC/NOSYNC If a GB status code is
returned on a Fast Path call
while in STAK, but prior to
exiting STAK, this function
issues or does not issue
SYNC.

START= 00000001 to 99999999.

This is the starting sequence
number to be used for the
punched statements. Eight
numeric bytes must be coded.

INCR= 1 to 9999.

Increment the sequence
number of each punched
statement by this value.
Leading zeros are not
required.

AIB Create an AIB COMPARE
statement.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement
override.

To change the punch control options while processing a single DFSDDLT0 input
stream, always use PUNCH CTL statements in pairs of PUNC and NPUN.

One way to use the PUNCH CTL statement is as follows:
1. Code only the CALL statements for a new test. Do not code the COMPARE

statements.
2. Verify that each call was executed correctly.
3. Make another run using the PUNCH CTL statement to have DFSDDLT0 merge

the proper COMPARE statements and produce a new output data set that can
be used as input for subsequent regression tests.

You can also use PUNCH CTL if segments in an existing database are changed.
The control statement causes DFSDDLT0 to produce a new test data set that has
the correct COMPARE statements rather than you having to manually change the
COMPARE statements.

Chapter 1. DL/I calls reference 269

Parameters in the CTL statement must be the same length as described in the
previous table, and they must be separated by commas.

Example of PUNCH CTL statement
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
CTL PUNC PCBS,DATAS,OTHER,START=00000010,INCR=0010 33212010
CTL NPUN 33212020

The DD statement for the output data set is labeled PUNCHDD. The data sets are
fixed block with LRECL=80. Block size as specified on the DD statement is used. If
not specified, the block size is set to 80. If the program is unable to open
PUNCHDD, DFSDDLT0 issues abend 251.

Example of PUNCH CTL statement for all parameters
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
CTL PUNC OTHER,DATAL,PCBL,START=00000001,INCR=1000,AIB 33212010

Related reference:
“DFSDDLT0 call functions” on page 258
“Control statements” on page 236

STATUS statement
With the STATUS statement, you establish print options and name the PCB that
you want subsequent calls to be issued against.

The following table shows the format of the STATUS statement.

Table 71. STATUS statement

Column Function Code Description

1 Identifies control statement S STATUS statement.

2 Output device option � Use PRINTDD when in a DL/I region; use
I/O PCB in MPP region.

1 Use PRINTDD in MPP region if DD statement
is provided; otherwise, use I/O PCB.

A Same as if 1, and disregard all other fields in
this STATUS statement.

3 Print comment option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

4 Print AIB option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

5 Print call option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

6 Reserved �

7 Print compare option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

8 Reserved �

270 Application Programming APIs

Table 71. STATUS statement (continued)

Column Function Code Description

9 Print PCB option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

10 Reserved �

11 Print segment option � Do not print.

1 Print for each call.

2 Print only if compare done and unequal.

12 Set task and real time � Do not time

1 Time each call.

2 Time each call if compare done and unequal.

13-14 Reserved �

15 PCB selection option 1 PCB name passed in columns 16-23 (use
option 1).

2 DBD name passed in columns 16-23 (use
option 2).

3 Relative DB PCB passed in columns 16-23 (use
option 3).

4 Relative PCB passed in columns 16-23 (use
option 4).

5 $LISTALL passed in columns 16-23 (use
option 5).

� If column 15 is blank, DFSDDLT0 selects
options 2 through 5 based on content of
columns 16-23.

Opt. 1
16-23

PCB selection
PCB name

alpha These columns must contain the name of the
label on the PCB at PSBGEN, or the name
specified on the PCBNAME= operand for the
PCB at PSBGEN time.

Opt. 2
16-23

PCB selection
DBD name

�

alpha

The default PCB is the first database PCB in
the PSB. If columns 16-23 are blank, current
PCB is used. If DBD name is specified, this
must be the name of a database DBD in the
PSB.

Opt. 3
16-18
19-23

PCB selection
Relative position
of PCB in PSB

�

numeric

When columns 16 through 18 are blank,
columns (19-23) of this field are interpreted as
the relative number of the DB PCB in the PSB.
This number must be right-justified to column
23, but need not contain leading zeros.

Opt. 4
16-18
19-23

PCB selection
I/O PCB
Relative position
of PCB in PSB

�

numeric

When columns 16 through 18 = 'TP�', columns
(19-23) of this field are interpreted as the
relative number of the PCB from the start of
the PCB list. This number must be
right-justified to column 23, but need not
contain leading zeros. I/O PCB is always the
first PCB in the PCB list in this program.

Opt. 5
16-23

List all PCBs in the PSB $LISTALL Prints out all PCBs in the PSB for test script.

Chapter 1. DL/I calls reference 271

Table 71. STATUS statement (continued)

Column Function Code Description

24 Print status option � Use print options to print this STATUS
statement.

1 Do not use print options in this statement;
print this STATUS statement.

2 Do not print this STATUS statement but use
print options in this statement.

3 Do not print this STATUS statement and do
not use print options in this statement.

25-28 PCB processing option xxxx This is optional and is only used when two
PCBs have the same name but different
processing options. If not blank, it is used in
addition to the PCB name in columns 16
through 23 to select which PCB in the PSB to
use.

29 Reserved �

30-32 AIB interface AIB Indicates that the AIB interface is used and
the AIB is passed rather than passing the PCB.
(Passing the PCB is the default.)
Note: When the AIB interface is used, the
PCB must be defined at PSBGEN with
PCBNAME=name. IOPCB is the PCB name
used for all I/O PCBs. DFSDDLT0 recognizes
that name when column 15 contains a 1 and
columns 16 through 23 contain IOPCB.

33 Reserved

37-72 Reserved

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

If DFSDDLT0 does not encounter a STATUS statement, all default print options
(columns 3 through 12) are 2 and the default output device option (column 2) is 1.
You can code a STATUS statement before any call sequence in the input stream,
changing either the PCB to be referenced or the print options.

The referenced PCB stays in effect until a subsequent STATUS statement selects
another PCB. However, a call that must be issued against an I/O PCB (such as
LOG) uses the I/O PCB for that call. After the call, the PCB changes back to the
original PCB.

Examples of STATUS statement

To Print Each CALL Statement: The following STATUS statement tells DFSDDLT0
to print these options: COMMENTS, CALL, COMPARE, PCB, and SEGMENT
DATA for all calls.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1

To Print Each CALL Statement, Select a PCB: The following STATUS statements
tell DFSDDLT0 to print the COMMENTS, CALL, COMPARE, PCB, and SEGMENT
DATA options for all calls, and select a PCB.

272 Application Programming APIs

The 1 in column 15 is required for PCBNAME. If omitted, the PCBNAME is
treated as a DBDNAME.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 1PCBNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 1PCBNAME AIB�

To print each CALL statement, select PCB based on a DBD name: The following
STATUS statements tell DFSDDLT0 to print the COMMENTS, CALL, COMPARE,
PCB, and SEGMENT DATA options for all calls, and select a PCB by a DBD name.

The 2 in column 15 is optional.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 2DBDNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S 1 1 1 1 1 2DBDNAME AIB�

If you do not use the AIB interface, you do not need to change STATUS statement
input to existing streams; existing call functions will work just as they have in the
past. However, if you want to use the AIB interface, you must change the STATUS
statement input to existing streams to include AIB in columns 30 through 32. The
existing DBD name, Relative DB PCB, and Relative PCB will work if columns 30
through 32 contain AIB and the PCB has been defined at PSBGEN with
PCBNAME=name.

WTO statement
The WTO (Write to Operator) statement sends a message to the z/OS console
without waiting for a reply.

The following table shows the format for the WTO statement.

Table 72. WTO statement

Column Function Code Description

1-3 Identifies control
statement

WTO WTO statement.

4 Reserved �

5-72 Message to send Message to be written to the system
console.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of WTO statement

This WTO statement sends a message to the z/OS console and continues the test
stream.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
WTO AT A “WTO” WITHIN TEST STREAM --WTO NUMBER 1-- TEST STARTED

WTOR statement
The WTOR (Write to Operator with Reply) statement sends a message to the z/OS
system console and waits for a reply.

Chapter 1. DL/I calls reference 273

The following table shows the format of the WTOR statement.

Table 73. WTOR statement

Column Function Code Description

1-4 Identifies control
statement

WTOR WTOR statement.

5 Reserved �

6-72 Message to send Message to be written to the system
console.

73-80 Sequence indication nnnnnnnn For SYSIN2 statement override.

Example of WTOR statement

This WTOR statement causes the test stream to hold until DFSDDLT0 receives a
response from the z/OS console operator. Any response is valid.
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
WTOR AT A “WTOR” WITHIN TEST STREAM - ANY RESPONSE WILL CONTINUE

JCL requirements for the DL/I test program (DFSDDLT0)
DFSDDLT0 uses these DD statements.

Execution JCL depends on the installation data set naming standards as well as the
IMS environment (batch or online).
//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=3,PRTY=8 33001100
//GET EXEC PGM=DFSRRC00,PARM=’DLI,DFSDDLT0,PSBNAME’ 33001200
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR 33001300
//IMS DD DSN=IMS2.PSBLIB,DISP=(SHR,PASS) 33001400
// DD DSN=IMS2.DBDLIB,DISP=(SHR,PASS) 33001500
//DDCARD DD DSN=DATASET,DISP=(OLD,KEEP) 33001600
//IEFRDER DD DUMMY 33001700
//PRINTDD DD SYSOUT=A 33001800
//SYSUDUMP DD SYSOUT=A 33001900
//SYSIN DD * 33002000
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
U THIS IS PART OF AN EXAMPLE 33002100
S 1 1 1 1 1 PCB-NAME 33002200
L GU 33002300
/*
//SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 33002300
/*

The following code example shows how to code JCL for DFSDDLT0 in a BMP. Use
of a procedure is optional and is only shown here as an example.

Example JCL code for DFSDDLT0 in a BMP
//SAMPLE JOB ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=A 00010047
//***
//* BATCH DL/I JOB *
//***
//BMP EXEC IMSBATCH,MBR=DFSDDLT0,PSB=PSBNAME
//BMP.PRINTDD DD SYSOUT=A
//BMP.PUNCHDD DD SYSOUT=B
//BMP.SYSIN DD *
U ***THIS IS PART OF AN EXAMPLE OF SYSIN DATA 00010000
S 1 1 1 1 1 1 00030000
L GU 00040000

274 Application Programming APIs

L 0099 GN 00050000
/*
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
//BMP.SYSIN2 DD *
U ***THIS IS PART OF AN EXAMPLE OF SYSIN2 DATA ******************* 00020000
ABEND 00050000
/*

SYSIN DD statement
The data set specified by the SYSIN DD statement is the normal input data set for
DFSDDLT0. When processing input data that is on direct-access or tape, you may
want to override certain control statements in the SYSIN input stream or to add
other control statements to it. You do this with a SYSIN2 DD statement and the
control statement sequence numbers.

Sequence numbers in columns 73 to 80 for SYSIN data are optional unless a
SYSIN2 override is used.
Related reference:
“SYSIN2 DD statement”
“Control statements” on page 236

SYSIN2 DD statement
DFSDDLT0 does not require the SYSIN2 DD statement, but if it is present in the
JCL, DFSDDLT0 will read and process the specified data sets.

When using SYSIN2:
v The SYSIN DD data set is the primary input. DFSDDLT0 attempts to insert the

SYSIN2 control statements into the SYSIN DD data set.
v You must code the control groups and sequence numbers properly in columns

73 to 80 or the merging process will not work.
v Columns 73 and 74 indicate the control group of the statement.
v Columns 75 to 80 indicate the sequence number of the statement.
v Sequence numbers must be in numeric order within their control group.
v Control groups in SYSIN2 must match the SYSIN control groups, although

SYSIN2 does not have to use all the control groups used in SYSIN. DFSDDLT0
does not require that control groups be in numerical order, but the control
groups in SYSIN2 must be in the same order as those in SYSIN.

v When DFSDDLT0 matches a control group in SYSIN and SYSIN2, it processes
the statements by sequence number. SYSIN2 statements falling before or after a
SYSIN statement are merged accordingly.

v If the sequence number of a SYSIN2 statement matches the sequence number of
a SYSIN statement in its control group, the SYSIN2 overrides the SYSIN.

v If the program reaches the end of SYSIN before it reaches the end of SYSIN2, it
processes the records of SYSIN2 as if they were an extension of SYSIN.

v Replacement or merging occurs only during the current run. The original SYSIN
data is not changed.

v During merge, if one of the control statements contains blanks in columns 73
through 80, DFSDDLT0 discards the statement containing blanks, sends a
message to PRINTDD, and continues the merge until end-of-file is reached.

Related reference:
“SYSIN DD statement”
“Control statements” on page 236
“IGNORE statement” on page 266

Chapter 1. DL/I calls reference 275

PRINTDD DD statement
The PRINTDD DD statement defines output data set for DFSDDLT0, including
displays of control blocks using the SNAP call. It must conform to the z/OS SNAP
data set requirements.

PUNCHDD DD statement
The DD statement for the output data set is labeled PUNCHDD.

The data sets are fixed block with LRECL=80. Block size as specified on the DD
statement is used; if not specified, the block size is set to 80. If the program is
unable to open PUNCHDD, DFSDDLT0 issues abend 251. Here is an example of
the PUNCHDD DD statement.
//PUNCHDD DD SYSOUT=B

Using the PREINIT parameter for DFSDDLT0 input restart
You use the DFSDDLT0 restart function to restart a DFSDDLT0 input stream within
the same dependent region.

The PREINIT parameter in the EXEC statement invokes the restart function. Code
the PREINIT parameter of DFSMPR as PREINIT=xx, where xx is the two-character
suffix of the DFSINTxx PROCLIB member. (PREINIT=DL refers to the default
PROCLIB member.)

The PREINIT process establishes a checkpoint field for each active IMS region. This
field is updated with the sequence number of each GU call to an I/O PCB as it is
processed. For this reason, sequence numbers are required for all such GU calls
that are used. On a restart, if the checkpoint field contains a sequence number, the
DFSDDLT0 stream starts at the next GU call to an I/O PCB following the sequence
number in the checkpoint field; otherwise the DFSDDLT0 stream starts from the
beginning.

The DFSDDLSI module and the default IMS.PROCLIB member, DFSINTDL, are
shipped with IMS and are installed as part of normal IMS installation.

The following code shows examples of SYSIN/SYSIN2 and PREINIT.
//TSTPGM JOB CARD
//DDLTTST EXEC DFSMPR,PREINIT=DL
//MPP.SYSIN DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
S11 1 1 1 1 TP 1 01000000
OPTIONS SNAP= ,ABORT=9999 01000010
U** 01000040
S11 1 1 1 1 TP 1 01000050
L GU 01000060
E OK 01000070
S11 1 1 1 1 DBPCBXXX 01000080
L GU 01000090
E DATA A INIT-LOAD UOW 01000100
E 01 ROOTSEG1 0008A 0004D 01000110
S11 1 1 1 1 TP 1 01000120
L ISRT 01000130
L Z0080 DATA -SYNC INTERVAL 1 SEG 1 -MESSAGE 1 X01000140
L P DATA 111 01000150
L ISRT 01000160
L Z0080 DATA -SYNC INTERVAL 1 SEG 2 -END EOM 1 X01000170
L P DATA 111 01000180
U** 01000190
U* ENDING FIRST SYNC INTERVAL 01000200
U** 01000210
L GU 01000220

276 Application Programming APIs

E QC 01000230
L GU 01000240
E OK 01000250
S11 1 1 1 1 DBPCBXXX 01000260
WTO GETTING DATA BASE SEGMENT 1 FROM DBPCBXXX 01000270
L U GHU 01000280
E DATA INIT-LOAD UOW. 1 A.P. 1 01000290
E OK 01000300
L U0003 GN 01000310
E OK 01000320
S11 1 1 1 1 TP 1 01000330
L ISRT 01000340
L Z0080 DATA -SYNC INTERVAL 2 SEG 1 -MESSAGE 1 X01000350
L P DATA 22211 01000360
L ISRT 01000370
L Z0080 DATA -SYNC INTERVAL 2 SEG 2 -END EOM 1 X01000380
L P DATA 22211 01000390
U** 01000400
U* ENDING SECOND SYNC INTERVAL 01000410
U** 01000420
L GU 01000430
E QC 01000440
L GU 01000450
E OK 01000460
S11 1 1 1 1 DBPCBXXX 01000470
S11 1 1 1 1 TP 1 01000480
L ISRT 01000490
L Z0080 DATA -SYNC INTERVAL 3 SEG 1 -MESSAGE 1 X01000500
L P DATA 33311 01000510
L ISRT 01000520
L Z0080 DATA -SYNC INTERVAL 3 SEG 2 -END EOM 1 X01000530
L P DATA 33311 01000580
U** 01000590
U* ENDING THIRD SYNC INTERVAL 01000600
U** 01000610
L GU 01000620
E QC 01000630
//MPP.SYSIN2 DD *
|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<
ABEND 01000430
/*

Notes for the SYSIN/SYSIN2 and PREINIT examples:

1. The PREINIT= parameter coded in the EXEC statement invokes the restart
process.

2. When DFSDDLT0 starts processing, it substitutes the SYSIN2 ABEND statement
for the statement in SYSIN with the same sequence number. (It is the GU call
with sequence number 01000430.)

3. DFSDDLT0 begins with statement 01000000 and processes until it encounters
the ABEND statement (statement number 01000430). The GU calls to the I/O
PCB have already been tracked in the checkpoint field (statements 01000060,
01000220, and 01000240).

4. When DFSDDLT0 is rescheduled, it examines the checkpoint field and finds
01000240. DFSDDLT0 begins processing at the next GU call to the I/O PCB,
statement 01000450.
If the statement currently numbered 01000240 did not have a sequence number,
DFSDDLT0 would restart from statement 01000000 when it was rescheduled.

Execution of DFSDDLT0 in IMS regions
DFSDDLT0 is designed to operate in a DL/I or BMP region but can be executed in
an IFP or MPP region. In a BMP or DL/I region, the EXEC statement allows the

Chapter 1. DL/I calls reference 277

program name to be different from the PSB name. There is no problem executing
calls against any database in a BMP or DL/I region.

In an MPP region, the program name must be the same as the PSB name. To
execute a DFSDDLT0 program in an MPP region, you must give DFSDDLT0 the
PSB name or an alias of the PSB named in the IMS definition. You can use a
temporary step library.

In an MPP region or a BMP region with an input transaction code specified in the
EXEC statement, DFSDDLT0 normally gets input by issuing a GU and GNs to the
I/O PCB. DFSDDLT0 issues GU and GN calls until it receives the “No More
Messages” status code, QC. If there is a SYSIN DD statement and a PRINTDD DD
statement in the dependent region, DFSDDLT0 reads input from SYSIN and
SYSIN2, if present, and sends output to the PRINTDD. If the dependent region is
an MPP region and the input stream does not cause a GU to be issued to the I/O
PCB before encountering end-of-file from SYSIN, the program will implicitly do a
GU to the I/O PCB to get the message that caused the program to be scheduled. If
the input stream causes a GU to the I/O PCB and a “No More Messages” status
code is received, this is treated as the end of file. When input is from the I/O PCB,
you can send output to PRINTDD by coding a 1 or an A in column 2 of the
STATUS statement.

Because the input is in fixed form, it is difficult to key it from a terminal. To use
DFSDDLT0 to test DL/I in a message region, execute another message program
that reads control statements stored as a member of a partitioned set. Insert these
control statements to an input transaction queue. IMS then schedules the program
to process the transactions. This method allows you to use the same control
statements to execute in any region type.

Explanation of DFSDDLT0 return codes
A non-zero return code from DFSDDLT0 indicates the number of unequal
comparisons that occurred during that time.

A return code of 0 (zero) from DFSDDLTO does not necessarily mean that
DFSDDLT0 executed without errors. There are several messages issued by
DSFDDLT0 that do not change the return code, but do indicate some sort of error
condition. This preserves the return code field for the unequal comparison count.

If an error message was issued during the run, a message ERRORS WERE DETECTED
WITHIN THE INPUT STREAM. REVIEW OUTPUT TO DETERMINE ERRORS. appears at the
end of the DFSDDLT0 output. You must examine the output to ensure DFSDDLT0
executed as expected.

DFSDDLT0 operations
You can use DFSDDLT0 to load a database, print, retrieve, replace, and delete
segments; perform regression testing; as a debugging aid; and to verify how a call
is executed.

Load a database

Use DFSDDLT0 for loading only very small databases because you must to
provide all the calls and data rather than have them generated. The following
example shows CALL FUNCTION and CALL DATA statements that are used to
load a database.

278 Application Programming APIs

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
O SNAP= ,ABORT=0
S 1 2 2 1 1
L ISRT COURSE
L DATA FRENCH
L ISRT COURSE
L DATA COBOL
L ISRT CLASS
L DATA 12
L ISRT CLASS
L DATA 27
L ISRT STUDENT
L DATA SMITH THERESE
L ISRT STUDENT
L DATA GRABOWSKY MARION

Print the segments in a database

Use either of the following sequences of control statements to print the segments in
a database.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
.* Use PRINTDD, print call, compare, and PCB if compare unequal
.* Do 1 Get Unique call
.* Hold PCB compare, End step if status code is not blank, GA, GC, GK
.* Do 9,999 Get Next calls
S 2 2 2 1 DBDNAME
L GU
EH8 OK
L 9999 GN

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<
.* Use PRINTDD, print call, compare, and PCB if compare unequal
.* Do 1 Get Unique call
.* Hold PCB compare, Halt GN calls when status code is GB.
.* Do 9,999 Get Next calls
S 2 2 2 1 DBDNAME
L GU
EH OK
L 9999 GN

Both examples request the GN to be repeated 9999 times. Note that the first example
uses a COMPARE PCB of EH8 while the second uses a COMPARE PCB of EH.

The difference between these two examples is that the first halts the job step the
first time the status code is not blank, GA, GC, or GK. The second example halts
repeating the GN and goes on to process any remaining DFSDDLT0 control
statements when a GB status code is returned or the GN has been repeated 9999
times.

Retrieve and replace a segment

Use the following sequence of control statements to retrieve and replace a segment.
|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----
S 1 1 1 1 1 COURSEDB
L GHU COURSE (TYPE =FRENCH) X

CLASS (WEEK =27) X
STUDENT (NAME =SMITH)

L REPL
L DATA SMITH THERESE

Delete a segment

Use the following sequence of control statements to delete a segment.

Chapter 1. DL/I calls reference 279

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----
S 1 1 1 1 1 4
L GHU COURSE (TYPE =FRENCH) X

CLASS *L X
INSTRUC (NUMBER =444)

L DLET

Do regression testing

DFSDDLT0 is ideal for doing regression testing. By using a known database,
DFSDDLT0 can issue calls and then compare the results of the call to expected
results using COMPARE statements. The program then can determine if DL/I calls
are executed correctly. If you code all the print options as 2's (print only if
comparisons done and unequal), only the calls not properly satisfied are displayed.

Use as a debugging aid

When debugging a program, you usually need a print of the DL/I blocks. You can
snap the blocks to a log data set at appropriate times by using a COMPARE
statement that has an unequal compare in it. You can then print the blocks from
the log. If you need the blocks even though the call executed correctly, such as for
the call before the failing call, insert a SNAP function in the CALL statement in the
input stream.

Verify how a call is executed

Because it is very easy to execute a particular call, you can use DFSDDLT0 to
verify how a particular call is handled. This can be of value if you suspect DL/I is
not operating correctly in a specific situation. You can issue the calls suspected of
not executing properly and examine the results.

280 Application Programming APIs

Chapter 2. DRDA DDM command architecture reference

IMS supports the distributed data management architecture (DDM) of the
Distributed Relational Database Architecture™ (DRDA). You can develop your own
source DDM server that communicates with the IMS target DDM server to provide
access to databases managed by IMS DB in DBCTL and DB/TM IMS systems.

The IMS documentation for the DDM architecture includes only the DDM
structures that are required to connect to and communicate with IMS and the
DDM structures that have been changed or defined by IMS.

For the complete documentation of the DDM, see DRDA, Version 4, Volume 3:
Distributed Data Management (DDM) Architecture, which is available from The Open
Group at www.opengroup.org.

The DDM architecture includes the following elements or terms:
v Commands
v Command objects
v Reply objects
v Reply messages

Each term, whether it is a command, command object, reply object, parameter, or
message, is represented by a codepoint, a hexadecimal value that represents and
identifies the component in communication between a source server and the target
server. For example, the EXCSAT command is represented by X'1041', the
EXCSATRD reply object is represented by X'1443', the SRVNAM parameter is
represented by X'116D', and so on.

As an open standard, the DRDA specification requires that products that use the
specification must conform to the conventions, protocols, standards, and so on, of
its architecture. However, the DDM architecture that is a part of the DRDA
specification allows products to create product-unique extensions, in which a product,
such as IMS, uses a subset of the existing DDM-defined commands, parameters,
and messages, as well as product-unique structures that are defined by the
product. When creating a product-unique extension that has product-unique
structures, the product must conform to the DDM architecture.

The product-unique extension for IMS conforms to both the DDM architecture and
the DRDA specification. IMS uses a subset of the existing DDM-defined
commands, parameters, and messages, as well as a variety of IMS-defined
structures that conform to the DDM architecture, but are unique to IMS.
Related concepts:

Programming with the IMS support for DRDA (Application Programming)

Overview of the syntax for DDM terms supported by IMS
IMS supports the general syntax of terms defined by the distributed data
management (DDM) architecture.

All DDM commands, reply messages, and chained objects begin with a 6-byte data
stream structure header (DSSHDR), followed in order by a 2-byte binary integer

© Copyright IBM Corp. 1974, 2017 281

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_ddm_overview.htm#ims_ddm_overview

that defines the length of the term (LL), and a 2-byte hexadecimal codepoint (CP)
that uniquely identifies the DDM term, and data, if any.

Parameters of commands, messages, and objects start with LL, followed in order
by CP and the data. Parameters, which are also known as instance variables, do
not include a DSSHDR.

Some data structures, such as the IMS product-unique data structures aibStream,
dbpcbStream, and iopcbStream, do not include DSSHDR, LL, or CP.
Related reference:
“DEALLOCDB command (X'C801')” on page 289

DSSHDR syntax
DSSHDR is the 6-byte header that contains information about the data stream
structure (DSS) of terms defined by the distributed data management (DDM)
architecture.

DSSHDR has the following format:

LL A 2-byte specification of the length of the whole command, reply, or object,
including the 6-byte DSS HEADER. The minimum possible value is 6, and the
maximum is 32,767.

DDMID
A 1-byte Systems Network Architecture (SNA) registered General Data Stream
(GDS) identifier. The DDMID field is always D0 for a DDM command.

FORMAT ID
A 1-byte indicator of whether the DSS is chained to the next DSS and what to
do when errors occur. The byte contains the following bits, from 0 to 7, left to
right:
Bit 0 Unused.
Bit 1 A flag. 1 indicates that the DSS structure is chained to the next

structure. 0 indicates no chaining.
Bit 2 A flag. 1 indicates to continue when errors occur, and 0, otherwise.
Bit 3 A flag. 1 indicates that the next DSS has the same request correlator,

and 0, otherwise. If bit 1 is 0, bit 3 is also 0.
Bits 4 through 7

Indicate the DSS type:
v 1: a Request DSS.
v 2: a Reply DSS.
v 3: an Object DSS.
v 4: an Encrypted Object DSS.

RQSDRR
A generated 2-byte field that associates a request with its request data, the
replies to the request, and the data that is returned for the request.

DDM commit and rollback processing
The IMS implementation of the distributed data management (DDM) architecture
includes support for commit and rollback processing.

XA support and the processing of global transactions is controlled by the DDM
commands SYNCCTL and SYNCCRD.

282 Application Programming APIs

The processing of local transactions is controlled by the DDM commands
RDBCMM and RDBRLLBCK.

IMS does not extend these DDM commands beyond their original specification by
DRDA.

Documentation for these commands can be found in DRDA, Version 4, Volume 3:
Distributed Data Management (DDM) Architecture.

DDM commands and command objects
IMS supports a subset of the distributed data management (DDM) architecture
commands and command objects and defines other IMS product-unique DDM
commands.

ACCRDB command (X'2001')
The distributed data management (DDM) architecture ACCRDB command allocates
a program specification block (PSB) on behalf of the source server. The PSB
represents a connection between the DDM source server and an IMS database.

The PSB remains allocated until the database connection is closed and the
communications conversation is terminated.

Format

►► DSSHDR LL CP RDBNAM RDBACCCL PRDID TYPDEFNAM
PRDDTA

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2001', the 2-byte codepoint of the ACCRDB command.

RDBNAM

A required parameter (X'2110') that contains the IMS PSB name that identifies
the target database. The PSB name is a character string up to 8 bytes long.
RDBNAM can optionally include the alias name of the IMS data store.

RDBACCCL
A required parameter that specifies the application manager that accesses the
database. The codepoint for RDBACCCL is X'210F'. The value of RDBACCCL
is reserved and must be X'2407'.

PRDID
A required parameter that specifies the release level of the source DDM server.
The codepoint for PRDID is X'112E'.

PRDDTA
An optional parameter that specifies product-specific information that is
passed to the target if the SRVCLSNM of the target server is not known when
the ACCRDB command is issued. The codepoint for PRDDTA is X'2104'. This
parameter can be ignored by the target server.

Chapter 2. DRDA DDM command architecture reference 283

TYPDEFNAM

A required parameter (X'002F') that specifies the name of the data type
definition. TYPDEFNAM consists of a 2-byte specification of length (LL), a
2-byte codepoint (CP), and the VALUE. The VALUE is reserved and must be
QTDSQL370, which is the general EBCDIC SQL type definition for machines
that use EBCDIC strings, IEEE floating-point numbers, and non-byte-reversed
floating-point and integer numbers.

Usage

If no errors occur during the processing of the ACCRDB command, the IMS target
server returns the ACCRDBRM reply message to indicate that the database has
been allocated.

Chained command objects

No command objects can be chained to the ACCRDB command.

Positive reply messages

In response to the ACCRDB command, the IMS target DDM server returns to the
source server the following positive reply messages:

ACCRDBRM
Access to database completed.

Codepoint: X'2201'

Specifies that the named database in the previous ACCRDB command is
now available to the client for processing.

Error reply messages

In response to the ACCRDB command, the IMS target DDM server can return to
the source DDM server the following error reply messages that are unique to the
ACCRDB command:

Table 74. Possible error reply messages unique to the ACCRDB command

Codepoint of reply message Name of reply message Meaning of reply message

X'2203' RDBATHRM Not authorized to database.

X'2211' RDBNFNRM Database not found.

X'221A' RDBAFLRM RDB access failed reply
message.

If the RDBNAM parameter
was specified on the
ACCRDB command, the
RDBAFLRM reply message
indicates that the database
(RDB) failed the attempted
connection.

Related reference:
“ACCRDBRM reply message (X'2201')” on page 327
“RDBNAM parameter (X'2110')” on page 357
“RDBAFLRM reply message (X'221A')” on page 342

284 Application Programming APIs

“RDBATHRM reply message (X'2203')” on page 343
“RDBNACRM reply message (X'2204')” on page 344

ACCSEC command (X'106D')
The ACCSEC DDM command is used to determine the type of security checking
that is performed when an application program on the source server connects to a
database on the IMS target server.

The source server uses the ACCSEC command to negotiate with the IMS target
server which type of security mechanism, as defined by the DDM architecture, is
used for identification and authentication. IMS supports only the user ID and
Password Security Mechanism (USRIDPWD) of the DDM architecture. The
ACCSEC command must always precede the SECCHK command when any of the
valid security mechanisms are active.

Format

►► DSSHDR LL CP SECMEC
RDBNAM

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'106D', the 2-byte codepoint of the ACCSEC command.

SECMEC
A required parameter that specifies the security mechanism that the source
server uses when interacting with the IMS target server. IMS supports only the
USRIDPWD security mechanism of the DDM architecture. To specify
USRIDPWD enter a 2-byte binary number 3 in the SECMEC parameter.

RDBNAM

An optional parameter (X'2110') that contains the IMS PSB name that identifies
the target database. The PSB name is a character string up to 8 bytes long.
RDBNAM can optionally include the alias name of the IMS data store.

Usage

During the initial handshaking between the source and target DRDA servers, the
source server must issue the EXCSAT command chained to the ACCSEC
command.

In a successful exchange, the IMS target server returns the ACCSECRD reply data
object in response to the ACCSEC command. The ACCSECRD reply object
identifies the security mechanism that is used by the IMS target server to the
source server. In a successful exchange, the value returned in the ACCSECRD reply
object is the same as the value of the SECMEC parameter of the ACCSEC
command.

If the IMS target server detects an error while processing the ACCSEC command,
the ACCSECRD reply object contains the SECCHKCD parameter. In the

Chapter 2. DRDA DDM command architecture reference 285

ACCSECRD reply object, the SECCHKCD parameter has an implied severity code
of ERROR. After an error, the ACCSEC command must be sent again before a
SECCHK command can be sent to authenticate the connection.

Chained command objects

No command objects can be chained to the ACCSEC command.

Reply data objects

In response to the ACCSEC command, the IMS target DDM server can return to
the source DDM server the following reply data objects:

ACCSECRD (X'14AC')
Access security reply data.

Error reply messages

In response to the ACCSEC command, the IMS target DDM server can return to
the source DDM server the following reply messages:

Table 75. Possible reply messages for the ACCSEC command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not Authorized to Command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'123C' INVRQSRM Invalid request

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

X'1254' CMDCHKRM Command check reply
message

X'125F' TRGNSPRM Target not supported

Related reference:
“ACCSECRD reply object (X'14AC')” on page 329
“RDBNAM parameter (X'2110')” on page 357

CLSQRY command (X'2005')
The distributed data management (DDM) Architecture CLSQRY command closes a
query that was opened previously by an OPNQRY call.

Format

►► DSSHDR LL CP PCBNAME ►◄

286 Application Programming APIs

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2005', the 2-byte codepoint of the CLSQRY command.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the
query made by a DL/I call. The PCB name is specified as a character string.
The value is initially sent with the original OPNQRY command. The same
value must subsequently be sent in commands such as CNTQRY, CLSQRY, and
RLSE for proper correlation with the original OPNQRY call. The codepoint for
the PCBNAME parameter is X'C907'.

Usage

Use the DDM command CLSQRY (close a query) to close a query that was opened
previously by an OPNQRY call.

Chained command objects

No command objects can be chained to the CLSQRY command.

Error reply messages

If errors occur during the processing of the CLSQRY command, the IMS target
DDM server can return to the source DDM server the following error reply
messages:

Table 76. Possible error reply messages for the CLSQRY command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not Authorized to Command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

X'1254' CMDCHKRM Command check reply
message

X'125F' TRGNSPRM Target not supported

CNTQRY command (X'2006')
The distributed data management (DDM) architecture CNTQRY command
continues a query by resuming the return of the result set data that was generated
by a previous OPNQRY call.

Chapter 2. DRDA DDM command architecture reference 287

Format

►► DSSHDR LL CP PCBNAME QRYBLKSZ
MAXBLKEXT QRYROWSET

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2006', the 2-byte codepoint of the CNTQRY command.

MAXBLKEXT
An optional parameter that specifies the maximum number of extra blocks per
result set that the requester is capable of receiving as reply data in the response
to the CNTQRY command. The number is specified as a 2-byte binary number.
A value of 0 indicates that the requester is not capable of receiving extra query
blocks of answer set data. A value of -1 indicates that the requester is capable
of receiving the entire result set. The codepoint for MAXBLKEXT is X'2141'.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the
query made by a DL/I call. The PCB name is specified as a character string.
The value is initially sent with the original OPNQRY command. The same
value must subsequently be sent in commands such as CNTQRY, CLSQRY, and
RLSE for proper correlation with the original OPNQRY call. The codepoint for
the PCBNAME parameter is X'C907'.

QRYBLKSZ
A required parameter that specifies the size of query blocks that is ideal for the
source application program. Query blocks are used by the target server to
return answer set data. The target server can override this parameter as
needed. The query block size is specified as a 4-byte unsigned binary number.
The minimum size for a query block is 0.5 KB. The maximum size is 10 MB.
The codepoint for QRYBLKSIZ is X'2114'.

QRYROWSET
An optional parameter that specifies the number of rows of data to return in
one network reply. The number of rows is specified as a 4-byte binary number.
The minimum value for QRYROWSET is 0. The maximum possible value is
32 767. The codepoint for QRYROWSET is X'2156'.

Usage

The DDM command CNTQRY (continue a query) to resume the return of result set
data generated by a previous OPNQRY call.

Chained command objects

No command objects are chained to the CNTQRY command.

Reply data objects

The following reply data objects can be returned in response to the CNTQRY
command:

288 Application Programming APIs

QRYDTA (X'241B')
Query answer set data.

Error reply messages

If errors occur during the processing of the CNTQRY command, the IMS target
DDM server can return to the source DDM server the following error reply
messages:

Table 77. Possible error reply messages for the CNTQRY command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

X'1254' CMDCHKRM Command check reply
message

X'125F' TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220B' ENDQRYRM End of query

X'220D' ABNUOWRM Abnormal end of unit of
work condition

X'2213' SQLERRRM SQL error condition

X'2218' RDBUPDRM Database update reply
message.

DEALLOCDB command (X'C801')
The distributed data management (DDM) DEALLOCDB command terminates all
resources that are associated with a PSB by deallocating the PSB named in the
RDBNAM parameter.

Format

►► DSSHDR LL CP RDBNAM ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C801', the 2-byte codepoint of the DEALLOCDB command.

RDBNAM

Chapter 2. DRDA DDM command architecture reference 289

A required parameter (X'2110') that contains the IMS PSB name that identifies
the target database. The PSB name is a character string up to 8 bytes long.
RDBNAM can optionally include the alias name of the IMS data store.

Usage

If no errors occur during the processing of the DEALLOCDB command, the IMS
target server returns the DEALLOCDBRM reply message to indicate that the
database has been successfully deallocated.

Chained command objects

No command objects can be chained to the DEALLOCDB command.

Positive reply messages

In response to the DEALLOCDB command, the IMS target DDM server returns to
the source server the following positive reply messages:

DEALLOCDBRM (X'CA01')
Deallocation of database complete.

Specifies that the named PSB is now deallocated.

Error reply messages

In response to the DEALLOCDB command, the IMS target DDM server can return
to the source DDM server the following error reply messages:

Table 78. Possible error reply messages for the DEALLOCDB command

Codepoint of reply message Name of reply message Meaning of reply message

X'1232' AGNPRMRM Permanent agent error

X'124C' SYNTAXRM Data stream syntax error

Related reference:
“RDBNAM parameter (X'2110')” on page 357
“DEALLOCDBRM reply message (X'CA01')” on page 331
“Overview of the syntax for DDM terms supported by IMS” on page 281

DLIFUNC command object (X'CC05')
Use the distributed data management (DDM) architecture DLIFUNC (DL/I
function) command object to specify the DL/I function that is being called.

Format

►► DSSHDR LL CP BYTSTRDR ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

290 Application Programming APIs

CP X'CC05', the 2-byte codepoint of the DLIFUNC command object.

BYTSTRDR
Byte String Data Representation, a required character string that contains the
DL/I call to run on the database. The following character string values can be
specified in the DLIFUNC command object:

ISRT
Insert call

DLET
Delete call

REPL
Replace call

GHU
Get Hold Unique call

GU Get Unique call

GHN
Get Hold Next call

GN Get Next call

GHNP
Get Hold Next Within Parent call

GNP
Get Next Within Parent call

DELETE
Batch Delete call

UPDATE
Batch Replace call

RETRIEVE
Batch Retrieve call

Related reference:
“EXCSQLIMM command (X'200A')” on page 294
“OPNQRY command (X'200C')” on page 304

DLIFUNCFLG command object (X'CC09')
Use the distributed data management (DDM) architecture DLIFUNCFLG (DL/I
function flag) command object to specify whether a DL/I batch processing
operation starts with a GU or a GN call and which SSA list is associated with each
call.

Format

►► DSSHDR LL CP FFFF ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

Chapter 2. DRDA DDM command architecture reference 291

CP X'CC09', the 2-byte codepoint of the DLIFUNCFLG command object.

FFFF
A required 4-byte flag value. Each byte in the flag specifies a different DL/I
batch processing option:

First byte

X’00’ Begin batch processing with a GHN call.

X’80’ Begin batch processing with a GHU call.

Second byte
The first four bits of the second byte indicate which SSAList is
associated with the get position call. The second four bits indicate
which SSAList is associated with an optional REPL call that follows the
get position call:

B’0000’
No SSA

B’1000’
First SSA in list

B’0100’
Second SSA in list

B’0010’
Third SSA in list

B’0001’
Fourth SSA in list

Third byte
The third byte is specified in the same format as the second byte, but is
used for subsequent GHN and optional REPL calls that follow the
initial get position call.

Fourth byte
Reserved.

EXCSAT command (X'1041')
The distributed data management (DDM) architecture EXCSAT command initiates
the exchange of attributes between a source application server and an IMS target
server to identify the server class names and levels of DDM support of each server.
The EXCSAT command must always be the first command sent from a source
server to the IMS target server.

Format

►► DSSHDR LL CP SRVCLSNM
EXTNAM SRVNAM SRVRLSLV

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'1041', the 2-byte codepoint of the EXCSAT command.

292 Application Programming APIs

EXTNAM
Optional. The variable-length name of the process or thread that is requesting
access to an IMS database. The specified name identifies the application thread
for tracing and problem determination. If the job name includes embedded
blanks, the name must be enclosed in quotation marks. The maximum length
of EXTNAM is 255 bytes. The codepoint is X'115E'.

SRVNAM
Optional. The variable-length name of the source DDM server. The specified
name identifies for tracing and problem determination purposes the hostname
of the computer that the source application program is running on. If the
server name includes embedded blanks, the name must be enclosed in
quotation marks. The maximum length is 255 bytes. The codepoint is X'116D'.

SRVCLSNM
Specifies the DDM server class name used by IMS: DFS. DFS is currently the
only class name supported by IMS. The SRVCLSNM enables the DRDA
product-unique extension used by IMS.

The codepoint of SRVCLSNM is X'1147'. The variable-length DDM server class
name is specified as a character string.

Usage

The EXCSAT DDM command is used to initiate a request to access an IMS
database and identify the requestor, a DDM source server to the DDM target server
of IMS.

During the initial handshaking between the source and target DRDA servers, the
source server must issue the EXCSAT command chained to the ACCSEC
command.

In a successful exchange, the IMS target server returns the EXCSATRD reply data
object in response to the EXCSAT command. The EXCSATRD reply object identifies
the IMS target server to the source server.

Chained command objects

No command objects are chained to the EXCSAT command.

Reply data objects

In response to the EXCSAT command, the IMS target DDM server can return to
the source DDM server the following reply data objects:

EXCSATRD (X'1443')
Exchange server attributes.

Error reply messages

In response to the EXCSAT command, the IMS target DDM server can return to
the source DDM server the following error reply messages:

Table 79. Possible error reply messages for the EXCSAT command

Codepoint of reply message Name of reply message Meaning of reply message

X'1210' MGRLVLRM Manager-level conflict

X'124C' SYNTAXRM Data stream syntax error

Chapter 2. DRDA DDM command architecture reference 293

Table 79. Possible error reply messages for the EXCSAT command (continued)

Codepoint of reply message Name of reply message Meaning of reply message

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

X'1254' CMDCHKRM Command check reply
message

X'125F' TRGNSPRM Target not supported

Related reference:
“EXCSATRD reply object (X'1443')” on page 334

EXCSQLIMM command (X'200A')
The distributed data management (DDM) architecture EXCSQLIMM command
executes an insert, update, or delete operation on an IMS database.

Format

DLI Flow:

►► DSSHDR LL CP PCBNAME PKGNAMCSN RTNSETSTT
RDBCMTOK

►◄

SQL Flow:

►► DSSHDR LL CP PKGNAMCSN
MONITOR PKGSN QRYINSID RDBCMTOK RDBNAM RTNSETSTT

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'200A', the 2-byte code point of the EXCSQLIMM command.

QRYINSID
An 8-byte query instance identifier.

Restriction: This parameter is required if the EXCSQLIMM command is
operating on a positioned delete/update SQL statement and more than one
query instance exists for the section associated with the query.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the
query made by a DL/I call. The PCB name is specified as a character string.
The value is initially sent with the original OPNQRY command. The same
value must subsequently be sent in commands such as CNTQRY, CLSQRY, and
RLSE for proper correlation with the original OPNQRY call. The codepoint for
the PCBNAME parameter is X'C907'.

294 Application Programming APIs

PKGNAMCSN(X'2113')
Specifies the fully qualified package name, consistency token, and section
number within the package that is used to execute the SQL. The
PKGNAMCSN can have one of the following formats, depending on the length
of the RDBNAM, RDBCOLID, and PKGID contained therein:
v RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of

the PKGNAMCSN is identical to the sole format used before DDM Level 7,
where the length is fixed at 68. The use of the SCLDTALEN is disallowed
with this format.

v At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This
format of the PKGNAMCSN requires the SCLDTALEN precedes each of the
RDBNAM, RDBCOLID, and PKGID. With this format, the PKGNAMCSN
has a minimum length of 75 and a maximum length of 785.

Format:

►► LL CP RDBNAM PKGID PKGNAM PKGCNSTKN RDBCOLID
SCLDTALEN SCLDTALEN PKGSN SCLDTALEN

►◄

Parameters:

RDBNAM
An 18- to 255-byte character field that represents the relational database
name.

PKGID
An 18- to 255-byte character field that represents the relational database
package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of
a relational database package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and
the relational database package are synchronized. Mutually exclusive with
PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive
with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:
v RDB collection identifier (RDBCOLID)
v Relational database name (RDBNAM)
v RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the
parameters listed is greater than 18 bytes.

RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of
objects that are contained in a relational database. It is used for
user-defined grouping.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID exceeds 18
bytes, the SCLDTALEN is mandatory and must precede the RDBCOLID.
Otherwise, the SCLDTALEN is disallowed.

Chapter 2. DRDA DDM command architecture reference 295

RDBCMTOK
An optional parameter (X'2105') that specifies whether the database allows the
processing of commit and rollback operations. Set the value to X'F1' (TRUE),
which indicates that the database does allow commit and rollback processing.

Note: IMS Universal drivers always send a value of TRUE.

RTNSETSTT(X'210E')
If any special register setting was modified during command execution, the
return SET statement controls whether the target server must return one or
more SQLSTT reply data objects upon successful command processing. Each
SQLSTT reply data object contains an SQL SET statement for a special register
whose setting was modified on the current connection.

If no special register setting was modified, no SQLSTT reply data object is
returned, regardless of the RTNSETSTT setting.
Format:

►► LL CP VALUE ►◄

Parameters:

VALUE

X'00' Target server must not return any SQL SET statements.

X'01' Target server must return one or more SQL SET statements for
special registers whose settings were modified.

–

Note: IMS always sends X'01' from the IMS Universal drivers.

MONITOR(X'1900')

►► LL CP FLAGS ►◄

FLAGS
A 4-byte flag value.

Usage

The DDM command EXCSQLIMM (execute immediate SQL) executes a replace,
insert, or delete operation on an IMS database.

If no errors occur during the processing of the EXCSQLIMM command, the IMS
target server returns the database update reply message RDBUPDRM (X'2218').

Chained command objects

The following command objects can be chained to the EXCSQLIMM command:

INAIB (X'CC01')
Contains AIB data. If the DLIFUNC value is either DELETE or UPDATE,
the AIB parameter is required.

DLIFUNC (X'CC05')
The DL/I call to execute on the database. The DL/I call is specified as a

296 Application Programming APIs

character string and defines the action to perform on the database. For a
description of the possible values for DLIFUNC, see the description of
DLIFUNC.

FLDENTRY (X'CC03')
If DLIFUNC is set to ISRT, REPL, or UPDATE, the FLDENTRY parameter
is required.

SSALIST (X'CC06')
Lists the segment search arguments. If DLIFUNC is set to UPDATE or
DELETE, the SSALIST parameter is required. If DLIFUNC is set to DLET,
ISRT, or REPL, the SSALIST parameter is optional.

Positive reply messages

In response to the EXCSQLIMM command, the IMS target DDM server returns to
the source server the following positive reply message:

RDBUPDRM (X'2218')
Database update reply message.

Reply data objects

No reply data objects are returned in response to the EXCSQLIMM command.

Error reply messages

In response to the EXCSQLIMM command, the IMS target DDM server can return
to the source DDM server the following error reply messages:

Table 80. Possible error reply messages for the EXCSQLIMM command

Code point of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not Authorized to Command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

X'1253' OBJNSPRM Object not supported

X'1254' CMDCHKRM Command check reply
message

X'125F' TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220D' ABNUOWRM Abnormal end of unit of
work condition

X'220E' DTAMCHRM Data Descriptor Mismatch

X'2213' SQLERRRM SQL error condition

X'2225' CMMRQSRM Commitment request

Chapter 2. DRDA DDM command architecture reference 297

EXCSQLIMM examples

The following example shows EXCSQLIMM that is part of the request to an
OPNQRY call.

[ibm][ims][drda][t4] SEND BUFFER: EXCSQLIMM (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0060D0510002005A 200A00442113E2C1 .`.Q...Z ..D!... .-}....!......SA
[ibm][ims][drda][t4] 0010 D4D7D3C540404040 4040404040404040@@@@@@@@@@@@ MPLE
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040@@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2C8F2 F0F0404040404040 @@........@@@@@@ SYSSH200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100410005 @@@@SYSLVL01.A.. ...<.<......
[ibm][ims][drda][t4] 0050 2105F10005210E01 0008190080000000 !....!.......... ..1.............

Related reference:
“DLIFUNC command object (X'CC05')” on page 290
“FLDENTRY command object (X'CC03')” on page 300
“SSALIST command object (X'CC06')” on page 325
“INAIB command object (X'CC01')” on page 302
“RDBUPDRM reply message (X'2218')” on page 346

EXCSQLSET command (X'2014')
The distributed data management (DDM) architecture Execute SQL SET command
(EXCSQLSET) executes one or more SET statements to establish the application
environment.

Format

►► DSSHDR LL CP PKGNAMCSN RTNSETSTT MONITOR ►◄

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL A 2-byte field that has the length of the EXCSQLSET command.

CP(X'2014')
The 2-byte codepoint of the EXCSQLSET command.

PKGNAMCSN(X'2113')
Specifies the fully qualified package name, consistency token, and section
number within the package that is used to execute the SQL. The
PKGNAMCSN can have one of the following formats, depending on the length
of the RDBNAM, RDBCOLID, and PKGID contained therein:
v RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of

the PKGNAMCSN is identical to the sole format used before DDM Level 7,
where the length is fixed at 68. The use of the SCLDTALEN is disallowed
with this format.

v At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This
format of the PKGNAMCSN requires the SCLDTALEN precedes each of the
RDBNAM, RDBCOLID, and PKGID. With this format, the PKGNAMCSN
has a minimum length of 75 and a maximum length of 785.

Format:

►► LL CP RDBNAM PKGID PKGNAM PKGCNSTKN RDBCOLID
SCLDTALEN SCLDTALEN PKGSN SCLDTALEN

►◄

298 Application Programming APIs

Parameters:

RDBNAM
An 18- to 255-byte character field that represents the relational database
name.

PKGID
An 18- to 255-byte character field that represents the relational database
package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of
a relational database package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and
the relational database package are synchronized. Mutually exclusive with
PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive
with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:
v RDB collection identifier (RDBCOLID)
v Relational database name (RDBNAM)
v RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the
parameters listed is greater than 18 bytes.

RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of
objects that are contained in a relational database. It is used for
user-defined grouping.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID exceeds 18
bytes, the SCLDTALEN is mandatory and must precede the RDBCOLID.
Otherwise, the SCLDTALEN is disallowed.

RTNSETSTT(X'210E')
Return SET statement controls whether the target server must return one or
more SQLSTT reply data objects, each containing an SQL SET statement for a
special register whose setting has been modified on the current connection,
upon successful processing of the command, if any special register had its
setting modified during execution of the command. NO SQLSTT reply data
object is returned if no special register has had its setting modified, regardless
of RTNSETSTT setting.

Format:

►► LL CP VALUE ►◄

Parameters:

VALUE
X'00' – Target server must not return any SQL SET statements.

X'01' – Target server must return one or more SQL SET statements for
special registers whose settings have been modified.

Chapter 2. DRDA DDM command architecture reference 299

Note: IMS will always send a 0x'01' from the Universal Driver.

MONITOR(X'1900')

►► LL CP FLAGS ►◄

FLAGS
A 4-byte flag value.

EXCSQLSET examples

The following example shows EXCSQLSET that is part of the request to an
OPNQRY call.

[ibm][ims][drda][t4] SEND BUFFER: EXCSQLSET (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF
[ibm][ims][drda][t4] 0000 004ED05100010048 2014004421134BC9 .N.Q...H ..D!.K. .+}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040@@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C30310041 @@@@SYSLVL01.A ...<.<....

Note: RTNSETSTT & MONITOR are not in the example.

FLDENTRY command object (X'CC03')
Use the distributed data management (DDM) architecture FLDENTRY (field entry)
command object to specify the field to insert or update.

Format

►► DSSHDR LL CP RECOFF FLDVAL ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC03', the 2-byte codepoint of the FLDENTRY command object.

RECOFF
A required, 4-byte signed integer that contains the offset of the field within the
hierarchic path I/O area.

FLDVAL
A required string that contains the byte array to place into the I/O area for the
ISRT or REPL DL/I call starting at position RECOFF.

Usage

Multiple FLDENTRY command objects might be chained to the EXCSQLIMM
command.
Related reference:
“EXCSQLIMM command (X'200A')” on page 294

300 Application Programming APIs

FLDENTRYREL command object (X'CC0C')
Use the distributed data management (DDM) architecture FLDENTRYREL (relative
field entry) command object to specify which field to insert or update.

Restriction: The FLDENTRYREL command object is supported only with an
ODBM DDM level of 1, 2, 3 or 1, 3.

Format

►► DSSHDR LL CP SEGMOFF SEGMID FLDVAL ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC0C', the 2-byte codepoint of the FLDENTRYREL command object.

SEGMOFF
A required, 4-byte, signed integer that specifies the relative offset of the target
field from the start of the parent segment.

SEGMID
A required, 1-byte, signed integer that specifies which segment in the
SEGMLIST the field is referenced from. This value is relative to 1 rather than 0.

FLDVAL
The value for the field that is being updated or inserted.

IMSCALL command (X'C803')
Use the distributed data management (DDM) architecture IMSCALL command to
issue DL/I calls for IMS DB system services.

Format

►► DSSHDR LL CP CALLNAME
IOAREA

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C803', the 2-byte codepoint of the IMSCALL command.

CALLNAME
A required character string (codepoint is X'C90C') that represents the type of
the DL/I call that is made.

IOAREA
An optional parameter in byte array (codepoint is X'C90B') that specifies the
input and output area.

Chapter 2. DRDA DDM command architecture reference 301

Usage

The IMSCALL command issues DL/I calls for IMS DB system services in the
following format:

►► call_name INAIB IOAREA ►◄

Chained command objects

INAIB (X'CC01')
The AIB data to send from the source to the target server.

Positive reply messages

In response to the IMSCALL command, the IMS target DDM server returns to the
source server the following reply message:

IMSCALLRM (X'CA04')
Contains the results of the IMSCALL command. The results can indicate
the success or failure of the DL/I call for IMS DB system services.

Error reply messages

In response to the OPNQRY command, the IMS target DDM server can return to
the source DDM server the following error reply messages:

Table 81. Possible reply messages for the OPNQRY command

Codepoint of reply message Name of reply message Meaning of reply message

X'1232' AGNPRMRM Permanent agent error

X'124C' SYNTAXRM Data stream syntax error

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

Related reference:
“IMSCALLRM reply message (X'CA04')” on page 336
“INAIB command object (X'CC01')”
“DL/I calls for IMS DB system services” on page 35

INAIB command object (X'CC01')
Use the distributed data management (DDM) architecture INAIB (input AIB)
command object to contain the AIB data to send from the source to the target
server.

Format

►► DSSHDR LL CP AIBRSNM1
AIBRSNM2 AIBSFUNC AIBOALEN

►◄

302 Application Programming APIs

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC01', the 2-byte codepoint of the INAIB command object.

AIBRSNM1
A required String that contains the resource (PCB) name. The string must be
left-aligned and padded with blanks, to a total of 8 bytes. The codepoint is
X'C901'.

AIBRSNM2
An optional String that contains a 4-character ID of ODBA startup table
DFSxxxx0, where xxxx is the 4-character ID. The codepoint is X'C902'.

AIBSFUNC
An optional String that contains the sub-function code. The String must be left
justified and padded with blanks to a total of 8 bytes. The codepoint is X'C903'.

AIBOALEN
An optional, 4-byte integer that specifies the maximum output length. This
field is used for all calls that return data. The codepoint is X'C904'.

Usage

This AIB command object contains only the AIB data to send from the source to
the target server. The AIB and DBPCB data to send from the target to the source
server is contained in the aibStream and dbpcbStream data structures inside the
OUTAIBDBPCB objects.
Related reference:
“AIBOALEN parameter (X'C904')” on page 351
“AIBRSNM1 parameter (X'C901')” on page 351
“AIBRSNM2 parameter (X'C902')” on page 351
“AIBSFUNC parameter (X'C903')” on page 352
“EXCSQLIMM command (X'200A')” on page 294
“IMSCALL command (X'C803')” on page 301
“OPNQRY command (X'200C')” on page 304

MONITORRD command (X'1C00')
The distributed data management (DDM) architecture MONITORRD allows the
target agent to return monitoring data to the source agent. The value returned is
used to determine the elapsed CPU time for a database call.

Format

►► DSSHDR LL CP ETIME ►◄

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL A 2-byte field that has the length of the MONITORRD command.

Chapter 2. DRDA DDM command architecture reference 303

CP(X'1C00')
The 2-byte codepoint of the MONITORRD command.

ETIME(X'1901')
The elapsed time is a 64-bit binary number that measures time in
microseconds. Consists of two bytes of length field (LL), and two bytes of the
code point, followed by the data. The length is 12 bytes.

Format:

►► LL CP VALUE ►◄

Parameters:

VALUE
An 8-byte field representing the elapsed time.

MONITORRD example

In the following example, the server time is calculated in the trace by aggregated
all of the MONITORRD ETIME values for a communication exchange.

[ibm][ims][drda][t4] RECEIVE BUFFER: MONITORRD (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0016D04300020010 1C00000C19010000 ...C............ ..}.............
[ibm][ims][drda][t4] 0010 000000036B39k9,.
[ibm][ims][drda][SystemMonitor:stop] core: 283.09152ms | network: 256.137805ms | server: 254.816ms

OPNQRY command (X'200C')
The distributed data management (DDM) architecture OPNQRY command opens a
query to a database for a read request.

Format

DLI Flow:

►► DSSHDR LL CP PCBNAME QRYBLKSZ
MAXBLKEXT QRYBLKCTL QRYROWSET

►◄

SQL Flow:

►► DSSHDR LL CP PKGNAMCSN QRYBLKSZ
PKGSN MONITOR

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'200C', the 2-byte code point of the OPNQRY command.

MAXBLKEXT
An optional parameter that specifies the maximum number of extra blocks per
result set that the requester is capable of receiving as reply data in the response
to an OPNQRY or CNTQRY command. The number is specified as a 2-byte
binary number. A value of 0 indicates that the requester is not capable of

304 Application Programming APIs

receiving extra query blocks of answer set data. A value of -1 indicates that the
requester is capable of receiving the entire result set. The code point for
MAXBLKEXT is X'2141'.

MONITOR(X'1900')

►► LL CP FLAGS ►◄

FLAGS
A 4-byte flag value.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the
query made by a DL/I call. The PCB name is specified as a character string.
The value is initially sent with the original OPNQRY command. The same
value must subsequently be sent in commands such as CNTQRY, CLSQRY, and
RLSE for proper correlation with the original OPNQRY call. The codepoint for
the PCBNAME parameter is X'C907'.

PKGNAMCSN(X'2113')
Specifies the fully qualified package name, consistency token, and section
number within the package that is used to execute the SQL. Mutually exclusive
with PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive
with PKGCNSTKN.

QRYBLKCTL
An optional parameter that specifies the type of query block protocol that is
used when a query is opened. IMS supports only the limited block query
protocol of the DDM architecture. If the QRYBLKCTL parameter is specified on
the OPNQRY command, the 2-byte data portion of the QRYBLKCTL parameter
must specify the hexadecimal value of X'2417', the code point for the limited
block query protocol (LMTBLKPRC). If the QRYBLKCTL parameter is omitted
from the OPNQRY command, the IMS target server still uses the limited block
query protocol. The code point for the QRYBLKCTL parameter is X'2132'.

QRYBLKSZ
A required parameter that specifies the size of query blocks that is ideal for the
source application program. Query blocks are used by the target server to
return answer set data. The target server can override this parameter as
needed. The query block size is specified as a 4-byte unsigned binary number.
The minimum size for a query block is 0.5 KB. The maximum size is 10 MB.
The code point for the QRYBLKSIZ parameter is X'2114'.

QRYROWSET
An optional parameter that specifies the number of rows of data to return in
one network reply. The number of rows is specified as a 4-byte binary number.
The minimum value for QRYROWSET is 0. The maximum value is 32 767. The
code point for the QRYROWSET parameter is X'2156'.

Usage

If no errors occur during processing of the OPNQRY, the IMS target server returns
the OPNQRYRM reply message to indicate that the query was successfully opened.

Chapter 2. DRDA DDM command architecture reference 305

Command objects

The following command objects can be chained to the OPNQRY command:

INAIB (X'CC01')
A required command object that contains AIB data.

Note: The INAIB object in OPNQRY is not used in DRDA DDM command
support for native SQL implementations.

DLIFUNC (X'CC05')
A required command object that specifies the action to take on the
database. The data field of DLIFUNC is a database function that is
specified as a character string. The valid values for DLIFUNC, when it is
chained to the OPNQRY command, are: RETRIEVE, GHU, GU, GHN, GN,
GNP, or GHNP.

Note: The DLIFUNC object in OPNQRY is not used in DRDA DDM
command support for native SQL implementations.

RTRVLFD (X'CC04')
An optional scalar data object representing a field that the client wants to
retrieve. Multiple RTRVFLD objects can be chained to the OPNQRY
command. If an RTRVFLD object is not included on the OPNQRY
command, all fields in the retrieved segment are returned.

Note: The RTRVLFD object in OPNQRY is not used in DRDA DDM
command support for native SQL implementations.

SSALIST (X'CC06')
An optional chained object that lists the segment search arguments. If the
SSALIST is not included on the OPNQRY command, the IMS target server
ignores any RTRVFLD chained objects and the query results in an
unqualified step through the IMS database.

Note: The SSALIST object in OPNQRY is not used in DRDA DDM
command support for native SQL implementations.

Positive reply messages

In response to the OPNQRY command, the IMS target DDM server returns to the
source server the following positive reply messages:

OPNQRYRM (X'2205')
Open query reply message.

Reply data objects

The following reply data objects can be returned in response to the CNTQRY
command:

QRYDSC (X'241A')
Query answer set description.

QRYDTA (X'241B')
Query answer set data.

306 Application Programming APIs

Error reply messages

In response to the OPNQRY command, the IMS target DDM server can return to
the source DDM server the following error reply messages:

Table 82. Possible reply messages for the OPNQRY command

Code point of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

X'1253' OBJNSPRM Object not supported

X'1254' CMDCHKRM Command check reply
message

X'125F' TRGNSPRM Target not supported

X'2204' RDBNACRM Database not accessed

X'220A' DSCINVRM Invalid description

X'220B' ENDQRYRM End of query

X'220D' ABNUOWRM Abnormal end of unit of
work condition

X'220E' DTAMCHRM Data descriptor mismatch

X'220F' QRYPOPRM Query previously opened

X'2212' OPNQFLRM Open query failure

X'2218' RDBUPDRM Database update reply
message

OPNQRY examples
OPNQRY only example:
[ibm][ims][drda][t4] SEND BUFFER: OPNQRY (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 005BD00100030055 200C004421134BC9 .[.....U ..D!.K. .$}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040@@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100010008 @@@@SYSLVL01.... ...<.<......
[ibm][ims][drda][t4] 0050 2114000000000005 215D01 !.......!].).

OPNQRY complete chained request example for SQL SELECT:
[ibm][ims][drda][t4] SEND BUFFER: EXCSQLSET (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF
[ibm][ims][drda][t4] 0000 004ED05100010048 2014004421134BC9 .N.Q...H ..D!.K. .+}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040@@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C30310041 @@@@SYSLVL01.A ...<.<....
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0031D0430001002B 2414002353455420 .1.C...+$..#SET ..}.............
[ibm][ims][drda][t4] 0010 434C49454E542057 524B53544E4E414D CLIENT WRKSTNNAM .<..+.......++.(

Chapter 2. DRDA DDM command architecture reference 307

[ibm][ims][drda][t4] 0020 452027392E36352E 3137342E32352700 E ’9.65.174.25’.
[ibm][ims][drda][t4] 0030 00 . .
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: PRPSQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0058D05100020052 200D004421134BC9 .X.Q...R ..D!.K. ..}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040@@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100010005 @@@@SYSLVL01.... ...<.<......
[ibm][ims][drda][t4] 0050 2116F10005214604 !....!F. ..1.....
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: SQLATTR (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 001CD05300020016 2450000E464F5220 ...S....$P..FOR ..}......&...|..
[ibm][ims][drda][t4] 0010 52454144204F4E4C 59200000 READ ONLY|+<....
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0029D04300020023 2414001B53656C65 .).C...#$...Sele ..}...........%.
[ibm][ims][drda][t4] 0010 6374202A2066726F 6D20504844414D56 ct * from PHDAMV?_.&...(.
[ibm][ims][drda][t4] 0020 41522E7761726400 00 AR.ward../....
[ibm][ims][drda][t4]
[ibm][ims][drda][t4] SEND BUFFER: OPNQRY (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 005BD00100030055 200C004421134BC9 .[.....U ..D!.K. .$}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040@@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100010008 @@@@SYSLVL01.... ...<.<......
[ibm][ims][drda][t4] 0050 2114000000000005 215D01 !.......!].).

Related reference:
“OPNQFLRM reply message (X'2212')” on page 337
“DLIFUNC command object (X'CC05')” on page 290
“INAIB command object (X'CC01')” on page 302
“RTRVFLD command object (X'CC04')” on page 312
“SSALIST command object (X'CC06')” on page 325
“OPNQRYRM reply message (X'2205')” on page 338
“QRYPOPRM reply message (X'220F')” on page 341

PRPSQLSTT command (X'200D')
The distributed data management (DDM) architecture Prepare SQL Statement
command (PRPSQLSTT) dynamically binds a SQL statement to a section in an
existing database (RDB) package.

Format

►► DSSHDR LL CP SQLSTTGRP ►◄

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL A 2-byte field that has the length of the PRPSQLSTT command.

CP(X'200D')
The 2-byte codepoint of the PRPSQLSTT command.

PKGNAMCSN(X'2113')
Specifies the fully qualified package name, consistency token, and section
number within the package that is used to execute the SQL. The

308 Application Programming APIs

PKGNAMCSN can have one of the following formats, depending on the length
of the RDBNAM, RDBCOLID, and PKGID contained therein:
v RDBNAM, RDBCOLID, and PKGID each have a length of 18. This format of

the PKGNAMCSN is identical to the sole format used before DDM Level 7,
where the length is fixed at 68. The use of the SCLDTALEN is disallowed
with this format.

v At least one of RDBNAM, RDBCOLID, or PKGID has a length > 18. This
format of the PKGNAMCSN requires the SCLDTALEN precedes each of the
RDBNAM, RDBCOLID, and PKGID. With this format, the PKGNAMCSN
has a minimum length of 75 and a maximum length of 785.

Format:

►► LL CP RDBNAM PKGID PKGNAM PKGCNSTKN RDBCOLID
SCLDTALEN SCLDTALEN PKGSN SCLDTALEN

►◄

Parameters:

RDBNAM
An 18- to 255-byte character field that represents the relational database
name.

PKGID
An 18- to 255-byte character field that represents the relational database
package identifier.

PKGNAM
An 18- to 255-byte character field that specifies the fully qualified name of
a relational database package.

PKGCNSTKN
An 8-byte character field that verifies that the requester’s application and
the relational database package are synchronized. Mutually exclusive with
PKGSN.

PKGSN
A 2-byte short field that represents the Section Number. Mutually exclusive
with PKGCNSTKN.

SCLDTALEN
Specifies the length of the instance variable that immediately follows:
v RDB collection identifier (RDBCOLID)
v Relational database name (RDBNAM)
v RDB package identifier (PKGID)

This token is allowed only when the length of one or more of the
parameters listed is greater than 18 bytes.

Note: If the length of any one of RDBNAM, RDBCOLID, or PKGID
exceeds 18 bytes, the SCLDTALEN is mandatory and must precede each of
the three parameters RDBNAM, RDBCOLID, and PKGID. Otherwise, the
SCLDTALEN is disallowed.

RDBCOLID
An 18- to 255-byte character field that identifies a unique collection of
objects that are contained in a relational database. It is used for
user-defined grouping.

RTNSQLDA(X'2116')
Return SQL Descriptor Area controls whether to return an SQL descriptor area

Chapter 2. DRDA DDM command architecture reference 309

that applies to the SQL statement this command identifies. The target SQLAM
obtains the SQL descriptor area by performing an SQL DESCRIBE function on
the statement after the statement has been prepared.

►► LL CP VALUE ►◄

Parameters:

VALUE
TRUE (X'F1') – Indicates an SQLIMSDA is returned.

FALSE (X'F0') – Indicates an SQLIMSDA is not returned.

Note: IMS will always send a 0x'01' from the Universal Driver.

TYPSQLDA(X'2146')
Type of SQL Descriptor Area.

►► LL CP TYPE ►◄

Parameters:

TYPE
A single-byte signed number that specifies the type of SQLIMSDA to
return for the command.

0 Standard output SQLIMSDA. This type is supported for ODBM.

1 Standard input SQLIMSDA. This type is supported for ODBM.

2 Light output SQLIMSDA

3 Light input SQLIMSDA

4 Extended output SQLIMSDA

5 Extended input SQLIMSDA

MONITOR(X'1900')

►► LL CP FLAGS ►◄

FLAGS
A 4-byte flag value.

PRPSQLSTT examples

The following example shows PRPSQLSTT that is part of the request to an
OPNQRY call.

[ibm][ims][drda][t4] SEND BUFFER: PRPSQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0058D05100020052 200D004421134BC9 .X.Q...R ..D!.K. ..}............I
[ibm][ims][drda][t4] 0010 D4E2F14040404040 4040404040404040 ...@@@@@@@@@@@@@ MS1
[ibm][ims][drda][t4] 0020 D5E4D3D3C9C44040 4040404040404040@@@@@@@@@@ NULLID
[ibm][ims][drda][t4] 0030 4040E2E8E2E2D5F2 F0F0404040404040 @@........@@@@@@ SYSSN200
[ibm][ims][drda][t4] 0040 404040405359534C 564C303100010005 @@@@SYSLVL01.... ...<.<......
[ibm][ims][drda][t4] 0050 2116F10005214604 !....!F. ..1.....

RLSE command (X'C802')
Use the distributed data management (DDM) architecture RLSE command to
release any database locks that are held by the application.

310 Application Programming APIs

Format

►► DSSHDR LL CP PCBNAME ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C802', the 2-byte codepoint of the RLSE command.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the
query made by a DL/I call. The PCB name is specified as a character string.
The value is initially sent with the original OPNQRY command. The same
value must subsequently be sent in commands such as CNTQRY, CLSQRY, and
RLSE for proper correlation with the original OPNQRY call. The codepoint for
the PCBNAME parameter is X'C907'.

Chained command objects

No command objects are chained to the RLSE command.

Positive reply messages

In response to the RLSE command, the IMS target DDM server returns to the
source server the following positive reply message:

RLSERM (X'CA03')
The Release Locks Reply Message indicates to the requester that an RLSE
command has completed normally.

Chained reply data objects

No reply data objects are returned in response to the RLSE command.

Error reply messages

In response to the RLSE command, the IMS target DDM server can return to the
source DDM server the following error reply messages:

Table 83. Possible error reply messages for the RLSE command

Codepoint of reply message Name of reply message Meaning of reply message

X'121C' CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

Chapter 2. DRDA DDM command architecture reference 311

Table 83. Possible error reply messages for the RLSE command (continued)

Codepoint of reply message Name of reply message Meaning of reply message

X'1254' CMDCHKRM Command check reply
message

X'125F' TRGNSPRM Target not supported

Related reference:
“RLSERM reply message (X'CA03')” on page 347

RTRVFLD command object (X'CC04')
Use the distributed data management (DDM) architecture RTRVFLD command
object to specify the field that the client wants to retrieve data from.

Format

►► DSSHDR LL CP RECOFF FLDLEN ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC04', the 2-byte codepoint of the RTRVFLD command object.

RECOFF
A 4-byte signed integer that contains the offset of the field within the
hierarchic path I/O area that is to be returned from the DL/I call.

FLDLEN
A 4-byte signed integer that contains the length of the field.

Related reference:
“OPNQRY command (X'200C')” on page 304

RTRVFLDREL command object (X'CC0B')
Use the distributed data management (DDM) architecture FLDENTRYREL (relative
retrieve field) command object to specify which field the client wants to retrieve
data from.

Restriction: The RTRVFLDREL command object is supported only with an ODBM
DDM level of 1, 2, 3 or 1, 3.

Format

►► DSSHDR LL CP SEGMOFF FLDLEN SEGMID ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

312 Application Programming APIs

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC0B', the 2-byte codepoint of the RTRVFLDREL command object.

SEGMOFF
A required, 4-byte, signed integer that specifies the relative offset of the target
field from the start of the parent segment.

SEGMID
A required, 1-byte, signed integer that specifies which segment in the
SEGMLIST the field is referenced from. This value is relative to 1 rather than 0.

FLDLEN
The length of the target field.

SECCHK command (X'106E')
The distributed data management (DDM) architecture SECCHK command passes
the user information from the source server to the target security manager of the
IMS target server to authenticate the user with RACF or another security product.

When security checking is active for the IMS target server, the SECCHK command
must be preceded by the ACCSEC command.

Format

►► DSSHDR LL CP PASSWORD SECMEC USRID ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'106E', the 2-byte codepoint of the SECCHK command.

SECMEC
A required parameter that specifies the security mechanism agreed upon by
the source server and the target server. For IMS, specify USRIDPWD.

The security mechanism is negotiated between the source server and the target
server by using the ACCSEC command and the ACCSECRD reply object.

USRID
A required, variable-length parameter that specifies the user ID of the source
application program as a character string. The length can be from 1 to 255
characters.

PASSWORD
A required, variable-length parameter that specifies the password of the source
application program as a character string. The length can be from 1 to 255
characters.

Usage

IMS uses a user ID and password to check security; therefore the value of the
SECMEC parameter specifies the DDM USRIDPWD security mechanism.

Chapter 2. DRDA DDM command architecture reference 313

If no errors occur during the processing of the SECCHK command, the IMS target
server returns the SECCHKRM reply message to indicate the acceptability of the
security information.

The SECCHK command must be preceded by the ACCSEC command.

Chained command objects

No command objects can be chained to the SECCHK command.

Positive reply messages

In response to the SECCHK command, the IMS target DDM server returns to the
source server the following positive reply message:

SECCHKRM (X'1219')
Security check reply message.

Error reply messages

In response to the SECCHK command, the IMS target DDM server can return to
the source DDM server the following error reply messages:

Table 84. Possible error reply messages for the SECCHK command

Codepoint of reply message Name of reply message Meaning of reply message

X'1218' MGRDEPRM Manager dependency error

X'121C' CMDATHRM Not authorized to command

X'1232' AGNPRMRM Permanent agent error

X'1233' RSCLMTRM Resource limits reached

X'123C' INVRQSRM Invalid request

X'1245' PRCCNVRM Conversational protocol error

X'124C' SYNTAXRM Data stream syntax error

X'1250' CMDNSPRM Command not supported

X'1251' PRMNSPRM Parameter not supported

X'1252' VALNSPRM Parameter value not
supported

X'1253' OBJNSPRM Object not supported

X'1254' CMDCHKRM Command check reply
message

X'125F' TRGNSPRM Target not supported

SEGMLIST command object (X'CC0A')
Use the distributed data management (DDM) architecture SEGMLIST (Segment
List) command object to specify the minimum and maximum length of each
segment being retrieved or updated.

Restriction: The SEGMLIST command object is supported only with an ODBM
DDM level of 1, 3 or 1, 2, 3.

314 Application Programming APIs

Format

►► ▼DSSHDR LL CP COUNT MINMAX ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC0A', the 2-byte codepoint of the SEGMLIST command object.

COUNT
A 1-byte, signed value that counts the number of segments in a record that is
being retrieved or updated. The total number of segments in a record is limited
to 15. The value of the COUNT parameter corresponds to the number of
instances of the MINMAX parameter included in the command object. This
value is required.

MINMAX
An 8-byte field that is divided into two 4-byte signed integers. The first integer
is the minimum number of bytes in a segment and the second integer is the
maximum number of bytes. If these integers are equal, the segment is fixed
length.

SQLATTR command (X'2450')
The distributed data management (DDM) architecture SQL Statement Attributes
command (SQLATTR) specifies the SQL statement attributes being prepared.

Format

►► DSSHDR LL CP SQLSTTGRP ►◄

Parameters

DSSHDR
The six byte header field containing information about the DSS.

LL A two byte field that has the length of the SQLATTR command.

CP(X'2450')
The 2-byte codepoint of the SQLATTR command.

SQLSTTGRP
SQL Statement Group Description.

Format:

►► SQLSTATEMENT_m SQLSTATEMENT_s ►◄

Parameters:

SQLSTATEMENT_m
A variable length string containing the SQL statement.

Chapter 2. DRDA DDM command architecture reference 315

SQLSTATEMENT_s
A variable length string containing the SQL statement.

SQLATTR examples

The following example shows SQLATTR that is part of the request to an OPNQRY
call.

[ibm][ims][drda][t4] SEND BUFFER: SQLATTR (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 001CD05300020016 2450000E464F5220 ...S....$P..FOR ..}......&...|..
[ibm][ims][drda][t4] 0010 52454144204F4E4C 59200000 READ ONLY|+<....

SQLCARD command (X'2408')
The distributed data management (DDM) architecture SQL Descriptor Area Row
Description with SQL Communications Area command (SQLCARD) provides
metadata information about the columns being retrieved along with the
communications area.

Format

►► DSSHDR LL CP SQLCAGRP ►◄

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL A 2-byte field that has the length of the SQLCARD command.

CP(X'2408')
The 2-byte code point of the SQLCARD command.

SQLCAGRP
SQL Communications Area Group Description.

Format:

►► FLAG SQLCODE SQLSTATE SQLERRPROC SQLCAXGRP SQLDIAGGRP ►◄

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLCAGRP is null. A
null indicator is denoted with the value X'FF'.

SQLCODE
A 4-byte integer field that contains the return code that is sent by the
database manager after completion of each SQL statement.

SQLSTATE
A 5-byte character field that contains the outcome of the most recently
executed SQL statement.

SQLERRPROC
An 8-byte character field that contains the name of the CSECT that
detected the error reported by the SQLIMSCODE.

SQLCAXGRP
SQL Communications Area Exceptions Group Description.

316 Application Programming APIs

Format:

►► FLAG SQLERRD SQLWARN SQLRDBNAME SQLERRMSG_m SQLERRMSG_s ►◄

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLCAXGRP is null.
A null indicator is denoted with the value X'FF'.

SQLERRD
Six 1-byte integer fields whose values are used to diagnose error
conditions

SQLWARN
Eleven 1-byte character fields that represents SQLIMSWARN0 to
SQLIMSWARNA.

SQLRDBNAME
A variable character string that shows the name of the remote
database.

SQLERRMSG_m
A variable character string that contains one or more tokens, separated
by X'FF', that are substituted for variables in the descriptions of error
conditions. It may contain truncated tokens. A message length of 70
bytes indicates a possible truncation.

SQLERRMSG_s
A variable character string that contains one or more tokens, separated
by X'FF', that are substituted for variables in the descriptions of error
conditions. It may contain truncated tokens. A message length of 70
bytes indicates a possible truncation.

SQLDIAGGRP
SQL Descriptor Optional Group Description

Format:

►► FLAG SQLDIAGSTT SQLDIAGCI SQLDIAGCN ►◄

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLCAXGRP is null.
A null indicator is denoted with the value X'FF'.

SQLDIAGSTT
SQL Diagnostics Statement Group Description.

SQLDIAGCI
SQL Diagnostics Condition Information Array.

SQLDIAGCN
SQL Diagnostics Connection Array.

SQLCARD examples

The following example shows SQLCARD that is part of the request to an OPNQRY
call.

Chapter 2. DRDA DDM command architecture reference 317

[ibm][ims][drda][t4] RECEIVE BUFFER: SQLCARD (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0059D05300030053 2408006400000030 .Y.S...S$..d...0 ..}.............
[ibm][ims][drda][t4] 0010 3230303053514C52 4930314600010004 2000SQLRI01F....<.........
[ibm][ims][drda][t4] 0020 8001000000000000 0000000000000000
[ibm][ims][drda][t4] 0030 0000000000202020 2020202020202020
[ibm][ims][drda][t4] 0040 001253414D504C45 2020202020202020 ..SAMPLE(&<.........
[ibm][ims][drda][t4] 0050 2020202000000000 FF

SQLDARD command (X'2411')
The distributed data management (DDM) architecture SQL Descriptor Area Row
Description with SQL Communications Area command (SQLDARD) provides
metadata information about the columns being retrieved along with the
communications area.

Format

►► DSSHDR LL CP SQLCARD SQLDHGRP SQLNUMGRP SQLDAGRP ►◄

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL A 2-byte field that has the length of the SQLDARD command.

CP(X'2411')
The 2-byte codepoint of the SQLDARD command.

SQLCARD
SQL Communications Area Row Description

SQLDHGRP
SQL Descriptor Header Group Description (column metadata that applies to all
fields in the result set).

Format:

►► FLAG SQLDHOLD SQLDRETURN SQLDSCROLL SQLDSENSITIVE SQLDFCODE SQLDKEYTYPE SQLDRDBNAM ►

► SQLDSCHEMA_m SQLDSCHEMA_s ►◄

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null. A
null indicator is denoted with the value X’FF.

SQLDHOLD
A 2 byte short field. This field can have a value of 0 or 1. A value of 1
indicates this statement is related to a cursor which is defined using the
WITH HOLD clause. Otherwise, the value is 0.

SQLDRETURN
A 2-byte short field.

SQLDSCROLL
A 2-byte short field.

SQLDSENSITIVE
A 2-byte short field.

318 Application Programming APIs

SQLDFCODE
A 2-byte short field.

SQLDKEYTYPE
A 2-byte short field.

SQLDRDBNAM
A variable character string that shows the name of the remote database.

SQLDSCHEMA_m
A variable character string that shows the name of the schema.

SQLDSCHEMA_s
A variable character string that shows the name of the schema.

SQLNUMBRP
SQL Number of Elements Group Descriptions.

Format:

►► Number of Columns ►◄

Parameters:

Number of Columns
A 2-byte short that represents the number of columns being returned by
the query.

SQLDAGRP
SQL Data Area Group Description (column metadata specific to each column).

Format:

►► SQLPRECISION SQLSCALE SQLLENGTH SQLTYPE SQLCCSID SQLDOPTGRP ►◄

Parameters:

SQLPRECISION
A 2-byte short field representing the precision for the column.

SQLSCALE
A 2-byte short field representing the scale for the column.

SQLLENGTH
An 8-byte field representing the length of the column in bytes.

SQLTYPE
A 2-byte short field representing the data type of the column.

SQLCCSID
A 2-byte short field representing the CCSID of the column.

SQLDOPTGRP
SQL Descriptor Optional Group Description

Format:

►► FLAG SQLUNNAMED SQLNAME_m SQLNAME_s SQLLABEL_m SQLLABEL_s SQLCOMMENTS_m SQLCOMMENTS_s ►

► SQLUDTGRP SQLDXGRP ►◄

Parameters:

Chapter 2. DRDA DDM command architecture reference 319

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is null.
A null indicator is denoted with the value X'FF'.

SQLUNNAMED
A 2-byte short field.

SQLNAME_m
A variable character string that shows the column name.

SQLNAME_s
A variable character string that shows the column name.

SQLLABEL_m
A variable character string

SQLLABEL_s
A variable character string

SQLCOMMENTS_m
A variable character string

SQLCOMMENTS_s
A variable character string

SQLUDTGRP:
SQL User-Defined Data Group Description

Format:

►► FLAG SQLUDTXTYPE SQLUDTRDB SQLUDTSCHEMA_m SQLUDTSCHEMA_s SQLUDTNAME_m SQLUDTNAME_s ►◄

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is
null. A null indicator is denoted with the value X'FF'.

SQLUDTXTYPE
A 4-byte integer field.

SQLUDTRDB
A variable character string.

SQLUDTSCHEMA_m
A variable character string.

SQLUDTSCHEMA_s
A variable character string.

SQLUDTNAME_m
A variable character string.

SQLUDTNAME_s
A variable character string.

SQLDXGRP
SQL Descriptor Extended Group Description.

Format:

►► FLAG SQLXKEYMEM SQLXUPDATEABLE SQLXGENERATED SQLXPARMMODE SQLXRDBNAM SQLXCORNAME_m ►

320 Application Programming APIs

► SQLXCORNAME_s SQLXBASENAME_m SQLXBASENAME_s SQLXSCHEMA_m SQLXSCHEMA_s SQLXNAME_m SQLXNAME_s ►◄

Parameters:

FLAG
A 1-byte field that determines if the value for the SQLDHGRP is
null. A null indicator is denoted with the value X'FF'.

SQLXKEYMEM
A 2-byte short field.

SQLXUPDATEABLE
A 2-byte short field.

SQLXGENERATED
A 2-byte short field.

SQLXPARMMODE
A 2-byte short field.

SQLXRDBNAM
A variable character string that shows the name of the remote
database.

SQLXCORNAME_m
A variable character string that shows the name of the table.

SQLXCORNAME_s
A variable character string that shows the name of the table.

SQLXBASENAME_m
A variable character string that shows the name of the table.

SQLXBASENAME_s
A variable character string that shows the name of the table.

SQLXSCHEMA_m
A variable character string that shows the name of the schema.

SQLXSCHEMA_s
A variable character string that shows the name of the schema.

SQLXNAME_m
A variable character string that shows the name of the column.

SQLXNAME_s
A variable character string that shows the name of the column.

SQLDARD examples

The following example shows SQLDARD that is part of the request to an OPNQRY
call.

[ibm][ims][drda][t4] RECEIVE BUFFER: SQLDARD (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0185D0530002017F 2411000000000030 ...S....$......0 .e}...."........
[ibm][ims][drda][t4] 0010 3030303053514C30 3930373000000000 0000SQL09070....<.........
[ibm][ims][drda][t4] 0020 0000000000010000 0040010000000000@......
[ibm][ims][drda][t4] 0030 0000000000202020 2020202020202020
[ibm][ims][drda][t4] 0040 001253414D504C45 2020202020202020 ..SAMPLE(&<.........
[ibm][ims][drda][t4] 0050 2020202000000000 FF00010000000000
[ibm][ims][drda][t4] 0060 0000550000000000 0000000003000000 ..U.............
[ibm][ims][drda][t4] 0070 0000040000000000 0000F101000000001.....
[ibm][ims][drda][t4] 0080 000005454D504E4F 0000000000000000 ...EMPNO........(&+|........
[ibm][ims][drda][t4] 0090 0000FF0000000000 0000000000065341SA
[ibm][ims][drda][t4] 00A0 4D504C450006454D 504D444300000006 MPLE..EMPMDC.... (&<....(&(......

Chapter 2. DRDA DDM command architecture reference 321

[ibm][ims][drda][t4] 00B0 454D504D44430000 0008524943485452 EMPMDC....RICHTR .(&(............
[ibm][ims][drda][t4] 00C0 414E00000005454D 504E4F0000000000 AN....EMPNO..... .+.....(&+|.....
[ibm][ims][drda][t4] 00D0 0004000000000000 00F10100000000001......
[ibm][ims][drda][t4] 00E0 0004444550540000 0000000000000000 ..DEPT..........&...........
[ibm][ims][drda][t4] 00F0 FF00000000000000 0000000653414D50SAMP(&
[ibm][ims][drda][t4] 0100 4C450006454D504D 444300000006454D LE..EMPMDC....EM <....(&(.......(
[ibm][ims][drda][t4] 0110 504D444300000008 524943485452414E PMDC....RICHTRAN &(.............+
[ibm][ims][drda][t4] 0120 0000000444455054 0000000000000400DEPT........&.........
[ibm][ims][drda][t4] 0130 000000000000F101 0000000000000344D1.........
[ibm][ims][drda][t4] 0140 4956000000000000 00000000FF000000 IV..............
[ibm][ims][drda][t4] 0150 0000000000000006 53414D504C450006SAMPLE..(&<...
[ibm][ims][drda][t4] 0160 454D504D44430000 0006454D504D4443 EMPMDC....EMPMDC .(&(.......(&(..
[ibm][ims][drda][t4] 0170 0000000852494348 5452414E00000003RICHTRAN....+....
[ibm][ims][drda][t4] 0180 4449560000 DIV..

SQLDTA command (X'2412')
SQL Program Variable Data (SQLDTA) consists of input data to a SQL statement
that a relational database (RDB) is running. It also includes a description of the
data.

Format

►► DSSHDR LL CP FDODSC FDODTA
FDOEXT FDOOFF

►◄

Parameters

DSSHDR
The 6-byte header field that contains information about the DSS.

LL A 2-byte field that contains the length of the SQLDTA command.

CP(X'2412')
The 2-byte code point of the SQLDTA command.

FDOEXT(X'147B')
A scalar object that contains extent data for each SDA that a Formatted Data
Object Architecture descriptor (FDODSC) describes. There is an FDOEXT entry
for each field definition in the SQLDTAGRP in the FDODSC. The FDOEXT
specification that corresponds to a field definition in the FDODSC defines the
number of times that field is repeated in the FDODTA object.

Format:

►► LL CP BYTSTRDR ►◄

Parameters:

BYTSTRDR
A required byte-string data representation, whose length is an even
number, such as X'01010101' or X'3D2B11'.

FDODSC(X'0010')
A string that is a DDM scalar whose value is a Formatted Data Object Content
Architecture (FD:OCA) descriptor or a segment of an FD:OCA descriptor. An
FDODSC consists of one or more FD:OCA triplets that describe the data fields
that are contained in another scalar object.

Format:

322 Application Programming APIs

►► LL CP BYTSTRDR ►◄

Parameters:

BYTSTRDR
A required byte-string data representation, whose length is an even
number, such as X'01010101' or X'3D2B11'.

FDODTA(X'147A')
A scalar object that contains data that a Formatted Data Object Architecture
descriptor (FDODSC) describes. The FDODSC might be present with the
Formatted Data Object Data (FDODTA), or it might be implicitly defined based
on the context of the command in which the FDODTA is used.

Format:

►► LL CP BYTSTRDR ►◄

Parameters:

BYTSTRDR
A required byte-string data representation, whose length is an even
number, such as X'01010101' or X'3D2B11'.

FDOOFF(X'147D')
A scalar object that contains offset data for each SDA that a Formatted Data
Object Architecture descriptor (FDODSC) describes. There is an FDOOFF entry
for each field definition in the SQLDTAGRP in the FDODSC. The FDOOFF
specification corresponding to a field definition in the FDODSC defines the
offset to the start of the data entry in the FDODTA. The offset value for the
first data array is 0.

Format:

►► LL CP BYTSTRDR ►◄

Parameters:

BYTSTRDR
A required byte-string data representation, whose length is an even
number, such as X'01010101' or X'3D2B11'.

Formatted Data Object Content Architecture (FD:OCA)

The Formatted Data Object Content Architecture (FD:OCA) is an architecture for
describing, organizing, and manipulating a linear stream of data.

DDM uses FD:OCA primarily for the description of data for relational database
(RDB) access. A complete description of FD:OCA, including how to build and
interpret FD:OCA descriptors, is in the FD:OCA Reference.

The functions of FD:OCA are specified through an FD:OCA descriptor, which
consists of data structures called triplets. Attribute triplets describe the
representation and layout of data in a data stream. Generator triplets specify how
the data is manipulated to produce an output data stream.

An FD:OCA-containing architecture, such as DDM, transmits data streams and
FD:OCA descriptors between communicating systems and starts a presentation

Chapter 2. DRDA DDM command architecture reference 323

process as needed. The presentation process accepts both the data stream and the
FD:OCA descriptor as input and produces a presentation stream as output, as
shown in Figure 3-39. The FD:OCA-containing architecture processes any further
presentation streams. For example, DDM can forward the presentation stream for
storage to an RDB, or it can pass the presentation stream to an application
requester.

An Overview of selected FD:OCA triplets

FD:OCA defines many more attribute and generator triplets than the current level
of DDM architecture requires. The following is an overview of the triplets.

Scalar Data Arrays (SDA)
SDAs are the triplets that FD:OCA uses for describing data values that are
either single items or linear or rectangular arrays of single items that have the
same format. DDM uses SDAs primarily to associate data representation
specifications with DDM and SQL data types.

Group Data Array (GDA)
GDAs are triplets that define a group of data items as a referable unit. The
elements of a GDA point (by label) to SDAs, other GDAs, or to RLOs to
describe the data items of the group. The GDA can override certain attributes
of each data representation.

Row Layouts (RLO)
RLOs are triplets that describe:
v A row that contains fields of one or more types
v A table that contains rows of one or more types
v Multi-dimensional, mixed data structures

RLOs describe data streams that consist of multiple unrelated structures. DDM
uses RLOs primarily to describe the answer data that the SQL statements
return.

FD:OCA Descriptors
An FD:OCA descriptor consists of one or more triplets that are laid out
consecutively in a byte stream. Triplets that are referenced by other triplets
must precede the referencing triplets. Unreferenced triplets are ignored.

SQLDTA examples

The following example shows SQLDTA that is part of the request to an OPNQRY
call.

[ibm][db2][jcc][t4] SEND BUFFER: SQLDTA (ASCII) (EBCDIC)
[ibm][db2][jcc][t4] 0000 002CD00300040026 2412001300100976 .,.....&$......v ..}.............
[ibm][db2][jcc][t4] 0010 D003000403000406 71E4D00001000F14q....... }........U}.....
[ibm][db2][jcc][t4] 0020 7A00000000000200 00000005 z........... :...........

SQLSTT command (X'2414')
The distributed data management (DDM) architecture SQL Statement Row
Description (SQLSTT) command contains one SQL statement.

Format

►► DSSHDR LL CP SQLSTTGRP ►◄

324 Application Programming APIs

Parameters

DSSHDR
The 6-byte header field containing information about the DSS.

LL A 2-byte field that has the length of the SQLSTT command.

CP(X'2414')
The 2-byte codepoint of the SQLSTT command.

SQLSTTGRP
SQL Statement Group Description.

Format:

►► SQLSTATEMENT_m SQLSTATEMENT_s ►◄

Parameters:

SQLSTATEMENT_m
A variable length string containing the SQL statement.

SQLSTATEMENT_s
A variable length string containing the SQL statement.

SQLSTT examples

The following example shows SQLSTT that is part of the request to an OPNQRY
call.

SQLSTT for Special Registry:
[ibm][ims][drda][t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0032D0430001002C 2414002453455420 .2.C...,$..$SET ..}.............
[ibm][ims][drda][t4] 0010 434C49454E542057 524B53544E4E414D CLIENT WRKSTNNAM .<..+.......++.(
[ibm][ims][drda][t4] 0020 452027392E36352E 3135302E32313827 E ’9.65.150.218’
[ibm][ims][drda][t4] 0030 0000

SQLSTT for Select Statement:
[ibm][ims][drda][t4] SEND BUFFER: SQLSTT (ASCII) (EBCDIC)
[ibm][ims][drda][t4] 0000 0029D04300020023 2414001B53656C65 .).C...#$...Sele ..}...........%.
[ibm][ims][drda][t4] 0010 6374202A2066726F 6D20504844414D56 ct * from PHDAMV?_.&...(.
[ibm][ims][drda][t4] 0020 41522E7761726400 00 AR.ward../....

SSALIST command object (X'CC06')
Use the distributed data management (DDM) architecture SSALIST command
object to contain the list of segment search argument (SSA) objects to qualify the
DL/I call.

Format

►► DSSHDR LL CP SSACOUNT
SSA

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC06', the 2-byte codepoint of the SSALIST command object.

Chapter 2. DRDA DDM command architecture reference 325

SSACOUNT
Required. The number of SSAs in the SSAList, which is specified as a 2-byte
value. The valid range is 1 to 15.

SSA
An optional byte string that contains an SSA object to be used in a DL/I
database call.

Related reference:
“EXCSQLIMM command (X'200A')” on page 294
“OPNQRY command (X'200C')” on page 304
“SSA parameter (X'C906')” on page 357
“SSACOUNT parameter (X'C905')” on page 358

DDM reply messages and reply objects
The IMS target server communicates with source server applications by using reply
messages defined by the distributed data management (DDM) architecture. Some
of the reply messages used by IMS contain parameters, values, or reply objects that
are unique to IMS.

ABNUOWRM reply message (X'220D')
The distributed data management (DDM) architecture ABNUOWRM (abnormal
end unit of work condition) reply message indicates that the current unit of work
ended abnormally due to some action at the target server.

This reply message can be a result of a deadlock resolution, operator intervention,
or other similar situations that cause the database to roll back the current unit of
work.

Format

►► DSSHDR LL CP RDBNAM OUTAIBDBPCB SVRCOD
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'220D', the 2-byte codepoint of the ABNUOWRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

326 Application Programming APIs

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

ACCRDBRM reply message (X'2201')
The distributed data management (DDM) architecture ACCRDBRM (access to
database completed) reply message specifies that the named database in the
previous ACCRDB command is available to the client for processing.

Format

►► DSSHDR LL CP SVRCOD PRDID CRRTKN TYPDEFNAM
ACCRDBFDBK

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2201', the 2-byte codepoint of the ACCRDBRM reply message.

ACCRDBFDBK
An optional parameter (X'CC0D') that contains the psbfdbkStream and
aliasfdbkStream data sent from the target to the source.

►► LL CP psbfdbkStream aliasfdbkStream ►◄

Parameters

LL The length of ACCRDBFDBK. This length includes the LL and CP.

CP X'CC0D' , the 2 byte codepoint of ACCRDBFDBK.

The psbfdbkStream and aliasfdbkStream parameters data structure is as
follows:

Chapter 2. DRDA DDM command architecture reference 327

Table 85. The psbfdbkStream and aliasfdbkStream parameters data structure

Offset Length Name Description

0 1 PSB name null
indicator

Binary integer

v X'00' - indicates
that the rest of the
data follows.

v X'FF' - indicates
that there is no
data and the total
length is one byte.

1 1 Length Binary integer

v Length of the data
including the
length itself.

2 8 PSB name Character string

Length of the PSB
name.

1 or 10 1 Alias name null
indicator

Binary integer

v X'00' - indicates
that the rest of the
data follows.

v X'FF' - indicates
that there is no
data and the total
length is one byte.

2 or 11 1 Length Binary integer

v Length of the data
including the
length itself.

3 or 12 4 Alias name Character string

Length of the alias
name.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

PRDID

Product Specific ID. The release level of the DDM server.

This is a required parameter for the ACCRDB command.

328 Application Programming APIs

CRRTKN
A required correlation token that the source and the target servers use to
correlate the work for an application.

TYPDEFNAM

A required parameter (X'002F') that specifies the name of the data type
definition. TYPDEFNAM consists of a 2-byte specification of length (LL), a
2-byte codepoint (CP), and the VALUE. The VALUE is reserved and must be
QTDSQL370, which is the general EBCDIC SQL type definition for machines
that use EBCDIC strings, IEEE floating-point numbers, and non-byte-reversed
floating-point and integer numbers.

Related reference:
“ACCRDB command (X'2001')” on page 283

ACCSECRD reply object (X'14AC')
The distributed data management (DDM) architecture ACCSECRD (access security
reply data) reply object contains the security information from the security
manager of the target server. This information is returned in response to the
ACCSEC command.

Format

►► DSSHDR LL CP SECMEC ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'14AC', the 2-byte codepoint of the ACCSECRD reply object.

SECMEC
Specifies the security mechanism or mechanisms supported by the target
server. If the target server supports the DDM security mechanism specified by
the source DDM server on the ACCSEC command, the value of SECMEC in
the ACCSECRD reply object is the same as the value of SECMEC in the
ACCSEC command. If the target server does not support the security
mechanism specified by the source server, SECMEC contains one or more
values that identify the security mechanisms supported by the target server.

Usage

In a successful exchange, the IMS target server confirms the type of security
checking requested by the source application program by returning the
ACCSECRD reply object with the same value in SECMEC parameter as was
submitted in the ACCSEC command.

If an error is detected in processing the ACCSEC command, a SECCHKCD is
returned with the ACCSECRD. The SECCHKCD parameter has an implied severity
code of ERROR. Before the SECCHK command can be sent to authenticate the
connection, the ACCSEC command must be sent again to generate a new set of
instance variables on the ACCSECRD.
Related reference:

Chapter 2. DRDA DDM command architecture reference 329

“ACCSEC command (X'106D')” on page 285

AGNPRMRM reply message (X'1232')
The distributed data management (DDM) architecture AGNPRMRM (permanent
agent error) reply message indicates that the requested command could not be
completed because the target system detected a permanent error condition.

Format

►► DSSHDR LL CP SVRCOD
RDBNAM SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'1232', the 2-byte codepoint of the AGNPRMRM reply message.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

CMDVLTRM reply message (X'221D')
The distributed data management (DDM) architecture CMDVLTRM (command
violation) reply message indicates that a DDM command violated the processing
capabilities of the conversation.

330 Application Programming APIs

Format

►► DSSHDR LL CP RDBNAM OUTAIBDBPCB SVRCOD
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'221D', the 2-byte codepoint of the CMDVLTRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

DEALLOCDBRM reply message (X'CA01')
The distributed data management (DDM) architecture DEALLOCDBRM (deallocate
database completed) reply message indicates that the named PSB is deallocated.

Format

►► DSSHDR LL CP RDBNAM SVRCOD OUTAIBDBPCB
SRVDGN

►◄

Chapter 2. DRDA DDM command architecture reference 331

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CA01', the 2-byte codepoint of the DEALLOCDBRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

Related reference:
“DEALLOCDB command (X'C801')” on page 289
“DEALLOCDBRM reply message (X'CA01')” on page 331

ENDQRYRM reply message (X'220B')
The distributed data management (DDM) architecture ENDQRYRM (end of query)
reply message indicates that the query processing is terminated and the query or
result set is closed.

The query cannot be resumed with the CNTQRY command or closed with the
CLSQRY command.

Format

►► DSSHDR LL CP SVRCOD
RDBNAM SRVDGN OUTAIBDBPCB

►◄

332 Application Programming APIs

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'220B', the 2-byte codepoint of the ENDQRYRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

Usage

The ENDQRYRM reply message is required to be chained to an OPNQRYRM reply
message in the following situations:
v In response to a GU, GN, or batch RETRIEVE call, when no data is returned.

The aibdbpcbStream data required by the client is contained in this object.
v In response to a batch RETRIEVE call when the QRYDTA object contains the last

row of the data that satisfies the query, which indicates to the source server that
ODBM received a GE/GB status code on the last GN call, and no CNTQRY
should be sent.

ENDUOWRM reply message (X'220C')
The distributed data management (DDM) architecture ENDUOWRM (end unit of
work) reply message indicates that the unit of work has ended as a result of the
last command.

Chapter 2. DRDA DDM command architecture reference 333

Format

►► DSSHDR LL CP UOWDSP OUTAIBDBPCB SVRCOD
RDBNAM SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'220C', the 2-byte codepoint of the ENDUOWRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

UOWDSP
A required parameter (X'2115') that specifies the disposition of the last unit of
work. If the disposition is committed, all updates in the unit of work are
successfully applied. If the disposition is rolled back, all updates in the unit of
work are removed.

For more information about UOWDSP, see DRDA, Version 4, Volume 3:
Distributed Data Management (DDM) Architecture.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

EXCSATRD reply object (X'1443')
The EXCSATRD reply data object returns information about the IMS target DDM
server, such as server name or the product release level, to the source DDM server.

334 Application Programming APIs

Format

►► DSSHDR LL CP SRVCLSNM
EXTNAM SRVNAM SRVRLSLV

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The 2-byte specification of the length of the EXCSATRD reply object.

CP X'1443', the 2-byte codepoint of the EXCSATRD reply object.

EXTNAM
Optional. The variable-length external name of the target DDM server. For the
IMS target DDM server, the external name is the name of the job the IMS
system creates or activates to run the DDM server. The EXTNAM parameter is
used for tracing and problem determination. If the job name includes
embedded blanks, the name must be enclosed in quotation marks within the
data field. The maximum length of EXTNAM is 255 bytes. The codepoint is
X'115E'.

SRVNAM
Optional. The variable-length name of the target DDM server specified as a
character string. Returned for tracing and problem determination purposes. If
the server name includes embedded blanks, the name must be enclosed in
quotation marks. The maximum length is 255 bytes. The codepoint is X'116D'.

If the DDM server name includes embedded blanks, the name must be
enclosed in quotation marks within the data field.

SRVRLSLV
Optional. The variable-length name of the product release level of the target
DDM server. The SRVRLSLV parameter is used to ensure compatibility
between the source server of the application program and the IMS target
server. The maximum length of SRVRLSLV is 255 bytes. The codepoint is
X'115A'.

SRVCLSNM
Specifies the DDM server class name, DFS, used by IMS. DFS is currently the
only name supported by IMS. The SRVCLSNM enables the DRDA
product-unique extension used by IMS.

The codepoint of SRVCLSNM is X'1147'. The variable-length DDM server class
name is specified as a character string.

Usage

The distributed data management (DDM) architecture EXCSATRD reply object is
returned by an IMS target server in response to an EXCSAT command. Unless
errors occur, the EXCSATRD reply object is always the first reply command from
the IMS target DDM server to the source DDM server.

If errors occur during the exchange of server attributes, the IMS target server
responds to the EXCSAT command by issuing an error message instead of the
EXCSATRD reply object.
Related reference:

Chapter 2. DRDA DDM command architecture reference 335

“EXCSAT command (X'1041')” on page 292

IMSCALLRM reply message (X'CA04')
The distributed data management (DDM) architecture IMSCALLRM (IMS call)
reply message returns the results of a DL/I call for IMS DB system services
submitted by using the IMSCALL command.

Format

►► DSSHDR LL CP SVRCOD aib
SRVDGN IOAREA

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CA04', the 2-byte codepoint of the IMSCALLRM reply message.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

aib
A required parameter and placeholder for exactly one of the following two
reply objects:
v OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

v OUTAIBIOPCB
A parameter (X'CC08') that contains the AIB and IOPCB data sent from the
target to the source.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

IOAREA
An optional parameter in byte array that specifies the input and output area.

Related reference:

336 Application Programming APIs

“IMSCALL command (X'C803')” on page 301

OPNQFLRM reply message (X'2212')
The distributed data management (DDM) architecture OPNQFLRM (open query
failure) reply message indicates that the OPNQRY command failed to open the
query.

The reason for the failure is reported in the OUTAIBDBPCB parameter.

Format

►► DSSHDR LL CP SVRCOD RDBNAM OUTAIBDBPCB
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2212', the 2-byte codepoint of the OPNQFLRM reply message.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

OUTAIBDBPCB contains the reason for the failure.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

Related reference:
“OPNQRY command (X'200C')” on page 304

Chapter 2. DRDA DDM command architecture reference 337

OPNQRYRM reply message (X'2205')
The distributed data management (DDM) architecture OPNQRYRM (open query)
reply message indicates that the open query (OPNQRY) command or execute SQL
statement (EXCSQLSTT) command completed normally, and that a query process
has been initiated.

This reply message also indicates the type of query protocol and cursor that are
used for the query.

Format

►► DSSHDR LL CP
QRYATTSCR QRYATTSET QRYATTSNS QRYATTUPD

►

► QRYINSID QRYPRCTYP SVRCOD
QRYBLKFCT QRYBLKTYP SQLCSRHLD SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2205', the 2-byte codepoint of the OPNQRYRM reply message.

QRYATTSCR
An optional parameter that specifies the query attribute for scrollability. The
codepoint is X'2149'.

QRYATTSET
An optional parameter that indicates whether a cursor is enabled for the a
single row or multiple rows to be returned. The codepoint is X'214A'.

QRYATTSNS
An optional parameter that specifies the sensitivity of an opened cursor to
changes made to the underlying base table. The codepoint is X'2157'.

QRYATTUPD
An optional parameter that indicates the updatability of an opened cursor. The
codepoint tis X'2150'.

QRYBLKFCT
An optional parameter that contains the value of the blocking factor, a limit
that is imposed by the target server that dictates the number of rows that can
be blocked at a time for a query. The codepoint is X'215F'.

QRYBLKTYP
An optional parameter that indicates the type of query blocks in which the
answer set data will be returned. The codepoint is X'2133'.

QRYINSID
A required parameter that uniquely identifies the instance of a query. The
codepoint is X'215B'.

This parameter is returned on the OPNQRYRM reply message by the target
server when a query is opened. Any subsequent references to this query by the
target server must include the QRYINSID value in order to identify the correct
instance of the query.

338 Application Programming APIs

QRYPRCTYP
A required String parameter that specifies the type of query protocol that is
used. The codepoint is X'2102'.

SQLCSRHLD
An optional Boolean parameter that indicates whether the requester specified
the hold cursor position option. The codepoint is X'211F'.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

For more information on these parameters, see DRDA, Version 4, Volume 3:
Distributed Data Management (DDM) Architecture, by the Open Group.

Reply data objects

The following reply data objects can be chained to the OPNQRYRM message in
response to the OPNQRY command:

QRYDSC (X'241A')
Query answer set description.

QRYDTA (X'241B')
Query answer set data.

Related reference:
“OPNQRY command (X'200C')” on page 304

QRYDSC reply object (X'241A')
The distributed data management (DDM) architecture QRYDSC (query answer set
description) reply object defines the format of the data that is returned in a
QRYDTA object.

Format

►► DSSHDR LL CP BYTSTRDR ►◄

Chapter 2. DRDA DDM command architecture reference 339

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'241A', the 2-byte codepoint of the QRYDSC reply object.

BYTSTRDR
A required byte string data representation. This byte string contains the
FD:OCA description of the data that the QRYDTA object sends.

Usage

The format for the data that the QRYDTA object returns never changes. The
BYTSTRDR value for the ODBM is always as follows:

0676D0260000 0671E0D000010671 F0E00000

QRYDTA reply object (X'241B')
The distributed data management (DDM) architecture QRYDTA (query answer set
data) reply object contains some or all of the answer set data that results from a
query.

Format

►► DSSHDR LL CP aibdbpcbStream data ►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'241B', the 2-byte codepoint of the QRYDTA reply object.

aibStream
An IMS-defined data structure.

When the Open Database Manager (ODBM) services a GU or GN call, it places
the aibStream data stream followed by the dbpcbStream at the beginning of
each row in the QRYDTA object. The requested row data follows immediately.
The concatenation of the aibdbpcbStream and data fields comprises a single
row in a query row set.

dbpcbStream
An IMS-defined data structure.

When the Open Database Manager (ODBM) services a GU or GN call, it places
the aibStream data stream followed by the dbpcbStream at the beginning of
each row in the QRYDTA object. The requested row data follows immediately.
The concatenation of the aibdbpcbStream and data fields makes up a single
row in a query row set.

data
The data that follows the aibStream and dbpcbStream data structures.

340 Application Programming APIs

Usage

The contents of the QRYDTA reply object are described by the QRYDSC reply
object. Because IMS sends all of the data for a given row as if it were a single
column of type “Fixed Length Byte Stream,” the QRYDSC information is the same
for each query. Each row is made up of an aibdbpcbStream object followed by the
data.
Related reference:
“aibStream data structure” on page 352
“dbpcbStream data structure” on page 353

QRYPOPRM reply message (X'220F')
The distributed data management (DDM) architecture QRYPOPRM (query
previously opened) reply message is returned when a command is issued for a
query that is already open.

Format

►► DSSHDR LL CP PCBNAME RDBNAM SVRCOD
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'220F', the 2-byte codepoint of the QRYPOPRM reply message.

PCBNAME

A required parameter that specifies the PCB name that uniquely identifies the
query made by a DL/I call. The PCB name is specified as a character string.
The value is initially sent with the original OPNQRY command. The same
value must subsequently be sent in commands such as CNTQRY, CLSQRY, and
RLSE for proper correlation with the original OPNQRY call. The codepoint for
the PCBNAME parameter is X'C907'.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:

Chapter 2. DRDA DDM command architecture reference 341

0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

Related reference:
“OPNQRY command (X'200C')” on page 304

RDBAFLRM reply message (X'221A')
The distributed data management (DDM) architecture RDBAFLRM (database
access failed) reply message indicates that the database access failed.

Format

►► DSSHDR LL CP RDBNAM SVRCOD OUTAIBDBPCB
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'221A', the 2-byte codepoint of the RDBAFLRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

OUTAIBDBPCB

342 Application Programming APIs

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

OUTAIBDBPCB contains the reason for the failure.

Usage

The RDBAFLRM reply message is returned only when a RDBNAM value is
provided and the connection to the database failed. When the RDBAFLRM reply
message is returned, the target Structured Query Language Application Manager
(SQLAM) instance is destroyed. For more information about the SQLAM instance,
see DRDA, Version 4, Volume 3: Distributed Data Management (DDM) Architecture by
the Open Group.
Related reference:
“ACCRDB command (X'2001')” on page 283
“RDBNAM parameter (X'2110')” on page 357
“OUTAIBDBPCB parameter (X'CC02')” on page 355

RDBATHRM reply message (X'2203')
The distributed data management (DDM) architecture RDBATHRM (not authorized
to database) reply message indicates that the user is not authorized to access the
database.

Format

►► DSSHDR LL CP RDBNAM SVRCOD OUTAIBDBPCB
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2203', the 2-byte codepoint of the RDBATHRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code

Chapter 2. DRDA DDM command architecture reference 343

4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

OUTAIBDBPCB contains the reason for the failure.
Related reference:
“ACCRDB command (X'2001')” on page 283

RDBNACRM reply message (X'2204')
The distributed data management (DDM) architecture RDBNACRM (database not
accessed) reply message indicates that the access database command (ACCRDB)
was not issued prior to a command that requested the database services.

Format

►► DSSHDR LL CP RDBNAM SVRCOD OUTAIBDBPCB
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2204', the 2-byte codepoint of the RDBNACRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code

344 Application Programming APIs

64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

OUTAIBDBPCB contains the reason for the failure.
Related reference:
“ACCRDB command (X'2001')” on page 283

RDBNFNRM reply message (X'2211')
The distributed data management (DDM) architecture RDBNFNRM (database not
found) reply message indicates that the requested database was not found.

Format

►► DSSHDR LL CP RDBNAM SVRCOD OUTAIBDBPCB
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2211', the 2-byte codepoint of the RDBNFNRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

OUTAIBDBPCB

Chapter 2. DRDA DDM command architecture reference 345

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

OUTAIBDBPCB contains the reason for the failure.

RDBUPDRM reply message (X'2218')
The distributed data management (DDM) architecture RDBUPDRM (database
update) reply message indicates that the a DDM command resulted in an update
at the target database.

Format

►► DSSHDR LL CP RDBNAM SVRCOD UPDCNT OUTAIBDBPCB
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2218', the 2-byte codepoint of the RDBUPDRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

UPDCNT
A required 4-byte integer parameter (X'C90A') that contains the number of
rows affected by a batch or singleton INSERT, UPDATE, or DELETE.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

346 Application Programming APIs

OUTAIBDBPCB contains the details.
Related reference:
“EXCSQLIMM command (X'200A')” on page 294
“UPDCNT parameter (X'C90A')” on page 358

RLSERM reply message (X'CA03')
The distributed data management (DDM) architecture RLSERM (release locks)
reply message indicates to the requester that an RLSE command has completed
normally.

Format

►► DSSHDR LL CP RDBNAM OUTAIBDBPCB SVRCOD
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CA03', the 2-byte codepoint of the RLSERM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

Related reference:
“RLSE command (X'C802')” on page 310

Chapter 2. DRDA DDM command architecture reference 347

RSCLMTRM reply message (X'1233')
The distributed data management (DDM) architecture RSCLMTRM (resource limits
reached) reply message indicates that the requested command cannot be completed
because of insufficient target server resources.

Format

►► DSSHDR LL CP RDBNAM SVRCOD
PRDID RSCNAM RSCTYP RSNCOD SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'1233', the 2-byte codepoint of the RSCLMTRM reply message.

PRDID
An optional parameter that specifies the release level of the source DDM
server. The codepoint for PRDID is X'112E'.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

RSCNAM
An optional String parameter that specifies the name of the resource that
reached its limit and sends this RSCLMTRM reply message in response. The
codepoint for RSCNAM is X'112D'.

RSCTYP
An optional String parameter that specifies the type of the resource that
reached its limit and sends this RSCLMTRM reply message. The codepoint for
RSCTYP is X'111F'.

RSNCOD
An optional String parameter that specifies the reason code. The codepoint for
RSNCOD is X'1127'.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code

348 Application Programming APIs

32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

SECCHKRM reply message (X'1219')
The distributed data management (DDM) architecture SECCHKRM (security check)
reply message indicates the acceptability of the security information.

The security manager specifies the state of the security information by using the
security check code (SECCHKCD) parameter.

Format

►► DSSHDR LL CP SVRCOD SECCHKCD
SRVDGN SVCERRNO

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'1219', the 2-byte codepoint of the SECCHKRM reply message.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

SECCHKCD
A required String parameter that indicates the security information and
condition for the SECCHKRM reply message. For more information about the
possible code values and the relationship of SECCHKCD and SVRCOD in the
SECCHKRM reply message, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture by the Open Group.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVCERRNO
An optional parameter (X'11B4') that contains a security service error number
from the local security service. SRVDGN might contain additional information.

Chapter 2. DRDA DDM command architecture reference 349

SVCERRNO consists of a 2-byte length field (LL), a 2-byte codepoint, followed
by a 4-byte binary number data.

SQLERRRM reply message (X'2213')
The distributed data management (DDM) architecture SQLERRRM (SQL error
condition) reply message indicates that an SQL error has occurred.

Format

►► DSSHDR LL CP RDBNAM SVRCOD OUTAIBDBPCB
SRVDGN

►◄

Parameters

DSSHDR
The 6-byte header that contains information about the data stream structure
(DSS).

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'2213', the 2-byte codepoint of the SQLERRRM reply message.

RDBNAM

Codepoint X'2110'. The IMS PSB name that identifies the target database.

SRVDGN

An optional parameter (X'1153') that contains server diagnostic information.
The data portion is a string with a maximum length of 32,767 bytes. The string
can be any information the server sends to aid in problem diagnosis. For more
information about SRVDGN, see DRDA, Version 4, Volume 3: Distributed Data
Management (DDM) Architecture, which is available from The Open Group at
www.opengroup.org.

SVRCOD

A required parameter (X'1149') that contains the severity code. SVRCOD
consists of a 2-byte length field (LL), a 2-byte codepoint (CP), and the data.
The data is a 2-byte binary value. The following list describes the possible
2-byte values:
0 INFO – Information only severity code
4 WARNING – Warning severity code
8 ERROR – Error severity code
16 SEVERE – Severe error severity code
32 ACCDMG – Access damage severity code
64 PRMDMG – Permanent damage severity code
128 SESDMG – Session damage severity code

OUTAIBDBPCB

A required parameter (X'CC02') that contains the AIB and DBPCB data sent
from the target to the source.

OUTAIBDBPCB contains the reason for the error.

DDM parameters used by IMS
In some of the DDM terms used by IMS, IMS defines product-unique parameter
values and data structures.

350 Application Programming APIs

AIBOALEN parameter (X'C904')
The AIBOALEN parameter is an IMS product-unique distributed data management
(DDM) architecture parameter that identifies the maximum output length on all
calls that return data.

Format

►► LL CP AIBOALEN ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C904', the 2-byte codepoint of the AIBOALEN parameter.

AIBOALEN
A 4-byte integer containing the maximum output length.

Related reference:
“INAIB command object (X'CC01')” on page 302

AIBRSNM1 parameter (X'C901')
The AIBRSNM1 parameter is an IMS product-unique distributed data management
(DDM) architecture parameter that contains the PCB name.

Format

►► LL CP AIBRSNM1 ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C901', the 2-byte codepoint of the AIBRSNM1 parameter.

AIBRSNM1
A left-justified, 1- to 8-byte string that contains the PCB name.

Related reference:
“INAIB command object (X'CC01')” on page 302

AIBRSNM2 parameter (X'C902')
The AIBRSNM2 parameter is an IMS product-unique distributed data management
(DDM) architecture parameter that contains the identifier of the ODBA startup
table.

Format

►► LL CP AIBRSNM2 ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C902', the 2-byte codepoint of the AIBRSNM2 parameter.

Chapter 2. DRDA DDM command architecture reference 351

AIBRSNM2
A 4-byte string that specifies the 4-character identifier of the ODBA startup
table. For example, in DFSxxxx0, xxxx is the 4-character identifier.

Related reference:
“INAIB command object (X'CC01')” on page 302

AIBSFUNC parameter (X'C903')
The AIBSFUNC parameter is an IMS product-unique distributed data management
(DDM) architecture parameter that contains the sub-function code, if any, of a
DL/I call.

Format

►► LL CP AIBSFUNC ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C903', the 2-byte codepoint of the AIBSFUNC parameter.

AIBSFUNC
A left-justified, 1- to 8-byte string that contains the sub-function code of DL/I
call.

Related reference:
“INAIB command object (X'CC01')” on page 302

aibStream data structure
The distributed data management (DDM) architecture aibStream is a data structure
that is contained in the OUTAIBDBPCB DDM object when the object is passed
back in a reply message.

Format

Table 86. Format of the aibStream data structure

Byte offset Length Name Description

0 1 AIB null indicator Binary integer.

X'00' Indicates that the rest of the aibStream
data structure is present.

X'FF' Indicates that the aibStream data
structure contains no data after the
AIB null indicator. The total length of
the aibStream data structure is one
byte.

1 4 Output area used Binary integer.

5 4 Return code Binary integer.

9 4 Reason code Binary integer.

13 4 Error code extension Binary integer.

352 Application Programming APIs

Usage

When the Open Database Manager (ODBM) services a GU or GN call, ODBM
returns requested data in rows defined within the data stream of a QRYDTA reply
object. Each row begins with a concatenation of the aibStream and the
dbpcbStream data structures followed by the requested data.
Related reference:
“QRYDTA reply object (X'241B')” on page 340
“dbpcbStream data structure”
“OUTAIBDBPCB parameter (X'CC02')” on page 355
“OUTAIBIOPCB parameter (X'CC08')” on page 356

dbpcbStream data structure
The distributed data management (DDM) architecture dbpcbStream is a data
structure that is contained in the OUTAIBDBPCB reply object when the object is
passed back in a reply message.

Format

The following table defines the format of the dbpcbStream data structure.

Note: The table shows some fields as having two possible starting byte offsets. For
each these fields, if a database name is included in the dbpcbStream data structure,
the field starts at the higher of the possible byte offsets.

Table 87. Format of the dbpcbStream data structure

Byte
offset Length Name Description

0 1 DBPCB null
indicator

Binary integer.

X'00' Indicates that the rest of the
dbpcbStream data structure is present.

X'FF' Indicates that the dbpcbStream data
structure contains no data after the
DBPCB null indicator. The total length
of the dbpcbStream data structure is
one byte.

1 1 Database name null
indicator

Binary integer.

X'00' Indicates that a database name field is
present at offset 2.

X'FF' Indicates that a database name field is
not present.

2 8 Database name Character string.

2 or 10 2 Segment level
number

Right-justified, numeric character data.

4 or 12 2 Status code Character data.

6 or 14 8 Segment name Character string.

Chapter 2. DRDA DDM command architecture reference 353

Table 87. Format of the dbpcbStream data structure (continued)

Byte
offset Length Name Description

14 or 22 1 Key feedback null
indicator

Binary integer.

X'00' Indicates that a key feedback fields
begin at offset 15 or, if a database
name is present at offset 2, at offset 23.

X'FF' Indicates that no key feedback fields
are present.

15 or 23 4 Key feedback length Binary integer.

19 or 27 Variable Key feedback area Variable-length character string. The length of
the key feedback area is defined in the key
feedback length field at offset 15 or, if a
database name is present in the dbpcbStream
data structure, at offset 23.

Usage

When the Open Database Manager (ODBM) services a GU or GN call, ODBM
returns requested data in rows defined within the data stream of a QRYDTA reply
object. Each row begins with a concatenation of the aibStream and the
dbpcbStream data structures followed by the requested data.
Related reference:
“aibStream data structure” on page 352
“QRYDTA reply object (X'241B')” on page 340
“OUTAIBDBPCB parameter (X'CC02')” on page 355

iopcbStream data structure
The distributed data management (DDM) architecture iopcbStream is a data
structure that is contained in the OUTAIBIOPCB DDM object when the object is
passed back in a reply message.

Format

Table 88. Format of the iopcbStream data structure

Byte offset Length Name Description

0 1 IOPCB null indicator Binary integer.

X'00' Indicates that the iopcbStream data
structure is present.

X'FF' Indicates that the iopcbStream data
structure contains no data after the
IOPCB null indicator. The total length
of the iopcbStream data structure is 1
byte.

1 1 LTERM name null
indicator

Binary integer.

X'00' Indicates that the LTERM name field is
present at offset 2 and that the field
contains a logical terminal name.

X'FF' Indicates that the LTERM name field is
not present.

354 Application Programming APIs

Table 88. Format of the iopcbStream data structure (continued)

Byte offset Length Name Description

2 8 LTERM name Character string.

2 or 10 2 Reserved Reserved.

4 or 12 2 Status code Character data.

6 or 14 4 Local data and time Byte array.

10 or 18 4 Input message
sequence number

Byte array.

14 or 22 8 Message output
descriptor name

Character string.

22 or 30 8 User ID Character string.

30 or 38 8 Group name Character string.

38 or 46 12 Timestamp Byte Array.

50 or 58 1 User ID indicator Character data.

Usage

The figure and description in the preceding sections serve as the FD:OCA early
descriptor definition of the iopcbStream data structure. Do not confuse the
iopcbStream data structure with the OUTAIBIOPCB reply object (X'CC08') that
contains it when iopcbStream is passed back in a reply message.
Related reference:
“OUTAIBIOPCB parameter (X'CC08')” on page 356

OUTAIBDBPCB parameter (X'CC02')
The distributed data management (DDM) architecture OUTAIBDBPCB (output
AIBDBPCB) parameter is sent from the target server to the source server and
contains a concatenation of the aibStream and the dbpcbStream data structures.

Format

►► LL CP aibStream dbpcbStream ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC02', the 2-byte codepoint of the OUTAIBDBPCB parameter.

aibStream
Required. Contains the following data:
v AIB null indicator
v Output area
v Return code
v Reason code
v Error code extension

dbpcbStream
Required. Contains the following data:
v DBPCB null indicator

Chapter 2. DRDA DDM command architecture reference 355

v Database name
v Segment level number
v Status code
v Key feedback

Usage

This OUTAIBDBPCB parameter is a scalar parameter. No length or codepoint
values are placed in front of the aibStream or dbpcbStream data structures.
Related reference:
“DEALLOCDBRM reply message (X'CA01')” on page 331
“aibStream data structure” on page 352
“dbpcbStream data structure” on page 353
“RDBAFLRM reply message (X'221A')” on page 342

OUTAIBIOPCB parameter (X'CC08')
The distributed data management (DDM) architecture OUTAIBIOPCB (output
AIBIOPCB) parameter is sent from the target server to the source server and
contains a concatenation of the aibStream and the iopcbStream data structures.

Format

►► LL CP aibStream iopcbStream ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'CC08', the 2-byte codepoint of the OUTAIBIOPCB parameter.

aibStream
Required. Contains the following data:
v AIB null indicator
v Output area
v Return code
v Reason code
v Error code extension

iopcbStream
Required. Contains the following data:
v IOPCB null indicator
v LTERM name
v Status code
v Input message segment number
v Message output descriptor name
v Group name
v Key feedback

356 Application Programming APIs

Usage

The OUTAIBIOPCB parameter is a scalar parameter. No length or codepoint values
are placed in front of the aibStream or iopcbStream data structures.
Related reference:
“iopcbStream data structure” on page 354
“aibStream data structure” on page 352

RDBNAM parameter (X'2110')
The distributed data management (DDM) architecture RDBNAM parameter
identifies the target database for a given interaction.

Format

►► LL CP PSBNAME
. ALIAS

►◄

Parameters

LL The 2-byte specification of the length of the RDBNAM parameter.

CP X'2110', the 2-byte codepoint of the RDBNAM parameter.

PSBNAME
The IMS PSB name, specified as a character string up to 8 bytes long. The PSB
name identifies the target database and must match a PSB name defined to
IMS.

ALIAS
Optional. The alias name of the IMS data store name. ALIAS must be specified
as 4 bytes. If the alias name is fewer than 4 characters, the characters must be
left aligned and the remaining bytes must be padded with blank character
spaces.

When ALIAS is used, the PSBNAME and the ALIAS must be separated by a
period.

Related reference:
“ACCRDB command (X'2001')” on page 283
“ACCSEC command (X'106D')” on page 285
“DEALLOCDB command (X'C801')” on page 289
“RDBAFLRM reply message (X'221A')” on page 342

SSA parameter (X'C906')
The SSA parameter is an IMS product-unique distributed data management (DDM)
architecture parameter that contains a segment search argument (SSA) that
qualifies a DL/I call.

Format

►► LL CP SSA ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

Chapter 2. DRDA DDM command architecture reference 357

CP X'C906', the 2-byte codepoint of the SSA parameter.

SSA
A byte-string that contains an SSA.

Related reference:
“SSALIST command object (X'CC06')” on page 325

SSACOUNT parameter (X'C905')
The SSACOUNT parameter is an IMS product-unique distributed data
management (DDM) architecture parameter that specifies the number of segment
search arguments (SSAs) included in the SSALIST command object.

Format

►► LL CP SSACOUNT ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C905', the 2-byte codepoint of the SSACOUNT parameter.

SSACOUNT
A 2-byte binary number field that indicates the number of SSAs included in
the SSALIST command object. The minimum value is 1 and the maximum
value is 15.

Related reference:
“SSALIST command object (X'CC06')” on page 325

UPDCNT parameter (X'C90A')
The UPDCNT parameter is an IMS product-unique distributed data management
(DDM) architecture parameter that identifies the number of rows affected by an
individual or batch INSERT, UPDATE, or DELETE action.

Format

►► LL CP UPDCNT ►◄

Parameters

LL The length specified as a 2-byte binary integer. This length includes LL and CP.

CP X'C90A', the 2-byte codepoint of the UPDCNT parameter.

UPDCNT
A 4-byte integer containing the number of rows affected by a batch or
singleton INSERT, UPDATE, or DELETE action.

Related reference:
“RDBUPDRM reply message (X'2218')” on page 346

358 Application Programming APIs

Chapter 3. IMS Adapter for REXX reference

The IMS adapter for REXX (REXXTDLI) provides an environment in which IMS
users can interactively develop REXX EXECs under TSO/E (time-sharing option
extensions) and execute them in IMS MPPs, BMPs, IFPs, or Batch regions.

This product does not compete with DFSDDLT0 but is used as an adjunct. The IMS
adapter for REXX provides an application programming environment for
prototyping or writing low-volume transaction programs.

The REXX environment executing under IMS has the same abilities and restrictions
as those documented in the z/OS TSO/E REXX Reference. These few restrictions
pertain to the absence of the TSO, ISPEXEC, and ISREDIT environments, and to
the absence of TSO-specific functions such as LISTDS. You can add your own
external functions to the environment as documented in the z/OS TSO/E REXX
Reference.

IMS calls the REXX EXEC using IRXJCL. When this method is used, Return Code
20 (RC20) is a restricted return code. Return Code 20 is returned to the caller of
IRXJCL when processing was not successful, and the EXEC was not processed.

A REXX EXEC runs as an IMS application and has characteristics similar to other
IMS-supported programming languages, such as COBOL. Programming language
usage (REXX and other supported languages) can be mixed in MPP regions. For
example, a COBOL transaction can be executed after a REXX transaction is
completed, or vice versa.

The advantages of REXX are:
v REXX is an easy-to-use interpretive language.
v REXX does not require a special PSB generation to add an EXEC and run it

because EXECs can run under a standard PSB (IVPREXX or one that is
established by the user).

v The REXX interface supports DL/I calls and provides these functions:
– Call tracing of DL/I calls, status, and parameters
– Inquiry of last DL/I call
– Extensive data mapping
– PCB specification by name or offset
– Obtaining and releasing storage
– Messaging through WTO, WTP, WTL, and WTOR

The following system environment conditions are necessary to run REXX EXECs:
v DFSREXX0 and DFSREXX1 must be in a load library accessible to your IMS

dependent or batch region; for example, STEPLIB.
v DFSREXX0 is stand-alone and must have the RENT option specified.
v DFSREXX1 must be bound with DFSLI000 and DFSCPIR0 (for SRRCMIT and

SRRBACK) and optionally, DFSREXXU. The options must be REUS, not RENT.
v IVPREXX (copy of DFSREXX0 program) must be installed as an IMS transaction

program. IVP (Installation Verification Program) installs the program.
v The PSB must be defined as assembler language or COBOL.

© Copyright IBM Corp. 1974, 2017 359

v SYSEXEC DD points to a list of data sets containing the REXX EXECs that will
be run in IMS. You must put this DD in your IMS dependent or batch region
JCL.

v SYSTSPRT DD is used for REXX output, for example tracing, errors, and SAY
instructions. SYSTSPRT DD is usually allocated as SYSOUT=A or another class,
depending on installation, and must be put in the IMS dependent or batch
region JCL.

v SYSTSIN DD is used for REXX input because no console exists in an IMS
dependent region, as under TSO. The REXX PULL statement is the most
common use of SYSTSIN.

Related reading: For more information on SYSTSPRT and SYSTSIN, see z/OS
TSO/E REXX Reference.
Related reference:
“IVPREXX sample application” on page 391

IMS Adapter for REXX overview
The following figure shows the IMS adapter for REXX environment at a high level.
This figure shows how the environment is structured under the IMS program
controller, and some of the paths of interaction between the components of the
environment.

Related reference:

IMS Adapter for REXX exit routine (DFSREXXU) (Exit Routines)

Figure 9. IMS Adapter for REXX logical overview diagram

360 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/ims_dfsrexxu.htm#ims_dfsrexxu

Sample exit routine (DFSREXXU)
IMS provides a sample user exit routine that is used with the IMS Adapter for
REXX.

For a description of how to write the user exit routine see IMS Version 14 Exit
Routines. The sample user exit routine checks to see if it is being called on entry. If
so, the user exit routine sets the parameter list to the transaction code with no
arguments and sets the start-up IMSRXTRC level to 2. The return code is set to 0.
For the latest version of the DFSREXXU source code, see the IMS.ADFSSMPL
distribution library; the member name is DFSREXXU.

Addressing other environments
Use the REXX ADDRESS instruction to change the destination of commands. The
IMS Adapter for REXX functions through two host command environments:
REXXTDLI and REXXIMS. Other host command environments can be accessed
with an IMS EXEC as well.

The z/OS environment is provided by TSO in both TSO and non-TSO address
spaces. It is used to run other programs such as EXECIO for file I/O. IMS does not
manage the z/OS EXECIO resources. An IMS COMMIT or BACKOUT, therefore,
has no effect on these resources. Because EXECIO is not an IMS-controlled
resource, no integrity is maintained. If integrity is an issue for flat file I/O, use
IMS GSAM, which ensures IMS-provided integrity.

If APPC/MVS is available, other environments can be used. The environments are:

APPCMVS
Used for z/OS-specific APPC interfacing

CPICOMM
Used for CPI Communications

LU62 Used for z/OS-specific APPC interfacing

Related reading: For more information on addressing environments, see z/OS
TSO/E REXX Reference.

REXX transaction programs
A REXX transaction program can use any PSB definition. The definition set up by
the IVP for testing is named IVPREXX.

A section of the IMS stage 1 definition is shown in the following example:
**
* IVP APPLICATIONS DEFINITION FOR DB/DC, DCCTL *
**

APPLCTN GPSB=IVPREXX,PGMTYPE=TP,LANG=ASSEM REXXTDLI SAMPLE
TRANSACT CODE=IVPREXX,MODE=SNGL, X

MSGTYPE=(SNGLSEG,NONRESPONSE,1)

This example uses a GPSB, but you could use any PSB that you have defined. The
GPSB provides a generic PSB that has an TP PCB and a modifiable alternate PCB.
It does not have any database PCBs. The language type of ASSEM is specified
because no specific language type exists for a REXX application.

Chapter 3. IMS Adapter for REXX reference 361

Recommendation: For a REXX application, specify either assembler language or
COBOL.

IMS schedules transactions using a load module name that is the same as the PSB
name being used for MPP regions or the PGM name for other region types. You
must use this load module even though your application program consists of the
REXX EXEC. The IMS adapter for REXX provides a load module for you to use.
This module is called DFSREXX0. You can:
v Copy to a steplib data set with the same name as the application PSB name. Use

either a standard utility intended for copying load modules (such as IEBCOPY
or SAS), or the Binder.

v Use the Binder to define an alias for DFSREXX0 that is the same as the
application PGM name.

For example, the following code sample shows a section from the PGM setup job
that uses the binder to perform the copy function to the name IVPREXX. The
example uses the IVP.
//* REXXTDLI SAMPLE - GENERIC APPLICATION DRIVER
//*
//LINK EXEC PGM=IEWL,
// PARM=’XREF,LIST,LET,SIZE=(192K,64K)’
//SYSPRINT DD SYSOUT=*
//SDFSRESL DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSLMOD DD DISP=SHR,DSN=IMS1.PGMLIB
//SYSUT1 DD UNIT=(SYSALLDA,SEP=(SYSLMOD,SYSLIN)),
// DISP=(,DELETE,DELETE),SPACE=(CYL,(1,1))
//SYSLIN DD *

INCLUDE SDFSRESL(DFSREXX0)
ENTRY DFSREXX0

NAME IVPREXX(R)
/*

When IMS schedules an application transaction, the load module is loaded and
given control. The load module establishes the REXX EXEC name as the PGM
name with an argument of the Transaction Code (if applicable). The module calls a
user exit routine (DFSREXXU) if it is available. The user exit routine selects the
REXX EXEC (or a different EXEC to run) and can change the EXEC arguments, or
do any other desired processing.

Upon return from the user exit routine, the action requested by the routine is
performed. This action normally involves calling the REXX EXEC. The EXEC load
occurs using the SYSEXEC DD allocation. This allocation must point to one or
more partitioned data sets containing the IMS REXX application programs that will
be run as well as any functions written in REXX that are used by the programs.

Standard REXX output, such as SAY statements and tracing, is sent to SYSTSPRT.
This DD is required and can be set to SYSOUT=A.

When the stack is empty, the REXX PULL statement reads from the SYSTSIN DD.
In this way, you can conveniently provide batch input data to a BMP or batch
region. SYSTSIN is optional; however, you will receive an error message if you
issue a PULL from an empty stack and SYSTSIN is not allocated. The following
code example shows the JCL necessary for MPP region that runs the IVPREXX
sample EXEC.

362 Application Programming APIs

JCL code used to run the IVPREXX sample exec
//IVP32M11 EXEC PROC=DFSMPR,TIME=(1440),
// AGN=IVP, AGN NAME
// NBA=6,
// OBA=5,
// SOUT=’*’, SYSOUT CLASS
// CL1=001, TRANSACTION CLASS 1
// CL2=000, TRANSACTION CLASS 2
// CL3=000, TRANSACTION CLASS 3
// CL4=000, TRANSACTION CLASS 4
// TLIM=10, MPR TERMINATION LIMIT
// SOD=, SPIN-OFF DUMP CLASS
// IMSID=IVP1, IMSID OF IMS CONTROL REGION
// PREINIT=DC, PROCLIB DFSINTXX MEMBER
// PWFI=Y PSEUDO=WFI
//*
//* ADDITIONAL DD STATEMENTS
//*
//DFSCTL DD DISP=SHR,
// DSN=IVPSYS32.PROCLIB(DFSSBPRM)
//DFSSTAT DD SYSOUT=*
//* REXX EXEC SOURCE LOCATION
//SYSEXEC DD DISP=SHR,
// DSN=IVPIVP32.INSTALIB
// DD DISP=SHR,
// DSN=IVPSYS32.SDFSEXEC
//* REXX INPUT LOCATION WHEN STACK IS EMPTY
//SYSTSIN DD *
/*
//* REXX OUTPUT LOCATION
//SYSTSPRT DD SYSOUT=*
//* COBOL OUTPUT LOCATION
//SYSOUT DD SYSOUT=*

Related reference:

IMS Adapter for REXX exit routine (DFSREXXU) (Exit Routines)

REXXTDLI commands
These topics contain REXX commands and describes how they apply to DL/I calls.

The terms command and call can be used interchangeably when explaining the
REXXTDLI environment. However, the term command is used exclusively when
explaining the REXXIMS environment. For consistency, call is used when
explaining DL/I, and command is used when explaining REXX.

To issue commands in the IMS adapter for REXX environment, you must first
address the correct environment. Two addressable environments are provided with
the IMS adapter for REXX. The environments are as follows:

REXXTDLI
Used for standard DL/I calls, for example GU and ISRT. The REXXTDLI
interface environment is used for all standard DL/I calls and cannot be
used with REXX-specific commands. All commands issued to this
environment are considered to be standard DL/I calls and are processed
appropriately. A GU call for this environment could look like this:
Address REXXTDLI "GU MYPCB DataSeg"

REXXIMS
Used to access REXX-specific commands (for example, WTO and MAPDEF) in
the IMS adapter for REXX environment. The REXXIMS interface
environment is used for both DL/I calls and REXX-specific commands.

Chapter 3. IMS Adapter for REXX reference 363

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/ims_dfsrexxu.htm#ims_dfsrexxu

When a command is issued to this environment, IMS checks to see if it is
REXX-specific. If the command is not REXX-specific, IMS checks to see if it
is a standard DL/I call. The command is processed appropriately.

The REXX-specific commands, also called extended commands, are REXX
extensions added by the IMS adapter for the REXX interface. A WTO call for
this environment could look like this:
Address REXXIMS "WTO Message"

On entry to the scheduled EXEC, the default environment is z/OS. Consequently,
you must either use ADDRESS REXXTDLI or ADDRESS REXXIMS to issue the
IMS adapter for REXX calls.

Related reading: For general information on addressing environments, see TSO/E
Version 2 Procedures Language MVS/REXX Reference.

REXXTDLI calls
The following information describes usage considerations for REXXTDLI calls.

Format

►► dlicall
parm1 parm2 ...

►◄

The format of a DL/I call varies depending on call type. The parameter formats for
supported DL/I calls can be found in “DL/I calls for database management” on
page 1, “DL/I calls for transaction management” on page 81, and “DL/I calls for
IMS DB system services” on page 35. The parameters for the calls are
case-independent, separated by one or more blanks, and are generally REXX
variables. See “Parameter handling” on page 365 for detailed descriptions.

Issuing synchronous callout requests

To issue a synchronous callout (ICAL call) request using the REXXTDLI interface,
you must specify the DFSAIB keyword followed by the input and output areas.
Both the input and output areas can be specified as a variable, *mapname, or
!token.

The syntax for the ICAL call from the REXXTDLI interface is:

►► ICAL DFSAIB In Out ►◄

A default length of 1024 bytes will be passed as an input to the AIBOAUSE field
for undefined or implicit variables in the output area. To specify larger messages,
you will need to issue the STORAGE command.

Return codes

If you use the AIBTDLI interface, the REXX RC variable is set to the return code
from the AIB on the DL/I call.

If you do not use the AIBTDLI interface, a simulated return code is returned. This
simulated return code is set to zero if the PCB status code was GA, GK, or bb. If

364 Application Programming APIs

the status code had any other value, the simulated return code is X'900' or decimal
2304.

Parameter handling

The IMS adapter for REXX performs some parameter setup for application
programs in a REXX environment. This setup occurs when the application program
uses variables or maps as the parameters. When the application uses storage
tokens, REXX does not perform this setup. The application program must provide
the token and parse the results just as a non-REXX application would. For a list of
parameter types and definitions, see Table 89 on page 366.

The REXXTDLI interface performs the following setup:
v The I/O area retrieval for the I/O PCB is parsed. The LL field is removed, and

the ZZ field is removed and made available by means of the REXXIMS(’ZZ’)
function call. The rest of the data is placed in the specified variable or map. Use
the REXX LENGTH() function to find the length of the returned data.

v The I/O area building for the TP PCB or alternate PCB is done as follows:
– The appropriate LL field.
– The ZZ field from a preceding SET ZZ command or X'0000' if the command

was not used.
– The data specified in the passed variable or map.

v The I/O area processing for the SPA is similar to the first two items, except that
the ZZ field is 4 bytes long.

v The feedback area on the CHNG and SETO calls is parsed. The LLZZLL fields
are removed, and the remaining data is returned with the appropriate length.

v The parameters that have the LLZZ as part of their format receive special
treatment. These parameters occur on the AUTH, CHNG, INIT, ROLS, SETO,
and SETS calls. The LLZZ fields are removed when IMS returns data to you and
added (ZZ is always X'0000') when IMS retrieves data from you. In effect, your
application ignores the LLZZ field and works only with the data following it.

v The numeric parameters on XRST and symbolic CHKP are converted between
decimal and a 32-bit number (fullword) as required.

Chapter 3. IMS Adapter for REXX reference 365

Table 89. IMS adapter for REXX parameter types and definitions

Type1 Parameter Definition

PCB Important: The PCB parameter is not required if the
REXXTDLI interface is used for making a
synchronous callout request (ICAL call). Instead, the
keyword DFSAIB must be specified before the input
and output parameters.

PCB identifier specified as a variable containing one
of the following:

v PCB name as defined in the PSB generation on
the PCBNAME= parameter. See IMS Version 14
System Utilities for more information on defining
PCB names. The name can be from 1 to 8
characters long and does not have to be padded
with blanks. If this name is given, the AIBTDLI
interface is used, and the return codes and reason
codes are acquired from that interface.

v An AIB block formatted to DFSAIB specifications.
This variable is returned with an updated AIB.

v A # followed by PCB offset number (#1=first
PCB). Example settings are:

– IOPCB=:"#1"

– ALTPCB=:"#2"

– DBPCB=:"#3"

The IOAREA length returned by a database DL/I
call defaults to 4096 if this notation is used. The
correct length is available only when the AIBTDLI
interface is used.

In Input variable. It can be specified as a constant,
variable, *mapname2, or !token3.

SSA Input variable with an SSA (segment search
argument). It can be specified as a constant,
variable, *mapname2, or !token3.

Out Output variable to store a result after a successful
command. It can be specified as a variable,
*mapname2, or !token3.

In/Out Variable that contains input on entry and contains a
result after a successful command. It can be
specified as a variable, *mapname2, or !token3.

Const Input constant. This command argument must be
the actual value, not a variable containing the value.

Note:

1. The parameter types listed in Table 89 correspond to the types shown in Table 1 on page
2, Table 25 on page 82, and Table 5 on page 35, as well as to those shown in Table 90 on
page 369.

All parameters specified on DL/I calls are case independent except for the values
associated with the STEM portion of the compound variable (REXX terminology for an
array-like structure). A period (.) can be used in place of any parameter and is read as a
NULL (zero length string) and written as a void (place holder). Using a period in place
of a parameter is useful when you want to skip optional parameters.

2. For more information on *mapname, see “MAPGET” on page 373 and “MAPPUT” on
page 374.

3. For more information on !token, see “STORAGE” on page 377.

366 Application Programming APIs

Example DL/I calls

The following example shows an ISRT call issued against the I/O PCB. It writes
the message “Hello World”.
IO = "IOPCB" /* IMS Name for I/O PCB */
OutMsg="Hello World"
Address REXXTDLI "ISRT IO OutMsg"
If RC¬=0 Then Exit 12

In this example, IO is a variable that contains the PCB name, which is the constant
“IOPCB” for the I/O PCB. If a non-zero return code (RC) is received, the EXEC
ends (Exit) with a return code of 12. You can do other processing here.

The next example gets a part from the IMS sample parts database. The part
number is "250239". The actual part keys have a "02" prefix and the key length
defined in the DBD is 17 bytes.

The following example puts the segment into the variable called Part_Segment.
PartNum = "250239"
DB = "DBPCB01"
SSA = ’PARTROOT(PARTKEY = ’||Left(’02’||PartNum,17)||’)’
Address REXXTDLI "GU DB Part_Segment SSA"

Notes:
v In a real EXEC, you would probably find the value for PartNum from an

argument and would have to check the return code after the call.
v The LEFT function used here is a built-in REXX function. These built-in

functions are available to any IMS REXX EXEC. For more information on
functions, see TSO/E Version 2 Procedures Language MVS/REXX Reference.

v The single quote (') and double quote (") are interchangeable in REXX, as long as
they are matched.

The IMS.SDFSISRC library includes the DFSSUT04 EXEC. You can use this EXEC
to process any unexpected return codes or status codes. To acquire the status code
from the last DL/I call issued, you must execute the IMSQUERY('STATUS')
function. It returns the two character status code.

If you use an EXEC that runs in both IMS and non-IMS environments, check to see
if the IMS environment is available. You can check to see if the IMS environment is
available in two ways:
v Use the z/OS SUBCOM command and specify either the REXXTDLI or

REXXIMS environments. The code looks like this:
Address MVS ’SUBCOM REXXTDLI’
If RC=0 Then Say "IMS Environment is Available."

Else Say "Sorry, no IMS Environment here."

v Use the PARSE SOURCE instruction of REXX to examine the address space
name (the 8th word). If it is running in an IMS environment, the token will have
the value IMS. The code looks like this:

Parse Source Token .
If Token=’IMS’ Then Say "IMS Environment is Available."

Else Say "Sorry, no IMS Environment here."

The following sample IMS REXX program shows how to use the DL/I ICAL call to
send a synchronous callout request message to an OTMA descriptor name

Chapter 3. IMS Adapter for REXX reference 367

OTMDEST1 with an input string of “Hello from IMS” and a timeout value of 60
seconds. The output data is set in the variable Output.
Address REXXIMS
Input = ’Hello from IMS’;
Timer = 6000
’SET SUBFUNC SENDRECV’
’SET RSNAME1 OTMDEST1’
’SET TIMER Timer’

’ICAL DFSAIB Input Output’
Say Input
Say Output

Outlen = IMSQUERY(’OUTLEN’)
Say Outlen
Errxtn = IMSQUERY(’ERRXTN’)
Say Errxtn

The following sample shows the output of an IMS REXX program that issued an
DL/I ICAL call:
DFS3180I INQY ENVIRON Region=BMP Number=1
DFS3180I INQY ENVIRON Tran=TXCD255 PGM=DFSREXX0
DFS3180I Starting EXEC Name=DFSREXX0
DFS3160I IMS CMD=SET SUBFUNC SENDRECV
DFS3161I REXXIMS Command=SET RC=0
DFS3160I IMS CMD=SET RSNAME1 OTMDEST1
DFS3161I REXXIMS Command=SET RC=0
DFS3160I IMS CMD=SET TIMER timer
DFS3161I REXXIMS Command=SET RC=0
DFS3160I IMS CMD=ICAL DFSAIB Input Output
DFS3161I REXXTDLI Call=ICAL RC=0000 Reason=0000 Status=".."
Hello from IMS
HELLO FROM TM RA APP
50
0

Environment determination

If you use an EXEC that runs in both IMS and non-IMS environments, check to see
if the IMS environment is available. You can check to see if the IMS environment is
available in two ways:
v Use the z/OS SUBCOM command and specify either the REXXTDLI or

REXXIMS environments. The code looks like this:
Address z/OS ’SUBCOM REXXTDLI’
If RC=0 Then Say "IMS Environment is Available."

Else Say "Sorry, no IMS Environment is here."

v Use the PARSE SOURCE instruction of REXX to examine the address space
name (the 8th word). If it is running in an IMS environment, the token will have
the value IMS. The code looks like this:
Parse Source Token . If Token=’IMS’ Then Say "IMS Environment
is Available."

Else Say "Sorry, no IMS Environment here."

Related reference:
“STORAGE” on page 377
“DLIINFO” on page 369
“SETO call” on page 118
“REXXIMS extended commands” on page 369

368 Application Programming APIs

REXXIMS extended commands
The IMS adapter for REXX gives access to the standard DL/I calls and it supplies a
set of extended commands for the REXX environment.

These commands are listed in the following tables and are available when you
ADDRESS REXXIMS. DL/I calls are also available when you address the REXXIMS
environment.

Table 90. REXXIMS extended commands.

Command Parameter Types

DLIINFO Out [PCB]

IMSRXTRC In

MAPDEF Const In [Const]

MAPGET Const In

MAPPUT Const Out

SET Const In

SRRBACK Out

SRRCMIT Out

STORAGE Const Const [In [Const]]

WTO In

WTP In

WTL In

WTOR In Out

Note:

All parameters specified on DL/I calls are case-independent except for the values associated
with the STEM portion of the compound variable (REXX terminology for an array-like
structure). A period (.) can be used in place of any parameter and has the effect of a NULL
(zero length string) if read and a void (place holder) if written. Use a period in place of a
parameter to skip optional parameters.

Related reference:
“REXXTDLI calls” on page 364

DLIINFO
The DLIINFO call requests information from the last DL/I call or on a specific PCB.

Format

►► DLIINFO infoout
pcbid

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

DLIINFO X X X X X

Chapter 3. IMS Adapter for REXX reference 369

Usage

The infoout variable name is a REXX variable that is assigned the DL/I
information. The pcbid variable name returns the addresses associated with the
specified PCB and its last status code.

The format of the returned information is as follows:

Word Description

1 Last DL/I call ('.' if N/A)

2 Last DL/I PCB name (name or #number, '.' if N/A)

3 Last DL/I AIB address in hexadecimal (00000000 if N/A)

4 Last DL/I PCB address in hexadecimal (00000000 if N/A)

5 Last DL/I return code (0 if N/A)

6 Last DL/I reason code (0 if N/A)

7 Last DL/I call status ('.' if blank or N/A)

Example
Address REXXIMS ’DLIINFO MyInfo’ /* Get Info */
Parse Var MyInfo DLI_Cmd DLI_PCB DLI_AIB_Addr DLI_PCB_Addr,

DLI_RC DLI_Reason DLI_Status .

Always code a period after the status code (seventh word returned) when parsing
to allow for transparent additions in the future if needed. Words 3, 4, and 7 can be
used when a pcbid is specified on the DLIINFO call.
Related reference:
“REXXTDLI calls” on page 364
“PCBINFO exec: display available PCBs in current PSB” on page 383

IMSRXTRC
The IMSRXTRC command is used primarily for debugging. It controls the tracing
action taken (that is, how much trace output through SYSTSPRT is sent to the user)
while running a REXX program.

Format

►► IMSRXTRC level ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

IMSRXTRC X X X X X

Usage

The level variable name can be a REXX variable or a digit, and valid values are
from 0 to 9. The initial value at EXEC start-up is 1 unless it is overridden by the
user Exit. Traced output is sent to the DDNAME SYSTSPRT. See IMS Version 14
Exit Routines for more information on the IMS adapter for REXX exit routine.

The IMSRXTRC command can be used in conjunction with or as a replacement for
normal REXX tracing (TRACE).

370 Application Programming APIs

Level Description

0 Trace errors only.

1 The previous level and trace DL/I calls, their return codes, and
environment status (useful for flow analysis).

2 All the previous levels and variable sets.

3 All the previous levels and variable fetches (useful when diagnosing
problems).

4-7 All previous levels.

8 All previous levels and parameter list to/from standard IMS language
interface. See message DFS3179 in IMS Version 14 Messages and Codes,
Volume 2: Non-DFS Messages.

9 All previous levels.

Example
Address REXXIMS ’IMSRXTRC 3’

IMSRXTRC is independent of the REXX TRACE instruction.

MAPDEF
The MAPDEF command makes a request to define a data mapping.

Format

►► MAPDEF mapname A
REPLACE

►◄

A:

▼

:

variable C length
V * startpos
B length
P .digit
Z

. C length
*

:

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPDEF X X X X X

Usage

Data mapping is an enhancement added to the REXXIMS interface. Because REXX
does not offer variable structures, parsing the fields from your database segments
or MFS output maps can be time consuming, especially when data conversion is
necessary. The MAPDEF, MAPGET, and MAPPUT commands allow simple extraction of
most formatted data.
v mapname is a 1- to 16-character case-independent name.

Chapter 3. IMS Adapter for REXX reference 371

v definition (A) is a variable containing the map definition.
v REPLACE, if specified, indicates that a replacement of an existing map name is

allowed. If not specified and the map name is already defined, an error occurs
and message DFS3171E is sent to the SYSTPRT.

The map definition has a format similar to data declarations in other languages,
with simplifications for REXX. In this definition, you must declare all variables that
you want to be parsed with their appropriate data types. The format is shown in A
in the syntax diagram.

Variable name

The variable name variable is a REXX variable used to contain the parsed
information. Variable names are case-independent. If you use a STEM (REXX
terminology for an array-like structure) variable, it is resolved at the time of use (at
the explicit or implicit MAPGET or MAPPUT call time), and this can be powerful. If you
use an index type variable as the STEM portion of a compound variable, you can
load many records into an array simply by changing the index variable. Map
names or tokens cannot be substituted for variable names inside a map definition.

Repositioning the internal cursor

A period (.) can be used as a variable place holder for repositioning the internal
cursor position. In this case, the data type must be C, and the length can be
negative, positive, or zero. Use positive values to skip over fields of no interest.
Use negative lengths to redefine fields in the middle of a map without using
absolute positioning.

The data type values are:
C Character
V Variable
B Binary (numeric)
Z Zoned decimal (numeric)
P Packed decimal (numeric)

All numeric data types can have a period and a number next to them. The number
indicates the number of digits to the right of a decimal point when converting the
number.

Length value

The length value can be a number or an asterisk (*), which indicates that the rest of
the buffer will be used. You can specify an asterisk only for data types C and V.
Data type V maps a 2-byte length field preceding the data string, such that when
the declared length is 2, it takes 4 bytes.

Valid lengths for data types are:
C 1 - 32767 bytes or *
V 1 - 32765 bytes or *
B 1 - 4 bytes
Z 1 - 12 bytes
P 1 - 6 bytes

If a value other than asterisk (*) is given, the cursor position is moved by that
value.

372 Application Programming APIs

The startpos value resets the parsing position to a fixed location. If startpos is
omitted, the column to the right of the previous map variable definition (cursor
position) is used. If it is the first variable definition, column 1 is used.

Note: A length of asterisk (*) does not move the cursor position, so a variable
declared after one with a length of asterisk (*) without specifying a start column
overlays the same definition.

Example

This example defines a map named DBMAP, which is used implicitly on a GU call
by placing an asterisk (*) in front of the map name.
DBMapDef = ’RECORD C * :’, /* Pick up entire record */

’NAME C 10 :’, /* Cols 1-10 hold the name */
’PRICE Z.2 6 :’, /* Cols 11-16 hold the price */
’CODE C 2 :’, /* Cols 11-16 hold the code */
’. C 25 :’, /* Skip 25 columns */
’CATEGORY B 1’ /* Col 42 holds category */

Address REXXIMS ’MAPDEF DBMAP DBMapDef’

...
Address REXXTDLI ’GU DBPCB *DBMAP’ /* Read and decode a segment */
If RC¬=0 Then Signal BadCall /* Check for failure */
Say CODE /* Can now access any Map Variable*/

The entire segment retrieved on the GU call is placed in RECORD. The first 10
characters are placed in NAME, and the next 6 are converted from zoned decimal
to EBCDIC with two digits to the right of the decimal place and placed in PRICE.
The next two characters are placed in CODE, the next 25 are skipped, and the next
character is converted from binary to EBCDIC and placed in CATEGORY. The 25
characters that are skipped are present in the RECORD variable.

MAPGET
The MAPGET command is a request to parse or convert a buffer into a specified data
mapping previously defined with the MAPDEF command.

Format

►► MAPGET mapname buffer ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPGET X X X X X

Usage

The mapname variable name specifies the data mapping to use. It is a 1- to
16-character case-independent name. The buffer variable name is the REXX variable
containing the data to parse.

Map names can also be specified in the REXXTDLI calls in place of variable names
to be set or written. This step is called an implicit MAPGET. Thus, the explicit (or
variable dependent) MAPGET call can be avoided. To indicate that a Map name is
being passed in place of a variable in the DL/I call, precede the name with an
asterisk (*), for example, ’GU IOPCB *INMAP’.

Chapter 3. IMS Adapter for REXX reference 373

Examples

This example uses explicit support.
Address REXXTDLI ’GU DBPCB SegVar’
If RC=0 Then Signal BadCall /* Check for failure */
Address REXXIMS ’MAPGET DBMAP SegVar’/* Decode Segment */
Say VAR_CODE /*Can now access any Map Variable */

This example uses implicit support.
Address REXXTDLI ’GU DBPCB *DBMAP’ /* Read and decode segment if read*/
If RC=0 Then Signal BadCall /* Check for failure */
Say VAR_CODE /* Can now access any Map Variable*/

If an error occurs during a MAPGET, message DFS3172I is issued. An error could
occur when a Map is defined that is larger than the input segment to be decoded
or during a data conversion error from packed or zoned decimal format. The
program continues, and an explicit MAPGET receives a return code 4. However, an
implicit MAPGET (on a REXXTDLI call, for example) does not have its return code
affected. Either way, the failing variable's value is dropped by REXX.

MAPPUT
This MAPPUT command makes a request to pack or concatenate variables from a
specified Data Mapping, defined by the MAPDEF command, into a single variable.

Format

►► MAPPUT mapname buffer ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

MAPPUT X X X X X

Usage

The mapname variable name specifies the data mapping to use, a 1- to 16-character
case-independent name. The buffer variable name is the REXX variable that will
contain the resulting value.

Map names can also be specified in the REXXTDLI call in place of variable names
to be fetched or read. This step is called an implicit MAPPUT and lets you avoid the
explicit MAPPUT call. To indicate that a Map name is being passed in the DL/I call,
precede the name with an asterisk (*), for example, ’ISRT IOPCB *OUTMAP’.

Note: If the data mapping is only partial and some fields in the record are not
mapped to REXX variables, then the first field in the mapping should be a
character type of length asterisk (*), as shown in the following code example. This
step is the only way to ensure that non-mapped (skipped) fields are not lost
between the MAPGET and MAPPUT calls, whether they be explicit or implicit.

This example uses explicit support.
Address REXXTDLI
’GHU DBPCB SegVar SSA1’ /* Read segment */
If RC¬=0 Then Signal BadCall /* Check for failure */
Address REXXIMS ’MAPGET DBMAP SegVar’ /* Decode Segment */
DBM_Total = DBM_Total + Deposit_Amount /* Adjust Mapped Variable */

374 Application Programming APIs

Address REXXIMS ’MAPPUT DBMAP SegVar’ /* Encode Segment */
’REPL DBPCB SegVar’ /* Update Database */
If RC¬=0 Then Signal BadCall /* Check for failure */

This example uses implicit support.
Address REXXTDLI
’GHU DBPCB *DBMAP SSA1’ /* Read and decode segment if read */
If RC¬=0 Then Signal BadCall /* Check for failure */
DBM_Total = DBM_Total + Deposit_Amount /* Adjust Mapped Variable */
’REPL DBPCB *DBMAP’ /* Update Database */
If RC¬=0 Then Signal BadCall /* Check for failure */

If an error occurs during a MAPPUT, such as a Map field defined larger than the
variable's contents, then the field is truncated. If the variable's contents are shorter
than the field, the variable is padded:

Character (C)
Padded on right with blanks

Character (V)
Padded on right with zeros

Numeric (B,Z,P)
Padded on the left with zeros

If a MAP variable does not exist when a MAPPUT is processed, the variable and its
position are skipped. All undefined and skipped fields default to binary zeros. A
null parameter is parsed normally. Conversion of non-numeric or null fields to
numeric field results in a value of 0 being used and no error.

SET
The SET command resets AIB subfunction values and ZZ values before you issue a
DL/I call.

Format

►► SET SUBFUNC variable
ZZ variable
RSNAME1 variable
TIMER variable

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SET X X X X X

Usage

The SET SUBFUNC command sets the AIB subfunction used on the next DL/I call.
This value is used only if the next REXXTDLI call passes a PCB name. If the call
does pass a PCB name, the IMS adapter for REXX places the subfunction name (1
to 8 characters or blank) in the AIB before the call is issued. This value initially
defaults to blanks and is reset to blanks on completion of any REXXTDLI DL/I
call.

The SET ZZ command is used to set the ZZ value used on a subsequent DL/I call.
This command is most commonly used in IMS conversational transactions and

Chapter 3. IMS Adapter for REXX reference 375

terminal dependent applications to set the ZZ field to something other than the
default of binary zeros. Use the SET command before an ISRT call that requires
other than the default ZZ value.

If you are issuing a synchronous callout request by making an ICAL call, the
following usage rules apply:
v The SET SUBFUNC command must be issued with the subfunction code set to

SENDRECV.
v The SET RSNAME1 command must be issued with the variable set to the

OTMA Descriptor name.
v Optionally, the SET TIMER command can be issued to set the ICAL timeout

value. The timeout value must be numeric and can contain up to six digits.

Examples

This example shows the SET SUBFUNC command used with the INQY call to get
environment information.
IO="IOPCB"
Func = "ENVIRON" /* Sub-Function Value */
Address REXXIMS "SET SUBFUNC Func" /* Set the value */
Address REXXTDLI "INQY IO EnviData" /* Make the DL/I Call */
IMS_Identifier = Substr(EnviData,1,8) /* Get IMS System Name*/

This example shows the SET ZZ command used with a conversational transaction
for SPA processing.
Address REXXTDLI ’GU IOPCB SPA’ /* Get first Segment */
Hold_ZZ = IMSQUERY(’ZZ’) /* Get ZZ Field (4 bytes) */

...
Address REXXIMS ’SET ZZ Hold_ZZ’ /* Set ZZ for SPA ISRT */
Address REXXTDLI ’ISRT IOPCB SPA’ /* ISRT the SPA */

This example shows the SET ZZ command used for setting 3270 Device
Characteristics Flags.
Bell_ZZ = ’0040’X /* ZZ to Ring Bell on Term */
Address REXXIMS ’SET ZZ Bell_ZZ’ /* Set ZZ for SPA ISRT */
Address REXXTDLI ’ISRT IOPCB Msg’ /* ISRT the Message */

SRRBACK and SRRCMIT
The Common Programming Interface Resource Recovery (CPI-RR) commands
allow an interface to use the SAA resource recovery interface facilities for back-out
and commit processing.

Format

►► SRRBACK return_code
SRRCMIT return_code

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

SRRBACK,
SRRCMIT

X X

376 Application Programming APIs

Usage

The return code from the SRR command is returned and placed in the return_code
variable name as well as the REXX variable RC.

For more information on SRRBACK and SRRCMIT, see IMS Version 14 Communications
and Connections and SAA CPI Resource Recovery Reference.

STORAGE
The STORAGE command allows the acquisition of system storage that can be used in
place of variables for parameters to REXXTDLI and REXXIMS calls.

Format

►► STORAGE OBTAIN !token length
KEEP
BELOW

RELEASE !token

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

STORAGE X X X X X

Usage

Although REXX allows variables to start with characters (!) and (#), these
characters have special meanings on some commands. When using the REXXTDLI
interface, you must not use these characters as the starting characters of variables.

The !token variable name identifies the storage, and it consists of an exclamation
mark followed by a 1- to 16-character case-independent token name. The length
variable name is a number or variable containing size in decimal to OBTAIN in the
range 4 to 16777216 bytes (16 MB). The storage class has two possible override
values, BELOW and KEEP, of which only one can be specified for any particular
token. The BELOW function acquires the private storage below the 16 MB line. The
KEEP function marks the token to be kept after this EXEC is terminated. The
default action gets the storage in any location and frees the token when the EXEC
is terminated.

Use the STORAGE command to get storage to use on DL/I calls when the I/O area
must remain in a fixed location (for example, Spool API) or when it is not
desirable to have the LLZZ processing. Once a token is allocated, you can use it in
REXXTDLI DL/I calls or on the STORAGE RELEASE command.

When using STORAGE:
v When used on DL/I calls, none of the setup for LLZZ fields takes place. You

must fill the token in and parse the results from it just as required by a
non-REXX application.

v You cannot specify both KEEP and BELOW on a single STORAGE command.
v The RELEASE function is only necessary for tokens marked KEEP. All tokens

not marked KEEP and not explicitly released by the time the EXEC ends are
released automatically by the IMS adapter for REXX.

v When you use OBTAIN, the entire storage block is initialized to 0.

Chapter 3. IMS Adapter for REXX reference 377

v The starting address of the storage received is always on the boundary of a
double word.

v You cannot re-obtain a token until RELEASE is used or the EXEC that obtained
it, non-KEEP, terminates. If you try, a return code of -9 is given and the error
message DFS3169 is issued.

v When KEEP is specified for the storage token, it can be accessed again when this
EXEC or another EXEC knowing the token's name is started in the same IMS
region.

v Tokens marked KEEP are not retained when an ABEND occurs or some other
incident occurs that causes region storage to be cleared. It is simple to check if
the block exists on entry with the IMSQUERY(!token) function.

Example

This example shows how to use the STORAGE command with Spool API.
/* Get 4K Buffer below the line for Spool API Usage */
Address REXXIMS ’STORAGE OBTAIN !MYTOKEN 4096 BELOW’
/* Get Address and length (if curious) */
Parse Value IMSQUERY(’!MYTOKEN’) With My_Token_Addr My_Token_Len.
Address REXXIMS ’SETO ALTPCB !MYTOKEN SETOPARMS SETOFB’

...
Address REXXIMS ’STORAGE RELEASE !MYTOKEN’

Related reference:
“REXXTDLI calls” on page 364
“IMSQUERY extended functions” on page 379

WTO, WTP, and WTL
The WTO command is used to write a message to the operator. The WTP command is
used to write a message to the program (WTO ROUTCDE=11). The WTL command
is used to write a message to the console log.

Format

►► WTO message
WTP message
WTL message

►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

WTO, WTP,
WTL

X X X X X

Usage

The message variable name is a REXX variable containing the text that is stored
displayed in the appropriate place.

Example

This example shows how to write a simple message stored the REXX variable
MSG.

378 Application Programming APIs

Msg = ’Sample output message.’ /* Build Message */
Address REXXIMS ’WTO Msg’ /* Tell Operator */
Address REXXIMS ’WTP Msg’ /* Tell Programmer */
Address REXXIMS ’WTL Msg’ /* Log It */

WTOR
The WTOR command requests input or response from the z/OS system operator.

Format

►► WTOR message response ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

WTOR X X X X X

Usage

The message variable name is a REXX variable containing the text that will be
displayed on the z/OS console. The operator's response is placed in the REXX
variable signified by the response variable name.

Attention: This command hangs the IMS region in which it is running until the
operator responds.

Example

This example prompts the operator to enter ROLL or CONT on the z/OS master or
alternate console. Once the WTOR is answered, the response is placed in the REXX
variable name response, and the EXEC will continue and process the IF statement
appropriately.
Msg = ’Should I ROLL or Continue. Reply "ROLL" or "CONT"’
Address REXXIMS ’WTOR Msg Resp’ /* Ask Operator */
If Resp = ’ROLL’ Then /* Tell Programmer */

Address REXXTDLI ’ROLL’ /* Roll Out of this */

IMSQUERY extended functions
The IMSQUERY function is available to query certain IMS information either on
the environment or on the prior DL/I call.

The IMSQUERY function can be used to check for the return and reason codes
after a synchronous callout request is made using the ICAL call. If the return or
reason code indicates that partial output data is being returned, you can issue the
IMSQUERY function to retrieve the output data length and the error extension
codes.

Format

Chapter 3. IMS Adapter for REXX reference 379

►► IMSQUERY (ERRXTN
FEEDBACK
IMSRXTRC
OUTLEN
REASON
SEGLEVEL
SEGNAME
STATUS
TRANCODE
USERID
ZZ
!token

) ►◄

Call Name DB/DC DBCTL DCCTL DB Batch TM Batch

IMSQUERY X X X X X

Usage

The format of the function call is: IMSQUERY(’Argument’) where Argument is one of
the values in the following list.

Argument
Description of Data Returned

ERRXTN
The error extension code when an error response message is returned after
a synchronous callout request is made using ICAL.

FEEDBACK
FEEDBACK area from current PCB.

IMSRXTRC
Current IMSRXTRC trace level #.

OUTLEN
The output length of the response message when a partial response is
returned after a synchronous callout request is made using ICAL.

REASON
Reason code from last call (from AIB if used on last REXXTDLI type call).

SEGLEVEL
Segment level from current PCB (Last REXXTDLI call must be against a DB
PCB, or null is returned).

SEGNAME
Segment name from current PCB (Last REXXTDLI call must be against a
DB PCB, or null is returned).

STATUS
IMS status code from last executed REXXTDLI call (DL/I call). This
argument is the two character status code from the PCB.

TRANCODE
Current transaction code being processed, if available.

USERID
Input terminal's user ID, if available. If running in a non-message-driven
region, the value is dependent on the specification of the BMPUSID=
keyword in the DFSDCxxx PROCLIB member:

380 Application Programming APIs

v If BMPUSID=USERID is specified, the value from the USER= keyword
on the JOB statement is used.

v If USER= is not specified on the JOB statement, the program's PSB name
is used.

v If BMPUSID=PSBNAME is specified, or if BMPUSID= is not specified at
all, the program's PSB name is used.

ZZ ZZ (of LLZZ) from last REXXTDLI command. This argument can be used
to save the ZZ value after you issue a GU call to the I/O PCB when the
transaction is conversational.

!token Address (in hexadecimal) and length of specified token (in decimal),
separated by a blank.

This value can be placed in a variable or resolved from an expression. In these
cases, the quotation marks should be omitted as shown below:
Token_Name="!MY_TOKEN"
AddrInfo=IMSQUERY(Token_Name)

/* or */
AddrInfo=IMSQUERY("!MY_TOKEN")

Although the function argument is case-independent, no blanks are allowed within
the function argument. You can use the REXX STRIP function on the argument, if
necessary. IMSQUERY is the preferred syntax, however REXXIMS is supported and
can be used, as well.

Example
If REXXIMS(’STATUS’)=’GB’ Then Signal End_Of_DB...
Hold_ZZ = IMSQUERY(’ZZ’) /* Get current ZZ field*/...
Parse Value IMSQUERY(’!MYTOKEN’) With My_Token_Addr My_Token_Len .

Related reference:

IMS Adapter for REXX exit routine (DFSREXXU) (Exit Routines)
“REXXTDLI commands” on page 363
“STORAGE” on page 377

Sample execs using REXXTDLI
The following samples of REXX execs show how to use REXXTDLI to access IMS
services.

The example sets are designed to highlight various features of writing IMS
applications in REXX. The samples are simplified and might not reflect actual
usage (for example, they do not use databases).

The PART exec database access example is a set of three execs that access the PART
database, which is built by the IMS installation verification program (IVP). The
first two execs in this example, PARTNUM and PARTNAME, are extensions of the
PART transaction that runs the program DFSSAM02, which is supplied with IMS
as part of IVP. The third exec is the DFSSAM01 exec supplied with IMS and is an
example of the use of EXECIO within an exec.

Chapter 3. IMS Adapter for REXX reference 381

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/ims_dfsrexxu.htm#ims_dfsrexxu

SAY exec: for expression evaluation
The following code example is a listing of the SAY exec. SAY evaluates an
expression supplied as an argument and displays the results.

The REXX command INTERPRET is used to evaluate the supplied expression and
assign it to a variable. Then that variable is used in a formatted reply message.

Exec to do calculations
/* EXEC TO DO CALCULATIONS */
Address REXXTDLI
Arg Args
If Args=’’ Then

Msg=’SUPPLY EXPRESSION AFTER EXEC NAME.’
Else Do

Interpret ’X=’Args /* Evaluate Expression */
Msg=’EXPRESSION:’ Args ’=’ X

End
’ISRT IOPCB MSG’
Exit RC

This exec shows an example of developing applications with IMS Adapter for
REXX . It also shows the advantages of REXX, such as dynamic interpretation,
which is the ability to evaluate a mathematical expression at run-time.

A PDF EDIT session is shown in the following figure. This figure shows how you
can enter a new exec to be executed under IMS.

To execute the SAY exec, use IVPREXX and supply an expression such as:
IVPREXX SAY 5*5+7

This expression produces the output shown in the following figure.

EDIT ---- USER.PRIVATE.PROCLIB(SAY) - 01.03 ------------------ COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 /* EXEC TO DO CALCULATIONS */
000002 Address REXXTDLI
000003 Arg Args
000004 If Args=’’ Then
000005 Msg=’SUPPLY EXPRESSION AFTER EXEC NAME.’
000006 Else Do
000007 Interpret ’X=’Args /* Evaluate Expression */
000008 Msg=’EXPRESSION:’ Args ’=’ X
000009 End
000010
000011 ’ISRT IOPCB MSG’
000012 Exit RC
****** **************************** BOTTOM OF DATA ****************************

Figure 10. PDF EDIT session on the SAY exec

EXPRESSION: 5*5+7 = 32
EXEC SAY ended with RC= 0

Figure 11. Example output from the SAY exec

382 Application Programming APIs

PCBINFO exec: display available PCBs in current PSB
The PCB exec maps the PCBs available to the exec, which are the PCBs for the
executing PSB.

The mapping consists of displaying the type of PCB (IO, TP, or DB), the LTERM or
DBD name that is associated, and other useful information. PCB mappings are
created by placing DFSREXX0 in an early concatenation library and renaming it to
an existing application with a PSB/DBD generation.

PCBINFO exec listing
/* REXX EXEC TO SHOW SYSTEM LEVEL INFO */
Address REXXTDLI
Arg Dest .
WTO=(Dest=’WTO’)
Call SayIt ’IMS PCB System Information Exec: PCBINFO’
Call SayIt ’System Date:’ Date(’U’) ’ Time:’ Time()
Call Sayit ’ ’
/* A DFS3162 message is given when this exec is run because it does */
/* not know how many PCBs are in the list and it runs until it gets */
/* an error return code. Note this does not show PCBs that are */
/* available to the PSB by name only, in other words, not in the PCB list. */
Msg=’PCBINFO: Error message normal on DLIINFO.’
’WTP MSG’
Do i=1 by 1 until Result=’LAST’

Call SayPCB i
End
Exit 0

SayPCB: Procedure Expose WTO
Arg PCB
’DLIINFO DLIINFO #’PCB /* Get PCB Address */
If rc<0 Then Return ’LAST’ /* Invalid PCB Number */
Parse Var DLIInfo . . AIBAddr PCBAddr .
PCBINFO=Storage(PCBAddr,255) /* Read PCB */
TPPCB=(Substr(PCBInfo,13,1)=’00’x) /* Date Field, must be TP PCB */
If TPPCB then Do

Parse Value PCBInfo with,

IMS PCB System Information Exec: PCBINFO
System Date: 09/26/92 Time: 15:52:15

PCB # 1: Type=IO, LTERM=T3270LC Status= UserID= OutDesc=DFSMO2
Date=91269 Time=1552155

PCB # 2: Type=TP, LTERM=* NONE * Status=AD
PCB # 3: Type=TP, LTERM=* NONE * Status=
PCB # 4: Type=TP, LTERM=CTRL Status=
PCB # 5: Type=TP, LTERM=T3275 Status=
EXEC PCBINFO ended with RC= 0

Figure 12. Example output of PCBINFO exec on a PSB without database PCBs

IMS PCB System Information Exec: PCBINFO
System Date: 09/26/92 Time: 15:53:34

PCB # 1: Type=IO, LTERM=T3270LC Status= UserID= OutDesc=DFSMO2
Date=89320 Time=1553243

PCB # 2: Type=DB, DBD =DI21PART Status= Level=00 Opt=G
EXEC PCBINFO ended with RC= 0

Figure 13. Example output of PCBINFO exec on a PSB with a database PCB

Chapter 3. IMS Adapter for REXX reference 383

LTERM 9 . 11 StatCode 13 CurrDate 17 CurrTime 21,
InputSeq 25 OutDesc 33 UserID 41

If LTERM=’’ then LTERM=’* NONE *’
CurrDate=Substr(c2x(CurrDate),3,5)
CurrTime=Substr(c2x(CurrTime),1,7)
If CurrDate¬=’000000’ then Do

Call SayIt ’PCB #’Right(PCB,2)’: Type=IO, LTERM=’LTERM,
’Status=’StatCode ’UserID=’UserID ’OutDesc=’OutDesc

Call SayIt ’ Date=’CurrDate ’Time=’CurrTime
End
Else

Call SayIt ’PCB #’Right(PCB,2)’: Type=TP, LTERM=’LTERM,
’Status=’StatCode

End
Else Do

Parse Value PCBInfo with,
DBDName 9 SEGLev 11 StatCode 13 ProcOpt 17 . 21 Segname . 29,
KeyLen 33 NumSens 37

KeyLen = c2d(KeyLen)
NumSens= c2d(NumSens)

Call SayIt ’PCB #’Right(PCB,2)’: Type=DB, DBD =’DBDName,
’Status=’StatCode ’Level=’SegLev ’Opt=’ProcOpt

End
Return ’

SayIt: Procedure Expose WTO
Parse Arg Msg
If WTO Then

’WTO MSG’
Else

’ISRT IOPCB MSG’
Return

Related reference:
“DLIINFO” on page 369

PART execs: database access examples
This set of execs accesses the PART database shipped with IMS. These execs
demonstrate fixed-record database reading, SSAs, and many REXX functions. The
PART database execs (PARTNUM, PARTNAME, and DFSSAM01) are also
described.

The PARTNUM exec is used to show part numbers that begin with a number
equal to or greater than the number you specify. An example output screen is
shown in the figure below.

To list part numbers beginning with the number “300” or greater, enter the
command:
PARTNUM 300

All part numbers that begin with a 300 or larger numbers are listed. The listing is
shown in the figure below.

384 Application Programming APIs

PARTNAME is used to show part names that begin with a specific string of
characters.

To list part names beginning with “TRAN”, enter the command:
PARTNAME TRAN

All part names that begin with “TRAN” are listed on the screen. The screen is
shown in the following figure.

The DFSSAM01 exec is used to load the parts database. This exec is executed in
batch, is part of the IVP, and provides an example of EXECIO usage in an exec.

Related Reading: For details, see IMS Version 14 Installation.

PARTNUM exec: show set of parts near a specified number
The following code example is designed to be run by the IVPREXX exec with
PSB=DFSSAM02.

PARTNUM exec: show set of parts near a specified number
/* REXX EXEC TO SHOW A SET OF PARTS NEAR A SPECIFIED NUMBER */
/* Designed to be run by the IVPREXX exec with PSB=DFSSAM02 */
/* Syntax: IVPREXX PARTNUM string <start#> */

Address REXXTDLI
IOPCB=’IOPCB’ /* PCB Name */
DataBase=’#2’ /* PCB # */
RootSeg_Map = ’PNUM C 15 3 : DESCRIPTION C 20 27’
’MAPDEF ROOTSEG ROOTSEG_MAP’
Call SayIt ’IMS Parts DATABASE Transaction’
Call SayIt ’System Date:’ Date(’U’) ’ Time:’ Time()
Call Sayit ’ ’

Arg PartNum Segs .
If ¬DataType(Segs,’W’) then Segs=5 /* default view amount */

IMS Parts DATABASE Transaction
System Date: 02/16/92 Time: 23:28:41

Request: Display 5 Parts with Part_Number >= 300
1 Part=3003802 Desc=CHASSIS
2 Part=3003806 Desc=SWITCH
3 Part=3007228 Desc=HOUSING
4 Part=3008027 Desc=CARD FRONT
5 Part=3009228 Desc=CAPACITOR

EXEC PARTNUM ended with RC= 0

Figure 14. Example output of PARTNUM exec

IMS Parts DATABASE Transaction
System Date: 02/16/92 Time: 23:30:09

Request: Display 5 Parts with Part Name like TRAN
1 Part=250239 Desc=TRANSISTOR
2 Part=7736847P001 Desc=TRANSFORMER
3 Part=975105-001 Desc=TRANSFORMER
4 Part=989036-001 Desc=TRANSFORMER
End of DataBase reached before 5 records shown.

EXEC PARTNAME ended with RC= 0

Figure 15. Example output of PARTNAME exec

Chapter 3. IMS Adapter for REXX reference 385

PartNum=Left(PartNum,15) /* Pad to 15 with Blanks */
If PartNum=’’ then

Call Sayit ’Request: Display first’ Segs ’Parts in the DataBase’
Else

Call Sayit ’Request: Display’ Segs ’Parts with Part_Number >=’ PartNum
SSA1=’PARTROOT(PARTKEY >=02’PartNum’)’
’GU DATABASE *ROOTSEG SSA1’
Status=IMSQUERY(’STATUS’)
If Status=’GE’ then Do /* Segment Not Found */

Call Sayit ’No parts found with larger Part_Number’
Exit 0

End
Do i=1 to Segs While Status=’ ’

Call Sayit Right(i,2) ’Part=’PNum ’ Desc=’Description
’GN DATABASE *ROOTSEG SSA1’
Status=IMSQUERY(’STATUS’)

End
If Status=’GB’ then

Call SayIt ’End of DataBase reached before’ Segs ’records shown.’
Else If Status¬=’ ’ then Signal BadCall
Call Sayit ’ ’

Exit 0

SayIt: Procedure Expose IOPCB
Parse Arg Msg
’ISRT IOPCB MSG’
If RC¬=0 then Signal BadCall

Return

BadCall:
’DLIINFO INFO’
Parse Var Info Call PCB Status .
Msg = ’Unresolved Status Code’ Status,

’on’ Call ’on PCB’ PCB
’ISRT IOPCB MSG’

Exit 99

PARTNAME exec: show a set of parts with a similar name
The REXX exec shown in the following code example is designed to be run by the
IVPREXX exec with PSB=DFSSAM02.

The following PARTNAME exec code is used to show parts with similar names.
/* REXX EXEC TO SHOW ALL PARTS WITH A NAME CONTAINING A STRING */
/* Designed to be run by the IVPREXX exec with PSB=DFSSAM02 */
/* Syntax: IVPREXX PARTNAME string <#parts> */

Arg PartName Segs .
Address REXXIMS
Term =’IOPCB’ /* PCB Name */
DataBase=’DBPCB01’ /* PCB Name for Parts Database */

Call SayIt ’IMS Parts DATABASE Transaction’
Call SayIt ’System Date:’ Date(’U’) ’ Time:’ Time()
Call Sayit ’ ’

If ¬DataType(Segs,’W’) & Segs¬=’*’ then Segs=5
If PartName=’’ then Do

Call Sayit ’Please supply the first few characters of the part name’
Exit 0

End

Call Sayit ’Request: Display’ Segs ’Parts with Part Name like’ PartName
SSA1=’PARTROOT ’
’GU DATABASE ROOT_SEG SSA1’
Status=REXXIMS(’STATUS’)

386 Application Programming APIs

i=0
Do While RC=0 & (i<Segs | Segs=’*’)

Parse Var Root_Seg 3 PNum 18 27 Description 47
’GN DATABASE ROOT_SEG SSA1’
Status=REXXIMS(’STATUS’)
If RC¬=0 & Status¬=’GB’ Then Leave
If Index(Description,PartName)=0 then Iterate
i=i+1
Call Sayit Right(i,2)’) Part=’PNum ’ Desc=’Description

End
If RC¬=0 & Status¬=’GB’ Then Signal BadCall
If i<Segs & Segs¬=’*’ then

Call SayIt ’End of DataBase reached before’ Segs ’records shown.’
Call Sayit ’ ’
Exit 0

SayIt: Procedure Expose Term
Parse Arg Msg
’ISRT Term MSG’
If RC¬=0 then Signal BadCall

Return

BadCall:
Call "DFSSUT04" Term

Exit 99

DFSSAM01 exec: load the parts database

For the latest version of the DFSSAM01 source code, see the IMS.ADFSEXEC
distribution library; member name is DFSSAM01.

DOCMD: IMS commands front end
DOCMD is an automatic operator interface (AOI) transaction program that issues
IMS commands and allows dynamic filtering of their output. The term “dynamic”
means that you use the headers for the command as the selectors (variable names)
in the filter expression (Boolean expression resulting in 1 if line is to be displayed
and 0 if it is not).

This listing is shown in the code example at the end of this topic.

Not all commands are allowed through transaction AOI, and some setup needs to
be done to use this AOI.

Some examples of DOCMD are given in the following figures.

Please supply an IMS Command to execute.
EXEC DOCMD ended with RC= 0

Figure 16. Output from = > DOCMD

Chapter 3. IMS Adapter for REXX reference 387

Headers being shown for command: /DIS NODE ALL
Variable (header) #1 = RECTYPE
Variable (header) #2 = NODE_SUB
Variable (header) #3 = TYPE
Variable (header) #4 = CID
Variable (header) #5 = RECD
Variable (header) #6 = ENQCT
Variable (header) #7 = DEQCT
Variable (header) #8 = QCT
Variable (header) #9 = SENT
EXEC DOCMD ended with RC= 0

Figure 17. Output from = > DOCMD /DIS NODE ALL;?

Selection criteria =>CID>0<= Command: /DIS NODE ALL
NODE_SUB TYPE CID RECD ENQCT DEQCT QCT SENT
L3270A 3277 01000004 5 19 19 0 26 IDLE CON
L3270C 3277 01000005 116 115 115 0 122 CON
Selected 2 lines from 396 lines.
DOCMD Executed 402 DL/I calls in 2.096787 seconds.
EXEC DOCMD ended with RC= 0

Figure 18. Output from = > DOCMD /DIS NODE ALL;CID>0

Selection criteria =>TYPE=SLU2<= Command: /DIS NODE ALL
NODE_SUB TYPE CID RECD ENQCT DEQCT QCT SENT
WRIGHT SLU2 00000000 0 0 0 0 0 IDLE
Q3290A SLU2 00000000 0 0 0 0 0 IDLE
Q3290B SLU2 00000000 0 0 0 0 0 IDLE
Q3290C SLU2 00000000 0 0 0 0 0 IDLE
Q3290D SLU2 00000000 0 0 0 0 0 IDLE
V3290A SLU2 00000000 0 0 0 0 0 IDLE
V3290B SLU2 00000000 0 0 0 0 0 IDLE
H3290A SLU2 00000000 0 0 0 0 0 IDLE
H3290B SLU2 00000000 0 0 0 0 0 IDLE
E32701 SLU2 00000000 0 0 0 0 0 IDLE
E32702 SLU2 00000000 0 0 0 0 0 IDLE
E32703 SLU2 00000000 0 0 0 0 0 IDLE
E32704 SLU2 00000000 0 0 0 0 0 IDLE
E32705 SLU2 00000000 0 0 0 0 0 IDLE
ADLU2A SLU2 00000000 0 0 0 0 0 IDLE
ADLU2B SLU2 00000000 0 0 0 0 0 IDLE
ADLU2C SLU2 00000000 0 0 0 0 0 IDLE
ADLU2D SLU2 00000000 0 0 0 0 0 IDLE
ADLU2E SLU2 00000000 0 0 0 0 0 IDLE
ADLU2F SLU2 00000000 0 0 0 0 0 IDLE
ADLU2X SLU2 00000000 0 0 0 0 0 IDLE
ENDS01 SLU2 00000000 0 0 0 0 0 IDLE
ENDS02 SLU2 00000000 0 0 0 0 0 IDLE
ENDS03 SLU2 00000000 0 0 0 0 0 IDLE
ENDS04 SLU2 00000000 0 0 0 0 0 IDLE
ENDS05 SLU2 00000000 0 0 0 0 0 IDLE
ENDS06 SLU2 00000000 0 0 0 0 0 IDLE
NDSLU2A1 SLU2 00000000 0 0 0 0 0 ASR IDLE
NDSLU2A2 SLU2 00000000 0 0 0 0 0 ASR IDLE
NDSLU2A3 SLU2 00000000 0 0 0 0 0 ASR IDLE
NDSLU2A4 SLU2 00000000 0 0 0 0 0 ASR IDLE
NDSLU2A5 SLU2 00000000 0 0 0 0 0 IDLE
NDSLU2A6 SLU2 00000000 0 0 0 0 0 ASR IDLE
OMSSLU2A SLU2 00000000 0 0 0 0 0 IDLE
Selected 34 lines from 396 lines.
DOCMD Executed 435 DL/I calls in 1.602206 seconds.
EXEC DOCMD ended with RC= 0

Figure 19. Output from = > DOCMD /DIS NODE ALL;TYPE=SLU2

388 Application Programming APIs

The source code for the DOCMD exec is shown in the following code example.

DOCMD exec: process an IMS command
/***/
/* A REXX EXEC that executes an IMS command and parses the */
/* output by a user supplied criteria. */
/* */
/* */
/***/
/* Format: tranname DOCMD IMS-Command;Expression */
/* Where: */
/* tranname is the tranname of a command capable transaction that */
/* will run the DFSREXX program. */
/* IMS-Command is any valid IMS command that generates a table of */
/* output like /DIS NODE ALL or /DIS TRAN ALL */
/* Expression is any valid REXX expression, using the header names*/
/* as the variables, like CID>0 or SEND=0 or more */
/* complex like CID>0 & TYPE=SLU2 */
/* Example: TACP18 DOCMD DIS A Display active */
/* TACP18 DOCMD DIS NODE ALL;? See headers of DIS NODE */
/* TACP18 DOCMD DIS NODE ALL;CID>0 Show active Nodes */
/* TACP18 DOCMD DIS NODE ALL;CID>0;SYSOUT Output to SYSOUT */
/* TACP18 DOCMD DIS NODE ALL;CID>0 & TYPE=’SLU2’ */
/***/
Address REXXTDLI
Parse Upper Arg Cmd ’;’ Expression ’;’ SysOut
Cmd=Strip(Cmd);
Expression=Strip(Expression)
SysOut=(SysOut¬=’’)
If Cmd=’’ Then Do

Call SayIt ’Please supply an IMS Command to execute.’
Exit 0

End
AllOpt= (Expression=’ALL’)
If AllOpt then Expression=’’
If Left(Cmd,1)¬=’/’ then Cmd=’/’Cmd /* Add a slash if necessary */
If Expression=’’ Then

Call SayIt ’No Expression supplied, all output shown’,
’from:’ Cmd

Else If Expression=’?’ Then
Call SayIt ’Headers being shown for command:’ Cmd

Else
Call SayIt ’Selection criteria =>’Expression’<=’,

’Command:’ Cmd

Selection criteria =>ENQCT>0 & RECTYPE=’T02’<= Command: /DIS TRAN ALL
TRAN CLS ENQCT QCT LCT PLCT CP NP LP SEGSZ SEGNO PARLM RC

TACP18 1 119 0 65535 65535 1 1 1 0 0 NONE 1
Selected 1 lines from 1104 lines.
DOCMD Executed 1152 DL/I calls in 5.780977 seconds.
EXEC DOCMD ended with RC= 0

Figure 20. Output from = > DOCMD /DIS TRAN ALL;ENQCT>0 & RECTYPE='T02'

Selection criteria =>ENQCT>0<= Command: /DIS LTERM ALL
LTERM ENQCT DEQCT QCT
CTRL 19 19 0
T3270LC 119 119 0
Selected 2 lines from 678 lines.
DOCMD Executed 681 DL/I calls in 1.967670 seconds.
EXEC DOCMD ended with RC= 0

Figure 21. Output from = > DOCMD /DIS LTERM ALL;ENQCT>0

Chapter 3. IMS Adapter for REXX reference 389

x=Time(’R’); Calls=0
ExitRC= ParseHeader(Cmd,Expression)
If ExitRC¬=0 then Exit ExitRC
If Expression=’?’ Then Do

Do i=1 to Vars.0
Call SayIt ’Variable (header) #’i ’=’ Vars.i
Calls=Calls+1

End
End
Else Do

Call ParseCmd Expression
Do i=1 to Line.0

If AllOpt then Line=Line.i
Else Line=Substr(Line.i,5)
If SysOut then Do

Push Line
’EXECIO 1 DISKW DOCMD’

End
Else Do

Call SayIt Line
Calls=Calls+1

End
End
If SysOut then Do

’EXECIO 0 DISKW DOCMD (FINIS’
End
If Expression¬=’’ then

Call SayIt ’Selected’ Line.0-1 ’lines from’,
LinesAvail ’lines.’

Else
Call SayIt ’Total lines of output:’ Line.0-1

Call SayIt ’DOCMD Executed’ Calls ’DL/I calls in’,
Time(’E’) ’seconds.’

End
Exit 0

ParseHeader:
CurrCmd=Arg(1)
CmdCnt=0
’CMD IOPCB CURRCMD’
CmdS= IMSQUERY(’STATUS’)
Calls=Calls+1
If CmdS=’ ’ then Do

Call SayIt ’Command Executed, No output available.’
Return 4

End
Else If CmdS¬=’CC’ then Do

Call SayIt ’Error Executing Command, Status=’CmdS
Return 16

End
CurrCmd=Translate(CurrCmd,’ ’,’15’x) /* Drop special characters */
CurrCmd=Translate(CurrCmd,’__’,’-/’) /* Drop special characters */
CmdCnt=CmdCnt+1
Interpret ’LINE.’||CmdCnt ’= Strip(CurrCmd)’
Parse Var CurrCmd RecType Header
If Expression=’’ then Nop
Else If Right(RecType,2)=’70’ then Do

Vars.0=Words(Header)+1
Vars.1 = "RECTYPE"
Do i= 2 to Vars.0

Interpret ’VARS.’i ’= "’Word(CurrCmd,i)’"’
End

End
Else Do

Call SayIt ’Command did not produce a header’,
’record, first record’’s type=’RecType

Return 12

390 Application Programming APIs

End
Return 0

ParseCmd:
LinesAvail=0
CurrExp=Arg(1)
Do Forever

’GCMD IOPCB CURRCMD’
CmdS= IMSQUERY(’STATUS’)
Calls=Calls+1
If CmdS¬=’ ’ then Leave
/* Skip Time Stamps */
If Word(CurrCmd,1)=’X99’ & Expression¬=’’ then Iterate
LinesAvail=LinesAvail+1
CurrCmd=Translate(CurrCmd,’ ’,’15’x)/* Drop special characters */
If Expression=’’ then OK=1
Else Do

Do i= 1 to Vars.0
Interpret Vars.i ’= "’Word(CurrCmd,i)’"’

End
Interpret ’OK=’Expression

End
If OK then Do

CmdCnt=CmdCnt+1
Interpret ’LINE.’||CmdCnt ’= Strip(CurrCmd)’

End
End
Line.0 = CmdCnt
If CmdS¬=’QD’ Then

Call SayIt ’Error Executing Command:’,
Arg(1) ’Stat=’CmdS

Return

SayIt: Procedure
Parse Arg Line
’ISRT IOPCB LINE’

Return RC

Related concepts:

IMS security (System Administration)

IVPREXX sample application
The IVPREXX exec is a front-end generic exec that is shipped with IMS as part of
the IVP. It runs other execs by passing the exec name to execute after the
TRANCODE (IVPREXX). For the latest version of the IVPREXX source code, look
for the IVPREXX member in the IMS.ADFSEXEC distribution library.

To use the IVPREXX driver sample program in a message-driven BMP or IFP
environment, specify IVPREXX as the program name and PSB name in the
parameter list of the IMS region program. Specifying IVPREXX loads the IVPREXX
load module, which is a copy of the DFSREXX0 front-end program. The IVPREXX
program loads and runs an EXEC named IVPREXX that uses message segments
sent to the transaction as arguments to derive the EXEC to call or the function to
perform.

Interactions with IVPREXX from an IMS terminal are shown in the following
examples:

Chapter 3. IMS Adapter for REXX reference 391

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sag/system_admin/ims_secur.htm#ims_secur

IVPREXX example 1

Entry:
IVPREXX execname

or
IVPREXX execname arguments

Response:
EXEC execname ended with RC= x

IVPREXX example 2

Entry:
IVPREXX LEAVE

Response:
Transaction IVPREXX leaving dependent region.

IVPREXX example 3

Entry:
IVPREXX HELLOHELLO

Response:
One-to-eight character EXEC name must be specified.

IVPREXX example 4

Entry:
IVPREXX

or
IVPREXX ?

Response:
TRANCODE EXECNAME <Arguments> Run specified EXEC
TRANCODE LEAVE Leave Dependent Region
TRANCODE TRACE level 0=None,1=Some,2=More,3=Full
TRANCODE ROLL Issue ROLL call

When an EXEC name is supplied, all of the segments it inserts to the I/O PCB are
returned before the completion message is returned.

REXX return codes (RC) in the range of 20000 to 20999 are usually syntax or other
REXX errors. Check the z/OS system console or region output for more details.

Related reading: For more information about REXX errors and messages, see z/OS
TSO/E REXX Reference.

Stopping an infinite loop

To stop an EXEC that is in an infinite loop, you can enter either of the following
IMS commands from the master terminal or system console:

/STO REGION p1 ABDUMP p2

392 Application Programming APIs

/STO REGION p1 CANCEL

In these examples, p1 is the region number and p2 is the TRANCODE that the
EXEC is running under. Use the /DISPLAY ACTIVE command to find the region
number. This technique is not specific to REXX EXECs and can be used on any
transaction that is caught in an infinite loop.
Related concepts:
Chapter 3, “IMS Adapter for REXX reference,” on page 359

Chapter 3. IMS Adapter for REXX reference 393

394 Application Programming APIs

Chapter 4. Java programming reference

These topics contain reference information for the classes, interfaces, and methods
supported by the IMS solutions for Java development.

IMS Universal drivers support for JDBC
The IMS Universal JDBC driver and the IMS Universal JCA/JDBC driver supports
the following methods in the JDBC 4.0 specifications.
Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

Programming using the IMS Universal Database resource adapter (Application

Programming)
Related reference:
“Java API documentation (Javadoc)” on page 412

javax.sql.Clob methods supported
The javax.sql.Clob interface represents the mapping in Java for the SQL CLOB
type. In Java applications that use the IMS Universal drivers, the Clob data type is
supported only for the retrieval and storage of XML data.

The following table describes which methods are supported by the IMS Universal
JDBC driver and the IMS Universal JCA/JDBC driver for the Clob interface.

Table 91. IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support for the Clob interface

JDBC method
IMS Universal JDBC driver and IMS Universal
JCA/JDBC driver support

free() No

getAsciiStream() Yes

getCharacterStream() Yes

getCharacterStream(long pos, long length) No

getSubString(long pos, int length) Yes

length() Yes

position(Clob searchstr, long start) No

position(String searchstr, long start) No

setAsciiStream(long pos) No

setCharacterStream(long pos) No

setString(long pos, String str) No

setString(long pos, String str, int offset, int len) No

truncate(long len) No

java.sql.Connection methods supported
The Connection object represents a connection (session) with a specific database.

© Copyright IBM Corp. 1974, 2017 395

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

The following table lists the methods that are supported by the IMS JDBC drivers
for the Connection interface.

Table 92. IMS JDBC drivers support for Connection.

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

clearWarnings() Yes

close() Yes

commit() Yes

createStatement() Yes

createStatement(int resultSetType, int resultSetConcurrency) Yes

createStatement(int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

Yes

getAutoCommit() Yes

getCatalog() Yes

getHoldability() Yes

getMetaData() Yes

getTransactionIsolation() Yes

getTypeMap() Yes

getWarnings() Yes

isClosed() Yes

isReadOnly() Yes

nativeSQL(String sql) Yes

prepareCall(String sql) No

prepareCall(String sql, int resultSetType, int resultSetConcurrency) No

prepareCall(String sql, int resultSetType, int resultSetConcurrency, int
resultSetHoldability)

No

prepareStatement(String sql) Yes

prepareStatement(String sql, int autoGeneratedKeys) No

prepareStatement(String sql, int[] columnIndexes) No

prepareStatement(String sql, int resultSetType, int resultSetConcurrency) Yes

prepareStatement(String sql, int resultSetType, int resultSetConcurrency,
int resultSetHoldability)

Yes

prepareStatement(String sql, String[] columnNames) No

releaseSavepoint(Savepoint savepoint) No

rollback() Yes

rollback(Savepoint savepoint) No

setAutoCommit(boolean autoCommit) Yes

setCatalog(String catalog) Yes

setHoldability(int holdability) Yes

setReadOnly(boolean readOnly) Yes

setSavepoint() No

setTransactionIsolation(int level) Yes

setTypeMap(Map<String,Class<?>> map) No

Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.DatabaseMetaData methods supported
The DatabaseMetaData interface provides comprehensive information about the
database as a whole.

396 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

The following methods are supported by the IMS JDBC drivers for the
DatabaseMetaData interface.

Table 93. IMS JDBC drivers support for DatabaseMetaData.

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

allProceduresAreCallable() Yes

allTablesAreSelectable() Yes

dataDefinitionCausesTransactionCommit() Yes

dataDefinitionIgnoredInTransactions() Yes

deletesAreDetected(int type) Yes

doesMaxRowSizeIncludeBlobs() Yes

getAttributes(String catalog, String schemaPattern, String
typeNamePattern, String attributeNamePattern)

Yes

getBestRowIdentifier(String catalog, String schema, String table, int scope,
boolean nullable)

Yes

getCatalogs() Yes

A second column, TIMESTAMP, is added to the returned Resultset object
as a String that represents the PSB timestamp. IMS 14 APAR PI62871 (PTF
UI40491) is required for this TIMESTAMP column.

getCatalogSeparator() Yes

getCatalogTerm() Yes

getColumnPrivileges(String catalog, String schema, String table, String
columnNamePattern)

Yes

getColumns(String catalog, String schemaPattern, String
tableNamePattern, String columnNamePattern)

Yes

getConnection() Yes

getCrossReference(String primaryCatalog, String primarySchema, String
primaryTable, String foreignCatalog, String foreignSchema, String
foreignTable)

Yes

getDatabaseMajorVersion() Yes

getDatabaseMinorVersion() Yes

getDatabaseProductName() Yes

getDatabaseProductVersion() Yes

getDefaultTransactionIsolation() Yes

getDriverMajorVersion() Yes

getDriverMinorVersion() Yes

getDriverName() Yes

getDriverVersion() Yes

getExportedKeys(String catalog, String schema, String table) Yes

getExtraNameCharacters() Yes

getIdentifierQuoteString() Yes

getImportedKeys(String catalog, String schema, String table) Yes

getIndexInfo(String catalog, String schema, String table, boolean unique,
boolean approximate)

Yes

getJDBCMajorVersion() Yes

getJDBCMinorVersion() Yes

getMaxBinaryLiteralLength() Yes

getMaxCatalogNameLength() Yes

getMaxCharLiteralLength() Yes

getMaxColumnNameLength() Yes

getMaxColumnsInGroupBy() Yes

getMaxColumnsInIndex() Yes

getMaxColumnsInOrderBy() Yes

getMaxColumnsInSelect() Yes

getMaxColumnsInTable() Yes

Chapter 4. Java programming reference 397

|
|
|

Table 93. IMS JDBC drivers support for DatabaseMetaData (continued).

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

getMaxConnections() Yes

getMaxCursorNameLength() Yes

getMaxIndexLength() Yes

getMaxProcedureNameLength() Yes

getMaxRowSize() Yes

getMaxSchemaNameLength() Yes

getMaxStatementLength() Yes

getMaxStatements() Yes

getMaxTableNameLength() Yes

getMaxTablesInSelect() Yes

getMaxUserNameLength() Yes

getNumericFunctions() Yes

getPrimaryKeys(String catalog, String schema, String table) Yes

getProcedureColumns(String catalog, String schemaPattern, String
procedureNamePattern, String columnNamePattern)

Yes

getProcedures(String catalog, String schemaPattern, String
procedureNamePattern)

Yes

getProcedureTerm() Yes

getResultSetHoldability() Yes

getSchemas() Yes

The following columns are added as column 3, 4, and 5:

v Column 3: PCB_PROCESSING_OPTIONS, a String that represents PCB
procopts

v Column 4: DBD_NAME, a String that represents the referenced DBD
name

v Column 5: DBD_TIMESTAMP, a String that represents the referenced
DBD timestamp

IMS 14 APAR PI62871 (PTF UI40491) is required for columns 3, 4, and 5.

getSchemaTerm() Yes

getSearchStringEscape() Yes

getSQLKeywords() Yes

getStringFunctions() Yes

getSuperTables(String catalog, String schemaPattern, String
tableNamePattern)

Yes

getSuperTypes(String catalog, String schemaPattern, String
typeNamePattern)

Yes

getSystemFunctions() Yes

getTablePrivileges(String catalog, String schemaPattern, String
tableNamePattern)

Yes

getTables(String catalog, String schemaPattern, String tableNamePattern,
String[] types)

Yes

getTableTypes() Yes

getTimeDateFunctions() Yes

getTypeInfo() Yes

getUDTs(String catalog, String schemaPattern, String typeNamePattern,
int[] types)

Yes

getURL() Yes

getUserName() Yes

getVersionColumns(String catalog, String schema, String table) Yes

insertsAreDetected(int type) Yes

isCatalogAtStart() Yes

isReadOnly() Yes

398 Application Programming APIs

|
|
|
|
|
|
|

|

Table 93. IMS JDBC drivers support for DatabaseMetaData (continued).

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

locatorsUpdateCopy() Yes

nullPlusNonNullIsNull() Yes

nullsAreSortedAtEnd() Yes

nullsAreSortedAtStart() Yes

nullsAreSortedLow() Yes

othersDeletesAreVisible(int type) Yes

othersInsertsAreVisible(int type) Yes

othersUpdatesAreVisible(int type) Yes

ownDeletesAreVisible(int type) Yes

ownInsertsAreVisible(int type) Yes

ownUpdatesAreVisible(int type) Yes

storesLowerCaseIdentifiers() Yes

storesLowerCaseQuotedIdentifiers() Yes

storesMixedCaseIdentifiers() Yes

storesMixedCaseQuotedIdentifiers() Yes

storesUpperCaseIdentifiers() Yes

storesUpperCaseQuotedIdentifiers() Yes

supportsAlterTableWithAddColumn() Yes

supportsAlterTableWithDropColumn() Yes

supportsANSI92EntryLevelSQL() Yes

supportsANSI92FullSQL() Yes

supportsANSI92IntermediateSQL() Yes

supportsBatchUpdates() Yes

supportsCatalogsInDataManipulation() Yes

supportsCatalogsInIndexDefinitions() Yes

supportsCatalogsInPrivilegeDefinitions() Yes

supportsCatalogsInProcedureCalls() Yes

supportsCatalogsInTableDefinitions() Yes

supportsColumnAliasing() Yes

supportsConvert() Yes

supportsConvert(int fromType, int toType) Yes

supportsCoreSQLGrammar() Yes

supportsCorrelatedSubqueries() Yes

supportsDataDefinitionAnd DataManipulationTransactions() Yes

supportsDataManipulationTransactionsOnly() Yes

supportsDifferentTableCorrelationNames() Yes

supportsExpressionsInOrderBy() Yes

supportsExtendedSQLGrammar() Yes

supportsFullOuterJoins() Yes

supportsGetGeneratedKeys() Yes

supportsGroupByBeyondSelect() Yes

supportsGroupByUnrelated() Yes

supportsIntegrityEnhancementFacility() Yes

supportsLikeEscapeClause() Yes

supportsLimitedOuterJoins() Yes

supportsMinimumSQLGrammar() Yes

supportsMixedCaseIdentifiers() Yes

supportsMixedCaseQuotedIdentifiers() Yes

supportsMultipleOpenResults() Yes

supportsMultipleResultSets() Yes

Chapter 4. Java programming reference 399

Table 93. IMS JDBC drivers support for DatabaseMetaData (continued).

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

supportsMultipleTransactions() Yes

supportsNamedParameters() Yes

supportsNonNullableColumns() Yes

supportsOpenCursorsAcrossCommit() Yes

supportsOpenCursorsAcrossRollback() Yes

supportsOpenStatementsAcrossCommit() Yes

supportsOpenStatementsAcrossRollback() Yes

supportsOrderByUnrelated() Yes

supportsOuterJoins() Yes

supportsPositionedDelete() Yes

supportsPositionedUpdate() Yes

supportsResultSetConcurrency(int type, int concurrency) Yes

supportsResultSetHoldability(int holdability) Yes

supportsResultSetType(int type) Yes

supportsSavepoints() Yes

supportsSchemasInDataManipulation() Yes

supportsSchemasInIndexDefinitions() Yes

supportsSchemasInPrivilegeDefinitions() Yes

supportsSchemasInProcedureCalls() Yes

supportsSchemasInTableDefinitions() Yes

supportsSelectForUpdate() Yes

supportsStatementPooling() Yes

supportsStoredProcedures() Yes

supportsSubqueriesInComparisons() Yes

supportsSubqueriesInExists() Yes

supportsSubqueriesInIns() Yes

supportsSubqueriesInQuantifieds() Yes

supportsTableCorrelationNames() Yes

supportsTransactionIsolationLevel(int level) Yes

supportsTransactions() Yes

supportsUnion() Yes

supportsUnionAll() Yes

updatesAreDetected(int type) Yes

usesLocalFilePerTable() Yes

usesLocalFiles() Yes

Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

javax.sql.DataSource methods supported
A DataSource object is a factory for connections to the physical data source that
this DataSource object represents.

The following table list which methods are supported by the IMS Universal JDBC
driver and the IMS Universal JCA/JDBC driver for the DataSource interface.

400 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

Table 94. IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support for DataSource.

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

getConnection() Yes

getConnection(String username, String password) Yes

getLoginTimeout() Yes

getLogWriter() Yes

setLoginTimeout(int seconds) Yes

setLogWriter(PrintWriter out) Yes

Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.Driver methods supported
The Driver class is used for connecting to a database using the JDBC
DriverManager interface.

The following methods are supported by the IMS JDBC drivers for the Driver
interface.

Table 95. IMS JDBC drivers support for Driver.

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

acceptsURL(String url) Yes

connect(String url, Properties info) Yes

getMajorVersion() Yes

getMinorVersion() Yes

getPropertyInfo(String url, Properties info) Yes

jdbcCompliant() Yes

Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.ParameterMetaData methods supported
An object that can be used to get information about the types and properties of the
parameters in a PreparedStatement object.

The following table list which methods are supported by the IMS Universal JDBC
driver and the IMS Universal JCA/JDBC driver for the ParameterMetaData
interface.

Table 96. IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support for ParameterMetaData.

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

getParameterCount Yes

isNullable Yes

isSigned Yes

getPrecision Yes

getScale Yes

getParameterType Yes

Chapter 4. Java programming reference 401

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

Table 96. IMS Universal JDBC driver and IMS Universal JCA/JDBC driver support for
ParameterMetaData (continued).

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

getParameterTypeName Yes

getParameterClassName Yes

getParameterMode Yes

java.sql.PreparedStatement methods supported
The PreparedStatement object represents a precompiled SQL statement.

The following methods are supported by the IMS JDBC drivers for the
PreparedStatement interface.

Table 97. IMS JDBC drivers support for PreparedStatement.

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

addBatch() No

clearParameters() Yes

execute() Yes

executeQuery() Yes

executeUpdate() Yes

getMetaData() Yes

getParameterMetaData() Yes

setArray(int i, Array x) Yes

setAsciiStream(int parameterIndex, InputStream x, int length) No

setBigDecimal(int parameterIndex, BigDecimal x) Yes

setBinaryStream(int parameterIndex, InputStream x, int length) No

setBlob(int i, Blob x) No

setBoolean(int parameterIndex, boolean x) Yes

setByte(int parameterIndex, byte x) Yes

setBytes(int parameterIndex, byte[] x) Yes

setCharacterStream(int parameterIndex, Reader reader, int length) No

setClob(int i, Clob x) Yes

setDate(int parameterIndex, Date x) Yes

setDate(int parameterIndex, Date x, Calendar cal) No

setDouble(int parameterIndex, double x) Yes

setFloat(int parameterIndex, float x) Yes

setInt(int parameterIndex, int x) Yes

setLong(int parameterIndex, long x) Yes

setNull(int parameterIndex, int sqlType) No

setNull(int paramIndex, int sqlType, String typeName) No

setObject(int parameterIndex, Object x) Yes

setObject(int parameterIndex, Object x, int targetSqlType) No

setObject(int parameterIndex, Object x, int targetSqlType, int scale) No

setRef(int i, Ref x) No

setShort(int parameterIndex, short x) Yes

setString(int parameterIndex, String x) Yes

setTime(int parameterIndex, Time x) Yes

setTime(int parameterIndex, Time x, Calendar cal) No

setTimestamp(int parameterIndex, Timestamp x) Yes

setUnicodeStream(int parameterIndex, InputStream x, int length) No

402 Application Programming APIs

Table 97. IMS JDBC drivers support for PreparedStatement (continued).

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

setURL(int parameterIndex, URL x) No

Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.Statement methods supported
The Statement object is used for executing a static SQL statement and returning the
results it produces.

The following table lists the methods that are supported by the IMS JDBC drivers
for the Statement interface.

Table 98. IMS JDBC drivers support for Statement.

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

addBatch(String sql) No

cancel() No

clearBatch() No

clearWarnings() Yes

close() Yes

execute(String sql) Yes

execute(String sql, int autoGeneratedKeys) No

execute(String sql, int[] columnIndexes) No

execute(String sql, String[] columnNames) No

executeBatch() No

executeQuery(String sql) Yes

executeUpdate(String sql) Yes

executeUpdate(String sql, int autoGeneratedKeys) No

executeUpdate(String sql, int[] columnIndexes) No

executeUpdate(String sql, String[] columnNames) No

getConnection() Yes

getFetchDirection() Yes

getFetchSize() Yes

getGeneratedKeys() No

getMaxFieldSize() Yes

getMaxRows() Yes

getMoreResults() Yes

getMoreResults(int current) Yes

getQueryTimeout() Yes

getResultSet() Yes

getResultSetConcurrency() Yes

getResultSetHoldability() Yes

getResultSetType() Yes

getUpdateCount() Yes

getWarnings() Yes

setCursorName(String name) No

setEscapeProcessing(boolean enable) Yes

setFetchDirection(int direction) Yes

Chapter 4. Java programming reference 403

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

Table 98. IMS JDBC drivers support for Statement (continued).

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

setFetchSize(int rows) Yes

setMaxFieldSize(int max) Yes

setMaxRows(int max) Yes

setQueryTimeout(int seconds) Yes

Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.ResultSet methods supported
A ResultSet object is a table of data that represents a database result set, which is
usually generated by executing a statement that queries the database.

The following table describes the ResultSet field constants that are supported by
the IMS Universal JDBC driver and the IMS Universal JCA/JDBC driver.

Table 99. ResultSet field constants supported by the IMS Universal JDBC driver and the IMS Universal JCA/JDBC
driver

Field constant
IMS Universal JDBC driver and IMS Universal
JCA/JDBC driver support

ResultSet.CLOSE_CURSORS_AT_COMMIT Yes1

ResultSet.CONCUR_READ_ONLY Yes

ResultSet.CONCUR_UPDATABLE Yes

ResultSet.FETCH_FORWARD Yes2

ResultSet.FETCH_REVERSE Yes2

ResultSet.FETCH_UNKNOWN Yes2

ResultSet.HOLD_CURSORS_OVER_COMMIT No 3

ResultSet.TYPE_FORWARD_ONLY Yes

ResultSet.TYPE_SCROLL_INSENSITIVE Yes

ResultSet.TYPE_SCROLL_SENSITIVE No3

Note:

1. This is the processing model that is used by IMS DB.
2. This is a hint to the JDBC driver. No special processing is performed by IMS

DB.
3. Not supported by IMS DB.

The following methods are supported by the IMS JDBC drivers for the ResultSet
interface.

Table 100. IMS JDBC drivers support for the ResultSet interface

JDBC method
IMS Universal JDBC driver and IMS Universal
JCA/JDBC driver support

absolute(int row) Yes

afterLast() Yes

404 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

Table 100. IMS JDBC drivers support for the ResultSet interface (continued)

JDBC method
IMS Universal JDBC driver and IMS Universal
JCA/JDBC driver support

beforeFirst() Yes

cancelRowUpdates() Yes

clearWarnings() Yes

close() Yes

deleteRow() Yes

findColumn(String columnName) Yes

first() Yes

getArray(int i) Yes

getArray(String colName) Yes

getAsciiStream(int columnIndex) No

getAsciiStream(String columnName) No

getBigDecimal(int columnIndex) Yes

getBigDecimal(int columnIndex, int scale) Yes

getBigDecimal(String columnName) Yes

getBigDecimal(String columnName, int scale) Yes

getBinaryStream(int columnIndex) No

getBinaryStream(String columnName) No

getBlob(int i) No

getBlob(String colName) No

getBoolean(int columnIndex) Yes

getBoolean(String columnName) Yes

getByte(int columnIndex) Yes

getByte(String columnName) Yes

getBytes(int columnIndex) Yes

getBytes(String columnName) Yes

getCharacterStream(int columnIndex) No

getCharacterStream(String columnName) No

getClob(int i) Yes (for retrieval of XML only)

getClob(String colName) Yes (for retrieval of XML only)

getConcurrency() Yes

getCursorName() No

getDate(int columnIndex) Yes

getDate(int columnIndex, Calendar cal) Yes

getDate(String columnName) Yes

getDate(String columnName, Calendar cal) Yes

getDouble(int columnIndex) Yes

getDouble(String columnName) Yes

getFetchDirection() Yes

getFetchSize() Yes

Chapter 4. Java programming reference 405

Table 100. IMS JDBC drivers support for the ResultSet interface (continued)

JDBC method
IMS Universal JDBC driver and IMS Universal
JCA/JDBC driver support

getFloat(int columnIndex) Yes

getFloat(String columnName) Yes

getInt(int columnIndex) Yes

getInt(String columnName) Yes

getLong(int columnIndex) Yes

getLong(String columnName) Yes

getMetaData() Yes

getObject(int columnIndex) Yes

getObject(String columnName) Yes

getObject(int i, Map<String,Class<?>> map) No

getRef(int i) No

getRef(String colName) No

getRow() Yes

getShort(int columnIndex) Yes

getShort(String columnName) Yes

getStatement() Yes

getString(int columnIndex) Yes

getString(String columnName) Yes

getTime(int columnIndex) Yes

getTime(String columnName) Yes

getTime(String columnName, Calendar cal) Yes

getTime(int columnIndex, Calendar cal) Yes

getTimestamp(int columnIndex) Yes

getTimestamp(int columnIndex, Calendar cal) Yes

getTimestamp(String columnName) Yes

getTimestamp(String columnName, Calendar cal) Yes

getType() Yes

getUnicodeStream(int columnIndex) No

getUnicodeStream(String columnName) No

getURL(int columnIndex) No

getURL(String columnName) No

getWarnings() Yes

insertRow() No

isAfterLast() Yes

isBeforeFirst() Yes

isFirst() Yes

isLast() Yes

last() Yes

moveToCurrentRow() No

406 Application Programming APIs

Table 100. IMS JDBC drivers support for the ResultSet interface (continued)

JDBC method
IMS Universal JDBC driver and IMS Universal
JCA/JDBC driver support

moveToInsertRow() No

next() Yes

previous() Yes

refreshRow() No

relative(int rows) Yes

rowDeleted() No

rowInserted() No

rowUpdated() No

setFetchDirection(int direction) Yes

setFetchSize(int rows) Yes

updateArray(int columnIndex, Array x) Yes

updateArray(String columnName, Array x) Yes

updateAsciiStream(int columnIndex, InputStream x, int
length)

No

updateAsciiStream(String columnName, InputStream x,
int length)

No

updateBigDecimal(int columnIndex, BigDecimal x) Yes

updateBigDecimal(String columnName, BigDecimal x) Yes

updateBinaryStream(int columnIndex, InputStream x, int
length)

No

updateBinaryStream(String columnName, InputStream x,
int length)

No

updateBlob(int columnIndex, Blob x) No

updateBlob(String columnName, Blob x) No

updateBoolean(int columnIndex, boolean x) Yes

updateBoolean(String columnName, boolean x) Yes

updateByte(int columnIndex, byte x) Yes

updateByte(String columnName, byte x) Yes

updateBytes(int columnIndex, byte[] x) Yes

updateBytes(String columnName, byte[] x) Yes

updateCharacterStream(int columnIndex, Reader x, int
length)

No

updateCharacterStream(String columnName, Reader
reader, int length)

No

updateClob(int columnIndex, Clob x) No

updateClob(String columnName, Clob x) No

updateDate(int columnIndex, Date x) Yes

updateDate(String columnName, Date x) Yes

updateDouble(int columnIndex, double x) Yes

updateDouble(String columnName, double x) Yes

updateFloat(int columnIndex, float x) Yes

Chapter 4. Java programming reference 407

Table 100. IMS JDBC drivers support for the ResultSet interface (continued)

JDBC method
IMS Universal JDBC driver and IMS Universal
JCA/JDBC driver support

updateFloat(String columnName, float x) Yes

updateInt(int columnIndex, int x) Yes

updateInt(String columnName, int x) Yes

updateLong(int columnIndex, long x) Yes

updateLong(String columnName, long x) Yes

updateNull(String columnName) No

updateObject(int columnIndex, Object x) Yes

updateObject(int columnIndex, Object x, int scale) No

updateObject(String columnName, Object x) Yes

updateObject(String columnName, Object x, int scale) No

updateRef(int columnIndex, Ref x) No

updateRef(String columnName, Ref x) No

updateRow() Yes

updateShort(int columnIndex, short x) Yes

updateShort(String columnName, short x) Yes

updateString(int columnIndex, String x) Yes

updateString(String columnName, String x) Yes

updateTime(int columnIndex, Time x) Yes

updateTime(String columnName, Time x) Yes

updateTimestamp(int columnIndex, Timestamp x) Yes

updateTimestamp(String columnName, Timestamp x) Yes

wasNull() Yes

Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

java.sql.ResultSetMetaData methods supported
A ResultSetMetaData object can be used to get information about the types and
properties of the columns in a ResultSet object.

The following methods are supported by the IMS JDBC drivers for the
ResultSetMetaData interface.

Table 101. IMS JDBC drivers support for ResultSetMetaData.

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

getCatalogName(int column) Yes

getColumnClassName(int column) Yes

getColumnCount() Yes

getColumnDisplaySize(int column) Yes

getColumnLabel(int column) Yes

getColumnName(int column) Yes

getColumnType(int column) Yes

408 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro

Table 101. IMS JDBC drivers support for ResultSetMetaData (continued).

JDBC method
IMS Universal JDBC driver and IMS Universal JCA/JDBC driver
support

getColumnTypeName(int column) Yes

getPrecision(int column) Yes

getScale(int column) Yes

getSchemaName(int column) Yes

getTableName(int column) Yes

isAutoIncrement(int column) Yes

isCaseSensitive(int column) Yes

isCurrency(int column) Yes

isDefinitelyWritable(int column) Yes

isNullable(int column) Yes

isReadOnly(int column) Yes

isSearchable(int column) Yes

isSigned(int column) Yes

isWritable(int column) Yes

Related concepts:

Programming with the IMS Universal JDBC driver (Application Programming)

IMS Universal drivers support for the Common Client Interface
The IMS Universal Database resource adapter supports the Common Client
Interface (CCI) API in the Java EE Connector Architecture 1.5 specification.
Related concepts:

Programming using the IMS Universal Database resource adapter (Application
Programming)

javax.resource.cci.Connection methods supported
The javax.resource.cci.Connection interface represents an application-level handle
used by client to access the underlying physical connection.

The following table list which methods are supported by the IMS Universal
Database resource adapter for the javax.resource.cci.Connection interface.

Table 102. IMS Universal Database resource adapter support for the javax.resource.cci.Connection interface.

javax.resource.cci.Connection method IMS Universal Database resource adapter support

close() Yes

createInteraction() Yes

getLocalTransaction() Yes

getMetaData() Yes

getResultSetInfo() Yes

Related concepts:

Programming using the IMS Universal Database resource adapter (Application
Programming)

Chapter 4. Java programming reference 409

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjdbcintro.htm#ims_odbjdbcintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

javax.resource.cci.ConnectionFactory methods supported
The javax.resource.cci.ConnectionFactory interface provides an application
component with a Connection instance to an EIS.

The following table list which methods are supported by the IMS Universal
Database resource adapter for the javax.resource.cci.ConnectionFactory interface.

Table 103. IMS Universal Database resource adapter support for the javax.resource.cci.ConnectionFactory interface.

javax.resource.cci.ConnectionFactory method IMS Universal Database resource adapter support

getConnection() Yes

getConnection(ConnectionSpec) Yes

getMetaData() Yes

getRecordFactory() Yes

Related concepts:

Programming using the IMS Universal Database resource adapter (Application
Programming)

javax.resource.cci.ConnectionMetaData methods supported
The javax.resource.cci.ConnectionMetaData interface provides information about an
EIS instance connected through a Connection instance.

The following table list which methods are supported by the IMS Universal
Database resource adapter for the javax.resource.cci.ConnectionMetaData interface.

Table 104. IMS Universal Database resource adapter support for the javax.resource.cci.ConnectionMetaData interface.

javax.resource.cci.ConnectionMetaData method IMS Universal Database resource adapter support

getEISProductName() Yes

getEISProductVersion() Yes

getUserName() Yes

Related concepts:

Programming using the IMS Universal Database resource adapter (Application
Programming)

javax.resource.cci.Interaction methods supported
The javax.resource.cci.Interaction interface provides a means for an application
component to execute EIS functions, such as relational database queries.

The following table list which methods are supported by the IMS Universal
Database resource adapter for the javax.resource.cci.Interaction interface.

Table 105. IMS Universal Database resource adapter support for the javax.resource.cci.Interaction interface.

javax.resource.cci.Interaction method IMS Universal Database resource adapter support

clearWarnings() Yes

close() Yes

execute(InteractionSpec, Record) Yes

execute(InteractionSpec, Record, Record) No

getConnection() Yes

410 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

Table 105. IMS Universal Database resource adapter support for the javax.resource.cci.Interaction
interface. (continued)

javax.resource.cci.Interaction method IMS Universal Database resource adapter support

getWarnings() Yes

Related concepts:

Programming using the IMS Universal Database resource adapter (Application
Programming)

javax.resource.cci.LocalTransaction methods supported
The javax.resource.cci.LocalTransaction interface defines a transaction demarcation
interface for resource manager local transactions.

The following table list which methods are supported by the IMS Universal
Database resource adapter for the javax.resource.cci.LocalTransaction interface.

Table 106. IMS Universal Database resource adapter support for the javax.resource.cci.LocalTransaction interface.

javax.resource.cci.LocalTransaction method IMS Universal Database resource adapter support

begin() Yes

commit() Yes

rollback() Yes

Related concepts:

Programming using the IMS Universal Database resource adapter (Application
Programming)

javax.resource.cci.ResultSetInfo methods supported
The interface javax.resource.cci.ResultSetInfo provides information on the support
provided for ResultSet by a connected EIS instance.

The following table list which methods are supported by the IMS Universal
Database resource adapter for the javax.resource.cci.ResultSetInfo interface.

Table 107. IMS Universal Database resource adapter support for the javax.resource.cci.ResultSetInfo interface.

javax.resource.cci.ResultSetInfo method IMS Universal Database resource adapter support

deletesAreDetected(int) Yes

insertsAreDetected(int) Yes

othersDeletesAreVisible(int) Yes

othersInsertsAreVisible(int) Yes

othersUpdatesAreVisible(int) Yes

ownDeletesAreVisible(int) Yes

ownInsertsAreVisible(int) Yes

ownUpdatesAreVisible(int) Yes

supportsResultSetType(int) Yes

supportsResultTypeConcurrency(int, int) Yes

updatesAreDetected(int) Yes

Related concepts:

Chapter 4. Java programming reference 411

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

Programming using the IMS Universal Database resource adapter (Application
Programming)

javax.resource.cci.ResourceAdapterMetaData methods
supported

The interface javax.resource.cci.ResourceAdapterMetaData provides information
about capabilities of a resource adapter implementation.

The following table list which methods are supported by the IMS Universal
Database resource adapter for the javax.resource.cci.ResourceAdapterMetaData
interface.

Table 108. IMS Universal Database resource adapter support for the javax.resource.cci.ResourceAdapterMetaData
interface.

javax.resource.cci.ResourceAdapterMetaData method IMS Universal Database resource adapter support

getAdapterName() Yes

getAdapterShortDescription() Yes

getAdapterVendorName() Yes

getAdapterVersion() Yes

getInteractionSpecsSupported() Yes

getSpecVersion() Yes

supportsExecuteWithInputAndOutputRecord() Yes

supportsExecuteWithInputRecordOnly() Yes

supportsLocalTransactionDemarcation() Yes

Related concepts:

Programming using the IMS Universal Database resource adapter (Application
Programming)

javax.resource.cci.RecordFactory methods supported
The javax.resource.cci.RecordFactory interface provides an application component
with a Record instance.

The following table list which methods are supported by the IMS Universal
Database resource adapter for the javax.resource.cci.RecordFactory interface.

Table 109. IMS Universal Database resource adapter support for the javax.resource.cci.RecordFactory interface.

javax.resource.cci.RecordFactory method IMS Universal Database resource adapter support

createIndexedRecord(String) Yes

createMappedRecord(String) Yes

Related concepts:

Programming using the IMS Universal Database resource adapter (Application
Programming)

Java API documentation (Javadoc)
These topics contain the Java API documentation (Javadoc) for the IMS solutions
for Java development.

412 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_odbjcaintro.htm#ims_odbjcaintro

v Javadoc for IMS Universal drivers and IMS Java dependent region resource
adapter

v Javadoc for IMS TM resource adapter

IMS Universal drivers and IMS Java dependent region resource
adapter

Because IMS Java dependent region (JDR) resource adapter reuses some of the
interfaces or classes in the IMS Universal drivers, the classes and interfaces are
packaged together as one .jar file, imsudb.jar.

Important: IMS 14 APAR PI62871 (PTF UI40491) is required.

The following packages provide Java interfaces or classes for interacting with IMS
JBPs, JMPs or IMS database resources.

Table 110. Packages for IMS database access for IMS Universal drivers and IMS Java
dependent region resource adapter

Package Description Used by

com.ibm.ims.application Provides classes for IMS Java
dependent region transaction
and message processing. It
contains classes for managing
error messages, sending and
receiving messages providing
program access to IMS
transaction services such as
commit and rollback, and
more.

IMS Java dependent region
resource adapter
(imsudb.jar)

com.ibm.ims.base Provides classes for mapping
Java calls to DL/I APIs.

IMS Java dependent region
resource adapter
(imsudb.jar)

com.ibm.ims.db.cci Provides classes for interacting
IMS database resources using
the Common Client Interface
(CCI) architecture.

v IMS Universal Database
resource adapter with
local transaction support
(imsudbLocal.rar)

v IMS Universal Database
resource adapter with
additional two-phase
commit processing
(imsudbXA.rar)

com.ibm.ims.dli Provides an API to write Java
applications that can access
IMS databases using DL/I
programming semantics.

imsudb.jar

v IMS Universal DL/I
driver

v IMS Universal JDBC
driver

v IMS Java dependent
region resource adapter

Chapter 4. Java programming reference 413

Table 110. Packages for IMS database access for IMS Universal drivers and IMS Java
dependent region resource adapter (continued)

Package Description Used by

com.ibm.ims.dli.converters Provides an API to convert
Java data types to and from
byte arrays.

imsudb.jar

v IMS Universal DL/I
driver

v IMS Universal JDBC
driver

v IMS Java dependent
region resource adapter

com.ibm.ims.dli.tm Provides a Java interface to
interact with IMS Java batch
processing regions (JBPs) and
Java message processing
regions (JMPs).

IMS Java dependent region
resource adapter
(imsudb.jar)

com.ibm.ims.dli.types Provides an extensible,
abstract type converter to
assist in creating custom user
type converters.

imsudb.jar

v IMS Universal DL/I
driver

v IMS Universal JDBC
driver

v IMS Java dependent
region resource adapter

com.ibm.ims.jdbc Provides IMS-specific
extensions for connecting to
IMS databases using JDBC.

v IMS Universal JDBC
driver (imsudb.jar)

v IMS Universal JDBC
driver with JCA support
(imsudbJLocal.rar or
imsudbJXA.rar)

com.ibm.ims.jdbc.xa Provides IMS-specific
extensions for connecting to
IMS databases in two-phase
commit (XA) mode using
JDBC.

IMS Universal JDBC driver
with JCA support
(imsudbJXA.rar)

com.ibm.ims.jms Includes IMS-specific
extensions for issuing
synchronous callout requests
from JMP and JBP regions.

IMS Java dependent region
resource adapter
(imsudb.jar)

Javadoc for IMS TM resource adapter

The IMS TM resource adapter Java API documentation is provided separately at
IMS TM resource adapter Java API reference.

Table 111. Javadoc for IMS TM resource adapter

Package Description Used by

com.ibm.connector2.ims.ico Includes interfaces and classes for
extensions for managing the
connections to IMS and interactions
with IMS transactions.

IMS TM resource adapter
(imsicoxxxx.rar, where xxxx is
the version number such as 1410
for V14.1.0)

com.ibm.connector2.ims.ico.inbound Includes the class for configuring
properties for inbound communication
from IMS.

IMS TM resource adapter
(imsicoxxxx.rar, where xxxx is
the version number such as 1410
for V14.1.0)

414 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.etools.ims.tmra.doc/topics/rimsapiref.htm

Related concepts:

IMS solutions for Java development overview (Application Programming)
Java API specifications for Universal drivers, JDR resource adapter, and JMS

Chapter 4. Java programming reference 415

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_introjavaclasslibsforims.htm#ims_introjavaclasslibsforims
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.javadoc.doc/topics/overview-summary.html

416 Application Programming APIs

Chapter 5. Message Format Service (MFS) reference

These topics contain reference information for the IMS Message Format Service
(MFS).

MFS application program design
Design objectives for MFS application programs should focus on device
independence, operator convenience, and application program simplicity. Effective
design requires a fundamental understanding of the MFS functions and of the
factors that affect MFS operation and performance.

Relationships between MFS control blocks
Several levels of linkage exist between MFS control blocks.

You must understand these linkages to design an application environment
properly.

The following figure shows the interrelationships between MFS control blocks. The
subsequent illustrate the four levels of linkages, which are then summarized in the
final figure.

© Copyright IBM Corp. 1974, 2017 417

The following figure shows the highest-level linkage, that of chained control
blocks.

Figure 22. Control block interrelationships

418 Application Programming APIs

Notes to the previous figure:

1. This linkage must exist.
2. If the linkage does not exist, device input data from 3270 devices is not

processed by MFS. For other devices, the MID name can be provided by the
operator.

3. This linkage is provided for application program convenience. It provides a
MOD name to be used by IMS if the application program does not provide a
name by way of the format name option of the DL/I ISRT or PURG call. This
MOD name is also used if the input is a message switch to an MFS-supported
terminal.

4. The user-provided names for the DOF and DIF used in one output-input
sequence are normally the same. The MFS language utility alters the name for
the DIF to allow the MFS pool manager to distinguish between the DOF and
DIF.
The direction of the linkage allows many message descriptors to use the same
device format if desired. One common device format can be used for several
application programs whose output and input message formats as seen at the
application program interface are quite different.

The following figure shows another level of linkage that exists between message
fields and device fields. The dots show the direction of reference, not the direction
of data flow, in the MFS language utility control statements; that is, the item at the
dotted end of a line references the item at the other end of the line.

References to device fields by message fields do not need to be in any particular
sequence. An MFLD does not need to refer to any DFLD. In this case, MFLD
defines space in the application program segment that is to be ignored if the
MFLD is for output and padded if the MFLD is for input. Device fields do not
need to be referenced by message fields. In this case the fields are established on
the device, but no output data is transmitted to them and any input data from
them is ignored.

Figure 23. Chained control block linkage

Chapter 5. Message Format Service (MFS) reference 419

The following figure shows a third level of linkage, which exists between the
LPAGE and the DPAGE.

A MOD LPAGE must refer to a DPAGE in the DOF. However, not all DPAGEs
must be referred to from a given MOD.

If no MID LPAGE is defined, the defined MFLDs can refer to fields in any DPAGE.
However, input data for any given input message from the device is limited to
fields that are defined in a single DPAGE.

If one or more MID LPAGEs are defined, each LPAGE can refer to one or more
DPAGEs. All DPAGEs must be referred to by an LPAGE. When input data is
processed as defined by a particular DPAGE, the LPAGE referring to it governs the
message editing.

Figure 24. Linkage between message fields and device fields

Figure 25. LPAGE and DPAGE relationships

420 Application Programming APIs

The following figure shows a fourth level of linkage that is optionally available to
allow selection of the MID based on which MOD LPAGE is displayed when input
data is received from the device.

Notes to the previous figure:

1. The next MID name provided with the MSG statement is used if no name is
provided with the current LPAGE.

2. If a next MID name is provided with the current LPAGE, input is processed
using this name.

3. When the format definition includes 3270 or SLU 2 devices, all MIDs must refer
to the same DIF. The same user-provided name must be used to refer to the
DOF when the MOD is defined.

The following figure summarizes the previously explained MFS control block
linkages.

Figure 26. Optional message descriptor linkage

Chapter 5. Message Format Service (MFS) reference 421

Control block linkages are fundamental to MFS functions but there are a few
device-oriented conditions that could affect application design.

3270 or SLU 2 display devices
Because output to these devices establishes fields on the device using hardware
capabilities, and field locations cannot be changed by the operator, special linkage
restrictions exist.

Figure 27. Summary of control block linkages

422 Application Programming APIs

Because formatted input can only occur from a screen formatted by output, the
DPAGE and physical page definition used for formatting input is always the same
as that used to format the previous output. Control block compilation by the MFS
Language utility verifies that the MID referenced by the MOD refers to the same
FMT name that the MOD references. During online processing, if the DIF
corresponding to the previous DOF cannot be fetched, an error message is sent to
the display.

3290 information panel in partitioned format mode
The screen of the 3290 can be divided into several rectangular areas called
partitions. Depending on LPAGE/DPAGE selection, each logical page of an output
message is sent to the partition specified on the DPAGE statement.

When the 3290 is operating in partitioned mode, the usual control block linkages
are in effect. There are, however, additional functions, because the logical pages
described in the MOD can be sent to different partitions. The partition descriptor
block (PDB) is a type of intermediate text block (ITB). The PDB describes the set of
partitions that can appear on the screen in response to a single output message.
Among other things, the PDB contains one partition definition statement coded
with a partition descriptor (PD) for each partition. Taken together, the PDs define a
partition set.

The linkages work as follows:
1. A MOD is requested for a particular message. The MOD names an FMT and

becomes associated with the appropriate DEV statement—in this case, the DEV
statement for the 3290. A DOF is created to format the 3290 for the message.

2. The DEV statement itself names a PDB. Thus the MOD is linked to the DOF,
which in turn links to the PDB through the DEV statement for the 3290. This
linkage gives the logical pages of the MOD (defined by the LPAGE statements)
access to the PDs in the PDB.

3. Each LPAGE statement in the MOD names a DPAGE statement in the DOF.
4. For the 3290 with partitioning, a DPAGE statement contains a PD keyword,

which identifies one of the partition descriptors in the PDB.

Because of this linkage, each logical page is associated with its appropriate
partition that is described by a partition descriptor. When the logical page is
retrieved from the message queue, it is sent to that partition.

Finance, 3770, SLU 1, NTO, or SLU P devices
Because no hardware-established field capabilities exist, no correlation is necessary
between output fields and input fields on these devices.

Figure 28. Linkages in partitioned format mode

Chapter 5. Message Format Service (MFS) reference 423

Operator input or the user-written program in the Finance or SLU P workstation
controller can determine which FMT is used (by specifying a MID name) and
which DPAGE within the FMT is used (by the COND= specification for the
DPAGE).

Finance or SLU P workstations
Because of the asynchronous capabilities of the Finance and SLU P workstations,
MFS cannot automatically maintain the chain between the MOD and the MID.

Therefore, the MID name is sent to the device in the output message header. The
chain can be maintained, transparent to the operator, if the user-written application
program in the remote controller returns the MID name in the input message
header.

ISC subsystem (DPM-Bn)
The NXT=midname that is specified on the MSG TYPE=OUTPUT becomes the
RDPN on output and, if not changed by the remote program or subsystem,
becomes the DPN on input.

Format library member selection
When a message is received as input or prepared for output, the DIF or DOF is
selected on the basis of the user-provided name from the message descriptor and
the device type and features of the terminal.

The MFS language utility constructs the member name of each DIFand DOF in the
IMS.FORMAT library from the FMT label and the DEV TYPE= and FEAT=
specifications as follows:

Byte Contents

1 Device type indicator (hexadecimal). For a list of device types by indicator,
see the following table.

2 Device feature indicator (hexadecimal). For a list of indicators by feature,
see the subsequent table.

3 If DOF, first character of label provided in the FMT statement. If DIF, first
character of label provided in the FMT statement converted to lowercase.

4-8 Remaining characters from the label of the FMT statement.

For byte 1 of the DEV specification FMT=, the device type indicators are as listed
in the following table.

Table 112. Device type indicators for FMT=

Device Feature Indicator (Hex)

SLU 2, Model 1 display 00

3284-1 or 3286-1 printer 01

3277, or SLU 2, Model 2 display 02

3284-2 or 3286-2 printer 03

3604-1 or 2 (FIDS) 05

3604-3 (FIDS3) 06

3604-4 (FIDS4) 07

3600 (FIN) 08

3610, 3612 journal printer (FIJP) 09

424 Application Programming APIs

Table 112. Device type indicators for FMT= (continued)

Device Feature Indicator (Hex)

3611, 3612 passbook printer (FIPB) 0A

3618 administrative printer (FIFP) 0B

SCS1: 3770; NTO; and SLU 1 (print data set) 0C

SCS2: 3521 card punch, 3501 card reader, 2502 card
reader, and SLU 1 (transmit data set),

0D

3604-7 (FIDS7) 0E

DPM-A1 through DPM-A15, respectively 11 through 1F

DPM-B1 through DPM-B15, respectively 21 through 2F

3270-A1 through 3270-A15, respectively 41 through 4F

Recommendation: You should define device formats for each device type expected
to receive a given message. If the MOD or the DOF with the required device type
and feature specification cannot be located during online execution, the IMS error
default format (containing an error message) is used to display the output
message. If the MID or the DIF with the required device type and feature
specification cannot be located, input is ignored and an error message is sent to the
device that entered it.

However, it is possible to use the same format for a variety of specific devices.
Formats defined as TYPE=3270,2 with FEAT=IGNORE specified, can be used as
default formats for users of the following devices:
v 3275
v 3276, models 2/3/4
v 3277, model 2
v 3278, models 2/3/4
v 3279, models 2/3

To define the terminal to IMS, you must specify TYPE=3270-An with SIZE=(n,80),
where n≥24.

Restriction: The IGNORE feature is not supported in MFSTEST mode.

The terminal must be defined to IMS as TYPE=3270,2 or MFS searches for a block
with the exact TYPE and FEAT specification, and if one is not found, MFS searches
for the default TYPE=3270,2 with FEAT=IGNORE.

Another level of defaulting occurs for ETO terminals prior to the already described
defaulting. If an ETO terminal is defined with a screen size of 12x40 or 24x80 in
the VTAM® PSERVIC information, and that format block is not found, an
additional search is made for a format of the same name using TYPE=3270,1
(12x40) or TYPE=3270,2 (24x80) and using the same features. If that search is
unsuccessful, the already described default search is performed. This new default
search is also used when in MFSTEST mode, whereas the old default search is not.

Device format selection is based upon the features of the destination terminal as
defined at IMS system definition. If feature selection is used, a device format must
be created for every combination of features in the system that can receive a
message using feature selection. Feature selection is performed based on the

Chapter 5. Message Format Service (MFS) reference 425

specification of the message descriptor (MOD or MID). If the IGNORE option is
specified on the MOD, device formats must be created with the IGNORE feature
option to ensure proper operation.

Because the screen size for 3270 or SLU 2 devices, other than 3270 model 1 or 2, is
specified during IMS system definition, an IMS system definition must be
performed before execution of the MFS language utility for user-defined formats.

Use feature selection when devices with different feature combinations are to
receive or enter a message and the special features of each device are to be used.

For example, an operator at a device with program function keys can enter a literal
in a field using a program function key, and another operator at a device without
program function keys can enter the same literal by typing it in a field on the
screen. To the application program, these literals are the same. To the application
program, the following input devices can enter messages that can look identical
regardless of how they were entered:
v Device Features
v Print Line 120
v Print Line 126
v Print Line 132
v Data Entry Keyboard
v Program Function Keys
v Selector Light Pen Detect
v Magnetic Card Reading Devices (OICR and MSR)
v Dual Platen
v User-defined features for the 3270, SCS1, and SCS2 devices and DPM programs

Use the device feature indicator values listed in the following table for byte 2 of
the DEV FEAT= specification:

Table 113. Example of device feature indicator values

Device Feature Indicator (Hex)

P.L. 120 (Print Line 120) 40

P.L. 126 50

P.L. 132 60

DEK (data entry keyboard) C8

PFK (program function keys) C4

SLPD (selector light pen detect) C2

OICR/MSR (magnetic card reading devices) C1

IGNORE 7F

DEK,SLPD 4A

DEK,OICR C9

DEK,SLPD,OICR 4B

PFK,SLPD C6

PFK,OICR C5

PFK,SLPD,OICR C7

SLPD,OICR C3

426 Application Programming APIs

Table 113. Example of device feature indicator values (continued)

Device Feature Indicator (Hex)

DUAL (dual platen) C1

P.L. 132,DUAL 61

No features (3270) 40

3270,3270P,3770,SLU 1, SLU 2, SLU P,ISC
(User-defined features)

Indicators available for definition:

1. 01

2. 02

3. 03

4. 04

5. 05

6. 06

7. 07

8. 08

9. 09

10. 0A

3270 or SLU 2 screen formatting
MFS is designed to transmit only required data to and from the 3270 display
device. Device orders to establish fields and display literals can cause significant
transmission time, because there can be more orders and literal data than program
data.

Under normal operation, when the format to be displayed already exists on a
device, only user-supplied data from the message and modifiable field attributes
are transmitted. The current format on the device is determined by the device
output format name, the DPAGE within the format, and the physical page within
the DPAGE. The following conditions cause MFS to perform a full format
operation (device buffer erased and all fields and literals are transmitted) for
device output:
v The device output format changes.
v The DPAGE changes within a device output format.
v The physical page number changes.
v The operator presses the CLEAR key.
v The operator presses the CLEAR PARTITION key, which causes a full format

write to the cleared partition.
v DSCA option of the DEV statement requests format write.
v SCA field in the output message requests format write.
v The MFS bypass has been used.
v Terminal has been stopped as a result of a permanent I/O error. The screen is

cleared and the next output is a full format operation.
v The operator uses the operator identification card reader. The screen is cleared

and the next output is a full format operation.

A full format operation must be carefully planned. Several factors can result in
undesirable screen displays, program input, or both:

Chapter 5. Message Format Service (MFS) reference 427

1. If the program depends upon the existence of data in non-literal fields and
does not include this data in the output message, the data might not be on the
screen when the device receives the output message. Several actions can cause
this to occur:
v The terminal operator pressing the CLEAR key
v A device error
v Another message sent to the device before the response
v An IMS restart

This dependency also makes the application 3270 device-dependent.
2. If the program sends only part of an output field, data that already exists in the

non-literal fields can cause confusion. If a partial field is transmitted to a
filled-in field, any modification of the field causes the old data remaining in the
field to be included in the new input. Use the PT (program tab X'05') as a fill
character on the DPAGE statement to solve this problem. If the PT fill character
is specified, message data fields (and message literal fields) that are to be
transmitted are followed by a program tab order if the data does not fill the
device field. This clears the remainder of the device field to nulls.
When a program sends only a few of the output data fields on a given display
screen, it might be desirable to clear all the unprotected filled-in fields first. The
unprotected fields can be cleared by specifying the “erase all unprotected”
option in the application program output with the system control area (SCA)
operand of the MFLD statement or the default SCA (DSCA) operand of the
DEV statement.

3. Pre-modified attributes can be requested by the application program to ensure
input of field data. If pre-modified attributes are requested and the message
was completely transmitted to the device and not operator logically paged,
then a device error, or IMS restart, prevents input. This error occurs because the
screen is not reestablished with the message when the terminal is started or
IMS is restarted.

4. If dynamic attribute modification is specified for a device field with predefined
attributes, an attribute is sent to the device for that field in every output
operation, even if the data for this device field is not included in the output
message. These attributes are used:
v If the output message field has an attribute and the attribute is valid, then

the dynamic attribute modification is performed.
v If the message field is not included in the LPAGE being used or the attribute

is not valid, the predefined attribute for the device field is used.

Recommendations: For application design, you should:
1. Use a common device format for as many applications as possible. Reducing

the number of full format operations can significantly reduce response time.
Format block pool requirements are reduced as well as message format buffer
pool I/O activity.

2. Allow MFS to determine when a format operation is required. This results in
transmission time savings when formatting is not required.

3. Ensure that the application program output message contains all non-literal
data required by the device operator. Do not rely on previous data remaining
on the device.

4. Use the PT fill option to ensure that fields on the device that receive program
output data contain only data from the message.

5. Use the erase all unprotected option of the SCA or DSCA if the application
requires that unprotected fields be cleared.

428 Application Programming APIs

Two MFS facilities are available for controlling format operations. Both the system
control area (SCA) of the message field and the default SCA (DSCA) option of the
DEV statement provide the ability to cause IMS to force a reformat or to erase all
unprotected fields or all partitions before transmitting output. The force format
write option causes the device buffer to be erased, all fields to be established, and
all literals to be transmitted. The erase all option causes all unprotected fields or all
partitions to be cleared to NULLs before data is written.
Related concepts:
“System control area (SCA) and default SCA (DSCA)” on page 507

3290 screen formatting
A 3290 screen can be divided into several independent areas, called logical units
(LUs). Each LU can be in base state or formatted state. If it is in formatted state,
the LU can be in standard or partitioned format mode.

Descriptions of 3290 screen formatting follow.

Screen division

The 3290 has a large screen, which allows the display of up to 62 rows by 160
columns for small character cells (6 × 12 pels), and up to 50 rows by 106 columns
for large character cells (9 × 15 pels).

The 3290 screen can be divided into several areas, each of which interacts
independently with the operator. This can be done in two ways:
v By dividing the screen into separate LUs
v By dividing a logical unit into separate partitions

In the first case, the 3290 terminal and its screen can be defined as up to four
separate LUs. Each LU is independent of the others, and is defined to IMS as a
separate terminal with its own address. This support is transparent to IMS.
Defining multiple LUs is useful if the IMS application calls for more than one
input or output message (or both) to be concurrently active between the 3290
terminal and IMS. For each logical unit, however, only one input or output
message can be active.

In addition, with software partitioning, each logical unit can be divided into as
many as 16 partitions. Each application message can specify a set of partitions, and
each logical page of the message is associated with a particular partition of the
partition set. Software partitioning is useful if:
v The operator needs to view more than one logical page at a time.
v One partition is needed to view an output page and another to input data.
v A partition is to be defined to receive IMS system error messages while the

logical unit is in formatted mode. This function could be used in place of the
current MFS SYSMSG field support.

v Scrolling is desired. Scrolling moves data up and down in the partition
viewport. It can be defined only for a 3290 in partitioned mode. With explicit
partition scrolling, you can define MFS pages for a presentation space larger
than the viewport on the physical screen. This reduces the number of
interactions between IMS and the terminal that must occur to display the
message.

The 3290 allows a maximum of 16 partitions per physical device. Also, each LU
defined in partitioned state must have available to it a minimum of 8 partitions, no

Chapter 5. Message Format Service (MFS) reference 429

matter how many partitions are actually defined for it. Thus, if one LU is defined
with 9 partitions, no other LU can be in partitioned state, because there are only 7
partitions left for the physical device. Consequently, no more than 2 LUs (of the
maximum 4 allowed) can be in partitioned state.

The following considerations also apply to defining partitions:
v Partitions must be rectangular.
v A single input message is constructed from one physical page of a single

partition unless Multiple Physical Page Input is used. If it is used, then multiple
physical pages for a single input message must come from a single partition.

v If the current PDB does not define a partition for system messages, and if the
DOF does not define a system message field, then a system message destroys
the current partitioned format mode and the 3290 (or the particular LU in
question) returns to standard format mode.

Terminal states and modes

The 3290 as a single LU, or any of the LUs into which it has been divided, can be
in terminal base state or terminal formatted state.

In terminal base state, the 3290 operates in the same way as any other currently
supported SLU 2 node when it is initially connected to IMS or when the clear key
has been pressed. In this state, input messages to IMS are edited with basic edit,
and output messages without an associated MOD are formatted using the default
MFS MOD.

In terminal formatted state, the 3290 can be in:
v Standard format mode
v Partitioned format mode

The choice of format mode is made dynamically at the time of message output.
The output message is associated with a MOD, which in turn names a DOF. The
specifications in the DOF determine the 3290 format mode:
v The 3290 is in standard format mode if the DOF does not name a partition

descriptor block (PDB). The terminal is then formatted and operated as an
ordinary SLU 2 node.

v The 3290 is in partitioned format mode if the DOF names a partition descriptor
block (PDB).

Partition set initialization, paging, and activation

If the 3290 (or any of the LUs into which it can be divided) is in partitioned format
mode, there are various ways in which:
v The partitions are initialized with one or more logical pages from the output

message.
v The operator subsequently controls the flow of logical pages to the partitions.
v One particular partition becomes the active partition.

Initialization and operator-controlled paging are determined by selecting one of the
three options. The option is specified by the PAGINGOP operand of the PDB.
According to the selected option, initialization can consist of:
1. The message's first logical page going to the appropriate partition

430 Application Programming APIs

2. The message's initial logical pages going to their appropriate partitions until the
second logical page of any partition is reached

3. Each partition receiving its first appropriate logical page

The option also determines whether operator-controlled paging is affected,
depending on which partition is active.

When the 3290 enters partitioned format mode, one particular partition is the active
partition. This is determined in one of two ways:
v Logical pages are routed to their partitions using DPAGE statements. An

ACTVPID operand might have been specified on one of the DPAGEs that points
to an initialized partition. The ACTVPID allows the application program to
declare which partition is the active partition.

v If no ACTVPID keywords are encountered, the active partition is the partition
defined by the first PD statement in the PDB.

The active partition can be a partition that has not initially received any data.
Related concepts:
“3290 in partitioned format mode” on page 541

3180 screen formatting
Like the 3290, the 3180 terminal is supported by IMS as an SLU 2 device.
Partitioning and scrolling support for the 3180 is similar to what is provided for
the 3290.

Exceptions: For the 3180:
v Only one partition with specific size limits can be defined. (For the 3290,

multiple partitions of various sizes can be defined.)
v Logical unit display screen size and viewport location cannot be specified in

picture elements (pels). (The 3290 supports pels.)
v You cannot specify an active partition. (For the 3290, active partitions can be

specified.)

These restrictions apply only if you want the 3180 screen size when it is connected
to IMS to differ from the 3180 screen size when it is connected to other
subsystems. If no change is required, the 3180 customer set up installation
instructions can be used and no special IMS code is necessary.

Device compatibility with previous versions of MFS
If you choose not to define 3270 devices during IMS system definition using the
device type symbolic name (option 1), no changes to device format definitions are
needed.

If you choose to define 3270 devices during IMS system definition using a device
type symbolic name (3270-An) (options 2, 3, and 4), in some cases you must make
changes in your 3270 device format definitions.

The examples in the following table include the recommended standard for
relating the device type symbolic name to the screen size:

Chapter 5. Message Format Service (MFS) reference 431

Table 114. MFS device definition compatibility for 3270 devices.

Device and Screen Size Device and Screen Size1
New IMS System
Definition1

3275 or 3277 (12X40) MFS: DEV TYPE= (3270,1)
Model 1

MFS: DEV TYPE= 3270-A5 2,4

3275, 3276, 3277, 3278 (24X80) MFS: DEV TYPE= (3270,2)
Model 2

MFS: DEV TYPE= 3270-A2 2,4

3276, 3278 (12X80) MFS: DEV TYPE= (3270,1)
Model 1

MFS: DEV TYPE= 3270-A1 2,3

3276, 3278 (32X80) MFS: DEV TYPE= (3270,2)
Model 2

MFS: DEV TYPE= 3270-A3 2,3

3276, 3278 (43X80) MFS: DEV TYPE= (3270,2)
Model 2

MFS: DEV TYPE= 3270-A4 2,3

3278 (27X132) MFS: DEV TYPE= (3270,2)
Model 2

MFS: DEV TYPE= 3270-A7 2,3

Notes:

1. For screen sizes specified in type or terminal macro.

2. If the format will be used on the new device and will not be used on the old device,
change TYPE= (3270,1) or (3270,2) to 3270-An with the corresponding screen size, and
recompile.

3. See option 3 in the following table.

4. See option 4 in the following table.

The following table lists the advantages and disadvantages of selecting a specific
option for the larger screen device and the required action if you choose to use
existing device formats.

Table 115. Advantages and disadvantages of larger screen device

Option Advantage Disadvantage
Conversion Action
Required

1 You can use existing
MFS formats unchanged.

You cannot use full
screen.

No (Use current formats
as shown in the previous
table.)

2 You can use full screen. You must design new
device formats.

No (Define new
formats.)

3 You can use existing
formats as a migration
path on the new screen
device and you can
gradually replace them
with new device formats.

You must modify
existing device formats
to use the device
symbolic name.

Yes (Refer to the
previous table.)

4 Consistency in definition
for current and new
screen sizes.

You must modify all
formats.

Yes (Refer to the
previous table.)

IBM 3278-52/3283-52 and IBM 5550 family (as 3270) compatibility

The message format definitions for the IBM 3278-52/3283-52 are upwardly
compatible. However, message formats created with Kanji functions for the 5550
family of devices cannot be used on the IBM 3278-52/3283-52.

432 Application Programming APIs

Existing 3270 and IBM 5550 family (as 3270) compatibility

Note the following when adding field outlining and input control specifications to
existing 3270 and 3278-52/3283-52 message formats:
v Field outlining

– For the 3270 display, left line, right line, overline, and underline do not take
up a position in the user field. The application program does not have to be
modified unless dynamic modification of extended attributes is performed.

– For the SCS1 printer, MFS reserves print positions for left and right lines. If a
field starts from the leftmost column or ends at the rightmost column, the left
or right line is not printed correctly because room is not available. To correct
this, modify the application program to truncate 1 byte. If two adjacent fields
are logically one and the overline and underline should connect, the
application program does not have to be modified.
In either case, for dynamic modification, the application program must be
modified.

v DBCS/EBCDIC mixed fields
– For 3270 displays, the SO/SI control characters take up 1 byte on the screen.

This means that the length on the display is equal to the message format
length. Therefore, the existing application program does not have to be
changed.
When assigning DBCS/EBCDIC mixed data to an existing EBCDIC field, the
application program must check that the SO and SI are paired, that the EGCS
data is of even length, and that neither the SO nor SI is truncated when the
MFLD is mapped to the DFLD.

– For SCS1 printers, MIX/MIXS must be specified when using DBCS/EBCDIC
mixed data. In this case, the message length and the length of the output
differ and the application program must modify the MFLD according to each
field's characteristics.

Converting MFS 3270 device formats to symbolic name formats
using STACK/UNSTACK
The IMS MFS language utility's compilation statements STACK and UNSTACK can
be used to convert existing MFS 3270 device formats to the user-defined device
type symbolic name formats. The STACK statement is used to delineate one or
more SYSIN or SYSLIB records, and to request that those records, once processed,
be kept in storage for use at a later time. The UNSTACK statement requests
retrieval of a previously processed stack of SYSIN/SYSLIB records.

For example, with the following existing 3270 format definition:
label FMT

DEV TYPE=(3270,2), ...
DIV TYPE=INOUT
DPAGE CURSOR=((2,3))

label DFLD
label DFLD
label DFLD

FMTEND

You can create a user-defined device type symbolic name (using TYPE=3270-An)
format for the large screened display devices by using the DEV statement and the
compilation statements STACK and UNSTACK as follows:
label FMT

DEV TYPE=3270,2,...
STACK ON

Chapter 5. Message Format Service (MFS) reference 433

DIV TYPE=INOUT
DPAGE CURSOR=((1,2))

label DFLD
label DFLD
label DFLD

STACK OFF
DEV TYPE=3270-A2,...
UNSTACK
FMTEND

The UNSTACK statement causes the statements between STACK ON and STACK
OFF to be duplicated. In addition to the 3270 model 2 device format, a device
format is created for the 3270-A2, which has the same device layout as the 3270
model 2.

3270 device format conversion example
This example is provided to clarify MFS device definition compatibility for 3270
devices.

Assume that the installation has 3270 model 1 and model 2 display devices and
has installed additional display devices with 12×80, 24×80, 32×80, and 43×80 screen
sizes. A new IMS system definition was performed for the additional devices, and
the 3270 model 1 and model 2 devices were redefined to specify the device
symbolic name.

The IMS system definition specifications for these 3270 displays were as follows:
v TYPE=3270-A1, SIZE=(12x80) for the additional devices with 12x80 screen size.
v TYPE=3270-A2, SIZE=(24x80) for the 3270 model 2 and additional devices with

24x80 screen size.
v TYPE=3270-A3, SIZE=(32x80) for the additional devices with 32x80 screen size.
v TYPE=3270-A4, SIZE=(43x80) for the additional devices with 43x80 screen size.
v TYPE=3270-A5, SIZE=(12x40) for the 3270 model 1 device.

The following MFS changes were required to convert existing 3270 model 1 and 2
device format definitions for use on the 3270 model 1, model 2, and on the
additional devices:

Existing Definitions:
label FMT

DEV TYPE=(3270,1)
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...

DEV TYPE=(3270,2)
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...

FMTEND ...

Changes Applied and Recompiled:
label FMT

DEV TYPE=3270-A5 (changed from (3270,1) to 3270
display with 12x40 screen size)

STACK ON
DIV TYPE=INOUT

434 Application Programming APIs

DPAGE ...
label DFLD ...
label DFLD ...
label DFLD ...

STACK OFF
DEV TYPE=3270-A1 (3270 display with 12x80 screen

size)
UNSTACK
DEV TYPE-3270-A2 (changed from (3270,2) to 3270

display with 24x80 screen size)
STACK ON
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...

STACK OFF
DEV TYPE=3270-A3(3270 display with 32x80 screen

size)
UNSTACK ,KEEP
DEV TYPE=3270-A4(3270 display with 43x80 screen

size)
UNSTACK
FMTEND

After the changes are applied and recompiled, the new device formats are
designed to take advantage of each screen size, and the previous format definition
can be compiled again as follows:
label FMT

DEV TYPE=3270-A5
DIV TYPE=INOUT
DPAGE ...

label DFLD ...
label DFLD ...
label DFLD ...(existing device fields

using 12x40 screen size)
DEV TYPE=3270-A1
DPAGE ...

label DFLD ...(new device fields using
12x80 screen size)

.

.
label DFLD ...

DEV TYPE=3270-A2
DIV TYPE=INOUT
DPAGE ...

label DFLD ...(existing device fields
using 24x80 screen size)

label DFLD ...
label DFLD ...

DEV TYPE=3270-A3
DIV TYPE=INOUT
DPAGE ...

label DFLD ...(new device fields using
32x80 screen size)

.

.
label DFLD ...

DEV TYPE=3270-A4
DIV TYPE=INOUT
DPAGE ...

label DFLD ...(new device fields using
43x80 screen size)

Chapter 5. Message Format Service (MFS) reference 435

.

.
label DFLD ...

FMTEND

3270 printer and SLU 1 compatibility
To use the extended attributes of color, highlighting, and programmed symbols, or
to use the set vertical format or set line density data streams, you might need to
modify your application programs.

Additional 3270 printer devices attached to a non-SNA control unit compatible
with the currently installed 3270 printer devices use the existing 3270P model 1 or
model 2 device formats. For the printer buffer, they use the existing IMS system
definition with 480 characters (current model 1) or 1920 characters (current model
2).

MFS users choosing to change device attachment to SLU 1 must change their MFS
device format definitions as shown in the following table. The following table lists
the current device, the MFS device type, new control units, system definitions, and
MFS device types, and the z/OS changes required.

Table 116. MFS device definition compatibility for 3270 printers and SLU 1 devices.

Current
Device

Current MFS
DEV TYPE

New Device or
Control Unit

New IMS
System
Definition

New MFS
DEV TYPE

z/OS
Changes
Required

3284/
3286

3270P 3827/3289 attached to
a 3274 or 3276 SNA
control unit

SLUTYPE1 SCS1 See Note

Note:

Change DEV TYPE=(3270P,n) to DEV TYPE=SCS1 and recompile. Or, if all printers are not
changed to the new device or control unit, add the following after DEV TYPE=3270P and
recompile:

STACK ON

(3270P DPAGE, DFLD statements)

STACK OFF

DEV TYPE=SCS1

UNSTACK

SLU P compatibility
Application programs written for other MFS-supported devices can execute
unchanged with SLU P (DPM-An) devices once the DIFs and DOFs appropriate for
the DPM devices are defined.

Changes might be required if the program depends on unique device-dependent
features such as premodified fields on a 3270 display. The program would execute
unchanged only if the premodified fields presented to the remote program are
returned in the input message. This requires that the remote program properly
interpret the attribute bytes of the output message field and handle the indicated
device function in a way that satisfies the requirements of the IMS application
program.

Existing IMS application programs that do not use MFS might have to be changed
to adjust to the appropriate 3600 or 3790 buffer size and to ensure that message
text is a compatible subset of the SCS character string.

436 Application Programming APIs

Enhancing system performance of MFS message and device
formats

The design of message and device formats usually has only a minor effect on the
time or resources required to edit a message. It can, however, have a considerable
effect on transmission and response time.

Enhancing system performance of MFS-supported devices
To enhance system performance when using MFS-supported devices, you can do
the following.

Evaluating the message format buffer pool operation

The IMS /DISPLAY POOL command can be used to evaluate the message format
buffer pool operation.

The objective should be to reduce the value of:
I/O+DI (The sum of the numbers of fetch
REQ1 I/O operations and directory I/O operations

divided by the number of block requests from
the pool.)

Hints and tips for improving performance

To reduce this value, do one or more of the following:
v Reduce format block I/O. The most significant and tunable portions of MFS

processing cost are the CPU cycles and channel/device time required to read
format blocks. To reduce format block I/O, use the following techniques:
– Evaluate and implement $$IMSDIR, the optional MFS index directory. Index

the selected MFS control blocks based on how frequently they are used. In
most cases, using $$IMSDIR eliminates one read per format block during
online operation.

– Increase the size of the MFBP (Message Format Buffer Pool).
– Increase the number of fetch request elements (FREs).

v Minimize the number of segments. Messages should be segmented for
application program convenience or to meet segment size restrictions. Segment
processing in MFS and DL/I requires a considerable number of CPU cycles, so
do not segment unnecessarily.

v Use option 2 input. In some cases, the application input can be segmented so
that no device input can be presented for segments under certain conditions. In
such cases, option 2 input messages reduce processing time slightly and reduce
IMS message queue space requirements.

v Use option 3 input. Option 3 input can provide better performance than option 1
or 2 if many fields are defined, but only a few fields are received on input.
Additional buffer pool space is required during editing, but message queue
space requirements are reduced. When most of the defined fields are received on
input, option 3 performance is not as good as 1 or 2, either in processing time or
in message queue space.

v Combine multiple DFLD literals. When multiple DFLD literals are positioned at
adjacent or nearly adjacent device field locations, consideration should be given
to combining the literals in fewer DFLD literal definitions. The only limitation to
the number of literals combined is the maximum DFLD literal length.
Combining DFLD literals reduces block size, reducing MFS processing time and,
for 3270 or SLU 2 display devices, reducing transmission time.

Chapter 5. Message Format Service (MFS) reference 437

v Do not define DFLDs that are not referred to by any MSG descriptor. Such
DFLDs occupy block space and, if used extensively, could adversely affect MFS
processing time.

v Combine output message fields if appropriate. Where multiple, contiguous,
output message fields of a segment map to contiguous device fields of the same
relative length, consider combining both the message fields and the device fields
so that a single message field maps to a single device field. The greatest
potential advantage is in those situations where only one blank separates the
displayed fields, and message data is always present and equal to the device
field length.
Combining message fields is not recommended, however, in cases where an
additional formatting burden would be placed upon the application program.

v Do not define duplicate formats. If duplicate libraries exist in the concatenated
libraries, there is no guarantee that the copy from the first library will be
fetched.

v Do not define separate formats for simple input. Most MFS device formats
should include some user input fields that allow the operator to enter any
simple transaction or command, related or not related to the application for
which the format was designed. Any format requires four control blocks, and
formats designed specially for simple input should not be defined unnecessarily.

Related reference:
“Input message formatting options” on page 482

/DISPLAY POOL command (Commands)

Enhancing system performance of 3270 or SLU 2 display devices
To enhance system performance when using 3270 or SLU 2 display devices, you
can do the following.
v Use preformatted screens. This is the most significant performance consideration

for MFS when 3270 or SLU 2 display devices are used. Significant amounts of
data are usually required to define fields and establish literals on a screen. These
field definitions and literals do not always have to be transmitted. If the format
on the device can be used, transmission time for remote terminals can be
reduced up to 50 percent.

v Pad message output with nulls. The use of the FILL=NULL or PT option in the
DPAGE statement reduces the amount of data transmitted to the device and the
amount of processing required to format the output.

v Reduce mixed-mode operations. A mixed mode operation occurs when the
selector light pen is used on an immediately detectable field and other fields on
the device are modified. The mixed mode operation requires multiple I/O
operations that increase response time, line utilization, and processing time. In
addition, the resulting message contains the same data as would be produced by
the enter key except for the indication that the selector pen was used.

v Use paging requests. Where application design permits, the PA1 (program access
key 1) page advance facility should be used instead of operator entry of a logical
page request. The PA1 facility requires less operator action and less
communication line time, and does not require input editing before page request
processing.

v Define the length of a literal DFLD followed by a nonliteral DFLD to include
space between the last significant literal character and the position preceding the
attribute position of the nonliteral field. This action can reduce block size and
character transmission but should only be considered when the separating space
is between two and five characters.

438 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.cr/imscmds/ims_displaypool.htm#ims_cr1displaypool

v Increase the length of DFLDs with the PROTECT attribute. When a nonliteral
DFLD is defined with the PROTECT attribute, separated from the next device
field by two or more blanks, and is expected to receive output data, consider
increasing its length. The output data can originate from an application program,
a /FORMAT command, or an MFLD literal. Multiple MODs can be used to map
message data to the DFLD. Increasing DFLD length should reduce character
transmission unless character fill (FILL=C' ') is specified. Specifying FILL=C' ' is
not recommended.

v Minimize the use of the CLEAR key. Advise terminal operators not to use the
CLEAR key unnecessarily. In addition, explain to terminal operators the proper
use of other function keys such as the ERASE INPUT and ERASE EOF.
Design screen formats with the objective of minimizing the use of the CLEAR
key. Allow simple input from a formatted screen. To provide for this capability,
establish the same device field location of all formatted screens as the standard
device field for simple input. Enforce this standard for all format definitions.
Decreasing CLEAR key usage can improve response time and use
communication lines more effectively.

3270 or SLU 2 devices with large screens

If pages are combined for display on large screens, operator paging is reduced
proportionally to the reduction of number of pages. If the OUTBUF keyword of the
IMS system definition TERMINAL macro or ETO logon descriptor cannot specify
the amount of data for an entire page, more than one VTAM SEND is required to
send the page.
Related concepts:
“3270 or SLU 2 screen formatting” on page 427
Related tasks:

Extended Terminal Option (ETO) (Communications and Connections)

SLU P and ISC subsystems with DPM
If OPTIONS=PPAGE is specified in the DIV statement, the set of fields in a PPAGE
(presentation page) is transmitted together in one or more records. Additional
presentation pages are sent on request of the remote program or ISC subsystem for
demand paging. This level of paging is the simplest for the remote program or ISC
subsystem to process but imposes the most burden on IMS processing time.

If OPTIONS=DPAGE is specified, all fields within a logical page are transmitted
together in one or more records. Additional logical pages are sent on request of the
remote program or ISC subsystem for demand paging. This level of paging makes
it more difficult for the remote program or ISC subsystem to process the data if
more than one presentation page is included, but imposes less burden on IMS
processing time.

If OPTIONS=MSG is specified, all the data within a message is sent together and
no paging is performed. This technique might require more processing and logic in
the remote program or ISC subsystem but is the best for IMS performance if all
pages are actually used by the remote program or ISC subsystem. If many pages
are not used by the remote program or ISC subsystem, this option results in
unnecessary line traffic and IMS processing.

If autopage is specified (SCA byte 1, bit 5) and option PPAGE or DPAGE is desired
for DPM-Bn, all data within the message is sent and no demand paging is
performed.

Chapter 5. Message Format Service (MFS) reference 439

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_ccg_part_eto.htm#ims_ccg_part_eto

The RCD statement can be used to influence the placement of fields within records.
The DFLD that follows the RCD statement begins in the first user data location of
a new record. Fields can be placed in records so that no field spans a record
boundary, or so that logically related fields appear together in the same record.

Restriction: For ISC subsystems, fields cannot span records.

Use of the RCD statement to set record boundaries can reduce transmission time
and IMS processing time only if records of maximum length are created. If field
placement into records is controlled using the RCDCTL specification only, the
SPAN option causes the minimum number of records to be sent to the remote
program. Use of SPAN requires, however, that the remote program put together
the fields that have been split across records.

Loading programmed symbol buffers
If programmed symbol (PS) buffers are desired and if they have not been loaded
by another means (for example, a VTAM application), the buffers must be loaded.

Using an application program to determine whether programmed symbol
buffers are loaded:

The buffers might have been loaded with the desired programmed symbols by a
previous user of the device, and this knowledge can save resending the entire
programmed symbol data stream. A handwritten log at the device is one method
of maintaining the current status of the programmed symbol buffers for
subsequent users.

Another method is a user-written application program that attempts to use the
desired programmed symbols. If the desired programmed symbols are already
loaded, the output from the application program is successfully displayed at the
device. If the programmed symbols are not loaded, the output message is returned
to the IMS message queue, the terminal is made inoperable, and a message is sent
to the master terminal operator (MTO). The MTO should have a procedure to
correct this condition. For example, the MTO could do one of the following:
v Reassign the LTERM, assign an LTERM that has the correct PS load message,

restart the terminal, and then reassign the first LTERM back to the terminal.
v If the terminal does not have PS capability, reassign the LTERM to one that does.
v If the terminal does not have PS capability, dequeue the rejected message.

Exception: For an SLU 2 terminal, the output rejected was not a response mode
reply. In this case, the MTO receives the error message and can try to enter a
transaction that would cause the buffers to be loaded.

How to load programmed symbol buffers:

If the operator knows the programmed symbol buffers need to be loaded (because
the device was just turned on), the operator should enter a response mode
transaction that loads the programmed symbols.

Make available, to all users at the installation, a user-written application program
to load the programmed symbols. The first part of the message sent by this
application program should be the programmed symbol data stream, and the
remainder should be some user data displayed at the device (such as THE
PROGRAMMED SYMBOL LOAD FOR programmed-symbol-name COMPLETE). The
user data displayed at the device informs the terminal operator when the

440 Application Programming APIs

programmed symbols have been loaded. This application program should use the
MFS bypass option, because the write structured field (WSF) 3270 command used
to send the programmed symbol message is only supported by IMS through the
MFS bypass option.

When the programmed symbol buffers that are to be loaded include a printer or a
different display, other techniques must be used. Programmed symbol buffer loads
are restricted to 3 KB for BSC-attached devices.

For example, the following shows the loading of a programmed symbol buffer
using an automated operator interface (AOI) application program.
1. The operator at display A enters a transaction (response or conversational)

requesting programmed symbol loads for display A, printer B, and display C.
2. Another AOI transaction assigns LTERMs for printer B and display C,

temporarily, to a special PTERM. The AOI program assigns dummy LTERMs to
printer B and display C.

3. The AOI program inserts a programmed symbol message to the dummy
LTERMs of printer B and display C.

4. The AOI program sends programmed symbol messages to display A.
5. The operator visually verifies messages on both displays and the printer and

confirms that the transaction executed correctly.
6. Another AOI transaction reassigns LTERMs to their original status.

Solving programmed symbol load problems:

If a hardware error occurs while a programmed symbol buffer is being loaded,
then the following actions occur.
1. The programmed symbol load message is returned to the IMS message queue.
2. The terminal is taken out of service, except for SLU 2 devices when

programmed symbols are not available.
3. The error is logged to the IMS log.
4. A message is sent to the IMS master terminal.

Once the hardware error is corrected and the terminal is in service, the
programmed symbol load message is re-sent.

If the programmed symbol load failed because of an error in the programmed
symbol load message, the operator must:
1. Dequeue (/DEQ) the message (the master terminal operator might have to issue

the /DEQ command).
2. Correct the error.
3. Reenter the transaction to send the programmed symbol load message again.

If a method is available for informing the next user of the programmed symbol
buffer status, then the terminals with loaded programmed symbol buffers should
not be turned off. When a power failure occurs, or a terminal is turned off, the
contents of the programmed symbol buffers are lost.

When a terminal is turned on and no IMS messages are waiting to be sent to the
display, load all required programmed symbol buffers using an IMS transaction (or
some non-IMS method). However, if IMS messages are waiting to be sent, and
these messages require the use of one or more programmed symbol buffers, the
sending of the queued messages must be delayed until the programmed symbol

Chapter 5. Message Format Service (MFS) reference 441

buffers can be reloaded. This can be accomplished using response mode
transactions to load the programmed symbol buffers.

If the programmed symbol buffers are not loaded and a message that requires a
programmed symbol buffer is sent to the terminal, the following actions take place:
v For non-SLU 2 devices, IMS takes the terminal out of service, sends a message to

the master terminal, and returns the output message to the message queue.
v For SLU 2 devices, the message is rejected and a sense code is returned to IMS.

IMS then:
– Returns the invalid message to the IMS queue.
– Logs the error to the IMS log.
– Sends an error message to the IMS master terminal if the output was a

response mode reply, and takes the terminal out of service. If it is not in
response mode, the error message is sent to the terminal and it is left in
protected mode.

If the user-written application program is designed to queue an unsolicited
message requiring a particular programmed symbol load buffer to an LTERM, the
first part of the message could include a load programmed symbol data stream;
however, this message could not be processed by MFS.

When a message is waiting on the IMS queue for a terminal and requires a
programmed symbol that is not loaded, perform one of the following:
v If the terminal is attached by VTAM, load the programmed symbol buffers using

a VTAM application.
v If a queued message requires a programmed symbol buffer and it is “normal”

user output (for example, the output is not response mode or conversational),
then the use of a response mode transaction to load the programmed symbol
buffer permits the queued message to be properly displayed. If loading the
buffers requires multiple messages, multiple response mode transactions can be
used.

v Dequeue (/DEQ) the message (or have the master terminal operator dequeue
the message) requiring use of a programmed symbol buffer; enter a transaction
to load the programmed symbol buffer required; and then reenter the
transaction that originally generated the queued message.

v Temporarily assign the LTERM to which the message is queued to another
physical terminal. Load the programmed symbol buffer, then reassign the
LTERM to the original physical terminal. The LTERM must be assigned to a
terminal that will not cause a message to be sent (as, for example, a 3270 display
or SLUTYPE2 that is in protected screen mode).

MFS definitions for intersystem communication
The following prototype MFS definitions can be used in an intersystem
communication (ISC) system between IMS and CICS.

In this example:
v CICS can request MFS editing with either 8-byte or 4-byte names.
v Messages from CICS can be multiple-page input or single-page input.
v Output to CICS can be one message of one page or multiple pages with one or

more segments.
v Demand paged or autopaged output can be requested of IMS.

442 Application Programming APIs

These formats can also be used by a 3270 terminal operator who wants to send a
message to CICS using an IMS message switch. Or, for example, an IMS message
switch can be invoked by a user at a 3270 terminal, the message can be switched to
CICS, and a reply is returned from CICS to IMS and then to the 3270 terminal. The
routing is handled by MFS. The following samples show the MFS definition
format.
FMTDIS FMT

DEV TYPE=3270-A2,FEAT=IGNORE
DIV TYPE=INOUT

DFLDIND1 DFLD LTH=5,POS=(1,2)
DFLDIND2 DFLD LTH=100,POS=(1,8)

FMTEND
FMTDP2 FMT

DEV TYPE=DPM-B1,FEAT=IGNORE,
MODE=RECORD,DSCA=X’00A0’ X

DIV TYPE=OUTPUT,OPTIONS=(MSG,NODNM)
PPAGE1 PPAGE
DFLDOUT1 DFLD LTH=5
DFLDOUT2 DFLD LTH=100

FMTEND
FMTDPM FMT

DEV TYPE=DPM-B1,FEAT=IGNORE,MODE=RECORD
DIV TYPE=INPUT,OPTIONS=(DPAGE,NODNM), X

PRN=DFLDINP3, X
RDPN=DFLDINP4, X
RPRN=DFLDINP5

PPAGE2 PPAGE
DFLDINP1 DFLD LTH=5
DFLDINP2 DFLD LTH=100

DIV TYPE=OUTPUT,OPTIONS=(DPAGE,NODNM)
DPAGE2 DPAGE
DPAGE3 PPAGE
DFLDOUT3 DFLD LTH=5
DFLDOUT4 DFLD LTH=100

DFLD SCA,LTH=2
FMTEND

MFSMOD1 MSG TYPE=OUTPUT,SOR=(FMTDP2,IGNORE), X
NXT=MFSMID1

SEG
MFLD DFLDOUT1,LTH=5
MFLD DFLDOUT2,LTH=100
MSGEND

MFSMODE2 MSG TYPE=OUTPUT,SOR=(FMTDPM,IGNORE), X
NXT=MFSMID1

SEG
MFLD DFLDOUT3,LTH=5
MFLD DFLDOUT4,LTH=100
MFLD (,SCA),LTH=2
MSGEND

MFSMID1 MSG TYPE=INPUT,SOR=(FMTDPM,IGNORE), X
NXT=MFSMODD

SEG
MFLD DFLDINP1,LTH=5
MFLD DFLDINP3,LTH=8
MFLD DFLDINP4,LTH=8
MFLD DFLDINP5,LTH=8
MFLD DFLDINP2,LTH=100
MSGEND

MFSMIDD MSG TYPE=INPUT,SOR=(FMTDIS,IGNORE), X
NXT=MFSMOD1

SEG
MFLD DFLDIND1,LTH=5
MFLD DFLDIND2,LTH=100
MSGEND

MFSMODD MSG TYPE=INPUT,SOR=(FMTDIS,IGNORE),

Chapter 5. Message Format Service (MFS) reference 443

NXT=MFSMIDD
SEG
MFLD DFLDIND1,LTH=5
MFLD DFLDIND2,LTH=100
MSGEND
END

MFS message formats
Use these topics if your application programs communicate with devices by using
Message Format Service (MFS).

Input message formats
MFS edits input data from a device into an IMS application message format using
the message definition that the MFS application designer writes as input to the
MFS language utility program. An input message consists of all segments
presented to an IMS application program when the program issues a DL/I GU or GN
call.

The format of input messages is defined to the MFS Language utility. Each
message consists of one or more segments; each segment consists of one or more
fields:
MESSAGE

SEGMENTS
FIELDS

Message field format is defined specifically to the utility in terms of data source,
field length, justification, truncation, and use of fill (pad) characters. How MFS
actually formats the field is a function of the formatting option selected for the
message. The option used is identified in the second byte of the 2-byte ZZ field
(Z2) preceding the message text. An application program that depends on MFS
should check this field to verify that the expected option was used; a X'00' in the
Z2 field indicates MFS did not format the message.

Logical pages

For 3270 or SLU 2, the input message is created from the currently displayed
DPAGE on the device. For some other devices, if the device input format has more
than one DPAGE defined, the device data entered determines which input LPAGE
is selected to create an input message. However, for ISC (DPM-Bn) subsystems,
OPTIONS=DNM or COND= can be used for DPAGE selection.

When LPAGEs are defined, each LPAGE is related to one or more DPAGEs.
Related reference:
“Input message formatting options” on page 482

Device-dependent input information (3270 or SLU 2)
Using certain options for inputting information can make the application program
device-dependent.

Cursor location

As an option of the MFS Language utility, a field in the message can contain the
location of the cursor on the device when input was transmitted to IMS. This
option is only available for 3270 or SLU 2 display devices and its use can make
programs device-dependent. The format of the cursor information is two 2-byte

444 Application Programming APIs

binary numbers, the first containing the line number, the second containing the
column number. The minimum value for the line or column is 1. For 3270-An
device types, the maximum value for the line is the first parameter of the SIZE=
operand; the maximum value for the column is the second parameter of the SIZE=
operand.

The table below lists the maximum line and column values for MFS device types.

Table 117. Maximum line and column values for 3270 device types

Maximum Value

MFS Device Type Line Column

3270,1 12 40

3270,2 24 80

3270-An

SIZE=(12,40)
12 40

SIZE=(12,80)
12 80

SIZE=(24,80)
24 80

SIZE=(32,80)
32 80

SIZE=(43,80)
43 80

SIZE=(27,132)
27 132

SIZE=(62,160)
62 160

Selector pen

Use of the selector light pen can affect input fields in several ways:
v If the ATTR output field option is not used dynamically to create detectable

fields, the following occurs:
– A message field that refers to device fields defined with the attributes

DET,STRIP is presented as a device-independent field.
– The first data byte available for the message field is the byte beyond the

designator character in the device field.
– A message field that references device fields defined with the attributes

IDET,STRIP is also presented with device-independent data.
– The designator character is removed.
– Data from this field is not presented if no modified fields exist on the device

when the field is selected. In this case, the only device information available
for the message is the value specified for literal on the PEN= operand of the
DFLD statement.

v If the ATTR output field option is used dynamically to create detectable fields,
then the following occurs:
– Fields dynamically established as either deferred detectable or immediate

detectable do not have designator characters removed from input.

Chapter 5. Message Format Service (MFS) reference 445

– If a field altered to immediate detectable is selected when no other fields on
the device are modified, no device input data is available for the message.

v If a message field is defined to receive immediate detect selector pen literal data,
one of the following occurs:
– If device input is not the result of an immediate selector pen detect, the field

is padded as requested.
– If device input is the result of an immediate selector pen detect, but at least

one other field on the device is modified, one data character of a question
mark (?) is presented in the field with the requested padding.

– If the device input is the result of an immediate selector pen detect and no
other modified fields exist on the device, that literal is placed in the message
as requested if the detected field is defined with a PEN=literal. If the detected
field is not defined with a PEN=literal, one data byte of a question mark (?) is
placed in the message field. In either case, no other device information is
provided.

v If an EGCS attribute is defined for a light-pen-detectable field, you should
specify ATTR=NOSTRIP on the DFLD statement and design your application
program to bypass or remove the two designator characters from the input data.
If ATTR=STRIP is specified or defaulted, MFS removes only the first designator
character and truncates the last data character in the field.

Magnetic stripe reading devices

The use of magnetic stripe reading devices is transparent to the application
program. For operator identification (OID) card readers, the framing characters
(SOR, EOR, EOI, LRC) are removed and parity checking is performed before
editing.

Program function keys

Use of program function keys is transparent to the application programs.

Program access keys

Program access key information is not available to application programs.

Output message formats
MFS edits output segments created by an IMS application program into a device
format suitable for the device or remote program for which the message is
destined.

Normally, the output segments from the IMS program contain no device-related
data. All information needed for output to a device or remote program is provided
when the message format is defined to the MFS Language utility program. For a
remote program with DPM, specific device-dependent information is provided by
the remote program without interpretation by MFS.

An output message consists of all segments presented to IMS with an ISRT call
between a GU call to the I/O PCB and either a PURG call, another GU call to the I/O
PCB, or normal program termination.

The format of output messages is defined to the MFS utility just like the format of
input messages—one or more segments, each with one or more fields.

446 Application Programming APIs

MESSAGE
SEGMENTs

FIELDs

Logical pages
Output segments can be grouped for formatting by defining logical pages (LPAGE
statement).
MESSAGE

LPAGEs
SEGMENTs

FIELDs

When LPAGEs are defined, each LPAGE is related to a specific DPAGE that defines
the device format for the logical page. If LPAGEs are not defined, MFS considers
the defined message as one LPAGE and the rules that apply for messages with one
LPAGE apply. Those rules are:

When a message has one LPAGE with one segment, each segment inserted by the
application program is edited in the same manner.

When a message has one LPAGE with multiple segments, message segments must
be inserted in the defined sequence. Not all segments in an LPAGE must be
presented to IMS, but be careful when segments are omitted. An option 1 or 2
segment can be omitted if all segments to the end of the LPAGE are omitted;
otherwise, a null segment must be inserted to indicate segment position. Option 3
output message segments can be omitted but the segments sent must include the
segment number identifier.

Multiple series of segments can be presented to IMS as an output message. If the
LPAGE is defined as having N segments, segment N+1 is edited as if it were
segment 1, unless a segment with the page bit (X'40') in the Z2 field is encountered
prior to segment N+1. When multiple series of output segments are presented and
segments are omitted, the segment which begins a series must have bit 1 (X'40') of
the Z2 field turned on.

When a message has multiple LPAGEs, data in the first segment of a series
determines which LPAGE the series belongs to, which determines the editing to be
performed on the segments. If the LPAGE to be used cannot be determined from
the first segment of a series, the last LPAGE defined is used. Rules for segment
omission are the same. A bit in the Z2 field (X'80') of the message indicates
structured data is present in the outbound data stream. An output message using
structured data must either define the MODNAME as blanks or binary zeros, or
use MFS bypass.

Segment format
Each output segment has a 4-byte prefix that defines the length of the segment
and, if required, specifies whether the segment is the first segment of an LPAGE
series.

Option 3 output messages must contain an additional two bytes identifying the
relative segment number within the LPAGE series. The following table illustrates
the format of an output segment.

Table 118. Format of an output segment

LL Z1 Z2 SN FIELDS

Chapter 5. Message Format Service (MFS) reference 447

Where:

LL This is a 2-byte binary field representing the total length of the message
segment, including LL, Z1, and Z2 and if present, SN. The value of LL
equals the number of bytes in text (all segment fields) plus 4 (6 if option
3). The application program must fill in this count. If a size limit was
defined for output segments of a transaction being processed, LL must not
exceed the defined limit.

Restriction: The segment length must be less than the message queue
buffer data size (buffer size—prefix size) specified at IMS system
definition. The segment length can be less than the length defined to the
MFS Language utility. If a segment is inserted that is larger than the
segment defined to the MFS utility, the segment is truncated. No error
messages are issued. Fields truncated or omitted are padded as requested
in the format definition to the MFS Language utility.

When PL/I is used, the LL field must be defined as a binary fullword. The
value provided by the PL/I application program must represent the actual
segment length minus two bytes. For example, if an output message
segment is 16 bytes, LL=14 and is the sum of: the length of LL (4 bytes - 2
bytes) + Z1 (1 byte) + Z2 (1 byte) + TEXT (10 bytes).

Z1 This is a 1-byte field containing binary zeros and is reserved for IMS.

Z2 This is a 1-byte field that can be used by the application program for
control of various output device functions.

For more information on this field, see IMS Version 14 Communications and
Connections.

SN For option 3 only. This is a 2-byte binary field containing the relative
segment number of the segment within the LPAGE. The first segment is
number 1.

A NULL segment can be used to maintain position within a series of option 1 or 2
output segments within an LPAGE. A null segment must be used if segments in
the middle of an LPAGE series are to be omitted. If all segments to the end of the
LPAGE series are to be omitted, null segments are not required. A null segment
contains one data byte (X'3F') and has a length of 5.

The following example shows how to code a null character in COBOL.

Coding a null character in COBOL
ID DIVISION.
PROGRAM-ID. SAMPLPGM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PART1 PIC 9(3) VALUE 123.
77 CUR-NAME PIC 99 COMP VALUE 0.
77 CUR-PART PIC 99 COMP VALUE 0.
01 NULLC.

02 FILLER PIC 9 COMP-3 VALUE 3.
01 LINE-A.

02 NAME-1.
03 NAME-2 OCCURS 30 PIC X.

02 PARTNUM.
03 PARTNUM1 OCCURS 10 PIC 9.

PROCEDURE DIVISION.
MOVE ’’ONES’ TO NAME-1.

448 Application Programming APIs

MOVE 6 TO CUR-NAME.
MOVE NULLC TO NAME-2 (CUR-NAME).
MOVE 4 TO CUR-PART.
MOVE NULLC TO PARTNUM1 (CUR-PART).

Field format (options 1 and 2)
All fields in option 1 and 2 output segments are defined as fixed length and fixed
position.

The data in the fields can be truncated or omitted by two methods:
v Inserting a short segment
v Placing a NULL character (X'3F') in the field

Fields are scanned left to right for a null character. The first null encountered
terminates the field. If the first character of a field is a null character, the field is
omitted (depending on the fill character used). Positioning of all fields in the
segment remains the same regardless of null characters. Fields truncated or
omitted are padded as defined to the MFS Language utility.

If ATTR=YES is specified in the MFLD definition, and if X'3F' is the first or second
byte of the attribute portion of the field, the field is omitted and the attributes
specified on the DFLD statement are used.
Related concepts:
“Output message formatting options” on page 504

Field format (option 3)
Under option 3 output, fields can be placed in their segments in any order and
with any length that conforms to the segment size restriction.

Short fields or omitted fields are padded as defined to the MFS Language utility.
Each field must be preceded by a 4-byte field prefix of the same format provided
by MFS for option 3 input fields, as shown in the following table.

Table 119. Format of an option 3 output segment

FL FO DATA

Where:

FL The length of the field, including the 4-byte field prefix. FL consists of 2
binary bytes, which require no alignment.

FO The relative offset of the field in the segment, based on the definition of
the message to the MFS Language utility. FO consists of 2 binary bytes,
which require no alignment. The relative offset of the first field defined in
the segment is 4. The relative offset of the second field is 4 plus the length
of the first field as defined to the MFS Language utility.

Errors in the contents of FL and FO cause unpredictable results.

Option 3 fields do not need to be in sequence in the output segment, but all fields
must be contiguous in the segment; that is, the field prefix of the second field must
begin in the byte beyond the first field's data. Null characters in option 3 fields
have no effect on the data transmitted to the device. They are treated as any other
nongraphic characters; that is, replaced with blanks.

Chapter 5. Message Format Service (MFS) reference 449

Device control characters are invalid in output message fields. For 3270 display
and SLU 2 terminals, the control characters HT, CR, LF, NL, and BS are changed to
null characters. For all other devices, these control characters are changed to
blanks. All other nongraphic characters (X'00' through X'3F', and X'FF') are changed
to blanks before transmission. For DPM devices, control characters are permitted if
GRAPHIC=NO has been specified.
Related concepts:
“Output message formatting options” on page 504

Device-dependent output information
Using certain options for outputting information can make the application program
device-dependent. Some options allow the application program to control certain
features of devices receiving output. Descriptions of the effects of various output
options follow.

System Control Area (SCA)

An option of the MFS Language utility allows the creation of an SCA field in the
first segment of a message or, if LPAGEs are defined, in the first segment of any or
all LPAGEs. This field allows application program control of specific device
features when the features apply to the device for which the message is destined.
The first 2 bytes of the SCA field are defined as shown in these tables:

Usage notes follow both tables.

Table 120. Valid bytes and bits for TYPE=3270, SLU 2, DPM-An, or DPM-Bn

Byte Bit Description

0 0-7 Should be 0.

1 0 Should be 1.

1 Force format write (erase device buffer and write all required
data).

2 Erase unprotected fields before write.

3 Sound device alarm.

4 Copy output to candidate printer.

5 B'0'—For 3270, protect the screen when output is sent. For DPM,
demand paging can be performed.

B'1'—For 3270, do not protect the screen when output is sent. For
DPM-B, autopaging can be performed.

6 For the partition formatted 3290: B'0'—do not erase existing
partitions. B'1'—erase all partitions before sending message. For
others, should be 0.

7 Should be 0.

450 Application Programming APIs

Table 120. Valid bytes and bits for TYPE=3270, SLU 2, DPM-An, or DPM-Bn (continued)

Byte Bit Description

Notes:

1. For the 3290 in partition format mode, the DOF on the current message is checked to see
if it is the same DOF used last. If it is, bit 6 in the SCA and DSCA operands is checked
for the erase/do not erase partitions option before the output message is sent.

2. The default for bit 6 is B'0', “do not erase”. If this bit is not specified, the output is sent
according to the partition paging option specified, and partitions that do not receive
output remain unchanged.

3. If bit 6 is set to B'1', then existing partitions will be erased and the output is sent
according to the partition paging option specified.

4. The SCA bit settings are “OR'd” to the DSCA bit settings. For example, if byte 1 bit 5 in
the DSCA for DPM-B is set to B'0' in the DSCA for DPM-B, the application program can
request autopaged output by setting the SCA value to B'1'. (This request is honored only
if present in the first segment of the first LPAGE of the output message.)

5. SCA information is sent to the remote program or ISC subsystem in a DFLD identified
by the parameter SCA. Any invalid bits for the device type are reset. The valid bits are
used.

Table 121. Valid bytes and bits for TYPE=FIDS, FIDS3, FIDS4, FIDS7, FIJP, FIPB, or FIFP

Byte Bit Description

0 0-7 Should be 0.

1 0 Should be 1.

1-2 Not applicable for FIN output devices.

3 Set “device alarm” in output message header.

4 Not applicable for FIN output devices.

5-7 Should be 0.

Notes:

1. Bits 1, 2, and 4 function only for 3270 and are not applicable to finance workstations. If
set on by the program, and the message is edited for a finance workstation, they are
ignored.

2. For TYPE=SCS1, or SCS2, the SCA parameter is ignored.

3. For TYPE=3270P, all bits except “set device alarm” are ignored.

Cursor location

An application program can set the cursor location on the screen either by setting a
cursor attribute for a field or by using a special cursor positioning field in the
output message.

Recommendation: Use the cursor attribute method because the application
program does not need to know the position of fields on a device.

Using an option of the MFS Language utility, you can define a field in an output
segment to allow the application program to request cursor positioning to a
specific line and column on the device. Depending on the device output format
used, there can be one or more such fields per LPAGE. If the field contains an
invalid number it is ignored and the cursor is positioned as requested in the device
output format.

Chapter 5. Message Format Service (MFS) reference 451

The cursor field should contain two 2-byte binary numbers (no alignment
required), the first containing the line number, the second containing the column
number. The minimum value for the line or column is 1. For 3270-An device types,
the maximum value for the line is the first parameter of the SIZE= operand; the
maximum value for the column is the second parameter of the SIZE= operand. The
following table lists the valid line and column values.

Table 122. Maximum line and column values for MFS device types

Maximum Value

MFS Device Type Line Column

FIDS (240 characters) 6 40

FIDS3 (480 characters) 12 40

FIDS4 (1024 characters) 16 64

FIDS7 (1920 characters) 24 80

3270,1 (480 characters) 12 40

3270,2 (1920 characters) 24 80

3270-An

SIZE=(12,40) (480 characters) 12 40

SIZE=(12,80) (960 characters) 12 80

SIZE=(24,80) (1920 characters) 24 80

SIZE=(32,80) (2560 characters) 32 80

SIZE=(43,80) (3440 characters) 43 80

SIZE=(27,132) (3564 characters) 27 132

SIZE=(62,160) (9920 characters) 62 160

Related concepts:
“3290 in partitioned format mode” on page 541
“Output format control for ISC (DPM-Bn) subsystems” on page 527
Related reference:
“Input message formatting options” on page 482
“Dynamic attribute modification”

Dynamic attribute modification
An option of the MFS Language utility allows an IMS application program to
dynamically modify, replace, or simulate the attributes of a device field.

This dynamic attribute modification is requested in an output message definition
by specifying ATTR=YES in an MFLD statement. MFS then reserves the first two
data bytes of the output message field for attribute definition. Errors detected in
the data of the 2-byte specification or X'3F' in the first or second attribute byte
produce the results shown in the table below.

Attributes are always sent, even if no data is sent.

When dynamic attribute modification is specified for a device field with
predefined attributes, an attribute is sent to the device for that field in every
output operation, even if the data for this device field is not included in the output
message. These attributes are used:

452 Application Programming APIs

v If the output message field has an attribute and the attribute is valid, then the
dynamic attribute modification is performed.

v If the message field is not included in the LPAGE being used or the attribute is
not valid, the predefined attribute for the device field is used.

When attribute simulation is defined, the first byte of the device field is reserved
for attribute data. The following attributes can be simulated:
v Cursor position (3604 display only)
v Nondisplayable
v High-intensity displayable
v Modified attributes

The two attribute bytes are defined in the following table.

Table 123. Definitions of the two attribute bytes.

Byte Bit Definition

0 0-1 If both bits are on, requests that the cursor be placed on the first
position of this field on the device. The first cursor-positioning
request encountered in an LPAGE series (first MFLD with cursor
attribute or cursor line/column value) that applies to a physical
page is honored; these bits must be 00 or 11.

2-7 Must be off.

1 0 Must be on.

1 1. If on, these attribute specifications are to replace the attribute
byte defined for the field.

2. If off, these attribute specifications are to be added to the
attribute byte defined for the field logical “OR” operation. A
zero in a bit position indicates that the defined attribute is to
be used (that is, if bit 2 is 0 then the field will be protected or
unprotected depending on the DFLD definition. A 1 in a bit
position indicates that the corresponding attribute is to be
used (that is, if bit 3 is 1 then the field will have the numeric
attribute.)

2 Protected

3 Numeric

4 High-intensity (forces detectable and displayable); if simulated, an
* appears in the first byte of the device field.

5 Nondisplayable (forces nondetectable); if simulated, no data is
sent regardless of other attributes.

6 Detectable (forces normal intensity).

7 Premodified; if simulated, an underscore (_) appears in the first
byte of the device field.

Notes:

1. Bits 4, 5, and 6 are incompatible. If more than one is set, bit 4 takes precedence over bits
5 and 6. Bit 5 takes precedence over bit 6.

2. If both bits 4 and 7 are simulated, an ! appears in the first byte of the device field.

Dynamic modification of attributes to detectable requires other action by the IMS
application program to make the device function properly. Detectable fields must
have a designator character and certain padding characters.

Chapter 5. Message Format Service (MFS) reference 453

For DPM, field attribute information can be passed from the IMS application
program to the remote program, but cannot be specified, unless ATTR=(YES,nn)
appears in the MFS DFLD definitions.

See the appropriate component description manual to determine which extended
attributes are available to a given terminal type.
Related reference:
“Device-dependent output information” on page 450

Dynamic modification of extended field attributes
For an application program to modify extended attribute data, the MFLD
statement must specify ATTR=nn. Any error causes the DFLD EATTR=
specification for that extended attribute byte to be used.

For modification of the extended attributes, two additional bytes per attribute must
be reserved. The values that can be specified in these extended attribute
modification bytes and the resulting values that are used are:

Specification
Value Used

X'00' Device default

Valid value
Your specification

Invalid or omitted
From EATTR= on DFLD statement

Duplicate
Last (rightmost) specification

During online execution, if ATTR=PROT is specified as a dynamic modification,
any field validation attributes defined on the DFLD statement or specified as a
dynamic modification are reset.

Restriction: Trigger fields are not supported by MFS.

The following table shows the format of the extended attribute modification bytes.

Table 124. Format of extended attribute modification bytes

ATTR 1 type ATTR 1 value ATTR 2 type ATTR 2 value ATTR n type
ATTR n
value

1 2 3 2xn_2 2xn_1

Types

Hexadecimal specifications:

01 Validation replacement

02 Validation addition

03 Field outlining replacement

04 Field outlining addition

05 Input control replacement

06 Input control addition

454 Application Programming APIs

Field outlining applies to 3270 display devices, and to printers defined as 3270P or
SCS1 that support the 3270 Structured Field and Attribute Processing option, and
support the Extended Graphics Character Set (EGCS).

Character specifications (the letter C indicates character):

C1 Highlighting

C2 Color

C3 Programmed Symbols

Values

Field validation in hexadecimal:

Bit Meaning

0 to 4 Reserved

5 Mandatory fill

6 Mandatory field

7 Reserved

For field highlighting:

Character
Meaning

X'00' Device default

X'F1' Blink

X'F2' Reverse video

X'F4' Underline

Field color (seven-color models only):

Character
Meaning

X'00' Device default

X'F1' Blue

X'F2' Red

X'F3' Pink

X'F4' Green

X'F5' Turquoise

X'F6' Yellow

X'F7' Neutral

Field outlining in hexadecimal:

Bit Meaning

0 to 3 Reserved

4 Left line

5 Over line

Chapter 5. Message Format Service (MFS) reference 455

6 Right line

7 Under line

X'00' Default (no outline)

Input control (of DBCS/EBCDIC mixed fields) in hexadecimal:

Bit Meaning

0 to 6 Reserved

7 SO/SI creation

X'00' Default (no SO/SI creation)

For the programmed symbols, valid local ID values are in the range X'40'—X'FE',
or X'00' for the device default.

Ways to specify the binary validation attribute type and value in COBOL are
shown in the following code example.
VAL_REP_MFILL PIC 9(3) COMP VALUE 260 (replace-mandatory fill)
*
VAL_REP_MFLD PIC 9(3) COMP VALUE 258 (replace-mandatory field)
*
VAL_ADD_MFILL PIC 9(3) COMP VALUE 516 (add-mandatory fill)
*
VAL_ADD_MFLD PIC 9(3) COMP VALUE 514 (add-mandatory field)
*

Ways to specify field outlining attributes, input control types, and values in
COBOL are shown in the following code example.

01 BINVALUE.
02 VAL0000 PIC S999 COMP VALUE +0.
02 VAL0000X REDEFINES VAL0000.

03 FILLER PIC X.
03 VAL00 PIC X.

* (NO FIELD OUTLINE)

02 VAL0001 PIC S999 COMP VALUE +1.
02 VAL0001X REDEFINES VAL0001.

03 FILLER PIC X.
03 VAL01 PIC X.

* (UNDERLINE)

02 VAL0002 PIC S999 COMP VALUE +2.
02 VAL0002X REDEFINES VAL0002.

03 FILLER PIC X.
03 VAL02 PIC X.

* (RIGHTLINE)

02 VAL0003 PIC S999 COMP VALUE +3.
02 VAL0003X REDEFINES VAL0003.

03 FILLER PIC X.
03 VAL03 PIC X.

* (RIGHTLINE & UNDERLINE)

02 VAL0004 PIC S999 COMP VALUE +4.
02 VAL0004X REDEFINES VAL0004.

03 FILLER PIC X.
03 VAL04 PIC X.

* (OVERLINE)

02 VAL0005 PIC S999 COMP VALUE +5.
02 VAL0005X REDEFINES VAL0005.

03 FILLER PIC X.
03 VAL05 PIC X.

* (OVERLINE & UNDERLINE)

456 Application Programming APIs

02 VAL0006 PIC S999 COMP VALUE +6.
02 VAL0006X REDEFINES VAL0006.

03 FILLER PIC X.
03 VAL06 PIC X.

* (OVERLINE & RIGHTLINE)

02 VAL0007 PIC S999 COMP VALUE +7.
02 VAL0007X REDEFINES VAL0007.

03 FILLER PIC X.
03 VAL07 PIC X.

* (OVERLINE & RIGHTLINE
* & UNDERLINE)

02 VAL0008 PIC S999 COMP VALUE +8.
02 VAL0008X REDEFINES VAL0008.

03 FILLER PIC X.
03 VAL08 PIC X.

* (LEFTLINE)

02 VAL0009 PIC S999 COMP VALUE +9.
02 VAL0009X REDEFINES VAL0009.

03 FILLER PIC X.
03 VAL09 PIC X.

* (LEFTLINE & UNDERLINE)

02 VAL000A PIC S999 COMP VALUE +10.
02 VAL000AX REDEFINES VAL000A.

03 FILLER PIC X.
03 VAL0A PIC X.

* (LEFTLINE & RIGHTLINE)

02 VAL000B PIC S999 COMP VALUE +11.
02 VAL000BX REDEFINES VAL000B.

03 FILLER PIC X.
03 VAL0B PIC X.

* (LEFTLINE & RIGHTLINE
* & UNDERLINE)

02 VAL000C PIC S999 COMP VALUE +12.
02 VAL000CX REDEFINES VAL000C.

03 FILLER PIC X.
03 VAL0C PIC X.

* (LEFTLINE & OVERLINE)

02 VAL000D PIC S999 COMP VALUE +13.
02 VAL000DX REDEFINES VAL000D.

03 FILLER PIC X.
03 VAL0D PIC X.

* (LEFTLINE & OVERLINE
* & UNDERLINE)

02 VAL000E PIC S999 COMP VALUE +14.
02 VAL000EX REDEFINES VAL000E.

03 FILLER PIC X.
03 VAL0E PIC X.

* (LEFTLINE & OVERLINE
* & RIGHTLINE)

02 VAL000F PIC S999 COMP VALUE +15.
02 VAL000FX REDEFINES VAL000F.

03 FILLER PIC X.
03 VAL0F PIC X.

* (BOX)

Examples

The following examples show the use of the EATTR= and ATTR=(,nn) operands:
AX DFLD EATTR=(VMFILL,HUL),ATTR=(NUM,HI)
AY MFLD AX,ATTR=(,2)

Chapter 5. Message Format Service (MFS) reference 457

The EATTR= operand of the DFLD statement requests that the specified field must
be completely filled with data, high intensity, and underlined. The ATTR= operand
of the DFLD statement requests that the specified field be numeric and high
intensity.

Specifying the ATTR=(,2) operand indicates the application program can
dynamically modify the two extended attributes specified in the EATTR= operand.
If this is specified, the LTH= value on the MFLD statement must be increased by 4
bytes for the modified attribute bytes. The application program can dynamically
modify the validation and the extended highlighting attributes. The extended
attributes of color and programmed symbols cannot be dynamically modified,
because they were not specified in the EATTR= operand. The existing 3270
attributes cannot be dynamically modified, because ATTR=YES was not specified
on the MFLD statement.

To dynamically modify the extended highlighting to blinking, and add mandatory
field validation when data is entered into the field, the extended attribute types
and values shown in the following table must be placed in the field referenced by
the MFLD “AY” in the preceding example.

Table 125. Extended attribute types and values for COBOL

ATTR 1 type ATTR 1 value ATTR 2 type ATTR 2 value Field data

C1 F1 02 02 data

0 1 2 3 4–n

Specification of color and programmed symbols, if present, is ignored. Regardless
of the number of attribute modification bytes specified, MFS sends the number of
extended attributes specified in the EATTR=operand of the DFLD.

Because the validation addition type (X'02') is specified, rather than the validation
replacement type (X'01'), the change to the validation attribute byte is an addition
rather than a replacement.
BX DFLD EATTR=(CD,HD,PC’Z’),ATTR=(PROT)
BY MFLD BX,ATTR=(YES,3)

The EATTR= operand of the DFLD statement requests a field with a programmed
symbol buffer local ID of “Z” and the protected attribute. If no dynamic
modification by an IMS application program occurs, the color and highlighting
device defaults are used. Because of the specification of ATTR=(YES,3) in this
example, the color, extended highlighting, programmed symbol buffer local ID,
and existing 3270 attributes can be dynamically modified.

You can dynamically modify the color, extended highlighting, and the 3270
attribute bytes, while keeping the programmed symbol local ID (PC'Z') as specified
on the DFLD statement. For example, to dynamically modify the color to pink, the
extended highlighting to reverse video, and the 3270 attribute bytes to numeric
and unprotected, use the attribute modification bytes for fields referenced by
MFLD “BY” as shown in the following table.

Table 126. Example of dynamically modified attribute bytes

Existing 3270
ATTR mods

ATTR 1
type

ATTR 1
value

ATTR 2
type

ATTR 2
value

ATTR 3
type

ATTR 3
value

Field
data

00 D0 C2 F3 C1 F2 40 40 data

0 1 2 3 4 5 6 7 8–n

458 Application Programming APIs

With byte 1, bit 1 of the existing 3270 attribute modification bytes on, IMS replaces
the existing 3270 attribute byte rather than adding to it. This changes the field to
unprotected and specifies the numeric attribute. The third attribute has a type of
X'40' (an invalid type) specified, which causes IMS to use the DFLD specification
for programmed symbols.
Related reference:
“Dynamic modification of DBCS/EBCDIC mixed data” on page 460

Dynamic modification of EGCS data
EGCS data can also be dynamically modified to permit EBCDIC or EGCS data to
be mapped to a particular field on the 3270 display.

With this function:
v You can enter EBCDIC or EGCS data.
v The application program can receive EBCDIC or EGCS data.
v EBCDIC or EGCS data can be passed to an SLU P remote program or to an ISC

subsystem.

If ATTR=(,nn) is specified in the MFLD statement and a programmed symbol
attribute is specified in the corresponding DFLD statement, the application
program can modify the field programmed symbol attribute. Dynamic modification
of the programmed symbol attribute for EGCS requires two additional bytes. These
additional bytes precede the MFLD data and must be included in the MFLD LTH=
specification.

The IMS application program can modify the DFLD programmed symbol attribute
if all the following conditions are met:
v The DFLD specifies EATTR=PX'hh', PC'c', EGCS'hh' or EGCS.
v The corresponding MFLD statement specifies ATTR=(,nn), where nn is a value

from 1 through 4.
v The application program includes 2 × nn additional bytes preceding the data

field.
v One set of two attribute bytes has an X'C3' as its first byte and a valid value

(X'00' or X'40'—X'FE') as its second byte.

The following table illustrates what the MFS transmits in the value byte of the
programmed symbol attribute type, if the DFLD statement does or does not specify
a programmed symbol attribute, and the IMS application program does or does
not modify it.

Table 127. Attribute type value byte contents

Application Program
Programmed Symbol
Attribute Bytes of X
and: C3 EATTR= ATTR= EATTR=

Programmed symbol
specified

Programmed symbol
default

Not specified

X'40_FE'1 Send X'40_FE' Send X'40_FE' Send no attribute

Default X'00'1 Send X'00' Send X'00' Send no attribute

Chapter 5. Message Format Service (MFS) reference 459

Table 127. Attribute type value byte contents (continued)

Application Program
Programmed Symbol
Attribute Bytes of X
and: C3 EATTR= ATTR= EATTR=

Not specified 2 Send programmed
symbol DFLD
specification

Send no attribute N/A

Omitted or Invalid 3 Send programmed
symbol DFLD
specification

Send X'00' Send no attribute

Notes:

1. ATTR=nn is specified on at least one MFLD statement that maps to this DFLD statement.
The IMS application program specifies a programmed symbol attribute of X'40' to X'FE'.

2. ATTR=nn is not specified on any MFLD statement that maps to this DFLD statement.

3. ATTR=nn is specified on at least one MFLD statement that maps to this DFLD statement.
The application program omits specifying this attribute, or the specified attribute is not
X'00' or X'40' to X'FE'.

Dynamic modification of DBCS/EBCDIC mixed data
Programmed symbols and input control attribute bytes can be dynamically
modified to permit EBCDIC or EGCS data to be mapped to a particular field on
the 3270 display. DBCS/EBCDIC mixed data can also be dynamically modified.
DBCS is a subset of EGCS, so the EGCS field can contain DBCS data, as shown in
the following figure.

The IMS application program can make a field EBCDIC, EGCS, or DBCS/EBCDIC
mixed when all of the following conditions are satisfied:
v One of the following is specified on the DFLD statement:

EATTR=(EGCS,MIXD)
EATTR=(EGCS’00’,MIX)
EATTR=(EGCS’00’,MIXD)

A DBCS keyword does not exist; DBCS fields are specified using the EGCS
keyword. The initial attribute must specify an EGCS field, a DBCS/EBCDIC
mixed field, or an EBCDIC field.

Figure 29. Dynamic modification of a DBCS/EBCDIC mixed field

460 Application Programming APIs

v The corresponding MFLD statement specifies ATTR=(,nn) where nn is 2 or
greater.

v The application program contains 2 × nn additional bytes preceding the data
field.
When nn=2, the initial attribute is changed as shown in the following table
according to the value of the two attribute byte sets (4 bytes) specified in front
of the data field by the application program.

Table 128. Dynamic modification of a DBCS/EBCDIC mixed field

Attribute Byte EBCDIC EGCS Mixed

40404040 EBCDIC EGCS Mixed

05014040 Mixed Mixed Mixed

0501C3F8 EGCS EGCS EGCS

C3F84040 EGCS EGCS EGCS

C3F80501 Mixed Mixed Mixed

0500C3F8 EGCS EGCS EGCS

C3000501 Mixed Mixed Mixed

C3000500 EBCDIC EBCDIC EBCDIC

When the initial attribute specifies an EGCS field and the application program
specifies dynamic modification of the input control attribute to a DBCS/EBCDIC
mixed field, MFS replaces the value of the programmed symbol for which the
EGCS field is specified with the device default.
Related reference:
“Dynamic modification of extended field attributes” on page 454

Specification of message output descriptor name
Output messages destined for MFS terminals are formatted using a message
output descriptor (MOD).

Which MOD IMS uses can be specified within the output call, either insert (ISRT)
or purge (PURG). Both ISRT and PURG allow you to specify an output MOD name
parameter on the call that provides a segment of an output message.

When the output MOD name parameter is specified, IMS uses the name supplied
to select the message output descriptor. If the call is directed to the TP PCB or
alternate response PCB, IMS updates the MESSAGE OUTPUT DESCRIPTOR
NAME field of the TP PCB with the name supplied in the output call. The MOD
name of all output messages inserted on an alternate PCB that did not explicitly
specify a MOD name is set to the previous MOD name.

Which MOD IMS uses to format the message depends on the name specified:

Name Specified
Descriptor Used

Valid output MOD name
Message output descriptor named by output MOD name

Eight blanks
IMS default message output descriptor (3270 or SLU 2 only—other devices
use IMS basic edit for output)

Chapter 5. Message Format Service (MFS) reference 461

Invalid output MOD name
IMS error default message output descriptor

If the output MOD name parameter is not specified, IMS formats the message
using the MOD named in the MESSAGE OUTPUT DESCRIPTOR NAME field of
the I/O PCB.

MFS bypass for the 3270 or SLU 2
IMS MFS allows the IMS application program to bypass MFS formatting of input
and output messages.

With this option, the IMS application program can load programmed symbol
buffers, or send a device-dependent data stream to format and update the 3270
display, or write a message to a 3270 printer. The bypass can be used only on the
SLU 2, and 3270 devices. Optionally, the IMS application program can examine an
input message with the attention identification (AID) byte, cursor address, SBA
orders, and buffer addresses as received from the display. For non-SNA VTAM
transmissions, the data to be sent must be equal to or less than the value specified
in the system definition OUTBUF parameter. Data sent to a printer using the MFS
bypass is restricted to 4 KB.

MFS recognizes two special message output descriptor (MOD) names: DFS.EDT
and DFS.EDTN.

Output messages bypass MFS formatting only if DFS.EDT or DFS.EDTN is
supplied as the MOD name parameter of the application program CALL statement
IMS system messages, IMS error messages, application program messages with no
MOD name, and message switches are always formatted by MFS (using the
IMS-supplied formats).

When MFS is bypassed on output, the application program is responsible for
constructing the entire 3270 data stream, beginning with the command code and
ending with the last data byte. An exception to this could be 3270 output using the
MFS bypass and destined to a printer. The hexadecimal EBCDIC command codes
for use with the 3271/3274 controllers are:

Command
3271/3274

Erase All Unprotected
6F

Erase/Write
F5

Erase/Write Alternate
7E

Read Buffer
F2

Read Modified
F6

Read Modified All
6E

Write F1

Write Structured Field
F3

462 Application Programming APIs

The user-written application program has two ways to send output to printers:
v By providing the command code and WCC character in the application program

and by setting bit 0 to 1 (X'80') in the Z2 field of the message segment to show
that the appropriate command is provided.

v By allowing IMS to provide the command code and other characters. However,
to print less than the maximum line length, insert new line (NL) characters at
the appropriate places in the data stream. This method is the default.

Specifying input forms for MFS bypass:

After using the MFS bypass, the IMS application program must accept the input in
one of two forms depending on the MOD name specified for the output message.

The two forms of input are:
v MODNAME=DFS.EDT edits the input data.
v MODNAME=DFS.EDTN performs no editing on the input data.

MODNAME=DFS.EDT

The AID and the cursor address are removed from the data stream and any SBA or
start field sequences are replaced with blanks. In addition, the basic input edit
routine performs the editing. If the AID code received is a CLEAR, PA2, PA3,
PFK12, or selector pen attention, existing IMS functions are performed. If a PA1 is
received, IMS performs the same function as for PA2 (that is, the next output
message is sent if one is available).

MODNAME=DFS.EDTN

If the transaction is in conversational mode, all input is passed to the application
as received from the terminal. If the transaction is not in conversational mode, the
transaction code must be positioned to precede the AID character of the data
stream received from the terminal.

The password should never be passed to the IMS application program. The basic
editing functions are performed on the destination and password fields only. If the
password appears within parentheses immediately after the transaction code, basic
edit removes the password. No editing is performed on the remainder of the data.
Existing IMS functions are bypassed for AID codes resulting from a CLEAR, PA1,
PA2, PA3, or selector pen attention. PFK12 causes a copy to be performed if it is
allowed.

Position the transaction code using the physical terminal input edit exit, or cause
IMS to supply it using the conversational or preset destination mode.

If the terminal is in conversational mode, the message is sent to the application
program in the conversation. If the terminal is in preset mode, the transaction code
is added to the beginning of the message and the message is sent to the
destination established by the /SET command. Therefore, while in preset mode, a
slash (/) as the first character of the input data is not considered an IMS
command. To be recognized as a command, /RESET must immediately follow the
cursor address in the input data stream. To do this, enter the /RESET command
from an unformatted screen (no fields defined for the screen). If the screen is
formatted (fields defined for the screen), press the clear key to unformat the screen.
However, an application program must receive the clear AID byte and write a data
stream that does not format the screen.

Chapter 5. Message Format Service (MFS) reference 463

Example:
Data stream = F5C3, erases the 3270 buffer.
Data stream = F5C3114040, erases the 3275 buffer.

Entering: The /RESET command
resets preset mode.

If /RESET is received from an unformatted screen, while bypassing MFS and basic
edit (MOD name is DFS.EDTN) and in preset mode, the input is treated as a
command, and the terminal is taken out of preset mode. You are responsible for
sending a data stream that leaves the screen unformatted.

If the transaction code and password (if required) are entered with the input
message and the terminal is not in conversational or preset mode, your physical
terminal input edit exit routine must be included in the IMS system definition. The
physical terminal input edit routine gains control before IMS destination and
security checking and must modify the input to place the transaction code and
password (if required) in front of the AID code.

If the OPTIONS keyword of the IMS system definition TERMINAL or TYPE macro
specifies that the keyboard is to remain locked, and the MFS bypass with MOD
name DFS.EDTN is used, the application program must assume responsibility for
unlocking the 3270 keyboard and resetting the MDT flags.

After use of the MFS bypass, the next output message is formatted by MFS if the
MOD name is not supplied or the MOD name supplied is not DFS.EDT or
DFS.EDTN.

MFS bypass is intended primarily for subsystems executing under IMS and is not
recommended for normal application usage. If IMS application programs deal with
3270 data streams, they become device-dependent, which complicates the
application development process.

When a read command is executing in the MFS bypass, the output message
containing the read command is dequeued or re-enqueued when the input is
received, depending on the option (PAGDEL/NPGDEL) specified on the
TERMINAL macro during system definition.

MFS bypass for the SLU 2 (3290) with partitioning:

When the MOD specified in an application is either DFS.EDT or DFS.EDTN, the
output message generated can cause an SLU 2 terminal to function in partitioned
mode. Using DFS.EDTN, a conversational application can send a Query and
receive a Query reply.

For output, the application program must supply the Create Partition data stream
within the output message, along with the data for the partitions. Also, the SLU 2
Device-Dependent Module sets Change Direction (CD) on non-last conversational
output messages. This allows Reads and Queries to be sent in Write Structured
Fields data streams.

A Query Reply input can be processed only if the previous MOD specified is
DFS.EDTN. A Query Reply input can be received but does not have a transaction
code in the data stream.

464 Application Programming APIs

For partitions 01 through 0F, the X'88' byte is followed by a 2-byte field that is not
used. If a X'80' byte follows this field, then the next byte is the PID byte (X'01'
through X'0F'). For partition 00, the input will have the same format as input data
from a non-partitioned SLU 2.

For input with DFS.EDT or DFS.EDTN, the first AID byte, X'88', causes the proper
decoding of the second AID byte. Depending on the second AID byte, one of the
following occurs:
v If the second AID byte decoded is X'80', a third AID byte is decoded. The data

stream following that AID byte is passed to the application program as follows:
– Using basic edit, if DFS.EDT is specified
– As a complete data stream, if DFS.EDTN is specified

v If the second AID byte is not X'80', input is passed only if the MOD specified in
the application is DFS.EDTN. When DFS.EDTN is specified, the complete data
stream starting with the X'88' AID byte is passed to the application program.

DIV statement:

The DIV statement defines device formats within a DIF or DOF. The formats are
identified as input, output, or both input and output, and can consist of multiple
physical pages. For DEV TYPE=SCS1, SCS2, or DPM-AN, two DIV statements can
be defined: DIV TYPE=OUTPUT and DIV TYPE=INPUT. For all other device
types, only one DIV statement per DEV is allowed.

Format for DEV TYPE=SCS1, or SCS2 and DIV TYPE=INPUT

►►
label

DIV
TYPE = INPUT MSG

, OPTIONS = DPAGE

►◄

Format for DEV TYPE=3270 or 3270-An

►►
label

DIV
INOUT

TYPE = OUTPUT

►◄

Format for DEV TYPE=FIN

►►
label

DIV
TYPE = INPUT MSG

, OPTIONS = DPAGE

►◄

Format for DEV TYPE=SCS1, SCS2, 3270P, FIDS, FIDS3, FIDS4, FIDS7, FIJP,
FIPB, or FIFP and DIV TYPE=OUTPUT

►►
label

DIV
OUTPUT

TYPE = ──── , COMPR = FIXED
SHORT
ALL

►◄

Chapter 5. Message Format Service (MFS) reference 465

Format for DEV TYPE=DPM-An

►►
label

DIV
INPUT A

TYPE = OUTPUT B

►◄

A:

,NOSPAN
, RCDCTL = ()

256
nnnnn

KEEP
, NULL = DELETE

►

►
FLDEXIT ,SEGEXIT ,MSG ,NODNM

, OPTIONS = ()
NOFLDEXIT ,NOSEGEXIT ,DPAGE

B:

256 ,SPAN
, RCDCTL = ()

nnnnn ,NOSPAN

►

►
FIXED ,7

, HDRCTL = ()
VARIABLE ,nn

►

►
MSG ,SIM

,OPTIONS=()
DPAGE ,NOSIM2 ,DNM
PPAGE

, COMPR = FIXED
SHORT
ALL

Format for DEV TYPE=DPM-Bn

►►
label

DIV
INPUT A

TYPE = OUTPUT B

►◄

A:

,NOSPAN
, RCDCTL = ()

256
nnnnn

►

►
FLDEXIT ,SEGEXIT ,MSG ,DNM

, OPTIONS = ()
NOFLDEXIT ,NOSEGEXIT ,DPAGE ,NODNM

►

466 Application Programming APIs

►
, DPN = dfldname , RDPN = dfldname , RPRN = dfldname

:

,NOSPAN
, RCDCTL = ()

256
nnnnn

►

►
,MSG ,SIM ,DNM

, OPTIONS = ()
,DPAGE ,NOSIM2 ,NODNM
,PPAGE

►

►
, DPN = ('literal')

,dfldname

►

►
, PRN = ('literal')

,dfldname

►

►
, RPRN = ('literal')

,dfldname

►

►
X'hh' ,MIX

, OFTAB = ()
C'c' ,ALL

, COMPR = FIXED
SHORT
ALL

Parameters

label
A one- to eight-character alphanumeric name that is specified to uniquely
identify this statement.

TYPE=
This describes the format as input, output, or both.

INOUT
Describes an input and output format.

INPUT|OUTPUT
Describes an input-only format (INPUT) or an output-only format
(OUTPUT). Certain DEV statement keywords can be used. For example:
v Specifying WIDTH=80 for DEV TYPE=SCS1 indicates that fields can be

printed in columns 1 through 80 on output and received from columns 1
through 80 on input.

v Specifying WIDTH=80 for DEV TYPE=SCS2 indicates that both the card
reader and card punch have the same number of punch positions.

v Specifying WIDTH=80 and HTAB=(SET,5) for DEV TYPE=SCS1 indicates
that fields can be printed in columns 5 through 80 on output and

Chapter 5. Message Format Service (MFS) reference 467

received from columns 5 through 80 on input. In this case DFLD
POS=(1,5) or POS=5 on input is the same as if you specified column 1
and a left margin position at 1.
You enter data the same way, regardless of where the left margin is
currently set.

RCDCTL=
Creates record definitions even if RCD statements are used in the same format
definition. RCDCTL is valid only if MODE=RECORD is specified on the DEV
statement.

The first data field is the first field of the message for OPTIONS=MSG. The
first data field is the first field of the DPAGE or PPAGE for OPTIONS=DPAGE
and PPAGE, respectively. If the first data field does not fit in the same record
as the output message header, and if OPTIONS=DPAGE or PPAGE has been
specified, the first data record will be sent in the next transmission. The output
message header will be transmitted by itself (as is always the case for
OPTIONS=MSG).

256
The maximum length of an input or output transmission. The value 256 is
valid only for DEV TYPE=DPM-An or DPM-Bn.

nnnnn
The maximum length of an input or output transmission. A value is valid
only for DEV TYPE=DPM-An or DPM-Bn. The length cannot be greater
than 32000 or less than the length of the message output header.

When TYPE=OUTPUT is specified, nnnnn is less than or equal to the
output buffer size specified in the OUTBUF= macro at IMS system
definition. If nnnnn is greater than the OUTBUF= value specified, one
record can require multiple output transmissions and can produce
undesirable results in the remote program. If fields do not exactly fit in the
defined records, and NOSPAN has been specified, records might not be
completely filled.

SPAN
Specifies that fields can span records.

When TYPE=OUTPUT is specified you can specify SPAN only with DEV
TYPE=DPM-An. Fields can span a record boundary but not a PPAGE
boundary. The remote program must include logic to associate the partial
fields or deal with them separately.

NOSPAN
Specifies that fields cannot span records. Every field is contained within a
record and no field has a length greater than the value specified. NOSPAN
is the default.

NULL=
Specifies how MFS is to handle trailing nulls. NULL= is valid only for DEV
TYPE=DPM-An and TYPE=INPUT.

KEEP
Directs MFS to ignore trailing nulls.

DELETE
Directs MFS to search for and replace trailing nulls. MFS searches input
message fields for trailing nulls or for fields that are all nulls, and replaces
the nulls with the fill character specified in the message definition.

468 Application Programming APIs

OPTIONS=
Specifies formatting and mapping of data.

DNM
Specifies the data name.
v For TYPE=INPUT:

DNM can be specified only for DEV TYPE=DPM-Bn. A specific
DPAGE is selected to map the current or only data transmission
when the DPAGE data name is supplied as the DSN parameter in the
message header, and the DPAGE data name matches a defined
DPAGE data name. If these conditions are not met, the last defined
DPAGE name is used to map the data, unless the DPAGE is defined
as conditional.

v For TYPE=OUTPUT:
– DNM can be specified for DEV TYPE=DPM-An or DPM-Bn.

For DEV TYPE=DPM-An, use DNM with the FORS keyword on the
DEV statement to specify a literal in the message header. See the topic
"Message Processing" in IMS Version 14 Application Programming. This
parameter is optional.
For DEV TYPE=DPM-Bn, MFS includes the following in the DD
header:
- The FMT name if OPTIONS=MSG
- The DPAGE name if OPTIONS=DPAGE
- The PPAGE name if OPTIONS=PPAGE

NODNM
Specifies that there is no data name.
v For TYPE=INPUT:

NODNM can be specified for either DEV TYPE=DPM-An or
DPM-Bn. MFS selects a specific DPAGE by performing a conditional
test on the data received and the COND= parameter.

v For TYPE=OUTPUT:
NODNM can be specified only for DEV TYPE=DPM-Bn. If NODNM
is specified, no data structure name (DSN) is supplied in the DD
header.

DPAGE
Specifies different ways of receiving and transmitting data, depending on
the device type and whether TYPE=INPUT or TYPE=OUTPUT:
v For TYPE=INPUT:

– For SCS1, SCS2, or FIN, or for DEV TYPE=DPM-An or DPM-Bn,
DPAGE specifies that an input message can be created from multiple
DPAGEs.
If multiple DPAGE input is not requested in MFS definitions,
messages cannot be created from more than one DPAGE.
If a single DPAGE is transmitted and contains more data than defined
for the DPAGE selected, or multiple pages are transmitted, the input
message is rejected and an error message is sent to the other
subsystem.

v For TYPE=OUTPUT:
For DEV TYPE=DPM-An or DPM-Bn, DPAGE specifies that IMS
transmits all DFLDs that are grouped in one page together. The
logical page is transmitted in one or more records. If PPAGE

Chapter 5. Message Format Service (MFS) reference 469

statements are defined with the DPAGE, each PPAGE statement
begins a new record. An additional logical page is sent when a
paging request is received from the remote program. Each logical
page is preceded by an output message header, and the label on the
DPAGE is placed in the header. For DEV TYPE=DPM-Bn, the data
structure name is optional in the DD header and depends on the
specification of DNM or NODNM.

FLDEXIT
Specifies that the exit routine in the MSG definition MFLD is to be called
for DEV TYPE=DPM-An or DPM-Bn and TYPE=INPUT.

FLDEXIT is the default.

This parameter is valid only when DEV TYPE=DPM-An or DPM-Bn and
TYPE=INPUT.

NOFLDEXIT
Specifies that the exit routine in the MSG definition MFLD is to be
bypassed.

MSG
Specifies different ways of creating and transmitting messages, depending
on the device and whether TYPE=INPUT or TYPE=OUTPUT:
v For TYPE=INPUT:

For DEV TYPE=SCS1, SCS2, or FIN, or for DEV TYPE=DPM-An or
DPM-Bn, MSG specifies that an input message can be created from a
single DPAGE.

v For TYPE=OUTPUT:
For DEV TYPE=DPM-An or DPM-Bn and TYPE=OUTPUT, MSG is
the default and specifies that IMS transmits all the DFLDs within a
message together as a single message group. The message is
preceded by an output message header. All DFLDs are transmitted.
For DEV TYPE=DPM-Bn, the data structure name is optional in the
header.

PPAGE
Specifies that IMS transmits the DFLDs that are grouped in one
presentation page (PPAGE) together in one chain. PPAGE is valid only
when DEV TYPE=DPM-An or DPM-Bn and TYPE=OUTPUT. The
presentation page is transmitted in a group of one or more records. An
additional presentation page is sent when a paging request is sent to IMS
from the remote program. Each presentation page is preceded by an output
message header, and the label on the PPAGE statement is placed in the
header. For DEV TYPE=DPM-Bn, the data structure name is optional in the
DD header and depends on the specification of DNM or NODNM.

SEGEXIT
Specifies that the exit routine in the MSG definition SEG is to be called for
DEV TYPE=DPM-An or DPM-Bn and TYPE=INPUT. SEGEXIT is the
default.

This parameter is valid only when DEV TYPE=DPM-An or DPM-Bn and
TYPE=INPUT.

NOSEGEXIT
Specifies that the exit routine in the MSG definition SEG is to be bypassed.

SIM
Specifies that MFS is to simulate attributes. This is valid only when DEV

470 Application Programming APIs

TYPE=DPM-An or DPM-Bn and TYPE=OUTPUT. SIM indicates that MFS
is to simulate the attributes specified by the IMS application program and
place the simulated attributes in corresponding DFLDs that are defined
with ATTR=YES or YES,nn. The first byte of the field is used for the
simulated attributes.

If the MFLD does not supply 3270 attribute information (by means of the
ATTR=YES or YES,nn operand) for the corresponding DFLD specifying
ATTR=YES or YES,nn, a blank is sent in the first byte of the field. The
application designer of the remote program or ISC subsystem is
responsible for interpreting the simulated attribute within the remote
program or ISC subsystem.

SIM is the default of SIM/NOSIM2.

NOSIM2
Specifies that MFS sends a bit string that is 2 bytes long to the remote
program or subsystem. This bit string is sent exactly as received from the
IMS application program. 3270 extended bytes, if any (ATTR=YES,nn), are
always sent as received from the application program and follow the
2-byte string of 3270 attributes.

If the MFLD does not supply attribute information, binary zeros are sent in
the 2 bytes preceding the data for the field.

For more information on the ATTR parameter on the MFLD statement, see
MFS Language utility (DFSUPAA0) (System Utilities).

HDRCTL=
Specifies, for DEV TYPE=DPM-An and DIV TYPE=OUTPUT only, the
characteristics of the output message header.

FIXED
Specifies that a fully padded output message header is to be sent to the remote
program. The structure of the fixed output message header is the same for all
DPM output messages that are built using this FMT definition. The base DPM
output message header has a length of 7, and includes the version ID.

VARIABLE
Specifies that MIDNAME and DATANAME have trailing blanks omitted and
their length fields adjusted accordingly. If MIDNAME is not used, neither the
MIDNAME field nor its length is present.

nn Specifies the minimum length of the header, that is, the base header without
MFS fields. The default is 7, which is the length of the base message header for
DPM. Specifying other than 7 can cause erroneous results in the remote
program.

The parameters RDPN=, DPN=, PRN=, and RPRN= refer to both the ISC ATTACH
function management header and the equivalent ISC SCHEDULER function
management header.

RDPN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return
destination process name (RDPN) to be supplied in the input message MFLD
referencing this dfldname. If dfldname is not specified, no RDPN is supplied in
the input message.

DPN=
For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use this
literal as the DPN in the output ATTACH message header. literal cannot exceed

Chapter 5. Message Format Service (MFS) reference 471

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_mfslang.htm#ims_mfslang

eight characters, and must be enclosed in single quotes. If the dfldname is also
specified, the data supplied in the MFLD referencing this dfldname is used as
the DPN in the output ATTACH message header. If no output message MFLD
reference to the dfldname exists, literal is used. If the data in the MFLD
referencing the dfldname is greater than eight characters, the first eight
characters are used.

PRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested
primary resource name (PRN) to be supplied in the input message MFLD
referencing this dfldname. If the dfldname is not specified, no PRN is supplied in
the input message to the application program.

For DIV TYPE=OUTPUT, the 'literal' specification requests MFS to use literal as
the PRN in the output ATTACH message header. literal cannot exceed eight
characters and must be enclosed in single quotes. If the dfldname is also
specified, the data supplied in the MFLD referencing this dfldname is used as
the PRN in the output ATTACH message header. If no output message MFLD
reference to the dfldname exists, 'literal' is used. If the data in the MFLD
referencing the dfldname is greater than eight characters, the first eight
characters are used.

RPRN=
For DIV TYPE=INPUT, the dfldname specification permits the suggested return
primary resource name (RPRN) to be supplied in the input message MFLD
referencing this dfldname. If dfldname is not specified, no RPRN is supplied in
the input message to the application program.

For DIV TYPE=OUTPUT, 'literal' specification requests MFS to use literal as the
suggested return primary resource name (RPRN) in the output ATTACH
message header. literal cannot exceed 8 characters and must be enclosed in
single quotes. If the dfldname is also specified, the data supplied in the MFLD
referencing this dfldname is used as the RPRN in the output ATTACH message
header. If no output message MFLD reference to the dfldname exists, 'literal' is
used. If the data in the MFLD referencing the dfldname is greater than 8
characters, the first 8 characters are used.

OFTAB=
Directs MFS to insert output field tab separator characters in the output data
stream for the message. If OPTIONS=DNM and OFTAB, then the OFTAB
character is placed in the DD header and an indicator is set to MIX or ALL. If
OPTIONS=NODNM, then no DD header is sent.

X'hh'
Specifies a hexadecimal character (hh) to be used as the output field tab
separator character. X'3F' and X'40' are invalid.

C'c'
Specifies a character (c) to be used as the output field tab separator
character. You cannot specify a blank for the character (C' ').

The character specified cannot be present in the data stream from the IMS
application program. If it is present, it is changed to a blank (X'40').

If an output field tab separator character is defined, either MIX or ALL can
also be specified. The default is MIX.

MIX
Specifies that the output field tab separator character is inserted into each
individual field with no data or with data that is less than the defined
DFLD length.

472 Application Programming APIs

ALL
Specifies that the output field tab separator character is inserted into all
fields, regardless of data length.

COMPR=
Directs MFS to remove trailing blanks from short fields, fixed-length fields, or
all fields presented by the application program.

For DPM-An devices, trailing blanks are removed from the end of a segment if
all of the following are specified:
v FILL=NULL or FILL=PT
v GRAPHIC=YES for the current segment being mapped
v OPT=1 or OPT=2, in the MSG segment

If these conditions are met, trailing blanks are replaced as follows:

FIXED
Specifies that trailing blanks from fixed-length fields are replaced by nulls.

SHORT
Specifies that trailing blanks from fields shortened by the application are
replaced by nulls.

ALL
Specifies that trailing blanks from all fields are replaced by nulls.

The trailing nulls are compressed at the end of the record. For more
information on the FILL= operand of the MFLD statement, see MFS Language
utility (DFSUPAA0) (System Utilities).

For DPM-Bn devices, trailing blanks are removed if all of the following are
specified:
v OFTAB (on the current DIV statement), FILL=NULL, or FILL=PT
v GRAPHIC=YES for the current segment being mapped
v OPT=1 or OPT=2 in the MSG segment

If these conditions are met, trailing blanks are removed as follows:

FIXED
Specifies that trailing blanks are to be removed from fixed-length fields.

SHORT
Specifies that trailing blanks are to be removed from fields shortened by
the application.

ALL
Specifies that trailing blanks are to be removed from all fields.

Related concepts:
“Output format control for SLU P DPM-An” on page 523
“Trailing blank compression” on page 529
Related reference:
“Optional deletion of null characters for DPM-An” on page 496

DPAGE statement:

The DPAGE statement defines a logical page of a device format. This statement can
be omitted if none of the message descriptors referring to this device format (FMT)
contain LPAGE statements and no specific device option is required.

Chapter 5. Message Format Service (MFS) reference 473

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_mfslang.htm#ims_mfslang
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_mfslang.htm#ims_mfslang

Format for DEV TYPE=DPM-An or DPM-Bn AND DIV TYPE=INPUT

►►
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

►◄

Format for DEV TYPE=DPM-An AND DIV TYPE=OUTPUT

►►
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

►◄

Format for DEV TYPE=DPM-Bn AND DIV TYPE=OUTPUT

►►
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

►

►
,MIX

, OFTAB = ()
X'hh' ,ALL
C'c'

►◄

Format for DEV TYPE=3270-An

►►
label

DPAGE

▼

,

CURSOR = ((111,ccc))
,dfld

►

►
PT

, FILL = X'hh'
C'c'
NONE
NULL

, MULT = YES , PD = pdname
►

►
, ACTVPID = dfldname

►◄

474 Application Programming APIs

Format for DEV TYPE=3270

►►
label

DPAGE

▼

,

CURSOR = ((111,ccc))
,dfld

►

►
PT

, FILL = X'hh'
C'c'
NONE
NULL

, MULT = YES
►◄

Format for DEV TYPE=3270P

►►
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

►◄

Format for DEV TYPE=FIN

►►
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

►◄

Format for DEV TYPE=FIDS, FIDS3, FIDS4, or FIDS7

►►
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

►

►

▼

,

CURSOR = ((111,ccc))
,dfld

►

►

▼

,
ABSOLUTE

, ORIGIN = (RELATIVE)

►◄

Chapter 5. Message Format Service (MFS) reference 475

Format for DEV TYPE=FIJP or FIPB

►►
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

►◄

Format for DEV TYPE=FIFP

►►
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

►

►

▼

,
LEFT

SELECT = (RIGHT)
DUAL

►◄

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=INPUT

►►
label

DPAGE
COND = (offset , >= ,'value')

<=
>
<
=
¬

►◄

Format for DEV TYPE=SCS1 or SCS2 AND DIV TYPE=OUTPUT

►►
label

DPAGE
X'40'

FILL = X'hh'
C'c'
NONE
NULL

►◄

Parameters

label
A 1- to 8-byte alphanumeric name can be specified for this device format that
contains LPAGE SOR= references, or if only one DPAGE statement is defined
for the device. If multiple DEV statements are defined in the same FMT
definition, each must contain DPAGE statements with the same label.

For device type DPM-An and DIV statement OPTIONS=DPAGE, this name is
sent to the remote program as the data name in the output message header. If
label is omitted, MFS generates a diagnostic name and sends it to the remote
program in the header. If the DPAGE statement is omitted, the label on the

476 Application Programming APIs

FMT statement is sent in the output message header. If OPTIONS=DNM, the
label on the FMT statement is sent as the DSN in the DD header.

COND=
Specifies a conditional test to be performed on the first input record. The offset
specified is relative to zero. The specification of the offset must allow for the
LLZZ field of the input record (for example, the first data byte is at offset 4). If
the condition is satisfied, the DFLDs defined following this DPAGE are used to
format the input. When no conditions are satisfied, the last defined DPAGE
will be used only if the last defined DPAGE does not specify COND=. If the
COND= parameter is specified for the last DPAGE defined and the last defined
DPAGE condition is not satisfied, the input message will be rejected. Multiple
LPAGE definitions are allowed in message input definitions.

If this keyword is specified, and OPTIONS=NODNM is specified on the DIV
statement, this specification is used for DPAGE selection. If this keyword is
specified and OPTIONS=DNM is specified on the DIV statement, the COND=
specification is ignored and the data structure name from the DD header is
used for DPAGE selection.

Lowercase data entered from Finance, SCS1, or SCS2 keyboards is not
translated to uppercase when the COND= comparison is made. Therefore, the
literal operand must also be in lowercase.

FILL=
Specifies a fill character for output device fields. Default value for all device
types except the 3270 display is X'40'; default for the 3270 display is PT. For
3270 output when EGCS fields are present, only FILL=PT or FILL=NULL
should be specified. A FILL=PT erases an output field (either a 1- or 2-byte
field) only when data is sent to the field, and thus does not erase the DFLD if
the application program message omits the MFLD. For DPM-Bn, if OFTAB is
specified, FILL= is ignored and FILL=NULL is assumed.

NONE
Must be specified if the fill character from the message output descriptor is
to be used to fill the device fields.

X'hh'
Specifies a hexadecimal character (hh) that is used to fill the device fields.

C'c'
Specifies a character (c) that is used to fill the device fields.

NULL
Specifies that fields are not to be filled. For devices other than the 3270
display, compacted lines are produced when message data does not fill the
device fields.

For DPM-An devices, trailing nulls (X'3F') are removed from all records
transmitted to the remote program or subsystem. Trailing nulls are
removed up to the first non-null character. Null characters between
non-null characters are transmitted. If the entire record is null, but more
data records follow, a record containing a single null is transmitted to the
remote program. If the entire record is null and more records follow, if
OPTIONS=MSG or DPAGE, or in a PPAGE, if OPTIONS=PPAGE, then all
null records are deleted to the end of that DPAGE or PPAGE.

PT Is identical to NULL except for the 3270 display. For the 3270 display,
specifies that output fields that do not fill the device field (DFLD) are
followed by a program tab character to erase data previously in the field;
otherwise, this operation is identical to FILL=NULL.

Chapter 5. Message Format Service (MFS) reference 477

For 3270 display devices, any specification with a value less than X'3F' is
changed to X'00' for control characters or to X'40' for other nongraphic
characters. For all other devices, any FILL=X'hh' or FILL=C'c' specification with
a value less than X'3F' is ignored and defaulted to X'3F' (which is equivalent to
a specification of FILL=NULL).

MULT=YES
Specifies that multiple physical page input messages are allowed for this
DPAGE.

CURSOR=
Specifies the position of the cursor on a physical page. Multiple cursor
positions might be required if a logical page or message consists of multiple
physical pages. The value lll specifies line number and ccc specifies column.
Both lll and ccc must be greater than or equal to 1. The cursor position must
either be on a defined field or defaulted. The default lll,ccc value for 3270
displays is 1,2. For Finance display components, if no cursor position is
specified, MFS does not position the cursor—the cursor is normally placed at
the end of the output data on the device. For Finance display components, all
cursor positioning is absolute, regardless of the ORIGIN= parameter specified.

The dfld parameter provides a method for supplying the application program
with cursor information on input and allowing the application program to
specify cursor position on output.

Recommendation: Use the cursor attribute facility (specify ATTR=YES in the
MFLD statement) for output cursor positioning.

The dfld parameter specifies the name of a field containing the cursor position.
This name can be referenced by an MFLD statement and must not be used as
the label of a DFLD statement in this DEV definition. The format of this field is
two binary halfwords containing line and column number, respectively. When
this field is referred to by a message input descriptor, it contains the cursor
position at message entry. If referred to by a message output descriptor, the
application program places the desired cursor position into this field as two
binary halfwords containing line and column, respectively. Binary zeros in the
named field cause the values specified for lll,ccc to be used for cursor
positioning during output. During input, binary zeros in this field indicate that
the cursor position is not defined. The input MFLD referring to this dfld should
be defined within a segment with GRAPHIC=NO specified or should use
EXIT=(0,2) to convert the binary numbers to decimal.

ORIGIN=
Specifies page positioning on the Finance display for each physical page
defined. Default value is ABSOLUTE.

ABSOLUTE
Erases the previous screen and positions the page at line 1 column 1. The
line and column specified in the DFLD statement become the actual line
and column of the data on the screen.

RELATIVE
Positions the page starting on column 1 of the line following the line
where the cursor is positioned at time of output. Results might be
undesirable unless all output to the device is planned in a consistent
manner.

OFTAB=
Directs MFS to insert the output field tab separator character specified on this
DPAGE statement for the output data stream of the DPAGE being described.

478 Application Programming APIs

X'hh'
Specifies a hexadecimal character (hh) to be used as the output field tab
separator character. X'3F' and X'40' are invalid.

C'c'
Specifies a character (c) to be used as the output field tab separator
character. You cannot specify a blank for the character (C' ').

The character specified cannot be present in data streams from the IMS
application program. If it is present, it is changed to a blank (X'40').

If the output field tab separator character is defined, either MIX or ALL
can also be specified. Default value is MIX.

MIX
Specifies that an output field tab separator character is to be inserted into
each individual field with no data or with data less than the defined DFLD
length.

ALL
Specifies that an output field tab separator character is to be inserted into
all fields, regardless of data length.

SELECT=
Specifies carriage selection for a FIFP device with FEAT=DUAL specified in the
previous DEV statement. It is your responsibility to ensure that proper forms
are mounted and that left margins are set properly. Default value is LEFT.

LEFT
Causes the corresponding physical page defined in this DPAGE to be
directed to the left platen.

RIGHT
Causes the corresponding physical page defined in this DPAGE to be
directed to the right platen.

DUAL
Causes the corresponding physical page defined in this DPAGE to be
directed to both the left and right platens.

PD=
(for the 3180 and 3290 in partition formatted mode) Specifies the name of the
partition descriptor of the partition associated with the DPAGE statement. This
is the parameter that maps a logical page of a message to or from the
appropriate partition. The name of the PD must be contained within the PDB
statement specified in the DEV statement.

ACTVPID=
(for the 3290 in partition formatted mode) Specifies the name of an output field
in the message containing the partition identification number (PID) of the
partition to be activated. This dfldname must be referenced by an MFLD
statement and must not be used as the label of a DFLD statement in the DEV
definition. The application program places the PID of the partition to be
activated in this field. The PID must be in the format of a two byte binary
number ranging from X'0000' to X'000F'.

Restriction: Do not specify this operand for the 3180. Because only one
partition is allowed for this device, you do not need to specify an active
partition.

Chapter 5. Message Format Service (MFS) reference 479

MFS message formatting functions
IMS provides message formatting functions for MFS. The control blocks format
messages for different device types.

Input message formatting
Use the following information to format your MFS input messages.
Related concepts:
“Output message formatting options” on page 504
“Input format control for ISC (DPM-Bn) subsystems” on page 501

Input messages accepted by MFS:

Only input data from devices that are defined to IMS TM as operating with MFS
can be processed by MFS. However, the use of MFS for specific input messages
depends on the message content and, in some cases, on the previous output
message.

3770, SLU 1, and NTO

For MFS to process data from a 3770, SLU 1, or NTO, these devices must be
defined to operate with MFS at IMS TM system definition or with user descriptors
if the extended terminal option (ETO) is available.

After the device is defined to operate with MFS, the terminal still operates in
unformatted mode (using basic edit, not MFS) until one of the following occurs:
v //midname is entered and sent to IMS.
v An output message to the terminal is processed using a message output

descriptor (MOD) that names a message input descriptor (MID) to be used to
process subsequent input data.

When //midname is received, MFS gets control to edit the data using the named
MID. If any data follows //midname (//midname must be followed by a blank when
data is also entered), MFS discards the //midname and the blank and formats the
data according to the named MID. If no data follows //midname, MFS considers the
next line received from the terminal to be the first line of the message.

When an output message is processed by a MOD that names a MID, the MID is
used to format the next input from that terminal. This output message can be
created by an application program, the IMS TM /FORMAT command, a message
switch, or some other IMS TM function.

Once in “formatted mode” (using MFS, not IMS TM basic edit), the device
continues to operate in formatted mode until one of the following occurs:
v // or //b (// followed by a blank) is received. The terminal returns to

unformatted mode and the // (and blank) are discarded. The two slashes are
escape characters.

v //bH and data are received. The terminal is returned to unformatted mode, the
// blank is discarded, and the data is formatted by IMS TM basic edit.

v An output message whose MOD does not name a MID is sent to the terminal.

3270 and SLU 2

All 3270 and SLU 2 devices are automatically defined to operate with MFS.

480 Application Programming APIs

Restriction: Situations in which 3270 and SLU 2 devices do not operate in
formatted mode are:
v When first powered on
v After the CLEAR key is pressed
v When the MOD used to process an output message does not name a MID to use

for the next input data received
v When MFS is bypassed by the application program using the DFS.EDT or

DFS.EDTN modname

While in unformatted mode, input is limited to IMS TM commands, terminal test
requests for VTAM , paging requests, and transaction code or message switch data
that does not require MFS.

Finance and SLU P workstations

For MFS to process data from a Finance or SLU P workstation, the terminal must
be defined to operate with MFS at IMS TM system definition or with user
descriptors if ETO is available. Even when so defined, the workstation operates in
unformatted mode (using IMS TM basic edit, not MFS) until one of the following
occurs:
v The Finance or SLU P workstation remote application program requests MFS

formatting by specifying the name of a MID in the input message header.
v //midname is entered by a workstation operator and is sent to IMS TM by the

remote application program as the first or only part of the input message itself.
For proper SLU P formatting, include in the input message header a version
identification (version ID). The version ID ensures that the correct level of MFS
descriptor (Device Input Format, or DIF) is provided in mapping the input
message. If this verification is not desired, the version ID can be sent with
hexadecimal zeros (X'0000') or it can be omitted from the message header.

When an output message sent to an SLU P or Finance workstation is formatted
using a MOD that names a MID, IMS TM sends the name of the MID to the
workstation as part of the output message header. Because IMS TM does not have
direct control of the terminal devices in these systems, IMS TM cannot guarantee
the proper MID is used to process the next input. It is the responsibility of the
remote program to save the MID name and to include it in the next input message
it sends to IMS TM as the DPN.

Finance and SLU P workstations continue in formatted mode only when the
current message has an associated MID or MOD.

Intersystem communication (ISC) subsystems

For data from an ISC subsystem to be processed by MFS, the ISC subsystem must
be defined as UNITYPE=LUTYPE6 on the TYPE macro at IMS TM system
definition or with ETO user descriptors. Even when so defined, the ISC subsystem
operates in unformatted mode (using IMS TM basic edit or ISC edit, not MFS)
until the ISC application program requests MFS formatting by specifying the name
of a MID in the DPN field of the input message header.

When an output message sent to an ISC subsystem is formatted using a MOD that
names a MID, IMS TM sends the name of the MID to the ISC subsystem in the
RDPN field of the output message header. Because IMS TM does not have direct
control of the ISC subsystem, IMS TM cannot guarantee the proper MID is used to

Chapter 5. Message Format Service (MFS) reference 481

process the next input. It is the responsibility of the ISC application program to
save the MID name and to include it in the next input message it sends to IMS.

ISC subsystems continue in formatted mode only when the current message has an
associated MID or MOD.

Formatting messages from terminals in preset destination mode

Preset destination mode is used to fix a destination for all messages entered from a
terminal. Use the /SET command to enter preset destination mode. When a
terminal is in preset mode, all input messages (processed by either MFS or basic
edit) are routed to the destination established by the /SET command. You do not
have to include the message destination in the input message.

When IMS TM basic edit processes input from a preset terminal, the preset
destination name is added to the beginning of the first segment. When MFS
processes input from a preset terminal, the preset destination name is not added to
the beginning of the first segment; input message format is a result of your
message definition and input. MFS provides many methods for reserving space in
an input segment or for inserting a transaction code, without requiring you to
specify a message destination.

Formatting of messages using Fast Path

If you plan to implement Fast Path, MFS functions like other IMS TM applications,
with the restriction that all messages must be single-segment messages.
Related tasks:

Extended Terminal Option (ETO) (Communications and Connections)
Related reference:

/SET command (Commands)

/FORMAT command (Commands)

Using Intersystem Communication Edit (Application Programming)

How MFS formats input messages:

Input data from MFS-supported devices in formatted mode is formatted based on
the contents of two MFS control blocks—the message input descriptor (MID) and
the device input format (DIF). The MID defines how the data should be formatted
for presentation to the IMS TM application program and points to the DIF
associated with the input device. The DIF describes the data as the data is received
from the device.

If the message built by the MID is a command, the command must conform to the
command format and syntax rules as documented in IMS Version 14
Communications and Connections.

Input message formatting options:

MFS supports three message formatting options. The option selected determines
how MFS interprets the MID definition and thereby formats the data into message
fields for presentation to the application program.

The MID's MFLD statement or statements describes message fields in terms of:

482 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.ccg/ims_ccg_part_eto.htm#ims_ccg_part_eto
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.cr/imscmds/ims_set_cmd.htm#ims_cr2set
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.cr/imscmds/ims_format.htm#ims_cr1format
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_intersystemcommedit.htm#ims_intersystemcommedit

v Length
v The device field from which input data is to be obtained
v Literal data for message fields which will not or do not receive device data
v Fill characters to use when the input data does not fill the message field
v Field justification (left or right) or truncation (left or right) specifications
v Whether the first 2 bytes of the field should be reserved for attribute data

The formatting option is specified in the MID's MSG statement (OPT=). The
selection of the proper option for an application is a design decision that should be
based on the complexity and variability of the device data stream, the
programming language used, and the complexity of the program required to
process the application under a given option. In the option descriptions, a NULL
character is X'3F'.

MFS option 1

The effect of option 1 depends on whether a fill character of NULL has been
defined. When no field in an option 1 message is defined to the MFS Language
utility as having a fill character of NULL:
v Messages always contain the defined number of segments.
v Each segment is always of the defined length and contains all defined fields.
v All fields are filled with data, data and fill characters, or fill characters.

When fields in an option 1 message are defined as having a fill character of NULL:
v Each field with null fill and no input data from the device is eliminated from the

message segment. If all fields in a segment are eliminated in this manner and no
literals (explicit or default) are defined, the segment is eliminated; otherwise, the
length of the segment is reduced and the relative position of succeeding fields in
the segment is altered.

v Fields with null fill that receive device data that does not fill the field are not
padded—the number of characters received for the device field becomes the
number of characters of the input data. This alters the length of the segment and
the relative position of all succeeding fields in the segment.

MFS option 2

Option 2 formatting is identical to option 1 unless a segment contains no input
data from the device after editing. If this occurs and there are no more segments
containing input data from the device, the message is terminated, and the last
segment in the message is the last segment that contained input data from the
device. If a segment is created that has no input data from the device, but there are
subsequent segments that do contain data from the device, a segment is created
with a single byte of data (X'3F') signifying that this is a pad or null segment. If
this occurs on a first segment that is defined to contain a literal, an invalid
transaction code could result because MFS does not insert explicit or default
literals into segments for which no device input data is received.

MFS option 3

Option 3 formatting supplies the program with only the fields received from the
input device. A segment is presented only if it contains fields that were received
from the device. Segments are identified by a relative segment number and fields
within a segment are identified by a segment offset. Segments and fields are both

Chapter 5. Message Format Service (MFS) reference 483

of variable length if they are described as having a fill character of NULL. Empty
fields (fields without data) are not padded with fill characters. Segments that are
presented to the application program appear in relative segment number sequence.
Fields within the segment are in segment offset sequence.

Option 3 messages do not contain literals (explicit or default) specified in the MID.

If option 3 is used with conversational transactions, the transaction code is not
removed from the message, since fields and offsets of fields are maintained within
the text. The transaction code is still found in the SPA also.

Restriction: You cannot use option 3 input message formats to enter IMS TM
commands. However, IMS TM commands can be entered by using IMS-supplied
default formats, from the cleared screen, or from your defined option 1 and option
2 input message formats.
Related concepts:
“Input message formats” on page 444
“Fill characters for output device fields” on page 506
Related reference:
“Device-dependent output information” on page 450

Examples of message segment definitions:

The examples illustrate the message segment definitions, then for options 1, 2, and
3, the contents, length in bytes, and a code for the type for each field.

The field types are labeled as shown in the following table.

Table 129. Input message field types.

Type Code Description

A Total segment length, including fields A, B, C, 2 bytes, binary

B Z1 field—reserved for IMS TM usage

C Z2 field—indicates formatting option 1 byte, binary

D Relative segment number 2 bytes, binary

E Field length, including length of fields E, F, 2 bytes, binary

F Relative field offset in the defined segment 2 bytes, binary

G Field

Notes:

1. No boundary alignment is performed for fields A, D, E, or F.

2. Fields A, B, and D must be on halfword boundaries. To do this, ensure the I/O area is
on a boundary when the GU or GN call to IMS TM is made.

3. For the PLITDLI interface, the length (LL) field must be declared as a binary fullword.
The value in the LL field is the segment length minus 2 bytes. For example, if the input
message segment is 16 bytes, LL is 14 bytes, which is the sum of the lengths of LL (4
bytes minus 2 bytes), ZZ (2 bytes), and TEXT (10 bytes).

484 Application Programming APIs

Example 1: input message format

The following table describes the definition for an input message.

Table 130. Example 1: input message definition

Segment Number Field Name Field Length Field Value

1

LL 2 0072

ZZ 2 XXXX

TRANCODE 8 YYYY

Text 10 MAN NO.

Text 50 NAME

2

LL 2 0059

ZZ 2 XXXX

Text 5 DEPT

Text 50 LOCATION

3

LL 2 0064

ZZ 2 XXXX

Text 10 PART NO.

Text 50 DESCRIPTION

4

LL 2 0019

ZZ 2 XXXX

Text 10 QUANTITY

Text 5 ORDER PRIORITY

All fields defined as left justified, with a fill character of blank.

You enter:

Field Name
Input

NAME
ABJONES

PART NO.
23696

DESCRIPTION
WIDGET

The transaction code is provided from the message input description as a literal.
The input message would appear to the application program as shown in one of
the following tables.

Chapter 5. Message Format Service (MFS) reference 485

Table 131. Example 1: application program view for option 1

Segment Number Field Type Field Length Field Value

1

A 2 0072

B 1 XX

C 1 01

TRANCODE 8 YYYY

Text 10 blanks

Text 50 ABJONES

2

A 2 0059

B 1 XX

C 1 01

Text 5 blanks

Text 50 blanks

3

A 2 0064

B 1 XX

C 1 01

Text 10 23696

Text 50 WIDGET

4

A 2 0019

B 1 XX

C 1 01

Text 10 blanks

Text 5 blanks

Table 132. Example 1: application program view for option 2

Segment Number Field Type Field Length Field Value

1

A 2 0072

B 1 XX

C 1 02

TRANCODE 8 YYYY

Text 10 blanks

Text 50 ABJONES

2

A 2 0005

B 1 XX

C 1 02

Text 1 X'3F'

3

A 2 0064

B 1 XX

C 1 02

Text 10 23696

Text 50 WIDGET

486 Application Programming APIs

Table 133. Example 1: application program view for option 3

Segment Number Field Type Field Length Field Value

1

A 2 0060

B 1 XX

C 1 03

D 2 0001

E 2 0054

F 2 0022

G 50 ABJONES

2

A 2 0074

B 1 XX

C 1 03

Text 2 0003

D 2 0014

E 2 0004

F 2 23696

G 2 0054

F 2 0014

G 50 WIDGET

The option 3 example shows no transaction code in the first segment because
literals are not inserted into option 3 segments. This message would be rejected
unless it is received from a terminal in conversational or preset destination mode,
because transaction code validation is performed after the messages are formatted.

Example 2: input message format

The segments are similar to those in example 1. Fields are defined as in example 1,
except for the following:

Field Name
Contents

NAME
null pad

DEPT null pad

LOCATION
null pad

PART NO.
right justify, pad of EBCDIC zero

QUANTITY
null pad

You enter:

Field Name
Input

Chapter 5. Message Format Service (MFS) reference 487

NAME
ABJONES

PART NO.
23696

DESCRIPTION
WIDGET

PRIORITY
HI

Transaction code is provided as a 3270 program function key literal or a special
data field from a Finance workstation. The input message appears as shown in one
of the following tables.

Table 134. Example 2: application program view for option 1

Segment Number Field Type Field Length Field Value

1

A 2 0029

B 1 XX

C 1 01

TRANCODE 8 YYYY

Text 10 blanks

Text 50 ABJONES

2
No second segment is presented because all of its fields were null
padded and no input data was received from the device for these
fields.

3

A 2 0064

B 1 XX

C 1 01

Text 10 0000023696

Text 50 WIDGET

4

A 2 0009

B 1 XX

C 1 01

Text 5 HI

Table 135. Example 2: application program view for option 2

Segment Number Field Type Field Length Field Value

1

A 2 0029

B 1 XX

C 1 02

TRANCODE 8 YYYY

Text 10 blanks

Text 7 ABJONES

488 Application Programming APIs

Table 135. Example 2: application program view for option 2 (continued)

Segment Number Field Type Field Length Field Value

2

A 2 0009

B 1 XX

C 1 02

Text 1 X'3F'

3

A 2 0064

B 1 XX

C 1 02

Text 10 0000023696

Text 50 WIDGET

4

A 2 0009

B 1 XX

C 1 02

Text 5 HI

Table 136. Example 2: application program view for option 3

Segment Number Field Type Field Length Field Value

1

A 2 0029

B 1 XX

C 1 03

D 2 0001

E 2 0012

F 2 0004

G 8 TRANCODE

E 2 0011

F 2 0022

G 7 ABJONES

2

A 2 0074

B 1 XX

C 1 03

D 2 0003

E 2 0014

F 2 0004

G 10 0000023696

E 2 0054

F 2 0014

G 50 WIDGET

Chapter 5. Message Format Service (MFS) reference 489

Table 136. Example 2: application program view for option 3 (continued)

Segment Number Field Type Field Length Field Value

3

A 2 0015

B 1 XX

C 1 03

D 2 0004

E 2 0009

F 2 0014

G 5 HI

Cursor position input and FILL=NULL:

With MFS, a problem might arise when the application program is told the cursor
position on input.

This problem occurs when:
v The input message uses formatting option 1 or 2.
v The MFLD used for cursor position data is defined in a segment where at least

one MFLD is defined to use null fill (FILL=NULL).

When these conditions occur, cursor position 63 (X'3F') results in a 3-byte field
containing compressed cursor data, rather than a normal 4-byte field. The MFLD
with this potential problem is flagged with the message “DFS1150”.

To avoid this problem, change the MFLD statement for the cursor data field to
specify EXIT=(0,2). This will cause the IMS TM-provided field edit routine to
convert the field contents from binary to EBCDIC. The application program must
also be changed to handle the EBCDIC format.

Input logical page selection:

An input logical page (LPAGE) determines the content of the input message that is
presented to the application program. It consists of a user-defined group of related
message segment and field definitions. An input LPAGE is identified by an LPAGE
statement. When no LPAGE statement is present, all message field definitions in
the MSG are treated as a single LPAGE. An input LPAGE identified by an LPAGE
statement can refer to one or more input device pages (DPAGE).

An input DPAGE defines a device format that can be used for an input LPAGE. It
consists of a user-defined group of device field definitions. An input DPAGE is
identified by a DPAGE statement. When no DPAGE statement is present, all device
field definitions following the DIV statement are treated as a single DPAGE. If
multiple DPAGEs are defined, each DPAGE statement must be labeled. A DPAGE
identified by a labeled DPAGE statement must be referred to by an LPAGE
statement.

3270 and SLU 2 device input data is always processed by the currently displayed
DPAGE. For other devices, if multiple DPAGEs are defined in their formats, a
conditional test is performed on the first input record received from the device.
The results of this test determine which DPAGE is selected for input data
processing. The LPAGE that refers to the selected DPAGE is used for input
message formatting.

490 Application Programming APIs

If input LPAGEs are not defined, message fields can refer to device fields in any
DPAGE, but input data from the device for any given input message is limited to
fields defined in a single DPAGE.

Input message field and segment edit routines:

To simplify programming, MFS application designers should consider using (for all
but SLU P devices) input message field and segment edit routines to perform
common editing functions such as numeric validation or conversion of blanks to
numeric zeros.

While use by existing applications is unlikely, field and segment edit routines can
simplify programming of new applications by using standard field edits to
perform functions that would otherwise need to be coded in each application
program. IMS Version 14 Exit Routines lists the field and segment edit routines
provided by IMS. The input message field or segment exit routines can be disabled
for SLU P (DPM-An and ISC) devices, because editing is probably done by the
remote program.

Using field and segment edit routines causes extra processing in the IMS TM
control region and, if used extensively, creates a measurable performance cost.
However, these edit routines can improve performance by reducing processing
time in the message processing region, reducing logging and queuing time, and by
allowing field verification and correction without scheduling an application
program. Efficiency of these user-written routines should be a prime concern.

Because these routines execute in the IMS TM control region, an abend in the edit
routine causes an abend of the IMS TM control region.

IMS-supplied field and segment edit routines

IMS TM provides both a field and a segment edit routine that the MFS application
designer might want to use.IMS Version 14 Exit Routines lists the IMS-supplied
routines.

Under z/OS, any code written to replace these IMS-supplied routines must be able
to execute in RMODE 24, AMODE 31 and be capable of 31-bit addressing even if
they do not reference any 31-bit addressable resources. AMODE refers to
addressing mode; when running modules in AMODE 31, Extended Architecture
processors interpret both instruction and data addresses to be 31 bits wide.

Field edit routine (DFSME000)

The functions of the field edit routine are based on the entry vector. It can use all
three formatting options. For options 1 and 2, entry vector 1 can produce
undesirable results if FILL=NULL was specified in the MFLD statement.

Input message literal fields:

Input message fields can be defined to contain literal data that you specify during
definition of the MID. You can define a default literal that MFS always inserts as
part of the input message. You can also define a literal that MFS inserts as part of
the input message when no data for the field is received from the device.

Using a default literal can simplify application programming. When used,
application programs no longer need to test for “no data” conditions or to provide

Chapter 5. Message Format Service (MFS) reference 491

exception handling. Default literals make it possible for an application program to
distinguish between zero-value data you enter and a condition of “no data
entered”.

For example, consider this MFLD definition:
MFLD (DFLD1,’NO DATA’),LTH=7,JUST=R,FILL=C’0’

For example, an application program would view your entries as follows:

Your Entry
Program Data Viewed

296 0000296

0 0000000

no data entered
NO DATA

Without a default literal, the results of entering a value of 0 and of entering no
data are the same—0000000.

Defaults can be altered without changing application programs, and multiple
defaults can be provided by using different message descriptors or different input
logical pages.

Default literals can also expand device independence by providing a
device-independent method of inserting data in an input message field if no data
is entered from the device for that field. This function of the default literal is used
often for 3270 or SLU 2 devices, which have the same device format for input as
for output. For these devices, the default (transaction code, data, or both) can be
provided if you specify a default literal on input (MID).

Input message field attribute data:

Nonliteral input message fields can be defined to allow for attribute data, extended
attribute data, or both.

When defined to do so, MFS initializes to blanks and reserves the first bytes of the
message field for attribute or extended attribute data. These first bytes are filled in
by a field edit routine or in its preparation of an output message. When attribute
or extended attribute space is specified, the specified field length must include
space for the attribute or extended attribute bytes.

Sometimes input messages are updated by an application program and returned to
the device. The application program can simplify message definitions if the
message uses attribute data as the output message, and the attribute data bytes are
defined in the input message, also.

When a field edit routine is used, it can be designed (as the IMS-supplied field edit
routine is) to set attribute bytes on fields in error. In this way, erroneous fields can
be highlighted before the segment edit routine returns the message to the device.
In this case, the application program is not concerned with attribute bytes.

492 Application Programming APIs

IMS TM password:

The IMS TM password portion of an input message is defined in the input
message definition. One or more input message fields can be defined to create the
IMS TM password.

Using this method of password definition allows passwords to be created from
field data you enter, from data read by a 3270, SLU 2, 3770 operator identification
card reader, or data from a 3270 magnetic stripe reader.

Recommendation: If you use an SLU 2 or a 3270, you can also define a specific
device field as the location of the IMS TM password, but the method discussed in
this section takes precedence if both an input message field and a device field are
defined.

Fill characters for input message fields:

MFS uses fill characters to pad message fields when the length of the data received
from the device is less than the specified field length, no data for the field is
received and no default literal is defined, or the data received from SLU P contains
nulls and NULL=DELETE is specified.

The fill characters that can be selected are a blank (X'40'), any EBCDIC
hexadecimal character (X'hh'), or an EBCDIC graphic character (C'c'). Null
compression, which causes compression of the message to the left by the amount
of missing data, can also be selected. How MFS actually pads the message fields is
a function of the selected fill character and the message formatting option being
used.

Input modes (devices other than 3270, SLU 2, or ISC subsystems):

MFS expects input message fields to be entered in the sequence in which they were
defined to the MFS Language utility program. For devices other than SLU 2 and
3270, MFS application designers have a choice of how fields are defined and how
MFS should scan those fields. You can select record mode or stream mode. Record
mode is the default.

In record mode:
v Input fields are defined as occurring within a specific record (a line or card from

the 3770, or SLU 1; a transmission from the Finance or SLU P workstation) that
is sent from the input device.

v Fields must not be split across record boundaries.
v Fields defined within a record must appear on that record to be considered by

MFS.
v When MFS locates the end of a record, the current field is terminated and any

other fields defined for that record are processed with no device data (message
fill).

v If the record received by IMS TM contains more data fields than the number of
fields defined for the record, the remaining data fields are not considered by
MFS.

For input data from a Finance or SLU P workstation remote program, the input
message header or //midname can be transmitted separately if the data fields for the

Chapter 5. Message Format Service (MFS) reference 493

first record do not fit in the same record. If no data follows the input message
header or the //midname, MFS considers the next transmission received to be the
first record of the input message.

In stream mode:
v Fields are defined as a contiguous stream of data unaffected by record

boundaries.
v Fields can be split across input records and fields can be entered from any input

record as long as they are entered in the defined sequence.

Input field tabs (devices other than 3270 or SLU 2):

An input field tab (FTAB) is a character defined in the DEV statement for
separating input fields if the length of the data entered is less than the defined
field length, or for when no data is specified for a field. An FTAB causes the MFS
input scan to move to the first position of the next defined field. FTABs can be
defined only for input from devices other than the 3270 or SLU 2. When no FTABs
are defined, each device input field is assumed to be of its defined length.

Select a character for input field separation that is never used for other user data
in the data stream. If FTAB is not unique, the data might be misinterpreted by
MFS.

For example, the following figure shows some DFLD field definitions and the
device format that results from these definitions.

When an FTAB is defined, its use is qualified by specifying FORCE, MIX, or ALL.
The previous figure shows how the FTAB qualification affects the results of an
MFS input scan following variable operator input of a three-field message.

The following figure provides examples of correct and failed results produced by
FTAB specifications. The double-headed arrows indicate that the FTAB
qualification does not affect input scan. Input examples 2, 3, and 6 produce correct
results using any of the FTAB qualifications but example 8 does not produce
correct results regardless of FTAB qualifications. The following sections (FORCE,
MIX, and ALL) specify which examples have failed results and why these results
are undesirable.

Figure 30. FTAB qualification descriptions

494 Application Programming APIs

FORCE

FORCE is the default value. Each device input field is assumed to be of its defined
length until an FTAB is encountered. When the first FTAB is encountered, it
signifies the end of data for the current field. The byte of data following the FTAB
is considered the first byte of the next field. In record mode, all subsequent fields
in the current record require an FTAB. In stream mode, all subsequent fields
require an FTAB. FTABs used on subsequent fields indicate that the character
following the FTAB is the first for the next defined field. (This is as if ALL were
specified).

In the following figure, examples 1, 2, 3, 5, 6, and 7 produce the desired result.
Example 4 fails because no FTAB is supplied following field B (compare with
example 5). Example 8 fails because no FTABs are entered, the 0 is occupying the
blank (undefined) position, and subsequent fields are thus incorrect (compare with
example 1).

MIX

Each device input field is assumed to be of its defined length until an FTAB is
encountered. When the first FTAB is encountered, it signifies the end of data for
the current field. The byte of data following the FTAB is considered the first byte
of the next field. Subsequent fields of the defined length do not require an FTAB; if
one is entered and the next field is contiguous (like fields B and C in the example),
undesirable results occur (see example 5). Mixed FTABs operate just like a
typewriter with tab stops set at the first position of each defined field (columns 1,
6, and 9 in the example).

In the following figure, examples 1, 2, 3, 4, 6, and 7 produce the desired result.
Example 5 fails because field B is of its defined length and does not require an
FTAB; the FTAB is interpreted to indicate no data for field C (compare with
example 4). Example 8 fails because no FTABs are entered, the 0 is occupying the
blank (undefined) position, and subsequent fields are thus incorrect (compare with
example 1).

ALL

When ALL is specified, each device input field must be terminated by an FTAB
regardless of whether it is greater than, less than, or equal to the defined length.
When an FTAB is encountered, it signifies the end of data for the current field. The
byte of data following the FTAB is considered the first byte of the next field.

In the following figure, examples 2, 3, 5, and 6 produce the desired result.
Examples 1, 4, 7, and 8 fail because the required FTABs are not entered.

Chapter 5. Message Format Service (MFS) reference 495

Optional deletion of null characters for DPM-An:

MFS provides for optional deletion of trailing null characters in transmission
records and input data fields from SLU P (DPM-An) remote programs. (A null
character is a hexadecimal zero, X'00'.) In the DIV statement, the device input
format can specify NULL=KEEP or NULL=DELETE. NULL=DELETE means that
MFS scans data fields and transmission records for trailing nulls and deletes them.
KEEP is the default and means that MFS leaves trailing nulls in the data and treats
them as valid data characters.

If trailing null characters have been replaced by fill characters by the remote
program, MFS treats the fill characters as valid data characters.

When NULL=DELETE is specified, nulls at the end of a record are deleted before
the data fields are scanned. In record mode, the end of the record is determined
either by the FTAB or by the first other non-null character found (searching
backward from the end of the record). In stream mode, trailing nulls at the end of
the record are deleted only if an FTAB indicates the end of the record; otherwise,
the record is handled as received from the remote program.

During the data field scan, the first trailing null character encountered in the field
signifies the end of the data for the current field. The data is edited into the

Figure 31. MFS input scan when FTABs are defined with FORCE, MIX, and ALL

496 Application Programming APIs

message field using the message fill character to pad the field if required. If the
entire field contains nulls (such as nulls at the end of the record), the entire
message field is padded with the specified fill character.

The scan for trailing null characters within fields is performed for each record
transmitted. If an FTAB character is encountered in the current record being
processed, the scan for trailing nulls characters within fields is discontinued for
that record and resumes with the next record.

Transmitting null characters to either IMS TM or the delete operation is costly in
execution time. Weigh the relative costs when you decide whether to use the
NULL=DELETE option or to delete the nulls using the remote program. You must
also consider the effects of the FTAB options FORCE, MIX, and ALL. These costs
are affected by the following:
v When FTAB=ALL is specified with NULL=DELETE, only trailing null characters

at the end of the record can be removed by MFS.
v In stream mode, with NULL=DELETE, an FTAB should be used to show an

omitted field at the end of a record. Otherwise, nulls (equal to the number of
characters defined for the field or fields) must be transmitted.

v If FTABs are specified and NULL=DELETE, nulls and FTABs can be mixed.
FTABs can be used for one record, nulls for the next. The nulls are removed
from the record with no FTABs. With FTABs in the record, null characters are
treated as data.

v With NULL=DELETE, binary data that might contain valid trailing hexadecimal
zeros (not intended as null characters) must be preceded by an FTAB character
for a previous field to prevent deletion of the trailing X'00'.

Related reference:
“DIV statement” on page 465

Examples of optional null character deletion for DPM-An:

The following are examples of optional null character deletion for DPM-An.

In the three examples that follow, the comma is the specified FTAB, X'5F' is input
hexadecimal data, and characters are defined as follows:

X'6B'=C","
X'C1'=C"A"
X'C2'=C"B"
X'C3'=C"C"
C"b"=blank
X'40'=C"b"

Example 1: input binary data and nulls
Device Input Format Message Input Definition
INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT

DEV TYPE=DPM-A1, FTAB=(;;MIX) SEG
DIV TYPE=INPUT, NULL=DELETE
PPAGE

A DFLD LTH=3 MFLD A, LTH=3
B DFLD LTH=2 MFLD B, LTH=2

FMTEND MSGEND

Chapter 5. Message Format Service (MFS) reference 497

Input Message Record Field DFLD Data MFLD Data

(1) X'C1C2C3005F' 1 A C"ABC" C"ABC"

B X'005F' X'005F'

(2) X'C1C26B005F' 1 A C"AB" C"ABb"

B X'005F' X'005F'

(3) X'C1C200005F' 1 A C"AB" C"ABb"

B X'005F' X'005F'

(4) X'C1C2C35F00' 1 A C"ABC" C"ABC"

B X'5F' X'5F40'

(5) X'C1C26B5F00' 1 A C"AB" C"ABb"

B X'5F' X'5F40'

Note: The X'00' (null) at the end of the record in input messages (4) and (5) is deleted before the data
fields (A and B) are scanned. Therefore, the results are the same for field B, even though an FTAB
(comma in this example) follows field A. If X'00' is to be considered as data for field B, an FTAB
(comma in this example) should be entered following the X'5F00'.

Example 2: record mode input
Device Input Format Message Input Definition
INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT

DEV TYPE=DPM-A1, FTAB=(;;MIX), SEG
MODE=RECORD

DIV TYPE=INPUT, RCDCTL=12, MFLD A,LTH=3,FILL=C’*’
NULL=DELETE

PPAGE MFLD B,LTH=3,FILL=C’*’
A DFLD LTH=3 MFLD C,LTH=3,FILL=C’*’
B DFLD LTH=3 MFLD D,LTH=3,FILL=C’*’
C DFLD LTH=3 SEG
D DFLD LTH=3 MFLD E,LTH=5,FILL=C’*’
E DFLD LTH=5 MFLD F,LTH=7,FILL=C’*’
F DFLD LTH=7 SEG
G DFLD LTH=5 MFLD G,LTH=5,FILL=C’*’

FMTEND MSGEND

Input Message Record Field
DFLD
Data Segment

MFLD
Data

(1) X'C10000C20000C3C3C3000000' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

X'C5C56BC6C66B000000000000'
2 E C'EE' 2 C'EE***'

F C'FF' C'FF*****'

X'0000000000'
3 G no data 3 C'*****'

(2) X'C10000C20000C3C3C3' 1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

X'C5C56BC6C6'
2 E C'EE' 2 C'EE***'

F C'FF' C'FF*****'

no input record 3 G no data 3 C'*****'

Note: In this example, no input data was entered for fields D and G. Input message 1 contains nulls in
place of omitted fields. Input message 2 does not contain nulls for omitted fields, but the results are the
same for both input messages.

498 Application Programming APIs

Example 3: stream mode input

Device Input Format Message Input Definition
INFMT FMT INMSG MSG TYPE=INPUT,SOR=INFMT

DEV TYPE=DPM-A1, FTAB=(;;MIX), SEG
MODE=STREAM

DIV TYPE=INPUT, NULL=DELETE MFLD A,LTH=3,FILL=C’*’
PPAGE MFLD B,LTH=3,FILL=C’*’

A DFLD LTH=3 MFLD C,LTH=3,FILL=C’*’
B DFLD LTH=3 MFLD D,LTH=3,FILL=C’*’
C DFLD LTH=3 SEG
D DFLD LTH=3 MFLD E,LTH=5,FILL=C’*’
E DFLD LTH=5 MFLD F,LTH=7,FILL=C’*’
F DFLD LTH=7 SEG
G DFLD LTH=5 MFLD G,LTH=5,FILL=C’*’

FMTEND MSGEND

Input Message Record Field
DFLD
Data Segment

MFLD
Data

(1) X'C10000C20000C3C3C3000000'
1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

D no data C'***'

X'C5C56BC6C66B000000000000'
2 E C'EE' 2 C'EE***'

F C'FF' C'FF*****'

X'00000000000000'
3 G no data 3 C'*****'

(2) X'C10000C20000C3C3C3'
1 A C'A' 1 C'A**'

B C'B' C'B**'

C C'CCC' C'CCC'

2 D C'EE' C'EE*'

X'C5C56BC6C6'
E C'FF' 2 C'FF***'

F no data C'*******'

no input record 3 G no data 3 C'*****'

Note: In this example, no input data was entered for fields D and G. Input message 1
contains nulls in place of omitted fields. Input message 2 does not contain nulls for omitted
fields and produces undesirable results for fields D, E, and F.

Multiple physical page input messages (3270 and SLU 2 display devices):

Specifying multiple physical page input for 3270 and SLU 2 display devices allows
creation of identical input messages for a transaction regardless of the physical
capacity of the device being used.

When this facility is used, an input message consisting of multiple physical pages
can be entered using multiple physical pages of a single output logical page. If
multiple physical pages are defined for output, the only action required to obtain
multiple physical page input is to specify MULT=YES in the DPAGE statement.

For the 3290 Information Display Panel in partitioned mode, multiple physical
page input from a single partition is supported only if the DPAGE statement for
the current partition specifies MULT=YES. The multiple physical pages for a single
input message must come from a single partition.

Chapter 5. Message Format Service (MFS) reference 499

If MULT=YES is not specified on the DPAGE statement for the current partition,
one physical page of a single partition constructs a single input message and the
input message is restricted to a single logical page.

Input messages can be created from multiple DPAGEs. This function is available
for devices other than 3270 and SLU 2.
Related concepts:
“Physical paging of output messages” on page 506

General rules for multiple DPAGE input
Follow these rules for multiple DPAGE input.
1. If any mapped input LPAGE contains no data segments (as a result of segment

routines canceling all segments, for example), the input message is rejected and
an error message is sent to the other subsystem.

2. MFS echo to the input terminal is ignored.
3. MFS password creation occurs from any DPAGE, but once created, any other

password is ignored. If the password is included in the attach FM header, this
password is used for DPM-Bn.

4. Input message options 1, 2, and 3 apply to LPAGEs. If option 2 is requested,
null segments at end of an LPAGE are eliminated. This alters the relative
positions of the segments in the next LPAGE (if any) in the input message. If
option 1 or 2 is requested, the first segment of the second and all subsequent
LPAGEs have the page bit (X'40') in the Z2 field turned on regardless of any
null segments resulting at the end of the previous LPAGE. If option 3 is
requested, the segment ID is equal to 1 for every first segment in the new
LPAGE.

5. Multiple DPAGE input requested in MFS definitions does not restrict message
creation from the single DPAGE.

6. If your control request is entered with the first input DPAGE, the request is
processed and the input message is rejected. If your control request is entered
with an input DPAGE other than the first, the request is ignored and the input
message is accepted.

7. If your logical page request is entered with the first input DPAGE (that is, an
equals sign (=) in the first position of the input segment), the request is
processed and the input message is rejected.

If multiple DPAGE input is not requested of MFS definitions, message creation
from more than one DPAGE is not permitted and these rules apply:
1. If a single transmission contains more data than defined for the DPAGE

selected, the input message is rejected and an error message is sent to the other
subsystem.

2. If the message has multiple transmissions, the input message is rejected and an
error message is sent to the other subsystem.

3270 and SLU 2 input substitution character
A X'3F' can be received on input by IMS TM from some terminals (such as by
using the ERROR key).

The substitution character (X'3F') provides a means of informing the host
application that an error exists in the field. MFS also uses X'3F' for IMS TM
functions on input data streams. To eliminate the confusion resulting from the two
uses of the X'3F' characters, a parameter (SUB=) is provided on the DEV statement
for use with 3270 and SLU 2 display devices.

500 Application Programming APIs

With this parameter, a user-specified character can be defined to replace any X'3F'
characters received by MFS in the 3270 and SLU 2 data stream. No translation
occurs if any of the following is true:

The SUB= parameter is not specified.
The SUB= parameter is specified as X'3F'.
The input received bypasses MFS.

The specified SUB character should not appear elsewhere in the data stream, so, it
should be nongraphic.

Input format control for ISC (DPM-Bn) subsystems
Use the major input message formatting functions of MFS with ISC nodes.

You can use the following DPAGE selection options to format messages and create
a message from multiple DPAGEs.

Input DPAGE selection

The OPTIONS=(DNM) parameter on the DIV statement allows for DPAGE
selection using data structure name (DSN).

If more than one DPAGE is defined, a DPAGE label must be specified in every
DPAGE. If no DPAGE is selected, the message is rejected and an error message is
sent to the other subsystem.

If OPTIONS=NODNM and multiple DPAGEs are defined, a conditional test is
performed on the first input record. The results of the test (matching the COND=
specification with the data) determines which DPAGE is selected for input data
formatting. If the condition is not satisfied and all defined DPAGEs are conditional,
the input message is rejected and an error message is sent to the other subsystem.

Single transmission chain

For single transmission chains, DPAGEs can be selected using conditional data.

DPAGE selection using conditional data

For multiple DPAGE input with single transmission chain, use the
OPTIONS=NODNM parameter. The data in the first input record is used to select
the first (or only) DPAGE for formatting. If the data supplied does not match any
COND= defined, the last defined DPAGE is selected if the COND= is not specified
for this DPAGE. If the condition is not satisfied and all defined DPAGEs are
conditional, the input message is rejected and an error message is sent to the other
subsystem. If the DSN is supplied in the DD header, it is ignored. For any
additional DPAGE (more data supplied than defined for the DPAGE selected), the
data in the subsequent record is used to select the next DPAGE for formatting.

Multiple transmission chains

For multiple transmission chains, DPAGEs can be selected using DSN or by using
a conditional test.

DPAGE selection using DSN

Chapter 5. Message Format Service (MFS) reference 501

For multiple DPAGE input with multiple transmission chains, use the
OPTIONS=DNM parameter. The DSN supplied in the DD header with each chain
of the message is used to select the DPAGE for formatting. If no match is found,
the message is rejected and an error message (DFS2113) is sent to the other
subsystem.

DPAGE selection using conditional test on the data

If DSN is supplied in the DD header with each chain (or any chain) of the message
and OPTIONS=NODNM is specified on the DIV statement, the DSN is ignored.
The data in the first record of each chain is used to select the DPAGE for
formatting. If no condition is satisfied and the last defined DPAGE is unconditional
(that is, COND= parameter is not specified), this DPAGE is selected for formatting.
If the condition is not satisfied and all defined DPAGEs are conditional, the input
message is rejected and an error message is sent to the other subsystem.

How conditional and unconditional DPAGEs are specified depends on whether
OPTIONS=DNM or OPTIONS=NODNM is specified.
v For OPTIONS=DNM, conditional is specified with a label in the DPAGE

statement.
v For OPTIONS=NODNM:

– To specify conditional, specify the COND= keyword on the DPAGE
statement.

– To specify unconditional, omit the COND= keyword.

MFS supports two input modes: record and stream.

Record mode

In record mode, one record presented to MFS by the ATTACH manager
corresponds to one record defined to MFS. Records and fields defined for each
record are processed sequentially. Fields must not be split across record
boundaries. The data for fields defined in a record must be present in this record
to be considered by MFS. If no data exists for fields defined at the end of the
record, a short record can be presented to MFS. If the data for a field not at the
end of the record is less than the length defined for the corresponding DFLD, or if
no data exists for the field, then a field tab separator character must be inserted to
show omission or truncation. If no data exists for the entire record, a null or a
1-byte record (containing a single FTAB character) must be present if additional
data records follow it. The record can be omitted:
v At the end of the DPAGE for single DPAGE input.
v At end of the DPAGE for multiple DPAGE input with multiple transmission

chains.
v At the end of the last DPAGE for multiple DPAGE input with a single

transmission chain. The record cannot be eliminated from the DPAGE if data for
another DPAGE follows.

Stream mode

In stream mode, record boundaries are ignored and fields can span record
boundaries. Data omitted for fields anywhere in the DPAGE must be indicated by
an FTAB.

FTABs are not required for the data omitted to the end of the DPAGE:

502 Application Programming APIs

v At the end of the DPAGE for single DPAGE input.
v At the end of the DPAGE for multiple DPAGE input with multiple transmission

chains.
v At the end of the last DPAGE for multiple DPAGE input with single

transmission chain. The FTABs cannot be eliminated from the DPAGE if data for
another DPAGE follows.

On input to IMS, the ATTACH manager provides for four deblocking algorithms,
UNDEFINED, RU, VLVB, and CHAINED ASSEMBLY, which specify the following:
v UNDEFINED or RU specify that one RU is equal to one MFS record processed.

IMS TM defaults to the RU algorithm when UNDEFINED is specified in the
ATTACH FM header.

v VLVB specifies that one VLVB record is equal to one MFS record processed.
v CHAINED ASSEMBLY specifies that one input chain is equal to a single MFS

record processed for the entire DPAGE.

For MFS RECORD mode, use the VLVB deblocking algorithm. For MFS RECORD
mode, do not use:
v CHAINED ASSEMBLY, because the entire input chain would be processed as a

single MFS record.
v UNDEFINED or RU, because MFS record definitions would be dependent on the

size of the RUs.

For the MFS STREAM mode, all deblocking options can be used. In most cases the
UNDEFINED and RU algorithms use less buffer space.

Paging requests

Use the FM headers for entering paging requests when using ISC.
Related concepts:
“Input message formatting” on page 480

Output message formatting
IMS supports the following MFS output message formatting, physical and logical
paging, and requirements for output devices.

Output messages accepted by MFS:

Whether an output message is processed by IMS TM basic edit or MFS depends on
the device type, the device definition, and the message being processed.

Output messages to SLU 2 and 3270 devices are processed by MFS, unless
bypassed by the application program.

Output messages to a 3770, Finance workstation, SLU 1, NTO, SLU P, or ISC
subsystem are processed by MFS, if these devices are defined during IMS TM
system definition to operate with MFS.

Even when a device is defined to operate with MFS, MFS does not process an
output message unless a MOD name was specified by the application program, the
MID associated with the previous input message, or the /FORMAT command. Also,
message switches from other MFS devices are processed by MFS if the message has
an associated MOD.

Chapter 5. Message Format Service (MFS) reference 503

If you attempt to access a transaction that is to be changed or deleted when the
online change utility is run, and you do this after the online change command
/MODIFY PREPARE has been issued but before /MODIFY COMMIT has been issued, you
receive an error message.
Related reference:

/MODIFY command (Commands)

How MFS formats output messages:

Output messages processed by MFS are formatted based on the contents of two
MFS control blocks: the message output descriptor (MOD) and the device output
format (DOF).

The MOD defines output message content and, optionally, literal data to be
considered part of the output message. Message fields (MFLDs) refer to device
field locations through the device field (DFLD) definitions in the DOF. The device
output format (DOF) specifies the use of hardware features, device field locations
and attributes, and constant data considered part of the format.

Output message formatting options:

MFS provides three message formatting options for output data. The option
selected determines how the data is formatted and governs the way in which the
application program builds the output message.

Option 1, 2, or 3 is specified in the OPT= operand of the MOD MSG statement.

Segments inserted by the application program must be in the sequence defined to
the MFS Language utility program. Not all segments in a logical page must be
present, but be careful when you omit segments. An option 1 or 2 segment can be
omitted if all subsequent segments to the end of the logical page are omitted;
otherwise, a null segment (X'3F') must be inserted to indicate segment position.
Option 3 output message segments must include a 2-byte relative segment number.

Message fields in option 1 and 2 output segments are defined as fixed-length and
fixed position. Fields can be truncated or omitted by two methods:
v One method is by inserting a short segment.
v The other method is by placing a NULL character (X'3F') in the field. Fields are

scanned left to right for a null character; the first null encountered terminates
the field. If the first character of a field is a null character, the field is effectively
omitted, depending on the fill character used. Positioning of all fields in the
segment remains the same regardless of null characters. Fields truncated or
omitted are padded as defined to the MFS Language utility.

Message fields in option 3 segments can be placed in any order and with any
length that conforms to the segment size restriction. Short fields or omitted fields
are padded as defined to the MFS Language utility. Each field must be preceded
by a 4-byte field prefix of the same format provided by MFS for option 3 input
fields.

While option 3 fields do not have to be in sequence in the output segment, all
fields must be contiguous in the segment; that is, the field prefix of the second
field must begin in the byte beyond the first field's data. Null characters in option
3 fields have no effect on the data transmitted to the device. Like other nongraphic
characters, they are replaced with a blank.

504 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.cr/imscmds/ims_modify.htm#ims_cr1modify

Restriction: Device control characters are invalid in output message fields under
MFS. For 3270 display and SLU 2 terminals, the control characters HT, CR, LF, NL,
and BS are changed to null characters (X'00'). For other devices, these characters
are changed to blanks (X'40'.) All other nongraphic characters (X'00' through X'3F'
and X'FF') are changed to blanks before transmission, with the exception of the
shift out/shift in (SO/SI) characters (X'0E' and X'0F') for EGCS capable devices.
(The SO/SI characters are translated to blanks only for straight DBCS fields.) An
exception is allowed for SLU P (DPM-An) remote programs and ISC (DPM-Bn)
subsystems, for which GRAPHIC=NO can be specified on output. If nongraphic
data is allowed through this specification, the null (X'3F') cannot be used to
truncate segments in options 1 and 2.

Option 1 or 2—output segment example

Definition Output data length
Segment
Field, length=10 4
Field, length=20 field omitted
Field, length=5 5
Field, length=15 15

The segment shown produces the following results:
CONTENTS |54|0|0| DATA 1|*| |* | DATA 3 | DATA 4|
--
LENGTH 2 1 1 4 1 5 20 5 15

Option 3—output segment example

An option 3 segment that produces the same result appears as follows (the *
represents a null (X'3F') character):
CONTENTS |42|0|0|04|08|04| DATA 1|09|34| DATA 3 |19|39| DATA 4|

LENGTH 2 1 1 2 2 2 4 2 2 5 2 2 15

Related concepts:
“Input message formatting” on page 480
Related reference:
“Field format (options 1 and 2)” on page 449
“Field format (option 3)” on page 449

Operator logical paging of output messages:

Output messages can be defined to permit operator logical paging (PAGE=
operand in the MOD's MSG statement). Use operator logical paging to request a
specific logical page of an output message.

Operator logical paging is also available to your written remote program for SLU P
(DPM-An) or ISC subsystem (DPM-Bn). The remote program can request IMS to
provide a specific logical page of the output message.
Related concepts:
“Paging action at the device” on page 535
“Your control of MFS” on page 533

Chapter 5. Message Format Service (MFS) reference 505

Physical paging of output messages:

A logical page can be defined to consist of one or more physical pages. Physical
paging allows data from a logical page to be displayed in several physical pages
on the device. Physical page assignments are made in the format definition. For
display devices, the size of a physical page is defined by the screen capacity (the
number of lines and columns that can be referred to). For most printer devices, a
physical page is defined by the user-specified page length (number of lines) and
the printer's line length.

For SLU P (DPM-An) or ISC subsystems (DPM-Bn), a physical page is defined by
the user-specified paging option and the DPAGE or PPAGE statement specifying
device pages or presentation pages. Physical paging allows data from a message to
be transmitted to the remote program or subsystem in several presentation pages
or logical pages.

Typically, a logical page has just one physical page. Multiple physical pages per
logical page are generally only used when the logical page is designed for a large
screen but is also to be displayed on a small screen device. The physical pages can
have a totally different format from the pages defined for the large screen device.
The following figure illustrates the use of physical paging with a message that
creates one physical page on a 3277 model 2 or on a 3276/3278 with 24×80 screen
size.

Related concepts:
“Multiple physical page input messages (3270 and SLU 2 display devices)” on
page 499

Fill characters for output device fields:

MFS uses fill characters to pad output device fields when the length of the data
received from the application program is less than the specified length or no data
for the field is received.

Figure 32. Physical paging for 3270 or SLU 2

506 Application Programming APIs

A fill character is defined in the message definition (MSG statement), the format
definition (DPAGE statement), or both. If a fill character is specified in both, the fill
character specified in the DPAGE is used. If FILL=NONE is specified in the
DPAGE statement, the fill character from the MSG statement is used. The fill
character specified in the MSG statement is used for all nonliteral fields defined in
the DOF, not just those defined by MFLDs in the MOD. Using a fill character
tailored to the device type generally improves message presentation and device
performance. You can select the following fill characters on a DPAGE statement:
v Blank (X'40')
v Blank (C' ')
v Any hexadecimal EBCDIC graphic character (X'hh')
v An EBCDIC graphic character (C'c')

You can select the following characters on a MSG statement:
v Blank (C' ')
v EBCDIC graphic character (C'c')

For the 3270 or SLU 2 display, the EBCDIC graphic fill character fills in any fields
or partial fields on the formatted display that do not receive any data or only
partial data. This erases information remaining on the display from the previous
message, however, using the fill character increases transmission time.

Null fill can be specified, in which case fields are not filled on the 3270 or SLU 2
formatted screen (and data from the previous message that is not updated by the
current message is still displayed). For devices other than 3270 or SLU 2 display,
compacted lines are produced when message data does not fill device fields. Using
null fill for 3270 or SLU 2 display devices reduces transmission time, but might
result in confusion if a partial field does not cover all the data remaining from a
previous display. Using null fill for other devices causes additional processing in
the IMS control region but reduces transmission and printing time.

For 3270 or SLU 2 formatted screen, a program tab function can be requested that
erases any data remaining in a device field after new data for this field has been
displayed, but does not produce any fill characters. With program tab fill, display
fields on a formatted screen are not cleared unless new data is transmitted to them.

When the program sends only a few of the output data fields, the unwanted
display of leftover data in unprotected fields can be prevented by specifying the
“erase all unprotected” function in the system control area (SCA).

For 3270 output when EGCS fields are present, specify only FILL=PT or
FILL=NULL on the DPAGE or MSG statement. Any other specification can result
in the device rejecting the message.
Related concepts:
“System control area (SCA) and default SCA (DSCA)”
Related reference:
“Input message formatting options” on page 482

System control area (SCA) and default SCA (DSCA):

The system control area (SCA) is the means by which specific device operations are
requested when an output message is sent to the device.

Chapter 5. Message Format Service (MFS) reference 507

These device requests can be defined in the message field (using the SCA) or in the
device format definition (using the default SCA, or DSCA). An SCA is defined as a
message field. The IMS application program can use the SCA to specify device
operations to be performed when output is sent to a terminal device.

The 3270 and SLU 2 functions that can be requested are:
v Force format write.
v Erase unprotected fields before write.
v Erase all partitions before sending message.
v Sound device alarm.
v Unprotect screen for this message.
v Copy output to candidate printer.

For 3270 and SLU 2 devices, MFS interprets the IMS application program
information and performs the specified operations.

A “sound device alarm” can be requested for output to an FIN workstation in the
SCA; in this case, MFS in turn specifies “device alarm” in the header of the output
message sent to the FIN workstation.

For an SLU P (DPM-An) or ISC subsystem (DPM-Bn), all the functions allowed for
the 3270 and FIN can be specified by the IMS application program in a message
field defined as an SCA. Define a device field (DFLD statement) as an SCA in the
DOF. For the SLU P remote programs or ISC subsystems, MFS does not interpret
the specifications from IMS. MFS only relays the specifications in the user-defined
device field SCA that it sends to the remote program or ISC subsystem.

For devices other than 3270, SLU 2, FIN, SLU P, and ISC, the SCA is ignored.

For all devices that can have SCAs, a default system control area (DSCA) can also
be defined in the DOF (in the DEV statement) in which the same kinds of
functions can be specified. Whenever the DOF DSCA is used, the functions are
performed if appropriate for the destination device. DSCA-specified functions are
performed regardless of whether an SCA field is provided. If DSCA and SCA
requests conflict, only the DSCA function is performed. Any invalid flag settings in
the DSCA specifications are reset, and only the valid settings are used.

For SLU P remote programs, DSCA information can similarly override SCA
specifications. The SCA or DSCA information is not interpreted by MFS but is
transmitted to the remote program in the device field defined as an SCA.

IMS application programs that control output through specifications in the SCA
can be device-dependent.
Related concepts:
“Fill characters for output device fields” on page 506
“3270 or SLU 2 screen formatting” on page 427

Output message literal fields:

Output message fields can be defined to contain literal data you specified during
definition of the MOD. MFS includes the specified literal in the output message
before sending the message to the device.

508 Application Programming APIs

You can define your own literal field, select a literal from a number of literals
provided by MFS, or both. The MFS-provided literals are called system literals, and
include:
v Various date formats
v The time stamp
v The output message sequence number
v The logical terminal name
v The number of the logical page
v The queue number of the message waiting
Related concepts:
“Extended Graphic Character Set (EGCS)” on page 511
Related reference:

MFLD statement (System Utilities)

Output device field attributes:

Device field attributes are defined in the DOF's DFLD statement. For 3270 display
devices, specific attributes can be defined in the ATTR= keyword or EATTR=
keyword of the DFLD statement, or default attributes are assumed.

For 3270 printers, 3770 terminals, and 3601 workstations, attribute simulation can
be defined by specifying ATTR=YES or ATTR=nn in the DFLD statement. The
message field definition corresponding to the device field can specify that the
application program can dynamically modify, replace, or simulate device field
attributes.

Extended field attributes for output devices:

Extended field attributes apply to 3270 display devices and to printers defined as
3270P or SCS1, that support the 3270 Structured Field and Attribute Processing
option.

These attributes also apply to 3270P or SCS1 printers that support the Extended
Graphics Character Set (EGCS) if field outlining or DBCS operation is desired.
These extended field attributes provide additional field attribute definition beyond
that provided in the existing 3270 field attribute. They are associated with a field of
characters just as the existing 3270 field attributes are, but they do not take up
display positions in the characters buffer. They can define such field characteristics
as:
v Color (seven-color models only)
v Highlighting
v Programmed Symbols (PS)
v Validation
v Field outlining
v Input control of mixed DBCS/EBCDIC data

Extended field attributes are defined in the EATTR= keyword of the DFLD
statement. They can be dynamically modified by specifying ATTR=nn on the
ATTR=YES or ATTR=nn. corresponding MFLD statement.

Any combination of existing and extended field attributes (except protect and
validate) can be transmitted in one display output stream.

Chapter 5. Message Format Service (MFS) reference 509

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_mfslangmfldstmt.htm#ims_mfslangmfldstmt

When dynamic attribute modification (ATTR=YES) is specified for a device field
with predefined attributes, an attribute is sent to the device for that field in every
output operation, even if the data for this device field is not included in the output
message.

These attributes are used:
v If the output message field has an attribute and the attribute is valid, then the

dynamic attribute modification is performed.
v If the message field is not included in the LPAGE being used or the attribute is

not valid, the predefined attribute for the device field is used.

The default attributes for nonliteral 3270 display device fields are:
v Alphabetic
v Not protected
v Normal display intensity
v Not modified

The default attributes for literal display device fields are:
v Numeric
v Normal display intensity

The forced attributes for literal display device fields are:
v Protected
v Not modified

Attribute simulation can be defined for non-3270 display devices but these
attributes are applied only when requested by an application program. The device
field definition reserves the first byte of the field for attribute data. If the
application program then specifies an attribute request, that request is represented
in the first byte of the device field.

Field attributes that can be simulated are:

Attribute
Action Taken

High-intensity display
An asterisk (*) is placed in the first byte

Modified field
An underscore character (_) is placed in the first byte

High-intensity and modified field
An exclamation point (!) is placed in the first byte

No display
No data is sent regardless of other attributes, except for DPM

Cursor position for the 3604 can also be specified as a simulated attribute.

If a field is defined to receive simulated attribute data but none is provided by the
application program, the first byte is a blank.

For an application program to modify, replace, or simulate attribute data, the
message field definition must specify ATTR=YES or ATTR=nn. When attributes are
defined this way, the first bytes of the output message field are reserved for

510 Application Programming APIs

attribute data. Any error in the specification causes the DFLD ATTR= or EATTR=
specification for that attribute byte to be used, although other attribute or extended
attribute specifications are processed.

For DPM devices, fields can be defined to receive attribute data, extended attribute
data, or both, from the IMS application program by specifying ATTR=YES or
ATTR=nn on the DFLD statement corresponding to the MFLD definition with
ATTR=YES or ATTR=nn. The 3270 attributes from the IMS application program can
either be converted to simulated attributes and placed in the first byte of the
device field or placed unchanged (2 binary bytes as received from the IMS
application program) in the first 2 bytes of the device field. The decision to send
attributes, extended attributes or simulated attributes is made when the device
format is defined. If a field is defined to receive attribute data but none is provided
by the IMS application program, the first byte contains a blank if attribute
simulation was requested, or the first 2 bytes contain binary zeros if binary
attributes were requested.

Extended Graphic Character Set (EGCS):

Extended Graphic Character Sets (EGCS) extend the number of graphic characters
beyond the limit available using EBCDIC. This is an extension of the programmed
symbol feature. The programmed symbol is an optional feature on the IBM 3270
Information Display Station and SCS1 printers that store and use the additional
character sets.

Where DBCS or DBCS/EBCDIC mixed fields are discussed in context with 3270
displays or SCS1 printer devices, it is assumed that these devices are capable of
handling DBCS data. Such devices include, for example, the 5550, supported as a
3270 display, and the 5553 and 5557, supported as SCS1 printers.

Definition: The Double Byte Character Set (DBCS) is a subset of EGCS. In it, each
graphic character is represented by 2 bytes. The valid code range is X'4040' or X'41'
through X'FE' for byte 1, and X'41' through X'FE' for byte 2.

An EGCS field is defined by the EATTR= parameter on the DFLD statement for
3270 displays or SCS1 device types.

All EGCS literals are in the form G'SO XX XX SI', where SO (shift out)=X'0E'
and SI (shift in)=X'0F'.

For SCS1 device types, EGCS is specified as a pair of control characters framing
the data in the form of: G'SO XX XX XX SI'. The framing characters SO (shift out)
and SI (shift in) are not actual characters, but are 1-byte codes: X'0E' or X'0F'.

EGCS literals must be specified as an even number of characters; otherwise, a
warning message is issued. All characters (X'00' through X'FF') are valid in an
EGCS literal; however, a warning message is issued for all characters not within
the range of defined graphics, X'40' through X'FE'.

Restriction: An EGCS literal cannot be equated using the EQU statement if a
hexadecimal value within the literal is an X'7D', which is equivalent to a quote
character.

For the MFS Language utility to recognize an EGCS literal, observe the following
restrictions when defining the EGCS literal:

Chapter 5. Message Format Service (MFS) reference 511

v SO and SI characters cannot be defined as alphabetic characters using the
ALPHA statement.

v The three characters G'SO (SO is a single character) must not span continuation
lines as input to the MFS Language utility, but must appear on the same line.
The same is true for the two characters SI'.

An EGCS literal can be continued on the next line. An SI character can be coded in
column 70, 71, or 72 to terminate EGCS data and is not included in the literal. If an
SI is in column 70, the data in column 71 is ignored, except when it is a single
quotation mark. On continuation lines for literals, an SO character is not required
but can be used, if it is placed in column 15. (This indicates the beginning of EGCS
data and is not included in the literal).

Restriction: IMS does not support a 2-byte fill function, inbound or outbound. For
outbound data, the MFS fill function is at the message level. To avoid MFS
insertion of RA (Repeat to Address) orders for EGCS fields that contain no data or
are omitted in the output message, FILL=PT (the default) or FILL=NULL must be
specified.

The MFS Language utility uses SO and SI characters in its output listing only for
the initial input statement and for error messages that display EGCS literals from
the input record. EGCS literals that are a part of the device image map are
displayed as a series of Gs. Additional utility output that is created by using the
EXEC PARM= operands DIAGNOSTIC, COMPOSITE, and SUBSTITUTE, and that
contains EGCS literals, does not have the G, SO, and SI characters inserted. Only
the data between the SO and SI characters is included.

You must define the screen location (row and column) where the field is to be
displayed. This includes any screen placement constraints imposed by a particular
product implementation. Warning messages are issued when:
v The DFLD attribute is EGCS and the field position parameter does not specify

an odd column number (3270 only)
v An EGCS literal is not specified as an even number of characters
v The DFLD length is not specified as an even number

When defining an EGCS field for a 3283 Model 52, you must ensure that the length
specified is an even number and, if an EGCS field spans device lines, specify
WIDTH= and POS= so that an even number of print positions are reserved on
each of the device lines.
Related concepts:
“Output message literal fields” on page 508

Mixed DBCS/EBCDIC fields:

The Double Byte Character Set (DBCS) is a graphic character set in which each
character is represented by 2 bytes. It is a subset of the Extended Graphic
Character Set (EGCS). DBCS is used to represent some Asian languages, such as
Chinese, Japanese, and Korean; because each of these written languages consists of
more than 256 characters that can be represented by one byte. As with EGCS, this
representation is accomplished by an extension of the programmed symbol feature.

Because DBCS is a subset of EGCS, DBCS fields are specified using EGCS
keywords and parameters and are treated by MFS in much the same way as EGCS
data. However, DBCS data can be used in two field types, a DBCS field and a
DBCS/EBCDIC mixed field. The DBCS field accepts only DBCS data and no

512 Application Programming APIs

special control characters are needed with this type of field. (The valid code range
of DBCS data is X'4040', or X'41' through X'FE' for both bytes.) But, in a mixed
field, where DBCS data is mixed with EBCDIC data, the DBCS data must be
enclosed by SO (shift out) and SI (shift in) control characters.

Using DBCS requires display and printer devices capable of handling DBCS data.
One such group of devices is the 5550 Family (as 3270); however, other 3270 DBCS
devices are available.

Mixed DBCS and EBCDIC fields

When DBCS data is enclosed by SO/SI characters, a mixed field on a 3270 DBCS
device accepts both EBCDIC and DBCS data. Such a mixed field can contain
multiple DBCS data entries enclosed by SO/SI control characters.

The DBCS data should always be enclosed by SO/SI control characters for both
inbound and outbound data to a 3270 display. However, if the data is inbound, the
control characters are automatically created by the terminal. To explicitly specify
DBCS/EBCDIC mixed fields, use the keywords MIX and MIXS on the EATTR=
parameter of the DFLD statement.

For example, the following figure shows the case of a DBCS/EBCDIC mixed field.

The DBCS/EBCDIC mixed data shown in the following figure consists of the
following 16 characters:
v EBCDIC data 'ABCD' and 'EF' (6 bytes)
v DBCS data 'GGGG' and 'GG' (6 bytes)
v Two sets of SO/SI control characters (4 bytes)

The SO control character is represented by X'0E' and the SI control character is
represented by X'0F'.

When DBCS is used, MFS sends the data directly to the 3270 display but performs
SO/SI blank print processing before sending it to the SCS1 printer. The SO/SI
control characters for 3270 displays and SCS1 printers are treated as follows:
v On 3270 displays, an SO or SI control character takes up one position on the

display and appears as a blank.
v On SCS1 printers:

– If EATTR=MIXS is specified, an SO or SI control character does not take up a
position on the listing. To prevent insertion of blanks, specify EATTR=MIXS
(SO/SI blank print suppress option).

EBCDIC
data

EBCDIC
data

DBCS
data

DBCS
data

Number of bytes

Data stream

1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1

0 1 2 3 4 5 6
A B C D SO G G G G SI E F SOG G S

Figure 33. DBCS/EBCDIC mixed data

Chapter 5. Message Format Service (MFS) reference 513

– If EATTR=MIX is specified, the SO/SI blank print option inserts a blank
before an SI control character and after an SI control character in a mixed
data field. Specifying MIX results in identical 3270 display output and SCS1
printer output.

The length of the mixed data containing SO/SI in the application program is
different from the length of the same data on the printed output.

The length of the DBCS/EBCDIC mixed data shown in the previous figure is 16
bytes in the application program. If the string is sent to a field specified with
DFLD EATTR=MIX, the data is printed as a 16-byte string. However, if sent to a
field specified as DFLD EATTR=MIXS, the data is printed as a 12-byte string (4
bytes of SO/SI control characters are suppressed). The length attributes of the
DFLDs are LTH=16 and LTH=12, respectively.

SO/SI control character processing

For 3270 displays, DBCS data enclosed by SO/SI control characters can be
included as part of an existing EBCDIC field. When DBCS data is mixed in an
existing EBCDIC field, the IMS application program must check that correct DBCS
data is placed in the 3270 display field. DBCS data within an EBCDIC field is
correct when the following conditions are met:
v The length of DBCS characters is an even number of bytes.
v There are no unpaired SO or SI control characters.

When MIX or MIXS is specified on the DFLD statement, MFS checks these
conditions, aligns the DBCS data enclosed by SO/SI control characters, and
corrects invalid SO/SI control characters.

DBCS/EBCDIC mixed literals

DBCS/EBCDIC mixed literals can be specified as DFLD/MFLD literals, as shown
in the following code example.

literal format:’SO____SI..SO__SI’

DFLD
’literal’

MFLD
,’literal’
,(dlfdname,’literal’)

The DBCS data in a DBCS/EBCDIC mixed literal is expressed as a series of Gs in
the device image map in the MFS listing.

When the MFS Language utility specifies a DFLD/MFLD literal containing
DBCS/EBCDIC mixed data within an EBCDIC field without specifying EATTR=, a
check for mixed field is performed for both 3270 display and SCS1 printer output.
A DBCS/EBCDIC mixed field attribute with EATTR=MIX is assigned for SCS1
only. The LTH parameter is ignored even if specified. As a result, the field length is
the same as the length of the literal.

The following table shows the processing performed by the IMS MFS Language
utility for SO/SI control characters within a DBCS/EBCDIC mixed field. The
Device and Field are listed, followed by the DFLD/MFLD output literal, and the
MFLD input literal.

514 Application Programming APIs

Table 137. SO/SI processing performed by IMS MFS language utility

Device, Field DFLD/MFLD Output Literal MFLD Input Literal

3270 display,
DBCS/EBCDIC
mixed field

v Check SO/SI pairing.

v Check even length.

v Adjust boundary alignment (with
warning message).

SO/SI checking not done

SCS1 printer,
DBCS/EBCDIC
mixed field

v Check SO/SI pairing.

v Check even length.

v Perform SO/SI correction and
boundary adjustment according to
SO/SI blank print option.

Not applicable

The following table shows the processing performed by the MFS message editor on
SO/SI control characters within a DBCS/EBCDIC field. The Device and Field are
listed, followed by the outbound data fields and the inbound data fields.

Table 138. SO/SI processing performed by MFS message editor

Device, Field Outbound Data Fields Inbound Data Fields

3270 display,
DBCS/EBCDIC
mixed field

v Check SO/SI pairing.

v Check even length.

v Adjust boundary alignment.

SO/SI checking not done

SCS1 printer,
DBCS/EBCDIC
mixed field

v Check SO/SI pairing.

v Check even length.

v Perform SO/SI correction and
boundary alignment according to
SO/SI blank print option.

Not applicable

Continuation rules for DBCS/EBCDIC mixed literals

The continuation rules for mixed literals are the same as the continuation rules for
EGCS literals. The continuation rules are as follows:
v An EGCS literal can be continued on the next line.
v An SI character can be coded in column 70, 71, or 72 to terminate EGCS data

and is not included in the literal. If an SI is in column 70, the data in column 71
is ignored, except when the character is a single quotation mark.

v On continuation lines for literals, an SO character is not required, but can be
used in column 15. (This indicates the beginning of EGCS data and is not
included in the literal.)

Because mixed literals have the DBCS character string, there are some
considerations for their continuation:
v When data is mixed EBCDIC and DBCS, the DBCS data must be enclosed by SO

and SI control characters. The SI characters can be located from column 70 to 72
in an EGCS literal; in a mixed literal, SO and SI are part of the user data.
Therefore, you must fill the data up to column 71, put a non-blank character in
column 72, and start the next line from column 15 (if SO) or from column 16.
Examples of continuations in mixed literals are shown in the following code
sample.

Chapter 5. Message Format Service (MFS) reference 515

v When the first byte of the DBCS character is in column 71, you can put a
non-blank character in column 72 and put the second byte of the DBCS character
in column 16 of the next line to continue the literal. Another solution is to start
the first line from column 17.

Continuation in a mixed literal

Mixed Literal
’abc{K1K2K3}’def where

abc & def = EBCDIC characters
K1K2K3 = DBCS characters
{ = shift out X’0E’
} = shift in X’0F’

Examples of Continuations in Mixed Literals
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

’zzabc{K1}
{K2K3}def’

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
’zzabc{K1K2K3}

{}def’

SO/SI pair verification and SO/SI correction

MFS corrects unpaired SO and SI control characters found during SO/SI pair
verification as follows:
v Within a 3270 display field or SCS1 printer field with EATRR=MIX specified, all

SO control characters (except the last unpaired SO control character in the field)
and all duplicate SI control characters are replaced with blanks.
For the last unpaired SO control character in the field, an SI control character is
placed in either the last, or second from the last, byte so that the length of the
DBCS field is even. If an SI control character is placed in the second from the
last byte, the last byte is replaced by a fill character. If an SO control character is
in the last byte of a field, it is replaced with a blank.

v Within an SCS1 printer field with EATRR=MIXS specified, all SO control
characters (except the last unpaired SO control character in the field) and all
duplicate SI control characters are removed.
For the last unpaired SO control character in the field, an SI control character is
placed in the last, or second from the last, byte so that the length of the DBCS
field is even. If the SI control character is placed in the second from the last byte,
the last byte is replaced by a fill character. If an SO control character is in the
last byte of a field, it is replaced with a fill character.

For SCS1 printers, all paired and unpaired SO/SI control characters exceeding the
number of SO/SI pairs defined for the field are:
v Replaced with blanks, if EATTR=MIX is specified
v Removed, if EATTR=MIXS is specified

If the length of DBCS data within a DBCS/EBCDIC field is odd, the odd SI
position is moved one byte to the left and the rest of the field is padded with
blanks.

516 Application Programming APIs

Input control and DBCS/EBCDIC mixed field (3270 display)

When sending DBCS/EBCDIC data to a DBCS/EBCDIC field, MFS checks for
SO/SI pairs and even length and performs SO/SI correction and boundary
adjustment if necessary. In this way, the DBCS/EBCDIC field appears correctly on
the 3270 display screen or SCS1 printer output.

When receiving DBCS/EBCDIC data from a mixed field, MFS passes the data as is.
This is because SO/SI pairing and even length are always ensured when using the
3270 display.

However, when sending DBCS/EBCDIC data to a DBCS/EBCDIC field and
receiving user-entered DBCS/EBCDIC data from the same field, the application
program must account for changes in the data. When receiving user-entered DBCS
data, the 3270 display builds the data and SO/SI control characters and then
truncates or realigns the data to assure SO/SI paring and even length. The IMS
application program must take this into account when using a part of the send
data as receive data.

DBCS/EBCDIC mixed field and horizontal tab (SCS1 printer)

When using an online horizontal tab setting, tabs are not set within a
DBCS/EBCDIC field. This is because it is not possible to determine beforehand
whether the actual position of the DBCS data within a mixed field is on an odd or
even boundary.

Field outlining

This function is used for user-defined 3270 display and SCS1 printer fields.

Field outlines are referred to as OVER, UNDER, LEFT, and RIGHT lines and they
can be specified independently or in any combination.

The area at the left and right ends of the field shown in the following figure are:
v For 3270 displays, 3270 basic attribute bytes. The left attribute byte describes the

first field; the right attribute byte describes the following field.
v For SCS1 printers, left and right blanks, reserved for the user-defined field by

MFS.

Connecting field outlines and joining fields

You can outline multiple fields jointly as shown in the following figure.

Figure 34. User field and field outlining

Chapter 5. Message Format Service (MFS) reference 517

The previous figure consists of nine logical fields. A1, B1, ... I1 are fields defined
for the 3270 display and A2, B2, ... I2 are fields defined for the SCS1 printer. Note
that for 3270 displays, 3270 basic attribute bytes are placed between fields. For
SCS1 printers, the fields are connected without losing any print positions and the
field outlines are connected. The outline specification for each field in the previous
figure is shown in the following table.

Table 139. Outline specification for each field

Fields LEFT RIGHT OVER UNDER

A1, A2 X X

B1, B2 X

C1, C2 X X

D1, D2 X X

E1, E2 X

F1, F2 X X

G1, G2 X X X

H1, H2 X X

I1, I2 X X X

You need to define only the message field for 3270 displays in your IMS
application program to produce the same output on displays and printers.

When field outlining is specified for an SCS1 printer, the MFS Language utility
attempts to reserve 1 byte for the left and right lines, but if adjacent fields cannot
be reserved, a warning message is issued.

Cursor positioning:

On 3270, 3604, or SLU 2 display devices, the cursor is positioned by its line and
column position on a physical page. When a specific cursor position is always
required (and device-dependence is not an issue), you can define cursor position in
the DPAGE statement.

The DPAGE statement can also be defined so that cursor position is known to the
application program on input and is specified dynamically by the application
program on output. To dynamically define cursor position on output, specify a
device field name along with its line and column position. If this field is then
referred to by a MID MFLD statement, the cursor position is provided in that

Figure 35. Field outlining when connecting user fields

518 Application Programming APIs

message field on message input. If the message field is referred to in a MOD
MFLD statement, the message field can be used by the application program to
specify cursor position on output.

The application program cursor position request is used if its specified size is
within the line and column specifications of the SIZE= operand of the TERMINAL
macro for device type 3270-An; or within the line and column boundaries of 3270,
model 1 or 2. Otherwise, the line and column positions specified on the DPAGE
statement or the default positions (line 1, column 2) are used.

Related reading: For a description of the TERMINAL macro, see IMS Version 14
System Definition.

The option of providing cursor location on input is available only for 3270 or
SLU 2 devices. This method of cursor positioning is not recommended for output,
because it requires the application to use a specific device field position, making
the application device-dependent. MFS considers cursor position as a device field
attribute; the field attribute facility can be used to establish cursor position.

Application programs can dynamically replace, modify, or simulate attributes for a
device field whose corresponding message field is defined as ATTR=YES or
ATTR=nn. At least the first 2 bytes of a message field defined in this way are
reserved for attribute data or extended attribute data provided by the application
program.

For a 3290 in partitioned-format mode, the first partition descriptor (PD) statement
defined in the partition descriptor block (PDB) is the first partition created. The
cursor is placed in this partition, which becomes the active partition unless
overridden by the Jump Partition key or by the ACTVPID= keyword in the
DPAGE statement associated with a subsequent output message.

Using the Jump Partition key causes the cursor to jump to the next sequential
partition defined by the application program and that partition becomes the active
one. The ACTVPID= keyword allows the application program to activate and
locate the cursor in a specific partition.

Prompt facility:

The prompt facility provides a way to automatically notify you if the current page
of output is the last page of the message.

The notification text is defined as a literal which MFS inserts into a specified
device field when it formats the last logical page of the message. To further assist
you, the prompting text can be used to tell you what input is expected next.

Recommendation: For a 3270 or SLU 2 device, the combination of PROMPT and
FILL=NULL should be used with care because, once the prompt literal is
displayed, it can remain on the screen if your input does not cause reformatting of
the screen.

System message field (3270 or SLU 2 display devices):

Output formats for 3270 or SLU 2 display devices can be defined to include a
system message field. If defined in this way, all IMS messages except REQUESTED
FORMAT BLOCK NOT AVAILABLE are sent to the system message field

Chapter 5. Message Format Service (MFS) reference 519

whenever the device is in formatted mode. Using a system message field or setting
byte 1 bit 5 to B'0' in the DSCA specification prevents an IMS message from
destroying a screen format.

When MFS sends a message to the system message field, it activates the device
alarm (if any) but does not reset modified data tags (MDTs), move the cursor, or
change the protect/unprotect status of the display, except in the event of a
multi-segment message. In this case, the status is changed to protected, and the
enter key must be pressed to view the next segment or segments of the message.
Because IMS error messages are an immediate response to MDTs in input, MDTs
remain as they were at entry and you must correct the portion of the input that
was in error.

After input from an operator identification (OID) card reader, the device is no
longer in formatted mode. Therefore, an IMS message is not sent to a SYSMSG
field; it is sent using the default system message format. This is also the case after
an XRF (Extended Recovery Facility) takeover because the device is no longer in
formatted mode.

Printed page format control:

The PAGE= keyword of the DEV statement provides much of the formatting
control of the format of output messages sent to printer devices.

The WIDTH= keyword provides additional formatting control. In conjunction with
the FEAT=(1...10) keyword, WIDTH= provides additional formatting control for
printer devices specified as 3270P. (See WIDTH= under the DEV statement for
additional information.) The WIDTH= keyword, in conjunction with the HTAB=,
VTAB=, VT=, SLDI= and SLDP= keywords, provides additional formatting control
for 3770 or SLU 1 printer devices.

Using a PAGE= operand (DEFN, SPACE, FLOAT, or EJECT), with the page depth
(the number of lines per page), determines how MFS controls the printing of the
output message. These are the PAGE= operands:

DEFN MFS prints each line as defined by DFLD statements. In this mode, if the
first DFLD defined line is greater than 1, the printer position is moved to
the first defined line. The printer position is also moved over the blank
lines between defined DFLDs. However, MFS does not add blank lines to
the bottom of the page of output if the last defined line is less than the
page depth. The next page of output begins on the line following the
current line of output. The number specified in the PAGE= keyword is
used to check the validity of the line specification of the DFLD POS=
keyword.

SPACE
This produces the same printing mode as DEFN except that lines are
added to the bottom of the page if the last defined line is less than the
page depth. The printer is positioned through a series of new lines. This
option can be used for devices that do not have the page eject feature so
that pages are not grouped together.

FLOAT
This operand is used to request that lines not be printed if they are defined
by DFLD statements, or if they contain no data after formatting (all blank
or NULL).

520 Application Programming APIs

EJECT This operand is specified for FIN, 3770, or SLU 1 printers. The following
options can be specified for EJECT (or any combination of these):

BGNPP or ENDPP
MFS ejects the page before (BGNPP) or after (ENDPP) each
physical page of the output message.

BGNMSG
MFS ejects the page before any data in the output message is
printed.

ENDMSG
MFS ejects the page after all the data in the output message is
printed.

MFS does not add lines to or delete lines from the page. EJECT can be
specified for FIN, 3770, or SLU 1 printers.

Related concepts:
“Output format control for 3270P printers” on page 522
“Format control for 3770 and SLU 1 printers”

Format control for 3770 and SLU 1 printers:

MFS provides several specifications to control the format of output messages to
3770 printer devices and SLU 1 (print data set) (DEV TYPE=SCS1).

Line width

The WIDTH= keyword of the DEV statement is used to specify the maximum
width of a print line, relative to column 1. The specified width is used in place of
the physical device line width. Specification of a line width also establishes the
right margin of the printed page (relative to column 1). Valid values are less than
or equal to the physical device line width. For example, if WIDTH=80 is specified,
data can be printed in columns 1 through 80.

Left margin position

The left margin operand of the HTAB= keyword of the DEV statement can be used
to specify where MFS should set the left margin for the device before sending an
output message. A left margin specification should be made if output fields always
start at a column position other than column 1 (the default). For example, if fields
are always defined in columns 5 through 80, HTAB=(5) and WIDTH=80 can be
specified on the DEV statement.

Horizontal tabbing

The HTAB= keyword of the DEV statement is used to specify where MFS should
set horizontal tab stops before sending an output message.

MFS can insert tab control characters into the message to reduce the number of
characters transmitted. To control when tab control characters are inserted, specify
the ONLINE or OFFLINE operand for the HTAB= keyword. OFFLINE specifies
that MFS insert the tab control characters during compilation of the control blocks
by the offline MFS Language utility program. ONLINE specifies that MFS insert
the control characters during online processing of the message. MFS can only be

Chapter 5. Message Format Service (MFS) reference 521

directed to insert tab control characters into messages that have legitimate fill
characters specified (FILL=X'hh' or FILL=C'c' in the DPAGE statement), or use the
default fill character, X'40'.

Specify OFFLINE when the message definition always supplies data to most
defined device fields, or the fill character is not a blank. Specify ONLINE if some
device fields do not receive data, or the data contains blanks. Even though the
ONLINE specification increases MFS online processing, it reduces character
transmission to the device.

Vertical tabbing

The VT= keyword of the DEV statement is used to specify where MFS should
insert vertical tab control characters into the page of the output message. MFS
assumes that the vertical tab stops are relative to line 1 and have been set at the
device by the specification of the VTAB= keyword or other means prior to message
transmission. VT= must be specified if vertical tabbing is required. There are no
default values. VT= is invalid if page control specifications direct MFS to delete
lines that contain no data after formatting. EJECT BGNMSG or EJECT BGNPP
should be specified in conjunction with the VT= keyword to ensure proper
alignment at the beginning of a page. A specification of VT= without a suitable
EJECT operation defined can result in invalid device formatting.

Top and bottom margins

Top and bottom margins can be specified for printers specified as DEV TYPE=SCS1
by using the VTAB= keyword on the DEV statement. VTAB= is invalid if page
control specifications (PAGE=n,FLOAT) direct MFS to delete lines that contain no
data after formatting.

When used together, the page depth (PAGE=), vertical tab (VT=), and top and
bottom margin (VTAB=) specify a “set vertical format” data stream.

Line density

For printers specified as DEV TYPE=SCS1, the density of lines on an output page
can be specified with the SLDx= keyword on the DEV statement, the DFLD
statement, or both. Line density can be set in terms of lines per inch or points per
inch. If SLDx= is specified on both the DEV and DFLD statements, two SLD data
streams are sent, one at the beginning of a message and one within the message,
just before the field on which the SLDx specification, was encountered, but after
any vertical tabs and new line characters. The SLDx specification within the
message changes the line density from that set at the beginning of the message to
that specified within the message. The line density specified within the message
remains in effect until explicitly reset.
Related concepts:
“Printed page format control” on page 520

Output format control for 3270P printers:

MFS provides several specifications to control the format of messages to 3270P
printer devices.

522 Application Programming APIs

Line width

The WIDTH= keyword of the DEV statement is used to specify the maximum
width of a print line relative to column 1. The specified width is used in place of
the physical device line width. The default for 3270P printers is 120. When
WIDTH= is specified, a feature code from 1 to 10 must also be specified using the
FEAT= keyword on the DEV statement.
Related concepts:
“Printed page format control” on page 520

Output format control for SLU P DPM-An:

For SLU P devices with the DPM-An option, You can use several specifications in
MFS to control the format of output messages.

The RCDCTL= operand of the DIV and RCD statements identifies a related group
of device field (DFLD) definitions that are within one record, which is usually sent
to a remote program as one transmission (that is, if the RCDCTL= value is less
than or equal to the value in the OUTBUF= parameter of the system definition
TERMINAL macro).

The number of device fields in the record is determined by the length (numeric
value) specified in RCDCTL. Device fields can be arranged in records through the
RCD statements. The records created can be smaller than the size specified in
RCDCTL. The SPAN/NOSPAN parameter determines whether fields are allowed
to span record boundaries. All output messages are sent in record mode.

The PPAGE statement identifies a presentation page of a device format and can
contain one or more records.

The DPAGE statement defines a logical page of a device format and can contain
one or more records.

Paging

The MSG, DPAGE, or PPAGE operands of the OPTIONS= specification of the DIV
statement is used to determine how the output message is sent to the remote
program.

MSG This specifies that all the data in the output message is to be transmitted
together to the remote program in one chain. This is the default.

After transmitting the message to the remote program, IMS does not
transmit another output message if PROGRAM2 has been specified as the
media parameter of the COMPTn operand of the system definition
TERMINAL macro. An input request is required from the remote program
before the next message is sent. If PROGRAM1 is specified, IMS does not
wait for an input request, but sends another output message if one is
available.

DPAGE
This specifies that all the data in the logical page is to be transmitted
together to the remote program in one chain. A paging request is required
from the remote program to retrieve the next logical page of the output
message.

PPAGE
This specifies that all the data in the presentation page is to be transmitted

Chapter 5. Message Format Service (MFS) reference 523

together to the remote program in one chain. A paging request is required
from the remote program to retrieve the next presentation page of the
output message.

A paging request can be specified through the input message header or through an
operator control table. For OPTIONS=DPAGE or PPAGE, when the last logical or
presentation page has been sent to the remote program, IMS MFS action is the
same as for 3270 and 3604 devices regardless of PROGRAM1 or PROGRAM2
specification.

Each chain contains an output message header. The DATANAME in the output
message header is the format name if OPTIONS=MSG is specified, the current
name of the device logical page (DPAGE) if OPTIONS=DPAGE is specified, or the
current name of the presentation page if OPTIONS=PPAGE is specified.

The output message header is always present in the first transmission record of the
chain. For OPTIONS=MSG, the first transmission record contains only the output
message header, and the next transmission begins the data for the message.

For OPTIONS=DPAGE or PPAGE, the data follows the output message header in
the first transmission record if either of the following occurs:
v RCDCTL=(,SPAN) is specified, and the RCDCTL length is greater than the

output message header length.
v RCDCTL=(,NOSPAN) is specified, the RCDCTL length is greater than the output

message header length, and at least the first data field defined in the current
DPAGE or PPAGE can be fully contained within the first transmission record.

Output message header

The basic output message header contains the following MFS fields, presented in
this sequence:

VERSION ID
MIDNAME
DATANAME

DATANAME is the FMT label for OPTIONS=MSG, the DPAGE label for
OPTIONS=DPAGE, and the PPAGE label for OPTIONS=PPAGE.

If a forms literal is specified in the DEV statement, the FORMSNAME field is
present in the output message header. For OPTIONS=MSG the FORMSNAME is
present in the basic header after the DATANAME. For OPTIONS=DPAGE OR
PPAGE, an optional forms output message header precedes the basic output
message header. It contains the following fields:

MIDNAME
FORMSNAME

The forms header is sent to the remote program as the only element of a chain. A
paging request is required after the header has been processed and the remote
program is ready to process the first logical or presentation page of an output
message.

The length of the output message header can be defined in the HDRCTL= operand
of the DIV statement as fixed or variable.

524 Application Programming APIs

The length of the fixed basic output message header (without FORMSNAME) is 23
bytes for OPTIONS=MSG and 25 bytes for OPTIONS=DPAGE or PPAGE. If
FORMSNAME is present, the maximum length of the basic output message header
for OPTIONS=MSG is 40 bytes, and the maximum length for OPTIONS=DPAGE or
PPAGE is 33 bytes.
v If HDRCTL=FIXED is specified, the MIDNAME and DATANAME fields are

always padded with blanks to the maximum definable length: MIDNAME to 8
bytes (if MIDNAME is not supplied, 8 blanks are presented), FMT name to 6
bytes, and DPAGE or PPAGE name to 8 bytes. For this reason, the position of
the DATANAME is always at the same displacement in the basic output
message header, and the FORMSNAME, if present, is always at the same
displacement, following the FMT name if OPTIONS=MSG and following the
MIDNAME if OPTIONS=DPAGE or PPAGE.

v If HDRCTL=VARIABLE is specified, neither MIDNAME nor DATANAME is
padded. If MIDNAME is less than 8 bytes or is not present, the position of the
DATANAME, FORMSNAME, or both within the output message header is
variable.

The following table shows the format of the fixed output message header for
OPTIONS=MSG.

Table 140. Fixed output message header format for OPTIONS=MSG

FIELD
BYTES

BASE 7 LI 1 MIDNAME
8

L2 1 DATANAME
6

L3 1 FORMSNAME
(user-coded

literal)

BASE The base DPM-An output header with a length of 7 bytes, including the
version ID.

L1 The full length of the MIDNAME plus 1. Contains the value 9.

MIDNAME
Contains the MIDNAME to be used for input. If this name is less than 8
characters, it is padded with blanks to a full 8 bytes. If the MIDNAME is
not specified, this field contains 8 blanks.

L2 The full length of the format name (DATANAME) plus 1. Contains the
value 7.

DATANAME
The name of the format that was used to format the data fields. If the
format name specified is less than 6 characters, it is padded to a full 6
bytes.

L3 Contains the length of the forms literal plus 1. The maximum value is 17.

FORMSNAME
Contains the literal specified in the FORS= parameter of the DEV
statement. It can have a length of 1-16 bytes. If FORS= is not specified in
the DEV statement, the L3 and FORMSNAME fields are not included in
the output message header.

If a variable output message header is specified in the HDRCTL= operand of the
DIV statement, the output message header for OPTIONS=MSG will have the same
format, but MIDNAME and DATANAME will have trailing blanks omitted and
their length fields adjusted accordingly. If MIDNAME is not used, neither the
MIDNAME field nor its length is present.

Chapter 5. Message Format Service (MFS) reference 525

The following table shows the format of the fixed basic output message header
(without FORMSNAME) for OPTIONS=DPAGE or PPAGE.

Table 141. Fixed basic output message header (without FORMSNAME) for
OPTIONS=DPAGE or PPAGE

FIELD
BYTES

BASE 7 L1 1 MIDNAME 8 L2 1 DATANAME 8

BASE Content is the same as for OPTIONS=MSG.

L1 Content is the same as for OPTIONS=MSG.

MIDNAME
Content is the same as for OPTIONS=MSG.

L2 This is the full length of the DPAGE or PPAGE name (DATANAME plus
1). Contains the value 9.

DATANAME
Contains the name of the DPAGE or PPAGE that was used to format the
data fields for the current logical or presentation page. If the DPAGE or
PPAGE name specified is less than 8 characters, it is padded with blanks to
the full 8 bytes.

The following table shows the format of the optional forms output message header
for OPTIONS=DPAGE or PPAGE.

Table 142. Optional forms output message header for OPTIONS=DPAGE or PPAGE

FIELD
BYTES

BASE 5 L1 1 MIDNAME 8 L2 1 FORMSNAME
(user-coded literal)

BASE The base of the optional forms output message header does not include a
version ID.

L1 Contains the value 9.

MIDNAME
Content is the same as for OPTIONS=MSG.

L3 Contains the length of the coded forms literal plus 1.

FORMSNAME
Contains a user-coded literal, as in the fixed output message header for
OPTIONS=MSG.

Naming conventions

Establish naming conventions for formats, device logical pages, and presentation
pages (that is, for the labels of the FMT, DPAGE, and PPAGE statements). For
example, you can establish conventions for FMT, DPAGE, and PPAGE names that
allow the remote program to interpret them in terms of 3790 panels or functional
program subroutines. Also standardize DPM-An output message headers.

User-written labels for PPAGE statements must be unique within a format
definition. It is recommended that labels also be unique within the IMS system.

If OPTIONS=PPAGE has been selected for a format definition, the PPAGE label is
sent as the DATANAME in the output message header. The label should give the
remote program information that can be used in deciding how to process the data.
When you have not coded a label for a PPAGE, MFS generates a label for it and

526 Application Programming APIs

sends this generated name in the output message header. The MFS-generated
names can be used by the remote program, but leaving the label specification up to
MFS is not recommended, because the generated name for a given PPAGE can
change every time the MFS definitions are recompiled.

Deletion of null characters in DPM output records

See the discussion of FILL=NULL in the DPAGE statement in IMS Version 14
Database Utilities for a discussion of deletion of null characters in transmission
records.
Related reference:
“DIV statement” on page 465

Output format control for ISC (DPM-Bn) subsystems
IMS supports the major output message formatting functions of MFS with ISC
nodes.

Format control

For ISC nodes, MFS allows several specifications to control the format of output
messages. If OPTIONS=DPAGE or OPTIONS=PPAGE is specified on the DIV
statement, MFS sends an output message in multiple logical or presentation pages.
Transmission of these pages within the message occurs on demand or
automatically when you set byte 1 bit 5 of the system control area (SCA).

Function management (FM) headers

FM headers are headers on output messages that control functions such as paging.

Paged output messages

For DPM-Bn paging support, if OPTIONS=DPAGE or OPTIONS=PPAGE is
specified on the DIV statement, MFS sends an output message in multiple logical
or presentation pages.

Demand paging

With demand paging, the logical or presentation pages are sent only when a
paging request is received from the other subsystem. The initial output for the
message contains only the ATTACH FM header. If DIV OPTIONS=DNM is
specified, the data structure name (DSN) is also transmitted.

Autopaged output

This option is available message-by-message, based on SCA values. With this
facility, the logical or presentation pages are sent immediately, in multiple
transmission chains (one transmission chain per page). With this option, the
receiver obtains an entire output message in multiple transmission chains. Each
transmission chain contains the DSN, if required.

Restriction: Paging requests cannot be entered to control receipt of the message.

If no data exists for variable-length fields of a page within the message, a null data
chain can result.

Chapter 5. Message Format Service (MFS) reference 527

Byte 1 bit 5 in the DSCA= operand of the DEV statement or in the SCA option of
the MFLD statement indicates autopaged output.

If PAGE=YES is specified in the corresponding MSG definition and autopaged
output is requested, the PAGE=YES specification (operator logical paging) function
is reset and the output message is dequeued at the end of the message. Operator
logical paging applies only to MFS demand paged output.

Output modes

For output from IMS, the ATTACH manager provides for two blocking algorithms:
variable length, variable blocked (VLVB) records and chained Request/Response
Unit (RUs, MFS stream mode). Each record presented by MFS to the ATTACH
manager is preceded by a length field when sent to the other subsystem. The
length field contains the size of the record presented by MFS. The record itself is
sent in as many RUs as required. Fields span RU boundaries but do not span
record boundaries. The number of VLVB records in the transmission chain and the
maximum size of the MFS record depend on the output mode selected and the
paging option specified.

In stream mode, the way DFLDs are defined depends on the OPTIONS= keyword
used:
v For OPTIONS=MSG (paging is not defined), DFLDs are defined in a DPAGE.
v For OPTIONS=DPAGE (paging is defined), DFLDs are defined in a DPAGE.
v For OPTIONS=PPAGE (paging is defined), DFLDs are defined in a PPAGE.

For all three OPTIONS= keyword settings, All the DFLDs defined in a DPAGE (or
PPAGE) are grouped into a single MFS record for transmission, and all the data in
one DPAGE (or PPAGE) is equal to one MFS record and equal to one output RU
chain. One or more RUs are sent in the single transmission chain of the output
message.

If the OFTAB parameter of a DIV or DPAGE statement is defined, contiguous
output field tab separator characters are removed and are not sent to the
subsystem in the following cases:
v At end of message for OPTIONS=MSG
v At end of DPAGE for OPTIONS=DPAGE
v At end of PPAGE for OPTIONS=PPAGE

In record mode, the DFLDs defined in a DPAGE or PPAGE are grouped into
smaller records for transmission. The RCDCTL parameter of the DIV statement is
used to define the maximum length of the MFS record created. If the RCDCTL=
parameter is not specified, the default value allows for records of up to 256 bytes
in length. The RCD statement is used to start a DFLD on a new record boundary.

If the OFTAB parameter is defined, contiguous output field tab separator
characters at the end of the record (for omitted fields and possible short last data
field) are removed before transmission. If the entire record is thus eliminated and
additional data records follow, a 1-byte record containing the single output field
tab separator character is sent. The record is eliminated in the following cases:
v At end of message for OPTIONS=MSG
v At end of DPAGE for OPTIONS=DPAGE
v At end of PPAGE for OPTIONS=PPAGE

528 Application Programming APIs

One or more VLVB records are sent in a single transmission chain of the output
message (OPTIONS=MSG) or the page (OPTIONS=DPAGE or PPAGE).
Related reference:
“Device-dependent output information” on page 450

FILL=NULL specification:

Specify FILL=NULL on the DPAGE or MSG statement and specify the OFTAB=
parameter in the DIV or DPAGE statement to preserve field separation. If
FILL=NULL is specified on the DPAGE or MSG statement and the OFTAB=
parameter is not present on the DIV statement or the DPAGE statement, a
compressed output data stream is produced and field separation is not evident.

Use FILL=NULL for graphic data. If GRAPHIC=NO and FILL=NULL are specified
in the SEG statement, any X'3F' in the non-graphic data stream is compressed out
of the segment and undesirable results can be produced. Send non-graphic data on
output as fixed length output fields and do not specify FILL=NULL.

Output message segments and message fields defined for each segment are
processed sequentially by MFS if option 1 or 2 is defined in the OPT= operand of
the MSG statement. Message fields in option 1 and 2 segments are defined as
fixed-length fields and in fixed position. The data for these fields can be supplied
as fixed-length fields, or it can be shortened by the application program. The data
can be shortened by two methods:
v By inserting a short segment if no data exists for fields defined at the end of a

segment.
v By placing a null character (X'3F') in the field. MFS scans segment data left to

right for a null character. The first null character encountered terminates the data
for a corresponding MFLD. Positioning of all fields in the segment remains the
same as the positioning of defined fields regardless of null characters.

Trailing blank compression:

Blanks at the end of segments are compressed if all of the following are true.
v OFTAB= is specified on the DIV or DPAGE statement, or if FILL=NULL or

FILL=PT.
v GRAPHIC=YES is specified for the segment.
v OPT=1 or OPT=2 is specified in the MSG statement.

Specifying COMPR

You can specify trailing blank compression (COMPR=) as FIXED, SHORT, or ALL.

FIXED

If COMPR=FIXED is specified, MFS removes trailing blanks from fixed-length data
fields. The resulting mapping in the DFLD is as if the application program inserted
a short data field (by inserting X'3F' in the position after significant data or by
inserting a short segment) or omitted the field (by inserting X'3F' in the first
position of the field or by inserting a short segment) if the entire field contains
blanks.

Fields shortened by an application program are not compressed in the same way
as when COMPR=FIXED is specified. This option is provided for application

Chapter 5. Message Format Service (MFS) reference 529

programs that always supply maximum-length fields (such as the NAME field) for
simplicity of the application program, and these blanks are not significant to the
receiver. The receiver can assume that fields shortened or omitted by the compress
option or by the application program have the same meaning.

SHORT

If COMPR=SHORT is specified, MFS removes trailing blanks from the data fields
shortened by the application program. The resulting mapping in the DFLD is as if
the application program inserted a short field with no trailing blanks or omitted
the field. Fixed-length fields do not undergo this compression.

This option is provided for application programs written for the 3270 and without
application program changes.

ALL

If COMPR=ALL is specified, the trailing blanks in the fixed-length and short fields
are removed.

Trailing blanks in a short field or a single blank short field causes a specific
operation on the 3270 (that is, to clear the entire field on the screen for a single
blank and insert a program tab character (FILL=PT), or to clear the remaining
portion of the updated field and insert one or more null characters (FILL=NULL)).

Saving line transmission time

Line transmission time can be saved by using one of the following methods:
v Specifying COMPR=ALL, which removes the trailing blanks in fixed-length and

short fields
v Defining record mode, and defining the fields as occurring at the end of the

record

Blank compression on variable-length output

The following code example shows the data entered by the IMS application:

Segment 1:
DLZZ FIELD A1 | FIELD A2 |FIELD A3 |FIELD A4 |FIELDC1|FIELD C2
0200 AAAAA44444|1234563...|43.......|A4A4A4
0800 00000| F |0F

Segment 2:
DLZZ FIELD B1 | FIELD B2 |FIELD D1 |FIELD D2 |FIELD D3|FIELD E1
0300 BBBBBBBBBB|4444444444|DDDDDD43.|3........|D3D3D3D3
0400 |0000000000| 0F |F |

Note: Both segments entered are shortened by the program.

The following table shows the MFS definitions used in the previous code example.

Table 143. MFS definitions for data entered by IMS application

MSGOUT MSG
TYPE=OUTPUT,
SOR=FMTOUT

SEG

530 Application Programming APIs

Table 143. MFS definitions for data entered by IMS application (continued)

MSGOUT MSG
TYPE=OUTPUT,
SOR=FMTOUT

MFLD A1,LTH=10
MFLD A2,LTH=10
MFLD A3,LTH=10
MFLD A4,LTH=10
MFLD C1,LTH=10
MFLD C2,LTH=10
SEG
MFLD B1,LTH=10
MFLD B2,LTH=10
MFLD D1,LTH=10
MFLD D2,LTH=10
MFLD D3,LTH=10
MFLD E1,LTH=10
MSGEND

FMTOUT FMT

Examples of variable-length output with blank compression are shown in the code
examples below.

The following code example shows variable-length output with blank compression
in record mode:
VLVB FIELD A1 THRU A4: (First record)
01 AAAAA,123456,,A4A4A4
06
VLVB FIELD B1: (Second record)
00 BBBBBBBBBB
0C
VLVB NO DATA: (Third record)
00
03
VLVB FIELDS D1 and D3: (Fourth record)
01 DDDDDD,,D3D3D3D3
02

Note:

1. Field A2 was short.
2. Field A3 had no data.
3. Field A4 was short. Trailing separators in a record are not transmitted.
4. Field B2 had no data.
5. Fields C1 and C2 had no data. A 1-byte record is transmitted because more

data follows.
6. Field D1 was short.
7. Field D2 had no data.
8. Field E1 had no data. A record is not transmitted because no more data follows.

The following table shows the MFS definitions used for record mode output as
shown in the previous code example.

Chapter 5. Message Format Service (MFS) reference 531

Table 144. MFS definitions for record mode

Field Type Definition

DEV TYPE=DPM-B1,
FEAT=5,
MODE=RECORD

DIV TYPE=OUTPUT, X
OFTAB=(c',',MIX),
COMPR=ALL

A1 DFLD LTH=10
A2 DFLD LTH=10
A3 DFLD LTH=10
A4 DFLD LTH=10

RCD
B1 DFLD LTH=10
B2 DFLD LTH=10

RCD
C1 DFLD LTH=10
C2 DFLD LTH=10

RCD
D1 DFLD LTH=10
D2 DFLD LTH=10
D3 DFLD LTH=10

RCD
E1 DFLD LTH=10

The following code example shows variable-length output with blank compression
in stream mode:
VLVB FIELDS A1 THROUGH D3: (Single record)
03 AAAAA,123456,,A4A4A4,BBBBBBBBBB,,,DDDDDD,,D3D3D3D3

Note: In stream mode, a separator is not transmitted for field D3, which is short,
and for field E1, which is omitted.

The following table shows the MFS definitions used for stream mode output as
shown in the previous code example.

Table 145. MFS definitions for stream mode

Field Type Definition

DEV TYPE=DPM-B1,
FEAT=6,
MODE=STREAM

DIV TYPE=OUTPUT, X
OFTAB=(c',',MIX),
COMPR=ALL

A1 DFLD LTH=10
A2 DFLD LTH=10
A3 DFLD LTH=10
A4 DFLD LTH=10
B1 DFLD LTH=10
B2 DFLD LTH=10
C1 DFLD LTH=10
C2 DFLD LTH=10
D1 DFLD LTH=10

532 Application Programming APIs

Table 145. MFS definitions for stream mode (continued)

Field Type Definition

D2 DFLD LTH=10
D3 DFLD LTH=10
E1 DFLD LTH=10

FMTEND

Related reference:
“DIV statement” on page 465

Data structure name:

The data structure name is sent in a separate DD header unless you code
OPTIONS=NODNM on the DIV statement. If you code OPTIONS=DNM or the
default is used, the DD header is present in each transmission chain of an output
message, or each transmission chain of a demand paged output message.

In addition to the data structure name parameter in the DD header, the version
identification parameter is present in the only transmission chain of an output
message or in the first transmission chain of paged output messages.

Version identification

You have an option of coding a 2-byte value on the DEV statement to be included
in the DOF or DIF control block as the version ID. If this parameter is not coded,
the version ID is generated by MFS using a hashing algorithm on the date and
time. The value is also printed in the MFS Language utility output so that you can
reference it in format definitions in remote programs.

Your control of MFS
IMS provides MFS facilities that can assist you, or allow a remote program to
control the display or transmission of output messages.
Related concepts:
“Operator logical paging of output messages” on page 505

Operator logical paging:

Operator logical paging allows you (or, for SLU P, a remote program, or ISC
subsystems) to request a specific logical page of an output message. It is defined
on a message basis in the PAGE= operand of the MOD's MSG statement.

Functions provided

When a MOD is defined to allow operator logical paging, the following functions
are available to you once the first physical page of the output message is
displayed:
v Enter = to display the next logical page of the current message.
v Enter =n, =nn, =nnn , or =nnnn (where n is the logical page number) to display a

specific logical page of the current message. The maximum value for nnnn is
4095.

v Enter =+n, =+nn, or =+nnn to display the n th logical page past the current
logical page. The maximum value for nnn is 999.

Chapter 5. Message Format Service (MFS) reference 533

v Enter =-n, =-nn, =-nnn , or =>nnn to display the n th logical page before the
current logical page. The maximum value for nnn is 999.

v Enter =L to display the first physical page of the last logical page of the current
message.

Format design considerations

When operator logical paging is permitted, message and device formats should be
designed to allow you to enter the page request onto a currently displayed page
and have the request edited to the first field of the first input segment. If this is
not done, or the PAGEREQ function is not used, paging requests can only be
entered on a cleared device.

Preferably, the installation standard for device formats should include a specific
device field for you to enter logical page requests, transaction codes, and IMS
commands. If the transaction code is normally provided through a message or
program function key literal, the PAGEREQ function can be used, or a field can be
defined at the beginning of the first segment using the null pad character. A page
request field on the device can map to this field. If you do not enter a page
request, the null pad causes the field to be removed from the segment and the
second field (literal transaction code) appears at the beginning of the segment.

Transaction codes and logical page requests

If the PAGEREQ function is not used to specify a page request, MFS formats input
data according to the defined MID prior to determining whether operator logical
paging was specified, and whether the input contained a page request. If operator
logical paging was not specified, the message undergoes standard IMS destination
determination.

If operator logical paging was specified, MFS examines the first data of the first
message segment (first field if the message uses format option 3) for an equals sign
(=). If MFS does not find an equals sign, it routes the message to its destination. If
an equals sign is present, all following characters up to a maximum of 4, or the
first blank, are considered to be a page request.

A message destined for a single-segment command or transaction, as required in
Fast Path applications, should be defined as single-segment in its MID. If the MID
defines more than one segment, you must ensure that only one segment is created
when the destination is a single-segment command or transaction. This can be
achieved by careful input and the use of option 2, null compression (FILL=NULL)
or both.

Operator control tables:

Input device fields can be defined to invoke MFS control functions when either the
data or the data length satisfies a predefined condition. Do this by defining one or
more operator control tables and including the related table name in the device
field definition.

When a device field is defined with an associated operator control table, MFS
processes the device input field and performs the requested control function if the
input data satisfies the conditions of the operator control table.

The following control functions are available when you use operator control tables:

534 Application Programming APIs

NEXTPP
Provides the next physical page of the current message.

NEXTLP
Provides the next logical page of the current message.

PAGEREQ
Provides the logical page requested by the second through last characters
of this field. PAGEREQ functions are specified as in operator logical
paging. The first character is a page request “trigger” character that you
define. The remaining characters must be n[nnn], +n[nn], -n[nn], or L (an
equals sign (=) is not allowed).

NEXTMSG
Dequeues the current output message and provides the first physical page
of the next message, if any.

NEXTMSGP
Dequeues the current output message and provides the first physical page
of the next message, if any; or notifies you that there are no other
messages in the queue.

ENDMPPI
Terminates a multiple physical page input message. Available only for the
3270.

Unlike operator logical paging requests, these functions are always located by MFS
during the editing process.

3270 or SLU 2-only feature definitions:

If you use SLU 2 or a 3270, MFS provides several ways to invoke MFS control
functions.
v Program function keys and display device fields defined as detectable by the

selector light pen can be defined for all MFS control functions except PAGEREQ.
v The PA1 key is equivalent to, and reserved for, the NEXTPP function.
v The PA2 key is equivalent to the NEXTMSG function.
v The PA3 key, when not used for the copy function, is equivalent to the

NEXTMSGP function.
v The PF12 key, or PA3 key on data entry keyboards, requests the copy function.

This IMS-supported copy function causes a copy of the currently displayed
physical page to be printed on an available candidate printer. This printer must
be attached to the same control unit (3271 or 3274, for example) as the display
station containing the information to be copied.

Restriction: The request for a copy function is ignored if the device is not
defined to allow the copy function or the device does not support the copy
function.
For more information about the copy function, see the DFLD statement field
definitions for ALPHA/NUM and NOPROT/PROT.

Paging action at the device:

The paging operation for an MFS device depends on MFS control block definitions,
the output message content, and your input. If the device is a printer, each
physical page of each logical page is transmitted to the device in sequence and the
message is dequeued.

Chapter 5. Message Format Service (MFS) reference 535

During output paging, if online change processing occurs that changes the format
of the output message you access, you can get an error message or get the message
in a format different from the one expected.

If operator logical paging is not specified for a 3604, 3270, SLU 2 display, or SLU P
using the DPM paging option, each physical page of each logical page can be
viewed in sequence using the NEXTPP function. Because operator logical paging is
not specified, entering NEXTPP after the last physical page of the last logical page
has been displayed causes the next message to be transmitted if only one exists in
the queue. If no message is in the queue, no action takes place.

If operator logical paging is specified for a 3604, 3270, SLU 2 display, or SLU P
using the DPM paging option, the NEXTPP function can be used to view pages
sequentially. However, entering NEXTPP after the last physical page of the last
logical page causes MFS to return an error message and reset the page position to
the first page. If you are going to view pages out of sequence, the formats should
be designed to use the PAGEREQ capability or to have the page request edited to
the first field of the first input segment. If not, the screen must be cleared before
the page request is entered as unformatted input. For performance reasons, avoid
this method.

The following tables describe IMS actions, and the possible message and device
status from your input or remote program actions after a successful message
transmission.

The following factors must be considered and are included in the figure:
v Macro/statement specifications:

1. TERMINAL (or TYPE) macro (IMS system definition)

►► OPTIONS = (▼

,

other options
PAGDEL
NPGDEL) ►◄

or

►► PAGDEL =
YES
NO ►◄

When you use the default (PAGEDEL=YES), your input that invokes
processing for a new transaction causes the output message for the current
transaction to be dequeued. To prevent current output from being dequeued,
OPTIONS=(...,NPGDEL,...), or PAGDEL=NO for nonswitched 3270 devices,
must be specified.

2. MSG statement (MOD definition)

►► PAGE =
NO
YES ►◄

PAGE=YES specifies that operator logical paging is permitted. PAGE=NO
specifies that paging is not permitted.

v Whether the last physical page of the last logical page in the current message
has been sent.

v An IMS action performed automatically after successful message transmission
and before your input.

536 Application Programming APIs

v Your input or remote program action after receiving a message:
– PAGE ADVANCE: NEXTPP request is entered (or you press PA1 key on 3270

or SLU 2).
– LOGICAL PAGE ADVANCE: NEXTLP request is entered.
– =PAGE: specific logical page is requested.
– PAGEREQ: specific logical page is requested.
– MESSAGE ADVANCE: NEXTMSG request is entered (or you press the PA2

key on a 3270 or SLU 2 device).
– MESSAGE ADVANCE PROTECT: NEXTMSGP request is entered (or you

press PA3 key on 3270 or SLU 2 when PA3 is not defined for copy function).
– You enter (or a remote program enters) data that does not invoke an operator

control function, followed by enter (or 3270 or SLU 2 PFK, CARD,
IMMEDIATE DETECT).
3270 or SLU 2 operators can also press the CLEAR key. The CLEAR key
causes the screen to be unprotected, and subsequent input is edited by IMS
basic edit. CLEAR does not affect the status of the current output message.
The result of any operator action after using CLEAR is the same as if CLEAR
had not been used.

v The following tables use the following abbreviations to describe IMS action:

MSG DEQ
Message dequeue. IMS removes the current output message from the
message queue. The message is available until this action takes place.

MSG ENQ
Message enqueue. IMS places the input message in the message queue.

PROTECT
IMS prevents the device from receiving output from IMS.

UNPROTECT
IMS makes the device eligible to receive output from IMS. If a message
is currently queued for this device, IMS sends it (subject to controls
established by response mode, conversational or exclusive device status).

If a paged message is sent to the terminal with the unprotected screen option set to
“unprotected” (during system definition or using the DSCA or SCA specification),
the screen is not protected between pages and the IMS-described actions shown in
the following tables should be ignored. If the message is sent to the terminal with
the unprotected screen option set to “protect”, the IMS actions shown in the
following tables apply.

The following tables assume the system and message definition values and page
position in the current message that apply in the following four cases:

Case 1 PAGE=NO and the last physical page of the last logical page of the current
message was sent.

Case 2 PAGE=NO and the last physical page of the last logical page of the current
message was not sent.

Case 3 PAGE=YES and the last physical page of the last logical page of the current
message was sent.

Case 4 PAGE=YES and the last physical page of the last logical page of the current
message was not sent.

Chapter 5. Message Format Service (MFS) reference 537

Note: If an error message has been sent to the last page, the following tables do
not apply. The original message is still in the queue. See IMS Version 14 System
Utilities for the proper response to the message.

For the following table, the IMS action, after successful IMS transmission of the
message and terminal receipt of the message, for each of these four cases is
PROTECT, that is, IMS prevents the device from receiving output from IMS. For
Case 1, IMS also dequeues the message from the IMS message queue.

Table 146. Paging operation for a device with MFS with PAGDEL specified. IMS-MFS action and resulting terminal
and message status

Operator Action
IMS Action for Case
1

IMS Action for Case
2

IMS Action for Case
3

IMS Action for Case
4

Request
PAGE
ADVANCE
(NEXTPP)

Unprotected Send next physical
page unprotected

Send error message,
protected1

Send next physical
page, protected

Request
LOGICAL
PAGE
ADVANCE
(NEXTLP)

Unprotected Send first physical
page of next logical
page in current msg 2

Send error message,
protected 1

Send first physical
page of next logical
page in current msg 2

Request specific
logical page using
=PAGE

Send error message,
protected 3

MSG DEQ, send error
message protected 3

If valid, send first physical page of requested
logical page, protected. 1

If invalid, send error message protected. 1

Request specific
logical page using
PAGEREQ

Send error message,
protected

Send error message,
protected 1

If valid, send first physical page of requested
logical page, protected. 1

If invalid, send error message protected. 1

Request
MESSAGE
ADVANCE
(NEXTMSG)

Unprotected MSG DEQ,
unprotected

MSG DEQ,
unprotected

MSG DEQ,
unprotected

Request
MESSAGE
ADVANCE
PROTECT
(NEXTMSGP)

Protected 4 MSG DEQ,
protected
4

MSG DEQ,
protected
4

MSG DEQ,
protected
4

Enter data MSG ENQ,
unprotected

MSG DEQ,
MSG ENQ,
unprotected

MSG DEQ,
MSG ENQ,
unprotected

MSG DEQ,
MSG ENQ,
unprotected

Notes:

1. The original message is still in the queue. See IMS Version 14 System Utilities for the proper response to the
message.

2. If the current page was the last logical page, no new page is sent, and device status is unprotected.

3. If the device is preset or in conversation, the input is queued; no error message is sent and the device status is
unprotected.

4. If a message is in the queue and exclusive or conversational status does not prevent it from being sent, it will be
sent. If no message can be sent, a system message is sent indicating that no output is available.

For the following table, the IMS action, after successful IMS transmission of the
message and terminal receipt of the message, for Cases 2, 3, and 4 is PROTECT,

538 Application Programming APIs

that is, IMS prevents the device from receiving output from IMS. For Case 1, IMS
dequeues the message from the IMS message queue.

Table 147. Paging operation for a device with MFS with NPAGDEL specified. IMS-MFS action and resulting terminal
and message status

Operator Action
IMS Action for Case
1

IMS Action for Case
2

IMS Action for Case
3

IMS Action for Case
4

Request
PAGE
ADVANCE
(NEXTPP)

Unprotected Send next physical
page, protected

Send error message,
protected 1

Send next physical
page, protected

Request
LOGICAL
PAGE
ADVANCE
(NEXTLP)

Unprotected Send first physical
page of next logical
page in current msg 2

Send error message,
protected 1

Send first physical
page of next logical
page in current msg 2

Request specific
logical page using
=PAGE

Send error message,
protected 3

Send error message,
protected 1, 3

If valid, send first physical page of requested
logical page, protected.

If invalid, send error message, protected. 1

Request specific
logical page using
PAGEREQ

Send error message,
protected

Send error message,
protected 1

If valid, send first physical page of requested
logical page, protected.

If invalid, send error message, protected. 1

Request
MESSAGE
ADVANCE
(NEXTMSG)

Unprotected MSG DEQ,
unprotected

MSG DEQ,
unprotected

MSG DEQ,
unprotected

Request
MESSAGE
ADVANCE
PROTECT
(NEXTMSGP)

Protected 4 MSG DEQ,
unprotected

MSG DEQ,
protected 4

MSG DEQ,
protected 4

Enter data MSG ENQ,
unprotected

MSG ENQ 5 MSG ENQ 5 MSG ENQ 5

Notes:

1. The original message is still in the queue. See IMS Version 14 System Utilities for the proper response to the
message.

2. If the current page was the last logical page, no new page is sent, and device status is unprotected.

3. If the device is preset or in conversation, the input is queued; no error message is sent and the device status is
unprotected.

4. If a message is in the queue and exclusive or conversational status does not prevent it from being sent, it will be
sent. If no message can be sent, a system message is sent indicating that no output is available.

5. The original message is still in the queue. The first physical page of the first logical page is sent unless the device
is currently involved in an active conversation. If in conversation, an error message is sent. To continue after a
conversational response, NEXTMSG must be entered to dequeue that response.

Related concepts:
“Operator logical paging of output messages” on page 505
“Unprotected screen option” on page 540

Chapter 5. Message Format Service (MFS) reference 539

Unprotected screen option:

IMS allows you to leave the screen in unprotected status when an output message
is sent to the 3270 display and the message is formatted by MFS. This option is
provided on a terminal-by-terminal basis or on a message-by-message basis, except
messages bypassing MFS.

The terminal option of unprotected status applies to:
v All user-output messages that bypass MFS
v All IMS-generated messages (for example, error, /BROADCAST, and /DISPLAY

command output)
v All messages that are formatted by MFS with one of the IMS-supplied default

formats or with user-supplied formats

If you do not select the unprotected screen option your messages that are
formatted by MFS with user-supplied formats or IMS-supplied default formats,
and IMS-generated messages, leave the screen protected or unprotected on a
message-by-message basis.

If the message is paged, the screen is unprotected between pages. Therefore, this
option is not recommended for paged messages.

Use this option through one of the following:
v SCA output message option of the MFLD statement
v System definition TERMINAL macro specification
v DSCA specification on the DEV statement

Byte 1, bit 5 in the DSCA= operand of the DEV statement and in the SCA output
message option of the MFLD statement is defined for protecting or not protecting
the screen when the message is sent to the 3270 display:

B'0' Protects the screen when output is sent. B'0' (protected) is the default. This
bit is used for autopaged output in ISC.

B'1' The screen is unprotected when output is sent.

If the DSCA value is set to B'0' and PROT (protected) is specified or used as the
default on the TERMINAL or TYPE macro, the application program can request
that the screen be unprotected when this output is sent (by setting the SCA value
to B'1'). If unprotected status is requested when operator logical paging (OLP) is
used for the message (PAGE=YES is specified in the corresponding MSG
definition), then OLP is reset. You can modify IMS-supplied default formats to set
the DSCA value to B'1'.

Whether your messages that bypass MFS leave the display protected or
unprotected depends on the OPTIONS specification on the TERMINAL or TYPE
macro during system definition. The default is protected.

If MFS formats an IMS message sent to the SYSMSG field of a user-defined format
the screen is protected or unprotected depending on the DSCA or SCA option of
the format on the device.

When the display is in unprotected status, IMS can send output to the terminal at
any time. If you press ENTER, a PA key, or a PF key just before the IMS output,
your input or request can be lost. This can be avoided if MFS is used for output

540 Application Programming APIs

and input and you enter the NEXTMSGP function or press PA3 (if PA3 is not used
for copy) to obtain protected status before entering input data.

If MFS is not used or is only used for output, and the MOD name specifies
DFS.EDT, then PA3 protects input data and must not be used for copying.

The following table illustrates the action to be taken (protected or unprotected) by
IMS based on the OPTIONS specification on the TERMINAL or TYPE macro
during system definition, and the type of output message sent.

Table 148. IMS protect or unprotect action based on OPTIONS specification.

Output Message
IMS System Definition
(PRO)

IMS System Definition
(UNPRO)

IMS-generated message with:
DSCA|SCA=PROTECT

PROTECT UNPROTECT

IMS-generated message with:
DSCA|SCA=UNPROTECT

UNPROTECT UNPROTECT

Message using MFS bypass PROTECT UNPROTECT

Your message using MFS and
user-supplied format or
IMS-supplied default format
with: DSCA|SCA=PROTECT

PROTECT UNPROTECT

Your message using MFS and
user-supplied format or
IMS-supplied default format
with:
DSCA|SCA=UNPROTECT

UNPROTECT UNPROTECT

Note:

1. PROTECT: Do not send additional output; wait for input.

2. UNPROTECT: Send output if an output message is available and eligible to be sent.

Related concepts:
“Paging action at the device” on page 535

3290 in partitioned format mode:

Support of 3290 partitioning and scrolling is provided for devices defined to IMS
as SLU 2 terminals. Partitioning and scrolling are not provided for devices using
non-SNA VTAM.

Partition initialization options and paging

You can choose one of three different options for initializing the partition set and
paging. The option you select determines how many logical pages of the output
message are presented to their appropriate partitions at the initial transmission of a
message to a partition formatted screen. (An output message consists of one or
more logical pages, each destined for a particular partition according to the
DPAGE specifying that partition.) The option also determines how paging requests
present additional logical pages to their appropriate partitions. You can specify the
option on the PAGINGOP= operand of the partition descriptor block (PDB)
statement.

The three options are:

Chapter 5. Message Format Service (MFS) reference 541

Option 1
The initial data stream presented to the 3290 LU consists of the first logical
page of the output message, which is mapped using the DPAGE to the
appropriate partition. Thereafter you control all paging with keyed-in
paging requests. You use the PA1 and PA2 keys just as in standard,
non-partitioned mode. The terminal can be using basic paging support or
OLP.

When you request the next logical page, MFS gets the next sequential
logical page and sends it to its associated partition. It does not matter
which partition is active. A request for the next page results in the next
sequential page in the message being sent to the inputting (active) partition
or to another partition.

For example, if you enter =+1, the next logical page in the message is
presented to the appropriate partition, whatever that partition might be. If
you enter =+3, the page that is sequentially third from the last logical page
presented is presented next.

Option 2
The initial data stream presented to the 3290 LU consists of the first logical
page of the message and additional logical pages in sequence until the
second logical page of any partition is reached, or until the end of the
message. Thereafter you control all paging with keyed-in paging requests
as described for Option 1.

Option 3
The initial data stream presented to the 3290 LU consists of the first logical
page of each partition of the partition set. Thereafter you control all paging
with keyed-in paging requests, with one crucial difference from Options 1
and 2: the order in which subsequent logical pages are presented to the
partitions depends on the active partition, from which the request is
entered. All requests for logical pages apply only to logical pages
associated with the active partition.

For example, if you enter =+1, the next logical page destined for the active
partition is presented—not necessarily the one that happens to be
sequentially next in the message. This means that, for the 3290 operator,
management of logical paging within the active partition is identical to
paging support in a non-partitioned environment.

Regardless of the option chosen, one partition is active after the initial data stream
is sent. The active partition is the one in which the cursor is located.

An ACTVPID operand might have been specified on one of the DPAGEs that
points to an initialized partition. The ACTVPID allows the application program to
declare which partition is the active partition. If option 2 or 3 is being used and
data has been sent to several partitions, it is possible that more than one partition
has been specified by ACTVPID keywords. In that case, the last partition activated
is the active partition. If no ACTVPID keywords are encountered, the active
partition is the partition defined by the first partition descriptor (PD) statement in
the PDB.

Clearing the display

There are two levels of clearing the screen and buffer:
v The CLEAR key (X'6D') resets the 3290 to base state, (non-partitioned mode),

sets the buffer positions to null, and places the cursor in the upper left corner of

542 Application Programming APIs

the screen. It also places the active message back onto the queue and deletes the
control block structure that was created for partitioning.

v The CLEAR PARTITION key (X'6A') resets only the active partition buffer to
nulls and clears the active partition viewport. It also places the cursor in the top
left corner of the partition. The partition is considered unformatted; any input
from it is considered unformatted by MFS and is processed by basic edit.

The JUMP PARTITION key

Using the JUMP PARTITION key, you can move from one partition to the next, in
the order that the PD statements define the partitions in the PDB.

Movement between partitions is determined by the order of the PD statements, not
by the order of the associated partition identifier (PID) values.

The partition to which the cursor moves becomes the active partition. Using this
key causes no interaction with the host.

Scrolling operations

The VERTICAL SCROLLING keys cause the data to move up or down in the
viewport, so that different parts of the presentation space appear in the scrolling
window. The scrolling window is the portion of the presentation space that is
mapped to the viewport at a given time. If the viewport has the same depth as the
presentation space, the viewport is nonscrollable. If the viewport depth is smaller
than the presentation space, it is scrollable.

The amount scrolled each time depends on what is specified by the SCROLLI
keyword on the PD statement. The default scrolling increment is one row. Scrolling
causes no interaction with the host.
Related concepts:
“3290 screen formatting” on page 429
“3180 in partitioned format mode”
Related reference:
“Device-dependent output information” on page 450

3180 in partitioned format mode:

IMS support for the 3180 in partitioned format mode is provided through 3290
partitioning and scrolling support.

Although interaction with the 3180 and the 3290 in partitioned format mode are
similar, the following differences apply:
v With the 3180, only one partition with specific size limits is possible. The 3290

supports multiple partitions of various sizes.
v Logical unit display screen size and viewport location for the 3180 cannot be

specified in picture elements (pels). The 3290 supports rows, columns, and pels.
v With the 3180, the single partition is the only one initialized. With the 3290, the

application program can determine, with the ACTVPID keyword, which of the
various partitions to initialize.

Because only one active partition is available on the 3180, you can either specify
Option 1 on the PAGINGOP= operand of the PDB statement or accept the default
of 1. With this option, the initial data stream presented to the 3180 LU consists of

Chapter 5. Message Format Service (MFS) reference 543

the first logical page of the output message, which is mapped by the DPAGE to the
single partition. When you request the next logical page, MFS gets the logical page
that is sequentially next in the message and sends it to the partition.

Clearing the display and scrolling is handled in the same way on the 3180 as on
the 3290 in partitioned format mode.
Related concepts:
“3290 in partitioned format mode” on page 541

MFS format sets supplied by IMS
Several format sets are provided by IMS for system use and to serve as defaults
when you have not supplied a correct MOD name. The IMS-supplied control
blocks reside in the IMS.FORMAT library. When the MFSTEST facility is in use,
these control blocks also reside in the IMS.TFORMAT library. They can be used in
any IMS installation with MFS by specifying the appropriate MOD name after the
/FORMAT command. In addition, the format definitions can be used independently
by specifying the format name in the SOR= operand of the user-written message
definition.

The format definitions supplied by IMS combine with various message definitions
to create several separate message formats. All of the format sets except the MFS
3270 and the SLU 2 master terminal formats use the DFSDF1, DFSDF2, or DFSDF4
format definitions. These format definitions include literals for two of the 3270 or
SLU type 2 program function keys, PFK1 and PFK11. Pressing PFK1 inserts the
/FORMAT command into the first message segment, in front of the entered data.
Pressing PFK11 causes a NEXTMSGP request.

System message format

The system message format is used for single-segment output messages from IMS
and single-segment broadcast messages. It permits two segments of input
(transaction, command, or message switch). DFSDF1 is the format name. The MOD
name is DFSMO1, and the MID name is DFSMI1. Messages that use this format are
eligible for the SYSMSG field on 3270 or SLU 2 devices.

Multisegment system message format

The multisegment system message format is used for multisegment messages from
IMS and multisegment broadcast messages. It permits an output message of up to
22 segments. DFSDF2 is the format name. The MOD name is DFSMO5, and the
MID name is DFSMI2. Messages that use this format are eligible for the SYSMSG
field on 3270 or SLU 2 devices. Use the PA1 key to obtain subsequent segments.

Output message default format

For 3270 or SLU 2 devices, the output message default format is used for message
switches from other terminals and application program output messages with no
MOD name specified. It permits two segments of input (transaction, command, or
message switch). DFSDF2 is the format name. The MOD name is DFSMO2, and the
MID name is DFSMI2.

Block error message format

The block error message format is used for the DFS057I REQUESTED BLOCK NOT
AVAILABLE message sent by MFS when an error is encountered during output
format block selection. This message is accompanied by a return code (indicating

544 Application Programming APIs

the severity of error) and the block name (the name of the MOD or DOF in error).
It can include up to 21 segments of output per logical page. This format permits
two segments of input (transaction, command, or message switch). DFSDF2 is the
format name. The MOD name is DFSMO3, and the MID name is DFSMI2.

/DISPLAY command format

The /DISPLAY command format is used for /DISPLAY command output. Up to 22
segments per logical page are permitted. This format permits two segments of
input (transaction, command, or message switch). DFSDF2 is the format name; The
MOD name is DFSDSP01, and the MID name is DFSMI2.

Multisegment format

The multisegment format is used for entering multisegment transactions and
commands. A /FORMAT command specifying a MOD name of DFSMO4 can be used
to obtain this format. This format is also used for multisegment output messages
not exceeding four segments. Up to four segments of input are permitted. DFSDF4
is the format name. The MOD name is DFSMO4, and the MID name is DFSMI4.

MFS 3270 or SLU 2 master terminal format

The MFS 3270 or SLU 2 master terminal format is used when the optional
IMS-supplied MFS support for the 3270 or SLU 2 master terminal is selected.

MFS sign-on device formats

The MFS sign-on device format is used for terminals that require user signon, such
as terminals defined with the extended terminal option (ETO). (For more
information about ETO, see IMS Version 14 Communications and Connections.) The
format applies to 3270 and SLU 2 devices only. For devices that can receive the
formatted /SIGN ON command panel (devices with at least 12 lines and 40
columns), the MOD is DFSIGNP, and the MID is DFSIGNI. For devices with
smaller screens, the MOD is DFSIGNN, and the MID is DFSIGNJ.
Related concepts:
“MFS formatting for the 3270 or SLU 2 master terminal”

MFS formatting for the 3270 or SLU 2 master terminal
If the IMS master terminal is a 3270 or SLU 2 display device defined as a 3275,
3277 model 2, or 3270-An with SIZE=24×80, you can select the IMS-supplied
format that uses MFS. To use the IMS-supplied format you must specify
OPTIONS=(...,FMTMAST,...) in the COMM macro during IMS system definition.

When this format is used, the display screen is divided into four areas and several
program function keys are reserved.

The four areas of the screen are:

Message Area
This area is for IMS command output (except /DISPLAY and /RDISPLAY),
message switch output, application program output that uses a MOD name
beginning with DFSMO, and IMS system messages.

Display Area
This area is for /DISPLAY and /RDISPLAY command output.

Chapter 5. Message Format Service (MFS) reference 545

Warning Message Area
This area can display the following warning messages:

MASTER LINES WAITING
MASTER MESSAGE WAITING
DISPLAY LINES WAITING
USER MESSAGE WAITING

You can also enter an IMS password in this area.

User Input Area
This area is for your input.

Related reading: The format and use of these screen areas is described in IMS
Version 14 System Administration.

The IMS-supplied master terminal format defines literals for nine of the 3270 or
SLU 2 program function (PF) keys. PF keys 1 through 7 can be used for IMS
command input. Pressing a PF key inserts a corresponding command into the first
message segment in front of the entered data. The keys and their corresponding
commands are:

PF Key
Command

1 /DISPLAY

2 /DISPLAY ACTIVE

3 /DISPLAY STATUS

4 /START LINE

5 /STOP LINE

6 /DISPLAY POOL

7 /BROADCAST LTERM ALL

The PF11 key issues a NEXTMSGP request, and the PF12 key requests the copy
function.

Do not change the definitions for the master terminal format, with the exception of
the PFK literals.

When the master terminal format is used, any message whose MOD name begins
with DFSMO (except DFSMO3) is displayed in the message area. Any message
whose MOD name is DFSDSPO1 is displayed in the display area. Messages with
other MOD names generate the warning message: USER MESSAGE WAITING.
Related concepts:
“MFS format sets supplied by IMS” on page 544

MFS Device Characteristics table
The MFS Device Characteristics table (DFSUDT0x) is generated during system
definition for the 3270 or SLU 2 devices defined as TYPE=3270-An in the TYPE or
TERMINAL macro statement.

The 'x' in DFSUDT0 x corresponds to the parameter specified on the SUFFIX=
keyword of the IMSGEN macro.

546 Application Programming APIs

The MFS Device Characteristics table can be updated with the MFS Device
Characteristics Table utility (DFSUTB00), which allows updates to the table without
system regeneration. Each entry in the table contains the user-defined device type
symbolic name (3270-An), associated screen size (from SIZE= parameter), and
physical terminal features (from FEAT= parameter). Different specifications of the
physical terminal features (FEAT= parameter) for the same device type symbolic
name cause separate entries to be generated in the MFS Device Characteristics
table.

MFS source definitions specify TYPE=3270-An and FEAT as operands on the DEV
statement. For the specified device type, MFS extracts the screen size from the
specified DFSUDT0 x in the IMS.SDFSRESL library.

The MFS Language utility (DFSUPAA0) uses the screen size, feature, and device
type specifications to build a DIF/DOF member in the IMS.FORMAT library to
match the IMS system definition specification. Because the screen size is specified
only during IMS system definition, an IMS system definition must be performed
before execution of the MFS Language utility for user-defined formats with DEV
TYPE=3270-An.

The MFS Device Characteristics table is created during stage 2 of IMS system
definition using the same suffix as the IMS composite control block, nucleus, and
security directory block modules as specified in the SUFFIX= keyword of the
IMSGEN macro. If terminals defined with ETO are added to the system, the MFS
Device Characteristics Table utility can be used to add to or update the table
without regenerating the system definition.

The alphanumeric suffix (x) of the table name (DFSUDT0 x) is the level
identification for the version of the table to be read. The x suffix can also be
specified using the DEVCHAR= parameter of the EXEC statement for the
MFSUTL, MFSBTCH1, MFSTEST, and MFSRVC procedures. Repetitive use of the
same suffix by the MFS Language utility causes the same version of the MFS
device Characteristics table to be read from the IMS.SDFSRESL library.

If an MFS Device Characteristics table is required, and either no suffix was
provided or the suffixed table is not present in the IMS.SDFSRESL library, the MFS
Language utility attempts to load the IMS Device Characteristics table using the
default name (DFSUDT00).

Note: If no default table (DFSUDT00) was created at system definition a failure
will result.

During the logon process for an ETO terminal, the MFS Device Characteristics
table is used to determine the MFS device type for the terminal. The screen size
from the BIND unique data and the device features from the ETO logon descriptor
are used as search arguments.

Associate only one symbolic name with a given screen size. Establish a standard
for relating the device type symbolic name to the screen size.

Recommendation: Use the listed screen sizes for each of the user-defined symbolic
names:

User-Defined Symbolic Name
Screen Size

Chapter 5. Message Format Service (MFS) reference 547

3270-A1
12×80

3270-A2
24×80

3270-A3
32×80

3270-A4
43×80

3270-A5
12×40

3270-A6
6×40

3270-A7
27×132

3270-A8
62×160

Related reference:

MFS Language utility (DFSUPAA0) (System Utilities)

MFS Device Characteristics Table utility (DFSUTB00) (System Utilities)

TYPE macro (System Definition)

TERMINAL macro (System Definition)

Version identification function for DPM formats
The MFS DOF defines how data is formatted for presentation to the remote
program so the remote program can efficiently locate and process the data. The
MFS DIF defines how data is presented to IMS from the remote program.

To ensure proper formatting and to present and interpret the data correctly the
MFS DOFs and DIFs and the remote program communication blocks of the data
formats must be at the same level. The current level of the MFS control block is a
unique 2-byte field called the version identification (version ID). The version ID is
either user-supplied on the DEV statement or, if not specified, it is created by the
MFS Language utility at the time the source definition is stored in the
IMS.REFERRAL library in an ITB format. The version ID is printed in the
information messages DFS1048I and DFS1011I of the MFS Language utility for the
DOF or DIF, and must be included in the remote program if verification is to be
performed.

The version ID of the DOF used in mapping the output message is provided in the
output message header and must be used by the remote program to verify that the
control block in the remote program is at the same level as the DOF's version ID.

The version ID of the control block used in mapping the input message to IMS
must be provided by the remote program in the input message header. It is used to
verify that the correct level of the DIF is provided to map the data for presentation
to the IMS application program. If the version ID sent on input does not match the
version ID in the DIF, the input data is not accepted and an error message is sent
to the remote program. If the verification is not desired, the version ID can be sent

548 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_mfslang.htm#ims_mfslang
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_dfsutb00.htm#ims_dfsutb00
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_type_macro.htm#ims_type_macro
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sdg/ims_terminal_macro.htm#ims_terminal_macro

with hexadecimal zeros (X'0000') or it can be omitted from the input message
header. In this case, both the remote program and MFS assume that the DIF can be
used to map the data correctly.

Chapter 5. Message Format Service (MFS) reference 549

550 Application Programming APIs

Chapter 6. OTMA Callable Interface API reference

IMS provides OTMA access with the OTMA Callable Interface (C/I) API.

See IMS Version 14 Messages and Codes, Volume 2: Non-DFS Messages for codes and
messages used by the OTMA C/I.

OTMA Callable Interface API calls
The OTMA callable interface application programming interfaces (APIs) are listed
here.

Using the Header File DFSYC0.H:

The header file included in the API calling program declares each API invocation
and variables used for the invocation.

For a C/C++ program using OTMA Callable Interface, the C/C++ header file,
DFSYC0.H, needs to be included in the C/C++ program.

Load Module DFSYCRET:

The object stub, DFSYCRET, receives all the API invocations and issues a SVC call
to perform the requested function. The object stub needs to be available during the
binding of the API invoking program. DFSYCRET can be found in SDFSRESL or
ADFSLOAD data sets.

OTMA C/I hints and tips
Use the following hints and tips when programming with OTMA C/I.
v Some OTMA C/I API calls have an ECB parameter that is posted by the

function or by an SRB routine that the function precipitates. The caller must
check the ECB and wait for it to be posted before inspecting the return code and
output data. Be sure to initialize the ECB with 0 before passing to the OTMA
C/I call. The calls that include the ECB parameter are:
– otma_open
– otma_openx
– otma_send_receive
– otma_send_receivex
– otma_send_async
– otma_receive_async

v Each otma_alloc call creates an independent session for the subsequent
otma_send_receive call. One of the otma_alloc calls can be used to specify the
name of IMS transaction or IMS command to be sent to IMS. The maximum
length of the transaction name is 8 characters. If no transaction name or
command is specified in the otma_alloc call, the transaction name, followed by
one or more blanks, or command needs be specified in the beginning of the send
buffer of the otma_send_receive call. After the otma_send_receive call, otma_free
is required, except for the IMS conversation transaction. See the invocation
sample C for sending a conversation transaction.

© Copyright IBM Corp. 1974, 2017 551

v The OTMA C/I builds the standard LLZZ prefix of IMS application data format.
You do not need to build the LLZZ prefix.

v To send a multi-segment message to IMS, the send segment list of the
otma_send_receive call must identify the length of each input segment. The first
element in the segment list specifies the number of the segment. The first
element is then followed by the length of segment 1, the length of segment 2,
and so on.

v When a multi-segment output message is received, an output segment list is
provided for the otma_send_receive call. The first element in the output segment
list contains the number of the output segment. The first element is then
followed by the length of output segment 1, the length of output segment 2, and
so on.

v Sample programs (DFSYCSMP) are shipped with IMS.
v The OTMA C/I can be used to send a protected transaction to IMS by passing a

context token to the otma_send_receive call.
v Because some of the OTMA C/I calls require the calling program to wait,

implementing the time-out routine in the calling program is highly
recommended to avoid long running transactions in IMS and the internal OTMA
C/I hang.

v To run the OTMA C/I application efficiently, limit the number of otma_open
and otma_close calls in the application. Also, for all otma_open and otma_create
calls, try to use the same member name rather than generating a different
member name for each call.

v If the size of the output receive buffer specified in the otma_send_receive call is
too small, the actual data returned is limited by the size of the receive buffer.
The output can be rejected if a special option, SyncLevel1, is specified in the
otma_alloc call. However, if the size of the output receive buffer is too small for
the otma_receive_async call, the OTMA C/I always rejects the output.

v The OTMA C/I can support various program-to-program switches in IMS. See
IMS Version 14 Communications and Connections for more information.

v In some cases, OTMA C/I returns a return code to inform the caller about an
abnormal condition. Logging or saving the return code for debugging purpose is
recommended.

v The otma_send_receive call sends an OTMA send-then-commit message with
synclevel=none to IMS. The caller can set a synclevel=confirm for
otma_send_receive.

v When an input z/OS Resource Recovery Services (RRS) context token is given in
the otma_send_receive call, the synclevel is then changed to SYNCPT to support
the protected transaction.

v For complex program-to-program switches in IMS, a send-then-commit input
message could result in a commit-then-send output message instead of the
expected send-then-commit output message. The OTMA C/I works in this
scenario. See IMS Version 14 Communications and Connections for more
information on program-to-program switches.

v The otma_send_async call sends an OTMA commit-then-send message to IMS.
v The otma_receive_async call receives an OTMA commit-then-send output

message from IMS.
v The OTMA C/I does not support either the OTMA resync protocol or the

OTMA security PROFILE option.
Related reference:
“OTMA C/I sample program for synchronous processing” on page 567

552 Application Programming APIs

“OTMA C/I sample program for asynchronous processing” on page 579

otma_create API
Use the otma_create API to allocate storages for z/OS cross-system coupling
facility (XCF) and IMS communications.

Description

After the call, an anchor will be returned. The anchor must be used for the
subsequent calls. Invoking otma_create is not required. During the otma_open,
OTMA C/I will allocate storages for communication, if it detects that otma_create
has not been called. If otma_create is invoked first, the same input parameters
need to be used again for the subsequent otma_open call.

Invocation

Called by the client in TCB mode.

Input

*ecb Pointer to the next event control block.

*group_name
Pointer to the string containing the XCF group name. (char[8])

*member_name
Pointer to the string containing the XCF member name for this member.
(char[16])

*partner_name
Pointer to the string containing the XCF member name for IMS. (char[16])

*sessions
Number of parallel sessions that are intended to be supported with IMS.
Long integer from 001 to 999.

*tpipe_prefix
First 1 to 4 characters of the tpipe names. (char[4])

For more information on OTMA tpipe naming conventions, see IMS Version
14 Communications and Connections.

Attention: For the input fields group_name, member_name, and partner_name,
all XCF names that are pointed to must be left justified, filled with blanks, and
consist of legal upper case EBCDIC characters. If any of those naming rules are
violated, underlying XCF errors will be reported.

Output

*anchor
Pointer to the anchor word.

*retrsn
Pointer to the return code structure.

C-language function prototype
otma_create(

otma_anchor_t *anchor, [out]
otma_retrsn_t *retrsn, [out]
ecb_t *ecb, [in]

Chapter 6. OTMA Callable Interface API reference 553

otma_grp_name_t *group_name, [in]
otma_clt_name *member_name, [in]
otma_srv_name *partner_name, [in]
signed long int *sessions, [in]
unsigned char *tpipe_name); [in]

Return values (rc value)

The rc and reason are valid after ECB has been posted. For the complete
description of each error, see IMS Version 14 Communications and Connections.

0 The call was completed successfully.

8 User error.

12 Storage obtain failure.

otma_open API
The caller must call otma_open to connect when IMS is available. The caller must
wait on the ECB, that is posted when the connection is completed or when the
attempt has failed. When IMS is not up or OTMA is not started the attempt will
fail.

Description

The caller can cancel the attempt to connect with IMS by issuing an otma_close
call at any time. The ECB will be posted accordingly.

If IMS fails after this connection is established, any call to a function interface will
receive a return code to indicate that IMS is no longer listening for messages. If
IMS resumes before a close is performed, the connection will be reestablished
without any action from the client. The otma_close and otma_open interfaces may
be called again to reestablish communications with IMS. All existing conversations
will have been terminated. This implementation does not use OTMA
Resynchronization Protocol.

An extended version of the otma_open API, which is called otma_openx, provides
extended functionality.

Invocation

Called by the client in TCB mode.

Input

*anchor
Pointer to the anchor word. If otma_create is not used to set up the anchor
environment, the anchor word must be initialized with a zero.

*group_name
Pointer to the string containing the z/OS cross-system coupling facility
(XCF) group name. (char[8])

*member_name
Pointer to the string containing the XCF member name for this member.
(char[16])

*partner_name
Pointer to the string containing the XCF member name for IMS. (char[16])

554 Application Programming APIs

*sessions
Number of parallel sessions that are intended to be supported with IMS.
Long integer from 001 to 999.

*tpipe_prefix
First 1 to 4 characters of the tpipe names. (char[4]).

For more information on OTMA tpipe naming conventions, see IMS Version
14 Communications and Connections.

Attention: For the input fields group_name, member_name, and partner_name,
all XCF names that are pointed to must be left justified, filled with blanks, and
consist of legal upper case EBCDIC characters. If any of those naming rules are
violated, underlying XCF errors will be reported.

Output

*anchor
Pointer to the anchor word to receive the address of global storage.

*retrsn
Pointer to the return code structure.

*ecb Pointer to the event control block to be posted when the open completes.

C-language function prototype
otma_open(

otma_anchor_t *anchor [in/out]
otma_retrsn_t *retrsn, [out]
ecb_t *ecb, [out]
otma_grp_name_t *group_name, [in]
otma_clt_name_t *member_name, [in]
otma_srv_name_t *partner_name, [in]
signed long int *sessions, [in]
unsigned char *tpipe_name); [in]

Post codes

The caller of the OPEN routine must check the ECB that was provided to OPEN. If
this ECB is not already posted, the caller must wait for this ECB (for the OPEN
protocol to complete).

0 XCF OPEN completes successfully.

4 IMS is not ready. Try again later.

8 Your XCF group and member are already active.

12 A system error occurred.

Return values (rc value)

The rc and reason are valid after ECB has been posted.

0 XCF JOIN was successful, client-bid was sent, and acknowledgment
received. For the complete description of each error, see IMS Version 14
Communications and Connections.

4 IMS is not ready. Try again later.

8 Your XCF group and member are already active.

12 A system error occurred.

Chapter 6. OTMA Callable Interface API reference 555

Related reference:
“otma_openx API”

otma_openx API
The otma_openx API is an extended version of the otma_open API, with additional
features. The caller must call otma_openx to connect when IMS is available. The
caller must wait on the ECB, that is posted when the connection is completed or
when the attempt has failed. When IMS is not up or OTMA is not started the
attempt will fail.

Description

The extended features include:
v The ability to specify an OTMA DRU exit routine.
v Added capability for future enhancements to the API.

Invocation

Called by the client in TCB mode.

Input

Same as for the otma_open API, with two additional parameters:

*anchor
Pointer to the anchor word. If otma_create is not used to set up the anchor
environment, the anchor word must be initialized with a zero.

*group_name
Pointer to the string containing the z/OS cross-system coupling facility
(XCF) group name. (char[8])

*member_name
Pointer to the string containing the XCF member name for this member.
(char[16])

*partner_name
Pointer to the string containing the XCF member name for IMS. (char[16])

*sessions
Number of parallel sessions that are intended to be supported with IMS.
Long integer from 001 to 999.

*tpipe_prefix
First 1 to 4 characters of the tpipe names. (char[4]).

For more information on OTMA tpipe naming conventions, see IMS Version
14 Communications and Connections.

*ims_dru_name
Pointer to the string containing the user-defined OTMA User Data
Formatting exit routine. This is an extended API parameter.

*special_options
Pointer to an area codifying non-standard options. Currently, there are no
special options supported. Specify a NULL for this parameter. This is an
extended API parameter.

556 Application Programming APIs

Attention: For the input fields group_name, member_name, and partner_name,
all XCF names that are pointed to must be left justified, filled with blanks, and
consist of legal upper case EBCDIC characters. If any of those naming rules are
violated, underlying XCF errors will be reported.

Output

*anchor
Pointer to the anchor word to receive the address of global storage.

*retrsn
Pointer to the return code structure.

*ecb Pointer to the event control block to be posted when the open completes.

C-language function prototype
otma_openx(

otma_anchor_t *anchor, [out]
otma_retrsn_t *retrsn, [out]
ecb_t *ecb, [out]
otma_grp_name_t *group_name, [in]
otma_clt_name_t *member_name, [in]
otma_srv_name_t *partner_name, [in]
signed long int *sessions, [in]
tpipe_prfx_t *tpipe_prefix, [in]
otma_dru_name_t *ims_dru_name, [in]
otma_profile4_t *special_options); [in]

Post codes

Same as for the otma_open API.

Return values (rc value)

Same as for the otma_open API.
Related reference:
“otma_open API” on page 554

otma_alloc API
The otma_alloc API is called to create an independent session to exchange
messages.

Invocation

Called by the client in TCB mode.

Input

*anchor
Pointer to anchor word that was set up by otma_open.

*username
Pointer to string holding the RACF username for transaction commands.

For calls from authorized programs, the input username is trusted and
passed to IMS. For calls from unauthorized programs, OTMA C/I invokes
a RACF call with the current accessor environment element (ACEE) context
to obtain the username. The input username, if any, will be ignored. A
NULL can be specified for callers from unauthorized programs.

Chapter 6. OTMA Callable Interface API reference 557

*transaction
Name of IMS transaction or command to be sent to IMS.

If the IMS command entered is longer than eight characters, the first eight
characters of the command can be provided in this parameter. The rest of
the characters of the command need to be provided in the beginning of the
send buffer of the subsequent otma_send_receive API.

If this parameter is left blank, then the IMS transaction name or command
must be specified (left aligned) in the beginning of the send buffer of the
subsequent otma_send_receive API.

*prfname
Pointer to a string holding the RACF group name for transactions/
commands.

*special_options
Pointer to the processing options for the subsequent otma_send_receive or
otma_send_receivex API call. The supported processing options include:

Bit 0 SyncOnReturn - with this option, IMS is asked to process the
message without the z/OS Resource Recovery Services (RRS)
context token; in this case, the user ID is obtained when RRS
CTXRDTA is invoked.

Bit 1 SyncLevel1 - with this option, OTMA send_then_commit sync level
1 is used instead of sync level 0, which is the default for OTMA
C/I. Refer to the DFSYCO header file for additional information.

Output

*retrsn
Pointer to return code structure.

*session_handle
Pointer to session handle that uniquely identifies the session for the
subsequent otma_send_receive.

C-language function prototype
otma_alloc(

otma_anchor_t *anchor, [in]
otma_retrsn_t *retrsn, [out]
sess_handle_t *session_handle, [out]
otma_profile_t *special_options, [in]
tran_name_t *transaction, [in]
racf_uid_t *username, [in]
racf_prf_t *prfname); [in]

Return values (rc value)

The rc and reason are valid after ECB has been posted. For the complete
description of each error, see IMS Version 14 Communications and Connections.

0 Success.

4 Session limit reached.

8 Null anchor.

otma_send_receive API
The otma_send_receive API is invoked to initiate a message exchange with IMS.

558 Application Programming APIs

Description

The caller gives buffer definitions for both send and receive. Both send buffer and
receive buffer information is provided. By providing receive information at the
same time as send there are no unexpected messages from IMS, greatly simplifying
the protocol. When the reply arrives from IMS the ECB will be posted. All the
work of buffer management is handled in the message exit routine.

An extended version of the otma_send_receive API, which is called
otma_send_receivex, provides extended functionality.

Invocation

Called by the client in TCB mode.

Input

*anchor
Pointer to anchor word that was set up by otma_open.

*session_handle
Pointer to session handle for tpipe returned by otma_alloc.

*lterm Pointer to lterm name field. On input is passed to IMS. Will be updated on
output to lterm field returned by IMS. Can be blank in both cases.

*modname
Pointer to MODname name field. On input is passed to IMS. Will be updated
on output to MODname field returned by IMS. May be blank in both cases.

If the input modname is DFSM01, DFSMO2, or DFSM05, it will be treated
as blanks.

*send_buffer
Pointer to the data to be sent to IMS. When a NULL is specified for the
transaction parameter, the client code must provide the transaction name
or command, and a blank, to the data in this buffer when sending to IMS.

*send_length
Length of send data.

*send_segment_list
An array of lengths of message segments to be sent to IMS. First element is
count of following segment lengths. Optional: If a single segment is to be
sent, either the first element or the address of the array can be zero.

*receive_buffer
Pointer to buffer to receive reply message from IMS.

*receive_length
Length of buffer available to receive message.

*receive_segment_list
An array to hold the number of segments sent by IMS. First element must
be set as the number of elements in the array. Optional: If a single segment
is to be received, either the first element or the address of the array can be
zero. In which case all segments will be received contiguously without
indication of segmentation boundaries.

*context_id
Null or Distributed Sync Point Context ID from z/OS Resource Recovery
Services.

Chapter 6. OTMA Callable Interface API reference 559

v For an authorized caller, OTMA C/I passes the Context ID directly to
IMS and does not validate the Context ID data.

v For an unauthorized caller, OTMA C/I invokes the CTXSWCH call to
disassociate the token and to validate if the token is current for a task.
When OTMA C/I receives a response from IMS, it switches the context
back onto the task before returning control to the caller.

Output

*retrsn
Pointer to return code structure.

*ecb Event
Control block to be posted when the message exchange is complete.

*received_length
Field to receive length of data received to receive_buffer. Should be equal
to the sum of the segment lengths.

*receive_segment_list
An array of lengths of message segments received from IMS. First element
is count of following segment lengths and must be set by client to indicate
maximum length of array. It will be modified by receive.

*error_message
Address of the pointer to the error message field. It is provided by the user
to receive error or informational messages from IMS. If the post code
returns a 20, then this field will contain data.

C-language function prototype
otma_send_receive(

otma_anchor_t *anchor, [in]
otma_retrsn_t *retrsn, [out]
ecb_t *ecb, [out]

sess_handle_t *session_handle, [in]
lterm_name_t *lterm, [in/out]
mod_name_t *modname, [in/out]

char *send_buffer, [in]
data_leng_t *send_length, [in]
ioseg_list_t *send_seg_list, [in]

char *receive buffer, [in]
data_leng_t *receive_length, [in]
data_leng_t *received_length, [out]
ioseg_list_t *receive_segment_list, [in/out]
context_t *context_id, [in]

char *error_message); [out]

Post codes

0 Normal completion.

8 No anchor/bad session handle/segment too large.

12 Send failed.

16 Receive has been canceled.

20 Error from IMS.

560 Application Programming APIs

Return values (rc value)

The rc and reason are valid after ECB has been posted. For the complete
description of each error, see IMS Version 14 Communications and Connections.

0 Normal completion.

8 No anchor/bad session handle/segment too large.

12 Send failed.

16 Receive has been canceled.

20 Error from IMS.

otma_send_receivex API
The otma_send_receivex API has the same functionality as the otma_send_receive
API, but adds the extended ability to pass OTMA user data.

Invocation

Same as for the otma_send_receive API.

Input

Same as for the otma_send_receive API, with the following additional parameter:

*otma_user_data
Pointer to the OTMA user data. The OTMA user data field can contain any
user data that is used to identify the user input, or to correlate input with
output. If a value is specified in this field, the data is sent to IMS. IMS user
exits OTMAIOED and DFSYDRU0 can read or change the data. The data is
returned to the user if the otma_receive_async API with otma_user_data is
issued.

If there is no OTMA user data, specify a NULL for this field.

Output

Same as for the otma_send_receive API.

C-language function prototype
otma_send_receivex(

otma_anchor_t *anchor, [in]
otma_retrsn_t *retrsn, [out]
ecb_t *ecb, [out]

sess_handle_t *session_handle, [in]
lterm_name_t *lterm, [in/out]
mod_name_t *modname, [in/out]

char *send_buffer, [in]
data_leng_t *send_length, [in]
data_leng_t *send_segment_list, [in]

char *receive buffer, [in]
data_leng_t *receive_length, [in]
data_leng_t *received_length, [out]
data_leng_t *receive_segment_list, [in/out]
context_t *context_id, [in]

Chapter 6. OTMA Callable Interface API reference 561

char *error_message, [out]
otma_user_t *otma_userdata); [in/out]

Post codes

Same as for the otma_send_receive API.

Return values (rc value)

Same as for the otma_send_receive API.

otma_send_async API
The otma_send_async API is invoked to send a transaction or command to IMS.

Invocation

Called by the client in TCB mode.

Restriction: This API cannot be used to submit an IMS fast path transaction, a
protected transaction (the transactions with z/OS Resource Recovery Services
context IDs), or an IMS conversational transaction. For these three types of
transactions, use the otma_send_receive API instead.

Input

*anchor
Pointer to anchor word that was set up by otma_open.

*lterm Pointer to lterm name field. If there is no input lterm, specify a NULL.

*modname
Pointer to MODname name field. If there is no input MODname, specify a
NULL.

*otma_user_data
Pointer to the OTMA user data. This 1022-byte field is optional. The
OTMA user data field can contain any data that is used to identify your
input, or to correlate input with output. If a value is specified in this field,
the data is sent to IMS. IMS user exits OTMAIOED and DFSYDRU0 can
read or change the data. The data is returned if the otma_receive_async
API with otma_user_data is issued.

If there is no OTMA user data, specify a NULL for this field.

*prfname
Pointer to string holding the RACF group name for transaction commands.
This parameter is optional. If there is no input RACF group name, specify
a NULL.

*send_buffer
Pointer to the data to be sent to IMS. When a NULL is specified for the
transaction parameter, the client code must provide the transaction name
or command, and a blank, to the data in this buffer when sending to IMS.

*send_length
Length of send data.

*send_segment_list
An array of lengths of message segments to be sent to IMS. This parameter

562 Application Programming APIs

is required for multi-segment input messages. If specified, the first element
needs to contain the count of total input segments. This field is optional for
single segment input. If a single segment is to be sent, either the first
element or the address of the array can be zero.

*special_options
Pointer to an area codifying non-standard options. Currently, no special
options are supported. Specify a NULL for this parameter.

*tpipe_name
Pointer to OTMA tpipe name field. This name must be different from the
tpipe name specified for the otma_create and otma_open APIs.

*transaction
Name of IMS transaction or command to be sent to IMS.

If the IMS command entered is longer than eight characters, the first eight
characters of the command can be provided in this parameter. The rest of
the characters of the command need to be provided in the beginning of the
send buffer.

If NULL or blanks are specified in this parameter, OTMA C/I expects you
to include the IMS transaction name or command in the beginning of the
send buffer.

*username
Pointer to a string holding the RACF username for transaction/commands.

For calls from authorized programs, the input username is trusted and
passed to IMS. For calls from unauthorized programs, OTMA C/I invokes
a RACF call with the current accessor environment element (ACEE) context
to obtain the username. The input username, if any, will be ignored. A
NULL can be specified for callers from unauthorized programs.

Output

*ecb Event
Event control block to be posted when IMS receives or rejects the input.

*error_message
Address of the pointer to the error message field. You provide this address
to receive error or informational messages from IMS. If the post code
returns a 20, then this field will contain data.

*retrsn
Pointer to the return and reason code structure. If IMS OTMA rejects the
input, the NAK code and its associated reason code are available in OTMA
C/I reason codes 2 and 3. See IMS Version 14 Messages and Codes, Volume 2:
Non-DFS Messages for an explanation of the NAK code.

C-language function prototype
otma_send_async(

otma_anchor_t *anchor, [in]
otma_retrsn_t *retrsn, [out]
ecb_t *ecb, [out]

tpipe_name_t *tpipe_name, [in]
tran_name_t *transaction, [in]
racf_uid_t *username, [in]
racf_prf_t *prfname, [in]
lterm_name_t *lterm, [in]
mod_name_t *modname, [in]

otma_user_t *otma_userdata, [in]

Chapter 6. OTMA Callable Interface API reference 563

char *send_buffer, [in]
data_leng_t *send_length, [in]
data_leng_t *send_segment_list[], [in]
char *error_message, [out]
void *special_options); [in]

Post codes

0 Normal completion.

8 Invalid input.

12 Input failed.

16 Input canceled (IMS is down or OTMA is stopped).

20 Error or information message from IMS.

Return values (rc value)

The rc and reason are valid after ECB has been posted. For the complete
description of each error, see IMS Version 14 Communications and Connections.

0 Normal completion.

8 No anchor/bad input.

12 Send failed.

16 Input canceled (IMS is down or OTMA is stopped).

20 Error or information message from IMS.

otma_receive_async API
The otma_receive_async API is invoked to receive an IMS output message or an
unsolicited message. The caller provides the buffer definitions to receive the IMS
message. When the IMS message arrives, the ECB is posted.

Invocation

Called by the client in TCB mode.

Input

*anchor
Pointer to anchor word that was set up by otma_open.

*tpipe_name
Pointer to OTMA tpipe name field. This name must be different from the
tpipe name specified for the otma_create and otma_open APIs.

receive_length
Length of buffer available to receive message.

Output

*ecb Event
Event control block to be posted when IMS receives the reply.

*error_message
Address of the pointer to the error message field. You provide this address
to receive error or informational messages from IMS. If the post code
returns a 20, then this field will contain data.

564 Application Programming APIs

*lterm Pointer to lterm name field. Can be updated with lterm value that is
returned by IMS.

*modname
Pointer to MODname name field. Can be updated with MODname value that is
returned by IMS.

*otma_user_data
Pointer to the OTMA user data. This 1022-byte field is optional. If the field
is specified and IMS returns the OTMA user data, the data is passed back
to the caller.

The OTMA user data received is either provided in the otma_send_async
API or created by the IMS DRU exit DFSYDRU0.

*receive_buffer
Pointer to buffer to receive reply message from IMS.

*received_length
Field to receive length of data received to receive_buffer. Should be equal
to the sum of the segment lengths.

*receive_segment_list
An array of lengths of message segments received from IMS. The client
must set the first element to indicate the maximum number of message
segments that can be received. After all the segments are received, the first
array element indicates the actual number of segments received, and the
rest of the array elements indicate the length of each segment received.

*retrsn
Pointer to the return and reason code structure.

*special_options
Pointer to an area codifying non-standard options. Currently, no special are
options supported. Specify a NULL for this parameter.

C-language function prototype
otma_receive_async(

otma_anchor_t *anchor, [in]
otma_retrsn_t *retrsn, [out]
ecb_t *ecb, [out]

tpipe_name_t *tpipe_name, [in]
lterm_name_t *lterm, [out]
mod_name_t *modname, [out]

otma_user_t *otma_userdata, [out]

char *receive_buffer, [out]
data_leng_t *receive_length, [in]
data_leng_t *received_length, [out]
data_leng_t *receive_segment_list[], [in/out]

void *special_options); [in]

Post codes

0 Normal completion.

12 Receive failed.

Chapter 6. OTMA Callable Interface API reference 565

Return values (rc value)

The rc and reason are valid after ECB has been posted. For the complete
description of each error, see IMS Version 14 Communications and Connections.

0 Normal completion.

8 No anchor/bad session handle/segment too large.

12 Send failed.

otma_free API
The otma_free API is called to free an independent session created by otma_alloc.

Invocation

Called by the client in TCB mode.

Input

*anchor
Pointer to anchor word returned by otma_open.

*session_handle
Pointer to session handle returned by otma_alloc.

Output

*retrsn
Pointer to return code structure.

*session_handle
Pointer to session handle will be nulled by otma_free.

C-language function prototype
otma_free(

otma_anchor_t *anchor, [in]
otma_retrsn_t *retrsn, [out]
sess_handle_t *session_handle); [in/out]

Return values (rc value)

The rc and reason are valid after ECB has been posted. For the complete
description of each error, see IMS Version 14 Communications and Connections.

0 Success.

4 Not allocated session.

8 Incorrect anchor.

otma_close API
The otma_close API is called to free storages for communication and to leave the
z/OS cross-system coupling facility (XCF) group. This function may be called
when communications are in flight or an open is processing. In these cases all
relevant ECBs will be posted with a canceled post code.

Invocation

Called by the client in TCB mode.

566 Application Programming APIs

Input

*anchor
Pointer to anchor word returned by otma_open.

Output

*anchor
Pointer to anchor word returned by otma_open.

*retrsn
Pointer to return code.

C-language function prototype
otma_close(

otma_anchor_t *anchor, [in/out]
otma_retrsn_t *retrsn); [out]

Return values (rc value)

The rc and reason are valid after ECB has been posted. For the complete
description of each error, see IMS Version 14 Communications and Connections.

0 Success.

4 Null anchor.

8 Cannot leave the XCF group.

OTMA C/I sample programs
The following two sample C programs are for display purposes only.

Warranty and distribution for OTMA C/I sample programs
The OTMA C/I sample programs have warranty and distribution restrictions.

The code is provided “AS IS.” IBM makes no warranties, express or implied,
including but not limited to the implied warranties of merchantability and fitness
for a particular purpose, regarding the function or performance of this code. IBM
shall not be liable for any damages arising out of your use of the sample code,
even if they have been advised of the possibility of such damages.

The sample code can be freely distributed, copied, altered, and incorporated into
other software, provided that it bears the following Copyright notices and
DISCLAIMER OF WARRANTIES intact.
(c) Copyright IBM Corp.
2000 All Rights Reserved. Licensed Materials - Property of IBM
DISCLAIMER OF WARRANTIES.

The following "enclosed" code is sample code created by IBM Corporation.
This sample code is not part of any standard or IBM product and is provided
to you solely for the purpose of assisting you in the development
of your applications.

OTMA C/I sample program for synchronous processing
The program below shows how to use the OTMA C/I for synchronous (one in-one
out) processing.

In this sample program, the otma_send_receive API is used to send and receive
IMS data.

Chapter 6. OTMA Callable Interface API reference 567

#pragma langlvl(extended)
/***/
/* */
/* Callable Interface sample program using synchronous APIs */
/* */
/* Parameters: */
/* Server Name */
/* Client Name */
/* User Name */
/* Iterations */
/* Transaction */
/* User Group */
/* OTMA Data */
/* */
/* Note: The send buffer is sent as a file with a ddname of */
/* SENDBUFn in the invoking JCL. */
/* */
/* Example: //SENDBUF0 DD *,DLM=$$ */
/* SEND OTMA TO SKS1 */
/* $$ */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. ’?’ is used to delimit */
/* the compare string and ’|’ is used to ignore a char compare */
/* */
/* Example: //COMPAR0 DD *,DLM=$$ */
/* SEND OTMA TO SKS1? */
/* $$ */
/* */
/***/

/**/
/* Entry... */
/* */
/* This test program is callable from JCL */
/* */
/* //NA1OTMA JOB CLASS=A,MSGLEVEL=(1,1),MSGCLASS=H,REGION=2M */
/* //** */
/* //* PARM=server_member_name tpipe_name client_member_name */
/* //* iterations command groupid OTMA_Data */
/* //MINISAMP EXEC PGM=NA1OTMA, */
/* // PARM=’TRAP(OFF)/IMS61CR1 IMSTESR G214992 1 /DISP groupid */
/* // OTMAData’ */
/* //STEPLIB DD DISP=SHR,DSN=OTMA.TEST.LOAD */
/* //SYSUDUMP DD SYSOUT=* */
/* //STDOUT DD SYSOUT=* */
/* //STDERR DD SYSOUT=* */
/* //CEEDUMP DD SYSOUT=* */
/* //COMPAR1 DD *,DLM=$$ */
/* EXPECTED OUTPUT GOES HERE */
/* $$ */
/* //SENDBUF0 DD *,DLM=$$ */
/* SEND DATA GOES HERE */
/* $$ */
/* */
/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */
/* off LE condition handling. To get a LE dump on abend set */
/* TRAP ON and provide a CEEDUMP DDNAME. */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. ’?’ is used to delimit */
/* the compare string and ’|’ is used to ignore a char compare*/
/* */
/**/

/***/
/* An example for using the OTMA Client API in C lang. */

568 Application Programming APIs

/* This program is broken into the following parts: */
/* Declarations for special support */
/* Process invocation parameters */
/* Setup for C signal handling */
/* Do XCF open processing and analysis */
/* Do session allocate processing */
/* Execute a command or transaction per invocation parm */
/* Do session free processing */
/* Do close */
/* End */
/***/

/***/
/* API’s for non-authorized OTMA caller */
/***/
#include "dfsyc0.h" /* Non-authorized OTMA API’s */
#include <stdlib.h> /* Standard C Header file */
#include <stddef.h> /* Standard C Header file */
#include <stdio.h> /* Standard C Header file */

/***/
/* Internal functions */
/***/
int memc(char *comp_buf, char *rec_buf1);

/* macro to move string to blank filled left justified char field */
#define splat(t,s) \

{\
memset((char*)&(t),’ ’,sizeof(t));\
strncpy((char*)&(t), s ,strlen(s));}

/* standard math routines */
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))

main(int argc,char *argv[])
{

/* Following fields used by all Functions */

otma_anchor_t anchor; /* Handle returned by create */
/* and used by all others. */

otma_retrsn_t retrsn; /* Return code returned by all. */
long int retsave; /* Return code save area */

/* Following fields used by several Functions */

sess_handle_t sess_handle; /* Handle returned by allocate */
/* used by send_receive and free. */

otma_grp_name_t grp_name; /* API XCF Group Member Name. */
otma_clt_name_t clt_name; /* API XCF Client Member Name. */
otma_srv_name_t srv_name; /* API XCF Server Member Name. */

/* (the IMS XCF member name). */
racf_uid_t userid; /* Our z/OS logon ID. */
racf_prf_t groupid; /* RACF Group ID */
otma_user_t otma_data; /* Otma Data */

lterm_name_t lterm; /* Lterm name */
mod_name_t modname; /* ModName */

unsigned char error_message_text[120];/* IMS error msg field */
/* A place to receive any IMS */
/* DFS error messages. */

unsigned char *error_message = (unsigned char*)&error_message_text;
/* a pointer to which is parameter */
/* on send_receive. */

Chapter 6. OTMA Callable Interface API reference 569

char *tran; /* Transaction Name / IMS Command */
tran_name_t tran_name; /* Transaction Name / IMS Command */

#define BUFFER_LEN 4096 /* set our buffer sizes */
#define NUM_BUFFER 60
#define COM_BUFFER 80
#define GROUP_NAME "HARRY" /* Set XCF group name to join */

char compare_buf[NUM_BUFFER + 1]; /* Compare buffer */
int long buffer_length = 0;
int long rec_buffer_len = BUFFER_LEN;
char rec_buf[BUFFER_LEN];
long int rec_data_len = 0;
char send_buf[BUFFER_LEN];
char temp_buf[NUM_BUFFER];

context_t context = {0x00000000000000000000000000000000};
/* This test is not distributed sync point. */
/* Too complicated for here. */
/* Normally this is obtained from RRS */

/***/
/* The callable interface makes use of z/OS Event Control Blocks. */
/* Any language which call the interface must deal with this. */
/***/

unsigned long *(ecb_list[2]); /* z/OS pause stuff */
unsigned long **pecb_list;

ecb_t ecbOPEN = 0L; /* ecb to be posted by OTMA API */
ecb_t ecbIO = 0L; /* ecb to be posted by OTMA API */
ecb_t signal = 0L; /* ecb to be posted by C runtime */

ecb_t temp_ecb = 0L; /* used by compare and swap */
ecb_t reset_ecb = 0L; /* used by compare and swap */

/***/
/* Local variables */
/***/

int iterations;
int loop_count;
int compare_result;
long int retcode;

signed long sessions; /* number of sessions to support */
tpipe_prfx_t tpipe_prefix; /* first part of tpipe NAME */

FILE * stream;
int num; /* number of characters read from stream */

/***/
/* To support test functions - names of parms */
/* Print the parms out for documentation */
/***/

char * argdefs[8]={ "pgm name", /* 1 */
"server name", /* 2 */
"client name", /* 3 */
"userid ", /* 4 */
"iterations ", /* 5 */
"transaction", /* 6 */
"group id ", /* 7 */
"otma data ", /* 8 */
};

570 Application Programming APIs

/***/
/* Declare an array of compare file ddnames to */
/* compare actual output received with expected output. */
/***/

char * infiledd[4]={"DD:COMPAR0", /* 1 */
"DD:COMPAR1" , /* 2 */
"DD:COMPAR2" , /* 3 */
"DD:COMPAR3" , /* 4 */
};

/***/
/* Declare an array of send file ddnames to */
/* send application data to OTMA. */
/***/

char * sndfiledd[4]= {"DD:SENDBUF0", /* 1 */
"DD:SENDBUF1" , /* 2 */
"DD:SENDBUF2" , /* 3 */
"DD:SENDBUF3" , /* 4 */
};

/* -- */
/* Anounce the startup of the test program. */
/* -- */

printf("Otmci01 Starting, version %s %s\n" ,__DATE__,__TIME__);

/* -- */
/* z/OS Pause Init - do this first, in case it fails bail out. */
/* This sets up a C environment for signaling from the API. */
/* -- */

ecb_list[0] = (unsigned long *) &(signal); /* post by C signal */
ecb_list[1] = (unsigned long *) /* post by OTMA */

((unsigned long)&(ecbOPEN) |
(unsigned long)0x80000000);/* end of list */

pecb_list = &ecb_list[0]; /* pointer to list */
/* define callable I/F */

/***/
/* Begin Test Case... */
/* Anounce the startup of the test program. */
/***/

printf("OTMCI01 Run Date: %s Run Time: %s\n" ,__DATE__,__TIME__);

/***/
/* Process parms/command line arguments. */
/***/

/* First, print the parameters. */
printf("Invocation parameters = \n");
for (i=1 ; i<(min(8,argc));i++)
{

printf("%d %s = ", i, argdefs[i]);
printf("%s.\n", argv[i]);

}

if (argc>1) splat(srv_name, argv[1]) /* XCF memname of IMS */
else splat(srv_name, "IMS61CR1"); /* hard coded default */
if (argc>2) splat(clt_name, argv[2]) /* Client name */
else splat(clt_name, "XCFTEST"); /* hard coded default */
if (argc>3) splat(userid , argv[3]) /* ID to use */
else splat(userid , "XCFTEST"); /* hard coded default */
if (argc>4) iterations = atoi(argv[4]); /* loop count */
else iterations = 1; /* hard coded default */
if (argc>5) tran = argv[5]; /* Transaction/IMS CMD*/
else tran = ""; /* hard coded default */

Chapter 6. OTMA Callable Interface API reference 571

if (argc>6) splat(groupid, argv[6]) /* Group ID to use */
else splat(groupid, " "); /* hard coded default */
if (argc>7) splat(otma_data, argv[7]) /* OTMA Data */
else splat(otma_data, ""); /* hard coded default */

/* ---*/
/* Open the file with the ddname SENDBUF0 supplied in the */
/* JCL which invoked this C driver. Then read the file into */
/* temp_buf. */
/* ---*/

if ((stream = fopen("DD:SENDBUF0","rb")) != NULL)
{

num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
printf("BUFF SIZE = %d.\n", num);
if (num == NUM_BUFFER) {

printf("Number of characters read = %i\n", num);
fclose(stream);

}
else {

if (ferror(stream))
printf("Error reading DDNAME sendbuf0/n");

else if (feof(stream)) {
printf("EOF found\n");
printf("Number of characters read %d\n", num);
printf("temp_buf = %.*s\n", num, temp_buf);
fclose(stream);

}
}

}
else

printf("ERROR opening DDNAME sendbuf0/n");

/* Initialize API parameters and buffers. */
splat(grp_name,GROUP_NAME); /* XCF Group Name */
splat(tpipe_prefix,"TPAS"); /* tpipe Prefix Name */
splat(tran_name,tran); /* do scan here */
strncat(send_buf, temp_buf,num); /* Copy temp_buf into send_buf */
buffer_length = strlen(send_buf); /* Set send buffer length */

/***/
/* Example of setting up parms to Open the XCF Link */
/***/

retrsn.ret = -1;
retrsn.rsn[0] = -1;
retrsn.rsn[1] = -1;
retrsn.rsn[2] = -1;
retrsn.rsn[3] = -1;

sessions = 10; /* OTMA supports multiple parallel */
/* sessions (TPIPES) How many do you want?*/

/***/
/*BEGIN: */
/* We have a CREATE function to set up storage and */
/* an OPEN function to start the protocol. */
/* If you do not need to customize the environment you can start */
/* with the OPEN function, the CREATE will be done by OPEN. */
/***/

printf("-\n");
otma_create(&anchor, /* (out) ptr to addr to receive ancho*/

&retrsn, /* (out) return code */
(ecb_t *) &ecbOPEN,/* not posted by create but stored */

&grp_name, /* (in) ptr to valid groupname */

572 Application Programming APIs

&clt_name, /* (in) Our member name */
&srv_name, /* (in) Our server name */

&sessions, /* (in) number of sessions to support*/
&tpipe_prefix /* (in) first part of tpipe name */
);

printf("OTMA_CREATE issued. ret = %d rsn = %.8x,%.8x,%.8x,%.8x\n"
" anchor is at %.8x.\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
anchor);

printf("-\n");

/***/
/* Connect to IMS */
/***/

otma_open(&anchor, /* out ptr to addr to receive anchor */
&retrsn, /* out return code */
(ecb_t *)&ecbOPEN, /* out posted by open if failure */

/* else posted by exit pgm */
&grp_name, /* in ptr to valid XCF groupname */
&clt_name, /* in Our member name */
&srv_name, /* in Our server name */

&sessions, /* in number of sessions to support */
&tpipe_prefix /* in first part of tpipe name */
);

printf("OTMA_OPEN issued. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"
" Waiting for ecb at %.8x.=%.8x.\n",
retrsn.ret,
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
ecb_list[1],
*ecb_list[1]
);

printf("-\n");

/* -- */
/* Here we wait for Open to signal complete */
/* -- */

DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

printf("OPEN_OTMA done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n"
"\nEcb at %.8x.= %.8x.\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
ecb_list[1], *ecb_list[1]
);

printf("Local Area Anchor at %8.8X = %8.8X\n",
&anchor, anchor);

printf("-\n");

Chapter 6. OTMA Callable Interface API reference 573

/* ---*/
/* The post code from open indicates success or failure */
/* ---*/

if (0!=(0x00ffffff & ecbOPEN))
{

printf("OPEN_OTMA ecb is posted failure.\n");
return(retrsn.rsn[0]);

}

/* ---*/
/* Set userid to blanks if userid = bobdavis */
/* ---*/

printf(" Trans = %.8s,\n ", tran_name);
printf(" Userid = %.8s,\n ", userid);
printf("Groupid = %.8s,\n ", groupid);

/**/
/* Like CREATE the ALLOC function just creates control blocks */
/* and stores data in them. Other functions may be invented */
/* to modify these structures before the command-of-execution,*/
/* SEND_RECEIVE is issued. */
/**/

otma_alloc(
&anchor, /* in ptr to global word */
&retrsn, /* out rc,reason(1-4) */

&sess_handle, /* out session id */
NULL, /* in default overrides */

&tran_name, /* in IMS tp name or cmd */
&userid, /* in RACFid or blanks */
&groupid /* in RACF group id or blnk*/

);

printf("OTMA_ALLOC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3]
);

/**/
/* Even if ALLOC fails we go on here just to prove the */
/* API will reject the call. */
/**/

/**/
/* This is the call that sends the data and prepares to */
/* receive the answer from IMS. */
/* */
/* This test program can iterate with multiple calls here. */
/**/

/* ___Send message wait for reply______________________ */
for (loop_count = 0 ; loop_count<iterations ; loop_count++)
{
/* ___Change the environment to wait for ecbIO */
ecbIO = 0; /* clear ecb for reuse */
ecb_list[1] = (unsigned long *) /* posted by OTMA */

((unsigned long)&(ecbIO) |
(unsigned long)0x80000000); /* end of list */

if (loop_count != 0)
{

574 Application Programming APIs

/* ---*/
/* If looping more than once open the next file to send */
/* and read it into the send_buf. */
/* ---*/

if ((stream = fopen(sndfiledd[loop_count],"rb")) != NULL)
{
num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
printf("BUFF SIZE = %d.\n", num);
if (num == NUM_BUFFER) {

fclose(stream);
}
else {
if (ferror(stream))
printf("Error opening file
else if (feof(stream)) {

printf("EOF found\n");
printf("Number of characters read %d\n", num);
printf("temp_buf = %.*s\n", num, temp_buf);
fclose(stream);

}
}
}
else
printf("Error opening file %s\n", sndfiledd[loop_count]);
/* Initialize send and receiving buffers. */
memset(rec_buf ,0, sizeof(rec_buf));
memset(send_buf ,0, sizeof(send_buf));
strcat(send_buf, temp_buf);
strcat(send_buf, " ");
buffer_length = strlen(send_buf);
printf("
printf ("buffer length = %d\n", buffer_length);
} /* end if loop_count != 0 */

/* Print otma_send_receive parms and start of API */
memset(error_message_text ,0, sizeof(error_message_text));
printf("Send buf at %.8x.\n", &send_buf);
printf("Send buf = %s.\n", send_buf);
printf("Receive buf at %.8x.\n", &rec_buf);
printf("Lterm = %.8s.\n", lterm);
printf("Modname = %.8s.\n", modname);

printf("-\n");
otma_send_receivex(

&anchor, /* (in) anchor block */
&retrsn, /* (out) return status */
&ecbIO, /* (in) ecb address */

&sess_handle, /* (in) session handle */
<erm, /* (in/out) logical terminal */
&modname, /* (in/out) module name */

(unsigned char *) &send_buf, /* (in) send buffer */
&buffer_length, /* (in) size of send buffer */
0, /* (in) send_segment_list */

(unsigned char *) &rec_buf, /* (in) receive buffer */
&rec_buffer_len, /* (in) size of buffer */
&rec_data_len, /* (out) received data length */
0, /* (in/out) receive seg list */

&context, /* (in) context id */
&error_message, /* (out) ims message */
&otma_data); /* (in) Otma Data */

Chapter 6. OTMA Callable Interface API reference 575

printf("OTMA_SEND done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3]);

/* -- */
/* Here we wait for receive to signal complete */
/* An application can go do other thing while IMS is processing and */
/* while the XCF scheduled SRBs are returning data to the caller’s */
/* buffers. DO NOT DEALLOCATE THE BUFERS WHILE THIS IS GOING ON! */
/* None of the output areas of the SEND_RECIEVE can be freed until */
/* the ECB is posted complete. */
/* -- */

DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

retsave = retrsn.ret; /* Save Receive return code */

printf("OTMA_RECEIVE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"
"\nEcb at %.8x.= %.8x.\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
ecb_list[1],
*ecb_list[1]
);

if (retrsn.ret != 0)
{

/* ___Error path Free allocated session _____________________ */
printf("-error path retrsn.ret=
printf("-\n");
printf("Error message = %s\n", error_message);
otma_free(

& anchor, /* (out) ptr to global word */
& retrsn, /* (out) rc,reason (1-4) */
& sess_handle /* (in) unique path id */

);

printf("OTMA_FREE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3]
);

/* ___Sever IMS connection ____________________________ */
printf("-\n");
otma_close(

& anchor, /* (in,out) tr to otma anchor */
& retrsn /* (out) rc,reason (1-4) */

);

printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3]
);

576 Application Programming APIs

return (retsave); /* EXIT with receive API return code */
}

/* ---*/
/* If SEND_RECEIVE worked .. */
/* ---*/

/* ---*/
/* Open the compare file containing the expected output */
/* of the receive buffer. Compare the expected output */
/* with the actual output and return the result. */
/* ---*/

rec_buf[0] = ’ ’; /* Remove possible NL ie x’15’ */
printf("infiledd = %s\n", infiledd[loop_count]);

if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)
{
num = fread(compare_buf, sizeof(char), COM_BUFFER, stream);
if (num == COM_BUFFER) { /* fread success */

printf("compare_buf = %s\n", compare_buf);
printf(" rec_buf = %s\n", rec_buf);
fclose(stream);
compare_result = memc(compare_buf, rec_buf);
printf("compare_result =
if (compare_result != 0)
return(compare_result); /* Exit if NO COMPARE */

}
else { /* fread() failed */

if (ferror(stream)) /* possibility 1 */
printf("Error reading file %s\n", infiledd[loop_count]);

else if (feof(stream)) { /* possibility 2 */
printf("EOF found\n");
printf("Number of characters read %d\n", num);
printf("compare_buf = %.*s\n", num, compare_buf);

}
}

}
else
printf("Error opening file %s\n", infiledd[loop_count]);

} /* end of loop */

/***/
/* Once a message is sent to IMS and the answer received it */
/* is usual to release the tpipe for use by other transactions. */
/* For conversational trans an application would keep using */
/* the handle to continue a conversational transaction with IMS. */
/* The Transaction name is specified in the ALLOC and it is */
/* intended that a FREE be done at the end of each transaction */
/* and a new ALLOC be done for the next one. This is not */
/* expensive. */
/***/

printf("-\n");
otma_free(

& anchor, /* (out) ptr to global word */
& retrsn, /* (out) rc,reason (1-4) */
& sess_handle /* (in) unique path id */

);

printf("OTMA_FREE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3]

Chapter 6. OTMA Callable Interface API reference 577

);

printf("-\n");

/* */
/* Finally, CLOSE severs the connection with IMS and frees the */
/* Storage used by the OTMA API. */
/* This will be done at job-step termination but its untidy. */
/* */

otma_close(
& anchor, /* (in,out) ptr to otma anchor */
& retrsn /* (out) rc,reason (1-4) */

);
printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",

retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3]
);

return (compare_result); /* Retern return code */
} /* end of main */

/*===*/
/* Subroutine to compare expected results(compare_buf) */
/* with actual results(err_msg) the "|" is used to signify */
/* an ignore compare and "?" is used to mark the end of string. */
/* Note: Compare starts using an index i=1 ie. the 2nd character */
/* because the 1st character was blanked out. (NL x’15’) */
/*===*/

int memc(char *comp_buf, char *rec_buf1)
{

int j;
int i;

j = 0;

for (i=1;
((j==0) && (comp_buf[i] != ’?’));
i++)

{
if(comp_buf[i] != ’|’) /* Ignore compare */
{
if(comp_buf[i] != rec_buf1[i]) /* compare ok ? */
{

j++; /* No */
printf("MISCOMPARE !!! \n");
printf("comp_buf[%d] = %c\n", i, comp_buf[i]);
printf("rec_buf1[%d] = %c\n", i, rec_buf1[i]);

}
else

;
}
else
; /* Else null */

}

return (j);
}

Related reference:
“OTMA C/I hints and tips” on page 551

578 Application Programming APIs

OTMA C/I sample program for asynchronous processing
The following program illustrates how to use OTMA C/I for asynchronous
(unsolicited) processing.

In this sample program, one otma_send_asynch and one otma_receive_asynch call
is issued per loop.

Recommendation: If you will be using synchronous (one in-one out) processing
exclusively, use the otma_send_receive API. The otma_send_receiveAPI provides
the most efficient means of synchronous processing.
#pragma langlvl(extended)

/***/
/* */
/* Callable Interface sample program using asynchronous APIs */
/* */
/* Parameters: */
/* Server Name */
/* Client Name */
/* Transaction */
/* User Name */
/* User Group */
/* Lterm */
/* Mod Name */
/* OTMA Data */
/* Iterations */
/* */
/* Note: The send buffer is sent as a file with a ddname of */
/* SENDBUFn in the invoking JCL. */
/* */
/* Example: //SENDBUF0 DD *,DLM=$$ */
/* SEND OTMA TO SKS1 */
/* $$ */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. ’?’ is used to delimit */
/* the compare string and ’|’ is used to ignore a char compare */
/* */
/* Example: //COMPAR0 DD *,DLM=$$ */
/* SEND OTMA TO SKS1? */
/* $$ */
/* */
/* Note: TPIPBUFn is the DDNAME of an input file used to specify */
/* the tpipe name to be used for each iteration. */
/* */
/* Example: //TPIPEBUF0 DD *,DLM=$$ */
/* TPIPE001 */
/* $$ */
/* */
/***/

/**/
/* Entry... */
/* */
/* This test program is callable from JCL */
/* */
/* //NA1OTMA JOB CLASS=A,MSGLEVEL=(1,1),MSGCLASS=H,REGION=2M */
/* //** */
/* //* PARM=server_member_name client_member_name transaction */
/* //* user_name group_name lterm_name ModName OTMA_Data */
/* //* iterations */
/* //** */
/* //MINISAMP EXEC PGM=NA1OTMA, */
/* // PARM=’TRAP(OFF)/IMS61CR1 IMSTESR G214992 /DISP user01 groupid */

Chapter 6. OTMA Callable Interface API reference 579

/* // Lterm ModName OTMAData 1’ */
/* //STEPLIB DD DISP=SHR,DSN=OTMA.TEST.LOAD */
/* //SYSUDUMP DD SYSOUT=* */
/* //STDOUT DD SYSOUT=* */
/* //STDERR DD SYSOUT=* */
/* //CEEDUMP DD SYSOUT=* */
/* //COMPAR1 DD *,DLM=$$ */
/* EXPECTED OUTPUT GOES HERE */
/* $$ */
/* //SENDBUF0 DD *,DLM=$$ */
/* SEND DATA GOES HERE */
/* $$ */
/* //TPIPBUF0 DD *,DLM=$$ */
/* TPIPE NAME GOES HERE */
/* $$ */
/* */
/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */
/* off LE condition handling. To get a LE dump on abend set */
/* TRAP ON and provide a CEEDUMP DDNAME. */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. ’?’ is used to delimit */
/* the compare string and ’|’ is used to ignore a char compare*/
/* */
/**/

/***/
/* An example for using the OTMA Client API in C lang. */
/* This program is broken into the following parts: */
/* Declarations for special support */
/* Process invocation parameters */
/* Setup for C signal handling */
/* Do XCF open processing and analysis */
/* Execute an API to send data per invocation parm */
/* Execute an API to receive data per invocation parm */
/* Do close */
/* End */
/***/

/***/
/* Header Definitions. */
/***/
#include "dfsyc0.h" /* Non-authorized OTMA API’s */
#include <stdlib.h> /* Standard C Header file */
#include <stddef.h> /* Standard C Header file */
#include <stdio.h> /* Standard C Header file */

/***/
/* Internal functions */
/***/
/* memory comparison macro. */
/* int memc(char *comp_buf, char *rec_buf1); */
/* */
/* */
/* macro to move string to blank filled left justified char field */
/* #define splat(t,s) \ */
/* {\ */
/* memset((char*)&(t),’ ’,sizeof(t));\ */
/* strncpy((char*)&(t), s ,strlen(s));} */
/* */
/* standard math routines */
/* #define min(a,b) ((a)<(b)?(a):(b)) */
/* #define max(a,b) ((a)>(b)?(a):(b)) */

/***/
/* */
/* This OTMA C/I Program */

580 Application Programming APIs

/* */
/* Note: TRAP(OFF)/ Passes LE run-time option TRAP(OFF) which turns */
/* off LE condition handling. To get a LE dump on abend set */
/* TRAP ON and provide a CEEDUMP DDNAME. */
/* */
/* Note: COMPAR1 is the DDNAME of an input file used to compare */
/* actual output with expected output. ’?’ is used to delimit */
/* the compare string and ’|’ is used to ignore a char compare */
/* */
/***/
main(int argc,char *argv[])
{

/***/
/* Fields used by OTMA C/I APIs. */
/***/

/* The following fields used by all the OTMA C/I API’s. */

otma_anchor_t anchor; /* Handle returned by create */
/* and used by all others. */

otma_retrsn_t retrsn; /* Return code returned by all. */
*/

/* The following fields are used by the otma_create and */
/* otma_open API’s. */

otma_grp_name_t grp_name; /* API XCF Group Member Name. */
otma_clt_name_t clt_name; /* API XCF Client Member Name. */
otma_srv_name_t srv_name; /* API XCF Server Member Name. */

/* (IMS’s XCF member name). */
signed long sessions; /* number of sessions to support */
tpipe_prfx_t tpipe_prefix; /* first part of tpipe NAME */
/* The following fields are used by otma_send_async API. */

tpipe_name_t tpipe; /* User tpipe Name. */
tran_name_t trans; /* IMS Trancode or CMD. */
racf_uid_t user_name; /* RACF UserID. */
racf_prf_t user_prf; /* RACF Groupname. */
lterm_name_t lterm; /* Input Lterm. */
mod_name_t modname; /* Input Modname. */
otma_user_t otma_data; /* OTMA Userdata. */
char send_buf[BUFFER_LEN];
int long buffer_length = 0; /* Send Buffer length. */
unsigned char error_message_text[120]; /* IMS error msg field - */

/* A place to receive any IMS */
/* DFS error messages. */

unsigned char *error_message = (unsigned char*)&error_message_text;
/* a pointer to which is parameter */
/* on send_receive. */

otma_profile2_t send_options; /* Send Special Options. */

/* The following fields are used by otma_receive_async API. */

lterm_name_t rec_lterm; /* Output Lterm. */
mod_name_t rec_modname; /* Output Modname. */
otma_user_t rec_otma_data; /* OTMA Userdata. */
char rec_buf[BUFFER_LEN];
int long rec_buffer_len = BUFFER_LEN;
long int rec_data_len = 0;
otma_profile3_t rec_options; /* Receive Special Options. */

/***/
/* The callable interface makes use of z/OS Event Control Blocks. */
/* Any language which call the interface must deal with this. */
/***/

unsigned long *(ecb_list[2]); /* z/OS pause ecb list */

Chapter 6. OTMA Callable Interface API reference 581

unsigned long **pecb_list;

ecb_t ecbOPEN = 0L; /* ecb to be posted by OTMA API */
ecb_t ecbIO = 0L; /* ecb to be posted by OTMA API */
ecb_t signal = 0L; /* ecb to be posted by C runtime */

ecb_list[0] = (unsigned long *) &(signal); /* post by C signal */
ecb_list[1] = (unsigned long *) /* post by OTMA */

((unsigned long)&(ecbOPEN) |
(unsigned long)0x80000000); /* end of list */

pecb_list = &ecb_list[0]; /* pointer to list */
/* define callable I/F */

/***/
/* Local Variables */
/***/

long int retsave; /* Return code save area */
int iterations; /* Number of iterations to use */
int loop_count; /* Number of iterations used */
int compare_result; /* Return Code result of the */

/* comparison for buffers. */

/***/
/* Local Constants */
/***/

#define BUFFER_LEN 4096 /* Set our buffer sizes */
#define NUM_BUFFER 80 /* Set the number of buffers */
#define GROUP_NAME "HARRY" /* Set XCF group name to join */
char temp_buf[NUM_BUFFER]; /* Swapping buffer */
char compare_buf[NUM_BUFFER + 1]; /* Compare buffer */
FILE * stream;
int num; /* number of characters read from stream */

/***/
/* To support test functions - names of parms in order to pring */
/* the parms out for documentation. */
/***/

char * argdefs[10]={"Program Name", /* 1 */
"Server Name", /* 2 */
"Client Name", /* 3 */
"Transaction", /* 4 */
"User Name ", /* 5 */
"User Group ", /* 6 */
"Lterm ", /* 7 */
"Mod Name ", /* 8 */
"OTMA Data ", /* 9 */
"Iterations ", /* 10 */
};

/***/
/* Declare an array of compare file ddnames to */
/* compare actual output received with expected output. */
/***/

char * infiledd[4]={"DD:COMPAR0", /* 1 */
"DD:COMPAR1" , /* 2 */

"DD:COMPAR2" , /* 3 */
"DD:COMPAR3" , /* 4 */

};

/***/
/* Declare an array of send file ddnames to */
/* send application data to OTMA. */
/***/

582 Application Programming APIs

char * sndfiledd[4]= {"DD:SENDBUF0", /* 1 */
"DD:SENDBUF1" , /* 2 */
"DD:SENDBUF2" , /* 3 */

"DD:SENDBUF3" , /* 4 */
};

/***/
/* Declare an array of tpipe names ddnames for the */
/* otma_send_async API. */
/***/

char * tpipefiledd[4]= {"DD:TPIPBUF0", /* 1 */
"DD:TPIPBUF1" , /* 2 */
"DD:TPIPBUF2" , /* 3 */
"DD:TPIPBUF3" , /* 4 */

};

/***/
/* Begin Test Case... */
/* Anounce the startup of the test program. */
/***/

printf("OTMCI02 Run Date: %s Run Time: %s\n" ,__DATE__,__TIME__);

/***/
/* Process parms/command line arguments. */
/* */
/* Note: If not a parameter is not used, then "NONE" is used in */
/* its place. */
/* */
/***/

/* First, print the parameters. */
printf("Invocation parameters = \n");
for (i=1 ; i<(min(11,argc));i++)
{

printf("%d %s = ", i, argdefs[i]);
printf("%s.\n", argv[i]);

}

printf("\n");

if (argc>1 && strcmp(argv[1],"NONE") != 0)
splat(srv_name, argv[1]) /* Server Name. */

else
splat(srv_name, "IMS61CR1"); /* Hard coded default */

if (argc>2 && strcmp(argv[2],"NONE") != 0)
splat(clt_name, argv[2]) /* Client name */

else
splat(clt_name, "XCFTEST"); /* Hard coded default */

if (argc>3 && strcmp(argv[3],"NONE") != 0)
splat(trans, argv[3]) /* IMS Tran/Cmd to use*/

else
splat(trans, ""); /* Hard coded default */

if (argc>4 && strcmp(argv[4],"NONE") != 0)
splat(user_name, argv[4]) /* RACF Username */

else
splat(user_name, ""); /* Hard coded default */

if (argc>5 && strcmp(argv[5],"NONE") != 0)
splat(user_prf, argv[5]) /* RACF Group ID */

else
splat(user_prf, ""); /* Hard coded default */

if (argc>6 && strcmp(argv[6],"NONE") != 0)
splat(lterm , argv[6]) /* Lterm to use */

else
splat(lterm , ""); /* Hard coded default */

Chapter 6. OTMA Callable Interface API reference 583

if (argc>7 && strcmp(argv[7],"NONE") != 0)
splat(modname , argv[7]) /* ModName to use */

else
splat(modname , ""); /* Hard coded default */

if (argc>8 && strcmp(argv[8],"NONE") != 0)
splat(otma_data, argv[8]) /* OTMAData to use */

else
splat(otma_data, ""); /* Hard coded default */

if (argc>9 && strcmp(argv[9],"NONE") != 0)
iterations = atoi(argv[9]); /* Loop count */

else
iterations = 1; /* Hard coded default */

/* ---*/
/* Open the file with the ddname SENDBUF0 supplied in the */
/* JCL which invoked this C driver. Then read the file into */
/* temp_buf. */
/* ---*/

if ((stream = fopen("DD:SENDBUF0","rb")) != NULL)
{

num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
if (num == NUM_BUFFER) {

printf("Number of characters read = %i\n", num);
fclose(stream);

}
else {

if (ferror(stream))
printf("Error reading DDNAME sendbuf0/n");

else if (feof(stream)) {
printf("EOF found\n");
printf("Number of characters read %d\n", num);
printf("temp_buf = %.*s\n", num, temp_buf);
fclose(stream);

}
}

}
else

printf("ERROR opening DDNAME sendbuf0/n");

/*---*/
/* Initialize parameters for the otma_create and otma_open */
/* APIs. */
/*---*/

splat(grp_name,GROUP_NAME); /* XCF Group Name */
splat(tpipe_prefix,"TPAS"); /* XCF Group Name */
strcat(send_buf, temp_buf); /* Copy temp_buf into send_buf */
strcat(send_buf, " "); /* add a blank for strlen */
buffer_length = strlen(send_buf);

/***/
/* Example of setting up parms to Open the XCF Link */
/***/

retrsn.ret = -1;
retrsn.rsn[0] = -1;
retrsn.rsn[1] = -1;
retrsn.rsn[2] = -1;
retrsn.rsn[3] = -1;
r = 0;
sessions = 10; /* OTMA supports multiple parallel */

/* sessions (TPIPES) How many do you want?*/

/***/
/*BEGIN: */
/* We have a CREATE function to set up storage and */

584 Application Programming APIs

/* an OPEN function to start the protocol. */
/* If you don’t need to customize the environment you can start */
/* with the OPEN function, the CREATE will be done by OPEN. */
/***/

otma_create(&anchor, /* (out) ptr to addr to receive ancho*/
&retrsn, /* (out) return code */
(ecb_t *) &ecbOPEN,/* not posted by create but stored */

&grp_name, /* (in) ptr to valid groupname */
&clt_name, /* (in) Our member name */
&srv_name, /* (in) Our server name */

&sessions, /* (in) number of sessions to support*/
&tpipe_prefix /* (in) first part of tpipe name */
);

printf("OTMA_CREATE issued. ret = %d rsn = %.8x,%.8x,%.8x,%.8x\n"
" anchor is at %.8x.\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
anchor);

printf("-\n");

/***/
/* Time to try to connect to IMS */
/***/

/* ___start XCF connection_____________________________ */

otma_open(&anchor, /* out ptr to addr to receive anchor */
&retrsn, /* out return code */
(ecb_t *)&ecbOPEN, /* out posted by open if failure */

/* else posted by exit pgm */
&grp_name, /* in ptr to valid XCF groupname */
&clt_name, /* in Our member name */
&srv_name, /* in Our server name */

&sessions, /* in number of sessions to support */
&tpipe_prefix /* in first part of tpipe name */
);

printf("OTMA_OPEN issued. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"
" Waiting for ecb at %.8x.=%.8x.\n",
retrsn.ret,
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
ecb_list[1],
*ecb_list[1]
);

printf("-\n");

/* -- */
/* Here we wait for Open to signal complete */
/* -- */

DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

printf("OTMA_OPEN done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n"
"\nEcb at %.8x.= %.8x.\n",

Chapter 6. OTMA Callable Interface API reference 585

retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
ecb_list[1], *ecb_list[1]
);

printf("Local Area Anchor at %8.8X = %8.8X\n",
&anchor, anchor);

/* ---*/
/* The post code from open indicates success or failure */
/* ---*/

if (0!=(0x00ffffff & ecbOPEN))
{

printf("OPEN_OTMA ecb is posted failure.\n");
return(retrsn.rsn[0]);

}

/**/
/* This is the loop that sends and receives data. */
/* */
/* This test program can iterate with multiple calls here. */
/**/

for (loop_count = 0 ; loop_count<iterations ; loop_count++)
{

/* Change the environment to wait for ecbIO */
ecbIO = 0; /* clear ecb for reuse */
ecb_list[1] = (unsigned long *) /* posted by OTMA */

((unsigned long)&(ecbIO) |
(unsigned long)0x80000000); /* end of list */

if (loop_count != 0)
{

/* ---*/
/* If looping more than once open the next file to send */
/* and read it into the send_buf. */
/* ---*/

if ((stream = fopen(sndfiledd[loop_count],"rb")) != NULL)
{
num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
if (num == NUM_BUFFER) {

fclose(stream);
}
else {
if (ferror(stream))
printf("Error opening file
else if (feof(stream)) {
printf("EOF found\n");
printf("Number of characters read %d\n", num);
printf("temp_buf = %.*s\n", temp_buf);
fclose(stream);

}
}
}
else
printf("Error opening file %s\n", sndfiledd[loop_count]);

/* Put data in to Send Buffer. */
memset(error_message_text ,0, sizeof(error_message_text));

586 Application Programming APIs

memset(send_buf ,0, sizeof(send_buf));
strcat(send_buf, temp_buf);
strcat(send_buf, " ");
buffer_length = strlen(send_buf);

} /* end if loop_count != 0 */

/* ---*/
/* If looping more than once open the next tpipe to use */
/* and read it into the tpipe. */
/* ---*/

if ((stream = fopen(tpipefiledd[loop_count],"rb")) != NULL)
{
num = fread(temp_buf, sizeof(char), NUM_BUFFER, stream);
if (num == NUM_BUFFER) {

fclose(stream);
}
else {
if (ferror(stream))
printf("Error opening file
else if (feof(stream)) {

printf("EOF found\n");
printf("Number of characters read %d\n", num);
printf("temp_buf = %.*s\n", temp_buf);
fclose(stream);

}
}
}
else
printf("Error opening file %s\n", sndfiledd[loop_count]);

memcpy(tpipe, temp_buf, 8);

/* Print announcement of send API. */
printf("-\n-\n- Iteration #%d Send API ---------------\n-\n",

loop_count+1);
printf("tpipe Name = %.8s.\n", tpipe);
printf("Transaction = %.8s.\n", trans);
printf("RACF UserID = %.8s.\n", user_name);
printf("RACF Group = %.8s.\n", user_prf);
printf("Lterm = %.8s.\n", lterm);
printf("Modname = %.8s.\n", modname);
printf("OTMA Data = %.50s.\n", otma_data);
printf("Send buf = %s.\n", send_buf);
printf("Send buf at %.8x.\n", &send_buf);
printf ("Buffer length = %d.\n", buffer_length);
printf ("Waiting for ecb at %.8x.=%.8x.\n", ecb_list[1],

*ecb_list[1]);

otma_send_async(
&anchor, /* (in) anchor block */
&retrsn, /* (out) return status */
&ecbIO, /* (out) ecb address */

&tpipe, /* (in) user tpipe name */
&trans, /* (in) IMS trancode or cmd */
&user_name, /* (in) RACF userid */
&user_prf, /* (in) RACF group name */
<erm, /* (in) logical terminal */
&modname, /* (in) module name */
&otma_data, /* (in) OTMA user data */

(unsigned char *) &send_buf, /* (in) send buffer */
&buffer_length, /* (in) size of send buffer */
0, /* (in) send_segment_list */

Chapter 6. OTMA Callable Interface API reference 587

&error_message, /* (out) IMS Error msg. */
&send_options); /* (in) send special options */

DFSYCWAT(ecb_list[1]); /* WAIT on ecb */

/* Print results of send API. */
printf("OTMA_SEND_ASYNC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"

"Ecb at %.8x.=%.8x.\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
ecb_list[1],
*ecb_list[1]
);

retsave = retrsn.ret; /* Save otma_send_async Return Code. */

/* Error Processing for OTMA_SEND_ASYNC API. */
if (retrsn.ret != 0)
{

/* ___Error path Free allocated session _____________________ */
printf("-Error send_async API retrsn.ret=
printf("Error message = %s\n", error_message);

if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)
{
num = fread(compare_buf, sizeof(char), NUM_BUFFER, stream);
if (num == NUM_BUFFER) { /* fread success */

printf("Compare_buf = %.80s.\n", compare_buf);
printf("Error_buf = %.80s.\n", error_message);
fclose(stream);
compare_result = memc(compare_buf, error_message);
printf("compare_result =

if (compare_result != 0)
return(compare_result); /* Exit if NO COMPARE */
}
else { /* fread() failed */

if (ferror(stream)) /* possibility 1 */
printf("Error reading file %s\n", infiledd[loop_count]);

else if (feof(stream)) { /* possibility 2 */
printf("EOF found\n");
printf("Number of characters read %d\n", num);
printf("Receive compare_buf = %.*s\n", num, compare_buf);

}
}

}
else
printf("Error opening file %s\n", infiledd[loop_count]);

printf("-\n");

/* ___Sever IMS connection ____________________________ */
printf("-\n");
otma_close(

& anchor, /* (in,out) tr to otma anchor */
& retrsn /* (out) rc,reason (1-4) */

);

printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],

588 Application Programming APIs

retrsn.rsn[3]
);

return (retsave); /* EXIT with receive API return code */
}

/* Initialize otma_receive_async parameters. */
splat(rec_lterm , "");
splat(rec_modname , "");
splat(rec_otma_data , "");
ecbIO = 0; /* clear ecb for reuse */
ecb_list[1] = (unsigned long *) /* posted by OTMA */
((unsigned long)&(ecbIO) |

(unsigned long)0x80000000); /* end of list */

/* Print announcement of receive API. */
printf("-\n-\n- Iteration #%d Receive API ---------------\n-\n",

loop_count+1);
printf("tpipe Name = %.8s.\n", tpipe);
printf("Waiting for ecb at %.8x=%.8x.\n", ecb_list[1],

*ecb_list[1]);

otma_receive_async(
&anchor, /* (in) anchor block */
&retrsn, /* (out) return status */
&ecbIO, /* (out) ecb address */

&tpipe, /* (in) user tpipe name */
&rec_lterm, /* (in) logical terminal */
&rec_modname, /* (in) module name */
&rec_otma_data, /* (in) OTMA user data */

(unsigned char *) &rec_buf, /* (out) Receive buffer */
&rec_buffer_len, /* (in) size of rec buffer */
&rec_data_len, /* (in) send_segment_list */
0, /* (in/out) rec multiple seg */
&rec_options); /* (in) rec special options */

DFSYCWAT(ecb_list[1]); /* WAIT on ecb */
/* Print results of receive API. */
printf("OTMA_REC_ASYNC done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n"

"Ecb at %.8x.=%.8x.\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3],
ecb_list[1],
*ecb_list[1]);

printf("Lterm = %.8s.\n", rec_lterm);
printf("Modname = %.8s.\n", rec_modname);
printf("OTMA Data = %.50s.\n", rec_otma_data);
printf("Receive buf = %.80s.\n", rec_buf);
printf("Receive buf at %.8x.\n", &rec_buf);
printf("Data length = %d.\n", rec_data_len);
printf("Buffer length = %d.\n", rec_buffer_len);

retsave = retrsn.ret; /* Save otma_receive_async Return Code. */

/* Error Processing for OTMA_RECEIVE_ASYNC API. */
if (retrsn.ret != 0)
{

/* ___Error path Free allocated session _____________________ */
printf("-error path retrsn.ret=
printf("-\n");

Chapter 6. OTMA Callable Interface API reference 589

/* ___Sever IMS connection ____________________________ */
printf("-\n");
otma_close(

& anchor, /* (in,out) tr to otma anchor */
& retrsn /* (out) rc,reason (1-4) */

);

printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x\n",
retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3]
);

return (retsave); /* EXIT with receive API return code */
}

/* ---*/
/* Open the compare file containing the expected output */
/* of the receive buffer. Compare the expected output */
/* with the actual output and return the result. */
/* ---*/

printf("-\n-\n- Iteration #%d Data Validation -----------\n-\n",
loop_count+1);

if ((stream = fopen(infiledd[loop_count],"rb")) != NULL)
{
num = fread(compare_buf, sizeof(char), NUM_BUFFER, stream);
if (num == NUM_BUFFER) { /* fread success */

printf("compare_buf = %.80s.\n", compare_buf);
printf(" rec_buf = %.80s.\n", rec_buf);
fclose(stream);
compare_result = memc(compare_buf, rec_buf);
printf("compare_result =

if (compare_result != 0)
return(compare_result); /* Exit if NO COMPARE */
}
else { /* fread() failed */

if (ferror(stream)) /* possibility 1 */
printf("Error reading file %s\n", infiledd[loop_count]);

else if (feof(stream)) { /* possibility 2 */
printf("EOF found\n");
printf("Number of characters read %d\n", num);
printf("Receive compare_buf = %.*s\n", num, compare_buf);

}
}

}
else
printf("Error opening file %s\n", infiledd[loop_count]);

memset(rec_buf ,’ ’, sizeof(rec_buf));

printf("End of loop \n");
} /* end of loop */

printf("-\n");

/***/
/* Finally, CLOSE severs the connection with IMS and frees the */
/* Storage used by the OTMA API. */
/* This will be done at job-step termination but its untidy. */
/***/

590 Application Programming APIs

otma_close(
& anchor, /* (in,out) ptr to otma anchor */
& retrsn /* (out) rc,reason (1-4) */

);
printf("OTMA_CLOSE done. ret = %.8x rsn = %.8x,%.8x,%.8x,%.8x \n",

retrsn.ret,
retrsn.rsn[0],
retrsn.rsn[1],
retrsn.rsn[2],
retrsn.rsn[3]
);

return (compare_result); /* We’re done */
} /* end of main */

/*===*/
/* Subroutine to compare expected results(compare_buf) */
/* with actual results(err_msg) the "|" is used to signify */
/* an ignore compare and "?" is used to mark the end of string. */
/* Note: Compare starts using an index i=1 ie. the 2nd character */
/* because the 1st character was blanked out. (NL x’15’) */
/*===*/

int memc(char *comp_buf, char *rec_buf1)
{

int j;
int i;

j = 0;

for (i=1;
((j==0) && (comp_buf[i] != ’?’));
i++)

{
if(comp_buf[i] != ’|’) /* Ignore compare */
{
if(comp_buf[i] != rec_buf1[i]) /* compare ok ? */
{

j++; /* No */
printf("MISCOMPARE !!! \n");
printf("comp_buf[%d] = %c\n", i, comp_buf[i]);
printf("rec_buf1[%d] = %c\n", i, rec_buf1[i]);

}
else

;
}
else
; /* Else null */

}

return (j);
}

Related reference:
“OTMA C/I hints and tips” on page 551

Chapter 6. OTMA Callable Interface API reference 591

592 Application Programming APIs

Chapter 7. WSDL-to-PL/I segmentation APIs for web service
development

The WSDL-to-PL/I segmentation APIs are used and referenced by the PL/I
application templates that are generated by IBM Developer for System z® for the
WSDL-to-PL/I top-down development scenario.

In general, each API operates on a @dfs_async_msg_header instance to consume
IMS messages that have been derived from XML or SOAP, or to produce IMS
messages that need to be converted to XML or SOAP.

These APIs are implemented in a new module named DFSPWSIO that is provided
with IMS. The DFSPWSIO module must be statically linked to PL/I-XML
converters and service provider MPPs generated in the IBM Developer for System
z WSDL2PLI scenario for web services to deploy on IMS Enterprise Suite SOAP
Gateway. The DFSPWSHK exit routine can be used to inspect, modify, or replace
the buffer that contains the current SOAP header, body, or fault data structure
before it is sent or received.

Important: A minimum of IMS Enterprise Suite V3.1 SOAP Gateway and IBM
Developer for System z V9.0.1.1 are required to use this set of APIs.
Related concepts:

WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I
templates (Application Programming)
Related reference:

WSDL-to-PL/I segmentation APIs exit routine (DFSPWSHK) (Exit Routines)

Include file DFSPWSH
The include file DFSPWSH defines the PL/I structures used with the
WSDL-to-PL/I segmentation APIs DFSQGETS, DFSQSETS, DFSXGETS, and
DFSXSETS.

The include file DFSPWSH is located on the z/OS server in the data set
DFSSSAMP installed by IMS.

The following code shows the first part of DFSPWSH, before the definition of the
segmentation APIs:

First part of the include file DFSPWSH
/**
* IBM IMS Web service segmentation APIs
* IMS Connect and IMS MPP
* DFSPWSH
*
* This file must be included by all IMS service provider MPPs
* developed using the IBM Ratinal Developer for System z WSDL2PLI
* support for IMS Enterprise Suite SOAP Gateway.
*
* @since 1.0.0.0, 1F64F288-F037-469F-987B-60BF1FBE4B4B
* @version 2.0.0.0, 2FFA2F75-8D4F-4951-80D5-D2444181745C
**/

© Copyright IBM Corp. 1974, 2017 593

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.err/ims_dfspwshk.htm#ims_dfspwshk

%push;
%noprint;
%include CEEIBMCT;
%include CEEIBMAW;
%pop;

/**
* Required, symmetric asynchronous message header segment for use
* with DFSPWSIO APIs: DFSQGETS, DFSQSETS, DFSXGETS, DFSXSETS.
* @version 2.0.0.0, 2FFA2F75-8D4F-4951-80D5-D2444181745C
**/
dcl 01 @dfs_async_msg_header_ptr pointer;
dcl 01 @dfs_async_msg_header unaligned

based(@dfs_async_msg_header_ptr),
02 ll fixed bin (15) init(0),
02 zz fixed bin (15) init(0),
02 trancode char (08) init(’’),
02 header_guid char (36) init

(’2FFA2F75-8D4F-4951-80D5-D2444181745C’),
02 service_context,
03 target_namespace wchar (1024) varying init(’’),
03 service_name wchar (0512) varying init(’’),
03 port_name wchar (0512) varying init(’’),
03 operation_name wchar (0512) varying init(’’),
02 language_binding,
03 struct_max_segment_size fixed bin(31) init(32767),
03 soap_header_bit bit (1) aligned init(’0’b),
03 soap_header,
04 header_struct_name wchar (100) varying init(’’),
04 header_struct_segment_num fixed bin (31) init(0),
04 header_struct_segment_cnt fixed bin (31) init(0),
04 header_struct_size fixed bin (31) init(0),
04 header_struct_ptr pointer,
03 soap_body_bit bit (1) aligned init(’0’b),
03 soap_body,
04 body_struct_name wchar (100) varying init(’’),
04 body_struct_segment_num fixed bin (31) init(0),
04 body_struct_segment_cnt fixed bin (31) init(0),
04 body_struct_size fixed bin (31) init(0),
04 body_struct_ptr pointer,
03 soap_fault_bit bit (1) aligned init(’0’b),
03 soap_fault,
04 fault_struct_name wchar (100) varying init(’’),
04 fault_struct_segment_num fixed bin (31) init(0),
04 fault_struct_segment_cnt fixed bin (31) init(0),
04 fault_struct_size fixed bin (31) init(0),
04 fault_struct_ptr pointer;

dcl @dfs_async_msg_header_size fixed bin(31)
value(storage(@dfs_async_msg_header));

/**
* IMS I/O Program Communication Block (IOPCB) declarations and
* constants.
**/
dcl 01 @dfs_iopcb_mask_ptr pointer;
dcl 01 @dfs_iopcb_mask unaligned based(@dfs_iopcb_mask_ptr),
02 iopcb_lterm char(8),
02 resv char(2),
02 iopcb_status_code char(2),
02 iopcb_date decimal fixed(7,0),
02 iopcb_time decimal fixed(6,9),
02 iopcb_msg_seq_number fixed bin(31),
02 iopcb_mod_name char(8),
02 iopcb_user_id char(8);

/**

594 Application Programming APIs

* @param @dfs_STRUCT_TYPE constants for use with DFSPWSIO APIs:
* DFSQGETS, DFSQSETS.
**/
dcl @dfs_soap_header_struct fixed bin(31) value(1);
dcl @dfs_soap_body_struct fixed bin(31) value(2);
dcl @dfs_soap_fault_struct fixed bin(31) value(3);

/**
* Return code constants for use with DFSPWSIO APIs:
* DFSQGETS, DFSQSETS, DFSXGETS, DFSXSETS.
**/
dcl @dfs_success fixed bin(31) value(000);
dcl @dfs_omitted_parameter fixed bin(31) value(100);
dcl @dfs_invalid_pointer fixed bin(31) value(101);
dcl @dfs_invalid_struct_type fixed bin(31) value(102);
dcl @dfs_struct_not_found fixed bin(31) value(103);
dcl @dfs_struct_name_mismatch fixed bin(31) value(104);
dcl @dfs_invalid_struct_order fixed bin(31) value(105);
dcl @dfs_invalid_struct_size fixed bin(31) value(106);
dcl @dfs_invalid_struct_name fixed bin(31) value(107);
dcl @dfs_struct_already_set fixed bin(31) value(108);
dcl @dfs_invalid_segment_size fixed bin(31) value(109);

dcl @dfs_icon_buf_exhausted fixed bin(31) value(997);
dcl @dfs_cee_call_failure fixed bin(31) value(998);
dcl @dfs_dli_call_failure fixed bin(31) value(999);

/**
* IMS CEETDLI interface declarations and constants.
**/
dcl @dfs_dli_get_unique char (4) value(’GU ’);
dcl @dfs_dli_get_next char (4) value(’GN ’);
dcl @dfs_dli_insert char (4) value(’ISRT’);
dcl @dfs_dli_message_exists char (2) value(’CF’);
dcl @dfs_dli_end_segments char (2) value(’QD’);
dcl @dfs_dli_end_messages char (2) value(’QC’);
dcl @dfs_dli_status_ok char (2) value(’ ’);

dcl @dfs_message_max_data fixed bin(31) value(2147123205);
dcl @dfs_segment_max_data fixed bin(31) value(32763);

/**
* Language Environment declarations and constants.
**/
dcl 1 @dfs_cee_feedback feedback;

/**
* Note: The remainder of this file contains declarations for
* the APIs that enable the XML Converters
* running in IMS Connect and the MPP running in an MPR to
* exchange messages that conform to a protocol that provides
* service invocation context and unique language bindings for
* each part of a SOAP message: header, body, fault.
***/
dcl @dfs_icon_buf_ptr pointer init(null());
dcl @dfs_icon_buf_size fixed bin(31) init(0);
dcl @dfs_icon_buf_used fixed bin(31) init(0);
dcl @dfs_struct_name wchar(100) varying init(’’);
dcl @dfs_struct_ptr pointer init(null());
dcl @dfs_struct_size fixed bin(31) init(0);
dcl @dfs_cee_feedback_ptr pointer init(null());
dcl @dfs_commit_structs bit(1) init(’0’b);
dcl @dfs_debug bit(1) init(’0’b);
dcl @return_code fixed bin(31) init(0);

/**
* DFSQGETS,

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 595

* Get a language structure that contains either a SOAP Header,
* SOAP Body, or SOAP Fault. Language structures are retrieved
* from the IMS Message Queue using the CEETDLI interface. All
* language structures must retrieved from the IMS Message Queue
* prior to setting language structures using API DFSQSETS.
*
* @param @dfs_async_msg_header_ptr,
* A pointer-by-value to the instance of @dfs_async_msg_header
* that was retrieved from the IMS Message Queue by issuing
* a GU using the CEETDLI interface prior to invoking the API.
* This same instance must be passed on subsequent calls to
* DFSQGETS and DFSQSETS.
*
* @param @dfs_iopcb_ptr,
* A pointer-by-value to the I/O PCB that was passed to the
* MPP by IMS. The I/O PCB will be used by the API when invoking
* CEETDLI to interact with the IMS Message Queue. If a return
* code of 999 is received from the API, inspect the I/O PCB
* to determine the cause of the error.
*
* @param @dfs_struct_type,
* An integer-by-value that specifies which language structure
* to retrieve from the MPP’s input message. The following
* constants defined in include file DFSPWSH may be used:
* @dfs_soap_header_struct, @dfs_soap_body_struct,
* @dfs_soap_fault_struct.
*
* @param @dfs_struct_name,
* A string-by-reference which contains the name of the
* language structure that the API should retrieve from the
* IMS Message Queue. This value of this parameter must
* correspond to the value of parameter @dfs_struct_type.
*
* @param @dfs_struct_ptr,
* A pointer-by-reference into which the API will write the
* address of newly-allocated storage into which the requested
* language structure has been copied from the IMS Message
* Queue. The storage allocated by the API resides in the
* same address space as the caller. Therefore, it is highly
* recommended that the storage be explicilty freed by the
* caller when no longer needed.
*
* @param @dfs_struct_size,
* An integer-by-reference into which the API will write the
* size in bytes of the language structure.
*
* @param @dfs_cee_feedback_ptr,
* A pointer-by-value to an instance of @dfs_cee_feedback
* which defines a Language Environment Condition Token.
* The supplied instance is updated each time the API invokes
* Language Environment Callable Services. If a return code of
* 998 is received from the API, use the publication Language
* Environment Run-Time Messages (SA22-7566-10) to inspect
* the contents of the condition token and determine the
* cause of the error.
*
* @param @dfs_debug,
* An optional bit that indicates whether or not
* trace information should be displayed by the API.
* Under normal circumstances trace information is written
* to standard out and therefore can be found in the
* job log of the Message Processing Region.
*
* @return One of the following codes will be returned by the API,
* o @dfs_success
* o @dfs_omitted_parameter
* o @dfs_invalid_pointer

596 Application Programming APIs

* o @dfs_invalid_dfs_struct_type
* o @dfs_struct_not_found
* o @dfs_struct_name_mismatch
* o @dfs_invalid_struct_order
* o @dfs_cee_call_failure
* o @dfs_dli_call_failure
**/
dcl DFSQGETS entry(pointer byvalue, pointer byvalue,

fixed bin(31) byvalue, wchar(100) varying byaddr,
pointer byaddr, fixed bin(31) byaddr, pointer byvalue,
bit(1) optional) returns(fixed bin(31));

/**
* DFSQSETS,
* Set a language structure that contains either the SOAP
* Header, SOAP Body, or SOAP Fault. This API does not
* insert language structures into the IMS Message Queue
* until instructed to do so via parameter @dfs_commit_structs.
* Therefore it is an error to deallocate or otherwise
* invalidate structure pointers passed to the API via parameter
* @dfs_struct_ptr before instructing the API to commit (insert)
* all structures to the IMS Message Queue.
*
* @param @dfs_async_msg_header_ptr,
* A pointer-by-value to the instance of @dfs_async_msg_header
* that was supplied on a previous call to DFSQGETS or DFSQSETS.
* Subsequent calls to this API must specify the same instance
* of @dfs_async_msg_header as it will be progressively updated.
*
* @param @dfs_iopcb_ptr,
* A pointer-by-value to the IOPCB that was passed to the
* MPP by IMS. The IOPCB will be used by the API when invoking
* CEETDLI to interact with the IMS Message Queue. If a return
* code of 999 is received from the API, inspect the I/O PCB
* to determine the cause of the error.
*
* @param @dfs_struct_type,
* An integer-by-value that specifies which language structure
* to set in the IMS Message Queue. The following
* constants defined in include file DFSPWSH may be used:
* @dfs_soap_header_struct, @dfs_soap_body_struct,
* @dfs_soap_fault_struct.
*
* @param @dfs_struct_name,
* A string-by-reference which contains the name of the
* language structure that corresponds to the supplied value of
* the @dfs_struct_type parameter.
*
* @param @dfs_struct_ptr,
* A pointer-by-value to the language structure that
* corresponds to the values specified for parameters
* @dfs_struct_type and @dfs_struct_name.
*
* @param @dfs_struct_size,
* An integer-by-value that specifies the size in bytes of the
* language structure supplied via parameter @dfs_struct_ptr.
*
* @param @dfs_commit_structs,
* A bit-by-value that indicates whether the API should
* insert the current and all previously supplied language
* structures into the IMS Message Queue.
*
* @param @dfs_cee_feedback_ptr,
* A pointer-by-value to an instance of @dfs_cee_feedback
* which defines a Language Environment Condition Token.
* The supplied instance is updated each time the API invokes
* Language Environment Callable Services. If a return code of

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 597

* 998 is received from the API, use the publication Language
* Environment Run-Time Messages (SA22-7566-10) to inspect
* the contents of the condition token and determine the
* cause of the error.
*
* @param @dfs_debug,
* An optional bit that indicates whether or not
* trace information should be displayed by the API.
* Under normal circumstances trace information is written
* to standard out and therefore can be found in the
* job log of the Message Processing Region.
*
* @return One of the following codes will be returned by the API,
* o @dfs_success
* o @dfs_omitted_parameter
* o @dfs_invalid_pointer
* o @dfs_invalid_dfs_struct_type
* o @dfs_invalid_struct_order
* o @dfs_invalid_struct_size
* o @dfs_invalid_struct_name
* o @dfs_struct_already_set
* o @dfs_invalid_segment_size
* o @dfs_cee_call_failure
* o @dfs_dli_call_failure
**/
dcl DFSQSETS entry(pointer byvalue, pointer byvalue,

fixed bin(31) byvalue, wchar(100) varying byaddr,
pointer byvalue, fixed bin(31) byvalue, bit(1) byvalue,
pointer byvalue, bit(1) optional) returns(fixed bin(31));

/**
* DFSXGETS,
* Get a language structure that contains either the SOAP
* Header, SOAP Body, or SOAP Fault. Since the IMS Message
* Queue is not available to XML Conversion in IMS Connect,
* language structures are retrieved from the IMS Connect input
* buffer. The expected format of the IMS Connect input buffer
* is an [LLZZDATA]+ byte stream. This API is for use by PL/I
* XML Converters running in IMS Connect. It is not to be used
* by an MPP.
*
* @param @dfs_async_msg_header_ptr,
* A pointer-by-value to the instance of @dfs_async_msg_header
* that was retrieved from the first segment of the IMS Connect
* input buffer prior to invoking the API.
*
* @param @dfs_icon_buf_ptr,
* A pointer-by-value to the IMS Connect input message buffer.
* The expected format of the buffer is an array of LLZZDATA.
*
* @param @dfs_icon_buf_size,
* An integer-by-value that specifies the length in bytes of
* the buffer supplied in parameter @dfs_icon_buf_ptr.
*
* @param @dfs_struct_type,
* An integer-by-value that specifies which language structure
* to retrieve from the MPP’s input message. The following
* constants defined in include file DFSPWSH may be used:
* @dfs_soap_header_struct, @dfs_soap_body_struct,
* @dfs_soap_fault_struct.
*
* @param @dfs_struct_name,
* A string-by-reference which contains the name of the
* language structure that the API should retrieve from the
* IMS Connect input buffer. This value of this parameter
* must correspond to the value of parameter @dfs_struct_type.
*

598 Application Programming APIs

* @param @dfs_struct_ptr,
* A pointer-by-reference into which the API will write the
* address of a buffer that contains the bytes of the structure
* that corresponds to the values specified for parameters
* @dfs_struct_type and @dfs_struct_name. This buffer must be
* freed by the XML Converter prior to returning to IMS Connect
* because the Language Environment enclave in which the XML
* Converters execute is persistent.
*
* @param @dfs_struct_size,
* An integer-by-reference into which the API will write the
* size in bytes of the structure that corresponds to the
* specified values of parameters @dfs_struct_type
* and @dfs_struct_name.
*
* @param @dfs_cee_feedback_ptr,
* A pointer-by-value to an instance of @dfs_cee_feedback
* which defines a Language Environment Condition Token.
* The supplied instance is updated each time the API invokes
* Language Environment Callable Services. If a return code of
* 998 is received from the API, use the publication Language
* Environment Run-Time Messages (SA22-7566-10) to inspect
* the contents of the condition token and determine the
* cause of the error.
*
* @param @dfs_debug,
* An optional bit that indicates whether or not
* trace information should be displayed by the API.
* Under normal circumstances trace information is written
* to standard out and therefore can be found in the
* IMS Connect job log.
*
* @return One of the following codes will be returned by the API,
* o @dfs_success
* o @dfs_omitted_parameter
* o @dfs_invalid_pointer
* o @dfs_invalid_dfs_struct_type
* o @dfs_struct_not_found
* o @dfs_struct_name_mismatch
* o @dfs_invalid_struct_order
* o @dfs_icon_buf_exhausted
* o @dfs_cee_call_failure
**/
dcl DFSXGETS entry(pointer byvalue, pointer byvalue,

fixed bin(31) byvalue, fixed bin(31) byvalue,
wchar(100) varying byaddr, pointer byaddr, fixed bin(31) byaddr,
pointer byvalue, bit(1) optional) returns(fixed bin(31));

/**
* DFSXSETS,
* Set a language structure that contains either the SOAP
* Header, SOAP Body, or SOAP Fault. This API does not
* copy language structures into the IMS Connect output buffer
* until instructed to do so via parameter @dfs_commit_structs.
* Therefore it is an error to deallocate or otherwise
* invalidate structure pointers passed to the API via parameter
* @dfs_struct_ptr before instructing the API to commit (copy)
* all structures to the IMS Connect output buffer.
* This API is for use by PL/I XML Converters running in IMS
* Connect. It is not to be used by an MPP.
*
* @param @dfs_async_msg_header_ptr,
* A pointer-by-value to the instance of @dfs_async_msg_header
* that will be sent as the first segment of the IMS message.
*
* @param @dfs_icon_buf_ptr,
* A pointer-by-value to the IMS Connect output message buffer.

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 599

* The expected format of the buffer is an array of LLZZDATA.
*
* @param @dfs_icon_buf_size,
* An integer-by-value that specifies the length in bytes of
* the buffer supplied in parameter @dfs_icon_buf_ptr.
*
* @param @dfs_icon_buf_used,
* An integer-by-reference into which the API will write
* the number of bytes that were required to format the
* language structure as a multi-segment IMS message
* in the IMS Connect output buffer. The value of this
* parameter will always be greater than the actual size
* of the language structure by at least 4 bytes.
*
* @param @dfs_struct_type,
* An integer-by-value that specifies which language structure
* to set in the IMS Connect output buffer. The following
* constants defined in include file DFSPWSH may be used:
* @dfs_soap_header_struct, @dfs_soap_body_struct,
* @dfs_soap_fault_struct.
*
* @param @dfs_struct_name,
* A string-by-reference which contains the name of the
* language structure that corresponds to the supplied value of
* the @dfs_struct_type parameter.
*
* @param @dfs_struct_ptr,
* A pointer-by-value to the language structure that
* corresponds to the values specified for parameters
* @dfs_struct_type and @dfs_struct_name.
*
* @param @dfs_struct_size,
* An integer-by-value that specifies the size in bytes of the
* language structure.
*
* @param @dfs_commit_structs,
* A bit-by-value that indicates whether the API should
* copy the current and all previously supplied language
* structures into the IMS Connect output buffer.
*
* @param @dfs_cee_feedback_ptr,
* A pointer-by-value to a Language Environment Condition Token
* (@dfs_cee_feedback) that is updated by the API after each
* invocation of a Language Environment Callable Service. When
* a RETURN_CODE of 998 is received from the API, use the
* publication Language Environment Run-Time Messages
* (SA22-7566-10) to inspect the contents of the condition
* token and determine the cause of the error.
*
* @param @dfs_debug,
* An optional bit that indicates whether or not
* trace information should be displayed by the API.
* Under normal circumstances trace information is written
* to standard out and therefore can be found in the
* IMS Connect job log.
*
* @return One of the following codes will be returned by the API,
* o @dfs_success
* o @dfs_omitted_parameter
* o @dfs_invalid_pointer
* o @dfs_invalid_dfs_struct_type
* o @dfs_invalid_struct_order
* o @dfs_invalid_struct_size
* o @dfs_invalid_struct_name
* o @dfs_struct_already_set
* o @dfs_invalid_segment_size
* o @dfs_icon_buf_exhausted

600 Application Programming APIs

* o @dfs_cee_call_failure
**/
dcl DFSXSETS entry(pointer byvalue, pointer byvalue,

fixed bin(31) byvalue, fixed bin(31) byaddr,
fixed bin(31) byvalue, wchar(100) varying byaddr,
pointer byvalue, fixed bin(31) byvalue, bit(1) byvalue,
pointer byvalue, bit(1) optional) returns(fixed bin(31));

/**
* DFSB64E,
* This API encodes an input buffer using the base64 encoding
* scheme specified by RFC 3548 available at
* http://tools.ietf.org/html/rfc3548.
*
* @param @bin_input_buf_ptr (input),
* A pointer-by-value to the binary buffer to encode in base64.
* The base64 sequence will be encoded in UTF-16.
*
* @param @bin_input_buf_len (input),
* An integer-by-value that specifies the length in bytes of
* the binary buffer supplied in parameter @bin_input_buf_ptr.
*
* @param @b64_output_buf_ptr (input),
* A pointer-by-value to a buffer in which to write the base64
* representation of the supplied binary buffer
* @bin_input_buf_ptr(1:@bin_input_buf_len). The buffer pointed
* to by this parameter must have a minimum length in bytes of
* [4 * floor((@bin_input_buf_len + 2) /3]. If this
* parameter is set to null, the API will write the length
* in bytes of the base64 result to parameter
* @b64_output_buf_len but will not actually perform encoding.
*
* @param @b64_output_buf_len (input),
* An integer-by-reference into which the API will write the
* length in bytes of the base64 sequence that was written to
* the buffer pointed to by parameter @b64_output_buf_ptr.
* Recall that result will be encoded in UTF-16.
*
* @return This API does not return any codes.
**/
dcl DFSB64E entry(pointer byvalue, fixed bin(31) byvalue,

pointer byvalue, fixed bin(31) byaddr);

/**
* DFSB64D,
* This API decodes a base64 input buffer by reversing the
* encoding scheme specified by RFC 3548
* available at http://tools.ietf.org/html/rfc3548.
*
* @param @b64_input_buf_ptr (input),
* A pointer-by-value to the base64 buffer to decode.
* The base64 sequence must be encoded in UTF-16.
*
* @param @b64_input_buf_len (input),
* An integer-by-value that specifies the length in bytes of
* the base64 buffer supplied in parameter @b64_input_buf_ptr.
*
* @param @bin_output_buf_ptr (input),
* A pointer-by-value to a buffer in which to write the decoded
* representation of the supplied base64 buffer
* @b64_input_buf_ptr(1:@b64_input_buf_len). If this
* parameter is set to null, the API will write the length
* in bytes of the decoded result to parameter
* @bin_output_buf_len but will not actually perform decoding.
*
* @param @bin_output_buf_len (input),
* An integer-by-reference into which the API will write the

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 601

* length in bytes of the decoded result that was written
* to the buffer pointed to by parameter @bin_output_buf_ptr).
*
* @return This API does not return any codes.
**/
dcl DFSB64D entry(pointer byvalue, fixed bin(31) byvalue,

pointer byvalue, fixed bin(31) byaddr);

Related concepts:

WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I
templates (Application Programming)

DFSQGETS
The DFSQGETS API retrieves a SOAP structure from the IMS Message Queue and
returns the information to the caller in a high-level language structure.

The structures and variables referred to in this topic are defined in the include file
DFSPWSH (see “Include file DFSPWSH” on page 593).

Usage:

v You must retrieve all structures in the IMS Message Queue using DFSQGETS
before invoking DFSQSETS to put structures into it.

Limitations:
v DFSQGETS supports the retrieval of SOAP Body and SOAP Fault structures

only. The SOAP Header structure is not supported.

Parameters:

Table 149. Parameters for DFSQGETS

Parameter Type Usage Description

@dfs_async_msg_header_ptr POINTER
BYVALUE

Input A pointer-by-value to the instance
of @dfs_async_msg_header that
the Message Processing Program
(MPP) retrieves from the IMS
Message Queue prior by issuing a
Get Unique (GU) call using the
CEETDLI interface.
Important: This instance must be
passed on all calls to DFSQGETS
and DFSQSETS.

@dfs_iopcb_ptr POINTER
BYVALUE

Input A pointer-by-value to the I/O
PCB that was passed to the
Message Processing Program
(MPP) on entry by IMS.
DFSQGETS uses this I/O PCB
when invoking CEETDLI to
interact with the IMS Message
Queue.
Note: If the return code from
DFSQGETS is 999 then inspect
the I/O PCB to determine the
cause of the error.

602 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio

Table 149. Parameters for DFSQGETS (continued)

Parameter Type Usage Description

@dfs_struct_type SIGNED FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying
the type of the language structure
to retrieve from the IMS Message
Queue. The following constants
defined in the include file
DFSPWSH can be used:
@dfs_soap_body_struct.

@dfs_struct_name WCHAR(100)
VARYING
BYADDR

Input A string-by-reference containing
the name of the language
structure to retrieve from the IMS
Message Queue. The value of this
parameter must correspond to the
value of the parameter
@dfs_struct_type.

@dfs_struct_ptr POINTER
BYADDR

Output A pointer-by-reference to a newly
allocated storage block containing
the returned language structure.
Important: This storage block
resides in the same address space
as the caller. Therefore it is highly
recommended that the caller free
this storage block when it is no
longer needed.

@dfs_struct_size SIGNED FIXED
BIN(31)
BYADDR

Output An integer-by-reference
containing the size in bytes of the
returned language structure.

@dfs_cee_feedback_ptr POINTER
BYVALUE

Input A pointer-by-value to an instance
of @dfs_cee_feedback defining a
Language Environment®

Condition Token. This instance is
updated each time DFSQGETS
invokes Language Environment
Callable Services.
Note: If the return code from
DFSQGETS is 998 then use the
publication Language Environment
Run-Time Messages (SA22-7566-10)
to inspect the contents of the
condition token and determine
the cause of the error.

@dfs_debug BIT(1)
OPTIONAL

Input An optional bit indicating
whether DFSQGETS should
display trace information (see
Trace output for WSDL-to-PL/I
segmentation APIs (Application
Programming)).

Return codes:

The return codes for DFSQGETS are constants defined in the DFSPWSH include
file:

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 603

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput

Table 150. Return codes for DFSQGETS

Type: Name: Value:

SIGNED FIXED BIN(31) @dfs_success 000

@dfs_omitted_parameter 100

@dfs_invalid_pointer 101

@dfs_invalid_struct_type 102

@dfs_struct_not_found 103

@dfs_struct_name_mismatch 104

@dfs_invalid_struct_order 105

@dfs_cee_call_failure 998

@dfs_dli_call_failure 999

Example invocation of DFSQGETS
01: /* Invoke API DFSQGETS to retrieve the SOAP body
02: * language structure from the IMS Message Queue.
03: */
04: @dfs_struct_name = ’RequestBodyStruct’;
05: @dfs_cee_feedback_ptr = addr(@dfs_cee_feedback);
06: @dfs_debug = ’0’b;
07:
08: @return_code =
09: DFSQGETS(@dfs_async_msg_header_ptr,
10: @dfs_iopcb_mask_ptr, @dfs_soap_body_struct,
11: @dfs_struct_name, @dfs_struct_ptr,
12: @dfs_struct_size, @dfs_cee_feedback_ptr,
13: @dfs_debug);
14:
15: if (@return_code != @dfs_success) then do;
16: display(’MYMPP#handle_myOperation(): ’
17: || ’ERROR, DFSQGETS @dfs_soap_body_struct, ’
18: || ’@return_code: ’|| trim(@return_code) || ’.’);
19: return;
20: end; else do;
21: RequestBodyStruct_ptr = @dfs_struct_ptr;
22: end;

DFSQSETS
The DFSQSETS API creates a SOAP structure from the information in a language
structure passed as input. Also, when specified, DFSQSETS copies the current
SOAP structure and all previously supplied SOAP structures into the IMS Message
Queue.

The structures and variables referred to in this topic are defined in DFSPWSH (see
“Include file DFSPWSH” on page 593).

Usage:

v Do not deallocate or otherwise invalidate structure pointers passed to
DFSQSETS via the parameter @dfs_struct_ptr until you have committed the IMS
multi-segment message to the IMS Message Queue by calling DFSQSETS with
the @dfs_commit_structs bit set.

v You must retrieve all structures in the IMS Message Queue using DFSQGETS
before invoking DFSQSETS to put structures into it.

604 Application Programming APIs

Limitations:
v DFSQSETS does not support the storing of a SOAP Header structure.

Parameters:

Table 151. Parameters for DFSQSETS

Parameter Type Usage Description

@dfs_async_msg_header_ptr POINTER
BYVALUE

Output A pointer-by-value to the instance
of @dfs_async_msg_header that
the Message Processing Program
(MPP) retrieves from the IMS
Message Queue prior by issuing a
Get Unique (GU) call using the
CEETDLI interface.
Important: This instance must be
passed on all calls to DFSQGETS
and DFSQSETS.

@dfs_iopcb_ptr POINTER
BYVALUE

Input A pointer-by-value to the I/O PCB
that was passed to the Message
Processing Program (MPP) on
entry by IMS. DFSQSETS uses this
I/O PCB when invoking CEETDLI
to interact with the IMS Message
Queue.
Note: If the return code from
DFSQSETS is 999 then inspect the
I/O PCB to determine the cause of
the error.

@dfs_struct_type SIGNED
FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying the
type of the language structure to
set in the IMS message. The
following constants defined in
include file DFSPWSH can be
used: @dfs_soap_body_struct.

@dfs_struct_name WCHAR(100)
VARYING
BYADDR

Input A string-by-reference containing
the name of the language structure
to set in the IMS message. The
value of this parameter must
correspond to the value of the
parameter @dfs_struct_type.

@dfs_struct_ptr POINTER
BYVALUE

Input A pointer-by-reference to the
language structure to set in the
IMS message.
Note: This value must correspond
to the values specified for the
parameters @dfs_struct_type and
@dfs_struct_name.

@dfs_struct_size SIGNED
FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying the
size in bytes of the language
structure pointed to by
@dfs_struct_ptr.

@dfs_commit_structs BIT(1)
BYVALUE

Input A bit-by-value that indicating
whether DFSQSETS should insert
the current language structure and
all previously supplied language
structures into the IMS Message
Queue.

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 605

Table 151. Parameters for DFSQSETS (continued)

Parameter Type Usage Description

@dfs_cee_feedback_ptr POINTER
BYVALUE

Input A pointer-by-value to an instance
of @dfs_cee_feedback defining a
Language Environment Condition
Token. This instance is updated
each time DFSQSETS invokes
Language Environment Callable
Services.
Note: If the return code from
DFSQSETS is 998 then use the
publication Language Environment
Run-Time Messages (SA22-7566-10)
to inspect the contents of the
condition token and determine the
cause of the error.

@dfs_debug BIT(1)
OPTIONAL

Input An optional bit indicating whether
DFSQSETS should display trace
information (see Trace output for
WSDL-to-PL/I segmentation APIs
(Application Programming)).

Return codes:

The return codes for DFSQSETS are constants defined in the DFSPWSH include
file:

Table 152. Return codes for DFSQSETS

Type: Name: Value:

SIGNED FIXED BIN(31) @dfs_success 000

@dfs_omitted_parameter 100

@dfs_invalid_pointer 101

@dfs_invalid_struct_type 102

@dfs_struct_not_found 103

@dfs_struct_name_mismatch 104

@dfs_invalid_struct_order 105

@dfs_invalid_segment_size 109

@dfs_cee_call_failure 998

@irz_dli_call_failure 999

Example invocation of DFSQSETS
01: /* Invoke API DFSQSETS to set the SOAP body language
02: * structure and commit it to the IMS Message Queue.
03: */
04: @irz_struct_name = ’ResponseBodyStruct’;
05: @irz_struct_ptr = ResponseBodyStruct_ptr;
06: @dfs_struct_size = storage(ResponseBodyStruct);
07: @dfs_commit_structs = ’1’b;
08: @dfs_cee_feedback_ptr = addr(@dfs_cee_feedback);
09: @dfs_debug = ’0’b;
10:
11: @return_code =
12: DFSQSETS(@dfs_async_msg_header_ptr,

606 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput

13: @dfs_iopcb_mask_ptr, @dfs_soap_body_struct,
14: @dfs_struct_name, @dfs_struct_ptr,
15: @dfs_struct_size, @dfs_commit_structs,
16: @dfs_cee_feedback_ptr, @dfs_debug);
17:
18: if (@return_code != @dfs_success) then do;
19: display(’MYMPP#handle_myOperation(): ’
20: || ’ERROR, DFSQSETS @dfs_soap_body_struct, ’
21: || ’@return_code: ’|| trim(@return_code) || ’.’);
22: return;
23: end;

DFSXGETS
The DFSXGETS API retrieves a SOAP structure from the IMS Connect input buffer
and returns the information to the caller in a high-level language structure.

Because the IMS Message Queue is not available to XML Conversion in IMS
Connect, DFSXGETS retrieves language structures from the IMS Connect input
buffer. The expected format of the IMS Connect input buffer is an array of IMS
message segments (LLZZDATA).

The structures and variables referred to in this topic are defined in the include file
DFSPWSH (see “Include file DFSPWSH” on page 593).

Note: This API is for use by PL/I XML converters running in IMS Connect. It is
not to be used by a message processing program (MPP).

Restrictions:
v DFSXGETS supports the retrieval of SOAP Body and SOAP Fault structures

only. The SOAP Header structure is not supported.

Parameters:

Table 153. Parameters for DFSXGETS

Parameter Type Usage Description

@dfs_async_msg_header_ptr POINTER
BYADDR

Output A pointer-by-reference to the
instance of
@dfs_async_msg_header that
was received in the IMS
Connect input buffer.

@dfs_icon_buf_ptr POINTER
BYVALUE

Input A pointer-by-value to the IMS
Connect input message buffer.
The expected format of the
buffer is an array of
LLZZDATA.

@dfs_icon_buf_len SIGNED FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying
the length in bytes of the buffer
pointed to by
@dfs_icon_buf_ptr.

@dfs_struct_type SIGNED FIXED
BIN(31)
BYVALUE

Input An integer-by-value specifying
the type of structure to retrieve
from the IMS Connect input
buffer. The following constants
defined in the include file
DFSPWSH can be used:
@dfs_soap_body_struct.

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 607

Table 153. Parameters for DFSXGETS (continued)

Parameter Type Usage Description

@dfs_struct_name WCHAR(100)
VARYING
BYADDR

Input A string-by-reference containing
the name of the language
structure to retrieve from the
IMS Connect input buffer. The
value of this parameter must
correspond to the value of the
parameter @dfs_struct_type.

@dfs_struct_ptr POINTER
BYADDR

Output A pointer-by-reference into
which DFSXGETS writes the
address of a buffer containing
the bytes of the structure
requested in parameters
@dfs_struct_type and
@dfs_struct_name.
Important: This buffer must be
freed by the XML Converter
prior to returning to IMS
Connect because the Language
Environment enclave in which
the XML Converters execute is
persistent.

@dfs_struct_size SIGNED FIXED
BIN(31)
BYADDR

Output An integer-by-reference into
which DFSXGETS writes the
size in bytes of the structure
returned in the parameter
@dfs_struct_ptr.

@dfs_cee_feedback_ptr POINTER
BYVALUE

Input A pointer-by-value to an
instance of @dfs_cee_feedback
defining a Language
Environment Condition Token.
This instance is updated each
time DFSXGETS invokes
Language Environment Callable
Services.
Note: If the return code from
DFSXGETS is 998 then use the
publication Language
Environment Run-Time Messages
(SA22-7566-10) to inspect the
contents of the condition token
and determine the cause of the
error.

@dfs_debug BIT(1)
OPTIONAL

Input An optional bit indicating
whether DFSXGETS should
display trace information (see
Trace output for WSDL-to-PL/I
segmentation APIs (Application
Programming)).

Return codes:

The return codes for DFSXGETS are constants defined in the DFSPWSH include
file:

608 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput

Table 154. Return codes for DFSXGETS

Type: Name: Value:

SIGNED FIXED BIN(31) @dfs_success 000

@dfs_omitted_parameter 100

@dfs_invalid_pointer 101

@dfs_invalid_struct_type 102

@dfs_struct_not_found 103

@dfs_struct_name_mismatch 104

@dfs_invalid_struct_order 105

@dfs_icon_buf_exhausted 997

@dfs_cee_call_failure 998

DFSXSETS
The DFSXSETS API creates a SOAP structure from the information in a language
structure passed as input. Also, when specified, DFSXSETS copies the current
SOAP structure and all previously supplied SOAP structures into the IMS Connect
output buffer.

Because the IMS Message Queue is not available to XML Conversion in IMS
Connect, DFSXSETS inserts language structures into the IMS Connect output
buffer. The format of the IMS Connect output buffer is an array of IMS message
segments (LLZZDATA).

The structures and variables referred to in this topic are defined in DFSPWSH (see
“Include file DFSPWSH” on page 593).

Note: This API is for use by PL/I XML converters running in IMS Connect. It is
not to be used by a message processing program (MPP).

Limitations:
v DFSXSETS does not support the storing of a SOAP Header structure.

Parameters:

Table 155. Parameters for DFSXSETS

Parameter Type Usage Description

@dfs_async_msg_header_ptr POINTER
BYVALUE

Input A pointer-by-value to the
instance of
@dfs_async_msg_header that is
to be sent as the first segment
of the IMS message.

@dfs_icon_buf_ptr POINTER
BYVALUE

Input A pointer-by-value to the IMS
Connect output message buffer.
The expected format of the
buffer is an array of IMS
message segments
(LLZZDATA).

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 609

Table 155. Parameters for DFSXSETS (continued)

Parameter Type Usage Description

@dfs_icon_buf_len SIGNED
FIXED BIN(31)
BYVALUE

Input An integer-by-value specifying
the length in bytes of the buffer
pointed to by
@dfs_icon_buf_ptr.

@dfs_icon_buf_used SIGNED
FIXED BIN(31)
BYADDR

Output An integer-by-reference into
which DFSXSETS writes the
number of bytes that are
required to format the language
structure as a multisegment
IMS message in the IMS
Connect output buffer. The
value of this parameter is
always greater than the actual
size of the language structure
by at least 4 bytes.

@dfs_struct_type SIGNED
FIXED BIN(31)
BYVALUE

Input An integer-by-value specifying
the type of language structure
to set in the IMS Connect
output buffer. The following
constants defined in include file
DFSPWSH can be used:
@dfs_soap_body_struct.

@dfs_struct_name WCHAR(128)
VARYING
BYADDR

Input A string-by-reference containing
the name of the language
structure that corresponds to
the value of the parameter
@dfs_struct_type.

@dfs_struct_ptr POINTER
BYVALUE

Input A pointer-by-value to a
structure corresponding to the
structure specified in
parameters @dfs_struct_type
and @dfs_struct_name.

@dfs_struct_size SIGNED
FIXED BIN(31)
BYVALUE

Input An integer-by-value specifying
the size in bytes of the structure
pointed to by parameter
@dfs_struct_ptr.

@dfs_commit_structs BIT(1)
BYVALUE

Input A bit-by-value indicating
whether DFSXSETS should
copy the current language
structure and all previously
supplied language structures
into the IMS Connect output
buffer.

610 Application Programming APIs

Table 155. Parameters for DFSXSETS (continued)

Parameter Type Usage Description

@dfs_cee_feedback_ptr POINTER
BYVALUE

Input A pointer-by-value to an
instance of @dfs_cee_feedback
defining a Language
Environment Condition Token.
This instance is updated each
time DFSXSETS invokes
Language Environment Callable
Services.
Note: If the return code from
DFSXSETS is 998 then use the
publication Language
Environment Run-Time Messages
(SA22-7566-10) to inspect the
contents of the condition token
and determine the cause of the
error.

@dfs_debug BIT(1)
OPTIONAL

Input An optional bit indicating
whether DFSXSETS should
display trace information (see
Trace output for WSDL-to-PL/I
segmentation APIs (Application
Programming)).

Return codes:

The return codes for DFSXSETS are constants defined in the DFSPWSH include
file:

Table 156. Return codes for DFSXSETS

Type: Name: Value:

SIGNED FIXED BIN(31) @dfs_success 000

@dfs_omitted_parameter 100

@dfs_invalid_pointer 101

@dfs_invalid_struct_type 102

@dfs_invalid_struct_order 105

@dfs_invalid_struct_size 106

@dfs_invalid_struct_name 107

@dfs_struct_already_set 108

@dfs_invalid_segment_size 109

@dfs_icon_buf_exhausted 997

@dfs_cee_call_failure 998

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 611

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_dfspwsio_apis_debug.htm#dfspwsio_traceoutput

Return codes from the DFSPWSIO APIs
This topic describes the return codes from the DFSPWSIO APIs.

The following table describes the return codes:

Table 157. Return codes from the DFSPWSIO APIs

Value DFSPWSH constant Description

000 @dfs_success The API completed successfully.

100 @dfs_omitted_parameter A required parameter was not specified to the
API.

101 @dfs_invalid_pointer The value of a pointer supplied to the API
specified an invalid memory address.

102 @dfs_invalid_struct_type The language structure type specified to the
API was not one of
DFSPWSH.@dfs_soap_header_struct,
DFSPWSH.@dfs_soap_body_struct, or
DFSPWSH.@dfs_soap_fault_struct.

103 @dfs_struct_not_found A language structure with the specified type
was not found in the IMS message.

104 @dfs_struct_name_mismatch A language structure of the specified type was
found in the IMS message, but the specified
name does not match.

105 @dfs_invalid_struct_order An attempt to get or set a language structure
out of order was detected. For example, it is
an error to attempt to to get the SOAP body
structure before getting the SOAP header
structure, if a SOAP header is present in the
IMS message.

106 @dfs_invalid_struct_size The size of the language structure specified to
the API was invalid (<=0) or exceeded the
maximum (see
DFSPWSH.@dfs_message_max_data).

107 @dfs_invalid_struct_name The specified language structure name was
not a valid PL/I identifier.

108 @dfs_struct_already_set The specified language structure type already
exists in the IMS message.

109 @dfs_invalid_segment_size The segment size specified in IMS Connect
parameter XMPAMAXS is invalid (< = 5 or > =
32767).

995 @dfs_fetch_failure The API was unable to fetch a required load
module from the available libraries. An
instance of Enterprise PL/I runtime message
IBM0590S was generated prior to receiving
this return code.

997 @dfs_icon_buf_exhausted The API was unable to get or set a language
structure because it encountered the end of
the IMS Connect input or output buffer. This
error may only be raised when Compiled
XML Conversion invokes the API.

612 Application Programming APIs

Table 157. Return codes from the DFSPWSIO APIs (continued)

Value DFSPWSH constant Description

998 @dfs_cee_call_failure An error was encountered by the API when it
invoked a Language Environment callable
service. Inspect the Language Environment
condition token supplied in parameter
@dfs_cee_feedback_ptr for more information.

999 @dfs_dli_call_failure An error was encountered by the API when it
invoked the CEETDLI interface. Inspect the
IOPCB supplied in parameter @dfs_iopcb_ptr
for more information.

The following table shows the return codes used by each API:

Table 158. Return codes used by each API

Value DFSPWSH constant DFSQGETS DFSQSETS DFSXGETS DFSXSETS

000 @dfs_success X X X X

100 @dfs_omitted_parameter X X X X

101 @dfs_invalid_pointer X X X X

102 @dfs_invalid_struct_type X X X X

103 @dfs_struct_not_found X

104 @dfs_struct_name_mismatch X X

105 @dfs_invalid_struct_order X X X X

106 @dfs_invalid_struct_size X X

107 @dfs_invalid_struct_name X X

108 @dfs_struct_already_set X X

109 @dfs_invalid_segment_size X X

995 @dfs_fetch_failure X X X X

997 @dfs_icon_buf_exhausted X X

998 @dfs_cee_call_failure X X X

999 @dfs_dli_call_failure X X X

1At runtime these error codes are cited by messages IRZ0500S and IRZ0501S, even
though the APIs are internal to compiled XML conversion.
Related information:

IBM0590S and PL/I run-time messages

Chapter 7. WSDL-to-PL/I segmentation APIs for web service development 613

http://www.ibm.com/support/knowledgecenter/SSLTBW_1.13.0/com.ibm.zos.r13.ceea900/plimsgs.htm%23plimsgs

614 Application Programming APIs

Chapter 8. SQL programming reference

These topics provide the reference information for Structured Query Language
(SQL) for IMS.

SQL concepts for IMS
Certain IMS concepts are important to understand when using Structured Query
Language (SQL).

Structured query language
One language that you use to access the data in IMS is SQL. SQL is a standardized
language for defining and manipulating data in a relational database.

The language consists of SQL statements. SQL statements let you retrieve, insert,
update, or delete data in IMS databases.

When you write an SQL statement, you specify what you want done, not how to
do it. To access data, for example, you need only to name the segment and fields
that contain the data. You do not need to describe how to get to the data.

In accordance with the relational model of data:
v The database is perceived as a set of tables.
v Relationships are represented by values in tables.
v Data is retrieved by using SQL to specify a result table that can be derived from

one or more tables.

IMS transforms each SQL statement, that is, the specification of a result table, into
a sequence of operations for data retrieval or modifications.

All executable SQL statements must be prepared before they can run.

DDL SQL
IMS supports and extends the SQL data definition language (DDL).

IMS databases use a hierarchical database structure. The standard SQL DDL
statements use parameters, keywords, and concepts that are based on relational
database structures. While it is not always necessary to understand the hierarchical
structure and associated concepts of IMS databases when creating or altering IMS
databases with DDL, such an understanding will likely help you define IMS
database structures that are more efficient and perform better. For more
information about how relational database terms and concepts map to the
hierarchical structures of IMS, see Comparison of hierarchical and relational
databases (Application Programming).
Related concepts:

Using DDL to define databases and program views (Database Administration)

Related reference:

Security for IMS DDL (Database Administration)

© Copyright IBM Corp. 1974, 2017 615

|
|

|
|
|
|
|
|
|
|
|

|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_comparehierandreldbs.htm#ims_comparehierandreldbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_comparehierandreldbs.htm#ims_comparehierandreldbs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_imspldbdes_ddl.htm#ims_imspldbdes_ddl
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_securityddl.htm#ims_securityddl

Static SQL
The source form of a static SQL statement is embedded within an application
program that is written in a host language such as COBOL. The statement is
prepared before the program is executed and the operational form of the statement
persists beyond the execution of the program.

In IMS Version 13 and later, static SQL is not supported for COBOL.

Dynamic SQL
Programs that contain embedded dynamic SQL statements must be precompiled
like those that contain static SQL, but unlike static SQL, the dynamic statements
are constructed and prepared at run time.

The source form of a dynamic statement is a character string that is passed to IMS
by the program using the SQL PREPARE statement. A statement that is prepared
using the PREPARE statement can be referenced in a DECLARE CURSOR,
DESCRIBE, or EXECUTE statement.

Interactive SQL
Interactive SQL refers to SQL statements submitted using IMS Enterprise Suite
Explorer for Development.

IMS data structures for SQL
SQL support allows you to issue standard SQL query to access IMS data instead of
using DL/I calls. To use SQL calls in IMS application, you need to understand the
difference between the hierarchical model for IMS databases and the standard
relational database model since SQL calls are commonly used for relational
databases. You also need to understand how IMS database elements are being
mapped to relational database elements.

A database segment definition defines the fields for a set of segment instances
similar to the way that a relational table defines columns for a set of rows in a
table. In this regard, segments relate to tables, and fields in a segment relate to
columns in a table. An occurrence of a segment in a database corresponds to a row
in a table.

The following table summarizes the mapping between IMS database elements and
relational database elements.

Table 159. Mapping between IMS database elements and relational database elements.

Hierarchical database elements in IMS Equivalent relational database elements

Segment name Table name

Segment instance Table row

Segment field name Column name

Segment unique key Table primary key

Foreign key field Table foreign key

PCB Schema

Segment Table

Field Column

Record Row

Data set group or Area Tablespace

616 Application Programming APIs

||

||

||

||

||

Related tasks:

Database design and implementation (Database Administration)

Hierarchical and relational databases
There are differences between the hierarchical model for IMS databases and the
standard relational database model.

IMS presents a relational model of a hierarchical database. In addition to the
one-to-one mappings of terms, IMS can also show a hierarchical parentage through
the primary or foreign key constraints.

For a comparison of the hierarchical and relational database models, see
Comparison of hierarchical and relational databases (Application Programming).

Language elements
An understanding of the basic syntax of SQL and language elements that are
common to many SQL statements can be helpful in using SQL with IMS.

The following topics provide information about these language elements:

Characters
The basic symbols of keywords and operators in the SQL language are characters
that are classified as letters, digits, or special characters.
v A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z)

letters of the English alphabet.
v A digit is any one of the characters 0 through 9.
v A special character is any character other than a letter or a digit.

Tokens
The basic syntactical units of the SQL language are called tokens. A token consists
of one or more characters of which none are blanks, control characters, or
characters within a string constant or delimited identifier.

Tokens are classified as ordinary or delimiter tokens:
v An ordinary token is a numeric constant, an ordinary identifier, a host identifier,

or a keyword.
Examples:

1 .1 +2 SELECT E 3

v A delimiter token is a string constant, a delimited identifier, an operator symbol,
or any of the special characters shown in the syntax diagrams. A question mark
(?) is also a delimiter token when it serves as a parameter marker, as explained
in “PREPARE” on page 804.
Examples:

, ’string’ "fld1" = .

Spaces

A space is a sequence of one or more blank characters.

Chapter 8. SQL programming reference 617

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_db_design_part.htm#ims_db_design_part
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_comparehierandreldbs.htm#ims_comparehierandreldbs

Uppercase and lowercase

A token in an SQL statement can include lowercase letters, but lowercase letters in
an ordinary token are folded to uppercase. Delimiter tokens are never folded to
uppercase.

Example: The following two statements, after folding, are equivalent:
select * from PCB01.HOSPITAL where hospname = ’Alexandria’;

SELECT * FROM PCB01.HOSPITAL WHERE HOSPNAME = ’Alexandria’;

Identifiers
An identifier is a token used to form a name. An identifier in an SQL statement is
an SQL identifier or a host identifier.

SQL identifiers
SQL identifiers can be ordinary identifiers or delimited identifiers.

Ordinary identifiers:

An ordinary identifier is an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character.

An ordinary identifier should not be a reserved word. If a reserved word is used
as an identifier in SQL, it must be specified in uppercase and must be a delimited
identifier or specified in a host variable.

Example: The following example is an ordinary identifier:
HOSPITAL

Host identifiers
A host identifier is a name declared in the host program.

Naming conventions
The rules for forming a name depend on the type of the object designated by the
name.

The syntax diagrams use different terms for different types of names. The
following list defines these terms.

column-name
A qualified or unqualified name that designates a column of a table.

A qualified column name is a qualifier followed by a period and an SQL
identifier. The qualifier is a table name, a view name, a synonym, an alias,
or a correlation name. The unqualified column name is an SQL identifier.

cursor-name
An SQL identifier that designates an SQL cursor.

descriptor-name
A host identifier that designates an SQL descriptor area (SQLIMSDA). See
“References to host variables” on page 628 for a description of a host
identifier. A descriptor name never includes an indicator variable.

618 Application Programming APIs

host-variable
A sequence of tokens that designates a host variable. A host variable
includes at least one host identifier, as explained in “References to host
variables” on page 628.

statement-name
An SQL identifier that designates a prepared SQL statement.

table-name
A qualified or unqualified name that designates a table (IMS segment).

A one-part or unqualified table name is an SQL identifier with two implicit
qualifiers.

Data types
IMS supports data types from SQL.

The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source. The sources of
values are:
v Columns
v Constants
v Expressions
v Variables (such as host variables and parameter markers)

The following image shows the built-in data types that IMS supports.

Chapter 8. SQL programming reference 619

Important:

1. BOOLEAN, FLOAT, DOUBLE, and fixed-length binary data types are
supported only for Java application programs.

2. Fixed-length binary data type is supported for COBOL and .NET applications
for retrieval and parameter marker use only.

Related concepts:

Data transformation support for JDBC (Application Programming)
Related reference:

COBOL copybook types that map to Java data types (Application
Programming)

Built-in data types

1
JDBC

drivers
only

2
For COBOL and

.NET, for retrieval
and parameter
marker use only

1
JDBC

drivers
only

boolean

BOOLEAN

DATE TIME TIMESTAMP

BINARY

DECIMAL DECIMALDECIMALBIGINTINTEGERSMALLINT

FLOAT

CHAR

TINYINT

DOUBLE

double
precision

binary

datetime string

binary

fixed length

signed numeric

approximate

floating point

double
precision

packed

exact

zoned

decimal

32 bit 64 bit16 bit

binary integer

8 bit

character

fixed
length

date time timestamp

Figure 36. Built-in data types supported by IMS

620 Application Programming APIs

|

|
|
|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_datatransform.htm#ims_datatransform
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_cobol_copybooktypes.htm#ims_cobol_copybooktypes
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_cobol_copybooktypes.htm#ims_cobol_copybooktypes

Nulls
All data types include the null value. Distinct from all non-null values, the null
value is a special value that denotes the absence of a (non-null) value.

IMS does not support setting columns to null. However, IMS interprets certain
cases as null. For instance, variable-length segments where a field lies outside the
segment boundary and segments with multiple mappings where a specific
mapping does not apply are interpreted as null.

Numbers
The numeric data types are categorized as exact numerics: binary integer and
decimal; and approximate numerics: floating-point

Binary integer includes small integer, large integer, and big integer. Binary
numbers are exact representations of integers. Decimal numbers are exact
representations of real numbers. Binary and decimal numbers are considered exact
numeric types. Floating-point includes double precision. Floating-point numbers
are approximations of real numbers and are considered approximate numeric
types.

All numbers have a sign, a precision, and a scale. If a column value is zero, the
sign is positive. Decimal floating point has distinct values for a number and the
same number with various exponents (for example: 0.0, 0.00, 0.0E5, 1.0, 1.00,
1.0000). The precision is the total number of binary or decimal digits excluding the
sign. The scale is the total number of binary or decimal digits to the right of the
decimal point. If there is no decimal point, the scale is zero.

Small integer (SMALLINT):

A small integer is a binary integer that occupies 2 bytes. The range of small integers
is -32768 to +32767.

Large integer (INTEGER):

A large integer is a binary integer that occupies 4 bytes.

The range of large integers is -2147483648 to +2147483647.

Big integer (BIGINT):

A big integer is a binary integer that occupies 8 bytes.

The range of big integers is -9223372036854775808 to +9223372036854775807.

Double precision floating-point (DOUBLE or FLOAT):

A double precision floating-point number is a long (64 bits) floating-point number.

DOUBLE and FLOAT are not supported by SQL for COBOL.

The range of double precision floating-point numbers is about -7.2E+75 to 7.2E+75.
In this range, the largest negative value is about -5.4E-79, and the smallest positive
value is about 5.4E-079.

Chapter 8. SQL programming reference 621

Decimal:

A decimal number is a packed decimal number with an implicit decimal point.

The position of the decimal point is determined by the precision and the scale of
the number. The scale, which is the number of digits in the fractional part of the
number, cannot be negative or greater than the precision. The maximum precision
is 31 digits.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where n is the
largest positive number that can be represented with the applicable precision and
scale. The maximum range is 1 - 1031 to 1031 - 1.

Numeric host variables:

The COBOL format for binary numeric data is USAGE BINARY. BINARY, COMP,
and COMP-4 are synonyms. Binary-format numbers occupy 2, 4, or 8 bytes of
storage.

For COBOL, COMP-1 refers to short floating-point format and COMP-2 refers to
long floating-point format, which occupy 4 and 8 bytes of storage, respectively.

In COBOL, decimal numbers can be represented in the following formats:
v Packed decimal format, denoted by USAGE PACKED-DECIMAL or COMP-3
v External decimal format, denoted by USAGE DISPLAY with SIGN LEADING

SEPARATE

Character strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. The
empty string should not be confused with the null value.

Fixed-length character strings:

When fixed-length character strings, columns, and variables are defined, the length
attribute is specified, and all values have the same length. For a fixed-length
character string, the length attribute must be between 1 and 255 inclusive.

Datetime values
Datetime values are neither strings nor numbers. Nevertheless, datetime values can
be used in certain arithmetic and string operations and are compatible with certain
strings.

Moreover, strings can represent datetime values.

Date:

A date is a three-part value (year, month, and day) designating a point in time
using the Gregorian calendar, which is assumed to have been in effect from the
year 1 A.D.

622 Application Programming APIs

The range of the year part is 0001 to 9999. The range of the month part is 1 to 12.
The range of the day part is 1 to 28, 29, 30, or 31, depending on the month and
year.1

The internal representation of a date is a string of 4 bytes. Each byte consists of
two packed decimal digits. The first 2 bytes represent the year, the third byte the
month, and the last byte the day.

A character-string representation must have an actual length that is not greater
than 255 bytes.

Time:

A time is a three-part value (hour, minute, and second) designating a time of day
using a 24-hour clock. The range of the hour part is 0 to 24. The range of the
minute and second parts is 0 to 59. If the hour is 24, the minute and second parts
are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of
two packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

A character-string representation must have an actual length that is not greater
than 255 bytes.

Timestamp:

A timestamp is a six-part or seven-part value (year, month, day, hour, minute,
second, and optional fractional second) with an optional time zone specification,
that represents a date and time.

In Java, timestamp maps with the type java.sql.Timestamp.

In COBOL, timestamp is a character string with an application-defined length,

Datetime host variables:

Character-string host variables are normally used to contain date, time, and
timestamp values.

Assignment and comparison
The basic operations of SQL are assignment and comparison.

Assignment operations are performed during the execution of statements such as
INSERT and UPDATE statements. In addition, when a function is invoked or a
stored procedure is called, the arguments of the function or stored procedure are
assigned. Comparison operations are performed during the execution of statements
that include predicates and other language elements such as ORDER BY.

The basic rule for both operations is that data types of the operands must be
compatible.

1. Historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15 are accepted as valid
dates although they never existed in the Gregorian calendar.

Chapter 8. SQL programming reference 623

The following table shows the compatibility of data types for assignments and
comparisons.

Table 160. Data type compatibility for assignments and comparisons

O
p

er
an

d

B
Y

T
E

S

S
H

O
R

T

IN
T

L
O

N
G

D
O

U
B

L
E

B
IT

C
H

A
R

PA
C

K
E

D

Z
O

N
E

D

D
A

T
E

T
IM

E

FL
O

A
T

T
IM

E
S

TA
M

P

BYTES Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

SHORT Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

INT Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

LONG Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

DOUBLE Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

BIT Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

CHAR Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

PACKED Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

ZONED Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

DATE No No No No No No Yes No No Yes Yes No Yes

TIME No No No No No No Yes No No Yes Yes No Yes

FLOAT Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No

TIMESTAMP No No No No No No Yes No No Yes Yes No Yes

Notes:

1. LOBs and bit data are not supported.
2. The compatibility of datetime values is limited to assignment and comparison:
v Datetime values can be assigned to string columns and to string variables.
v A valid string representation of a date can be assigned to a date column or

compared to a date.
v A valid string representation of a time can be assigned to a time column or

compared to a time.
v A valid string representation of a timestamp can be assigned to a timestamp

column or compared to a timestamp.
3. Character strings can be assigned to XML columns.

String assignments
There are two types of string assignments; storage assignment and retrieval
assignment.
v Storage assignment is when a value is assigned to a column.
v Retrieval assignment is when a value is assigned to a variable.

The rules differ for storage and retrieval assignment.

Character string assignment:

The rules for storage and retrieval assignment apply when both the source and the
target are strings.

624 Application Programming APIs

Storage assignment:

The basic rule for character storage assignment is that the length of a string that is
assigned to a column or parameter of a function must not be greater than the
length attribute of the column or the parameter.

Trailing blanks are included in the length of the string. When the length of the
string is greater than the length attribute of the column or the parameter, the
following actions occur:
v If all of the trailing characters that must be truncated to make a string fit the

target are blanks and the string is a character or graphic string, the string is
truncated and assigned without warning.

v Otherwise, the string is not assigned and an error occurs to indicate that at least
one of the excess characters is non-blank.

When a string is assigned to a fixed-length column or parameter and the length of
the string is less than the length attribute of the target, the string is padded to the
right with the necessary number of blanks.

Retrieval assignment:

In COBOL, the length of a string that is assigned to a host variable can be greater
than the length attribute of the variable. When the length of the string is greater
than the length of the variable, the string is truncated on the right by the necessary
number of characters.

When truncation occurs, the value W is assigned to the SQLIMSWARN1 field of
the SQLIMSCA.

When a character string is assigned to a fixed-length variable and the length of the
string is less than the length attribute of the target, the string is padded to the right
with the necessary number of blanks.

String comparisons
String comparisons can occur with binary string, character strings.

Character string comparisons:

Two strings are compared by comparing the corresponding bytes of each string. If
the strings do not have the same length, the comparison is made with a temporary
copy of the shorter string that has been padded on the right with blanks so that it
has the same length as the other string.

Two strings are equal if they are both empty or if all corresponding bytes are
equal. An empty string is equal to a blank string. If two strings are not equal, their
relationship (that is, which has the greater value) is determined by the comparison
of the first pair of unequal bytes from the left end of the strings.

Constants
A constant (also called a literal) specifies a value. Constants are classified as string
constants or numeric constants. Numeric constants are further classified as integer,
floating-point, decimal, or decimal floating-point. String constants are classified as
character or binary.

Chapter 8. SQL programming reference 625

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored, except for a decimal floating-point constant.

Integer constants
An integer constant specifies an integer as a signed or unsigned number with a
maximum of 19 digits that does not include a decimal point.

The data type of an integer constant is large integer if its value is within the range
of a large integer. The data type of an integer constant is big integer if its value is
outside the range of a large integer, but within the range of a big integer. A
constant that is defined outside the range of big integer values is considered a
decimal constant.

Examples:
64 -15 +100 32767 720176

In syntax diagrams, the term integer is used for a large integer constant that must
not include a sign.

Floating-point constants
A floating-point constant specifies a double-precision floating-point number as two
numbers separated by an E.

The first number can include a sign and a decimal point. The second number can
include a sign but not a decimal point. The value of the constant is the product of
the first number and the power of 10 specified by the second number. It must be
within the range of floating-point numbers. The number of characters in the
constant must not exceed 30. Excluding leading zeros, the number of digits in the
first number must not exceed 17 and the number of digits in the second must not
exceed 2.

Examples: The following floating-point constants represent the numbers '150',
'200000', -0.22, and '500':

15E1 2.E5 -2.2E-1 +5.E+2

Decimal constants
A decimal constant is a signed or unsigned number of no more than 31 digits and
either includes a decimal point or is not within the range of binary integers.

The precision is the total number of digits, including those, if any, to the right of
the decimal point. The total includes all leading and trailing zeros. The scale is the
number of digits to the right of the decimal point, including trailing zeros.

Examples: The following decimal constants have, respectively, precisions and scales
of 5 and 2; 4 and 0; 2 and 0; and 23 and 2:

025.50 1000. -15. +375893333333333333333.33

Character string constants
A character string constant specifies a varying-length character string. There is one
form of character string constant.
v A sequence of characters that starts and ends with a string delimiter.

Examples:
’10/14/2013’ ’32’ ’DON’’T CHANGE’ ’’

626 Application Programming APIs

The right most string in the example ('') represents an empty character string
constant, which is a string of zero length.

For COBOL, only character string EBCDIC 037 is supported.

Field names
The meaning of a field name depends on its context.

A field name can be used to:
v Identify a field.
v Specify values of the field, as in the following contexts:

– In an ORDER BY clause, a field name specifies all values in the intermediate
result table to which the clause is applied. For example, ORDER BY
HOSPNAME orders an intermediate result table by the values of the field
HOSPNAME.

– In a search condition, a field name specifies a value for each row or group to
which the construct is applied. For example, when the search condition CODE
= 20 is applied to some row, the value specified by the field name CODE is
the value of the field CODE in that row.

v Provide a field name for an expression to temporarily rename a field, or as in
the AS clause in the select-clause.

Qualified field names
A qualifier for a field name is a segment name.

Where a qualifier is optional, it can serve two purposes. See “Field name qualifiers
to avoid ambiguity” and for details.

Field name qualifiers to avoid ambiguity
In the context of an ORDER BY clause, an expression, or a search condition, a field
name refers to values of a field in some segment or view in a DELETE or UPDATE
statement or table-reference in a FROM clause.

One reason for qualifying a field name is to designate the object from which the
field comes.

Table designators: A qualifier that designates a specific object table is called a table
designator. The clause that identifies the object tables also establishes the table
designators for them. For example, the object tables of an expression in a SELECT
statement are named in the FROM clause that follows it, as in the following
statement:
SELECT Z.HOSPCODE, WARDNO, WARDLL
FROM PCB01.HOSPITAL Z, PCB01.WARD
WHERE Z.HOSPNAME = ’ALEXANDRIA’
AND Z.HOSPCODE = ’R1210010000A’

Table designators in the FROM clause are established as follows:
v A name that follows a table or view name is both a correlation name and a table

designator. Thus, Z is a table designator and qualifies the first column name in
the select list.

v An exposed table or view name is a table designator. Thus, the qualified table
name, PCB01.WARD is a table designator and qualifies the second column name
in the select list.

Chapter 8. SQL programming reference 627

References to variables
A variable in an SQL statement specifies a value that can be changed when the SQL
statement is executed. There are several types of variables used in SQL statements.

host variable
Host variables are defined by statements of a host language. For more
information about how to refer to host variables, see “References to host
variables.”

parameter marker
Parameter markers are specified in an SQL statement that is dynamically
prepared instead of host variables. For more information about parameter
markers, see Parameter markers in the PREPARE statement.

Unless otherwise noted, the term host variable in syntax diagrams is used to
describe where a host variable or parameter marker can be used.

References to host variables
Host variables are defined directly by statements of the host language. A
host-variable in an SQL statement must identify a host variable that is described in
the program according to the rules for declaring host variables. Host variables
cannot be referenced in dynamic SQL statements; parameter markers must be used
instead.

A host variable is a data element in COBOL.

A host-variable in an SQL statement must identify a host variable that is described
in the program according to the rules for declaring host variables.

The term host-variable, as used in the syntax diagrams, shows a reference to a host
variable. In the INTO clause of a FETCH statement, a host variable is an output
variable to which a value is assigned by IMS. A host variable can also be an input
variable which provides a value to IMS.

variable references

The general form of a host variable reference is:

►► :host-identifier ►◄

Each host identifier must be declared in the source program.

An SQL statement that refers to host variables must be within the scope of the
declaration of those host variables. For host variables referred to in the SELECT
statement of a cursor, the OPEN statement, and the DECLARE CURSOR statement
have to be in the same scope.

All references to host variables must be preceded by a colon. If an SQL statement
references a host variable without a preceding colon, the coprocessor issues an
error for the missing colon or interprets the host variable as an unqualified column
name, which might lead to unintended results. The interpretation of a host variable
without a colon as a column name occurs when the host variable is referenced in a
context in which a column name can also be referenced.
Related concepts:
“Host variables in dynamic SQL” on page 629

628 Application Programming APIs

Host variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables.

A parameter marker is a question mark (?) that represents a position in a dynamic
SQL statement where the application will provide a value.

INSERT INTO PCB01.DOCTOR (hospital_HOSPCODE, patient_patnum, ward_wardno, doctno,docname) VALUES (?,?,?,?,?)

Parameter marker replacement:
Before the prepared statement is executed, each parameter marker in the
statement is effectively replaced by its corresponding host variable. The
replacement is an assignment operation in which the source is the value of
the host variable and the target is a variable. The assignment rules are
those described for assignment to a column in Assignment and comparison
(Application Programming APIs).

Host structures in COBOL
A host structure is a COBOL group that is referred to in an SQL statement.

As used here, the term host structure does not include an SQLIMSCA or
SQIMSLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :S1 is a host structure reference if S1 names a host
structure.

A host structure can be referred to in any context where a list of host variables can
be referenced. A host structure reference is equivalent to a reference to each of the
host variables contained within the structure in the order which they are defined in
the host language structure declaration. The nth variable of the indicator array is
the indicator variable for the nth variable of the host structure.

For example, if V1, V2, and V3 are declared as the variables within the structure
S1, the following two statements are equivalent:

EXEC SQLIMS FETCH CURSOR1 INTO :S1;
EXEC SQLIMS FETCH CURSOR1 INTO :V1, :V2, :V3;

In addition to structure references, individual host variables in COBOL can be
referred to by qualified names. The qualified form is a host identifier followed by a
period and another host identifier. The first host identifier must name a structure,
and the second host identifier must name a host variable at the next level within
that structure.

In COBOL, the syntax of host-variable is:

►► : host-identifier
host-identifier. INDICATOR

:host-identifier

►◄

Predicates
A predicate specifies a condition that is true, false, or unknown about a given row
or group.

The types of predicates are:

Chapter 8. SQL programming reference 629

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison

►► basic predicate ►◄

The following rules apply to predicates of any type:
v All values that are specified in the same predicate must be compatible.

Basic predicate
A basic predicate compares two values or compares a set of values with another set
of values.

This statement can be embedded only in a COBOL application program.

►► column = literal
<>
!=
<
>
<=
>=

►◄

column:

table-name .

(1)
column-name

Notes:

1 You can have the same column name in multiple tables, but if the table is not
qualified, each table must be searched for the column.

This statement is supported only for Java application programs.

►► column = literal
alias <>

!=
<
>
<=
>=

►◄

column:

table-name .
schema-name .

(1)
column-name

Notes:

1 You can have the same column name in multiple tables, but if the table is not
qualified, each table must be searched for the column.

The result of the predicate depends on the operator, as in the following two cases:
v If the operator is =, the result of the predicate is:

630 Application Programming APIs

– True if all pairs of corresponding value expressions evaluate to true.
– False if any one pair of corresponding value expressions evaluates to false.

v If the operator is <>, the result of the predicate (x1,x2,...,xn) <> (y1,y2,...,yn) is:
– True, if and only if xi=yi evaluates to false for some value of i. (that is, there

is at least one pair of non-null values, xi and yi, that are not equal to each
other).

– False, if and only if xi=yi evaluates to true for every value of i. (that is,
(x1,x2,...,xn)=(y1,y2,...,yn) is true).

Table 161. For values x and y

Predicate Is true only if ...

x = y x is equal to y

x <> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

Examples for values x and y:
HOSPCODE = ’528671’
XINTEGER < 20000
HOSPNAME <> :VAR1

Example: List the hospital code and hospital name from the HOSPITAL segment
where the hospital code is H5140070000H.
SELECT HOSPCODE, HOSPNAME

FROM PCB01.HOSPITAL
WHERE HOSPCODE = ’H5140070000H’

BETWEEN predicate
The BETWEEN predicate determines whether a given value lies between two other
given values that are specified in ascending order.

The BETWEEN predicate is supported only for Java application programs.

►► column BETWEEN literal AND literal
alias NOT

►◄

column:

table-name .
schema-name .

(1)
column-name

Notes:

1 You can have the same column name in multiple tables, but if the table is not
qualified, each table must be searched for the column.

Each of the predicate's two forms has an equivalent search condition, as shown in
the following table:

Chapter 8. SQL programming reference 631

Table 162. BETWEEN predicate and equivalent search conditions

BETWEEN predicate Equivalent search condition

column1 BETWEEN value1 AND value2 column1 >= value1 AND columnn1 <= value2

column1 NOT BETWEEN value1 AND value2 column1 < value1 OR column1 > value2

Search conditions are discussed in “Search conditions” on page 633.

If the operands include a mixture of datetime values and valid string
representations of datetime values, all values are converted to the data type of the
datetime operand.

Example: Consider the following predicate:
A BETWEEN B AND C

The following table shows the value of the predicate for various values of A, B,
and C.

Value of A Value of B Value of C Value of predicate

1,2, or 3 1 3 true

0 or 4 1 3 false

null any value any value false

IN predicate
The IN predicate compares a value or values with a set of values.

The IN predicate is supported only for Java application programs.

►► ▼

,

column IN (literal)
alias NOT

►◄

column:

table-name .
schema-name .

(1)
column-name

Notes:

1 You can have the same column name in multiple tables, but if the table is not
qualified, each table must be searched for the column.

The IN predicate is equivalent to the quantified predicate as follows:

Table 163. IN predicate and equivalent quantified predicates

IN predicate Equivalent quantified predicate

column1 IN (value1, value2, valuen) column1 = value1 or
column1 = value2 or
column1 = valuen

632 Application Programming APIs

Table 163. IN predicate and equivalent quantified predicates (continued)

IN predicate Equivalent quantified predicate

column1 NOT IN (value1, value2, valuen) column1 <> value1 and
column1 <> value2 and
column1 <> valuen

Example: The following predicate is true for any row whose employee is in
department D11, B01, or C01.

WORKDEPT IN (’D11’, ’B01’, ’C01’)

Search conditions
A search condition specifies a condition that is true or false about a given row or
group. When the condition is true, the row or group qualifies for the results. When
the condition is false or unknown, the row or group does not qualify.

►► predicate ▼

(1)
AND predicate
OR

►◄

Notes:

1 Predicates across different tables must be connected by AND.

Description

The result of a search condition is derived by application of the specified logical
operators (AND, OR) to the result of each specified predicate. If logical operators
are not specified, the result of the search condition is the result of the specified
predicate.

AND and OR are defined in the following table, in which P and Q are any
predicates:

Table 164. Truth table for AND and OR

P Q P and Q P or Q

True True True True

True False False True

False True False True

False False False False

Search conditions within parentheses are evaluated first. The order in which
operators at the same precedence level are evaluated is undefined to allow for
optimization of search conditions.

Example

For the following search condition, AND is applied first. After the application of
AND, the OR operators could be applied in either order without changing the
result. IMS can therefore select the order of applying the OR operators.

Chapter 8. SQL programming reference 633

PATNUM > ? AND AGE > ? OR HOSPCODE = ? OR HOSPNAME = ?

For COBOL only:
PATNUM>:VAR1 AND AGE>:VAR2 OR HOSPCODE=:VAR3 OR HOSPNAME=:VAR4

Related concepts:
“Predicates” on page 629

SQL statements
This section contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the SQL statements.

The SQL support for COBOL provides the underlying SQL functions for the IBM
IMS Data Provider for Microsoft .NET. All SQL statements supported for COBOL
application programs and their syntax and rules also apply to .NET applications.

Table 165. SQL statements

SQL statement Function
Supported application
program type

“ALTER DATABASE” on
page 638

Changes an existing database Java

“ALTER TABLESPACE” on
page 684

Changes attributes of a data
set group within a database
or an area for a DEDB

Java

“ALTER TABLE” on page 652 Changes attributes of a table
within a database.

Java

“CLOSE” on page 690 Closes a cursor COBOL, .NET

“COMMENT ON” on page
691

Adds a comment to the
definition of a resource or
object

Java

“CREATE DATABASE” on
page 694

Defines a new database to
IMS

Java

“CREATE PROGRAMVIEW”
on page 708

Defines a new program view Java

“CREATE TABLE” on page
726

Defines a new table Java

“CREATE TABLESPACE” on
page 773

Defines a data set group or
Fast Path Area.

Java

“DECLARE CURSOR” on
page 788

Defines an SQL cursor COBOL, .NET

“DECLARE STATEMENT” on
page 789

Declares names used to
identify prepared SQL
statements

COBOL, .NET

“DELETE” on page 790 Deletes one or more rows
from a table

COBOL, .NET, Java

“DESCRIBE OUTPUT” on
page 791

Describes the result columns
of a prepared statement

COBOL, .NET

“DROP DATABASE” on page
792

Removes a database from
IMS

Java

“DROP PROGRAMVIEW” on
page 792

Removes a program view Java

634 Application Programming APIs

|
|
|

|
|
||

|
|
|
|
|

|

||
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
||

|
|
||

|
|
|
|
|

|
|
|
|
|

|
|
||

Table 165. SQL statements (continued)

SQL statement Function
Supported application
program type

“DROP TABLE” on page 793 Removes an existing table
from a database

Java

“DROP TABLESPACE” on
page 794

Removes a data set group
within the database or an
area for a DEDB

Java

“EXECUTE” on page 795 Executes a prepared SQL
statement

COBOL, .NET

“FETCH” on page 796 Positions the cursor, returns
data, or both positions the
cursor and returns data

COBOL, .NET

“INCLUDE” on page 798 Inserts declarations into a
source program

COBOL, .NET

“INSERT” on page 799 Inserts one or more rows into
a table

COBOL, .NET, Java

“OPEN” on page 802 Opens a cursor COBOL, .NET

“PREPARE” on page 804 Prepares an SQL statement
(with optional parameters)
for execution

COBOL, .NET

“SELECT” on page 806 Specifies the SELECT
statement of the cursor

COBOL, .NET, Java

“UPDATE” on page 817 Updates the values of one or
more columns in one or more
rows of a table

COBOL, .NET, Java

“WHENEVER” on page 820 Defines actions to be taken
on the basis of SQL return
codes

COBOL, .NET

How SQL statements are invoked
SQL statements are invoked in different ways depending on whether the statement
is an executable or nonexecutable statement or the select-statement.

The SQL statements are classified as executable or nonexecutable. The description of
each statement includes a heading on invocation that indicates whether or not the
statement is executable.

Executable statements can be invoked in the following ways:
v Dynamically prepared and executed in an application program
v Issued interactively

A nonexecutable statement can only be embedded in an application program.

Using an SQL statement in an application program
You can include SQL statements in a source program that will be submitted to the
IMS coprocessor. An SQL statement can be placed anywhere in the application
program where a host language statement is allowed. Each statement must be
preceded by a keyword (or keywords) to indicate that the statement is an SQL
statement.

Chapter 8. SQL programming reference 635

||
|
|

|
|
|
|
|

|

v In COBOL, each SQL statement must be preceded by the keywords EXEC
SQLIMS.

Executable statements: An executable SQL statement in an application program is
executed every time a statement of the host language would be executed if
specified in the same place. (Thus, for example, a statement within a loop is
executed every time the loop is executed, and a statement within a conditional
construct is executed only when the condition is satisfied.)

An SQL statement can contain references to host variables. A host variable referred
to in this way can be used in one of two ways:

As input
The current value of the host variable is used in the execution of the
statement.

As output
The variable is assigned a new value as a result of executing the statement.

In particular, all references to host variables in predicates are effectively replaced
by current values of the variables; that is, the variables are used as input. The
treatment of other references is described individually for each statement.

The successful or unsuccessful execution of the statement is indicated by setting
the SQLIMSCODE and SQLIMSSTATE fields in the included SQLIMSCA. You must
therefore follow all executable statements by a test of SQLIMSCODE or
SQLIMSSTATE. Alternatively, you can use the WHENEVER statement (which is
itself nonexecutable) to change the flow of control immediately after the execution
of an SQL statement.

Nonexecutable statements: An nonexecutable statement is processed only by the
coprocessor. The coprocessor reports any errors encountered in the statement. The
statement is never executed, and acts as a no-operation if placed among executable
statements of the application program. Therefore, do not follow such statements
with a test of an SQL return code.

Dynamic preparation and execution
Your application program can dynamically build an SQL statement in the form of a
character string placed in a host variable.

The statement so constructed can be prepared for execution by means of the
(embedded) statement PREPARE and executed by means of the (embedded)
statement EXECUTE.

A statement that is going to be prepared must not contain references to host
variables. It can instead contain parameter markers. (See Parameter markers in the
description of the PREPARE statement for rules concerning parameter markers.)
When the prepared statement is executed, the parameter markers are effectively
replaced by current values of the host variables specified in the EXECUTE
statement. (See the EXECUTE statement for rules concerning this replacement.)
After it is prepared, a statement can be executed several times with different values
of host variables.

The successful or unsuccessful execution of the statement is indicated by the values
returned in the SQLIMSCODE and SQLIMSSTATE fields in the SQLIMSCA after
the EXECUTE (or EXECUTE IMMEDIATE) statement. You should check the fields
as described above for embedded statements.

636 Application Programming APIs

Dynamic invocation of a SELECT statement
Your application program can dynamically build a SELECT statement in the form
of a character string placed in a host variable.

The statement so constructed can be prepared for execution by means of the
(embedded) statement PREPARE, and referred to by a (nonexecutable) statement
DECLARE CURSOR. The statement is then executed every time you open the
cursor by means of the (embedded) statement OPEN. After the cursor is open, you
can retrieve the result table a row at a time by successive executions of the
(embedded) SQL FETCH statement.

The SELECT statement used in that way must not contain references to host
variables. It can instead contain parameter markers. (See “Notes” in “PREPARE”
on page 804 for rules concerning parameter markers.) The parameter markers are
effectively replaced by the values of the host variables specified in the OPEN
statement. (See “OPEN” on page 802 for rules concerning this replacement.)

The successful or unsuccessful execution of the SELECT statement is indicated by
the values returned in the SQLIMSCODE and SQLIMSSTATE fields in the
SQLIMSCA after the OPEN. You should check the fields as described above for
embedded statements.

Detecting and processing error and warning conditions in host
language applications
Errors and warnings conditions in host language applications can be checked by
using the SQLIMSCODE or SQLIMSSTATE host variables or by using the
SQLIMSCA.

Each host language provides a mechanism for handling diagnostic information.

In COBOL, an application program that contains executable SQL statements must
provide a stand-alone integer variable named SQLIMSCODE.

SQLIMSSTATE:

IMS sets SQLIMSSTATE after each SQL statement is executed. IMS returns values
that conform to the error specification in the SQL standard. Thus, application
programs can check the execution of SQL statements by testing SQLIMSSTATE
instead of SQLIMSCODE.

SQLIMSSTATE provides application programs with common codes for common
error conditions (the values of SQLIMSSTATE are product-specific if the error or
warning is product-specific). Furthermore, SQLIMSSTATE is designed so that
application programs can test for specific errors or classes of errors.

In the case of a LOOP statement, the SQLIMSSTATE is set after the END LOOP
portion of the LOOP statement completes. With the REPEAT statement, the
SQLIMSSTATE is set after the UNTIL and END REPEAT portions of the REPEAT
statement completes.

SQLIMSCODE:

The SQLIMSCODE is also set by IMS after each SQL statement is executed.

IMS conforms to the SQL standard as follows:
v If SQLIMSCODE = 0 and SQLIMSWARN0 is blank, execution was successful.

Chapter 8. SQL programming reference 637

v If SQLIMSCODE = 100, "no data" was found. For example, a FETCH statement
returned no data because the cursor was positioned after the last row of the
result table.

v If SQLIMSCODE > 0 and not = 100, execution was successful with a warning.
v If SQLIMSCODE = 0 and SQLIMSWARN0 = 'W', execution was successful with

a warning.
v If SQLIMSCODE < 0, execution was not successful.

In the case of a LOOP statement, the SQLIMSSTATE is set after the END LOOP
portion of the LOOP statement completes. With the REPEAT statement, the
SQLIMSSTATE is set after the UNTIL and END REPEAT portions of the REPEAT
statement completes.

The SQL standard does not define the meaning of any other specific positive or
negative values of SQLIMSCODE, and the meaning of these values is product
specific.

SQLIMSERRM:

The SQLIMSERRM is a variable length character string set by IMS after each SQL
statement which contains the error message and length.

In COBOL, SQLIMSERRM includes SQLIMSERRML and SQLIMSERRMC.
SQLIMSERRMC contains the SQL error message returned by IMS. It can be up to
255 characters. SQLIMSERRML is the length of the SQL error message.
Related reference:

SQL codes (Messages and Codes)

ALTER DATABASE
By using the ALTER DATABASE statement, you can change an existing database.
Unlike the CREATE DATABASE statement, there are no default values.

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.
v “PHIDAM syntax” on page 639
v “HDAM syntax” on page 639
v “HIDAM syntax” on page 640
v “PHDAM syntax” on page 641
v “GSAM syntax” on page 641
v “HISAM syntax” on page 642
v “SHISAM syntax” on page 642
v “DEDB syntax” on page 643
v “HSAM syntax” on page 644
v “SHSAM syntax” on page 644
v “LOGICAL syntax” on page 644
v “INDEX syntax” on page 644
v “PSINDEX syntax” on page 644

638 Application Programming APIs

|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/compcodes/ims_sqlcodes.htm#ims_sqlcodes

PHIDAM syntax

►► ALTER DATABASE database_name
DBVER CURRENT

AUTO
dbd_vers_number

►

►
CCSID 'encoding' VERSION 'version_identifier' PASSWDNO

PASSWDYES

►

►
DATXEXITNO
DATXEXITYES

PSNAME psname NONE
DATA CAPTURE CHANGES(A)

►◄

A:

▼

LOG
B

NOLOG
,

NOLOG
exitname B

LOG

B:

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE

NOBEFORE

DLET

NODLET
►

►
NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

HDAM syntax

►► ALTER DATABASE database_name
DBVER CURRENT

AUTO
dbd_vers_number

►

►
CCSID 'encoding' VERSION 'version_identifier' PASSWDNO

PASSWDYES

►

►
DATXEXITNO
DATXEXITYES

►

►
RMNAME(mod)

RMANCH anch RMRBN rbn RMBYTES bytes

►

Chapter 8. SQL programming reference 639

|

||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||
|

|
||

|

|

||

|

|

|||
|

|
||

|

|

||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||
|

|
|||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

||
|

►
NONE

DATA CAPTURE CHANGES(A)

►◄

A:

▼

LOG
B

NOLOG
,

NOLOG
exitname B

LOG

B:

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE

NOBEFORE

DLET

NODLET
►

►
NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

HIDAM syntax

►► ALTER DATABASE database_name
DBVER CURRENT

AUTO
dbd_vers_number

►

►
CCSID 'encoding' VERSION 'version_identifier' PASSWDNO

PASSWDYES

►

►
DATXEXITNO
DATXEXITYES

NONE
DATA CAPTURE CHANGES(A)

►◄

A:

▼

LOG
B

NOLOG
,

NOLOG
exitname B

LOG

B:

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE

NOBEFORE

DLET

NODLET
►

640 Application Programming APIs

|||||||||||||||||||||||||

|

|

||

|

|

|||
|

|
||

|

|

||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||

|

|

||

|

|

|||
|

||

►
NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

PHDAM syntax

►► ALTER DATABASE database_name
DBVER CURRENT

AUTO
dbd_vers_number

►

►
CCSID 'encoding' VERSION 'version_identifier' PASSWDNO

PASSWDYES

►

►
DATXEXITNO
DATXEXITYES

PSNAME psname
►

►
RMNAME(mod)

RMANCH anch RMRBN rbn RMBYTES bytes

►

►
NONE

DATA CAPTURE CHANGES(A)

►◄

A:

▼

LOG
B

NOLOG
,

NOLOG
exitname B

LOG

B:

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE

NOBEFORE

DLET

NODLET
►

►
NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

GSAM syntax

►► ALTER DATABASE database_name
CCSID 'encoding'

►

Chapter 8. SQL programming reference 641

|
|
||

|

|

||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||

|

|

|||
|

|
||

|

|

||||||||||||||||||
|

||

►
VERSION 'version_identifier' PASSWDNO

PASSWDYES
DATXEXITNO
DATXEXITYES

►◄

HISAM syntax

►► ALTER DATABASE database_name
CCSID 'encoding'

►

►
VERSION 'version_identifier' PASSWDNO

PASSWDYES
DATXEXITNO
DATXEXITYES

►

►
DATXEXITNO
DATXEXITYES

NONE
DATA CAPTURE CHANGES(A)

►◄

A:

▼

LOG
B

NOLOG
,

NOLOG
exitname B

LOG

B:

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE

NOBEFORE

DLET

NODLET
►

►
NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

SHISAM syntax

►► ALTER DATABASE database_name
CCSID 'encoding'

►

►
VERSION 'version_identifier' PASSWDNO

PASSWDYES
DATXEXITNO
DATXEXITYES

►

►
NONE

DATA CAPTURE CHANGES(A)

►◄

642 Application Programming APIs

|
|
||||||||||||||||||||||||||||||||||

|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||

|

|

||

|

|

|||
|

|
||

|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

A:

▼

LOG
B

NOLOG
,

NOLOG
exitname B

LOG

B:

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE

NOBEFORE

DLET

NODLET
►

►
NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

DEDB syntax

►► ALTER DATABASE database_name
DBVER CURRENT

AUTO
dbd_vers_number

►

►
CCSID 'encoding' VERSION 'version_identifier'

►

►
RMNAME(mod)

RMANCH anch XCINO
XCIYES

►

►
NONE

DATA CAPTURE CHANGES(A)

►◄

A:

▼

LOG
B

NOLOG
,

NOLOG
exitname B

LOG

B:

KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

BEFORE

NOBEFORE

DLET

NODLET
►

Chapter 8. SQL programming reference 643

|

||

|

|

|||
|

|
||

|

|

||||||||||||||||||||||||||
|

|
|||||||||||||||||||||
|

|
|||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||

|

|

|||
|

||

►
NOSSPCMD

SSPCMD

NOFLD

FLD

CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

HSAM syntax

►► ALTER DATABASE database_name
CCSID 'encoding'

►

►
VERSION 'version_identifier' DATXEXITNO

DATXEXITYES

►◄

SHSAM syntax

►► ALTER DATABASE database_name
CCSID 'encoding'

►

►
VERSION 'version_identifier' DATXEXITNO

DATXEXITYES

►◄

LOGICAL syntax

►► ALTER DATABASE database_name
CCSID 'encoding'

►

►
VERSION 'version_identifier'

►◄

INDEX syntax

►► ALTER DATABASE database_name
CCSID 'encoding'

►

►
VERSION 'version_identifier' DOSCOMPNO

DOSCOMPYES
PROTYES
PROTNO

►

►
PASSWDNO
PASSWDYES

DATXEXITNO
DATXEXITYES

FPINDEXNO
FPINDEXYES

►◄

PSINDEX syntax

►► ALTER DATABASE database_name
CCSID 'encoding'

►

644 Application Programming APIs

|
|
||

|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||

|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||

|

|

||||||||||||||||||
|

|
||||||||||||||

|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||

|

|

||||||||||||||||||
|

||
|

►
VERSION 'version_identifier' PASSWDNO

PASSWDYES
DATXEXITNO
DATXEXITYES

►

►
PROTYES
PROTNO

►◄

Description

The following keyword parameters are defined for the ALTER DATABASE
statement:

database_name

Name of the database to be altered. The name can be from 1- to
8-alphanumeric characters.

CCSID 'encoding'
An optional 1- to 25-character field that specifies the default encoding of all
character data in this database. The CCSID is stored as metadata in the
Catalog. The OpenDatabase/JDBC drivers use this metadata for preparing
result sets with the proper encoding type.

This value cannot contain the following characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

This value can be overridden in individual segments or fields.

DATA CAPTURE
When DATA CAPTURE is specified on the CREATE DATABASE statement,
these options apply to all tables within the physical database. If you specify
this parameter in the CREATE or ALTER TABLE statement, it overrides the
specification for this statement.

The following physical databases support DATA CAPTURE:
v HISAM
v SHISAM
v HDAM
v PHDAM
v HIDAM
v PHIDAM
v DEDB

NONE
Indicates no data capture options.

CHANGES
You can specify any number of exit routines, each with its own set of
change options. If you do not provide an exit routine, they can only
specify 1 set of change options for logging. This method is equivalent to
specifying an asterisk (*) in place of an exit routine name on the EXIT=

Chapter 8. SQL programming reference 645

||||||||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|

|
|

|

|
|

|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

parameter in a DBD macro statement. Each set is separated by a comma.
NOCASCADE is mutually exclusive with any combination of the C* (for
example, CKEY) options.

The following options are valid for DATA CAPTURE CHANGES:

BEFORE | NOBEFORE
Before data is included in X'99' log records for REPL calls. BEFORE is
the default. This attribute is valid only for DEDB.

CDATA | CNODATA
Passes segment data to the exit routine for a cascade delete. CDATA
also identifies the segment being deleted when the physical
concatenated key is unable to do so. This attribute is mutually
exclusive with NOCASCADE.

CKEY | CNOKEY
Passes the physical concatenated key to the exit. This key identifies the
segment being deleted by a cascade delete. This attribute is mutually
exclusive with NOCASCADE.

CNOPATH | CPATH
Indicates the exit routine does not require segment data in the physical
root's hierarchical path. Use CNODATA to eliminate the substantial
amount of path data needed for a cascade delete. This attribute is
mutually exclusive with NOCASCADE.

DATA | NODATA
DATA specifies that the physical table data is passed to the exit routine
for updating. When DATA is specified and an EDITPROC exit routine
is also used on a table, the data passed is expanded data. DATA is the
default.

DLET | NODLET
X'99' log records are written for DLET calls. DLET is the default. This
attribute is valid only for DEDB.

exitname
Specifies the name of the exit routine that processes the data. The name
must match the name of a Data Capture exit routine as defined by the
user to IMS. A maximum of 8 alphanumeric characters is allowed.

KEY | NOKEY
KEY specifies the exit routine is passed the physical concatenated key.
This key identifies the physical table updated by the application. KEY
is the default.

NOCASCADE
Indicates the exit routine is not called when DL/I deletes this segment.
Cascade delete is not necessary when a segment without dependents is
deleted.

NOFLD | FLD
The FLD option requests that updates made by a DEDB FLD call be
captured. This option is valid only for a DEDB, and this information is
logged only in the X'9904' log records if the option log is specified.
This information is not passed to the data capture exit. This attribute is
valid only for DEDB.

NOINPOS | INPOS
The INPOS option requests that twin data be passed when an ISRT is
done for an unkeyed or non-unique keyed segment when an insert

646 Application Programming APIs

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

rule of HERE is used and the F or L command code is not used. The
twin data IMS is positioned on at the time before the ISRT will be
captured.

NOLOG | LOG
The LOG option requests that the data capture control blocks and data
be written to the IMS system log.

NOPATH | PATH
NOPATH indicates the exit routine does not require data from tables in
the physical root's hierarchical path. NOPATH is an efficient way to
avoid the processing time needed to retrieve path data. NOPATH is the
default.

PATH can be specified when the data from each segment in the
physical root's hierarchical path must be passed to the exit routine for
an updated segment. Use PATH to allow an application to separately
access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from tables in the
path is needed to compose the DB2® for z/OS primary key. The DB2
for z/OS primary key would then be used in a propagation request for
a dependent table update. Typically, you need this kind of table
information when the parent contains the key information and the
dependent contains additional data that would not fit in the parent
table.

You can also use PATH when additional processing is necessary. It
could be that you are not accessing several tables with one call; for
example, you did not invoke the D command code. In this case,
additional processing is necessary if the application is to access each
table with a separate call.

NOSSPCMD | SSPCMD
The SSPCMD option requests that DEDB subset pointer command
codes are captured. This option is valid for DEDBs only.

DATXEXITNO | DATXEXITYES

Allows the Data Conversion user exit routine (DFSDBUX1) to be used by an
application while it is processing this database.

If YES is specified, the user exit DFSDBUX1 is called at the beginning and at
the end of each database call. If DFSDBUX1 is not loaded, IMODULE is called
to load it.

If NO is specified, the user DFSDBUX1 can be called, provided DFSDBUX1 is
located in the SDFSRESL. If DFSDBUX1 does not need to be called again for
the database definition, X'FF' is returned in the SRCHFLAG field in the JCB,
and DFSDLA00 dynamically marks the database definition as not requiring the
exit. In this case, the user exit is not called again for that database definition
for the duration of the IMS session, unless the DMB is purged from the DMB
pool.

DBVER
A numeric value in the range 0 - 2147483647 that identifies a specific version of
the DBD. Specifying a numeric value drives IMS to generate a new version of
the DBD that can be used by different application programs.
v If the specified version number is not an increment of the current active

version in the IMS catalog, the ALTER fails.

Chapter 8. SQL programming reference 647

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

v If the specified version number already exists in the IMS catalog and not the
current version, the ALTER fails.

v If the specified version number is the current active version, IMS will
generate a new instance of that DBD version.

You can also specify the following instead of a numeric version number:

DBVER AUTO
AUTO drives IMS to auto increment the version number based on the
current active version number that is saved in the IMS catalog.

DBVER CURRENT
CURRENT drives IMS to ALTER the current active DBD. DBVER
CURRENT is the default.

DOSCOMPNO | DOSCOMPYES
Indicates if this is a DLI/DOS index database. Must be specified if the
database is an index, and it was created using DLI/DOS. DLI/DOS index
databases contain a segment code as part of the prefix. Specifying that a
database is a DLI/DOS index database causes IMS to expect this code to be
present in the defined database, and to process in a way that preserves this
code. This includes providing a segment code for new segments being inserted.
DLI/DOS databases must use VSAM and cannot be PHDAM, PHIDAM, or
PSINDEX databases.

FPINDEXNO | FPINDEXYES
Specifies whether an index database is a secondary index for a primary Fast
Path DEDB database.

PASSWDNO | PASSWDYES
Specifying PASSWDYES causes DL/I to use the database name as the VSAM
password when opening any data set for this database. This parameter is only
valid for databases that use VSAM as the access method. You cannot use the
database name as the password for the LOGICAL or DEDB database types.
When the user defines the VSAM data sets for this database using the DEFINE
statement of z/OS Access Method Services, the control level (CONTROLPW)
or master level (MASTERPW) password must be the same as the DBDNAME
for this DBD. All data sets associated with this DBD must use the same
password.

For the IMS DB/DC system, all VSAM OPENs bypass password checking and
thus avoid operator password prompting. For the IMS DB system, VSAM
password checking is performed. In the batch environment, operator password
prompting occurs if automatic password protection is not specified, and the
data set is password protected at the control level (CONTROLPW) with
passwords not equal to the database name.

PROTYES | PROTNO

Specifies if a secondary index database uses index pointer protection. This
optional parameter ensures the integrity of all fields in index pointer segments
that are used by IMS. Use of this parameter prevents an application program
from doing a replace operation on any field within an index pointer segment
except for fields within the user data portion of index pointer segments. Delete
operations are still enabled for index pointer segments. If a delete is issued for
an index pointer segment, the index target segment pointer in the index
pointer segment is deleted. However, the index source segment that caused the
index pointer segment to be created originally is not deleted.

648 Application Programming APIs

|
|

|
|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

If index pointer protection is not used, an application program can replace all
fields within an index pointer segment except the constant, search, and
subsequence fields. Inserts to an index database are invalid under all
conditions.

PSNAME name
Specifies the module that selects the HALDB partition for PSINDEX, PHDAM,
or PHIDAM databases. The parameter is a HALDB partition selection exit
routine module name. This parameter is only valid when the access type for
the database is PSINDEX, PHDAM, or PHIDAM.

Exception: A user-provided HALDB partition selection routine is not needed if
root key ranges define HALDB partition membership.

RMNAME name
Specifies a module name that is used to manage the data that is stored in a
DEDB or in the primary data set group of an HDAM or PHDAM database.
This parameter is only valid when the database access type is HDAM,
PHDAM, or DEDB. A randomizing module controls root segment placement in
or retrieval from the DEDB, HDAM, or PHDAM database. One or more
modules, called randomizing modules, can be utilized within the IMS system.
A particular database has only one randomizing module associated with it. A
generalized module, which uses user-supplied parameters to perform
randomizing for a particular database, can be written to service several
databases. The purpose of a randomizing module is to convert a value
supplied by an application program for root segment placement in, or retrieval
from, a DEDB, HDAM, or PHDAM database into a relative block number and
anchor point number. You can randomize within an area by selecting a
two-stage randomizer. When you select a two-stage randomizer, the number of
root anchor points in an area can be changed without having to stop all areas
in the DEDB with the /DBRECOVERY command.

For PHDAM databases, the randomizer module names and values become the
default for each partition. You can set a different randomizer name and values
for each partition during HALDB partition definition. HALDB partition
selection is done prior to invoking the randomizing module. The randomizing
module selects locations only within a partition.

The module name is the 1- to 8-character alphanumeric name of a
user-supplied randomizing module that is used to store and access segments in
this DEDB, PHDAM, or HDAM database. Select a two-stage randomizer by
specifying the randomizer name in the module name parameter and 2 in the
anchor point parameter.

RMANCH number
The purpose of the anch value is different depending on whether you are
defining a Fast Path DEDB database or a full-function HDAM or PHDAM
database.

This parameter must be an unsigned decimal integer.

For a DEDB database, the value of anch specifies the type of randomizer. A
value of 1 indicates a single-stage randomizer. A value of 2 indicates a
two-stage randomizer. Any other value is invalid.

For HDAM and PHDAM databases, the value of anch specifies the number of
root anchor points desired in each control interval or block in the root
addressable area of the HDAM or PHDAM database. Typical values are from 1
to 5 and the value cannot exceed 255.

Chapter 8. SQL programming reference 649

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|

When accessing a HDAM or PHDAM database, if a user randomizing routine
produces an anchor point number greater than the number specified for this
parameter, the highest-numbered anchor point in the control interval or block
is used. When a randomizing routine produces an IMS anchor point number of
zero, IMS uses anchor point one in the control interval or block.

RMRBN number
Specifies the maximum relative block number value that you want to allow a
randomizing module to produce for this database. This parameter is for
HDAM or PHDAM databases only. This value determines the number of
control intervals or blocks in the root addressable area of an HDAM or
PHDAM database. This parameter must be an unsigned decimal integer whose
value does not exceed 224-1. If this parameter is omitted, no upper limit check
is performed on the relative block number created by the randomizing module.
If this parameter is specified, but the specified randomizing module produces
an relative block number greater than this parameter, the highest control
interval or block in the root addressable area is used by IMS. If a user
randomizing module produces a block number of zero, the control interval or
block one is used by IMS.

In an HDAM or PHDAM data set, the first bit map is in the first block of the
first extent of the data set. In an HDAM or PHDAM database, the first control
interval or block of the first extent of the data set specified for each data set
group is used for a bit map. In a VSAM data set, the second control interval is
used for the bit map and the first control interval is reserved. IMS adds one to
the block calculated by the randomizer.

RMBYTES number
Specifies the maximum number of bytes of database record that can be stored
into the root addressable area in a series of inserts unbroken by a call to
another database record. This parameter is for HDAM and PHDAM databases
only. If this parameter is omitted, no limit is placed on the maximum number
of bytes of a database record that can be inserted into this database's root
segment addressable area. The bytes parameter must be an unsigned decimal
integer whose value does not exceed 224-1. When the maximum relative block
number parameter is omitted, this parameter is ignored. In this case, there is
no limit on the number of bytes of a database record that can be inserted into
the root addressable area.

If this parameter is specified for an HDAM or PHDAM database and the
length of the database record is larger, the remainder of the record is inserted
into the overflow area following the current end-of-file (EOF). This operation
requires that enough space be available after the current EOF to contain the
remainder of all database records that exceed the value of this parameter. If
sufficient space is not available in the overflow area following the current EOF,
the database records are inserted randomly in the database.

XCINO | XCIYES
Specifies whether this DEDB uses the Extended Call Interface when making
calls to the randomizer. This option allows the randomizer to be called in three
different ways. On initialization of IMS or during a /START DB command,
IMS will first load the randomizer and then make an INIT call to the
randomizer to invoke its initialization routines. During a /DBR DB command,
IMS will make a TERM call to the randomizer to invoke the termination
routines before unloading the randomizer. The normal randomizing call to the
randomizer is made when the application issues a GU or ISRT call on a root
segment. The XCI option is only valid for DEDBs.

650 Application Programming APIs

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

VERSION 'version_identifier'
Specifies a version identification string. You can use this identifier to
differentiate the versions of the resource in subsequent queries to the IMS
catalog.

Usage notes

Because the ALTER DATABASE statement modifies a database to IMS, the
statement will fail with a -9000 message if the database specified on the ALTER
DATABASE statement does not exist.

Database versioning notes

An ALTER DATABASE in its own DDL stream changes an existing DBD. Database
versioning is optional. To implement changes against the current version, supply
the current version number on the DBVER keyword. You can also specify “DBVER
CURRENT” and IMS will identify the currently active version number for them.

To generate a new version, supply the next version number on the DBVER
keyword. The version number supplied must be an increment of the currently
active database version.

To automatically assign a version number on the DBD, specify “DBVER AUTO”.
DDL will temporarily assign the INIT token as the version number. This
assignment handles the case where multiple workstations are implementing
different DBD changes.

You can optionally specify CREATE PROGRAMVIEW to generate new PSBs or
ALTER PROGRAMVIEW to update existing PSBs. As part of this stream, specify
“DBVER AUTO” on the PCBs to have them locked to the same version number
being generated. When the changes in the DDL stream are activated in the IMS
system, IMS assigns the version number to the DBDs and PSBs.

If the DBVER keyword is omitted from the ALTER DATABASE statement, IMS
implements changes against the currently active database version as indicated by
the IMS catalog.

Example: full function database

The following input to the DBD generation utility creates a basic full function
database:

The original DBD source to define a new database.
DBD NAME=COGDBD, C

ENCODING=Cp1047, C
ACCESS=(HDAM,VSAM), C
RMNAME=(DFSHDC40,3,3,25), C
PASSWD=NO, C
VERSION='Latest version of COGDBD'

The following example is the DDL equivalent to the DBD source.
CREATE DATABASE COGDBD

ACCESS HDAM VSAM
RMNAME(DFSHDC40 RMANCH 3 RMRBN 3 RMBYTES 25)
VERSION 'Latest version of COGDBD'
CCSID ’Cp1047’;

Chapter 8. SQL programming reference 651

|
|
|
|

|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

The DBD source to provide a different randomizer, PASSWD, and VERSION.
DBD NAME=COGDBD, C

ENCODING=Cp1047, C
ACCESS=(HDAM,VSAM), C
RMNAME=(DFSHDC20,3,3,25), C
PASSWD=YES, C
VERSION='Latest version of COGDBD'

The following example is the DDL equivalent to the DBD source.
ALTER DATABASE COGDBD

RMNAME(DFSHDC20 RMANCH 3 RMRBN 3 RMBYTES 25)
PASSWDYES
VERSION 'Latest version of COGDBD'

Example: Fast Path Data Entry Database (DEDB)

Similarly to the previous example, the following input can be submitted to the
DBD generation utility to create a DEDB:

Original DBD source to define the database:
DBD NAME=HOSPDBD1, C

ENCODING=Cp1047, C
ACCESS=(DEDB), C
RMNAME=(RMOD3,1,,,XCI) C
PASSWD=NO

The following example is the DDL equivalent to the DBD source.
CREATE DATABASE HOSPDBD1

ACCESS DEDB
RMNAME(RMOD3 RMANCH 1 XCIYES)
CCSID ’Cp1047’;

COMMENT ON DATABASE HOSPDBD1 IS ’This describes database HOSPDBD1.’

The DBD source change to provide a different randomizer, XCI, encoding, and new
comment.
DBD NAME=HOSPDBD1, C

ENCODING=Cp943C, C
ACCESS=(DEDB), C
RMNAME=(FPERNDM0,1,,,) C
PASSWD=NO

The following example is the DDL equivalent to the DBD source.
ALTER DATABASE HOSPDBD1

RMNAME(FPERNDM0 RMANCH 1 XCINO)
CCSID ’Cp943C’;

COMMENT ON DATABASE HOSPDBD1 IS ’Implemented change to database HOSPDBD1.’

ALTER TABLE
The ALTER TABLE statement enables you to make changes to an existing table.
Unlike the CREATE TABLE statement, there are no default values for each
keyword attribute. You must specify a keyword or value in order to change that
value. If a keyword or value is not specified, then no change is made to that
attribute.

Restriction: If you specify any of the following keywords on the CREATE TABLE
statement, you cannot change the keyword and keyword value by using the
ALTER TABLE statement. To change the keyword and keyword value, you must

652 Application Programming APIs

|

|
|
|
|
|
|

|

|
|
|
|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|
|
|

first use the DROP TABLE statement to delete the table. Then, you must re-create
the table by using the CREATE TABLE statement and specify the keyword and
keyword value again.
v The INTERNALNAMEinternalname keyword to specify the internal name of the

segment type being defined.
v DIRECT DEPENDENT | SEQUENTIAL DEPENDENT

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.
v “ALTER TABLE syntax”
v “table-options syntax”
v “data capture changes syntax” on page 654
v “exit_attributes syntax” on page 654
v “alter-options syntax” on page 655
v “column-alteration syntax” on page 655
v “datatype syntax” on page 656
v “ims-column syntax” on page 656
v “inline-constraint syntax” on page 657
v “constraint syntax” on page 657
v “references-clause syntax” on page 657
v “map-definition syntax” on page 658
v “case-definition syntax” on page 658

ALTER TABLE syntax

►► ALTER TABLE tblname
IN

dbname.tablespace_name
IN DATABASE dbname

►

►

▼

,

table-options ▼

,

alter-options

►◄

table-options syntax

►► maxbytes
MAXBYTES MINBYTES minbytes

DATA
SOURCE(dbname.table_name)

KEY DATA
, dbname.table_name

KEY

►

Chapter 8. SQL programming reference 653

|
|
|

|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||

|

|

|||
|

||
|

►
SSPTR n 'Cp1047'

CCSID encoding
DSGROUP

A
B
C
D
E
F
G
H
I
J

FREQ frequency
►

► TWINBWD
NOTWIN
TWIN
HIER
HIERBWD

LTWIN
LTWINBWD

LPARNTYES
LPARNTNO

PAIREDYES
PAIREDNO

CTRNO
CTRYES

►

►
INSERT LOGICAL

PHYSICAL
VIRTUAL

DELETE LOGICAL
PHYSICAL
VIRTUAL
BIDIRECTIONAL

►

►
REPLACE LOGICAL

PHYSICAL
VIRTUAL

AMBIGUOUS INSERT LAST
FIRST
HERE

►

►
EDITPROC(routinename)

DATA
WITH

KEY INIT max
PAD

►

►
VIRTUAL

LPARENT table_name
dbname.table_name PHYSICAL

►

►
NONE

DATA CAPTURE CHANGES(change_syntax)

►◄

data capture changes syntax

►►

▼

LOG
exit_attributes

NOLOG
,

NOLOG
exitname exit_attributes

LOG

►◄

exit_attributes syntax

►►
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

(1) BEFORE

NOBEFORE
►

654 Application Programming APIs

||
|

|
|||
|

|
||
|

|
|||||||||||||||||||||||||||||||||||||||
|

|
||
|

|
|||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||

|

|

||
|

||
|

►
DLET

NODLET

NOSSPCMD

SSPCMD

NOFLD

FLD
►

►
CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

►◄

Notes:

1 BEFORE, NOBEFORE, DLET, NODLET, SSPCMD, NOSSPCMD, FLD, and
NOFLD are for DEDB only.

alter-options syntax

►►
(1)

(2)
ADD column-definition

COLUMN
ALTER column-alteration

COLUMN
DROP column-name RESTRICT

COLUMN
(3)

ADD constraint
(4)

DROP PRIMARY KEY
UNIQUE constraint-name
FOREIGN KEY

ADD lchild-definition
DROP LCHILD table_name
ADD map-definition
DROP MAP column_name

►◄

Notes:

1 The same clause must not be specified more than one time, except for the
ADD COLUMN or ALTER COLUMN clauses. If multiple ADD COLUMN
clauses are specified in the same statement, at most one ADD COLUMN
clause can contain a references-clause.

2 See column-definition descriptions from CREATE TABLE section.

3 ADD constraint, DROP PRIMARY KEY, DROP FOREIGN KEY clauses are
mutually exclusive and can only have one per ALTER TABLE statement.

4 ADD constraint, DROP PRIMARY KEY, DROP FOREIGN KEY clauses are
mutually exclusive and can only have one per ALTER TABLE statement.

column-alteration syntax

►► columnName
| datatype | INTERNALNAME-internalname

►

►
| ims-column-syntax | | inline-constraints |

►◄

Chapter 8. SQL programming reference 655

|||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||

|

|

||
|

|

|||

|

|

||
|
|
|

||

||
|

||
|

|

|||||||||||||||||||
|

|
|||||||||||||||||||

|

datatype syntax

►► ARRAY
BINARY
BIT
BYTE
UBYTE
CHAR

(bytes)
DATE
DECIMAL(pp,ss)
DOUBLE
FLOAT
INT
UINT
LONG
ULONG
OTHER
SHORT
USHORT
STRUCT
TIME
TIMESTAMP
XML

►◄

ims-column syntax

►►
C

TYPE X
P

BYTES bytes
MAXBYTES max_array_bytes

►

►
START start_position
STARTAFTER field_name
RELSTART relative_start_position

MINOCCURS min_array_elements
►

►
MAXOCCURS max_array_elements DEPENDSON control_column

►

►
IN column_name

►

656 Application Programming APIs

|

||

|

|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||
|

|
||||||||||||
|

||
|

►

▼

INTERNAL TYPECONVERTER CHAR
BIT
BINARY
BYTE
UBYTE
SHORT
USHORT
INT
UINT
LONG
ULONG
FLOAT
DOUBLE
PACKEDDECIMAL
ZONEDDECIMAL
CLOB
BLOB
XML_CLOB
ARRAY
STRUCT

,

USER TYPECONVERTER typeconverter PROPERTIES('name'='value')

►

►
'Cp1047'

CCSID encoding
ISSIGNEDYES
ISSIGNEDNO

OVERFLOW table_name
►

►
PATTERN 'pattern' URL 'xml_schema_url'

►◄

inline-constraint syntax

►►
CONSTRAINT constraintname

PRIMARY KEY
NON UNIQUE

►◄

constraint syntax

►►
CONSTRAINT constraint_name

►

► PRIMARY KEY (column_name)
NON UNIQUE

FOREIGN KEY references-clause

►◄

references-clause syntax

►► REFERENCES table_name
SINGLE
DOUBLE

►◄

Chapter 8. SQL programming reference 657

||
|

|
||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||

|

|

||||||||||||||||||||||

|

|

||||||||||||
|

|
|||||||||||||||||||||||||||||

|

|

||||||||||||||||||

|

map-definition syntax

►► ▼

,

MAP column_name (case-definition)
AS mapName

►◄

case-definition syntax

►► ▼

,

CASE caseid (column-definition)
AS case_name

►◄

Keyword parameters for ALTER TABLE

Descriptions of all table-options are defined in the CREATE TABLE section. All
table-options are optional and do not imply a default value if not specified.
Specifying a table-option means a new value is being supplied to replace the
existing one.

Specifying the DATA CAPTURE keyword replaces all data capture exits that were
previously supplied, if any. If multiple data capture exits were previously supplied
they must all be respecified if needed.

The following keyword parameters are defined for the ALTER TABLE statement:

ALTER TABLEtblname
Identifies the table to be altered. The name must identify a table that exists at
the current database.

Specify an external name as a 1 to 128 character uppercase alphanumeric
string. A table name can include the underscore character. Table names cannot
be reserved SQL keywords or begin with DFS.

Keyword parameters for ALTER TABLE (table-options)

The following keyword parameters are defined for the ALTER TABLE
(table-options) statement:

SOURCE
Is the IMS internal table name and is used for two purposes:
v To identify the real logical child segment type that is to be represented by

the virtual logical child segment type that is being defined
v To identify the segment type or types in physical databases that are

represented by the segment type being defined in a logical database

Restriction: The SOURCE keyword is not allowed for PHDAM and PHIDAM
databases because they support only physical pairing.

When defining a virtual logical child the statement is:

►►
DATA

SOURCE=((segname, ,dbname)) ►◄

658 Application Programming APIs

|

||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||||

|

|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

||||||||||||||

|

segname
Specifies the name of the real, logical child

DATA
Indicates that both the key and the data portions of segname are to be used
in constructing the segment. This parameter is required.

dbname
Specifies the name of the physical database that contains the real logical
child.

When defining a segment type in a logical database the statement is:

►► SOURCE=
DATA DATA

((segname, KEY ,dbname), (segname, KEY ,dbname)) ►◄

(segname, KEY | DATA,dbname)
The first occurrence refers to the segment in a physical database that is
being defined as a logical segment, or it refers to the logical child segment
type in a physical database that is used for the first portion of a
concatenated segment type in this logical database.

segname
Is the name of the segment type in the physical database.

KEY
Specifies that the key portion of the segment specified in segname is to be
placed in the key feedback area. The segment must not be placed in the
user I/O area when a call is issued to process the logical segment type that
represents segname.

DATA
Specifies that the key portion of the segment specified in segname must be
placed in the key feedback area, and the segment must be placed in the
user I/O area when a call is issued to process the logical segment type that
represents segname.

dbname
Specifies the name of the physical database that contains segname. The
second occurrence of (segname, KEY|DATA, dbname) refers to the logical or
physical parent segment type in a physical database that is used for the
destination parent part of a concatenated segment in this logical database.
The description of each parameter for the second occurrence is the same as
described for the first occurrence.

When the first occurrence of (segname, KEY | DATA, dbname) refers to a
virtual logical child, the second occurrence, if specified, must refer to the
real logical child's physical parent.

When the source segments is used to represent a concatenated segment,
the KEY and DATA parameters are used to control which of the two
segments (or both) are placed in the user's I/O area on retrieval calls. If
DATA is specified, the segment is placed in the user's I/O area. If KEY is
specified, the segment is not placed in the user's I/O area, but the
sequence field key, if one exists, is placed in the key feedback area of the
PCB. The key of a concatenated segment is the key of the logical child,
either the physical twin sequence field or the logical twin sequence field,
depending on which path the logical child is accessed from. The KEY and
DATA parameters apply to retrieval type calls only.

Chapter 8. SQL programming reference 659

|
|

|
|
|

|
|
|

|

|||||||||||||||||||||||||||||||||||

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

On insert calls, the user's I/O area must always contain the logical child
segment and, unless the insert rule is physical, the logical parent segment.
Even if KEY is specified for a segment, the database containing that
segment must be available to IMS when calls are issued against the logical
database containing the referenced segment. When the first occurrence of
the SOURCE segment specification references a logical child, the second
occurrence referencing the destination parent for the concatenated segment
should also be specified. If not explicitly specified it is included with the
KEY parameter by default when the blocks are built.

The segments defined with a logical DBD generation must gain their
physical definition from segments previously defined in one or more
physical DBD generations.

If the SEGM statement defines a segment in an INDEX data set, the
SOURCE parameter is invalid.

MAXBYTES maxbytes
MINBYTES minbytes

Defines a segment type as variable-length if the minbytes parameter is
included. The maxbytes field specifies the maximum length of any occurrence
of this segment type. The maximum and minimum allowable values for the
maxbytes parameter are the same values as described for a fixed-length
segment.

If the segment is processed by a compression routine, set the maxbytes field to
accommodate control information to indicate whether the segment length can
be longer than the specified maximum definition. in order to avoid an abend
0799. To allow for the expansion, add an arbitrary value of 10 bytes to the
maxbytes.

The minbytes parameter specifies the minimum amount of storage used by a
variable-length segment. The maximum value for minbytes is the value
specified for maxbytes. The minimum value for minbytes must be:
v For a segment type that is not processed by an edit/compression routine or

is processed by an edit/compression routine but the key compression option
has not been specified, minbytes must be large enough to contain the
complete sequence field if a sequence field has been specified for the
segment type.

v For a segment type that is processed by an edit/compression routine that
includes the key compression option or a segment that is not sequenced, the
minimum value is 4.

Because segments in an HSAM, SHSAM, INDEX, PSINDEX or SHISAM
database cannot be variable-length, the minbytes parameter is invalid for these
databases.

In a Fast Path DEDB, a segment starts with a 2-byte field, which defines the
length of the segment including the 2-byte length field, followed by user data
specified by a column. The value of minbytes can be specified from a
minimum of 4 bytes to a maximum of maxbytes; however, the minbytes value
must be large enough to contain this segment's sequence field (that is,
minbytes ≥ START - 1 + BYTES of the sequence field following the table). For
example, the smallest minbyte value for a segment with a 20-byte sequence
field length and START = 7 is 26. On any given DL/I call, the actual segment
length can fall anywhere between a length that includes the sequence field and
the value of maxbytes. The value of maxbytes must not exceed the control
interval size minus 120.

660 Application Programming APIs

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

TWINBWD | NOTWIN | TWIN | HIER | HIERBWD
Specifies the pointer fields to be reserved in the prefix area of occurrences of
the segment type being defined. These fields are used to relate this segment to
its immediate parent segments and twin segments.

TWINBWD
Reserves a 4-byte physical twin forward pointer field and a 4-byte physical
twin backward pointer field in the segment prefix being defined. The twin
backward pointers provide increased delete performance.

Recommendation: This option is recommended for HIDAM and PHIDAM
database root segments.

NOTWIN
Prevents space from being reserved for a physical twin forward pointer in
the prefix of occurrences of the segment type being defined.

NOTWIN can be specified for a dependent segment type if:
v The physical parent does not have hierarchic pointers specified.
v No more than one occurrence of the dependent segment type is stored

as a physical child of any occurrence of the physical parent segment
type.

In addition, NOTWIN can be specified for the root segment type of HDAM
and PHIDAM databases, but only when the randomizing module does not
produce synonyms (keys with different values having the same block and
anchor point).

When NOTWIN is specified for a dependent segment type and an attempt
is made to load or insert a second occurrence of the dependent segment as
a physical child of a given physical parent segment:
v An LB status code is returned when trying to insert the second

occurrence during initial load.
v An II status code is returned when trying to insert the second occurrence

after initial load.

Any attempt to load or insert a synonym is rejected with an LB or II status
code.

TWIN
Reserves a 4-byte physical twin forward pointer field in the segment prefix
being defined.

HIER
Reserves a 4-byte hierarchic forward pointer field in the prefix of
occurrences of the segment type being defined. HALDB does not support
HIER.

HIERBWD
Reserves a 4-byte hierarchic forward pointer field and a 4-byte hierarchic
backward pointer field in the prefix of occurrences of the segment type
being defined. Hierarchic backward pointers provide increased delete
performance. HALDB does not support HIERBWD.

LPARNTYES | LPARNTNO
Specifies the type of logical parent.

LPARNTYES
This parameter can be specified only when the segment type that is being
defined is a logical child and the logical parent is in an HDAM, HIDAM,

Chapter 8. SQL programming reference 661

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

PHDAM, or PHIDAM database. If the logical parent is in a HISAM
database, omit this parameter and specify PHYSICAL in the PARENT=
parameter for the segment that is being defined.

For HDAM, HIDAM, and HISAM databases, LPARNT reserves a 4-byte
logical parent pointer field in the prefix of occurrences of the segment type
being defined.

For PHDAM and PHIDAM databases, LPARNT reserves a 28-byte
extended pointer set in the prefix of occurrences of the segment type being
defined.

LPARNTNO
Specifies that the segment type that is being defined is not a logical child
or the logical parent is not in an HDAM, HIDAM, PHDAM, or PHIDAM
database.

PAIREDYES | PAIREDNO
Specifies whether this segment participates in a bidirectional logical
relationship.

PAIREDYES
Indicates that this segment participates in a bidirectional logical
relationship. This parameter is specified for the following types:
v A virtual logical child segment type
v Both physically paired logical child segment types in a bidirectional

logical relationship

If PAIRED is specified, the LTWIN and LTWINBWD parameters are
invalid.

PAIREDNO
Indicates that this segment does not participate in a bidirectional logical
relationship.

CTRNO | CTRYES
Specifies...

CTRNO
Does not reserve a 4-byte counter field in the prefix of occurrences of the
segment type being defined.

CTRYES

Reserves a 4-byte counter field in the prefix of occurrences of the segment
type being defined. A counter is required if a logical parent segment in a
HISAM, HDAM, or HIDAM database has logical child segments which are
not connected to it by logical child pointers. Counters are placed in all
segments requiring them automatically during DBD generation without the
user specifying this parameter. To avoid a later DBD generation, however,
the user can anticipate future requirements for counters and reserve a
counter field in the prefix of occurrences of a segment type by using this
parameter. HALDB does not support CTR.

INSERT {LOGICAL | PHYSICAL | VIRTUAL}
DELETE {LOGICAL | PHYSICAL | VIRTUAL | BIDIRECTIONAL}
REPLACE {LOGICAL | PHYSICAL | VIRTUAL}

Specifies the rules used for insertion, deletion, and replacement of occurrences
of the segment type being defined. These parameters are specified for logical
child segments and for their physical and logical parent segments. They should
be omitted for all segment types that do not participate in logical relationships.

662 Application Programming APIs

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

AMBIGUOUS INSERT {LAST | FIRST | HERE}
Specifies where new occurrences of the segment type defined by this table are
inserted into their physical database (establishes the physical twin sequence).
This value is used only when processing segments with no sequence field or
with a nonunique sequence field. The value is ignored when specified for a
segment type with a unique sequence field defined.

Except for HDAM and PHDAM roots, the rules of FIRST, LAST, or HERE do
not apply to the initial loading of a database and segments are loaded in the
sequence presented in load mode. If a unique sequence field is not defined for
the HDAM root on initial load or HD reload, the insert rules of FIRST, LAST,
or HERE determine the sequence in which roots are chained. Thus the reload
of an HDAM or PHDAM database reverses the order of the unsequenced roots
when HERE or FIRST is used.

LAST is the default except for DEDB segments.

For Fast Path sequential dependent segment processing, the insert rule of
FIRST is always used and cannot be overridden. For direct dependent segment
processing, you can specify FIRST, LAST, or HERE. HERE is the default.

FIRST
For segments without a sequence field defined, a new occurrence is
inserted before all existing physical twins. For segments with a nonunique
sequence field defined, a new occurrence is inserted before all existing
physical twins with the same sequence field value.

LAST
For segments without a sequence field defined, a new occurrence is
inserted after all existing physical twins. For segments with a nonunique
sequence field defined, a new occurrence is inserted after all existing
physical twins with the same sequence field value.

HERE
For segments without a sequence field, a new occurrence is inserted
immediately before the physical twin on which position was established. If
a position was not established on a physical twin of the segment being
inserted, the new occurrence is inserted before all existing physical twins.
For segments with a nonunique sequence field defined, a new occurrence
is inserted immediately before the physical twin with the same sequence
field value on which position was established. If a position was not
established on a physical twin with the same sequence field value, the new
occurrence is inserted before all physical twins with the same sequence
field value. The insert position is dependent on the position established by
the previous DL/I call.

A command code of L (last) takes precedence over the insert rule specified
causing a new occurrence to be inserted according to the insert rule of
LAST, for insert calls issued against a physical path.

DSGROUP
Specifies multiple data set groups for PHDAM and PHIDAM databases. The
format is DSGROUP c, where c is equivalent to the letters A through J. This
enables you to divide PHDAM and PHIDAM databases into a maximum of
ten data set groups. The default for every segment is A (single set for data per
partition). If specified on the root segment, it must be DSGROUP A.

Restriction: Gaps in the A-J sequence are not allowed. For example, if
DSGROUP C is specified on a CREATE TABLE statement, there must also be at

Chapter 8. SQL programming reference 663

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

least one CREATE TABLE statement with DSGROUP B, and each HALDB
partition will have A, B, and C data sets.

FREQ frequency
Specifies the estimated number of times that this segment is likely to occur for
each occurrence of its physical parent. The frequency parameter must be an
unsigned decimal number in the range 0.01 to 2²⁴-1. If this is a root segment,
“frequency” is the estimate of the maximum number of database records that
appear in the database being defined. The value of the FREQ parameter when
applied to dependent segments is used to determine the logical record length
and physical storage block sizes for each data set group of the database.

CCSID encoding
An optional 1- to 25-character field that specifies the encoding of the character
data in the segment.

The value specified on the CCSID parameter cannot contain the following
characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

The value of the CCSID parameter in the table overrides the value of the CCSID
parameter in the database for this segment. If the CCSID parameter is not
specified on the table, the default value is either the value of the CCSID
parameter on the database or, if CCSID was not specified on the database, the
value Cp1047, which specifies EBCDIC encoding.

This value can be overridden in individual fields by the CCSID parameter in the
column definition.

SSPTR n
For databases defined with a DEDB access type only. Specifies the number of
subset pointers. You can specify from 0 to 8. When you specify 0 or if SSPTR is
not specified, you are not using a subset pointer.

EDITPROC routinename
Selects a Segment Edit/Compression exit routine for either DEDB or
full-function database.

For segment edit/compression of full-function database

Do not specify this keyword if the SOURCE keyword is used. The DL/I
EDITPROC keyword is invalid for HSAM, SHSAM, SHISAM, INDEX, and
logical databases. It is also invalid for logical child segments in any database.
When used for a HISAM database, it must not change the sequence field offset
for HISAM root segments. In addition, the minimum segment length that can
be specified for a segment type where the segment edit/compression option is
specified is 4 bytes.

Remember: If you are using a segment edit/compression exit routine and
defined your segments as variable-length, be aware that when a
variable-length segment is compressed, it is padded with null bytes up to the
minimum segment length that was defined in the DBD. Minimum segment
length essentially overrides the compression; this enables you to provide
additional space during load time for segments that are heavily compressed.

routinename
Specifies the name of the user-supplied edit/compression exit routine. This

664 Application Programming APIs

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

name must be a 1- to 8-character alphanumeric value, must not be the
same as any other name in IMS.SDFSRESL, and must not be the same as a
database name.

DATA
Specifies that the indicated exit routine condenses or modifies data fields
only. Sequence fields must not be modified, nor data fields that change the
position of the sequence field in respect to the start of the segment. DATA
is the default value if a compression routine is named but no parameter is
selected.

KEY
Specifies that the exit routine can condense or modify any fields within the
named segment. This parameter is invalid for the root segment of a
HISAM database.

INIT
Indicates that initialization and termination processing control is required
by the segment exit routine. When this parameter is specified, the
edit/compression routine gains control after database open and after
database close.

max
Specifies the maximum number of bytes by which fixed-length segments
can increase during compression exits. You can specify from 1 to 32 767
bytes. The default for max is 10.

PAD
Indicates that the numeric value supplied by MAX should be used for
padding and not for MAX. The numeric range of 1 to 32 767 indicates a
size to which an inserted segment will be padded when the compression of
that segment results in a length somewhat less than the PAD value.

For segment edit/compression of DEDB

routinename
Specifies the z/OS load module name of the user-supplied segment
edit/compression exit routine. The routine name is required.

DATA
Specifies that only the user data part of the segment is compressed. DATA
is the default.

Restriction: The KEY parameter is not supported for DEDB. If you specify
the KEY parameter, an error message is issued.

INIT
Allows the segment compression exit routine to gain control immediately
after the first area in the database is opened and returns control
immediately before the last area in the database is closed. As long as the
segment length is within the values specified, no errors occur while
checking the field qualification for segment compression or expansion.

Restriction: The EDITPROC clause is prohibited on DEDB tables containing a
unique key field located at the end of the table.

LPARENT table_name {VIRTUAL | PHYSICAL}
Specifies the logical parent of the table being defined.

table_name
Specifies the IMS internal table name and the name of the logical parent of

Chapter 8. SQL programming reference 665

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

the table being defined. If the logical parent resides within the same
database then you may just specify the table name. If the logical parent
resides in a different database then you must specify both the database and
table name, such as "database_name.tablename".

VIRTUAL | PHYSICAL
Specifies whether the concatenated key of the logical parent (LPCK) is
stored as a part of the logical child segment. Specify the parameter only for
logical child segments. If PHYSICAL is specified, the LPCK is stored with
each logical child segment. If VIRTUAL is specified, the LPCK is not stored
in the logical child segment. PHYSICAL must be specified for a logical
child segment whose logical parent is in a HISAM database. It must be
specified also for a logical child segment that is sequenced on its physical
twin chain through use of any part of the concatenated key of the logical
parent.
v PHDAM and PHIDAM

– PHYSICAL is the default for PHDAM and PHIDAM.
– If VIRTUAL is specified for PHDAM or PHIDAM, it is ignored, and

PHYSICAL is used.
v HDAM and HIDAM

– VIRTUAL is the default for HDAM and HIDAM.
– Symbolic pointers in HDAM and HIDAM databases use the LPCK

and require the PHYSICAL specification.

Keyword parameters for ALTER TABLE data capture changes
(change_syntax)

The following keyword parameters are defined for the ALTER TABLE data capture
changes (change_syntax) statement:

DATA CAPTURE
When DATA CAPTURE is specified on the CREATE DATABASE statement,
these options apply to all tables within the physical database. If you specify
this parameter in the CREATE or ALTER TABLE statement, it overrides the
specification for this statement.

The following physical databases support DATA CAPTURE:
v HISAM
v SHISAM
v HDAM
v PHDAM
v HIDAM
v PHIDAM
v DEDB

NONE
Indicates no data capture options.

CHANGES
You can specify any number of exit routines, each with its own set of
change options. If you do not provide an exit routine, they can only
specify 1 set of change options for logging. This method is equivalent to
specifying an asterisk (*) in place of an exit routine name on the EXIT=

666 Application Programming APIs

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|
|

|
|

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

parameter in a DBD macro statement. Each set is separated by a comma.
NOCASCADE is mutually exclusive with any combination of the C* (for
example, CKEY) options.

The following options are valid for DATA CAPTURE CHANGES:

BEFORE | NOBEFORE
Before data is included in X'99' log records for REPL calls. BEFORE is
the default. This attribute is valid only for DEDB.

CDATA | CNODATA
Passes segment data to the exit routine for a cascade delete. CDATA
also identifies the segment being deleted when the physical
concatenated key is unable to do so. This attribute is mutually
exclusive with NOCASCADE.

CKEY | CNOKEY
Passes the physical concatenated key to the exit. This key identifies the
segment being deleted by a cascade delete. This attribute is mutually
exclusive with NOCASCADE.

CNOPATH | CPATH
Indicates the exit routine does not require segment data in the physical
root's hierarchical path. Use CNODATA to eliminate the substantial
amount of path data needed for a cascade delete. This attribute is
mutually exclusive with NOCASCADE.

DATA | NODATA
DATA specifies that the physical table data is passed to the exit routine
for updating. When DATA is specified and an EDITPROC exit routine
is also used on a table, the data passed is expanded data. DATA is the
default.

DLET | NODLET
X'99' log records are written for DLET calls. DLET is the default. This
attribute is valid only for DEDB.

exitname
Specifies the name of the exit routine that processes the data. The name
must match the name of a Data Capture exit routine as defined by the
user to IMS. A maximum of 8 alphanumeric characters is allowed.

KEY | NOKEY
KEY specifies the exit routine is passed the physical concatenated key.
This key identifies the physical table updated by the application. KEY
is the default.

NOCASCADE
Indicates the exit routine is not called when DL/I deletes this segment.
Cascade delete is not necessary when a segment without dependents is
deleted.

NOFLD | FLD
The FLD option requests that updates made by a DEDB FLD call be
captured. This option is valid only for a DEDB, and this information is
logged only in the X'9904' log records if the option log is specified.
This information is not passed to the data capture exit. This attribute is
valid only for DEDB.

NOINPOS | INPOS
The INPOS option requests that twin data be passed when an ISRT is
done for an unkeyed or non-unique keyed segment when an insert

Chapter 8. SQL programming reference 667

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

rule of HERE is used and the F or L command code is not used. The
twin data IMS is positioned on at the time before the ISRT will be
captured.

NOLOG | LOG
The LOG option requests that the data capture control blocks and data
be written to the IMS system log.

NOPATH | PATH
NOPATH indicates the exit routine does not require data from tables in
the physical root's hierarchical path. NOPATH is an efficient way to
avoid the processing time needed to retrieve path data. NOPATH is the
default.

PATH can be specified when the data from each segment in the
physical root's hierarchical path must be passed to the exit routine for
an updated segment. Use PATH to allow an application to separately
access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from tables in the
path is needed to compose the DB2® for z/OS primary key. The DB2
for z/OS primary key would then be used in a propagation request for
a dependent table update. Typically, you need this kind of table
information when the parent contains the key information and the
dependent contains additional data that would not fit in the parent
table.

You can also use PATH when additional processing is necessary. It
could be that you are not accessing several tables with one call; for
example, you did not invoke the D command code. In this case,
additional processing is necessary if the application is to access each
table with a separate call.

NOSSPCMD | SSPCMD
The SSPCMD option requests that DEDB subset pointer command
codes are captured. This option is valid for DEDBs only.

Keyword parameters for ALTER TABLE (alter-options)

Descriptions of all table-options are defined in the ALTER TABLE statement. All
table-options are optional and do not imply a default value if not specified.
Specifying a table-option means a new value is being supplied to replace the
existing one.

Specifying the DATA CAPTURE keyword replaces all data capture exits that were
previously supplied, if any. If multiple data capture exits were previously supplied
they must all be respecified if needed.

Restrictions: You can specify the following clauses only once in an ALTER TABLE
statement:
v ADD LCHILD
v ADD MAP
v DROP COLUMN
v DROP LCHILD
v DROP MAP
v RENAME COLUMN

668 Application Programming APIs

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

|

|

|

|

|

|

The ADD COLUMN and ALTER COLUMN clauses can be specified multiple times
in an ALTER TABLE statement.

The following keyword parameters are defined for the ALTER TABLE
(alter-options) statement:

ADD [COLUMN] column-definition
Adds a column to the table. The column must be unique in the table.

column_name
column_name represents the external name that is stored only in the IMS
catalog, not in the database that you are defining. Specify an external name as
a 1- to 128-character uppercase alphanumeric string. An external name can
include underscore characters. Column names must be unique within a
segment.

Restriction: Column names cannot be reserved SQL keywords or begin with
DFS.

For a list of the reserved SQL keywords that are restricted by the IMS
Universal drivers, see Portable SQL keywords restricted by the IMS Universal
JDBC drivers (Application Programming).

INTERNALNAME internalname
Specifies the name of this field within a segment type. The name can be
referred to by an application program in a DL/I call SSA. Field names must be
unique within a segment definition. The fldname1 value must be a 1- to
8-character alphanumeric value. The INTERNALNAME parameter is required
on the following types of fields:
v Key-sequenced field types, which specify the SEQ parameter
v Field types that are referenced by a segment search argument (SSA)
v Field types that are referenced by a PSB as a sensitive field.
v Field types that are referenced by an XDFLD

For other field types, you can omit the INTERNALNAME parameter. Omitting
the INTERNALNAME parameter can save storage in the data management
block (DMB) of a database. However, to be able to search on this field, you
must specify the INTERNALNAME parameter. The INTERNALNAME
parameter cannot be specified on the following types of fields:
v Fields that are defined as arrays. A field that is defined as an array includes

ARRAY in the field definition.
v Fields that are defined as array elements. A field that is an array element

specifies the name of an array field on the IN keyword in the column.
v Fields that are defined as structures that contain one or more nested

dynamic arrays. A field that is defined as a structure includes STRUCT in
the column.

v Fields that are contained in a structure that also contains a dynamic array. A
field that is contained within a structure specifies the name of the structure
field on the IN keyword in the column.

v Fields that follow a dynamic array in a segment. A field that follows a
dynamic array specifies the STARTAFTER parameter.

v Fields that include the RELSTART parameter to specify a starting position
that is relative to the starting position of another field.

v Fields that are defined with XML.

Chapter 8. SQL programming reference 669

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

The INTERNALNAME parameter must be specified for /CK and /SX
columns. When specifying /CK or /SK names, they must be enclosed in
double quotes (").
v HSAM, SHSAM, INDEX, PSINDEX, and DEDB do not allow /CK or /SX

columns.
v HISAM and SHISAM only allow /CK columns.
v HDAM, HIDAM, PHDAM, and PHIDAM allow /CK and /SX columns.

ALTER [COLUMN] column-alteration
Alters the definition of an existing column. Only the attributes specified are
altered. Other attributes remain unchanged. Only future values of the column
are affected by the changes made with an ALTER TABLE ALTER COLUMN
statement. The column-alteration attributes are similar to the column-definition
attributes defined in the CREATE TABLE section with the exception that they
only need to be specified if an attribute needs to be changed.

RENAME [COLUMN] source-column-name TO target-column-name
Renames the specified column. The names must not be qualified.

source-column-name
Identifies the column that is to be renamed. The name must identify an
existing column of the table.

target-column-name
Specifies the new name for the column. The name must not identify a column
that already exists in the table.

DROP [COLUMN] column-name RESTRICT
Drops the identified column from the table.

ADD lchild-definition
Adds an lchild. For an explanation of the options, see the lchild definitions in
“CREATE TABLE” on page 726

DROP LCHILD table_name
Drops the identified lchild from the table and associated xdfld if any. The
table_name parameter specifies the IMS internal name of the logical child.

Keyword parameters for ALTER TABLE (column-definition)

The following keyword parameters are defined for the ALTER TABLE
(column-definition) statement:

column_name
column_name represents the external name that is stored only in the IMS
catalog, not in the database that you are defining. Specify an external name as
a 1- to 128-character uppercase alphanumeric string. An external name can
include underscore characters. Column names must be unique within a
segment.

Restriction: Column names cannot be reserved SQL keywords or begin with
DFS.

For a list of the reserved SQL keywords that are restricted by the IMS
Universal drivers, see Portable SQL keywords restricted by the IMS Universal
JDBC drivers (Application Programming).

INTERNALNAME internalname
Specifies the name of this field within a segment type. The name can be
referred to by an application program in a DL/I call SSA. Field names must be

670 Application Programming APIs

|
|
|

|
|

|

|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

unique within a segment definition. The fldname1 value must be a 1- to
8-character alphanumeric value. The INTERNALNAME parameter is required
on the following types of fields:
v Key-sequenced field types, which specify the SEQ parameter
v Field types that are referenced by a segment search argument (SSA)
v Field types that are referenced by a PSB as a sensitive field.
v Field types that are referenced by an XDFLD

For other field types, you can omit the INTERNALNAME parameter. Omitting
the INTERNALNAME parameter can save storage in the data management
block (DMB) of a database. However, to be able to search on this field, you
must specify the INTERNALNAME parameter. The INTERNALNAME
parameter cannot be specified on the following types of fields:
v Fields that are defined as arrays. A field that is defined as an array includes

DATATYPE=ARRAY in the field definition.
v Fields that are defined as array elements. A field that is an array element

specifies the name of an array field on the PARENT parameter in the FIELD
statement.

v Fields that are defined as structures that contain one or more nested
dynamic arrays. A field that is defined as a structure includes
DATATYPE=STRUCT in the field definition.

v Fields that are contained in a structure that also contains a dynamic array. A
field that is contained within a structure specifies the name of the structure
field on the PARENT parameter in the FIELD statement.

v Fields that follow a dynamic array in a segment. A field that follows a
dynamic array specifies the STARTAFTER parameter.

v Fields that include the RELSTART parameter to specify a starting position
that is relative to the starting position of another field.

v Fields that are defined with DATATYPE=XML.

Keyword parameters for ALTER TABLE (datatype)

The following keyword parameters are defined for the ALTER TABLE (datatype)
statement:

ARRAY | BINARY | ...
An optional 3- to 9-character alphanumeric field that specifies the external data
type of the field.

If DECIMAL is specified on the DATATYPE parameter, the default INTERNAL
TYPECONVERTER is signed PACKEDDECIMAL.

If DATE, TIME, or TIMESTAMP is specified on the DATATYPE parameter, you
must specify either LONG or CHAR on the INTERNAL TYPECONVERTER
parameter in the column definition or specify a USER TYPECONVERTER. If a
column definition is not included for this field, INTERNAL TYPECONVERTER
LONG is the default. When LONG is used, the value is stored on DASD as the
number of milliseconds since January 1, 1970.

If XML is specified on the DATATYPE parameter, the default INTERNAL
TYPECONVERTER is XML_CLOB, which is the only valid value when
DATATYPE=XML is specified.

If STRUCT or ARRAY is specified on the DATATYPE parameter, the default
INTERNAL TYPECONVERTER is STRUCT or ARRAY, respectively, which are
the only valid values when either one is specified on the DATATYPE
parameter.

Chapter 8. SQL programming reference 671

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|

|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

For all other values for DATATYPE, the value is used as the default
INTERNAL TYPECONVERTER.

If TYPE=C, DATATYPE defaults to CHAR. For any other specification of the
TYPE parameter, DATATYPE defaults to BINARY.

Valid values are:

ARRAY
When ARRAY is specified:
v The INTERNALNAME parameter is not supported
v The byte value specified on either the BYTES or MAXBYTES parameter

must be equal to or greater than the sum total of the bytes of all fields
contained in the array.

The MSDB database type does not support the ARRAY data type.

You cannot redefine a field that has been defined as an ARRAY or that
contains an ARRAY.

A field that is defined as an array includes DATATYPE=ARRAY in the field
definition.

A field that is an array element specifies the name of an array field on the
PARENT parameter in the FIELD statement.

BINARY
If TYPE=P or TYPE=X is specified, BINARY is the default value of the
DATATYPE parameter.

BIT
If you specify BIT, you must also specify BYTES=1.

BYTE
If you specify BYTE, you must also specify BYTES=1.

UBYTE
If you specify UBYTE, you must also specify BYTES=1.

CHAR
If TYPE=C is specified, CHAR is the default value of the DATATYPE
parameter.

DATE
When DATE is specified, you must also specify BYTES=8, unless you also
specify a column definition that includes either INTERNAL
TYPECONVERTER CHAR or USER TYPECONVERTER convertername.

DECIMAL(pp,ss)

pp Precision. A 1- to 2-byte numeric field greater than 0.

ss Scale. A 1- to 2-byte numeric field greater than or equal to 0. The value
specified for ss cannot be greater than the value of pp.

You must specify a value on the BYTES parameter that matches the
decimal format that is used.

The default decimal format is signed packed decimal. To calculate the
required value of the BYTES parameter for the signed packed decimal
format, use the following formula: length = ceiling ((pp + 1) / 2)

The default decimal format can be changed by specifying the INTERNAL
TYPECONVERTER parameter.

672 Application Programming APIs

|
|

|
|

|

|
|

|

|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|

||

||
|

|
|

|
|
|

|
|

When the zoned decimal format is used, as specified by INTERNAL
TYPECONVERTER ZONEDDECIMAL, use the following formula to
calculate the value of the BYTES parameter: length = pp

DOUBLE
If you specify DOUBLE, you must also specify BYTES=8.

FLOAT
If you specify FLOAT, you must also specify BYTES=4.

INT
If you specify INT, you must also specify BYTES=4.

UINT
If you specify UINT, you must also specify BYTES=4.

LONG
If you specify LONG, you must also specify BYTES=8.

ULONG
If you specify ULONG, you must also specify BYTES=8.

OTHER
Specifies the use of a user-defined data type. When OTHER is specified, a
column definition must also be specified with a user-provided type
converter specified on the USER TYPECONVERTER parameter.

SHORT
If you specify SHORT, you must also specify BYTES=2.

USHORT
If you specify USHORT, you must also specify BYTES=2.

STRUCT
When STRUCT is specified, you cannot also specify the SEQ parameter if
this structure field contains a dynamic array field as a child. Dynamic
array fields are defined with DATATYPE=ARRAY and the DEPENDSON
and MAXBYTES parameters, among others.

Also, the byte value specified on either the BYTES or MAXBYTES
parameter must be equal to or greater than the sum total of the bytes of all
fields contained in the structure.

The MSDB database type does not support the STRUCT datatype.

TIME
When TIME is specified, you must also specify BYTES=8, unless you also
specify a column definition that includes either INTERNAL
TYPECONVERTER CHAR or USER TYPECONVERTER convertername.

TIMESTAMP
When TIMESTAMP is specified, you must also specify BYTES=8, unless
you also specify a column definition that includes either INTERNAL
TYPECONVERTER CHAR or USER TYPECONVERTER convertername.

XML

Restriction: DATATYPE=XML is not supported when the NAME
parameter is specified.

Chapter 8. SQL programming reference 673

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

|

|
|

Keyword parameters for ALTER TABLE (ims-column-syntax)

The following keyword parameters are defined for the ALTER TABLE
(ims-column-syntax) statement:

BYTES bytes
Specifies the length of the field being defined in bytes. For fields other than
system-related fields, BYTES must be a valid self-defining term whose value
does not exceed 255.

If a concatenated key or a portion of a concatenated key of an index source
segment type is defined as a system-related field, the value specified can be
greater than 255, but must not exceed the length of the concatenated key of the
index source segment.

A case in which the byte length can be greater than 255 is when the column is
defined as not searchable by IMS. These columns cannot be defined as primary
keys and cannot have the INTERNALNAME keyword specified.

The length of a /SX system-related field is always 4 bytes; therefore, when
specified, the BYTES parameter is disregarded.

If this field is defined as either a structure or an array by STRUCT or ARRAY,
the value specified on BYTES must be greater than or equal to the sum total of
the bytes of all fields contained in the structure or array.

When XML, the BYTES parameter is optional and the valid values for BYTES
range from 0 to the maximum size of the segment. If the BYTES parameter is
omitted when XML, BYTES and MAXBYTES are not allowed.

CCSID encoding
An optional 1- to 25-character field enclosed in single quotation marks that
specifies the encoding of the character data in the column. It is valid only
when the INTERNAL TYPECONVERTER is CHAR.

The value specified cannot contain the following characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

If not specified on for the column, the default value is determined by the value
specified on either the table or, if not specified on the table, the database. If the
parameter is not specified on either the table or database, the default value is
Cp1047, which specifies EBCDIC encoding.

DEPENDSON=
Specifies the name of a field that defines the number of elements in a dynamic
array. The FIELD statement of the referenced field must precede the FIELD
statement that specifies the DEPENDSON parameter. The name specified must
be the value, whether explicitly defined or accepted by default, of the
EXTERNALNAME parameter in the definition of the referenced field.

The DEPENDSON parameter is valid only when DATATYPE=ARRAY is also
specified. DEPENDSON is required if the values of MINOCCURS and
MAXOCCURS are different.

The field referenced by the DEPENDSON parameter must be defined with one
of the following DATATYPE values:
v INT
v SHORT

674 Application Programming APIs

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

|

v LONG
v DECIMAL with either (pp) or (pp,ss) specified, where ss is either 0 or 00.

TYPE {C | X | P}
Determines the type of character that IMS uses to mask or pad the data in this
field.

C Specifies alphanumeric data or a combination of types of data. When C
is specified, if IMS needs to fill unused bytes in the field, IMS left
justifies the value and fills the unused bytes to the right of the value
with X'40'. For example, a 3-byte value X'F5F4F3' in a 5-byte field is
written out as X'F5F4F34040'.

X Specifies hexadecimal data. When X is specified, if IMS needs to fill
unused bytes in the field, IMS right justifies the value and fills the
unused bytes to the left of the value with X'00'. For example, a 3-byte
value X'543210' in a 5-byte field is written out as X'0000543210'.

P Packed decimal data. When P is specified, if IMS needs to fill unused
bytes in the field, IMS right justifies the value and fills the unused
bytes to the left of the value with X'00'. For example, a 3-byte value
X'54321C' in a 5-byte field is written out as X'000054321C'.

MAXBYTES max_array_bytes
Specifies the maximum size of a field in bytes when the byte-length of the field
instance can vary based on the number of elements in a dynamic array.
MAXBYTES and BYTES are mutually exclusive.

The value of MAXBYTES must be greater than or equal to the maximum total
of the byte values of all fields nested under this field.

The MAXBYTES parameter is required and valid only in the following cases:
v The field is defined as a dynamic array. A field is a dynamic array when the

number of elements in the array can vary from one instance of the field to
another. In the definition of a dynamic array, the DEPENDSON parameter
references another field in the segment definition that defines the number of
array elements for an instance of the dynamic array.

v For a field defined as a static array or a structure that contains a nested field
that is defined as a dynamic array.

The MSDB database type does not support the MAXBYTES parameter.

IN column_name
Specifies the name of a field that is defined as a structure or array in which
this field is contained. The referenced field must be defined with either
DATATYPE=ARRAY or DATATYPE=STRUCT.

INTERNAL TYPECONVERTER
Specifies the internal conversion routine that IMS uses to convert the IMS data
into the data types that are expected by the application program.

You can specify either INTERNAL TYPECONVERTER or USER
TYPECONVERTER, but not both. INTERNAL TYPECONVERTER or USER
TYPECONVERTER are mutually exclusive.

Valid values for the INTERNAL TYPECONVERTER parameter are:

ARRAY
An array is a data structure that contains as element that repeats.

Chapter 8. SQL programming reference 675

|

|

|
|
|

||
|
|
|
|

||
|
|
|

||
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|

|
|

|

|
|
|
|

|
|
|

|
|
|

|

|
|

BINARY
Binary integer includes small integer, large integer, and big integer. Binary
numbers are exact representations of integers.

BIT
If you specify BIT, you must also specify BYTES 1 on the corresponding
column.

BLOB
The BLOB value can be specified on the INTERNALTYPECONVERTER
parameter only when DATATYPE=BINARY is specified in the preceding
FIELD statement.

BYTE
If you specify BYTE, you must also specify BYTES 1 on the corresponding
column.

UBYTE
If you specify UBYTE, you must also specify BYTES 1 and either
DATATYPE BYTE or DATATYPE UBYTE on the corresponding column.

CHAR
The CHAR value can be specified on the INTERNALTYPECONVERTER
parameter only when CHAR, DATE, TIME, or TIMESTAMP is specified on
the DATATYPE parameter in the preceding FIELD statement.

DOUBLE
If you specify DOUBLE, you must also specify BYTES 8 on the
corresponding column.

FLOAT
If you specify FLOAT, you must also specify BYTES 4 on the
corresponding column.

INT
If you specify INT, you must also specify BYTES 4 on the corresponding
column.

UINT
If you specify UINT, you must also specify BYTES 4 and either DATATYPE
INT or DATATYPE UINT on the corresponding column.

LONG
If you specify LONG, you must also specify BYTES 8 on the corresponding
column.

ULONG
If you specify ULONG, you must also specify BYTES 8 and either
DATATYPE LONG or DATATYPE ULONG on the corresponding column.

PACKEDDECIMAL
PACKEDDECIMAL is a data type extension for the IMS Universal JDBC
driver and the IMS Universal DL/I driver.

SHORT
If you specify SHORT, you must also specify BYTES 2 on the
corresponding column.

USHORT
If you specify USHORT, you must also specify BYTES 2 and either
DATATYPE SHORT or DATATYPE USHORT on the corresponding column.

STRUCT

676 Application Programming APIs

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

XML_CLOB
A Character Large Object (CLOB) is a collection of character data in a
database management system.

ZONEDDECIMAL
ZONEDDECIMAL is a data type extension for the IMS Universal JDBC
driver and the IMS Universal DL/I driver. You need to specify DATATYPE
DECIMAL.

When you specify INTERNAL TYPECONVERTER, you must also specify the
DATATYPE parameter.

The value that is specified on the INTERNAL TYPECONVERTER parameter
must be consistent with the value specified on the DATATYPE parameter. In
most cases, you must specify the same value on INTERNAL
TYPECONVERTER that you specify on the DATATYPE parameter.

ISSIGNEDYES | ISSIGNEDNO
This parameter is valid only for DATATYPE DECIMAL. The default is
ISSIGNEDYES.

MINOCCURS min_array_elements
If DECIMAL data type, the default INTERNAL TYPECONVERTER is signed
PACKEDDECIMAL.

MAXOCCURS max_array_elements
For ARRAY only, a required numeric value that specifies the maximum number
of elements in an ARRAY. MAXOCCURS must be greater than or equal to
MINOCCURS and not zero.

OVERFLOW table_name
A 1- to 8-character name of a dependent table that can be used to store any
portion of an XML document that does not fit into the column that is defined
to hold the XML document. The parent of the dependent table is the table that
contains the XML data column. OVERFLOW applies only to columns that
specify DATATYPE XML for XML_CLOB data.

PATTERN
An optional 1- to 50-character field, enclosed in single quotation marks, that
specifies the pattern to use for the date, time, and time stamp Java datatypes.

PATTERN applies only when DATE, TIME, or TIMESTAMP is specified on the
DATATYPE keyword and CHAR is specified on the INTERNAL
TYPECONVERTER keyword. PATTERN is invalid for other datatypes.

Patterns are case-sensitive and must be enclosed in single quotation marks.

Except for single quotation marks that are used as delimiters for the keyword
value, the value that is specified on the PATTERN keyword cannot contain the
following characters:
v Single and double quotation marks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

Patterns that you can specify are defined by the Java class
java.text.SimpleDateFormat. DDL does not check that the value entered on
PATTERN conforms to the patterns defined by Java.

For example, if you enter the Java format yyyy.MM.dd, the resulting time format
is "2013.01.01".

Chapter 8. SQL programming reference 677

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|

PROPERTIES name=value
Specifies properties for a user type converter that is specified on the USER
TYPECONVERTER parameter. These properties are passed to the user type
converter.

The PROPERTIES parameter is valid only when USER TYPECONVERTER is
specified.

The names and properties that are specified on the PROPERTIES keyword are
case-sensitive and must be enclosed in single quotation marks.

The following characters are not supported by the PROPERTIES keyword:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

The maximum length for a property name is 128 characters. The maximum
length for a property value is also 128 characters.

The format is:
PROPERTIES=(’name1’ = ’value1’ , ’name2’ = ’value2’)

For example,
PROPERTIES=(’DOG’ = ’BUTCH’ , ’CAT’ = ’LUCY’)

RELSTART relative_start_position
Specifies the starting position of a field that is defined as an element of an
array or, in some circumstances, a structure. Valid values are from 1 to 32767.

The value specified on RELSTART is the starting byte offset of the field relative
to the start of the array or structure. For example, the first field in an array
would typically specify RELSTART 1, even if the array that contains the field
starts at byte 50 of a segment.

For fields that specify an array field as a parent, RELSTART is required.

For fields that specify a structure as a parent, RELSTART is required if the
structure field is defined with RELSTART or STARTAFTER.

In the following example, the field DYNARRAY is a dynamic array. The field
STRUCT01 is a structure. The fields FLD03 and FLD04 both specify STRUCT01
as a parent. Because a dynamic array precedes STRUCT01 in the segment, the
starting offsets of FLD03 and FLD04 can be specified only relative to the start
of STRUCT01.
FIELD EXTERNALNAME=ARRAYNUM,DATATYPE=DECIMAL(7,0),START=1,BYTES=4
FIELD EXTERNALNAME=DYNARRAY,DATATYPE=ARRAY,START=5,MAXBYTES=100

MINOCCURS=10,MAXOCCURS=50,DEPENDSON=ARRAYNUM
FIELD EXTERNALNAME=FLD01,RELSTART=1,BYTES=2,PARENT=DYNARRAY
FIELD EXTERNALNAME=FLD02,STARTAFTER=DYNARRAY,BYTES=10
FIELD EXTERNALNAME=STRUCT01,DATATYPE=STRUCT,STARTAFTER=FLD02,BYTES=10
FIELD EXTERNALNAME=FLD03,RELSTART=1,BYTES=5,PARENT=STRUCT01
FIELD EXTERNALNAME=FLD04,RELSTART=6,BYTES=5,PARENT=STRUCT01

START, STARTAFTER, and RELSTART are mutually exclusive.

START start_position
Specifies the starting position of the field being defined in terms of bytes
relative to the beginning of the segment. The value of START must be a
numeric term whose value does not exceed 32767. The starting position for the
first byte of a segment is one. For variable-length segments, the first 2 bytes
contain the length of the segment. Therefore the first actual user data field
starts in byte 3. Overlapping fields are permitted. When defining a logical child

678 Application Programming APIs

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|

|

|

|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

segment, the first n number of bytes of the segment type is the concatenated
key of the logical or physical parent. A field starting in position one would
define all or a portion of this field. A field starting in position n+1 would start
with intersection data.

START can be used for a system-related field, to describe a portion of the
concatenated key as a field in an index source segment type. If used in this
way, START specifies the starting position of the relevant portion of the
concatenated key relative to the beginning of the concatenated key. The first
byte of the concatenated key is considered to have a position of one. It must be
a numeric term whose value does not exceed the length of the concatenated
key plus one. Subtract the value specified in the BYTES parameter. The starting
position parameter for the /SX system-related field is disregarded.

START, STARTAFTER, and RELSTART are mutually exclusive.

When XML, the START parameter is optional and START 0 can be specified. If
the START parameter is omitted when XML, START 0 is the default.

STARTAFTER field_name
When the starting byte offset of a field cannot be calculated because the field
starts after a dynamic array, specifies the name of the field that directly
precedes this field in the segment. The name cannot be the name provided on
the INTERNALNAME keyword.

STARTAFTER is required and valid only when the starting position of a field
cannot be calculated because the field is preceded at a prior offset by a field
defined as a dynamic array.

Dynamic arrays make it impossible to calculate the starting offsets of
subsequent fields in a segment, because the byte lengths of dynamic arrays can
vary from one instance of a segment to another. The columns of dynamic array
fields can be identified by the inclusion of the DEPENDSON and MAXBYTES
parameters.

The STARTAFTER parameter cannot be specified on fields that define an array
field as a parent. Instead, specify the RELSTART parameter.

START, STARTAFTER, and RELSTART are mutually exclusive.

URL xml_schema_url
An optional 1- to 256-character field, enclosed in single quotation marks, for
the URL that references the XML schema that describes this field.

For example,
URL=’MySchema.xsd’

The value that is specified on the URL keyword cannot contain the following
characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

The URL parameter applies only with DATATYPE XML for XML_CLOB data.

USER TYPECONVERTER typeconverter
Specifies a 1- to 256-character, enclosed in single quotation marks, fully
qualified Java class name of the user-provided Java class to be used for type
conversion.

For example,
USER TYPECONVERTER ’class://com.ibm.ims.dli.types.PackedDateConverter’

Chapter 8. SQL programming reference 679

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|
|

|

|

|
|
|
|
|
|

|

|
|
|
|

|

|

The value that is specified on the USER TYPECONVERTER keyword cannot
contain the following characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

USER TYPECONVERTER is mutually exclusive with INTERNAL
TYPECONVERTER.

Keyword parameters for ALTER TABLE (constraint)

The following keyword parameters are defined for the ALTER TABLE (constraint)
statement:

CONSTRAINT constraint_name
Names the constraint. If a constraint name is not specified, a unique constraint
name is generated. If the name is specified, it must be different from the names
of any constraints previously specified on the table.

PRIMARY KEY(column_name) NON UNIQUE
Identifies this field as a sequence field in the segment type.

NON UNIQUE
An optional keyword that indicates that duplicate values are allowed in
the sequence field of occurrences of the segment type. For a root segment
type, the sequence field of each occurrence must contain a unique value,
except in HDAM. The root segment type in an HDAM database does not
need a key field; if a key field is defined, it does not have to be unique.

If not specified, only unique values are allowed in the sequence field of
occurrences of the segment type. For a dependent segment type, the
sequence field of each occurrence under a given physical parent segment
must contain a unique value.

Keyword parameters for ALTER TABLE (references-clause)

The following keyword parameters are defined for the ALTER TABLE
(references-clause) statement:

FOREIGN KEY REFERENCES
For dependent segment types, specifies the name of this segment's physical
parent. The column_name must follow the format of x_y, where x is the parent
table name and y is that table's primary key column name.

REFERENCES table_name
Specifies the dependent segments parent segment and is the IMS external
table name.

SINGLE|DOUBLE

Specifies the type of physical child pointers to be placed in all occurrences of
the physical parent of the current table. SINGLE and DOUBLE can be specified
only for tables in PHDAM, PHIDAM, HDAM, HIDAM or DEDB databases
and are ignored if the physical parent specifies hierarchic pointers (HIER or
HIERBWD).

SINGLE causes a 4-byte physical child first pointer to be placed in all
occurrences of the physical parent of the current table. SINGLE is the default.

680 Application Programming APIs

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|

DOUBLE causes a 4-byte physical child first pointer and a 4-byte child last
pointer to be placed in all occurrences of the physical parent of the current
table.

DROP PRIMARY KEY
Drops the definition of the primary key.

DROP FOREIGN KEY
Drops the definition of the foreign key.

Keyword parameters for ALTER TABLE (map-definition)

The following keyword parameters are defined for the ALTER TABLE
(map-definition) statement:

MAP
A map definition must be preceded by a column definition. The MAP
statement enables the alternate mapping of columns within a table. A group of
one or more CASE statements that relate to a control column is nested within
the table. The control column identifies which CASE is used in a table instance.

column_name
The external name of the column within this table that contains the value that
determines which map case is used for a segment instance. If the column does
not contain a value that corresponds to a caseid value in a CASE statement for
this map, this map is not being used for this table instance.

AS map_name
An optional 1- to 128-character alphanumeric field that defines the name of
this map. If not provided, IMS will automatically generate a unique name
within this table. The name must be in the form of DFSMAPxxxxxxxx, where
xxxxxxxx is an incremental number. The DFS prefix is reserved by IMS and
cannot be part of a user-created name.

Keyword parameters for ALTER TABLE (case-definition)

The following keyword parameters are defined for the ALTER TABLE
(case-definition) statement:

CASE
The CASE statement defines a map case, which is a set of columns that define
an optional, alternative field layout for a particular byte range within a table.

Map cases that map the same byte range in a segment are grouped by a MAP
statement. The MAP statement also links the map cases to a separately defined
control field in the table definition.

Each map case has a unique ID. In an instance of the table, the ID of the map
case that is in effect is stored in the control field when the segment is created.

Unless the IMS Universal drivers are used, the field layouts that are defined by
the map cases must be defined to the application programs that access this
byte range by a COBOL copybook or other programming artifact. When a table
instance is accessed, the application programs determine which copybook to
use by checking the value of the control field.

When application programs access IMS through the IMS Universal drivers, no
additional programming artifacts are needed to define the field layouts to the
application programs.

Chapter 8. SQL programming reference 681

|
|
|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

caseid
A 1- to 128 byte field that defines a unique character or hex string. A table
instance specifies the caseid value in a user-defined control field when part
or all of the field structure of the segment is mapped by this case.

When specified as a character string the value must be specified within
single quotes, for example: ’name01’. When specified as a hex string the
value must be specified within single quotes followed by a hex indicator,
for example: ’00000001’x.

The caseid value can contain alphanumeric characters, underscore (_), @, $,
and #. Or, it can be a hexadecimal string. The length of the value must be
supported by the length of the user-defined control field. If alphanumeric,
the length of the value must be less than or equal to the value specified on
the BYTES parameter of the control field. If it is a hexadecimal string, the
length of the CASEID value must be exactly equal to twice the value that
is specified on the BYTES parameter of the control field.

A case ID must be unique within the map that the case belongs to.

AS case_name
An optional 1- to 128-character alphanumeric field that defines the name of
this case. A case name must be unique within a table. If not provided, IMS
will automatically generate a unique name within this table. The name
must be in the form of DFSCASExxxxxxxx, where xxxxxxxx is an incremental
number. The DFS prefix is reserved by IMS and cannot be part of a
user-created name.

Example: COGDBD
DBD NAME=COGDBD, C

ENCODING=Cp1047, C
ACCESS=(HDAM,OSAM), C
RMNAME=(DFSHDC40,3,3,25), C
PASSWD=NO

DATASET DD1=COGDATA, C
DEVICE=3390, C
SIZE=(8192)

SEGM NAME=ROOT, C
PARENT=0, C
BYTES=(28), C
RULES=(LLL,HERE)

FIELD NAME=(ROOTKEY,SEQ,U), C
BYTES=12, C
START=1, C
TYPE=C, C
DATATYPE=CHAR

FIELD NAME=TABTYPE, C
BYTES=8, C
START=13, C
TYPE=C, C
DATATYPE=CHAR

FIELD NAME=NEWFLD01, C
EXTERNALNAME=New_Field_01, C
BYTES=8, C
START=21, C
TYPE=X, C

DFSMARSH ENCODING=Cp1047, C
INTERNALTYPECONVERTER=DOUBLE

SEGM NAME=TSINT, C
PARENT=ROOT, C
BYTES=(8,6), C
REMARKS=’This describes table TSINT for testing.’, C
RULES=(LLL,HERE)

682 Application Programming APIs

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FIELD NAME=RNUM, C
BYTES=4, C
START=3, C
DATATYPE=INT

FIELD NAME=LL, C
BYTES=2, C
START=1, C
DATATYPE=SHORT

FIELD NAME=CSINT, C
EXTERNALNAME=CSINT, C
BYTES=2, C
START=7, C
DATATYPE=SHORT

SEGM NAME=TINT, C
EXTERNALNAME=TESTINTEGER, C
PARENT=ROOT, C
BYTES=(10,6), C
RULES=(PPP,FIRST) C
REMARKS=’This describes table TINT.’, C
RULES=(LLL,HERE)

FIELD NAME=RNUM, C
BYTES=4, C
START=3, C
DATATYPE=INT

FIELD NAME=LL, C
BYTES=2, C
START=1, C
DATATYPE=SHORT

FIELD NAME=CINT, C
EXTERNALNAME=CINTEGER, C
BYTES=4, C
START=7, C
DATATYPE=INT

ALTER TABLE root (
ADD COLUMN New_Field_01 DOUBLE INTERNALNAME newfld01

) IN DATABASE COGDBD
MAXBYTES 28;

Example: Modifying for Database Versioning

For more information about database versioning, see Database versioning
(Database Administration).
DBD NAME=COGDBD, C

ENCODING=Cp1047, C
ACCESS=(HDAM,OSAM), C
RMNAME=(DFSHDC40,3,3,25), C
PASSWD=NO

DATASET DD1=COGDATA, C
DEVICE=3390, C
SIZE=(8192)

SEGM NAME=ROOT, C
PARENT=0, C
BYTES=(28), <-- From 20 to 28 C
RULES=(LLL,HERE)

FIELD NAME=(ROOTKEY,SEQ,U), C
BYTES=12, C
START=1, C
TYPE=C, C
DATATYPE=CHAR

FIELD NAME=TABTYPE, C
BYTES=8, C
START=13, C
TYPE=C, C
DATATYPE=CHAR

FIELD NAME=NEWFLD01, C

Chapter 8. SQL programming reference 683

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_db_versioning.htm#ims_database_versioning
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.dag/ims_db_versioning.htm#ims_database_versioning

EXTERNALNAME=New_Field_01, C
BYTES=8, C
START=21, C
TYPE=X, C

DFSMARSH ENCODING=Cp1047, C
INTERNALTYPECONVERTER=DOUBLE

ALTER DATABASE COGDBD
DBVER 1;

ALTER TABLE root (
ADD COLUMN New_Field_01 DOUBLE INTERNALNAME newfld01

) IN DATABASE COGDBD
MAXBYTES 28;

ALTER TABLESPACE
The ALTER TABLESPACE statement changes attributes of a data set group within
a database or an area for a DEDB. Altering a tablespace is an alter against the
database resource.

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.
v “ALTER TABLESPACE syntax”
v “HSAM or SHSAM syntax”
v “GSAM syntax” on page 685
v “HISAM or INDEX syntax” on page 685
v “SHISAM syntax” on page 685
v “HDAM or HIDAM syntax” on page 685
v “DEDB syntax” on page 685

ALTER TABLESPACE syntax

►► ALTER TABLESPACE ddname IN database_name ►

►
Options for HSAM or SHSAM
Options for GSAM
Options for HISAM or INDEX
Options for SHISAM
Options for HDAM or HIDAM
Options for DEDB

►◄

HSAM or SHSAM syntax

►►
OUTPUT (ddname) RECORD(reclen1,reclen2)

►

►
BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

►◄

684 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|

|

|

|

|

|

|

|

|

|||||||||||||
|

|
|||||||||||||||||||||||||||

|

|

|||||||||||||||||||||||
|

|
|||||||||||||||||||||||

|

GSAM syntax

►►
OUTPUT (ddname) RECORD(reclen1,reclen2)

►

►
BLOCK PRIMARY blkfact
SIZE PRIMARY area

FORMAT FIXED
FIXEDBLOCK
VARIABLE
VARIABLEBLOCK
UNDEFINED

►◄

HISAM or INDEX syntax

►►
OVERFLOW (ddname) RECORD(reclen1,reclen2)

►

►
BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

►

►
SIZE PRIMARY size SIZE SECONDARY size

►◄

SHISAM syntax

►►
RECORD(reclen1,reclen2) BLOCK PRIMARY blkfact

►

►
BLOCK SECONDARY blkfact SIZE PRIMARY size

►

►
SIZE SECONDARY size

►◄

HDAM or HIDAM syntax

►►
BLOCK PRIMARY blkfact SIZE PRIMARY size FREEBLOCK fbff

►

►
FREESPACE fspf SCAN cyls SEARCHA 0

1
2

►◄

DEDB syntax

►► SIZE PRIMARY size UOW(number1,number2) ROOT(number1,number2) ►◄

Description

The following keyword parameters are defined for the ALTER TABLESPACE
statement:

Chapter 8. SQL programming reference 685

|

|||||||||||||||||||||||
|

|
||

|

|

|||||||||||||||||||||||
|

|
|||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||

|

|

|||||||||||||||||||||
|

|
|||||||||||||||||||||||||
|

|
||||||||||||||||

|

|

||||||||||||||||||||||||||||||||||
|

|
||

|

|

|||||||||||||
|

|

|
|

ddname
The 1- to 8-character ddname for the Fast Path database area or data set group
that you want to change. The name can include alphanumeric characters and
special characters (#, @, and $).

For a database area, this name can be an area name or a ddname for a data set
that contains only one database area, but it must be an area name if the data
set contains multiple database areas. If the database is registered with DBRC,
use the area name.

HSAM | SHSAM | GSAM
The ddname of input data set. The input data set is used when an
application program retrieves data from the database.

HISAM | SHISAM | INDEX
The ddname of primary data set in data set group.

HIDAM | HDAM
The ddname of data set in data set group.

DEDB
The area name or a ddname for single area data sets but can only be an
area name for multiple area data sets. If the database is registered in
DBRC, this parameter should specify the area name.

INdatabase_name
The name of the database that this database area or data set group belongs to.

database_name
The database this data set group belongs to.

Specifies the DBD name of a database whose data sets are to be dynamically
allocated. This name is used as a member name in IMS.SDFSRESL to identify
this database parameter list. Care should be taken to ensure that this name
does not conflict with existing members in IMS.SDFSRESL. This includes, but
is not limited to, IMS modules and user-supplied exit routines.

BLOCK PRIMARY
BLOCK SECONDARY

Is used to specify the blocking factors to be used for data sets in a data set
group for HSAM, SHSAM, GSAM, HISAM, SHISAM, and INDEX databases,
or is used to specify the block size or control interval size without overhead for
the data set in a data set group for HDAM and HIDAM databases.

For HISAM, SHISAM, and INDEX databases that use VSAM as the access
method, use the SIZE PRIMARY parameter to specify control interval size in
place of the BLOCK PRIMARY or BLOCK SECONDARY parameter. If the SIZE
keyword is used for a HISAM, SHISAM, or INDEX database, the BLOCK
keyword is invalid.

In cases where the RECORD, BLOCK PRIMARY, and BLOCK SECONDARY
operands are used, the resulting control interval size must be a multiple of 512
when the resulting size is less than 8192 bytes. If the product of the record
length specified times the blocking factor specified plus VSAM overhead is not
a multiple of 512 and is less than 8192 bytes, the resulting control interval size
is obtained by rounding the value up to the next higher multiple of 512.
Control interval sizes from 8192 to 30720 bytes (maximum allowed size) must
be in multiples of 2048 bytes. When the product of the RECORD and BLOCK
operands plus VSAM overhead is from 8192 to 30720 bytes but is not a
multiple of 2048, the resulting control interval size is obtained by rounding the
value up to the next higher multiple of 2048.

686 Application Programming APIs

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

The VSAM overhead is 7 bytes if the blocking factor is 1; otherwise, it is 10
bytes. The maximum block size for OSAM data sets is 32 KB.

For HDAM and HIDAM databases, the BLOCK PRIMARY parameter is used
to enable you to override the computation of control interval or block size of
IMS. However, in addition to the value specified in the BLOCK PRIMARY
parameter, IMS adds space for root anchor points, a free space anchor point,
and access method overhead. The block or control interval size that results can
be determined by referring to the equations in the description of the SIZE
PRIMARY parameter or by examining the output of IMS. If the SIZE parameter
is not specified and the access method is VSAM, IMS calculates the best VSAM
LRECL value by equally distributing any unused space in the CI to each
logical record in the CI. If the SIZE PRIMARY parameter is specified, this is
not done.

The following table explains the use of the BLOCK and RECORD operands.

Table 166. BLOCK and RECORD operands

Database type Use of BLOCK and RECORD operands

HSAM/SHSAM
BLOCK

BLOCK PRIMARY applies to input data set and should always
be 1.

BLOCK SECONDARY applies to output data set and should
always be 1.

RECORD
recordlength1 is the input record length.

recordlength2 is the output record length.

HSAM/SHSAM is always unblocked; LRECL and BLKSIZE are
equal.

GSAM
BLOCK

BLOCK PRIMARY applies to input/output data set.

BLOCK SECONDARY is an invalid subparameter.

RECORD
recordlength1 is the size of an LRECL length or maximum size
for a variable length record.

recordlength2 is the minimum size for a variable length record.

SIZE
SIZE PRIMARY is the BLKSIZE for input/output data set.

SIZE SECONDARY is an invalid subparameter.

HISAM/SHISAM
BLOCK

BLOCK PRIMARY is the primary data set blocking factor.

BLOCK SECONDARY is the overflow data set blocking factor.

RECORD
recordlength1 is the data set logical record length.

recordlength2 is the overflow data set logical record length.

Chapter 8. SQL programming reference 687

|
|

|
|
|
|
|
|
|
|
|
|
|

|

||

||

|
|
|
|

|
|

|
|

|

|
|

|
|
|

|

|
|
|

|

|
|

|

|
|
|

|

|
|

|

Table 166. BLOCK and RECORD operands (continued)

Database type Use of BLOCK and RECORD operands

HIDAM, HDAM
BLOCK

size0 is size without overhead of OSAM or VSAM data set
group

RECORD
Is ignored.

DEDB BLOCK and RECORD operands are invalid.

INDEX
BLOCK

BLOCK PRIMARY is the primary data set blocking factor.

BLOCK SECONDARY is the overflow data set blocking factor.

RECORD
recordlength1 is the primary data set logical record length.

recordlength2 is the overflow data set logical record length.

Note: When both recordlength1 and recordlength2 are specified in a
TABLESPACE statement, recordlength2 must be equal to or greater than
recordlength1, except for GSAM.

FORMAT
Specifies the format of the records in the data set. The valid record formats are:
FIXED

Fixed length.
FIXEDBLOCK

Fixed length and blocked
VARIABLE

Variable length.
VARIABLEBLOCK

Variable length and blocked.
UNDEFINED

Undefined length.

This keyword is required and only valid for a GSAM database.

FREEBLOCK
Specifies the free block frequency factor. Every nth control interval or block in
this data set group is left as free space during database load or reorganization.
The valid range is 0-100 except 1. The default is 0.

A smaller value increases the frequency of free space in the database. A value
of 2, for example, would mean that after each piece of data there would be a
free space block. This causes system performance degradation when running
reorganization or load utilities because of the extra processing required for the
free space blocks.

FREEBLOCK is equivalent to the IMS keyword FRSPC=(fbff,)).

This keyword is optional and only valid for HDAM or HIDAM.

FREESPACE
Specifies the free space percentage factor, which is the minimum percentage of
each control interval or block that is to be left as free space in this data set
group. The valid range is 0-99. The default is 0.

This keyword is optional and only valid for HDAM or HIDAM.

688 Application Programming APIs

|

||

|
|
|
|

|
|

||

|
|
|

|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|

|
|
|
|

|

FREESPACE is equivalent to the IMS keyword FRSPC=(,fspf)).

OUTPUT (ddname)
Specifies the 1- to 8-character alphanumeric ddname of the output data set that
is required for an HSAM or SHSAM database and optional for a GSAM
database. This output data set is used by IMS when loading the database. This
keyword is invalid for other database access types.

OUTPUT is equivalent to the IMS keyword DD2=.

OVERFLOW (ddname)
Specifies the 1- to 8-character alphanumeric ddname of the overflow data set in
this data set group. This parameter must be specified for:
v An INDEX database that contains index pointer segments with non-unique

keys.
v All data set groups of a HISAM database except when only one segment

type is defined in the HISAM database.

The following conditions apply:
v Invalid for a simple HISAM (SHISAM) database.
v Not required for an HISAM database that contains only one segment type.
v Not required for an index DBD because all index segments are inserted in

the key sequenced data set of the index.
v Invalid for an INDEX database defined with an osaccess type of SHISAM.
v Only valid for HISAM and INDEX database access types.

RECORD(recordlength1,recordlength2)
Specifies the data management logical record lengths to be used for this data
set group. This keyword is optional and only valid for HSAM, SHSAM,
GSAM, HISAM, SHISAM, INDEX.

SCAN cylinders
Specifies the number of direct-access device cylinders to be scanned when
searching for available storage space during segment insertion operations. This
parameter is optional and only valid for HIDAM or HDAM databases. If
specified, the value must be a decimal integer that does not exceed 255. Typical
values are 0 - 5. The default is 3. If 0 is specified, only the current cylinder is
scanned for space.

Scanning is performed in both directions from the current cylinder position. If
a scan limit value causes scanning to include an area outside of the current
extent, IMS adjusts the scan limits so that scanning does not exceed current
extent boundaries. If space cannot be found for segment insertion within the
cylinder bounds defined by this parameter, space is used at the current end of
the data set group for the database.

SEARCHA 0 | 1 | 2
Specifies the type of HD space search algorithm that IMS uses to insert a
segment into an HD database.

0 Specifies that IMS chooses which HD space search algorithm to use. 0 is
the default.

1 Specifies that IMS uses the HD space search algorithm that does not search
for space in the second-most desirable block or CI.

2 Specifies that IMS uses the HD space search algorithm that includes a
search for space in the second-most desirable block or CI.

This keyword is optional and only valid for HDAM or HIDAM database.

Chapter 8. SQL programming reference 689

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

||
|

||
|

||
|

|

SIZE PRIMARY size1
For HISAM, SHISAM, INDEX, this keyword specifies control interval or block
size of primary data set in a data set group.

For HDAM, HIDAM, this keyword specifies the control interval or block size
of the data set in the data set group. For GSAM, this keyword specifies the
block size for input/output data set.

For DEDB, this keyword is required and specifies the control interval.

This keyword is invalid for all other database types.

SIZE PRIMARY is equivalent to the IMS keyword SIZE=(size1,)).

SIZE SECONDARY size2
For HISAM, SHISAM, INDEX, this keyword specifies control interval or block
size of overflow data set.

This keyword is valid only for HISAM, SHISAM, and INDEX.

SIZE SECONDARY is equivalent to the IMS keyword SIZE=(,size2))

ROOT(number1,number2)
Specifies the total space that is allocated to the root addressable part of the
area and to the area reserved for independent overflow.

number1
Specifies the total space that is allocated to the root addressable part of the
area. It is expressed in UOWs. The rest of the VSAM data set is reserved
for sequential dependent data.

The valid range is 2-32767; it cannot be larger than the amount of space in
the VSAM data set.

number2
Specifies the space that is reserved for independent overflow in terms of
UOWs. It must be at least 1 and must be less than the value specified for
number1. Although independent overflow does not contain UOWs, the
UOW size is used as the unit for space allocation.

The reorganization UOW is automatically allocated by the DEDB Initialization
utility. VSAM space definition should include this additional UOW. That is, the
total space required is the root addressable area, the independent overflow, and
one additional UOW for reorganization. The reorganization UOW is not used
by the High-Speed DEDB Direct Reorganization utility, but might be used by
other functions of IMS.

The ROOT keyword is required and only valid for DEDB.

UOW(number1,number2)
Required and only valid for DEDB. number1 specifies the number of control
intervals in a unit of work. The valid range is 2-32767. number2 specifies the
number of control intervals in the overflow section. Any value greater than or
equal to 1 but at least one less than number1.

CLOSE
The CLOSE statement closes a cursor.

Invocation

This statement can be embedded only in a COBOL application program. It is an
executable statement that cannot be dynamically prepared.

690 Application Programming APIs

|
|
|

|
|
|

|

|

|

|
|
|

|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

Syntax

►► CLOSE cursor-name ►◄

Description

The following keyword parameters are defined for the CLOSE statement:

cursor-name
Identifies the cursor to be closed. The cursor name must identify a declared
cursor as explained in “DECLARE CURSOR” on page 788.

Example

A cursor C1 is used to fetch one row at a time into the application program
variables HOSPCODE, HOSPNAME, WARDNAME, and PATNAME. Finally, the
cursor is closed. If the cursor is reopened, it is again located at the beginning of the
rows to be fetched.
EXEC SQLIMS

DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
PREPARE DYSQL FROM :SELECT-STATEMENT

END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS
FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME

END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND
ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

COMMENT ON
The COMMENT ON statement adds a comment to the definition of a resource or
object in the IMS catalog. You can alter a comment by reissuing the COMMENT
ON statement.

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.
v “COMMENT ON syntax” on page 692
v “comment_option syntax” on page 692
v “comment_suboption syntax” on page 692

Chapter 8. SQL programming reference 691

|

|
|
|

|

|
|
|

|

|

|

COMMENT ON syntax

►► COMMENT ON comment_option IS string_constant ►◄

comment_option syntax

►► DATABASE database_name
PROGRAMVIEW psb_name

comment_suboption IN resource_name

►◄

comment_suboption syntax

►► COLUMN table_name.column_name
COLUMN table_name.map_name.case_name.column_name
TABLE table_name
TABLESPACE ts_name
LCHILD table_name.lchild_table_name
XDFLD table_name.lchild_table_name.xdfld_name
MAP table_.map_name
CASE table_name.map_name.case_name
SCHEMA pcb_name
SENSEGVIEW pcb_name.senseg_name
SENFLD pcb_name.senseg_name.senfld_name

►◄

Description

The following keyword parameters are defined for the COMMENT ON statement:

IS string_constant
Optional user comments. A 1 to 256 character string enclosed in single
quotation marks. The value cannot contain the following characters:
v Single quotation marks, except when they are used to enclose the full

comment string. The following examples show correct and incorrect usages
of single quotation marks:

CORRECT
IS ’These remarks apply to the XYZ application’

INCORRECT
IS ’These remarks apply to the ’XYZ’ application’

v Double quotation marks
v Less than (<) symbols
v Greater than (>) symbols
v Ampersands (&)

IN resource_name
Specifies the resource that the comment applies to. The resource can be a
database (DBD) or a program view (PSB). The name can be from 1 to 8
alphanumeric characters.

Omit the IN resource_name keyword for the following:
v COMMENT ON DATABASE database_name

v COMMENT ON PROGRAMVIEW psb_name

692 Application Programming APIs

|

|||||||||||||||||
|

|

|||||||||||||||||||||||||||

|

|

|||

|

|

|

|
|
|

|
|
|

|
|
|
|

|

|

|

|

|
|
|
|

|

|

|

DATABASE database_name
Identifies the database. The name can be from 1 to 8 alphanumeric characters.
Database resource must be previously defined.

PROGRAMVIEW psb_name
Identifies the PROGRAMVIEW or PSB. The name can be from 1 to 8
alphanumeric characters. PROGRAMVIEW must be previously defined.

COLUMN table_name.column_name
Identifies the column and table the column belongs to. The names can be from
1 to 128 alphanumeric characters. Column and table must be previously
defined.

COLUMN table_name.map_name.case_name.column_name
Identifies the alternative column mapping and map case the column belongs
to. The names can be from 1 to 128 alphanumeric characters. The table, map,
case, and column must be previously defined.

TABLE table_name
Identifies the table. The name can be from 1 to 128 alphanumeric characters.
Table must be previously defined.

TABLESPACE ts_name
Identifies the TABLESPACE. The name can be from 1 to 8 alphanumeric
characters. TABLESPACE must be previously defined.

LCHILD table_name.lchild_table_name
Identifies the logical child table name specified on a LCHILD statement. The
name can be from 1 to 128 alphanumeric characters. LCHILD table name and
the table it belongs to must be previously defined.

XDFLD table_name.child_table_name.xdfld_name
Identifies the indexed data field specified on a XDFLD statement. The name
can be from 1 to 26 alphanumeric characters. XDFLD name and the table it
belongs to must be previously defined.

MAP table_name.map_name
Identifies the map. The name can be from 1 to 128 alphanumeric characters.
The map and table names must be previously defined.

CASE table_name.map_name.case_name
Identifies the case. The name can be from 1 to 128 alphanumeric characters.
The case, map, and table names must be previously defined.

SCHEMA pcb_name
Identifies the PCB. The name can be from 1 to 8 alphanumeric characters. The
PCB name must be previously defined.

SENSEGVIEW pcb_name.senseg_name
Identifies the SENSEG. The name can be from 1 to 8 alphanumeric characters.
The SENSEG and PCB names must be previously defined.

SENFLD pcb_name.senseg_name.senfld_name
Identifies the SENFLD. The name can be from 1 to 8 alphanumeric characters.
The SENFLD, SENSEG, and PCB names must be previously defined.

Usage notes

Text that is submitted with this statement is stored in a REMARKS segment in the
IMS catalog definition for the resource. The REMARKS segment that pertains to a
resource or object is a direct child of that resource or object in the catalog.

Chapter 8. SQL programming reference 693

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|
|

Example

Example for specifying a comment on the database:
COMMENT ON DATABASE dhvntz02 IS ’This describes database DHVNTZ02.’

Example for specifying a comment on a table:
COMMENT ON TABLE root IN dhvntz02 IS ’This describes the root table.’

Example for specifying a comment on a tablespace:
COMMENT ON TABLESPACE hidam IN dhvntz02 IS ’Dataset Group 1’

CREATE DATABASE
The CREATE DATABASE statement defines a new database to IMS.

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.
v “PHIDAM syntax”
v “HDAM syntax” on page 695
v “HIDAM syntax” on page 695
v “PHDAM syntax” on page 696
v “GSAM syntax” on page 696
v “HISAM syntax” on page 697
v “SHISAM syntax” on page 697
v “DEDB syntax” on page 697
v “HSAM syntax” on page 697
v “SHSAM syntax” on page 698
v “LOGICAL syntax” on page 698
v “INDEX syntax” on page 698
v “PSINDEX syntax” on page 699
v “data capture changes syntax” on page 699
v “exit_attributes syntax” on page 699

PHIDAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

►

►

(1) OSAM
ACCESS PHIDAM

VSAM

'Cp1047'
CCSID 'encoding'

►

694 Application Programming APIs

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||
|

||
|

►
VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES
►

►
PSNAME psname

►

►
NONE

DATA CAPTURE CHANGES(data_capture_changes)

►◄

Notes:

1 If the ACCESS keyword is not specified, PHIDAM OSAM is the default
database access type. If a specific database access type is required, the user
must specify the ACCESS keyword followed by the access type.

HDAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

►

►
OSAM

ACCESS HDAM
VSAM 'Cp1047'

CCSID 'encoding'

►

►
VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES
►

►
RMNAME (mod)

RMANCH anch RMRBN rbn RMBYTES bytes

►

►
NONE

DATA CAPTURE CHANGES(data_capture_changes)

►◄

HIDAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

►

Chapter 8. SQL programming reference 695

||||||||||||||||||||||||||||||||
|

|
||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||
|
|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||||||||||||||||||
|

||
|

►
OSAM

ACCESS HIDAM
VSAM 'Cp1047'

CCSID 'encoding'

►

►
VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES
►

►
NONE

DATA CAPTURE CHANGES(data_capture_changes)

►◄

PHDAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

►

►
OSAM

ACCESS PHDAM
VSAM 'Cp1047'

CCSID 'encoding'

►

►
VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES
►

►
PSNAME psname

►

►
RMNAME (mod)

RMANCH anch RMRBN rbn RMBYTES bytes

►

►
NONE

DATA CAPTURE CHANGES(data_capture_changes)

►◄

GSAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

►

►
VSAM

ACCESS GSAM
BSAM 'Cp1047'

CCSID 'encoding'

►

►
VERSION 'version_identifier'

PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES
►◄

696 Application Programming APIs

||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||
|

|
||||||||||||
|

|
|||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||

|

HISAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

ACCESS HISAM ►

►
'Cp1047'

CCSID 'encoding'
VERSION 'version_identifier'

PASSWDNO

PASSWDYES
►

►
DATXEXITNO

DATXEXITYES NONE
DATA CAPTURE CHANGES(data_capture_changes)

►◄

SHISAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

ACCESS SHISAM ►

►
'Cp1047'

CCSID 'encoding'
VERSION 'version_identifier'

PASSWDNO

PASSWDYES
►

►
DATXEXITNO

DATXEXITYES NONE
DATA CAPTURE CHANGES(data_capture_changes)

►◄

DEDB syntax

►► CREATE DATABASE database_name
LIKE resource_name

ACCESS DEDB ►

►
'Cp1047'

CCSID 'encoding'
VERSION 'version_identifier'

►

►
XCINO

RMNAME(mod)
RMANCH anch XCIYES

►

►
NONE

DATA CAPTURE CHANGES(data_capture_changes)

►◄

HSAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

ACCESS HSAM ►

Chapter 8. SQL programming reference 697

|

||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||
|

|
||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|

|

||||||||||||||||||||||
|

||

►
'Cp1047'

CCSID 'encoding'
VERSION 'version_identifier'

►

►
DATXEXITNO

DATXEXITYES
►◄

SHSAM syntax

►► CREATE DATABASE database_name
LIKE resource_name

ACCESS SHSAM ►

►
'Cp1047'

CCSID 'encoding'
VERSION 'version_identifier'

►

►
DATXEXITNO

DATXEXITYES
►◄

LOGICAL syntax

►► CREATE DATABASE database_name
LIKE resource_name

ACCESS LOGICAL ►

►
'Cp1047'

CCSID 'encoding'
VERSION 'version_identifier'

►◄

INDEX syntax

►► CREATE DATABASE database_name
LIKE resource_name

►

►
VSAM

ACCESS INDEX
SHISAM 'Cp1047'

CCSID 'encoding'

►

►
VERSION 'version_identifier'

DOSCOMPNO

DOSCOMPYES

PROTYES

PROTNO
►

►
PASSWDNO

PASSWDYES

DATXEXITNO

DATXEXITYES

FPINDEXNO

FPINDEXYES
►◄

698 Application Programming APIs

|
|
||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|

||||||||||||||||||||||
|

|
||||||||||||||||||||||||||
|

|
|||||||||||||||

|

|

||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||

|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||||

|

PSINDEX syntax

►► CREATE DATABASE database_name
LIKE resource_name

PASSWDNO

PASSWDYES
►

►
DATXEXITNO

DATXEXITYES
ACCESS PSINDEX

'Cp1047'
CCSID 'encoding'

►

►
VERSION 'version_identifier'

PROTYES

PROTNO
►◄

data capture changes syntax

►►

▼

LOG
exit_attributes

NOLOG
,

NOLOG
exitname exit_attributes

LOG

►◄

exit_attributes syntax

►►
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

(1) BEFORE

NOBEFORE
►

►
DLET

NODLET

NOSSPCMD

SSPCMD

NOFLD

FLD
►

►
CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

►◄

Notes:

1 BEFORE, NOBEFORE, DLET, NODLET, SSPCMD, NOSSPCMD, FLD, and
NOFLD are for DEDB only.

Description

The following keyword parameters are defined for the CREATE DATABASE
statement:

database_name

Specifies the name of the database being described. The name can be from 1 to
8 alphanumeric characters. Do not give a database the same name as an
existing database or program view.
If a resource already exists with the database name, a -9002 error message is
returned.

Chapter 8. SQL programming reference 699

|

||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||

|

|

||

|

|

||
|

|
|||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||

|

|

||
|

|

|
|

|

|
|
|
|
|

ACCESS

Specifies the DL/I access method and the operating system access method to
be used for this database. This keyword also defines the secondary index
database as a HALDB. The different access methods are:

HSAM
Hierarchical sequential access method (HSAM). When HSAM is specified,
and only one segment type is defined in the HSAM database, this
parameter defaults to SHSAM.

SHSAM
Simple HSAM database that contains only one fixed-length segment type.
When a simple HSAM database is defined, no prefix is required in
occurrences of the segment type to enable IMS to process the database.

GSAM
Generalized sequential access method (GSAM). BSAM or VSAM can be
specified as the operating system access method. VSAM is the default.
When GSAM is specified, physical segments are not allowed in the DBD.

HISAM
Hierarchical index sequential access method (HISAM). IMS creates a
HISAM database with a VSAM operating system access method.

SHISAM
Simple HISAM database that contains only one fixed-length segment type.
IMS creates a SHISAM database with a VSAM operating system access
method. When a simple HISAM database is defined, no prefix is required
in occurrences of the segment type to enable IMS to process the database.

HDAM
Hierarchical direct access method (HDAM). OSAM or VSAM can be
specified as the operating system access method. OSAM is the default.

PHDAM
Partitioned hierarchical direct access method (PHDAM). OSAM or VSAM
can be specified as the operating system access method. OSAM is the
default.

HIDAM
Hierarchical indexed direct access method (HIDAM). OSAM or VSAM can
be specified as the operating system access method. OSAM is the default.

PHIDAM
Partitioned hierarchical indexed direct access method (PHIDAM) is the
default access method. OSAM or VSAM can be specified as the operating
system access method. OSAM is the default.

DEDB
Data entry database (DEDB).

INDEX
Creates the primary index to occurrences of the root segment type in a
HIDAM database, or creates a secondary index to a segment type in a
HISAM, HDAM, or HIDAM database. For the primary or secondary index
to a HIDAM database, VSAM must be specified as the operating system
access method.

The INDEX parameter is also used to create a secondary index for a DEDB
database. In such a case, VSAM and SHISAM are both valid operating
system access types.

700 Application Programming APIs

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

The INDEX parameter is not used to define the primary index of a
PHIDAM database.

PSINDEX
Creates the partitioned secondary index to a segment type in PHDAM and
PHIDAM databases. A PSINDEX is created with a VSAM operating system
access method.

LOGICAL
A logical database comprises logical concatenations of some or all of one or
more physical databases. Logical databases must reference existing physical
databases.

CCSID 'encoding'
An optional 1- to 25-character field that specifies the default encoding of all
character data in this database.

The default code page is Cp1047, which specifies EBCDIC encoding.

This value cannot contain the following characters:
v Single or double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

This value can be overridden in individual tables or columns.

DATA CAPTURE
When DATA CAPTURE is specified on the CREATE DATABASE statement,
these options apply to all tables within the physical database. If you specify
this parameter in the CREATE or ALTER TABLE statement, it overrides the
specification for this statement.

The following physical databases support DATA CAPTURE:
v HISAM
v SHISAM
v HDAM
v PHDAM
v HIDAM
v PHIDAM
v DEDB

NONE
Indicates no data capture options.

CHANGES
You can specify any number of exit routines, each with its own set of
change options. If you do not provide an exit routine, they can only
specify 1 set of change options for logging. This method is equivalent to
specifying an asterisk (*) in place of an exit routine name on the EXIT=
parameter in a DBD macro statement. Each set is separated by a comma.
NOCASCADE is mutually exclusive with any combination of the C* (for
example, CKEY) options.

The following options are valid for DATA CAPTURE CHANGES:

BEFORE | NOBEFORE
Before data is included in X'99' log records for REPL calls. BEFORE is
the default. This attribute is valid only for DEDB.

Chapter 8. SQL programming reference 701

|
|

|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

CDATA | CNODATA
Passes segment data to the exit routine for a cascade delete. CDATA
also identifies the segment being deleted when the physical
concatenated key is unable to do so. This attribute is mutually
exclusive with NOCASCADE.

CKEY | CNOKEY
Passes the physical concatenated key to the exit. This key identifies the
segment being deleted by a cascade delete. This attribute is mutually
exclusive with NOCASCADE.

CNOPATH | CPATH
Indicates the exit routine does not require segment data in the physical
root's hierarchical path. Use CNODATA to eliminate the substantial
amount of path data needed for a cascade delete. This attribute is
mutually exclusive with NOCASCADE.

DATA | NODATA
DATA specifies that the physical table data is passed to the exit routine
for updating. When DATA is specified and an EDITPROC exit routine
is also used on a table, the data passed is expanded data. DATA is the
default.

DLET | NODLET
X'99' log records are written for DLET calls. DLET is the default. This
attribute is valid only for DEDB.

exitname
Specifies the name of the exit routine that processes the data. The name
must match the name of a Data Capture exit routine as defined by the
user to IMS. A maximum of 8 alphanumeric characters is allowed.

KEY | NOKEY
KEY specifies the exit routine is passed the physical concatenated key.
This key identifies the physical table updated by the application. KEY
is the default.

NOCASCADE
Indicates the exit routine is not called when DL/I deletes this segment.
Cascade delete is not necessary when a segment without dependents is
deleted.

NOFLD | FLD
The FLD option requests that updates made by a DEDB FLD call be
captured. This option is valid only for a DEDB, and this information is
logged only in the X'9904' log records if the option log is specified.
This information is not passed to the data capture exit. This attribute is
valid only for DEDB.

NOINPOS | INPOS
The INPOS option requests that twin data be passed when an ISRT is
done for an unkeyed or non-unique keyed segment when an insert
rule of HERE is used and the F or L command code is not used. The
twin data IMS is positioned on at the time before the ISRT will be
captured.

NOLOG | LOG
The LOG option requests that the data capture control blocks and data
be written to the IMS system log.

702 Application Programming APIs

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

NOPATH | PATH
NOPATH indicates the exit routine does not require data from tables in
the physical root's hierarchical path. NOPATH is an efficient way to
avoid the processing time needed to retrieve path data. NOPATH is the
default.

PATH can be specified when the data from each segment in the
physical root's hierarchical path must be passed to the exit routine for
an updated segment. Use PATH to allow an application to separately
access several segments for insertion, replacement, or deletion.

You can use the PATH option when information from tables in the
path is needed to compose the DB2® for z/OS primary key. The DB2
for z/OS primary key would then be used in a propagation request for
a dependent table update. Typically, you need this kind of table
information when the parent contains the key information and the
dependent contains additional data that would not fit in the parent
table.

You can also use PATH when additional processing is necessary. It
could be that you are not accessing several tables with one call; for
example, you did not invoke the D command code. In this case,
additional processing is necessary if the application is to access each
table with a separate call.

NOSSPCMD | SSPCMD
The SSPCMD option requests that DEDB subset pointer command
codes are captured. This option is valid for DEDBs only.

DATXEXITNO | DATXEXITYES

Allows the Data Conversion user exit routine (DFSDBUX1) to be used by an
application while it is processing this database. The default is DATXEXITNO.

If DATXEXITYES is specified, the user exit DFSDBUX1 is called at the
beginning and at the end of each database call. If DFSDBUX1 is not loaded,
IMODULE is called to load it.

If DATXEXITNO is specified, the DFSDBUX1 user exit routine can be called,
provided DFSDBUX1 is located in the SDFSRESL. If DFSDBUX1 does not need
to be called again for the database definition, X'FF' is returned in the
SRCHFLAG field in the JCB, and DFSDLA00 dynamically marks the database
definition as not requiring the exit. In this case, the user exit is not called again
for that database definition for the duration of the IMS session, unless the
DMB is purged from the DMB pool.

DOSCOMPNO | DOSCOMPYES
Indicates if this is a DLI/DOS index database. Must be specified if the
database is an index, and it was created using DLI/DOS. DLI/DOS index
databases contain a segment code as part of the prefix. Specifying that a
database is a DLI/DOS index database causes IMS to expect this code to be
present in the defined database, and to process in a way that preserves this
code. This includes providing a segment code for new segments being inserted.
DLI/DOS databases must use VSAM and cannot be PHDAM, PHIDAM, or
PSINDEX databases.

FPINDEXNO | FPINDEXYES
Specifies whether an index database is a secondary index for a primary Fast
Path DEDB database. By default, an index database is not a secondary index.

Chapter 8. SQL programming reference 703

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

LIKE resource_name
Specifies the name of a model resource to base the new resource on.

PASSWDNO | PASSWDYES
Specifying PASSWDYES causes DL/I to use the database name as the VSAM
password when opening any data set for this database. This parameter is only
valid for databases that use VSAM as the access method. You cannot use the
database name as the password for the LOGICAL or DEDB database types.
When the user defines the VSAM data sets for this database using the DEFINE
statement of z/OS Access Method Services, the control level (CONTROLPW)
or master level (MASTERPW) password must be the same as the DBDNAME
for this DBD. All data sets associated with this DBD must use the same
password.

For the IMS DB/DC system, all VSAM OPENs bypass password checking and
thus avoid operator password prompting. For the IMS DB system, VSAM
password checking is performed. In the batch environment, operator password
prompting occurs if automatic password protection is not specified, and the
data set is password protected at the control level (CONTROLPW) with
passwords not equal to the database name.

Specifying PASSWDNO indicates that the database name should not be used
as the VSAM password. This is the default behavior.

PROTYES | PROTNO

Specifies if a secondary index database uses index pointer protection. This
optional parameter ensures the integrity of all fields in index pointer segments
that are used by IMS. Use of this parameter prevents an application program
from doing a replace operation on any field within an index pointer segment
except for fields within the user data portion of index pointer segments. Delete
operations are still enabled for index pointer segments. If a delete is issued for
an index pointer segment, the index target segment pointer in the index
pointer segment is deleted. However, the index source segment that caused the
index pointer segment to be created originally is not deleted.

If index pointer protection is not used, an application program can replace all
fields within an index pointer segment except the constant, search, and
subsequence fields. Inserts to an index database are invalid under all
conditions.

By default, a secondary index database uses index pointer protection.

PSNAME psname
Specifies the module that selects the HALDB partition for PSINDEX, PHDAM,
or PHIDAM databases. The parameter is a HALDB partition selection exit
routine module name. This parameter is only valid when the access type for
the database is PSINDEX, PHDAM, or PHIDAM.

Exception: A user-provided HALDB partition selection routine is not needed if
root key ranges define HALDB partition membership.

RMNAME mod
Specifies a module name that is used to manage the data that is stored in a
DEDB or in the primary data set group of an HDAM or PHDAM database.
This parameter is only valid when the database access type is HDAM,
PHDAM, or DEDB. A randomizing module controls root segment placement in
or retrieval from the DEDB, HDAM, or PHDAM database. One or more
modules, called randomizing modules, can be utilized within the IMS system.
A particular database has only one randomizing module associated with it. A

704 Application Programming APIs

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

generalized module, which uses user-supplied parameters to perform
randomizing for a particular database, can be written to service several
databases. The purpose of a randomizing module is to convert a value
supplied by an application program for root segment placement in, or retrieval
from, a DEDB, HDAM, or PHDAM database into a relative block number and
anchor point number. You can randomize within an area by selecting a
two-stage randomizer. When you select a two-stage randomizer, the number of
root anchor points in an area can be changed without having to stop all areas
in the DEDB with the /DBRECOVERY command.

For PHDAM databases, the randomizer module names and values become the
default for each partition. You can set a different randomizer name and values
for each partition during HALDB partition definition. HALDB partition
selection is done prior to invoking the randomizing module. The randomizing
module selects locations only within a partition.

The module name is the 1- to 8-character alphanumeric name of a
user-supplied randomizing module that is used to store and access segments in
this DEDB, PHDAM, or HDAM database. Select a two-stage randomizer by
specifying the randomizer name in the module name parameter and 2 in the
anchor point parameter.

RMANCH anch
The purpose of the anch value is different depending on whether you are
defining a Fast Path DEDB database or a full-function HDAM or PHDAM
database.

This parameter must be an unsigned decimal integer. The default value of this
parameter is one.

For a DEDB database, the value of anch specifies the type of randomizer. A
value of 1 indicates a single-stage randomizer. A value of 2 indicates a
two-stage randomizer. Any other value is invalid.

For HDAM and PHDAM databases, the value of anch specifies the number of
root anchor points desired in each control interval or block in the root
addressable area of the HDAM or PHDAM database. Typical values are from 1
to 5 and the value cannot exceed 255.

When accessing a HDAM or PHDAM database, if a user randomizing routine
produces an anchor point number greater than the number specified for this
parameter, the highest-numbered anchor point in the control interval or block
is used. When a randomizing routine produces an IMS anchor point number of
zero, IMS uses anchor point one in the control interval or block.

RMRBN rbn
Specifies the maximum relative block number value that you want to allow a
randomizing module to produce for this database. This parameter is for
HDAM or PHDAM databases only. This value determines the number of
control intervals or blocks in the root addressable area of an HDAM or
PHDAM database. This parameter must be an unsigned decimal integer whose
value does not exceed 224-1. If this parameter is omitted, no upper limit check
is performed on the relative block number created by the randomizing module.
If this parameter is specified, but the specified randomizing module produces
an relative block number greater than this parameter, the highest control
interval or block in the root addressable area is used by IMS. If a user
randomizing module produces a block number of zero, the control interval or
block one is used by IMS.

Chapter 8. SQL programming reference 705

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

In an HDAM or PHDAM data set, the first bit map is in the first block of the
first extent of the data set. In an HDAM or PHDAM database, the first control
interval or block of the first extent of the data set specified for each data set
group is used for a bit map. In a VSAM data set, the second control interval is
used for the bit map and the first control interval is reserved. IMS adds one to
the block calculated by the randomizer.

RMBYTES bytes
Specifies the maximum number of bytes of database record that can be stored
into the root addressable area in a series of inserts unbroken by a call to
another database record. This parameter is for HDAM and PHDAM databases
only. If this parameter is omitted, no limit is placed on the maximum number
of bytes of a database record that can be inserted into this database's root
segment addressable area. The bytes parameter must be an unsigned decimal
integer whose value does not exceed 224-1. When the maximum relative block
number parameter is omitted, this parameter is ignored. In this case, there is
no limit on the number of bytes of a database record that can be inserted into
the root addressable area.

If this parameter is specified for an HDAM or PHDAM database and the
length of the database record is larger, the remainder of the record is inserted
into the overflow area following the current end-of-file (EOF). This operation
requires that enough space be available after the current EOF to contain the
remainder of all database records that exceed the value of this parameter. If
sufficient space is not available in the overflow area following the current EOF,
the database records are inserted randomly in the database.

XCINO | XCIYES
Specifies whether this DEDB uses the Extended Call Interface when making
calls to the randomizer. This option allows the randomizer to be called in three
different ways. On initialization of IMS or during a /START DB command,
IMS will first load the randomizer and then make an INIT call to the
randomizer to invoke its initialization routines. During a /DBR DB command,
IMS will make a TERM call to the randomizer to invoke the termination
routines before unloading the randomizer. The normal randomizing call to the
randomizer is made when the application issues a GU or ISRT call on a root
segment. The XCI option is only valid for DEDBs.

VERSION 'version_identifier'
Specifies an identification string. You can use this as a comment descriptor for
your database changes.

Usage notes

Defining a database with the default options (with a CREATE DATABASE
database_name statement and no other parameters) creates a PHIDAM database
with the OSAM dataset access type. You can also explicitly specify that a PHIDAM
database uses either the VSAM or OSAM dataset access type by including either
keyword in the CREATE statement: CREATE DATABASE database_name ACCESS
PHIDAM OSAM or CREATE DATABASE database_name ACCESS PHIDAM VSAM

Notes on data versioning

On a CREATE DATABASE statement, the database version number (DBVER) is
always 0. CREATE defines a new database to IMS, and 0 is always the base
version. All CREATE and ALTER statements under the same DDL stream (before
an activate command) will work with version 0.

706 Application Programming APIs

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

All dummy PSBs that are automatically generated will by default refer to the
current version which is version 0. You can optionally issue CREATE
SENSEGVIEW to create PSBs manually, and specify “DBVER 0” on the PCBs to
lock them at version 0. You cannot specify higher version numbers because only
version 0 will exist in this stream. You can also optionally specify a “DBLEVEL
CURR | BASE” setting. Be aware that if a PSB that references version 0 is
activated, but database versioning is not enabled, IMS rejects application call from
that PSB.

Example: Full Function Database

The following input can be used to specify DATA CAPTURE CHANGES keywords
without a data capture exit. This indicates to IMS that the user only wants logging.

DBD source equivalent:
DBD NAME=DHVNTZ02,ACCESS=(PHIDAM,OSAM), X

EXIT=((*,KEY,DATA,NOPATH,(CASCADE,KEY,DATA,NOPATH), X
LOG))

DDL equivalent:
CREATE DATABASE DHVNTZ02

DATA CAPTURE CHANGES(
LOG KEY DATA NOPATH CKEY CDATA CNOPATH
)

The following input can be used to specifying DATA CAPTURE CHANGES
keywords with multiple data capture exit.

DBD source equivalent:
DBD NAME=DHVNTZ02,ACCESS=(PHIDAM,OSAM), X

EXIT=((EXIT1A,(CASCADE,KEY,DATA,PATH), X
KEY,DATA,PATH,NOLOG), X
(EXIT1B,NOKEY,NOPATH,NOLOG,(CASCADE,NOKEY,DATA,NOPATH)),X
(EXIT1C,(CASCADE,NOKEY,NODATA,NOPATH), X
NOKEY,DATA,PATH,NOLOG), X
(EXIT1D,KEY,NODATA,PATH,NOLOG, X
(CASCADE,NOKEY,NODATA,PATH)))

DDL equivalent:
CREATE DATABASE DHVNTZ02

DATA CAPTURE CHANGES(
EXIT1A NOLOG KEY DATA PATH CKEY CDATA CPATH,
EXIT1B NOLOG NOKEY NOPATH CNOKEY CDATA CNOPATH,
EXIT1C NOLOG NOKEY DATA PATH CNOKEY CNODATA CNOPATH,
EXIT1D NOLOG KEY NODATA PATH CNOKEY CNODATA CPATH
)

The following input to the DBD generation utility creates a basic full function
database:
DBD NAME=COGDBD, C

ENCODING=Cp1047, C
ACCESS=(HDAM,OSAM), C
RMNAME=(DFSHDC40,3,3,25), C
PASSWD=NO, C
VERSION='Latest version of COGDBD'

The same database can be created with the following CREATE DATABASE
statement:

Chapter 8. SQL programming reference 707

|
|
|
|
|
|
|
|

|

|
|

|

|
|
|

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

CREATE DATABASE COGDBD
ACCESS HDAM OSAM
RMNAME(DFSHDC40 RMANCH 3 RMRBN 3 RMBYTES 25)
VERSION 'Latest version of COGDBD'
CCSID ’Cp1047’;

Example: Fast Path Data Entry Database (DEDB)

Similarly to the previous example, the following input can be submitted to the
DBD generation utility to create a DEDB:
DBD NAME=HOSPDBD1, C

ENCODING=Cp1047, C
ACCESS=(DEDB), C
RMNAME=(RMOD3,1,,,XCI) C
PASSWD=NO

An equivalent database can be created with the CREATE DATABASE statement:
CREATE DATABASE HOSPDBD1

ACCESS DEDB
RMNAME(RMOD3 RMANCH 1 XCIYES)
CCSID ’Cp1047’;

CREATE PROGRAMVIEW
Before running an application program under IMS, an application
PROGRAMVIEW must be created to describe how the program can use logical
terminals and logical data structures. A PROGRAMVIEW is known as a program
specification block (PSB) to IMS. The CREATE PROGRAMVIEW statement creates
a PSB, which is an IMS specific resource.

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS JDBC drivers. It is an executable statement that
cannot be dynamically prepared. CREATE SENSEGVIEW and CREATE SCHEMA
statements are required for the CREATE PROGRAMVIEW statement.
v “CREATE PROGRAMVIEW syntax”
v “alternate_schema_statement syntax” on page 709
v “DB_schema_statement syntax” on page 709
v “GSAM_schema_statement syntax” on page 709
v “sch_procopt syntax” on page 710
v “ssview_statement syntax” on page 710
v “sf_statement syntax” on page 711
v “ssv_procopt syntax” on page 711

CREATE PROGRAMVIEW syntax

►► CREATE PROGRAMVIEW psb_name
CREATE SCHEMA pcb_name A CREATE SCHEMA TP pcbname B

►

►
DBLEVELCURR
DBLEVELBASE

CMPATNO

CMPATYES

GSROLBOKNO

GSROLBOKYES

OLICNO

OLICYES LOCKMAX n IOASIZE n MAXQ n
►

708 Application Programming APIs

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|

|

|

|

|

|

|

|

|

||||||||||||||||||||||||||||||||||
|

|
||
|

||
|

►
SSASIZE n LANGASSEM

LANGCOBOL
LANGPLI
LANGPASCAL
LANGJAVA

WTORNO
IOEROPN n

WTORYES

►◄

alternate_schema_statement syntax

►► CREATE SCHEMA TP pcbname
(1)

USING lterm_name
transaction_code

►

►
AS external_name

SAMETRMNO

SAMETRMYES

MODIFYNO

MODIFYYES

EXPRESSNO

EXPRESSYES
►

►
LISTYES

LISTNO

ALTRESPNO

ALTRESPYES
►◄

Notes:

1 The lterm_name or transaction_code is required except when MODIFYYES is
specified.

DB_schema_statement syntax

►►
DB

CREATE SCHEMA pcb_name USING database_name ►

►
AS external_name

▼

,

(ssview_statement) ►

►
PROCOPT A

PROCOPT sch_procopt DBVER n COPIES n

LISTYES

LISTNO
►

►
POSSNGL

POSMULT

SBNO

SBCOND DEDBVIEW
MSDBVIEW

PROCSEQ ff_index
►◄

GSAM_schema_statement syntax

►► CREATE SCHEMA GSAM pcb_name USING database_name ►

Chapter 8. SQL programming reference 709

||

|

|

||||||||||||||||||||||||||
|

|
||
|

|
|||||||||||||||||||||||||

|

|

||
|

|

||||||||||||||||||
|

|
||||||||||||||||||||||||||
|

|
|||
|

|
||

|

|

|||||||||||||||
|

||
|

►
AS external_name

PROCOPT G
S

L
S

LISTYES

LISTNO
►◄

sch_procopt syntax

►►
A
a
b
GO
GOP
GON
GONH
GONP
GOT
GOTH
GOTP

L
P
S

P

►◄

a:

A
E P H

b:

G
S E P H

I
E P H

R
E P H

D
E P H

ssview_statement syntax

►► CREATE SENSEGVIEW senseg_name

▼

,

(sf_statement)

►

►
WITH

with_options

►◄

710 Application Programming APIs

|||

|

|

|||

|

|

|||||||||||||||||||||||||

|

|

|||

|

|

||||||||||||||||||||||||||||
|

|
|||||||||||||||||||

|

with_options:

▼ ▼

PROCOPT ssv_procopt , ,
R

INDICES(list) SSPTR(n)
U

►

►
REFERENCES table_name

sf_statement syntax

►► sf_name WITH START (n)
REPLYES

REPLNO
►◄

ssv_procopt syntax

►► G
I

E P
R
D
A

E P
K

►◄

Keyword parameters for CREATE PROGRAMVIEW

The following keywords parameters can be specified in the CREATE
PROGRAMVIEW statement:

psb_name
Specifies the name of the program view. A program view is equivalent to a
PSB in IMS. The name must not be the same as that of a database or PSB that
exists in the catalog.

DBLEVELCURR | DBLEVELBASE
When database versioning is enabled, specifies the version of the database
definition that is used to return data to application programs that do not
request a specific database version. For all application programs that use this
program specification, the value that is specified here overrides the system
default for the DBLEVEL parameter that is specified in the DFSDFxxx member
of the IMS.PROCLIB data set.

DBLEVELCURR specifies that applications receive data according to the latest
version of the database definition.

DBLEVELBASE specifies that applications receive data according to version 0
of the database definition.

Regardless of the default version of the database specification that is used,
applications can request to use a specific version of the database specification
when the program is scheduled.

CMPATNO | CMPATYES
Provides compatibility between BMP or MSG and Batch-DL/I parameter lists.

Chapter 8. SQL programming reference 711

|

||
|

|
||||||||||||||

|

|

|||||||||||||||||||||||

|

|

||

|

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

If set to YES, this PSB is always treated as if there were an I/O PCB, no matter
how it is used. If set to NO, the PSB has an I/O PCB added only for BMP or
MSG regions. The default is NO.

GSROLBOKNO | GSROLBOKYES
Controls whether an internal ROLB call should be done to roll back non-GSAM
database updates when:
v The application is a non-message-driven BMP.
v The PSB contains a PCB for a GSAM database.
v Db2® for z/OS reports a deadlock either on a thread create or on an SQL

call.

YES means that the internal ROLB call is done and that the SQL code
regarding the deadlock is returned to the application program. NO means that
a user abend 777 occurs instead of the ROLB call. The default is NO.

OLICNO | OLICYES
Indicates whether the user of this PSB is authorized to execute the Online
Database Image Copy utility or the Surveyor utility feature that runs as a BMP
against a database named in this PSB. YES allows the Online Image Copy and
the Surveyor utility feature; NO prohibits the Online Image Copy and the
Surveyor utility feature. NO is the default. This parameter is invalid if any
database PCB (a PCB with DB specified for the TYPE parameter) in the PSB
specifies the L or LS processing options.

Exception: This parameter is not applicable to CICS, GSAM, HSAM, MSDB, or
DEDB databases.

LOCKMAX n
Indicates the maximum number of locks an application program can get at one
time. n is a numeric value 0 - 255. n is specified in units of 1000. For example,
a specification of LOCKMAX=5 indicates a maximum of 5000 locks at one
time.

The default value is 0, which indicates that there is no maximum number of
locks that are allowed at one time.

If an application program runs for an extended time without committing, the
locking done by IMS of database records and changes can accumulate. You can
use the LOCKMAX parameter to prevent a single application program from
consuming all locking storage and causing other programs to abend.

You can override the LOCKMAX value that is specified at program execution
by specifying LOCKMAX=0 (to turn off limit completely) or by specifying
LOCKMAX=1 to 32767 on the dependent region (BMP, MPP, or IFP) or Batch
(DBB or DLI). The value is in units of 1000. You can use this method to exceed
the maximum value of 255 that can be specified on the LOCKMAX parameter.

IOASIZE n
Specifies the size (in bytes) of the largest I/O area used by the application
program. The size specification is used to determine the amount of main
storage reserved in the PSB pool to hold the control region copy of the user
I/O area data during scheduling of this application program. If you do not
specify this value, the IMS calculates a maximum default I/O area size. The
default size is the total length of all of the sensitive segments in the longest
possible path call. (The total length of the segment must be used, even if the
application program is not sensitive to all fields in a segment.) The value
specified is in bytes, with a maximum of 256000. However, the combined

712 Application Programming APIs

|
|
|

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

length of all concatenated segments to be returned to the application on a
single path call must not exceed 65535 bytes.

If the PSB contains any field-sensitive segments, and IOASIZE is specified, the
specified value is used only if it is larger than the IOASIZE calculated by the
ACBGEN utility. The value of the IOASIZE that will be used is indicated. The
major components of this pool requirement are IOASIZE and SSASIZE.

If STAT calls or the test program (DFSDDLT0) are used with this PSB, IOASIZE
must be greater than 600 bytes.

If CMD or GCMD calls (from automated operator interface application
programs) are used with this PSB, IOASIZE must be at least 132 bytes.

If extended checkpoint/restart is used, IOASIZE must be set to a value equal
to or greater than the larger of the following:
v I/O area needed to receive data from a GU call issued during restart, while

repositioning DL/I databases that have a previous checkpoint (if this PSB
contains any).

v Largest LRECL used in a GSAM data set that has a previous checkpoint.

Either the value pointed to by the third parameter (I/O AREA LEN) of the
XRST CALL or the value of this parameter will be used, depending on which
value is larger.

MAXQ n
Is the maximum number of database calls with Qx command codes that can be
issued between synchronization points. The maximum number is 32,767. The
default value is zero.

SSASIZE n
Specifies the maximum total length of all SSAs used by the application
program. IMS uses the size specification to determine the amount of main
storage that is reserved in the PSB work pool to hold a copy of the user's SSA
strings during execution of this application program. If you do not specify this
value, IMS calculates a maximum SSA size to be used as a default. The size
that is calculated is the maximum number of levels in any PCB within this PSB
multiplied by 280. The value that is specified is in bytes, with a maximum of
256000.

Restriction: When you run IMS under CICS without DBCTL, the PSB work
pool requirement cannot exceed 64 KB.

The major components of this pool requirement are IOASIZE and SSASIZE.

Important: For Fast Path secondary index calls, an SSASIZE workarea holds
the converted SSAs that accommodate the additional storage from SUBSEQ
fields and number of qualifications. When a DL/I call is initiated, the
converted SSAs are passed into the full-function database.

The default SSASIZE is specified as the default SSA size defined during
ACBGEN plus 840 bytes.

If you specify an SSASIZE or if you use the default and the SSASIZE is not
large enough, an AU status code is issued. To correct this problem, specify a
larger SSASIZE in the PSB and rerun PSBGEN and ACBGEN to resolve the
problem.

LANGASSEM | LANGCOBOL | LANGPLI | LANGPASCAL | LANGJAVA
An optional keyword that indicates the compiler language in which the

Chapter 8. SQL programming reference 713

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|

|
|

message processing or batch processing program is written. If you specify
OLICYES, LANGPLI is invalid. If your application program is written in C
language, specify LANGASSEM.

CICS and the Language Environment for z/OS do not support LANGPASCAL.

You must specify LANGJAVA if the application is using the Java⌂ class
libraries for IMS in a JMP region.

If you are using IMS PL/I applications that run in a compatibility mode using
the PLICALLA entry point, you must specify LANGPLI.

IOEROPN n
Is applicable only in batch-type regions (DLI or DBB). This parameter is not
valid for CICS. The n subparameter is the condition code returned to the
operating system when IMS terminates normally and one or more input or
output errors occurred on any database during the application program
execution. The n subparameter is a number from 0 to 4095.

If n=451, IMS terminates with a U451 abend instead of passing a condition
code to the operating system. If n=451 and the IMS or the application program
abends with an abend other than U451, and an I/O error has also occurred, a
write-to-programmer of message DFS0426I is issued. This message indicates
that an I/O error has occurred during execution and that a U451 abend has
occurred if the actual abend has not.

If n=451, IMS terminates with abend U0451, even if the operator responds CONT
to the DFS0451A message.

By using the IOEROPN parameter, you can set a unique JCL condition code
when an I/O error occurs and test the condition code in subsequent job steps.
If you do not specify this parameter, the return code passed from the
application program is passed to the operating system and status codes and
console messages are the only indications of database I/O errors.

WTORNO | WTORYES
If you specify WTORYES, a WTOR for the DFS0451A I/O error message is
issued, and DL/I waits for the operator to respond before continuing. If you
respond ABEND, IMS terminates with a U0451 abend. If you respond CONT
IMS continues. Any other response causes the DFS0451A message to be
reissued.

If you specify WTORYES or WTORNO, you must also specify IOEROPN.

Keyword parameters for CREATE SCHEMA

The following keyword parameters are defined for the CREATE SCHEMA
statement:

ALTRESPNO | ALTRESPYES
Specifies whether this alternate schema can be used instead of the I/O PCB for
responding to terminals in response mode, conversational mode, or exclusive
mode. Valid only for alternate schemas (TP PCBs). The default is ALTRESPNO.

EXPRESSNO | EXPRESSYES
Specifies whether messages from this alternate schema are to be sent or are to
be backed out if the application program should abend. Valid only for alternate
schemas (TP PCBs). The default is EXPRESSNO.

EXPRESSYES, when specified indicates that messages can be sent to the
destination terminal even though the program abends or issues a ROLL or
ROLB call. For all PCBs (express or non-express) under these conditions,

714 Application Programming APIs

|
|
|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

messages that are inserted but not made available for transmission are
canceled, while messages made available for transmission are never canceled.

For a non-express PCB, the message is not available for transmission to its
destination until the program reaches a sync (commit) point. The sync point
occurs when the program terminates, issues a CHKP call, or requests the next
input message (if the transaction is defined with MODE=SNGL).

For an express PCB, the message is available for transmission to the
destination when IMS knows it has the complete message. The message is
available when a PURG call is made using that PCB, or when the program
requests the next input message.

When the PSB is defined as a Fast Path application in the IMS system
definition, EXPRESSYES, if specified, is ignored at execution time for a
response alternate PCB.

EXPRESSNO, when specified indicates that messages are backed out if the
application program abends.

MODIFYNO | MODIFYYES
Specifies whether the alternate schema is modifiable. This feature allows for
the dynamic modification of the destination name that is associated with this
schema. If MODIFYYES is specified, omit the USING clause. Valid only for
alternate schemas (TP PCBs). The default is MODIFYNO.

SAMETRMNO | SAMETRMYES
Specifies whether IMS verifies that the logical terminal that is named in the
response alternate schema is assigned to the same physical terminal as the
logical terminal that originated the input message. You must specify
SAMETRMYES for response alternate schemas that are used by conversational
programs and programs operating with terminals in response mode. Specify
SAMETRMNO if alternate response schemas are used to send messages to
output-only devices that are in exclusive mode. Valid only for alternate
schemas (TP PCBs). The default is SAMETRMNO.

DBVER n
When database versioning is enabled, specifies the version number of the
database definition (DBD) that this application program requires.

The numeric value specified must match a version number defined on the
DBD and stored in the IMS catalog. Valid values for a database version
number are 0 to 2147483647.

If multiple PCBs within a PSB refer to the same database, each PCB must
specify the same DBD version number.

LISTYES | LISTNO
Specifies whether the named PCB is included in the PCB list passed to the
application program at entry. Specify YES to include a named PCB in the PCB
list. Specify NO to exclude a named PCB from the PCB list. YES is the default.

To exclude a PCB from the PCB list, you must assign the PCB a name with
either the label or PCBNAME= parameter. You can specify LIST=NO if an
application program does not need a PCB's address.

POSSNGL | POSMULT
Specifies single or multiple positioning for the logical data structure. Single or
multiple positioning provides a functional variation in the call.

The performance variation between single and multiple positioning is
insignificant. HSAM does not support multiple positioning.

Chapter 8. SQL programming reference 715

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|

POS=SINGLE or S is the default.

Exception: For DEDBs having more than two dependent segments, the default
is POS=MULTPLE or M.

Coding a POS value on the PCB statement for a DEDB will not override the
default that is selected based on the number of dependent segments.

SBNO | SBCON
Specifies which PCBs will be buffered using sequential buffering (SB). This is
an optional parameter. The default is SB=NO, unless the default option has
been modified for Batch and BMPs by the DFSSBUX0 to SB=COND.

COND
Specifies that SB should be activated conditionally. IMS will monitor
statistics about the I/O reference pattern of this PCB to the DB data
set. If IMS detects a sequential I/O reference pattern and a reasonable
activity rate, it will activate SB and acquire the required buffers.

NO Specifies that SB should not be used for this DB PCB.

Tip: For short-running MPPs, Fast Path programs, and CICS programs, either
omit the SB= keyword or specify SB=NO.

DEDBVIEW | MSDBVIEW
Is used to specify the MSDB commit view. Your existing applications can use
either MSDB commit view or the default DEDB commit view. To use the
MSDB commit view for DEDBs, specify VIEW=MSDB on the statement. If you
do not specify VIEW=MSDB, the DEDB will use the DEDB commit view. No
changes to any existing application programs are required to migrate your
MSDBs to DEDBs.

If you issue a REPL call with a PCB that specifies VIEW=MSDB, the segment
must have a key. This includes any segment in a path if command code 'D' is
specified. Otherwise, status AM is returned.

PROCSEQ index_dbname
Specifies the name of a secondary index that is used to process the database
named in the DBDNAME parameter through a secondary processing sequence.
The parameter is optional. It is valid only if a secondary index exists for this
database. If this parameter is used, subsequent SENSEG statements must
reflect the secondary processing sequence hierarchy of segment types in the
indexed database. For example, the first SENSEG statement must name the
indexed segment with a PARENT=0 parameter.

full_function_index_dbname must be the name of a secondary index DBD.

For a secondary processing sequence, processing options L and LS are invalid.
Inserting and deleting the index target segment and any of its inverted parents
is not allowed. When the blocks are built, if the processing option for these
segments includes I or D, a warning message indicates that the processing
option has been changed to reflect this restriction.

PROCOPT sch_procopt
Specifies the processing options for the sensitive segments that are declared in
this PCB. You can use these specified options in an associated application
program. You can use a maximum of four options with this parameter. The
letters in the parameter have the following meaning:

A All options. By default, PROCOPT=A includes the G (get), I (insert), R
(replace), and D (delete) options. PROCOPT=A is the default setting.

716 Application Programming APIs

|

|
|

|
|

|
|
|
|

|
|
|
|
|

||

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|

||
|

G Get option.

I Insert option. By default, PROCOPT=I includes the G (get) option for
Fast Path DEDBs; PROCOPT=I does not include the G option for other
database types.

R Replace option. By default, PROCOPT=R includes the G (get) option.

D Delete option. By default, PROCOPT=D includes the G (get) option.

P Path calls. Required if command code D is to be used, except for ISRT
calls in a batch program that is not sensitive to fields. PROCOPT=P is
not required if command code D is used when processing DEDBs. P is
used in conjunction with the A (all), G (get), I (insert), D (delete), and L
(load) options.

O If the O option is used for a PCB, IMS does not check the ownership of
the segments returned. Therefore, the read without integrity program
might get a segment that has been updated by another program. If the
updating program abends and backs out, the read without integrity
program will have a segment that does not exist in the database and
never did. If a segment has been deleted and another segment of the
same type has been inserted in the same location, the segment data,
and all subsequent data returned to the application, can be from a
different database record. Therefore, if you use the O option, do not
update based on data read with that option. O must be specified as
GO, GON, GONP, GOT, GOTP, or GOP only.

IMS recognizes some of these error types and converts them to abend
U0849. However, other conditions that occur under PROCOPT GOx are
not detected as having been caused by the read-without-integrity. It is
possible to get loops, hangs, and system abends. When using this
PROCOPT, carefully consider system design to determine if concurrent
update activity is likely to cause higher risk of these kinds of
conditions.

N Reduces the number of abends that read-only application programs are
subject to. Read-only application programs can reference data being
updated by another application program. When this happens, an
invalid pointer to the data might exist. If an invalid pointer is detected,
the read-only application program abends. By specifying N, you avoid
this. A GG status code is returned to the program instead. The
program must determine whether to terminate processing, continue
processing by reading a different segment, or access the data using a
different path. N must be specified as GON, GONH, or GONP.

T Similar to the N option, except that T causes DL/I to automatically
retry the operation. If the retry fails, a GG status code is returned to
the application program. T must be specified as GOT, GOTH, or GOTP.

E Enables exclusive use of the database or segment by online programs.
Used in conjunction with G, I, D, R, and A.

Restriction: For a DEDB, PROCOPT=E is not permitted.

L Load option for database loading (except HIDAM and PHIDAM).

GS Get segments in ascending sequence only (HSAM only). If you specify
GS for HSAM databases, they will be read using the Queued
Sequential Access Method (QSAM) instead of the basic Sequential
Access Method (BSAM) in a DL/I IMS region.

Chapter 8. SQL programming reference 717

||

||
|
|

||

||

||
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

||
|
|

||
|

|

||

||
|
|
|

LS Load segments in ascending sequence only (HIDAM, HDAM,
PHIDAM, PHDAM). This load option is required for HIDAM and
PHIDAM. Because you must specify LS for HIDAM and PHIDAM
databases, the index for the root segment sequence field will be created
at the time the database is loaded.

H Specifies high-speed sequential processing for the application program
that is using a particular PSB. The following restrictions apply to using
PROCOPT=H:
v It can be used for DEDBs only.
v It is allowed on the PCB level and not on the segment level.
v It must be used with other Fast Path processing options.
v A maximum of four PROCOPT options can be specified, including

H.
v It can only be specified for BMPs.
v Only one PROCOPT=H PCB per database per PSB is allowed. If a

BMP that is using HSSP uses multiple PCBs with PROCOPT=H for
the same database within the same PSB, all database calls that are
using a PCB other than the first one that is used will receive an FH
status code. You can use the NOPROCH keyword on the SETO
statement to alleviate this restriction.

v PROCOPT=H cannot be used if
PROCSEQD=Fast_Path_index_dbdname is specified.

v PROCOPT=H cannot be used with PROCOPT=GO.

H is used in conjunction with A, G, I, R, and D.

The PROCOPT value can be up to 4 characters long. It needs to have at least
one option from A, G, I, R, D, and L; that is, option E, S, P, O, N, T, or H
cannot exist without an option from the group of A, G, I, R, D, and L group.

The default PROCOPT value is A. PROCOPT GOx and Lx groups need to
follow the sequence in the diagram.

Keyword parameters for CREATE SENSEGVIEW

The following keyword parameters are defined for the CREATE SENSEGVIEW
statement:

PROCOPT ssv_procopt
Indicates the processing options valid for use of this sensitive segment by an
associated application program. This parameter has the same meaning as the
PROCOPT= parameter on the PCB statement. In addition to the valid options
for this parameter, an option can be used on the SENSEG statement which
does not apply to the PCB statement. A PROCOPT of K indicates key
sensitivity only. A GN call with no SSAs can access only data-sensitive
segments. If a key-sensitive segment is designated for retrieval in an SSA, the
segment is not moved to the user's I/O area. The key is placed at the
appropriate offset in the key feedback area of the PCB. If this PROCOPT=
parameter is not specified, the PCB PROCOPT parameter is used as default. If
there is a difference in the processing options specified on the PCB and
SENSEG statements and the options are compatible, SENSEG PROCOPT
overrides the PCB PROCOPT. If PROCOPT= L or LS is specified on the
preceding PCB statement, this parameter must be omitted.

718 Application Programming APIs

||
|
|
|
|

||
|
|

|

|

|

|
|

|

|
|
|
|
|
|

|
|

|

|

|
|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Do not specify a SENSEG statement for a virtual logical child segment type if
PROCOPT= L or LS is specified. The Replace and Delete functions also imply
the Get function.

If a segment has PROCOPT=K specified, an unqualified Get Next call (GN)
skips to the next sensitive segment with a PROCOPT other than K.

The SENSEG PROCOPT overrides the PCB PROCOPT. If PROCOPT=E is
specified in the PCB, the SENSEG PROCOPT must also specify E if it is
intended to schedule exclusively for that SENSEG.

It is not valid to code the N or T processing option in the SENSEG statement.
You can code them only in the PCB statement.

The processing option for a DEDB sequential dependent segment must be
either G or I. If one of these values is not specified on the PCB statement,
PROCOPT=G or I must be specified on the SENSEG PCB statement.

In the case of concatenated segments, the PROCOPT= parameter governs the
logical child segment of the concatenated segment. The logical parent of the
concatenated segment is governed by the RULES= parameter of the SEGM
PCB statement.

INDICES
Specifies which secondary indexes contain search fields that are used to qualify
SSAs for an indexed segment type. The INDICES= parameter can be specified
for indexed segment types only. It enables SSAs of calls for the indexed
segment type to be qualified on the search field of the index segment type
contained in each secondary index specified.

Restriction:

v An SSA of a call for an indexed segment type cannot be qualified on the
search field of a secondary index unless that secondary index was specified
in the INDICES= parameter of the SENSEG statement for the indexed
segment type or in the PROCSEQ= parameter of the PCB statement.

v The INDICES= parameter is not supported for Fast Path secondary indexing.

For list1, you can specify up to 32 DBD names of secondary indexes. If two or
more names are specified, these names must be separated by commas and the
list enclosed in parentheses.

REFERENCES table_name
For tables that are involved in logical relationships or that are in databases that
are accessed by a secondary index, use REFERENCES to identify the parent
table of this table.

For tables involved in a logical relationship, the name must be the IMS internal
name of the logical parent of the table.

For a table that is the physical parent of a source segment pointed to by a
secondary index, use the name of the source segment.

For a table that is dependent of a source segment pointed to by a secondary
index, use the name of the dependent segment's physical parent.

The REFERENCES keyword does not apply to secondary index source
segments.

Schemas or PCBs that reference a physical, non-logical database and that are
not in a database that has a secondary index do not support the REFERENCES
keyword. If the CREATE SENSEGVIEW clause defines a root as being
sensitive, omit the REFERENCES keyword.

Chapter 8. SQL programming reference 719

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

REPLYES | REPLNO
Specifies whether or not this field can be altered on a replace call. You can
specify NO or N. If omitted, REPLACE=YES (or Y) is the default.

SSPTR
Specifies the subset pointer number and the sensitivity for the pointer. Up to 8
subset pointers can be defined. The subset pointer number (the first parameter)
must be 1 through 8. The sensitivity for the pointer (the second parameter)
must be R (read sensitive) or U (update). If the first parameter and the second
parameter are not specified, the pointer has no sensitivity. If only n is specified,
the pointer is read sensitive. SSPTR=R is the default.

You cannot use U (update sensitivity) if the processing option is not A, R, I, or
D.

sf_name
Is the name of this field as defined through a FIELD statement. The field is
from 1- to 8-alphanumeric characters.

START(n)
Specifies the starting position of this field relative to the beginning of the
segment within the user's I/O area. startpos for the first byte of a segment is 1.
startpos must be a decimal number whose value does not exceed 32 767.

Types of statements

The following lists the types of schema for the CREATE PROGRAMVIEW
statement:

Alternate_schema_statement
The alternate schema (PCB) describes a destination other than the source of
the current input message.

This statement instruction allows the application program to send output
messages to a destination other than the source of an input message.

Note: A schema statement is required for each destination to which output
is to be sent.

These messages can be sent to either an output terminal or an input
transaction queue to be processed by another program. Each output
message destination requires a separate alternate schema (PCB) destination.
If the input source terminal is all that is required to respond with output,
do not include any schema statements of this type. Message processing
programs, batch message processing programs, and Fast Path programs
can have alternate schema statements in their associated PROGRAMVIEW.
An alternate schema cannot be used to send a message to a Fast Path
transaction; however, Fast Path application programs can use an alternate
schema to route messages to any terminal or IMS⌂ transaction.

DB_schema_statement
The schema statement that describes application program access for a
DL/I, Fast Path, or GSAM database.

Although one or more of these schema statements are usually included,
they are not always required. For example, a message switching program
or conversational message program might not require access to a database.
Therefore, a database schema is not required.

720 Application Programming APIs

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

The maximum number of schemas that can be defined in a
PROGRAMVIEW is 2500. This is the maximum value for application
programs executing in all IMS⌂ region types (MSG, DL/I, and so on).

Usage notes

The CREATE PROGRAMVIEW statement describes the PSB. One or more CREATE
SCHEMA statements must be nested in the CREATE PROGRAMVIEW statement
to describe the PCBs.

One or more CREATE SENSEGVIEW statements must be nested within each
CREATE SCHEMA statement to describe the SENSEGs. SENFIELDs can be nested
in each SENSEGVIEW. The order in which the SCHEMA and SENSEGVIEW
statements are specified matters.
CREATE PROGRAMVIEW ... (
CREATE SCHEMA ... (
CREATE SENSEGVIEW ... ,
CREATE SENSEGVIEW ... WITH ...,
CREATE SENSEGVIEW ...
)
CREATE SCHEMA ... (
CREATE SENSEGVIEW ... (
senfld WITH ...
senfld WITH ...
senfld WITH ...
) WITH ... ,
CREATE SENSEGVIEW ... (
senfld WITH ...
senfld WITH ...
senfld WITH ...

),
CREATE SENSEGVIEW ... (
senfld WITH ...
senfld WITH ...
senfld WITH ...
)
)
...
)

Examples

The following example shows a sample of a traditional IMS program specification
block macro statement with multiple PCBs, followed by the equivalent DDL using
the CREATE PROGRAMVIEW, CREATE SCHEMA, and CREATE VIEW
statements.

PSB utility source:

* DB PCB NUMBER 1 DB DEDBJN21

PCB TYPE=DB,DBDNAME=DEDBJN21,POS=M,PROCOPT=A,KEYLEN=26, C
PCBNAME=PCB01,EXTERNALNAME=PCB01

SENSEG NAME=HOSPITAL,PARENT=0
SENSEG NAME=PAYMENTS,PARENT=HOSPITAL,PROCOPT=GI
SENSEG NAME=WARD,PARENT=HOSPITAL
SENSEG NAME=PATIENT,PARENT=WARD
SENSEG NAME=ILLNESS,PARENT=PATIENT
SENSEG NAME=TREATMNT,PARENT=ILLNESS
SENSEG NAME=DOCTOR,PARENT=TREATMNT
SENSEG NAME=BILLING,PARENT=PATIENT
SENSEG NAME=ARRAY,PARENT=HOSPITAL

Chapter 8. SQL programming reference 721

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

SENSEG NAME=STRUCT,PARENT=HOSPITAL
SENSEG NAME=REDEFINE,PARENT=HOSPITAL
SENSEG NAME=MAP,PARENT=HOSPITAL
SENSEG NAME=EXFLDSEG,PARENT=HOSPITAL
SENSEG NAME=NUMSEGM,PARENT=HOSPITAL

* DB PCB NUMBER 2 DB DEDBJN21

PCB TYPE=DB,DBDNAME=DEDBJN21,POS=M,PROCOPT=GO,KEYLEN=26, C
PCBNAME=PCB10,EXTERNALNAME=PCB10

SENSEG NAME=HOSPITAL,PARENT=0
SENSEG NAME=PAYMENTS,PARENT=HOSPITAL
SENSEG NAME=WARD,PARENT=HOSPITAL
SENSEG NAME=PATIENT,PARENT=WARD
SENSEG NAME=ILLNESS,PARENT=PATIENT
SENSEG NAME=TREATMNT,PARENT=ILLNESS
SENSEG NAME=DOCTOR,PARENT=TREATMNT
SENSEG NAME=BILLING,PARENT=PATIENT
SENSEG NAME=ARRAY,PARENT=HOSPITAL
SENSEG NAME=STRUCT,PARENT=HOSPITAL
SENSEG NAME=REDEFINE,PARENT=HOSPITAL
SENSEG NAME=MAP,PARENT=HOSPITAL

...

* DB PCB NUMBER 11 HIDAM HOSPITAL DB DH41SK01

PCB TYPE=DB,DBDNAME=DH41SK01,POS=M,PROCOPT=AP,KEYLEN=26, C
PCBNAME=PCB11,EXTERNALNAME=PCB11

SENSEG NAME=HOSPITAL,PARENT=0
SENSEG NAME=PAYMENTS,PARENT=HOSPITAL,PROCOPT=GI
SENSEG NAME=WARD,PARENT=HOSPITAL
SENSEG NAME=PATIENT,PARENT=WARD
SENSEG NAME=ILLNESS,PARENT=PATIENT
SENSEG NAME=TREATMNT,PARENT=ILLNESS
SENSEG NAME=DOCTOR,PARENT=TREATMNT
SENSEG NAME=BILLING,PARENT=PATIENT
SENSEG NAME=PHARMACY,PARENT=HOSPITAL
SENSEG NAME=BACKORDR,PARENT=PHARMACY
SENSEG NAME=ARRAY,PARENT=HOSPITAL
SENSEG NAME=STRUCT,PARENT=HOSPITAL
SENSEG NAME=REDEFINE,PARENT=HOSPITAL
SENSEG NAME=MAP,PARENT=HOSPITAL
SENSEG NAME=SFTEST,PARENT=HOSPITAL
SENFLD NAME=SF1,START=1
SENFLD NAME=SF2,START=40
SENFLD NAME=SF3,START=30

* PSBGEN PSBNAME=BMP255

PSBGEN PSBNAME=BMP255,LANG=ASSEM,CMPAT=YES,IOASIZE=32000, C
SSASIZE=32000

Equivalent DDL statements:
CREATE PROGRAMVIEW bmp255 (
CREATE SCHEMA pcb01.dedbjn21 AS pcb01 (
CREATE SENSEGVIEW hospital,
CREATE SENSEGVIEW payments.hospital WITH PROCOPT GI,
CREATE SENSEGVIEW ward.hospital,
CREATE SENSEGVIEW patient.ward,
CREATE SENSEGVIEW illness.patient,
CREATE SENSEGVIEW treatmnt.illness,
CREATE SENSEGVIEW doctor.treatmnt,
CREATE SENSEGVIEW billing.patient,
CREATE SENSEGVIEW array.hospital,
CREATE SENSEGVIEW struct.hospital,
CREATE SENSEGVIEW redefine.hospital,

722 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

CREATE SENSEGVIEW map.hospital,
CREATE SENSEGVIEW exfldseg.hospital,
CREATE SENSEGVIEW numsegm.hospital
)
PROCOPT A
POS=MULTIPLE|SINGLE,

CREATE SCHEMA pcb10.dedbjn21 AS pcb10 (
CREATE SENSEGVIEW hospital,
CREATE SENSEGVIEW payments.hospital,
CREATE SENSEGVIEW ward.hospital,
CREATE SENSEGVIEW patient.ward,
CREATE SENSEGVIEW illness.patient,
CREATE SENSEGVIEW treatmnt.illness,
CREATE SENSEGVIEW doctor.treatmnt,
CREATE SENSEGVIEW billing.patient,
CREATE SENSEGVIEW array.hospital,
CREATE SENSEGVIEW struct.hospital,
CREATE SENSEGVIEW redefine.hospital,
CREATE SENSEGVIEW map.hospital
)
PROCOPT GO
POSMULTI,

CREATE SCHEMA pcb11.dh41sk01 AS pcb11 (
CREATE SENSEGVIEW hospital,
CREATE SENSEGVIEW payments.hospital WITH PROCOPT GI,
CREATE SENSEGVIEW ward.hospital,
CREATE SENSEGVIEW patient.ward,
CREATE SENSEGVIEW illness.patient,
CREATE SENSEGVIEW treatmnt.illness,
CREATE SENSEGVIEW doctor.treatmnt,
CREATE SENSEGVIEW billing.patient,
CREATE SENSEGVIEW pharmacy.hospital,
CREATE SENSEGVIEW backordr.pharmacy,
CREATE SENSEGVIEW array.hospital,
CREATE SENSEGVIEW struct.hospital,
CREATE SENSEGVIEW redefine.hospital,
CREATE SENSEGVIEW map.hospital,
CREATE SENSEGVIEW sftest.hospital (

sf1 WITH START(1),
sf2 WITH START(40),
sf3 WITH START(30)

)
)
PROCOPT AP
POSMULTI
)
LANGASSEM
CMPATYES
IOASIZE 32000
SSASIZE 32000

TPPCBs source:
PCB TYPE=TP,NAME=OUTPUT1

PCB TYPE=TP,NAME=OUTPUT2
PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100
SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
PCB TYPE=GSAM,DBDNAME=REPORT,PROCOPT=LS
PSBGEN LANG=COBOL,PSBNAME=APPLPGM3
END

Equivalent DDL statements:

Chapter 8. SQL programming reference 723

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

CREATE PROGRAMVIEW applpgm3 (
CREATE SCHEMA TP pcb01.output1,
CREATE SCHEMA TP pcb02.output2,

CREATE SCHEMA pcb03.partmstr AS pcb03 (
CREATE SENSEGVIEW partmast WITH PROCOPT 'A',
CREATE SENSEGVIEW cpws.partmast WITH PROCOPT 'A'
)
PROCOPT 'A',

CREATE SCHEMA pcb04.report
PROCOPT 'LS',
)
LANGCOBOL

TPPCBs source:
PCB TYPE=DB,NAME=FISDBD1,PROCOPT=GRP,KEYLEN=20

SENSEG NAME=EMPLOYEE,PARENT=0
SENFLD NAME=EMPLNAME,START=13,REPL=NO
SENFLD NAME=EMPFNAME,START=1,REPL=NO
SENFLD NAME=EMPMI,START=11
SENSEG NAME=OFFICE,PARENT=EMPLOYEE
SENSEG NAME=EMPLPROJ,PARENT=EMPLOYEE
SENFLD NAME=PROJNUM,START=1
SENFLD NAME=PROJTITLE,START=10
SENFLD NAME=EPFUNCTN,START=35
SENFLD NAME=EPTIMEST,START=60
SENFLD NAME=EPTIMCUR,START =70
PSBGEN LANG=ASSEM,PSBNAME=APPLPGM1
END

CREATE SENSEGVIEW APPLPGM1 (
FISDBD1 DB FOR FISDBD1 PROCOPT 'GRP'
EMPLOYEE SENSEG IN FISDBD1
EMPLNAME SENSEG IN FISDBD1 START (13) REPLACEN
...
) LANGASSEM

CREATE PROGRAMVIEW applpgm1 (
CREATE SCHEMA pcb01.fisdbd1 AS pcb01 (
CREATE SENSEGVIEW employee (
emplname WITH START (13) REPLNO,
empfname WITH START (1) REPLNO,
empmi WITH START (11)
)

CREATE SENSEGVIEW office.employee,

CREATE SENSEGVIEW emplproj.employee (
projnum WITH START (1),
projtitle WITH START (10),
epfunctn WITH START (35),
eptimest WITH START (60),
eptimcur with START (70)
)
)
)
LANGASSEM

Fast Path example:
PCB TYPE=DB,DBDNAME=MSDBLM01,PROCOPT=R,KEYLEN=4 NONTERMINAL-RELATED
SENSEG NAME=LDM,PARENT=0 (DEFAULT)
PCB TYPE=DB,DBDNAME=MSDBLM02,PROCOPT=R,KEYLEN=1 NONTERMINAL-RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM03,PROCOPT=R,KEYLEN=2 NONTERMINAL-RELATED
SENSEG NAME=LDM,PARENT=0

724 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

PCB TYPE=DB,DBDNAME=MSDBLM04,PROCOPT=R,KEYLEN=8 NONTERMINAL-RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM05,PROCOPT=R,KEYLEN=8 FIXED RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=A,KEYLEN=8 DYNAMIC RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=R,KEYLEN=8 DYNAMIC RELATED
SENSEG NAME=LDM,PARENT=0
PCB TYPE=DB,DBDNAME=MSDBLM06,PROCOPT=G,KEYLEN=8 DYNAMIC RELATED
SENSEG NAME=LDM,PARENT=0
PSBGEN LANG=ASSEM,PSBNAME=APPLPGM1 END OF PSBGEN MACRO
END END OF PSB GEN

CREATE PROGRAMVIEW applpgm1 (
CREATE SCHEMA pcb01.msdblm01 AS pcb01 (
CREATE SENSEGVIEW lim
)
PROCOPT 'R',
CREATE SCHEMA pcb02.msdblm02 AS pcb02 (
CREATE SENSEGVIEW lim
)
PROCOPT 'R',
CREATE SCHEMA pcb03.msdblm03 AS pcb03 (
CREATE SENSEGVIEW lim
)
PROCOPT 'R',
CREATE SCHEMA pcb04.msdblm04 AS pcb04 (
CREATE SENSEGVIEW lim
)
PROCOPT 'R',
CREATE SCHEMA pcb05.msdblm05 AS pcb05 (
CREATE SENSEGVIEW lim
)
PROCOPT 'R',
CREATE SCHEMA pcb06.msdblm06 AS pcb06 (
CREATE SENSEGVIEW lim
)
PROCOPT 'A',
CREATE SCHEMA pcb06.msdblm06 AS pcb06 (
CREATE SENSEGVIEW lim
)
PROCOPT 'R',
CREATE SCHEMA pcb06.msdblm06 AS pcb06
CREATE SENSEGVIEW lim
)
PROCOPT 'G'
)
LANGASSEM

TPPCBs source:
DEDB SSPTR
PCB TYPE=DB,DBDNAME=MSDBLM01,PROCOPT=R, NONTERMINAL-RELATED X
PCB TYPE=DB,DBDNAME=X,PROCOPT=A,KEYLEN=100
SENSEG NAME=A,PARENT=0
SENSEG NAME=B,PARENT=A,SSPTR=((1,R),(2,U),(5))
SENSEG NAME=C,PARENT=B
SENSEG NAME=D,PARENT=A,SSPTR=((2,R))
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END

CREATE PROGRAMVIEW applpgm1 (
CREATE SCHEMA pcb01.msdblm01 AS pcb01
PROCOPT 'R',

CREATE SCHEMA pcb02.x AS pcb02 (
CREATE SENSEGVIEW a,

Chapter 8. SQL programming reference 725

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CREATE SENSEGVIEW b.a
SSPTR (1 R,2 U,5),

CREATE SENSEGVIEW c.b,

CREATE SENSEGVIEW d.a
SSPTR (2 R)
)
PROCOPT 'A'
)
LANGCOBOL

TPPCBs source:
PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X4
SENSEG NAME=DA,PARENT=0
SENSEG NAME=DB,PARENT=DA
SENSEG NAME=DC,PARENT=DA,INDICES=X5
SENSEG NAME=DD,PARENT=DC
SENSEG NAME=DE,PARENT=DC,INDICES=X6
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END

CREATE PROGRAMVIEW applpgm1 (
CREATE SCHEMA pcb01.dta3 AS pcb01 (
CREATE SENSEGVIEW da,

CREATE SENSEGVIEW db.da,

CREATE SENSEGVIEW dc.da WITH INDICES (X5)

CREATE SENSEGVIEW dd.dc

CREATE SENSEGVIEW de.dc WITH INDICES (X6)
)
PROCOPT 'A'
PROCSEQ X4
)
LANGCOBOL

CREATE TABLE
The CREATE TABLE statement defines a new table.

Restriction: If you specify any of the following keywords on the CREATE TABLE
statement, you cannot change the keyword and keyword value by using the
ALTER TABLE statement. To change the keyword and keyword value, you must
first use the DROP TABLE statement to delete the table. Then, you must re-create
the table by using the CREATE TABLE statement and specify the keyword and
keyword value again.
v The INTERNALNAMEinternalname keyword to specify the internal name of the

segment type being defined.
v DIRECT DEPENDENT | SEQUENTIAL DEPENDENT

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.
v “CREATE TABLE syntax” on page 727

726 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

|
|

|

|

|
|
|

|

v “column-definition syntax” on page 728
v “data-type syntax” on page 728
v “ims-column syntax” on page 729
v “inline-constraints syntax” on page 730
v “constraint syntax” on page 730
v “references-clause syntax” on page 730
v “map-definition syntax” on page 731
v “case-definition syntax” on page 731
v “lchild-definition syntax” on page 731
v “lchild-option syntax (HISAM)” on page 731
v “lchild-option syntax (HDAM)” on page 731
v “lchild-option syntax (HIDAM)” on page 731
v “lchild-option syntax (PHDAM or PHIDAM)” on page 731
v “lchild-option syntax (INDEX for Full-Function secondary index database) ” on

page 732
v
v “lchild-option syntax (PSINDEX)” on page 732
v “xdfld-options syntax (HISAM, SHISAM, HDAM, HIDAM, PHDAM, or

PHIDAM)” on page 732
v “table-options syntax (PHIDAM or PHDAM)” on page 732
v “table-options syntax (HIDAM or HDAM)” on page 733
v “table-options syntax (DEDB)” on page 733
v “table-options syntax (HISAM or SHISAM)” on page 734
v “table-options syntax (HSAM or SHSAM)” on page 734
v “table-options syntax (INDEX)” on page 734
v “table-options syntax (LOGICAL)” on page 734
v “source-clause syntax” on page 735
v “editproc-clause syntax” on page 735
v “lparent-clause syntax” on page 735
v “data_capture syntax” on page 735
v “exit_changes syntax” on page 735
v “exit_attributes syntax” on page 735

CREATE TABLE syntax

►► CREATE TABLE table_name ▼

,

(column-definition)
(1)

constraints
map-definition
lchild-definition

►

Chapter 8. SQL programming reference 727

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||||||||||||||||||||||||||||||||||||||
|

||
|

►
(2)

INTERNALNAME internalname

►

►
IN tablespace_name

database_name
IN DATABASE database_name

'Cp1047'
CCSID encoding

►

►

▼

,
(3)

table-options

►◄

Notes:

1 The constraints and lchild-definition fragments are invalid for a GSAM
database.

2 INTERNALNAME is invalid for a GSAM database.

3 The table-options fragment is invalid for a GSAM database.

column-definition syntax

►► column_name data-type
(1)

INTERNALNAME internalname

►

►
IMS-column-syntax (2)

inline-constraints

►◄

Notes:

1 INTERNALNAME is invalid for a GSAM database.

2 The inline-constraints fragment is invalid for a GSAM database.

data-type syntax

728 Application Programming APIs

|||||||||||||
|

|
||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||

|

|

||
|

||

||

|

||||||||||||||||||||
|

|
||||||||||||||||||||||||

|

|

||

||

|

|
|

►► ARRAY
BINARY
BIT
BYTE
UBYTE
CHAR

(1)
(bytes)

DATE
DECIMAL(pp,ss)
DOUBLE
FLOAT
INT
UINT
LONG
ULONG
OTHER
SHORT
USHORT
STRUCT
TIME
TIMESTAMP
XML

►◄

Notes:

1 The default bytes for CHAR is 1.

ims-column syntax

►►
C

TYPE X
P

BYTES bytes
MAXBYTES max_array_bytes

►

►
START start_position
STARTAFTER field_name
RELSTART relative_start_position

MINOCCURS min_array_elements
►

►
MAXOCCURS max_array_elements DEPENDSON control_column

►

►
IN column_name

►

Chapter 8. SQL programming reference 729

|||

|

|

||

|

||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||
|

|
||||||||||||
|

||
|

►

▼

INTERNAL TYPECONVERTER CHAR
BIT
BINARY
BYTE
UBYTE
SHORT
USHORT
INT
UINT
LONG
ULONG
FLOAT
DOUBLE
PACKEDDECIMAL
ZONEDDECIMAL
CLOB
BLOB
XML_CLOB
ARRAY
STRUCT

,

USER TYPECONVERTER typeconverter PROPERTIES('name'='value')

►

►
'Cp1047'

CCSID encoding

ISSIGNEDYES

ISSIGNEDNO OVERFLOW table_name
►

►
PATTERN 'pattern' URL 'xml_schema_url'

►◄

inline-constraints syntax

►►
CONSTRAINT constraintname PRIMARY KEY

NON UNIQUE

►◄

constraint syntax

►►
CONSTRAINT constraint_name

►

► PRIMARY KEY (column_name)
NON UNIQUE

FOREIGN KEY reference clause

►◄

references-clause syntax

►► REFERENCES table_name
SINGLE
DOUBLE

►◄

730 Application Programming APIs

||
|

|
||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||

|

|

||||||||||||||||||||||||||

|

|

||||||||||||
|

|
||||||||||||||||||||||||||||||

|

|

|||||||||||||||||||

|

map-definition syntax

►► ▼

,

MAP column_name (case definition)
AS mapName

►◄

case-definition syntax

►► ▼

,

CASE caseid (column_definition)
AS case_name

►◄

lchild-definition syntax

►► LCHILD table_name lchild options
database_name.

►

►
, XDFLD xdfld_name XDFLD options

►◄

lchild-option syntax (HISAM)

►►
SINGLE
DOUBLE
NONE
SYMBOL

LAST
AMBIGUOUS INSERT FIRST

HERE

PAIR table_name
►◄

lchild-option syntax (HDAM)

►►
SINGLE
DOUBLE
NONE
SYMBOL

LAST
AMBIGUOUS INSERT FIRST

HERE

PAIR table_name
►◄

lchild-option syntax (HIDAM)

►►
SINGLE
DOUBLE
INDEX
NONE
SYMBOL

LAST
AMBIGUOUS INSERT FIRST

HERE

PAIR table_name
►◄

lchild-option syntax (PHDAM or PHIDAM)

Chapter 8. SQL programming reference 731

|

|||||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||||

|

|

||||||||||||||||||
|

|
|||||||||||||||||||||

|

|

|||

|

|

|||

|

|

||

|

|

|
|

►►
INDEX
NONE

LAST
AMBIGUOUS INSERT FIRST

HERE

PAIR table_name
►◄

lchild-option syntax (INDEX for Full-Function secondary index
database)

►►
SINGLE
SYMBOL

INDEXFIELD column_name
►◄

lchild-option syntax (PSINDEX)

►► RKSIZE integer
INDEXFIELD column_name

►◄

xdfld-options syntax (HISAM, SHISAM, HDAM, HIDAM, PHDAM,
or PHIDAM)

►►
INTERNALNAME name

▼

,

SRCH(name)

▼

,

DDATA(name)

►

►

▼

,

SUBSEQ(name)

SEGMENT name NULLVAL value
►

►
EXTRTN name CONST value

►◄

table-options syntax (PHIDAM or PHDAM)

►►
MAXBYTES maxbytes

MINBYTES minbytes
FREQ frequency

►

►
LPARNTYES PAIREDNO

TWIN LPARNTNO PAIREDYES
TWINBWD
NOTWIN

INSERT LOGICAL
PHYSICAL
VIRTUAL

►

732 Application Programming APIs

|||

|

|
|

||||||||||||||||||||||||

|

|

|||||||||||||||||

|

|
|

|||
|

|
||||||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||
|

|
|||
|

||
|

►
DELETE LOGICAL

PHYSICAL
VIRTUAL
BIDIRECTIONAL

REPLACE LOGICAL
PHYSICAL
VIRTUAL

►

►
AMBIGUOUS INSERT HERE

LAST
FIRST

DSGROUP A
B
C
D
E
F
G
H
I
J

►

►
editproc_clause lparent_clause data_capture

►◄

table-options syntax (HIDAM or HDAM)

►►
MAXBYTES maxbytes

MINBYTES minbytes
source_clause

FREQ frequency
►

►
LTWIN LPARNTNO PAIREDNO CTRNO

TWIN LPARNTYES PAIREDYES CTRYES
TWINBWD LTWINBWD
NOTWIN
HIER
HIERBWD

►

►
INSERT LOGICAL

PHYSICAL
VIRTUAL

DELETE LOGICAL
PHYSICAL
VIRTUAL
BIDIRECTIONAL

►

►
REPLACE LOGICAL

PHYSICAL
VIRTUAL

AMBIGUOUS INSERT HERE
LAST
FIRST

►

►
editproc_clause lparent_clause data_capture

►◄

table-options syntax (DEDB)

►►
MAXBYTES maxbytes

MINBYTES minbytes
FREQ frequency

►

Chapter 8. SQL programming reference 733

||
|

|
||
|

|
||||||||||||||||||||||||||||||||

|

|

|||||||||||||||||||||||||||||||||||
|

|
|||
|

|
||
|

|
|||||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||
|

||
|

►
AMBIGUOUS INSERT HERE

LAST
FIRST

DIRECT DEPENDENT

SEQUENTIAL DEPENDENT SSPTR n
►

►
editproc_clause data_capture

►◄

table-options syntax (HISAM or SHISAM)

►►
MAXBYTES maxbytes

MINBYTES minbytes
source_clause

FREQ frequency
►

►
LPARNTNO PAIREDNO CTRNO
LPARNTYES PAIREDYES CTRYES

INSERT LOGICAL
PHYSICAL
VIRTUAL

►

►
DELETE LOGICAL

PHYSICAL
VIRTUAL
BIDIRECTIONAL

REPLACE LOGICAL
PHYSICAL
VIRTUAL

►

►
AMBIGUOUS INSERT HERE

LAST
FIRST

editproc_clause
►

►
lparent_clause data_capture

►◄

table-options syntax (HSAM or SHSAM)

►►
MAXBYTES maxbytes FREQ frequency

►◄

table-options syntax (INDEX)

►►
MAXBYTES maxbytes FREQ frequency

►

►
AMBIGUOUS INSERT HERE

LAST
FIRST

►◄

table-options syntax (LOGICAL)

734 Application Programming APIs

|||
|

|
|||||||||||||||||||||||

|

|

|||||||||||||||||||||||||||||||||||
|

|
||
|

|
||
|

|
|||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||

|

|

|||||||||||||||||||||||

|

|

|||||||||||||||||||||
|

|
||||||||||||||||||||||||

|

|

|

►►
source_clause

►◄

source-clause syntax

►►

(1)
DATA

SOURCE(dbname.table_name)
KEY (2) DATA

, dbname.table_name
KEY

►◄

Notes:

1 KEY is not allowed for HISAM or SHISAM.

2 Second portion not allowed for HISAM or SHISAM.

editproc-clause syntax

►►
EDITPROC(program_name)

DATA
WITH

KEY INIT max
PAD

►◄

lparent-clause syntax

►►
VIRTUAL

LPARENT table_name
database_name.table_name PHYSICAL

►◄

data_capture syntax

►►
NONE

DATA CAPTURE CHANGES(exit_changes)

►◄

exit_changes syntax

►►

▼

LOG
exit_attributes

NOLOG
,

NOLOG
exitname exit_attributes

LOG

►◄

exit_attributes syntax

►►
KEY

NOKEY

NOPATH

PATH

DATA

NODATA

NOINPOS

INPOS

(1) BEFORE

NOBEFORE
►

Chapter 8. SQL programming reference 735

||||||||||||||

|

|

||||||||||||||||||||||||||||||||||

|

|

||

||

|

||

|

|

|||||||||||||||||||||||||||

|

|

|||||||||||||||||||||||||

|

|

||

|

|

||
|

||

►
DLET

NODLET

NOSSPCMD

SSPCMD

NOFLD

FLD
►

►
CKEY CNOPATH CDATA

CNOKEY CPATH CNODATA
NOCASCADE

►◄

Notes:

1 BEFORE, NOBEFORE, DLET, NODLET, SSPCMD, NOSSPCMD, FLD, and
NOFLD are for DEDB only.

Keyword parameters for CREATE TABLE

The following keyword parameters are defined for the CREATE TABLE statement:

TABLE table_name
Specifies an external name as a 1- to 128-character uppercase alphanumeric
string. A table name can include the underscore character. The table name must
be unique within a database.

Restriction: Table names cannot be reserved SQL keywords or begin with DFS.

lchild_definition
Must be preceded by a column-definition.

INTERNALNAME internalname
Specifies the internal name of the segment type being defined. The specified
name is used by DL/I and application programs in all references to this
segment. Duplicate segment names are not allowed. The internalname
parameter must be a 1- to 8-character alphanumeric value. Each character must
be in the range of A - Z or 0 - 9, or the character $, #, or @.

Restriction: The first character of the name cannot be numeric.

Restriction: After you specify the internal name of the segment type being
defined, you cannot change the internal name by using the ALTER TABLE
statement. To change the internal name of the segment type, you must first use
the DROP TABLE statement to delete the table. Then, you must re-create the
table by using the CREATE TABLE statement and specify the new internal
name.

The default value of the INTERNALNAME parameter will start with a 'TBL'
prefix followed by an incremented number. Although listed as optional since
IMS will generate a default internal name, it is highly recommended that you
provide your own internal name. This way you have control of the internal
name used by IMS and the program views (PSB).

For example:
TBL00001
TBL00255

IN dbname.tablespace_name
Specifies the database and tablespace to which the table belongs.

Note: This clause does not apply for DEDB, LOGICAL, PSINDEX, PHIDAM or
PHDAM databases. Use IN DATABASE instead.

736 Application Programming APIs

|
|
|||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||||

|

|

||
|

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

IN DATABASE dbname
Specifies the database to which the table belongs. When the tablespace name is
not provided, the table will be associated with the latest defined tablespace.

Keyword parameters for CREATE TABLE (table-options)

The following keyword parameters are defined for the CREATE TABLE
(table-options) statement:

SOURCE
Is the IMS internal table name and is used for two purposes:
v To identify the real logical child segment type that is to be represented by

the virtual logical child segment type that is being defined
v To identify the segment type or types in physical databases that are

represented by the segment type being defined in a logical database

Restriction: The SOURCE keyword is not allowed for PHDAM and PHIDAM
databases because they support only physical pairing.

When defining a virtual logical child the statement is:

►►
DATA

SOURCE=((segname, ,dbname)) ►◄

segname
Specifies the name of the real, logical child

DATA
Indicates that both the key and the data portions of segname are to be used
in constructing the segment. This parameter is required.

dbname
Specifies the name of the physical database that contains the real logical
child.

When defining a segment type in a logical database the statement is:

►► SOURCE=
DATA DATA

((segname, KEY ,dbname), (segname, KEY ,dbname)) ►◄

(segname, KEY | DATA,dbname)
The first occurrence refers to the segment in a physical database that is
being defined as a logical segment, or it refers to the logical child segment
type in a physical database that is used for the first portion of a
concatenated segment type in this logical database.

segname
Is the name of the segment type in the physical database.

KEY
Specifies that the key portion of the segment specified in segname is to be
placed in the key feedback area. The segment must not be placed in the
user I/O area when a call is issued to process the logical segment type that
represents segname.

DATA
Specifies that the key portion of the segment specified in segname must be

Chapter 8. SQL programming reference 737

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|

||||||||||||||

|

|
|

|
|
|

|
|
|

|

|||||||||||||||||||||||||||||||||||

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

placed in the key feedback area, and the segment must be placed in the
user I/O area when a call is issued to process the logical segment type that
represents segname.

dbname
Specifies the name of the physical database that contains segname. The
second occurrence of (segname, KEY|DATA, dbname) refers to the logical or
physical parent segment type in a physical database that is used for the
destination parent part of a concatenated segment in this logical database.
The description of each parameter for the second occurrence is the same as
described for the first occurrence.

When the first occurrence of (segname, KEY | DATA, dbname) refers to a
virtual logical child, the second occurrence, if specified, must refer to the
real logical child's physical parent.

When the source segments is used to represent a concatenated segment,
the KEY and DATA parameters are used to control which of the two
segments (or both) are placed in the user's I/O area on retrieval calls. If
DATA is specified, the segment is placed in the user's I/O area. If KEY is
specified, the segment is not placed in the user's I/O area, but the
sequence field key, if one exists, is placed in the key feedback area of the
PCB. The key of a concatenated segment is the key of the logical child,
either the physical twin sequence field or the logical twin sequence field,
depending on which path the logical child is accessed from. The KEY and
DATA parameters apply to retrieval type calls only.

On insert calls, the user's I/O area must always contain the logical child
segment and, unless the insert rule is physical, the logical parent segment.
Even if KEY is specified for a segment, the database containing that
segment must be available to IMS when calls are issued against the logical
database containing the referenced segment. When the first occurrence of
the SOURCE segment specification references a logical child, the second
occurrence referencing the destination parent for the concatenated segment
should also be specified. If not explicitly specified it is included with the
KEY parameter by default when the blocks are built.

The segments defined with a logical DBD generation must gain their
physical definition from segments previously defined in one or more
physical DBD generations.

If the SEGM statement defines a segment in an INDEX data set, the
SOURCE parameter is invalid.

MAXBYTES maxbytes
MINBYTES minbytes

Defines a segment type as variable-length if the minbytes parameter is
included. The maxbytes field specifies the maximum length of any occurrence
of this segment type. The maximum and minimum allowable values for the
maxbytes parameter are the same values as described for a fixed-length
segment.

If the segment is processed by a compression routine, set the maxbytes field to
accommodate control information to indicate whether the segment length can
be longer than the specified maximum definition. in order to avoid an abend
0799. To allow for the expansion, add an arbitrary value of 10 bytes to the
maxbytes.

738 Application Programming APIs

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

The minbytes parameter specifies the minimum amount of storage used by a
variable-length segment. The maximum value for minbytes is the value
specified for maxbytes. The minimum value for minbytes must be:
v For a segment type that is not processed by an edit/compression routine or

is processed by an edit/compression routine but the key compression option
has not been specified, minbytes must be large enough to contain the
complete sequence field if a sequence field has been specified for the
segment type.

v For a segment type that is processed by an edit/compression routine that
includes the key compression option or a segment that is not sequenced, the
minimum value is 4.

Because segments in an HSAM, SHSAM, INDEX, PSINDEX or SHISAM
database cannot be variable-length, the minbytes parameter is invalid for these
databases.

In a Fast Path DEDB, a segment starts with a 2-byte field, which defines the
length of the segment including the 2-byte length field, followed by user data
specified by a column. The value of minbytes can be specified from a
minimum of 4 bytes to a maximum of maxbytes; however, the minbytes value
must be large enough to contain this segment's sequence field (that is,
minbytes ≥ START - 1 + BYTES of the sequence field following the table). For
example, the smallest minbyte value for a segment with a 20-byte sequence
field length and START = 7 is 26. On any given DL/I call, the actual segment
length can fall anywhere between a length that includes the sequence field and
the value of maxbytes. The value of maxbytes must not exceed the control
interval size minus 120.

TWINBWD | NOTWIN | TWIN | HIER | HIERBWD
Specifies the pointer fields to be reserved in the prefix area of occurrences of
the segment type being defined. These fields are used to relate this segment to
its immediate parent segments and twin segments.

TWINBWD
Reserves a 4-byte physical twin forward pointer field and a 4-byte physical
twin backward pointer field in the segment prefix being defined. The twin
backward pointers provide increased delete performance.

Recommendation: This option is recommended for HIDAM and PHIDAM
database root segments.

NOTWIN
Prevents space from being reserved for a physical twin forward pointer in
the prefix of occurrences of the segment type being defined.

NOTWIN can be specified for a dependent segment type if:
v The physical parent does not have hierarchic pointers specified.
v No more than one occurrence of the dependent segment type is stored

as a physical child of any occurrence of the physical parent segment
type.

In addition, NOTWIN can be specified for the root segment type of HDAM
and PHIDAM databases, but only when the randomizing module does not
produce synonyms (keys with different values having the same block and
anchor point).

When NOTWIN is specified for a dependent segment type and an attempt
is made to load or insert a second occurrence of the dependent segment as
a physical child of a given physical parent segment:

Chapter 8. SQL programming reference 739

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|
|
|

|
|
|
|

|
|
|

v An LB status code is returned when trying to insert the second
occurrence during initial load.

v An II status code is returned when trying to insert the second occurrence
after initial load.

Any attempt to load or insert a synonym is rejected with an LB or II status
code.

TWIN
Reserves a 4-byte physical twin forward pointer field in the segment prefix
being defined.

HIER
Reserves a 4-byte hierarchic forward pointer field in the prefix of
occurrences of the segment type being defined. HALDB does not support
HIER.

HIERBWD
Reserves a 4-byte hierarchic forward pointer field and a 4-byte hierarchic
backward pointer field in the prefix of occurrences of the segment type
being defined. Hierarchic backward pointers provide increased delete
performance. HALDB does not support HIERBWD.

LPARNTYES | LPARNTNO
Specifies the type of logical parent.

LPARNTYES
This parameter can be specified only when the segment type that is being
defined is a logical child and the logical parent is in an HDAM, HIDAM,
PHDAM, or PHIDAM database. If the logical parent is in a HISAM
database, omit this parameter and specify PHYSICAL in the PARENT=
parameter for the segment that is being defined.

For HDAM, HIDAM, and HISAM databases, LPARNT reserves a 4-byte
logical parent pointer field in the prefix of occurrences of the segment type
being defined.

For PHDAM and PHIDAM databases, LPARNT reserves a 28-byte
extended pointer set in the prefix of occurrences of the segment type being
defined.

LPARNTNO
Specifies that the segment type that is being defined is not a logical child
or the logical parent is not in an HDAM, HIDAM, PHDAM, or PHIDAM
database.

PAIREDYES | PAIREDNO
Specifies whether this segment participates in a bidirectional logical
relationship.

PAIREDYES
Indicates that this segment participates in a bidirectional logical
relationship. This parameter is specified for the following types:
v A virtual logical child segment type
v Both physically paired logical child segment types in a bidirectional

logical relationship

If PAIRED is specified, the LTWIN and LTWINBWD parameters are
invalid.

740 Application Programming APIs

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

PAIREDNO
Indicates that this segment does not participate in a bidirectional logical
relationship.

CTRNO | CTRYES

CTRNO
Does not reserve a 4-byte counter field in the prefix of occurrences of the
segment type being defined.

CTRYES

Reserves a 4-byte counter field in the prefix of occurrences of the segment
type being defined. A counter is required if a logical parent segment in a
HISAM, HDAM, or HIDAM database has logical child segments which are
not connected to it by logical child pointers. Counters are placed in all
segments requiring them automatically during DBD generation without the
user specifying this parameter. To avoid a later DBD generation, however,
the user can anticipate future requirements for counters and reserve a
counter field in the prefix of occurrences of a segment type by using this
parameter. HALDB does not support CTR.

INSERT {LOGICAL | PHYSICAL | VIRTUAL}
DELETE {LOGICAL | PHYSICAL | VIRTUAL | BIDIRECTIONAL}
REPLACE {LOGICAL | PHYSICAL | VIRTUAL}

Specifies the rules used for insertion, deletion, and replacement of occurrences
of the segment type being defined. These parameters are specified for logical
child segments and for their physical and logical parent segments. They should
be omitted for all segment types that do not participate in logical relationships.

AMBIGUOUS INSERT {LAST | FIRST | HERE}
Specifies where new occurrences of the segment type defined by this table are
inserted into their physical database (establishes the physical twin sequence).
This value is used only when processing segments with no sequence field or
with a nonunique sequence field. The value is ignored when specified for a
segment type with a unique sequence field defined.

Except for HDAM and PHDAM roots, the rules of FIRST, LAST, or HERE do
not apply to the initial loading of a database and segments are loaded in the
sequence presented in load mode. If a unique sequence field is not defined for
the HDAM root on initial load or HD reload, the insert rules of FIRST, LAST,
or HERE determine the sequence in which roots are chained. Thus the reload
of an HDAM or PHDAM database reverses the order of the unsequenced roots
when HERE or FIRST is used.

LAST is the default except for DEDB segments.

For Fast Path sequential dependent segment processing, the insert rule of
FIRST is always used and cannot be overridden. For direct dependent segment
processing, you can specify FIRST, LAST, or HERE. HERE is the default.

FIRST
For segments without a sequence field defined, a new occurrence is
inserted before all existing physical twins. For segments with a nonunique
sequence field defined, a new occurrence is inserted before all existing
physical twins with the same sequence field value.

LAST
For segments without a sequence field defined, a new occurrence is
inserted after all existing physical twins. For segments with a nonunique

Chapter 8. SQL programming reference 741

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

sequence field defined, a new occurrence is inserted after all existing
physical twins with the same sequence field value.

HERE
For segments without a sequence field, a new occurrence is inserted
immediately before the physical twin on which position was established. If
a position was not established on a physical twin of the segment being
inserted, the new occurrence is inserted before all existing physical twins.
For segments with a nonunique sequence field defined, a new occurrence
is inserted immediately before the physical twin with the same sequence
field value on which position was established. If a position was not
established on a physical twin with the same sequence field value, the new
occurrence is inserted before all physical twins with the same sequence
field value. The insert position is dependent on the position established by
the previous DL/I call.

A command code of L (last) takes precedence over the insert rule specified
causing a new occurrence to be inserted according to the insert rule of
LAST, for insert calls issued against a physical path.

DSGROUP
Specifies multiple data set groups for PHDAM and PHIDAM databases. The
format is DSGROUP c, where c is equivalent to the letters A through J. This
enables you to divide PHDAM and PHIDAM databases into a maximum of
ten data set groups. The default for every segment is A (single set for data per
partition). If specified on the root segment, it must be DSGROUP A.

Restriction: Gaps in the A-J sequence are not allowed. For example, if
DSGROUP C is specified on a CREATE TABLE statement, there must also be at
least one CREATE TABLE statement with DSGROUP B, and each HALDB
partition will have A, B, and C data sets.

FREQ frequency
Specifies the estimated number of times that this segment is likely to occur for
each occurrence of its physical parent. The frequency parameter must be an
unsigned decimal number in the range 0.01 to 2²⁴-1. If this is a root segment,
“frequency” is the estimate of the maximum number of database records that
appear in the database being defined. The value of the FREQ parameter when
applied to dependent segments is used to determine the logical record length
and physical storage block sizes for each data set group of the database.

CCSID encoding
An optional 1- to 25-character field that specifies the encoding of the character
data in the segment.

The value specified on the CCSID parameter cannot contain the following
characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

The value of the CCSID parameter in the table overrides the value of the CCSID
parameter in the database for this segment. If the CCSID parameter is not
specified on the table, the default value is either the value of the CCSID
parameter on the database or, if CCSID was not specified on the database, the
value Cp1047, which specifies EBCDIC encoding.

742 Application Programming APIs

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|

|
|
|
|
|

This value can be overridden in individual fields by the CCSID parameter in the
column definition.

DIRECT DEPENDENT | SEQUENTIAL DEPENDENT
For databases defined with a DEDB access type only. Describes the type of
DEDB dependent segment. Must not be specified for root segments. Only one
sequential dependent segment is permitted per DEDB, and, if specified, it must
be the first dependent segment type. Direct dependent segment type is the
default.

Restriction: After you define the type of DEDB dependent segment by
specifying DIRECT DEPENDENT or SEQUENTIAL DEPENDENT, you cannot
change the segment type by using the ALTER TABLE statement. To change the
type of DEDB dependent segment, you must first use the DROP TABLE
statement to delete the table. Then, you must re-create the table by using the
CREATE TABLE statement and specify the keyword for the segment type that
you require.

SSPTR n
For databases defined with a DEDB access type only. Specifies the number of
subset pointers. You can specify from 0 to 8. When you specify 0 or if SSPTR is
not specified, you are not using a subset pointer.

EDITPROC routinename
Selects a Segment Edit/Compression exit routine for either DEDB or
full-function database.

For segment edit/compression of full-function database

Do not specify this keyword if the SOURCE keyword is used. The DL/I
EDITPROC keyword is invalid for HSAM, SHSAM, SHISAM, INDEX, and
logical databases. It is also invalid for logical child segments in any database.
When used for a HISAM database, it must not change the sequence field offset
for HISAM root segments. In addition, the minimum segment length that can
be specified for a segment type where the segment edit/compression option is
specified is 4 bytes.

Remember: If you are using a segment edit/compression exit routine and
defined your segments as variable-length, be aware that when a
variable-length segment is compressed, it is padded with null bytes up to the
minimum segment length that was defined in the DBD. Minimum segment
length essentially overrides the compression; this enables you to provide
additional space during load time for segments that are heavily compressed.

routinename
Specifies the name of the user-supplied edit/compression exit routine. This
name must be a 1- to 8-character alphanumeric value, must not be the
same as any other name in IMS.SDFSRESL, and must not be the same as a
database name.

DATA
Specifies that the indicated exit routine condenses or modifies data fields
only. Sequence fields must not be modified, nor data fields that change the
position of the sequence field in respect to the start of the segment. DATA
is the default value if a compression routine is named but no parameter is
selected.

Chapter 8. SQL programming reference 743

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

KEY
Specifies that the exit routine can condense or modify any fields within the
named segment. This parameter is invalid for the root segment of a
HISAM database.

INIT
Indicates that initialization and termination processing control is required
by the segment exit routine. When this parameter is specified, the
edit/compression routine gains control after database open and after
database close.

max
Specifies the maximum number of bytes by which fixed-length segments
can increase during compression exits. You can specify from 1 to 32 767
bytes. The default for max is 10.

PAD
Indicates that the numeric value supplied by MAX should be used for
padding and not for MAX. The numeric range of 1 to 32 767 indicates a
size to which an inserted segment will be padded when the compression of
that segment results in a length somewhat less than the PAD value.

For segment edit/compression of DEDB

routinename
Specifies the z/OS load module name of the user-supplied segment
edit/compression exit routine. The routine name is required.

DATA
Specifies that only the user data part of the segment is compressed. DATA
is the default.

Restriction: The KEY parameter is not supported for DEDB. If you specify
the KEY parameter, an error message is issued.

INIT
Allows the segment compression exit routine to gain control immediately
after the first area in the database is opened and returns control
immediately before the last area in the database is closed. As long as the
segment length is within the values specified, no errors occur while
checking the field qualification for segment compression or expansion.

Restriction: The EDITPROC clause is prohibited on DEDB tables containing a
unique key field located at the end of the table.

LPARENT table_name {VIRTUAL | PHYSICAL}
Specifies the logical parent of the table being defined.

table_name
Specifies the IMS internal table name and the name of the logical parent of
the table being defined. If the logical parent resides within the same
database then you may just specify the table name. If the logical parent
resides in a different database then you must specify both the database and
table name, such as "database_name.tablename".

VIRTUAL | PHYSICAL
Specifies whether the concatenated key of the logical parent (LPCK) is
stored as a part of the logical child segment. Specify the parameter only for
logical child segments. If PHYSICAL is specified, the LPCK is stored with
each logical child segment. If VIRTUAL is specified, the LPCK is not stored

744 Application Programming APIs

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

in the logical child segment. PHYSICAL must be specified for a logical
child segment whose logical parent is in a HISAM database. It must be
specified also for a logical child segment that is sequenced on its physical
twin chain through use of any part of the concatenated key of the logical
parent.
v PHDAM and PHIDAM

– PHYSICAL is the default for PHDAM and PHIDAM.
– If VIRTUAL is specified for PHDAM or PHIDAM, it is ignored, and

PHYSICAL is used.
v HDAM and HIDAM

– VIRTUAL is the default for HDAM and HIDAM.
– Symbolic pointers in HDAM and HIDAM databases use the LPCK

and require the PHYSICAL specification.

Keyword parameters for CREATE TABLE (column-definition)

The following keyword parameters are defined for the CREATE TABLE
(column-definition) statement:

column_name
column_name represents the external name that is stored only in the IMS
catalog, not in the database that you are defining. Specify an external name as
a 1- to 128-character uppercase alphanumeric string. An external name can
include underscore characters. Column names must be unique within a
segment.

Restriction: Column names cannot be reserved SQL keywords or begin with
DFS.

For a list of the reserved SQL keywords that are restricted by the IMS
Universal drivers, see Portable SQL keywords restricted by the IMS Universal
JDBC drivers (Application Programming).

INTERNALNAME internalname
Specifies the name of this field within a segment type. The name can be
referred to by an application program in a DL/I call SSA. Field names must be
unique within a segment definition. The fldname1 value must be a 1- to
8-character alphanumeric value. The INTERNALNAME parameter is required
on the following types of fields:
v Key-sequenced field types, which specify the SEQ parameter
v Field types that are referenced by a segment search argument (SSA)
v Field types that are referenced by a PSB as a sensitive field.
v Field types that are referenced by an XDFLD

For other field types, you can omit the INTERNALNAME parameter. Omitting
the INTERNALNAME parameter can save storage in the data management
block (DMB) of a database. However, to be able to search on this field, you
must specify the INTERNALNAME parameter. The INTERNALNAME
parameter cannot be specified on the following types of fields:
v Fields that are defined as arrays. A field that is defined as an array includes

ARRAY in the field definition.
v Fields that are defined as array elements. A field that is an array element

specifies the name of an array field on the IN keyword in the column.
v Fields that are defined as structures that contain one or more nested

dynamic arrays. A field that is defined as a structure includes STRUCT in
the column.

Chapter 8. SQL programming reference 745

|
|
|
|
|

|

|

|
|

|

|

|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_portablesqlkeywords.htm#ims_portablesqlkeywords

v Fields that are contained in a structure that also contains a dynamic array. A
field that is contained within a structure specifies the name of the structure
field on the IN keyword in the column.

v Fields that follow a dynamic array in a segment. A field that follows a
dynamic array specifies the STARTAFTER parameter.

v Fields that include the RELSTART parameter to specify a starting position
that is relative to the starting position of another field.

v Fields that are defined with XML.

The INTERNALNAME parameter must be specified for /CK and /SX
columns. When specifying /CK or /SK names, they must be enclosed in
double quotes (").
v HSAM, SHSAM, INDEX, PSINDEX, and DEDB do not allow /CK or /SX

columns.
v HISAM and SHISAM only allow /CK columns.
v HDAM, HIDAM, PHDAM, and PHIDAM allow /CK and /SX columns.

Keyword parameters for datatype

The following keyword parameters are defined for the CREATE TABLE (datatype)
statement:

ARRAY | BINARY | ...
If DECIMAL is specified on the DATATYPE parameter, the default INTERNAL
TYPECONVERTER is signed PACKEDDECIMAL.

If DATE, TIME, or TIMESTAMP is specified, you can specify either LONG or
CHAR on the INTERNAL TYPECONVERTER keyword or specify a USER
TYPECONVERTER. INTERNAL TYPECONVERTER LONG is the default.
When LONG is used, the value is stored on DASD as the number of
milliseconds since January 1, 1970.

If XML is specified, the default INTERNAL TYPECONVERTER is XML_CLOB,
which is the only valid value when XML is specified.

If STRUCT or ARRAY is specified, the default INTERNAL TYPECONVERTER
is STRUCT or ARRAY, respectively, which are the only valid values when
either one is specified.

For all other values for the data type, the value is used as the default
INTERNAL TYPECONVERTER.

Valid values are:

ARRAY
When ARRAY is specified:
v The INTERNALNAME parameter is not supported
v The byte value specified on either the BYTES or MAXBYTES parameter

must be equal to or greater than the sum total of the bytes of all fields
contained in the array.

You cannot redefine a field that has been defined as an ARRAY or that
contains an ARRAY.

A field that is defined as an array includes ARRAY in the field definition.

A field that is an array element specifies the name of an array field on the
IN keyword in the column.

746 Application Programming APIs

|
|
|

|
|

|
|

|

|
|
|

|
|

|

|

|

|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

|
|

|

|
|
|

|
|

|

|
|

BINARY
BINARY can be specified with TYPE P or TYPE X. It defaults to a column
size of 1 byte, however you can specify your own size using the
MAXBYTES keyword.

BIT
If you specify BIT, you set a column size of 1 byte. If you specify
MAXBYTES you can only specify a value of 1.

BYTE
If you specify BYTES, you set a column size of 1 byte. If you specify
MAXBYTES you can only specify a value of 1.

UBYTE
If you specify UBYTE, you set a column size of 1 byte. If you specify
MAXBYTES you can only specify a value of 1.

CHAR
If you specify CHAR, the default column size of 1 byte. You can specify
the actual column size by including the value in parens next to CHAR or
on the MAXBYTES keyword. For example: CHAR(8).

DATE
When DATE is specified, you can only specify MAXBYTES 8, unless you
also specify a column definition that includes either INTERNAL
TYPECONVERTER CHAR or USER TYPECONVERTER convertername.

DECIMAL(pp,ss)

pp Precision. A 1- to 2-byte numeric field greater than 0.

ss Scale. A 1- to 2-byte numeric field greater than or equal to 0. The value
specified for ss cannot be greater than the value of pp.

You must specify a value on the BYTES parameter that matches the
decimal format that is used.

The default decimal format is signed packed decimal. To calculate the
required value of the BYTES parameter for the signed packed decimal
format, use the following formula: length = ceiling ((pp + 1) / 2)

The default decimal format can be changed by specifying the INTERNAL
TYPECONVERTER parameter.

When the zoned decimal format is used, as specified by INTERNAL
TYPECONVERTER ZONEDDECIMAL, use the following formula to
calculate the value of the BYTES parameter: length = pp

DOUBLE
If you specify DOUBLE, you can only specify MAXBYTES 8.

FLOAT
If you specify FLOAT, you can only specify MAXBYTES 4.

INT
If you specify INT, you can only specify MAXBYTES 4.

UINT
If you specify UINT, you can only specify MAXBYTES 4.

LONG
If you specify LONG, you can only specify MAXBYTES 8.

Chapter 8. SQL programming reference 747

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

||

||
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

ULONG
If you specify ULONG, you can only specify MAXBYTES 8.

OTHER
Specifies the use of a user-defined data type. When OTHER is specified, a
column definition must also be specified with a user-provided type
converter specified on the USER TYPECONVERTER parameter.

SHORT
If you specify SHORT, you can only specify MAXBYTES 2.

USHORT
If you specify USHORT, you can only specify MAXBYTES 2.

STRUCT
When STRUCT is specified, you cannot define this column as a primary
key if the structure contains a dynamic array. Dynamic arrays are defined
with a data type of ARRAY and the DEPENDSON and MAXBYTES
keywords.

Also, the byte value specified on either the BYTES or MAXBYTES parameter
must be equal to or greater than the sum total of the bytes of all fields
contained in the structure.

TIME
When TIME is specified, you can only specify MAXBYTES 8, unless you also
specify a column definition that includes either INTERNAL
TYPECONVERTER CHAR or USER TYPECONVERTER convertername.

TIMESTAMP
When TIMESTAMP is specified, you can only specify MAXBYTES 8, unless
you also specify a column definition that includes either INTERNAL
TYPECONVERTER CHAR or USER TYPECONVERTER convertername.

XML

Restriction: XML is not supported when the INTERNALNAME keyword
is specified or for columns defined as a primary key.

Keyword parameters for CREATE TABLE (ims-column-syntax)

The following keyword parameters are defined for the CREATE TABLE
(ims-column-syntax) statement:

BYTES bytes
Specifies the length of the field being defined in bytes. For fields other than
system-related fields, BYTES must be a valid self-defining term whose value
does not exceed 255.

If a concatenated key or a portion of a concatenated key of an index source
segment type is defined as a system-related field, the value specified can be
greater than 255, but must not exceed the length of the concatenated key of the
index source segment.

A case in which the byte length can be greater than 255 is when the column is
defined as not searchable by IMS. These columns cannot be defined as primary
keys and cannot have the INTERNALNAME keyword specified.

The length of a /SX system-related field is always 4 bytes; therefore, when
specified, the BYTES parameter is disregarded.

748 Application Programming APIs

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

If this field is defined as either a structure or an array by STRUCT or ARRAY,
the value specified on BYTES must be greater than or equal to the sum total of
the bytes of all fields contained in the structure or array.

When XML, the BYTES parameter is optional and the valid values for BYTES
range from 0 to the maximum size of the segment. If the BYTES parameter is
omitted when XML, BYTES and MAXBYTES are not allowed.

CCSID encoding
An optional 1- to 25-character field enclosed in single quotation marks that
specifies the encoding of the character data in the column. It is valid only
when the INTERNAL TYPECONVERTER is CHAR.

The value specified cannot contain the following characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

If not specified on for the column, the default value is determined by the value
specified on either the table or, if not specified on the table, the database. If the
parameter is not specified on either the table or database, the default value is
Cp1047, which specifies EBCDIC encoding.

DEPENDSON
Specifies the name of a field that defines the number of elements in a dynamic
array. The column of the referenced field must precede the FIELD statement
that specifies the DEPENDSON parameter.

The DEPENDSON parameter is valid only when ARRAY is also specified.
DEPENDSON is required if the values of MINOCCURS and MAXOCCURS are
different.

The field referenced by the DEPENDSON parameter must be defined with one
of the following datatype of XML values:
v INT
v SHORT
v LONG
v DECIMAL with either (pp) or (pp,ss) specified, where ss is either 0 or 00.

TYPE {C | X | P}
Determines the type of character that IMS uses to mask or pad the data in this
field.

C Specifies alphanumeric data or a combination of types of data. When C
is specified, if IMS needs to fill unused bytes in the field, IMS left
justifies the value and fills the unused bytes to the right of the value
with X'40'. For example, a 3-byte value X'F5F4F3' in a 5-byte field is
written out as X'F5F4F34040'.

X Specifies hexadecimal data. When X is specified, if IMS needs to fill
unused bytes in the field, IMS right justifies the value and fills the
unused bytes to the left of the value with X'00'. For example, a 3-byte
value X'543210' in a 5-byte field is written out as X'0000543210'.

P Packed decimal data. When P is specified, if IMS needs to fill unused
bytes in the field, IMS right justifies the value and fills the unused
bytes to the left of the value with X'00'. For example, a 3-byte value
X'54321C' in a 5-byte field is written out as X'000054321C'.

Chapter 8. SQL programming reference 749

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|

|

|

|

|
|
|

||
|
|
|
|

||
|
|
|

||
|
|
|

MAXBYTES max_array_bytes
Specifies the maximum size of a field in bytes when the byte-length of the field
instance can vary based on the number of elements in a dynamic array.
MAXBYTES and BYTES are mutually exclusive.

The value of MAXBYTES must be greater than or equal to the maximum total
of the byte values of all fields nested under this field.

The MAXBYTES parameter is required and valid only in the following cases:
v The field is defined as a dynamic array. A field is a dynamic array when the

number of elements in the array can vary from one instance of the field to
another. In the definition of a dynamic array, the DEPENDSON parameter
references another field in the segment definition that defines the number of
array elements for an instance of the dynamic array.

v For a field defined as a static array or a structure that contains a nested field
that is defined as a dynamic array.

IN column_name
Specifies the name of a field that is defined as a structure or array in which
this field is contained. The referenced field must be defined with either
DATATYPE=ARRAY or DATATYPE=STRUCT.

INTERNAL TYPECONVERTER
Specifies the internal conversion routine that IMS uses to convert the IMS data
into the data types that are expected by the application program.

You can specify either INTERNAL TYPECONVERTER or USER TYPECONVERTER, but not
both. INTERNAL TYPECONVERTER or USER TYPECONVERTER are mutually exclusive.

Valid values for the INTERNAL TYPECONVERTER parameter are:

ARRAY | BINARY | ...
If DECIMAL data type, the default INTERNAL TYPECONVERTER is signed
PACKEDDECIMAL.

If DATE, TIME, or TIMESTAMP data type, you must specify either LONG
or CHAR on the INTERNAL TYPECONVERTER keyword or specify a USER
TYPECONVERTER. INTERNAL TYPECONVERTER LONG is the default. When LONG
is used, the value is stored on DASD as the number of milliseconds since
January 1, 1970.

If XML data type, the default INTERNAL TYPECONVERTER is XML_CLOB,
which is the only valid value for XML.

If STRUCT or ARRAY data type, the default INTERNAL TYPECONVERTER is
STRUCT or ARRAY, respectively, which are the only valid values.

For all other data types, the value is used as the default INTERNAL
TYPECONVERTER.

Valid values are:

ARRAY
When ARRAY is specified:
v The INTERNALNAME parameter is not supported
v The byte value specified on either the BYTES or MAXBYTES parameter

must be equal to or greater than the sum total of the bytes of all
fields contained in the array.

You cannot redefine a field that has been defined as an ARRAY or that
contains an ARRAY.

750 Application Programming APIs

|
|
|
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|
|

|
|

|
|

|

|
|

|

|
|
|

|
|

An array element specifies the name of the array on the IN keyword
for the column.

BIT
If you specify BIT, you can only specify MAXBYTES 1.

BYTE
If you specify BYTE, you can only specify MAXBYTES 1.

UBYTE
If you specify UBYTE, you can only specify MAXBYTES 1.

CLOB
A Character Large Object is a collection of character data in a database
management system.

DOUBLE
If you specify DOUBLE, you can only specify MAXBYTES 8.

FLOAT
If you specify FLOAT, you can only specify MAXBYTES 4.

INT
If you specify INT, you can only specify MAXBYTES 4.

UINT
If you specify UINT, you can only specify MAXBYTES 4.

LONG
If you specify LONG, you can only specify MAXBYTES 8.

ULONG
If you specify ULONG, you can only specify MAXBYTES 8.

SHORT
If you specify SHORT, you can only specify MAXBYTES 2.

USHORT
If you specify USHORT, you can only specify MAXBYTES 2.

XML_CLOB

Restriction: Datatype of XML is not supported when the NAME
parameter is specified.

ZONEDDECIMAL
ZONEDDECIMAL is a data type extension for the IMS Universal JDBC
driver and the IMS Universal DL/I driver. You need to specify
datatype of XML.

The value that is specified on the INTERNAL TYPECONVERTER parameter must be
consistent with the value specified as the column's data type. In most cases,
you must specify the same value on INTERNAL TYPECONVERTER that you specify
as the data type.

ISSIGNEDYES | ISSIGNEDNO
This parameter is valid only for a DECIMAL data type. The default is
ISSIGNEDYES.

MINOCCURS min_array_elements
If DECIMAL data type, the default INTERNAL TYPECONVERTER is signed
PACKEDDECIMAL.

Chapter 8. SQL programming reference 751

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

MAXOCCURS max_array_elements
For ARRAY only, a required numeric value that specifies the maximum number
of elements in an ARRAY. MAXOCCURS must be greater than or equal to
MINOCCURS and not zero.

OVERFLOW table_name
A 1- to 8-character internal name of a dependent table that can be used to store
any portion of an XML document that does not fit into the column that is
defined to hold the XML document. The parent of the dependent table is the
table that contains the XML data column. OVERFLOW applies only to columns
that specify XML.

PATTERN
An optional 1- to 50-character field, enclosed in single quotation marks, that
specifies the pattern to use for the date, time, and time stamp Java datatypes.

PATTERN applies only when DATE, TIME, or TIMESTAMP is specified as the
data typeand CHAR is specified on the INTERNAL TYPECONVERTER
keyword. PATTERN is invalid for other datatypes.

Patterns are case-sensitive and must be enclosed in single quotation marks.

Except for single quotation marks that are used as delimiters for the keyword
value, the value that is specified on the PATTERN keyword cannot contain the
following characters:
v Single and double quotation marks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

Patterns that you can specify are defined by the Java class
java.text.SimpleDateFormat. DDL does not check that the value entered on
PATTERN conforms to the patterns defined by Java.

For example, if you enter the Java format yyyy.MM.dd, the resulting time format
is "2013.01.01".

PROPERTIES name value
Specifies properties for a user type converter that is specified on the USER
TYPECONVERTER parameter. These properties are passed to the user type
converter.

The PROPERTIES parameter is valid only when USER TYPECONVERTER is
specified.

The names and properties that are specified on the PROPERTIES keyword are
case-sensitive and must be enclosed in single quotation marks.

The following characters are not supported by the PROPERTIES keyword:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

The maximum length for a property name is 128 characters. The maximum
length for a property value is also 128 characters.

The format is:
PROPERTIES (’name1’ = ’value1’ , ’name2’ = ’value2’)

For example,
PROPERTIES (’DOG’ = ’BUTCH’ , ’CAT’ = ’LUCY’)

752 Application Programming APIs

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|

|

|

RELSTART relative_start_position
Specifies the starting position of a field that is defined as an element of an
array or, in some circumstances, a structure. Valid values are from 1 to 32767.

The value specified on RELSTART is the starting byte offset of the field relative
to the start of the array or structure. For example, the first field in an array
would typically specify RELSTART 1, even if the array that contains the field
starts at byte 50 of a segment.

For fields that specify an array field as a parent, RELSTART is required.

For fields that specify a structure as a parent, RELSTART is required if the
structure field is defined with RELSTART or STARTAFTER.

In the following example, the field DYNARRAY is a dynamic array. The field
STRUCT01 is a structure. The fields FLD03 and FLD04 both specify STRUCT01
as a parent. Because a dynamic array precedes STRUCT01 in the segment, the
starting offsets of FLD03 and FLD04 can be specified only relative to the start
of STRUCT01.
FIELD EXTERNALNAME=ARRAYNUM,DATATYPE=DECIMAL(7,0),START=1,BYTES=4
FIELD EXTERNALNAME=DYNARRAY,DATATYPE=ARRAY,START=5,MAXBYTES=100

MINOCCURS=10,MAXOCCURS=50,DEPENDSON=ARRAYNUM
FIELD EXTERNALNAME=FLD01,RELSTART=1,BYTES=2,PARENT=DYNARRAY
FIELD EXTERNALNAME=FLD02,STARTAFTER=DYNARRAY,BYTES=10
FIELD EXTERNALNAME=STRUCT01,DATATYPE=STRUCT,STARTAFTER=FLD02,BYTES=10
FIELD EXTERNALNAME=FLD03,RELSTART=1,BYTES=5,PARENT=STRUCT01
FIELD EXTERNALNAME=FLD04,RELSTART=6,BYTES=5,PARENT=STRUCT01

START, STARTAFTER, and RELSTART are mutually exclusive.

START start_position
Specifies the starting position of the field being defined in terms of bytes
relative to the beginning of the segment. The value of START must be a
numeric term whose value does not exceed 32767. The starting position for the
first byte of a segment is one. For variable-length segments, the first 2 bytes
contain the length of the segment. Therefore the first actual user data field
starts in byte 3. Overlapping fields are permitted. When defining a logical child
segment, the first n number of bytes of the segment type is the concatenated
key of the logical or physical parent. A field starting in position one would
define all or a portion of this field. A field starting in position n+1 would start
with intersection data.

START can be used for a system-related field, to describe a portion of the
concatenated key as a field in an index source segment type. If used in this
way, START specifies the starting position of the relevant portion of the
concatenated key relative to the beginning of the concatenated key. The first
byte of the concatenated key is considered to have a position of one. It must be
a numeric term whose value does not exceed the length of the concatenated
key plus one. Subtract the value specified in the BYTES parameter. The starting
position parameter for the /SX system-related field is disregarded.

START, STARTAFTER, and RELSTART are mutually exclusive.

When XML, the START parameter is optional and START 0 can be specified. If
the START parameter is omitted when XML, START 0 is the default.

STARTAFTER field_name
When the starting byte offset of a field cannot be calculated because the field
starts after a dynamic array, specifies the name of the field that directly
precedes this field in the segment. The name cannot be the name provided on
the INTERNALNAME keyword.

Chapter 8. SQL programming reference 753

|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

STARTAFTER is required and valid only when the starting position of a field
cannot be calculated because the field is preceded at a prior offset by a field
defined as a dynamic array.

Dynamic arrays make it impossible to calculate the starting offsets of
subsequent fields in a segment, because the byte lengths of dynamic arrays can
vary from one instance of a segment to another. The columns of dynamic array
fields can be identified by the inclusion of the DEPENDSON and MAXBYTES
parameters.

The STARTAFTER parameter cannot be specified on fields that define an array
field as a parent. Instead, specify the RELSTART parameter.

START, STARTAFTER, and RELSTART are mutually exclusive.

URL xml_schema_url
An optional 1- to 256-character field, enclosed in single quotation marks, for
the URL that references the XML schema that describes this field.

For example,
URL ’MySchema.xsd’

The value that is specified on the URL keyword cannot contain the following
characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

The URL parameter applies only with XML for XML_CLOB data.

USER TYPECONVERTER typeconverter
Specifies a 1- to 256-character, enclosed in single quotation marks, fully
qualified Java class name of the user-provided Java class to be used for type
conversion.

For example,
USER TYPECONVERTER ’class://com.ibm.ims.dli.types.PackedDateConverter’

The value that is specified on the USER TYPECONVERTER keyword cannot
contain the following characters:
v Single and double quotation marks
v Blanks
v Less than (<) and greater than (>) symbols
v Ampersands (&)

USER TYPECONVERTER is mutually exclusive with INTERNAL
TYPECONVERTER.

Keyword parameters for CREATE TABLE (inline-constraints)

The following keyword parameters are defined for the CREATE TABLE
(inline-constraints) statement:

CONSTRAINT constraint_name
Names the constraint. If a constraint name is not specified, a unique constraint
name is generated. If the name is specified, it must be different from the names
of any constraints previously specified on the table.

PRIMARY KEY NON UNIQUE
Identifies this field as a sequence field in the segment type.

754 Application Programming APIs

|
|
|

|
|
|
|
|

|
|

|

|
|
|

|

|

|
|
|
|
|
|

|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|

|
|

NON UNIQUE
An optional keyword that indicates that duplicate values are allowed in
the sequence field of occurrences of the segment type. For a root segment
type, the sequence field of each occurrence must contain a unique value,
except in HDAM. The root segment type in an HDAM database does not
need a key field; if a key field is defined, it does not have to be unique.

If not specified, only unique values are allowed in the sequence field of
occurrences of the segment type. For a dependent segment type, the
sequence field of each occurrence under a given physical parent segment
must contain a unique value.

Keyword parameters for CREATE TABLE (constraint)

The following keyword parameters are defined for the CREATE TABLE (constraint)
statement:

CONSTRAINT constraint_name
Names the constraint. If a constraint name is not specified, a unique constraint
name is generated. If the name is specified, it must be different from the names
of any constraints previously specified on the table.

PRIMARY KEY(column_name) NON UNIQUE
Identifies this field as a sequence field in the segment type.

NON UNIQUE
An optional keyword that indicates that duplicate values are allowed in
the sequence field of occurrences of the segment type. For a root segment
type, the sequence field of each occurrence must contain a unique value,
except in HDAM. The root segment type in an HDAM database does not
need a key field; if a key field is defined, it does not have to be unique.

If not specified, only unique values are allowed in the sequence field of
occurrences of the segment type. For a dependent segment type, the
sequence field of each occurrence under a given physical parent segment
must contain a unique value.

Keyword parameters for CREATE TABLE (references-clause)

The following keyword parameters are defined for the CREATE TABLE
(references-clause) statement:

FOREIGN KEY REFERENCES
For dependent segment types, specifies the name of this segment's physical
parent.

REFERENCES table_name
Specifies the dependent segments parent segment and is the IMS external
table name.

Keyword parameters for CREATE TABLE (map-definition)

The following keyword parameters are defined for the CREATE TABLE
(map-definition) statement:

MAP
A map definition must be preceded by a column definition. The MAP
statement enables the alternate mapping of columns within a table. A group of
one or more CASE statements that relate to a control column is nested within
the table. The control column identifies which CASE is used in a table instance.

Chapter 8. SQL programming reference 755

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|

column_name
The external name of the column within this table that contains the value that
determines which map case is used for a segment instance. If the column does
not contain a value that corresponds to a caseid value in a CASE statement for
this map, this map is not being used for this table instance.

AS map_name
An optional 1- to 128-character alphanumeric field that defines the name of
this map. If not provided, IMS will automatically generate a unique name
within this table. The DFS prefix is reserved by IMS and cannot be part of a
user-created name.

Keyword parameters for CREATE TABLE (case-definition)

The following keyword parameters are defined for the CREATE TABLE
(case-definition) statement:

CASE
The CASE statement defines a map case, which is a set of columns that define
an optional, alternative field layout for a particular byte range within a table.

Map cases that map the same byte range in a segment are grouped by a MAP
statement. The MAP statement also links the map cases to a separately defined
control field in the table definition.

Each map case has a unique ID. In an instance of the table, the ID of the map
case that is in effect is stored in the control field when the segment is created.

Unless the IMS Universal drivers are used, the field layouts that are defined by
the map cases must be defined to the application programs that access this
byte range by a COBOL copybook or other programming artifact. When a table
instance is accessed, the application programs determine which copybook to
use by checking the value of the control field.

When application programs access IMS through the IMS Universal drivers, no
additional programming artifacts are needed to define the field layouts to the
application programs.

caseid
A 1- to 128 byte field that defines a unique character or hex string. A table
instance specifies the caseid value in a user-defined control field when part
or all of the field structure of the segment is mapped by this case.

When specified as a character string the value must be specified within
single quotes, for example: ’name01’. When specified as a hex string the
value must be specified within single quotes followed by a hex indicator,
for example: ’00000001’x.

The caseid value can contain alphanumeric characters, underscore (_), @, $,
and #. Or, it can be a hexadecimal string. The length of the value must be
supported by the length of the user-defined control field. If alphanumeric,
the length of the value must be less than or equal to the value specified on
the BYTES parameter of the control field. If it is a hexadecimal string, the
length of the CASEID value must be exactly equal to twice the value that
is specified on the BYTES parameter of the control field.

A case ID must be unique within the map that the case belongs to.

AS case_name
An optional 1- to 128-character alphanumeric field that defines the name of
this case. A case name must be unique within a table. If not provided, IMS

756 Application Programming APIs

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

will automatically generate a unique name within this table. The DFS
prefix is reserved by IMS and cannot be part of a user-created name.

Keyword parameters for CREATE TABLE (lchild)

The following keyword parameters are defined for the CREATE TABLE (lchild
syntax) statement:

lchild_definition
Must be preceded by a column-definition.

database_name.table_name
The table_name parameter specifies the IMS internal name of the logical child,
index pointer, index target, HIDAM or PHIDAM root segment type that is to
be associated with the segment type defined by a preceding TABLE. The
database_name parameter is the name of the database that contains the segment
type specified in the table_name parameter. The database_name parameter can
be omitted when the table_name parameter is defined in this database.

The database_name parameter must be one- to eight-character alphanumeric
values. The table_name parameter and must be one- to 128-character
alphanumeric values.

SINGLE|DOUBLE|NONE|INDEX|SYMBOL
Specifies the pointers used in logical or index relationships. When omitted
from any index database generation, SINGLE is the default. You must specify
INDEX or SYMBOL for any LCHILD statement following an index target
segment type; no default is provided for this part of the index relationship.
When omitted from an LCHILD statement which establishes a unidirectional
or physically paired bidirectional logical relationship, NONE is the default.
When omitted or specified as NONE for an LCHILD statement which
establishes a virtually paired bidirectional logical relationship, SINGLE is the
default.

Restriction:

v For PHDAM and PHIDAM databases, only the operands INDEX and NONE
are supported. All other operands are treated as if errors are present.

v For DEDB secondary index databases, only the SYMBOL operand is
supported.

SINGLE
Is used for logical relationships, or index relationships implemented with
direct address pointers. Specifies that a logical child first pointer field is to
be reserved in each occurrence of the segment type defined by the
preceding TABLE. When the preceding TABLE defines a logical parent, the
pointer field contains a direct address pointer to the first occurrence of a
logical child segment type. When the preceding TABLE defines the
HIDAM Primary index database segment type, the pointer field contains a
direct address pointer to a HIDAM database root segment. When the
preceding TABLE defines an index pointer segment type in a secondary
index database, the pointer field contains a direct address pointer to an
index target segment.

DOUBLE
Is used to specify two 4-byte pointer fields, logical child first and logical
child last, reserved in the logical parent segment. The two pointers point to
the first and last occurrences of logical child segment type under a logical

Chapter 8. SQL programming reference 757

|
|

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

parent. The logical child last pointer is of value when the logical child is
not sequenced and the rules parameter is LAST.

NONE
Should be used when the logical relationship from the logical parent to the
logical child segment is not implemented or not implemented with direct
address logical child pointers. In this case, the relationship from logical
parent to logical child does not exist or is maintained by using physically
paired segments. No pointer fields are reserved in the logical parent
segment.

INDEX
Is specified on the LCHILD statement in a HIDAM database used to
establish the index relationship between the HIDAM root segment type
and the HIDAM Primary index during a HIDAM database DBD
generation. INDX can also be specified on the LCHILD statement in the
DBD for the target database that establishes the index relationship between
an index target segment type and a secondary index. In these cases, omit
the parameter or specify SINGLE on the LCHILD statement of the primary
or secondary index DBD. An LCHILD statement for a HIDAM primary
index must precede the LCHILD statements for secondary indexes.

Requirement: If the target database is a HALDB, the index database must
be defined as a HALDB index by use of the PSINDEX parameter in the
DBD statement ACCESS parameter.

SYMBOL
Can be used in the DBD generation for the target database of a secondary
index to specify that the concatenated keys of the index target segments
are to be placed in the index pointer segments in lieu of a direct pointer.
You must specify SYMBOL when the index target segment type is in a
HISAM database. SYMBOL is optional when the index target segment type
is in an HDAM or HIDAM database.

An additional use of the SYMBOL parameter in the INDEX DBD is to
prevent reserving space in the prefix of index pointer segments for the
4-byte direct address index target segment pointer that is not used when
the index pointer is symbolic.

PAIR
Is specified for bidirectional logical relationships only. The provide name is the
logical child segment/table that is, physically or virtually, paired with the
logical child segment/table specified on the LCHILD statement. The name
must be a 1- to 128-character alphanumeric value.

Restriction: This parameter is not allowed for virtual pairing when using
PHDAM and PHIDAM databases, because they only support physical pairing.

INDEXFIELD
Is specified on LCHILD statements for an Index DBD generation only. It
specifies the name of the sequence field of a HIDAM root segment type during
DBD generation of the primary index for a HIDAM database, or the name of
an indexed field, defined through an XDFLD statement in an index target
segment type during DBD generation of a secondary index database. This
parameter is not needed for a primary index of a PHIDAM database.

RKSIZE
Specifies the root key size of the target database. This parameter is for
partitioned secondary index (PSINDEX) databases only, and is invalid for any
other database type. (Required in DBD source, optional in DDL).

758 Application Programming APIs

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

FIRST|LAST|HERE
Is used for logical relationships when no sequence field or a nonunique
sequence field has been defined for a virtual logical child. Under these
conditions, the rule of FIRST, LAST, or HERE controls the sequence in which
occurrences of the real logical child in the logical relationship are sequenced
from the logical parent through logical child and logical twin pointers (this
establishes the logical twin sequence).

Restriction: This parameter is not allowed for virtual pairing when using
PHDAM and PHIDAM databases, because they only support physical pairing.

FIRST
Indicates that, if no sequence field is specified for the logical child, a new
occurrence is inserted before the first existing occurrence of the logical
child. If a nonunique sequence field is specified for the logical child, a new
occurrence is inserted before all existing occurrences with the same key.

LAST
Indicates that, if no sequence field is specified for the logical child, a new
occurrence is inserted after the last existing occurrence of the logical child.
If a nonunique sequence field is specified for the logical child, a new
occurrence is inserted after all existing occurrences with the same keys.
LAST is the default option.

HERE
Indicates that the insert is dependent on the position established by the
previous DL/I call. If no sequence field is defined, the segment is inserted
before the logical twin that position was established on through the
previous call. If no position was established by a previous call, the new
twin is inserted before all existing logical twins. If a nonunique sequence
field is defined, the segment is inserted before the logical twin with the
same sequence field value on which position was established by a previous
call. If no position was established on a logical twin with the same
sequence field value, the segment is inserted before all twins with the same
sequence field value.

When a new occurrence of a logical child is inserted from its physical
parent, no previous position exists for the logical child on its logical twin
chain. Therefore, the new occurrence is placed before all existing
occurrences on the logical twin chain when no sequence field has been
defined, or before all existing occurrences with the same sequence field
value when a nonunique sequence field has been defined.

A command code of L (last) takes precedence over the insert rule specified,
causing a new occurrence to be inserted according to the insert rule of
LAST, for insert calls issued against a logical path.

Keyword parameters for CREATE TABLE (xdfld)

The following keyword parameters are defined for the CREATE TABLE (xdfld
syntax) statement:

xdfld_definition
Must be preceded by a lchild-definition.

xdfld_name
Specifies the name of the indexed data field of an index target segment. The
name specified actually represents the search field of an index pointer segment
type as being a field in the index target segment type. You can use the name

Chapter 8. SQL programming reference 759

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

specified to qualify SSAs of calls for an index target segment type through the
search field keys of index pointer segments. This enables accessing occurrences
of an index target segment type through a primary or secondary processing
sequence based on data contained in a secondary index. fldname must be a 1-
to 26-character alphanumeric value.

Since the name specified is used to access occurrences of the index target
segment type based on the content of a secondary index, the name specified
must be unique among all field names specified for the index target segment
type.

INTERNALNAME
Optional IMS internal name. Must be a 1- to 8-character alphanumeric value.

SEGMENT
Specifies the index source segment type for this secondary index relationship.
Must be the name of a subsequently defined segment type, which is
hierarchically below the index target segment type or it can be the name of the
index target segment type itself. The segment name specified must not be a
logical child segment. If this parameter is omitted, the index target segment
type is assumed to be the index source segment.

CONST
Specifies a character with which every index pointer segment in a particular
secondary index is identified. This parameter is optional. The purpose of this
parameter is to identify all index pointer segments associated with each
secondary index when multiple secondary indexes reside in the same
secondary index database. Must be specified as a 1-byte hexstring term, for
example X'F9'.

Restriction: CONST is not supported for HALDB or DEDB databases.

SRCH
Specifies which field or fields of the index source segment you must use as the
search field of a secondary index. list1 must be a list of one to five field
names defined in the index source segment type by column definitions. If two
or more names are included, they must be separated by commas and enclosed
in parentheses. The sequence of names in the list is the sequence in which the
field values are concatenated in the index pointer segment search field. The
sum of the lengths of the participating fields constitutes the index target
segment indexed field length which must be reflected in segment search
arguments.

SUBSEQ
Specifies which, if any, fields of the index source segment you must use as the
subsequence field of a secondary index. list2 must be a list of one to five field
names defined in the index source segment by column definitions. If two or
more names are included, they must be separated by commas and enclosed in
parentheses. The sequence of names in the list is the sequence in which field
values are concatenated in the index pointer segment subsequence field. This
parameter is optional.

DDATA
Specifies which, if any, fields of the index source segment you must use as the
duplicate data field of a secondary index. list3 must be a list of one to five
field names defined in the index source segment by column definitions. If two
or more names are included, they must be separated by commas and enclosed

760 Application Programming APIs

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

in parentheses. The sequence of names in the list is the sequence in which field
values are concatenated in the index pointer segment duplicate data field. This
parameter is optional.

NULLVAL
Suppresses the creation of index pointer segments when the index source
segment data used in the search field of an index pointer segment contains the
specified value.

The value must be a 1-byte hex-string term. For example, X'10', X’40’ for blank,
X’00’ for zero. If a packed decimal value is required, it must be specified as a
hexadecimal term with a valid number digit and zone or sign digit (X'3F' for a
packed positive 3 or X'9D' for negative 9).

No indexing is performed when each field of the index source segment
specified in the SRCH parameter has the value of this parameter in every byte.
For example, if the NULLVAL X'F9' were specified, the associated index would
have no entries indexed on the value C'9999...9'.

There is a slight difference in the case of packed fields. For packed fields, each
field that composes the search field is considered to be a separate packed
value. For example, if the NULLVAL X'9F' were specified in a case where the
search field was composed of three 2-byte packed source fields, there would be
no index entries with the search field value of X'999F999F999F' because all
index entries containing a X'9F' would be suppressed.

Also, with the same NULLVAL X'9F', if the search field were one 6-byte field,
no indexing would be performed whenever the value of the search field was
X'99999999999F'.

The only form of the sign that is checked is the form specified. For example, if
X'9C' is specified, X'9F' does not cause suppression. If both the NULLVAL and
the EXTRTN operands are specified, indexing of a segment is performed only
if neither causes suppression.

EXTRTN
Specifies the name of a user-supplied index maintenance exit routine that is
used to suppress the creation of selected index pointer segments. The
parameter (name1) must be the name of a user-supplied routine which receives
control whenever DL/I attempts to insert, delete or replace an index entry
because of changes occurring in the indexed database. This exit routine can
inspect the affected index source segment and decide whether an index pointer
segment should be generated. If both the NULLVAL and the EXTRTN
operands are specified, indexing of a segment is performed only if neither
causes suppression.

Usage notes

This statement is equivalent to the AREA statement of the IMS DBD generation
utility.

Example: COGDBD
DBD NAME=COGDBD, C

ENCODING=Cp1047, C
ACCESS=(HDAM,OSAM), C
RMNAME=(DFSHDC40,3,3,25), C
PASSWD=NO

DATASET DD1=COGDATA, C
DEVICE=3390, C
SIZE=(8192)

SEGM NAME=ROOT, C

Chapter 8. SQL programming reference 761

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|

PARENT=0, C
BYTES=(20), C
RULES=(LLL,HERE)

FIELD NAME=(ROOTKEY,SEQ,U), C
BYTES=12, C
START=1, C
TYPE=C, C
DATATYPE=CHAR

FIELD NAME=TABTYPE, C
BYTES=8, C
START=13, C
TYPE=C, C
DATATYPE=CHAR

SEGM NAME=TSINT, C
PARENT=ROOT, C
BYTES=(8,6), C
REMARKS=’This describes table TSINT.’, C
RULES=(LLL,HERE)

FIELD NAME=RNUM, C
BYTES=4, C
START=3, C
DATATYPE=INT

FIELD NAME=LL, C
BYTES=2, C
START=1, C
DATATYPE=SHORT

FIELD NAME=CSINT, C
EXTERNALNAME=CSINT, C
BYTES=2, C
START=7, C
DATATYPE=SHORT

SEGM NAME=TINT, C
EXTERNALNAME=TESTINTEGER, C
PARENT=ROOT, C
BYTES=(10,6), C
REMARKS=’This describes table TINT.’, C
RULES=(LLL,HERE)

FIELD NAME=RNUM, C
BYTES=4, C
START=3, C
DATATYPE=INT

FIELD NAME=LL, C
BYTES=2, C
START=1, C
DATATYPE=SHORT

FIELD NAME=CINT, C
EXTERNALNAME=CINTEGER, C
BYTES=4, C
START=7, C
DATATYPE=INT

CREATE DATABASE COGDBD
ACCESS HDAM OSAM
RMNAME(DFSHDC40 RMANCH 3 RMRBN 3 RMBYTES 25)
CCSID ’Cp1047’;

CREATE TABLESPACE COGDATA
SIZE PRIMARY 8192;

CREATE TABLE TEST_ROOT (
ROOT_KEY CHAR(12) INTERNALNAME ROOTKEY PRIMARY KEY ,
TABLE_TYPE CHAR(8) INTERNALNAME TABTYPE

) IN COGDBD.COGDATA
INTERNALNAME ROOT
MAXBYTES 20
AMBIGUOUS INSERT HERE;

762 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CREATE TABLE TEST_SHORT_INTEGER (
TABLE_LENGTH SHORT INTERNALNAME LL,
R_NUMBER INT INTERNALNAME RNUM,
C_SHORT_INTEGER SHORT INTERNALNAME CSINT,
FOREIGN KEY REFERENCES TEST_ROOT

) IN COGDBD.COGDATA
INTERNALNAME TSINT
MAXBYTES 8
MINBYTES 6
AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TEST_SHORT_INTEGER IN COGDBD IS ’This describes table TSINT.’;

CREATE TABLE TESTINTEGER (
TABLE_LENGTH SHORT INTERNALNAME LL,
R_NUMBER INT INTERNALNAME RNUM,
CINTEGER INT INTERNALNAME CINT,
FOREIGN KEY REFERENCES TEST_ROOT
) IN COGDBD.COGDATA

INTERNALNAME TINT
MAXBYTES 10
MINBYTES 6
AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TESTINTEGER IN COGDBD IS ’This describes table TINT.’;

Example: Continuation of COGDBD with DECIMAL
SEGM NAME=TDEC, C

PARENT=ROOT, C
BYTES=(10,6), C
REMARKS=’This describes table TDEC.’, C
RULES=(LLL,HERE)

FIELD NAME=RNUM, C
BYTES=4, C
START=3, C
DATATYPE=INT

FIELD NAME=LL, C
BYTES=2, C
START=1, C
DATATYPE=SHORT

FIELD NAME=CDEC, C
EXTERNALNAME=CDECIMAL, C
BYTES=4, C
START=7, C
DATATYPE=DECIMAL(7,2)

CREATE TABLE TEST_DECIMAL (
TABLE_LENGTH SHORT INTERNALNAME LL,
R_NUMBER INT INTERNALNAME RNUM,
CDECIMAL DECIMAL(7,2) INTERNALNAME CDEC,
FOREIGN KEY REFERENCES TEST_ROOT

) IN COGDBD.COGDATA
INTERNALNAME TDEC
MAXBYTES 10
MINBYTES 6
AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TEST_DECIMAL IN COGDBD IS ’This describes table TDEC.’;

Example: Continuation of COGDBD with DFSMARSH
SEGM NAME=TNCHAR, C

PARENT=ROOT, C
BYTES=(38,6), C
REMARKS=’This describes table TNCHAR.’, C
RULES=(LLL,HERE)

FIELD NAME=RNUM, C

Chapter 8. SQL programming reference 763

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

BYTES=4, C
START=3, C
DATATYPE=INT

FIELD NAME=LL, C
BYTES=2, C
START=1, C
DATATYPE=SHORT

FIELD NAME=CNCHAR, C
EXTERNALNAME=CNCHAREXT, C
BYTES=32, C
START=7, C
DATATYPE=CHAR

DFSMARSH ENCODING=UTF-8, C
INTERNALTYPECONVERTER=CHAR

CREATE TABLE TEST_NEW_CHAR (
TABLE_LENGTH SHORT INTERNALNAME LL,
R_NUMBER INT INTERNALNAME RNUM,
CNCHAREXT CHAR(32) INTERNALNAME CNCHAR CCSID ’UTF-8’,
FOREIGN KEY REFERENCES TEST_ROOT

) IN COGDBD.COGDATA
INTERNALNAME TNCHAR
MAXBYTES 38
MINBYTES 6
AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TEST_NEW_CHAR IN COGDBD IS ’This describes table TNCHAR.’;

Example: Continuation of COGDBD with PATTERN
SEGM NAME=TTS, C

PARENT=ROOT, C
BYTES=(35,6), C
REMARKS=’This describes table TTS.’, C
RULES=(LLL,HERE)

FIELD NAME=RNUM, C
BYTES=4, C
START=3, C
DATATYPE=INT

FIELD NAME=LL, C
BYTES=2, C
START=1, C
DATATYPE=SHORT

FIELD NAME=CTS, C
EXTERNALNAME=CTSNAME, C
BYTES=29, C
START=7, C
DATATYPE=TIMESTAMP

DFSMARSH ENCODING=Cp1047, C
INTERNALTYPECONVERTER=CHAR, C
PATTERN=’yyyy-MM-dd HH:mm:ss.fffffffff’

CREATE TABLE TEST_TIMESTAMP (
TABLE_LENGTH SHORT INTERNALNAME LL,
R_NUMBER INT INTERNALNAME RNUM,
CTSNAME TIMESTAMP INTERNALNAME CTS CCSID ’Cp1047’

PATTERN ’yyyy-MM-dd HH:mm:ss.fffffffff’,
FOREIGN KEY REFERENCES TEST_ROOT

) IN DATABASE COGDBD
INTERNALNAME TTS
MAXBYTES 35
MINBYTES 6
AMBIGUOUS INSERT HERE;

COMMENT ON TABLE TEST_TIMESTAMP IN COGDBD IS ’This describes table TTS.’;

764 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: Arrays
SEGM NAME=HOSPITAL,

EXTERNALNAME=HOSPITAL,
ENCODING=Cp1047,
PARENT=0,
BYTES=(900),
RULES=(LLL,HERE)

...

FIELD EXTERNALNAME=TABLEARRAY,
BYTES=14,
START=224,
MINOCCURS=1,
MAXOCCURS=1,
DATATYPE=ARRAY

FIELD EXTERNALNAME=TABLEARRAY1,
BYTES=2,
START=224,
TYPE=X,
PARENT=TABLEARRAY,
DATATYPE=CHAR

DFSMARSH INTERNALTYPECONVERTER=CHAR
FIELD EXTERNALNAME=TABLEARRAY2,

BYTES=4,
START=226,
TYPE=X,
PARENT=TABLEARRAY,
DATATYPE=CHAR

DFSMARSH INTERNALTYPECONVERTER=CHAR
FIELD EXTERNALNAME=TABLEARRAY3,

BYTES=8,
START=230,
TYPE=X,
PARENT=TABLEARRAY,
DATATYPE=CHAR

DFSMARSH INTERNALTYPECONVERTER=CHAR
...

CREATE TABLE hospital (
...
tablearray ARRAY MAXBYTES 14 START 224 MINOCCURS 1 MAXOCCURS 1,
tablearray1 CHAR(2) IN tablearray,
tablearray2 CHAR(4) IN tablearray,
tablearray3 CHAR(8) IN tablearray,
...

) IN DATABASE dedbjn21
INTERNALNAME hospital
MAXBYTES 900
AMBIGUOUS INSERT HERE

Example: Dynamic Arrays
FIELD EXTERNALNAME=ARRAYNUM,DATATYPE=DECIMAL(7,0),START=1,BYTES=4
FIELD EXTERNALNAME=DYNARRAY,DATATYPE=ARRAY,START=5,MAXBYTES=100

MINOCCURS=10,MAXOCCURS=50,DEPENDSON=ARRAYNUM
FIELD EXTERNALNAME=FLD01,RELSTART=1,BYTES=2,PARENT=DYNARRAY
FIELD EXTERNALNAME=FLD02,STARTAFTER=DYNARRAY,BYTES=10
FIELD EXTERNALNAME=STRUCT01,DATATYPE=STRUCT,STARTAFTER=FLD02,BYTES=10

CREATE TABLE dynamic_array_table (
arraynum DECIMAL(7,0)
dynarray ARRAY MAXBYTES 100 MINOCCURS 10 MAXOCCURS 50 DEPENDSON arraynum,
fld01 SHORT RELSTART 1 IN dynarray,

Chapter 8. SQL programming reference 765

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

fld02 CHAR(10) STARTAFTER dynarray,
struct01 STRUCT BYTES 10 STARTAFTER fld02

) IN DATABASE dynarrdb
INTERNALNAME dynarrs;

Example: Maps
DFSMAP NAME=MAP1, C

DEPENDINGON=CASENUM
~~~~~~~DFSCASE NAME=CASE1 redefines the schema for bytes 791 to 831.~~~~

DFSCASE NAME=CASE1, C
CASEID=CASEONE, C
CASEIDTYPE=C, C
MAPNAME=MAP1

FIELD EXTERNALNAME=FIELDB, C
CASENAME=CASE1, C
BYTES=20, C
START=791, C
DATATYPE=CHAR

FIELD EXTERNALNAME=FIELDC, C
CASENAME=CASE1, C
BYTES=20, C
START=811, C
DATATYPE=CHAR

~~~~~~~DFSCASE NAME=CASE2 redefines the schema for bytes 831 to 855~~~~
DFSCASE NAME=CASE2, C

CASEID=CASETWO, C
CASEIDTYPE=C, C
MAPNAME=MAP1

FIELD EXTERNALNAME=FIELDD, C
CASENAME=CASE2, C
BYTES=20, C
START=831, C
DATATYPE=CHAR

FIELD EXTERNALNAME=CARDTYPE, C
BYTES=4, C
START=851, C
DATATYPE=CHAR

CREATE TABLE customer (
id INT PRIMARY KEY,
...
casenum CHAR(12),
cardtype CHAR(4),
...
MAP casenum AS MAP1 (

CASE caseone AS case1 (
fieldb CHAR(20) START 792 ,
fieldc CHAR(20) START 811

) ,
CASE casetwo AS case2 (
fieldd CHAR(20) START 831,
cardtype CHAR(4) START 851)

)
)

) IN DATABASE dedbjn21
INTERNALNAME customer
MAXBYTES 900

Example: Structs
FIELD NAME=(NAME), C

EXTERNALNAME=PAYEE_NAME, C
BYTES=20, C
START=11, C
DATATYPE=CHAR

DFSMARSH ENCODING=Cp1047, C
INTERNALTYPECONVERTER=CHAR

766 Application Programming APIs

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

FIELD EXTERNALNAME=INDIVIDUALNAME, C
BYTES=20, C
START=11, C
DATATYPE=STRUCT, C
REDEFINES=PAYEE_NAME, C
REMARKS=’This is a STRUCT with lastname and firstname’

FIELD EXTERNALNAME=LASTNAME, C
BYTES=10, C
START=11, C
DATATYPE=CHAR, C
PARENT=INDIVIDUALNAME

DFSMARSH ENCODING=Cp1047, C
INTERNALTYPECONVERTER=CHAR

FIELD EXTERNALNAME=FIRSTNAME, C
BYTES=10, C
START=21, C
DATATYPE=CHAR, C
PARENT=INDIVIDUALNAME

DFSMARSH ENCODING=Cp1047, C
INTERNALTYPECONVERTER=CHAR

CREATE TABLE customer (
...
payee_name CHAR(20) START 11 CCSID ’Cp1047’,
individualname STRUCT BYTES 20 START 11,
lastname CHAR(10) IN individualname,
firstname CHAR(10 IN individualname

) IN DATABASE dedbjn21
INTERNALNAME customer
MAXBYTES 900

COMMENT ON COLUMN customer.individualname IN dedbjn21 IS ’This is
a STRUCT with lastname and firstname’

Example: Continuation of Structs
FIELD EXTERNALNAME=PERSONAL_INFO, C

BYTES=184, C
START=156, C
DATATYPE=STRUCT

DFSMARSH INTERNALTYPECONVERTER=STRUCT

FIELD EXTERNALNAME=ADDRESS, C
BYTES=184, C
START=156, C
MINOCCURS=2, C
MAXOCCURS=2, C
PARENT=PERSONAL_INFO, C
DATATYPE=ARRAY

FIELD EXTERNALNAME=NAME_TYPE, C
BYTES=1, C
RELSTART=1, C
PARENT=ADDRESS, C
DATATYPE=CHAR

FIELD EXTERNALNAME=INDIVIDUAL_NAME, C
BYTES=20, C
RELSTART=2, C
PARENT=ADDRESS, C
DATATYPE=STRUCT

FIELD EXTERNALNAME=LAST_NAME, C

Chapter 8. SQL programming reference 767

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BYTES=12, C
RELSTART=1, C
PARENT=INDIVIDUAL_NAME, C
DATATYPE=CHAR

FIELD EXTERNALNAME=FIRST_NAME, C
BYTES=8, C
RELSTART=13, C
PARENT=INDIVIDUAL_NAME, C
DATATYPE=CHAR

FIELD EXTERNALNAME=ADDRESS_LINE2, C
BYTES=40, C
RELSTART=22, C
PARENT=ADDRESS, C
DATATYPE=CHAR

FIELD EXTERNALNAME=CITY, C
BYTES=20, C
RELSTART=62, C
PARENT=ADDRESS, C
DATATYPE=CHAR

FIELD EXTERNALNAME=STATE, C
BYTES=2, C
RELSTART=82, C
PARENT=ADDRESS, C
DATATYPE=CHAR

FIELD EXTERNALNAME=ZIP, C
BYTES=9, C
RELSTART=84, C
PARENT=ADDRESS, C
DATATYPE=CHAR

...
FIELD EXTERNALNAME=COMPANY_CARDS, C

BYTES=200, C
START=584, C
DATATYPE=STRUCT

FIELD EXTERNALNAME=CARDS, C
BYTES=200, C
START=584, C
MINOCCURS=5, C
MAXOCCURS=5, C
PARENT=COMPANY_CARDS, C
DATATYPE=ARRAY

FIELD EXTERNALNAME=COMPANY_NAME, C
BYTES=20, C
RELSTART=1, C
PARENT=CARDS, C
DATATYPE=STRUCT

FIELD EXTERNALNAME=CO_TYPE, C
BYTES=12, C
RELSTART=1, C
PARENT=COMPANY_NAME, C
DATATYPE=CHAR

FIELD EXTERNALNAME=NEW_TYPE, C
BYTES=12, C
RELSTART=1, C
REDEFINES=CO_TYPE, C
PARENT=COMPANY_NAME, C
DATATYPE=CHAR

768 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FIELD EXTERNALNAME=CO_NAME, C
BYTES=8, C
RELSTART=13, C
PARENT=COMPANY_NAME, C
DATATYPE=CHAR

FIELD EXTERNALNAME=EMPLOYEE_NAME, C
BYTES=20, C
RELSTART=21, C
PARENT=CARDS, C
DATATYPE=STRUCT

FIELD EXTERNALNAME=EMPLOYEE_LAST_NAME, C
BYTES=12, C
RELSTART=1, C
PARENT=EMPLOYEE_NAME, C
DATATYPE=CHAR

FIELD EXTERNALNAME=EMPLOYEE_MAIDEN_NAME, C
BYTES=12, C
RELSTART=1, C
REDEFINES=EMPLOYEE_LAST_NAME, C
PARENT=EMPLOYEE_NAME, C
DATATYPE=CHAR

FIELD EXTERNALNAME=EMPLOYEE_FIRST_NAME, C
BYTES=8, C
RELSTART=13, C
PARENT=EMPLOYEE_NAME, C
DATATYPE=CHAR

CREATE TABLE employee (
...
personal_info STRUCT BYTES 184 START 156,
address ARRAY BYTES 184 START 156 MINOCCURS 2 MAXOCCURS 2 IN personal_info,
name_type CHAR RELSTART 1 IN address,
individual_name STRUCT BYTES 20 RELSTART 2 IN address,
last_name CHAR(12) RELSTART 1 IN individual_name,
first_name CHAR(8) RELSTART 13 IN individual_name,
address_line2 CHAR(40) RELSTART 22 IN address,
city CHAR(20) RELSTART 62 IN address,
state CHAR(20) RELSTART 82 IN address,
zip CHAR(9) RELSTART 84 IN address,
company_cards STRUCT BYTES 200 START 584,
cards ARRAY BYTES 200 START 584 MINOCCURS 5 MAXOCCURS 5 IN company_cards,
company_name STRUCT BYTES 20 RELSTART 1 IN cards,
co_type CHAR(12) RELSTART 1 IN company_name,
new_type CHAR(12) RELSTART 1 IN company_name,
co_name CHAR(8) RELSTART 13 IN company_name,
employee_name STRUCT BYTES 20 RELSTART 21 IN cards,
employee_last_name CHAR(12) RELSTART 1 IN employee_name,
employee_maiden_name CHAR(12) RELSTART 1 IN employee_name,
employee_first_name CHAR(8) RELSTART 13 IN employee_name

) IN dedbjn21
INTERNALNAME employee
MAXBYTES 900

Example: Logical relationships EMPDB2
DBD NAME=EMPDB2,ACCESS=(HDAM,OSAM), X

RMNAME=(DFSHDC40,1,5,200)
DATASET DD1=DFSEMPL
SEGM NAME=EMPL,PARENT=0,BYTES=56
LCHILD NAME=(SALESPER,AUTODB),PAIR=EMPSAL,POINTER=DBLE
FIELD NAME=(EMPNO,SEQ,U),BYTES=6,START=1,TYPE=C
FIELD NAME=LASTNME,BYTES=25,START=7,TYPE=C

Chapter 8. SQL programming reference 769

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

FIELD NAME=FIRSTNME,BYTES=25,START=32,TYPE=C
SEGM NAME=EMPSAL,PARENT=EMPL,PTR=PAIRED, X

SOURCE=((SALESPER,DATA,AUTODB))
FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C (LPK)
SEGM NAME=EMPLINFO,PARENT=EMPL,BYTES=61
FIELD NAME=(STATE,SEQ,M),BYTES=2,START=51,TYPE=C
FIELD NAME=ADDRESS,BYTES=61,START=1,TYPE=C
FIELD NAME=STREET,BYTES=25,START=1,TYPE=C
FIELD NAME=CITY,BYTES=25,START=26,TYPE=C
FIELD NAME=ZIP,BYTES=9,START=53,TYPE=C
DBDGEN
FINISH
END

CREATE DATABASE empdb2
ACCESS HDAM OSAM
RMNAME(DFSHDC40 RMANCH 1 RMRBN 5 RMBYTES 200);

CREATE TABLESPACE dfsempl
IN empdb2;

CREATE TABLE employee (
empno CHAR(6) INTERNALNAME empno PRIMARY KEY,
lastnme CHAR(25) INTERNALNAME lastnme,
firstnme CHAR(25) INTERNALNAME firstnme,
LCHILD autodb.sales_person PAIR empyee_salary DOUBLE

) IN empdb2.DFSEMP1
INTERNALNAME empl
MAXBYTES 56;

CREATE TABLE employee_salary (
dealer_number CHAR(4) INTERNALNAME dlrno PRIMARY KEY,
FOREIGN KEY REFERENCES employee

) IN empdb2.DFSEMP1
INTERNALNAME empsal
SOURCE (autodb.sales_person);

CREATE TABLE employee_information (
address CHAR(61) START 1 INTERNALNAME address,
street CHAR(25) START 1 INTERNALNAME street,
city CHAR(25) START 26 INTERNALNAME city,
state CHAR(2) START 51 INTERNALNAME state PRIMARY KEY NON UNIQUE,
zip CHAR(9) START 53 INTERNALNAME zip,
FOREIGN KEY REFERENCES employee

) IN empdb2.dfsemp1
INTERNALNAME emplinfo
MAXBYTES 61;

Example: Logical database
DBD NAME=EMPLDB2,ACCESS=LOGICAL

DATASET LOGICAL
SEGM NAME=EMPL,PARENT=0,SOURCE=((EMPL,,EMPDB2))
SEGM NAME=DEALER,PARENT=EMPL, X

SOURCE=((EMPSAL,KEY,EMPDB2),(DEALER,DATA,AUTODB))
SEGM NAME=SALESINF,PARENT=DEALER, X

SOURCE=((SALESINF,,AUTODB))
SEGM NAME=EMPLINFO,PARENT=EMPL, X

SOURCE=((EMPLINFO,,EMPDB2))

CREATE DATABASE empldb2
ACCESS LOGICAL;

CREATE TABLE empl
IN empldb2
SOURCE(empdb2.empl);

770 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CREATE TABLE dealer (
FOREIGN KEY REFERENCES empl

) IN empldb2
SOURCE(empdb2.empsal KEY, autodb.dealer DATA);

CREATE TABLE salesinf (
FOREIGN KEY REFERENCES empl

) IN empldb2
SOURCE(autodb.salesinf);

CREATE TABLE emplinfo (
FOREIGN KEY REFERENCES empl

) IN empldb2
SOURCE(empdb2.emplinfo);

Example: Secondary Index database
DBD NAME=SINDEX22,ACCESS=(INDEX,VSAM)

DATASET DD1=SINDX2P
SEGM NAME=SINDXB,PARENT=0,BYTES=34
FIELD NAME=(XFLDB,SEQ,U),BYTES=28,START=1,TYPE=C SEARCH
FIELD NAME=COUNT,BYTES=2,START=25,TYPE=C DUP DATA
FIELD NAME=ENQUIRS,BYTES=4,START=25,TYPE=P USER DATA
LCHILD NAME=(DEALER,AUTODB),INDEX=XFLD2
DBDGEN
FINISH
END

CREATE DATABASE sindex22
ACCESS INDEX;

CREATE TABLESPACE sindx2p
IN sindex22;

CREATE TABLE secondary_indexb (
xfldb CHAR(28) INTERNALNAME xfldb PRIMARY KEY,
count CHAR(2) INTERNALNAME count start(25),
enquirs BINARY(4) START(25) INTERNALNAME enquirs,
LCHILD autodb.dealer LCINDEX xfld2

) IN sindex22
INTERNALNAME sindxb
MAXBYTES 34;

Example: Data Capture Exit

* DBD DHVNTZ02 FROM CMVC (CDCI19-3.DBDGEN) *

DBD NAME=DHVNTZ02, C
ACCESS=(HIDAM,VSAM),PASSWD=NO,VERSION=CDCTEST

* DATASET GROUP NUMBER 1

DSG001 DATASET DD1=HIDAM,DEVICE=3300,SIZE=(2048),SCAN=3

* SEGMENT NUMBER 1 *

SEGM NAME=K1, C
PARENT=0,BYTES=10,RULES=(LLL,LAST),PTR=(NOTWIN,,,,) C
EXIT=(*,LOG,PATH,KEY,DATA)

FIELD NAME=(K1,SEQ,U), C
START=1,BYTES=5,TYPE=C

FIELD NAME=(ID), C
START=6,BYTES=4,TYPE=C

LCHILD NAME=(INDEX,DXVNTZ02), C
PTR=INDX,RUTLES=LAST,TYPE=C

. . . .

. . . .

Chapter 8. SQL programming reference 771

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* SEGMENT NUMBER 5 *

SEGM NAME=K5,PARENT=((K1,SNGL)), C
BYTES=10,RULES=(LLL,LAST),PTR=(TWIN,,,,) C
EXIT=(*,LOG,PATH,KEY,DATA)

FIELD NAME=(K5,SEQ,U), C
START=1,BYTES=5,TYPE=C

FIELD NAME=(ID), C
START=6,BYTES=4,TYPE=C

LCHILD NAME=(K3), C
PTR=SNGL,PAIR=K5X,RULES=LAST

LCHILD NAME=(K8), C
PTR=DBLE,PAIR=K5Y,RULES=HERE

. . . .

. . . .
DBDGEN
FINISH
END

Example: Data Capture Exit

* DBD DIVNTZ02 FROM CMVC (CDCI29-3 DBDGEN) *

DBD NAME=DIVNTZ02,ACCESS=(HISAM,VSAM),VERSION=DIVNTZ02, X

EXIT=(COBXSQL,LOG,PATH,KEY,DATA,NOCASCADE)
*
DSG01 DATASET DD1=DBHVSAM1,DEVICE=3330,OVFLW=DBHVSAM2, X

BLOCK=(00004,00002),RECORD=(00200,00200)
*
SEGM NAME=J1, X

PARENT=0, X
BYTES=10, X
FREQ=1, X
POINTER=NONE, X
RULES=(PPP,LAST)

FIELD NAME=(J1,SEQ,U),BYTES=005,START=00001,TYPE=C
FIELD NAME=ID,BYTES=4,START=6,TYPE=C
**
* DLI Change Data Capture - Change delete rule to virtual
**
SEGM NAME=J2, X

PARENT=((J1,SNGL),(J6,PHYSICAL,DIVNTZ02)), X
BYTES=37, X
FREQ=0000000001.00, X
POINTER=NONE, X
RULES=(PVP,LAST)

FIELD NAME=(J2,SEQ,U),BYTES=005,START=00016,TYPE=C
FIELD NAME=ID,BYTES=4,START=21,TYPE=C
FIELD NAME=(1J2),BYTES=004,START=00026,TYPE=C
FIELD NAME=(2J2),BYTES=004,START=00030,TYPE=C
FIELD NAME=(3J2),BYTES=004,START=00034,TYPE=C
. . . .
. . . .
SEGM NAME=J15,EXIT=NONE, X

PARENT=J12, X
POINTER=PAIRED, X
SOURCE=((K10,DATA,DHVNTZ02))

FIELD NAME=(J15,SEQ,U),BYTES=5,START=16,TYPE=C
FIELD NAME=ID,BYTES=4,START=22,TYPE=C

DBDGEN
FINISH
END

Related reference:

DBD generation for database types (System Utilities)

772 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.sur/ims_dbdgdt.htm#ims_dbdgdt

CREATE TABLESPACE
The CREATE TABLESPACE statement defines a data set group for a full-function
database or a database area for a Fast Path Data Entry Database (DEDB) to IMS.

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.
v “CREATE TABLESPACE syntax”
v “GSAM syntax” on page 774
v “HDAM or HIDAM syntax” on page 774
v “HSAM or SHSAM syntax” on page 774
v “HISAM or INDEX syntax” on page 774
v “SHISAM syntax” on page 775
v “DEDB syntax” on page 775

The following database types can have only one TABLESPACE statement defined
to it:
v HSAM
v SHSAM
v GSAM
v HISAM
v SHISAM
v INDEX

The following database types do not allow for any TABLESPACE statements:
v PSINDEX
v LOGICAL
v PHDAM
v PHIDAM

The following database types can have between 1 and 10 TABLESPACE statements
defined to it:
v HDAM
v HIDAM

The following database type can have between 1 and 2048 TABLESPACE
statements defined to it:
v DEDB

CREATE TABLESPACE syntax

►► CREATE TABLESPACE ddname IN database_name ►

Chapter 8. SQL programming reference 773

|

|
|

|

|
|
|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

|||||||||||||
|

||
|

►
Options for HSAM or SHSAM
Options for GSAM
Options for HISAM or INDEX
Options for SHISAM
Options for HDAM or HIDAM
Options for DEDB

►◄

GSAM syntax

►►
OUTPUT (ddname)

►

►
RECORD (recordlength1 , recordlength2)

►

►
BLOCK PRIMARY blkfact
SIZE PRIMARY area

FORMAT FIXED
FIXEDBLOCK
VARIABLE
VARIABLEBLOCK
UNDEFINED

►◄

HDAM or HIDAM syntax

►►
BLOCK PRIMARY blkfact SIZE PRIMARY size FREEBLOCK fbff

►

►
FREESPACE fspf SCAN cylinders SEARCHA 0

1
2

►◄

HSAM or SHSAM syntax

►► OUTPUT (ddname)
RECORD (recordlength1 , recordlength2)

►

►
BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

►◄

HISAM or INDEX syntax

►► OVERFLOW (ddname)
RECORD (recordlength1 , recordlength2)

►

►
BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

►

►
SIZE PRIMARY size SIZE SECONDARY size

►◄

774 Application Programming APIs

|||||||||||||||||||||||||||

|

|

||||||||||||||||
|

|
||||||||||||||||||||
|

|
||

|

|

||||||||||||||||||||||||||||||||||
|

|
||

|

|

||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||

|

SHISAM syntax

►►
RECORD (recordlength1 , recordlength2)

►

►
BLOCK PRIMARY blkfact BLOCK SECONDARY blkfact

►

►
SIZE PRIMARY size SIZE SECONDARY size

►◄

DEDB syntax

►► SIZE PRIMARY size UOW (number1 , number2) ►

► ROOT (number1 , number2) ►◄

Description

The ddnames used on the CREATE TABLESPACE statement must be unique
within an IMS system or account. Non-unique ddnames in two or more DBDs
might result in corruption of the database. One situation that can result in
corruption of a database is if both ddnames were inadvertently used concurrently
(both used in two different message regions of a data communications system or in
two PCBs of one PSB used in a batch DL/I region of a database only system).

The following keyword parameters are defined for the CREATE TABLESPACE
statement:

CREATE TABLESPACE ddname
Specifies the ddname defining the primary data set in this data set group, or
the area of a DEDB. Name must be 1 to 8- characters alphanumeric. IMS use of
the data set indicated by this parameter depends on the type of database being
defined as shown in the following list:

HSAM | SHSAM | GSAM
The ddname of input data set. The input data set is used when an
application program retrieves data from the database.

HISAM | SHISAM | INDEX
The ddname of primary data set in data set group.

HIDAM | HDAM
The ddname of data set in data set group.

DEDB
The area name or a ddname for single area data sets but can only be an
area name for multiple area data sets. If the database is registered in
DBRC, this parameter should specify the area name.

IN database_name
Denotes this data set group belongs to a database.

database_name
The database this data set group belongs to.

Specifies the DBD name of a database whose data sets are to be
dynamically allocated. This name is used as a member name in
IMS.SDFSRESL to identify this database parameter list. Care should be

Chapter 8. SQL programming reference 775

|

||||||||||||||||||||
|

|
|||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||

|

|

|||||||||||||||||||||
|

|
|||||||||||||||||
|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

taken to ensure that this name does not conflict with existing members in
IMS.SDFSRESL. This includes, but is not limited to, IMS modules and
user-supplied exit routines.

BLOCK PRIMARY
BLOCK SECONDARY

Is used to specify the blocking factors to be used for data sets in a data set
group for HSAM, SHSAM, GSAM, HISAM, SHISAM, and INDEX databases,
or is used to specify the block size or control interval size without overhead for
the data set in a data set group for HDAM and HIDAM databases.

For HISAM, SHISAM, and INDEX databases that use VSAM as the access
method, use the SIZE PRIMARY parameter to specify control interval size in
place of the BLOCK PRIMARY or BLOCK SECONDARY parameter. If the SIZE
keyword is used for a HISAM, SHISAM, or INDEX database, the BLOCK
keyword is invalid.

In cases where the RECORD, BLOCK PRIMARY, and BLOCK SECONDARY
operands are used, the resulting control interval size must be a multiple of 512
when the resulting size is less than 8192 bytes. If the product of the record
length specified times the blocking factor specified plus VSAM overhead is not
a multiple of 512 and is less than 8192 bytes, the resulting control interval size
is obtained by rounding the value up to the next higher multiple of 512.
Control interval sizes from 8192 to 30720 bytes (maximum allowed size) must
be in multiples of 2048 bytes. When the product of the RECORD and BLOCK
operands plus VSAM overhead is from 8192 to 30720 bytes but is not a
multiple of 2048, the resulting control interval size is obtained by rounding the
value up to the next higher multiple of 2048.

The VSAM overhead is 7 bytes if the blocking factor is 1; otherwise, it is 10
bytes. The maximum block size for OSAM data sets is 32 KB.

For HDAM and HIDAM databases, the BLOCK PRIMARY parameter is used
to enable you to override the computation of control interval or block size of
IMS. However, in addition to the value specified in the BLOCK PRIMARY
parameter, IMS adds space for root anchor points, a free space anchor point,
and access method overhead. The block or control interval size that results can
be determined by referring to the equations in the description of the SIZE
PRIMARY parameter or by examining the output of IMS. If the SIZE parameter
is not specified and the access method is VSAM, IMS calculates the best VSAM
LRECL value by equally distributing any unused space in the CI to each
logical record in the CI. If the SIZE PRIMARY parameter is specified, this is
not done.

The following table explains the use of the BLOCK and RECORD operands.

776 Application Programming APIs

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

Table 167. BLOCK and RECORD operands

Database type Use of BLOCK and RECORD operands

HSAM/SHSAM
BLOCK

BLOCK PRIMARY applies to input data set and should always
be 1.

BLOCK SECONDARY applies to output data set and should
always be 1.

RECORD
recordlength1 is the input record length.

recordlength2 is the output record length.

HSAM/SHSAM is always unblocked; LRECL and BLKSIZE are
equal.

GSAM
BLOCK

BLOCK PRIMARY applies to input/output data set.

BLOCK SECONDARY is an invalid subparameter.

RECORD
recordlength1 is the size of an LRECL length or maximum size
for a variable length record.

recordlength2 is the minimum size for a variable length record.

SIZE
SIZE PRIMARY is the BLKSIZE for input/output data set.

SIZE SECONDARY is an invalid subparameter.

HISAM/SHISAM
BLOCK

BLOCK PRIMARY is the primary data set blocking factor.

BLOCK SECONDARY is the overflow data set blocking factor.

RECORD
recordlength1 is the data set logical record length.

recordlength2 is the overflow data set logical record length.

HIDAM, HDAM
BLOCK

size0 is size without overhead of OSAM or VSAM data set
group

RECORD
Is ignored.

DEDB BLOCK and RECORD operands are invalid.

INDEX
BLOCK

BLOCK PRIMARY is the primary data set blocking factor.

BLOCK SECONDARY is the overflow data set blocking factor.

RECORD
recordlength1 is the primary data set logical record length.

recordlength2 is the overflow data set logical record length.

Note: When both recordlength1 and recordlength2 are specified in a
TABLESPACE statement, recordlength2 must be equal to or greater than
recordlength1, except for GSAM.

Chapter 8. SQL programming reference 777

||

||

|
|
|
|

|
|

|
|

|

|
|

|
|
|

|

|
|
|

|

|
|

|

|
|
|

|

|
|

|

|
|
|
|

|
|

||

|
|
|

|

|
|

|
|

|
|
|

FORMAT
Specifies the format of the records in the data set. The valid record formats are:
FIXED

Fixed length.
FIXEDBLOCK

Fixed length and blocked
VARIABLE

Variable length.
VARIABLEBLOCK

Variable length and blocked.
UNDEFINED

Undefined length.

This keyword is required and only valid for a GSAM database.

FREEBLOCK
Specifies the free block frequency factor. Every nth control interval or block in
this data set group is left as free space during database load or reorganization.
The valid range is 0-100 except 1. The default is 0.

A smaller value increases the frequency of free space in the database. A value
of 2, for example, would mean that after each piece of data there would be a
free space block. This causes system performance degradation when running
reorganization or load utilities because of the extra processing required for the
free space blocks.

FREEBLOCK is equivalent to the IMS keyword FRSPC=(fbff,)).

This keyword is optional and only valid for HDAM or HIDAM.

FREESPACE
Specifies the free space percentage factor, which is the minimum percentage of
each control interval or block that is to be left as free space in this data set
group. The valid range is 0-99. The default is 0.

This keyword is optional and only valid for HDAM or HIDAM.

FREESPACE is equivalent to the IMS keyword FRSPC=(,fspf)).

OUTPUT (ddname)
Specifies the 1- to 8-character alphanumeric ddname of the output data set that
is required for an HSAM or SHSAM database and optional for a GSAM
database. This output data set is used by IMS when loading the database. This
keyword is invalid for other database access types.

OUTPUT is equivalent to the IMS keyword DD2=.

OVERFLOW (ddname)
Specifies the 1- to 8-character alphanumeric ddname of the overflow data set in
this data set group. This parameter must be specified for:
v An INDEX database that contains index pointer segments with non-unique

keys.
v All data set groups of a HISAM database except when only one segment

type is defined in the HISAM database.

The following conditions apply:
v Invalid for a simple HISAM (SHISAM) database.
v Not required for an HISAM database that contains only one segment type.
v Not required for an index DBD because all index segments are inserted in

the key sequenced data set of the index.

778 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|

|
|
|
|

|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|

|

|
|

v Invalid for an INDEX database defined with an osaccess type of SHISAM.
v Only valid for HISAM and INDEX database access types.

RECORD(recordlength1,recordlength2)
Specifies the data management logical record lengths to be used for this data
set group. This keyword is optional and only valid for HSAM, SHSAM,
GSAM, HISAM, SHISAM, INDEX.

SCAN cylinders
Specifies the number of direct-access device cylinders to be scanned when
searching for available storage space during segment insertion operations. This
parameter is optional and only valid for HIDAM or HDAM databases. If
specified, the value must be a decimal integer that does not exceed 255. Typical
values are 0 - 5. The default is 3. If 0 is specified, only the current cylinder is
scanned for space.

Scanning is performed in both directions from the current cylinder position. If
a scan limit value causes scanning to include an area outside of the current
extent, IMS adjusts the scan limits so that scanning does not exceed current
extent boundaries. If space cannot be found for segment insertion within the
cylinder bounds defined by this parameter, space is used at the current end of
the data set group for the database.

SEARCHA 0 | 1 | 2
Specifies the type of HD space search algorithm that IMS uses to insert a
segment into an HD database.

0 Specifies that IMS chooses which HD space search algorithm to use. 0 is
the default.

1 Specifies that IMS uses the HD space search algorithm that does not search
for space in the second-most desirable block or CI.

2 Specifies that IMS uses the HD space search algorithm that includes a
search for space in the second-most desirable block or CI.

This keyword is optional and only valid for HDAM or HIDAM database.

SIZE PRIMARY size1
For HISAM, SHISAM, INDEX, this keyword specifies control interval or block
size of primary data set in a data set group.

For HDAM, HIDAM, this keyword specifies the control interval or block size
of the data set in the data set group. For GSAM, this keyword specifies the
block size for input/output data set.

For DEDB, this keyword is required and specifies the control interval.

This keyword is invalid for all other database types.

SIZE PRIMARY is equivalent to the IMS keyword SIZE=(size1,)).

SIZE SECONDARY size2
For HISAM, SHISAM, INDEX, this keyword specifies control interval or block
size of overflow data set.

This keyword is valid only for HISAM, SHISAM, and INDEX.

SIZE SECONDARY is equivalent to the IMS keyword SIZE=(,size2))

ROOT(number1,number2)
Specifies the total space that is allocated to the root addressable part of the
area and to the area reserved for independent overflow.

Chapter 8. SQL programming reference 779

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

||
|

||
|

||
|

|

|
|
|

|
|
|

|

|

|

|
|
|

|

|

|
|
|

number1
Specifies the total space that is allocated to the root addressable part of the
area. It is expressed in UOWs. The rest of the VSAM data set is reserved
for sequential dependent data.

The valid range is 2-32767; it cannot be larger than the amount of space in
the VSAM data set.

number2
Specifies the space that is reserved for independent overflow in terms of
UOWs. It must be at least 1 and must be less than the value specified for
number1. Although independent overflow does not contain UOWs, the
UOW size is used as the unit for space allocation.

The reorganization UOW is automatically allocated by the DEDB Initialization
utility. VSAM space definition should include this additional UOW. That is, the
total space required is the root addressable area, the independent overflow, and
one additional UOW for reorganization. The reorganization UOW is not used
by the High-Speed DEDB Direct Reorganization utility, but might be used by
other functions of IMS.

The ROOT keyword is required and only valid for DEDB.

UOW(number1,number2)
Required and only valid for DEDB. number1 specifies the number of control
intervals in a unit of work. The valid range is 2-32767. number2 specifies the
number of control intervals in the overflow section. Any value greater than or
equal to 1 but at least one less than number1.

Usage notes

The CREATE TABLESPACE statement is equivalent to the DATASET or AREA
statement of the IMS DBD generation utility.

In IMS, a DATASET statement is also used by LOGICAL database access types but
not required for DDL.

►► DATASET LOGICAL ►◄

Example: Basic HDAM database

The following input to the DBD generation utility defines an HDAM database:

* DBD COGDBD FROM CATU02-F *

DBD NAME=COGDBD, C
ENCODING=Cp1047, C
ACCESS=(HDAM,OSAM), C
RMNAME=(DFSHDC40,3,3,25), C
PASSWD=NO

DATASET DD1=COGDATA, C
DEVICE=3390, C
SIZE=(8192), C
REMARKS='Dataset Group 1'

SEGM NAME=ROOT, C
PARENT=0, C
BYTES=(20), C
RULES=(LLL,HERE)

* SEGMENT SMALLINT

780 Application Programming APIs

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

|
|

|||||||||
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SEGM NAME=TSINT, C

PARENT=ROOT, C
BYTES=(8,6), C
REMARKS=’This describes table TSINT.’, C
RULES=(LLL,HERE)

* SEGMENT INT

SEGM NAME=TINT, C
PARENT=ROOT, C
BYTES=(10,6), C
REMARKS=’This describes table TINT.’, C
RULES=(LLL,HERE)

* SEGMENT BIGINT

SEGM NAME=TBINT, C
PARENT=ROOT, C
BYTES=(14,6), C
REMARKS=’This describes table TBINT.’, C
RULES=(LLL,HERE)

* SEGMENT DECIMAL(7,2)

SEGM NAME=TDEC, C
PARENT=ROOT, C
BYTES=(10,6), C
REMARKS=’This describes table TDEC.’, C
RULES=(LLL,HERE)

* SEGMENT FLOAT

SEGM NAME=TFLT, C
PARENT=ROOT, C
BYTES=(10,6), C
REMARKS=’This describes table TFLT.’, C
RULES=(LLL,HERE)

* SEGMENT REAL

SEGM NAME=TRL, C
PARENT=ROOT, C
BYTES=(10,6), C
REMARKS=’This describes table TRL.’, C
RULES=(LLL,HERE)

* SEGMENT DOUBLE

SEGM NAME=TDBL, C
PARENT=ROOT, C
BYTES=(14,6), C
REMARKS=’This describes table TDBL.’, C
RULES=(LLL,HERE)

* SEGMENT CHAR(32)

SEGM NAME=TCHAR, C
PARENT=ROOT, C
BYTES=(38,6), C
REMARKS=’This describes table TCHAR.’, C
RULES=(LLL,HERE)

* SEGMENT NCHAR(32)

SEGM NAME=TNCHAR, C
PARENT=ROOT, C

Chapter 8. SQL programming reference 781

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BYTES=(38,6), C
REMARKS=’This describes table TNCHAR.’, C
RULES=(LLL,HERE)

. . . .

. . . .
DBDGEN
FINISH
END

In DDL, the same data set group (cogdata) is defined with the CREATE
TABLESPACE statement and then each table is assigned to it.
CREATE TABLESPACE cogdata
IN COGDBD
SIZE PRIMARY 8192;
COMMENT ON TABLESPACE cogdata IN cogdbd IS ’Dataset Group 1’;

CREATE TABLE tsinit
IN cogdbd.cogdata
...

CREATE TABLE tinit
IN cogdbd.cogdata
...

CREATE TABLE tbinit
IN cogdbd.cogdata
...

CREATE TABLE tdec
IN cogdbd.cogdata
...

CREATE TABLE tflt
IN cogdbd.cogdata
...

CREATE TABLE trl
IN cogdbd.cogdata
...

CREATE TABLE tdbl
IN cogdbd.cogdata
...

CREATE TABLE tchar
IN cogdbd.cogdata
...

CREATE TABLE tnchar
IN cogdbd.cogdata
...

Example: HIDAM database with multiple data set groups

The following input to the DBD generation utility creates a HIDAM database with
two data set groups, DSG001 and DSG002. Segment types K1, K2, K3, K4, K5, K6,
and K8 are assigned to DSG001. Segment types K5X, K5Y, K9, K10, K11, K12, K13,
and K14 are assigned to DSG002.

* DBD DHVNTZ02 FROM CMVC (CDCI19-3.DBDGEN) *

DBD NAME=DHVNTZ02, C
ACCESS=(HIDAM,VSAM), C
PASSWD=NO, C

782 Application Programming APIs

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

VERSION=CDCTEST

* DATASET GROUP NUMBER 1

DSG001 DATASET DD1=HIDAM, C

DEVICE=3330, C
SIZE=(2048), C
SCAN=3, C
REMARKS='Dataset Group 1'

* SEGMENT NUMBER 1 *

SEGM NAME=K1, C
PARENT=0, C
BYTES=10, C
EXIT=(*,LOG,PATH,KEY,DATA), X
RULES=(LLL,LAST), C
PTR=(NOTWIN,,,,)

. . . .

. . . .

* SEGMENT NUMBER 2 *

SEGM NAME=K2, C
PARENT=((K1)), C
BYTES=10, C
RULES=(LLL,LAST), C
PTR=(TWIN,,,CTR,)

. . . .

. . . .

* SEGMENT NUMBER 3 *

SEGM NAME=K3, C
PARENT=((K2,SNGL), C
(K5,PHYSICAL)), C
BYTES=34, C
RULES=(LVL,LAST), C
PTR=(TWIN,LTWIN,LPARNT,,)

. . . .

. . . .

* SEGMENT NUMBER 4 *

SEGM NAME=K4, C
PARENT=((K3,SNGL)), C
BYTES=10, C
RULES=(LLL,LAST), C
PTR=(TWIN,,,,)

. . . .

. . . .

* SEGMENT NUMBER 5 *

SEGM NAME=K5, C
PARENT=((K1,SNGL)), C
BYTES=10, C
EXIT=(*,LOG,PATH,KEY,DATA), X
RULES=(LLL,LAST), C
PTR=(TWIN,,,,)

. . . .

. . . .

* SEGMENT NUMBER 6 *

SEGM NAME=K6, C
PARENT=((K5,SNGL)), C

Chapter 8. SQL programming reference 783

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BYTES=10, C
RULES=(LLL,LAST), C
PTR=(TWIN,,,,)

. . . .

. . . .

* DATASET GROUP NUMBER 2

DSG002 DATASET DD1=HIDAM2, C

DEVICE=3330, C
SIZE=(512), C
SCAN=3, C
REMARKS='Dataset Group 2'

* SEGMENT NUMBER 7 *

SEGM NAME=K5X, C
PARENT=((K5)), C
PTR=PAIRED, C
SOURCE=((K3,DATA,DHVNTZ02))

. . . .

. . . .

* SEGMENT NUMBER 8 *

SEGM NAME=K5Y, C
PARENT=((K5)), C
PTR=PAIRED, C
SOURCE=((K8,DATA,DHVNTZ02))

. . . .

. . . .

* DATASET GROUP NUMBER 1

DSG001 DATASET

* SEGMENT NUMBER 9 *

SEGM NAME=K8, C
PARENT=((K1,SNGL), C
(K5,PHYSICAL)), C
BYTES=32, C
RULES=(LVL,LAST), C
PTR=(TWIN,LTWINBWD,LPARNT,,)

. . . .

. . . .

* DATASET GROUP NUMBER 2

DSG002 DATASET

* SEGMENT NUMBER 10 *

SEGM NAME=K9, C
PARENT=K1, C
BYTES=29, C
EXIT=(*,LOG,PATH,KEY,DATA), X
RULES=(VLV,LAST), C
PTR=(TWIN,,,CTR,)

. . . .

. . . .

* SEGMENT NUMBER 11 *

SEGM NAME=K10, C
PARENT=((K9,SNGL), C
(J12,PHYSICAL,DIVNTZ02)), C

784 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BYTES=26, C
RULES=(VVV,LAST), C
PTR=(TWIN,LTWINBWD,,,)

. . . .

. . . .

* SEGMENT NUMBER 12 *

SEGM NAME=K11, C
PARENT=((K9,DBLE)), C
BYTES=29, C
RULES=(LLL,LAST), C
PTR=(TWIN,,,,)

. . . .

. . . .

* SEGMENT NUMBER 13 *

SEGM NAME=K12, C
PARENT=((K11,DBLE)), C
BYTES=20, C
RULES=(LLL,LAST), C
PTR=(TWIN,,,,)

. . . .

. . . .

* SEGMENT NUMBER 14 *

SEGM NAME=K13, C
PARENT=((K11,DBLE)), C
BYTES=20, C
RULES=(LLL,HERE), C
PTR=(TWIN,,,,)

. . . .

. . . .

* SEGMENT NUMBER 15 *

SEGM NAME=K14, C
PARENT=((K9,SNGL), C
(J12,PHYSICAL,DIVNTZ02)), C
BYTES=24, C
RULES=(LVV,LAST), C
PTR=(TWIN,,,,PAIRED)

. . . .

. . . .
DBDGEN
FINISH
END

The following DDL creates the same data set groups and equivalent table
assignments:
CREATE TABLESPACE hidam
IN DHVNTZ02
SIZE PRIMARY 2048
SCAN 3;
COMMENT ON TABLESPACE hidam IN dhvntz02 IS ’Dataset Group 1’;

CREATE TABLESPACE hidam2
IN DHVNTZ02
SIZE PRIMARY 512
SCAN 3;
COMMENT ON TABLESPACE hidam2 IN dhvntz02 IS ’Dataset Group 2’;

CREATE TABLE k1
IN dhvntz02.hidam

Chapter 8. SQL programming reference 785

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

...

CREATE TABLE k2
IN dhvntz02.hidam
...

CREATE TABLE k3
IN dhvntz02.hidam
...

CREATE TABLE k4
IN dhvntz02.hidam
...

CREATE TABLE k5
IN dhvntz02.hidam
...

CREATE TABLE k6
IN dhvntz02.hidam
...

CREATE TABLE k5x
IN dhvntz02.hidam2
...

CREATE TABLE k5y
IN dhvntz02.hidam2
...

CREATE TABLE k8
IN dhvntz02.hidam
...

CREATE TABLE k9
IN dhvntz02.hidam2
...

CREATE TABLE k10
IN dhvntz02.hidam2
...

CREATE TABLE k11
IN dhvntz02.hidam2
...

CREATE TABLE k12
IN dhvntz02.hidam2
...

CREATE TABLE k13
IN dhvntz02.hidam2
...

CREATE TABLE k14
IN dhvntz02.hidam2
...

Example: Fast Path DEDB with multiple data areas

The following DBD generation utility input creates a DEDB with 7 areas:
DBD NAME=DEDBJN21, C

ENCODING=Cp1047, C
ACCESS=(DEDB), C
RMNAME=(RMOD3), C
PASSWD=NO

786 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

* AREA NUMBER 1

AREA DD1=HOSPAR0, C
DEVICE=3330, C
SIZE=(2048), C
UOW=(15,10), C
ROOT=(10,5)

AREA DD1=HOSPAR1, C
DEVICE=3330, C
SIZE=(2048), C
UOW=(15,10), C
ROOT=(10,5)

AREA DD1=HOSPAR2, C
DEVICE=3330, C
SIZE=(2048), C
UOW=(15,10), C
ROOT=(10,5)

AREA DD1=HOSPAR3, C
DEVICE=3330, C
SIZE=(2048), C
UOW=(15,10), C
ROOT=(10,5)

AREA DD1=HOSPAR4, C
DEVICE=3330, C
SIZE=(2048), C
UOW=(15,10), C
ROOT=(10,5)

AREA DD1=HOSPAR5, C
DEVICE=3330, C
SIZE=(2048), C
UOW=(15,10), C
ROOT=(10,5)

AREA DD1=HOSPAR6, C
DEVICE=3330, C
SIZE=(2048), C
UOW=(15,10), C
ROOT=(10,5)

The following DDL defines equivalent data areas:
CREATE TABLESPACE hospar0
IN dedbjn21
SIZE PRIMARY 2048
UOW(15, 10)
ROOT(10, 5);

CREATE TABLESPACE hospar1
IN dedbjn21
SIZE PRIMARY 2048
UOW(15, 10)
ROOT(10, 5);

CREATE TABLESPACE hospar2
IN dedbjn21
SIZE PRIMARY 2048
UOW(15, 10)
ROOT(10, 5);

CREATE TABLESPACE hospar3
IN dedbjn21
SIZE PRIMARY 2048
UOW(15, 10)
ROOT(10, 5);

CREATE TABLESPACE hospar4
IN dedbjn21

Chapter 8. SQL programming reference 787

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SIZE PRIMARY 2048
UOW(15, 10)
ROOT(10, 5);

CREATE TABLESPACE hospar5
IN dedbjn21
SIZE PRIMARY 2048
UOW(15, 10)
ROOT(10, 5);

CREATE TABLESPACE hospar6
IN dedbjn21
SIZE PRIMARY 2048
UOW(15, 10)
ROOT(10, 5);

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation

This statement can be embedded only in a COBOL application program. It is not
an executable statement.

Syntax

►► DECLARE cursor-name
NO SCROLL

FOR statement-name ►◄

Description

The following keyword parameters are defined for the DECLARE CURSOR
statement:

cursor-name
Names the cursor. The name must not identify a cursor that has already been
declared in the source program.

statement-name
Identifies the prepared select-statement that specifies the result table of the
cursor whenever the cursor is opened. The statement-name must not be identical
to a statement name specified in another DECLARE CURSOR statement of the
source program. For an explanation of prepared SELECT statements, see
“PREPARE” on page 804.

Notes

Cursors in COBOL programs: In COBOL source programs, the DECLARE
CURSOR statement must precede all statements that explicitly refer to the cursor
by name.

Examples

This example declares a cursor named C1 for statement named DYSQL.
EXEC SQLIMS
DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

788 Application Programming APIs

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

EXEC SQLIMS
PREPARE DYSQL FROM :SELECT-STATEMENT
END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS
FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME
END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND
ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

DECLARE STATEMENT
The DECLARE STATEMENT statement is used for application program
documentation. It declares names that are used to identify prepared SQL
statements.

Invocation

This statement can be embedded only in a COBOL application program. It is not
an executable statement.

Syntax

►► ▼

,

DECLARE statement-name STATEMENT ►◄

Description

The following keyword parameters are defined for the DECLARE statement:

statement-name STATEMENT
Lists one or more names that are used in your application program to identify
prepared SQL statements.

Example

This example shows the use of the DECLARE STATEMENT statement in a COBOL
program. It declares a statement named UPD.
EXEC SQLIMS

DECLARE UPD STATEMENT
END-EXEC.

EXEC SQLIMS
PREPARE UPD FROM :SQLSTMT

END-EXEC.
IF SQLIMSCODE < 0

MOVE '**** PREPARE ERROR ****' TO ERR-MSG1
PERFORM 100-ERROR

ELSE
PERFORM EXECUTE-STMT

END-IF

Chapter 8. SQL programming reference 789

DELETE
The DELETE statement deletes rows from a table.

The searched DELETE form is used to delete one or more rows, optionally
determined by a search condition.

Invocation

This statement can be embedded in a COBOL or Java application program or
issued interactively.
v “DELETE syntax”
v “table syntax”

DELETE syntax

►► DELETE FROM table
WHERE search-condition

►◄

table syntax

►► table-name
schema-name .

►◄

Description

The following keyword parameters are defined for the DELETE statement:

DELETE FROM
Identifies the table from which rows are to be deleted.

table-name
The table-name defines the name of the table in your SQL query. The name
must identify a segment in IMS.

schema-name
The schema-name defines the schema in your SQL query. In IMS, the
schema name is the PCB name.

WHERE
Specifies the rows to be deleted. You can omit the clause or give a search
condition. When the clause is omitted, all the rows of the table are deleted.

search-condition
Is any search condition as described in “Search conditions” on page 633.
Each column-name in the search condition must identify a column of the
table.

The search condition is applied to each row of the table and the rows are
those for which the result of the search condition is true are deleted.

Example

From the table PCB01.HOSPITAL, delete all rows for hospitals Alexandria and
Santa Teresa.

DELETE FROM PCB01.HOSPITAL WHERE HOSPNAME = ’Alexandria’ OR HOSPNAME = ’Santa Teresa’;

790 Application Programming APIs

DESCRIBE OUTPUT
The DESCRIBE OUTPUT statement obtains information about a prepared
statement.

Invocation

This statement can be embedded only in a COBOL application program. It is an
executable statement that can be dynamically prepared.

Syntax

►►
OUTPUT

DESCRIBE statement-name INTO descriptor-name ►◄

Description

The following keyword parameters are defined for the DESCRIBE OUTPUT
statement:

OUTPUT
When a statement-name is specified, optional keyword to indicate that the
describe will return information about the select list columns in the prepared
SELECT statement.

statement-name
Identifies the prepared statement. When the DESCRIBE statement is executed,
the name must identify a statement that has been prepared.

INTO descriptor-name
Identifies an SQL descriptor area (SQLIMSDA), which is described in “SQL
descriptor area (SQLIMSDA)” on page 823. Use the INCLUDE SQLIMSDA
statement to declare the SQLIMSDA in the application.

After the DESCRIBE statement is executed, all the fields in the SQLIMSDA
except SQLN are either set by IMS or ignored.

Example

Execute a DESCRIBE statement with the included SQLIMSDA. After DESCRIBE,
SQLIMSD specifies the number of result fields returned. IF SQLIMSD equals 0, the
statement is a non-SELECT statement such as INSERT, UPDATE, or DELTEE. If
SQLIMSD is greater than zero, the statement is a SELECT statement and allocates
storage for each result field and specify its address to the SQLIMSDATA field in
the SQLIMSDA. Finally, FETCH the result dataset into the SQLIMSDA.
EXEC SQLIMS

INCLUDE SQLIMSDA
END-EXEC

EXEC SQLIMS
DECLARE C1 CURSOR FOR DYSQL

END-EXEC.

EXEC SQLIMS
PREPARE DYSQL FROM :SELECT-STATEMENT

END-EXEC

EXEC SQLIMS
DESCRIBE DYSQL INTO :SQLIMSDA

END-EXEC

Chapter 8. SQL programming reference 791

IF SQLIMSD > 0
EXEC SQLIMS OPEN C1 END-EXEC.
.... /* Code to allocate the storage for each result field */
.... /* Set the storage address to each SQLIMSDATA variable */
EXEC SQLIMS FETCH C1 INTO :SQLIMSDA END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

DROP DATABASE
The DROP DATABASE statement removes a database from IMS. Whenever a
database is deleted, its description is deleted from the catalog at the current IMS.

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.

Syntax

►► DROP DATABASE database_name ►◄

Description

The following keyword parameters are defined for the DROP DATABASE
statement:

DATABASE database_name
Identifies the database to drop. The name must identify a database that exists
in IMS. When a database is dropped, all of its tables, indexes are also dropped.

Usage notes

Any objects of the database (such as table spaces, tables, and columns) and
pending changes are also dropped.

Example

Assuming you have already created a database with the following example (see
CREATE DATABASE (Application Programming APIs)), and you now want to
drop the database:

DROP DATABASE hospdbd1

DROP PROGRAMVIEW
The DROP PROGRAMVIEW statement removes an application PROGRAMVIEW
(PSB) from IMS. Whenever an application PROGRAMVIEW is deleted, its
description is deleted from the catalog at the current IMS.

792 Application Programming APIs

|

|
|

|

|
|
|

|

|||||||||||
|

|

|
|

|
|
|

|

|
|

|

|
|
|

|

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_create_database.htm#ims_sql_create_database

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.

Syntax

►► DROP PROGRAMVIEW psb_name ►◄

Description

The following keyword parameters are defined for the DROP PROGRAMVIEW
statement:

PROGRAMVIEW psb_name
Identifies the PSB to drop. The name must identify a PSB that exists in IMS.

Usage notes

Any pending changes to the definitions of the program view and schemas are also
dropped.

Example
DROP PROGRAMVIEW PSB123

DROP TABLE
The DROP TABLE statement removes an existing table from a database in IMS.
Any resources that are directly or indirectly dependent on that table are deleted.
Whenever a table is deleted, its description is deleted from the catalog at the
current IMS.

Invocation

This statement can be submitted from a Java application program with an establish
connection to IMS through the IMS Universal JDBC drivers. It is an executable
statement that cannot be dynamically prepared.

Syntax

►► DROP TABLE table_name IN database_name ►◄

Description

The following keyword parameters are defined for the DROP TABLE statement:

TABLE table_name
Identifies the 1- to 128-character uppercase alphanumeric name of the table to
drop. A table name can include the underscore character. The name must
identify a table that exists in IMS. When a table is dropped, all tables defined
as its children are also dropped.

Chapter 8. SQL programming reference 793

|

|
|
|

|

|||||||||||
|

|

|
|

|
|

|

|
|

|

|

|

|
|
|
|

|

|
|
|

|

|||||||||||||||
|

|

|

|
|
|
|
|

IN database_name
Specifies the DBD name of a database where the table is defined. Specifying a
DROP TABLE indicated that the table will be removed from the database. This
triggers an alteration of this database.

Usage notes

When a table is directly or indirectly dropped, the following items are also
dropped:
v All of the privileges associated with the table.
v All of the tables defined as children that are associated with the table being

dropped through use of the FOREIGN KEY clause.

Example

Assuming you have already created a table with the following example (see
CREATE TABLE (Application Programming APIs)), and you now want to drop the
table:

DROP TABLE testinteger IN COGDBD

DROP TABLESPACE
The DROP TABLESPACE statement removes a data set group within the database
or an area for a DEDB. Dropping a TABLESPACE is an ALTER against the
database resource.

Invocation

This statement can be submitted from a Java application program with an
established connection to IMS through the IMS Universal JDBC drivers. It is an
executable statement that cannot be dynamically prepared.

Syntax

►► DROP TABLESPACE ddname IN database_name ►◄

Description

The following keyword parameters are defined for the DROP TABLESPACE
statement:

TABLESPACE ddname
Identifies the 1 to 8- character alphanumeric tablespace ddname to drop. The
ddname must identify a tablespace that exists in IMS.

IN database_name
Specifies the database from which the tablespace is to be removed from.

Usage notes

When a tablespace is dropped, a new one can be created within the same commit
scope. Any pending changes to the definitions of the tablespace are also dropped.
Whenever a tablespace is directly or indirectly dropped, all of the tables in that
tablespace are moved into the next available tablespace. If the dropped tablespace
is the last one, you will receive the -9000 (Messages and Codes) error message.

794 Application Programming APIs

|
|
|
|

|

|
|

|

|
|

|

|
|
|

|

|

|
|
|

|

|
|
|

|

|||||||||||||||
|

|

|
|

|
|
|

|
|

|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_create_table.htm#ims_sql_create_table
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/compcodes/sql9000.htm#sql9000

A table space can be dropped from a database of the following access types:
v DEDB
v GSAM
v HDAM
v HIDAM
v HISAM
v HSAM
v INDEX
v SHISAM
v SHSAM

Example

Assuming you have already created a table space with the following example (see
CREATE TABLESPACE (Application Programming APIs)), and you now want to
drop the table space:

DROP TABLESPACE hidam2 IN DHVNTZ02

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation

This statement can be embedded only in a COBOL application program. It is an
executable statement that cannot be dynamically prepared.

Syntax

►► EXECUTE statement-name

▼

,

USING host-variable

►◄

Description

The following keyword parameters are defined for the EXECUTE statement:

statement-name
Identifies the prepared statement to be executed. statement-name must identify a
statement that was previously prepared within the unit of work and the
prepared statement must not be a SELECT statement.

USING
Introduces a list of variables whose values are substituted for the parameter
markers (question marks) in the prepared statement. (For an explanation of
parameter markers, see “PREPARE” on page 804.) If the prepared statement
includes parameter markers, you must include USING in the EXECUTE
statement. USING is ignored if there are no parameter markers.

For more on the substitution of values for parameter markers, see Parameter
marker replacement.

Chapter 8. SQL programming reference 795

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_sql_create_tablespace.htm#ims_sql_create_tablespace

host-variable
Identifies structures or variables that must be described in the application
program in accordance with the rules for declaring host structures and
variables. A reference to a structure is replaced by a reference to each of its
variables. The number of variables must be the same as the number of
parameter markers in the prepared statement. The nth variable supplies the
value for the nth parameter marker in the prepared statement.

Notes

Parameter marker replacement:
Before the prepared statement is executed, each parameter marker in the
statement is effectively replaced by its corresponding host variable. The
replacement is an assignment operation in which the source is the value of
the host variable and the target is a variable. The assignment rules are
those described for assignment to a column in Assignment and comparison
(Application Programming APIs).

Example

In this example, an UPDATE statement is prepared from the variable SQLSTMT
and executed.
EXEC SQLIMS

DELCARE UPD STATEMENT
END-EXEC.

EXEC SQLIMS
PREPARE UPD FROM :SQLSTMT

END-EXEC.
IF SQLIMSCODE < 0

MOVE '**** PREPARE ERROR ****' TO ERR-MSG1
PERFORM 100-ERROR

ELSE
EXEC SQLIMS
EXECUTE UPD

END-EXEC
END-IF.

FETCH
The FETCH statement positions a cursor on a row of its result table. It can return
zero or one and assigns the values of the rows to host variables if there is a target
specification.

Invocation

This statement can be embedded only in a COBOL application program. It is an
executable statement that cannot be dynamically prepared.
v “FETCH syntax”
v “single-row-fetch syntax” on page 797

FETCH syntax

►► FETCH cursor-name
single-row-fetch

►◄

796 Application Programming APIs

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apr/ims_assignmentandcomparison.htm#ims_assignmentandcomparison

single-row-fetch syntax

►►

▼

,

INTO host-variable
INTO DESCRIPTOR descriptor-name

►◄

Description

The following keyword parameters are defined for the FETCH statement:

INTO host-variable
Specifies a list of host variables. Each host-variable must identify a structure or
variable that is described in the application program in accordance with the
rules for declaring host structures and variables. A reference to a structure is
replaced by a reference to each of its variables. The first value in the result row
is assigned to the first host variable, the second value to the second host
variable, and so on.

INTO DESCRIPTOR descriptor-name
Identifies an SQLIMSDA that contains a valid description of the host output
variables. Result values from the associated SELECT statement are returned to
the application program in the output host variables.

Before the FETCH statement is processed, you must set the following fields in
the SQLIMSDA:
v SQLIMSN to indicate the number of SQLIMSVAR occurrences provided in

the SQIMSLDA
v SQLIMSABC to indicate the number of bytes of storage allocated in the

SQLIMSDA
v SQLIMSD to indicate the number of variables used in the SQLIMSDA when

processing the statement
v SQLIMSVAR occurrences to indicate the attributes of the variables

The SQLIMSDA must have enough storage to contain all SQLIMSVAR
occurrences. Each SQLIMSVAR occurrence describes a host variable or buffer
into which a value in the result table is to be assigned. For more information
on the SQLIMSDA, which includes a description of the SQLIMSVAR and an
explanation on how to determine the number of SQLIMSVAR occurrences, see
“SQL descriptor area (SQLIMSDA)” on page 823.

SQLIMSD must be set to a value greater than or equal to zero and less than or
equal to SQLIMSN.

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor name must
identify a declared cursor or an allocated cursor. When the FETCH statement is
executed, the cursor must be in the open state.

Example

Example 1: The FETCH statement fetches the results of the SELECT statement into
the application program variables HOSPCODE and HOSPNAME. When no more
rows remain to be fetched, the not found condition is returned.

Chapter 8. SQL programming reference 797

EXEC SQLIMS
DECLARE C1 CURSOR FOR DYSQL

END-EXEC.

EXEC SQLIMS
PREPARE DYSQL FROM :SELECT-STATEMENT

END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS FETCH C1 INTO :HOSPCODE, :HOSPNAME END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

INCLUDE
The INCLUDE statement inserts application code, including declarations and
statements, into a source program.

Invocation

This statement can be embedded only in a COBOL application program. It is not
an executable statement.

Syntax

►► INCLUDE SQLIMSCA
SQLIMSDA
member-name

►◄

Description

The following keyword parameters are defined for the INCLUDE statement:

SQLIMSCA
Indicates that the description of an SQL communication area (SQLIMSCA) is to
be included. INCLUDE SQLIMSCA must not be specified more than once in
the same application program. In COBOL, INCLUDE SQLIMSCA must be
specified in the Working-Storage Section or the Linkage Section.

For a description of the SQLIMSCA, see “SQL communication area
(SQLIMSCA)” on page 821.

SQLIMSDA
Indicates that the description of an SQL descriptor area (SQLIMSDA) is to be
included. For a description of the SQLIMSDA, see “SQL descriptor area
(SQLIMSDA)” on page 823.

member-name
Names a member of the partitioned data set to be the library input when your
application program is prepared (with the IMS coprocessor). It must be an SQL
identifier.

798 Application Programming APIs

The member can contain any host language source statements and any SQL
statements other than an INCLUDE statement. In COBOL, INCLUDE
member-name must not be specified in other than the Data Division or the
Procedure Division.

Notes

When your application program is prepared (with the IMS coprocessor), the
INCLUDE statement is replaced by source statements. Thus, the INCLUDE
statement must be specified at a point in your application program where the
resulting source statements are acceptable to the compiler.

The INCLUDE statement cannot refer to source statements that themselves contain
INCLUDE statements.

Example

Include an SQL communications area in a COBOL program.
EXEC SQLIMS INCLUDE SQLIMSCA END-EXEC.

INSERT
The INSERT statement inserts rows into a table.

The INSERT via VALUES form is used to insert a single row into the table using
the values provided or referenced.

Invocation

This statement can be embedded in a COBOL or Java application program or
issued interactively. An INSERT can be embedded in an application program. It is
an executable statement that can be dynamically prepared.
v “Syntax for COBOL”
v “Syntax for Java” on page 800

Syntax for COBOL

►► INSERT INTO table

▼

,

(column)

►

► ▼

,

VALUES (value) ►◄

table syntax

►► table-name
schema-name .

►◄

Chapter 8. SQL programming reference 799

column syntax

►►
table-name .

column-name ►◄

multi-row-insert syntax

►►
table-name .

▼

VALUES expression
host-variable-array
NULL
DEFAULT

,

(expression)
host-variable-array
NULL
DEFAULT

►◄

Syntax for Java

►► INSERT INTO table

▼

,

(column)

►

► ▼

,

VALUES (value) ►◄

table:

table-name
schema-name .

column:

table-name .
schema-name .

(1)
column-name

Notes:

1 You can have the same column name in multiple tables, but if the table is not
qualified, each table must be searched for the column.

Description

The following keyword parameters are defined for the INSERT statement:

INSERT INTO
Identifies the object of the INSERT statement.

800 Application Programming APIs

table-name
The table-name defines the name of the table in your SQL query. The name
must identify a segment in IMS.

schema-name
The schema-name defines the schema in your SQL query. In IMS, the
schema name is the PCB name.

column-name
Specifies the columns for which insert values are provided. Each name must
identify a field of the segment. The columns can be identified in any order, but
the same column must not be identified more than one time.

Omission of the column list is an implicit specification of a list in which every
column in the table is identified in the order identified by the metadata.

VALUES
Specifies one new row in the form of a list of values. The number of values in
the VALUES clause must be equal to the number of names in the column list.
The first value is inserted in the first column in the list, the second value in the
second column, and so on. The list of values must be enclosed in parentheses.

Notes

Insert rules:
Insert values must satisfy the following rules. If they do not, or if any
other errors occur during the execution of the INSERT statement, no rows
are inserted and the position of the cursors are not changed.
v Length. If the insert value of a column is a number, the column must be

a numeric column with the capacity to represent the integral part of the
number. If the insert value of a column is a string, the column must be
either a string column with a length attribute at least as great as the
length of the string, or a datetime column if the string represents a date,
time, or timestamp.

v Referential constraints. When inserting a record in a table at a non-root
level, you must specify values for all the foreign key fields of the table.
Foreign key fields properly position the new record (or segment
instance) to be inserted in the hierarchic path using standard SQL
processing, similar to foreign keys in a relational database.

v Omitting the column list. When you omit the column list, you must
specify a value for every column that was present in the table when the
INSERT statement was bound or (for dynamic execution) prepared.

Number of rows inserted:
For COBOL, the value of SQLIMSERRD(3) in the SQLIMSCA is the
number of rows inserted after an INSERT statement completes execution.
For a complete description of the SQLIMSCA, see “SQL communication
area (SQLIMSCA)” on page 821.

Inserting binary fields:
For COBOL, when inserting a binary field, you must use a parameter
marker to specify the binary value. Not using a parameter marker would
result in a 408 (data type not compatible) error.

Examples

Inserting data at the root
The following statement inserts a new HOSPITAL record:

Chapter 8. SQL programming reference 801

|
|
|
|

INSERT INTO PCB01.HOSPITAL (HOSPCODE, HOSPNAME)
VALUES (’R1210050000A’, ’O’’MALLEY CLINIC’)

Inserting data into a specified table in a hierarchic path
When inserting a record in a table at a non-root level, you must specify
values for all the virtual foreign key fields of the table. The following
statement inserts a new ILLNESS record under a specific HOSPITAL,
WARD, and PATIENT table. In this example, the ILLNESS table has three
virtual foreign keys HOSPITAL_HOSPCODE, WARD_WARDNO, and
PATIENT_PATNUM. The new record will be inserted if and only if there is
a HOSPCODE in the HOSPITAL table with the value of 'H5140070000H', a
WARD table with a WARDNO value of '01', and a PATIENT table with
PATNUM value of 'R1210050000A'.
INSERT INTO PCB01.ILLNESS (HOSPITAL_HOSPCODE, WARD_WARDNO,

ILLNAME, PATIENT_PATNUM)
VALUES (’H5140070000H’, ’01’, ’COLD’, ’R1210050000A’)

The following statement inserts a new WARD record under a specific
HOSPITAL table. In this example, the WARD table has the virtual foreign
key HOSPITAL_HOSPCODE. The new record will be inserted if and only
if there is a HOSPCODE in the HOSPITAL table with the value of
'H5140070000H'.
INSERT INTO PCB01.WARD (WARDNO, HOSPITAL_HOSPCODE, WARDNAME)
VALUES (’0001’, ’H5140070000H’, ’EMGY’)

Inserting data in a searchable field with subfields
If a searchable field consists of subfields, you can insert data by setting all
the subfield values such that the searchable field is completely populated.

Inserting a record at a non-root level without specifying virtual foreign key
fields In this statement, the WARD_WARDNO virtual foreign key field is

missing. The query will fail because it violates the referential integrity
constraint that all foreign keys must be provided with legal values.
INSERT INTO PCB01.PATIENT (HOSPITAL_HOSPCODE, PATNAME, PATNUM)
VALUES (’HW3201’, ’JOHN O’’CONNER’, ’Z800’)

OPEN
The OPEN statement opens a cursor so that it can be used to process rows from its
result table.

Invocation

This statement can be embedded only in a COBOL application program. It is an
executable statement that cannot be dynamically prepared.

Syntax

►► OPEN cursor-name

▼

,

USING host-variable

►◄

Description

The following keyword parameters are defined for the OPEN statement:

802 Application Programming APIs

cursor-name
Identifies the cursor to be opened. The cursor-name must identify a declared
cursor as explained in “DECLARE CURSOR” on page 788. When the OPEN
statement is executed, the cursor must be in the closed state.

The SELECT statement of the cursor is either one of the following types of
SELECT statements:
v The prepared SELECT statement that is identified by the statement-name that

is specified in the DECLARE CURSOR statement.

If the statement has not been successfully prepared, or is not a SELECT
statement, the cursor cannot be successfully opened.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any host variables that are specified
in the USING clause of the OPEN statement. The rows of the result table can
be derived during the execution of the OPEN statement. The cursor is placed
in the open state and positioned before the first row of its result table.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks):
v If the DECLARE CURSOR statement included statement-name, the statement

was prepared with a PREPARE statement. The host variables specified in the
USING clause of the OPEN statement replace any parameter markers in the
prepared statement. This reflects the typical use of the USING clause of the
OPEN statement For an explanation of parameter marker replacement, see
“PREPARE” on page 804.
If the prepared statement includes parameter markers, you must use USING.
If the prepared statement does not include parameter markers, USING is
ignored.

host-variable
Identifies host structures or variables that must be described in the
application program in accordance with the rules for declaring host
structures and variables. When the statement is executed, a reference to a
structure is replaced by a reference to each of its variables. The number of
variables must be the same as the number of parameter markers in the
prepared statement. The nth variable corresponds to the nth parameter
marker in the prepared statement. Where appropriate, locator variables can
be provided as the source of values for parameter markers.

Notes

Closed state of cursors: All cursors in an application process are in the closed state
when:
v The application process is started.
v A new unit of work is started for the application process.

A cursor can also be in the closed state because:
v A CLOSE statement was executed.
v An error was detected that made the position of the cursor unpredictable.

To retrieve rows from the result table of a cursor, you must execute a FETCH
statement when the cursor is open. The only way to change the state of a cursor
from closed to open is to execute an OPEN statement.

Chapter 8. SQL programming reference 803

Parameter marker replacement: Before the OPEN statement is executed, each
parameter marker in the query is effectively replaced by its corresponding host
variable. The replacement is an assignment operation in which the source is the
value of the host variable and the target is a variable within IMS. The assignment
rules are those described for assignment to a column in “Assignment and
comparison” on page 623.

When the SELECT statement of the cursor is evaluated, each parameter marker in
the statement is effectively replaced by the value of its corresponding host variable.
For more on the process of replacement, see Parameter marker replacement.

Examples

Example 1: Execute an OPEN statement, which places the cursor at the beginning of
the rows to be fetched.
EXEC SQLIMS

DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
PREPARE DYSQL FROM :SELECT-STATEMENT

END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

PREPARE
The PREPARE statement creates an executable SQL statement from a string form of
the statement. The character-string form is called a statement string. The executable
form is called a prepared statement.

Invocation

This statement can be embedded only in a COBOL application program. It is an
executable statement that can be dynamically prepared.

Syntax

►► PREPARE statement-name FROM host-variable ►◄

Description

The following keyword parameters are defined for the PREPARE statement:

statement-name
Names the prepared statement. If the name identifies an existing prepared
statement, that prepared statement is destroyed. The name must not identify a
prepared statement that is the SELECT statement of an open cursor.

804 Application Programming APIs

FROM
Specifies the statement string. The statement string is the value of the
identified host-variable.

host-variable
Must identify a host variable that is described in the application program
in accordance with the rules for declaring variable-length string variables
for statement string. The length of the SQL statement cannot be over 32767.

Notes

Rules for statement strings: The value of the specified statement-name is called the
statement string. The statement string must be declared with a varying-length
character host variable. The first two bytes must contain the length of the SQL
statement. The maximum length of the SQL statement is 32,767. For example:
01 STMTSTR.

49 STMTSTR-LEN PIC S9(4) COMP VALUE +180.
49 STMTSTR-TXT PIC X(180) VALUE SPACES.

The statement string must be one of the following SQL statements:
v DELETE
v INSERT
v SELECT
v UPDATE

The statement string must not:
v Begin with EXEC SQLIMS
v End with END-EXEC or a semicolon
v Include references to host variables

Parameter markers: Although a statement string cannot include references to host
variables, it can include parameter markers. The parameter markers are replaced by
the values of host variables when the prepared statement is executed. A parameter
marker is a question mark (?) that appears where a host variable could appear if
the statement string were a static SQL statement. For an explanation of how
parameter markers are replaced by values, see “EXECUTE” on page 795 and
“OPEN” on page 802.

Error checking: When a PREPARE statement is executed, the statement string is
parsed and checked for errors. If the statement string is invalid, a prepared
statement is not created and the error condition that prevents its creation is
reported in the SQLIMSCA.

Reference and execution rules: Prepared statements can be referred to in the
following kinds of statements, with the following restrictions shown:

DESCRIBE
No restrictions

DECLARE CURSOR
Must be SELECT when the cursor is opened

EXECUTE
Must not be SELECT

Chapter 8. SQL programming reference 805

Scope of a statement name: The scope of a statement-name is the same as the scope
of a cursor-name. See “DECLARE CURSOR” on page 788 for more information
about the scope of a cursor-name.

Examples

Example 1: Prepare a dynamic SELECT statement with a host variable on the
PREPARE statement. The text of the SELECT statement is in a variable named
SELECT-STATEMENT.

In the example, the statement text in host variable SELECT-STATEMENT is
SELECT HOSPCODE, HOSPNAME, WARDNAME, PATNAME FROM
PCB01.HOSPITAL, WARD,PATIENT.
EXEC SQLIMS
DECLARE C1 CURSOR FOR DYSQL
END-EXEC.

EXEC SQLIMS
PREPARE DYSQL FROM :SELECT-STATEMENT
END-EXEC

EXEC SQLIMS OPEN C1 END-EXEC.

EXEC SQLIMS FETCH C1 INTO :HOSPCODE, :HOSPNAME, :WARDNAME, :PATNAME END-EXEC.

IF SQLIMSCODE = 100
PERFORM DATA-NOT-FOUND
ELSE
PERFORM GET-REST-OF-HOSP
UNTIL SQLIMSCODE IS NOT EQUAL TO ZERO.

EXEC SQLIMS CLOSE C1 END-EXEC.

Example 2: Prepare a dynamic INSERT statement with parameter markers and is
executed.

For the INSERT statement:
INSERT INTO PCB01.HOSPITAL HOSPCODE, HOSPNAME VALUES(?,?)

The following statement prepares and executes the INSERT statement with
parameter marker. Before execution, the values for the parameter markers are read
into the host variables S1, S2.
EXEC SQLIMS
PREPARE DYSQL FROM :INSERT-STATEMENT
END-EXEC

EXEC SQLIMS
EXECUTE USING :S1, :S2
END-EXEC.

SELECT
The SELECT statement is used to retrieve data from one or more tables. The result
is returned in a tabular result set.

Invocation

This statement can be used in COBOL or Java application programs, but the syntax
is different.

806 Application Programming APIs

|

|
|

For COBOL application programs, this is an executable statement that cannot be
dynamically prepared.
v Syntax for COBOL
v Syntax for Java

Syntax for COBOL

►► SELECT

▼

*
,

select-expression

FROM ▼

,

table ►

►
WHERE search-condition

▼

,

GROUP BY column

►

►

▼

,
ASC

ORDER BY column
DESC

►◄

select-expression:

column
aggregate-function

table:

table-name
schema-name .

column:

table-name .

(1)
column-name

aggregate-function:

SUM (column)
AVG
MIN
MAX

COUNT(*)
column

Chapter 8. SQL programming reference 807

|
|

|

|

|

||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||||||

|||||||||

|

Notes:

1 You can have the same column name in multiple tables, but if the table is not
qualified, an ambiguity check is performed to determine the table that the
column belongs to.

Syntax for Java

►► SELECT

▼

*
,

ALL
select-expression

DISTINCT AS column-alias

FROM ►

► ▼

,

table
AS table-alias

►

►
INNER (1)

JOIN table ON column = column
AS table-alias column-alias column-alias

►

►
WHERE search-condition

▼

,
ASC

ORDER BY column
column-alias DESC
column-index

►

►

▼

,

GROUP BY column
column-alias
column-index

1
FETCH FIRST ROW ONLY

integer ROWS

►◄

select-expression:

▼

math-operator

column
+ literal
- aggregate

numeric-function
date-functions

table:

table-name
schema-name .

808 Application Programming APIs

||||||

column:

table-name .
schema-name . table-alias .

(2)
column-name

math-operator:

+
-
/
*

literal:

'string-literal'
integer-literal
decimal-literal

aggregate:

ALL
SUM (aggregate-expression)
AVG DISTINCT
MIN
MAX

COUNT(*)
ALL

aggregate-expression
DISTINCT

numeric-function:

Chapter 8. SQL programming reference 809

ABS (select-expression)
ACOS
ASIN
ATAN
CEIL
CEILING
COS
COT
DEGREES
EXP
FLOOR
LN
LOG
LOG10
SIGN
SIN
SINH
SQRT
TAN
TANH
RADIANS
ATAN2 (select-expression , select-expression)
MOD
POWER

date-functions:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
LOCALTIME
LOCALTIMESTAMP

(precision)

aggregate-expression:

▼

math-operator

column
+ literal
- numeric-function

Notes:

1 JOIN tables must have referential integrity, expressed by the key field of a
parent segment and the virtual foreign key of the dependent segment. You
cannot specify both a comma separated list of tables and a JOIN statement.

2 You can have the same column name in multiple tables, but if the table is not
qualified, each table must be searched for the column.

Description

The following keyword parameters are defined for the SELECT statement:

ALL
Retains all rows of the final result table and does not eliminate redundant
duplicates. This is the default.

810 Application Programming APIs

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.
This keyword is valid only for Java application programs.

Two rows are duplicates of one another only if each value in the first row is
equal to the corresponding value in the second row. For determining duplicate
rows, two null values are considered equal.

AS column-alias
Names or renames the result column. The name must be unique. The AS
clause is not supported in COBOL or .NET application programs.

FROM table-name
Identifies the table from which rows are to be retrieved. The name must
identify a segment in IMS.

AS table-alias
Renames the table. The name must be unique. The AS clause is not supported
in COBOL or .NET application programs.

INNER JOIN
JOIN

If a join operator is not specified, INNER is the default. The INNER JOIN
keyword selects all rows from both tables as long as there is a match between
the columns in both tables.

WHERE
Specifies the rows to be retrieved. You can omit the clause or give a search
condition. When the clause is omitted, all the rows of the table are retrieved.

search-condition
Is any search condition as described in “Search conditions” on page 633.
Each column-name in the search condition must identify a column of the
table.

The search condition is applied to each row of the table and the retrieved
rows are those for which the result of the search condition is true.

ORDER BY
The ORDER BY clause specifies an ordering of the rows of the result table.

A column, column-alias, or a column-index that specifies the value that is to be
used to order the rows of the result of the table.

The column-index n identifies the nth column of the result table.

ASC
Uses the values of the column, column-alias, or column-index in ascending
order. ASC is the default.

DESC
Uses the values of the column, column-alias, or column-index in descending
order.

GROUP BY
The GROUP BY clause specifies a result table that consists of a grouping of the
rows of intermediate result table that is the result of the previous clause.

The result of GROUP BY is a set of groups of rows. In each group of more
than one row, all values of each column, column-alias, or column-index are equal,
and all rows with the same set of values of the column, column-alias, or
column-index are in the same group. For grouping, all null values for a
column, column-alias, or column-index are considered equal.

Chapter 8. SQL programming reference 811

|

|
|

|
|

If your SELECT statement contains both aggregate and non-aggregate
select-expressions, all of the non-aggregate select-expressions need to be in a
GROUP BY clause.

schema-name
The schema-name defines the schema in your SQL query. In IMS, the schema
name is the PCB name.

table-name
The table-name defines the name of the table in your SQL query. The name
must identify a segment in IMS.

table-alias
The table-alias defines the alias that is defined in your SQL query that can be
used in place of the table-name.

column-name
The column-name defines the name of the column in your SQL query.

column-name
The column-name defines the name of the column in your SQL query.

'string-literal'
A 'string-literal' defines a static character string that is UTF-8 encoded.

integer-literal
An integer-literal defines an integer value within the range of −2,147,483,648 to
2,147,483,647.

decimal-literal
A decimal-literal defines a decimal value of double point precision.

SUM
The SUM function returns the sum of a set of numbers.

AVG
The AVG function returns the average of a set of numbers.

MIN
The MIN function returns the minimum value in a set of values.

MAX
The MAX function returns the maximum value in a set of values.

COUNT
The COUNT function returns the number of rows or values in a set of rows or
values.

numeric functions:

ABS
The ABS function returns the absolute value of a number.

ACOS
The ACOS function returns the arc cosine of the argument as an angle,
expressed in radians. The ACOS and COS functions are inverse operations.

ASIN
The ASIN function returns the arc sine of the argument as an angle,
expressed in radians. The ASIN and SIN functions are inverse operations.

ATAN
The ATAN function returns the arc tangent of the argument as an angle,
expressed in radians. The ATAN and TAN functions are inverse operations.

812 Application Programming APIs

CEIL
CEILING

The CEILING function returns the smallest integer value that is greater
than or equal to the argument.

COS
The COS function returns the cosine of the argument, where the argument
is an angle, expressed in radians. The COS and ACOS functions are inverse
operations.

COT
The COT function returns the cotangent of the argument, where the
argument is an angle, expressed in radians. The COT and TAN functions
are reciprocal operations.

DEGREES
The DEGREES function returns the number of degrees of the argument,
which is an angle, expressed in radians.

EXP
The EXP function returns a value that is the base of the natural logarithm
(e), raised to a power that is specified by the argument. The EXP and LN
functions are inverse operations.

FLOOR
The FLOOR function returns the largest integer value that is less than or
equal to the argument.

LN
LOG

The LN and LOG function returns the natural logarithm of the argument.
The LN and EXP functions are inverse operations.

LOG10
The LOG10 function returns the common logarithm (base 10) of a number.

SIGN
The SIGN function returns an indicator of the sign of the argument.

SIN
The SIN function returns the sine of the argument, where the argument is
an angle, expressed in radians.

SINH
The SINH function returns the hyperbolic sine of the argument, where the
argument is an angle, expressed in radians.

SQRT
The SQRT function returns the square root of the argument.

TAN
The TAN function returns the tangent of the argument, where the
argument is an angle, expressed in radians.

TANH
The TANH function returns the hyperbolic tangent of the argument, where
the argument is an angle, expressed in radians.

RADIANS
The RADIANS function returns the number of radians for an argument
that is expressed in degrees.

Chapter 8. SQL programming reference 813

ATAN2
The ATAN2 function returns the arc tangent of x and y coordinates as an
angle, expressed in radians.

MOD
The MOD function divides the first argument by the second argument and
returns the remainder.

POWER
The POWER function returns the value of the first argument to the power
of the second argument.

CURRENT_DATE
The CURRENT_DATE special register specifies a date that is based on a
reading of the time-of-day clock when the SQL statement is executed at the
application.

CURRENT_TIME
The CURRENT_TIME special register specifies a time that is based on a
reading of the time-of-day clock when the SQL statement is executed at the
application.

precision
The precision specifies the fractions of a second. precision can range from 0
to 12. The default precision is 3.

CURRENT_TIMESTAMP
The CURRENT_TIMESTAMP special register specifies a timestamp that is
based on a reading of the time-of-day clock when the SQL statement is
executed at the application.

precision
The precision specifies the fractions of a second. precision can range from 0
to 12. The default precision is 6.

LOCALTIME
The LOCALTIME special register specifies a time that is based on a reading of
the time-of-day clock when the SQL statement is executed at the application.

precision
The precision specifies the fractions of a second. precision can range from 0
to 12. The default precision is 3.

LOCALTIMESTAMP
The LOCALTIMESTAMP special register specifies a timestamp that is based on
a reading of the time-of-day clock when the SQL statement is executed at the
application.

precision
The precision specifies the fractions of a second. precision can range from 0
to 12. The default precision is 6.

Note
v If you are selecting from multiple tables and the same column name exists in

one or more of these tables, you must table-qualify the column or an ambiguity
error will occur.

v The FROM clause must list all the tables you are selecting data from. The tables
listed in the FROM clause must be in the same hierarchic path in the IMS
database.

v Because there are multiple database PCBs in a PSB, queries must specify which
PCB in a PSB to use. To specify which PCB to use, always qualify segments that

814 Application Programming APIs

are referenced in the FROM clause of an SQL statement by prefixing the segment
name with the PCB name. You can omit the PCB name only if the PSB contains
only one PCB.

Examples

Selecting all fields with * symbol
The following statement retrieves all fields for the PATIENT table:
SELECT *
FROM PCB01.PATIENT

The following statement retrieves the hospital name from the HOSPITAL
table and all fields from the WARD table:
SELECT HOSPITAL.HOSPNAME, WARD.*
FROM PCB01.HOSPITAL, PCB01.WARD

Selecting specified columns
The following statement retrieves the ward names and patient names from
the WARD and PATIENT tables, respectively:
SELECT WARD.WARDNAME,PATIENT.PATNAME
FROM PCB01.WARD, PATIENT

Selecting with ORDER BY
The ORDER BY clause is used to sort the rows. By default, results are
sorted by ascending numerical or alphabetical order. The following
statement retrieves all distinct hospital names, sorted in alphabetical order:
SELECT DISTINCT HOSPNAME FROM PCB01.HOSPITAL

ORDER BY HOSPNAME

The following statement retrieves all ward names sorted in alphabetical
order, and the number of patients in each ward sorted in ascending
numerical order. If two WARDNAME values in the ORDER BY compare
are equal, the tiebreaker will be their corresponding PATCOUNT values (in
this case, the row with the numerically smaller corresponding PATCOUNT
value is displayed first).
SELECT WARDNAME, PATCOUNT FROM PCB01.WARD

ORDER BY WARDNAME, PATCOUNT

Use the DESC qualifier to sort the query result in descending numerical or
reverse alphabetical order. The following statement retrieves all patient
names in reverse alphabetical order:
SELECT PATNAME FROM PCB01.PATIENT

ORDER BY PATNAME DESC

Use the ASC qualifier to explicitly sort the query result in ascending
numerical or reverse alphabetical order. The following statement retrieves
all ward names sorted in ascending alphabetical order, and the number of
patients in each ward sorted in descending numerical order:
SELECT WARDNAME, PATCOUNT FROM PCB01.WARD

ORDER BY WARDNAME ASC, PATCOUNT DESC

Selecting with GROUP BY
The GROUP BY clause is used to return results for aggregate functions,
grouped by column values. The following statement returns the aggregated
sum of all doctors in every ward in a hospital, grouped by distinct ward
names :

Chapter 8. SQL programming reference 815

|
|

SELECT WARDNAME, SUM(DOCCOUNT)
FROM PCB01.WARD
WHERE HOSPITAL_HOSPCODE = ’H5140070000H

GROUP BY WARDNAME

The following statement returns the hospital name, ward name, and the
count of all patients in each ward in each hospital, grouped by distinct
hospital names and sub-grouped by ward names:
SELECT HOSPNAME, WARDNAME, COUNT(PATNAME)
FROM PCB01.HOSPITAL, WARD, PATIENT

GROUP BY HOSPNAME, WARDNAME

Selecting with DISTINCT
For SQL for the IMS Universal JDBC driver, the DISTINCT keyword is
supported. The following statement retrieves all distinct patient names
from the PATIENT table for SQL:
SELECT DISTINCT PATNAME
FROM PCB01.PATIENT

Using the AS clause
For SQL for the IMS Universal JDBC driver, use the AS clause to rename
the aggregate function column in the result set or any other field in the
SELECT statement. The AS clause is not supported for SQL for COBOL
application programs.

For SQL for the IMS Universal JDBC driver, the DISTINCT keyword is
supported. The following statement returns the aggregate count of distinct
patients in the PATIENT table with the alias of “PATIENTCOUNT”:
SELECT COUNT(DISTINCT PATNAME)

AS PATIENTCOUNT
FROM PCB01.PATIENT

The following statement returns the aggregate count of distinct wards in
all hospitals with the alias of “WARDCOUNT”, sorted by the hospital
names in alphabetical order, and grouped by distinct hospital names
(under a renamed column alias “HOSPITALNAME”):
SELECT HOSPNAME AS HOSPITALNAME, COUNT(DISTINCT WARDNAME)

AS WARDCOUNT
FROM PCB01.HOSPITAL, WARD

GROUP BY HOSPNAME
ORDER BY HOSPNAME

Example of SELECT using a parameter marker:
The following statement retrieves data based on the value that is supplied
for the parameter for HOSPNAME:
SELECT * FROM PCB01.HOSPITAL WHERE HOSPNAME = ?

Example of using the FETCH FIRST clause:
The following statement fetches the first n number of rows returned:
SELECT HOSPNAME FROM PCB01.HOSPITAL FETCH FIRST 3 ROWS ONLY

Examples of invalid SELECT queries:
The following statement is invalid because the FROM clause is missing the
WARD table:
SELECT WARD.WARDNAME,PATIENT.PATNAME
FROM PCB01.PATIENT

Related reference:

SQL aggregate functions supported by the IMS JDBC drivers (Application
Programming)

816 Application Programming APIs

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_sqlaggregatefuncs.htm#ims_sqlaggregatefuncs
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_sqlaggregatefuncs.htm#ims_sqlaggregatefuncs

SQL aggregate functions supported for COBOL (Application Programming)

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table.

The searched UPDATE form is used to update one or more rows optionally
determined by a search condition.

Invocation

This statement can be embedded in a COBOL or Java application program or
issued interactively. An UPDATE can be embedded in an application program. It is
an executable statement that can be dynamically prepared.
v “Syntax for COBOL”
v “Syntax for Java”

Syntax for COBOL

update

►► UPDATE table SET assignment-clause ►

►
WHERE search-condition

►◄

table:

table-name
schema-name .

assignment clause:

▼

,

column = value

column:

table-name .
column-name

Syntax for Java

update

►► UPDATE table SET assignment-clause ►

►
WHERE search-condition

►◄

Chapter 8. SQL programming reference 817

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.apg/ims_sqlaggregatefuncs_cobol.htm#ims_sqlaggregatefuncs_cobol

table:

table-name
schema-name .

assignment clause:

▼

,

column = value

column:

table-name .
schema-name .

(1)
column-name

Notes:

1 You can have the same column name in multiple tables, but if the table is not
qualified, each table must be searched for the column.

Description

The following keyword parameters are defined for the UPDATE statement:

UPDATE
Identifies the object of the UPDATE statement.

table-name
The table-name defines the name of the table in your SQL query. The name
must identify a segment in IMS.

schema-name
The schema-name defines the schema in your SQL query. In IMS, the
schema name is the PCB name.

SET
Introduces the assignment of values to column names.

column-name
Identifies a column that is to be updated. column-name must identify a field of
the specified segment.

WHERE
Specifies the rows to be updated. You can omit the clause or give a search
condition. When the clause is omitted, all the rows of the table are updated.

search-condition
Is any search condition as described in “Search conditions” on page 633.
Each column-name in the search condition must identify a column of the
table.

The search condition is applied to each row of the table and the rows are
those for which the result of the search condition is true are updated.

value
Indicates the new value of the column.

818 Application Programming APIs

schema-name
The schema-name defines the schema in your SQL query. In IMS, the schema
name is the PCB name.

table-name
The table-name defines the name of the table in your SQL query.

column-name
The column-name defines the name of the column in your SQL query.

Notes

Update rules:
Update values must satisfy the following rules. If they do not, or if other
errors occur during the execution of the UPDATE statement, no rows are
updated and the position of the cursors are not changed.
v Assignment. Update values are assigned to columns using the assignment

rules described in “Language elements” on page 617.
v When updating a record in a table at a non-root level, you must specify

values for all the foreign key fields of the table to identify the exact
record (or segment instance) to update.

v Making an UPDATE on a foreign key field is invalid.

Number of rows updated:
For COBOL, the value of SQLIMSERRD(3) in the SQLIMSCA is the
number of rows updated after an UPDATE statement completes execution.
For a complete description of the SQLIMSCA, including exceptions to the
preceding sentence, see “SQL communication area (SQLIMSCA)” on page
821.

Examples

Updating one column in a record
The following statement updates the root:
UPDATE HOSPITAL SET HOSPNAME = ’MISSION CREEK’
WHERE HOSPITAL.HOSPCODE = ’H001007’

Updating multiple fields in a specified record in a hierarchic path
Foreign keys are used to maintain referential integrity by identifying the
exact record (or segment instance) to update. The following statement
updates a WARD record under a specific HOSPITAL. In this example, the
WARD table has the virtual foreign key HOSPITAL_HOSPCODE. The
record will be updated if and only if there is a HOSPCODE in the
HOSPITAL table with the value of 'H5140070000H'.
UPDATE WARD SET WARDNAME = ’EMGY’,

DOCCOUNT = ’2’, NURCOUNT = ’4’
WHERE HOSPITAL_HOSPCODE = ’H5140070000H’

AND WARDNO = ’01’

Example of an invalid UPDATE query
This statement is invalid because it does not use the correct syntax to
specify a legal value for the virtual foreign key field
(HOSPITAL_HOSPCODE).
UPDATE WARD SET WARDNAME = ’EMGY’,

DOCCOUNT = ’2’, NURCOUNT = ’4’
WHERE HOSPITAL.HOSPCODE = ’H5140070000H’

AND WARDNO = ’01’

Chapter 8. SQL programming reference 819

Example of an invalid foreign key field UPDATE query
Making an UPDATE query on a foreign key field is invalid. For example,
the following UPDATE query will fail:
UPDATE WARD SET WARDNAME = ’EMGY’,

HOSPITAL_HOSPCODE = ’H5140070000H’
WHERE WARDNO = ’01’

WHENEVER
The WHENEVER statement specifies the host language statement to be executed
when a specified exception condition occurs.

Invocation

This statement can be embedded only in a COBOL application program. It is not
an executable statement.

Syntax

►► WHENEVER NOT FOUND CONTINUE
SQLERROR GOTO host-label
SQLWARNING GO TO :

►◄

Description

The following keyword parameters are defined for the WHENEVER statement:

The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the
type of exception condition.

NOT FOUND
Identifies any condition that results in an SQLIMSCODE of +100 (equivalently,
an SQLIMSSTATE code of '02000').

SQLERROR
Identifies any condition that results in a negative SQLIMSCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLIMSWARN0 is
W), or that results in a positive SQLIMSCODE other than +100.

The CONTINUE or GO TO clause specifies the next statement to be executed
when the identified type of exception condition exists.

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a single
token, optionally preceded by a colon. The form of the token depends on the
host language. In COBOL, for example, it can be section-name or an unqualified
paragraph-name.

Notes

There are three types of WHENEVER statements:
v WHENEVER NOT FOUND
v WHENEVER SQLERROR

820 Application Programming APIs

v WHENEVER SQLWARNING

Every executable SQL statement in an application program is within the scope of
one implicit or explicit WHENEVER statement of each type. The scope of a
WHENEVER statement is related to the listing sequence of the statements in the
application program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement, that
SQL statement is within the scope of an implicit WHENEVER statement of that
type in which CONTINUE is specified.

Examples

The following statements can be embedded in a COBOL program.

Example 1: Go to the label HANDLER for any statement that produces an error.
EXEC SQLIMS WHENEVER SQLERROR GOTO HANDLER END-EXEC.

Example 2: Continue processing for any statement that produces a warning.
EXEC SQLIMS WHENEVER SQLWARNING CONTINUE END-EXEC.

Example 3: Go to the label ENDDATA for any statement that does not return.
EXEC SQLIMS WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

SQL communication area (SQLIMSCA)
An SQLIMSCA is a structure or collection of variables that is updated after each
SQL statement executes. An application program that contains executable SQL
statements must provide exactly one SQLIMSCA.

In COBOL, the INCLUDE statement can be used to provide the declaration of the
SQLIMSCA.

Description of SQLIMSCA fields
The SQLIMS INCLUDE statement provides SQLIMSCA field.

The names in the following table are those provided by the SQLIMS INCLUDE
statement.

Table 168. Fields of SQLIMSCA

COBOL name Data type Purpose

SQLIMSCAID CHAR(8) An “eye catcher” for storage dumps, containing the text
'SQLIMSCA'.

SQLIMSCABC INTEGER Contains the length of the SQLIMSCA: 224.

Chapter 8. SQL programming reference 821

Table 168. Fields of SQLIMSCA (continued)

COBOL name Data type Purpose

SQLIMSCODE INTEGER Contains the SQL return code. (See note 2 on page 823)

Code Means
0 Successful execution (though there might have been

warning messages).
positive

Successful execution, but with a warning condition or
other information.

negative
Error condition.

SQLIMSERRML
(See note 1 on page 823)

SMALLINT Length indicator for SQLIMSERRMC, in the range 0 through
255. 0 means that the value of SQLIMSERRMC is not pertinent.

SQLIMSERRMC
(See note 1 on page 823)

VARCHAR(158) Contains the error message.

SQLIMSERRP CHAR(8) Provides a product signature and, in the case of an error,
diagnostic information such as the name of the module that
detected the error. In all cases, the first three characters are
'DQF' or 'DFS' for IMS.

SQLIMSERRD(1) INTEGER Reserved.

SQLIMSERRD(2) INTEGER Reserved.

SQLIMSERRD(3) INTEGER Contains the number of rows that qualified to be deleted,
inserted, or updated after a DELETE, INSERT, or UPDATE
statement.

SQLIMSERRD(4) INTEGER Reserved.

SQLIMSERRD(5) INTEGER Reserved.

SQLIMSERRD(6) INTEGER Reserved.

SQLIMSWARN0 CHAR(1) Contains a blank if no other indicator is set to a warning
condition (that is, no other indicator contains a W or Z).
Contains a W if at least one other indicator contains a W or Z.

SQLIMSWARN1 CHAR(1) Contains a W if the value of a string column was truncated
when assigned to a host variable.

SQLIMSWARN2 CHAR(1) Reserved.

SQLIMSWARN3 CHAR(1) Contains a W if the number of result columns is larger than
the number of host variables.

SQLIMSWARN4 CHAR(1) Contains a W if a prepared UPDATE or DELETE statement
does not include a WHERE clause.

SQLIMSWARN5 CHAR(1) Contains a W if the SQL statement was not executed because it
is not a valid SQL statement in IMS.

SQLIMSWARN6 CHAR(1) Contains a W if a field is not initialized with the proper format
for the INSERT statement because the field overlays with
another field that is of a different type. ZONEDDECIMAL and
PACKEDDECIMAL fields are initialized during the processing
of an INSERT statement. If the field is overlaid by another field
and the field cannot be initialized, W is set for the statement
during the EXECUTE call.

SQLIMSWARN7 CHAR(1) Reserved.

SQLIMSWARN8 CHAR(1) Reserved.

SQLIMSWARN9 CHAR(1) Reserved.

SQLIMSWARNA CHAR(1) Reserved.

822 Application Programming APIs

|
|
|
|
|
|
|

Table 168. Fields of SQLIMSCA (continued)

COBOL name Data type Purpose

SQLIMSSTATE CHAR(5) Contains a return code for the outcome of the most recent
execution of an SQL statement (See note 2).

Notes:

1. In COBOL, SQLIMSERRM includes SQLIMSERRML and SQLIMSERRMC. See
the examples for the various host languages in “The included SQLIMSCA.”

2. For a description of the SQLIMSSTATE values, see SQL codes (Messages and
Codes).

The included SQLIMSCA
The description of the SQLIMSCA that is given by INCLUDE SQLIMSCA is shown
for COBOL.

COBOL:
01 SQLIMSCA GLOBAL.

05 SQLIMSCAID PIC X(8).
05 SQLIMSCABC PIC S9(9) COMP-5.
05 SQLIMSCODE PIC S9(9) COMP-5.
05 SQLIMSERRM.

49 SQLIMSERRML PIC S9(4) COMP-5.
49 SQLIMSERRMC PIC X(158).

05 SQLIMSERRP PIC X(8).
05 SQLIMSERRD PIC S9(9) COMP-5
05 SQLIMSWARN.

10 SQLIMSWARN0 PIC X.
10 SQLIMSWARN1 PIC X.
10 SQLIMSWARN2 PIC X.
10 SQLIMSWARN3 PIC X.
10 SQLIMSWARN4 PIC X.
10 SQLIMSWARN5 PIC X.
10 SQLIMSWARN6 PIC X.
10 SQLIMSWARN7 PIC X.

05 SQLIMSEXT.
10 SQLIMSWARN8 PIC X.
10 SQLIMSWARN9 PIC X.
10 SQLIMSWARNA PIC X.
10 SQLIMSSTATE PIC X(5).

SQL descriptor area (SQLIMSDA)
An SQLIMSDA is a collection of variables that is required for execution of the
SQLIMS DESCRIBE statement, and can be optionally used by the FETCH
statements. An SQLIMSDA can be used in a DESCRIBE statement, modified with
the addresses of host variables, and then reused in a FETCH statement.

The meaning of the information in an SQLIMSDA depends on the context in which
it is used. For DESCRIBE, IMS sets the fields in the SQLIMSDA to provide
information to the application program. For FETCH, the application program sets
the fields in the SQLIMSDA to provide IMS with information:

DESCRIBE statement-name
With the exception of SQLIMSN, IMS sets fields of the SQLIMSDA to
provide information to an application program about a prepared statement.
Each SQLIMSVAR occurrence describes a column of the result table.

Chapter 8. SQL programming reference 823

http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/compcodes/ims_sqlcodes.htm#ims_sqlcodes
http://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.ims14.doc.msgs/compcodes/ims_sqlcodes.htm#ims_sqlcodes

FETCH
The application program sets fields of the SQLIMSDA to provide
information about host variables or output buffers in the application
program to IMS. Each SQLIMSVAR occurrence describes a host variable or
output buffer.
v For FETCH, each SQLIMSVAR occurrence describes a host variable or

buffer in the application program that is to be used to contain an output
value from a row of the result.

Description of SQLIMSDA fields
An SQLIMSDA consists of four variables, a header, and an arbitrary number of
occurrences of a sequence of variables collectively named SQLIMSVAR.

In DESCRIBE, each occurrence of the SQLIMSVAR describes the column of a table.
In FETCH, each occurrence describes a host variable.

The SQLIMSDA header
The fields in the SQLIMSDA header have different usage depending on whether
the SQLIMSDA is being used in a DESCRIBE or FETCHstatement.

The following table describes the fields in the SQLIMSDA header.

Table 169. Fields of the SQLIMSDA header

COBOL name Data type Usage in DESCRIBE Usage in FETCH

sqlimsdaid
SQLIMSDAID

CHAR(8) An “eye catcher” for storage dumps,
containing the text 'SQLIMSDA '. SQLIMSDAID is not used.

sqlimsdabc
SQLIMSDABC

INTEGER Length of the SQLIMSDA, equal to
SQLIMSNx * 44+16.

Length of the SQLIMSDA, greater
than or equal to SQLIMSNx * 44+16.

sqlimsn
SQLIMSN

SMALLINT The field must be set to a value
greater than or equal to zero before
the statement is executed. The field
indicates the total number of
occurrences of SQLIMSVAR. In
COBOL, the included SQLIMSDA
contains up to 750 occurrences of
SQLIMSVAR.

Total number of occurrences of
SQLIMSVAR provided in the
SQLIMSDA. SQLIMSN must be set
to a value greater than or equal to
zero. In COBOL, the included
SQLIMSDA contains up to 750
occurrences of SQLIMSVAR.

sqlimsd
SQLIMSD

SMALLINT The number of columns described by
occurrences of SQLIMSVAR.

The number of host variables
described by occurrences of
SQLIMSVAR.

SQLIMSVAR entries
For each column or host variable described by the SQLIMSDA, it is described
using the SQLIMSVAR entry.

The fields of this entry contain the base information about the column or host
variable such as data type code, length attribute (except for LOBs), column name,
host variable address, and indicator variable address.

Determining how many SQLIMSVAR occurrences are needed:

The number of SQLIMSVAR occurrences needed depends on the statement that the
SQLIMSDA was provided for and the data types of the columns or parameters
being described.

824 Application Programming APIs

The included SQLIMSDA provides up to 750 occurrences of SQLIMSVAR. The
SQLIMSD is set to the number of columns in the result and represents the number
of SQLIMSVAR occurrences needed. If an insufficient number of SQLIMSVAR
occurrences were provided, IMS returns a +239 warning in SQLIMSCODE.

SQLIMSD is set to the number of columns in the result.

Field descriptions of an occurrence of a base SQLIMSVAR:

The fields of a base SQLIMSVAR have different uses depending on the SQL
statement.

The following table describes the contents of the fields of a base SQLIMSVAR.

Table 170. Fields in an occurrence of a base SQLIMSVAR

COBOL name Data type Usage in DESCRIBE Usage in FETCH

sqlimstype
SQLIMSTYPE

SMALLINT Indicates the data type of the column
and whether it can contain null
values. For a description of the type
codes, see Table 171 on page 826.

Indicates the data type of the host
variable and whether an indicator
variable is provided. For a
description of the type codes, see
“SQLIMSTYPE and SQLIMSLEN.”

sqlimslen
SQLIMSLEN

SMALLINT The length attribute of the column.
See “SQLIMSTYPE and
SQLIMSLEN” for a description of
allowable values.

The length attribute of the host
variable. See “SQLIMSTYPE and
SQLIMSLEN” for a description of
allowable values.

sqlimsdata
SQLIMSDATA

pointer Reserved. Contains the address of the host
variable.

sqlimsind
SQLIMSIND

pointer Reserved Contains the address of an associated
indicator variable, if SQLIMSTYPE is
odd. Otherwise, the field is not used.

sqlimsname
SQLIMSNAME

VARCHAR(30) Contains the unqualified name or
label of the column, or a string of
length zero if the name or label does
not exist. If the name is longer than
30 bytes, it is truncated at a byte
boundary.

Contains the unqualified name or
label of the column, or a string of
length zero if the name or label does
not exist. If the name is longer than
30 bytes, it is truncated at a byte
boundary.

SQLIMSTYPE and SQLIMSLEN:

The contents of the SQLIMSTYPE and SQLIMSLEN fields of the SQLIMSDA
depends on the SQL statement that is returning the value.

The following table shows the values that can appear in the SQLIMSTYPE and
SQLIMSLEN fields of the SQLIMSDA. In DESCRIBE, an even value of
SQLIMSTYPE means the column does not allow nulls, and an odd value means
the column does allow nulls. In FETCH, an even value of SQLIMSTYPE means no
indicator variable is provided, and an odd value means that SQLIMSIND contains
the address of an indicator variable.

Chapter 8. SQL programming reference 825

Table 171. SQLIMSTYPE and SQLIMSLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE

SQLIMSTYPE

For DESCRIBE For FETCH

Column or parameter
data type SQLIMSLEN Host variable data type SQLIMSLEN

384/385 date 10 1 fixed-length character
string representation of a
date

length attribute of the
host variable

388/389 time 8 2 fixed-length character
string representation of a
time

length attribute of the
host variable

392/393 timestamp 26 fixed-length character
string representation of a
timestamp

length attribute of the
host variable

452/453 fixed-length character
string

length attribute of the
column

fixed-length character
string

length attribute of the
host variable

480/481 floating point 4 for single precision,
8 for double precision

floating point 4 for single precision,
8 for double precision

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

492/493 big integer4 8 big integer 8

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

504/505 N/A N/A DISPLAY SIGN
LEADING SEPARATE,

NATIONAL SIGN
LEADING SEPARATE

precision in byte 1;
scale in byte 2

912/913 fixed-length binary
string

length attribute of the
column

fixed-length binary string length attribute of the
host variable

Note:

1. SQLIMSLEN might be different if a date installation exit is specified.
2. SQLIMSLEN might be different if a time installation exit is specified.
3. Field SQLIMSLONGLEN in the extended SQLIMSVAR contains the length

attribute of the column.
4. BIGINT is supported by other IMS platforms.

The included SQLIMSDA
Only COBOL is supported for the SQLIMSDA that is given by INCLUDE
SQLIMSDA.

COBOL (IBM COBOL only):
01 SQLIMSDA GLOBAL.

02 SQLIMSDAID PIC X(8).
02 SQLIMSDABC PIC S9(9) COMP-5.
02 SQLIMSN PIC S9(4) COMP-5.
02 SQLIMSD PIC S9(4) COMP-5.
02 SQLIMSVAR OCCURS 0 TO 750 TIMES DEPENDING ON SQLIMSN.
03 SQLIMSVAR1.

04 SQLIMSTYPE PIC S9(4) COMP-5.
04 SQLIMSLEN PIC S9(4) COMP-5.
04 FILLER REDEFINES SQLIMSLEN.
05 SQLIMSPRECISION PIC X.

826 Application Programming APIs

05 SQLIMSSCALE PIC X.
04 SQLIMSDATA POINTER.
04 SQLIMSIND POINTER.
04 SQLIMSNAME.
49 SQLIMSNAMEL PIC S9(4) COMP-5.
49 SQLIMSNAMEC PIC X(30).

03 SQLIMSVAR2 REDEFINES SQLIMSVAR1.
04 SQLIMSVAR2-RESERVED-1

PIC S9(9) COMP-5.
04 SQLIMSLONGLEN REDEFINES

SQLIMSVAR2-RESERVED-1
PIC S9(9) COMP-5.

04 SQLIMSVAR2-RESERVED-2
PIC S9(9) COMP-5.

04 SQLIMSDATALEN POINTER.
04 SQLIMSDATATYPE-NAME.
05 SQLIMSDATATYPE-NAMEL

PIC S9(4) COMP-5.
05 SQLIMSDATATYPE-NAMEC PIC X(30).

Chapter 8. SQL programming reference 827

828 Application Programming APIs

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1974, 2017 829

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

830 Application Programming APIs

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This information documents Product-sensitive Programming Interface and
Associated Guidance Information provided by IMS.

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this software product. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
Programming Interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.
Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a section or topic,
or by a Product-sensitive programming interface label. IBM requires that the
preceding statement, and any statement in this information that refers to the
preceding statement, be included in any whole or partial copy made of the
information described by such a statement.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 831

http://www.ibm.com/legal/copytrade.shtml

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

832 Application Programming APIs

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 833

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

834 Application Programming APIs

Bibliography

This bibliography lists all of the publications in the IMS 14 library.

Title Acronym Order number
IMS Version 14 Application Programming APG SC19-4208
IMS Version 14 Application Programming APIs APR SC19-4209
IMS Version 14 Commands, Volume 1: IMS
Commands A-M

CR1 SC19-4210

IMS Version 14 Commands, Volume 2: IMS
Commands N-V

CR2 SC19-4211

IMS Version 14 Commands, Volume 3: IMS
Component and z/OS Commands

CR3 SC19-4212

IMS Version 14 Communications and Connections CCG SC19-4213
IMS Version 14 Database Administration DAG SC19-4214
IMS Version 14 Database Utilities DUR SC19-4215
IMS Version 14 Diagnosis DGR GC19-4216
IMS Version 14 Exit Routines ERR SC19-4217
IMS Version 14 Installation INS GC19-4218
IMS Version 14 Licensed Program Specifications LPS GC19-4231
IMS Version 14 Messages and Codes, Volume 1: DFS
Messages

MC1 GC18-4219

IMS Version 14 Messages and Codes, Volume 2:
Non-DFS Messages

MC2 GC18-4220

IMS Version 14 Messages and Codes, Volume 3: IMS
Abend Codes

MC3 GC18-4221

IMS Version 14 Messages and Codes, Volume 4: IMS
Component Codes

MC4 GC18-4222

IMS Version 14 Operations and Automation OAG SC19-4223
IMS Version 14 Release Planning RPG GC19-4224
IMS Version 14 System Administration SAG SC19-4225
IMS Version 14 System Definition SDG GC19-4226
IMS Version 14 System Programming APIs SPR SC19-4227
IMS Version 14 System Utilities SUR SC19-4228
Program Directory for Information Management
System Transaction and Database Servers V14.01.00

GI10-8988

Program Directory for Information Management
System Database Value Unit Edition V14.01.00

GI13-4602

Program Directory for Information Management
System Transaction Manager Value Unit Edition
V14.01.00

GI13-4601

© Copyright IBM Corp. 1974, 2017 835

836 Application Programming APIs

Index

Special characters
: (colon)

preceding a host variable 628
! (exclamation mark) as not sign 630
!token

IMSQUERY function 379
STORAGE command 377

? (question mark) 795
/DISPLAY command 544
/DISPLAY POOL command 437
/FORMAT command 503, 544
/MODIFY COMMIT command 503
/MODIFY PREPARE command 503
/RDISPLAY command 545
/RESET command 463
/SET command 480
. (period) usage

null or void placeholder 369
parsing, transparent additions 369
REXX 366

$$IMSDIR
effect on performance 437

*mapname 373, 374
&DPN= operand (DIV statement),

specifying 465

Numerics
3180

in partitioned format mode
clearing the display 543
paging 543
restrictions 543
scrolling 543

screen formatting 431
3270 Information Display System

compatibility with 5550 431
copy function

bit 4 of SCA, byte 1 450
description 535

default literal input message
fields 491

defining IMS TM password 493
defining system message field 520
entering and exiting formatted

mode 480
increasing performance 437
master terminal format

display area 545
literals defined for PF keys 545

multiple physical page input 499
PA (program access) key, control

functions 535
printed page format control 520
screen formatting 427
selector pen

for control functions 535
3270 operator identification card reader

application program device-dependent
information 444

3270 operator identification card reader
(continued)

defining IMS TM password 493
effect on input fields 444
system message field 520

3270P Printer
printed page format control 521

3270P Printers
MFS controlling format 523

3275/3277 Display Station
physical paging 506
using default formats with 424

3276 Control Unit/Display Station
physical paging 506
using default formats with 424

3278 Display Station
compatibility with 5550 431
physical paging 506
using default formats with 424

3279 Display Station, default
formats 424

3290 Display Panel
in partitioned format mode 518
in standard format mode 429
screen formatting 429

3770 Data Communication System
entering and exiting formatted

mode 480
printed page format control 520

3790 Communication System
operating with MFS

FTABs 494
input modes 493

5550 Family (as 3270) 512
compatibility with other devices 431
using DBCS fields 512
using DBCS/EBCDIC fields 512

8-blanks (null) 42

A
abend statement 237
abend, avoiding an 166
ABNUOWRM reply message 326

format 326
ACCEPT command

ACCEPT command
description 166

example 166
format 166
options 166
system service command 163
usage 166

ACCESS parameter
CREATE DATABASE statement 700

accessibility
features x
keyboard shortcuts x

ACCRDB command 283
format 283

ACCRDBRM reply message 327

ACCRDBRM reply message (continued)
format 327

ACCSEC command 285
format 285

ACCSECRD reply object 329
ACTVPID= operand (DPAGE statement)

cursor positioning (3290 only) 518
specifying 474
use 541

adding
a segment sequentially 191
segments to a database 186

addressing environments 361, 363
AGNPRMRM reply message 330

format 330
AIB (application interface block)

AIB identifier
in RCMD call 66

AIB identifier (AIBID)in GSCD
call 43

AIB identifier (AIBID)
in APSB call 37
in CHKP (basic) call 38
in CHKP (symbolic) call 39
in DPSB call 41
in GMSG call 42
in ICMD call 45
in INIT call 46
in INQY call 54
in LOG call 63
in ROLB call 67
in ROLS call 68
in SETS/SETU call 70
in SNAP call 71
in STAT call 74
in SYNC call 76

AIB identifier (AIBID) in XRST
call 77

AIBLEN (DFSAIB allocated length)in
GSCD call 43

AIBLEN (DFSAIB allocated length)
in APSB call 37
in CHKP (basic) call 38
in CHKP (symbolic) call 39
in DPSB call 41
in GMSG call 42
in ICMD call 45
in INIT call 46
in INQY 54
in LOG call 63
in RCMD call 66
in ROLB call 67
in ROLS call 68
in SETS/SETU call 70
in SNAP call 71
in STAT call 74
in SYNC call 76

AIBLEN (DFSAIB allocated length) in
XRST call 77

AIBOALEN ((maximum output area
length) in ROLS call 68

© Copyright IBM Corp. 1974, 2017 X-1

AIB (application interface block)
(continued)

AIBOALEN (maximum outpu area
length)

in LOG call 63
AIBOALEN (maximum output area

length)in GSCD call 43
AIBOALEN (maximum output area

length)
in CHKP (symbolic) call 39
in GMSG call 42
in ICMD call 45
in INIT call 46
in INQY call 54
in RCMD call 66
in SETS/SETU call 70
in SNAP call 71
in STAT call 74

AIBOALEN (maximum output area
length) in ROLB call 67

AIBOALEN (maximum output area
length) in XRST call 77

AIBOAUSE (used output area length)
in GMSG call 42
in ICMD call 45
in RCMD call 66

AIBRSNM1 (resource name)
in APSB call 37
in CHKP (symbolic) call 39
in DPSB call 41
in GMSG call 42
in INIT call 46
in INQY call 54
in LOG call 63
in ROLB call 67
in ROLS call 68
in SETS/SETU call 70
in SNAP call 71
in STAT call 74
in SYNC call 76

AIBRSNM1 (resource name) in CHKP
(basic) call 38

AIBRSNM1 (resource name) in XRST
call 77

AIBRSNM2
in APSB call 37
in CHKP (basic) call 38

AIBSFUNC (subfunction code)
in DPSB call 41
in GMSG call 42
in INQY call 54

DL/I calls, system service
ROLB 67

interface, REXX 364
ROLB (Roll Back) call

format 67
parameters 67

subfunction, setting 375
AIBOALEN parameter 351
AIBRSNM1 (resource name)

in GSCD call 43
AIBRSNM1 parameter 351
AIBRSNM2 parameter 351
AIBSFUNC parameter 352
aibStream data structure

format 352
overview 352

Allocate PSB (APSB) call 37
format 37
parameters 37
usage 37

allocate PSB call 126
allowed commands, EXEC DLI 163
ALTER DATABASE

statement
description 638

ALTER TABLE
statement

description 652
ALTER TABLESPACE

statement
description 684

AND
truth table 633

AO (automated operator) application
after status codes

GCMD call 97
GCMD call

status codes 97
GMSG call 42, 130
ICMD call 45, 133
RCMD call 66, 152

AOI (Automated Operator Interface)
IOASIZE requirement 713

AOI token, usage 42
API

otma_alloc 557
otma_close 566
otma_create 553
otma_free 566
otma_open 554
otma_openx 556
otma_receive_async 564
otma_send_async 562
otma_send_receive 559
otma_send_receivex 561

APPC environment 361
application program

deadlock occurrence, in 46
SQLIMSCA 821
SQLIMSDA 823

APSB (Allocate PSB) call 37
format 37
parameters 37
usage 37

APSB call 126
description 126
format 126
parameters 126
restrictions 126
summary 81
usage 126

area
in CHKP (symbolic) call 39

area length
in CHKP (symbolic) call 39
in XRST call 77

assignment
compatibility rules 623
retrieval rules 625
storage rules 625
strings, basic rules for 624

ATTACH FM header 465, 527

ATTACH manager
blocking algorithms 527
deblocking algorithms 501

ATTR= operand (MFLD statement)
example 454
use 509

attribute data
input message fields

description 492
output device fields

description 509
for cursor positioning 518

attribute simulation
description 509
restrictions 452

AUTH call 83
description 83
format 83
I/O area format 83
parameters 83
restrictions 83
summary 81
usage 83

authorization call 83
Automated Operator Interface

(AOI) 713
avoiding an abend 166

B
backing out

changes dynamically 201
backout point

setting 206
unconditionally setting 207

basic checkpoint
description 166

Basic Checkpoint (CHKP Basic)
description 38
format 38
parameters 38
usage 38

basic checkpoint call 127
Basic CHKP call 127

description 127
format 127
parameters 127
restrictions 127
summary 81
usage 127

Basic edit
IMS TM 503

basic operations in SQL 623
basic predicate 630
batch programs

deadlock occurrence, in 46
BETWEEN predicate 631
BIGINT

data type 621
binding

SQL statements 615
BKO execution parameter 201
block error message format 544
BLOCK= parameter

DATASET statement 686, 776
BSAM (basic sequential access method)

using with Spool API 113

X-2 Application Programming APIs

built-in data type 619

C
call functions, DL/I 249
CALL statement 238

CALL DATA 243
CALL DATA statement internal

field 243
CALL FUNCTION 239
SETO, DFSDDLT0

description 239
CALL statements

CALL FUNCTION statement 242
FEEDBACK DATA statement 245
OPTION DATA statement 246

call summary, transaction
management 81

Callable Interface (C/I) 551
otma_alloc API 557
otma_close API 566
otma_create API 553
otma_free API 566
otma_open API 554
otma_openx API 556
otma_receive_async API 564
otma_send_async API 562
otma_send_receive API 559
otma_send_receivex API 561
sample programs 567

calls, DB
CIMS 3
CLSE 5
DEQ 6
DLET 8
FLD 9
GHNP 16
GHU 19
GN 11
GNP 16
GU 19
GUR 21
ISRT 25
OPEN 29
POS 29
REPL 32
RLSE 34

calls, system service
APSB (allocate PSB) 37
CHKP (basic) 38
CHKP (symbolic) 39
GMSG (get message) 42
ICMD (issue command) 45
INIT (initialize) 46
INQY (inquiry) 54
LOG (log) 63
PCB (schedule a PSB) 65
RCMD (retrieve command) 66
ROLB (roll back) 67
SETS/SETU (set a backout point) 70
SNAP 71
STAT (statistics) 74
SYNC (synchronization point) 76
TERM (terminate) 77
XRST (extended restart) 77

change call 88

changing the values of a segment’s
fields 196

CHAR
data type 622

character 617
CHARACTER data type

description 622
character string

assignment 625
comparison 625
constants 626
description 622
empty 622

checkpoint (CHKP)
command

description 166
example 166
format 166
issuing 166
options 166
restrictions 166
usage 166

checkpoint call, basic 127
checkpoint call, symbolic 128
CHKP (basic checkpoint) call

CHKP (basic checkpoint) call
description 38

format 38
parameters 38
usage 38

CHKP (Checkpoint)
command

description 166
example 166
format 166
issuing 166
options 166
restrictions 166
usage 166

CHKP (symbolic checkpoint) call
CHKP (symbolic checkpoint) call

description 39
format 39
parameters 39
usage 39

CHKP call function 246
CHKPT=EOV parameter 167
CHNG call 88

and OTMA environment 88
description 88
format 88
parameters 88
restrictions 88
summary 82
usage 88

CHNG call function 246
CICS online programs 65

PCB call 65
TERM call 77

CIMS call
description 3
format 3
parameters 3
usage 3

class, record segment 223
CLEAR key 427
CLEAR PARTITION key 427

CLOSE
statement

description 690
example 691

closing a GSAM database explicitly 5
CLSE (Close) call

CLSE (Close) call
description 5

format 5
parameters 5
usage 5

CLSQRY command 286
format 286

CMD call
description 95
examples 95
format 95
parameters 95
restrictions 95
summary 81
usage 95

CMD call function 246
CMDVLTRM reply message 331

format 331
CNTQRY command 288

format 288
COBOL application program

host structure 629
host variable

description 628
INCLUDE SQLIMSCA 823

colon
host variable in SQL 628

column
derived

INSERT statement 800
UPDATE statement 818

naming convention 618
Command (CMD) call

See CMD call 95
Command (ICAL) call

See ICAL call 101
command codes 215, 219, 221

A
description 215

C
description 215

D
examples 215
Get calls 216
ISRT call 216
P processing option 216

DL/I calls 213
F

Get calls 218
HERE insert rule 25
ISRT call 218

G
description 219

L
FIRST insert rule 25, 219
Get calls 219

M 230
N 220
Null 227
O

description 221

Index X-3

command codes (continued)
P 222
Q 223
R 231
reference 213
S 232
U 225
V 226
Z 234

command-level programs
command-level programs

syntax of EXEC DLI
commands 163

command, path 196
commands

EXEC DLI
ACCEPT 166
CHKP (Checkpoint) 166
DEQ (Dequeue) 167
DLET (Delete) 168
GN (Get Next) 170
GNP (Get Next in Parent) 175
GU (Get Unique) 181
ISRT (Insert) 186
LOAD 191
LOG 192
POS (Position) 193
QUERY 194
REFRESH 195
REPL (Replace) 196
RETRIEVE 200
ROLB (Rollback) 201
ROLL 202
ROLS (Rollback to SETS or

SETU) 203
SCHD (Schedule) 205
SETS (Set a Backout Point) 206
SETU (Set a Backout Point

Unconditionally) 207
STAT (Statistics) 208
summary 164
SYMCHKP (Symbolic

Checkpoint) 209
TERM (Terminate) 211
XRST (Extended Restart) 211

symbolic checkpoint 209
system service 163

commands allowed, EXEC DLI 163
comment

SQL 617
COMMENT ON

statement
description 691

COMMENT statement
conditional (T) 259
unconditional (U) 259

COMPARE statement
COMPARE AIB 261
COMPARE DATA 261
COMPARE PCB 262
introduction 260

comparison
compatibility rules 623
strings 625

compatibility
3270 printer and SLU 1 436

compatibility (continued)
converting device definitions to SLU

P 436
data types 623
rules 623
SLU P 436

COMPR= operand (DIV statement),
specifying 465

COND= operand (DPAGE statement),
specifying 474

connector, field search argument (FSA) 9
constant

character string 626
decimal 626
floating-point 626
hexadecimal 626
integer 626

CONTINUE
clause of WHENEVER statement 820

control blocks, MFS
chained control blocks 417

control character 617
conversion

3270 device format, example 434
device formats 433

copy function
bit 4 of SCA, byte 1 450
cursor positioning

for output messages 450
description 535
dynamic attribute modification,

output message formats
specifying attributes 450

CREATE DATABASE
statement

description 694
CREATE PROGRAMVIEW

statement
description 708

CREATE TABLE
statement

description 726
CREATE TABLESPACE

statement
description 773

CTL (PUNCH) statement 268
current position

qualification 225
current position in the database,

determining the 200
cursor

closing
CLOSE statement 690
error in UPDATE 819

naming convention 618
opening

errors 803
OPEN statement 802

using
DECLARE CURSOR

statement 788
FETCH statement 796

cursor position input 490
cursor positioning

3270 Information Display System
selector pen 444

for input messages 444, 518

cursor positioning (continued)
for output messages

CURSOR operand 474
dynamic 518

selector pen, 3270
application program

device-dependent
information 444

effect on input fields 444
cursor-name clause

DECLARE CURSOR statement 788
FETCH statement 797

CURSOR= operand (DPAGE statement),
specifying 474

D
data mapping, define with MAXDEF

command 371
data structures

hierarchy 616
types 616

data type
built-in 619
character string 622
compatibility matrix 623
datetime 622
list of built-in types 619
numeric 621

database
calls

summary 1
deallocating resources 41
determining the current position in

the 200
establishing a starting position in

a 181
position

establishing using GU 19
database versioningINIT VERSION

call 46
databases

hierarchical
comparison to relational 617

relational
comparison to hierarchical 617

date
data type 623

DATE
data type

description 623
datetime

data types
description 622

datetime host variables
data type

description 623
DB PCB

status codes
NU 46

DB PCB (database program
communication block) 43

AIB (application interface block)I/O
area

in GSCD call 43
I/O PCB

in GSCD 43

X-4 Application Programming APIs

DB PCB (database program
communication block) (continued)

in GSCD 43
status codes

NA 46
DBCS (double byte character set)

definition 512
types of fields 512

DBCS/EBCDIC mixed fields
description 512
horizontal tab (SCS1 device) 512
input control 512
SO/SI control characters in 512

DBCS/EBCDIC mixed literals
continuation rules for 512
description 512
specifying as DFLD/MFLD

literals 512
DBD (Database Description) generation

block size, specifying minimum for
databases 686, 776

control interval size, specifying
minimum for databases 686, 776

dbpcbStream data structure 353
format 353

DBQUERY
using with INIT call 46

DDL SQL 615
DDL statements

ALTER DATABASE
description 638

ALTER TABLE
description 652

ALTER TABLESPACE
description 684

COMMENT ON
description 691

CREATE DATABASE
description 694

CREATE PROGRAMVIEW
description 708

CREATE TABLE
description 726

CREATE TABLESPACE
description 773

DROP DATABASE
description 792

DROP PROGRAMVIEW
description 793

DROP TABLE
description 793

DROP TABLESPACE
description 794

DDM (distributed data management
architecture)

command objects 283
commands 281, 283
commit processing 282
data structures, product-unique 351
DSSHDR syntax 282
global transaction processing 282
local transaction processing 282
parameters, product-unique 351
replies 281
syntax 281
terms 281

DDM (distributed data management)
abnormal ending of unit of work 326
ABNUOWRM reply message 326
access security reply object 329
access to database completed reply

message 327
accessing database 283
ACCRDB command 283
ACCRDBRM reply message 327
ACCSEC command 285
ACCSECRD reply object 329
AGNPRMRM reply message 330
aibStream data structure 352
closing a query 286
CLSQRY command 286
CMDVLTRM reply message 331
CNTQRY command 288
command violation reply

message 331
continuing a query 288
data field 312
database access failed reply

message 342
database deallocation completed reply

message 331
database not accessed reply

message 344
database not found reply

message 345
database update reply message 346
dbpcbStream data structure 353
deallocating database 289
DEALLOCDB command 289
DEALLOCDBRM reply message 331
DL/I function 290
DLIFUNC command object 290
end of query reply message 332
end unit of work reply message 334
ENDQRYRM reply message 332
ENDUOWRM reply message 334
exchange server attributes 292, 335
EXCSAT command 292
EXCSATRD reply object 335
EXCSQLIMM command 294
executing immediate SQL 294
field entry 300
FLDENTRY command object 300
IMS call reply message 336
IMSCALL command 301
IMSCALLRM reply message 336
INAIB command object 302
input AIB data 302
iopcbStream data structure 354
issuing an IMS call 301
not authorized to database reply

message 343
open query failure reply

message 337
open query reply message 338
opening a query 304
OPNQFLRM reply message 337
OPNQRY command 304
OPNQRYRM reply message 338
OUTAIBDBPCB parameter 355
OUTAIBIOPCB parameter 356
Output AIBDBPCB 355
output AIBIOPCB 356

DDM (distributed data management)
(continued)

permanent agent error reply
message 330

QRYDSC reply object 339
QRYDTA reply object 340
QRYPOPRM reply message 341
query answer set data reply

object 340
query answer set description reply

object 339
query previously opened reply

message 341
RDBAFLRM reply message 342
RDBATHRM reply message 343
RDBNACRM reply message 344
RDBNFNRM reply message 345
RDBUPDRM reply message 346
release locks reply message 347
releasing database locks 311
reply messages 326
resource limits reached reply

message 348
RLSE command 311
RLSERM reply message 347
RSCLMTRM reply message 348
RTRVFLD command object 312
SECCHK command 313
SECCHKRM reply message 349
security access 285
security check 313
security check reply message 349
SQL error condition reply

message 350
SQLERRRM reply message 350
SSA object list 325
SSALIST command object 325

DDM (distributed data management)
architecture

AIBRSNM1 parameter 351
AIBRSNM2 parameter 351
AIBSFUNC parameter 352
RDBNAM parameter 357
SECCHK command 313
security check 313
SSA parameter 357
SSACOUNT parameter 358
UPDCNT parameter 358

DDM (distributed data management)
Architecture

AIBOALEN parameter 351
DDM command objects

DLIFUNCFLG command object
(X'CC09') 291

FLDENTRYREL command object
(X'CC0C') 301

RTRVFLDREL Command object
(X'CC0B') 312

SEGMLIST Command object
(X'CC0A') 314

deadlock occurrence
application programs 46
batch programs, in 46

deallocate PSB call 130
DEALLOCDB command 289

format 289
DEALLOCDBRM reply message 331

Index X-5

DEALLOCDBRM reply message
(continued)

format 331
debugging, IMSRXTRC 370
decimal

constants 626
numbers 622

DECIMAL
data type 622

DECLARE CURSOR statement
description 788
example 788

DECLARE STATEMENT statement
description 789
example 789

DEDB (data entry database)
command codes 227
PCBs and DL/I calls 235

default system control area 508
define a data mapping with MAXDEF

command 371
DELETE

statement
description 790
example 790

Delete (DLET) call
description 8
format 8
parameters 5, 8, 29
SSA 8
usage 8

Delete (DLET) command
description 168
example 168
format 168
options 168
restrictions 168

deleting
rows from a table 790

dependent segments
retrieving

sequentially 175
the location of a 193

sequential
retrieving the location of the last

one inserted 193
dependents of a segment, removing 168
DEQ (Dequeue) call

DEQ (Dequeue) call
description 6

format
Fast Path 6
full function 6

function 246
parameters

Fast Path 6
full function 6

Q command code 6, 223
restrictions 6
summary 1
usage 6

DEQ (Dequeue) command
DEQ (Dequeue) command

description 167
example 167
format 167
options 167

DEQ (Dequeue) command (continued)
restrictions 167
usage 167

Dequeue (DEQ) call
description 6
format

Fast Path 6
full function 6

function 246
parameters

Fast Path 6
full function 6

Q command code 6, 223
summary 1
usage 6

Dequeue (DEQ) command
description 167
example 167
format 167
options 167
restrictions 167
usage 167

DESCRIBE OUTPUT statement 791
descriptor

naming convention 618
design objectives, application 417
designator character 444
determining the current position in the

database 200
DEV statement 494

FEAT= operand 424
FORS= operand 523
FTAB= operand 494
HTAB= operand 521
PAGE= operand 520
SLDx= operand 521
SUB= operand 500
TYPE= operand 424
VT= operand 521
VTAB= operand 521
WIDTH= operand 521

device control characters 504
device feature selection 424
device format conversion 433
device formats, default 424
device input format 548
device output format 548
device page 490
DFLD/MFLD literal

containing DBCS/EBCDIC mixed
data 512

DFS.EDT 463
DFS.EDTN 463
DFS057I block error message 544
DFS1150 490
DFSDDLT0

call statements
CALL FUNCTION statement 242
FEEDBACK DATA statement 245
OPTION DATA statement 246

DFSDDLT0 (DL/I Test Program) 236
DFSDF1 544
DFSDF2 544
DFSDF4 544
DFSDSP01 544
DFSIGNI 544
DFSIGNJ 544

DFSIGNN 544
DFSIGNP 544
DFSM0 545
DFSM01 544
DFSM02 544
DFSM03 544
DFSM04 544
DFSM05 544
DFSME000 491
DFSMI1 544
DFSMI2 544
DFSMI4 544
DFSPWSIO

DFSPWSH include files 593
DFSQGETS API 602
DFSQSETS API 604
DFSXGETS API 607
DFSXSETS API 609
overview 593
return codes 612

DFSREXXU, example user exit
routine 361

DFSUDT0x (device characteristics table)
description 546
MFS Device Characteristics Table

utility 546
DIB (DL/I interface block)

information, obtaining the most
recent 195

DIF (device input format)
definition 548
input formatting functions 482
language statements used to

create 465
DIV 465
DPAGE 474

relationship to other control
blocks 417

selection 424
digit, description in IMS 617
distributed data management (DDM)

abnormal ending of unit of work 326
ABNUOWRM reply message 326
access security reply object 329
access to database completed reply

message 327
accessing database 283
ACCRDB command 283
ACCRDBRM reply message 327
ACCSEC command 285
ACCSECRD reply object 329
AGNPRMRM reply message 330
aibStream data structure 352
closing a query 286
CLSQRY command 286
CMDVLTRM reply message 331
CNTQRY command 288
command violation reply

message 331
continuing a query 288
data field 312
database access failed reply

message 342
database deallocation completed reply

message 331
database not accessed reply

message 344

X-6 Application Programming APIs

distributed data management (DDM)
(continued)

database not found reply
message 345

database update reply message 346
dbpcbStream data structure 353
deallocating database 289
DEALLOCDB command 289
DEALLOCDBRM reply message 331
DL/I function 290
DLIFUNC command object 290
end of query reply message 332
end unit of work reply message 334
ENDQRYRM reply message 332
ENDUOWRM reply message 334
exchange server attributes 292, 335
EXCSAT command 292
EXCSATRD reply object 335
EXCSQLIMM command 294
executing immediate SQL 294
field entry 300
FLDENTRY command object 300
IMS call reply message 336
IMSCALL command 301
IMSCALLRM reply message 336
INAIB command object 302
input AIB data 302
iopcbStream data structure 354
issuing an IMS call 301
not authorized to database reply

message 343
open query failure reply

message 337
open query reply message 338
opening a query 304
OPNQFLRM reply message 337
OPNQRY command 304
OPNQRYRM reply message 338
OUTAIBDBPCB parameter 355
OUTAIBIOPCB parameter 356
Output AIBDBPCB 355
output AIBIOPCB 356
permanent agent error reply

message 330
QRYDSC reply object 339
QRYDTA reply object 340
QRYPOPRM reply message 341
query answer set data reply

object 340
query answer set description reply

object 339
query previously opened reply

message 341
RDBAFLRM reply message 342
RDBATHRM reply message 343
RDBNACRM reply message 344
RDBNFNRM reply message 345
RDBUPDRM reply message 346
release locks reply message 347
releasing database locks 311
reply messages 326
resource limits reached reply

message 348
RLSE command 311
RLSERM reply message 347
RSCLMTRM reply message 348
RTRVFLD command object 312

distributed data management (DDM)
(continued)

SECCHK command 313
SECCHKRM reply message 349
security access 285
security check 313
security check reply message 349
SQL error condition reply

message 350
SQLERRRM reply message 350
SSA object list 325
SSALIST command object 325

distributed data management (DDM)
architecture

AIBOALEN parameter 351
AIBRSNM1 parameter 351
AIBRSNM2 parameter 351
AIBSFUNC parameter 352
RDBNAM parameter 357
SECCHK command 313
security check 313
SSA parameter 357
SSACOUNT parameter 358
UPDCNT parameter 358

distributed data management architecture
(DDM)

command objects 283
commands 281, 283
commit processing 282
data structures, product-unique 351
DSSHDR syntax 282
global transaction processing 282
local transaction processing 282
parameters, product-unique 351
replies 281
syntax 281
terms 281

Distributed relational database
architecture (DRDA)

DLIFUNCFLG command object
(X'CC09') 291

FLDENTRYREL command object
(X'CC0C') 301

RTRVFLDREL Command object
(X'CC0B') 312

SEGMLIST Command object
(X'CC0A') 314

Distributed Relational Database
Architecture (DRDA)

abnormal ending of unit of work 326
ABNUOWRM reply message 326
access security reply object 329
access to database completed reply

message 327
accessing database 283
ACCRDB command 283
ACCRDBRM reply message 327
ACCSEC command 285
ACCSECRD reply object 329
AGNPRMRM reply message 330
aibStream data structure 352
closing a query 286
CLSQRY command 286
CMDVLTRM reply message 331
CNTQRY command 288
command violation 331
continuing a query 288

Distributed Relational Database
Architecture (DRDA) (continued)

data field 312
data structures

aibStream data structure 352
dbpcbStream data structure 353
iopcbStream data type 354

database access failed reply
message 342

database deallocation completed 331
database not accessed reply

message 344
database not found reply

message 345
database update reply message 346
dbpcbStream data structure 353
DDM command objects

data field 312
DL/I function 290
DLIFUNC 290
field entry 300
FLDENTRY 300
INAIB 302
input AIB data 302
RTRVFLD 312
SSA object list 325
SSALIST 325

DDM commands
accessing database 283
ACCRDB 283
ACCSEC 285
closing a query 286
CLSQRY 286
CNTQRY 288
continuing a query 288
deallocating database 289
DEALLOCDB 289
exchange server attributes 292
EXCSAT 292
EXCSQLIMM 294
executing immediate SQL 294
IMSCALL 301
issuing an IMS call 301
opening a query 304
OPNQRY 304
releasing database locks 311
RLSE 311
SECCHK 313
security access 285
security check 313

DDM parameters
OUTAIBDBPCB 355
OUTAIBIOPCB 356
Output AIBDBPCB 355
output AIBIOPCB 356

DDM reply messages
abnormal ending of unit of

work 326
ABNUOWRM 326
access to database completed 327
ACCRDBRM 327
AGNPRMRM 330
CMDVLTRM 331
database access failed 342
database deallocation

completed 331
database not accessed 344

Index X-7

Distributed Relational Database
Architecture (DRDA) (continued)

DDM reply messages (continued)
database not found 345
database update 346
DEALLOCDBRM 331
end of query 332
end unit of work 334
ENDQRYRM 332
ENDUOWRM 334
IMS calls 336
IMSCALLRM 336
not authorized to database 343
open query 338
open query failure 337
OPNQFLRM 337
OPNQRYRM 338
permanent agent errors 330
QRYPOPRM 341
query previously opened 341
RDBAFLRM 342
RDBATHRM 343
RDBNACRM 344
RDBNFNRM 345
RDBUPDRM 346
release locks 347
resource limits reached 348
RLSERM 347
RSCLMTRM 348
SECCHKRM 349
security check 349
SQL error condition 350
SQLERRRM 350

DDM reply objects
access security 329
ACCSECRD 329
exchange server attributes 335
EXCSATRD 335
QRYDSC 339
QRYDTA 340
query answer set data 340
query answer set description reply

object 339
deallocating database 289
DEALLOCDB command 289
DEALLOCDBRM reply message 331
DL/I function 290
DLIFUNC command object 290
end of query reply message 332
end unit of work reply message 334
ENDQRYRM reply message 332
ENDUOWRM reply message 334
exchange server attributes 292, 335
EXCSAT command 292
EXCSATRD reply object 335
EXCSQLIMM command 294
executing immediate SQL 294
field entry 300
FLDENTRY command object 300
IMS call reply message 336
IMSCALL command 301
IMSCALLRM reply message 336
INAIB command object 302
input AIB data 302
iopcbStream data structure 354
issuing an IMS call 301

Distributed Relational Database
Architecture (DRDA) (continued)

not authorized to database reply
message 343

open query failure reply
message 337

open query reply message 338
opening a query 304
OPNQFLRM reply message 337
OPNQRY command 304
OPNQRYRM reply message 338
OUTAIBDBPCB parameter 355
OUTAIBIOPCB parameter 356
Output AIBDBPCB 355
output AIBIOPCB 356
permanent agent errors 330
QRYDSC reply object 339
QRYDTA reply object 340
QRYPOPRM reply message 341
query answer set data reply

object 340
query answer set description reply

object 339
query previously opened reply

message 341
RDBAFLRM reply message 342
RDBATHRM reply message 343
RDBNACRM reply message 344
RDBNFNRM reply message 345
RDBUPDRM reply message 346
release locks reply message 347
releasing database locks 311
reply messages 326
resource limits reached reply

message 348
RLSE command 311
RLSERM reply message 347
RSCLMTRM reply message 348
RTRVFLD command object 312
SECCHK command 313
SECCHKRM reply message 349
security access 285
security check 313
security check reply message 349
SQL error condition reply

message 350
SQLERRRM reply message 350
SSA object list 325
SSALIST command object 325

Distributed Relational Database
Architecture (DRDA) Specification

AIBOALEN parameter 351
AIBRSNM1 parameter 351
AIBRSNM2 parameter 351
AIBSFUNC parameter 352
RDBNAM parameter 357
SECCHK command 313
security check 313
SSA parameter 357
SSACOUNT parameter 358
UPDCNT parameter 358

DIV statement 496
&DPN= operand 465
COMPR= operand 465
HDRCTL= operand 523
NOSPAN= operand 465
NULL= operand 465, 496

DIV statement (continued)
OFTAB= operand

output mode 527
specifying 465

OPTIONS= operand 465, 523
PRN= operand 465
RCDCTL= operand 465, 523
RDPN= operand 465
RPRN= operand 465
SPAN= operand 465
TYPE= operand 465

DL/I
setting a backout point 206

DL/I call functions
special DFSDDLT0

END 258
SKIP 258
STAK 258
START 258

supported
CHKP 246
CHNG 246
CMD 246
DEQ 246
DLET 246
FLD 246
GCMD 246
GHN 246
GHNP 246
GHU 246
GMSG 246
GN 246
GNP 246
ICAL 246
ICMD 246
INIT 246
INQY 246
ISRT 246
LOG 246
POS 246
PURG 246
RCMD 246
REPL 246
ROLB 246
ROLL 246
ROLS 246
ROLX 246
SETO 246
SETS 246
SNAP 246
STAT 246
SYNC 246
XRST 246

DL/I call functions, examples 249
DL/I call functionsDL/

supported
GU 246
GUR 246

DL/I calls (general information)
qualifying calls

concatenated key 215
relationships to PCBs, FF PCBs 235

DL/I calls for transaction management
AUTH call 83
call summary 81
CHNG call 88
CMD call 95

X-8 Application Programming APIs

DL/I calls for transaction management
(continued)

GCMD call 97
GN call 98
GU call 99
ISRT call 113
PURG call 116
SETO call 118

DL/I calls, database management
CIMS 3
DEDB (data entry database)

root segments, order 11
DEQ 6
DL/I calls, database management

CLSE 5
FLD 9
GNHP call 11

DLET 8
FLD 9
FLD (Field) call

description 9
get hold next (GHN), usage 11
Get Next (GN) call

hold form (GHN) 11
parameters 11
SSA 11
usage 11

GHN (get hold next), usage 11
GHNP call 16
GN 11
GN (Get Next) call

hold form (GHN) 11
parameters 11
SSA 11
usage 11

GNP 16
GU 19
GUR 21
HDAM

order of root segments 11
ISRT 25
OPEN 29
PHDAM database 11
POS 29
randomizing routine

exit routine 11
REPL 32
RLSE 34
summary 1

DL/I calls, system service
APSB 37
CHKP 38, 39
CHKP (basic) 38
description 35
DPSB 41
GMSG 42
GSCD 43
INIT 46
INQY 54
LOG 63
PCB 65
ROLB 67
ROLL 68
ROLS 68
SETS/SETU 70
SNAP 71
STAT 74, 77

DL/I calls, system service (continued)
summary 35
SYNC 76
XRST 77

DL/I processing
batch processing options 291, 301,

312, 314
DL/I return codes (REXX) 364
DL/I system service calls 124

APSB call 126
Basic CHKP call 127
call summary 124
DPSB call 130
GSCD Call 132
INIT call 136
INQY call 139
LOG call 150
ROLB call 154
ROLL Call 155
ROLS call 156
SETS call 158
SETU call 158
Symbolic CHKP call 128
SYNC call 160
XRST call 160

DL/I test program (DFSDDLT0)
JCL requirements

PRINTDD DD statement 276
SYSIN DD statement 275
SYSIN2 DD statement 275

DL/I Test Program (DFSDDLT0)
control statements 274

guidelines 236
execution in IMS regions 278
explanation of return codes 278
hints on usage 278
JCL requirements 274, 276
overview 236
restarting input stream 276

DLET (Delete) call
DLET (Delete) call

description 8
format 8
parameters 5, 8, 29
SSA 8
usage 8

DLET (Delete) command
Delete (DLET) command

usage 168
DLET (Delete) command

description 168
usage 168

example 168
format 168
options 168
restrictions 168
usage

DLET (Delete) command 168
DLET call function 246
DLIFUNC command object 290

format 290
DLIFUNCFLG command object

(X'CC09') 291
DLIINFO

. (period) usage 369
REXX extended command 369

DOCMD exec 387

DOF (device output format)
associated MFS functions 504
definition 548
language statements used to

create 465
DIV 465
DPAGE 474

relationship to other control
blocks 417

selection 424
double byte character set 512
DOUBLE data type

description 621
DOUBLE PRECISION data type

description 621
double precision floating-point

number 621
DPAGE 490

ACTVPID= operand 474, 541
COND= operand 474
CURSOR= operand 474
input 490
MULT= operand 474
OFTAB= operand

output mode 527
specifying 474

ORIGIN= operand 474
overview 490
PD= operand 474
SELECT= operand 474
selection

using conditional data 501
using conditional test on the

data 501
using DSN transmission

chains 501
specifying conditional 501
specifying unconditional 501

DPM (distributed presentation
management)

control character translation 449, 504
deleting nulls on input 496
GRAPHIC= operand (SEG statement)

use 449
increasing performance 439
naming conventions 523
output message header examples 523
version identification 548

DPN field
control block linkages 424
DIV statement 465
MFS formatting 480

DPSB call 130
description 41, 130
format 41, 130
parameters 41, 130
restrictions 130
summary 81
usage 41, 130

DRDA
DLIFUNCFLG command object

(X'CC09') 291
FLDENTRYREL command object

(X'CC0C') 301
RTRVFLDREL Command object

(X'CC0B') 312

Index X-9

DRDA (continued)
SEGMLIST Command object

(X'CC0A') 314
DRDA (Distributed Relational Database

Architecture)
abnormal ending of unit of work 326
ABNUOWRM reply message 326
access security reply object 329
access to database completed reply

message 327
accessing database 283
ACCRDB command 283
ACCRDBRM reply message 327
ACCSEC command 285
ACCSECRD reply object 329
AGNPRMRM reply message 330
aibStream data structure 352
closing a query 286
CLSQRY command 286
CMDVLTRM reply message 331
CNTQRY command 288
command violation 331
continuing a query 288
data field 312
data structures

aibStream data structure 352
dbpcbStream data structure 353
iopcbStream data type 354

database access failed reply
message 342

database deallocation completed 331
database not accessed reply

message 344
database not found reply

message 345
database update reply message 346
dbpcbStream data structure 353
DDM command objects

data field 312
DL/I function 290
DLIFUNC 290
field entry 300
FLDENTRY 300
INAIB 302
input AIB data 302
RTRVFLD 312
SSA object list 325
SSALIST 325

DDM commands
accessing database 283
ACCRDB 283
ACCSEC 285
closing a query 286
CLSQRY 286
CNTQRY 288
continuing a query 288
deallocating database 289
DEALLOCDB 289
exchange server attributes 292
EXCSAT 292
EXCSQLIMM 294
executing immediate SQL 294
IMSCALL 301
issuing an IMS call 301
opening a query 304
OPNQRY 304
releasing database locks 311

DRDA (Distributed Relational Database
Architecture) (continued)

DDM commands (continued)
RLSE 311
SECCHK 313
security access 285
security check 313

DDM parameters
OUTAIBDBPCB 355
OUTAIBIOPCB 356
Output AIBDBPCB 355
output AIBIOPCB 356

DDM reply messages
abnormal ending of unit of

work 326
ABNUOWRM 326
access to database completed 327
ACCRDBRM 327
AGNPRMRM 330
CMDVLTRM 331
database access failed 342
database deallocation

completed 331
database not accessed 344
database not found 345
database update 346
DEALLOCDBRM 331
end of query 332
end unit of work 334
ENDQRYRM 332
ENDUOWRM 334
IMS calls 336
IMSCALLRM 336
not authorized to database 343
open query 338
open query failure 337
OPNQFLRM 337
OPNQRYRM 338
permanent agent errors 330
QRYPOPRM 341
query previously opened 341
RDBAFLRM 342
RDBATHRM 343
RDBNACRM 344
RDBNFNRM 345
RDBUPDRM 346
release locks 347
resource limits reached 348
RLSERM 347
RSCLMTRM 348
SECCHKRM 349
security check 349
SQL error condition 350
SQLERRRM 350

DDM reply objects
access security 329
ACCSECRD 329
exchange server attributes 335
EXCSATRD 335
QRYDSC 339
QRYDTA 340
query answer set data 340
query answer set description reply

object 339
deallocating database 289
DEALLOCDB command 289
DEALLOCDBRM reply message 331

DRDA (Distributed Relational Database
Architecture) (continued)

DL/I function 290
DLIFUNC command object 290
end of query reply message 332
end unit of work reply message 334
ENDQRYRM reply message 332
ENDUOWRM reply message 334
exchange server attributes 292, 335
EXCSAT command 292
EXCSATRD reply object 335
EXCSQLIMM command 294
executing immediate SQL 294
field entry 300
FLDENTRY command object 300
IMS call reply message 336
IMSCALL command 301
IMSCALLRM reply message 336
INAIB command object 302
input AIB data 302
iopcbStream data structure 354
issuing an IMS call 301
not authorized to database reply

message 343
open query failure reply

message 337
open query reply message 338
opening a query 304
OPNQFLRM reply message 337
OPNQRY command 304
OPNQRYRM reply message 338
OUTAIBDBPCB parameter 355
OUTAIBIOPCB parameter 356
Output AIBDBPCB 355
output AIBIOPCB 356
permanent agent errors 330
QRYDSC reply object 339
QRYDTA reply object 340
QRYPOPRM reply message 341
query answer set data reply

object 340
query answer set description reply

object 339
query previously opened reply

message 341
RDBAFLRM reply message 342
RDBATHRM reply message 343
RDBNACRM reply message 344
RDBNFNRM reply message 345
RDBUPDRM reply message 346
release locks reply message 347
releasing database locks 311
reply messages 326
resource limits reached reply

message 348
RLSE command 311
RLSERM reply message 347
RSCLMTRM reply message 348
RTRVFLD command object 312
SECCHK command 313
SECCHKRM reply message 349
security access 285
security check 313
security check reply message 349
SQL error condition reply

message 350
SQLERRRM reply message 350

X-10 Application Programming APIs

DRDA (Distributed Relational Database
Architecture) (continued)

SSA object list 325
SSALIST command object 325

DRDA (Distributed Relational Database
Architecture) Specification

AIBOALEN parameter 351
AIBRSNM1 parameter 351
AIBRSNM2 parameter 351
AIBSFUNC parameter 352
RDBNAM parameter 357
SECCHK command 313
security check 313
SSA parameter 357
SSACOUNT parameter 358
UPDCNT parameter 358

DROP DATABASE
statement

description 792
DROP PROGRAMVIEW

statement
description 793

DROP TABLE
statement

description 793
DROP TABLESPACE

statement
description 794

DSCA (default system control area) 508
autopaged output 527
description 508
destroying screen format 520
ERASE/DO NOT ERASE option 451
use 540

DSN (data structure name) 533
DSSHDR syntax 282
dynamic attribute modification, output

message formats
default attributes 509
specifying extended field

attributes 452
dynamic modification of EGCS data 454
dynamic SQL 616

description 635
EXECUTE statement 795
execution 636
INTO clause

DESCRIBE statement 791
invocation of SELECT statement 637
preparation 636
SQLIMSDA 823

dynamically backing out changes 201,
202

E
E (COMPARE) statement 260
EATTR= operand (DFLD statement)

example 454
use 509

EBCDIC format 490
edit routines, IMS-supplied

field edit routine 490, 491
EGCS (extended graphic character

set) 509
/EBCDIC data, dynamic

modification 454

EGCS (extended graphic character set)
(continued)

description 509
modifying data 459
SO/SI framing characters 511
use with selector pen 444

END call function 258
end multiple page input request 534
ending a logical unit of work 166, 209
ENDMPPI request 534
ENDQRYRM reply message 332

format 332
ENDUOWRM reply message 334

format 334
environment (REXX)

address 361, 363
determining 364
DL/I calls (general information)

REXXTDLI 363
extended 363

erase all unprotected option
(SCA/DSCA) 427

error
during update 819

ERROR key 500
establishing a starting position in a

database 181
examples

ACCEPT command 166
CHKP (Checkpoint) command 166
D command code 216
DEQ (Dequeue) command 167
DFSDDLT0 statements

COMMENT 259
DATA/PCB COMPARE 264
DD 276
DL/I call functions 249
IGNORE 266
OPTION 267
PUNCH 268
STATUS 270
SYSIN, SYSIN2, and PREINIT 276
WTO 273
WTOR 274

DFSREXXU user exit routine 361
DLET (Delete) command 168
GN (Get Next) command 170
GNP (Get Next in Parent)

command 175
GU (Get Unique) command 181
ISRT (Insert) command 186
L command code 219
LOAD command 191
LOG command 192
N command code 220
Null command code 227
P command code 222
QUERY command 194
REFRESH command 195
REPL (Replace) 196
REPL (Replace) command 196
RETRIEVE command 200
ROLB (Rollback) command 201
ROLL command 202
ROLS (Rollback to SETS or SETU)

command 203
SCHD (Schedule) command 205

examples (continued)
SETS (Set a Backout Point)

command 206
STAT (Statistics) command 208
SYMCHKP (Symbolic Checkpoint)

command 209
TERM (Terminate) command 211
U Command Code 225
V command code 226
XRST (Extended Restart)

command 211
EXCSAT command 292

format 292
EXCSATRD reply object 335

format 335
EXCSQLIMM command 294
EXCSQLSET command

format 298
EXEC DLI

allowable commands 163
commands

ACCEPT 166
CHKP (Checkpoint) 166
DEQ (Dequeue) 167
DLET (Delete) 168
GN (Get Next) 170
GNP (Get Next in Parent) 175
GU (Get Unique) 181
ISRT (Insert) 186
LOAD 191
LOG 192
POS (Position) 193
QUERY 194
REFRESH 195
REPL (Replace) 196
RETRIEVE 200
ROLB (Rollback) 201
ROLL 202
ROLS (Rollback to SETS or

SETU) 203
SCHD (Schedule) 205
SETS (Set a Backout Point) 206
SETU (Set a Backout Point

Unconditionally) 207
STAT (Statistics) 208
SYMCHKP (Symbolic

Checkpoint) 209
TERM (Terminate) 211
XRST (Extended Restart) 211

EXEC DLI
syntax of commands 163

program summary 164
EXEC statement, operands

DEVCHAR= 546
EXECIO

managing resources 361
executable statement 635, 636
EXECUTE statement

description 795
example 796

expression
row-value 629

extended attribute data 492
input message fields 492
output devices, dynamic

modification 509
extended commands 369

Index X-11

extended environment 363
extended functions 379
extended graphic character set 509
Extended Recovery Facility 520
Extended Restart (XRST)

with Symbolic Checkpoint (CHKP
Symbolic) 39

Extended Restart (XRST) command
description 211
example 211
format 211
options 211
restrictions 211
usage 211

F
Fast Path

FSA 9
FEAT= operand (DEV statement),

specifying 424
FETCH statement

description 796
example 797

field edit exit routine
use 491

field edit routine
about 491
designing 492
DFSME000 491
using 492
using edit routines, IMS-supplied

segment edit routine 491
field format

input message 444
output message 447

field name
FSA 9

field names
qualified 627

field search argument (FSA)
connector 9
field name 9
Op code 9
operand 9
reference 9
status code 9

field tab
example 494

fields
changing the values of a

segment’s 196
fill characters

DPAGE
FILL= operand 474

input message fields
MFS treatment 493

output device fields
MFS treatment 507
specifying 474

FILL= operand
DPAGE statement, specifying 474
multiple physical pages, input

messages
specifying 474

Fill=NULL 490

FIN (Finance Communication System)
workstation

entering and exiting formatted
mode 481

FTABs 494
input modes 493
physical page positioning 474

Finance Communication System 481
FIRST insert rule 186
FIRST insert rule, L command code 219
FLD (Field) call

format 9
FSAs 9
parameters 9
summary 1
usage 9

FLD call function 246
FLDENTRY command object 300
FLDENTRYREL command object

(X'CC0C') 301
FLOAT

data type
description 621

floating-point
constants 626
double precision number 621

force format write option
(SCA/DSCA) 427

format library member selection 424
format set

IMS-provided format sets 543
format, message 480

input 480
device-dependent

considerations 444, 450
output 437
output device-dependent

considerations 446, 450
formats

ACCEPT command 166
CHKP (Checkpoint) command 166
DEQ (Dequeue) command 167
DLET (Delete) command 168
GN (Get Next) command 170
GNP (Get Next in Parent)

command 175
GU (Get Unique) command 181
ISRT (Insert) command 186
LOAD command 191
LOG command 192
POS (Position) command 193
QUERY command 194
REFRESH command 195
REPL (Replace) command 196
RETRIEVE command 200
ROLB (Rollback) command 201
ROLL command 202
ROLS (Rollback to SETS or SETU)

command 203
SCHD (Schedule) command 205
SETS (Set a Backout Point)

command 206
SETU (Set a Backout Point

Unconditionally) command 207
STAT (Statistics) command 208
SYMCHKP (Symbolic Checkpoint)

command 209

formats (continued)
TERM (Terminate) command 211
XRST (Extended Restart)

command 211
FORS= operand (DEV statement), use for

DPM 523
framing characters (SO/SI) 511
FROM clause

DELETE statement 790
PREPARE statement 805

FSA (field search argument)
connector 9
field name 9
Op code 9
operand 9
reference 9
status code 9

FTAB= operand (DEV statement)
ALL 494
ALL parameter 495
defining 494
description 494
FORCE 494
forced FTABs, FORCE parameter 494
MIX 494
mixed FTABs, MIX parameter 494
with NULL=DELETE specified 496

full format write 427
full-function database

PCBs and DL/I calls 235
segment release 223

function
aggregate

field name 627

G
GB (end of database), return status

code 216
GCMD call 97

description 97
format 97
parameters 97
restrictions 98
status codes 97
summary 82
usage 97

GCMD call function 246
GE (segment not found), return status

code 216
Get calls

D command code 216
F command code 218
function 246
L command code 219
Null command code 227
P command code 222
Q command code 223
U Command Code 225
V command code 226

Get Command (GCMD) call
See GCMD call 97

Get Hold Unique (GHU) description 19
Get Message (GMSG) call

description 42
format 42
parameters 42

X-12 Application Programming APIs

Get Message (GMSG) call (continued)
restrictions 42
See GMSG call 130

Get Next (GN) call
description 11
format 11

Get Next (GN) command
description 170
examples 170
format 170
options 171
restrictions 170
usage 170

get next call 98
Get Next in Parent (GNP) call

description 16
effect in parentage 16
format 16
hold form (GHNP) 16
parameters 16
SSA 16
usage 16

linking with previous DL/I
calls 16

processing with parentage 16
Get Next in Parent (GNP) command

description 175
examples 175
format 175
options 175
restrictions 175
usage 175

Get System Contents Directory (GSCD)
call

description 43
format 43
parameters 43
usage 43

get system contents directory call 132
Get Unique (GU) call

description 19
DL/I calls, database management

GHU call 19
format 19
hold form (GHU) 19
parameters 19
usage 19

Get Unique (GU) command
description 181
examples 181
format 181
Get Unique (GU) command

options 181
GU (Get Unique) command

options 181
options

GU (Get Unique) command 181
restrictions 181
usage 181

get unique call 99
Get Unique Record (GUR) call

description 21
format 21
parameters 21
usage 21

getting IMS database statistics 208

GHNP
call 16
hold form 16

GHU (Get Hold Unique), description 19
GMSG call 130

description 42, 130
format 42, 130
parameters 42, 130
restrictions 42, 130
usage 42
use 130

GN (Get Next) call
format 11
GN (Get Next) call

description 11
GN (Get Next) command

description 170
examples 170
format 170
options 171
restrictions 170
usage 170

GN call 98
description 98
format 98
parameters 98
restrictions 98
summary 82
usage 98

GNP (Get Next in Parent) call
effect in parentage 16
format 16
GNP (Get Next in Parent) call

description 16
hold form (GHNP) 16
parameters 16
SSA 16
usage 16

linking with previous DL/I
calls 16

processing with parentage 16
GNP (Get Next in Parent) command

description 175
examples 175
format 175
options 175
restrictions 175
usage 175

GO TO clause of WHENEVER
statement 820

GRAPHIC= operand (SEG statement)
use 504

GSAM (generalized sequential access
method)

PCBs and DL/I calls 235
GSCD (Get System Contents Directory)

call
format 43
GSCD (Get System Contents

Directory) call
description 43

parameters 43
usage 43

GSCD call
description 132
format 132
parameters 132

GSCD call (continued)
restrictions 132
summary 81
usage 132

GU (Get Unique) call
description 19
format 19
Get Unique (GU) call

restrictions 19
hold form (GHU) 19
parameters 19
restrictions 19
usage 19

GU (Get Unique) command
description 181
examples 181
format 181
restrictions 181
usage 181

GU call 99
description 99
format 99
parameters 99
restrictions 99
summary 82
usage 99

GUR (Get Unique Record) call
description 21
format 21
Get Unique Record (GUR) call

restrictions 21
parameters 21
restrictions 21
usage 21

H
HDRCTL= operand (DIV statement),

use 523
HERE insert rule 186

F command code 218
L command code 219

hexadecimal constant 626
hierarchic sequence 11
host identifier 618
host structure

description 629
host variable

colon 628
description 628
FETCH statement 797
input 628
naming convention 619
output 628
PREPARE statement 805

HTAB= operand (DEV statement)
use 521

I
I/O area

for XRST 160
in CHKP (symbolic) call 39
in GMSG call 42
in INIT call 46
in INQY call 54

Index X-13

I/O area (continued)
Initialize (INIT) call

usage 46
length in CHKP (symbolic) call 39
returned

keywords 29
map of 29

I/O area format, AUTH call 83
I/O PCB

PCBs and DL/I calls 235
ICAL call

description 101
format 101
parameters 101
restrictions 101
return and reason codes 101
summary 81
usage 101

ICMD call 135
commands that can be issued 45, 133
description 45, 46, 133
format 45, 133
parameters 45, 133
restrictions 45, 133
use 45, 133

identifier in SQL
ordinary 618

IGNORE (N or period (.)) statement 266
IMS database statistics, obtaining 208
IMS JDBC driversDatabaseMetaData

interface
methods supported 397

IMS JDBC driversDriverManager
interface

methods supported 401
IMS JDBC driversPreparedStatement

interface
methods supported 402

IMS JDBC driversResultSetMetaData
interface

methods supported 408
IMS JDBC driversStatement interface

methods supported 403
IMS TM

password 493
IMS Universal Database resource adapter

Common Client Interface (CCI) API
support 409

Connection
methods supported 409

ConnectionFactory
methods supported 410

ConnectionMetaData
methods supported 410

Interaction
methods supported 410

javax.resource.cci.ResultSetInfo
methods supported 411

LocalTransaction
methods supported 411

RecordFactory
methods supported 412

ResourceAdapterMetaData
methods supported 412

IMS Universal JCA/JDBC driver
driver support for JDBC 395

IMS Universal JDBC driver
driver support for JDBC 395
ResultSet object

supported field constants 404
IMS Universal JDBC driverClob interface

methods supported 395
IMS Universal JDBC driverDataSource

interface
methods supported 400

IMS Universal JDBC
driverParameterMetaData interface

methods supported 401
IMS-provided formats

/DISPLAY command format 544
DFS057I block error message

format 544
multisegment format 544
multisegment system message

format 544
output message default format 544
system message format 544

IMS.FORMAT
member selection 424

IMS.RESLIB 546
IMSCALL command 301

format 301
IMSCALLRM reply message 336

format 336
IMSQUERY extended function

arguments 379
usage 379

IMSRXTRC command 369, 370
IN

predicate 632
INAIB command object 302

format 302
INCLUDE statement

description 798
example 799
SQLIMSCA

COBOL 823
SQLIMSDA

COBOL 826
indicator variable

description 628
infinite loop, stopping 391
INIT (Initialize) call

automatic INIT DBQERY 46
call function 246
database availability, determining 46
enabling data availability, status

codes 46
enabling deadlock occurrence, status

codes 46
format 46
I/O PCB

in INIT call 46
INIT (Initialize) call

description 46
INIT STATUS GROUPA 46
INIT STATUS GROUPB 46
INIT STATUS RSA12 46
parameters 46
performance 46
restrictions 46
status codes 46

DB PCB, for 46

INIT (Initialize) call (continued)
usage 46
using with DBQUERY 46
VERSION function 46

INIT call
description 136
determining data availability 136
format 136
parameters 136
performance considerations 136
summary 81
usage 136

Initialize (INIT) call
automatic INIT DBQERY 46
database availability, determining 46
description 46
enabling data availability, status

codes 46
enabling deadlock occurrence, status

codes 46
format 46
INIT STATUS GROUPA 46
INIT STATUS GROUPB 46
INIT STATUS RSA12 46
parameters 46
performance 46
restrictions 46
status codes 46
using with DBQUERY 46
VERSION function 46

initialize call 136
input field tab (FTAB)

See FTAB= operand (DEV
statement) 494

input host variable 628
input message

field attribute data 492
fill characters 493
formatting options 482
IMS TM password 493
input modes 493
input substitution character 500
literal fields 491
MFS formatting of 482
nonliteral fields 492
with multiple physical pages 499,

534
input message field

defining 493
record mode 493
stream mode 493

input message format
device-dependent information 444,

450
field and segment format 444
formatting options, examples 482

input modes
record mode

description 493
process of record in 501
treatment of nulls 496
with ISC 501

stream mode
description 493
process of record in 501
treatment of nulls 496
with ISC 501

X-14 Application Programming APIs

inquiry call 139
INQY (Inquiry) call

format 54
INQY (Inquiry) call

description 54
map of INQY subfunction to PCB

type 54
parameters 54
querying

data availability 54
environment 54
PCB 54
program name 54

restriction 54
return and reason codes 54
usage 54

INQY call
description 139
format 139
querying

LERUNOPT, using LERUNOPT
subfunction 54

summary 81
INQY call function 246
INQY DBQUERY 54
INQY ENVIRON, data output 54
INQY FIND 54
INQY PROGRAM 54
Insert (ISRT) command

description 186
examples 186
format 186
insert rules 186
options 186
restrictions 186
usage 186

insert call 113
insert rule 801
INSERT statement

description 799
inserting

declaration in a program 798
first occurrence of a segment 218
last occurrence 219
rows in a table 799
segments 27

inserting a segment
as first occurrence 218
as last occurrence 219
in sequence 216
path of segments 216
root 25
rules to obey 25
specifying rules 25

INTEGER
data type

large 621
small 621

integer constants 626
interactive SQL 616
intersystem communication 480
INTO clause

DESCRIBE statement 791
FETCH statement 797
INSERT statement 800

INTO DESCRIPTOR clause
FETCH statement 797

iopcbStream data structure 354
format 354

ISC (intersystem communication)
ATTACH FM header 465, 527
blocking algorithms 527
entering and exiting formatted

modes 480
increasing performance 439
input format control

input modes 500
MFS definitions 442
output format control

data structure name 533
for paging messages 527
trailing blank compression 529

output modes 527
subsystem definition 480
use of DPN field 424, 480
use of RDPN field 424, 480

ISRT (Insert) call
D command code 216
F command code 218
format 25
ISRT (Insert) call

description 25
L command code 219
loading a database 219
parameters 25
RULES parameter 218
SSA 25

ISRT (Insert) command
description 186
examples 186
format 186
insert rules 186
options 186
restrictions 186
usage 186

ISRT call 113
description 113
format 113
parameters 113
restrictions 113
Spool API functions 113
summary 82
usage 113

ISRT call function 246
Issue Command (ICMD) call

See ICMD call 45, 133
issuing

a basic checkpoint 166
an extended restart 211

IVPREXX exec 391
IVPREXX sample application 391

J
Java API specification

for IMS Universal drivers 413
Java reference

for IMS solutions for Java
development 395

JCL (job control language),
requirements 274, 276

JDBC
methods supported

Connection 396

justification
of input messages 482

K
keyboard shortcuts x
keys

concatenated 215
keyword, SYSSERVE 163

L
L (CALL) statement 238
LAST insert rule 186
last inserted sequential dependent

segment, retrieving the location of
the 193

legal notices
notices 829
trademarks 829, 831

length attribute of column 622
length field 484
letter, description in IMS 617
limiting

number of full-function database
calls 223

literal 626
literal fields

input message, default literals 491
output message

system literals 509
LOAD command

description 191
example 191
format 191
options 191
usage 191

location of a dependent segment,
retrieving the 193

lock
during update 819

lock class and Q command code 223
LOCKCLASS option 167
LOG (Log) call

format 63
LOG (Log) call

description 63
parameters 63
restrictions 63
usage 63

LOG call 150
description 150
examples 150
format 150
on LOG I/O area 150
parameters 150
restrictions 150
restrictions on I/O area 150
summary 81
usage 150

LOG call function 246
LOG command

example 192
format 192
LOG command

description 192

Index X-15

LOG command (continued)
options 192
restrictions 192
usage 192

logical operator 633
logical page advance request 534
logical page request 533
logical page. See LPAGELPAGE

input 490
logical unit of work, ending 166, 209
lowercase character folded to

uppercase 617
LPAGE

input, conditional LPAGE
selection 474

output
format 447

overview 490

M
M command code

examples 230
subset pointers, moving forward 230

MAP definition (MAPDEF) 369, 371
map name 373
MAP reading (MAPGET) 369, 373
MAP writing (MAPPUT) 369, 374
MAPGET 373
mapping

MAPDEF 371
MAPGET 373
MAPPUT 374

MAXQ and Q command code 223
MDT (modified data tag) 520
message advance protect 534
message advance request 534
message calls

call summary 81
Message Format Buffer Pool 427
Message Format Service (MFS)

3270 or SLU 2 display devices 423,
438

control blocks
Finance or SLU P

workstations 424
output messages

format control for 3270P
printers 523

MFS bypass for SLU 2 (3290) 464
specifying descriptor name 461

paging action at device 536
programmed symbol buffers

determining if loaded 440
message formatting options

input
description 482
examples 482
performance factors 437

output
description 504
effects on segments 447
performance factors 437

MFLD (message field statement) 482
FILL=NULL 490
function 482

MFS (Message Format Service)
control blocks

Finance or SLU P
workstations 424

how input messages are formatted by
MFS 482

input message
formats 482

output message
field format options 449
format control for ISC 529
formatting 504
modifying EGCS data 459
processing output message 503

MFS bypass
printer byte restriction 462
protected and unprotected

messages 540
specifying for 3270 or SLU 2 462
specifying for 3290 with

partitioning 463
MFS Device Characteristics table

(DFSUDT0x), description 546
MFS language utility

construction of member names 424
treatment of EGCS input/output 511

MID (message input descriptor)
input formatting functions 482
relationship to other control

blocks 417
MOD (message output descriptor)

associated MFS functions 504
name specification 460
relationship to other control

blocks 417
modified data tag (MDT) 520
MONITORRD command

format 303
MSDB (main storage database)

PCBs and DL/I calls 235
MULT= operand (DPAGE statement),

specifying 474
multiple physical pages, input messages

description 499
terminating (ENDMPPI request) 534

multisegment format 544

N
N command code 220
NA 46
NAME parameter

ALTER DATABASE statement 645
CREATE DATABASE statement 699

names, prepared SQL statements 789
naming convention

SQL 618
NEXTLP request

description 534
operator control table function 533

NEXTMSG request
description 534

NEXTMSGP request
description 534

NEXTPP request 534
use 534

nonexecutable statement 635, 636

nonliteral input fields
defining 492

NOT FOUND clause of WHENEVER
statement 820

NU 46
null

coding in COBOL 447
compression

example 484
specifying 465

deleting on input (DPM) 496
fill character

input message fields 482
output device fields 507

segment, output 447
transmitting to IMS TM 496
truncating fields with 504

Null command code 227
null value

assignment 623
description 621
specified by indicator variable 628

NULL= operand (DIV statement)
example 496
options 496
specifying 465

numbers in SQL 621
numeric

data type 621
NUMERIC data type

description 622

O
O (OPTION) Statement 267
obtaining

IMS database statistics 208
recent information from the DIB 195
status code 194

OFTAB= operand (DIV statement),
specifying 465

OFTAB= operand (DPAGE statement),
specifying 474

OID 520
online performance 437
op code 9
OPEN

statement
description 802
example 804

OPEN (Open) call
format 29
OPEN (Open) call

description 29
usage 29

Open Transaction Manager Access
Callable Interface (C/I) 551

otma_alloc API 557
otma_close API 566
otma_create API 553
otma_free API 566
otma_open API 554
otma_openx API 556
otma_receive_async API 564
otma_send_async API 562
otma_send_receive API 559
otma_send_receivex API 561

X-16 Application Programming APIs

Open Transaction Manager Access
(continued)

Callable Interface (C/I) (continued)
sample programs 567

CHNG call 88
PURG call 116
SETO call 118

operand
FSA 9

operation parameter, SNAP external
call 72

operator control of MFS 533
operator control tables

functions
ENDMPPI request 534
NEXTLP request 534
NEXTMSG request 534
NEXTMSGP request 534
NEXTPP request 534

operator logical paging
description 505, 533
format design considerations 533
in partitioned format mode, 3180 543
in partitioned format mode, 3290 541
transaction codes and page

requests 533
OPNQFLRM reply message 337

format 337
OPNQRY command 304

format 304
OPNQRYRM reply message 338

format 338
OPTION statement 267
options

ACCEPT command 166
CHKP (Checkpoint) command 166
DEQ (Dequeue) command 167
DLET (Delete) command 168
GN (Get Next) command 171
GNP (Get Next in Parent)

command 175
ISRT (Insert) command 186
LOAD command 191
LOCKCLASS 167
LOG command 192
POS (Position) command 193
QUERY command 194
REFRESH command 195
REPL (Replace) command 196
RETRIEVE command 200
ROLB (Rollback) command 201
ROLL command 202
ROLS (Rollback to SETS or SETU)

command 203
SCHD (Schedule) command 205
SETS (Set a Backout Point)

command 206
SETU (Set a Backout Point

Unconditionally) command 207
STAT (Statistics) command 208
SYMCHKP (Symbolic Checkpoint)

command 209
TERM (Terminate) command 211
XRST (Extended Restart)

command 211
options list parameter 88

CHNG call 88

options list parameter (continued)
advanced print function 88
APPC 92

SETO call 118
advanced print function 118
APPC 118

OPTIONS= operand (DIV statement)
effects on performance 439
specifying 465
use 523
use with ISC 527

OR truth table 633
ordinary identifier in SQL 618
ORIGIN= operand (DPAGE statement),

specifying 474
OTMA C/I

hints and tips 551
OTMA C/Iwarranty

sample programs 567
otma_alloc API 557
otma_close API 566
otma_create API 553
otma_free API 566
otma_open API 554
otma_openx API 556
otma_receive_async API 564
otma_send_async API 562
otma_send_receive API 559
otma_send_receivex API 561
OUTAIBDBPCB parameter 355
OUTAIBIOPCB parameter 356

format 356
output device fields

dynamic modification 450
for cursor positioning 450

output host variable 628
output message 480

cursor positioning 518
default system control area 508
device field attributes 509
extended field attributes for

devices 509
extended graphic character set

(EGCS) 511
fill characters for device fields 507
formatting options 504

description 504
header 480
how MFS formats messages 504
literal fields 509
mixed DBCS/EBCDIC fields 512
operator logical paging 505
physical paging 506
processing 503
prompt facility 519
system control area (SCA) 508
truncation 504

output message format
default 544
device-dependent information 446,

450
overriding

FIRST insert rule 219
HERE insert rule 218, 219
insert rules 25

P
P command code 222
P processing option 216
page advance request 534
PAGE= operand (DEV statement)

use 520
PAGEREQ function 533
paging, operator logical

description 533
format design considerations 533
in partitioned format mode, 3180 543
in partitioned format mode, 3290 541
transaction codes and page

requests 533
PAGINGOP= operand (PDB statement),

use 541
parameter marker

description 805
EXECUTE statement 795
host variables in dynamic SQL 629
PREPARE statement 805
rules 805

parameters
BKO execution 201
CHKPT=EOV 167
RULES 186

parentage, P command code 222
PART exec 384
partition

activating 518
considerations for defining 429
defining 423
descriptor (PD) 423
descriptor block (PDB) 423
initialization options

for the 3180 543
for the 3290 541

uses 429
partition set, description 423
PARTNAME exec 386
PARTNUM exec 385
password, IMS

description 493
path call 216

D command code 216
path command 196
PCB (program communication block)

DL/I calls, relationship 235
DLIINFO call 369

PCB (schedule a PSB) call
format 65
parameters 65
PCB (schedule a PSB) call

description 65
usage 65

PCBINFO exec 383
PCHSEGTS 31
PCLBSGTS 31
PCSEGRTS 31
PD statement (partition definition)

use 423
PD= operand (DPAGE statement),

specifying 474
PDB (partition descriptor block)

function 423
language statements used to create

PD 423

Index X-17

PDB (partition descriptor block)
(continued)

PAGINGOP= operand 541
performance factors

3270 or SLU 2 437
all devices 437
large screen 3270 or SLU 2

devices 438
period usage 366
physical page positioning (FIN) 474
physical paging

description 506
specifying multiple input pages 474

PL/I segmentation APIs
DFSPWSH include files 593
DFSQGETS 593
DFSQGETS API 602
DFSQSETS 593
DFSQSETS API 604
DFSXGETS 593
DFSXGETS API 607
DFSXSETS 593
DFSXSETS API 609
overview 593
return codes 612

POS (Position) call
examples 29
format 29
I/O area 29
parameters 29
POS (Position) call

description 29
unqualified

keywords 29
usage 29

POS (Position) command
EXEC DLI command format 193
format 193
options 193
POS (Position) command

description 193
restriction 193
usage 193

POS call function 246
position

establishing in database 19
Position (POS) command

description 193
EXEC DLI command format 193
format 193
options 193
restriction 193
usage 193

position in the database, determining the
current 200

precision of numbers
description 621
determined by SQLIMSLEN

variable 825
values for data types 621

predicate
basic 630
BETWEEN 631
description 629
IN 632

PREINIT parameter, input restart 274

PREPARE statement
description 804
example 806

prepared SQL statement
dynamically prepared by

PREPARE 804
executing 795
identifying by DECLARE 789
obtaining information

with DESCRIBE 791
SQLIMSDA provides

information 823
preset destination mode 480
print mode 520
printed page format control

bottom margin 521
horizontal tabbing 521
left margin position 521
line density 521
line width 521
page depth 521
top margin 521
vertical tabbing 521

PRN= operand (DIV statement),
specifying 465

processing
options

P (path) 216
program deadlock 46
program function keys (3270)

literals for master terminal
format 545

program tab function
3270 or SLU 2 507
fill character 427

programmed symbol
buffers 440
feature 509
solving problems 441

programmed symbols (PS)
buffers

determining if loaded 440
loading 440

prompt facility for output messages 519
protecting the screen

PROTECT option 540
PRPSQLSTT command

format 308
PSB (program specification block)

in a CICS online program
scheduling a 205
terminating a 211

PSSEGHWM 31
PT (program tab) function

3270 or SLU 2 507
fill character 427

PUNCH statement 268
PURG call 116

and OTMA environment 116
description 116
format 116
parameters 116
restrictions 116
Spool API 116
summary 82
usage 116

PURG call function 246

purge call 116

Q
Q command code

and the DEQ call 223
example 223
full function and segment

release 223
lock class 223
MAXQ 223

QRYDSC reply object 339
format 339

QRYDTA reply object 340
format 340

QRYPOPRM reply message 341
format 341

qualified field names 627
QUERY command

example 194
format 194
options 194
QUERY command

description 194
restrictions 194
usage 194

question mark (?) 795

R
R command code 231
RCDCTL= operand (DIV statement)

specifying 465
use 523

RCMD call 152
description 66, 152
format 66, 152
parameters 66, 152
restrictions 66, 152
use 66, 152

RDBAFLRM reply message 342
format 342

RDBATHRM reply message 343
format 343

RDBNACRM reply message 344
format 344

RDBNAM parameter 357
format 357

RDBNFNRM reply message 345
format 345

RDBUPDRM reply message 346
format 346

RDPN (return destination process name)
specifying in MFLD statement 465
use on Finance or SLU P

workstations 424
use with ISC subsystem

communication 480
RDPN= operand (DIV statement),

specifying 465
record mode

description 493
input example 498
process of record in 501
treatment of nulls 496
with ISC 501

X-18 Application Programming APIs

REFRESH command
example 195
format 195
options 195
REFRESH command

description 195
restrictions 195
usage 195

releasing
a segment 167

removing a segment and its
dependents 168

REPL (Replace) call
format 32
N command code 220
parameters 32
REPL (Replace) call

description 32
SSAs 32
usage 32

REPL (Replace) command
examples 196
format 196
REPL (Replace) command

description 196
restrictions 196
usage 196

REPL call function 246
Replace (REPL) command

description 196
examples 196
format 196
options 196
REPL (Replace) command

options 196
restrictions 196
usage 196

replacing a segment 196
requesting a catalog record

using GUR 21
requesting a segment

using GU 19
resetting a subpointer 232
restart call 160
Restart, Extended

position in database 77
Restart, Extended (XRST)

description 77
with Symbolic Checkpoint (CHKP

Symbolic) 39
restarting your program

XRST call 160
restrictions

CHKP (Checkpoint) command 166
DEQ (Dequeue) command 167
DLET (Delete) command 168
F command code 218
GN (Get Next) command 170
GNP (Get Next in Parent)

command 175
GU (Get Unique) command 181
ISRT (Insert) command 186
LOG command 192
number of database calls and Fast

Path 223
POS (Position) command 193
QUERY command 194

restrictions (continued)
REFRESH command 195
REPL (Replace) command 196
RETRIEVE command 200
ROLB (Rollback) command 201
ROLL command 202
ROLS (Rollback to SETS or SETU)

command 203
SETS (Set a Backout Point)

command 206
SETU (Set a Backout Point

Unconditionally) command 207
SYMCHKP (Symbolic Checkpoint)

command 209
XRST (Extended Restart)

command 211
retrieval calls

D command code 216
F command code 218
L command code 219

RETRIEVE command
example 200
format 200
options 200
restrictions 200
RETRIEVE command

description 200
usage 200

Retrieve Command (RCMD) call
See RCMD call 66, 152

retrieving
dependent segments sequentially 175
dependents sequentially 16
first occurrence of a segment 218
last occurrence 219
segments

Q command code, Fast Path 223
Q command code, full

function 223
sequentially 216

segments sequentially 170
segments with D 216
specific segments 181
the location of a dependent

segment 193
the location of the last inserted

sequential dependent segment 193
returning a status code 166
REXX

. (period) usage 366
calls

return codes 364
summary 364
syntax 364

commands
DL/I calls 363
summary 363

DL/I calls, example 364
execs

DOCMD 387
IVPREXX 391
PART 384
PARTNAME 386
PARTNUM 385
PCBINFO 383
SAY 382

IMSRXTRC, trace output 370

REXX (continued)
issuing synchronous callout requests

default output area length 364
ICAL 364
input area 364
output area 364

REXX, IMS adapter
. (period) usage 369
address environment 361
AIB, specifying 364
description 359
DFSREXX0 program 359, 391
DFSREXX1 359
DFSREXXU user exit 359
DFSRRC00 391
diagram 360
DL/I parameters 364
environment 364
example execs 381
feedback processing 364
I/O area 364
installation 359
IVPREXX exec 391
IVPREXX PSB 361
IVPREXX setup 361
LLZZ processing 364
LNKED requirements 359
non-TSO/E 359
PCB, specifying 364
programs 359
PSB requirements 359
sample generation 361
sample JCL 361
SPA processing 364
SRRBACK 359
SRRCMIT 359
SSA, specifying 364
SYSEXEC DD 359, 361
system environment 359, 361
SYSTSIN DD 361
SYSTSPRT DD 359, 361
TSO environment 359
TSO/E restrictions 359
ZZ processing 364

REXXIMS commands 371, 373, 379
DLIINFO 369
IMSRXTRC 369, 370
MAPDEF 369
MAPGET 369
MAPPUT 369, 374
SET 369, 375
SRRBACK 369, 376
SRRCMIT 369, 376
STORAGE 369, 377
WTL 369, 378
WTO 369, 378
WTOR 369, 379
WTP 369, 378

REXXTDLI commands 363
RLSE (Release locks) call

summary 1
RLSE (Release Locks) call

format 34
parameters 34
RLSE (Release Locks) call

description 34
SSAs 34

Index X-19

RLSE (Release Locks) call (continued)
usage 34

RLSE command 311
RLSERM reply message 347

format 347
RMODE 24, AMODE 31, running user

modules in 491
ROLB (Roll Back) call

ROLB (Roll Back) call
description 67

ROLB (Rollback) command
example 201
format 201
options 201
restrictions 201
ROLB (Rollback) command

description 201
usage 201

ROLB call 154
description 154
format 154
parameters 154
restrictions 154
summary 81
usage 154

ROLB call function 246
ROLL (Roll) call

DL/I calls, system service
ROLL 68

ROLL (Roll) call
description 68
format 68

roll back to SETS/SETU call 156
ROLL call 155

description 155
format 155
parameters 155
restrictions 155
summary 81
usage 155

ROLL call function 246
ROLL command

example 202
format 202
options 202
restrictions 202
ROLL command

description 202
usage 202

Rollback (ROLB) command
description 201
example 201
format 201
options 201
restrictions 201
usage 201

rollback call 154
Rollback to SETS or SETU (ROLS)

command
description 203
examples 203
format 203
options 203
restrictions 203
usage 203

ROLS (Roll Back to SETS) call
format 68

ROLS (Roll Back to SETS) call (continued)
parameters 68
ROLS (Roll Back to SETS) call

description 68
ROLS (Rollback to SETS or SETU)

command
DB PCB

specifying 203
examples 203
format 203
options 203
restrictions 203
ROLS (Rollback to SETS or SETU)

command
description 203

specifying the DB PCB 203
usage 203

ROLS call 156
description 156
format 156
parameters 156
restrictions 156
Spool API functions 158
summary 81
usage 156

ROLS call function 246
ROLX call function 246
row

deleting 790
inserting 799

row-value expression 629
RPRN (return primary resource

name) 465
RPRN= operand (DIV statement),

specifying 465
RSCLMTRM reply message 348

format 348
RTRVFLD command object 312

format 312
RTRVFLDREL Command object

(X'CC0B') 312
RULES parameter 186

FIRST, L command code 219
HERE

F command code 218
L command code 219

RULES= 186

S
S (STATUS) statement 270
S command code

examples 232
subpointer, resetting 232

sample
code

asynchronous processing 579
synchronous processing 567

sample JCL 274
sampleswarranty

OTMA C/I 567
SAY exec 382
SCA (system control area) 508

description 508
device-dependent information 450
specifying 450
use 540

scale of numbers
description 622

SCHD (Schedule) command
example 205
format 205
options 205
SCHD (Schedule) command

description 205
usage 205

Schedule (SCHD) command
description 205
example 205
format 205
options 205
usage 205

scheduling a PSB in a CICS online
program 205

screen formatting
3180 431
3270 or SLU 2

erase all unprotected option 427
force format write option 427

3290
logical units 429
partitions 429

SCS1 devices
DEV statement 465

search condition
description 633
order of evaluation 633

SECCHK command 313
format 313

SECCHKRM reply message 349
format 349

segment
adding one sequentially 191
adding to a database 186
and its dependents, removing 168
releasing a 167
replacing 196
requesting using GU 19
retrieving sequentially 170
retrieving specific 181
sequential dependent

retrieving the location of the last
one inserted 193

segment edit routine
use 491

segment format, output message 447
restriction 447

SEGMLIST Command object
(X'CC0A') 314

SELECT statement
description 806
dynamic invocation 637

SELECT= operand (DPAGE statement),
specifying 474

sequence
hierarchy 11

sequence, indication for statements 274
sequential dependent segments

retrieving the location of the last one
inserted 193

sequentially retrieving
dependent segments 175
segments 170

X-20 Application Programming APIs

Set a Backout Point (SETS) command
description 206
example 206
format 206
options 206
restrictions 206
usage 206

Set a Backout Point Unconditionally
(SETU) command

description 207
formats 207
options 207
restrictions 207
usage 207

set backout point call 158
set backout point unconditional call 158
SET clause of UPDATE statement 818
SET command (REXX) 369, 375
set options call 118
SET SUBFUNC command (REXX) 375
SET ZZ 375
SETO call 118

and OTMA environment 118
description 118
format 118
parameters 118
restrictions 118
summary 81
usage 118

SETO call function 246
SETS (Set a Backout Point) call

format 70
parameters 70
SETS (Set a Backout Point) call

description 70
SETS (Set a Backout Point) command

example 206
format 206
options 206
restrictions 206
SETS (Set a Backout Point) command

description 206
usage 206

SETS call 158
description 158
format 158
parameters 158
restrictions 158
Spool API functions 158
summary 81
usage 158

SETS call function 246
setting

parentage with the P command
code 222

subset pointer to zero 234
setting a backout point

DL/I 206
unconditionally 207

SETU (Set a Backout Point Unconditional)
call

description 70
format 70
parameters 70

SETU (Set a Backout Point
Unconditionally) command

example 207

SETU (Set a Backout Point
Unconditionally) command (continued)

examples
SETU (Set a Backout Point

Unconditionally) command 207
formats 207
options 207
restrictions 207
Set a Backout Point Unconditionally

(SETU) command
example 207

SETU (Set a Backout Point
Unconditionally) command

description 207
usage 207

SETU call 158
description 158
restrictions 158
Spool API functions 158
summary 81

shift in (SI) control character 512
shift in (SI) framing character 511
shift out (SO) control character 512
shift out (SO) framing character 511
short string column 622
SKIP call function 258
SLDx= operand (DEV statement),

use 521
SLU type 2

default literal input message
fields 491

defining IMS TM password 493
SNAP call

format 71
parameters 71
SNAP call

description 71
status codes 71

SNAP call function 246
SO/SI control characters

blank suppress option 512
hex representation 512
pair verification 512
processing by MFS 512
use in mixed data field 512

SO/SI framing characters 511
space character 617
special character 617
specific segments, retrieving 181
Spool API

functions 113
ISRT call 113
STORAGE command example 377

SQL (Structured Query Language)
assignment operation 623
character 617
comparison operation 623
constants 626
data types

character strings 622
datetime 622
description 619
numbers 621

dynamic 616
identifier 618
interactive 616
naming conventions 618

SQL (Structured Query Language)
(continued)

null value 621
ordinary identifier 617
static 615, 616
token 617
value 619
variable names 618

SQL statements
ALTER DATABASE

description 638
ALTER TABLE

description 652
ALTER TABLESPACE

description 684
CLOSE 690
COMMENT ON

description 691
CONTINUE 820
CREATE DATABASE

description 694
CREATE PROGRAMVIEW

description 708
CREATE TABLE

description 726
CREATE TABLESPACE

description 773
DECLARE CURSOR

description 788
example 788

DECLARE STATEMENT 789
DELETE

description 790
example 790

DESCRIBE OUTPUT 791
DROP DATABASE

description 792
DROP PROGRAMVIEW

description 793
DROP TABLE

description 793
DROP TABLESPACE

description 794
EXECUTE 795
FETCH

description 796
example 797

INCLUDE
description 798
example 799
SQLIMSCA 823
SQLIMSDA 826

INSERT
description 799

invocation 635
OPEN

description 802
example 804

operational form 615
PREPARE 804
SELECT 806
UPDATE

description 817
example 819

WHENEVER 820
SQLATTR command

format 315

Index X-21

SQLCARD command
format 316

SQLCODE
+100 803

SQLDARD command
format 318

SQLDTA command
format 322

SQLERROR
clause of WHENEVER statement 820

SQLERRRM reply message 350
format 350

SQLIMSCA (SQL communication area)
contents 821
entry changed by UPDATE 819
INCLUDE statement 798

SQLIMSCABC field of SQLIMSCA 821
SQLIMSCAID field of SQLIMSCA 821
SQLIMSCODE

+100 637, 820
description 637
field of SQLIMSCA 821

SQLIMSD field of SQLIMSDA 824
SQLIMSDA

header 824
SQLIMSDA (SQL descriptor area)

clause of INCLUDE statement 798
contents 823, 824

SQLIMSDABC field of SQLIMSDA 824
SQLIMSDAID field of SQLIMSDA 824
SQLIMSDATA field of SQLIMSDA 825
SQLIMSERRD(n) field of

SQLIMSCA 821
SQLIMSERRM

description 638
SQLIMSERRMC field of SQLIMSCA 821
SQLIMSERRML field of SQLIMSCA 821
SQLIMSERRP field of SQLIMSCA 821
SQLIMSIND field of SQLIMSDA 825
SQLIMSLEN field of SQLIMSDA 825
SQLIMSN field of SQLIMSDA

description 824
SQLIMSNAME field of SQLIMSDA 825
SQLIMSSTATE

'02000' 820
description 637
field of SQLIMSCA 821

SQLIMSTYPE field of SQLIMSDA
description 825
values 825

SQLIMSWARNn field of
SQLIMSCA 821

SQLSTATE
'02000' 803

SQLSTT command
format 324

SQLWARNING clause
WHENEVER statement 820

SRRBACK command (REXX)
description 369
format, usage 376

SRRCMIT command (REXX)
description 369
format, usage 376

SSA parameter 357
SSACOUNT parameter 358
SSALIST command object 325

SSALIST command object (continued)
format 325

SSAs (segment search arguments)
GN 11
usage 8

DLET 8
GNP 16
ISRT 25
REPL 32
RLSE 34

STACK statement (language utility) 433
STAK call function 258
standard, SQL (ANSI/ISO)

SQL-style comments 617
START call function 258
starting position in a database,

establishing a 181
STAT (Statistics) call

format 74
parameters 74
STAT (Statistics) call

description 74
usage 74

STAT (Statistics) command
example 208
format 208
options 208
STAT (Statistics) command

description 208
usage 208

STAT call function 246
statement

naming convention 619
STATEMENT clause of DECLARE

STATEMENT statement 789
static SQL 616

description 635
Statistics (STAT) command

description 208
example 208
format 208
options 208
usage 208

statistics, obtaining IMS database 208
status code

GE (segment not found) 216
status codes

GB, end of database 216
obtaining 194
returning a 166

STATUS statement 270
storage

!token 377
STORAGE command 377

STORAGE command (REXX)
description 369
format, usage 377

stream mode
description 493
input example 499
process of record in 501
treatment of nulls 496
with ISC 501

string
character 622
comparison 625
constant 626

string (continued)
fixed-length

description 622
short 622

structured query language (SQL)
result tables 615

SUB= operand (DEV statement)
use 500

subset pointers
M command 230
R command code 231
resetting 232
S command code 232
sample application 227
Z command code 234

substitution character 500
Summary

database management call 1
system service calls 35

summary, EXEC DLI commands 164
Symbolic Checkpoint (CHKP

Symbolic) 39
format 39
parameters 39
restrictions 39
usage 39

Symbolic Checkpoint (SYMCHKP)
command

description 209
example 209
format 209
options 209
restrictions 209
usage 209

symbolic checkpoint call 128
Symbolic CHKP call

description 128
format 128
parameters 128
restrictions 128
summary 81
usage 128

SYMCHKP (Symbolic Checkpoint)
command

current position 209
example 209
format 209
options 209
restrictions 209
SYMCHKP (Symbolic Checkpoint)

command
description 209

usage 209
SYNC (Synchronization Point) call

format 76
parameters 76
SYNC (Synchronization Point) call

description 76
usage 76

SYNC call
description 160
format 160
parameters 160
restrictions 160
summary 81
usage 160

SYNC call function 246

X-22 Application Programming APIs

synchronization call 160
syntax diagram

how to read viii
syntax of EXEC DLI commands 163
SYSIN input 274
SYSIN2 input processing 274
SYSSERVE keyword 163
system contents directory 132
system control area 508
system definition

3270 master terminal format
support 545

considerations, with MFS 523
system literals

description 509
system log, writing information to

the 192
system message format,

IMS-provided 544
system service

ACCEPT 166
CHKP (Checkpoint) 166
command summary 163
DEQ (Dequeue) 167
LOAD 191
LOG 192
QUERY 194
REFRESH 195
ROLB (Rollback) 201
ROLL 202
ROLS (Rollback to SETS or

SETU) 203
SETS (Set a Backout Point) 206
SETU (Set a Backout Point

Unconditionally) 207
STAT (Statistics) 208
SYMCHKP (Symbolic

Checkpoint) 209
XRST (Extended Restart) 211

system service calls
APSB (Allocate PSB) 37
CHKP (Basic) 38
CHKP (Symbolic) 39
DPSB (deallocate) 41
GMSG (Get Message) 42
ICMD (Issue Command) 45
INIT (Initialize) 46
INQY (Inquiry) 54
LOG (Log) 63
PCB (schedule a PSB) 65
RCMD (Retrieve Command) 66
ROLB (Roll Back) 67
SETS/SETU (Set a Backout Point) 70
SNAP 71
STAT (Statistics) 74
SYNC (Synchronization Point) 76
TERM (Terminate) 77
XRST (Extended Restart) 77

T
T (Comment) statement 259
tabbing

control characters 521
field tabs 494
horizontal 521
vertical 521

table
naming convention 619
result table 803

TERM (Terminate) call
format 77
TERM (Terminate) call

description 77
usage 77

TERM (Terminate) command
example 211
format 211
options 211
TERM (Terminate) command

description 211
usage 211

Terminate (TERM) command
description 211
example 211
format 211
options 211
usage 211

terminating a PSB in a CICS online
program 211

test program 236
time

data type 623
TIME

data type
description 623

timestamp
data type 623

TIMESTAMP
data type

description 623
trademarks 829, 831
trailing blank compression 529
transaction code 533
translation, character

for input messages
using XX'3F' 500

for output messages
device control characters 504

SUB= operand (DEV statement) 500
transmission chains 527
truncation

of input messages 482
of output fields 504

TSO/E REXX 359
TYPE= operand (DEV statement),

specifying 424
TYPE= operand (DIV statement)

specifying 465

U
U (Comment) statement 259
U Command Code 225
unconditionally setting a backout

point 207
unit of work (UOW)

ending a logical 166
unprotecting the screen

UNPROTECT option 540
unqualified POS call

I/O returned area
key words 29
map of 29

unqualified POS call (continued)
keywords 29

UNSTACK statement (language
utility) 433

UOW (unit of work)
ending a logical 166

UPDATE
statement

description 817
example 819

update rule 819
updating

rows in a table 817
UPDCNT parameter 358
usage

ACCEPT command 166
CHKP (Checkpoint) command 166
DEQ (Dequeue) command 167
GN (Get Next) command 170
GNP (Get Next in Parent)

command 175
GU (Get Unique) command 181
ISRT (Insert) command 186
LOAD command 191
LOG command 192
POS (Position) command 193
QUERY command 194
REFRESH command 195
REPL (Replace) command 196
RETRIEVE command 200
ROLB (Rollback) command 201
ROLL command 202
ROLS (Rollback to SETS or SETU)

command 203
SCHD (Schedule) command 205
SETS (Set a Backout Point)

command 206
SETU (Set a Backout Point

Unconditionally) command 207
STAT (Statistics) command 208
SYMCHKP (Symbolic Checkpoint)

command 209
TERM (Terminate) command 211
XRST (Extended Restart)

command 211
USING clause

EXECUTE statement 795
OPEN statement 803

V
V command code 226
V5SEGRBA 31
value

SQL 619
VALUES clause

INSERT statement 801
variable

description 628
host

referencing 628
SQL syntax 628

referencing 628
SQL syntax 628
substitution for parameter

markers 795

Index X-23

VERSION
function of INIT call 46

version identification
description 533
for DPM formats 548
for SLU P 481

VSAM, STAT call 75
VT= operand (DEV statement)

use 521
VTAB= operand (DEV statement)

use 521

W
W command code

examples 233
WAITAOI 42
WHENEVER statement

description 820
example 821

WIDTH= operand (DEV statement)
use 521

writing information to the system
log 192

WTL command (REXX)
description 369
format, usage 378

WTO command (REXX)
description 369
format, usage 378

WTO statement 273
WTOR command (REXX)

description 369
format, usage 379

WTOR statement 274
WTP command (REXX)

description 369
format, usage 378

X
XRF (Extended Recovery Facility)

message format after takeover 520
XRST (Extended Restart) 39
XRST (Extended Restart) call

XRST (Extended Restart) call
description 77

XRST (Extended Restart) command
example 211
format 211
options 211
restrictions 211
usage 211
XRST (Extended Restart) command

description 211
XRST call 160

description 160
format 160
parameters 160
restrictions 160
summary 81
usage 160

XRST call function 246

Z
Z command code

examples 234
setting a subpointer to zero 234

z/OS environment 361

X-24 Application Programming APIs

IBM®

Product Number: 5635-A05
5655-DSE
5655-TM3

Printed in USA

SC19-4209-03

Sp
in
e
in
fo
rm
at
io
n:

IM
S

Ve
rs

io
n

14
Ap

pl
ic

at
io

n
Pr

og
ra

m
m

in
g

AP
Is

I
B

M

	Contents
	About this information
	Prerequisite knowledge
	How new and changed information is identified
	How to read syntax diagrams
	Accessibility features for IMS 14
	How to send your comments

	Chapter 1. DL/I calls reference
	Database management
	DL/I calls for database management
	Database management call summary
	CIMS call
	CLSE call
	DEQ call
	DLET call
	FLD call
	GN/GHN call
	GNP/GHNP call
	GU/GHU call
	GUR call
	ISRT call
	OPEN call
	POS call
	REPL call
	RLSE call

	DL/I calls for IMS DB system services
	System service call summary
	APSB call
	CHKP (basic) call
	CHKP (symbolic) call
	DPSB call
	GMSG call
	GSCD call
	ICMD call
	INIT call
	INQY call
	LOG call
	PCB call (CICS online programs only)
	RCMD call
	ROLB call
	ROLL call
	ROLS call
	SETS/SETU call
	SNAP call
	STAT call
	SYNC call
	TERM call (CICS online programs only)
	XRST call

	Transaction management
	DL/I calls for transaction management
	AUTH call
	CHNG call
	CMD call
	GCMD call
	GN call
	GU call
	ICAL call
	ISRT call
	PURG call
	SETO call

	DL/I calls for IMS TM system services
	APSB call
	CHKP (basic) call
	CHKP (symbolic) call
	DPSB call
	GMSG call
	GSCD call
	ICMD call
	INIT call
	INQY call
	LOG call
	RCMD call
	ROLB call
	ROLL call
	ROLS call
	SETS/SETU call
	SYNC call
	XRST call

	EXEC DLI commands
	Summary of EXEC DLI commands
	ACCEPT command
	CHKP command
	DEQ command
	DLET command
	GN command
	GNP command
	GU command
	ISRT command
	LOAD command
	LOG command
	POS command
	QUERY command
	REFRESH command
	REPL command
	RETRIEVE command
	ROLB command
	ROLL command
	ROLS command
	SCHD command
	SETS command
	SETU command
	STAT command
	SYMCHKP command
	TERM command
	XRST command

	Command code reference
	A command code
	C command code
	D command code
	F command code
	G command code
	L command code
	N command code
	O command code
	P command code
	Q command code
	U command code
	V command code
	NULL command code
	DEDB command codes for DL/I
	M command code
	R command code
	S command code
	W command code
	Z command code

	Relationship between calls, AIBs, and PCBs
	DL/I test program (DFSDDLT0) reference
	Control statements
	ABEND statement
	CALL statement
	CALL FUNCTION statement
	CALL DATA statement
	OPTION DATA statement
	FEEDBACK DATA statement
	DL/I call functions
	Examples of DL/I call functions
	DFSDDLT0 call functions

	COMMENT statement
	COMPARE statement
	COMPARE AIB statement
	COMPARE DATA statement
	COMPARE PCB statement
	Examples of COMPARE DATA and COMPARE PCB statements

	IGNORE statement
	OPTION statement
	PUNCH CTL statement
	STATUS statement
	WTO statement
	WTOR statement
	JCL requirements for the DL/I test program (DFSDDLT0)
	SYSIN DD statement
	SYSIN2 DD statement
	PRINTDD DD statement
	PUNCHDD DD statement
	Using the PREINIT parameter for DFSDDLT0 input restart

	Execution of DFSDDLT0 in IMS regions
	Explanation of DFSDDLT0 return codes
	DFSDDLT0 operations

	Chapter 2. DRDA DDM command architecture reference
	Overview of the syntax for DDM terms supported by IMS
	DSSHDR syntax

	DDM commit and rollback processing
	DDM commands and command objects
	ACCRDB command (X'2001')
	ACCSEC command (X'106D')
	CLSQRY command (X'2005')
	CNTQRY command (X'2006')
	DEALLOCDB command (X'C801')
	DLIFUNC command object (X'CC05')
	DLIFUNCFLG command object (X'CC09')
	EXCSAT command (X'1041')
	EXCSQLIMM command (X'200A')
	EXCSQLSET command (X'2014')
	FLDENTRY command object (X'CC03')
	FLDENTRYREL command object (X'CC0C')
	IMSCALL command (X'C803')
	INAIB command object (X'CC01')
	MONITORRD command (X'1C00')
	OPNQRY command (X'200C')
	PRPSQLSTT command (X'200D')
	RLSE command (X'C802')
	RTRVFLD command object (X'CC04')
	RTRVFLDREL command object (X'CC0B')
	SECCHK command (X'106E')
	SEGMLIST command object (X'CC0A')
	SQLATTR command (X'2450')
	SQLCARD command (X'2408')
	SQLDARD command (X'2411')
	SQLDTA command (X'2412')
	SQLSTT command (X'2414')
	SSALIST command object (X'CC06')

	DDM reply messages and reply objects
	ABNUOWRM reply message (X'220D')
	ACCRDBRM reply message (X'2201')
	ACCSECRD reply object (X'14AC')
	AGNPRMRM reply message (X'1232')
	CMDVLTRM reply message (X'221D')
	DEALLOCDBRM reply message (X'CA01')
	ENDQRYRM reply message (X'220B')
	ENDUOWRM reply message (X'220C')
	EXCSATRD reply object (X'1443')
	IMSCALLRM reply message (X'CA04')
	OPNQFLRM reply message (X'2212')
	OPNQRYRM reply message (X'2205')
	QRYDSC reply object (X'241A')
	QRYDTA reply object (X'241B')
	QRYPOPRM reply message (X'220F')
	RDBAFLRM reply message (X'221A')
	RDBATHRM reply message (X'2203')
	RDBNACRM reply message (X'2204')
	RDBNFNRM reply message (X'2211')
	RDBUPDRM reply message (X'2218')
	RLSERM reply message (X'CA03')
	RSCLMTRM reply message (X'1233')
	SECCHKRM reply message (X'1219')
	SQLERRRM reply message (X'2213')

	DDM parameters used by IMS
	AIBOALEN parameter (X'C904')
	AIBRSNM1 parameter (X'C901')
	AIBRSNM2 parameter (X'C902')
	AIBSFUNC parameter (X'C903')
	aibStream data structure
	dbpcbStream data structure
	iopcbStream data structure
	OUTAIBDBPCB parameter (X'CC02')
	OUTAIBIOPCB parameter (X'CC08')
	RDBNAM parameter (X'2110')
	SSA parameter (X'C906')
	SSACOUNT parameter (X'C905')
	UPDCNT parameter (X'C90A')

	Chapter 3. IMS Adapter for REXX reference
	IMS Adapter for REXX overview
	Sample exit routine (DFSREXXU)
	Addressing other environments
	REXX transaction programs
	REXXTDLI commands
	REXXTDLI calls
	REXXIMS extended commands
	DLIINFO
	IMSRXTRC
	MAPDEF
	MAPGET
	MAPPUT
	SET
	SRRBACK and SRRCMIT
	STORAGE
	WTO, WTP, and WTL
	WTOR
	IMSQUERY extended functions

	Sample execs using REXXTDLI
	SAY exec: for expression evaluation
	PCBINFO exec: display available PCBs in current PSB
	PART execs: database access examples
	PARTNUM exec: show set of parts near a specified number
	PARTNAME exec: show a set of parts with a similar name

	DOCMD: IMS commands front end
	IVPREXX sample application

	Chapter 4. Java programming reference
	IMS Universal drivers support for JDBC
	javax.sql.Clob methods supported
	java.sql.Connection methods supported
	java.sql.DatabaseMetaData methods supported
	javax.sql.DataSource methods supported
	java.sql.Driver methods supported
	java.sql.ParameterMetaData methods supported
	java.sql.PreparedStatement methods supported
	java.sql.Statement methods supported
	java.sql.ResultSet methods supported
	java.sql.ResultSetMetaData methods supported

	IMS Universal drivers support for the Common Client Interface
	javax.resource.cci.Connection methods supported
	javax.resource.cci.ConnectionFactory methods supported
	javax.resource.cci.ConnectionMetaData methods supported
	javax.resource.cci.Interaction methods supported
	javax.resource.cci.LocalTransaction methods supported
	javax.resource.cci.ResultSetInfo methods supported
	javax.resource.cci.ResourceAdapterMetaData methods supported
	javax.resource.cci.RecordFactory methods supported

	Java API documentation (Javadoc)

	Chapter 5. Message Format Service (MFS) reference
	MFS application program design
	Relationships between MFS control blocks
	3270 or SLU 2 display devices
	3290 information panel in partitioned format mode
	Finance, 3770, SLU 1, NTO, or SLU P devices
	Finance or SLU P workstations
	ISC subsystem (DPM-Bn)

	Format library member selection
	3270 or SLU 2 screen formatting
	3290 screen formatting
	3180 screen formatting

	Device compatibility with previous versions of MFS
	Converting MFS 3270 device formats to symbolic name formats using STACK/UNSTACK
	3270 device format conversion example
	3270 printer and SLU 1 compatibility
	SLU P compatibility

	Enhancing system performance of MFS message and device formats
	Enhancing system performance of MFS-supported devices
	Enhancing system performance of 3270 or SLU 2 display devices
	SLU P and ISC subsystems with DPM
	Loading programmed symbol buffers

	MFS definitions for intersystem communication

	MFS message formats
	Input message formats
	Device-dependent input information (3270 or SLU 2)

	Output message formats
	Logical pages
	Segment format
	Field format (options 1 and 2)
	Field format (option 3)
	Device-dependent output information
	Dynamic attribute modification
	Dynamic modification of extended field attributes
	Dynamic modification of EGCS data
	Dynamic modification of DBCS/EBCDIC mixed data
	Specification of message output descriptor name
	MFS bypass for the 3270 or SLU 2

	MFS message formatting functions
	Input message formatting
	General rules for multiple DPAGE input
	3270 and SLU 2 input substitution character
	Input format control for ISC (DPM-Bn) subsystems
	Output message formatting
	Output format control for ISC (DPM-Bn) subsystems
	Your control of MFS
	MFS format sets supplied by IMS
	MFS formatting for the 3270 or SLU 2 master terminal
	MFS Device Characteristics table
	Version identification function for DPM formats

	Chapter 6. OTMA Callable Interface API reference
	OTMA Callable Interface API calls
	OTMA C/I hints and tips
	otma_create API
	otma_open API
	otma_openx API
	otma_alloc API
	otma_send_receive API
	otma_send_receivex API
	otma_send_async API
	otma_receive_async API
	otma_free API
	otma_close API

	OTMA C/I sample programs
	Warranty and distribution for OTMA C/I sample programs
	OTMA C/I sample program for synchronous processing
	OTMA C/I sample program for asynchronous processing

	Chapter 7. WSDL-to-PL/I segmentation APIs for web service development
	Include file DFSPWSH
	DFSQGETS
	DFSQSETS
	DFSXGETS
	DFSXSETS
	Return codes from the DFSPWSIO APIs

	Chapter 8. SQL programming reference
	SQL concepts for IMS
	Structured query language
	DDL SQL
	Static SQL
	Dynamic SQL
	Interactive SQL

	IMS data structures for SQL
	Hierarchical and relational databases

	Language elements
	Characters
	Tokens
	Identifiers
	SQL identifiers
	Host identifiers

	Naming conventions
	Data types
	Nulls
	Numbers
	Character strings
	Datetime values

	Assignment and comparison
	String assignments
	String comparisons

	Constants
	Integer constants
	Floating-point constants
	Decimal constants
	Character string constants

	Field names
	Qualified field names
	Field name qualifiers to avoid ambiguity

	References to variables
	References to host variables
	Host variables in dynamic SQL

	Host structures in COBOL
	Predicates
	Basic predicate
	BETWEEN predicate
	IN predicate

	Search conditions

	SQL statements
	How SQL statements are invoked
	Using an SQL statement in an application program
	Dynamic preparation and execution
	Dynamic invocation of a SELECT statement
	Detecting and processing error and warning conditions in host language applications

	ALTER DATABASE
	ALTER TABLE
	ALTER TABLESPACE
	CLOSE
	COMMENT ON
	CREATE DATABASE
	CREATE PROGRAMVIEW
	CREATE TABLE
	CREATE TABLESPACE
	DECLARE CURSOR
	DECLARE STATEMENT
	DELETE
	DESCRIBE OUTPUT
	DROP DATABASE
	DROP PROGRAMVIEW
	DROP TABLE
	DROP TABLESPACE
	EXECUTE
	FETCH
	INCLUDE
	INSERT
	OPEN
	PREPARE
	SELECT
	UPDATE
	WHENEVER

	SQL communication area (SQLIMSCA)
	Description of SQLIMSCA fields
	The included SQLIMSCA

	SQL descriptor area (SQLIMSDA)
	Description of SQLIMSDA fields
	The SQLIMSDA header
	SQLIMSVAR entries

	The included SQLIMSDA

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

