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Chapter

Introduction

IBM SPSS Amos implements the general approach to data analysis known as
structural equation modeling (SEM), also known as analysis of covariance
structures, or causal modeling. This approach includes, as special cases, many well-
known conventional techniques, including the general linear model and common
factor analysis.

output

54
lozenges

49| 77

paragraph
68
sentence

71
.84

wordmean

Chi-square = 7.853 (8 df)
p =.448

IBM SPSS Amos (Analysis of Moment Structures) is an easy-to-use program for
visual SEM. With Amos, you can quickly specify, view, and modify your model
graphically using simple drawing tools. Then you can assess your model’s fit, make
any modifications, and print out a publication-quality graphic of your final model.
Simply specify the model graphically (left). Amos quickly performs the
computations and displays the results (right).




2

Chapter 1

Structural equation modeling (SEM) is sometimes thought of as esoteric and difficult
to learn and use. This is incorrect. Indeed, the growing importance of SEM in data
analysis is largely due to its ease of use. SEM opens the door for nonstatisticians to
solve estimation and hypothesis testing problems that once would have required the
services of a specialist.

IBM SPSS Amos was originally designed as a tool for teaching this powerful and
fundamentally simple method. For this reason, every effort was made to see that it is
easy to use. Amos integrates an easy-to-use graphical interface with an advanced
computing engine for SEM. The publication-quality path diagrams of Amos provide a
clear representation of models for students and fellow researchers. The numeric
methods implemented in Amos are among the most effective and reliable available.

Featured Methods

IBM SPSS Amos provides the following methods for estimating structural equation
models:

Maximum likelihood

Unweighted least squares

Generalized least squares

Browne’s asymptotically distribution-free criterion

Scale-free least squares

Bayesian estimation

IBM SPSS Amos goes well beyond the usual capabilities found in other structural
equation modeling programs. When confronted with missing data, Amos performs
state-of-the-art estimation by full information maximum likelihood instead of relying
on ad-hoc methods like listwise or pairwise deletion, or mean imputation. The program
can analyze data from several populations at once. It can also estimate means for
exogenous variables and intercepts in regression equations.

The program makes bootstrapped standard errors and confidence intervals available
for all parameter estimates, effect estimates, sample means, variances, covariances,
and correlations. It also implements percentile intervals and bias-corrected percentile
intervals (Stine, 1989), as well as Bollen and Stine’s (1992) bootstrap approach to
model testing.

Multiple models can be fitted in a single analysis. Amos examines every pair of
models in which one model can be obtained by placing restrictions on the parameters
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of the other. The program reports several statistics appropriate for comparing such
models. It provides a test of univariate normality for each observed variable as well as
a test of multivariate normality and attempts to detect outliers.

IBM SPSS Amos accepts a path diagram as a model specification and displays
parameter estimates graphically on a path diagram. Path diagrams used for model
specification and those that display parameter estimates are of presentation quality.
They can be printed directly or imported into other applications such as word
processors, desktop publishing programs, and general-purpose graphics programs.

About the Tutorial

The tutorial is designed to get you up and running with Amos Graphics. It covers some
of the basic functions and features and guides you through your first Amos analysis.

Once you have worked through the tutorial, you can learn about more advanced
functions using the online help, or you can continue working through the examples to
get a more extended introduction to structural modeling with IBM SPSS Amos.

About the Examples

Many people like to learn by doing. Knowing this, we have developed many examples
that quickly demonstrate practical ways to use IBM SPSS Amos. The initial examples
introduce the basic capabilities of Amos as applied to simple problems. You learn
which buttons to click, how to access the several supported data formats, and how to
maneuver through the output. Later examples tackle more advanced modeling
problems and are less concerned with program interface issues.

Examples 1 through 4 show how you can use Amos to do some conventional
analyses—analyses that could be done using a standard statistics package. These
examples show a new approach to some familiar problems while also demonstrating
all of the basic features of Amos. There are sometimes good reasons for using Amos
to do something simple, like estimating a mean or correlation or testing the hypothesis
that two means are equal. For one thing, you might want to take advantage of the ability
of Amos to handle missing data. Or maybe you want to use the bootstrapping capability
of Amos, particularly to obtain confidence intervals.

Examples 5 through 8 illustrate the basic techniques that are commonly used
nowadays in structural modeling.
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Example 9 and those that follow demonstrate advanced techniques that have so far not
been used as much as they deserve. These techniques include:

Simultaneous analysis of data from several different populations.
Estimation of means and intercepts in regression equations.
Maximum likelihood estimation in the presence of missing data.

Bootstrapping to obtain estimated standard errors and confidence intervals. Amos
makes these techniques especially easy to use, and we hope that they will become
more commonplace.

Specification searches.

Bayesian estimation.

Imputation of missing values.
Analysis of censored data.

Analysis of ordered-categorical data.

Mixture modeling.

Tip: If you have questions about a particular Amos feature, you can always refer to the
extensive online help provided by the program.

About the Documentation

IBM SPSS Amos 20 comes with extensive documentation, including an online help
system, this user’s guide, and advanced reference material for Amos Basic and the
Amos API (Application Programming Interface). If you performed a typical
installation, you can find the IBM SPSS Amos 20 Programming Reference Guide in the
following location: C:\Program
Files\IBM\SPSS\Amos\20\Documentation\Programming Reference.pdyf.

Other Sources of Information

Although this user’s guide contains a good bit of expository material, it is not by any
means a complete guide to the correct and effective use of structural modeling. Many
excellent SEM textbooks are available.
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®  Structural Equation Modeling: A Multidisciplinary Journal contains
methodological articles as well as applications of structural modeling. It is
published by:

Lawrence Erlbaum Associates, Inc.
Journal Subscription Department
10 Industrial Avenue

Mahwah, NJ 07430-2262 USA
www.erlbaum.com

m  Carl Ferguson and Edward Rigdon established an electronic mailing list called
Semnet to provide a forum for discussions related to structural modeling. You can
find information about subscribing to Semnet at
www. gsu.edu/~mkteer/semnet.html.

m  Edward Rigdon also maintains a list of frequently asked questions about structural
equation modeling. That FAQ is located at www. gsu.edu/~mkteer/semfaq.html.
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Tutorial: Getting Started with
Amos Graphics

Introduction

Remember your first statistics class when you sweated through memorizing formulas
and laboriously calculating answers with pencil and paper? The professor had you do
this so that you would understand some basic statistical concepts. Later, you
discovered that a calculator or software program could do all of these calculations in
a split second.

This tutorial is a little like that early statistics class. There are many shortcuts to
drawing and labeling path diagrams in Amos Graphics that you will discover as you
work through the examples in this user’s guide or as you refer to the online help. The
intent of this tutorial is to simply get you started using Amos Graphics. It will cover
some of the basic functions and features of IBM SPSS Amos and guide you through
your first Amos analysis.

Once you have worked through the tutorial, you can learn about more advanced
functions from the online help, or you can continue to learn incrementally by working
your way through the examples.

If you performed a typical installation, you can find the path diagram constructed
in this tutorial in this location:

C:\Program Files\IBM\SPSS\Amos\20\Tutorial\<language>. The file Startsps.amw
uses a data file in SPSS Statistics format. Getstart.amw is the same path diagram but
uses data from a Microsoft Excel file.

Tip: IBM SPSS Amos provides more than one way to accomplish most tasks. For all
menu commands except Tools — Macro, there is a toolbar button that performs the
same task. For many tasks, Amos also provides keyboard shortcuts. The user’s guide
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demonstrates the menu path. For information about the toolbar buttons and keyboard
shortcuts, see the online help.

About the Data

Hamilton (1990) provided several measurements on each of 21 states. Three of the
measurements will be used in this tutorial:

m  Average SAT score
m  Per capita income expressed in $1,000 units

®  Median education for residents 25 years of age or older

You can find the data in the Tutorial directory within the Microsoft Excel 8.0
workbook Hamilton.xls in the worksheet named Hamilton. The data are as follows:

SAT | Income | Education
899 | 14.345 12.7
896 16.37 12.6
897 | 13.537 12.5
889 | 12.552 12.5
823 | 11.441 12.2
857 | 12.757 12.7
860 | 11.799 12.4
890 | 10.683 12.5
889 | 14.112 12.5
888 | 14.573 12.6
925 | 13.144 12.6
869 | 15.281 12.5
896 | 14.121 12.5
827 | 10.758 12.2
908 | 11.583 12.7
885 | 12.343 12.4
887 | 12.729 12.3
790 | 10.075 12.1
868 | 12.636 12.4
904 | 10.689 12.6
888 | 13.065 12.4
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The following path diagram shows a model for these data:

Education \
/' SAT

Incame

This is a simple regression model where one observed variable, SAT, is predicted as a
linear combination of the other two observed variables, Education and Income. As with
nearly all empirical data, the prediction will not be perfect. The variable Other
represents variables other than Education and Income that affect SAT.

Each single-headed arrow represents a regression weight. The number 1 in the
figure specifies that Other must have a weight of 1 in the prediction of SAT. Some such
constraint must be imposed in order to make the model identified, and it is one of the
features of the model that must be communicated to Amos.

Launching Amos Graphics

You can launch Amos Graphics in any of the following ways:

m Click Start on the Windows task bar, and choose All Programs — IBM SPSS
Statistics — IBM SPSS Amos 20 — Amos Graphics.

Double-click any path diagram (*.amw).

Drag a path diagram (*.amw) file from Windows Explorer to the Amos Graphics
window.

m Click Start on the Windows task bar, and choose All Programs — IBM SPSS
Statistics — IBM SPSS Amos 20 — View Path Diagrams. Then double-click a path
diagram in the View Path Diagrams window.

®  From within SPSS Statistics, choose Analyze — IBM SPSS Amos from the menus.
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Creating a New Model

» From the menus, choose File — New.

Your work area appears. The large area on the right is where you draw path diagrams.
The toolbar on the left provides one-click access to the most frequently used buttons.
You can use either the toolbar or menu commands for most operations.

.= Unnamed project : Group number 1 : Input

File Edit WView Diagram Analyze Tools Flugins Help

£ ©

o33
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Title:
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Not estimating any user-defined estimand.
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Specifying the Data File
The next step is to specify the file that contains the Hamilton data. This tutorial uses a
Microsoft Excel 8.0 (*.xls) file, but Amos supports several common database formats,
including SPSS Statistics *.sav files. If you launch Amos from the Analyze menu in
SPSS Statistics, Amos automatically uses the file that is open in SPSS Statistics.
» From the menus, choose File — Data Files.

» In the Data Files dialog box, click File Name.

» Browse to the Tutorial folder. If you performed a typical installation, the path is
C:A\Program Files\IBM\SPSS\Amos\20\Tutorial\<language>.

» In the Files of type list, select Excel 8.0 (*.xls).
» Select Hamilton.xls, and then click Open.

» In the Data Files dialog box, click OK.

Specifying the Model and Drawing Variables

The next step is to draw the variables in your model. First, you’ll draw three rectangles
to represent the observed variables, and then you’ll draw an ellipse to represent the
unobserved variable.

» From the menus, choose Diagram — Draw Observed.

» In the drawing area, move your mouse pointer to where you want the Education
rectangle to appear. Click and drag to draw the rectangle. Don’t worry about the exact
size or placement of the rectangle because you can change it later.

» Use the same method to draw two more rectangles for Income and SAT.

» From the menus, choose Diagram — Draw Unobserved.
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» In the drawing area, move your mouse pointer to the right of the three rectangles and
click and drag to draw the ellipse.

The model in your drawing area should now look similar to the following:

O

Naming the Variables

» Inthe drawing area, right-click the top left rectangle and choose Object Properties from
the pop-up menu.

» Click the Text tab.

» In the Variable name text box, type Education.

:?: Object Properties

Colars ] Test I Parameters ] Faormat ] "igibility ]

Eant Size Fant Style

I'IE "I IHeguIar 'I

Y anable name

Education i’
Y aniable |abel

- Set Default

Undo

» Use the same method to name the remaining variables. Then close the Object
Properties dialog box.
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Education

Income

SAT

Drawing Arrows

Now you will add arrows to the path diagram, using the following model as your guide:

Education

Income

SAT

N
e

» From the menus, choose Diagram — Draw Path.
» Click and drag to draw an arrow between Education and SAT.

» Use this method to add each of the remaining single-headed arrows.

» From the menus, choose Diagram — Draw Covariances.

» Click and drag to draw a double-headed arrow between Income and Education. Don’t

worry about the curve of the arrow because you can adjust it later.
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Constraining a Parameter

To identify the regression model, you must define the scale of the latent variable Other.
You can do this by fixing either the variance of Other or the path coefficient from Other
to SAT at some positive value. The following shows you how to fix the path coefficient
at unity (1).

In the drawing area, right-click the arrow between Other and SAT and choose Object
Properties from the pop-up menu.

Click the Parameters tab.

In the Regression weight text box, type 1.

.. Dbject Properties

Colors ] Text I Parameterz I Faormat ] Wigibility ]

Font zize and style————— — Orientation

|1 4 j| R egular j IH:::rizu:untaI j

Beagrezzion weight Set Default

[1

Undo

Close the Object Properties dialog box.

There is now a 1 above the arrow between Other and SAT. Your path diagram is now
complete, other than any changes you may wish to make to its appearance. It should
look something like this:
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Education

Nt
>

Incormne

Altering the Appearance of a Path Diagram

You can change the appearance of your path diagram by moving and resizing objects.
These changes are visual only; they do not affect the model specification.

To Move an Object
» From the menus, choose Edit — Move.

» In the drawing area, click and drag the object to its new location.

To Reshape an Object or Double-Headed Arrow
» From the menus, choose Edit — Shape of Object.

» In the drawing area, click and drag the object until you are satisfied with its size and
shape.

To Delete an Object

» From the menus, choose Edit — Erase.

» In the drawing area, click the object you wish to delete.
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To Undo an Action

» From the menus, choose Edit — Undo.

To Redo an Action

» From the menus, choose Edit - Redo.

Setting Up Optional Output

Some of the output in Amos is optional. In this step, you will choose which portions of
the optional output you want Amos to display after the analysis.

» From the menus, choose View — Analysis Properties.
» Click the Output tab.

» Select the Minimization history, Standardized estimates, and Squared multiple correlations
check boxes.
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Analyszis Properties

» Close the Analysis Properties dialog box.
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Performing the Analysis

The only thing left to do is perform the calculations for fitting the model. Note that in
order to keep the parameter estimates up to date, you must do this every time you
change the model, the data, or the options in the Analysis Properties dialog box.

» From the menus, click Analyze — Calculate Estimates.

» Because you have not yet saved the file, the Save As dialog box appears. Type a name
for the file and click Save.

Amos calculates the model estimates. The panel to the left of the path diagram displays
a summary of the calculations.

lteration b -]
Minimum was achiewved

Wtiting output
Chi-sguare = 0.0, di=10

Viewing Output

When Amos has completed the calculations, you have two options for viewing the
output: text and graphics.

To View Text Output

» From the menus, choose View — Text Output.

The tree diagram in the upper left pane of the Amos Output window allows you to
choose a portion of the text output for viewing.

» Click Estimates to view the parameter estimates.
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Regression Weights: {Group number 1 - Default model)

Estitnate | 3.E. C.E. P | Lahel
SAT «---Incomme 2156 3125 690 .490
SAT «---Educatn 136.022] 30 555 4452 ***

Standardized Regression Weights: { Group number 1 - Default model)

Estimate
BaT <--1 Incotne 11
SAT =--- Educatn N

Covariances: {(Group number 1 - Default model)

Estitnate | 5.E. Z.E. P | Lahel
Incotne <--=Educatn A2F 0685 1.952 051

Correlations: (Group numhber 1 - Default model)

Estitniate
Income<--= Educatn 485

Variances: (Group number 1 - Default model)

Estitnate | 3.E. CE. P | Lahel

Income 2562 810 3.162 .002
Educatn 027 .00F 3.162 .002
Other 382.°736(121.032  3.1643) .002

Sqguared Multiple Correlations: (Group number 1 - Default model)

Estitnate

SAT

803

To View Graphics Output

» Click the Show the output path diagram button

» In the Parameter Formats pane to the left of the drawing area, click Standardized

estimates.
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nstandardized estimates

Standardized estimates

Your path diagram now looks like this:

Education \Q‘ a0

Income

The value 0.49 is the correlation between Education and Income. The values 0.72 and
0.11 are standardized regression weights. The value 0.60 is the squared multiple
correlation of SAT with Education and Income.

» In the Parameter Formats pane to the left of the drawing area, click Unstandardized
estimates.

Your path diagram should now look like this:

03
Education Qﬂj 38274
A 286 SAT
Income /

Printing the Path Diagram

» From the menus, choose File — Print.

The Print dialog box appears.
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;i; Print

Groups Models
Group number 1

Formats
Unstandardized estimates

Standardized estimates

(2 =S

Print

Preview

Close

» Click Print.

Copying the Path Diagram

Amos Graphics lets you easily export your path diagram to other applications such as

Microsoft Word.

» From the menus, choose Edit — Copy (to Clipboard).

» Switch to the other application and use the Paste function to insert the path diagram.

Amos Graphics exports only the diagram; it does not export the background.

Copying Text Output

» In the Amos Output window, select the text you want to copy.

» Right-click the selected text, and choose Copy from the pop-up menu.

» Switch to the other application and use the Paste function to insert the text.






Example

Estimating Variances and
Covariances

Introduction

This example shows you how to estimate population variances and covariances. It also
discusses the general format of Amos input and output.

About the Data

Attig (1983) showed 40 subjects a booklet containing several pages of advertisements.
Then each subject was given three memory performance tests.

Test

Explanation

recall

The subject was asked to recall as many of the advertisements as possible.
The subject’s score on this test was the number of advertisements recalled
correctly.

cued

The subject was given some cues and asked again to recall as many of the
advertisements as possible. The subject’s score was the number of
advertisements recalled correctly.

place

The subject was given a list of the advertisements that appeared in the
booklet and was asked to recall the page location of each one. The subject’s
score on this test was the number of advertisements whose location was
recalled correctly.

Attig repeated the study with the same 40 subjects after a training exercise intended
to improve memory performance. There were thus three performance measures
before training and three performance measures after training. In addition, she
recorded scores on a vocabulary test, as well as age, sex, and level of education.
Attig’s data files are included in the Examples folder provided by Amos.

23
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Bringing In the Data

>

>

From the menus, choose File — New.
From the menus, choose File — Data Files.
In the Data Files dialog box, click File Name.

Browse to the Examples folder. If you performed a typical installation, the path is
CA\Program Files\IBM\SPSS\Amos\20\Examples\<language>.

In the Files of type list, select Excel 8.0 (*.xls), select UserGuide.xls, and then click
Open.

In the Data Files dialog box, click OK.

Amos displays a list of worksheets in the UserGuide workbook. The worksheet
Attg_yng contains the data for this example.

In the Select a Data Table dialog box, select Attg_yng, then click View Data.

Afto_miz
Altu_miz
Grantk
Grant_x
rnt_fem
Grnt_mal
Harmilton

Olss_al =]

Wiew Data

k. Cancel

The Excel worksheet for the Artg_yng data file opens.
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- UserGuide_xls

age|vocab_short| vocabulary

otta_old 1 20 13 E3

tha s
Aty iz 2 M 12 B4
Grant 3 19 10 59
Grant_x 4 25 14 =]
Grrt_fern 5 18 4 47
Grnt_mal
Hamilton 6 18 12 65
Olss_all — 7 18 5 51
Olzs_exp 2 5 a7
WwharrenSy q 19 o B -
Wt arreny LI 4 | L

As you scroll across the worksheet, you will see all of the test variables from the Attig
study. This example uses only the following variables: recalll (recall pretest), recall2

(recall posttest), placel (place recall pretest), and place2 (place recall posttest).

» After you review the data, close the data window.

>

In the Data Files dialog box, click OK.

Analyzing the Data

In this example, the analysis consists of estimating the variances and covariances of the
recall and place variables before and after training.

Specifying the Model

>

>

From the menus, choose Diagram — Draw Observed.

In the drawing area, move your mouse pointer to where you want the first rectangle to

appear. Click and drag to draw the rectangle.

From the menus, choose Edit — Duplicate.

Click and drag a duplicate from the first rectangle. Release the mouse button to

position the duplicate.
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» Create two more duplicate rectangles until you have four rectangles side by side.

Tip: If you want to reposition a rectangle, choose Edit — Move from the menus and drag

the rectangle to its new position.

Naming the Variables

» From the menus, choose View — Variables in Dataset.

The Variables in Dataset dialog box appears.

» Click and drag the variable recalll from the list to the first rectangle in the drawing

area.

» Use the same method to name the variables recall2, placel, and place?2.

[-] - S
-%. Variables in Dataset [JE E3

subjact
age
wiocab_short
wocabulany
education
SEx

recalll
recallz
cuedi
cuedd
placel
place?

» Close the Variables in Dataset dialog box.
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Changing the Font

» Right-click a variable and choose Object Properties from the pop-up menu.

The Object Properties dialog box appears.

» Click the Text tab and adjust the font attributes as desired.

recalll recall2 placel E place? |,

:?; Object Properties

Colors I Test I FParameters ] Farmat I Wigibility I

Font Size Faont Style

I Reqular - |

- Set Default

Undo

Establishing Covariances

If you leave the path diagram as it is, Amos Graphics will estimate the variances of the
four variables, but it will not estimate the covariances between them. In Amos
Graphics, the rule is to assume a correlation or covariance of O for any two variables
that are not connected by arrows. To estimate the covariances between the observed
variables, we must first connect all pairs with double-headed arrows.

» From the menus, choose Diagram — Draw Covariances.

» Click and drag to draw arrows that connect each variable to every other variable.

Your path diagram should have six double-headed arrows.
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Performing the Analysis
» From the menus, choose Analyze — Calculate Estimates.
Because you have not yet saved the file, the Save As dialog box appears.

» Enter a name for the file and click Save.

Viewing Graphics Output W
» Click the Show the output path diagram button .

Amos displays the output path diagram with parameter estimates.
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In the output path diagram, the numbers displayed next to the boxes are estimated
variances, and the numbers displayed next to the double-headed arrows are estimated
covariances. For example, the variance of recalll is estimated at 5.79, and that of
placel at 33.58. The estimated covariance between these two variables is 4.34.

Viewing Text Output
» From the menus, choose View — Text Output.

» In the tree diagram in the upper left pane of the Amos Output window, click Estimates.

=1of x|
Q& WME B 7 2 -5 -0 -[TOJF@ : @

Ex01.armuw -
- Analysis Summary Estimates (Group number 1 - Default model) —
- Maotes for Group
H-Yariable Summary Scalar Estimates {(Group number 1 - Default model)
- Pararnater summary
&+ Motes for bModel Maximum Likelihood Estimates

[ . 3
-~ Minimization Histary
=-Model Fit

- Execution Tirme

Covariances: (Group number 1 - Default model)

Estimate SE. CR. P Lahel

recalll <=-= recall2 256 1.16 220 03

recall? <=--> placel 2m 2.64 7B A4

placel <--> place? 1780 522 343 EE

recall? <--= place2 43 213 20 a4
Group number 1 recalll <--= placel 434 234 1.86 06

recalll =--= place? 3457 1.90 1.88 06
Default model Variances: (Group number 1 - Default model)

Estimate SE. CR. F Labhel

recalll 578 13 442 ™
recall2 794 180 442
place? 3358  7FBO 442 7

place? 2216 .02 4437 R t
4| |_'|J

The first estimate displayed is of the covariance between recalll and recall2. The
covariance is estimated to be 2.56. Right next to that estimate, in the S.E. column, is an
estimate of the standard error of the covariance, 1.16. The estimate 2.56 is an
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observation on an approximately normally distributed random variable centered
around the population covariance with a standard deviation of about 1.16, that is, if the
assumptions in the section “Distribution Assumptions for Amos Models” on p. 35 are
met. For example, you can use these figures to construct a 95% confidence interval on
the population covariance by computing 2.56 £ 1.96 x 1.160= 2.56 £2.27 . Later, you
will see that you can use Amos to estimate many kinds of population parameters
besides covariances and can follow the same procedure to set a confidence interval on
any one of them.

Next to the standard error, in the C.R. column, is the critical ratio obtained by
dividing the covariance estimate by its standard error (2.20 = 2.56/1.16) . This ratio
is relevant to the null hypothesis that, in the population from which Attig’s 40 subjects
came, the covariance between recalll and recall? is 0. If this hypothesis is true, and
still under the assumptions in the section “Distribution Assumptions for Amos
Models” on p. 35, the critical ratio is an observation on a random variable that has an
approximate standard normal distribution. Thus, using a significance level of 0.05, any
critical ratio that exceeds 1.96 in magnitude would be called significant. In this
example, since 2.20 is greater than 1.96, you would say that the covariance between
recalll and recall? is significantly different from O at the 0.05 level.

The P column, to the right of C.R., gives an approximate two-tailed p value for
testing the null hypothesis that the parameter value is O in the population. The table
shows that the covariance between recalll and recall? is significantly different from 0
with p = 0.03. The calculation of P assumes that parameter estimates are normally
distributed, and it is correct only in large samples. See Appendix A for more
information.

The assertion that the parameter estimates are normally distributed is only an
approximation. Moreover, the standard errors reported in the S.E. column are only
approximations and may not be the best available. Consequently, the confidence
interval and the hypothesis test just discussed are also only approximate. This is
because the theory on which these results are based is asymptotic. Asymptotic means
that it can be made to apply with any desired degree of accuracy, but only by using a
sufficiently large sample. We will not discuss whether the approximation is
satisfactory with the present sample size because there would be no way to generalize
the conclusions to the many other kinds of analyses that you can do with Amos.
However, you may want to re-examine the null hypothesis that recalll and recall2 are
uncorrelated, just to see what is meant by an approximate test. We previously
concluded that the covariance is significantly different from 0 because 2.20 exceeds
1.96. The p value associated with a standard normal deviate of 2.20 is 0.028 (two-
tailed), which, of course, is less than 0.05. By contrast, the conventional ¢ statistic (for
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example, Runyon and Haber, 1980, p. 226) is 2.509 with 38 degrees of freedom

(p = 0.016). In this example, both p values are less than 0.05, so both tests agree in
rejecting the null hypothesis at the 0.05 level. However, in other situations, the two
p values might lie on opposite sides of 0.05. You might or might not regard this as
especially serious—at any rate, the two tests can give different results. There should be
no doubt about which test is better. The ¢ test is exact under the assumptions of
normality and independence of observations, no matter what the sample size. In Amos,
the test based on critical ratio depends on the same assumptions; however, with a finite
sample, the test is only approximate.

Note: For many interesting applications of Amos, there is no exact test or exact standard
error or exact confidence interval available.

On the bright side, when fitting a model for which conventional estimates exist,
maximum likelihood point estimates (for example, the numbers in the Estimate
column) are generally identical to the conventional estimates.

» Now click Notes for Model in the upper left pane of the Amos Output window.

=1
R E&uneE B&: -5 -0 ~[T[OF@ : @

Ex07 @ ;I

- Analysis Summarny Motes for Model {Default model)

- MNaotes for Group
#-“arahle Summary Computation of degrees of freedom (Default model)
- Parameter summary
E B -

E

Mumber of distinct sample moments: 10
Mumber of distinct parameters to be estimated: 10

~Minimization Histary Degrees of freedom (10 - 10; 0
- Model Fit

- Execution Time

Result (Default model)

Minimum was achieved

Chi-sguare = .00

Degrees of freedom =0
—— Probahility level cannot be computed

—— ||

The following table plays an important role in every Amos analysis:

Number of distinct sample moments: | 10
Number of distinct parameters to be estimated: | 10
Degrees of freedom (10 — 10): 0
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The Number of distinct sample moments referred to are sample means, variances, and
covariances. In most analyses, including the present one, Amos ignores means, so that
the sample moments are the sample variances of the four variables, recalll, recall2,
placel, and place2, and their sample covariances. There are four sample variances and
six sample covariances, for a total of 10 sample moments.

The Number of distinct parameters to be estimated are the corresponding
population variances and covariances. There are, of course, four population variances
and six population covariances, which makes 10 parameters to be estimated.

The Degrees of freedom is the amount by which the number of sample moments
exceeds the number of parameters to be estimated. In this example, there is a one-to-
one correspondence between the sample moments and the parameters to be estimated,
so it is no accident that there are zero degrees of freedom.

As we will see beginning with Example 2, any nontrivial null hypothesis about the
parameters reduces the number of parameters that have to be estimated. The result will
be positive degrees of freedom. For now, there is no null hypothesis being tested.
Without a null hypothesis to test, the following table is not very interesting:

Chi-square = 0.00
Degrees of freedom = 0
Probability level cannot be computed

If there had been a hypothesis under test in this example, the chi-square value would have
been a measure of the extent to which the data were incompatible with the hypothesis. A
chi-square value of O would ordinarily indicate no departure from the null hypothesis.
But in the present example, the 0 value for degrees of freedom and the O chi-square value
merely reflect the fact that there was no null hypothesis in the first place.

Minimum was achieved

This line indicates that Amos successfully estimated the variances and covariances.
Sometimes structural modeling programs like Amos fail to find estimates. Usually,
when Amos fails, it is because you have posed a problem that has no solution, or no
unique solution. For example, if you attempt maximum likelihood estimation with
observed variables that are linearly dependent, Amos will fail because such an analysis
cannot be done in principle. Problems that have no unique solution are discussed
elsewhere in this user’s guide under the subject of identifiability. Less commonly,
Amos can fail because an estimation problem is just too difficult. The possibility of
such failures is generic to programs for analysis of moment structures. Although the
computational method used by Amos is highly effective, no computer program that
does the kind of analysis that Amos does can promise success in every case.



33

Estimating Variances and Covariances

Optional Output

So far, we have discussed output that Amos generates by default. You can also request
additional output.

Calculating Standardized Estimates

You may be surprised to learn that Amos displays estimates of covariances rather than
correlations. When the scale of measurement is arbitrary or of no substantive interest,
correlations have more descriptive meaning than covariances. Nevertheless, Amos and
similar programs insist on estimating covariances. Also, as will soon be seen, Amos
provides a simple method for testing hypotheses about covariances but not about
correlations. This is mainly because it is easier to write programs that way. On the other
hand, it is not hard to derive correlation estimates after the relevant variances and
covariances have been estimated. To calculate standardized estimates:

» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Select the Standardized estimates check box.

.. Analysis Properties

E stimation I Mumerical I Bias
Permutations I R andom # I Title
Output farmatting I Output I Bootztrap
[+ Minimization histan [~ Indirect, direct & total effects
Ftéﬁtandardized estimates [~ Factor score weights
[~ Squared multiple corelations [~ Covariances of estimates

» Close the Analysis Properties dialog box.
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Rerunning the Analysis

Because you have changed the options in the Analysis Properties dialog box, you must
rerun the analysis.

» From the menus, choose Analyze — Calculate Estimates.
» Click the Show the output path diagram button.

» In the Parameter Formats pane to the left of the drawing area, click Standardized
estimates.

|Instandardized eshmates

Standardized estimates

|Parameter Formats

Viewing Correlation Estimates as Text Output

» From the menus, choose View — Text Output.
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» In the tree diagram in the upper left pane of the Amos Output window, expand
Estimates, Scalars, and then click Correlations.

=T
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Distribution Assumptions for Amos Models

Hypothesis testing procedures, confidence intervals, and claims for efficiency in
maximum likelihood or generalized least-squares estimation depend on certain
assumptions. First, observations must be independent. For example, the 40 young
people in the Attig study have to be picked independently from the population of young
people. Second, the observed variables must meet some distributional requirements. If
the observed variables have a multivariate normal distribution, that will suffice.
Multivariate normality of all observed variables is a standard distribution assumption
in many structural equation modeling and factor analysis applications.

There is another, more general, situation under which maximum likelihood
estimation can be carried out. If some exogenous variables are fixed (that is, they are
either known beforehand or measured without error), their distributions may have any
shape, provided that:

®m  For any value pattern of the fixed variables, the remaining (random) variables have
a (conditional) normal distribution.

B The (conditional) variance-covariance matrix of the random variables is the same
for every pattern of the fixed variables.
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®  The (conditional) expected values of the random variables depend linearly on the
values of the fixed variables.

A typical example of a fixed variable would be an experimental treatment, classifying
respondents into a study group and a control group, respectively. It is all right that
treatment is non-normally distributed, as long as the other exogenous variables are
normally distributed for study and control cases alike, and with the same conditional
variance-covariance matrix. Predictor variables in regression analysis (see Example 4)
are often regarded as fixed variables.

Many people are accustomed to the requirements for normality and independent
observations, since these are the usual requirements for many conventional procedures.
However, with Amos, you have to remember that meeting these requirements leads
only to asymptotic conclusions (that is, conclusions that are approximately true for
large samples).

Modeling in VB.NET

>

Itis possible to specify and fit a model by writing a program in VB.NET or in C#. Writing
programs is an alternative to using Amos Graphics to specify a model by drawing its path
diagram. This section shows how to write a VB.NET program to perform the analysis of
Example 1. A later section explains how to do the same thing in C#.

Amos comes with its own built-in editor for VB.NET and C# programs. It is
accessible from the Windows Start menu. To begin Example 1 using the built-in editor:

From the Windows Start menu, choose All Programs — IBM SPSS Statistics —
IBM SPSS Amos 20 — Program Editor.

In the Program Editor window, choose File — New VB Program.



37

Estimating Variances and Covariances

File Edt Format

Hea:la]
= Module MainModule
Public Sub Main()
"Your code goes here.
End Sub -

End Module -
q 3

Description

‘| | _’I Close

 Compile errorsl Debug output I Y

» Enter the VB.NET code for specifying and fitting the model in place of the ‘Your code

goes here comment. The following figure shows the program editor after the complete
program has been entered.

- C:\Examples\Ex(1_vb

File Edt Fomat

eadey

= Module MainModule

2 Sub Main{)

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Begin Group(Sem.AmosDir & "Examples\UserGuidexIs", "Attg_yng")
Sem.AStructure("recalll")
Sem.AStructure("recall2")
Sem.Astructure("placel"™)
Sem.AStructure("place2"”)
Sem.FtModel()

Finally
Sem.Dispose()

End Try

- EndSub

- End Module

[« |

Description

Note: The Examples directory contains all of the pre-written examples.
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To open the VB.NET file for the present example:

» From the Program Editor menus, choose File — Open.

» Select the file Ex01.vb in the \Amos\20\Examples\<language> directory.

The following table gives a line-by-line explanation of the program.

Program Statement

Explanation

Dim Sem As New AmosEngine

Declares Sem as an object of type
AmosEngine. The methods and properties of
the Sem object are used to specify and fit the
model.

Sem.TextOutput

Creates an output file containing the results of
the analysis. At the end of the analysis, the
contents of the output file are displayed in a
separate window.

Sem.BeginGroup ...

Begins the model specification for a single
group (that is, a single population). This line
also specifies that the Artg_yng worksheet in the
Excel workbook UserGuide.xls contains the
input data. Sem.AmosDir() is the location of the
Amos program directory.

Sem.AStructure("recall1")
Sem.AStructure("recall2")
Sem.AStructure("place1")
Sem.AStructure("place2")

Specifies the model. The four AStructure
statements declare the variances of recalll,
recall2, placel, and place? to be free
parameters. The other eight variables in the
Attg_yng data file are left out of this analysis. In
an Amos program (but not in Amos Graphics),
observed exogenous variables are assumed by
default to be correlated, so that Amos will
estimate the six covariances among the four
variables.

Sem.FitModel()

Fits the model.

Sem.Dispose()

Releases resources used by the Sem object. It is
particularly important for your program to use
an AmosEngine object’s Dispose method before
creating another AmosEngine object. A process
is allowed only one instance of an AmosEngine
object at a time.

Try/Finally/End Try

The Try block guarantees that the Dispose
method will be called even if an error occurs
during program execution.

» To perform the analysis, from the menus, choose File — Run.
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Generating Additional Output

Some AmosEngine methods generate additional output. For example, the Standardized

method displays standardized estimates. The following figure shows the use of the
Standardized method:

.2 C\Examples\Ex01 vb

File Edit Format

eader

= Module MainMaodule

& Sub Main{)

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized
Sem.Begin Group(Sem.AmosDir & "Examples\UserGuidexIs", "Attg_yng")
Sem.AStructure("recalll")
Sem.Astructure("recall2")
Sem.AStructure("placel™)
Sem.AStructure("place2")
Sem.FtModel()

Fnally
Sem.Dispose()

End Try

- End Sub

LEnd Module

[« |

Dascription

Modeling in C#

Writing an Amos program in C# is similar to writing one in VB.NET. To start a new
C# program, in the built-in program editor of Amos:

» Choose File — New C# Program (rather than File — New VB Program).

» Choose File — Open to open Ex0I.cs, which is a C# version of the VB.NET program
Ex01.vb.
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Other Program Development Tools

The built-in program editor in Amos is used throughout this user’s guide for writing
and executing Amos programs. However, you can use the development tool of your
choice. The Examples folder contains a VisualStudio subfolder where you can find
Visual Studio VB.NET and C# solutions for Example 1.
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2

Testing Hypotheses

Introduction

This example demonstrates how you can use Amos to test simple hypotheses about
variances and covariances. It also introduces the chi-square test for goodness of fit and
elaborates on the concept of degrees of freedom.

About the Data

We will use Attig’s (1983) spatial memory data, which were described in Example 1.
We will also begin with the same path diagram as in Example 1. To demonstrate the
ability of Amos to use different data formats, this example uses a data file in SPSS
Statistics format instead of an Excel file.

Parameters Constraints

The following is the path diagram from Example 1. We can think of the variable

objects as having small boxes nearby (representing the variances) that are filled in
once Amos has estimated the parameters.

41
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— — — /

recalll recall2 placel place?

AN AN A

You can fill these boxes yourself instead of letting Amos fill them.

Constraining Variances
Suppose you want to set the variance of recalll to 6 and the variance of recall2 to 8.

» In the drawing area, right-click recalll and choose Object Properties from the pop-up
menu.

» Click the Parameters tab.

» In the Variance text box, type 6.

;?; Object Properties
Colors ] Text I Parameters l Farmat ] Yigibiliby I

Font size and style———— [~ Orientation

|'| 2 jl Reqular j I Harizontal ﬂ

Wariance Set Default

|E1 Unda

» With the Object Properties dialog box still open, click recall2 and set its variance to 8.
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» Close the dialog box.

The path diagram displays the parameter values you just specified.

recalll || recallz || placel place2

This is not a very realistic example because the numbers 6 and 8 were just picked out
of the air. Meaningful parameter constraints must have some underlying rationale,
perhaps being based on theory or on previous analyses of similar data.

Specifying Equal Parameters

Sometimes you will be interested in testing whether two parameters are equal in the
population. You might, for example, think that the variances of recalll and recall2
might be equal without having a particular value for the variances in mind. To
investigate this possibility, do the following:

» In the drawing area, right-click recalll and choose Object Properties from the pop-up
menu.

» Click the Parameters tab.
» In the Variance text box, type v_recall.
» Click recall2 and label its variance as v_recall.

» Use the same method to label the placel and place2 variances as v_place.

It doesn’t matter what label you use. The important thing is to enter the same label for
each variance you want to force to be equal. The effect of using the same label is to
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require both of the variances to have the same value without specifying ahead of time
what that value is.

Benefits of Specifying Equal Parameters

Before adding any further constraints on the model parameters, let’s examine why we
might want to specify that two parameters, like the variances of recalll and recall2 or
placel and place2, are equal. Here are two benefits:

m  If you specify that two parameters are equal in the population and if you are correct
in this specification, then you will get more accurate estimates, not only of the
parameters that are equal but usually of the others as well. This is the only benefit
if you happen to know that the parameters are equal.

m  If the equality of two parameters is a mere hypothesis, requiring their estimates to
be equal will result in a test of that hypothesis.

Constraining Covariances

Your model may also include restrictions on parameters other than variances. For
example, you may hypothesize that the covariance between recalll and placel is equal
to the covariance between recall2 and place2. To impose this constraint:

» In the drawing area, right-click the double-headed arrow that connects recalll and
placel, and choose Object Properties from the pop-up menu.

» Click the Parameters tab.
» In the Covariance text box, type a non-numeric string such as cov_rp.

» Use the same method to set the covariance between recall? and place2 to cov_rp.
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vw_recall w_recall v_place w_place

recallt recall? placet place2

EN Object Properties

Colors ] Test ] Parameters I Format ] Wizibility ]

Faont size and style——————— ~ Orientation

|'| 2 j| Reqular j I Harizontal j

LCovanance Set Default

|cc:v_r|:l ire

Moving and Formatting Objects

While a horizontal layout is fine for small examples, it is not practical for analyses that
are more complex. The following is a different layout of the path diagram on which
we’ve been working:

w_recall ,/_\ w_recall

recalll recall2

Cov_| cov_rp
v_place v_place

place1 ‘ ‘ place2
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You can use the following tools to rearrange your path diagram until it looks like the
one above:

®  To move objects, choose Edit — Move from the menus, and then drag the object to
its new location. You can also use the Move button to drag the endpoints of arrows.

m  To copy formatting from one object to another, choose Edit — Drag Properties from
the menus, select the properties you wish to apply, and then drag from one object
to another.

For more information about the Drag Properties feature, refer to online help.

Data Input
This example uses a data file in SPSS Statistics format. If you have SPSS Statistics
installed, you can view the data as you load it. Even if you don’t have SPSS Statistics
installed, Amos will still read the data.
» From the menus, choose File — Data Files.

» In the Data Files dialog box, click File Name.

» Browse to the Examples folder. If you performed a typical installation, the path is
CA\Program Files\IBM\SPSS\Amos\20\Examples\<language>.

» In the Files of type list, select SPSS Statistics (*.sav), click Attg_yng, and then click
Open.

» If you have SPSS Statistics installed, click the View Data button in the Data Files dialog
box. An SPSS Statistics window opens and displays the data.

subject age v _short vocah educatio
1 20 13 63 14
2 34 12 64 14
3 19 10 59 13
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» Review the data and close the data view.

» In the Data Files dialog box, click OK.

Performing the Analysis
» From the menus, choose Analyze — Calculate Estimates.

» Inthe Save As dialog box, enter a name for the file and click Save.

Amos calculates the model estimates.

Viewing Text Output
» From the menus, choose View — Text Output.

» To view the parameter estimates, click Estimates in the tree diagram in the upper left
pane of the Amos Output window.

Scalar Estimates {Group humber 1 - Default model)

Maximum Likelihood Estimates

Covariances: (Group humber 1 - Default model)
Estimate | S E. | CE. P | Lahel

recall?|<--=recalll 287 131 138 .02
recalld <--=placel 271 1.8 149 14 |cov_mp
placed =--=placel U715 515 333 ***
recalll | <--=placel 271 182 149 .14 |cov_rp
recalll <--=place? 461 217 213 .03
recalld <--=placel 222 231 100 532

Yariances: (Group humber 1 - Default model)
Estimate = 5.E. | CE. | P | Label

recalll 7.05 1.23 550 ***| v _recall
recalll 705 123 5.300***| v_recall
placel 753 518 533 %) v_place

placel 2753 518 532" v place
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You can see that the parameters that were specified to be equal do have equal
estimates. The standard errors here are generally smaller than the standard errors
obtained in Example 1. Also, because of the constraints on the parameters, there are
now positive degrees of freedom.

Now click Notes for Model in the upper left pane of the Amos Output window.

Computation of degrees of freadom (Default model)

Mumber of distinet sample moments: | 10
Mutnber of distinct parameters to be estitnated: 7
Dregrees of freedorm (10 - T 3

While there are still 10 sample variances and covariances, the number of parameters to
be estimated is only seven. Here is how the number seven is arrived at: The variances
of recalll and recall2, labeled v_recall, are constrained to be equal, and thus count as
a single parameter. The variances of placel and place2 (labeled v_place) count as
another single parameter. A third parameter corresponds to the equal covariances
recalll <> placel and recall2 <> place2 (labeled cov_rp). These three parameters,
plus the four unlabeled, unrestricted covariances, add up to seven parameters that have
to be estimated.

The degrees of freedom (10 — 7 = 3) may also be thought of as the number of
constraints placed on the original 10 variances and covariances.

Optional Output

The output we just discussed is all generated by default. You can also request additional
output:

From the menus, choose View — Analysis Properties.
Click the Output tab.

Ensure that the following check boxes are selected: Minimization history, Standardized
estimates, Sample moments, Implied moments, and Residual moments.
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.%. Analysis Properties

E stimation I MHumerical ] Bias
Permutations I Fandom # I Title
Output formatting I Output I Bootstrap
¥ Minirmization histary [T Indirect, direct & tatal effects
[+ Standardized estimates [~ Factar score weights

™ Sguared multiple corelations [ Covarances of estimates

[+ Sample moments [~ Corelations of estimates
[+ Implied moments [~ Critizal ratios for differences
[~ Allimplied moments [~ Tests far nomality and outliers

[~ Observed Information Matrix

4 Threshald for

[T Modification indices modification indices

» From the menus, choose Analyze — Calculate Estimates.

Amos recalculates the model estimates.

Covariance Matrix Estimates

» To see the sample variances and covariances collected into a matrix, choose View —
Text Output from the menus.

» Click Sample Moments in the tree diagram in the upper left corner of the Amos Output
window.
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The following is the sample covariance matrix:

placel
placel
recalll
recall?

placel
33.58
17.90
4.34
2.01

Sample Covariances (Group number 1)

place? | recalll | recalld

2314
357 579
43 1.568 7.94

» In the tree diagram, expand Estimates and then click Matrices.

The following is the matrix of implied covariances:

placel
place2
recalll
recalld

placel
4753
17.15
27
2.2

Implied Covariances (Group humber 1 - Default model)

place? | recalll | recalll

27.53
4.61 7.05
271 287 7.05

Note the differences between the sample and implied covariance matrices. Because the
model imposes three constraints on the covariance structure, the implied variances and
covariances are different from the sample values. For example, the sample variance of
placel is 33.58, but the implied variance is 27.53. To obtain a matrix of residual

covariances (sample covariances minus implied covariances), put a check mark next to

Residual moments on the Output tab and repeat the analysis.

The following is the matrix of residual covariances:

placel
placel
recalll
recalld

placel
6.05
i
1.43
-.21

Residual Covariances (Group number 1 - Default model)

place? | recalll | recall?

-5.37
-1.03 -1.27
-2.28 -.32 .89
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Displaying Covariance and Variance Estimates on the Path Diagram

As in Example 1, you can display the covariance and variance estimates on the path
diagram.

» Click the Show the output path diagram button.
» In the Parameter Formats pane to the left of the drawing area, click Unstandardized
estimates. Alternatively, you can request correlation estimates in the path diagram by

clicking Standardized estimates.

The following is the path diagram showing correlations:

recalll recall2

33 1B

place1 ‘ ‘ place2

Labeling Output

It may be difficult to remember whether the displayed values are covariances or
correlations. To avoid this problem, you can use Amos to label the output.

» Open the file Ex02.amw.

» Right-click the caption at the bottom of the path diagram, and choose Object Properties
from the pop-up menu.

» Click the Text tab.
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Example 2
Testing hypotheses
Attig's (1983) young subjects
Model Specification

:?; Object Properties

Colors ] Text I Parameters ] Forrmat ] Wigibility I

Font Size Font Style
|22 - | I Fegular - |
Figure caption

Example 2 =
Testing hypaotheses
Aﬁig'sé1 983) voung subjects

“formal Set Default

Hhde

K

Notice the word \format in the bottom line of the figure caption. Words that begin with
a backward slash, like \format, are called text macros. Amos replaces text macros with
information about the currently displayed model. The text macro \format will be
replaced by the heading Model Specification, Unstandardized estimates, or
Standardized estimates, depending on which version of the path diagram is displayed.

Hypothesis Testing

The implied covariances are the best estimates of the population variances and
covariances under the null hypothesis. (The null hypothesis is that the parameters
required to have equal estimates are truly equal in the population.) As we know from
Example 1, the sample covariances are the best estimates obtained without making any
assumptions about the population values. A comparison of these two matrices is
relevant to the question of whether the null hypothesis is correct. If the null hypothesis
is correct, both the implied and sample covariances are maximum likelihood estimates
of the corresponding population values (although the implied covariances are better
estimates). Consequently, you would expect the two matrices to resemble each other.
On the other hand, if the null hypothesis is wrong, only the sample covariances are
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maximum likelihood estimates, and there is no reason to expect them to resemble the
implied covariances.

The chi-square statistic is an overall measure of how much the implied covariances
differ from the sample covariances.

Chi-square = 6.276
Degrees of freedom = 3
Probability level = 0.099

In general, the more the implied covariances differ from the sample covariances, the
bigger the chi-square statistic will be. If the implied covariances had been identical to
the sample covariances, as they were in Example 1, the chi-square statistic would have
been 0. You can use the chi-square statistic to test the null hypothesis that the
parameters required to have equal estimates are really equal in the population.
However, it is not simply a matter of checking to see if the chi-square statistic is 0.
Since the implied covariances and the sample covariances are merely estimates, you
can’t expect them to be identical (even if they are both estimates of the same population
covariances). Actually, you would expect them to differ enough to produce a chi-square
in the neighborhood of the degrees of freedom, even if the null hypothesis is true. In
other words, a chi-square value of 3 would not be out of the ordinary here, even with a
true null hypothesis. You can say more than that: If the null hypothesis is true, the chi-
square value (6.276) is a single observation on a random variable that has an
approximate chi-square distribution with three degrees of freedom. The probability is
about 0.099 that such an observation would be as large as 6.276. Consequently, the
evidence against the null hypothesis is not significant at the 0.05 level.

Displaying Chi-Square Statistics on the Path Diagram

You can get the chi-square statistic and its degrees of freedom to appear in a figure
caption on the path diagram using the text macros \cmin and \df. Amos replaces these
text macros with the numeric values of the chi-square statistic and its degrees of
freedom. You can use the text macro \p to display the corresponding right-tail
probability under the chi-square distribution.

» From the menus, choose Diagram — Figure Caption.

» Click the location on the path diagram where you want the figure caption to appear.

The Figure Caption dialog box appears.
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» Inthe Figure Caption dialog box, enter a caption that includes the \cmin, \df, and \p text
macros, as follows:

° Figure Caption

x|
Font size CK |
(" Center align 20

@ Leftalign Cancel
i~ Right align [~ Bold
(" Center on page [ lalic

Press Ctrl-Enter when finished

Caption

IChi-sguare =Yemin (df of)
p=io

When Amos displays the path diagram containing this caption, it appears as follows:

Chi-square = 6.276 (3 df)
p=.099
257
708 705

recallt ‘ recall2

451 222
27.53 2753
place1 ‘ place2

1715

Example 2
Testing hypotheses
Attig's (1983) young subjects
Unstandardized estimates




55

Testing Hypotheses

Modeling in VB.NET

The following program fits the constrained model of Example 2:

.5 C-\Examples\Ex(02 vb

File Edit Fomat

El Module MainModule

B Sub Main()

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Semn.Standardized()
Sem.ImpliedMoments()
Sem.SampleMoments()
Sem.ResidualMoments()

Sem.Begin Group(Sem.AmosDir & "Bxamples\Attg_yng.sav")
Sem.AStructure("recalll (v_recall)™)
Sem.AStructure("recall2 (v_recall)")
Sem.AStructure("placel (v_place)")
Sem.Astructure("place2 (v_place)")
Sem.astructure("recalll <= placel (cov_rp)")
Sem.AStructure("recall2 <= place2 (cov_rp)")
Sem.FtModel()

Finally
Sem.Dispose()

End Try

- End Sub G

- End Module =
[4] | 4|

Description

i o

Run

7 I I _'I Close

Compile emors I Debug output I -
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This table gives a line-by-line explanation of the program:

Program Statement

Explanation

Dim Sem As New AmosEngine

Declares Sem as an object of type
AmosEngine. The methods and
properties of the Sem object are used to
specify and fit the model.

Sem.TextOutput

Creates an output file containing the
results of the analysis. At the end of the
analysis, the contents of the output file
are displayed in a separate window.

Sem.Standardized()
Sem.ImpliedMoments()
Sem.SampleMoments()
Sem.ResidualMoments()

Displays standardized estimates, implied
covariances, sample covariances, and
residual covariances.

Sem.BeginGroup ...

Begins the model specification for a
single group (that is, a single
population). This line also specifies that
the SPSS Statistics file Attg_yng.sav
contains the input data. Sem.AmosDir()
is the location of the Amos program
directory.

Sem.AStructure("recall1 (v_recall)")
Sem.AStructure("recall2 (v_recall)")
Sem.AStructure("place1 (v_place)")
Sem.AStructure("place2 (v_place)")
Sem.AStructure("recalll <> place1 (cov_rp)")
Sem.AStructure("recall2 <> place2 (cov_rp)")

Specifies the model. The first four
AStructure statements constrain the
variances of the observed variables
through the use of parameter names in
parentheses. Recalll and recall? are
required to have the same variance
because both variances are labeled
v_recall. The variances of placel and
place?2 are similarly constrained to be
equal. Each of the last two AStructure
lines represents a covariance. The two
covariances are both named cov_rp.
Consequently, those covariances are
constrained to be equal.

Sem.FitModel()

Fits the model.

Sem.Dispose()

Releases resources used by the Sem
object. It is particularly important for
your program to use an AmosEngine
object’s Dispose method before creating
another AmosEngine object. A process is
allowed to have only one instance of an
AmosEngine object at a time.

Try/Finally/End Try

This Try block guarantees that the
Dispose method will be called even if an
error occurs during program execution.
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» To perform the analysis, from the menus, choose File — Run.

Timing Is Everything

The AStructure lines must appear after BeginGroup; otherwise, Amos will not recognize
that the variables named in the AStructure lines are observed variables in the
attg_yng.sav dataset.

In general, the order of statements matters in an Amos program. In organizing an

Amos program, AmosEngine methods can be divided into three general groups’.

Group 1 — Declarative Methods

This group contains methods that tell Amos what results to compute and display.
TextOutput is a Group 1 method, as are Standardized, ImpliedMoments, SampleMoments,
and ResidualMoments. Many other Group 1 methods that are not used in this example
are documented in the Amos 20 Programming Reference Guide.

Group 2 — Data and Model Specification Methods

This group consists of data description and model specification commands.
BeginGroup and AStructure are Group 2 methods. Others are documented in the Amos
20 Programming Reference Guide.

Group 3 — Methods for Retrieving Results

These are commands to...well, retrieve results. So far, we have not used any Group 3
methods. Examples using Group 3 methods are given in the Amos 20 Programming
Reference Guide.

Tip: When you write an Amos program, it is important to pay close attention to the
order in which you call the Amos engine methods. The rule is that groups must appear
in order: Group 1, then Group 2, and finally Group 3.

For more detailed information about timing rules and a complete listing of methods and
their group membership, see the Amos 20 Programming Reference Guide.

1 There is also a fourth special group, consisting of only the Initialize Method. If the optional Initialize Method
is used, it must come before the Group 1 methods.
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3

More Hypothesis Testing

Introduction

This example demonstrates how to test the null hypothesis that two variables are
uncorrelated, reinforces the concept of degrees of freedom, and demonstrates, in a
concrete way, what is meant by an asymptotically correct test.

About the Data

For this example, we use the group of older subjects from Attig’s (1983) spatial
memory study and the two variables age and vocabulary. We will use data formatted
as a tab-delimited text file.

Bringing In the Data

>

>

From the menus, choose File — New.
From the menus, choose File — Data Files.
In the Data Files dialog box, select File Name.

Browse to the Examples folder. If you performed a typical installation, the path is
C:\Program Files\IBM\SPSS\Amos\20\Examples\<language>.

59
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» In the Files of type list, select Text (*.txt), select Attg_old.txt, and then click Open.

» In the Data Files dialog box, click OK.

Testing a Hypothesis That Two Variables Are Uncorrelated

Among Attig’s 40 old subjects, the sample correlation between age and vocabulary is
—0.09 (not very far from 0). Is this correlation nevertheless significant? To find out, we
will test the null hypothesis that, in the population from which these 40 subjects came,
the correlation between age and vocabulary is 0. We will do this by estimating the
variance-covariance matrix under the constraint that age and vocabulary are

uncorrelated.

Specifying the Model

Begin by drawing and naming the two observed variables, age and vocabulary, in the
path diagram, using the methods you learned in Example 1.

age vocabulary

Amos provides two ways to specify that the covariance between age and vocabulary
is 0. The most obvious way is simply to not draw a double-headed arrow connecting
the two variables. The absence of a double-headed arrow connecting two exogenous
variables implies that they are uncorrelated. So, without drawing anything more, the
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model specified by the simple path diagram above specifies that the covariance (and
thus the correlation) between age and vocabulary is 0.
The second method of constraining a covariance parameter is the more general
procedure introduced in Example 1 and Example 2.
From the menus, choose Diagram — Draw Covariances.
Click and drag to draw an arrow that connects vocabulary and age.
Right-click the arrow and choose Object Properties from the pop-up menu.
Click the Parameters tab.
Type 0 in the Covariance text box.

Close the Object Properties dialog box.

Your path diagram now looks like this:

afe vocabulary

;?; Object Properties

Colorz I Text ] Parameters I Farmat ] izibility ]

Fort zize and style Orientation

|1 a j| R egular j IHn:nriz::nntaI j

Covaniance Set Default

Id (e
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» From the menus, choose Analyze — Calculate Estimates.

The Save As dialog box appears.

» Enter a name for the file and click Save.

Amos calculates the model estimates.

Viewing Text Output
» From the menus, choose View — Text Output.
» In the tree diagram in the upper left pane of the Amos Output window, click Estimates.

Although the parameter estimates are not of primary interest in this analysis, they are
as follows:

Covariances: (Group humber 1 - Default model)
Estimate 5 E  CE. P Lahel
age<-->vocabulary .00
Correlations: (Group humber 1 - Default model)
Estitniate
age«--= vocabulary .00
Variances: (Group humber 1 - Default model)

Estitnate S.E CE. P Lahel
age 21.57 480 447 ##+
vocabulary 131,20 2073 443 ***

In this analysis, there is one degree of freedom, corresponding to the single constraint
that age and vocabulary be uncorrelated. The degrees of freedom can also be arrived
at by the computation shown in the following text. To display this computation:

» Click Notes for Model in the upper left pane of the Amos Output window.
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Computation of degrees of freedom (Default model)

Mumber of distinct sample moments: 3
Mumnber of distinct parameters to be estimated:. 2
Degrees of freedom (3 -2 1

The three sample moments are the variances of age and vocabulary and their
covariance. The two distinct parameters to be estimated are the two population
variances. The covariance is fixed at 0 in the model, not estimated from the sample
information.

Viewing Graphics Output
» Click the Show the output path diagram button.

» In the Parameter Formats pane to the left of the drawing area, click Unstandardized
estimates.

The following is the path diagram output of the unstandardized estimates, along with
the test of the null hypothesis that age and vocabulary are uncorrelated:

Chi-square = 348 (1 df)
p=.555
2187 131.28
‘ age vocabulary ‘
00
Example 3
More h%(gothesm testing
Aftig's (1983} old subjects
Unstandardized estimates

The probability of accidentally getting a departure this large from the null hypothesis
is 0.555. The null hypothesis would not be rejected at any conventional significance
level.
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The usual ¢ statistic for testing this null hypothesis is 0.59 (df = 38, p = 0.56
two-sided). The probability level associated with the ¢ statistic is exact. The probability
level of 0.555 of the chi-square statistic is off, owing to the fact that it does not have an
exact chi-square distribution in finite samples. Even so, the probability level of 0.555
is not bad.

Here is an interesting question: If you use the probability level displayed by Amos
to test the null hypothesis at either the 0.05 or 0.01 level, then what is the actual
probability of rejecting a true null hypothesis? In the case of the present null
hypothesis, this question has an answer, although the answer depends on the sample
size. The second column in the next table shows, for several sample sizes, the real
probability of a Type I error when using Amos to test the null hypothesis of zero
correlation at the 0.05 level. The third column shows the real probability of a Type I
error if you use a significance level of 0.01. The table shows that the bigger the sample
size, the closer the true significance level is to what it is supposed to be. It’s too bad
that such a table cannot be constructed for every hypothesis that Amos can be used to
test. However, this much can be said about any such table: Moving from top to bottom,
the numbers in the 0.05 column would approach 0.05, and the numbers in the 0.01
column would approach 0.01. This is what is meant when it is said that hypothesis tests
based on maximum likelihood theory are asymptotically correct.

The following table shows the actual probability of a Type I error when using Amos
to test the hypothesis that two variables are uncorrelated:

Nominal Significance Level
Sample Size
0.05 0.01

3 0.250 0.122
4 0.150 0.056
5 0.115 0.038
10 0.073 0.018
20 0.060 0.013
30 0.056 0.012
40 0.055 0.012
50 0.054 0.011
100 0.052 0.011
150 0.051 0.010
200 0.051 0.010
>500 0.050 0.010
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More Hypothesis Testing

Here is a program for performing the analysis of this example:

5. C-\Examples\Ex03.vb

File Edit Fomat

eadel

= Module MainModule

B Sub Main{)

Dim Sem As MNew AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.ImpliedMoments()
Sem.SampleMoments()

Sem.Astructure("age <—= vocabulary (0)")
Sem.FtModel()

Sem.Begin Group(Sem.AmosDir & "Examples\Attg_old.txt")

Finally
Sem.Dispose()
End Try
- End Sub i
L End Module -
[+] y
Description R
un
‘| | _'I Close
: Compile emors §| Debug output Y

The AStructure method constrains the covariance, fixing it at a constant 0. The program
does not refer explicitly to the variances of age and vocabulary. The default behavior
of Amos is to estimate those variances without constraints. Amos treats the variance of
every exogenous variable as a free parameter except for variances that are explicitly

constrained by the program.
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Conventional Linear Regression

Introduction

This example demonstrates a conventional regression analysis, predicting a single
observed variable as a linear combination of three other observed variables. It also
introduces the concept of identifiability.

About the Data

Warren, White, and Fuller (1974) studied 98 managers of farm cooperatives. We will
use the following four measurements:

Test Explanation
erformance A 24-item test of performance related to “planning, organization,

p controlling, coordinating, and directing”
A 26-item test of knowledge of “economic phases of

knowledge management directed toward profit-making...and product
knowledge”

value A 30-item test of “tendency to rationally evaluate means to an
economic end”

satisfaction An 11-item test of “gratification obtained...from performing the
managerial role”

A fifth measure, past training, was also reported, but we will not use it.

In this example, you will use the Excel worksheet Warren5v in the file
UserGuide.xls, which is located in the Examples folder. If you performed a typical
installation, the path is C:\Program Files\IBM\SPSS\Amos\20\Examples\

<language>.

67
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Here are the sample variances and covariances:

rowtppe | wamame_ |performance| knowledge value| satisfaction| past_braining
h 93 93 93 94 9a
o performance 0.0209

o knowledge 0077 0.052

cov walue 0.0245 0.028 01212

cov satizfaction 0. 0045 0.0044 -0, 0063 0,090

oy pazt_training T 00192 0.0353 -0.0065 0.0946
mean 00589 1.379E 28773 24613 21174

Warren5v also contains the sample means. Raw data are not available, but they are not
needed by Amos for most analyses, as long as the sample moments (that is, means,
variances, and covariances) are provided. In fact, only sample variances and
covariances are required in this example. We will not need the sample means in
Warren5v for the time being, and Amos will ignore them.

Analysis of the Data

Suppose you want to use scores on knowledge, value, and satisfaction to predict
performance. More specifically, suppose you think that performance scores can be
approximated by a linear combination of knowledge, value, and satisfaction. The
prediction will not be perfect, however, and the model should thus include an error
variable.

Here is the initial path diagram for this relationship:

knowledge \

1
vallle — perform ance

satisfaction

Example 4
Conventional linear regression
Job performance of farm managers
{(Model Specification)
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The single-headed arrows represent linear dependencies. For example, the arrow
leading from knowledge to performance indicates that performance scores depend, in
part, on knowledge. The variable error is enclosed in a circle because it is not directly
observed. Error represents much more than random fluctuations in performance scores
due to measurement error. Error also represents a composite of age, socioeconomic
status, verbal ability, and anything else on which performance may depend but which
was not measured in this study. This variable is essential because the path diagram is
supposed to show all variables that affect performance scores. Without the circle, the
path diagram would make the implausible claim that performance is an exact linear
combination of knowledge, value, and satisfaction.

The double-headed arrows in the path diagram connect variables that may be
correlated with each other. The absence of a double-headed arrow connecting error
with any other variable indicates that error is assumed to be uncorrelated with every
other predictor variable—a fundamental assumption in linear regression. Performance
is also not connected to any other variable by a double-headed arrow, but this is for a
different reason. Since performance depends on the other variables, it goes without
saying that it might be correlated with them.

Specifying the Model
Using what you learned in the first three examples, do the following:
» Start a new path diagram.

» Specify that the dataset to be analyzed is in the Excel worksheet Warren5v in the file
UserGuide.xls.

» Draw four rectangles and label them knowledge, value, satisfaction, and performance.
» Draw an ellipse for the error variable.

» Draw single-headed arrows that point from the exogenous, or predictor, variables
(knowledge, value, satisfaction, and error) to the endogenous, or response, variable
(performance).

Note: Endogenous variables have at least one single-headed path pointing toward them.
Exogenous variables, in contrast, send out only single-headed paths but do not receive any.
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» Draw three double-headed arrows that connect the observed exogenous variables
(knowledge, satisfaction, and value).

Your path diagram should look like this:

knowledge

value —= performance

satisfaction

Identification

In this example, it is impossible to estimate the regression weight for the regression of
performance on error, and, at the same time, estimate the variance of error. It is like
having someone tell you, “I bought $5 worth of widgets,” and attempting to infer both
the price of each widget and the number of widgets purchased. There is just not enough
information.

You can solve this identification problem by fixing either the regression weight
applied to error in predicting performance, or the variance of the error variable itself,
at an arbitrary, nonzero value. Let’s fix the regression weight at 1. This will yield the
same estimates as conventional linear regression.

Fixing Regression Weights

» Right-click the arrow that points from error to performance and choose Object Properties
from the pop-up menu.

» Click the Parameters tab.

» Type 1 in the Regression weight box.
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knowledge

TRT
=
1

valle —» performance!

satisfaction

:F_-': Object Properties

Colors ] Teut ] Farameters I Format ] Yizibility ]

Font size and style————— — Orientation

|14 leeguIal j IHDrizuntaI j

Begrezsion weight Set Default
Ih Wrdo

Setting a regression weight equal to 1 for every error variable can be tedious.
Fortunately, Amos Graphics provides a default solution that works well in most cases.

» Click the Add a unique variable to an existing variable button.

» Click an endogenous variable.

Amos automatically attaches an error variable to it, complete with a fixed regression
weight of 1. Clicking the endogenous variable repeatedly changes the position of the
error variable.
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Viewing the Text Output

Here are the maximum likelihood estimates:

Regression Weights: (Group humber 1 - Default model)

Estimate SE CE P Label
performance<---lmowledge 26 05 4B e
petformance<---vahe 15 040 414w
performance <--- satisfaction 05 04 12720
Covariances: (Group numhber 1 - Default model)
Estimate SE  CE P Label

lmowledge <--» satisfaction .00 .01 63 .53

value =--» satisfaction -.01 a1 -590 55
knowledge <--> value 03 01 328 .00

Yariances: (Group number 1 - Default model)

Estimate SE CE. P Lahel
knowledge .05 N1 A.06 ***
value 12 02 A.0R R
satisfaction .09 01 606
Zgquy 01 N0 A.OA R

Amos does not display the path performance <— error because its value is fixed at the
default value of 1. You may wonder how much the other estimates would be affected
if a different constant had been chosen. It turns out that only the variance estimate for
error is affected by such a change.

The following table shows the variance estimate that results from various choices for
the performance <— error regression weight.

Fixed regression weight

Estimated variance of error

0.5 0.050
0.707 0.025
1.0 0.0125
1.414 0.00625
2.0 0.00313

Suppose you fixed the path coefficient at 2 instead of 1. Then the variance estimate
would be divided by a factor of 4. You can extrapolate the rule that multiplying the path
coefficient by a fixed factor goes along with dividing the error variance by the square
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of the same factor. Extending this, the product of the squared regression weight and the
error variance is always a constant. This is what we mean when we say the regression
weight (together with the error variance) is unidentified. If you assign a value to one
of them, the other can be estimated, but they cannot both be estimated at the same time.

The identifiability problem just discussed arises from the fact that the variance of a
variable, and any regression weights associated with it, depends on the units in which
the variable is measured. Since error is an unobserved variable, there is no natural way
to specify a measurement unit for it. Assigning an arbitrary value to a regression weight
associated with error can be thought of as a way of indirectly choosing a unit of
measurement for error. Every unobserved variable presents this identifiability
problem, which must be resolved by imposing some constraint that determines its unit
of measurement.

Changing the scale unit of the unobserved error variable does not change the overall
model fit. In all the analyses, you get:

Chi-square = 0.00
Degrees of freedom = 0
Probability level cannot be computed

There are four sample variances and six sample covariances, for a total of 10 sample
moments. There are three regression paths, four model variances, and three model
covariances, for a total of 10 parameters that must be estimated. Hence, the model has
zero degrees of freedom. Such a model is often called saturated or just-identified.

The standardized coefficient estimates are as follows:

Standardized Regression Weights: (Group humber 1 - Default
meodel)

Estirnate
performance<--- knowledge 41
performance<---  walue 35
performance<--- satisfaction 10

Correlations: (Group number 1 - Default model)

Estimmate
knowledge <--»  satisfaction 08
value «--» satisfaction -.0a

khowledge <-->  wvalue 35
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The standardized regression weights and the correlations are independent of the units
in which all variables are measured; therefore, they are not affected by the choice of
identification constraints.

Squared multiple correlations are also independent of units of measurement. Amos
displays a squared multiple correlation for each endogenous variable.

Squared Multiple Comrelations: (Group number 1 - Default
model)

Estimate
petrformance A0

Note: The squared multiple correlation of a variable is the proportion of its variance that
is accounted for by its predictors. In the present example, knowledge, value, and
satisfaction account for 40% of the variance of performance.

Viewing Graphics Output

The following path diagram output shows unstandardized values:

05
knowledge

ny

-13 performance

satisfaction

Example 4
Corventional linear regression
Job performance of farm managers
iUnstandardized estimates)
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Conventional Linear Regression

knowledge K 41

40

35
value —bperformanoe

sgtisfaction [ 10

Example 4

Conventional linear regression
Job performance of farm managers
(Standardized estimates)

Viewing Additional Text Output

» In the tree diagram in the upper left pane of the Amos Output window, click Variable

Summary.
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Variable Summary (Group number 1)
Y our model contains the following variables (Group humber 1)

Ohserved, endogenous variables
performance
Ohzerved, exogenous wariables

knowledge
walue
satisfaction

Unohserved, exogenous variables

Error

Variable counts (Group number 1)

Mumber of variables m your model:
Mumber of observed wariables:
Mumber of unobserved variables:
Mumber of exogenous variables:
Mumber of endogenous variables:

— Ja o= s

Endogenous variables are those that have single-headed arrows pointing to them; they
depend on other variables. Exogenous variables are those that do not have single-
headed arrows pointing to them; they do not depend on other variables.

Inspecting the preceding list will help you catch the most common (and insidious)
errors in an input file: typing errors. If you try to type performance twice but
unintentionally misspell it as preformance one of those times, both versions will
appear on the list.

Now click Notes for Model in the upper left pane of the Amos Output window.

The following output indicates that there are no feedback loops in the path diagram:

Notes for Group (Group number 1)
The model is recursive.

Later you will see path diagrams where you can pick a variable and, by tracing along
the single-headed arrows, follow a path that leads back to the same variable.

Note: Path diagrams that have feedback loops are called nonrecursive. Those that do
not are called recursive.
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Modeling in VB.NET

The model in this example consists of a single regression equation. Each single-headed
arrow in the path diagram represents a regression weight. Here is a program for
estimating those regression weights:

File Edt Fomat

eade|

= Module MainModule

& Sub Main()

Dirn Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.smc()
Sem.ImpliedMoments()
Sem.SampleMoments()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide xIs", "Warren5v")
Sem.AStructure("performance <--- knowledge")
Sem.Astructure("performance <-- value")

Sem.Astructure("performance <--- satisfaction”)
Sem.AStructure("performance <--- error (1)")
Sem.FtModel()
Finally
Sem.Dispose()
End Try
- EndSub

LEnd Module -
|+

-

Description

- 4 I I LI Close |

Debug output

The four lines that come after Sem.BeginGroup correspond to the single-headed arrows
in the Amos Graphics path diagram. The (1) in the last AStructure line fixes the error
regression weight at a constant 1.

Assumptions about Correlations among Exogenous Variables

When executing a program, Amos makes assumptions about the correlations among
exogenous variables that are not made in Amos Graphics. These assumptions simplify
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Equation

the specification of many models, especially models that have parameters. The
differences between specifying a model in Amos Graphics and specifying one
programmatically are as follows:

B Amos Graphics is entirely WYSIWYG (What You See Is What You Get). If you
draw a two-headed arrow (without constraints) between two exogenous variables,
Amos Graphics will estimate their covariance. If two exogenous variables are not
connected by a double-headed arrow, Amos Graphics will assume that the
variables are uncorrelated.

The default assumptions in an Amos program are:

®  Unique variables (unobserved, exogenous variables that affect only one other
variable) are assumed to be uncorrelated with each other and with all other
exogenous variables.

m  Exogenous variables other than unique variables are assumed to be correlated
among themselves.

In Amos programs, these defaults reflect standard assumptions of conventional linear
regression analysis. Thus, in this example, the program assumes that the predictors,
knowledge, value, and satisfaction, are correlated and that error is uncorrelated with
the predictors.

Format for the AStructure Method

The AStructure method permits model specification in equation format. For instance,
the single Sem.AStructure statement in the following program describes the same
model as the program on p. 77 but in a single line. This program is saved under the
name Ex04-eq.vb in the Examples directory.
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.= . C\Examples\Ex{(M-eq vb

File Edit Fomat

eadel

= Module MainModule

= Sub Main()

Dim S5em As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.ImpliedMoments()
Sem.SampleMoments()

[*]

Sem.BeginGroup(5em.AmosDir & "Examples'UserGuide xIs", "Warren5v")
Sem.AStructure("performance = knowledge + value + satisfaction + error (1)")
Sem.FAtModel()
Finally
Sem.Dispose()
End Try
- End Sub s
- End Module

of
[« | 4

Description

7 I . I _'I Close

i Compile emors | Debug output

4

Note that in the AStructure line above, each predictor variable (on the right side of the
equation) is associated with a regression weight to be estimated. We could make these
regression weights explicit through the use of empty parentheses as follows:

Sem.AStructure("performance = (Jknowledge + (Jvalue + ()satisfaction + error(1)")

The empty parentheses are optional. By default, Amos will automatically estimate a
regression weight for each predictor.






Example

Unobserved Variables

Introduction

This example demonstrates a regression analysis with unobserved variables.

About the Data

The variables in the previous example were surely unreliable to some degree. The fact
that the reliability of performance is unknown presents a minor problem when it
comes to interpreting the fact that the predictors account for only 39.9% of the
variance of performance. If the test were extremely unreliable, that fact in itself would
explain why the performance score could not be predicted accurately. Unreliability of
the predictors, on the other hand, presents a more serious problem because it can lead
to biased estimates of regression weights.

The present example, based on Rock, et al. (1977), will assess the reliabilities of
the four tests included in the previous analysis. It will also obtain estimates of
regression weights for perfectly reliable, hypothetical versions of the four tests. Rock,
et al. re-examined the data of Warren, White, and Fuller (1974) that were discussed
in the previous example. This time, each test was randomly split into two halves, and
each half was scored separately.

81
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Here is a list of the input variables:

Variable name Description

Iperformance 12-item subtest of Role Performance
2performance 12-item subtest of Role Performance
Tknowledge 13-item subtest of Knowledge
2knowledge 13-item subtest of Knowledge
Ivalue 15-item subtest of Value Orientation
2value 15-item subtest of Value Orientation
Isatisfaction 5-item subtest of Role Satisfaction
2satisfaction 6-item subtest of Role Satisfaction
past_training degree of formal education

For this example, we will use a Lotus data file, Warren9v.wkl1, to obtain the sample
variances and covariances of these subtests. The sample means that appear in the file
will not be used in this example. Statistics on formal education (past_training) are
present in the file, but they also will not enter into the present analysis. The following

is a portion of the dataset:

:?: warren9v_wk1

File  Format Help
rowdype_ |warname_ 1pedormance | 2Zperdormance
n 498 98
Con 1 performance 00271
o Zperormance n.mye nozzz
o 1knowledge 002149 0.01493
o Zknowledge 0.0164 n.013
Cow Twalue 002584 0.02494
con 2value 0.0z17 0.0185
] |
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Model A

The following path diagram presents a model for the eight subtests:

1
1knowledge fe.1
knowledge

1
2knowledge

1

1value
1

2value

1
1satisfaction
1 X N
error8 2satisfaction

satisfaction

Example 5: Model A
Regression with unobserved variables
Job performance of farm managers
Warren, White and Fuller (1974)
Standardized estimates

Four ellipses in the figure are labeled knowledge, value, satisfaction, and performance.
They represent unobserved variables that are indirectly measured by the eight split-half
tests.

Measurement Model

The portion of the model that specifies how the observed variables depend on the
unobserved, or latent, variables is sometimes called the measurement model. The
current model has four distinct measurement submodels.
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1

1knowledge w1

knowledge

1

@ _2knowledge

@ performance

1 - -

1satisfaction w1
1

2satisfaction

Consider, for instance, the knowledge submodel: The scores of the two split-half
subtests, lknowledge and 2knowledge, are hypothesized to depend on the single
underlying, but not directly observed variable, knowledge. According to the model,
scores on the two subtests may still disagree, owing to the influence of error3 and
error4, which represent errors of measurement in the two subtests. /knowledge and
2knowledge are called indicators of the latent variable knowledge. The measurement

model for knowledge forms a pattern that is repeated three more times in the path
diagram shown above.

Structural Model

The portion of the model that specifies how the latent variables are related to each other
is sometimes called the structural model.
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knowledge

performance

satisfaction

The structural part of the current model is the same as the one in Example 4. It is only
in the measurement model that this example differs from the one in Example 4.

Identification

With 13 unobserved variables in this model, it is certainly not identified. It will be
necessary to fix the unit of measurement of each unobserved variable by suitable
constraints on the parameters. This can be done by repeating 13 times the trick that was
used for the single unobserved variable in Example 4: Find a single-headed arrow
leading away from each unobserved variable in the path diagram, and fix the
corresponding regression weight to an arbitrary value such as 1. If there is more than
one single-headed arrow leading away from an unobserved variable, any one of them
will do. The path diagram for “Model A” on p. 83 shows one satisfactory choice of
identifiability constraints.

Specifying the Model
Because the path diagram is wider than it is tall, you may want to change the shape of

the drawing area so that it fits the path diagram better. By default, the drawing area in
Amos is taller than it is wide so that it is suitable for printing in portrait mode.
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Changing the Orientation of the Drawing Area
» From the menus, choose View — Interface Properties.
» In the Interface Properties dialog box, click the Page Layout tab.

» Set Paper Size to one of the “Landscape” paper sizes, such as Landscape - A4.

;i; Interface Properties [ 2 =]

Page Layout | Formats ] Colors ] Typefaces | Pen Width | Misc | Accessibility |

Margins
Top I'Ii
Bottom I'Ii
Lett 1
Right 1

Faper Size
| Landscape - A4 ﬂ

Height [1653542307

Width [11.652313%

* |nches (" Centimeters

Apply Cancel

» Click Apply.
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Creating the Path Diagram
Now you are ready to draw the model as shown in the path diagram on page 83. There
are a number of ways to do this. One is to start by drawing the measurement model first.
Here, we draw the measurement model for one of the latent variables, knowledge, and

then use it as a pattern for the other three.

» Draw an ellipse for the unobserved variable knowledge.

2

» From the menus, choose Diagram — Draw Indicator Variable.

» Click twice inside the ellipse.

Each click creates one indicator variable for knowledge:

T T

L4

As you can see, with the Draw indicator variable button enabled, you can click multiple
times on an unobserved variable to create multiple indicators, complete with unique or
error variables. Amos Graphics maintains suitable spacing among the indicators and
inserts identification constraints automatically.
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Rotating Indicators

The indicators appear by default above the knowledge ellipse, but you can change their
location.

» From the menus, choose Edit — Rotate.

» Click the knowledge ellipse.

Each time you click the knowledge ellipse, its indicators rotate 90° clockwise. If you
click the ellipse three times, its indicators will look like this:

( —

Duplicating Measurement Models

The next step is to create measurement models for value and satisfaction.

» From the menus, choose Edit — Select All.

The measurement model turns blue.
» From the menus, choose Edit — Duplicate.
» Click any part of the measurement model, and drag a copy to beneath the original.

» Repeat to create a third measurement model above the original.
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Your path diagram should now look like this:

» Create a fourth copy for performance, and position it to the right of the original.

» From the menus, choose Edit — Reflect.

This repositions the two indicators of performance as follows:
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Entering Variable Names
» Right-click each object and select Object Properties from the pop-up menu

» In the Object Properties dialog box, click the Text tab, and enter a name into the
Variable Name text box.

Alternatively, you can choose View — Variables in Dataset from the menus and then drag
variable names onto objects in the path diagram.

Completing the Structural Model

There are only a few things left to do to complete the structural model.
» Draw the three covariance paths connecting knowledge, value, and satisfaction.

» Draw a single-headed arrow from each of the latent predictors, knowledge, value, and
satisfaction, to the latent dependent variable, performance.

» Add the unobserved variable error9 as a predictor of performance (from the menus,
choose Diagram — Draw Unique Variable).

Your path diagram should now look like the one on p. 83. The Amos Graphics input
file that contains this path diagram is Ex05-a.amw.

Results for Model A

As an exercise, you might want to confirm the following degrees of freedom
calculation:

Computation of degrees of freedom (Default model)

Mumber of distinct sample moments: 36
Mumber of distinct parameters to be estimated: 22
Degrees of freedom (36 - 227 14



Ex5_modelA

91

Unobserved Variables

The hypothesis that Model A is correct is accepted.

Chi-square = 10.335
Degrees of freedom = 14
Probability level = 0.737

The parameter estimates are affected by the identification constraints.

Regression Weights: (Group humber 1 - Default model)

Estitnate SE. C.R. P Label
perfarmance  =--- knowledge 337 125 2637 007
performance =--- satisfaction JEA 054 1427 260
perfarmance  =--- value A76E ora 2225 026
Zaatizfaction =--- satisfaction 792 438 1808 0N
1=atisfaction =--- satisfaction 1.000
2value =--- walue FEB3 185 4128 A
Tvalue =--- walue 1.000
Zknowvledge  =--- knowledge Ba3 61 4252 HAE
1knowledge  =--- knowledge 1.000
1perfarmance <--- performance 1.000
Zperformance =--- performance BET A16 T450 HEE

Covariances: (Group number 1 - Default model)

Estimate S.E. CR. P Label
value =--= knowvledge 037 m2 3036 002
satisfaction =--= value -.00s 3 -B10 542
zatizfaction =--= knowledge 004 009 462 G444

Variances: (Group number 1 - Default model)
Estimste SE.  CR. P Lakel

satisfaction 030 032 1743 0N
wallie 00 032 3147 002
knorevledoe 045 M3 3133 002
errard ooy oo3 o 2577 010
errord a4 m1 o 311
errard 033 007 SABT A=
&rrard 030 023 3249 0M
erromg 037 ma 4831 =
errary 022 049 431 632
errorg 043 032 1420 136
errarl .oav o0z 310 002

error 0a7 L1 = P
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Standardized estimates, on the other hand, are not affected by the identification
constraints. To calculate standardized estimates:

» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Enable the Standardized estimates check box.

Standardized Regression Weaights: (Group number 1 - Default
model)
Estimate
performance <---  knowledge A6
performance =---  satisfaction 30
performance =---  value 398
2=zgtisfaction =---  =zatisfaction a7
1=atisfaction =---  satisfaction G965
2value = walue B33
1walue 2---  walue 745
Zknowvledge =---  knowvledoge E18
Tknowledge  =---  knowvledge T2
1performance=---  petrfarmance a6
Zperformance =---  performance 819
Correlations: {Group numhber 1 - Default model)
Estimate
walue =--=  knowledge 542
satisfaction=--=  walue -84
zatisfaction=--=  knowledge ne4
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Viewing the Graphics Output

The path diagram with standardized parameter estimates displayed is as follows:

53 . _
Tknowledge b Ch_l-square =10.335 (14 df)
. p =.737
.38 knowledge
2knowledge 62 .

52 @
66

.56

g
1value 75 ]
2value 63
5
.80 ®©
1satisfaction fy.-90
satisfaction
.75

56
Example 5: Model A

Regression with unobserved variables
Job performance of farm managers
Warren, White and Fuller (1974)
Standardized estimates

.73
86 error)
67

52%2pertormancel+—errord

A3

The value above performance indicates that pure knowledge, value, and satisfaction
account for 66% of the variance of performance. The values displayed above the
observed variables are reliability estimates for the eight individual subtests. A formula
for the reliability of the original tests (before they were split in half) can be found in
Rock et al. (1977) or any book on mental test theory.

Model B

Assuming that Model A is correct (and there is no evidence to the contrary), consider
the additional hypothesis that /knowledge and 2knowledge are parallel tests. Under the
parallel tests hypothesis, the regression of /knowledge on knowledge should be the
same as the regression of 2knowledge on knowledge. Furthermore, the error variables
associated with lknowledge and 2knowledge should have identical variances. Similar
consequences flow from the assumption that /value and 2value are parallel tests, as
well as Iperformance and 2performance. But it is not altogether reasonable to assume
that Isatisfaction and 2satisfaction are parallel. One of the subtests is slightly longer
than the other because the original test had an odd number of items and could not be
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split exactly in half. As a result, 2satisfaction is 20% longer than Isatisfaction.
Assuming that the tests differ only in length leads to the following conclusions:

®  The regression weight for regressing 2satisfaction on satisfaction should be 1.2
times the weight for regressing /satisfaction on satisfaction.

m  Given equal variances for error7 and errorS, the regression weight for error8
should be /1.2 = 1.095445 times as large as the regression weight for error7.

You do not need to redraw the path diagram from scratch in order to impose these
parameter constraints. You can take the path diagram that you created for Model A as
a starting point and then change the values of two regression weights. Here is the path
diagram after those changes:

1knowledge
2knowledge

beta

knowledge

1value
2value

1satisfaction

Example 5: Model B
Parallel tests regression
Job performance of farm managers
Warren, White and Fuller (1974)
Model Specification

Results for Model B

The additional parameter constraints of Model B result in increased degrees of freedom:

Computation of degrees of freedom (Default model)

Mumber of distinct sample moments: 38
Mumber of distinct parameters to be estimated: 14
Degrees of freedom (36 - 14 22
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The chi-square statistic has also increased but not by much. It indicates no significant
departure of the data from Model B.

Chi-square = 26.967
Degrees of freedom = 22
Probability level = 0.212

If Model B is indeed correct, the associated parameter estimates are to be preferred
over those obtained under Model A. The raw parameter estimates will not be presented
here because they are affected too much by the choice of identification constraints.
However, here are the standardized estimates and the squared multiple correlations:

Standardized Regression Weights: (Group humber 1 - Default
model)

Correlations:

model)

perfarmance
Zperfarmance
1 perfarmance
2zatisfaction

1 satisfaction
2value

1walue
2knowvledge
1knowledge

(Group number 1 - Default model)

Eztimate
zatisfaction=--= walue -055
valle =--=  knoweledge i)
zatizfaction=--= knowvledge 094

Estimate
BT
Baa
Boa
EEE
G245
464
A4E4
434
439

E=timate
performance <---  knowledge 29
perfarmance =---  gatisfaction 14
perfarmance =---  walug 352
Zsgtisfaction =---  errord Aa75
Z2zatisfaction =---  satisfaction G165
1zatisfaction =---  satisfaction Fan
2value 2--- value B85
1value 2 value B85
Zknowledge  =---  knowledge BE3
1knowledge  =---  knowledge EE3
1performance=---  performance 835
Zperfarmance=---  perfarmance G35

Squared Multiple Correlations: (Group humber 1 - Default
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Here are the standardized estimates and squared multiple correlations displayed on the
path diagram:

Chi-square = 26.967 (22 df)
44 p=.212

1knowledge
44 knowledge

2knowledge .66
9
A7

.53

A7

2value

.62

1satisfaction -
.67
2satisfaction .

Example 5: Model B
Parallel tests regression
Job performance of farm managers
Warren, White and Fuller (1974)
Standardized estimates

Testing Model B against Model A

Sometimes you may have two alternative models for the same set of data, and you
would like to know which model fits the data better. You can perform a direct
comparison whenever one of the models can be obtained by placing additional
constraints on the parameters of the other. We have such a case here. We obtained
Model B by imposing eight additional constraints on the parameters of Model A. Let
us say that Model B is the stronger of the two models, in the sense that it represents the
stronger hypothesis about the population parameters. (Model A would then be the
weaker model). The stronger model will have greater degrees of freedom. The chi-
square statistic for the stronger model will be at least as large as the chi-square statistic
for the weaker model.

A test of the stronger model (Model B) against the weaker one (Model A) can be
obtained by subtracting the smaller chi-square statistic from the larger one. In this
example, the new statistic is 16.632 (that is, 26.967 — 10.335)). If the stronger model
(Model B) is correctly specified, this statistic will have an approximate chi-square
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distribution with degrees of freedom equal to the difference between the degrees of
freedom of the competing models. In this example, the difference in degrees of
freedom is 8 (that is, 22 — 14). Model B imposes all of the parameter constraints of
Model A, plus an additional 8.

In summary, if Model B is correct, the value 16.632 comes from a chi-square
distribution with eight degrees of freedom. If only the weaker model (Model A) is
correct, and not the stronger model (Model B), the new statistic will tend to be large.
Hence, the stronger model (Model B) is to be rejected in favor of the weaker model
(Model A) when the new chi-square statistic is unusually large. With eight degrees of
freedom, chi-square values greater than 15.507 are significant at the 0.05 level. Based
on this test, we reject Model B.

What about the earlier conclusion, based on the chi-square value of 26.967 with
22 degrees of freedom, that Model B is correct? The disagreement between the two
conclusions can be explained by noting that the two tests differ in their assumptions.
The test based on eight degrees of freedom assumes that Model A is correct when
testing Model B. The test based on 22 degrees of freedom makes no such assumption
about Model A. If you are quite sure that Model A is correct, you should use the test
comparing Model B against Model A (the one based here on eight degrees of freedom);
otherwise, you should use the test based on 22 degrees of freedom.
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Modeling in VB.NET

Model A

The following program fits Model A:

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\Warren9v.wk1")
Sem.AStructure("1performance <--- performance (1)")
Sem.AStructure("2performance <--- performance")
Sem.AStructure("1knowledge <--- knowledge (1)")
Sem.AStructure("2knowledge <--- knowledge")
Sem.AStructure("1value <--- value (1)")
Sem.AStructure("2value <--- value")
Sem.AStructure("1satisfaction <--- satisfaction (1)")
Sem.AStructure("2satisfaction <--- satisfaction")

Sem.AStructure )"
Sem.AStructure ))")
)

(

(

(

("1performance <--- error1 (1

("2performance <--- error2 (1
Sem.AStructure("1knowledge <--- error3 (1)"
Sem.AStructure("2knowledge <--- error4
Sem.AStructureE"WaIue <--- error5 (1)")

(

(

(

(

(

(

: (1 )II
(1)
Sem.AStructure("2value <--- error6 (1)")
Sem.AStructure("1satisfaction <--- error7 (1)
Sem.AStructure("2satisfaction <--- error8 (1)

)
")

Sem.AStructure
Sem.AStructure
Sem.AStructure
Sem.AStructure
Sem.FitModel()

Finally
Sem.Dispose()

End Try

End Sub

performance <--- knowledge"
'‘performance <--- satisfaction")

performance <--- value")
'‘performance <--- error9 (1)")

Because of the assumptions that Amos makes about correlations among exogenous
variables (discussed in Example 4), the program does not need to indicate that
knowledge, value, and satisfaction are allowed to be correlated. It is also not necessary
to specify that errorl, error2, ..., error9 are uncorrelated among themselves and with
every other exogenous variable.
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Unobserved Variables

The following program fits Model B:

Sub Main()
Dim Sem As New AmosEngine

Try

Sem.TextOutput()
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\Warren9v.wk1")
Sem.AStructure("1performance <--- performance (1)")
Sem.AStructure("2performance <--- performance (1)")
Sem.AStructure("1knowledge <--- knowledge (1)")
Sem.AStructure("2knowledge <--- knowledge (1)")
Sem.AStructure("1value <--- value (1)")
Sem.AStructure("2value <--- value (1)")
Sem.AStructure("1satisfaction <--- satisfaction (1)")

Sem.AStructure("2satisfaction <--- satisfaction (" & CStr(1.2) & ")")

Sem.AStructure("performance <--- knowledge")
Sem.AStructure("performance <--- value")
Sem.AStructure("performance <--- satisfaction")
Sem.AStructure("performance <--- error9 (1)")

Sem.AStructure("1performance <--- error1
Sem.AStructure("2performance <--- error2
Sem.AStructure("1knowledge <--- error3 (1
Sem.AStructure("2knowledge <--- error4 (1

(

(

(

")

Sem.AStructure("1value <--- error5 (1)")
Sem.AStructure("2value <--- error6 (1)")
Sem.AStructure("1satisfaction <--- error7 (1)")

Sem.AStructure("2satisfaction <--- error8 (" & CStr(1.095445) & ")")

Sem.AStructure("error1 (alpha)")
Sem.AStructure("error2 (alpha)")
Sem.AStructure("error8 (delta)")
Sem.AStructure("error7 (delta)")
Sem.AStructure("erroré (gamma)")
Sem.AStructure("error5 (gamma)”)
Sem.AStructure("error4 (beta)")
Sem.AStructure("error3 (beta)")
Sem.FitModel()

Finally

Sem.Dispose()

End Try
End Sub







Example

Exploratory Analysis

Introduction

This example demonstrates structural modeling with time-related latent variables, the
use of modification indices and critical ratios in exploratory analyses, how to compare
multiple models in a single analysis, and computation of implied moments, factor
score weights, total effects, and indirect effects.

About the Data

Wheaton et al. (1977) reported a longitudinal study of 932 persons over the period
from 1966 to 1971. Joreskog and Sorbom (1984), and others since, have used the
Wheaton data to demonstrate analysis of moment structures. Six of Wheaton's
measures will be used for this example.

Measure

Explanation

anomia67

1967 score on the anomia scale

anomia7l

1971 anomia score

powles67

1967 score on the powerlessness scale

powles71

1971 powerlessness score

education

Years of schooling recorded in 1966

SEI

Duncan's Socioeconomic Index administered in 1966

Take a look at the sample means, standard deviations, and correlations for these six
measures. You will find the following table in the SPSS Statistics file, Wheaton.sav.
After reading the data, Amos converts the standard deviations and correlations into

101
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variances and covariances, as needed for the analysis. We will not use the sample
means in the analysis.

rowtype_ | varname_ | anomiab7’ powles6T anomiafi powlesT1 educatio =ei
1|n 932.00 932.00 932.00 932.00 932.00 932.00
2 | corr anomiasy 1.00
3 | corr powlesET GE 1.00
4 | corr anomiar R A7 1.00
5 | corr powvlesT 44 52 BT 1.00
B | corr educatio -36 -4 -.35 =37 1.00
T | corr =ei -.30 -.29 -.29 -.28 o4 1.00
& | stodew .44 3.06 394 316 310 21.22
9 | mean 135361 1476 1413 14.80 10.90 37.439

Model A for the Wheaton Data

Joreskog and Sorbom (1984) proposed the model shown on p. 103 for the Wheaton
data, referring to it as their Model A. The model asserts that all of the observed
variables depend on underlying, unobserved variables. For example, anomia67 and
powles67 both depend on the unobserved variable 67_alienation, a hypothetical
variable that Joreskog and S6rbom referred to as alienation. The unobserved variables
epsl and eps2 appear to play the same role as the variables errorl and error2 did in
Example 5. However, their interpretation here is different. In Example 5, error! and
error2 had a natural interpretation as errors of measurement. In the present example,
since the anomia and powerlessness scales were not designed to measure the same
thing, it seems reasonable to believe that differences between them will be due to more
than just measurement error. So in this case, eps! and eps2 should be thought of as
representing not only errors of measurement in anomia67 and powles67 but in every
other variable that might affect scores on the two tests besides 67_alienation (the one
variable that affects them both).

Specifying the Model

To specify Model A in Amos Graphics, draw the path diagram shown next, or open the
example file Ex06—a.amw. Notice that the eight unique variables (deltal, delta2, zetal,
zeta2, and epsl through eps4) are uncorrelated among themselves and with the three
latent variables: ses, 67 _alienation, and 71_alienation.
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Exploratory Analysis
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Example 6: Model A
Exploratory analysis
Wheaton (1977)
Model Specification

Identification

Model A is identified except for the usual problem that the measurement scale of each
unobserved variable is indeterminate. The measurement scale of each unobserved
variable may be fixed arbitrarily by setting a regression weight to unity (1) for one of
the paths that points away from it. The path diagram shows 11 regression weights fixed
at unity (1), that is, one constraint for each unobserved variable. These constraints are
sufficient to make the model identified.

Results of the Analysis

The model has 15 parameters to be estimated (6 regression weights and 9 variances).
There are 21 sample moments (6 sample variances and 15 covariances). This leaves 6
degrees of freedom.
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Computation of degrees of freedom [Default model)

Murnbher of distinct samnple moments: 21
Mutnber of distinct parameters to be estitmated: 15
Degrees of freedom (21 - 153 f

The Wheaton data depart significantly from Model A.

Chi-square = 71.544
Degrees of freedom = 6
Probability level = 0.000

Dealing with Rejection

You have several options when a proposed model has to be rejected on statistical
grounds:

B You can point out that statistical hypothesis testing can be a poor tool for choosing
amodel. Joreskog (1967) discussed this issue in the context of factor analysis. It is
a widely accepted view that a model can be only an approximation at best, and that,
fortunately, a model can be useful without being true. In this view, any model is
bound to be rejected on statistical grounds if it is tested with a big enough sample.
From this point of view, rejection of a model on purely statistical grounds
(particularly with a large sample) is not necessarily a condemnation.

B You can start from scratch to devise another model to substitute for the rejected one.

B You can try to modify the rejected model in small ways so that it fits the data better.

It is the last tactic that will be demonstrated in this example. The most natural way of
modifying a model to make it fit better is to relax some of its assumptions. For
example, Model A assumes that eps/ and eps3 are uncorrelated. You could relax this
restriction by connecting eps/ and eps3 with a double-headed arrow. The model also
specifies that anomia67 does not depend directly on ses. You could remove this
assumption by drawing a single-headed arrow from ses to anomia67. Model A does
not happen to constrain any parameters to be equal to other parameters, but if such
constraints were present, you might consider removing them in hopes of getting a
better fit. Of course, you have to be careful when relaxing the assumptions of a model
that you do not turn an identified model into an unidentified one.
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Modification Indices

You can test various modifications of a model by carrying out a separate analysis for
each potential modification, but this approach is time-consuming. Modification
indices allow you to evaluate many potential modifications in a single analysis. They
provide suggestions for model modifications that are likely to pay off in smaller chi-
square values.

Using Modification Indices

>

>

From the menus, choose View — Analysis Properties.
In the Analysis Properties dialog box, click the Output tab.

Enable the Modification Indices check box. For this example, leave the Threshold for
modification indices set at 4.

The following are the modification indices for Model A:

Covariances: (Group number 1 - Default model)
M1 Par Change

epsd <-->deltal 5,905 -424
epsd <--=epsd  26.545 B35
gpsl <--reps3 32071 - BE8
gpsl <--=deltal 4.600 421
epsl <--repsd 35367 -1.069
epsl <--Fepsd 40.911 1.253

Variances: (Group humber 1 - Default model)
MLI  Par Change
Regression Weights: (Group humber 1 - Default model)
MLI.  Par Change

powles7l <---powlesf? 5457 057
powlesTl <---anomiad?  9.006 -.085
anotnia’ 1 <---powlesé? 6775 -.069
anormia?] <---anomiab? 10.352 07
powlesd? «<---powles7l 5412 054
powlesd? <---anotnia7l 7278 -.054
anotniaf? <---powles7l  7.706 -.07a

anomiaf? <---anopdall 9065 63
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The column heading M.I. in this table is short for Modification Index. The modification
indices produced are those described by Joreskog and Sorbom (1984). The first
modification index listed (5.905) is a conservative estimate of the decrease in
chi-square that will occur if eps2 and deltal are allowed to be correlated. The new
chi-square statistic would have 5 (= 6 — 1) degrees of freedom and would be no
greater than 65.639 (71.544 — 5.905 ). The actual decrease of the chi-square statistic
might be much larger than 5.905. The column labeled Par Change gives approximate
estimates of how much each parameter would change if it were estimated rather than
fixed at 0. Amos estimates that the covariance between eps2 and deltal would be
—0.424 . Based on the small modification index, it does not look as though much would
be gained by allowing eps2 and deltal to be correlated. Besides, it would be hard to
justify this particular modification on theoretical grounds even if it did produce an
acceptable fit.

Changing the Modification Index Threshold

By default, Amos displays only modification indices that are greater than 4, but you
can change this threshold.

From the menus, choose View — Analysis Properties.
In the Analysis Properties dialog box, click the Output tab.

Enter a value in the Threshold for modification indices text box. A very small threshold
will result in the display of a lot of modification indices that are too small to be of
interest.

The largest modification index in Model A is 40.911. It indicates that allowing eps/
and eps3 to be correlated will decrease the chi-square statistic by at least 40.911. This
is a modification well worth considering because it is quite plausible that these two
variables should be correlated. Eps/ represents variability in anomia67 that is not due
to variation in 67_alienation. Similarly, eps3 represents variability in anomia71 that is
not due to variation in 71 _alienation. Anomia67 and anomia7l are scale scores on the
same instrument (at different times). If the anomia scale measures something other
than alienation, you would expect to find a nonzero correlation between eps/ and eps3.
In fact, you would expect the correlation to be positive, which is consistent with the
fact that the number in the Par Change column is positive.
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The theoretical reasons for suspecting that eps/ and eps3 might be correlated apply
to eps2 and eps4 as well. The modification indices also suggest allowing eps2 and eps4
to be correlated. However, we will ignore this potential modification and proceed
immediately to look at the results of modifying Model A by allowing eps/ and eps3 to
be correlated. The new model is Joreskog and Sérbom’s Model B.

Model B for the Wheaton Data

You can obtain Model B by starting with the path diagram for Model A and drawing a
double-headed arrow between eps/ and eps3. If the new double-headed arrow extends
beyond the bounds of the print area, you can use the Shape button to adjust the
curvature of the double-headed arrow. You can also use the Move button to reposition
the end points of the double-headed arrow.

The path diagram for Model B is contained in the file Ex06-b.amw.

‘anomia67‘ ‘powlesG7 ‘anomiaﬂ‘ ‘powles71‘

educatw‘ ‘ SEI

33

Example 6: Model B
Exploratory analysis
Wheaton (1977)
Model Specification
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Text Output

The added covariance between eps/ and eps3 decreases the degrees of freedom by 1.

Mumber of distinct zample moments; 21
Mumber of distinct parameters to be estimated: 16

Degress of freedom (21 - 16T 5

The chi-square statistic is reduced by substantially more than the promised 40.911.

Chi-square = 6.383
Degrees of freedom =5
Probability level = 0.271

Model B cannot be rejected. Since the fit of Model B is so good, we will not pursue the
possibility, mentioned earlier, of allowing eps2 and eps4 to be correlated. (An
argument could be made that a nonzero correlation between eps2 and eps4 should be
allowed in order to achieve a symmetry that is lacking in the Model B.)

The raw parameter estimates must be interpreted cautiously since they would have
been different if different identification constraints had been imposed.

Regression Weights: (Group number 1 - Default model)

E=timate: SE. CR. P Lakel
B7_alienation =---zes -.550 053 10294  *==
T1_alienation =---67 _alienation B17 050 12421 #=
71 _alienstion =---zes =212 049 4294 =

pcreeles T 2---T1 _alienation Aarm 049 19630 =
anomis T =71 _alienstion  1.000
poreelesBT =---67 _slienation 1.027 033 18322
anomisE?  =---E¥ _alienation  1.000
educatio Hmm SET 1.000
ZEI - 3EE 5164 A2 2255

Covariances: (Group humber 1 - Default model)

Estimate SE. CR. P Lakel
epsl=--=eps3 1886 240 T.E6E M

Variances: (Group number 1 - Default model)

Estimate SE. CR. P Label
Tes GE72 BST 10455 =
retal 4.700 433 10864 **
retal 3862 343 11237
eps1 5.039 371 13650 =
eps2 22 317 BS6F
epsd 4 506 395 12473
epzd 2681 5230 53T
deftal 2728 516 5282 =
defta? 2686567 18173 14668 **
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Note the large critical ratio associated with the new covariance path. The covariance
between epsl and eps3 is clearly different from 0. This explains the poor fit of Model
A, in which that covariance was fixed at 0.

Graphics Output for Model B

The following path diagram displays the standardized estimates and the squared
multiple correlations:

.38
.76 ?73
‘anomla67‘ ‘powlesG?‘ anom|a71‘ ‘powles71‘

Chi-square = 6.38
.85 .64 df=5
. \, .41 p=.27

‘ educatio ‘ SEI

e

Example 6: Model B
Exploratory analysis
W heaton (1977)
Standardized estimates

Because the error variables in the model represent more than just measurement error,
the squared multiple correlations cannot be interpreted as estimates of reliabilities.
Rather, each squared multiple correlation is an estimate of a lower bound on the
corresponding reliability. Take education, for example. Ses accounts for 72% of its
variance. Because of this, you would estimate its reliability to be at least 0.72.
Considering that education is measured in years of schooling, it seems likely that its
reliability is much greater.
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Misuse of Modification Indices

In trying to improve upon a model, you should not be guided exclusively by
modification indices. A modification should be considered only if it makes theoretical
Or common sense.

A slavish reliance on modification indices without such a limitation amounts to
sorting through a very large number of potential modifications in search of one that
provides a big improvement in fit. Such a strategy is prone, through capitalization on
chance, to producing an incorrect (and absurd) model that has an acceptable chi-square
value. This issue is discussed by MacCallum (1986) and by MacCallum, Roznowski,
and Necowitz (1992).

Improving a Model by Adding New Constraints

Modification indices suggest ways of improving a model by increasing the number of
parameters in such a way that the chi-square statistic falls faster than its degrees of
freedom. This device can be misused, but it has a legitimate place in exploratory
studies. There is also another trick that can be used to produce a model with a more
acceptable chi-square value. This technique introduces additional constraints in such a
way as to produce a relatively large increase in degrees of freedom, coupled with a
relatively small increase in the chi-square statistic. Many such modifications can be
roughly evaluated by looking at the critical ratios in the C.R. column. We have already
seen (in Example 1) how a single critical ratio can be used to test the hypothesis that a
single population parameter equals 0. However, the critical ratio also has another
interpretation. The square of the critical ratio of a parameter is, approximately, the
amount by which the chi-square statistic will increase if the analysis is repeated with
that parameter fixed at O.

Calculating Critical Ratios

If two parameter estimates turn out to be nearly equal, you might be able to improve
the chi-square test of fit by postulating a new model where those two parameters are
specified to be exactly equal. To assist in locating pairs of parameters that do not differ
significantly from each other, Amos provides a critical ratio for every pair of
parameters.
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» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Enable the Critical ratios for differences check box.

When Amos calculates critical ratios for parameter differences, it generates names for
any parameters that you did not name during model specification. The names are
displayed in the text output next to the parameter estimates.

Here are the parameter estimates for Model B. The parameter names generated by
Amos are in the Label column.

Regression Weights: (Group humber 1 - Default model)

Estimate SE. CR. P Label
67 _alienation =--- sez -.5a0 0533 10294 *** par 6
71 _alienation =--- 67 _alienation B17 050 1242 *** par_4
71 _alienation =--- ses -2 049 4294 ***  pgr 5
pacnevles T =--- 71 _alienation Aam 049 19630 ***  par_1
anomis? =--- ¥1_alienstion 1.000
povlesfY =--- B7_alienation 1.027 053 19.322 ***  par_2
anomisBy  =--- 67 _alienation 1.000
educatio Hem- SES 1.000
SEI Zee- ZET 5164 421 12255 *** par_3

Covariances: (Group number 1 - Default model)
Estimste ~ SE.  CR. P Label

epsl=--= eps3 1886 240 FEBE M par T

Yariances: (Group number 1 - Default model)
Estimate  SE.  CR. P Label

ses BE72  B57 10458 ** par_g
zetal 4700 433 10864  **  par 9
Teta? 3862 343 11257 par_10
eps 5059 371 13650  **  par_11
Bps2 2211 317 BAEE % par_12
Bp3 4806 395 12473 par_13
epsd 2EH 328 8437 % par_14
dettat 2728 516 5202 % par 15

dettaz 286567 18173 14663 ** par_16
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The parameter names are needed for interpreting the critical ratios in the following table:

Critical Ratios for Differences between Parameters (Default model)

par_1 par 2 par 3 par 4 par 5 par 6

par 1 .000

par_2 877 .000

par 3 9.883 9.741 .000

par 4 -4.429  -5931 -10.579 .000

par 5  -17.943 -16.634 -12.284 -18.098 .000

par 6 -22.343 -26471 -12.661 -17.300 -5.115 .000
par_7 3.903 3.689  -6.762 5.056 8490 10.124
par_8 8.955 8.866 1.707 9.576 10995 11.797

par_9 8.364 7.872 -714 9.256 11311 12.047
par_10 7.781 8.040  -2.362 9.470 11.683 12.629
par_11  11.106  11.705 -186 11.969 14.039 15431
par_12 3.826 3336  -5.599 4998  7.698  8.253
par_13  10.425 9.659 -.621 10306 12.713 13.575

par_l4 4.697 4906  -4.642 6353 8554  9.602
par_15 3.393 3283  -7.280 4.019 5508 5975
par_16  14.615 14.612 14.192 14.637 14.687 14.712

Critical Ratios for Differences between Parameters (Default model)

par 7 par 8 par 9 par 10 par 11 par 12
par_7 .000
par_8 7.128 .000
par_9 5.388 -2.996 .000
par_10  4.668 -4.112 -1.624 .000
par 11 9.773  -2.402 548 2.308 .000
par_12 740  -6.387 -5254 -3507 -4.728 .000
par_ 13 8318 -2.695 169 1.554 -507  5.042
par_14  1.798 -5.701 -3909 -2.790 -4.735 999
par_15 1.482 -3.787 -2.667 -1.799 -3.672 .855
par_ 16 14.563 14.506 14.439 14.458 14.387 14.544

Critical Ratios for Differences between Parameters (Default model)

par 13 par 14 par 15 par 16
par_13 .000
par_14 -3.322 .000
par_15 -3.199 .077 .000
par_16 14400 14.518 14.293 .000

Ignoring the 0’s down the main diagonal, the table of critical ratios contains 120
entries, one for each pair of parameters. Take the number 0.877 near the upper left
corner of the table. This critical ratio is the difference between the parameters labeled
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par_I and par_2 divided by the estimated standard error of this difference. These two
parameters are the regression weights for powles71 <— 71_alienation and
powles67 <— 67_alienation.

Under the distribution assumptions stated on p. 35, the critical ratio statistic can be
evaluated using a table of the standard normal distribution to test whether the two
parameters are equal in the population. Since 0.877 is less in magnitude than 1.96, you
would not reject, at the 0.05 level, the hypothesis that the two regression weights are
equal in the population.

The square of the critical ratio for differences between parameters is approximately
the amount by which the chi-square statistic would increase if the two parameters were
set equal to each other. Since the square of 0.877 is 0.769, modifying Model B to
require that the two regression weights have equal estimates would yield a chi-square
value of about 6.383 + 0.769 = 7.172 . The degrees of freedom for the new model
would be 6 instead of 5. This would be an improved fit (p = 0.307 versus p = 0.275
for Model B), but we can do much better than that.

Let’s look for the smallest critical ratio. The smallest critical ratio in the table is
0.077, for the parameters labeled par_I14 and par_15. These two parameters are the
variances of eps4 and deltal. The square of 0.077 is about 0.006. A modification of
Model B that assumes eps4 and deltal to have equal variances will result in a
chi-square value that exceeds 6.383 by about 0.006, but with 6 degrees of freedom
instead of 5. The associated probability level would be about 0.381. The only problem
with this modification is that there does not appear to be any justification for it; that is,
there does not appear to be any a priori reason for expecting eps4 and deltal to have
equal variances.

We have just been discussing a misuse of the table of critical ratios for differences.
However, the table does have a legitimate use in the quick examination of a small
number of hypotheses. As an example of the proper use of the table, consider the fact that
observations on anomia67 and anomia71 were obtained by using the same instrument
on two occasions. The same goes for powles67 and powles71. It is plausible that the tests
would behave the same way on the two occasions. The critical ratios for differences are
consistent with this hypothesis. The variances of eps/ and eps3 (par_11 and par_13)
differ with a critical ratio of —0.51. The variances of eps2 and eps4 (par_12 and par_14)
differ with a critical ratio of 1.00. The weights for the regression of powerlessness on
alienation (par_I and par_2) differ with a critical ratio of 0.88. None of these
differences, taken individually, is significant at any conventional significance level. This
suggests that it may be worthwhile to investigate more carefully a model in which all
three differences are constrained to be 0. We will call this new model Model C.
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Model C for the Wheaton Data

Here is the path diagram for Model C from the file Ex06—c.amw:

var_p

‘anomia67‘ ‘powle567‘ ‘anomia71‘ ‘powles71‘

o

‘educatio‘ ‘ SEI

Example 6: Model C
Exploratory analysis
Wheaton (1977)
Model Specification

The label path_p requires the regression weight for predicting powerlessness from
alienation to be the same in 1971 as it is in 1967. The label var_a is used to specify
that eps/ and eps3 have the same variance. The label var_p is used to specify that eps2
and eps4 have the same variance.

Results for Model C

Model C has three more degrees of freedom than Model B:

Computation of degrees of freedom (Default model)

Mumber of distinct sample moments: 21
Mumber of distinct parameters to be estimated: 13
Degrees of freedom (21 - 13 i
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Testing Model C

As expected, Model C has an acceptable fit, with a higher probability level than Model B:

Chi-square = 7.501
Degrees of freedom = 8
Probability level = 0.484

You can test Model C against Model B by examining the difference in chi-square
values ( 7.501 — 6.383 = 1.118) and the difference in degrees of freedom (8§ — 5 = 3).
A chi-square value of 1.118 with 3 degrees of freedom is not significant.

Parameter Estimates for Model C

The standardized estimates for Model C are as follows:

.38
74 ! .76
‘anom|a67‘ ‘powlesG?‘ anomla71‘ ‘powles71‘

.50
"19Chi—square =7.50
df=8
p = .48

educatlo ‘ ‘

2L

Example 6: Model C
Exploratory analysis
Wheaton (1977)
Standardized estimates
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Multiple Models in a Single Analysis

Amos allows for the fitting of multiple models in a single analysis. This allows Amos
to summarize the results for all models in a single table. It also allows Amos to perform
a chi-square test for nested model comparisons. In this example, Models A, B, and C
can be fitted in a single analysis by noting that Models A and C can each be obtained
by constraining the parameters of Model B.

In the following path diagram from the file Ex06-all.amw, parameters of Model B
that need to be constrained to yield Model A or Model C have been assigned names:

covi

var_p71

‘anonﬂa67‘ ‘powﬂesﬁ7 ‘ ‘anonﬂa71‘ ‘ powles71‘

‘educaﬁo ‘ ‘ SEI ‘
& @
Example 6: Most General Model
Exploratory Analysis

Wheaton (1977)
Model Specification

Seven parameters in this path diagram are named: var_a67, var_p67, var_a7l,
var_p71, b_pow67, b_pow71, and covl. The naming of the parameters does not
constrain any of the parameters to be equal to each other because no two parameters
were given the same name. However, having names for the variables allows
constraining them in various ways, as will now be demonstrated.
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Using the parameter names just introduced, Model A can be obtained from the most
general model (Model B) by requiring covl = 0.

» In the Models panel to the left of the path diagram, double-click Default Model.

Detault kModel

The Manage Models dialog box appears.

» In the Model Name text box, type Model A: No Autocorrelation.

"v'-.-"e_ights

hMeans

=
-=. Manage Models

taodel Hame
todel & Mo Autocarrelation]

Parameter Constraints

=

o o™

e | Delete LCloze

» Double-click cov1 in the left panel.

Notice that cov1 appears in the Parameter Constraints box.

» Type cov1 =0 in the Parameter Constraints box.
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;-=_-'; Manage Models i E3

We_ights

e
b powwET IMD-:IEI A Mo Sutocornelation

fModel Mame

b powwil
I:-:u\:'ariances

N == |-:-:-v1 =0 =

Parameter Constraints

This completes the specification of Model A.

» In the Manage Models dialog box, click New.

» In the Model Name text box, type Model B: Most General.

:?; Manage Models B E3
'W'eélghts-l todel Mame

b powET IMD-:IEI B: Mozt General

b_pow 7T Parameter Constraints
Covariances

Ep—_ | ;I

Model B has no constraints other than those in the path diagram, so you can proceed
immediately to Model C.

Click New.
In the Model Name text box, type Model C: Time-Invariance.

In the Parameter Constraints box, type:
b_pow67 = b_pow71
var_a67 =var_a71
var_p67 = var_p71
For the sake of completeness, a fourth model (Model D) will be introduced, combining

the single constraint of Model A with the three constraints of Model C. Model D can
be specified without retyping the constraints.

Click New.

In the Model Name text box, type Model D: A and C Combined.
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» In the Parameter Constraints box, type:
Model A: No Autocorrelation
Model C: Time-Invariance

These lines tell Amos that Model D incorporates the constraints of both Model A and
Model C.

Now that we have set up the parameter constraints for all four models, the final step
is to perform the analysis and view the output.

Output from Multiple Models

Viewing Graphics Output for Individual Models

When you are fitting multiple models, use the Models panel to display the diagrams
from different models. The Models panel is just to the left of the path diagram. To
display a model, click its name.

cModel & Mo Autocorrelation

DK: Model B: Most General
2K bModel C: Time-lnwvariance|rodels

2k kModel D: & and C Combined

Viewing Fit Statistics for All Four Models
» From the menus, choose View — Text Output.
» In the tree diagram in the upper left pane of the Amos Output window, click Model Fit.

The following is the portion of the output that shows the chi-square statistic:

CMIN

moclel MPAR CMIN DF P CMINDF
model & Mo Autocorrelation 15 71544 - aoa 11.924
model B: Most General 16 5383 5 perh 1277
model C: Time-Invariance 13 7.0 g 454 a35
model 00 A and C Combined 12 73077 9 oo G120
Saturated model 1 oo ]

Independence model 5] 2131 790 13 an 142119
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The CMIN column contains the minimum discrepancy for each model. In the case of
maximum likelihood estimation (the default), the CMIN column contains the
chi-square statistic. The p column contains the corresponding upper-tail probability for
testing each model.

For nested pairs of models, Amos provides tables of model comparisons, complete
with chi-square difference tests and their associated p values.

In the tree diagram in the upper left pane of the Amos Output window, click Model
Comparison.

Mested Model Comparisons

Assuming model Model A: No Autocomrelation to be cormrect:

M FI RFI U
Mardel DF CMIN P pekad  Dettaz  rho-1  rhol
Model O: 3 1533 675 001 omoo-027 -027

A andd C Combined

Assuming model Model B: Most General to be correct:

MF FI  RFI T
Moctel DF  CMIN - P pepai  Dettaz  tho-l  rho2
Mocdel A
Model & eton, 1 BS1B0 000 03 0% 075 075
Model C:
i R 3117 773 0m oMo o-onE -0z
Model D

& and © Cambined 4 66693 000 LIk | 03 043 048

Assuming model Model C: Time-lnvariance to be correct:

MF FI RFI TUI
Mocel DF CMIN- P pepa 1 Detta2 tho-l  rho2
Mocel O: 1 B55TE OO0 O3 O3 051 051

A andd C Combined

This table shows, for example, that Model C does not fit significantly worse than
Model B (p = 0.773). In other words, assuming that Model B is correct, you would
accept the hypothesis of time invariance.

On the other hand, the table shows that Model A fits significantly worse than Model
B (p = 0.000 ). In other words, assuming that Model B is correct, you would reject the
hypothesis that eps/ and eps3 are uncorrelated.
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Obtaining Optional Output

The variances and covariances among the observed variables can be estimated under
the assumption that Model C is correct.

» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.
» Select Implied moments (a check mark appears next to it).

» To obtain the implied variances and covariances for all the variables in the model
except error variables, select All implied moments.

For Model C, selecting All implied moments gives the following output:

Implied {for all variables) Covariances

TES G7_alienation 71 _alienation SEl educatio
ses E.858
B7_alienation -3.838 EAa14
71 _alienation -3.720 4977 7565
SEI 35.484 -19.858 192468 449805
educatio B.358 -3.838 -3.720 35.484 9600
povlesT -3.77 44973 7.553 -19.23 =377
anotmiz? -3.720 4977 7565 -19.248 -3.720
powvlesEy -3.835 £.909 4973 -19.842 -3.835
anomiab? -3.830 6914 4977 -19.858 -3.835

porles71 anomia¥l povelesBY anomiaby

piowevle=T 9839

anomia? 7559 12515

powvlesEy 4 9649 44973 9339

anomiab? 4973 G865 £.904 11.864

The implied variances and covariances for the observed variables are not the same as
the sample variances and covariances. As estimates of the corresponding population
values, the implied variances and covariances are superior to the sample variances and
covariances (assuming that Model C is correct).

If you enable both the Standardized estimates and All implied moments check boxes
in the Analysis Properties dialog box, Amos will give you the implied correlation
matrix of all variables as well as the implied covariance matrix.
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The matrix of implied covariances for all variables in the model can be used to carry
out a regression of the unobserved variables on the observed variables. The resulting
regression weight estimates can be obtained from Amos by enabling the Factor score
weights check box. Here are the estimated factor score weights for Model C:

Factor Score Weights

SEl educatio powles?!  anomiafl powlesET  anomissy

=] nz2a 542 -055 -016 -0e9 -028
67 _alienation  -.003 - 061 134 =027 A7 242
71 _slienstion  -.003 -049 A1 253 134 -0

The table of factor score weights has a separate row for each unobserved variable, and
a separate column for each observed variable. Suppose you wanted to estimate the ses
score of an individual. You would compute a weighted sum of the individual’s six
observed scores using the six weights in the ses row of the table.

Obtaining Tables of Indirect, Direct, and Total Effects

The coefficients associated with the single-headed arrows in a path diagram are
sometimes called direct effects. In Model C, for example, ses has a direct effect on
71_alienation. In turn, 71_alienation has a direct effect on powles71. Ses is then said
to have an indirect effect (through the intermediary of 7/_alienation) on powles71.

From the menus, choose View — Analysis Properties.
In the Analysis Properties dialog box, click the Output tab.

Enable the Indirect, direct & total effects check box.

For Model C, the output includes the following table of total effects:

Total Effects (Group number 1 - Model C: Time-lnvariance)

zes  BY_alienstion T _alienation

67 _alienstion -.580 oo 0aa
71 _alienstion -.542 Bo7 naa
SEl 3174 oo 0aa
educatio 1.000 oo 0aa
porevles v -.542 Bo7 899
anomizay -4z BOv 1.000
porevlesEy -.558 S99 0aa

anomias? -.560 1.000 0aan
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The first row of the table indicates that 67_alienation depends, directly or indirectly,
on ses only. The total effect of ses on 67_alienation is —0.56. The fact that the effect is
negative means that, all other things being equal, relatively high ses scores are
associated with relatively low 67_alienation scores. Looking in the fifth row of the
table, powles71 depends, directly or indirectly, on ses, 67_alienation, and
71_alienation. Low scores on ses, high scores on 67_alienation, and high scores on
71_alienation are associated with high scores on powles71. See Fox (1980) for more
help in interpreting direct, indirect, and total effects.

Modeling in VB.NET

Model A

The following program fits Model A. It is saved as Ex06—a.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Mods(4)
Sem.BeginGroup(Sem.AmosDir & "Examples\Wheaton.sav")
Sem.AStructure("anomia67 <--- 67_alienation (1)")
Sem.AStructure("anomia67 <--- eps1 (1)")
Sem.AStructure("powles67 <--- 67_alienation")
Sem.AStructure("powles67 <--- eps2 (1)")
Sem.AStructure("anomia71 <--- 71_alienation (1)")
Sem.AStructure("anomia71 <--- eps3 (1)")
Sem.AStructure("powles71 <--- 71_alienation")
Sem.AStructure("

powles71 <--- eps4 (1)")

Sem.AStructure
Sem.AStructure

'67_alienation <--- ses")
'67_alienation <--- zetal (1)")

Sem.AStructure("71_alienation <--- ses")

(
(
Sem.AStructure("71_alienation <--- 67_alienation")
(
Sem.AStructure("71_alienation <--- zeta2 (1)")

Sem.AStructure("educatio <--- ses (1)")
Sem.AStructure("educatio <--- deltal (1)")
Sem.AStructure("SEI <--- ses")
Sem.AStructure("SEI <--- delta2 (1)")
Sem.FitModel()

Finally
Sem.Dispose()

End Try

End Sub
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Model B

The following program fits Model B. It is saved as Ex06—b.vb.

Sub Main()
Dim Sem As New AmosEngine

y
Sem.TextOutput()

Sem.Standardized()
Sem.Smc()
Sem.Crdiff()
Sem.BeginGroup(Sem.AmosDir & "Examples\Wheaton.sav")
Sem.AStructure("anomia67 <--- 67_alienation (1)")
Sem.AStructure("anomia67 <--- eps1 (1)")
Sem.AStructure("powles67 <--- 67_alienation")
Sem.AStructure("powles67 <--- eps2 (1)")
Sem.AStructure("anomia71 <--- 71_alienation (1)")
)

(
(
E
Sem.AStructure("anomia71 <--- eps3 (1)")
Sem.AStructure("powles71 <--- 71_alienation
Sem.AStructure("powles71 <--- eps4 (1)")
Sem.AStructure("67_alienation <--- ses")
Sem.AStructure("67_alienation <--- zetal (1)")

(

(

(

(

(

(

(

(

Sem.AStructure("71_alienation <--- 67_alienation")
Sem.AStructure("71_alienation <--- ses")
Sem.AStructure("71_alienation <--- zeta2 (1)")
Sem.AStructure("educatio <--- ses (1)")
Sem.AStructure("educatio <--- deltal (1)")
Sem.AStructure("SEI <--- ses")

Sem.AStructure("SEI <--- delta2 (1)")

Sem.AStructure("eps1 <---> eps3") ' Autocorrelated residual
Sem.FitModel()

Finally

Sem.Dispose()

End Try
End Sub
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The following program fits Model C. It is saved as Ex06—c.vb.

Exploratory Analysis

Sub Main()

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.AlllmpliedMoments()
Sem.FactorScoreWeights()
Sem.TotalEffects()

Sem.BeginGroup(Sem.AmosDir & "Examples\Wheaton.sav")
Sem.AStructure("anomia67 <--- 67_alienation (1)")
Sem.AStructure("anomia67 <--- eps1 (1)")
Sem.AStructure("powles67 <--- 67_alienation (path_p)")
Sem.AStructure("powles67 <--- eps2 (1)")
Sem.AStructure("anomia71 <--- 71_alienation (1)")
Sem.AStructure("anomia71 <--- eps3 (1)")
Sem.AStructure("powles71 <--- 71_alienation (path_p)")
Sem.AStructure("powles71 <--- eps4 (1)")
Sem.AStructure("67_alienation <--- ses")
Sem.AStructure("67_alienation <--- zetal (1)")
Sem.AStructure("71_alienation <--- 67_alienation")
Sem.AStructure("71_alienation <--- ses")
(
(
(
(
(
(
(
(
(
(

Sem.AStructure("71_alienation <--- zeta2 (1)")
Sem.AStructure("educatio <--- ses (1)")
Sem.AStructure("educatio <--- deltat (1)")
Sem.AStructure("SEIl <--- ses")
Sem.AStructure("SEI <--- delta2 (1)")

"eps3 <--> eps1")

"'eps1 (var_a)")

"eps2 (var_p)")
eps3 (var_a)")
eps4 (var_p)")

Sem.AStructure
Sem.AStructure
Sem.AStructure
Sem.AStructure
Sem.AStructure
Sem.FitModel()

Finally
Sem.Dispose()

End Try

End Sub
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Fitting Multiple Models

To fit all three models, A, B, and C in a single analysis, start with the following
program, which assigns unique names to some parameters:

Sub Main()

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.AlllmpliedMoments()
Sem.TotalEffects()
Sem.FactorScoreWeights()
Sem.Mods(4)
Sem.Crdiff()

Sem.BeginGroup(Sem.AmosDir & "Examples\Wheaton.sav")
Sem.AStructure("anomia67 <--- 67_alienation (1)")
Sem.AStructure("anomia67 <--- eps1 (1)")
Sem.AStructure("powles67 <--- 67_alienation (b_pow67)")
Sem.AStructure("powles67 <--- eps2 (1)")

Sem.AStructure("
Sem.AStructure
Sem.AStructure
Sem.AStructure

'‘anomia71 <--- 71_alienation (1)")
"anomia71 <--- eps3 (1)")

"powles71 <--- 71_alienation (b_pow71)")
"powles71 <--- eps4 (1)")
Sem.AStructure('
Sem.AStructure
Sem.AStructure

(
(
(
(
(
(
(
(
é
Sem.AStructureg
(
(
(
(
(
(
(
(
(

'67_alienation <--- ses")
"67_alienation <--- zetal (1)")
"71_alienation <--- 67_alienation")
'71_alienation <--- ses")
"71_alienation <--- zeta2 (1)")

Sem.AStructure
Sem.AStructure("educatio <--- ses (1)")
Sem.AStructure("educatio <--- deltat (1)")
Sem.AStructure("SEIl <--- ses")
Sem.AStructure("SEI <--- delta2 (1)")

Sem.AStructure("eps3 <--> eps1 (cov1)")

(
)")
)
)")
)")

Sem.AStructure("eps1 (var_a67
Sem.AStructure("eps2 (var_p67
Sem.AStructure("eps3 (var_a71
Sem.AStructure("eps4 (var_p71
Sem.FitModel()

Finally
Sem.Dispose()

End Try

End Sub

Since the parameter names are unique, naming the parameters does not constrain them.
However, naming the parameters does permit imposing constraints through the use of
the Model method. Adding the following lines to the program, in place of the
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Sem.FitModel line, will fit the model four times, each time with a different set of
parameter constraints:

Sem.Model("Model A: No Autocorrelation”, "cov1 = 0")
Sem.Model("Model B: Most General", "")
Sem.Model("Model C: Time-Invariance", _

"b_pow67 = b_pow71;var_a67 = var_a71;var_p67 = var_p71")
Sem.Model("Model D: A and C Combined", _

"Model A: No Autocorrelation;Model C: Time-Invariance")
Sem.FitAllModels()

The first line defines a version of the model called Model A: No Autocorrelation in which
the parameter called cov/ is fixed at 0.

The second line defines a version of the model called Model B: Most General in which
no additional constraints are imposed on the model parameters.

The third use of the Model method defines a version of the model called Model C:
Time-Invariance that imposes the equality constraints:

b_pow67 = b_pow71
var_a67 = var_a71
var_p67 = var_p71

The fourth use of the Model method defines a version of the model called Model D: A
and C Combined that combines the single constraint of Model A with the three
constraints of Model C.

The last model specification (Model D) shows how earlier model specifications can
be used in the definition of a new, more constrained model.

In order to fit all models at once, the FitAllIModels method has to be used instead of
FitModel. The FitModel method fits a single model only. By default, it fits the first
model, which in this example is Model A. You could use FitModel(1) to fit the first
model, or FitModel(2) to fit the second model. You could also use, say, FitModel(“Model
C: Time-Invariance”) to fit Model C.

Ex06-all.vb contains a program that fits all four models.






Example

7

A Nonrecursive Model

Introduction

This example demonstrates structural equation modeling with a nonrecursive model.

About the Data

Felson and Bohrnstedt (1979) studied 209 girls from sixth through eighth grade. They
made measurements on the following variables:

Variables

Description

academic

Perceived academic ability, a sociometric measure based on the item
Name who you think are your three smartest classmates

athletic

Perceived athletic ability, a sociometric measure based on the item
Name three of your classmates who you think are best at sports

attract

Perceived attractiveness, a sociometric measure based on the item
Name the three girls in the classroom who you think are the most
good-looking (excluding yourself)

GPA

Grade point average

height

Deviation of height from the mean height for a subject’s grade and
sex

weight

Weight, adjusted for height

rating

Ratings of physical attractiveness obtained by having children from
another city rate photographs of the subjects

129
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Sample correlations, means, and standard deviations for these six variables are
contained in the SPSS Statistics file, Fels_fem.sav. Here is the data file as it appears in
the SPSS Statistics Data Editor:

rowtype | varname_ | academic | athletic | attract | gpa height | weight | rating
1|n 209.00 209.00 | 209.0) 2090 2090( 2090( 2090
2| corr academic 1.00
3| corr athletic A3 1.00
4 | corr attract A0 A48 1.00
3| corr GPA 49 22 32 1.00
6 | corr height 10 -.04 -.03 18 1.00
7| corr weight .04 02 - 16 =10 34 1.00
8| cor rating .09 A4 A3 5 -16 =27 1.00
9 | stddev 1B 07 49 3.48 2.9 19.32 1.01
10| mean A2 03 A2 1034 0af 9413 265

The sample means are not used in this example.

Felson and Bohrnstedt's Model

Felson and Bohrnstedt proposed the following model for six of their seven measured
variables:

Example 7
A nonrecursive model
Felson and Bohrnstedt (1979)
(Female subjects)
Model Specification
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Perceived academic performance is modeled as a function of GPA and perceived
attractiveness (attract). Perceived attractiveness, in turn, is modeled as a function of
perceived academic performance, height, weight, and the rating of attractiveness by
children from another city. Particularly noteworthy in this model is that perceived
academic ability depends on perceived attractiveness, and vice versa. A model with
these feedback loops is called nonrecursive (the terms recursive and nonrecursive
were defined earlier in Example 4). The current model is nonrecursive because it is
possible to trace a path from attract to academic and back. This path diagram is saved
in the file Ex07.amw.

Model Identification

‘We need to establish measurement units for the two unobserved variables, errorl and
error2, for identification purposes. The preceding path diagram shows two regression
weights fixed at 1. These two constraints are enough to make the model identified.

Results of the Analysis

Text Output

The model has two degrees of freedom, and there is no significant evidence that the
model is wrong.

Chi-square = 2.761
Degrees of freedom =2
Probability level = 0.251

There is, however, some evidence that the model is unnecessarily complicated, as
indicated by some exceptionally small critical ratios in the text output.
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Regression Weights: (Group number 1 - Default model)

Estimate S.E. C.R. P Label
academic <--- GPA .023 .004 6.241 ***
attract  <--- height .000 .010 .050 .960
attract  <--- weight -.002 .001 -1.321 .186
attract  <—-rating 176 .027  6.444
attract ~ <--- academic 1.607 349 4599
academic <--- attract -.002 .051 -.039 .969

Covariances: (Group number 1 - Default model)

Estimate S.E. C.R. P Label
GPA <-->rating .526 246 2139 .032
height <-->rating -.468 205 -2.279 .023
GPA <-->weight -6.710 4.676 -1.435 .151
GPA <-->height 1.819 712 2555 .01
height <-->weight 19.024 4.098 4.643 ***
weight <-->rating -5.243 1395 -3.759 ***
errorl <-->error2 -.004 .010 -.382 .702

Variances: (Group number 1 - Default model)

Estimate S.E. CR. P Label
GPA 12122 1.189 10.198 ***
height 8.428 .826 10.198 ***
weight 371.476 36.426 10.198 ***
rating 1.015 .100 10.198 ***
error1 .019 .003 5747 **
error2 143 .014 9974 ***

Judging by the critical ratios, you see that each of these three null hypotheses would be
accepted at conventional significance levels:

B Perceived attractiveness does not depend on height (critical ratio = 0.050).

B Perceived academic ability does not depend on perceived attractiveness (critical
ratio = —0.039).

B The residual variables errorl and error2 are uncorrelated (critical ratio =
-0.382).

Strictly speaking, you cannot use the critical ratios to test all three hypotheses at once.
Instead, you would have to construct a model that incorporates all three constraints
simultaneously. This idea will not be pursued here.

The raw parameter estimates reported above are not affected by the identification
constraints (except for the variances of errorl and error2). They are, of course,
affected by the units in which the observed variables are measured. By contrast, the
standardized estimates are independent of all units of measurement.
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Obtaining Standardized Estimates
Before you perform the analysis, do the following:
» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.
» Select Standardized estimates (a check mark appears next to it).

» Close the dialog box.

Standardized Regression Weights: (Group number 1 -
Default model)
Estimate
academic<--- GPA 492
attract  <--- height .003
attract  <--- weight -.078
attract <--- rating .363
attract <--- academic .525
academic <--- attract -.006
Correlations: (Group number 1 - Default model)
Estimate
GPA <--> rating .150
height <--> rating -.160
GPA <--> weight -.100
GPA <-> height .180
height <--> weight .340
weight <--> rating -.270
errorl <--> error2 -.076

Here it can be seen that the regression weights and the correlation that we discovered
earlier to be statistically insignificant are also, speaking descriptively, small.

Obtaining Squared Multiple Correlations
The squared multiple correlations, like the standardized estimates, are independent of
units of measurement. To obtain squared multiple correlations, do the following before

you perform the analysis:

» From the menus, choose View — Analysis Properties.
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» In the Analysis Properties dialog box, click the Output tab.
» Select Squared multiple correlations (a check mark appears next to it).

» Close the dialog box.

Squared Multiple Correlations: (Group number 1 -
Default model)

Estimate
attract 402
academic .236

The squared multiple correlations show that the two endogenous variables in this
model are not predicted very accurately by the other variables in the model. This goes
to show that the chi-square test of fit is not a measure of accuracy of prediction.

Graphics Output

Here is the path diagram output displaying standardized estimates and squared
multiple correlations:

Chi-square = 2.761 (2 df)
p=.251

2
GPA }ﬂﬁacademic
Y

.52 -.01

4

Example 7
A nonrecursive model
Felson and Bohrnstedt (1979)
(Female subjects)
Standardized estimates
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Stability Index

The existence of feedback loops in a nonrecursive model permits certain problems to
arise that cannot occur in recursive models. In the present model, attractiveness
depends on perceived academic ability, which in turn depends on attractiveness, which
depends on perceived academic ability, and so on. This appears to be an infinite
regress, and it is. One wonders whether this infinite sequence of linear dependencies
can actually result in well-defined relationships among attractiveness, academic
ability, and the other variables of the model. The answer is that they might, and then
again they might not. It all depends on the regression weights. For some values of the
regression weights, the infinite sequence of linear dependencies will converge to a set
of well-defined relationships. In this case, the system of linear dependencies is called
stable; otherwise, it is called unstable.

Note: You cannot tell whether a linear system is stable by looking at the path diagram.
You need to know the regression weights.

Amos cannot know what the regression weights are in the population, but it estimates
them and, from the estimates, it computes a stability index (Fox, 1980; Bentler and
Freeman, 1983).

If the stability index falls between —1 and +1, the system is stable; otherwise, it is
unstable. In the present example, the system is stable.

Stability index for the following variables is 0.003:
attract

academic

To view the stability index for a nonrecursive model:

» Click Notes for Group/Model in the tree diagram in the upper left pane of the Amos
Output window.

An unstable system (with a stability index equal to or greater than 1) is impossible, in
the same sense that, for example, a negative variance is impossible. If you do obtain a
stability index of 1 (or greater than 1), this implies that your model is wrong or that

your sample size is too small to provide accurate estimates of the regression weights.
If there are several loops in a path diagram, Amos computes a stability index for each
one. If any one of the stability indices equals or exceeds 1, the linear system is unstable.
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Modeling in VB.NET

The following program fits the model of this example. It is saved in the file Ex07.vb.

Sub Main()
_Il?im Sem As New AmosEngine
ry
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
Sem.AStructure("academic <--- GPA")
Sem.AStructure("academic <--- attract")
Sem.AStructure("academic <--- error1 (1)")
Sem.AStructure("
Sem.AStructure

%
("attract <--- height")
Sem.AStructureE
%
(

"attract <--- weight")
‘attract <--- rating")
'attract <--- academic")

Sem.AStructure
Sem.AStructure

attract <--- error2 (1)")
Sem.AStructure("
Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

error2 <--> error1")

The final AStructure line is essential to Felson and Bohrnstedt’s model. Without it,
Amos would assume that errorl and error2 are uncorrelated.

You can specify the same model in an equation-like format as follows:

Sub Main()
Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
Sem.AStructure("academic = GPA + attract + error1 (1)")
Sem.AStructure("attract = height + weight + rating + " _

& "academic + error2 (1)")

Sem.AStructure("error2 <--> error1")
Sem.FitModel()

Finally
Sem.Dispose()

End Try

End Sub
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Factor Analysis

Introduction

This example demonstrates confirmatory common factor analysis.

About the Data

Holzinger and Swineford (1939) administered 26 psychological tests to 301 seventh-
and eighth-grade students in two Chicago schools. In the present example, we use
scores obtained by the 73 girls from a single school (the Grant-White school). Here is
a summary of the six tests used in this example:

Test Explanation

visperc Visual perception scores

cubes Test of spatial visualization
lozenges Test of spatial orientation
paragraph Paragraph comprehension score
sentence Sentence completion score
wordmean Word meaning test score

137
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The file Grnt_fem.sav contains the test scores:

vizperc | cubes | lozenges | paragrap | sentence | wordmean
1 33.00 2200 17.00 5.00 17.00 10.00
2 30,00 25.00 2000 10.00 2300 18.00
3 36.00 33.00 36.00 17.00 2500 41.00
4 2500 25.00 8.00 10.00 18.00 11.00
5 30,00 25.00 11.00 11.00 21.00 .00
B 2000 25.00 £.00 9.00 21.00 16.00
T 17.00 21.00 £.00 5.00 10.00 10.00
8 33.00 31.00 30.00 11.00 2300 18.00

A Common Factor Model

Consider the following model for the six tests:

lozenges

paragrap

Example 8
Factor analysis: Girls' sample
Holzinger and Swineford (1939)

Model Specification
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This model asserts that the first three tests depend on an unobserved variable called
spatial. Spatial can be interpreted as an underlying ability (spatial ability) that is not
directly observed. According to the model, performance on the first three tests depends
on this ability. In addition, performance on each of these tests may depend on
something other than spatial ability as well. In the case of visperc, for example, the
unique variable err_v is also involved. Err_v represents any and all influences on
visperc that are not shown elsewhere in the path diagram. Err_v represents error of
measurement in visperc, certainly, but also socioeconomic status, age, physical
stamina, vocabulary, and every other trait or ability that might affect scores on visperc
but that does not appear elsewhere in the model.

The model presented here is a common factor analysis model. In the lingo of
common factor analysis, the unobserved variable spatial is called a common factor,
and the three unobserved variables, err_v, err_c, and err_L, are called unique factors.
The path diagram shows another common factor, verbal, on which the last three tests
depend. The path diagram also shows three more unique factors, err_p, err_s, and
err_w. The two common factors, spatial and verbal, are allowed to be correlated. On
the other hand, the unique factors are assumed to be uncorrelated with each other and
with the common factors. The path coefficients leading from the common factors to the
observed variables are sometimes called factor loadings.

Identification

This model is identified except that, as usual, the measurement scale of each
unobserved variable is indeterminate. The measurement scale of each unobserved
variable can be established arbitrarily by setting its regression weight to a constant,
such as 1, in some regression equation. The preceding path diagram shows how to do
this. In that path diagram, eight regression weights are fixed at 1, which is one fixed
regression weight for each unobserved variable. These constraints are sufficient to
make the model identified.

The proposed model is a particularly simple common factor analysis model, in that
each observed variable depends on just one common factor. In other applications of
common factor analysis, an observed variable can depend on any number of common
factors at the same time. In the general case, it can be very difficult to decide whether
a common factor analysis model is identified or not (Davis, 1993; Joreskog, 1969,
1979). The discussion of identifiability given in this and earlier examples made the
issue appear simpler than it actually is, giving the impression that the lack of a natural
unit of measurement for unobserved variables is the sole cause of non-identification. It
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is true that the lack of a unit of measurement for unobserved variables is an
ever-present cause of non-identification. Fortunately, it is one that is easy to cure, as
we have done repeatedly.

But other kinds of under-identification can occur for which there is no simple
remedy. Conditions for identifiability have to be established separately for individual
models. Joreskog and Sérbom (1984) show how to achieve identification of many
models by imposing equality constraints on their parameters. In the case of the factor
analysis model (and many others), figuring out what must be done to make the model
identified requires a pretty deep understanding of the model. If you are unable to tell
whether a model is identified, you can try fitting the model in order to see whether
Amos reports that it is unidentified. In practice, this empirical approach works quite
well, although there are objections to it in principle (McDonald and Krane, 1979), and
it is no substitute for an a priori understanding of the identification status of a model.
Bollen (1989) discusses causes and treatments of many types of non-identification in
his excellent textbook.

Specifying the Model

Amos analyzes the model directly from the path diagram shown on p. 138. Notice that
the model can conceptually be separated into spatial and verbal branches. You can use
the structural similarity of the two branches to accelerate drawing the model.

Drawing the Model

After you have drawn the first branch:

» From the menus, choose Edit — Select All to highlight the entire branch.

» To create a copy of the entire branch, from the menus, choose Edit — Duplicate and drag

one of the objects in the branch to another location in the path diagram.

Be sure to draw a double-headed arrow connecting spatial and verbal. If you leave out
the double-headed arrow, Amos will assume that the two common factors are
uncorrelated. The input file for this example is Ex08.amw.
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Results of the Analysis

Here are the unstandardized results of the analysis. As shown at the upper right corner
of the figure, the model fits the data quite well.

Chi-square = 7.853 (8 df)

. 23.87
visperc .
cubes 4—.1 @11.60
lozenges 828
paragrap ‘83
sentence .97
19.93
wordmean
Example 8

Factor analysis: Girls' sample
Holzinger and Swineford (1939)
Unstandardized estimates

As an exercise, you may wish to confirm the computation of degrees of freedom.

Computation of degrees of freedom: (Default model)

Number of distinct sample moments: | 21
Number of distinct parameters to be estimated: | 13
Degrees of freedom (21 — 13): 8

The parameter estimates, both standardized and unstandardized, are shown next. As
you would expect, the regression weights are positive, as is the correlation between
spatial ability and verbal ability.
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Regression Weights: (Group number 1 - Default model)

Estimate S.E. C.R. P Label
visperc  <---spatial  1.000
cubes <--- spatial .610 143 4250 ***

lozenges <---spatial 1.198 272 4.405 ***

paragrap <---verbal 1.000

sentence <---verbal 1.334 160  8.322 ***

wordmean <--- verbal 2.234 263  8.482 **

Standardized Regression Weights: (Group number 1 -

Default model)

Estimate
visperc  <--- spatial .703
cubes <--- spatial .654
lozenges <--- spatial .736
paragrap <--- verbal .880
sentence <--- verbal .827
wordmean <---  verbal .841

Covariances: (Group number 1 - Default model)
Estimate S.E. C.R. P Label
spatial <--> verbal 7.315 2571 2.846 .004

Correlations: (Group number 1 - Default model)

Estimate
spatial <--> verbal 487
Variances: (Group number 1 - Default model)
Estimate S.E. CR. P Label

spatial 23.302 8.123  2.868 .004
verbal 9.682 2.159 4485 ***
err_v 23.873 5986 3.988 ***
err_c 11.602 2.584 4490 ***

err_| 28.275 7.892 3.583 **
err_p 2.834 .868  3.263 .001
err_s 7.967 1.869 4.263 ***

err_w 19.925 4.951 4.024

Obtaining Standardized Estimates

To get the standardized estimates shown above, do the following before you perform
the analysis:

» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Select Standardized estimates (a check mark appears next to it).
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» Also select Squared multiple correlations if you want squared multiple correlation for

each endogenous variable, as shown in the next graphic.

» Close the dialog box.

Squared Multiple Correlations: (Group number 1 -
Default model)
Estimate
wordmean .708
sentence .684
paragrap 774
lozenges .542
cubes 428
visperc 494

Viewing Standardized Estimates

» In the Amos Graphics window, click the Show the output path diagram button.

» Select Standardized estimates in the Parameter Formats panel at the left of the path

diagram.

Here is the path diagram with standardized estimates displayed:

Chi-square = 7.853 (8 df)
p=.448 49

visperc

43

.54

lozenges
77

49
paragrap
68

sentence

71

Example 8
Factor analysis: Girls' sample
Holzinger and Swineford (1939)
Standardized estimates
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The squared multiple correlations can be interpreted as follows: To take wordmean as
an example, 71% of its variance is accounted for by verbal ability. The remaining 29%
of its variance is accounted for by the unique factor err_w. If err_w represented
measurement error only, we could say that the estimated reliability of wordmean is
0.71. As itis, 0.71 is an estimate of a lower-bound on the reliability of wordmean.
The Holzinger and Swineford data have been analyzed repeatedly in textbooks and
in demonstrations of new factor analytic techniques. The six tests used in this example
are taken from a larger subset of nine tests used in a similar example by Joreskog and
Sorbom (1984). The factor analysis model employed here is also adapted from theirs.
In view of the long history of exploration of the Holzinger and Swineford data in the
factor analysis literature, it is no accident that the present model fits very well. Even
more than usual, the results presented here require confirmation on a fresh set of data.

Modeling in VB.NET

The following program specifies the factor model for Holzinger and Swineford’s data.
It is saved in the file Ex08.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")
Sem.AStructure("visperc = (1) spatial + (1) err_v")
Sem.AStructure("cubes = spatial + (1) err_c")

(
Sem.AStructure("lozenges =  spatial + (1) err_I")
Sem.AStructure("paragrap = (1) verbal + (1) err_p"
Sem.AStructure("sentence = verbal + (1) err_s")
Sem.AStructure("wordmean = verbal + (1) err_w")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

You do not need to explicitly allow the factors (spatial and verbal) to be correlated.
Nor is it necessary to specify that the unique factors be uncorrelated with each other
and with the two factors. These are default assumptions in an Amos program (but not
in Amos Graphics).
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An Alternative to Analysis of
Covariance

Introduction

This example demonstrates a simple alternative to an analysis of covariance that does
not require perfectly reliable covariates. A better, but more complicated, alternative
will be demonstrated in Example 16.

Analysis of Covariance and Its Alternative

Analysis of covariance is a technique that is frequently used in experimental and
quasi-experimental studies to reduce the effect of pre-existing differences among
treatment groups. Even when random assignment to treatment groups has eliminated
the possibility of systematic pretreatment differences among groups, analysis of
covariance can pay off in increased precision in evaluating treatment effects.

The usefulness of analysis of covariance is compromised by the assumption that
each covariate be measured without error. The method makes other assumptions as
well, but the assumption of perfectly reliable covariates has received particular
attention (for example, Cook and Campbell, 1979). In part, this is because the effects
of violating the assumption can be so bad. Using unreliable covariates can lead to the
erroneous conclusion that a treatment has an effect when it doesn’t or that a treatment
has no effect when it really does. Unreliable covariates can even make a treatment
look like it does harm when it is actually beneficial. At the same time, unfortunately,
the assumption of perfectly reliable covariates is typically impossible to meet.

The present example demonstrates an alternative to analysis of covariance in
which no variable has to be measured without error. The method to be demonstrated
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here has been employed by Bentler and Woodward (1979) and others. Another
approach, by Sorbom (1978), is demonstrated in Example 16. The S6rbom method is
more general. It allows testing other assumptions of analysis of covariance and permits
relaxing some of them as well. The Sérbom approach is comparatively complicated
because of its generality. By contrast, the method demonstrated in this example makes
the usual assumptions of analysis of covariance, except for the assumption that
covariates are measured without error. The virtue of the method is its comparative
simplicity.

The present example employs two treatment groups and a single covariate. It may
be generalized to any number of treatment groups and any number of covariates.
Sorbom (1978) used the data that we will be using in this example and Example 16.
The analysis closely follows Sérbom’s example.

About the Data

Olsson (1973) administered a battery of eight tests to 213 eleven-year-old students on
two occasions. We will employ two of the eight tests, Synonyms and Opposites, in this
example. Between the two administrations of the test battery, 108 of the students (the
experimental group) received training that was intended to improve performance on the
tests. The other 105 students (the control group) did not receive any special training.
As aresult of taking two tests on two occasions, each of the 213 students obtained four
test scores. A fifth, dichotomous variable was created to indicate membership in the
experimental or control group. Altogether, the following variables are used in this

example:

Variable Description

pre_syn Pretest scores on the Synonyms test.

pre_opp Pretest scores on the Opposites test.

post_syn Posttest scores on the Synonyms test.

post_opp Posttest scores on the Opposites test.
A dichotomous variable taking on the value 1 for students who

treatment received the special training, and 0 for those who did not. This
variable was created especially for the analyses in this example,
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Correlations and standard deviations for the five measures are contained in the Microsoft
Excel workbook UserGuide.xls, in the Olss_all worksheet. Here is the dataset:

rowlype_|varname_|  pre_syn| pre_opp| postsyn| post_opp| treatment
n 213 213 213 2113 2113
corr [re_syn 1

corr pre_opp |0.78255618 1

carr post_syn |0.76207295|0.69266541 1

carr post_opp |0.70438031(0.77390014(0.77567354 1

carr treatment |0.16261758|0.07784579(0.37887343] 0.32533034 1
stddev h.6BEB05RE |6 49938567 B.45007062| 6.95665347|0.4993504

There are positive correlations between treatment and each of the posttests, which
indicates that the trained students did better on the posttests than the untrained students.
The correlations between treatment and each of the pretests are positive but relatively
small. This indicates that the control and experimental groups did about equally well
on the pretests. You would expect this, since students were randomly assigned to the
control and experimental groups.

Analysis of Covariance

To evaluate the effect of training on performance, one might consider carrying out an
analysis of covariance with one of the posttests as the criterion variable, and the two

pretests as covariates. In order for that analysis to be appropriate, both the synonyms
pretest and the opposites pretest would have to be perfectly reliable.

Model A for the Olsson Data

Consider the model for the Olsson data shown in the next path diagram. The model
asserts that pre_syn and pre_opp are both imperfect measures of an unobserved ability
called pre_verbal that might be thought of as verbal ability at the time of the pretest.
The unique variables eps] and eps2 represent errors of measurement in pre_syn and
pre_opp, as well as any other influences on the two tests not represented elsewhere in
the path diagram.
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‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘

pre_verbal post_verbal

Example 9: Model A
Olsson (1973) test coaching study
Model Specification

Similarly, the model asserts that post_syn and post_opp are imperfect measures of an
unobserved ability called post_verbal, which might be thought of as verbal ability at
the time of the posttest. Eps3 and eps4 represent errors of measurement and other
sources of variation not shown elsewhere in the path diagram.

The model shows two variables that may be useful in accounting for verbal ability
at the time of the posttest. One such predictor is verbal ability at the time of the pretest.
It would not be surprising to find that verbal ability at the time of the posttest depends
on verbal ability at the time of the pretest. Because past performance is often an
excellent predictor of future performance, the model uses the latent variable
pre_verbal as a covariate. However, our primary interest lies in the second predictor,
treatment. We are mostly interested in the regression weight associated with the arrow
pointing from treatment to post_verbal, and whether it is significantly different from
0. In other words, we will eventually want to know whether the model shown above
could be accepted as correct under the additional hypothesis that that particular
regression weight is 0. But first, we had better ask whether Model A can be accepted
as it stands.

Identification

The units of measurement of the seven unobserved variables are indeterminate. This
indeterminacy can be remedied by finding one single-headed arrow pointing away
from each unobserved variable in the above figure, and fixing the corresponding
regression weight to unity (1). The seven 1’s shown in the path diagram above indicate
a satisfactory choice of identification constraints.
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Specifying Model A

To specify Model A, draw a path diagram similar to the one on p. 148. The path
diagram is saved as the file Ex09-a.amw.

Results for Model A

There is considerable empirical evidence against Model A:

Chi-square = 33.215
Degrees of freedom = 3
Probability level = 0.000

This is bad news. If we had been able to accept Model A, we could have taken the next
step of repeating the analysis with the regression weight for regressing post_verbal on
treatment fixed at 0. But there is no point in doing that now. We have to start with a
model that we believe is correct in order to use it as the basis for testing a stronger no
treatment effect version of the model.

Searching for a Better Model

Perhaps there is some way of modifying Model A so that it fits the data better. Some
suggestions for suitable modifications can be obtained from modification indices.

Requesting Modification Indices
» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Select Modification indices and enter a suitable threshold in the field to its right. For this
example, the threshold will remain at its default value of 4.

4 Threshaold for

modifization indices
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Requesting modification indices with a threshold of 4 produces the following
additional output:

Modification Indices (Group number 1 - Default model)

Covariances: (Group number 1 - Default model)
M.I. Par Change

eps2 <-->eps4 13.161 3.249
eps2<-->eps3 10.813 -2.822
eps1<-->eps4 11.968 -3.228
eps1<-->eps3 9.788 2.798

According to the first modification index in the M.I. column, the chi-square statistic
will decrease by at least 13.161 if the unique variables eps2 and eps4 are allowed to be
correlated (the actual decrease may be greater). At the same time, of course, the
number of degrees of freedom will drop by 1 because of the extra parameter that will
have to be estimated. Since 13.161 is the largest modification index, we should
consider it first and ask whether it is reasonable to think that eps2 and eps4 might be
correlated.

Eps2 represents whatever pre_opp measures other than verbal ability at the pretest.
Similarly, eps4 represents whatever post_opp measures other than verbal ability at the
posttest. It is plausible that some stable trait or ability other than verbal ability is
measured on both administrations of the Opposites test. If so, then you would expect a
positive correlation between eps2 and eps4. In fact, the expected parameter change (the
number in the Par Change column) associated with the covariance between eps2 and
eps4 is positive, which indicates that the covariance will probably have a positive
estimate if the covariance is not fixed at 0.

It might be added that the same reasoning that suggests allowing eps2 and eps4 to
be correlated applies almost as well to eps/ and eps3, whose covariance also has a
fairly large modification index. For now, however, we will add only one parameter to
Model A: the covariance between eps2 and eps4. We call this new model Model B.

Model B for the Olsson Data

Below is the path diagram for Model B. It can be obtained by taking the path diagram
for Model A and adding a double-headed arrow connecting eps2 and eps4. This path
diagram is saved in the file Ex09-b.amw.
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‘ pre_syn ‘ ‘ pre_opp‘ ‘post_syn‘ ‘post_opp‘

pre_verbal

Example 9: Model B
Olsson (1973) test coaching study
Model Specification

You may find your error variables already positioned at the top of the path diagram,
with no room to draw the double-headed arrow. To fix the problem:

» From the menus, choose Edit — Fit to Page.

Alternatively, you can:

» Draw the double-headed arrow and, if it is out of bounds, click the Resize (page with
arrows) button. Amos will shrink your path diagram to fit within the page boundaries.

Results for Model B

Allowing eps2 and eps4 to be correlated results in a dramatic reduction of the
chi-square statistic.

Chi-square = 2.684
Degrees of freedom =2
Probability level = 0.261

You may recall from the results of Model A that the modification index for the
covariance between eps! and eps3 was 9.788. Clearly, freeing that covariance in
addition to the covariance between eps2 and eps4 covariance would not have produced
an additional drop in the chi-square statistic of 9.788, since this would imply a negative
chi-square statistic. Thus, a modification index represents the minimal drop in the
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chi-square statistic that will occur if the corresponding constraint—and only that
constraint—is removed.

The following raw parameter estimates are difficult to interpret because they would
have been different if the identification constraints had been different:

Regression Weights: (Group number 1 - Default model)
Estimate  S.E. C.R. P Label

post_verbal <--- pre_verbal .889  .053 16.900 ***

post_verbal <--- treatment 3.640 477 7.625 ***

pre_syn <--- pre_verbal 1.000

pre_opp  <--- pre_verbal .881 .053 16.606 ***

post_syn  <--- post_verbal 1.000

post_opp <--- post_verbal 906 .053 16.948 ***
Covariances: (Group number 1 - Default model)

Estimate S.E. C.R. P Label

pre_verbal <--> treatment 467 226 2.066 .039

eps2 <-->eps4 6.797 1.344 5.059 ***

Variances: (Group number 1 - Default model)
Estimate  S.E. C.R. P Label

pre_verbal 38.491 4501 8.552 ***
treatment 249  .024 10.296 ***
zeta 4824 1.331 3.625 ***
eps1 6.013 1.502 4.004 ***
eps2 12.255 1.603 7.646 ***
eps3 6.546 1.501 4.360 ***
eps4 14685 1.812 8.102 ***

As expected, the covariance between eps2 and eps4 is positive. The most interesting
result that appears along with the parameter estimates is the critical ratio for the effect
of treatment on post_verbal. This critical ratio shows that treatment has a highly
significant effect on post_verbal. We will shortly obtain a better test of the significance
of this effect by modifying Model B so that this regression weight is fixed at 0. In the
meantime, here are the standardized estimates and the squared multiple correlations as
displayed by Amos Graphics:
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pre_verbal
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reatment

Example 9: Model B
Olsson (1973) test coaching study
Standardized estimates

In this example, we are primarily concerned with testing a particular hypothesis and
not so much with parameter estimation. However, even when the parameter estimates
themselves are not of primary interest, it is a good idea to look at them anyway to see
if they are reasonable. Here, for instance, you may not care exactly what the correlation
between eps2 and eps4 is, but you would expect it to be positive. Similarly, you would
be surprised to find any negative estimates for regression weights in this model. In any
model, you know that variables cannot have negative variances, so a negative variance
estimate would always be an unreasonable estimate. If estimates cannot pass a gross
sanity check, particularly with a reasonably large sample, you have to question the
correctness of the model under which they were obtained, no matter how well the
model fits the data.

Model C for the Olsson Data

Now that we have a model (Model B) that we can reasonably believe is correct, let’s
see how it fares if we add the constraint that post_verbal does not depend on treatment.
In other words, we will test a new model (call it Model C) that is just like Model B
except that Model C specifies that post_verbal has a regression weight of 0 on
treatment.
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Drawing a Path Diagram for Model C
To draw the path diagram for Model C:
» Start with the path diagram for Model B.

» Right-click the arrow that points from treatment to post_verbal and choose Object
Properties from the pop-up menu.

» In the Object Properties dialog box, click the Parameters tab and type O in the
Regression weight text box.

The path diagram for Model C is saved in the file Ex09-c.amw.

Results for Model C

Model C has to be rejected at any conventional significance level.

Chi-square = 55.396
Degrees of freedom = 3
Probability level = 0.000

If you assume that Model B is correct and that only the correctness of Model C is in
doubt, then a better test of Model C can be obtained as follows: In going from Model
B to Model C, the chi-square statistic increased by 52.712 (that is, 55.396 — 2.684),
while the number of degrees of freedom increased by 1 (that is, 3 — 2). If Model C is
correct, 52.712 is an observation on a random variable that has an approximate
chi-square distribution with one degree of freedom. The probability of such a random
variable exceeding 52.712 is exceedingly small. Thus, Model C is rejected in favor of
Model B. Treatment has a significant effect on post_verbal.

Fitting All Models At Once

The example file Ex09-all.amw fits all three models (A through C) in a single analysis.
The procedure for fitting multiple models in a single analysis was demonstrated in
Example 6.
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Modeling in VB.NET

Model A

This program fits Model A. It is saved in the file Ex09—a.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Mods(4)
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Olss_all")
Sem.AStructure("pre_syn = (1) pre_verbal + (1) eps1")
Sem.AStructure("pre_opp = pre_verbal + (1) eps2")

(1) post_verbal + (1) eps3")

(
Sem.AStructure("post_syn =
("post_opp = post_verbal + (1) eps4")

Sem.AStructure("

Sem.AStructure("post_verbal = pre_verbal + treatment + (1) zeta")
Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

Model B

This program fits Model B. It is saved in the file Ex09-b.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Olss_all")
Sem.AStructure("pre_syn = (1) pre_verbal + (1) eps1")
Sem.AStructure("pre_opp = pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (1) post_verbal + (1) eps3")

( -

(

Sem.AStructure("post_opp post_verbal + (1) eps4")
Sem.AStructure("post_verbal = pre_verbal + treatment + (1) zeta")

Sem.AStructure("eps2 <---> eps4")
Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub
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Model C

This program fits Model C. It is saved in the file Ex09—c.vb.

Sub Main()
Dim Sem As New AmosEngine
Try

Sem.TextOutput()
Sem.Mods(4)
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Olss_all")
Sem.AStructure("pre_syn = (1) pre_verbal + (1) eps1")
Sem.AStructure('pre_opp = pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (1) post_verbal + (1) eps3")
Sem.AStructure("post_opp = post_verbal + (1) eps4")

(
(

Sem.AStructure("post_verbal = pre_verbal + (0) treatment + (1) zeta")

Sem.AStructure("eps2 <---> eps4")

Sem.FitModel()

Finally

Sem.Dispose()

End Try
End Sub
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Fitting Multiple Models

This program (Ex09-all.vb) fits all three models (A through C).

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Mods(4)
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Olss_all")
Sem.AStructure("pre_syn = (1) pre_verbal + (1) eps1")
Sem.AStructure("pre_opp = pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (1) post_verbal + (1) eps3")

( -

(

Sem.AStructure("post_opp post_verbal + (1) eps4")
Sem.AStructure("post_verbal = pre_verbal + (effect) treatment + (1) zeta")
Sem.AStructure("eps2 <---> eps4 (cov2_4)")

Sem.Model("Model_A", "cov2_4 = 0")
Sem.Model("Model_B")
Sem.Model("Model_C", "effect = 0")
Sem.FitAllModels()

Finally
Sem.Dispose()

End Try

End Sub







Example

Simultaneous Analysis of Several
Groups

Introduction

This example demonstrates how to fit a model to two sets of data at once. Amos is
capable of modeling data from multiple groups (or samples) simultaneously. This
multigroup facility allows for many additional types of analyses, as illustrated in the
next several examples.

Analysis of Several Groups

We return once again to Attig’s (1983) memory data from young and old subjects,
which were used in Example 1 through Example 3. In this example, we will compare
results from the two groups to see how similar they are. However, we will not compare
the groups by performing separate analyses for old people and young people. Instead,
we will perform a single analysis that estimates parameters and tests hypotheses about
both groups at once. This method has two advantages over doing separate analyses for
the young and old groups. First, it provides a test for the significance of any
differences found between young and old people. Second, if there are no differences
between young and old people or if the group differences concern only a few model
parameters, the simultaneous analysis of both groups provides more accurate
parameter estimates than would be obtained from two separate single-group analyses.

159
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About the Data

We will use Attig’s memory data from both young and old subjects. Following is a
partial listing of the old subjects’ data found in the worksheet Attg_old located in the
Microsoft Excel workbook UserGuide.xls:

subject| age|education| sex| recalll (recallZ | cuedl | cued?
1| ER 16 1 R 1 5 1
2| 68 18 0 12 16 14 16
3 B4 170 1 1 1 10 1
0 77 16 0 3 3 3 4
Rl 72 12 0 g q 1 q
Bl 75 12 1 10 q 10 10
7| B4 12 0 g 7 10 g
g8 74 12 0 7 b g q
9 B 12 0 g 12 9 13
1y 77 12 0 g 11 10 13

The young subjects’ data are in the Attg_yng worksheet. This example uses only the
measures recalll and cuedl.

Data for multigroup analysis can be organized in a variety of ways. One option is to
separate the data into different files, with one file for each group (as we have done in
this example). A second possibility is to keep all the data in one big file and include a
group membership variable.

Model A

We will begin with a truly trivial model (Model A) for two variables: recalll and
cuedl. The model simply says that, for young subjects as well as old subjects, recalll
and cuedl are two variables that have some unspecified variances and some
unspecified covariance. The variances and the covariance are allowed to be different
for young and old people.
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Conventions for Specifying Group Differences

The main purpose of a multigroup analysis is to find out the extent to which groups
differ. Do the groups all have the same path diagram with the same parameter values?
Do the groups have the same path diagram but with different parameter values for
different groups? Does each group need a different path diagram? Amos Graphics has
the following conventions for specifying group differences in a multigroup analysis:

m  All groups have the same path diagram unless explicitly declared otherwise.

B Unnamed parameters are permitted to have different values in different groups.
Thus, the default multigroup model under Amos Graphics uses the same path
diagram for all groups but allows different parameter values for different groups.

®  Parameters in different groups can be constrained to the same value by giving them
the same label. (This will be demonstrated in Model B on p. 172.)

Specifying Model A
» From the menus, choose File — New to start a new path diagram.
» From the menus, choose File — Data Files.
Notice that the Data Files dialog box allows you to specify a data file for only a single

group called Group number 1. We have not yet told the program that this is a multigroup
analysis.

.Z. Data Files : »

Group Mame File | Wari... | W | [N |
Group number 1 awrarking»

File Marme | wilnrking File | Help |

siew Diata. H Grouping Yariable I Graup Yalue |

OK | Cancel |
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» Click File Name, select the Excel workbook UserGuide.xls that is in the Amos
Examples directory, and click Open.

» In the Select a Data Table dialog box, select the Artg_yng worksheet.

Fels_fem
Fels_rmal
Grant

Grant_x
Grnt_fern

Grnt_mal j

Yiew Data

(0] Cancel

» Click OK to close the Select a Data Table dialog box.
» Click OK to close the Data Files dialog box.
» From the menus, choose View — Variables in Dataset.

» Drag observed variables recalll and cuedl to the diagram.
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subject

age
wvocak_short
wocabulary
education
sex

recalll
recall2

icyed]

cued?
placel
place?

T Variables in Dataset [ [E4

recalll| [

» Connect recalll and cuedl with a double-headed arrow.

recall

cued1

» Toadd a caption to the path diagram, from the menus, choose Diagram — Figure Caption
and then click the path diagram at the spot where you want the caption to appear.

» In the Figure Caption dialog box, enter a title that contains the text macros \group and

\format.
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.. Figure Caption

24 -
" Center align
" Left align [~ Bold
" BRight align [ Italic

@ Center on page Press Chil-Enter when finizhed

hgroup
“formal]

» Click OK to complete the model specification for the young group.
» To add a second group, from the menus, choose Analyze — Manage Groups.

» In the Manage Groups dialog box, change the name in the Group Name text box from
Group number 1 to young subjects.

.. Manage Groups : x|

Group Mame

Iyuung subjects

e | Delete Close |

» Click New to create a second group.

» Change the name in the Group Name text box from Group number 2 to old subjects.
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-T.Manage Groups x|

Group Mame

IDId subjects

e | Delete | Close

» Click Close.

» From the menus, choose File — Data Files.

The Data Files dialog box shows that there are two groups labeled young subjects and

old subjects.

» To specify the dataset for the old subjects, in the Data Files dialog box, select old

subjects.

° Drata Files

Group MName | File |Variab|e |Value | N

ATTG_YMNG (4LS) 40740

<working>

File Mame | Warking File | Help |
Yiew Data | Grouping Wariakle | Group Halue |
[0]:4 | Cancel |

» Click File Name, select the Excel workbook UserGuide.xls that is in the Amos

Examples directory, and click Open.

» In the Select a Data Table dialog box, select the Attg_old worksheet.
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° Select a Data Table : il

Afto_mis
Afty_mis
Fels_fem
Fels_rmal
Grant
Grant_x
Grnt_fern

Grnt_rmal LI

Yiew Data

(0] Cancel

» Click OK.

Text Output

Model A has zero degrees of freedom.

Computation of degrees of freedom (Default model)
Number of distinct sample moments: 6
Number of distinct parameters to be estimated: 6
Degrees of freedom (6 - 6): 0

Amos computed the number of distinct sample moments this way: The young subjects
have two sample variances and one sample covariance, which makes three sample
moments. The old subjects also have three sample moments, making a total of six
sample moments. The parameters to be estimated are the population moments, and
there are six of them as well. Since there are zero degrees of freedom, this model is
untestable.

Chi-square = 0.000
Degrees of freedom = 0
Probability level cannot be computed
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To view parameter estimates for the young people in the Amos Output window:

» Click Estimates in the tree diagram in the upper left pane.

» Click young subjects in the Groups panel at the left side of the window.

Covariances: (young subjects - Default model)
Estimate S.E. C.R. P Label
recall1 <--> cued1 3.225 944 3416 **

Variances: (young subjects - Default model)
Estimate S.E. C.R. P Label

recall1 5787 1311 4416 **

cued1 4.210 953 4416

To view the parameter estimates for the old subjects:

» Click old subjects in the Groups panel.

Covariances: (old subjects - Default model)
Estimate S.E. C.R. P Label
recall1 <--> cued1 4887 1252 3902 **

Variances: (old subjects - Default model)
Estimate S.E. C.R. P Label

recall1 5569 1.261 4.416 ***
cued1 6694 1516 4416 **
Graphics Output
The following are the output path diagrams showing unstandardized estimates for the
two groups:
5.79 4.21 557 6.69

3.22 4.89
Example 10: Model A . Example 10: Model A
Simultaneous analysis of several groups Simultaneous analysis of several groups
Attig (1983) young subjects Attig (1983) old subjects
Unstandardized estimates Unstandardized estimates

The panels at the left of the Amos Graphics window provide a variety of viewing
options.
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m  Click either the View Input or View Output button to see an input or output path
diagram.

Select either young subjects or old subjects in the Groups panel.

Select either Unstandardized estimates or Standardized estimates in the Parameter
Formats panel.

nstandardized estimates
Standardized estimates

Model B

It is easy to see that the parameter estimates are different for the two groups. But are
the differences significant? One way to find out is to repeat the analysis, but this time
requiring that each parameter in the young population be equal to the corresponding
parameter in the old population. The resulting model will be called Model B.

For Model B, it is necessary to name each parameter, using the same parameter
names in the old group as in the young group.

» Start by clicking young subjects in the Groups panel at the left of the path diagram.
» Right-click the recalll rectangle in the path diagram.
» From the pop-up menu, choose Object Properties.

» In the Object Properties dialog box, click the Parameters tab.
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» In the Variance text box, enter a name for the variance of recalll; for example, type
var_rec.

X

-7. Object Properties
Colars I Text I

e ey |

Fontsize and style ————— —Orientation

I‘IE L"P\egular _I IHuriZDntaI Ll

4

[v A groups

_ et Default
Yariance

Ivar_rec Uil

» Select All groups (a check mark will appear next to it).

The effect of the check mark is to assign the name var_rec to the variance of recalll in
all groups. Without the check mark, var_rec would be the name of the variance for
recalll for the young group only.

» While the Object Properties dialog box is open, click cued1 and type the name var_cue
for its variance.

» Click the double-headed arrow and type the name cov_rc for the covariance. Always
make sure that you select All groups.

The path diagram for each group should now look like this:

var_rec var_cue

cov_rc

Example 10: Model B
Homogenous covariance structures
in two groups, Attig (1983) data.
Model Specification
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Text Output

Because of the constraints imposed in Model B, only three distinct parameters are
estimated instead of six. As a result, the number of degrees of freedom has increased

from O to 3.
Computation of degrees of freedom (Default model)
Number of distinct sample moments: 6
Number of distinct parameters to be estimated: 3

Degrees of freedom (6 - 3): 3

Model B is acceptable at any conventional significance level.

Chi-square = 4.588
Degrees of freedom = 3
Probability level = 0.205

The following are the parameter estimates obtained under Model B for the young
subjects. (The parameter estimates for the old subjects are the same.)

Covariances: (young subjects - Default model)
Estimate S.E. C.R. P Label
recall1 <--> cued1 4.056 780 5.202 *** cov_rc

Variances: (young subjects - Default model)
Estimate S.E. C.R. P Label

recall1 5.678 909 6.245 *** var_rec

cued1 5.452 873 6.245 *** var_cue

You can see that the standard error estimates obtained under Model B are smaller (for
the young subjects, 0.780, 0.909, and 0.873) than the corresponding estimates obtained
under Model A (0.944, 1.311, and 0.953). The Model B estimates are to be preferred
over the ones from Model A as long as you believe that Model B is correct.
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Graphics Output

For Model B, the output path diagram is the same for both groups.

Chi-square = 4.588 (3 df)
p =.205

5.68 5.45

recall1 cued1

4.06

Modeling in VB.NET

Model A

Here is a program (Ex10-a.vb) for fitting Model A:

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_yng")
Sem.GroupName("young subjects")
Sem.AStructure("recall1”)
Sem.AStructure("cued1")

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xIs", "Attg_old")
Sem.GroupName("old subjects")
Sem.AStructure("recall1")
Sem.AStructure("cued1")
Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub
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Model B

The BeginGroup method is used twice in this two-group analysis. The first BeginGroup
line specifies the Attg_yng dataset. The three lines that follow supply a name and a
model for that group. The second BeginGroup line specifies the Attg_old dataset, and
the following three lines supply a name and a model for that group. The model for each
group simply says that recalll and cuedl are two variables with unconstrained
variances and an unspecified covariance. The GroupName method is optional, but it is
useful in multiple-group analyses because it helps Amos to label the output in a
meaningful way.

The following program for Model B is saved in Ex/0-b.vb:

Sub Main()
Dim Sem As New AmosEngine
Try
Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"
Sem.Standardized()
Sem.TextOutput()

Sem.BeginGroup(dataFile, "Attg_yng")
Sem.GroupName("young subjects")
Sem.AStructure("recall1 (var_rec)")
Sem.AStructure("cued1 (var_cue)")
Sem.AStructure("recalll <> cued1 (cov_rc)")

Sem.BeginGroup(dataFile, "Attg_old")
Sem.GroupName("old subjects")
Sem.AStructure("recalll (var_rec)")
Sem.AStructure("cued1 (var_cue)")
Sem.AStructure("recalll <> cued1 (cov_rc)")

Sem.FitModel()

Finally

Sem.Dispose()

End Try
End Sub

The parameter names var_rec, var_cue, and cov_rc (in parentheses) are used to require
that some parameters have the same value for old people as for young people. Using
the name var_rec twice requires recalll to have the same variance in both populations.
Similarly, using the name var_cue twice requires cuedl to have the same variance in
both populations. Using the name cov_rc twice requires that recalll and cuedl have
the same covariance in both populations.
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Multiple Model Input

1

Here is a program (Ex10-all.vb) for fitting both Models A and B.!

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.Standardized()
Sem.TextOutput()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_yng")
Sem.GroupName("young subjects")
Sem.AStructure("recall1 (yng_rec)")
Sem.AStructure("cued1t (yng_cue)")
Sem.AStructure("recalll <> cued1 (yng_rc)")

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xIs", "Attg_old")
Sem.GroupName("old subjects")
Sem.AStructure("recall1 (old_rec)")
Sem.AStructure("cued1 (old_cue)")
Sem.AStructure("recalll <> cued1 (old_rc)")

Sem.Model("Model A")
Sem.Model("Model B", "yng_rec=old_rec", "yng_cue=old_cue", _
"yng_rc=old_rc")
Sem.FitAllModels()
Finally
Sem.Dispose()
End Try
End Sub

The Sem.Model statements should appear immediately after the AStructure
specifications for the last group. It does not matter which Model statement goes first.

In Example 6 (Ex06-all.vb), multiple model constraints were written in a single string, within which individual
constraints were separated by semicolons. In the present example, each constraint is in its own string, and the
individual strings are separated by commas. Either syntax is acceptable.






Example

Felson and Bohrnstedts Girls and
Boys

Introduction

This example demonstrates how to fit a simultaneous equations model to two sets of
data at once.

Felson and Bohrnstedt's Model

Example 7 tested Felson and Bohrnstedt’s (1979) model for perceived attractiveness
and perceived academic ability using a sample of 209 girls. Here, we take the same
model and attempt to apply it simultaneously to the Example 7 data and to data from
another sample of 207 boys. We will examine the question of whether the measured
variables are related to each other in the same way for boys as for girls.

About the Data

The Felson and Bohrnstedt (1979) data for girls were described in Example 7. Here is
a table of the boys’ data from the SPSS Statistics file Fels_mal.sav:

175
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rowtype_ | varname_ | academic athletic attract gpa skills height weight rating

11n 207.00 207.00 207.00 207.00 207.00 207 .00 207 .00 207 .00

2 | corr academic 1.00

3 | corr athletic A7 1.00

4 | corr attract 49 72 1.00

5 | corr GPA 55 27 .30 1.00

B | corr skillz 35 B3 A4 .35 1.00

T | corr height -0z A5 04 -1 A2 1.00

8 | corr weight =11 -0 -149 =16 -05 a1 1.00

9 | corr rating 1 24 28 A3 35 & -18 1.00
10 | stddev A6 21 44 4.04 T4 34 24352 ar
11 | mean AN A7 A4 .63 2493 no 10191 2459

Notice that there are eight variables in the boys’ data file but only seven in the girls’
data file. The extra variable skills is not used in any model of this example, so its
presence in the data file is ignored.

Specifying Model A for Girls and Boys

Consider extending the Felson and Bohrnstedt model of perceived attractiveness and
academic ability to boys as well as girls. To do this, we will start with the girls-only

model specification from Example 7 and modify it to accommodate two groups. If you
have already drawn the path diagram for Example 7, you can use it as a starting point
for this example. No additional drawing is needed.

Parameter estimates can be displayed on a path diagram for only one group at a time

in a multigroup analysis. It is useful then to display a figure caption that tells which
group the parameter estimates represent.

Specifying a Figure Caption

To create a figure caption that displays the group name, place the \group text macro in

the caption.

» From the menus, choose Diagram — Figure Caption.

» Click the path diagram at the spot where you want the caption to appear.
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» In the Figure Caption dialog box, enter a title that contains the text macro \group. For

example:

° Figure Caption

(" Centeralign
(" Lettalign

(" Right align

% Center on page

Caption

Cancel

X|
Font size Ok |
2e -

[~ Bold
[ ttalic

FPress Ctrl-Enter when finished

Example 11: Model A
A nonrecursive, two-group model

Felsan and Bohrnstedt (1979) \group' data.

forrmat

In Example 7, where there was only one group, the group’s name didn’t matter.
Accepting the default name Group number I was good enough. Now that there are two
groups to keep track of, the groups should be given meaningful names.

» From the menus, choose Analyze — Manage Groups.

» In the Manage Groups dialog box, type girls for Group Name.

® x
- - - Manage Groups

Group Name

x|

Ihirls

e | Delets |

Close

» While the Manage Groups dialog box is open, create a second group by clicking New.

» Type boys in the Group Name text box.
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.. Manage Groups x|

Group Mame

ey

e | Delete Close

» Click Close to close the Manage Groups dialog box.

» From the menus, choose File — Data Files.

» In the Data Files dialog box, double-click girls and select the data file Fels_fem.sav.
» Then, double-click boys and select the data file Fels_mal.sav.

» Click OK to close the Data Files dialog box.

Your path diagram should look something like this for the boys’ sample:

Example 11: Model A
A nonrecursive, two-group model
Felson and Bohrnstedt (1979) boys' data
Model Specification

Notice that, although girls and boys have the same path diagram, there is no
requirement that the parameters have the same values in the two groups. This means
that estimates of regression weights, covariances, and variances may be different for
boys than for girls.
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Text Output for Model A

With two groups instead of one (as in Example 7), there are twice as many sample
moments and twice as many parameters to estimate. Therefore, you have twice as many
degrees of freedom as there were in Example 7.

Computation of degrees of freedom (Default model)
Number of distinct sample moments: 42
Number of distinct parameters to be estimated: 38
Degrees of freedom (42 - 38): 4

The model fits the data from both groups quite well.

Chi-square = 3.183
Degrees of freedom = 4
Probability level = 0.528

We accept the hypothesis that the Felson and Bohrnstedt model is correct for both boys
and girls. The next thing to look at is the parameter estimates. We will be interested in
how the girls’ estimates compare to the boys’ estimates. The following are the
parameter estimates for the girls:

Regression Weights: (girls - Default model)
Estimate  S.E. C.R. P Label
academic <--- GPA .023 .004 6.241 ox
attract  <--- height .000 .010 .050 .960
attract  <--- weight -.002 .001 -1.321 .186
attract  <---rating 176 .027 6.444
attract ~ <--- academic 1.607 350 4.599 **
academic <--- attract -.002 .051 -039 .969
Covariances: (girls - Default model)
Estimate  S.E. C.R. P Label
GPA <-->rating .526 246 2139 .032
height <-->rating -468 205 -2.279 .023
GPA <-->weight -6.710 4.676 -1.435 .151
GPA <-->height 1.819 712 2555 .011
height <-->weight 19.024 4.098 4642
weight <--> rating -5.243 1.395 -3.759  ***
error1 <-->error2 -.004 010 -382 .702
Variances: (girls - Default model)
Estimate S.E. C.R. P Label
GPA 12,122 1.189 10.198 ***
height 8.428  .826 10.198 ***
weight 371.476 36.427 10.198 ***
rating 1.015 .100 10.198 ***
errori .019  .003 5.747 ***
error2 143 014 9.974 ***
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These parameter estimates are the same as in Example 7. Standard errors, critical
ratios, and p values are also the same. The following are the unstandardized estimates

for the boys:
Regression Weights: (boys - Default model)
Estimate S.E. C.R. P Label
academic <--- GPA .021 .003 6.927
attract  <--- height .019 .010 1.967 .049
attract  <--- weight -.003 .001 -2.484 .013
attract  <--- rating .095 .030 3.150 .002
attract ~ <--- academic 1.386 .315 4.398 ™
academic <--- attract .063 .059 1.071 .284
Covariances: (boys - Default model)
Estimate S.E. C.R. P Label
GPA <-->rating 507 274 1.850 .064
height <-->rating 198 230 .860 .390
GPA <-->weight -15.645 6.899 -2.268 .023
GPA <-->height -1.508  .961 -1.569 .117
height <--> weight 42.091 6.455 6.521 ***
weight <--> rating -4.226 1.662 -2.543 .011
error1 <-->error2 -010 .011 -898 .369
Variances: (boys - Default model)
Estimate S.E. C.R. P Label
GPA 16.243 1.600 10.149 ***
height 11.572 1.140 10.149 ***
weight 588.605 57.996 10.149 ***
rating 936 .092 10.149 ***
error1 .015 .002 7.571 ***
error2 164 .016 10.149 ***
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Graphics Output for Model A

For girls, this is the path diagram with unstandardized estimates displayed:

rating

Example 11: Model A
A nonrecursive, two-group model
Felson and Bohrnstedt (1979) girls' data
Unstandardized estimates

The following is the path diagram with the estimates for the boys:

: 94
Example 11: Model A
A nonrecursive, two-group model

Felson and Bohrnstedt (1979) boys' data
Unstandardized estimates

You can visually inspect the girls’ and boys’ estimates in Model A, looking for sex
differences. To find out if girls and boys differ significantly with respect to any single
parameter, you could examine the table of critical ratios of differences among all pairs
of free parameters.
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Obtaining Critical Ratios for Parameter Differences
» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Output tab.

» Select Critical ratios for differences.

- Analysis Properties

E stimation ; Murmerncal ; Biaz
Permutations ! Fandom # i Title
Output farmatting 3 DOutput 3 Boatztrap
¥ Minimization histary I Indirect, direct & tatal effects
¥ Standardized estimates I Eactor score weights

[+ Sguared multiple corelations [~ Covarances of estimates

I Sample moments [~ Conelations of estimates

I Implied maments i:&?liritical ratioz for differences

In this example, however, we will not use critical ratios for differences; instead, we
will take an alternative approach to looking for group differences.

Model B for Girls and Boys

Suppose we are mainly interested in the regression weights, and we hypothesize
(Model B) that girls and boys have the same regression weights. In this model, the
variances and covariances of the exogenous variables are still allowed to differ from
one group to another.

This model allows the distribution of variables such as height and weight to be
different for boys than for girls while requiring the linear dependencies among
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variables to be group-invariant. For Model B, you need to constrain six regression
weights in each group.

» First, display the girls’ path diagram by clicking girls in the Groups panel at the left of
the path diagram.

» Right-click one of the single-headed arrows and choose Object Properties from the pop-
up menu.

» In the Object Properties dialog box, click the Parameters tab.
» Enter a name in the Regression weight text box.

» Select All groups. A check mark appears next to it. The effect of the check mark is to
assign the same name to this regression weight in all groups.

° Object Properties il
Colors ] Text] Parameters I Format I Wisibility I

Fontsize and style Orientation
’7|14 ﬂ‘Regular LI ’]Horiznnm LI

[v Allgroups

Set Default
Begression weight

p1 Undo

» Keeping the Object Properties dialog box open, click another single-headed arrow and
enter another name in the Regression weight text box.
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> Repeat this until you have named every regression weight. Always make sure to select
(put a check mark next to) All groups.

After you have named all of the regression weights, the path diagram for each sample
should look something like this:

GPA }—‘)Wacademic
height P6|  |p2
N2
weight [+ attract

2s

Results for Model B

Text Output

Model B fits the data very well.

Chi-square = 9.493
Degrees of freedom = 10
Probability level = 0.486
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Comparing Model B against Model A gives a nonsignificant chi-square of
9.493 —3.183 = 6.310 with 10 —4 = 6 degrees of freedom. Assuming that Model B
is indeed correct, the Model B estimates are preferable over the Model A estimates.

The unstandardized parameter estimates for the girls’ sample are:

Regression Weights: (girls - Default model)
Estimate S.E. C.R. P Label
academic <-—- GPA .022 .002 9475 *** p1
attract  <-- height .008 .007 1177 239 p3
attract  <-- weight -.003 .001 -2.453 .014 p4
attract  <-— rating 145 .020 7.186 *** pb5
attract  <-- academic 1.448 232 6.234 ¥ p6
academic <-- attract .018 .039 469 .639 p2
Covariances: (girls - Default model)
Estimate S.E. C.R. P Label
GPA <-->rating .526 246 2139 .032
height <--> rating -.468 205 -2.279 .023
GPA <--> weight -6.710 4.676 -1.435 .151
GPA <--> height 1.819 712 2555 .011
height <--> weight 19.024 4.098 4.642 b
weight <--> rating -5.243 1395 -3.759 ***
error1 <-->error2 -.004 .008 -.464 .643
Variances: (girls - Default model)
Estimate S.E. C.R. P Label
GPA 12122 1.189 10.198 ***
height 8.428 .826 10.198 ***
weight 371.476 36.427 10.198 ***
rating 1.015 100 10.198 ***
error1 .018 .003  7.111
error2 144 .014 10191 **
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The unstandardized parameter estimates for the boys are:

Regression Weights: (boys - Default model)
Estimate  S.E. CR P Label
academic <— GPA .022 .002 9475 ™ p1
attract  <-- height .008 .007 1177 239 p3
attract  <-- weight -.003 .001 -2453 .014 p4
attract  <— rating 145 020 7186 *** pb5
attract < academic 1.448 232 6234 *** p6
academic <--- attract .018 .039 469 639 p2
Covariances: (boys - Default model)
Estimate S.E. CR. P Label
GPA <--> rating .507 274 1.850 .064
height <--> rating 198 .230 .860 .390
GPA  <-->weight -15.645 6.899 -2.268 .023
GPA  <--> height -1.508 961 -1.569 .117
height <--> weight 42.091 6455 6.521 b
weight <--> rating -4.226 1662 -2.543 .011
error1 <--> error2 -.004 .008 -466 .641
Variances: (boys - Default model)
Estmate S.E. CR. P  Label
GPA 16.243 1.600 10.149 ***
height 11572 1.140 10.149 **
weight 588.605 57.996 10.149 ***
rating .936 .092 10.149 =
error1 .016 .002 7220 **
error2 167 .016 10.146 ***

As Model B requires, the estimated regression weights for the boys are the same as
those for the girls.
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Graphics Output

The output path diagram for the girls is:

1.45 .02

y
weight }ﬁa attract

Example 11: Model B
A nonrecursive, two-group model
Felson and Bohrnstedt (1979) girls' data
Unstandardized estimates

And the output for the boys is:

1.45 .02

y
weight }&a attract

Example 11: Model B
A nonrecursive, two-group model
Felson and Bohrnstedt (1979) boys' data
Unstandardized estimates
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Fitting Models A and B in a Single Analysis

It is possible to fit both Model A and Model B in the same analysis. The file
Ex11-ab.amw in the Amos Examples directory shows how to do this.

Model C for Girls and Boys

You might consider adding additional constraints to Model B, such as requiring every
parameter to have the same value for boys as for girls. This would imply that the entire
variance/covariance matrix of the observed variables is the same for boys as for girls,
while also requiring that the Felson and Bohrnstedt model be correct for both groups.
Instead of following this course, we will now abandon the Felson and Bohrnstedt
model and concentrate on the hypothesis that the observed variables have the same
variance/covariance matrix for girls and boys. We will construct a model (Model C)
that embodies this hypothesis.

» Start with the path diagram for Model A or Model B and delete (Edit — Erase) every
object in the path diagram except the six observed variables. The path diagram will
then look something like this:

| GPA ‘ | academic |
| sveight | | attract |

Each pair of rectangles needs to be connected by a double-headed arrow, for a total of
15 double-headed arrows.
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» Toimprove the appearance of the results, from the menus, choose Edit — Move and use
the mouse to arrange the six rectangles in a single column like this:

academic

2 3
g

GRA,

hieight

sweight

rating

The Drag properties option can be used to put the rectangles in perfect vertical
alignment.

» From the menus, choose Edit — Drag properties.

» In the Drag Properties dialog box, select height, width, and X-coordinate. A check mark
will appear next to each one.

» Use the mouse to drag these properties from academic to attract.

This gives attract the same x coordinate as academic. In other words, it aligns them
vertically. It also makes attract the same size as academic if they are not already the
same size.

» Then drag from attract to GPA, GPA to height, and so on. Keep this up until all six
variables are lined up vertically.
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» Toeven out the spacing between the rectangles, from the menus, choose Edit — Select All.

» Then choose Edit — Space Vertically.
There is a special button for drawing large numbers of double-headed arrows at once.
With all six variables still selected from the previous step:

» From the menus, choose Tools — Macro — Draw Covariances.

Amos draws all possible covariance paths among the selected variables.
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» Label all variances and covariances with suitable names; for example, label them with
letters a through u. In the Object Properties dialog box, always put a check mark next
to All groups when you name a parameter.

» From the menus, choose Analyze — Manage Models and create a second group for the
boys.

» Choose File — Data Files and specify the boys’ dataset (Fels_mal.sav) for this group.

The file Ex11-c.amw contains the model specification for Model C. Here is the input
path diagram, which is the same for both groups:

Example 11: Model C
Test of variance/covariance homogeneity
Felson and Bohrnstedt (1979) girls' data
Model Specification

Results for Model C

Model C has to be rejected at any conventional significance level.

Chi-square = 48.977
Degrees of freedom = 21
Probability level = 0.001

This result means that you should not waste time proposing models that allow no
differences at all between boys and girls.
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Modeling in VB.NET

Model A

The following program fits Model A. It is saved as Ex/I-a.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()

Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
Sem.GroupName("girls")
Sem.AStructure("academic = GPA + attract + error1 (1)")
Sem.AStructure _

("attract = height + weight + rating + academic + error2 (1)")
Sem.AStructure("error2 <--> error1")

Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_mal.sav")
Sem.GroupName("boys")
Sem.AStructure("academic = GPA + attract + error1 (1)")
Sem.AStructure _

("attract = height + weight + rating + academic + error2 (1)")
Sem.AStructure("error2 <--> error1")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub
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Felson and Bohrnstedt’s Girls and Boys

The following program fits Model B, in which parameter labels p/ through p6 are used
to impose equality constraints across groups. The program is saved in Ex/[-b.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
(

Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
Sem.GroupName("girls")
Sem.AStructure("academic = (p1) GPA + (p2) attract + (1) error1")
Sem.AStructure("attract =" & _

"(p3) height + (p4) weight + (p5) rating + (p6) academic + (1) error2")
Sem.AStructure("error2 <--> error1")

Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_mal.sav")
Sem.GroupName("boys")
Sem.AStructure("academic = (p1) GPA + (p2) attract + (1) error1")
Sem.AStructure("attract =" & _

"(p3) height + (p4) weight + (p5) rating + (p6) academic + (1) error2")
Sem.AStructure("error2 <--> error1")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

The VB.NET program for Model C is not displayed here. It is saved in the file
Exl1-c.vb.
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Fitting Multiple Models

The following program fits both Models A and B. The program is saved in the file
Ex11-ab.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()

Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
Sem.GroupName("girls")
Sem.AStructure("academic = (g1) GPA + (g2) attract + (1) error1")
Sem.AStructure("attract =" & _

"(g3) height + (g4) weight + (g5) rating + (g6) academic + (1) error2")
Sem.AStructure("error2 <--> error1")

Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_mal.sav")
Sem.GroupName("boys")
Sem.AStructure("academic = (b1) GPA + (b2) attract + (1) error1")
Sem.AStructure("attract =" & _

"(b3) height + (b4) weight + (b5) rating + (b6) academic + (1) error2")
Sem.AStructure("error2 <--> error1")

Sem.Model("Model_A")
Sem.Model("Model_B", _
"g1=b1", "g2=b2", "g3=b3", "gd=bA", "g5=b5", "g6=b6")

Sem.FitAllModels()
Finally
Sem.Dispose()
End Try
End Sub
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12

Simultaneous Factor Analysis for
Several Groups

Introduction

This example demonstrates how to test whether the same factor analysis model holds

for each of several populations, possibly with different parameter values for different
populations (Joreskog, 1971).

About the Data

We will use the Holzinger and Swineford (1939) data described in Example 8. This
time, however, data from the 72 boys in the Grant-White sample will be analyzed
along with data from the 73 girls studied in Example 8. The girls’ data are in the file
Grnt_fem.sav and were described in Example 8. The following is a sample of the
boys’ data in the file, Grnt_mal.sav:
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visperc cubes lozenges | paragrap | sentence | wordmean
1 23.00 19.00 4.00 10.00 17.00 10.00
2 34.00 24.00 2200 11.00 19.00 19.00
3 29.00 23.00 9.00 9.00 19.00 11.00
4 16.00 25.00 10.00 g.00 23.00 24.00
5 27.00 25.00 5.00 10.00 16.00 13.00
& 3200 21.00 5.00 1.00 7.00 11.00
[ 35.00 31.00 12.00 10.00 11.00 14.00

Model A for the Holzinger and Swineford Boys and Girls

Consider the hypothesis that the common factor analysis model of Example 8 holds for
boys as well as for girls. The path diagram from Example 8 can be used as a starting
point for this two-group model. By default, Amos Graphics assumes that both groups
have the same path diagram, so the path diagram does not have to be drawn a second
time for the second group.

In Example 8, where there was only one group, the name of the group didn’t matter.
Accepting the default name Group number I was good enough. Now that there are two
groups to keep track of, the groups should be given meaningful names.

Naming the Groups
» From the menus, choose Analyze — Manage Groups.

» In the Manage Groups dialog box, type Girls for Group Name.
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-7. Manage Groups il
Group Mame
Ik}irls

[l | Cielate | Cloze

» While the Manage Groups dialog box is open, create another group by clicking New.

» Then, type Boys in the Group Name text box.

-7.Manage Groups x|

Group Mame

[Foys

e | Delete | Close

» Click Close to close the Manage Groups dialog box.

Specifying the Data
» From the menus, choose File — Data Files.
» In the Data Files dialog box, double-click Girls and specify the data file grnt_fem.sav.
» Then double-click Boys and specify the data file grnt_mal.sav.

» Click OK to close the Data Files dialog box.
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Your path diagram should look something like this for the girls’ sample:

Example 12: Model A
Factor analysis: Girls' sample
Holzinger and Swineford (1939)
Model Specification

The boys’ path diagram is identical. Note, however, that the parameter estimates are
allowed to be different for the two groups.

Results for Model A

Text Output

In the calculation of degrees of freedom for this model, all of the numbers from
Example 8 are exactly doubled.

Computation of degrees of freedom: (Default model)

Number of distinct sample moments: 42
Number of distinct parameters to be estimated: 26
Degrees of freedom (42 — 26): 16
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Model A is acceptable at any conventional significance level. If Model A had been
rejected, we would have had to make changes in the path diagram for at least one of the
two groups.

Chi-square = 16.480
Degrees of freedom = 16
Probability level = 0.420

Graphics Output

Here are the (unstandardized) parameter estimates for the 73 girls. They are the same
estimates that were obtained in Example 8 where the girls alone were studied.

Chi-square = 16.480 (16 df)
p =.420

visperc

23.87

oy

7.32

Example 12: Model A
Factor analysis: Girls' sample
Holzinger and Swineford (1939)
Unstandardized estimates
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The corresponding output path diagram for the 72 boys is:

Chi-square = 16.480 (16 df)
p =.420

Example 12: Model A
Factor analysis: Boys' sample
Holzinger and Swineford (1939)
Unstandardized estimates

Notice that the estimated regression weights vary little across groups. It seems
plausible that the two populations have the same regression weights—a hypothesis that
we will test in Model B.

Model B for the Holzinger and Swineford Boys and Girls

We now accept the hypothesis that boys and girls have the same path diagram. The next
step is to ask whether boys and girls have the same parameter values. The next model
(Model B) does not go as far as requiring that every parameter for the population of
boys be equal to the corresponding parameter for girls. It does require that the factor
pattern (that is, the regression weights) be the same for both groups. Model B still
permits different unique variances for boys and girls. The common factor variances and
covariances may also differ across groups.

» Take Model A as a starting point for Model B.

» First, display the girls’ path diagram by clicking Girls in the Groups panel at the left of
the path diagram.
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Right-click the arrow that points from spatial to cubes and choose Object Properties
from the pop-up menu.

In the Object Properties dialog box, click the Parameters tab.
Type cube_s in the Regression weight text box.

Select All groups. A check mark appears next to it. The effect of the check mark is to
assign the same name to this regression weight in both groups.

° Object Properties il
Colars I Textl Pararmeters I Farmat I Wisibility I

Font size and style—————— — Orientation

L”Regular LI IOinque LI

[ Al groups

_ _ Set Default
Begressionweight

Icube_s Undo

Leaving the Object Properties dialog box open, click each of the remaining single-
headed arrows in turn, each time typing a name in the Regression weight text box.
Keep this up until you have named every regression weight. Always make sure to
select (put a check mark next to) All groups. (Any regression weights that are already
fixed at 1 should be left alone.)
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The path diagram for either of the two samples should now look something like this:

visperc
cubes
lozenges
paragrap
sentence
wordmeant-err_w)

Results for Model B

Text Output

Because of the additional constraints in Model B, four fewer parameters have to be
estimated from the data, increasing the number of degrees of freedom by 4.

Computation of degrees of freedom: (Default model)

Number of distinct sample moments: 42
Number of distinct parameters to be estimated: 22
Degrees of freedom (42 — 20): 20

The chi-square fit statistic is acceptable.

Chi-square = 18.292
Degrees of freedom = 20
Probability level = 0.568

The chi-square difference between Models A and B, 18.292 — 16.480 = 1.812, is not
significant at any conventional level, either. Thus, Model B, which specifies a
group-invariant factor pattern, is supported by the Holzinger and Swineford data.
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Graphics Output

Here are the parameter estimates for the 73 girls:

Chi-square = 18.292 (20 df)

7.22

Example 12: Model B
Factor analysis: Girls' sample
Holzinger and Swineford (1939)
Unstandardized estimates
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Here are the parameter estimates for the 72 boys:

Chi-square = 18.292 (20 df)
p =.568

7.00

Example 12: Model B
Factor analysis: Boys' sample
Holzinger and Swineford (1939)
Unstandardized estimates

Not surprisingly, the Model B parameter estimates are different from the Model A
estimates. The following table shows estimates and standard errors for the two models
side by side:

Parameters Model A Model B
Girls’ sample Estimate ]S£tandard Estimate Standard
Iror Error
g: cubes <--- spatial 0.610 0.143 0.557 0.114
g: lozenges <--- spatial | 1.198 0.272 1.327 0.248
g: sentence <--- verbal |1.334 0.160 1.305 0.117
g: wordmean <--- verbal| 2.234 0.263 2.260 0.200
g: spatial <---> verbal |7.315 2.571 7.225 2.458
g: var(spatial) 23.302 8.124 22.001 7.078
g: var(verbal) 9.682 2.159 9.723 2.025
g: var(err_v) 23.873 5.986 25.082 5.832
g: var(err_c) 11.602 2.584 12.382 2.481
g: var(err_l) 28.275 7.892 25.244 8.040
g: var(err_p) 2.834 0.869 2.835 0.834
g: var(err_s) 7.967 1.869 8.115 1.816
g: var(err_w) 19.925 4951 19.550 4.837
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Boys’ sample Estimate Isztril;gard Estimate lSEtra;I‘l)gard
b: cubes <--- spatial 0.450 0.176 0.557 0.114
b: lozenges <--- spatial | 1.510 0.461 1.327 0.248
b: sentence <--- verbal |1.275 0.171 1.305 0.117
b: wordmean <--- verbal| 2.294 0.308 2.260 0.200
b: spatial <---> verbal |6.840 2.370 6.992 2.090
b: var(spatial) 16.058 7.516 16.183 5.886
b: var(verbal) 6.904 1.622 6.869 1.465
b: var(err_v) 31.571 6.982 31.563 6.681
b: var(err_c) 15.693 2.904 15.245 2.934
b: var(err_l) 36.526 11.532 40.974 9.689
b: var(err_p) 2.364 0.726 2.363 0.681
b: var(err_s) 6.035 1.433 5.954 1.398
b: var(err_w) 19.697 4.658 19.937 4.470

All but two of the estimated standard errors are smaller in Model B, including those for
the unconstrained parameters. This is a reason to use Model B for parameter estimation

rather than Model A, assuming, of course, that Model B is correct.
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Modeling in VB.NET

Model A

The following program (ExI2-a.vb) fits Model A for boys and girls:

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")
Sem.GroupName("Girls")

Sem.AStructure("visperc = (1) spatial + (1) err_v")
Sem.AStructure("cubes = spatial + (1) err_c")
Sem.AStructure("lozenges =  spatial + (1) err_I")
Sem.AStructure("paragrap = (1) verbal + (1) err_p")
Sem.AStructure("sentence = verbal + (1) err_ ')
Sem.AStructure("wordmean =  verbal + (1) err_w")

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_mal.sav")
Sem.GroupName(“Boys")

Sem.AStructure("visperc = (1) spatial + (1) err_v")
Sem.AStructure("cubes = spatial + (1) err_c")
Sem.AStructure("lozenges =  spatial + (1) err_I")
Sem.AStructure("paragrap = (1) verbal + (1) err_p")
Sem.AStructure("sentence = verbal + (1) err_ "
Sem.AStructure("wordmean = verbal + (1) err w)
Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

The same model is specified for boys as for girls. However, the boys’ parameter values
can be different from the corresponding girls’ parameters.
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Simultaneous Factor Analysis for Several Groups

Sub Main()
Dim Sem As New AmosEngine

y

Sem.TextOutput()
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")

Sem.GroupName("Girls")

Sem.AStructure("visperc = (1) spatial + (1) err_v")
Sem.AStructure("cubes = (cube_s) spatial + (1) err_c")
Sem.AStructure("lozenges = (lozn_s) spatial + (1) err_I")

(

(
Sem.AStructure("paragrap = (1) verbal + (1) err_p")
Sem.AStructure("sentence = (sent_v) verbal + (1) err_s")
Sem.AStructure("wordmean = (word_v) verbal + (1) err_w")

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_mal.sav")

Sem.GroupName("Boys")

Sem.AStructure("visperc = (1) spatial + (1) err_v")
Sem.AStructure("cubes = (cube_s) spatial + (1) err_c")
Sem.AStructure("lozenges = (lozn_s) spatial + (1) err_I")

Sem.AStructure("sentence = (sent_v) verbal + (1) err_s")

(
(
Sem.AStructure("paragrap = (1) verbal + (1) err_p")
(
Sem.AStructure("

wordmean = (word_v) verbal + (1) err_w")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

Here is a program for fitting Model B, in which some parameters are identically named
so that they are constrained to be equal. The program is saved as Ex/2-b.vb.
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13

Estimating and Testing Hypotheses
about Means

Introduction

This example demonstrates how to estimate means and how to test hypotheses about
means. In large samples, the method demonstrated is equivalent to multivariate
analysis of variance.

Means and Intercept Modeling

Amos and similar programs are usually used to estimate variances, covariances, and
regression weights, and to test hypotheses about those parameters. Means and
intercepts are not usually estimated, and hypotheses about means and intercepts are
not usually tested. At least in part, means and intercepts have been left out of structural
equation modeling because of the relative difficulty of specifying models that include
those parameters.

Amos, however, was designed to make means and intercept modeling easy. The
present example is the first of several showing how to estimate means and intercepts
and test hypotheses about them. In this example, the model parameters consist only
of variances, covariances, and means. Later examples introduce regression weights
and intercepts in regression equations.

209
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About the Data

For this example, we will be using Attig’s (1983) memory data, which was described
in Example 1. We will use data from both young and old subjects. The raw data for the
two groups are contained in the Microsoft Excel workbook UserGuide.xls, in the
Artg_yng and Attg_old worksheets. In this example, we will be using only the measures
recalll and cuedl.

Model A for Young and Old Subjects

In the analysis of Model B of Example 10, we concluded that recalll and cuedl have
the same variances and covariance for both old and young people. At least, the
evidence against that hypothesis was found to be insignificant. Model A in the present
example replicates the analysis in Example 10 of Model B with an added twist. This
time, the means of the two variables recalll and cuedl will also be estimated.

Mean Structure Modeling in Amos Graphics

In Amos Graphics, estimating and testing hypotheses involving means is not too
different from analyzing variance and covariance structures. Take Model B of Example
10 as a starting point. Young and old subjects had the same path diagram:

var_rec var_cue
recalll cued1
cov_rc

The same parameter names were used in both groups, which had the effect of requiring
parameter estimates to be the same in both groups.

Means and intercepts did not appear in Example 10. To introduce means and
intercepts into the model:

» From the menus, choose View — Analysis Properties.

» In the Analysis Properties dialog box, click the Estimation tab.
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» Select Estimate means and intercepts.

:F_-'; Analysis Properties

Permutations ; R andam # i Title
Output farmatting l Output ] Bootstrap
E stimation i Mumerical I Biaz
Dizcrepancy
& Maximum lieliood [o Estimate means and
%mtercepts

= Gereralized lzast squares

i Urnweighted least squares B it

= Scale-fiee least squares

I Chicorrect

£ dgumptotically distribution-free

Now the path diagram looks like this (the same path diagram for each group):

,var_rec ,var_cue

recall1

cov_rc

The path diagram now shows a mean, variance pair of parameters for each exogenous
variable. There are no endogenous variables in this model and hence no intercepts. For
each variable in the path diagram, there is a comma followed by the name of a variance.
There is only a blank space preceding each comma because the means in the model
have not yet been named.

When you choose Calculate Estimates from the Analyze menu, Amos will estimate
two means, two variances, and a covariance for each group. The variances and the
covariance will be constrained to be equal across groups, while the means will be
unconstrained.
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The behavior of Amos Graphics changes in several ways when you select (put a check
mark next to) Estimate means and intercepts:

Mean and intercept fields appear on the Parameters tab in the Object Properties
dialog box.

Constraints can be applied to means and intercepts as well as regression weights,
variances, and covariances.

From the menus, choosing Analyze — Calculate Estimates estimates means and
intercepts—subject to constraints, if any.

You have to provide sample means if you provide sample covariances as input.

When you do not put a check mark next to Estimate means and intercepts:

Only fields for variances, covariances, and regression weights are displayed on the
Parameters tab in the Object Properties dialog box. Constraints can be placed only
on those parameters.

When Calculate Estimates is chosen, Amos estimates variances, covariances, and
regression weights, but not means or intercepts.

You can provide sample covariances as input without providing sample means. If
you do provide sample means, they are ignored.

If you remove the check mark next to Estimate means and intercepts after a means
model has already been fitted, the output path diagram will continue to show means
and intercepts. To display the correct output path diagram without means or
intercepts, recalculate the model estimates after removing the check mark next to
Estimate means and intercepts.

With these rules, the Estimate mean and intercepts check box makes estimating and
testing means models as easy as traditional path modeling.

Results for Model A

Text Output

The number of degrees of freedom for this model is the same as in Example 10, Model
B, but we arrive at it in a different way. This time, the number of distinct sample
moments includes the sample means as well as the sample variances and covariances.
In the young sample, there are two variances, one covariance, and two means, for a
total of five sample moments. Similarly, there are five sample moments in the old
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sample. So, taking both samples together, there are 10 sample moments. As for the
parameters to be estimated, there are seven of them, namely var_rec (the variance of
recalll), var_cue (the variance of cuedl), cov_rc (the covariance between recalll and
cuedl), the means of recalll among young and old people (2), and the means of cued!
among young and old people (2).

The number of degrees of freedom thus works out to be:

Computation of degrees of freedom (Default model)
Number of distinct sample moments: 10
Number of distinct parameters to be estimated: 7
Degrees of freedom (10 - 7): 3

The chi-square statistic here is also the same as in Model B of Example 10. The
hypothesis that old people and young people share the same variances and covariance
would be accepted at any conventional significance level.

Chi-square = 4.588
Degrees of freedom = 3
Probability level = 0.205

Here are the parameter estimates for the 40 young subjects:

Means: (young subjects - Default model)
Estimate  S.E. C.R. P Label

recall1 10.250 .382 26.862 ***

cued1 11.700 374 31.292 ***

Covariances: (young subjects - Default model)
Estimate  S.E. C.R. P Label
recall1 <-->cued1 4056 .780 5.202 *** cov_rc

Variances: (young subjects - Default model)
Estimate  S.E. C.R. P Label

recall1 5.678 909 6.245 *** var_rec

cued1 5452 873 6.245 *** var_cue

Here are the estimates for the 40 old subjects:

Means: (old subjects - Default model)
Estimate  S.E. C.R. P Label

recallt 8.675 .382 22735 ***

cued1 9575 374 25609 ***

Covariances: (old subjects - Default model)
Estimate S.E. C.R. P Label
recall1 <-->cued1 4056 .780 5.202 *** cov_rc
Variances: (old subjects - Default model)
Estimate  S.E. C.R. P Label
recall1 5678 909 6.245 *** wvar_rec
cued1 5452 873 6.245 *** var_cue
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Except for the means, these estimates are the same as those obtained in Example 10,
Model B. The estimated standard errors and critical ratios are also the same. This
demonstrates that merely estimating means, without placing any constraints on them,
has no effect on the estimates of the remaining parameters or their standard errors.

Graphics Output

The path diagram output for the two groups follows. Each variable has a mean,
variance pair displayed next to it. For instance, for young subjects, variable recalll has
an estimated mean of 10.25 and an estimated variance of 5.68.

10.25, 5.68 11.70, 5.45 8.68, 5.68 9.58, 5.45

4.06 4.06
Example 13: Model A Example 13: Model A
Homogenous covariance structures Homogenous covariance structures
Attig (1983) young subjects Attig (1983) old subjects
Unstandardized estimates Unstandardized estimates

Model B for Young and 0ld Subjects

From now on, assume that Model A is correct, and consider the more restrictive
hypothesis that the means of recalll and cued! are the same for both groups.

To constrain the means for recalll and cuedl:
» Right-click recalll and choose Object Properties from the pop-up menu.

» In the Object Properties dialog box, click the Parameters tab.
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Fomat | Visiiity |

Font gize and style——— — Onientation

|1 G j| Reqular j I Horizantal j

Mean

Jmn_rec ¥ &l aroups

Warnance Set Default
|var_reu: Urile

» You can enter either a numeric value or a name in the Mean text box. For now, type the
name mn_rec.

» Select All groups. (A check mark appears next to it. The effect of the check mark is to
assign the name mn_rec to the mean of recalll in every group, requiring the mean of
recalll to be the same for all groups.)

» After giving the name mn_rec to the mean of recalll, follow the same steps to give the
name mn_cue to the mean of cued].

The path diagrams for the two groups should now look like this:

mn_rec, var_rec mn_cue, var_cue mn_rec, var_rec mn_cue, var_cue

cov_rc cov_rc
Example 13: Model B Example 13: Model B
Invariant means and (co-)variances Invariant means and (co-)variances
Attig (1983) young subjects Attig (1983) old subjects
Model Specification Model Specification

These path diagrams are saved in the file Ex13-b.amw.
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Results for Model B

With the new constraints on the means, Model B has five degrees of freedom.

Computation of degrees of freedom (Default model)
Number of distinct sample moments: 10
Number of distinct parameters to be estimated: 5
Degrees of freedom (10 - 5): 5

Model B has to be rejected at any conventional significance level.

Chi-square = 19.267
Degrees of freedom = 5
Probability level = 0.002

Comparison of Model B with Model A

If Model A is correct and Model B is wrong (which is plausible, since Model A was
accepted and Model B was rejected), then the assumption of equal means must be
wrong. A better test of the hypothesis of equal means under the assumption of equal
variances and covariances can be obtained in the following way: In comparing Model
B with Model A, the chi-square statistics differ by 14.679, with a difference of 2 in
degrees of freedom. Since Model B is obtained by placing additional constraints on
Model A, we can say that, if Model B is correct, then 14.679 is an observation on a
chi-square variable with two degrees of freedom. The probability of obtaining this
large a chi-square value is 0.001. Therefore, we reject Model B in favor of Model A,
concluding that the two groups have different means.

The comparison of Model B against Model A is as close as Amos can come to
conventional multivariate analysis of variance. In fact, the test in Amos is equivalent
to a conventional MANOV A, except that the chi-square test provided by Amos is only
asymptotically correct. By contrast, MANOVA, for this example, provides an exact
test.

Multiple Model Input

It is possible to fit both Model A and Model B in a single analysis. The file
Ex13-all.amw shows how to do this. One benefit of fitting both models in a single
analysis is that Amos will recognize that the two models are nested and will
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automatically compute the difference in chi-square values as well as the p value for
testing Model B against Model A.

Mean Structure Modeling in VB.NET

Model A

Here is a program (Ex/3-a.vb) for fitting Model A. The program keeps the variance and
covariance restrictions that were used in Example 10, Model B, and, in addition, places
constraints on the means.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.ModelMeansAndintercepts()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xlIs", "Attg_yng")
Sem.GroupName("young_subjects")
Sem.AStructure("recall1 (var_rec)")
Sem.AStructure("cued1 (var_cue)")
Sem.AStructure("recalll <> cued1 (cov_rc)")
Sem.Mean("recall1")
Sem.Mean("cued1")

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_old")
Sem.GroupName("old_subjects")
Sem.AStructure("recalll (var_rec)")
Sem.AStructure("cued1 (var_cue)")
Sem.AStructure("recalll <> cued1 (cov_rc)")
Sem.Mean("recall1")
Sem.Mean("cued1")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

The ModelMeansAndintercepts method is used to specify that means (of exogenous
variables) and intercepts (in predicting endogenous variables) are to be estimated as
explicit model parameters.

The Mean method is used twice in each group in order to estimate the means of
recalll and cued]. If the Mean method had not been used in this program, recalll and
cuedl would have had their means fixed at 0. When you use the
ModelMeansAndintercepts method in an Amos program, Amos assumes that each
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Model B

exogenous variable has a mean of 0 unless you specify otherwise. You need to use the
Model method once for each exogenous variable whose mean you want to estimate. It
is easy to forget that Amos programs behave this way when you use
ModelMeansAndintercepts.

Note: If you use the Sem.ModelMeansAndintercepts method in an Amos program, then
the Mean method must be called once for each exogenous variable whose mean you
want to estimate. Any exogenous variable that is not explicitly estimated through use
of the Mean method is assumed to have a mean of 0.

This is different from Amos Graphics, where putting a check mark next to Estimate
means and intercepts causes the means of all exogenous variables to be treated as free
parameters except for those means that are explicitly constrained.

The following program (Ex13-b.vb) fits Model B. In addition to requiring
group-invariant variances and covariances, the program also requires the means to be
equal across groups.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.ModelMeansAndintercepts()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xIs", "Attg_yng")
Sem.GroupName("young_subjects")
Sem.AStructure("recall1 (var_rec)")
Sem.AStructure("cued1 (var_cue)")
Sem.AStructure("recalll <> cued1 (cov_rc)")
Sem.Mean("recall1", "mn_rec")
Sem.Mean("cued1”, "mn_cue")

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xlIs", "Attg_old")
Sem.GroupName("old_subjects")
Sem.AStructure("recalll (var_rec)")
Sem.AStructure("cuedi (var_cue)")
Sem.AStructure("recalll <> cued1 (cov_rc)")
Sem.Mean("recall1", "mn_rec")
Sem.Mean("cued1”, "mn_cue")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub
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Fitting Multiple Models

Both models A and B can be fitted by the following program. It is saved as Ex/3-all.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_yng")
Sem.GroupName("young subjects")
Sem.AStructure("recalll (var_rec)")
Sem.AStructure("cued1 (var_cue)")
Sem.AStructure("recalll <> cued1 (cov_rc)")
Sem.Mean("recall1", "yng_rec")
Sem.Mean("cued1”, "yng_cue")

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_old")
Sem.GroupName("old subjects")
Sem.AStructure("recall1 (var_rec)")
Sem.AStructure("cued1 (var_cue)")
Sem.AStructure("recalll <> cued1 (cov_rc)")
Sem.Mean("recall1", "old_rec")
Sem.Mean("cued1”, "old_cue")

Sem.Model("Model_A", "")
Sem.Model("Model_B", "yng_rec = old_rec", "yng_cue = old_cue")
Sem.FitAllModels()
Finally
Sem.Dispose()
End Try
End Sub
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Regression with an Explicit Intercept

Introduction

This example shows how to estimate the intercept in an ordinary regression analysis.

Assumptions Made by Amos

Ordinarily, when you specify that some variable depends linearly on some others,
Amos assumes that the linear equation expressing the dependency contains an
additive constant, or intercept, but does not estimate it. For instance, in Example 4, we
specified the variable performance to depend linearly on three other variables:
knowledge, value, and satisfaction. Amos assumed that the regression equation was
of the following form:

performance = a+ b, X knowledge + b, X value + b; X satisfaction + error

where b, , b,, and b, are regression weights, and a is the intercept. In Example 4, the
regression weights b, through b; were estimated. Amos did not estimate ¢ in Example
4, and it did not appear in the path diagram. Nevertheless, b,, b, , and b; were
estimated under the assumption that a was present in the regression equation.
Similarly, knowledge, value, and satisfaction were assumed to have means, but their
means were not estimated and did not appear in the path diagram. You will usually be
satisfied with this method of handling means and intercepts in regression equations.
Sometimes, however, you will want to see an estimate of an intercept or to test a
hypothesis about an intercept. For that, you will need to take the steps demonstrated in
this example.
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About the Data

We will once again use the data of Warren, White, and Fuller (1974), first used in
Example 4. We will use the Excel worksheet Warren5v in UserGuide.xls found in the
Examples directory. Here are the sample moments (means, variances, and
covariances):

rowtype_ varmame_ | perfarmance| knowledoes value| zatizfachon| past_training
h 93 93 93 93 93
coy perfarmance 0.0209

coy knowledge 0.m7#F 0052

coy value 0.0245 0.02a 01212

coy satisfaction 0.0045 0.0044 -0.0063 0.0901

cov pazt_training n.0ay 00192 0.0353 -0. 0066 0.094E
rean 00529 1.3796 28773 24613 21174

Specifying the Model

You can specify the regression model exactly as you did in Example 4. In fact, if you
have already worked through Example 4, you can use that path diagram as a starting

point for this example. Only one change is required to get Amos to estimate the means
and the intercept.

From the menus, choose View — Analysis Properties.
In the Analysis Properties dialog box, click the Estimation tab.

Select Estimate means and intercepts.

Your path diagram should then look like this:
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knowledge

value Hperformance

satisfaction

Example 14
Job Performance of Farm Managers
Regression with an explicit intercept
(Model Specification)

Notice the string 0, displayed above the error variable. The 0 to the left of the comma
indicates that the mean of the error variable is fixed at 0, a standard assumption in
linear regression models. The absence of anything to the right of the comma in 0,
means that the variance of error is not fixed at a constant and does not have a name.

With a check mark next to Estimate means and intercepts, Amos will estimate a mean
for each of the predictors, and an intercept for the regression equation that predicts
performance.

Results of the Analysis

Text Output

The present analysis gives the same results as in Example 4 but with the explicit
estimation of three means and an intercept. The number of degrees of freedom is again
0, but the calculation of degrees of freedom goes a little differently. Sample means are
required for this analysis; therefore, the number of distinct sample moments includes
the sample means as well as the sample variances and covariances. There are four
sample means, four sample variances, and six sample covariances, for a total of 14
sample moments. As for the parameters to be estimated, there are three regression
weights and an intercept. Also, the three predictors have among them three means,
three variances, and three covariances. Finally, there is one error variance, for a total of
14 parameters to be estimated.
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Computation of degrees of freedom (Default model)
Number of distinct sample moments: 14
Number of distinct parameters to be estimated: 14
Degrees of freedom (14 - 14): 0

With 0 degrees of freedom, there is no hypothesis to be tested.

Chi-square = 0.000
Degrees of freedom = 0
Probability level cannot be computed

The estimates for regression weights, variances, and covariances are the same as in
Example 4, and so are the associated standard error estimates, critical ratios, and
p values.

Regression Weights: (Group number 1 - Default model)

Estimate S.E. C.R. P Label
performance <--- knowledge .258 .054  4.822 b
performance <--- value 145 .035 4.136 b

performance <--- satisfaction .049 .038 1.274 203

Means: (Group number 1 - Default model)
Estimate S.E. CR. P Label

value 2.877 .035 81.818 ***

knowledge 1.380 .023 59.891 ***

satisfaction 2.461 .030 81.174 **

Intercepts: (Group number 1 - Default model)

Estimate S.E. CR. P Label
performance -.834 140 -5.951 ***
Covariances: (Group number 1 - Default model)
Estimate S.E. C.R. P Label

knowledge <--> satisfaction .004 .007 .632 .528
value <--> satisfaction -.006 .011 -.593 .553

knowledge <--> value .028 .008 3.276 .001
Variances: (Group number 1 - Default model)
Estimate S.E. CR. P Label
knowledge .051 .007 6.964 ***
value 1120 .017 6.964 ***
satisfaction .089 .013  6.964 **

error .012 .002 6.964 *
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Graphics Output

Below is the path diagram that shows the unstandardized estimates for this example.
The intercept of —0.83 appears just above the endogenous variable performance.

1.38, .05

knowledge

2.88, .12 -.83 0, .01

15 1
value Hperformance

Example 14
Job Performance of Farm Managers
Regression with an explicit intercept
(Unstandardized estimates)

Modeling in VB.NET

As a reminder, here is the Amos program from Example 4 (equation version):

Sub Main()

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.ImpliedMoments()
Sem.SampleMoments()

Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Warren5v")
Sem.AStructure _
("performance = knowledge + value + satisfaction + error (1)")

Sem.FitModel()

Finally
Sem.Dispose()

End Try

End Sub
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The following program for the model of Example 14 gives all the same results, plus
mean and intercept estimates. This program is saved as Ex/4.vb.

Sub Main()

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.ImpliedMoments()
Sem.SampleMoments()
Sem.ModelMeansAndintercepts()

Sem.BeginGroup( _

Sem.AmosDir & "Examples\UserGuide.xIs", "Warren5v")
Sem.AStructure( _

"performance = () + knowledge + value + satisfaction + error (1)")

Sem.Mean("knowledge")
Sem.Mean("value")
Sem.Mean("satisfaction")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

Note the Sem.ModelMeansAndintercepts statement that causes Amos to treat means and
intercepts as explicit model parameters. Another change from Example 4 is that there
is now an additional pair of empty parentheses and a plus sign in the AStructure line.
The extra pair of empty parentheses represents the intercept in the regression equation.

The Sem.Mean statements request estimates for the means of knowledge, value, and
satisfaction. Each exogenous variable with a mean other than 0 has to appear as the
argument in a call to the Mean method. If the Mean method had not been used in this
program, Amos would have fixed the means of the exogenous variables at 0.

Intercept parameters can be specified by an extra pair of parentheses in a
Sem.AStructure command (as we just showed) or by using the Intercept method. In the
following program, the Intercept method is used to specify that there is an intercept in
the regression equation for predicting performance:
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Sub Main()

Dim Sem As New AmosEngine

Try
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.ImpliedMoments()
Sem.SampleMoments()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup( _

Sem.AmosDir & "Examples\UserGuide.xIs", "Warren5v")
Sem.AStructure("performance <--- knowledge")
Sem.AStructure("performance <--- value")
Sem.AStructure("performance <--- satisfaction")
Sem.AStructure("performance <--- error (1)")

Sem.Intercept("performance")
Sem.Mean("knowledge")
Sem.Mean("value")
Sem.Mean("satisfaction")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub







Example

Factor Analysis with Structured
Means

Introduction

This example demonstrates how to estimate factor means in a common factor analysis
of data from several populations.

Factor Means

Conventionally, the common factor analysis model does not make any assumptions
about the means of any variables. In particular, the model makes no assumptions about
the means of the common factors. In fact, it is not even possible to estimate factor
means or to test hypotheses in a conventional, single-sample factor analysis.

However, Sérbom (1974) showed that it is possible to make inferences about factor
means under reasonable assumptions, as long as you are analyzing data from more
than one population. Using Sérbom’s approach, you cannot estimate the mean of
every factor for every population, but you can estimate differences in factor means
across populations. For instance, think about Example 12, where a common factor
analysis model was fitted simultaneously to a sample of girls and a sample of boys.
For each group, there were two common factors, interpreted as verbal ability and
spatial ability. The method used in Example 12 did not permit an examination of
mean verbal ability or mean spatial ability. Sorbom’s method does. Although his
method does not provide mean estimates for either girls or boys, it does give an
estimate of the mean difference between girls and boys for each factor. The method
also provides a test of significance for differences of factor means.

229



230

Example 15

The identification status of the factor analysis model is a difficult subject when
estimating factor means. In fact, S6rbom’s accomplishment was to show how to
constrain parameters so that the factor analysis model is identified and so that
differences in factor means can be estimated. We will follow S6rbom’s guidelines for
achieving model identification in the present example.

About the Data

We will use the Holzinger and Swineford (1939) data from Example 12. The girls’
dataset is in Grnt_fem.sav. The boys’ dataset is in Grnt_mal.sav.

Model A for Boys and Girls

Specifying the Model

We need to construct a model to test the following null hypothesis: Boys and girls have
the same average spatial ability and the same average verbal ability, where spatial and
verbal ability are common factors. In order for this hypothesis to have meaning, the
spatial and the verbal factors must be related to the observed variables in the same way
for girls as for boys. This means that the girls’ regression weights and intercepts must
be equal to the boys’ regression weights and intercepts.

Model B of Example 12 can be used as a starting point for specifying Model A of
the present example. Starting with Model B of Example 12:

» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Estimation tab.

» Select Estimate means and intercepts (a check mark appears next to it).

The regression weights are already constrained to be equal across groups. To begin
constraining the intercepts to be equal across groups:

» Right-click one of the observed variables, such as visperc.

» Choose Object Properties from the pop-up menu.
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In the Object Properties dialog box, click the Parameters tab.
Enter a parameter name, such as int_vis, in the Intercept text box.
Select All groups, so that the intercept is named in¢_vis in both groups.

Proceed in the same way to give names to the five remaining intercepts.

As Sorbom showed, it is necessary to fix the factor means in one of the groups at a
constant. We will fix the means of the boys’ spatial and verbal factors at 0. Example
13 shows how to fix the mean of a variable to a constant value.

Note: When using the Object Properties dialog box to fix the boys’ factor means at 0,
be sure that you do not put a check mark next to All groups.

After fixing the boys’ factor means at 0, follow the same procedure to assign names to
the girls’ factor means. At this point, the girls’ path diagram should look something
like this:

int_vis

visperc
cubes ,

int_loz

1
lozenges

int_par

paragrap

int_sen

0,
1
sentence

int_wrd

wordmean
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The boys’ path diagram should look like this:

int_vis

visperc ’
cubes ’

int_loz

] 0,
lozenges

int_par

paragrap

int_sen

0,
1
sentence

int_wrd

wordmean

Understanding the Cross-Group Constraints

The cross-group constraints on intercepts and regression weights may or may not be
satisfied in the populations. One result of fitting the model will be a test of whether
these constraints hold in the populations of girls and boys. The reason for starting out
with these constraints is that (as S6rbom points out) it is necessary to impose some
constraints on the intercepts and regression weights in order to make the model
identified when estimating factor means. These are not the only constraints that would
make the model identified, but they are plausible ones.

The only difference between the boys’ and girls’ path diagrams is in the constraints
on the two factor means. For boys, the means are fixed at 0. For girls, both factor means
are estimated. The girls’ factor means are named mn_s and mn_v, but the factor means
are unconstrained because each mean has a unique name.

The boys’ factor means were fixed at 0 in order to make the model identified.
Sorbom showed that, even with all the other constraints imposed here, it is still not
possible to estimate factor means for both boys and girls simultaneously. Take verbal
ability, for example. If you fix the boys’ mean verbal ability at some constant (like 0),
you can then estimate the girls’ mean verbal ability. Alternatively, you can fix the girls’
mean verbal ability at some constant, and then estimate the boys’ mean verbal ability.
The bad news is that you cannot estimate both means at once. The good news is that
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the difference between the boys’ mean and the girls’ mean will be the same, no matter
which mean you fix and no matter what value you fix for it.

Results for Model A

Text Output

There is no reason to reject Model A at any conventional significance level.

Chi-square = 22.593
Degrees of freedom = 24
Probability level = 0.544

Graphics Output

We are primarily interested in estimates of mean verbal ability and mean spatial ability,
and not so much in estimates of the other parameters. However, as always, all the
estimates should be inspected to make sure that they are reasonable. Here are the
unstandardized parameter estimates for the 73 girls:

30.

1.00

visperc

-1.07, 21.19

25.

cubes

lozenges

7.19

9.4

paragrap

sentence

16.

wordmean

14

o

, 25.62
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Here are the boys’ estimates:
30.14

visperc

25.12

’ 0,

cubes @
1 .

lozenges

9.45

paragrap Y
sentence '

16.22 0, 20.33

wordmean

Girls have an estimated mean spatial ability of —1.07. We fixed the mean of boys’
spatial ability at 0. Thus, girls’ mean spatial ability is estimated to be 1.07 units below
boys’ mean spatial ability. This difference is not affected by the initial decision to fix
the boys’ mean at 0. If we had fixed the boys’ mean at 10.000, the girls’ mean would
have been estimated to be 8.934. If we had fixed the girls’ mean at 0, the boys’ mean
would have been estimated to be 1.07.

What unit is spatial ability expressed in? A difference of 1.07 verbal ability units
may be important or not, depending on the size of the unit. Since the regression weight
for regressing visperc on spatial ability is equal to 1, we can say that spatial ability is
expressed in the same units as scores on the visperc test. Of course, this is useful
information only if you happen to be familiar with the visperc test. There is another
approach to evaluating the mean difference of 1.07, which does not involve visperc. A
portion of the text output not reproduced here shows that spatial has an estimated
variance of 15.752 for boys, or a standard deviation of about 4.0. For girls, the variance
of spatial is estimated to be 21.188, so that its standard deviation is about 4.6. With
standard deviations this large, a difference of 1.07 would not be considered very large
for most purposes.

The statistical significance of the 1.07 unit difference between girls and boys is easy
to evaluate. Since the boys’ mean was fixed at 0, we need to ask only whether the girls’
mean differs significantly from O.
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Here are the girls’ factor mean estimates from the text output:

Means: (Girls - Default model)

Estimate S.E. C.R. P Label
spatial -1.066 .881 -1.209 .226 mn_s
verbal .956 521 1.836 .066 mn_v

The girls’ mean spatial ability has a critical ratio of —1.209 and is not significantly
different from 0 (p = 0.226). In other words, it is not significantly different from the
boys’ mean.

Turning to verbal ability, the girls’ mean is estimated 0.96 units above the boys’
mean. Verbal ability has a standard deviation of about 2.7 among boys and about 3.15
among girls. Thus, 0.96 verbal ability units is about one-third of a standard deviation
in either group. The difference between boys and girls approaches significance at the
0.05 level (p = 0.066).

Model B for Boys and Girls

In the discussion of Model A, we used critical ratios to carry out two tests of
significance: a test for sex differences in spatial ability and a test for sex differences in
verbal ability. We will now carry out a single test of the null hypothesis that there are
no sex differences, either in spatial ability or in verbal ability. To do this, we will repeat
the previous analysis with the additional constraint that boys and girls have the same
mean on spatial ability and on verbal ability. Since the boys’ means are already fixed
at 0, requiring the girls’ means to be the same as the boys’ means amounts to setting
the girls’ means to 0 also.

The girls’ factor means have already been named mn_s and mn_v. To fix the means at O:
» From the menus, choose Analyze — Manage Models.
» Inthe Manage Models dialog box, type Model A in the Model Name text box,

» Leave the Parameter Constraints box empty.
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° Manage Models I il

We;ghts = kModel Name

pdadel A

Farameter Constraints

Cowvariances
Yariances i
Means 1 | r

Close

Mew | Delete

» Click New.
» Type Model B in the Model Name text box.

» Type the constraints mn_s = 0 and mn_v = 0 in the Parameter Constraints text box.

— | Model Mame
todel B

Barameter Constraints

_ mn_s =10 ;I
Covariances rn_s =10

Yariances i _ILI
teans LI r

Close

Mew | Delete

» Click Close.

Now when you choose Analyze — Calculate Estimates, Amos will fit both Model A and
Model B. The file Ex15-all.amw contains this two-model setup.
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Results for Model B

If we did not have Model A as a basis for comparison, we would now accept Model B,

using any conventional significance level.

Chi-square = 30.624
Degrees of freedom = 26
Probability level = 0.243

Comparing Models A and B

An alternative test of Model B can be obtained by assuming that Model A is correct
and testing whether Model B fits significantly worse than Model A. A chi-square test

for this comparison is given in the text output.

» In the Amos Output window, click Model Comparison in the tree diagram in the upper

left pane.
Assuming model Model A to be correct:
NFI IFI
Model DF  CMIN P Deted  Delta2
ModelB 2 8030 .018 024 026

RFI
rho-1
.021

TLI
rho2
.023

The table shows that Model B has two more degrees of freedom than Model A, and a
chi-square statistic that is larger by 8.030. If Model B is correct, the probability of such

a large difference in chi-square values is 0.018, providing some evidence against

Model B.
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Modeling in VB.NET

Model A

The following program fits Model A. It is saved as Ex/5-a.vb.

Sub Main()
Dim Sem As New AmosEngine

y

Sem.TextOutput()
Sem.Standardized()

Sem.Smc()
Sem.ModelMeansAndintercepts()

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")

Sem.GroupName("GirIs")

Sem.AStructure("visperc = (int_vis) + (1) spatial + (1) err_v")
Sem.AStructure("cubes = (int_cub) + (cube_s) spatial + (1) err_c")
Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_I")
Sem.AStructure("paragrap = (int_par) + (1) verbal + (1) err_p")
Sem.AStructure("sentence = (int_sen) + + (
Sem.AStructure("wordmean = (int_wrd)

Sem.Mean("spatial”, "mn_s")

Sem.Mean("verbal", "mn_v")

(sent_v) verbal 1) err_s")
+ (word_v) verbal + (1) err_w")

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_mal.sav")

Sem.GroupName("Boys")

Sem.AStructure("visperc = (int_vis) + (1) spatial + (1) err_v")
Sem.AStructure("cubes = (int_cub) + (cube_s) spatial + (1) err_c")
Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_I")
Sem.AStructure("paragrap = (int_par) + (1) verbal + (1) err_p"
Sem.AStructure("sentence = (int_sen) + + (
Sem.AStructure("wordmean = (int_wrd)
Sem.Mean("spatial", "0")
Sem.Mean("verbal", "0")

(sent_v) verbal 1) err s")
+ (word_v) verbal + (1) err_w")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

The AStructure method is called once for each endogenous variable. The Mean method
in the girls’ group is used to specify that the means of the verbal ability and spatial
ability factors are freely estimated. The program also uses the Mean method to specify
that verbal ability and spatial ability have zero means in the boys’ group. Actually,
Amos assumes zero means by default, so the use of the Mean method for the boys is

unnecessary.
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The following program fits Model B. In this model, the factor means are fixed at O for

both boys and girls. The program is saved as Ex/5-b.vb.

Sub Main()

Dim Sem As New AmosEngine

Try
Dim dataFile As String = Sem.AmosDir & "Examples\userguide.xIs"
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.ModelMeansAndintercepts()

Sem.BeginGroup(dataFile, "grnt_fem")
Sem.GroupName("Girls")
Sem.AStructure("visperc = (int_vis) + (1) spatial + (1) err_v")

Sem.AStructure("cubes = (int_cub) + (

Sem.Mean("spatial", "0")

Sem.Mean("verbal”, "0")
Sem.BeginGroup(dataFile, "grnt_mal")

Sem.GroupName("Boys")

Sem.AStructure("visperc = (int_vis) + (1) spatial + (1) err_v")

e
Sem.AStructure("cubes = (int_cub) + (cube_s) spatial + (1) err_c")

(1

i

(
Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial +
Sem.AStructure("paragraph = (int_par) + (1) verbal + (
(

) err
Sem.AStructure("sentence = (int_sen) + (sent_v) verbal + (1 )err s)
+(1)

(
Sem.AStructure("wordmean = (int_wrd) + (word_v) verbal
Sem.Mean("spatial”, "0")
Sem.Mean("verbal”, "0")
Sem.FitModel()
Finally
Sem.Dispose()
End Try

End Sub

cube_s) spatial + (1) err_c")
Sem.AStructure("lozenges = (mt_loz) lozn_s) spatial + (1) err_I")
Sem.AStructure("paragraph = (int_par) + (1) verbal + (1) err_p")
Sem.AStructure("sentence = (int_sen) + (sent_v) verbal + (1) err_s")
Sem.AStructure("wordmean = (int_wrd) + (word_v) verbal + (1) err_w")

) err_ I)
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Fitting Multiple Models

The following program (Ex/5-all.vb) fits both models A and B.

Sub Main()
Dim Sem As New AmosEngine

y

Sem.TextOutput()
Sem.Standardized()

Sem.Smc()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")

Sem.GroupName(”GirIs")

Sem.AStructure("visperc = (int_vis) + (1) spatial + (1) err_v")
Sem.AStructure("cubes = (int_cub) + (cube_s) spatial + (1) err_c")
Sem.AStructure('Iozenges = (int_loz) + (lozn_s) spatial +(1)err I)
Sem.AStructure("paragrap = (int_par) + (1) verbal + (1) err_p
Sem.AStructure("sentence = (int_sen) + (sent_v) verbal + (1) err -~ s")
Sem.AStructure("wordmean = (int_wrd) + (word_v) verbal + (1) err_w")
Sem.Mean("spatial”, "mn_s")

Sem.Mean("verbal", "mn_v")

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_mal.sav")

Sem.GroupName("Boys")

Sem.AStructure("visperc = (int_vis) + (1) spatial + (1) err_v")
Sem.AStructure("cubes = (int_cub) + (cube_s) spatial + (1) err_c")
Sem.AStructure("lozenges = (int_loz) + (lozn_s) spatial + (1) err_I")
Sem.AStructure("paragrap = (int_par) + (1) verbal + (1) err_p"
Sem.AStructure("sentence = (int_sen) + (sent_v) verbal + (1) err -~ s")
Sem.AStructure("wordmean = (int_wrd) + (word_v) verbal + (1) err_w")
Sem.Mean("spatial", "0")

Sem.Mean("verbal”, "0")

Sem.Model("Model A") ' Sex difference in factor means.
Sem.Model("Model B", "mn_s=0", "mn_v=0") ' Equal factor means.
Sem.FitAllModels()
Finally
Sem.Dispose()
End Try
End Sub




Example

Sorbom's Alternative to
Analysis of Covariance

Introduction

This example demonstrates latent structural equation modeling with longitudinal
observations in two or more groups, models that generalize traditional analysis of
covariance techniques by incorporating latent variables and autocorrelated residuals
(compare to S6rbom, 1978), and how assumptions employed in traditional analysis of
covariance can be tested.

Assumptions

Example 9 demonstrated an alternative to conventional analysis of covariance that
works even with unreliable covariates. Unfortunately, analysis of covariance also
depends on other assumptions besides the assumption of perfectly reliable covariates,
and the method of Example 9 also depends on those. Sorbom (1978) developed a more
general approach that allows testing many of those assumptions and relaxing some of
them.

The present example uses the same data that S6rbom used to introduce his method.
The exposition closely follows Sérbom’s.
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About the Data

We will again use the Olsson (1973) data introduced in Example 9. The sample means,
variances, and covariances from the 108 experimental subjects are in the Microsoft
Excel worksheet Olss_exp in the workbook UserGuide.xls.

rowbype_  |warmame_ [re_syn pre_opp|  post_syn| post_opp)
n 108 108 108 105
Cov pre_syh 50.084

Co pre_opp 42.373 49.872

cov post_syn 40.76 36.094 51.237

Cow post_opp 37.343 40.396 39.89 53.641
mean 20.556 21.291 2h BE7 2587

The sample means, variances, and covariances from the 105 control subjects are in the

worksheet Olss_cnt.

rowtype_ |wEMamEe_ pre_syn| pre_opp| postsyn| post_opp
n 105 105 105 105
cov pre_syh 37626

cov pre_opp 24.933 34.68

Cov post_svh 26.639 24236 32013

cov post_opp 23644 27.76 23565 33.443
mMean 18.381 20.229 204 21.343

Both datasets contain the customary unbiased estimates of variances and covariances.
That is, the elements in the covariance matrix were obtained by dividing by (N — 1).
This also happens to be the default setting used by Amos for reading covariance
matrices. However, for model fitting, the default behavior is to use the maximum
likelihood estimate of the population covariance matrix (obtained by dividing by N) as
the sample covariance matrix. Amos performs the conversion from unbiased estimates
to maximum likelihood estimates automatically.
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Changing the Default Behavior
» From the menus, choose View — Analysis Properties.

» In the Analysis Properties dialog box, click the Bias tab.

— Covanances supplied az input
= taimum likelihood
e |nbiazed

— Covanances to be analyzed
& Mavimum likelibood
" Unbiazed

The default setting used by Amos yields results that are consistent with missing data
modeling (discussed in Example 17 and Example 18). Other SEM programs like
LISREL (Joreskog and Sorbom, 1989) and EQS (Bentler, 1985) analyze unbiased
moments instead, resulting in slightly different results when sample sizes are small.
Selecting both Unbiased options on the Bias tab causes Amos to produce the same
estimates as LISREL or EQS. Appendix B discusses further the tradeoffs in choosing
whether to fit the maximum likelihood estimate of the covariance matrix or the
unbiased estimate.

Model A

Specifying the Model

Consider Sorbom’s initial model (Model A) for the Olsson data. The path diagram for
the control group is:
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T a_syn1 Ia opp1 Ta syn2 Ta opp2

‘ pre_syn ‘ ‘pre opp‘ ‘post syn‘ post opp‘

opp_v2

post_verbal

Example 16: Model A

An alternative to ANCOVA
Olsson (1973): control condition.
Model Specification

pre_verbal

The following path diagram is Model A for the experimental group:

Ta syn1 Ta opp1 Ta syn2 Ta opp2

pre syn‘ pre opp post syn‘ post opp

opp_v2

post_verbal

effect

Example 16: Model A
An alternative to ANCOVA
Olsson (1973): experimental condition.
Model Specification

pre_verbal
pre_diff,

Means and intercepts are an important part of this model, so be sure that you do the
following:

» From the menus, choose View — Analysis Properties.
» Click the Estimation tab.

» Select Estimate means and intercepts (a check mark appears next to it).

In each group, Model A specifies that pre_syn and pre_opp are indicators of a single
latent variable called pre_verbal, and that post_syn and post_opp are indicators of
another latent variable called post_verbal. The latent variable pre_verbal is interpreted
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as verbal ability at the beginning of the study, and post_verbal is interpreted as verbal
ability at the conclusion of the study. This is S6rbom’s measurement model. The
structural model specifies that post_verbal depends linearly on pre_verbal.

The labels opp_v1 and opp_v2 require the regression weights in the measurement
model to be the same for both groups. Similarly, the labels a_synl, a_oppl, a_syn2,
and a_opp?2 require the intercepts in the measurement model to be the same for both
groups. These equality constraints are assumptions that could be wrong. In fact, one
result of the upcoming analyses will be a test of these assumptions. As S6rbom points
out, some assumptions have to be made about the parameters in the measurement
model in order to make it possible to estimate and test hypotheses about parameters in
the structural model.

For the control subjects, the mean of pre_verbal and the intercept of post_verbal are
fixed at 0. This establishes the control group as the reference group for the group
comparison. You have to pick such a reference group to make the latent variable means
and intercepts identified.

For the experimental subjects, the mean and intercept parameters of the latent
factors are allowed to be nonzero. The latent variable mean labeled pre_diff represents
the difference in verbal ability prior to treatment, and the intercept labeled effect
represents the improvement of the experimental group relative to the control group.
The path diagram for this example is saved in Ex/6-a.amw.

Note that S6rbom’s model imposes no cross-group constraints on the variances of
the six unobserved exogenous variables. That is, the four observed variables may have
different unique variances in the control and experimental conditions, and the
variances of pre_verbal and zeta may also be different in the two groups. We will
investigate these assumptions more closely when we get to Models X, Y, and Z.

Results for Model A

Text Output

In the Amos Output window, clicking Notes for Model in the tree diagram in the upper
left pane shows that Model A cannot be accepted at any conventional significance level.

Chi-square = 34.775
Degrees of freedom = 6
Probability level = 0.000
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We also get the following message that provides further evidence that Model A is wrong:

The following variances are negative. (control - Default
model)

zeta
-2.868

Can we modify Model A so that it will fit the data while still permitting a meaningful
comparison of the experimental and control groups? It will be helpful here to repeat
the analysis and request modification indices. To obtain modification indices:

» From the menus, choose View — Analysis Properties.

» In the Analysis Properties dialog box, click the Output tab.

» Select Modification indices and enter a suitable threshold in the text box to its right. For
this example, the threshold will be left at its default value of 4.

................................................ 4 Threzhaold for

P[q\r‘iﬂndificatinn indices modification indices

Here is the modification index output from the experimental group:

Modification Indices (experimental - Default model)
Covariances: (experimental - Default model)
M.1. Par Change
eps2 <--> eps4 10.508 4.700
eps2<-->eps3 8.980 -4.021
eps1<-->eps4 8.339 -3.908
eps1<-->eps3 7.058 3.310
Variances: (experimental - Default model)
M.1. Par Change
Regression Weights: (experimental - Default model)
M.L. Par Change
Means: (experimental - Default model)
M.L. Par Change
Intercepts: (experimental - Default model)
M.I. Par Change

In the control group, no parameter had a modification index greater than the threshold
of 4.
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Model B

The largest modification index obtained with Model A suggests adding a covariance
between eps2 and eps4 in the experimental group. The modification index indicates
that the chi-square statistic will drop by at least 10.508 if eps2 and eps4 are allowed to
have a nonzero covariance. The parameter change statistic of 4.700 indicates that the
covariance estimate will be positive if it is allowed to take on any value. The suggested
modification is plausible. Eps2 represents unique variation in pre_opp, and eps4
represents unique variation in post_opp, where measurements on pre_opp and
post_opp are obtained by administering the same test, opposites, on two different
occasions. It is therefore reasonable to think that eps2 and eps4 might be positively
correlated.

The next step is to consider a revised model, called Model B, in which eps2 and eps4
are allowed to be correlated in the experimental group. To obtain Model B from Model A:

» Draw a double-headed arrow connecting eps2 and eps4.

This allows eps2 and eps4 to be correlated in both groups. We do not want them to be
correlated in the control group, so the covariance must be fixed at 0 in the control
group. To accomplish this:

» Click control in the Groups panel (at the left of the path diagram) to display the path
diagram for the control group.

» Right-click the double-headed arrow and choose Object Properties from the pop-up
menu.

» In the Object Properties dialog box, click the Parameters tab.
» Type 0 in the Covariance text box.

» Make sure the All groups check box is empty. With the check box empty, the constraint
on the covariance applies to only the control group.
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For Model B, the path diagram for the control group is:

‘!tE”O, s , s
1
a_syn1 a_opp1 a_syn2 a_opp2

‘ pre_syn ‘ ‘ pre_or;p ‘ ‘post_syn‘ ‘post_o?)p‘

opp_v2

pre_verbal

Example 16: Model B
An alternative to ANCOVA
Olsson (1973): control condition.

Model Specification
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For the experimental group, the path diagram is:

0, B ) \
1
a_syn1 a_opp1 a_syn2 a_opp2

‘ pre_syn ‘ ‘ pre_op_p ‘ ‘post_syn‘ ‘post_o;_)p‘

pre_verbal

pre_diff,

opp_v2

effect

Example 16: Model B
An alternative to ANCOVA
Olsson (1973): experimental condition.
Model Specification

Results for Model B

In moving from Model A to Model B, the chi-square statistic dropped by 17.712 (more
than the promised 10.508) while the number of degrees of freedom dropped by just 1.

Chi-square = 17.063
Degrees of freedom = 5
Probability level = 0.004

Model B is an improvement over Model A but not enough of an improvement. Model
B still does not fit the data well. Furthermore, the variance of zeta in the control group
has a negative estimate (not shown here), just as it had for Model A. These two facts

argue strongly against Model B. There is room for hope, however, because the
modification indices suggest further modifications of Model B. The modification

indices for the control group are:
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Modification Indices (control - Default model)
Covariances: (control - Default model)
M.1. Par Change
eps2<-->epsd4 4.727 2.141
eps1<-->eps4 4.086 -2.384
Variances: (control - Default model)
M.I. Par Change
Regression Weights: (control - Default model)
M.1. Par Change
Means: (control - Default model)
M.1. Par Change
Intercepts: (control - Default model)
M.1. Par Change

The largest modification index (4.727) suggests allowing eps2 and eps4 to be
correlated in the control group. (Eps2 and eps4 are already correlated in the
experimental group.) Making this modification leads to Model C.

Model C

Model C is just like Model B except that the terms eps2 and eps4 are correlated in both
the control group and the experimental group.

To specify Model C, just take Model B and remove the constraint on the covariance
between eps2 and eps4 in the control group. Here is the new path diagram for the
control group, as found in file Ex/6-c.amw:

1
a_syn1 a_opp1 a_syn2 a_opp2

‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘
opp_v2

post_verbal

Example 16: Model C
An alternative to ANCOVA
Olsson (1973): control condition.
Model Specification
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Results for Model C

Finally, we have a model that fits.

Chi-square = 2.797
Degrees of freedom = 4
Probability level = 0.592

From the point of view of statistical goodness of fit, there is no reason to reject Model
C. It is also worth noting that all the variance estimates are positive. The following are
the parameter estimates for the 105 control subjects:

o 10.04
1 1
18. 63 19.91 20.38 21.21
‘ pre_ syn ‘ pre_opp‘ ‘post_syn‘ ‘post_opp‘

1.00 K . .90

Example 16: Model C
An alternative to ANCOVA
Olsson (1973): control condition.
Unstandardized estimates

pre_verbal
0, 28.10

Next is a path diagram displaying parameter estimates for the 108 experimental
subjects:
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o, 2.19
1 1
18.63 19.91 20.38 21.21
‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘
1.00 . | 90
pre_verbal
1.87, 47.46 3.71 0,8.86

Example 16: Model C
An alternative to ANCOVA
Olsson (1973): experimental condition.
Unstandardized estimates

Most of these parameter estimates are not very interesting, although you may want to
check and make sure that the estimates are reasonable. We have already noted that the
variance estimates are positive. The path coefficients in the measurement model are
positive, which is reassuring. A mixture of positive and negative regression weights in
the measurement model would have been difficult to interpret and would have cast
doubt on the model. The covariance between eps2 and eps4 is positive in both groups,
as expected.

We are primarily interested in the regression of post_verbal on pre_verbal. The
intercept, which is fixed at O in the control group, is estimated to be 3.71 in the
experimental group. The regression weight is estimated at 0.95 in the control group and
0.85 in the experimental group. The regression weights for the two groups are close
enough that they might even be identical in the two populations. Identical regression
weights would allow a greatly simplified evaluation of the treatment by limiting the
comparison of the two groups to a comparison of their intercepts. It is therefore
worthwhile to try a model in which the regression weights are the same for both
groups. This will be Model D.

Model D

Model D is just like Model C except that it requires the regression weight for predicting
post_verbal from pre_verbal to be the same for both groups. This constraint can be imposed
by giving the regression weight the same name, for example pre2post, in both groups. The
following is the path diagram for Model D for the experimental group:



253

Sérbom’s Alternative to Analysis of Covariance

1
a_syn1 a_opp1 a_syn2 a_opp2

‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘

opp_v2

pre_verbal
pre_diff,

Example 16: Model D
An alternative to ANCOVA
Olsson (1973): experimental condition.
Model Specification

Next is the path diagram for Model D for the control group:

a_syn1 a_opp1 a_syn2 a_opp2
‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘

Example 16: Model D
An alternative to ANCOVA
Olsson (1973): control condition.
Model Specification

Results for Model D

Model D would be accepted at conventional significance levels.

Chi-square = 3.976
Degrees of freedom = 5
Probability level = 0.553
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Testing Model D against Model C gives a chi-square value of 1.179 (= 3.976 — 2.797)
with 1 (that is, 5 — 4) degree of freedom. Again, you would accept the hypothesis of
equal regression weights (Model D).

With equal regression weights, the comparison of treated and untreated subjects
now turns on the difference between their intercepts. Here are the parameter estimates
for the 105 control subjects:

0,9.49
ps?)”
! 18.62 19.91 ! 20.38 21.20
‘ pre_syn ‘ ‘ pre_opp‘ ‘post_syn‘ ‘post_opp‘

1.00 K . 91

pre_verbal
0, 29.51

Example 16: Model D
An alternative to ANCOVA
Olsson (1973): control condition.
Unstandardized estimates

The estimates for the 108 experimental subjects are:

0,252

1 1
18.62 19.91 20.38 21.20

‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘

1.00 . . 91

pre_verbal
1.88, 46.90

post_verbal

1 .74
3.63 0.8

Example 16: Model D
An alternative to ANCOVA
Olsson (1973): experimental condition.
Unstandardized estimates

The intercept for the experimental group is estimated as 3.63. According to the text
output (not shown here), the estimate of 3.63 has a critical ratio of 7.59. Thus, the
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intercept for the experimental group is significantly different from the intercept for the
control group (which is fixed at 0).

Model E

Another way of testing the difference in post_verbal intercepts for significance is to
repeat the Model D analysis with the additional constraint that the intercept be equal
across groups. Since the intercept for the control group is already fixed at 0, we need
add only the requirement that the intercept be 0 in the experimental group as well. This
restriction is used in Model E.

The path diagrams for Model E are just like that for Model D, except that the
intercept in the regression of post_verbal on pre_verbal is fixed at O in both groups.
The path diagrams are not reproduced here. They can be found in Ex/6-e.amw.

Results for Model E

Model E has to be rejected.

Chi-square = 55.094
Degrees of freedom = 6
Probability level = 0.000

Comparing Model E against Model D yields a chi-square value of 51.018 (= 55.094 —
3.976) with 1 (=6 —5) degree of freedom. Model E has to be rejected in favor of Model
D. Because the fit of Model E is significantly worse than that of Model D, the
hypothesis of equal intercepts again has to be rejected. In other words, the control and
experimental groups differ at the time of the posttest in a way that cannot be accounted
for by differences that existed at the time of the pretest.

This concludes Sorbom’s (1978) analysis of the Olsson data.

Fitting Models A Through E in a Single Analysis

The example file Ex16-a2e.amw fits all five models (A through E) in a single analysis.
The procedure for fitting multiple models in a single analysis was shown in detail in
Example 6.
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Comparison of Sarbom’'s Method with the Method of Example 9

Sorbom’s alternative to analysis of covariance is more difficult to apply than the
method of Example 9. On the other hand, S6rbom’s method is superior to the method
of Example 9 because it is more general. That is, you can duplicate the method of
Example 9 by using S6rbom’s method with suitable parameter constraints.

We end this example with three additional models called X, Y, and Z. Comparisons
among these new models will allow us to duplicate the results of Example 9. However,
we will also find evidence that the method used in Example 9 was inappropriate. The
purpose of this fairly complicated exercise is to call attention to the limitations of the
approach in Example 9 and to show that some of the assumptions of that method can
be tested and relaxed in Soérbom’s approach.

Model X

First, consider a new model (Model X) that requires that the variances and covariances
of the observed variables be the same for the control and experimental conditions. The
means of the observed variables may differ between the two populations. Model X
does not specify any linear dependencies among the variables. Model X is not, by
itself, very interesting; however, Models Y and Z (coming up) are interesting, and we
will want to know how well they fit the data, compared to Model X.

Modeling in Amos Graphics

Because there are no intercepts or means to estimate, make sure that there is not a check
mark next to Estimate means and intercepts on the Estimation tab of the Analysis
Properties dialog box.
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The following is the path diagram for Model X for the control group:

c_olo2

Example 16: Model X
Group-invariant covariance structure
Olsson (1973): control condition
Model Specification

c_s202

The path diagram for the experimental group is identical. Using the same parameter
names for both groups has the effect of requiring the two groups to have the same
parameter values.

Results for Model X

Model X would be rejected at any conventional level of significance.

Chi-square = 29.145
Degrees of freedom = 10
Probability level = 0.001

The analyses that follow (Models Y and Z) are actually inappropriate now that we are
satisfied that Model X is inappropriate. We will carry out the analyses as an exercise in
order to demonstrate that they yield the same results as obtained in Example 9.

Model Y

Consider a model that is just like Model D but with these additional constraints:

B Verbal ability at the pretest (pre_verbal) has the same variance in the control and
experimental groups.

The variances of epsl, eps2, eps3, eps4, and zeta are the same for both groups.

The covariance between eps2 and eps4 is the same for both groups.
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Apart from the correlation between eps2 and eps4, Model D required that epsi, eps2,
eps3, eps4, and zeta be uncorrelated among themselves and with every other
exogenous variable. These new constraints amount to requiring that the variances and
covariances of all exogenous variables be the same for both groups.

Altogether, the new model imposes two kinds of constraints:

m  All regression weights and intercepts are the same for both groups, except possibly
for the intercept used in predicting post_verbal from pre_verbal (Model D
requirements).

B The variances and covariances of the exogenous variables are the same for both
groups (additional Model Y requirements).

These are the same assumptions we made in Model B of Example 9. The difference
this time is that the assumptions are made explicit and can be tested. Path diagrams for
Model Y are shown below. Means and intercepts are estimated in this model, so be sure
that you:

» From the menus, choose View — Analysis Properties.
» Click the Estimation tab.

» Select Estimate means and intercepts (a check mark appears next to it).

Here is the path diagram for the experimental group:

‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘

opp_v2

pre_verbal
re_diff, v_v1 effect
Example 16: Model Y
An alternative to ANCOVA
Olsson (1973): experimental condition.
Model Specification
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Here is the path diagram for the control group:

0,v_e2 0,v_e3

1 1 1
a_syn1 a_opp1 a_syn2

‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘

pre_verbal

0, v_vi Ovz

Example 16: Model Y
An alternative to ANCOVA
Olsson (1973): control condition.
Model Specification

Results for Model Y

We must reject Model Y.

Chi-square = 31.816
Degrees of freedom = 12
Probability level = 0.001

This is a good reason for being dissatisfied with the analysis of Example 9, since it
depended upon Model Y (which, in Example 9, was called Model B) being correct. If
you look back at Example 9, you will see that we accepted Model B there (XZ: 2.684,
df=2,p =0.261). So how can we say that the same model has to be rejected here (x2
=31.816,df=1, p =0.001)? The answer is that, while the null hypothesis is the same
in both cases (Model B in Example 9 and Model Y in the present example), the
alternative hypotheses are different. In Example 9, the alternative against which Model
B is tested includes the assumption that the variances and covariances of the observed
variables are the same for both values of the freatment variable (also stated in the
assumptions on p. 35). In other words, the test of Model B carried out in Example 9
implicitly assumed homogeneity of variances and covariances for the control and
experimental populations. This is the very assumption that is made explicit in Model X
of the present example.

Model Y is a restricted version of Model X. It can be shown that the assumptions of
Model Y (equal regression weights for the two populations, and equal variances and
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covariances of the exogenous variables) imply the assumptions of Model X (equal
covariances for the observed variables). Models X and Y are therefore nested models,
and it is possible to carry out a conditional test of Model Y under the assumption that
Model X is true. Of course, it will make sense to do that test only if Model X really is
true, and we have already concluded it is not. Nevertheless, let’s go through the
motions of testing Model Y against Model X. The difference in chi-square values is
2.671 (that is, 31.816 — 29.145) with 2 (= 12 — 10) degrees of freedom. These figures
are identical (within rounding error) to those of Example 9, Model B. The difference
is that in Example 9 we assumed that the test was appropriate. Now we are quite sure
(because we rejected Model X) that it is not.

If you have any doubts that the current Model Y is the same as Model B of Example
9, you should compare the parameter estimates from the two analyses. Here are the
Model Y parameter estimates for the 108 experimental subjects. See if you can match
up these estimates displayed with the unstandardized parameter estimates obtained in
Model B of Example 9.

0, 6.04 0, 14.75
(epsd)
! 18.53 20.38 21.20
‘ pre_syn ‘ ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘

1.00 K k 91

pre_verbal post_verbal
1.88,37.79 3.64 0,4.85

Example 16: Model Y
An alternative to ANCOVA
Olsson (1973): experimental condition.
Unstandardized estimates

Model Z

Finally, construct a new model (Model Z) by starting with Model Y and adding the
requirement that the intercept in the equation for predicting post_verbal from
pre_verbal be the same in both populations. This model is equivalent to Model C of
Example 9. The path diagrams for Model Z are as follows:
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Here is the path diagram for Model Z for the experimental group:

0 v_el

a_syn1 a_opp1 a_syn2 a_opp2
pre syn ‘ pre_opp ‘ ‘post_syn‘ ‘post_opp‘

opp_v2

post_verbal

Example 16: Model Z
An alternative to ANCOVA
Olsson (1973): experimental condition.
Model Specification

pre_verbal

pre_diff, v_v1

Here is the path diagram for the control group:

a_syn1 a_opp1 a_syn2 a_opp2
‘ pre_syn ‘ ‘ pre_opp‘ ‘post_syn‘ ‘post_opp‘

opp_v2

pre_verbal
0, v_vi o,v.z

Example 16: Model Z
An alternative to ANCOVA
Olsson (1973): control condition.
Model Specification

Results for Model Z

This model has to be rejected.

Chi-square = 84.280
Degrees of freedom = 13
Probability level = 0.000
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Model Z also has to be rejected when compared to Model Y (X2 =84.280-31.816 =
52.464, df = 13 — 12 = 1). Within rounding error, this is the same difference in
chi-square values and degrees of freedom as in Example 9, when Model C was
compared to Model B.

Modeling in VB.NET

Model A

The following program fits Model A. It is saved as Ex16-a.vb.

Sub Main()

Dim Sem As New AmosEngine

Try
Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"
Sem.TextOutput()
Sem.Mods(4)
Sem.Standardized()
Sem.Smc()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup(dataFile, "Olss_cnt")
Sem.GroupName("control")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (0) + () pre_verbal + (1) zeta")

Sem.BeginGroup(dataFile, "Olss_exp")
Sem.GroupName("experimental")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (effect) + () pre_verbal + (1) zeta")
Sem.Mean("pre_verbal", "pre_diff")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub
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To fit Model B, start with the program for Model A and add the line

Sem.AStructure("eps2 <---> eps4")

to the model specification for the experimental group. Here is the resulting program for
Model B. It is saved as Ex16-b.vb.

Sub Main()
Dim Sem As New AmosEngine

Try
Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"
Sem.TextOutput()
Sem.Mods(4)
Sem.Standardized()
Sem.Smc()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup(dataFile, "Olss_cnt")

Sem.GroupName("control")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (0) + () pre_verbal + (1) zeta")

Sem.BeginGroup(dataFile, "Olss_exp")

Sem.GroupName("experimental")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (effect) + () pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4")

Sem.Mean("pre_verbal", "pre_diff")

Sem.FitModel()

Finally

Sem.Dispose()

End Try
End Sub
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Model C

The following program fits Model C. The program is saved as Ex6-c.vb.

Sub Main()
Dim Sem As New AmosEngine

y
Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xIs"

Sem.TextOutput()

Sem.Mods(4)
Sem.Standardized()

Sem.Smc()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup(dataFile, "Olss_cnt")

Sem.GroupName("control")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (0) + () pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4")

Sem.BeginGroup(dataFile, "Olss_exp")

Sem.GroupName("experimental”)
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (effect) + () pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4")

Sem.Mean("pre_verbal", "pre_diff")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub
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Sérbom’s Alternative to Analysis of Covariance

The following program fits Model D. The program is saved as Ex/6-d.vb.

Sub Main()
Dim Sem As New AmosEngine

Try
Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xIs"
Sem.TextOutput()
Sem.Mods(4)
Sem.Standardized()
Sem.Smc()
Sem.ModelMeansAndintercepts()

Sem.BeginGroup(dataFile, "Olss_cnt")

Sem.GroupName("control")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4")

Sem.BeginGroup(dataFile, "Olss_exp")

Sem.GroupName("experimental”)
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure( _

"post_verbal = (effect) + (pre2post) pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4")

Sem.Mean("pre_verbal", "pre_diff")

Sem.FitModel()

Finally

Sem.Dispose()

End Try
End Sub
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Model E

The following program fits Model E. The program is saved as Ex/6-e.vb.

Sub Main()
Dim Sem As New AmosEngine

Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xIs"
Sem.TextOutput()

Sem.Mods(4)

Sem.Standardized()

Sem.Smc()

Sem.ModelMeansAndintercepts()

Sem.BeginGroup(dataFile, "Olss_cnt")

Sem.GroupName("control")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4")

Sem.BeginGroup(dataFile, "Olss_exp")

Sem.GroupName("experimental")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4")

Sem.Mean("pre_verbal", "pre_diff")

Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub
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Fitting Multiple Models

The following program fits all five models, A through E. The program is saved as
Ex16-aZe.vb.

Sub Main()

Dim Sem As New AmosEngine

Try
Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xIs"
Sem.TextOutput()
Sem.Mods(4)
Sem.Standardized()
Sem.Smc()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup(dataFile, "Olss_cnt")
Sem.GroupName("control")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (0) + (c_beta) pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4 (c_e2e4)")

Sem.BeginGroup(dataFile, "Olss_exp")
Sem.GroupName("experimental")
Sem.AStructure("pre_syn = (a_syn1) + (1)  pre_verbal + (1) eps1")
Sem.AStructure( _

"pre_opp = (a_opp1) + (opp_v1) pre_verbal + (1) eps2")
Sem.AStructure("post_syn = (a_syn2) + (1)  post_verbal + (1) eps3")
Sem.AStructure( _

"post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
Sem.AStructure("post_verbal = (effect) + (e_beta) pre_verbal + (1) zeta")
Sem.AStructure("eps2 <---> eps4 (e_e2e4)")

Sem.Mean("pre_verbal", "pre_diff")

Sem.Model("Model A", "c_e2e4 = 0", "e_e2e4 = 0")
Sem.Model("Model B", "c_e2e4 = 0")
Sem.Model("Model C")
Sem.Model("Model D", "c_beta = e_beta")
Sem.Model("Model E", "c_beta = e_beta", "effect = 0")
Sem.FitAllModels()

Finally
Sem.Dispose()

End Try

End Sub
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Models X, Y, and Z

VB.NET programs for Models X, Y, and Z will not be discussed here. The programs
can be found in the files Ex/6-x.vb, Ex16-y.vb, and Ex16-z.vb.



Example

17

Missing Data

Introduction

This example demonstrates the analysis of a dataset in which some values are missing.

Incomplete Data

It often happens that data values that were anticipated in the design of a study fail to
materialize. Perhaps a subject failed to participate in part of a study. Or maybe a
person filling out a questionnaire skipped a couple of questions. You may find that
some people did not tell you their age, some did not report their income, others did
not show up on the day you measured reaction times, and so on. For one reason or
another, you often end up with a set of data that has gaps in it.

One standard method for dealing with incomplete data is to eliminate from the
analysis any observation for which some data value is missing. This is sometimes
called listwise deletion. For example, if a person fails to report his income, you would
eliminate that person from your study and proceed with a conventional analysis based
on complete data but with a reduced sample size. This method is unsatisfactory
inasmuch as it requires discarding the information contained in the responses that the
person did give because of the responses that he did not give. If missing values are
common, this method may require discarding the bulk of a sample.

Another standard approach, in analyses that depend on sample moments, is to
calculate each sample moment separately, excluding an observation from the
calculation only when it is missing a value that is needed for the computation of that
particular moment. For example, in calculating the sample mean income, you would
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exclude only persons whose incomes you do not know. Similarly, in computing the
sample covariance between age and income, you would exclude an observation only if
age is missing or if income is missing. This approach to missing data is sometimes
called pairwise deletion.

A third approach is data imputation, replacing the missing values with some kind
of guess, and then proceeding with a conventional analysis appropriate for complete
data. For example, you might compute the mean income of the persons who reported
their income, and then attribute that income to all persons who did not report their
income. Beale and Little (1975) discuss methods for data imputation, which are
implemented in many statistical packages.

Amos does not use any of these methods. Even in the presence of missing data, it
computes maximum likelihood estimates (Anderson, 1957). For this reason, whenever
you have missing data, you may prefer to use Amos to do a conventional analysis, such as
a simple regression analysis (as in Example 4) or to estimate means (as in Example 13).

It should be mentioned that there is one kind of missing data that Amos cannot deal
with. (Neither can any other general approach to missing data, such as the three
mentioned above.) Sometimes the very fact that a value is missing conveys
information. It could be, for example, that people with very high incomes tend (more
than others) not to answer questions about income. Failure to respond may thus convey
probabilistic information about a person’s income level, beyond the information
already given in the observed data. If this is the case, the approach to missing data that
Amos uses is inapplicable.

Amos assumes that data values that are missing are missing at random. It is not
always easy to know whether this assumption is valid or what it means in practice
(Rubin, 1976). On the other hand, if the missing at random condition is satisfied, Amos
provides estimates that are efficient and consistent. By contrast, the methods
mentioned previously do not provide efficient estimates, and provide consistent
estimates only under the stronger condition that missing data are missing completely
at random (Little and Rubin, 1989).

About the Data

For this example, we have modified the Holzinger and Swineford (1939) data used in
Example 8. The original dataset (in the SPSS Statistics file Grnt_fem.sav) contains the
scores of 73 girls on six tests, for a total of 438 data values. To obtain a dataset with
missing values, each of the 438 data values in Grnt_fem.sav was deleted with
probability 0.30.
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The resulting dataset is in the SPSS Statistics file Grant_x.sav. Below are the first few
cases in that file. A period (.) represents a missing value.

visperc | cubeg | lozenges | paragrap | sentence | wordmean
1 F3.00 . 17.00 g.00 17.00 10.00
2 30000 . 20,00 . . 158.00
3 . 33.00 36.00 . 25.00 41.00
4 25.00 . . 10,00 15.00 11.00
5 . 25.00 . 11.00 . 5.00
B 2000 25.00 6.00 9.00
7 17.00 21.00 .00 5.00 10.00 10.00

Amos recognizes the periods in SPSS Statistics datasets and treats them as missing
data.

Amos recognizes missing data in many other data formats as well. For instance, in
an ASCII dataset, two consecutive delimiters indicate a missing value. The seven cases
shown above would look like this in ASCII format:

visperc,cubes,lozenges,paragraph,sentence,wordmean
33,,17,8,17,10

30,,20,,,18

,33,36,,25,41

28,,,10,18,11

,25,,11,.8

20,25,6,9,,,,

17,21,6,5,10,10

Approximately 27% of the data in Grant_x.sav are missing. Complete data are
available for only seven cases.

Specifying the Model

We will now fit the common factor analysis model of Example 8 (shown on p. 272) to
the Holzinger and Swineford data in the file Grant_x.sav. The difference between this
analysis and the one in Example 8 is that this time 27% of the data are missing.
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Example 17, Model A
Factor analysis with missing data
Holzinger and Swineford (1939): Girls' sample
Model Specification

After specifying the data file to be Grant_x.sav and drawing the above path diagram:
» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Estimation tab.

» Select Estimate means and intercepts (a check mark appears next to it).

This will give you an estimate of the intercept in each of the six regression equations
for predicting the measured variables. Maximum likelihood estimation with missing
values works only when you estimate means and intercepts, so you have to estimate

them even if you are not interested in the estimates.

Saturated and Independence Models

Computing some fit measures requires fitting the saturated and independence models in
addition to your model. This is never a problem with complete data, but fitting these
models can require extensive computation when there are missing values. The saturated
model is especially problematic. With p observed variables, the saturated model has

p X (p +3)/2 parameters. For example, with 10 observed variables, there are 65
parameters; with 20 variables, there are 230 parameters; with 40 variables, there are 860
parameters; and so on. It may be impractical to fit the saturated model because of the
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large number of parameters. In addition, some missing data value patterns can make it
impossible in principle to fit the saturated model even if it is possible to fit your model.

With incomplete data, Amos Graphics tries to fit the saturated and independence
models in addition to your model. If Amos fails to fit the independence model, then fit
measures that depend on the fit of the independence model, such as CFI, cannot be
computed. If Amos cannot fit the saturated model, the usual chi-square statistic cannot
be computed.

Results of the Analysis

Text Output

For this example, Amos succeeds in fitting both the saturated and the independence
model. Consequently, all fit measures, including the chi-square statistic, are reported.
To see the fit measures:

» Click Model Fit in the tree diagram in the upper left corner of the Amos Output window.

The following is the portion of the output that shows the chi-square statistic for the
factor analysis model (called Default model), the saturated model, and the
independence model:

CMIN
Model NPAR CMIN  DF P CMIN/DF
Default model 19 11.547 8 173 1.443
Saturated model 27 .000 0
Independence model 6 117.707 21 .000 5.605

The chi-square value of 11.547 is not very different from the value of 7.853 obtained
in Example 8 with the complete dataset. In both analyses, the p values are above 0.05.

Parameter estimates, standard errors, and critical ratios have the same interpretation
as in an analysis of complete data.
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Regression Weights: (Group number 1 - Default model)
Estimate S.E. C.R. P Label

visperc  <--- spatial 1.000
cubes <--- spatial 511 163 3.347 ***
lozenges <--- spatial 1.047 316 3.317 ***
paragrap <--- verbal 1.000
sentence <--- verbal 1.259 .194 6.505 ***
wordmean <--- verbal 2140 326 6.572 ***

Intercepts: (Group number 1 - Default model)
Estimate  S.E. C.R. P Label

visperc 28.885 913 31.632 ***
cubes 24998 536 46.603 ***
lozenges 15.153 1.133 13.372 ***
wordmean 18.097 1.055 17.146 ***
paragrap 10.987 468 23.495 ***
sentence 18.864 .636 29.646 ***
Covariances: (Group number 1 - Default model)
Estimate S.E. C.R. P Label
verbal <--> spatial 7.993 3.211 2490 .013

Variances: (Group number 1 - Default model)
Estimate S.E. C.R. P Label

spatial 29.563 11.600 2.549 .011
verbal 10.814 2743 3.943 ***
err_v 18.776 8.518 2.204 .028
err_c 8.034 2.669 3.011 .003
err_| 36.625 11.662 3.141 .002
err_p 2825 1.277 2.212 .027
err_s 7.875 2403 3.277 .001
er_w 22,677 6.883 3.295 ***

Standardized estimates and squared multiple correlations are as

follows:

Standardized Regression Weights: (Group number 1 -
Default model)

Estimate
visperc  <--- spatial .782
cubes <--- spatial .700
lozenges <--- spatial .685
paragrap <-- verbal .890
sentence <--- verbal .828
wordmean <---  verbal .828
Correlations: (Group number 1 - Default model)
Estimate
verbal <--> spatial 447

Squared Multiple Correlations: (Group number 1 -
Default model)

Estimate
wordmean .686
sentence .685
paragrap .793
lozenges 469
cubes 490

visperc 612
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Graphics Output

Here is the path diagram showing the standardized estimates and the squared multiple
correlations for the endogenous variables:
Chi square = 11.547
df=8
p=.173

.61

visperc

49

lozenges

7
.79

45

.69
sentence
.69

.83
wordmean

Example 17
Factor analysis with missing data
Holzinger and Swineford (1939): Girls' sample
Standardized estimates
The standardized parameter estimates may be compared to those obtained from the
complete data in Example 8. The two sets of estimates are identical in the first decimal

place.

Modeling in VB.NET

When you write an Amos program to analyze incomplete data, Amos does not
automatically fit the independence and saturated models. (Amos Graphics does fit
those models automatically.) If you want your Amos program to fit the independence
and saturated models, your program has to include code to specify those models. In
particular, in order for your program to compute the usual likelihood ratio chi-square
statistic, your program must include code to fit the saturated model.
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This section outlines three steps necessary for computing the likelihood ratio chi-
square statistic:

m  Fitting the factor model
m  Fitting the saturated model

®  Computing the likelihood ratio chi-square statistic and its p value

First, the three steps are performed by three separate programs. After that, the three
steps will be combined into a single program.

Fitting the Factor Model (Model A)

The following program fits the confirmatory factor model (Model A). It is saved as
Ex17-a.vb.

Sub Main()

Dim Sem As New AmosEngine

Try
Sem.Title("Example 17 a: Factor Model")
Sem.TextOutput()
Sem.Standardized()
Sem.Smc()
Sem.AllimpliedMoments()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup(Sem.AmosDir & "Examples\Grant_x.sav")
Sem.AStructure("visperc = () + (1) spatial + (1) err_v")
Sem.AStructure("cubes =()+ spatial + (1) err_c")
Sem.AStructure("lozenges = () + spatial + (1) err_I")

(

(

Sem.AStructure("paragrap = () + (1) verbal + (1) err_p")
Sem.AStructure("sentence =()+ verbal + (1) err_ "
Sem.AStructure("wordmean =()+ verbal + (1) err w)

Sem.FitModel()
Finally

Sem.Dispose()
End Try

End Sub

Notice that the ModelMeansAndintercepts method is used to specify that means and
intercepts are parameters of the model, and that each of the six regression equations
contains a set of empty parentheses representing an intercept. When you analyze data
with missing values, means and intercepts must appear in the model as explicit
parameters. This is different from the analysis of complete data, where means and
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intercepts do not have to appear in the model unless you want to estimate them or
constrain them.

The fit of Model A is summarized as follows:

Function of log likelihood = 1375.133
Number of parameters = 19

The Function of log likelihood value is displayed instead of the chi-square fit statistic
that you get with complete data. In addition, at the beginning of the Summary of models
section of the text output, Amos displays the warning:

The saturated model was not fitted to the data of at least one group. For this
reason, only the 'function of log likelihood', AIC and BCC are reported. The
likelihood ratio chi-square statistic and other fit measures are not reported.

Whenever Amos prints this note, the values in the ¢min column of the Summary of
models section do not contain the familiar fit chi-square statistics. To evaluate the fit
of the factor model, its Function of log likelihood value has to be compared to that of
some less constrained baseline model, such as the saturated model.

Fitting the Saturated Model (Model B)

The saturated model has as many free parameters as there are first and second order
moments. When complete data are analyzed, the saturated model always fits the
sample data perfectly (with chi-square = 0.00 and df = 0). All structural equation
models with the same six observed variables are either equivalent to the saturated
model or are constrained versions of it. A saturated model will fit the sample data at
least as well as any constrained model, and its Function of log likelihood value will be
no larger and is, typically, smaller.
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The following program fits the saturated model (Model B). The program is saved as
Ex17-b.vb.

Sub Main()

Dim Saturated As New AmosEngine

Try
‘Set up and estimate Saturated model:
Saturated.Title("Example 17 b: Saturated Model")
Saturated.TextOutput()
Saturated.AlllmpliedMoments()
Saturated.ModelMeansAndIintercepts()

Saturated.BeginGroup(Saturated.AmosDir & "Examples\Grant_x.sav")
Saturated.Mean("visperc")

Saturated.Mean("cubes")
Saturated.Mean("lozenges")
Saturated.Mean("paragrap”
Saturated.Mean("sentence")

Saturated.Mean("wordmean")

Saturated.FitModel()
Finally
Saturated.Dispose()
End Try
End Sub

Following the BeginGroup line, there are six uses of the Mean method, requesting
estimates of means for the six variables. When Amos estimates their means, it will
automatically estimate their variances and covariances as well, as long as the program
does not explicitly constrain the variances and covariances.
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The following are the unstandardized parameter estimates for the saturated Model B:

Means: (Group number 1 - Model 1)
Estimate S.E. C.R. P Label

visperc 28.883 .910 31.756 ***
cubes 25154 540 46.592 ***
lozenges  14.962 1.101 13.591 ***
paragrap  10.976  .466 23.572 ***
sentence  18.802 .632 29.730 ***
wordmean 18.263 1.061 17.211 ***

Covariances: (Group number 1 - Model 1)

Estimate S.E. C.R. P Label
visperc <-->cubes 17.484 4614 3.789 ***
visperc <-->lozenges 31.173 9.232 3.377 ***
cubes <-->lozenges 17.036 5.459 3.121 .002
visperc <-->paragrap 8.453 3.705 2.281 .023
cubes  <-->paragrap 2.739 2179 1.257 .209
lozenges <--> paragrap 9.287 4.596 2.021 .043
visperc <-->sentence 14.382 5.114 2.813 .005
cubes  <-->sentence 1.678 2.929 573 .567
lozenges <-->sentence  10.544 6.050 1.743 .081
paragrap <-->sentence 13.470 2.945 4574 ***
visperc <-->wordmean 14.665 8.314 1.764 .078
cubes <-->wordmean 3.470 4.870 713 476
lozenges <-->wordmean 29.655 10.574 2.804 .005
paragrap <-->wordmean 23.616 5.010 4.714 ***
sentence <-->wordmean 29.577 6.650 4.447 ***

Variances: (Group number 1 - Model 1)
Estimate S.E. C.R. P Label
visperc 49.584 9.398 5276 ***
cubes 16.484 3.228 5.106 ***
lozenges  67.90113.404 5.066 ***
paragrap  13.570 2.515 5.396 ***
sentence  25.007 4.629 5402 ***
wordmean 73.97413.221 5595 ***
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The AlllmpliedMoments method in the program displays the following table of
estimates:

Implied (for all variables) Covariances (Group number 1 - Model 1)
wordmean sentence paragrap lozenges cubes  visperc
wordmean 73.974

sentence 29.577 25.007

paragrap 23.616 13.470 13.570

lozenges 29.655 10.544 9.287 67.901

cubes 3.470 1.678 2.739 17.036  16.484
visperc 14.665 14.382 8.453 31173 17.484 49.584

Implied (for all variables) Means (Group number 1 - Model 1)
wordmean  sentence  paragrap lozenges cubes  visperc
18.263 18.802 10.976 14.962 25154  28.883

These estimates, even the estimated means, are different from the sample values
computed using either pairwise or listwise deletion methods. For example, 53 people
took the visual perception test (visperc). The sample mean of those 53 visperc scores
is 28.245. One might expect the Amos estimate of the mean visual perception score to
be 28.245. In fact it is 28.883.

Amos displays the following fit information for Model B:

Function of log likelihood = 1363.586
Number of parameters = 27

Function of log likelihood values can be used to compare the fit of nested models. In
this case, Model A (with a fit statistic of 1375.133 and 19 parameters) is nested within
Model B (with a fit statistic of 1363.586 and 27 parameters). When a stronger model
(Model A) is being compared to a weaker model (Model B), and where the stronger
model is correct, you can say the following: The amount by which the Function of log
likelihood increases when you switch from the weaker model to the stronger model is
an observation on a chi-square random variable with degrees of freedom equal to the
difference in the number of parameters of the two models. In the present example, the
Function of log likelihood for Model A exceeds that for Model B by 11.547
(=1375.133 - 1363.586). At the same time, Model A requires estimating only 19
parameters while Model B requires estimating 27 parameters, for a difference of 8. In
other words, if Model A is correct, 11.547 is an observation on a chi-square variable
with 8 degrees of freedom. A chi-square table can be consulted to see whether this chi-
square statistic is significant.
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Computing the Likelihood Ratio Chi-Square Statistic and P

Instead of consulting a chi-square table, you can use the ChiSquareProbability method
to find the probability that a chi-square value as large as 11.547 would have occurred
with a correct factor model. The following program shows how the
ChiSquareProbability method is used. The program is saved as Ex/7-c.vb.

Sub Main()
Dim ChiSquare As Double, P As Double
Dim Df As Integer

ChiSquare = 1375.133 - 1363.586 'Difference in functions of log-likelihood
Df =27-19 Difference in no. of parameters

P = AmosEngine.ChiSquareProbability(ChiSquare, CDbl(Df))

Debug.WriteLine( "Fit of factor model:")
Debug.WriteLine( "Chi Square =" & ChiSquare.ToString("#,##0.000"))
Debug.WriteLine("DF =" & Df)
Debug.WriteLine("P =" & P.ToString("0.000"))
End Sub

The program output is displayed in the Debug output panel of the program editor.

.£. C:\Examples\Ex17c vb

Fle Edt Fomat

eader

= Module MainModule

B Sub Main()

Dim ChiSquare &s Double, P As Double
Dim Df As Integer

[

ChiSquare = 1375.133 - 1363.586 'Difference in functions of log-likelihood
Df =27-19 'Difference in no. of parameters

P = AmosEngine.ChiSquareProbability(ChiS quare, CDbI(Df))

Debug.writeLine( "Fit of factor model:")

Debug.WriteLine( "Chi Square = " & ChiSquare.ToString("#,##0.000"))
Debug.writeLine("DF = " & Df)

Debug.WriteLine("P = " & P.ToString("0.000"))

- End Sub o

L End Module v
[4] | 3

Fit of factor model:
Chi Square = 11.547
DF =8

P =0.173

T

Compile emors. Debug output A
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The p value is 0.173; therefore, we accept the hypothesis that Model A is correct at the
0.05 level.

As the present example illustrates, in order to test a model with incomplete data, you
have to compare its fit to that of another, alternative model. In this example, we wanted
to test Model A, and it was necessary also to fit Model B as a standard against which
Model A could be compared. The alternative model has to meet two requirements.
First, you have to be satisfied that it is correct. Model B certainly meets this criterion,
since it places no constraints on the implied moments, and cannot be wrong. Second,
it must be more general than the model you wish to test. Any model that can be
obtained by removing some of the constraints on the parameters of the model under
test will meet this second criterion. If you have trouble thinking up an alternative
model, you can always use the saturated model, as was done here.

Performing All Steps with One Program

It is possible to write a single program that fits both models (the factor model and the
saturated model) and then calculates the chi-square statistic and its p value. The
program in ExI7-all.vb shows how this can be done.
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More about Missing Data

Introduction

This example demonstrates the analysis of data in which some values are missing by
design and then explores the benefits of intentionally collecting incomplete data.

Missing Data

Researchers do not ordinarily like missing data. They typically take great care to avoid
these gaps whenever possible. But sometimes it is actually better not to observe every
variable on every occasion. Matthai (1951) and Lord (1955) described designs where
certain data values are intentionally not observed.

The basic principle employed in such designs is that, when it is impossible or too
costly to obtain sufficient observations on a variable, estimates with improved
accuracy can be obtained by taking additional observations on other correlated
variables.

Such designs can be highly useful, but because of computational difficulties, they
have not previously been employed except in very simple situations. This example
describes only one of many possible designs where some data are intentionally not
collected. The method of analysis is the same as in Example 17.
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About the Data

For this example, the Attig data (introduced in Example 1) was modified by
eliminating some of the data values and treating them as missing. A portion of the
modified data file for young people, Atty_mis.sav, is shown below as it appears in the
SPSS Statistics Data Editor. The file contains scores of Attig’s 40 young subjects on
the two vocabulary tests v_short and vocab. The variable vocab is the WAIS vocabulary
score. V_short is the score on a small subset of items on the WAIS vocabulary test.
Vocab scores were deleted for 30 randomly picked subjects.

v_short vocab
T 500 51.00
8 .00 5200
9 3.00 E0.00
10 5.00 43,00
1 13.00
12 1200
13 14.00
14 400
15 500

A second data file, Atto_mis.sav, contains vocabulary test scores for the 40 old
subjects, again with 30 randomly picked vocab scores deleted.

v_short vocab
T 10.00 E7.00
] £.00 47.00
9 4.00 47.00
10 o 40.00
1 12.00
12 14.00
13 13.00
14 £.00
15 ¥.oo
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Of course, no sensible person deletes data that have already been collected. In order for
this example to make sense, imagine this pattern of missing data arising in the
following circumstances.

Suppose that vocab is the best vocabulary test you know of. It is highly reliable and
valid, and it is the vocabulary test that you want to use. Unfortunately, it is an
expensive test to administer. Maybe it takes a long time to give the test, maybe it has
to be administered on an individual basis, or maybe it has to be scored by a highly
trained person. V_short is not as good a vocabulary test, but it is short, inexpensive,
and easy to administer to a large number of people at once. You administer the cheap
test, v_short, to 40 young and 40 old subjects. Then you randomly pick 10 people from
each group and ask them to take the expensive test, vocab.

Suppose the purpose of the research is to:
®m  Estimate the average vocab test score in the population of young people.
m Estimate the average vocab score in the population of old people.

m  Test the hypothesis that young people and old people have the same average vocab
score.

In this scenario, you are not interested in the average v_short score. However, as will
be demonstrated below, the v_short scores are still useful because they contain
information that can be used to estimate and test hypotheses about vocab scores.

The fact that missing values are missing by design does not affect the method of
analysis. Two models will be fitted to the data. In both models, means, variances, and
the covariance between the two vocabulary tests will be estimated for young people
and also for old people. In Model A, there will be no constraints requiring parameter
estimates to be equal across groups. In Model B, vocab will be required to have the
same mean in both groups.

Model A

To estimate means, variances, and the covariance between vocab and v_short, set up a
two-group model for the young and old groups.

» Draw a path diagram in which vocab and v_short appear as two rectangles connected
by a double-headed arrow.

» From the menus, choose View — Analysis Properties.
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In the Analysis Properties dialog box, click the Estimation tab.
Select Estimate means and intercepts (a check mark appears next to it).
While the Analysis Properties dialog box is open, click the Output tab.

Select Standardized estimates and Critical ratios for differences.

Because this example focuses on group differences in the mean of vocab, it will be
useful to have names for the mean of the young group and the mean of the old group.
To give a name to the mean of vocab in the young group:

Right-click the vocab rectangle in the path diagram for the young group.
Choose Object Properties from the pop-up menu.

In the Object Properties dialog box, click the Parameters tab.

Enter a name, such as m/_yng, in the Mean text box.

Follow the same procedure for the old group. Be sure to give the mean of the old group
a unique name, such as mi_old.

Naming the means does not constrain them as long as each name is unique. After the
means are named, the two groups should have path diagrams that look something like
this:

m1_yng, m1_old,

vocab v_short vocab v_short

N

Example 18: Model A

Incompletely observed data.

Attig (1983) young subjects
Model Specification

N

Example 18: Model A
Incompletely observed data.
Attig (1983) old subjects
Model Specification
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Results for Model A

Graphics Output

Here are the two path diagrams containing means, variances, and covariances for the
young and old subjects respectively:

56.89, 83.32 7.95,15.35 65.00, 115.06 10.03, 10.77
vocab v_short vocab v_short
32.92 31.54
Example 18: Model A Example 18: Model A
Incompletely observed data. Incompletely observed data.
Attig (1983) young subjects Attig (1983) old subjects
Unstandardized estimates Unstandardized estimates

Text Output
» In the Amos Output window, click Notes for Model in the upper left pane.

The text output shows that Model A is saturated, so that the model is not testable.

Number of distinct sample moments: | 10
Number of distinct parameters to be estimated: | 10
Degrees of freedom (10 — 10): 0
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The parameter estimates and standard errors for young subjects are:

Means: (young subjects - Default model)
Estimate S.E. CR. P Label

vocab 56.891 1.765 32.232 ** m1_yng

v_short 7.950 627 12.673 *** par 4

Covariances: (young subjects - Default model)
Estimate S.E. C.R. P Label
vocab<-->v_short 32916 8.694 3.786 ** par_3

Correlations: (young subjects - Default model)

Estimate
vocab<--> v_short .920
Variances: (young subjects - Default model)
Estimate S.E. CR. P Label

vocab  83.320 25.639 3.250 .001 par 7
v short 15347 3476 4416 ** par 8

The parameter estimates and standard errors for old subjects are:

Means: (old subjects - Default model)
Estimate S.E. CR. P Label

vocab  65.001 2167 29.992 ** m1_old

v_short 10.025 526 19.073 *** par_6

Covariances: (old subjects - Default model)
Estimate S.E. C.R. P Label
vocab<-->v_short 31.545 8725 3.616 *** par 5

Correlations: (old subjects - Default model)

Estimate
vocab <--> v_short .896
Variances: (old subjects - Default model)
Estimate S.E. CR. P Label

vocab  115.063 37.463 3.071 .002 par 9
v_short  10.774 2440 4.416 ** par_10

The estimates for the mean of vocab are 56.891 in the young population and 65.001 in
the old population. Notice that these are not the same as the sample means that would
have been obtained from the 10 young and 10 old subjects who took the vocab test. The
sample means of 58.5 and 62 are good estimates of the population means (the best that
can be had from the two samples of size 10), but the Amos estimates (56.891 and
65.001) have the advantage of using information in the v_short scores.

How much more accurate are the mean estimates that include the information in the
v_short scores? Some idea can be obtained by looking at estimated standard errors. For
the young subjects, the standard error for 56.891 shown above is about 1.765, whereas
the standard error of the sample mean, 58.5, is about 2.21. For the old subjects, the
standard error for 65.001 is about 2.167 while the standard error of the sample mean,
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62, is about4.21. Although the standard errors just mentioned are only approximations,
they still provide a rough basis for comparison. In the case of the young subjects, using
the information contained in the v_short scores reduces the standard error of the
estimated vocab mean by about 21%. In the case of the old subjects, the standard error
was reduced by about 49%.

Another way to evaluate the additional information that can be attributed to the
v_short scores is by evaluating the sample size requirements. Suppose you did not use
the information in the v_short scores. How many more young examinees would have
to take the vocab test to reduce the standard error of its mean by 21%? Likewise, how
many more old examinees would have to take the vocab test to reduce the standard
error of its mean by 49%? The answer is that, because the standard error of the mean
is inversely proportional to the square root of the sample size, it would require about
1.6 times as many young subjects and about 3.8 times as many old subjects. That is, it
would require about 16 young subjects and 38 old subjects taking the vocab test,
instead of 10 young and 10 old subjects taking both tests, and 30 young and 30 old
subjects taking the short test alone. Of course, this calculation treats the estimated
standard errors as though they were exact standard errors, and so it gives only a rough
idea of how much is gained by using scores on the v_short test.

Do the young and old populations have different mean vocab scores? The estimated
mean difference is 8.110 (65.001 — 56.891). A critical ratio for testing this difference
for significance can be found in the following table:

Critical Ratios for Differences between Parameters

(Default model)
m1_yng m1_old par_3 par_4 par_5 par_6 par_7

m1_yng .000

m1_old 2.901 .000

par_3 -2.702 -3.581 .000

par_4 -36.269 -25.286 -2.864 .000

par_5 -2.847 -3.722 =111 2.697 .000

par_6 -25.448 -30.012 -2.628 2.535 -2.462 .000

par_7 1.028 712 2.806 2.939 1.912 2.858 .000
par_8 -10.658 -12.123 -2.934 2.095 -1.725 1.514 -2.877
par_9 1.551 1.334 2.136 2.859 2.804 2.803 .699
par_10 -15.314 -16.616 -2.452 1.121 -3.023 .300 -2.817

Critical Ratios for Differences between Parameters

(Default model)
par_8 par_9 par_10
par_8 .000
par_9 2.650 .000
par_10 -1.077 -2.884 .000
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The first two rows and columns, labeled m/_yng and m1_old, refer to the group means
of the vocab test. The critical ratio for the mean difference is 2.901, according to which
the means differ significantly at the 0.05 level; the older population scores higher on
the long test than the younger population.

Another test of the hypothesis of equal vocab group means can be obtained by
refitting the model with equality constraints imposed on these two means. We will do
that next.

Model B

In Model B, vocab is required to have the same mean for young people as for old
people. There are two ways to impose this constraint. One method is to change the
names of the means. In Model A, each mean has a unique name. You can change the
names and give each mean the same name. This will have the effect of requiring the
two mean estimates to be equal.

A different method of constraining the means will be used here. The name of the
means, ml_yng and mi_old, will be left alone. Amos will use its Model Manager to fit
both Model A and Model B in a single analysis. To use this approach:

Start with Model A.
From the menus, choose Analyze — Manage Models.
In the Manage Models dialog box, type Model A in the Model Name text box.

Leave the Parameter Constraints box empty.

x

° Manage Models

ngh.ts Model Mame
Covariances
Variances IMDdE| A,
Means
m1_ald Earametar Constraints

i _yng
Intercepts
Unknown 1

w
<|»

Mew | Delete | Close |
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» To specify Model B, click New.
» In the Model Name text box, change Model Number 2 to Model B.

» Type m1_old = m1_yng in the Parameter Constraints text box.

° Manage Models il
Welghts taodel Mame
Covariances
Yariances |M0d9| B
Means

T Parameter Constraints

e 1 _yng m1_ald = m1_yng =]
Intercepts -
Unknown 4 » I

[RET | Delete Close |

» Click Close.
A path diagram that fits both Model A and Model B is saved in the file Ex/8-b.amw.

Output from Models A and B

» To see fit measures for both Model A and Model B, click Model Fit in the tree diagram
in the upper left pane of the Amos Output window.

The portion of the output that contains chi-square values is shown here:

CMIN
Model NPAR CMIN DF P CMIN/DF
Model A 10 .000 0
Model B 9 7.849 1 .005 7.849
Saturated model 10 .000 0
Independence model 4 33.096 6 .000 5.516

If Model B is correct (that is, the young and old populations have the same mean vocab
score), then 7.849 is an observation on a random variable that has a chi-square
distribution with one degree of freedom. The probability of getting a value as large as
7.849 by chance is small (p = 0.005), so Model B is rejected. In other words, young and
old subjects differ significantly in their mean vocab scores.]
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Modeling in VB.NET

Model A

The following program fits Model A. It estimates means, variances, and covariances of
both vocabulary tests in both groups of subjects, without constraints. The program is
saved as ExI8-a.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Crdiff()
Sem.ModelMeansAndintercepts()

Sem.BeginGroup(Sem.AmosDir & "Examples\atty_mis.sav")
Sem.GroupName("young_subjects")
Sem.Mean("vocab", "m1_yng")
Sem.Mean("v_short")
Sem.BeginGroup(Sem.AmosDir & "Examples\atto_mis.sav")
Sem.GroupName("old_subjects")
Sem.Mean("vocab", "m1_old")
Sem.Mean("v_short")
Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

The Crdiff method displays the critical ratios for parameter differences that were
discussed earlier.

For later reference, note the value of the Function of log likelihood for Model A.

Function of log likelihood = 429.963
Number of parameters = 10
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Model B

Here is a program for fitting Model B. In this program, the same parameter name
(mn_vocab) is used for the vocab mean of the young group as for the vocab mean of
the old group. In this way, the young group and old group are required to have the same
vocab mean. The program is saved as Ex18-b.vb.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Crdiff()
Sem.ModelMeansAndIntercepts()

Sem.BeginGroup(Sem.AmosDir & "Examples\atty_mis.sav")
Sem.GroupName("young_subjects")
Sem.Mean("vocab", "mn_vocab")
Sem.Mean("v_short")
Sem.BeginGroup(Sem.AmosDir & "Examples\atto_mis.sav")
Sem.GroupName("old_subjects")
Sem.Mean("vocab", "mn_vocab")
Sem.Mean("v_short")
Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub

Amos reports the fit of Model B as:

Function of log likelihood = 437.813
Number of parameters = 9

The difference in fit measures between Models B and A is 7.85 (=437.813 —429.963),
and the difference in the number of parameters is 1 (= 10 —9). These are the same
figures we obtained earlier with Amos Graphics.
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Introduction

This example demonstrates how to obtain robust standard error estimates by the
bootstrap method.

The Bootstrap Method

The bootstrap (Efron, 1982) is a versatile method for estimating the sampling
distribution of parameter estimates. In particular, the bootstrap can be used to find
approximate standard errors. As we saw in earlier examples, Amos automatically
displays approximate standard errors for the parameters it estimates. In computing
these approximations, Amos uses formulas that depend on the assumptions on p. 35.

The bootstrap is a completely different approach to the problem of estimating
standard errors. Why would you want another approach? To begin with, Amos does
not have formulas for all of the standard errors you might want, such as standard
errors for squared multiple correlations. The unavailability of formulas for standard
errors is never a problem with the bootstrap, however. The bootstrap can be used to
generate an approximate standard error for every estimate that Amos computes,
whether or not a formula for the standard error is known. Even when Amos has
formulas for standard errors, the formulas are good only under the assumptions on
p- 35. Not only that, but the formulas work only when you are using a correct model.
Approximate standard errors arrived at by the bootstrap do not suffer from these
limitations.

295
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The bootstrap has its own shortcomings, including the fact that it can require fairly
large samples. For readers who are new to bootstrapping, we recommend the Scientific
American article by Diaconis and Efron (1983).

The present example demonstrates the bootstrap with a factor analysis model, but,
of course, you can use the bootstrap with any model. Incidentally, don’t forget that
Amos can solve simple estimation problems like the one in Example 1. You might
choose to use Amos for such simple problems just so you can use the bootstrapping
capability of Amos.

About the Data

We will use the Holzinger and Swineford (1939) data, introduced in Example 8, for this
example. The data are contained in the file Grnt_fem.sav.

A Factor Analysis Model

The path diagram for this model (Ex/9.amw) is the same as in Example 8.

Example 19: Bootstrapping
Holzinger and Swineford (1939) Girls' sample
Model Specification

» To request 500 bootstrap replications, from the menus, choose View — Analysis
Properties.
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» Click the Bootstrap tab.
» Select Perform bootstrap.

» Type 500 in the Number of bootstrap samples text box.

.. Analysis Properties |
E stimation l Mumerical I Bias i

Permutations I R andaorm 1 I Title !

Output formatting I Outpuat i Bootztrap I

|

|

I¥ Perform bantstrap Wm ﬂumbler of bootztrap |
samples |

Monitoring the Progress of the Bootstrap

You can monitor the progress of the bootstrap algorithm by watching the Computation
summary panel at the left of the path diagram.

Writing output ]
Chi-square = 7.9, df = 8
Bootstrap

=ample 500

Results of the Analysis

The model fit is, of course, the same as in Example 8.

Chi-square = 7.853
Degrees of freedom = 8
Probability level = 0.448

The parameter estimates are also the same as in Example 8. However, we would now
like to look at the standard error estimates based on the maximum likelihood theory, so
that we can compare them to standard errors obtained from the bootstrap. Here, then,
are the maximum likelihood estimates of parameters and their standard errors:
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Regression Weights: (Group number 1 - Default
model)
Estimate S.E. C.R. P Label
visperc  <--- spatial 1.000
cubes <--- spatial 610 .143 4.250 ***
lozenges <--- spatial 1.198 272 4.405 ***
paragrap <--- verbal 1.000
sentence <--- verbal 1.334 160 8.322 ***
wordmean <--- verbal 2.234 263 8.482 ***
Standardized Regression Weights: (Group number 1 -
Default model)
Estimate
visperc  <--- spatial .703
cubes <--- spatial .654
lozenges <--- spatial .736
paragrap <--- verbal .880
sentence <--- verbal .827
wordmean <---  verbal .841
Covariances: (Group number 1 - Default model)
Estimate S.E. C.R. P Label
spatial <--> verbal 7.315 2.571 2.846 .004
Correlations: (Group number 1 - Default model)
Estimate
spatial <--> verbal 487
Variances: (Group number 1 - Default model)
Estimate S.E. C.R. P Label
spatial 23.302 8.123 2.868 .004
verbal 9.682 2.159 4.485 ***
err_v 23.873 5.986 3.988 ***
err_c 11.602 2584 4.490 ***
err_| 28.275 7.892 3.583 ***
err_p 2.834 868 3.263 .001
err_s 7.967 1.869 4.263 ***
er_w 19.925 4.951 4.024 ***
Squared Multiple Correlations: (Group number 1 -
Default model)
Estimate
wordmean .708
sentence .684
paragrap 774
lozenges 542
cubes 428
visperc 494
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The bootstrap output begins with a table of diagnostic information that is similar to the
following:

0 bootstrap samples were unused because of a singular covariance matrix.
0 bootstrap samples were unused because a solution was not found.
500 usable bootstrap samples were obtained.

It is possible that one or more bootstrap samples will have a singular covariance matrix,
or that Amos will fail to find a solution for some bootstrap samples. If any such
samples occur, Amos reports their occurrence and omits them from the bootstrap
analysis. In the present example, no bootstrap sample had a singular covariance matrix,
and a solution was found for each of the 500 bootstrap samples. The bootstrap
estimates of standard errors are:
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Scalar Estimates (Group number 1 - Default model)

Regression Weights: (Group number 1 - Default
model)

Parameter SE SE-SE  Mean Bias  SE-Bias
visperc  <---spatial .000 .000 1.000 .000 .000
cubes <---spatial .140 .004 .609 -.001 .006
lozenges <---spatial .373 012 1.216 .018 .017
paragrap <---verbal .000 .000 1.000 .000 .000
sentence <---verbal .176 .006 1.345 .011 .008
wordmean <---verbal .254 .008 2246 .011 .011

Standardized Regression Weights: (Group number 1 -
Default model)

Parameter SE SE-SE  Mean Bias  SE-Bias

visperc ~ <---spatial .123 .004 .709 .006 .005
cubes <---spatial .101 .003 .646 -.008 .005
lozenges <---spatial .121 .004 719 -.017 .005
paragrap <---verbal .047 .001 .876 -.004 .002
sentence <--verbal .042 .001 .826 .000 .002
wordmean <---verbal .050 .002 .841 -.001 .002

Covariances: (Group number 1 - Default model)

Parameter SE SE-SE  Mean Bias  SE-Bias
spatial <-->verbal 2.393 .076  7.241 -074 107

Correlations: (Group number 1 - Default model)

Parameter SE SE-SE  Mean Bias SE-Bias
spatial <-->verbal .132 .004 495 .008 .006

Variances: (Group number 1 - Default model)
Parameter SE ~ SE-SE  Mean Bias SE-Bias

spatial  9.086 287 23.905 .603 406
verbal 2,077 066 9518 -.164 093
err_v 9.166 290 22.393 -1.480 410
err_c 3.195 101 11191 -4 143
err_| 9.940 314 27.797 -478 445
err_p 878 028 2772 -062 039
err_s 1.446 046 7.597 -370 065
err_w 5.488 174 19123 -803 245

Squared Multiple Correlations: (Group number 1 -
Default model)

Parameter SE SE-SE = Mean Bias SE-Bias

wordmean  .083 .003 .709  .001 .004
sentence .069 .002 .685 .001 .003
paragrap .081 .003 770 -.004 .004
lozenges A72 .005 532 -.010 .008
cubes 27 .004 428 .000 .006

visperc 182 .006 517 .023 .008
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®  The first column, labeled S.E., contains bootstrap estimates of standard errors.
These estimates may be compared to the approximate standard error estimates
obtained by maximum likelihood.

m  The second column, labeled S.E.-S.E., gives an approximate standard error for the
bootstrap standard error estimate itself.

®  The column labeled Mean represents the average parameter estimate computed
across bootstrap samples. This bootstrap mean is not necessarily identical to the
original estimate.

B The column labeled Bias gives the difference between the original estimate and the
mean of estimates across bootstrap samples. If the mean estimate across bootstrapped
samples is higher than the original estimate, then Bias will be positive.

B The last column, labeled S.E.-Bias, gives an approximate standard error for the bias
estimate.

Modeling in VB.NET

The following program (Ex/9.vb) fits the model of Example 19 and performs a
bootstrap with 500 bootstrap samples. The program is the same as in Example 8, but
with an additional Bootstrap line.

Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.Bootstrap(500)
Sem.Standardized()
Sem.Smc()

Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")

Sem.AStructure("visperc = (1) spatial + (1) err_v")

Sem.AStructure("cubes = spatial + (1) err_c")
Sem.AStructure("lozenges =  spatial + (1) err_I")
Sem.AStructure("paragrap = (1) verbal + (1) err_p")
Sem.AStructure("sentence = verbal + (1) err_s"
Sem.AStructure("wordmean = verbal + (1) err_w")
Sem.FitModel()

Finally
Sem.Dispose()

End Try

End Sub

The line Sem.Bootstrap(500) requests bootstrap standard errors based on 500 bootstrap
samples.
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Bootstrapping for Model Comparison

Introduction

This example demonstrates the use of the bootstrap for model comparison.

Bootstrap Approach to Model Comparison

The problem addressed by this method is not that of evaluating an individual model
in absolute terms but of choosing among two or more competing models. Bollen and
Stine (1992), Bollen (1982), and Stine (1989) suggested the possibility of using the
bootstrap for model selection in analysis of moment structures. Linhart and Zucchini
(1986) described a general schema for bootstrapping and model selection that is
appropriate for a large class of models, including structural modeling. The Linhart
and Zucchini approach is employed here.

The bootstrap approach to model comparison can be summarized as follows:

m  Generate several bootstrap samples by sampling with replacement from the
original sample. In other words, the original sample serves as the population for
purposes of bootstrap sampling.

m  Fit every competing model to every bootstrap sample. After each analysis,
calculate the discrepancy between the implied moments obtained from the
bootstrap sample and the moments of the bootstrap population.

m  Calculate the average (across bootstrap samples) of the discrepancies for each
model from the previous step.

B Choose the model whose average discrepancy is smallest.
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About the Data

The present example uses the combined male and female data from the Grant-White
high school sample of the Holzinger and Swineford (1939) study, previously discussed
in Examples 8, 12, 15, 17, and 19. The 145 combined observations are given in the file
Grant.sav.

Five Models

Five measurement models will be fitted to the six psychological tests. Model 1 is a
factor analysis model with one factor.

lozenges

paragraph

sentence

Example 20: Model 1
One-factor model
Holzinger and Swineford (1939) data
Model Specification
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Model 2 is an unrestricted factor analysis with two factors. Note that fixing two of the
regression weights at 0 does not constrain the model but serves only to make the model
identified (Anderson, 1984; Bollen and Joreskog, 1985; Joreskog, 1979).

wordmean

Example 20: Model 2
Two unconstrained factors
Holzinger and Swineford (1939) data
Model Specification

Model 2R is a restricted factor analysis model with two factors, in which the first three
tests depend upon only one of the factors while the remaining three tests depend upon
only the other factor.

visperc

lozenges

sentence
wordmean

Example 20: Model 2R
Restricted two-factor model
Holzinger and Swineford (1939) data
Model Specification
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The remaining two models provide customary points of reference for evaluating the fit
of the previous models. In the saturated model, the variances and covariances of the
observed variables are unconstrained.

>
visperc 3

wordmean 4

Example 20: Saturated model
Variances and covariances
Holzinger and Swineford (1939) data
Model Specification

In the independence model, the variances of the observed variables are unconstrained
and their covariances are required to be 0.

visperc

cubes
lozenges
paragraph
sentence

wordmean

Example 20: Independence model
Only variances are estimated
Holzinger and Swineford (1939) data
Model Specification
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You would not ordinarily fit the saturated and independence models separately, since
Amos automatically reports fit measures for those two models in the course of every
analysis. However, it is necessary to specify explicitly the saturated and independence
models in order to get bootstrap results for those models. Five separate bootstrap
analyses must be performed, one for each model. For each of the five analyses:

From the menus, choose View — Analysis Properties.

In the Analysis Properties dialog box, click the Bootstrap tab.

Select Perform bootstrap (a check mark appears next to it).

Type 1000 in the Number of bootstrap samples text box.

;?; Analysiz Properties
E ztimation I Murnerical I Biaz
Permutahionz l Fandom # I Title
Output formatting I Dutput a Bootstrap
I Pegform bootstrap |-||:||:|q Mumber of Bootstrap
zamples

Click the Random # tab and enter a value for Seed for random numbers.

It does not matter what seed you choose, but in order to draw the exact same set of
samples in each of several Amos sessions, the same seed number must be given each
time. For this example, we used a seed of 3.

IH Seed for random

numbers

[ Use oniginal random rumber generator

Occasionally, bootstrap samples are encountered for which the minimization
algorithm does not converge. To keep overall computation times in check:
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» Click the Numerical tab and limit the number of iterations to a realistic figure (such as
40) in the lteration limit field.

Pemutations
Output formatting

E ztimation

:-:_-'; Analysis Properties

|

|

— Convergence criteria—————————

ID.EIEIEIEH Crit 1
ID.EIEH Crit 2
an Iteration

Random# | Tte
Dutpuk I Bootstrap
Murnernical I Biaz

limit

Amos Graphics input files for the five models have been saved with the names
Ex20-1.amw, Ex20-2.amw, Ex20-2r.amw, Ex20-sat.amw, and Ex20-ind.amw.

Text Output

» In viewing the text output for Model 1, click Summary of Bootstrap Iterations in the tree
diagram in the upper left pane of the Amos Output window.

The following message shows that it was not necessary to discard any bootstrap
samples. All 1,000 bootstrap samples were used.

0 bootstrap samples were unused because of a singular covariance matrix.
0 bootstrap samples were unused because a solution was not found.
1000 usable bootstrap samples were obtained.

» Click Bootstrap Distributions in the tree diagram to see a histogram of

Cyp @y a)=Cpr by a)-C o) (@), b=1,....1000

where a contains sample moments from the original sample of 145 Grant-White
students (that is, the moments in the bootstrap population), and o, contains the
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implied moments obtained from fitting Model 1 to the b-th bootstrap sample. Thus,
Cy (0, @) is a measure of how much the population moments differ from the
moments estimated from the b-th bootstrap sample using Model 1.

ML discrepancy (implied vs pop) (Default model)
I____________________

48.268 |
52.091 [rrrsrnns
55013  [rewmerenrens
5,735  [reerskessmkrensiess
B3.557  [Feesrrrenskkanar
67.379
71.202
N = 1000 75.024
Mean = 64.162 78.846
S.e.=.292 82.668
86.490
90.313
94135 |
97.957 |
101.779  |*

The average of CML(&b, a) over 1,000 bootstrap samples was 64.162 with a standard
error of 0.292. Similar histograms, along with means and standard errors, are displayed
for the other four models but are not reproduced here. The average discrepancies for
the five competing models are shown in the table below, along with values of BCC,
AIC, and CAIC. The table provides fit measures for five competing models (standard
errors in parentheses).

Model Failures g‘;ﬂ;‘epancy BCC AIC CAIC
1 0 64.16 (0.29) 68.17 66.94 114.66
2 19 29.14 (0.35 36.81 35.07 102.68
2R 0 26.57 (0.30) 30.97 29.64 81.34

Sat. 0 32.05 (0.37) 4415 42.00 12551
Indep. 0 334.32 (0.24) 333.93 333.32 357.18

The Failures column in the table indicates that the likelihood function of Model 2 could
not be maximized for 19 of the 1,000 bootstrap samples, at least not with the iteration
limit of 40. Nineteen additional bootstrap samples were generated for Model 2 in order
to bring the total number of bootstrap samples to the target of 1,000. The 19 samples
where Model 2 could not be fitted successfully caused no problem with the other four
models. Consequently, 981 bootstrap samples were common to all five models.

No attempt was made to find out why Model 2 estimates could not be computed for
19 bootstrap samples. As a rule, algorithms for analysis of moment structures tend to
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fail for models that fit poorly. If some way could be found to successfully fit Model 2
to these 19 samples—for example, with hand-picked start values or a superior
algorithm—it seems likely that the discrepancies would be large. According to this line
of reasoning, discarding bootstrap samples for which estimation failed would lead to a
downward bias in the mean discrepancy. Thus, you should be concerned by estimation
failures during bootstrapping, primarily when they occur for the model with the lowest
mean discrepancy.

In this example, the lowest mean discrepancy (26.57) occurs for Model 2R,
confirming the model choice based on the BCC, AIC, and CAIC criteria. The
differences among the mean discrepancies are large compared to their standard errors.
Since all models were fitted to the same bootstrap samples (except for samples where
Model 2 was not successfully fitted), you would expect to find positive correlations
across bootstrap samples between discrepancies for similar models. Unfortunately,
Amos does not report those correlations. Calculating the correlations by hand shows
that they are close to 1, so that standard errors for the differences between means in the
table are, on the whole, even smaller than the standard errors of the means.

Summary

The bootstrap can be a practical aid in model selection for analysis of moment
structures. The Linhart and Zucchini (1986) approach uses the expected discrepancy
between implied and population moments as the basis for model comparisons. The
method is conceptually simple and easy to apply. It does not employ any arbitrary
magic number such as a significance level. Of course, the theoretical appropriateness
of competing models and the reasonableness of their associated parameter estimates
are not taken into account by the bootstrap procedure and need to be given appropriate
weight at some other stage in the model evaluation process.

Modeling in VB.NET

Visual Basic programs for this example are in the files Ex20-1.vb, Ex20-2.vb, Ex20-
2r.vb, Ex20-ind.vb, and Ex20-sat.vb.
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Bootstrapping to Compare
Estimation Methods

Introduction

This example demonstrates how bootstrapping can be used to choose among
competing estimation criteria.

Estimation Methods

The discrepancy between the population moments and the moments implied by a
model depends not only on the model but also on the estimation method. The
technique used in Example 20 to compare models can be adapted to the comparison
of estimation methods. This capability is particularly needed when choosing among
estimation methods that are known to be optimal only asymptotically, and whose
relative merits in finite samples would be expected to depend on the model, the sample
size, and the population distribution. The principal obstacle to carrying out this
program for comparing estimation methods is that it requires a prior decision about
how to measure the discrepancy between the population moments and the moments
implied by the model. There appears to be no way to make this decision without
favoring some estimation criteria over others. Of course, if every choice of population
discrepancy leads to the same conclusion, questions about which is the appropriate
population discrepancy can be considered academic. The present example presents
such a clear-cut case.
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About the Data

The Holzinger-Swineford (1939) data from Example 20 (in the file Grant.sav) are used
in the present example.

About the Model

The present example estimates the parameters of Model 2R from Example 20 by four
alternative methods: Asymptotically distribution-free (ADF), maximum likelihood
(ML), generalized least squares (GLS), and unweighted least squares (ULS). To
compare the four estimation methods, you need to run Amos four times.

To specify the estimation method and bootstrap parameters:
» From the menus, choose View — Analysis Properties.
» In the Analysis Properties dialog box, click the Random # tab.

» Enter a Seed for random numbers.

As we discussed in Example 20, it does not matter what seed value you choose, but in
order to draw the exact same set of samples in each of several Amos sessions, the same
seed number must be given each time. In this example, we use a seed of 3.

I:{ Seed for randam

numbers

[ Usze aniginal random number generatar

» Next, click the Estimation tab.

» Select the Asymptotically distribution-free discrepancy.

This discrepancy specifies that ADF estimation should be used to fit the model to each
bootstrap sample.
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- Analysis Properties

Permutations I FRandom # I Title
Cutput farmatting I Clutpuit I B ootztrap
E stimation I Murmerical I Bias
Dizcrepancy
£ Maimum likelihood | <l vzl e
ntercepts

{ Generalized least squares

i Ernulisrels
" Urweighted least squares I™ Emulisre

" Scale-free least squares

I Chizomrect

* Asymptatically distibution-free

s

» Finally, click the Bootstrap tab.

» Select Perform bootstrap and type 1000 for Number of bootstrap samples.

» Select Bootstrap ADF, Bootstrap ML, Bootstrap GLS, and Bootstrap ULS.
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- Analysis Properties

E stimation ] Mumerical ] Bias
Permutations 3 F andom # i Title
Output farmatting } Output i Boatstrap
W Perform bootstiap ;mgn Murnber of boaotstrap
zamples
[ Percentile confidence intervals = PC confidence level

Biaz-comected confidence

r intervals ;,L]U BLC confidence level

konte Carlo [parametric

[+ Bootstiap ADF [ boctstrap]

v Bootstrap kL - Report details of each boatstrap
zample

W Bootstrap GLS [~ Buollen-Stine bootstrap

[~ Bootstiap 5L5 ;1 Bootfactar

[+ Boaotstrap LS

Selecting Bootstrap ADF, Bootstrap ML, Bootstrap GLS, Bootstrap SLS, and Bootstrap
ULS specifies that each of C,pg, Cyp, Corss and Cyyp g is to be used to measure the
discrepancy between the sample moments in the original sample and the implied
moments from each bootstrap sample.

To summarize, when you perform the analysis (Analyze — Calculate Estimates),
Amos will fit the model to each of 1,000 bootstrap samples using the ADF discrepancy.
For each bootstrap sample, the closeness of the implied moments to the population
moments will be measured four different ways, using Cpg, Cy, Cgrs, and Cyys.
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» Select the Maximum likelihood discrepancy to repeat the analysis.

-%. Analysis Properties

Permutationz I Fandom # l Title
Output farmatting I Olutpuat I Boatstrap
E ztirmation I Murnerical I Biaz
Dizcrepancy

r Eztimate means and
intercepts

i Generalized lzast squares

i Emulizrels
i~ Urmweighted least squares ™ Emulisrs

i Scale-fres least squares

I LChizarect

= Aayrmphotically distibution-free

» Select the Generalized least squares discrepancy to repeat the analysis again.

» Select the Unweighted least squares discrepancy to repeat the analysis one last time.

The four Amos Graphics input files for this example are Ex2[-adf.amw, Ex21-ml.amw,
Ex21-gls.amw, and Ex21-uls.amw.

Text Output

In the first of the four analyses (as found in Ex21-adf.amw), estimation using ADF
produces the following histogram output. To view this histogram:

» Click Bootstrap Distributions — ADF Discrepancy (implied vs pop) in the tree diagram in
the upper left pane of the Amos Output window.
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ADF discrepancy (implied vs pop) (Default model)

7359 |
10.817 |‘k~k*‘k****
10074 [resseseesnsnns

17.732 |****k**k**k**k**k**k

21.189 |****k**k**k**k**k**

24.647 [essarmmii
28.104 |********

N = 1000 31.562 [

Mean =20.601 35.019 |*

S.e.=.218 38477 |
41934 |
45392 |*
48.850 |*
52307 |
55.765  |*

This portion of the output shows the distribution of the population discrepancy

Capr(0, a) across 1,000 bootstrap samples, where 0, contains the implied moments
obtained by minimizing C ADF(&b, a,) , that is, the sample discrepancy. The average of
CADF(&,,, a) across 1,000 bootstrap samples is 20.601, with a standard error of 0.218.

The following histogram shows the distribution of Cyy (O, @) . To view this histogram:

» Click Bootstrap Distributions — ML Discrepancy (implied vs pop) in the tree diagram in
the upper left pane of the Amos Output window.

11272 [

22.691 |********************

34.110 |********************

45530  [rreseesees
56.949 |

68.368  [**

79.787 |
N = 1000 91.207 |
Mean = 36.860  102.626 |*
S.e.=.571 114.045  |*
125464  |*
136.884 |
148.303 |
159.722 |

171142 |*
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The following histogram shows the distribution of Cg; g( o 5 @) . To view this histogram:

» Click Bootstrap Distributions — GLS Discrepancy (implied vs pop) in the tree diagram in
the upper left pane of the Amos Output window.

GLS discrepancy (implied vs pop) (Default model)
| ____________________
7.248 |
11076 [romeess
YR Y e—
TP S R —
22561 [rreseereeas
26,389 e
30217 [

N = 1000 34.046 |+

Mean = 21.827  37.874 |**

S.e.=.263 41702 |
45530 |*
49359 |*
53.187 |*
57.015 |
60.844  |*

The following histogram shows the distribution of Cyy; (0L, @) . To view this histogram:

» Click Bootstrap Distributions — ULS Discrepancy (implied vs pop) in the tree diagram in
the upper left pane of the Amos Output window.

ULS discrepancy (implied vs pop) (Default model)
5079.897  |*F*
O A —
56543.716 |
82275.625  |****
108007.534  |**
133739.443 |*
159471.352 |*
N = 1000 185203.261 |*
Mean = 43686.444  210935.170 |
S.e. =1011.591 236667.079  |*
262398.988 |
288130.897 |
313862.806 |
339594.715 |
365326.624  |*
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Below is a table showing the mean of C( &,,, a) across 1,000 bootstrap samples with
the standard errors in parentheses. The four distributions just displayed are
summarized in the first row of the table. The remaining three rows show the results of
estimation by minimizing Cyy;, Cgrs, and Cyy g, respectively.

Population discrepancy for evaluation: C(0.;, a;)

CADF CMmL CGLs CuLs
Sample CADF 20.60 (0.22) [36.86(0.57) [21.83(0.26) |43686 (1012)
discrepancy CvL 19.19 (0.20) |26.57 (0.30) 18.96 (0.22) |34760 (830)

for estimation

~ CaLs 19.45 (0.20) |31.45(0.40) 19.03 (0.21) | 37021 (830)
C(o,, a,)

Curs 24.89 (0.35) |31.78 (0.43) |24.16(0.33) |35343(793)

The first column, labeled C,pg, shows the relative performance of the four estimation
methods according to the population discrepancy, Cypr. Since 19.19 is the smallest
mean discrepancy in the C,pr column, Cyy is the best estimation method according to
the Capp criterion. Similarly, examining the Cyy. column of the table shows that Cyy.
is the best estimation method according to the Cy; criterion.

Although the four columns of the table disagree on the exact ordering of the four
estimation methods, ML is, in all cases, the method with the lowest mean discrepancy.
The difference between ML estimation and GLS estimation is slight in some cases.
Unsurprisingly, ULS estimation performed badly, according to all of the population
discrepancies employed. More interesting is the poor performance of ADF estimation,
indicating that ADF estimation is unsuited to this combination of model, population,
and sample size.

Modeling in VB.NET

Visual Basic programs for this example are in the files Ex21-adf.vb, Ex21-gls.vb,
Ex21-ml.vb, and Ex21-uls.vb.
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Introduction

This example takes you through two specification searches: one is largely
confirmatory (with few optional arrows), and the other is largely exploratory (with
many optional arrows).

About the Data

This example uses the Felson and Bohrnstedt (1979) girls’ data, also used in Example 7.

About the Model

The initial model for the specification search comes from Felson and Bohrnstedt
(1979), as seen in Figure 22-1:
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GPA |—>| academic

weight l—a attract

Figure 22-1: Felson and Bohrnstedt’s model for girls

Specification Search with Few Optional Arrows

Felson and Bohrnstedt were primarily interested in the two single-headed arrows,
academic«attract and attract—academic. The question was whether one or both, or
possibly neither, of the arrows was needed. For this reason, you will make both arrows
optional during this specification search. The double-headed arrow connecting errorl
and error2 is an undesirable feature of the model because it complicates the
interpretation of the effects represented by the single-headed arrows, and so you will
also make it optional. The specification search will help to decide which of these three
optional arrows, if any, are essential to the model.

This specification search is largely confirmatory because most arrows are required
by the model, and only three are optional.

Specifying the Model

» Open Ex22a.amw. If you performed a typical installation, the path is
CA\Program Files\IBM\SPSS\Amos\20\Examples\<language>\Ex22a.amw.
The path diagram opens in the drawing area. Initially, there are no optional arrows, as
seen in Figure 22-1.

» From the menus, choose Analyze — Specification Search.

The Specification Search window appears. Initially, only the toolbar is visible.
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;?; Specification Search

» Click |£| on the Specification Search toolbar, and then click the double-headed arrow
that connects errorl and error2. The arrow changes color to indicate that the arrow is

optional.

Tip: If you want the optional arrow to be dashed as well as colored, as seen below,
choose View — Interface Properties from the menus, click the Accessibility tab, and select
the Alternative to color check box.

academic

4

Y

v
weight '—a attract

» To make the arrow required again, click IE‘ on the Specification Search toolbar, and
then click the arrow. When you move the pointer away, the arrow will again display as
a required arrow.

» Click |£| again, and then click the arrows in the path diagram until it looks like this:

GPA }—>|academic |<1—@

height

weight }—a attract

rating




322

Example 22

When you perform the exploratory analysis later on, the program will treat the three
colored arrows as optional and will try to fit the model using every possible subset of
them.

Selecting Program Options
| | E o
» Click the Options button on the Specification Search toolbar.
» In the Options dialog box, click the Current results tab.

» Click Reset to ensure that your options are the same as those used in this example.

Current results I Mext search ] Appearance I

Display
v Ignore inadmissibility and | ¥ Model number -
instakbility W todel name

[ Farams
¥ Show saturated maodel ] clf

e

[w] - of
™ Show null models CAIC -]

¥ Keepontop

BCC, AIC, BIC
" Baw
& Zero-hased {min = 0}
" Akaike weights / Bayes factors (max = 1)

" Akaike weights / Bayes factors (sum = 1)

» Now click the Next search tab. The text at the top indicates that the exploratory analysis
will fit eight (that is, 2%) models.

» In the Retain only the best ___ models box, change the value from 10 to 0.

With a default value of 10, the specification search reports at most 10 one-parameter
models, at most 10 two-parameter models, and so on. If the value is set to O, there is no
limitation on the number of models reported.
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Limiting the number of models reported can speed up a specification search
significantly. However, only eight models in total will be encountered during the
specification search for this example, and specifying a nonzero value for Retain only
the best ___ models would have the undesirable side effect of inhibiting the program
from normalizing Akaike weights and Bayes factors so that they sum to 1 across all
models, as seen later.

Currentresults || Mextsearch Appearance I

8 models will be fitted

& Al subsets " Stepwise

" Forward " Backward

| Dj‘ Use no mare than ___ optional parameters.

;l .
| D;I Betain only the best___ models.

Benchmark models
v Saturated
v Il 1
v Il 2
¥ | Talull 2
¥ | Talull 4

» Close the Options dialog box.

Performing the Specification Search

» Click II] on the Specification Search toolbar.

The program fits the model eight times, using every subset of the optional arrows.
When it finishes, the Specification Search window expands to show the results.
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The following table summarizes fit measures for the eight models and the saturated

model:

Model Params | df C | C-df [BCCg | BICp | C/df | p | MNotes |
1 19 2 2761 0761 3830 10.375 1.381 0.251
2 18 3 19.165 16155 18154 21427 6.385 0.000
3 17 4 18215 15215 16144 16144 4804 0.001
4 16 5 B7.342 62342 62201 58.823 13483 0.000
5 17 4 27811 23911 24840 24840 6978 0000
B 18 3 2763 -0237 1761 5034 0921 0430
7 17 4 3071 0929 0000 0000 0768 0546
8 18 3 2895 -0.105 1894 5167 0965 0408
Sat 21 0 0000 0000 5208 18.299

The Model column contains an arbitrary index number from 1 through 8 for each of the
models fitted during the specification search. Sar identifies the saturated model.
Looking at the first row, Model 1 has 19 parameters and 2 degrees of freedom. The
discrepancy function (which in this case is the likelihood ratio chi-square statistic) is
2.761. Elsewhere in Amos output, the minimum value of the discrepancy function is
referred to as CMIN. Here it is labeled C for brevity. To get an explanation of any
column of the table, right-click anywhere in the column and choose What's This? from
the pop-up menu.

Notice that the best value in each column is underlined, except for the Model and
Notes columns.

Many familiar fit measures (CFI and RMSEA, for example) are omitted from this
table. Appendix E gives a rationale for the choice of fit measures displayed.

Viewing Generated Models

» You can double-click any row in the table (other than the Saf row) to see the
corresponding path diagram in the drawing area. For example, double-click the row for
Model 7 to see its path diagram.
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Y

GPA

academic

weight |—€| attract

rating

Figure 22-2: Path diagram for Model 7

Viewing Parameter Estimates for a Model
» Click on the Specification Search toolbar.

» In the Specification Search window, double-click the row for Model 7.

The drawing area displays the parameter estimates for Model 7.

12.12 02
.02 . 1
* academic

371.48 14
weight i—ma attract
1.02 /18
rating Chi-square = 3.071 (4 df)
p = .546

Figure 22-3: Parameter estimates for Model 7


_Ref12204742
_Ref12204742

326

Example 22

Using BCC to Compare Models

» In the Specification Search window, click the column heading BCC,,

The table sorts according to BCC so that the best model according to BCC (that is, the

model with the smallest BCC) is at the top of the list.

C | C-df [BCCg | BICp | Cjdi | p | Notes

Based on a suggestion by Burnham and Anderson (1998), a constant has been added
to all the BCC values so that the smallest BCC value is 0. The 0 subscript on BCC,
serves as a reminder of this rescaling. AIC (not shown in the above figure) and BIC
have been similarly rescaled. As a rough guideline, Burnham and Anderson (1998,

p. 128) suggest the following interpretation of AIC,. BCC, can be interpreted similarly.

4

kodel | Params | cif |
7 17
5 14
a8 14
1 19
Sat 21
3 17
2 14
b 17
4 16

| L T S S S e T N PR L

07 0323 0000 0000 Q0768 0546
2763 -0.237 1761 5034 0821 0.430
2.895 -005 1.894 5167 08985 0.408
2761 0.7B1 3.8300 10375 1.381 0.2%1
g0.00a 0.0000 5208 18.299
13.21% 15215 16.144 16144 4804 0.000
13.155 16.155 18.154 21427 6385 0.000
27911 235911 24.840 24840 6578 0.000
G7.342 BZ342 G2.201 58529 134658 0.000

AICq or BCCy Burnham and Anderson interpretation
There is no credible evidence that the model should be

0-2 ruled out as being the actual K-L best model for the
population of possible samples. (See Burnham and
Anderson for the definition of K-L best.)

-4 There is weak evidence that the model is not the K-L
best model.

4_7 There is definite evidence that the model is not the K-L
best model.

7-10 There is strong evidence that the model is not the K-L
best model.

>10 There is very strong evidence that the model is not the
K-L best model.

Although Model 7 is estimated to be the best model according to Burnham and

Anderson’s guidelines, Models 6 and 8 should not be ruled out.
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Viewing the Akaike Weights
: . [=] L
» Click the Options button on the Specification Search toolbar.
» In the Options dialog box, click the Current results tab.

» Inthe BCC, AIC, BIC group, select Akaike weights / Bayes factors (sum = 1).

Current results I Mext search ] Appearance I

Display
v Ignore inadmissibility and | ¥ Model number -
instakbility W todel name
[ Farams
¥ Show saturated maodel ] clf
e
[w] - of
[~ Show null models CAIC LI
¥ Keepontop
Feset |
BCC AIC BIC
" Baw

 Zero-hased {min = 0}
" Akaike weights / Bayes factors (max = 1)

= iAkaike weights / Bayes factors (surm = 1)

In the table of fit measures, the column that was labeled BCC is now labeled BCCp and
contains Akaike weights. (See Appendix G.)

Model | Params | df | C | C-dof BCCp |BICp | C/di | p | Motes

7 17 4 3071 0923 0434 0860 0768 0546
B 18 3 2763 -0.237 0205 0069 0821 0430
8 18 3 2895 -0.705 0192 0085 0985 0408
1 19 2 2761 0761 0073 0.005 1381 0251
Sat 21 0 0000 0000 0.037 0.000

3 17 4 18215 15215 0000 0000 4804 0001
2 18 3 19185 16155 0.000 0000 6385 0000
5 174 27911 23811 0000 0000 6878 0000
4 16 5 B7342 62342 0000 0.000 13468 0.000
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The Akaike weight has been interpreted (Akaike, 1978; Bozdogan, 1987; Burnham and
Anderson, 1998) as the likelihood of the model given the data. With this interpretation,
the estimated K-L best model (Model 7) is only about 2.4 times more likely (0.494 /
0.205 =2.41) than Model 6. Bozdogan (1987) points out that, if it is possible to assign
prior probabilities to the candidate models, the prior probabilities can be used together
with the Akaike weights (interpreted as model likelihoods) to obtain posterior
probabilities. With equal prior probabilities, the Akaike weights are themselves
posterior probabilities, so that one can say that Model 7 is the K-L best model with
probability 0.494, Model 6 is the K-L best model with probability 0.205, and so on. The
four most probable models are Models 7, 6, 8, and 1. After adding their probabilities
(0.494 + 0.205 + 0.192 + 0.073 = 0.96), one can say that there is a 96% chance that the
K-L best model is among those four. (Burnham and Anderson, 1998, pp. 127-129). The
p subscript on BCC,, serves as a reminder that BCC, can be interpreted as a probability
under some circumstances.

Using BIC to Compare Models

» On the Current results tab of the Options dialog box, select Zero-based (min = 0) in the

BCC, AIC, BIC group.

Current results I Mext search ] Appearance I

Display
v Ignore inadmissibility and | ¥ Model number -
instakbility W todel name

[l Pararms
¥ Show saturated madel b cif

W C

[w] C- cif
[T Show null madels CIAIC |
v Keepontop

Beset |
BCC, AIC. BIC
O Baw

+ Zero-hased {min = 0}
 Akaike weights / Bayes factors (max =11
 Akaike weights / Bayes factors (sum =11
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» In the Specification Search window, click the column heading BIC,,

The table is now sorted according to BIC so that the best model according to BIC (that
is, the model with the smallest BIC) is at the top of the list.

Model | Params | df C | C-df BCCp |BICp | C/df  p |MNotes

7 174 3071 0328 0.000 0.000 0768 (.546
6 18 3 2763 -0.237 1761 5034 0321 0430
8 18 3 2835 -0.105 1894 5167 0.365 0.408
1 18 2 2761 0761 3830 10375 1381 0.251
3 17 4 19215 16216 16144 16144 4804 0.001
Sat 21 0 0000 0000 5208 18.299

2 18 3 19155 16155 18154 21427 £.385 0.000
5 17 4 27.911 23911 24840 24840 6.978 0.000
4 16 5§ 67.342 B2342 62.201 58.928 13.468 0.000

Model 7, with the smallest BIC, is the model with the highest approximate posterior
probability (using equal prior probabilities for the models and using a particular prior
distribution for the parameters of each separate model). Raftery (1995) suggests the
following interpretation of BIC, values in judging the evidence for Model 7 against a
competing model:

BIC, Raftery (1995) interpretation
0-2 Weak

2-6 Positive

6-10 Strong

>10 Very strong

Using these guidelines, you have positive evidence against Models 6 and 8, and very
strong evidence against all of the other models as compared to Model 7.

Using Bayes Factors to Compare Models

» On the Current results tab of the Options dialog box, select Akaike weights / Bayes factors
(sum = 1) in the BCC, AIC, BIC group.



330

Example 22
Current results I Mext search ] Appearance I
Display
v Ignore inadmissibility and | ¥ Model number -
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" Akaike weights / Bayes factors (max = 1)
= iAkaike weights / Bayes factors (surm = 1)

In the table of fit measures, the column that was labeled BIC) is now labeled BIC,, and
contains Bayes factors scaled so that they sum to 1.

Model | Params df | C | C-df BCCp BICp | C/df | p | MNotes

7 W4 307 0329 0434 0860 0768 0548
B 18 3 2763 -0.237 0205 0063 0.921 0.430
8 18 3 2835 -0.105 0192 0065 0.965 0.408
1 19 2 2761 0761 0073 0005 1331 0.251
3 17 4 19215 15215 0000 0000 4804 0.001
Sat 21 0 0000 0000 0037 0000

2 18 3 19155 16155 0000 0000 6.335 0.000
5 17 4 27911 23811 0000 0000 B.878 0.000
4 16 5 67.342 62342 0000 0.000 13488 0.000

With equal prior probabilities for the models and using a particular prior distribution
of the parameters of each separate model (Raftery, 1995; Schwarz, 1978), BI G, values
are approximate posterior probabilities. Model 7 is the correct model with probability
0.860. One can be 99% sure that the correct model is among Models 7, 6, and 8 (0.860
+0.069 + 0.065 = 0.99). The p subscript is a reminder that BIC,, values can be
interpreted as probabilities.
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Madigan and Raftery (1994) suggest that only models in Occam’s window be used
for purposes of model averaging (a topic not discussed here). The symmetric Occam’s
window is the subset of models obtained by excluding models that are much less
probable (Madigan and Raftery suggest something like 20 times less probable) than the
most probable model. In this example, the symmetric Occam’s window contains
models 7, 6, and 8 because these are the models whose probabilities (BIC,, values) are
greater than 0.860/20 = 0.043.

Rescaling the Bayes Factors
» On the Current results tab of the Options dialog box, select Akaike weights / Bayes factors
(max = 1) in the BCC, AIC, BIC group.

Current results I Mext search ] Appearance I

Display
v Ignore inadmissibility and | ¥ Model number -
instakbility W todel name
[ Farams
¥ Show saturated maodel ] clf
e
[w] - of
[~ Show null models CAIC LI
¥ Keepontop
Feset |
BCC AIC BIC
" Baw

 Zero-hased {min = 0}
= iAkaike weights / Bayes factors (mex = 1)

" Akaike weights / Bayes factors (sum = 1)

In the table of fit measures, the column that was labeled BICp is now labeled BIC; and
contains Bayes factors scaled so that the largest value is 1. This makes it easier to pick
out Occam’s window. It consists of models whose BIC; values are greater than

1/20 = 0.05; in other words, Models 7, 6, and 8. The L subscript on BIC} is a
reminder that the analogous statistic BCCy, can be interpreted as a likelihood.
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Model | Params df | C | C-df BCCL BIC_ | C/df | p |Notes

7 17 4 3071 -0.323 1000 1000 Q768 0546
6 18 3 2763 -0237 0414 0081 0921 0430
8 18 3 2895 -0105 0388 0076 (0985 0.408
1 18 2 2761 0761 0147 0006 1381 0.251
3 17 4 19215 15215 0000 0.000 4804 0.001
Sat 21 0 0000 0000 0074 0.000

2 18 3 19155 16155 0000 0.000 6385 0.000
5 17 4 27911 23911 0000 0.000 6976 0.000
4 16 5 67.342 62342 0.000 0000 13.468 0.000

Examining the Short List of Models

» Click IE on the Specification Search toolbar. This displays a short list of models.

In the figure below, the short list shows the best model for each number of parameters.
It shows the best 16-parameter model, the best 17-parameter model, and so on. Notice
that all criteria agree on the best model when the comparison is restricted to models
with a fixed number of parameters. The overall best model must be on this list, no
matter which criterion is employed.

Model | Params | df | C | C-df BCC_ [BIC_ | C/df | p | MNotes

4 16 5 67342 62342 0.000) 0000 13.468 0.000

7 174 3071 0523 1.000) 1.000 0768 0546

b 18 3 2763 -0.237 0414] 0081 0821 0430

1 19 2 2781 0781 0147 0006 1381 0.251
Sat 21 0 0000 0000 0074 0000

Figure 22-4: The best model for each number of parameters

This table shows that the best 17-parameter model fits substantially better than the best
16-parameter model. Beyond 17 parameters, adding additional parameters yields
relatively small improvements in fit. In a cost-benefit analysis, stepping from 16
parameters to 17 parameters has a relatively large payoff, while going beyond 17
parameters has a relatively small payoff. This suggests adopting the best 17-parameter
model, using a heuristic point of diminishing returns argument. This approach to
determining the number of parameters is pursued further later in this example (see
“Viewing the Best-Fit Graph for C” on p. 338 and “Viewing the Scree Plot for C” on
p. 340).
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Viewing a Scatterplot of Fit and Complexity

» Click on the Specification Search toolbar. This opens the Plot window, which
displays the following graph:

-7 Plot _ O] x|
Flttpe g | o WL K QR &|»

® Scatter

(" Bestfit

(" Scree 55,00 .

Fit measure 5900

®C

 C-df 4900+

" AIC 3900

(" BCC [

29.00- -

" BIC

(" Cfdf 19.00 = u

Fitwalues
C=000 Sy
F=.000 n n n
MFly = 1.000 -1.00 . . . . . =
MFlz = 1.000 15 16 17 18 19 20 21 22

Murnber of Parameters

The graph shows a scatterplot of fit (measured by C) versus complexity (measured by
the number of parameters) where each point represents a model. The graph portrays the
trade-off between fit and complexity that Steiger characterized as follows:

In the final analysis, it may be, in a sense, impossible to define one best
way to combine measures of complexity and measures of badness-of-fit
in a single numerical index, because the precise nature of the best
numerical trade-off between complexity and fit is, to some extent, a
matter of personal taste. The choice of a model is a classic problem in
the two-dimensional analysis of preference. (Steiger, 1990, p. 179.)

» Click any of the points in the scatterplot to display a menu that indicates which models
are represented by that point and any overlapping points.
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» Choose one of the models from the pop-up menu to see that model highlighted in the
table of model fit statistics and, at the same time, to see the path diagram of that model
in the drawing area.

In the following figure, the cursor points to two overlapping points that represent
Model 6 (with a discrepancy of 2.76) and Model 8 (with a discrepancy of 2.90).

-2. Plot
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Fit measure
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Murnber of

The graph contains a horizontal line representing points for which C is constant.

Initially, the line is centered at O on the vertical axis. The Fit values panel at the lower
left shows that, for points on the horizontal line, C = 0 and also F' = 0. (F is referred to
as FMIN in Amos output.) NFI, and NFI, are two versions of NFI that use two different

baseline models (see Appendix F).

Initially, both NFI, and NFI, are equal to 1 for points on the horizontal line. The
location of the horizontal line is adjustable. You can move the line by dragging it with
the mouse. As you move the line, you can see the changes in the location of the line
reflected in the fit measures in the lower left panel.
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Adjusting the Line Representing Constant Fit

» Move your mouse over the adjustable line. When the pointer changes to a hand, drag
the line so that NF1, is equal to 0.900. (Keep an eye on NFI, in the lower left panel while
you reposition the adjustable line.)

-7 Plot HI=1k

Potee @@ - [IWWEWK QR &|»
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Murnber of Parameters

NF1I, is the familiar form of the NFI statistic for which the baseline model requires the
observed variables to be uncorrelated without constraining their means and variances.
Points that are below the line have NFI, > 0.900 and those above the line have

NFI, < 0.900. That is, the adjustable line separates the acceptable models from the
unacceptable ones according to a widely used convention based on a remark by Bentler
and Bonett (1980).
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Viewing the Line Representing Constant C — df

» In the Plot window, select C — df in the Fit measure group. This displays the following:

-%: Plot _ O] x|

Flttpe g | o WL K QR &|»
® Scatter
(" Bestfit
(" Scree 55,00 .
Fit measure 5900
4900+
39.00-
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CFlz = 1.000 Murnber of Parameters

The scatterplot remains unchanged except for the position of the adjustable line. The
adjustable line now contains points for which C — df'is constant. Whereas the line was
previously horizontal, it is now tilted downward, indicating that C — df gives some
weight to complexity in assessing model adequacy. Initially, the adjustable line passes
through the point for which C — dfis smallest.

» Click that point, and then choose Model 7 from the pop-up menu.

This highlights Model 7 in the table of fit measures and also displays the path diagram
for Model 7 in the drawing area.

The panel in the lower left corner shows the value of some fit measures that depend
only on C — df and that are therefore, like C — df itself, constant along the adjustable
line. CFI, and CF1I, are two versions of CFI that use two different baseline models (see
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Appendix G). Initially, both CFI, and CFI, are equal to 1 for points on the adjustable
line. When you move the adjustable line, the fit measures in the lower left panel change
to reflect the changing position of the line.

Adjusting the Line Representing Constant C - df

» Drag the adjustable line so that CFI, is equal to 0.950.

;?; Plot !E X |

Potype @i (& - WEK QR &|»
" Scafter
" Bestfit
" Scree 53.00 -

Fit measure 5900 -
-
o i 49,00
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CFlz = 539 Mumber of Parameters

CF1, is the usual CFI statistic for which the baseline model requires the observed
variables to be uncorrelated without constraining their means and variances. Points that
are below the line have CFI, > 0.950 and those above the line have CFI; < 0.950. That
is, the adjustable line separates the acceptable models from the unacceptable ones
according to the recommendation of Hu and Bentler (1999).
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Viewing Other Lines Representing Constant Fit

» Click AIC, BCC, and BIC in turn.

Notice that the slope of the adjustable line becomes increasingly negative. This reflects
the fact that the five measures (C, C — df, AIC, BCC, and BIC) give increasing weight
to model complexity. For each of these five measures, the adjustable line has constant
slope, which you can confirm by dragging the line with the mouse. By contrast, the
slope of the adjustable line for C/dfis not constant (the slope of the line changes when
you drag it with the mouse) and so the slope for C/ df cannot be compared to the slopes
for C, C —df, AIC, BCC, and BIC.

Viewing the Best-Fit Graph for C

» In the Plot window, select Best fit in the Plot type group.

» In the Fit measure group, select C.

-2 Plot _ (O] x|
Plotyoe || [+ [IWE K| QR S| »
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Number of Parameters

Figure 22-5: Smallest value of C for each number of parameters
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Each point in this graph represents a model for which C is less than or equal to that of
any other model that has the same number of parameters. The graph shows that the best
16-parameter model has C = 67.342, the best 17-parameter model has C = 3.071,
and so on. While Best fit is selected, the table of fit measures shows the best model for
each number of parameters. This table appeared earlier on p. 332.

Model | Params | df| C | C-df BCCL |BICL | Cjdf | p | MNotes
4 16 5 67342 62342 0000 0000 13488 0.000
7 17 4 3071 -0.828 1000 1000 0768 0546
B 18 3 2783 -0.237 0414 0081 0921 0430
1 19 2 2761 0761 0147 0006 1381 0251
Sat 21 0 0000 0000 0074 0.000

Notice that the best model for a fixed number of parameters does not depend on the
choice of fit measure. For example, Model 7 is the best 17-parameter model according
to C —df, and also according to C/df and every other fit measure. This short list of best
models is guaranteed to contain the overall best model, no matter which fit measure is
used as the criterion for model selection.

You can view the short list at any time by clicking IE The best-fit graph suggests
the choice of 17 as the correct number of parameters on the heuristic grounds that it is
the point of diminishing returns. That is, increasing the number of parameters from 16
to 17 buys a comparatively large improvement in C (67.342 —3.071 = 64.271), while
increasing the number of parameters beyond 17 yields relatively small improvements.

Viewing the Best-Fit Graph for Other Fit Measures

» While Best fit is selected, try selecting the other choices in the Fit measure group:
C - df, AIC, BCC, BIC, and C / df. For example, if you click BIC, you will see this:
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BIC is the measure among C, C — df, AIC, BCC, and BIC that imposes the greatest
penalty for complexity. The high penalty for complexity is reflected in the steep
positive slope of the graph as the number of parameters increases beyond 17. The graph
makes it clear that, according to BIC, the best 17-parameter model is superior to any

other candidate model.

Notice that clicking different fit measures changes the vertical axis of the best-fit

graph and changes the shape of the configuration of points.! However, the identity of
each point is preserved. The best 16-parameter model is always Model 4, the best 17-
parameter model is always Model 7, and so on. This is because, for a fixed number of

parameters, the rank order of models is the same for every fit measure.

Viewing the Scree Plot for C

» In the Plot window, select Scree in the Plot type group.

1 The saturated model is missing from the C/df graph because C/dfis not defined for the saturated model.
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» In the Fit measure group, select C.

The Plot window displays the following graph:
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Figure 22-6: Scree plot for C

In this scree plot, the point with coordinate 17 on the horizontal axis has coordinate
64.271 on the vertical axis. This represents the fact that the best 17-parameter model
(C = 3.071) fits better than the best 16-parameter model (C = 67.342), with the
difference being 67.342 —3.071 = 64.271. Similarly, the height of the graph at 18
parameters shows the improvement in C obtained by moving from the best 17-
parameter model to the best 18-parameter model, and so on. The point located above
21 on the horizontal axis requires a separate explanation. There is no 20-parameter
model with which the best 21-parameter model can be compared. (Actually, there is
only one 21-parameter model—the saturated model.) The best 21-parameter model
(C = 0) is therefore compared to the best 19-parameter model (C = 2.761 ). The
height of the 21-parameter point is calculated as (2.761 — 0)/2 . That is, the
improvement in C obtained by moving from the 19-parameter model to the 21-
parameter model is expressed as the amount of reduction in C per parameter.
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The figure on either p. 338 or p. 341 can be used to support a heuristic point of
diminishing returns argument in favor of 17 parameters. There is this difference: In the
best-fit graph (p. 338), one looks for an elbow in the graph, or a place where the slope
changes from relatively steep to relatively flat. For the present problem, this occurs at
17 parameters, which can be taken as support for the best 17-parameter model. In the
scree plot (p. 341), one also looks for an elbow, but the elbow occurs at 18 parameters
in this example. This is also taken as support for the best 17-parameter model. In a
scree plot, an elbow at k parameters provides support for the best (k— 1) parameter
model.

The scree plot is so named because of its similarity to the graph known as a scree
plot in principal components analysis (Cattell, 1966). In principal components
analysis, a scree plot shows the improvement in model fit that is obtained by adding
components to the model, one component at a time. The scree plot presented here for
SEM shows the improvement in model fit that is obtained by incrementing the number
of model parameters. The scree plot for SEM is not identical in all respects to the scree
plot for principal components analysis. For example, in principal components, one
obtains a sequence of nested models when introducing components one at a time. This
is not necessarily the case in the scree plot for SEM. The best 17-parameter model, say,
and the best 18-parameter model may or may not be nested. (In the present example,
they are.) Furthermore, in principal components, the scree plot is always monotone
non-increasing, which is not guaranteed in the case of the scree plot for SEM, even with
nested models. Indeed, the scree plot for the present example is not monotone.

In spite of the differences between the traditional scree plot and the scree plot
presented here, it is proposed that the new scree plot be used in the same heuristic
fashion as the traditional one. A two-stage approach to model selection is suggested.
In the first stage, the number of parameters is selected by examining either the scree
plot or the short list of models. In the second stage, the best model is chosen from
among those models that have the number of parameters determined in the first stage.

Viewing the Scree Plot for Other Fit Measures

» With Scree selected in the Plot type group, select the other choices in the Fit measure

group: C — df, AIC, BCC, and BIC (but not C/ df).

For example, if you select BIC, you will see this:
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For C—df, AIC, BCC, and BIC, the units and the origin of the vertical axis are different
than for C, but the graphs are otherwise identical. This means that the final model
selected by the scree test is independent of which measure of fit is used (unless C / df
is used). This is the advantage of the scree plot over the best-fit plot demonstrated
earlier in this example (see “Viewing the Best-Fit Graph for C” on p. 338, and
“Viewing the Best-Fit Graph for Other Fit Measures” on p. 339). The best-fit plot and
the scree plot contain nearly the same information, but the shape of the best-fit plot
depends on the choice of fit measure while the shape of the scree plot does not (with
the exception of C / df).

Both the best-fit plot and the scree plot are independent of sample size in the sense
that altering the sample size without altering the sample moments has no effect other
than to rescale the vertical axis.
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Specification Search with Many Optional Arrows

The previous specification search was largely confirmatory in that there were only
three optional arrows. You can take a much more exploratory approach to constructing
a model for the Felson and Bohrnstedt data. Suppose that your only hypothesis about
the six measured variables is that

B academic depends on the other five variables, and

B attract depends on the other five variables.

The path diagram shown in Figure 22-7 with 11 optional arrows implements this
hypothesis. It specifies which variables are endogenous, and nothing more. Every
observed-variable model that is consistent with the hypothesis is included in the
specification search. The covariances among the observed, exogenous variables could
have been made optional, but doing so would have increased the number of optional
arrows from 11 to 17, increasing the number of candidate models from 2,048 (that is, 2! 1)
to 131,072 (that is, 217). Allowing the covariances among the observed, exogenous
variables to be optional would have been costly, and there would seem to be little interest
in searching for models in which some pairs of those variables are uncorrelated.

j

{ .
{ academic

)

i attract

rating |

Figure 22-7: Highly exploratory model for Felson and Bohrnstedt’s girls’ data
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Specifying the Model
» Open Ex22b.amw. If you performed a typical installation, the path will be
C:\Program Files\IBM\SPSS\Amos\20\Examples\<language>\Ex22b.amw.

Tip: If the last file you opened was in the Examples folder, you can open the file by
double-clicking it in the Files list to the left of the drawing area.

Making Some Arrows Optional

» From the menus, choose Analyze — Specification Search.

» Click IEI on the Specification Search toolbar, and then click the arrows in the path
diagram until it looks like the diagram on p. 344.

Tip: You can change multiple arrows at once by clicking and dragging the mouse
pointer through them.

Setting Options to Their Defaults
| | Ef .
» Click the Options button on the Specification Search toolbar.
» In the Options dialog box, click the Next search tab.

» In the Retain only the best ___ models box, change the value from 0 to 10.
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Current results Appearance I

2.048 models will be fitted
v All subsets " Stepwise

" Forward " Backward [%

I Dj‘ Use no more than ___ optional parameters.
I mill Betain onlythe best__ models.

Benchmark models
v Saturated
W Mull 1
W Mull 2
v Nl 2
v Nl 4

This restores the default setting we altered earlier in this example. With the default
setting, the program displays only the 10 best models according to whichever criterion
you use for sorting the columns of the model list. This limitation is desirable now
because of the large number of models that will be generated for this specification

search.
» Click the Current results tab.

» In the BCC, AIC, BIC group, select Zero-based (min = 0).

Performing the Specification Search

» Click IE on the Specification Search toolbar.

The search takes about 10 seconds on a 1.8 GHz Pentium 4. When it finishes, the

Specification Search window expands to show the results.
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Specification Search

» Inthe Specification Search window, click the BIC, column heading. This sorts the table

according to BIC,.

;?; Specification Search
Model | Params |df| C | C-df |[BCCp BICg |C/df p | MNotes
22 15 6 5156 -0.844 0132 0.000 0859 0.524
32 16 5 2954 2046 0000 3141 0891 0.707
33 16 5 3101 -1.899 0147 3.288 0820 0.684
3 16 5 4623 -0377 1689 4810 0925 0.464
35 16 5 4623 -0.377 1669 4810 0925 0.464
36 16 5 4623 -0377 1689 4810 0925 0.464
37 16 5 5055 0085 2101 5242 1.017 0409 Unstable
38 16 5 5055 0055 2101 5242 1011 0.408
39 16 5 5079 0079 2125 5266 1.016 0.406
40 16 5 5081 0081 2127 5268 1016 0.40

Figure 22-8: The 10 best models according to BIC,,

The sorted table shows that Model 22 is the best model according to BIC,,. (Model
numbers depend in part on the order in which the objects in the path diagram were
drawn; therefore, if you draw your own path diagram, your model numbers may differ
from the model numbers here.) The second-best model according to BIC,, namely
Model 32, is the best according to BCC,,. These models are shown below:

weight

attract

Model 22

GPA ’—j academic

Model 32
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Viewing the Scree Plot
» Click on the Specification Search toolbar.
» In the Plot window, select Scree in the Plot type group.
The scree plot strongly suggests that models with 15 parameters provide an optimum
trade-off of model fit and parsimony.
» Click the point with the horizontal coordinate 15. A pop-up appears that indicates the
point represents Model 22, for which the change in chi-square is 46.22.
» Click 22 (46.22) to display Model 22 in the drawing area.
-7 Plot _ O] I
Plottpe || [ o - [ILE IR QR S| »
(" Scatter
" Bestfit
& Scree 5900
55.00
Fit measure 51.00
@ C 47.00
C C-gf 43.00- 22 (46.22)
39.00-
" AIC & 35.00-
¢ 8ec :g 31.00-
g 27.00-
" BIC 5 23.00-
o 18.00
15.00
Fitwalues 11.00
7.00-
3.00-
g0l e e
12 13 14 15 16 17 18 19 20 21 22
Murnber of Parameters
Limitations

The specification search procedure is limited to the analysis of data from a single
group.
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Exploratory Factor Analysis by
Specification Search

Introduction

This example demonstrates exploratory factor analysis by means of a specification
search. In this approach to exploratory factor analysis, any measured variable can
(optionally) depend on any factor. A specification search is performed to find the
subset of single-headed arrows that provides the optimum combination of simplicity
and fit. It also demonstrates a heuristic specification search that is practical for models
that are too big for an exhaustive specification search.

About the Data

This example uses the Holzinger and Swineford girls’ (1939) data from Example 8.

About the Model

The initial model is shown in Figure 23-1 on p. 350. During the specification search,
all single-headed arrows that point from factors to measured variables will be made
optional. The purpose of the specification search is to obtain guidance as to which
single-headed arrows are essential to the model; in other words, which variables
depend on which factors.

The two factor variances are both fixed at 1, as are all the regression weights
associated with residual variables. Without these constraints, all the models
encountered during the specification search would be unidentified.

349
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1
wordmean

Figure 23-1: Exploratory factor analysis model with two factors

Specifying the Model

» Open the file Ex23.amw. If you performed a typical installation, the path will be
CA\Program Files\IBM\SPSS\Amos\20\Examples\<language>\Ex23.amw.

Initially, the path diagram appears as in Figure 23-1. There is no point in trying to fit this
model as it stands because it is not identified, even with the factor variances fixed at 1.

Opening the Specification Search Window

» To open the Specification Search window, choose Analyze — Specification Search.

Initially, only the toolbar is visible, as seen here:

;?; Specification Search
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Making All Regression Weights Optional

» Click |E| on the Specification Search toolbar, and then click all the single-headed
arrows in the path diagram.

!
1

@ cubes

lozenges

paragraph

@ sentence

wordmean

OO0

;

Figure 23-2: Two-factor model with all regression weights optional
During the specification search, the program will attempt to fit the model using every
possible subset of the optional arrows.
Setting Options to Their Defaults
| | Ed .
» Click the Options button on the Specification Search toolbar.
» In the Options dialog box, click the Current results tab.

» Click Reset to ensure that your options are the same as those used in this example.
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Options
Current resulis l Mext search I Appearance I
Dizplay
I Ignare inadmissibility and  |¥ Model number -
instahility Model name
[wl Farams
¥ Show saturated maodel ] of
M C
M - df
[T Show null models CIAIC LI

¥ keepontop

BCC, AIC, BIC
" Raw
& Zero-based (min = 0)
i Akaike weights / Bayes factors (max = 1)
= Akaike weights / Bayes factars (sum = 1)

» Now click the Next search tab. Notice that the default value for Retain only the best
models is 10.

Options
Appearance I

Current results
1 model will be fited

& Al subsets " Stepwise

" Faorward " Baclkward

| uj‘ Use no more than ___ optional parameters.

I mﬂ Betain only the best___ models.

Benchmark models
v Saturated
¥ Null 1
¥ Mull2
[ Iull 3
¥ ull4




353

Exploratory Factor Analysis by Specification Search

With this setting, the program will display only the 10 best models according to
whichever criterion you use for sorting the columns of the model list. For example, if
you click the column heading C/ df, the table will show the 10 models with the smallest
values of C/ df, sorted according to C/ df. Scatterplots will display only the 10 best
1-parameter models, the 10 best 2-parameter models, and so on. It is useful to place a
limit on the number of parameters to be displayed when there are a lot of optional
parameters.

In this example, there are 12 optional parameters so that there are 2 ? = 4096
candidate models. Storing results for a large number of models can affect performance.
Limiting the display to the best 10 models for each number of parameters means that
the program has to maintain a list of only about 10 x 13 = 130 models. The program
will have to fit many more than 130 models in order to find the best 10 models for each
number of parameters, but not quite as many as 4,096. The program uses a branch-and-
bound algorithm similar to the one used in all-possible-subsets regression (Furnival
and Wilson, 1974) to avoid fitting some models unnecessarily.

Performing the Specification Search

» Click IE on the Specification Search toolbar.

The search takes about 12 seconds on a 1.8 GHz Pentium 4. When it finishes, the
Specification Search window expands to show the results.

Initially, the list of models is not very informative. The models are listed in the order
in which they were encountered, and the models encountered early in the search were
found to be unidentified. The method used for classifying models as unidentified is

described in Appendix D.
Model | Params | df | C | C-df [BCCg [BICg |C/ef| p | Motes EI
1 7014 Urnidentified
2 8 13 Unidentified
3 g 13 Unidentified
4 8 13 Unidentified
b g 13 Unidentified
B 8 13 Unidentified
7 g 13 Unidentified
8 8 13 Unidentified
9 g 13 Unidentified
10 8 13 Unidentified ;I
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Using BCC to Compare Models

» In the Specification Search window, click the column heading BCC,,.

The table sorts according to BCC so that the best model according to BCC (that is, the
model with the smallest BCC) is at the top of the list.

Model | Params | df  C | C-df BCCq |BICg |C/df| p | MNotes |
52 13 8 7853 -0.147 0000 0000 0982 0.448
53 13 8 7853 -0147 0000 0000 0982 0.448
B2 14 7 5770 -1230 0132 2207 0824 0567
B3 14 7 5770 -1230 0132 2207 0824 0567
65 14 7 7155 0155 1517 3593 1.022 0.413
B4 14 7 7155 0155 1517 3593 1022 0.413
67 14 7 7608 0608 1971 4046 1.087 0.368
66 14 7 7608 0608 1971 4046 1087 0.388
68 14 7 7632 0632 1995 4070 1.090 0.386
B9 14 7 7632 0832 1995 4070 1090 0.386

Figure 23-3: The 10 best models according to BCC,

The two best models according to BCC,, (Models 52 and 53) have identical fit measures
(out to three decimal places anyway). The explanation for this can be seen from the
path diagrams for the two models.

» In the Specification Search window, double-click the row for Model 52. This displays
its path diagram in the drawing area.
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» To see the path diagram for Model 53, double-click its row.

visperc visperc

cubes cubes

lozenges lozenges

paragraph paragraph

F2 sentence F2 sentence

wordmean wordmean

Model 52 Model 53

Figure 23-4: Reversing F1 and F2 yields another candidate model

N
-

This is just one pair of models where reversing the roles of F'/ and F2 changes one
member of the pair into the other. There are other such pairs. Models 52 and 53 are
equivalent, although they are counted separately in the list of 4,096 candidate models.
The 10 models in Figure 23-3 on p. 354 come in five pairs, but candidate models do
not always come in equivalent pairs, as Figure 23-5 illustrates. The model in that figure
does not occur among the 10 best models for six optional parameters and is not
identified for that matter, but it does illustrate how reversing F'/ and F2 can fail to yield
a different member of the set of 4,096 candidate models.

visperc

cubes

1
lozenges @

9_‘
-

paragraph

sentence

e_\
N

wordmean

:

Figure 23-5: Reversing F1 and F2 yields the same candidate model
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The occurrence of equivalent candidate models makes it unclear how to apply
Bayesian calculations to select a model in this example. Similarly, it is unclear how to
use Akaike weights. Furthermore, Burnham and Anderson’s guidelines (see p. 326) for
the interpretation of BCC,, are based on reasoning about Akaike weights, so it is not
clear whether those guidelines apply in the present example. On the other hand, the use
of BCC, without reference to the Burnham and Anderson guidelines seems
unexceptionable. Model 52 (or the equivalent Model 53) is the best model according
to BCC,,.

Although BCC chooses the model employed in Example 8, which was based on a
model of Joreskog and S6rbom (1996), it might be noted that Model 62 (or its
equivalent, Model 63) is a very close second in terms of BCC|, and is the best model
according to some other fit measures. Model 63 has the following path diagram:

| -
@ caves
lozenges

| —

Figure 23-6: Model 63

The factors, FI and F2, seem roughly interpretable as spatial ability and verbal ability
in both Models 53 and 63. The two models differ in their explanation of scores on the
cubes test. In Model 53, cubes scores depend entirely on spatial ability. In Model 63,
cubes scores depend on both spatial ability and verbal ability. Since it is a close call in
terms of every criterion based on fit and parsimony, it may be especially appropriate
here to pay attention to interpretability as a model selection criterion. The scree test in
the following step, however, does not equivocate as to which is the best model.
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Viewing the Scree Plot
» Click on the Specification Search toolbar.

» In the Plot window, select Scree in the Plot type group.

Plot _ O] x|
Potvpe | [) 5[ @~ R R @[5 18w | >
(" Scatter
(" Bestfit —
™ Scree '
25.00-
Fit measure 23.00+
& C 21.00-
- 19.00
C-of 17.00-
) AIC < 1500
=
~ BCC g, 13007
-(::u 11.00
0 df 7.00-
- A.00-
Fitwalues
3.00-
1.00
'1DD 1 1 1 1 1 1 1 1 1 1
11 12 13 14 15 16 17 18 19 20 21 22
Murnber of Parameters

The scree plot strongly suggests the use of 13 parameters because of the way the graph
drops abruptly and then levels off immediately after the 13t parameter. Click the point
with coordinate 13 on the horizontal axis. A pop-up shows that the point represents
Models 52 and 53, as shown in Figure 23-4 on p. 355.

Viewing the Short List of Models

» Click IE on the Specification Search toolbar. Take note of the short list of models for
future reference.
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Heuristic Specification Search

The number of models that must be fitted in an exhaustive specification search grows
rapidly with the number of optional arrows. There are 12 optional arrows in Figure
23-2 on p. 351 so that an exhaustive specification search requires fitting 2" = 4096
models. (The number of models will be somewhat smaller if you specify a small
positive number for Retain only the best___models on the Next search tab of the Options
dialog box.) A number of heuristic search procedures have been proposed for reducing
the number of models that have to be fitted (Salhi, 1998). None of these is guaranteed
to find the best model, but they have the advantage of being computationally feasible
in problems with more than, say, 20 optional arrows where an exhaustive specification
search is impossible.

Amos provides three heuristic search strategies in addition to the option of an
exhaustive search. The heuristic strategies do not attempt to find the overall best model
because this would require choosing a definition of best in terms of the minimum or
maximum of a specific fit measure. Instead, the heuristic strategies attempt to find the
I-parameter model with the smallest discrepancy, the 2-parameter model with the
smallest discrepancy, and so on. By adopting this approach, a search procedure can be
designed that is independent of the choice of fit measure. You can select among the
available search strategies on the Next search tab of the Options dialog box. The
choices are as follows:

m  All subsets. An exhaustive search is performed. This is the default.

m  Forward. The program first fits the model with no optional arrows. Then it adds one
optional arrow at a time, always adding whichever arrow gives the largest
reduction in discrepancy.

m  Backward. The program first fits the model with all optional arrows in the model.
Then it removes one optional arrow at a time, always removing whichever arrow
gives the smallest increase in discrepancy.

m  Stepwise. The program alternates between Forward and Backward searches,
beginning with a Forward search. The program keeps track of the best 1-optional-
arrow model encountered, the best 2-optional-arrow model, and so on. After the
first Forward search, the Forward and Backward search algorithms are modified by
the following rule: The program will add an arrow or remove an arrow only if the
resulting model has a smaller discrepancy than any previously encountered model
with the same number of arrows. For example, the program will add an arrow to a
5-optional-arrow model only if the resulting 6-optional-arrow model has a smaller
discrepancy than any previously encountered 6-optional-arrow model. Forward
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and Backward searches are alternated until one Forward or Backward search is
completed with no improvement.

Performing a Stepwise Search
| | Ef -
» Click the Options button on the Specification Search toolbar.
» In the Options dialog box, click the Next search tab.
» Select Stepwise.

» On the Specification Search toolbar, click m

The results in Figure 23-7 suggest examining the 13-parameter model, Model 7. Its
discrepancy C is much smaller than the discrepancy for the best 12-parameter model
and not much larger than the best 14-parameter model. Model 7 is also best according
to both BCC and BIC. (Your results may differ from those in the figure because of an
element of randomness in the heuristic specification search algorithms. When adding
an arrow during a forward step or removing an arrow during a backward step, there
may not be a unique best choice. In that case, one arrow is picked at random from
among the arrows that are tied for best.)

;?; Specification Search

-— > F i et PR@ Y T8 &S @

Model Params df | C | C-df BCCp BICp | C/df p | Notes
1 7 14 Linidentified
2 8 13 Unidentified
3 3 12 Unidentified
4 1011 Unidentified
5 11 10 97.475 87.475 85191 81.041 9.747 0.000
B 129 33469 24469 23.401 21.326 3.719 0.000
7 13 8 7853 -0147 (0000 0000 0982 0.448
8 14 7 5770 1230 0132 2207 (824 0567
3 15 6 65534 D406 2172 6322 0932 0470
10 16 5 5528 0528 4322 10647 1106 0.365
1 17 4 5476 1476 6485 14785 1369 0.242
12 18 3 Unidentified
13 19 2 Unidentified
Sat 21 0 0000 0000 9.870 26471

Figure 23-7: Results of stepwise specification search
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Viewing the Scree Plot
» Click on the Specification Search toolbar.

» In the Plot window, select Scree in the Plot type group.

The scree plot confirms that adding a 13t parameter provides a substantial reduction
in discrepancy and that adding additional parameters beyond the 13th provides only
slight reductions.

-2. Plot _[O]x]
Potype g |[& - [IWE K| QR &|»
" Scatter
" Bestfit
® Scree £9.00 -
Fit measure 5000
o C
t"‘ C-gf 49,00+
AT
_‘é 39.00-
" BCC =3
=
 BIC g 29.004
CCld 1900 7 (25.62)
Fitwvalues
9.00 -
-1.00 , , . ] ] ] | \ ! ]
11 12 13 14 15 16 17 18 189 20 21 22
Murnber of Pararmeters

Figure 23-8: Scree plot after stepwise specification search

» Click the point in the scree plot with horizontal coordinate 13, as in Figure 23-8. The
pop-up that appears shows that Model 7 is the best 13-parameter model.

» Click 7 (25.62) on the pop-up. This displays the path diagram for Model 7 in the
drawing area.

Tip: You can also do this by double-clicking the row for Model 7 in the Specification
Search window.
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Limitations of Heuristic Specification Searches

A heuristic specification search can fail to find any of the best models for a given
number of parameters. In fact, the stepwise search in the present example did fail to
find any of the best 11-parameter models. As Figure 23-7 on p. 359 shows, the best
11-parameter model found by the stepwise search had a discrepancy (C) of 97.475. An
exhaustive search, however, turns up two models that have a discrepancy of 55.382. For
every other number of parameters, the stepwise search did find one of the best models.

Of course, it is only when you can perform an exhaustive search to double-check the
result of a heuristic search that you can know whether the heuristic search was
successful. In those problems where a heuristic search is the only available technique,
not only is there no guarantee that it will find one of the best models for each number
of parameters, but there is no way to know whether it has succeeded in doing so.

Even in those cases where a heuristic search finds one of the best models for a given
number of parameters, it does not (as implemented in Amos) give information about
other models that fit equally as well or nearly as well.
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24
Multiple-Group Factor Analysis

Introduction

This example demonstrates a two-group factor analysis with automatic specification
of cross-group constraints.

About the Data

This example uses the Holzinger and Swineford girls’ and boys’ (1939) data from
Examples 12 and 15.

Model 24a: Modeling Without Means and Intercepts

The presence of means and intercepts as explicit model parameters adds to the
complexity of a multiple-group analysis. The treatment of means and intercepts will
be postponed until Model 24b. For now, consider fitting the following factor analysis
model, with no explicit means and intercepts, to the data of girls and of boys:

363
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Figure 24-1: Two-factor model for girls and boys

This is the same two-group factor analysis problem that was considered in Example 12.
The results obtained in Example 12 will be obtained here automatically.

Specifying the Model
» From the menus, choose File — Open.

» In the Open dialog box, double-click the file Ex24a.amw. In a typical installation, the
path will be:
C:A\Program Files\IBM\SPSS\Amos\20Examples\<language>\Ex24a.amw.

The path diagram is the same for boys as for girls and is shown in Figure 24-1. Some
regression weights are fixed at 1. These regression weights will remain fixed at 1
throughout the analysis to follow. The assisted multiple-group analysis adds
constraints to the model you specify but does not remove any constraints.

Opening the Multiple-Group Analysis Dialog Box
» From the menus, choose Analyze — Multiple-Group Analysis.

» Click OK in the message box that appears. This opens the Multiple-Group Analysis
dialog box.
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Multiple-Group Analysis

FParameter Subsets Models

1 2 3 4 5 E 7 8
hMeasurementweights W ¥ ¥ I I I I I
Measurement intercepts [T =l =l - - - - -
Structural weights T =l =l - - - - -
Structural intercepts [T =l =l - - - - -
Structural means T =l =l - - - - -
Structural covariances [ ¥ ¥ I I I I I
Structural residuals T - =l - - - - -
Measurement residuals [ I ¥ I I I I I
Help Default 0];4 Cancel

Figure 24-2: The Multiple-Group Analysis dialog box

Most of the time, you will simply click OK. This time, however, let's take a look at some
parts of the Multiple-Group Analysis dialog box.

There are eight columns of check boxes. Check marks appear only in the columns
labeled 1, 2, and 3. This means that the program will generate three models, each with
a different set of cross-group constraints.

Column 1 contains a single check mark in the row labeled Measurement weights,
which is short for regression weights in the measurement part of the model. In the case
of a factor analysis model, these are the factor loadings. The following section shows
you how to view the measurement weights in the path diagram. Column 1 generates a
model in which measurement weights are constant across groups (that is, the same for
boys as for girls).

Column 2 contains check marks for Measurement weights and also Structural
covariances, which is short for variances and covariances in the structural part of the
model. In a factor analysis model, these are the factor variances and covariances. The
following section shows you how to view the structural covariances in the path
diagram. Column 2 generates a model in which measurement weights and structural
covariances are constant across groups.

Column 3 contains all the check marks in column 2 and also a check mark next to
Measurement residuals, which is short for variances and covariances of residual
(error) variables in the measurement part of the model. The following section shows
you how to view the measurement residuals in the path diagram. The three parameter
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subsets that appear in a black (that is, not gray) font are mutually exclusive and
exhaustive, so that column 3 generates a model in which all parameters are constant
across groups.

In summary, columns 1 through 3 generate a hierarchy of models in which each
model contains all the constraints of its predecessor. First, the factor loadings are held
constant across groups. Then, the factor variances and covariances are held constant.
Finally, the residual (unique) variances are held constant.

Viewing the Parameter Subsets

» In the Multiple-Group Analysis dialog box, click Measurement weights.

The measurement weights are now displayed in color in the drawing area. If there is a
check mark next to Alternative to color on the Accessibility tab of the Interface Properties
dialog box, the measurement weights will also display as thick lines, as shown here:

cubes

lozenges

Click Structural covariances to see the factor variances and covariances emphasized.

Click Measurement residuals to see the error variables emphasized.

This is an easy way to visualize which parameters are affected by each cross-group
constraint.
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Viewing the Generated Models

Multiple-Group Factor Analysis

» In the Multiple-Group Analysis dialog box, click OK.

The path diagram now shows names for all parameters. In the panel at the left of the
path diagram, you can see that the program has generated three new models in addition
to an Unconstrained model in which there are no cross-group constraints at all.

;?;A: Girls : Input

File Edit ¥iew/Set Diagram Model-Fit

‘Unconstrained

X3{: Measurement weights
XX Structural covariances
XX Measurement residuals

Unstandardized estimates
Standardized estimates

Tools

Helg

ool

Figure 24-3: Amos Graphics window after automatic constraints

» Double-click XX: Measurement weights. This opens the Manage Models dialog box,
which shows you the constraints that require the factor loadings to be constant across

groups.
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Fitting All the Models and Viewing the Output

» From the menus, choose Analyze — Calculate Estimates to fit all models.

» From the menus, choose View — Text Output.

» In the navigation tree of the output viewer, click the Model Fit node to expand it, and
then click CMIN.

The CMIN table shows the likelihood ratio chi-square statistic for each fitted model.
The data do not depart significantly from any of the models. Furthermore, at each step
up the hierarchy from the Unconstrained model to the Measurement residuals model,
the increase in chi-square is never much larger than the increase in degrees of freedom.
There appears to be no significant evidence that girls’ parameter values differ from
boys’ parameter values.
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Here is the CMIN table:

Model NPAR CMIN DF P CMIN/DF
Unconstrained 26 16.48 16 0.42 1.03
Measurement weights 22 18.29 20 0.57 0.91
Structural covariances 19 22.04 23 0.52 0.96
Measurement residuals 13 26.02 29 0.62 0.90
Saturated model 42 0.00 0

Independence model 12 337.55 30 0.00 11.25

» In the navigation tree, click AIC under the Model Fit node.

AIC and BCC values indicate that the best trade-off of model fit and parsimony is

obtained by constraining all parameters to be equal across groups (the Measurement

residuals model).

Here is the AIC table:

Model AIC BCC BIC CAIC
Unconstrained 68.48 74.12

Measurement weights 62.29 67.07

Structural covariances 60.04 64.16

Measurement residuals 52.02 54.84

Saturated model 84.00 93.12

Independence model 361.55 364.16

Customizing the Analysis

There were two opportunities to override the automatically generated cross-group
constraints. In Figure 24-2 on p. 365, you could have changed the check marks in

columns 1, 2, and 3, and you could have generated additional models by placing check
marks in columns 4 through 8. Then, in Figure 24-3 on p. 367, you could have renamed
or modified any of the automatically generated models listed in the panel at the left of

the path diagram.
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Model 24b: Comparing Factor Means

Introducing explicit means and intercepts into a model raises additional questions
about which cross-group parameter constraints should be tested, and in what order.
This example shows how Amos constrains means and intercepts while fitting the factor
analysis model in Figure 24-1 on p. 364 to data from separate groups of girls and boys.

This is the same two-group factor analysis problem that was considered in Example
15. The results in Example 15 will be obtained here automatically.

Specifying the Model
» From the menus, choose File — Open.

» In the Open dialog box, double-click the file Ex24b.amw. In a typical installation, the
path will be:
CA\Program Files\IBM\SPSS\Amos\20\Examples\<language>\Ex24b.amw.

The path diagram is the same for boys as for girls and is shown below. Some regression
weights are fixed at 1. The means of all the unobserved variables are fixed at 0. In the
following section, you will remove the constraints on the girls’ factor means. The other
constraints (the ones that you do not remove) will remain in effect throughout the
analysis.

Figure 24-4: Two-factor model with explicit means and intercepts
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Removing Constraints

Initially, the factor means are fixed at O for both boys and girls. It is not possible to
estimate factor means for both groups. However, Sérbom (1974) showed that, by
fixing the factor means of a single group to constant values and placing suitable
constraints on the regression weights and intercepts in a factor model, it is possible to
obtain meaningful estimates of the factor means for all of the other groups. In the
present example, this means picking one group, say boys, and fixing their factor means
to a constant, say 0, and then removing the constraints on the factor means of the
remaining group, the girls. The constraints on regression weights and intercepts
required by S6rbom’s approach will be generated automatically by Amos.

The boys’ factor means are already fixed at 0. To remove the constraints on the girls'
factor means, do the following:

» In the drawing area of the Amos Graphics window, right-click Spatial and choose
Object Properties from the pop-up menu.

» In the Object Properties dialog box, click the Parameters tab.
» Select the 0 in the Mean box, and press the Delete key.

» With the Object Properties dialog box still open, click Verbal in the drawing area. This
displays the properties for the verbal factor in the Object Properties dialog box.

» In the Mean box on the Parameters tab, select the 0 and press the Delete key.

» Close the Object Properties dialog box.
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Now that the constraints on the girls’ factor means have been removed, the girls’ and
boys’ path diagrams look like this:

Girls Boys

Tip: To switch between path diagrams in the drawing area, click either Boys or Girls in
the List of Groups pane to the left.

Generating the Cross-Group Constraints

» From the menus, choose Analyze — Multiple-Group Analysis.

» Click OK in the message box that appears. This opens the Multiple-Group Analysis
dialog box.
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Multiple-Group Analysis

Parameter Subsets

heasurement weights
Measurement intercepts
Structural weights
Structural intercepts
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Structural covariances
Structural residuals
heasurement residuals
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The default settings, as shown above, will generate the following nested hierarchy of

five models:

Model

Constraints

Model 1 (column 1)

Measurement weights (factor loadings) are equal across
groups.

Model 2 (column 2)

All of the above, and measurement intercepts (intercepts in
the equations for predicting measured variables) are equal
across groups.

Model 3 (column 3)

All of the above, and structural means (factor means) are
equal across groups.

Model 4 (column 4)

All of the above, and structural covariances (factor variances
and covariances) are equal across groups.

Model 5 (column 5)

All parameters are equal across groups.

» Click OK.

Fitting the Models

» From the menus, choose Analyze — Calculate Estimates.

The panel at the left of the path diagram shows that two models could not be fitted to
the data. The two models that could not be fitted, the Unconstrained model with no
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cross-group constraints, and the Measurement weights model with factor loadings held
equal across groups, are unidentified.

¥X: Unconstrained

¥ Measurement weights
OK: Measurement intercepts
OK: Structural means

OK: Structural covariances
OK: Measurement resil:luz[‘j§

Viewing the Output
» From the menus, choose View — Text Output.

» In the navigation tree of the output viewer, expand the Model Fit node.
Some fit measures for the four automatically generated and identified models are
shown here, along with fit measures for the saturated and independence models.
» Click CMIN under the Model Fit node.

The CMIN table shows that none of the generated models can be rejected when tested
against the saturated model.

Model NPAR CMIN DF P CMIN/DF
Measurement intercepts 30 22.593 24 0.544 |0.941
Structural means 28 30.624 26 0.243 1.178
Structural covariances 25 34.381 29 0.226 1.186
Measurement residuals 19 38.459 35 0.316 1.099
Saturated model 54 0.00 0

Independence model 24 337.553 30 0.00 11.252

On the other hand, the change in chi-square (30.62 — 22.59 = 8.03) when introducing

the equal-factor-means constraint looks large compared to the change in degrees of
freedom (26 — 24 = 2).

» In the navigation tree, click the Model Comparison node.
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Assuming model Measurement intercepts to be correct, the following table shows that
this chi-square difference is significant:

NFI IFI RFI TLI
Model DF | CMIN |P Delta-1 |Delta-2 |rho-1 |rho2
Structural means 2 8.030 0.018 | 0.024 0.026 0.021 [0.023

Structural covariances 5 11.787 10.038 [ 0.035 0.038 0.022 [0.024
Measurement residuals 11 15.865 |0.146 | 0.047 0.051 0.014 |0.015

In the preceding two tables, two chi-square statistics and their associated degrees of
freedom are especially important. The first, x2 = 22.59 with df = 24, allowed
accepting the hypothesis of equal intercepts and equal regression weights in the
measurement model. It was important to establish the credibility of this hypothesis
because, without equal intercepts and equal regression weights, it would be unclear
that the factors have the same meaning for boys as for girls and so there would be no
interest in comparing their means. The other important chi-square statistic, X2 = 8.03
with df = 2, leads to rejection of the hypothesis that boys and girls have the same
factor means.

Group differences between the boys’ and girls’ factor means can be determined
from the girls’ estimates in the Measurement intercepts model.

Select the Measurement intercepts model in the pane at the lower left of the output
viewer.
In the navigation tree, click Estimates, then Scalars, and then Means.

The boys’ means were fixed at 0, so only the girls’ means were estimated, as shown in
the following table:

Estimate S.E. C.R. P Label

spatial —-1.066 0.881 -1.209 ]0.226 {m1_1
verbal 0.956 0.521 1.836 0.066 | m2_1

These estimates were discussed in Model A of Example 15, which is identical to the
present Measurement intercepts model. (Model B of Example 15 is identical to the
present Structural means model.)
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Multiple-Group Analysis

Introduction

This example shows you how to automatically implement Sérbom’s alternative to
analysis of covariance.

Example 16 demonstrates the benefits of S6rbom’s approach to analysis of
covariance with latent variables. Unfortunately, as Example 16 also showed, the
Sorbom approach is difficult to apply, involving many steps. This example
automatically obtains the same results as Example 16.

About the Data

The Olsson (1973) data from Example 16 will be used here. The sample moments can
be found in the workbook UserGuide.xls. Sample moments from the experimental
group are in the worksheet Olss_exp. Sample moments from the control group are in
the worksheet Olss_cnt.

About the Model

The model was described in Example 16. The S6rbom method requires that the
experimental and the control group have the same path diagram.
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Figure 25-1: Sérbom model for Olsson data

Specifying the Model

» Open Ex25.amw. If you performed a typical installation, the path will be
C:A\Program Files\IBM\SPSS\Amos\20\Examples\<language>\Ex25.amw.

The path diagram is the same for the control and experimental groups and is shown in
Figure 25-1. Some regression weights are fixed at 1. The means of all the residual
(error) variable means are fixed at 0. These constraints will remain in effect throughout
the analysis.

Constraining the Latent Variable Means and Intercepts

The model in Figure 25-1, Sérbom’s model for Olsson data, is unidentified and will
remain unidentified for every set of cross-group constraints that Amos automatically
generates. For every set of cross-group constraints, the mean of pre_verbal and the
intercept in the equation for predicting post_verbal will be unidentified. In order to
allow the model to be identified for at least some cross-group constraints, it is
necessary to pick one group, such as the control group, and fix the pre_verbal mean
and the post_verbal intercept to a constant, such as 0.

» Inthe List of Groups pane to the left of the path diagram, ensure that Control is selected.
This indicates that the path diagram for the control group is displayed in the drawing
area.
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» In the drawing area, right-click pre_verbal and choose Object Properties from the pop-
up menu.

» In the Object Properties dialog box, click the Parameters tab.

» Inthe Mean text box, type O.

» With the Object Properties dialog box still open, click post_verbal in the drawing area.
» In the Intercept text box of the Object Properties dialog box, type 0.

» Close the Object Properties dialog box.

Now, the path diagram for the control group appears as follows:

T E 5T

‘ pre_syn ‘ pre_opp ‘ ‘ post_ syn ‘ post_opp ‘

post_verbal

The path diagram for the experimental group continues to look like Figure 25-1.

Generating Cross-Group Constraints
» From the menus, choose Analyze — Multiple-Group Analysis.

» Click OK in the message box that appears.
The Multiple-Group Analysis dialog box appears.
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Multiple-Group Analysis

Parameter Subsets

heasurement weights
Measurement intercepts
Structural weights
Structural intercepts
Structural means
Structural covariances
Structural residuals
heasurement residuals

Help

Default 0];4 Cancel
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» Click OK to generate the following nested hierarchy of eight models:

Model

Constraints

Model 1 (column 1)

Measurement weights (factor loadings) are constant across
groups.

Model 2 (column 2)

All of the above, and measurement intercepts (intercepts in
the equations for predicting measured variables) are constant
across groups.

Model 3 (column 3)

All of the above, and the structural weight (the regression
weight for predicting post_verbal) is constant across groups.

Model 4 (column 4)

All of the above, and the structural intercept (the intercept in
the equation for predicting post_verbal) is constant across
groups.

Model 5 (column 5)

All of the above, and the structural mean (the mean of
pre_verbal) is constant across groups.

Model 6 (column 6)

All of the above, and the structural covariance (the variance
of pre_verbal) is constant across groups.

Model 7 (column 7)

All of the above, and the structural residual (the variance of
zeta) is constant across groups.

Model 8 (column 8)

All parameters are constant across groups.
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Fitting the Models

» From the menus, choose Analyze — Calculate Estimates.

The panel to the left of the path diagram shows that two models could not be fitted to
the data. The two models that could not be fitted, the Unconstrained model and the
Measurement weights model, are unidentified.

¥X: Unconstrained

OK

OK

OK

¥ Measurement weights

: Measurement intercepts
OK:
OK:

Structural weights
Structural intercepts

: Structural means
OK:
OK:

Structural covariances
Structural residuals

: Measurement residuals

Viewing the Text Output

» From the menus, choose View — Text Output.

» Inthe navigation tree of the output viewer, expand the Model Fit node, and click CMIN.
This displays some fit measures for the seven automatically generated and identified
models, along with fit measures for the saturated and independence models, as shown
in the following CMIN table:

Model NPAR CMIN DF P CMIN/DF
Measurement intercepts 22 34.775 6 0.000 |5.796
Structural weights 21 36.340 7 0.000 |5.191
Structural intercepts 20 84.060 8 0.000 |10.507
Structural means 19 94.970 9 0.000 10.552
Structural covariances 18 99.976 10 0.000 |9.998
Structural residuals 17 112.143 11 0.000 |10.195
Measurement residuals 13 122.366 15 0.000 |8.158
Saturated model 28 0.000 0

Independence model 16 682.638 12 0.000 |56.887
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There are many chi-square statistics in this table, but only two of them matter. The
Sorbom procedure comes down to two basic questions. First, does the Structural
weights model fit? This model specifies that the regression weight for predicting
post_verbal from pre_verbal be constant across groups.

If the Structural weights model is accepted, one follows up by asking whether the
next model up the hierarchy, the Structural intercepts model, fits significantly worse.
On the other hand, if the Structural weights model has to be rejected, one never gets to
the question about the Structural intercepts model. Unfortunately, that is the case here.
The Structural weights model, with x* = 36.34 and df = 7, is rejected at any
conventional significance level.

Examining the Modification Indices

To see if it is possible to improve the fit of the Structural weights model:
Close the output viewer.

From the Amos Graphics menus, choose View — Analysis Properties.
Click the Output tab and select the Modification Indices check box.

Close the Analysis Properties dialog box.

From the menus, choose Analyze — Calculate Estimates to fit all models.
Only the modification indices for the Structural weights model need to be examined

because this is the only model whose fit is essential to the analysis.

From the menus, choose View — Text Output, select Modification Indices in the navigation
tree of the output viewer, then select Structural weights in the lower left panel.
Expand the Modification Indices node and select Covariances.

As you can see in the following covariance table for the control group, only one
modification index exceeds the default threshold of 4:

M.L Par Change
eps2 <-->eps4 |4.553 2.073
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Now click experimental in the panel on the left. As you can see in the following
covariance table for the experimental group, there are four modification indices greater
than 4:

M.L Par Change

eps2 <-->eps4 |9.314 |4.417

eps2 <-->eps3 [9.393 |-4.117

epsl <-->eps4 |8.513 |-3.947

epsl <-->eps3 [6.192 [3.110

Of these, only two modifications have an obvious theoretical justification: allowing
eps2 to correlate with eps4, and allowing eps/ to correlate with eps3. Between these
two, allowing eps2 to correlate with eps4 has the larger modification index. Thus the
modification indices from the control group and the experimental group both suggest
allowing eps2 to correlate with eps4.

Modifying the Model and Repeating the Analysis

>

>

Close the output viewer.
From the menus, choose Diagram — Draw Covariances.
Click and drag to draw a double-headed arrow between eps2 and eps4.

From the menus, choose Analyze — Multiple-Group Analysis, and click OK in the
message box that appears.

In the Multiple-Group Analysis dialog box, click OK.
From the menus, choose Analyze — Calculate Estimates to fit all models.
From the menus, choose View — Text Output.

Use the navigation tree to view the fit measures for the Structural weights model.

With the additional double-headed arrow connecting eps2 and eps4, the Structural
weights model has an adequate fit (x* = 3.98 with df = 5), as shown in the
following CMIN table:
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Model NPAR CMIN DF P CMIN/DF
Measurement intercepts 24 2.797 4 0.59 0.699
Structural weights 23 3.976 5 0.55 ]0.795
Structural intercepts 22 55.094 6 0.00 [9.182
Structural means 21 63.792 7 0.00 9.113
Structural covariances 20 69.494 8 0.00 8.687
Structural residuals 19 83.194 9 0.00 9.244
Measurement residuals 14 93.197 14 0.00 6.657
Saturated model 28 0.000 0
Independence model 16 682.638 12 0.00 56.887

Now that the Structural weights model fits the data, it can be asked whether the
Structural intercepts model fits significantly worse. Assuming the Structural weights
model to be correct:

NFI IFI RFI TLI
Delta-1 |Delta-2 |rho-1 |rho2

51.118 |0.000 |0.075 0.075 0.147 |0.150
59.816 |0.000 |0.088 0.088 0.146 |0.149
65.518 |0.000 |0.096 0.097 0.139 |0.141
79.218 |0.000 |0.116 0.117 0.149 |0.151
89.221 |0.000 |0.131 0.132 0.103 |0.105

Model DF |[CMIN |P

Structural intercepts
Structural means

Structural covariances

Structural residuals

O & W| | —

Measurement residuals

The Structural intercepts model does fit significantly worse than the Structural weights
model. When the intercept in the equation for predicting post_verbal is required to be
constant across groups, the chi-square statistic increases by 51.12 while degrees of
freedom increases by only 1. That is, the intercept for the experimental group differs
significantly from the intercept for the control group. The intercept for the
experimental group is estimated to be 3.627.

Estimate S.E. C.R. P Label
post_verbal 3.627 0.478 |7.591 <0.001 |j1_2
pre_syn 18.619 0.594 |31.355 |<0.001 |il_1
pre_opp 19.910 0.541 36.781 |<0.001 [i2_1
post_syn 20.383 0.535 38.066 |<0.001 [i3_1
post_opp 21.204 0.531 |39.908 |<0.001 |i4_1

Recalling that the intercept for the control group was fixed at 0, it is estimated that the
treatment increases post_verbal scores by 3.63 with pre_verbal held constant.

The results obtained in the present example are identical to the results of Example
16. The Structural weights model is the same as Model D in Example 16. The
Structural intercepts model is the same as Model E in Example 16.
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Bayesian Estimation

Introduction

This example demonstrates Bayesian estimation using Amos.

Bayesian Estimation

In maximum likelihood estimation and hypothesis testing, the true values of the
model parameters are viewed as fixed but unknown, and the estimates of those
parameters from a given sample are viewed as random but known. An alternative kind
of statistical inference, called the Bayesian approach, views any quantity that is
unknown as a random variable and assigns it a probability distribution. From a
Bayesian standpoint, true model parameters are unknown and therefore considered to
be random, and they are assigned a joint probability distribution. This distribution is
not meant to suggest that the parameters are varying or changing in some fashion.
Rather, the distribution is intended to summarize our state of knowledge, or what is
currently known about the parameters. The distribution of the parameters before the
data are seen is called a prior distribution. Once the data are observed, the evidence
provided by the data is combined with the prior distribution by a well-known formula
called Bayes’ Theorem. The result is an updated distribution for the parameters,
called a posterior distribution, which reflects a combination of prior belief and
empirical evidence (Bolstad, 2004).

Human beings tend to have difficulty visualizing and interpreting the joint
posterior distribution for the parameters of a model. Therefore, when performing a
Bayesian analysis, one needs summaries of the posterior distribution that are easy to
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interpret. A good way to start is to plot the marginal posterior density for each
parameter, one at a time. Often, especially with large data samples, the marginal
posterior distributions for parameters tend to resemble normal distributions. The mean
of a marginal posterior distribution, called a posterior mean, can be reported as a
parameter estimate. The posterior standard deviation, the standard deviation of the
distribution, is a useful measure of uncertainty similar to a conventional standard error.

The analogue of a confidence interval may be computed from the percentiles of the
marginal posterior distribution; the interval that runs from the 2.5 percentile to the 97.5
percentile forms a Bayesian 95% credible interval. If the marginal posterior
distribution is approximately normal, the 95% credible interval will be approximately
equal to the posterior mean + 1.96 posterior standard deviations. In that case, the
credible interval becomes essentially identical to an ordinary confidence interval that
assumes a normal sampling distribution for the parameter estimate. If the poster