
i

IBM SPSS Collaboration and
Deployment Services - Essentials
for Python 4.2 Reference

Note: Before using this information and the product it supports, read the general information
under Notices on p. 59.

This edition applies to IBM® SPSS® Collaboration and Deployment Services 4.2 and to all
subsequent releases and modifications until otherwise indicated in new editions.
Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.
Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Licensed Materials - Property of IBM

© Copyright IBM Corporation 2000, 2011

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Preface
IBM® SPSS® Collaboration and Deployment Services is an enterprise-level application that
enables widespread use and deployment of predictive analytics. IBM SPSS Collaboration and
Deployment Services provides centralized, secure, and auditable storage of analytical assets,
advanced capabilities for management and control of predictive analytic processes, as well as
sophisticated mechanisms of delivering the results of analytical processing to the end users. The
benefits of IBM SPSS Collaboration and Deployment Services include safeguarding the value of
analytical assets, ensuring compliance with regulatory requirements, improving the productivity
of analysts, and minimizing the IT costs of managing analytics.

IBM® SPSS® Collaboration and Deployment Services - Essentials for Python provide a set
of APIs for programmatic interaction with IBM SPSS Collaboration and Deployment Services.
This manual documents the APIs and provides examples of their use for managing the repository,
accessing objects, and automating processes.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises – able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit
http://www.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.

© Copyright IBM Corporation 2000, 2011 iii

http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/data/cognos/financial-performance-management.html
http://www-01.ibm.com/software/data/cognos/products/cognos-analytic-applications/
http://www-01.ibm.com/software/data/cognos/products/cognos-analytic-applications/
http://www.ibm.com/spss
http://www.ibm.com/support

Contents
1 IBM SPSS Collaboration and Deployment Services - Essentials

for Python 1

Overview . 1
Installation . 1

Installing on Windows . 1
Installing on UNIX . 2
Installing on IBM i . 2

2 Command line scripting 4

Global keywords. 4
Repository connections . 5
Content repository scripting . 5

Keywords . 5
Operations. 6

Process management functions . 23
Keywords . 23
Operations. 24

3 The PESImpl module 27

Content repository API . 27
Methods . 27
Wrapper classes . 49

Process management API . 51
Methods . 52
Wrapper classes . 55

Appendix

A Notices 59

Index 61

© Copyright IBM Corporation 2000, 2011 iv

Chapter

1
IBM SPSS Collaboration and
Deployment Services - Essentials for
Python

Overview

IBM® SPSS® Collaboration and Deployment Services provides a scripting framework with a set
of APIs that advanced users and administrators can use to write independent routines or batch
jobs that combine a set of routines for working with repository objects and jobs. This can greatly
simplify bulk tasks, including the following:

Changing security permissions for a large group of users
Labeling or removing a label from a large number of folders or files
Uploading or downloading a large number of folders or files

The framework includes the ability to perform tasks from the command line, as well as a rich
API for interacting with the IBM® SPSS® Collaboration and Deployment Services Repository
within your own Python code.

For general information about Python, a dynamic object-oriented programming language,
see the Python site (http://www.python.org).

Installation

The scripting framework can be installed on the Windows, UNIX, and IBM i platforms. The
scripting platform is independent of the platform used by the repository accessed by the scripting
facility. For example, a repository running on the Windows platform can be called by scripting
functions running on the UNIX platform.

Installing on Windows

1. If Python is already installed on your system, uninstall it.

2. Insert the installation media.

3. Open the PYTHON\Disk1\InstData\NoVM directory of Disk 2 and double-click install.exe.
Follow the screen instructions to complete the installation. Install to the default location. This
installs the required Python, ZSI, and PyXML technologies.

4. Open the PYTHON directory on the installation media and extract the contents of
cads-scripting-1.0.zip to a temporary directory.

© Copyright IBM Corporation 2000, 2011 1

http://www.python.org

2

Chapter 1

5. Add IBM® SPSS® Collaboration and Deployment Services - Essentials for Python directory
location to your PC’s Path system environment variable.

6. At a command prompt, change the current directory to the folder where you extracted
cads-scripting-1.0.zip. Type the following command and press Enter.

python setup.py install

Installing on UNIX

1. If Python 2.4.3, ZSI 2.0 rc3, and PyXML 0.8.4 are not already installed on your system, install
after downloading from their respective web sites before proceeding to step 2.

Python 2.4.3: http://www.python.org/download/releases/2.4.3/
ZSI 2.0 rc3: http://sourceforge.net/projects/pywebsvcs
PyXML 0.8.4: http://sourceforge.net/project/showfiles.php?group_id=6473

2. Insert Disk 2.

3. Open the PYTHON directory and extract the contents of cads-scripting-1.0.tar.gz to a temporary
directory.

4. In the temporary directory, edit setup.cfg. Replace <PythonInstallDir> with IBM® SPSS®
Collaboration and Deployment Services - Essentials for Python installation path. If no value is
specified, the path will default to Python library, for example /usr/lib/python2.4.

[install]
install-base = <PythonInstallDir>
install-data = <PythonInstallDir>
install-purelib = <PythonInstallDir>
install-scripts = <PythonInstallDir>
install_headers = <PythonInstallDir>

5. At a command prompt, change the current directory to the folder where you extracted
cads-scripting-1.0.tar.gz. Execute the following command:

python setup.py install

Note that when extracting tar bundles, some tar utilities may display a message similar to the
following:

tar: A lone zero block at ####

The value of #### corresponds to some integer value. These messages are only informational
and do not indicate a failure in the extraction.

Installing on IBM i

1. Log into your IBM i system using a Telnet terminal.

2. Insert Disk 1.

3. Start QShell with the following command

QSH

3

IBM SPSS Collaboration and Deployment Services - Essentials for Python

4. Change the directory to /qopt/Server/IBMi/Python.

5. Copy the content of the directory to a temporary location.

6. Run the installation script by executing the following command:

./PyInst.scr

Python is installed as /QOpenSys/usr/local/bin/python2.4 and IBM® SPSS®
Collaboration and Deployment Services - Essentials for Python is installed in
/QOpenSys/usr/local/lib/python2.4/site-packages.

Chapter

2
Command line scripting

The Python file CADSTool.py can be used from the command line to manipulate resources stored
within the IBM® SPSS® Collaboration and Deployment Services Repository. The general syntax
used for calling IBM® SPSS® Collaboration and Deployment Services scripting operations
from the command line is:

python CADSTool.py <Operation> <Keywords>

Where:
<Operation> designates the function to invoke
<Keywords> defines keyword/value pairs used as input parameters to the function

Global keywords

Table 2-1 lists the keywords supported by all IBM® SPSS® Collaboration and Deployment
Services scripting functions. The second column lists any optional, shortened versions of the
keywords. Note that keywords are case sensitive.
Table 2-1
Global Keywords

Keyword Optional
Short Version

Usage

--user -u The user name to connect to the repository server
--password -p The password to connect to the repository server
--host -q The host/server name where the repository is installed
--port -o The repository server port number
--useDefault -z Indicates that user, password, host, and port need to be

read from the Authorization.properties file
--ssl Indicates that the repository server uses the secure

sockets layer (SSL) protocol to encrypt communications.
Before using this keyword, the repository server must
be configured for SSL. For more information, see the
administrator documentation.

-h The scripting module help information

© Copyright IBM Corporation 2000, 2011 4

5

Command line scripting

Repository connections

You must specify the IBM® SPSS® Collaboration and Deployment Services Repository user ID,
password, host, and port at the end of every command. The following methods can be used to
provide this connection information:

Using keywords, such as the following:

--user <user> --password <password> --host <host> --port <port>

Through the Authorization.properties file, where the command contains a
--useDefault parameter (or the short version -z). This retrieves the connection
information from the Authorization.properties file, which is located at <Scripting
folder>\Lib\site-packages\config\Authorization.properties. Use a simple text editor to modify
the following values in the file to match the settings of your repository:

Authorization Information
user=admin
password=spss
host=yourhost
port=80

Parameters passed through the command line always have precedence. For example, if --user
and --password are provided via the command line and the --useDefault or -z parameter
is also provided, the user and password from the command line are used, with the host and port
retrieved from the Authorization.properties file. Alternatively, if the user, password, host, and port
are all provided via the command line but the --useDefault or -z parameter is also used, the
--useDefault is ignored and only the command line information is used.

For all APIs described here, the syntax and examples use the -z parameter in an effort to use
the minimum number of required parameters.

Content repository scripting

Content repository scripting offers the ability to work with repository resources, such as files and
folders. This area includes the following functionality:

Creating and deleting folders
Uploading and downloading files
Exporting and importing folders
Managing labels, security, and metadata

This section outlines the Python command line usage of scripts for repository functions. Every
operation contains detailed syntax information, an example, and expected messages.

Keywords

Table 2-2 lists the keywords supported for repository functions. The second column lists any
optional, shortened versions of the keywords.

Important: Keywords are case sensitive.

6

Chapter 2

Table 2-2
Keywords for repository APIs

Keyword Optional
Short Version

Usage

--source -s The source file or folder path
--target -t The target folder path
--version -v The version of a file
--principal -r The user who needs to be granted permission
--permission -n The permission type (such as read, write, modify, delete)
--label -l The label to assign to a version of a file
--criteria -c The search criteria for searching metadata attributes of

files or folders
--author -a The author name for a file or folder
--description -d The description for a file or folder
--title -i The title for a file or folder
--expirationDate -q The expiration date for a file or folder
--expirationStartDate The expiration start date for a file or folder
--expirationEndDate The expiration end date for a file or folder
--keyword -k The keyword for a file or folder
--cascade -x Indicates that security settings for a folder should

propagate to subfolders and files
--provider -f The security provider used to retrieve the principals
--createVersion -b Indicates that a new version of a file is to be created
--contentLanguage -g The content language for a file or folder
--topic The topics assigned to a file or folder. You can enter

multiple values such a --topic "topic1;topic2"

--modifiedBy The user who modified a file or folder
--mimeType The mime type of a file
--createdBy The user who created a file or folder
--submittedHierarchy Indicates whether to search the Submitted Jobs folder
--propertyName The name of a custom property
--customProperty The name/value pair of a custom property to be updated
--propertyName The name of the custom property to retrieve valid values

for

For all operations that accept label and version information, the user should either specify a label or
a version, but not both. If no version or label is specified for a given file, the latest version is used.

Operations

The following sections list all repository scripting operations supported for IBM® SPSS®
Collaboration and Deployment Services.

7

Command line scripting

The advanceSearch operation

Searches for files and folders in the repository, based on various parameters. Note that currently
expirationStartDate and expirationEndDate do not work when used in conjunction with
other search fields (such as title, author, etc).

Syntax

python CADSTool.py advanceSearch --author <author>
--title <title> --description <description>
--createdBy <createdBy> --modifiedBy <modifiedBy>
--keyword <keyword> --label <label>

--topic <topic>
--expirationStartDate <expirationStartDate>
--expirationEndDate <expirationEndDate>
--submittedHierarchy -z

Where:
<author> is the name of the author.
<title> is the title of the file/folder.
<description> is the description of the file/folder.
<createdBy> is the name of the user who created the file/folder.
<modifiedBy> is the name of the user who modified the file/folder.
<keyword> is the keyword associated with the file/folder.
<label> is the label for the version marker.
<topic> is the topic associated with the file/folder.
<expirationStartDate> is the expiration start date of the file/folder. The date format is
YYYY-MM-DDThh:mm:ss.sTZD (for example, 1997-07-16T19:20:30.45+01:00),
where:
YYYY = four-digit year
MM = two-digit month (01 is January, etc.)
DD = two-digit day of month (01 through 31)
hh = two-digit hour (00 through 23, no am/pm)
mm = two-digit minute (00 through 59)
ss = two-digit second (00 through 59)
s = digits representing a decimal fraction of a second, with a valid range of 0 to 999
TZD = time zone designator (Z or +hh:mm or −hh:mm)
<expirationEndDate> is the expiration end date of the file/folder. The date format is
YYYY-MM-DDThh:mm:ss.sTZD.
--submittedHierarchy indicates the file/folder is in the Submitted Jobs folder.

All parameters are optional.

Example

python CADSTool.py advanceSearch --label "Production" --keyword "Quarterly"
--useDefault -z

8

Chapter 2

Messages

The following messages may display when using this API:
When the API completes successfully, a list of all files and folders matching the search criteria
is displayed. This typically includes the file names with their fully qualified path and versions.
Error searching files and folders

The applySecurity operation

Sets the security access control list (ACL) for a file or folder in the repository.

Syntax

python CADSTool.py applySecurity --source "<source>" --principal "<principal>"
--permission "<permission>" --provider "<provider>" --cascade -z

Where:
<source> is the fully qualified IBM® SPSS® Collaboration and Deployment Services
Repository path of the file or folder to apply the security ACL to. This is a required parameter.
<principal> is the user (such as admin) to apply to the specified file or folder as part of the
ACL. This is a required parameter.
<permission> is the type of permission to apply to the specified file or folder (such as read,
write, modify, delete, or owner). This is a required parameter.
<provider> is the security provider to use for retrieving information about the users
(principals). This is an optional parameter.
--cascade is used when setting security on a folder, to propagate the security settings to all
files and subfolders within the specified folder. This is an optional parameter.

Examples

The following example applies security to a folder:

python CADSTool.py applySecurity --source "/Projects" --principal "icrod"
--permission "READ" --provider "Native" -z

The following example applies security to a folder and all its files and subfolders:

python CADSTool.py applySecurity --source "/Projects/" --principal "icrod"
--permission "READ" --provider "Native" --cascade -z

Messages

The following messages may display when using this API:
<permission> permission set successfully for <source>.

<source> No such file or folder exists. Please try again.

<permission> Invalid permission type, Please try again.

<source> Error setting security ACL.

9

Command line scripting

The cascadeSecurity operation

Propagates a folder’s security settings to all files and subfolders within the folder.

Syntax

python CADSTool.py cascadeSecurity --source "<source>" -z

The value of <source> is the fully qualified path of the folder in the repository. This is a required
parameter.

Example

python CADSTool.py cascadeSecurity --source "/Projects" -z

Messages

The following messages may display when using this API:
Security ACL cascaded successfully for <source>.

<source> No such folder exists. Please try again.

<source> Error cascading security ACL.

The copyResource operation

Copies a file or folder to another folder in the repository. A renaming feature is provided for this
API, where the specified file/folder can be renamed when it is copied. The cases described at the
beginning of The moveResource operation on p. 17 also apply to this copyResource API.

Syntax

python CADSTool.py copyResource --source "<source>" --target "<target>" -z

Where:
<source> is the fully qualified Content Repository path of the file/folder to copy. This is a
required parameter.
<target> is the fully qualified repository path where the file/folder is to be copied. This is a
required parameter.

Examples

The following example copies a file:

python CADSTool.py copyResource --source "/Demo/Drafts/MyReport.rptdesign" --target
"/Projects" -z

The following example copies and renames a file:

python CADSTool.py copyResource --source "/Demo/Drafts/MyReport.rptdesign" --target
"/Projects/Report.rptdesign" -z

10

Chapter 2

Messages

The following messages may display when using this API:
<source> copied successfully.

<source> No such file or folder exists. Please try again.

<target> No such folder exists. Please try again.

<source> Error copying file or folder.

The createFolder operation

Creates a new folder at a specified location in the repository.

Syntax

python CADSTool.py createFolder --source "<source>" -z

The value of <source> is the fully qualified path of the new folder to create. This is a required
parameter. Based on the provided path, the new folder is created, including any subfolders.

Example

The following example creates Drafts if it does not already exist.

python CADSTool.py createFolder --source "/Demo/Drafts" -z

Messages

The following messages may display when using this API:
<source> Folder created successfully.

<source> No such folder exists. Please try again.

<folder> Folder already exists. Please try again.

<source> Error creating folder.

The deleteFile operation

Deletes a file from the repository, including all its versions.

Syntax

python CADSTool.py deleteFile --source "<source>" --submittedHierarchy -z

Where:
<source> is the fully qualified repository path of the file to delete. This is a required parameter.
--submittedHierarchy deletes a file from the Submitted Jobs folder. This is an optional
parameter.

11

Command line scripting

Example

The following example deletes a file from the repository, including all its versions:

python CADSTool.py deleteFile --source "/Demo/Drafts/MyReport.rptdesign" -z

The following example deletes a file from the Submitted Jobs folder, including all its versions:

python CADSTool.py deleteFile --source "Submitted Jobs/admin/
2007-05-21.14.10.22.422-test.dbq/test.dbq.html" --submittedHierarchy -z

Messages

The following messages may display when using this API:
<source> deleted successfully.

<source> No such file exists. Please try again.

<source> Error deleting file.

The deleteFileVersion operation

Deletes a specific version of a file from the repository.

Syntax

python CADSTool.py deleteFileVersion --source "<source>" --version "<version>"
--label "<label>" --submittedHierarchy -z

Where:
<source> is the fully qualified repository path of the file to delete. This is a required parameter.
<version> is the specific version of the file to delete. This is an optional parameter.
<label> is the label of the file to delete. This is an optional parameter.
--submittedHierarchy deletes a specific version of a file from the Submitted Jobs folder.
This is an optional parameter.

Examples

The following example deletes a specific version of a file:

python CADSTool.py deleteFileVersion --source "/Demo/Drafts/MyReport.rptdesign" --version
"0:2006-08-25 21:15:49.453" -z

The following example deletes a file with a specific label:

python CADSTool.py deleteFileVersion --source "/Demo/Drafts/MyReport.rptdesign" --label
"Test" -z

The following example deletes a file with a specific label from the Submitted Jobs folder:

python CADSTool.py deleteFileVersion --source "Submitted Jobs/admin/
2007-05-21.14.10.22.422-test.dbq/test.dbq.html" --label "Test" -z

12

Chapter 2

Messages

The following messages may display when using this API:
<source> deleted successfully.

<source> No such file exists. Please try again.

<source> Error deleting file.

The deleteFolder operation

deleteFolder deletes a folder from the repository, including all its contents.

Syntax

python CADSTool.py deleteFolder --source <source> --submittedHierarchy -z

Where:
<source> is the fully qualified repository path of the folder to delete. This is a required
parameter.
--submittedHierarchy deletes a specific version of the folder from the Submitted Jobs
folder. This is an optional parameter.

Examples

The following example deletes a folder:

python CADSTool.py deleteFolder --source "/Demo/Drafts" -z

The following example deletes a folder from the Submitted Jobs folder:

python CADSTool.py deleteFolder --source "Submitted Jobs/admin/
2007-05-21.14.10.22.422-test.dbq/" --submittedHierarchy -z

Messages

The following messages may display when using this API:
<source> deleted successfully.

<source> No such folder exists. Please try again.

<source> Error deleting folder.

The downloadFile operation

Downloads a specific version of a file from the repository onto the local file system.

Syntax

python CADSTool.py downloadFile --source "<source>" --version "<version>" --label
"<label>" --target "<target>" -z

13

Command line scripting

Where:
<source> is the fully qualified repository path or Object URI of the folder containing the
file to download. The Object URI can be obtained by viewing the properties of a folder in
IBM® SPSS® Collaboration and Deployment Services Deployment Manager. This is a
required parameter.
<version> is the version of the file to download. This is an optional parameter.
<label> is the label of the file to be downloaded. This is an optional parameter.
<target> is the fully qualified path (on the local file system) where the file is to be downloaded.

Examples

The following example downloads the latest version of the file:

python CADSTool.py downloadFile --source "/Demo/Drafts/MyReport.rptdesign"
--target "C:/Demo/Shared/" -z

The following example downloads a specific version of the file using a version marker:

python CADSTool.py downloadFile --source "/Demo/Drafts/MyReport.rptdesign" --version
"0:2006-08-25 21:15:49.453" --target "C:/Demo/Shared/" -z

The following example downloads a labeled version of the file:

python CADSTool.py downloadFile --source "/Demo/Drafts/MyReport.rptdesign" --label "Production"
--target "C:/Demo/Shared/" -z

Messages

The following messages may display when using this API:
<source> File downloaded successfully.

<source> No such file exists. Please try again.

<target> No such folder exists. Please try again.

<source> Error downloading File.

The export operation

Starts an export from the Content Repository, allowing you to select which files and folders to
export, and saving the *.pes export file to the local file system.

Syntax

python CADSTool.py export --source "<source>" --target "<target>" -z

Where:
<source> is the fully qualified repository path of the folder to export. This is a required
parameter.
<target> is the fully qualified path (on the local file system) for the *.pes export file to create.
This is a required parameter.

14

Chapter 2

Example

python CADSTool.py export --source "/Projects/" --target "C:\Demo\drafts.pes" -z

Messages

The following messages may display when using this API:
<source> exported successfully.

<source> No such folder exists. Please try again.

<source> Error exporting folder.

The getAccessControlList operation

Retrieves the security access control list (ACL) for a specified file/folder in the Content Repository.

Syntax

python CADSTool.py getAccessControlList --source "<source>" -z

The value of <source> is the fully qualified path of the file/folder. This is a required parameter.

Example

python CADSTool.py getAccessControlList --source "/Projects/MyReport.rptdesign" -z

Messages

The following messages may display when using this API:
<source> No such file or folder exists. Please try again.

Error retrieving security details for <source>.

The getAllVersions operation

Retrieves a list of all versions of a file in the repository.

Syntax

python CADSTool.py getAllVersions --source "<source>" --submittedHierarchy -z

Where:
<source> is the fully qualified repository path of the file to retrieve versions for. This is a
required parameter.
--submittedHierarchy retrieves versions from the Submitted Jobs folder. This is an
optional parameter.

15

Command line scripting

Examples

The following example retrieves all versions of a specified file:

python CADSTool.py getAllVersions --source "/Demo/Drafts/MyReport.rptdesign" -z

The following example retrieves all versions of a specified file from the Submitted Jobs folder:

python CADSTool.py getAllVersions --source "Submitted Jobs/admin/
2007-05-21.14.10.22.422-test.dbq/test.dbq.html" --submittedHierarchy -z

Messages

The following messages may display when using this API:
<source> No such file exists. Please try again.

<source> Error retrieving file versions.

When the process completes successfully, the information for every file version is displayed,
including version marker and label information.

The getChildren operation

Retrieves the list of all files and folders in a specified folder of the repository.

Syntax

python CADSTool.py getChildren --source "<source>" -z

The value of <source> is the fully qualified path of the folder. This is a required parameter.

Example

python CADSTool.py getChildren --source "/Demo/Drafts" -z

Messages

The following messages may display when using this API:
When the command completes successfully, it lists all contents of the specified folder.
<source> No such folder exists. Please try again.

<source> Error getting resources.

The getCustomPropertyValue operation

Retrieves the valid values accepted by a specified custom property.

Syntax

python CADSTool.py getCustomPropertyValue --propertyName "<propertyName>" -z

The value of <propertyName> is the name of the custom property. This is an optional parameter.

16

Chapter 2

Example

python CADSTool.py getCustomPropertyValue --propertyName "Language" -z

Messages

The following messages may display when using this API:
<propertyName> takes values as <valid values>

Error retrieving property details for <propertyName>.

The getMetadata operation

Retrieves the metadata attributes of a file or folder in the repository.

Syntax

python CADSTool.py getMetadata --source "<source>" --version "<version>" --label
"<label>" --submittedHierarchy -z

Where:
<source> is the fully qualified repository path of the file or folder to retrieve metadata for. For
folders, the version/label attributes are ignored. This is a required parameter.
<version> is the version of the file or folder to retrieve metadata for. This is an optional
parameter.
<label> is the label of the file or folder to retrieve metadata for. This is an optional parameter.
--submittedHierarchy retrieves metadata from the Submitted Jobs folder. This is an
optional parameter.

Examples

The following example retrieves metadata for a folder:

python CADSTool.py getMetadata --source "/Demo/Drafts" -z

The following example retrieves metadata for a labeled version of a file:

python CADSTool.py getMetadata --source "/Demo/Drafts/MyReport.rptdesign" --label "Test" -z

The following example retrieves metadata for a labeled version of a file in the Submitted Jobs
folder:

python CADSTool.py getMetadata --source "Submitted Jobs/admin/
2007-05-21.14.10.22.422-test.dbq/test.dbq.html" --label "LATEST" --submittedHierarchy -z

Messages

The following messages may display when using this API:
<source> No such file exists. Please try again.

17

Command line scripting

<source> Error retrieving file metadata.

When the process completes successfully, all metadata information for the specified file or
folder is displayed, including any custom metadata properties.

The import operation

Imports an existing *.pes export file from the local file system to the repository.

Syntax

python CADSTool.py import --source "<source>" --target "<target>" -z

Where:
<source> is the fully qualified path (on the local file system) of the *.pes export file to import
to the repository. This is a required parameter.
<target> is the fully qualified repository path to import the *.pes export file to. This is a
required parameter.

Example

python CADSTool.py import --source "C:\Demo\drafts.pes" --target "/Demo/Drafts/" -z

Messages

The following messages may display when using this API:
<source> imported successfully.

<source> No such file exists. Please try again.

<target> No such folder exists. Please try again.

<source> Error importing folder.

The moveResource operation

Moves a file or folder to another folder in the repository. A renaming feature is provided for
this API, where the specified file/folder can be renamed when it is moved. The following cases
describe the behavior of the renaming feature:

If the source is /Temp Folder/Temp.txt and the target is /Demo Folder:
Case 1: If folder Demo Folder exists, Temp.txt is moved to Demo Folder.
Case 2: If folder Demo Folder does not exist, Temp.txt is moved to “ / “ and renamed to
Demo Folder.

If the source is /Temp Folder/Temp.txt and the target is /Demo Folder/Abc.dat:
Case 1: If folder Demo Folder exists, Temp.txt is moved to Demo Folder and renamed to
Abc.dat.
Case 2: If folder Demo Folder does not exist, an error is displayed.

18

Chapter 2

Syntax

python CADSTool.py moveResource --source "<source>" --target "<target>" -z

Where:
<source> is the fully qualified repository path of the file/folder to move. This is a required
parameter.
<target> is the fully qualified repository path where the file/folder is to be moved. This is a
required parameter.

Examples

The following example moves a file:

python CADSTool.py moveResource --source "/Demo/Drafts/MyReport.rptdesign" --target
"/Approved" -z

The following example moves a folder:

python CADSTool.py moveResource --source "/Demo/Drafts/" --target "/Projects" -z

The following example moves and renames a file:

python CADSTool.py moveResource --source "/Demo/Drafts/MyReport.rptdesign" --target
"/Approved/Report.rptdesign" -z

Messages

The following messages may display when using this API:
<source> moved successfully.

<source> No such file or folder exists. Please try again.

<target> No such folder exists. Please try again.

<source> Error moving file or folder.

The removeLabel operation

Removes a label from a file in the repository.

Syntax

python CADSTool.py removeLabel --source "<source>" --label "<label>" -z

Where:
<source> is the fully qualified path of the file in the repository. This is a required parameter.
<label> is the label name to remove from the specified file. This is a required parameter.

Example

python CADSTool.py removeLabel --source "/Demo/Drafts/MyReport.rptdesign"
--label "Draft" -z

19

Command line scripting

Messages

The following messages may display when using this API:
Label removed successfully for <source>.

<source> No such folder exists. Please try again.

<source> Error deleting label.

<label> No such label exists. Please try again.

The removeSecurity operation

Removes the security access control list (ACL) from a specified file or folder in the repository.

Syntax

python CADSTool.py removeSecurity --source "<source>" --principal "<principal>"
--provider "<provider>" --cascade -z

Where:
<source> is the fully qualified path of the file/folder to remove security from. This is a
required parameter.
<principal> is the user/principal (such as admin) to remove security from for the specified
file/folder. This is a required parameter.
<provider> is the security provider to use for retrieving information about the users
(principals). This is an optional parameter.
--cascade is used when removing security from a folder, to remove the security settings
from all files and subfolders within the specified folder. This is an optional parameter.

Example

python CADSTool.py removeSecurity --source "/Projects/MyReport.rptdesign"
--principal "icrod" --provider "Native" --cascade -z

Messages

The following messages may display when using this API:
<source> All the security ACL removed successfully.

<source> No such folder exists. Please try again.

<source> Error deleting security ACL.

The search operation

Searches for files and folders in the repository. The results are a list of files/folders matching the
search criteria, and their versions.

Syntax

python CADSTool.py search --criteria "<criteria>" -z

20

Chapter 2

The value of <criteria> is the search string used to search metadata for all files and folders in
the repository. This is a required parameter.

Example

python CADSTool.py search --criteria "Quarterly" -z

Messages

The following messages may display when using this API:
When the search completes successfully, a list of all files and folders matching the search
criteria are displayed. This typically includes the file names with their fully qualified path and
versions.
<criteria> No file or folder matches the search criteria.

Error searching files and folders.

The setLabel operation

Applies a label to a version of a file in the repository. If the file is already labeled, the original
label is removed and replaced with the new label.

Syntax

python CADSTool.py setLabel --source "<source>" --version "<version>" --label
"<label>" -z

Where:
<source> is the fully qualified path of the file in the repository. This is a required parameter.
<version> is the version of the file to apply the label to. This is a required parameter.
<label> is the label name to apply to the specified version of the file. This is a required
parameter.

Example

python CADSTool.py setLabel --source "/Demo/Drafts/MyReport.rptdesign" --version
"1:2006-08-25 21:15:49.453" --label "Beta" -z

Messages

The following messages may display when using this API:
Label set successfully for <source>.

<source> No such folder exists. Please try again.

<source> Error setting label.

21

Command line scripting

The setMetadata operation

Applies metadata properties to files and folders in the repository. Table 2-3 lists the metadata
properties and whether they can be applied to files and/or folders.

Table 2-3
Metadata properties and resource types

Metadata Property Resource Type
Author File
Description File or Folder
Title File or Folder
Expiration Date File or Folder
Keyword File
Topics File
Custom Metadata File or Folder

Syntax

python CADSTool.py setMetadata --source "<source>" --version "<version>" --label
"<label>" --author "<author>" --title "<title>" --description "<description>"
--expirationDate "<expirationDate>" --topic "<topic>" --keyword "<keyword>"
--customProperty "<customProperty>" -z

Where:
<source> is the fully qualified repository path of the file or folder to set metadata on. This is a
required parameter.
<author> is the author of the file or folder. This is an optional parameter.
<title> is the title of the file or folder. This is an optional parameter.
<description> is the description of the file/folder. This is an optional parameter.
<expirationDate> is the expiration date of the file or folder. This is an optional
parameter. The date format is YYYY-MM-DDThh:mm:ss.sTZD (for example,
1997-07-16T19:20:30.45+01:00), where:
YYYY = four-digit year
MM = two-digit month (01 is January, etc.)
DD = two-digit day of month (01 through 31)
hh = two-digit hour (00 through 23, no am/pm)
mm = two-digit minute (00 through 59)
ss = two-digit second (00 through 59)
s = digits representing a decimal fraction of a second, with a valid range of 0 to 999
TZD = time zone designator (Z or +hh:mm or −hh:mm)
<keyword> is the keyword for the file or folder. This is an optional parameter.
<version> is the specific version of the file or folder to apply metadata on. This is an optional
parameter.
<label> is the labeled version of the file or folder to apply metadata on. This is an optional
parameter.

22

Chapter 2

<topic> is the topic to apply to the file or folder. This is an optional parameter.
<customProperty> is the custom property values to apply to the file or folder. This is
an optional parameter. The values are specified as <customProperty>=<value>.
To apply more than one custom property, use a semicolon (;) as a separator
(<customProperty>=<value>;<customProperty>=<value>).
Separate multi-select property values with the | operator
(<customProperty>=opt1|opt2;<customProperty>=value).

Note: At least one optional parameter must be provided to use the setMetadata API.

Example

python CADSTool.py setMetadata --source "/Demo/Drafts/MyReport.rptdesign" --version
"0:2006-08-25 21:15:49.453" --keyword "Quarterly"
--customProperty "multi=hi|hello|bye;Complexity Degree=Simple" -z

Messages

The following messages may display when using this API:
<source> Metadata set successfully.

<source> No such file or folder exists. Please try again.

<source> Error setting metadata.

The uploadFile operation

uploadFile saves a file to the Content Repository from the local file system, with the option of
creating a new version of the file if it already exists.

Syntax

python CADSTool.py uploadFile --source "<source>" --target
"<target>" --createVersion -z

Where:
<source> is the fully qualified path (on the local file system) of the file to upload. This is a
required parameter.
<target> is the fully qualified path of the folder in the repository where the file is to be
uploaded. This is a required parameter.
--createVersion indicates that the specified file already exits and a new version should
be created. This is an optional parameter.

Examples

In the following example, the target is a fully qualified path for Drafts:

python CADSTool.py uploadFile --source "C:\Demo\MyReport.rptdesign"
--target "/Demo/Drafts" -z

23

Command line scripting

If MyReport.rptdesign already exists in the/Demo/Drafts folder, use the --createVersion
parameter:

python CADSTool.py uploadFile --source "C:\Demo\MyReport.rptdesign"
--target "/Demo/Drafts" --createVersion -z

Messages

The following messages may display when using this API:
<source> File uploaded successfully.

<source> No such file exists. Please try again.

<target> No such folder exists. Please try again.

<source> Error Uploading File.

Process management functions

Process management scripting offers the ability to work with jobs. This area includes the
following functionality:

Executing jobs
Retrieving job histories
Retrieving job details

This section outlines the Python command line usage of scripts for process management functions.
Every API contains detailed syntax information, an example, and expected messages.

Keywords

Table 2-4 lists the keywords supported for Process Management APIs. The second column lists
any optional, shortened version of keywords provided. The table only lists keywords specific to
Process Management APIs. For additional keywords that apply to both Process Management APIs
and repository APIs, see Table 2-1 and Table 2-2.
Table 2-4
Keywords for Process Management APIs

Keyword Optional
Short Version

Usage

--source -s The source job, including the path
--target -t The target folder path
--notification -j Indicates that the job will run with notifications
--async -m Indicates that the job will run asynchronously
--execId -y The execution Id for the job
--jobStepName -q The job step name
--log Indicates that logs should not be deleted. If used in

conjunction with --target, logs are stored in a location
specified by --target. Otherwise, logs are displayed
inline.

24

Chapter 2

Operations

The following sections list all Process Management scripting APIs supported for IBM® SPSS®
Collaboration and Deployment Services. The syntax and examples shown contain the minimum
number of required parameters.

The deleteJobExecutions operation

Deletes the specified job execution objects.

Syntax

python CADSTool.py deleteJobExecutions --execIds "<execIDs>" -z

The value of <execIDs> is a space-delimited list of identifiers for the executions to delete. This is
a required parameter.

Examples

python CADSTool.py deleteJobExecutions --execIds
"0a58c33d002ce9080000 010e0ccf7b01800e" -z

Messages

The following messages may display when using this API:
Execution Id not specified.

The executeJob operation

Runs a job synchronously or asynchronously based on the parameters passed. In the case of a
synchronous run, the API does not return until the job completes. In the case of an asynchronous
run, the API returns after the job starts.

Syntax

python CADSTool.py executeJob --source "<source>" --notification --async -z

Where:
<source> is the fully qualified path of the job in the repository. This is a required parameter.
--notification is used to run the job with notifications. This is an optional parameter.
--async is used to run the job asynchronously. This is an optional parameter.

Examples

The following example runs the job synchronously without notifications:

python CADSTool.py executeJob --source "/Demo/Jobs/Reports" -z

25

Command line scripting

The following example runs the job synchronously with notifications:

python CADSTool.py executeJob --source "/Demo/Jobs/Reports" --notification -z

The following example runs the job asynchronously without notifications:

python CADSTool.py executeJob --source "/Demo/Jobs/Reports" --async -z

The following example runs the job asynchronously with notifications:

python CADSTool.py executeJob --source "/Demo/Jobs/Reports" --async --notification -z

Messages

The following messages may display when using this API:
<source> Job executed successfully. Job execution Id is <execId>.

<source> No such job exists. Please try again.

<source> Error executing job.

The getJobExecutionDetails operation

Lists run details for a specific job, including any job steps and iterations.

Syntax

python CADSTool.py getJobExecutionDetails --execId "<execID>" --log --target
"<target>" -z

Where:
<execId> is the execution identifier of the job. This is a required parameter.
--log indicates that the job log should be displayed inline. If the --log parameter is not
included, any log generated by a job step run is not displayed. This is an optional parameter.
<target> is the location (on the local file system) to store the logs. This is an optional
parameter, and is only used in conjunction with the --log parameter.

Examples

The following example lists the details of a specific job run:

python CADSTool.py getJobExecutionDetails --execId "0a58c3710016a7860000010d1a6a87
b48400" -z

The following example lists the details of a specific job run, with the log displayed inline:

python CADSTool.py getJobExecutionDetails --execId "0a58c3710016a7860000010d1a6a87
b48400" --log -z

The following example lists the details of a specific job run, with the job logs stored in a specific
location:

python CADSTool.py getJobExecutionDetails --execId "0a58c3710016a7860000010d1a6a87
b48400" --log --target "c:\logs" -z

26

Chapter 2

Messages

The following messages may display when using this API:
For a successful run, all run details are listed for the job, job steps, and job iterations. Logs are
displayed inline or saved to a specified location on the local file system.
<execId> No such execution exists. Please try again.

<execId> Error displaying details of a job execution.

--target cannot be used without --log parameter

The getJobExecutionList operation

Lists current runs and completed runs for a specific job, for all versions of the job.

Syntax

python CADSTool.py getJobExecutionList --source "<source>" -z

The value of <source> is the fully qualified path of the job in the repository. This is a required
parameter.

Example

python CADSTool.py getJobExecutionList --source "/Demo/Jobs/Reports" -z

Messages

The following messages may display when using this API:
For a successful run of the specified job, all run details such as execution Id, job name, job
execution status, and job execution start and end time are listed.
<source> No such job exists. Please try again.

<source> Error displaying execution list for a job.

Chapter

3
The PESImpl module

The IBM® SPSS® Collaboration and Deployment Services - Essentials for Python facility allows
interaction with IBM® SPSS® Collaboration and Deployment Services Repository objects
directly within Python scripts. Within your Python code, import the PESImpl class from the
pes.api.PESImpl module. Create a PESImpl object using the connection information for
the repository to which to connect.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl(user, password, host, port, ssl=True)

The parameters for the PESImpl constructor are as follows:
user corresponds to the username
password corresponds to the password associated with the specified user
host designates the name of the repository server
port specifies the port number for the repository server
ssl=True indicates that the repository server uses the secure sockets layer (SSL) protocol for
encrypting communications. If the ssl parameter is set to False, or if the parameter is omitted
when creating the PESImpl object, the server communications will not use SSL. When
using ssl=True, the repository server must be configured for SSL. For more information, see
the administrator documentation.

Specific methods can then be accessed using the pesImpl object.

Content repository API

Content repository scripting offers the ability to work with repository resources, such as files and
folders. This area includes the following functionality:

Creating and deleting folders
Uploading and downloading files
Exporting and importing folders
Managing labels, security, and metadata

This section outlines the PESImpl API used for working with resources stored in the repository.
Every method contains detailed syntax information, an example, and expected messages.

Methods

The following sections list all content repository methods supported for IBM® SPSS®
Collaboration and Deployment Services.

© Copyright IBM Corporation 2000, 2011 27

28

Chapter 3

Notes:
For all methods with optional parameters Label and Version, use either Label or
Version, but not both. If no Version or Label is specified for a given file or folder, the
latest version is used.
For all methods that require a path to files or folders in the repository, either the path or the
object URI can be used. The object URI can be obtained by viewing the object properties in
IBM® SPSS® Collaboration and Deployment Services Deployment Manager.
For methods requiring input of source or target repository or file system paths that contain
non-Latin Unicode characters, the strings must be specified as Unicode objects, for example:

identificationSpecifier = pesImpl.uploadFile
(source=u'C:\Analytics\La Peña.txt',
target=u'/La Peña')

The advanceSearch method

advanceSearch(criteriaDict,submittedHierarchy)

Searches for files and folders in the repository, based on various parameters passed as input. You
can search on the following items:

Author
Description
Title
Created By
Modified By
Expiration Start Date
Expiration End Date
MIME Type
Label
Keyword
Topics

Note that currently expirationStartDate and expirationEndDate do not work when used
in conjunction with other search fields (such as title, author, etc).

29

The PESImpl module

Table 3-1
Input parameters for advanceSearch

Field Use Type Description Example Value
criteriaDict Required Dictionary The dictionary contains the

key/value of pair against
which the search will be
done. The acceptable key
values are:
• author
• title
• description
• createdBy
• modifiedBy
• expirationStartDate
• expirationEndDate
• mimeType
• label
• keyword
• topic

{
"author":"admin",
"title":"search",

"label":"label 1",
}

submittedHierarchy Optional Boolean Indicates whether to search
the Submitted Jobs folder

True or False

Table 3-2
Return value for advanceSearch

Type Description
PageResult Structure in which each

row corresponds to a search
match.For more information, see
the topic The PageResult class
on p. 50.

Table 3-3
Exceptions for advanceSearch

Type Description
InsufficientParameterException Mandatory parameters are not specified.

Example

The following sample returns all file versions labeled Production that have a keyword value of
Quarterly.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
critDict = {'label':'Production','keyword':'Quarterly'}
sResults = pesImpl.advanceSearch(critDict)
sRows = sResults.getRows()
for sRow in sRows:

print "Author: ", sRow.getAuthor()
print "Title: ", sRow.getTitle()
for child in sRow.getChildRow():

print "Version: ", child.getVersionMarker()
print "Label: ", child.getVersionLabel()
print "Keywords:", child.getKeyword()
print "URI:", child.getUri()

30

Chapter 3

The applySecurity method

applySecurity(source,principal,permission,provider,cascade)

Sets the security access control list (ACL) for a file or folder in the repository.
Table 3-4
Input parameters for applySecurity

Field Use Type Description Example Value
source Required String The fully qualified path or

object URI of the file or folder
in the repository

"/Temp
Folder/Temp.txt"
or
"0a58c3670016a7860000
010dcee0eaa28219"

principal Required String The user (such as admin) to
apply to the specified file or
folder as part of the ACL

admin

permission Required String The type of permission to
apply to the specified file or
folder

READ, WRITE, DELETE,
MODIFY_ACL, OR OWNER

provider Optional String The security provider to use
for applying security to users
(such as Native)

Native

cascade Optional Boolean Propagates the security
settings to all files and
subfolders within the specified
folder

True or False

Table 3-5
Return value for applySecurity

Type Description
Boolean True or False based on whether the method runs

successfully.

Table 3-6
Exceptions for applySecurity

Type Description
ResourceNotFoundException The source file does not exist.
InsufficientParameterException Required parameters are not

specified.
IllegalParameterException The specified user or security

provider name is incorrect.

Example

The following sample assigns the READ permission for the designated file to the user icrod.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.applySecurity(source="/Projects",principal="icrod",permission="READ",

provider="Native")

31

The PESImpl module

The cascadeSecurity method

cascadeSecurity(source)

Propagates a folder’s security settings to all files and subfolders within the folder.
Table 3-7
Input parameters for cascadeSecurity

Field Use Type Description Example Value
source Required String The fully qualified path or

object URI of the folder in the
repository

"/Temp Folder"
or
"0a58c3670016a7860000
010dcee0eaa28219"

Table 3-8
Return value for cascadeSecurity

Type Description
Boolean True or False based on whether the method runs

successfully.

Table 3-9
Exceptions for cascadeSecurity

Type Description
ResourceNotFoundException The source folder does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following sample cascades the security for the folder Projects to all children of the folder.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.cascadeSecurity(source="/Projects")

The copyResource method

copyResource(source,target)

Copies a file or folder to another folder in the repository. The specified source file or folder can be
renamed when it is copied. See The moveResource method on p. 42 for more information on
renaming.

32

Chapter 3

Table 3-10
Input parameters for copyResource

Field Use Type Description Example Value
source Required String The fully qualified path or object

URI of the file or folder in the
repository

"/Temp Folder/Temp.txt"
or
"0a58c3670016a7860000
010dcee0eaa28219"

target Required String The fully qualified path or object
URI of the folder to copy the file
to. A new file name can also
be provided for renaming the
specified file or folder when it is
copied.

"/New Folder"
or
"/New Folder/abc.dat"

Table 3-11
Return value for copyResource

Type Description
String URI of the copied file or folder

Table 3-12
Exceptions for copyResource

Type Description
ResourceNotFoundException The source file or target folder does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following sample copies the Drafts folder to a folder named Projects.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
uri = pesImpl.copyResource(source="/Demo/Drafts/MyReport.rptdesign",target="/Projects")
print uri

The createFolder method

createFolder(source)

Creates a new folder at a specified location in the repository.
Table 3-13
Input parameters for createFolder

Field Use Type Description Example Value
source Required String The folder to create in the

repository
"/Temp Folder/Sample
Folder"

Table 3-14
Return value for createFolder

Type Description
String URI of the created folder

33

The PESImpl module

Table 3-15
Exceptions for createFolder
Type Description
InsufficientParameterException Required parameters are not specified.
ResourceAlreadyExistsException The specified folder already exists in the repository.

Example

The following example creates a folder named Drafts as a child of the Demo folder. If a problem
creating the folder occurs, an exception message is sent to the console.
from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
try:

uri = pesImpl.createFolder(source="/Demo/Drafts")
print "URI for the folder is:", uri

except:
print "Unhandled exception in createFolder."

The deleteFile method

deleteFile(source,submittedHierarchy)

Deletes a file from the repository. All versions of the file are deleted.
Table 3-16
Input parameters for deleteFile
Field Use Type Description Example Value
source Required String The fully qualified path or object

URI of the file in the repository
"/Temp Folder/Temp.txt"
or
"0a58c3670016a7860000
010dcee0eaa28219"

sub-
mitted-
Hierar-
chy

Optional Boolean Indicates whether the file is in
the Submitted Jobs folder

True or False

Table 3-17
Return value for deleteFile
Type Description
Boolean True or False based on whether the method runs

successfully.

Table 3-18
Exceptions for deleteFile
Type Description
ResourceNotFoundException The source file does not exist.
InsufficientParameterException Required parameters are not specified.
IllegalParameterException The specified resource to delete is a folder.

Example

The following example deletes the file MyReport.rptdesign from the repository.

34

Chapter 3

from pes.util.PESExceptions import *
from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
try:

bSuccess = pesImpl.deleteFile(source="/Demo/Drafts/MyReport.rptdesign")
except ResourceNotFoundException:

print "Specified file does not exist."
except InsufficientParameterException:

print "No file specified."
except IllegalParameterException:

print "Item to be deleted is not a file."

The deleteFileVersion method

deleteFileVersion(source,version,label,submittedHierarchy)

Deletes a specific version of a file from the repository.
Table 3-19
Input parameters for deleteFileVersion

Field Use Type Description Example Value
source Required String The fully qualified path

or object URI of the file
in the repository

"/Temp
Folder/Temp.txt"
or
"0a58c3670016a78600
00010dcee0eaa28219"

version Optional.
However,
either
version
or label
must be
specified.

String The specific version of
the file to delete

"0:2006-08-25
21:15:49.453"

label Optional.
However,
either
version
or label
must be
specified.

String The specific labeled
version of the file to
delete

"Version 1"

submittedHierarchy Optional Boolean Indicates whether the
file is in the Submitted
Jobs folder

True or False

Table 3-20
Return value for deleteFileVersion

Type Description
Boolean True or False based on whether the method runs

successfully.

Table 3-21
Exceptions for deleteFileVersion

Type Description
ResourceNotFoundException The source file or target folder does not exist.
InsufficientParameterException Required parameters are not specified.
IllegalParameterException The specified resource to delete is a folder.

35

The PESImpl module

Example

The following example deletes the version of the file MyReport.rptdesign labeled Test from
the repository.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.deleteFileVersion(source="/Demo/Drafts/MyReport.rptdesign",label="Test")

The deleteFolder method

deleteFolder(source,submittedHierarchy)

Deletes a folder and its contents from the repository.
Table 3-22
Input parameters for deleteFolder

Field Use Type Description Example Value
source Required String The fully qualified path or

object URI of the folder in
the repository

"/Temp Folder"
or
"0a58c3670016a78600
00010dcee0eaa28219"

submittedHierarchy Optional Boolean Indicates whether the
folder is in the Submitted
Jobs folder

True or False

Table 3-23
Return value for deleteFolder

Type Description
Boolean True or False based on whether the method runs

successfully.

Table 3-24
Exceptions for deleteFolder

Type Description
ResourceNotFoundException The specified folder does not exist.
InsufficientParameterException Required parameters are not specified.
IllegalParameterException The specified resource to delete is not a folder.

Example

The following example deletes the folder named Drafts from the repository. If a problem deleting
the folder occurs, an exception message is sent to the console.

from pes.util.PESExceptions import *
from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
try:

bSuccess = pesImpl.deleteFolder(source="/Demo/Drafts")
except ResourceNotFoundException:

print "Specified folder does not exist."
except InsufficientParameterException:

print "No folder specified."
except IllegalParameterException:

print "Item to be deleted is not a folder."

36

Chapter 3

The downloadFile method

downloadFile(source,target,version,label)

Downloads a specific version of a file from the repository onto the local file system.
Table 3-25
Input parameters for downloadFile

Field Use Type Description Example Value
source Required String The fully qualified repository

path or object URI of the file to
download

"/Temp Folder/Temp.txt"
or
"0a58c3670016a7860000
010dcee0eaa28219"

target Required String The fully qualified path (on the
local file system) of the folder to
which to download the file

"C:\Temp"

version Optional.
Either
version or
label can be
specified.

String The specific version of the file to
download

"0:2006-08-25
21:15:49.453"

label Optional.
Either
version or
label can be
specified.

String The specific labeled version of
the file to download

"Version 2"

Table 3-26
Return value for downloadFile

Type Description
Resource Container for information about a

repository object.For more information,
see the topic The Resource class on p. 49..

Table 3-27
Exceptions for downloadFile

Type Description
ResourceNotFoundException The source file or target folder does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following sample downloads a version labeled Production of the file MyReport.rptdesign to
the Shared directory on the local file system.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
resource = pesImpl.downloadFile(source="/Demo/Drafts/MyReport.rptdesign",

target="c:/Demo/Shared",label="Production")

The exportResource method

exportResource(source,target)

37

The PESImpl module

Exports a specified repository folder to a designated *.pes export file on the local file system.
Table 3-28
Input parameters for exportResource

Field Use Type Description Example Value
source Required String The fully qualified repository

path or object URI of the folder
to export

"/Temp Folder"
or
"0a58c3670016a78
60000010dcee0eaa2 8219"

target Required String The fully qualified path (on the
local file system) and file name
to which to export the folder

"C:\Temp\backup.pes"

Table 3-29
Return value for exportResource

Type Description
Boolean True or False based on whether the method runs

successfully.

Table 3-30
Exceptions for exportResource

Type Description
ResourceNotFoundException The source file or target folder does not exist.
InsufficientParameterException Required parameters are not specified.
IllegalParameterException The specified target is a folder. The target must be a *.pes

file.

Example

The following sample exports the contents of the Drafts folder to an export file in the backups
folder of the local file system.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.exportResource(source="/Projects",target="C:\Demo\drafts.pes")

The getAccessControlList method

getAccessControlList(source,submittedHierarchy)

Retrieves the security access control list (ACL) for the specified file or folder in the repository.
Table 3-31
Input parameters for getAccessControlList

Field Use Type Description Example Value
source Required String The fully qualified path

or object URI of the
file or folder in the
repository

"/Temp
Folder/Temp.txt"
or
"0a58c3670016a78600
00010dcee0eaa28219"

submittedHierarchy Optional Boolean Indicates whether the
file or folder is in the
Submitted Jobs folder

True or False

38

Chapter 3

Table 3-32
Return value for getAccessControlList
Type Description
Dictionary A dictionary is displayed containing the user name(s) and the associated

permission. For example:

{"admin":"MODIFY_ACL","Joe":"DELETE"}

Table 3-33
Exceptions for getAccessControlList
Type Description
ResourceNotFoundException The source file or target folder does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following example prints the ACL for the file MyReport.rptdesign.
from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
aclDic = pesImpl.getAccessControlList(source = "/Projects/MyReport.rptdesign")
print aclDic

The getAllVersions method

getAllVersions(source,submittedHierarchy)

Retrieves a list of all versions of a file in the repository.
Table 3-34
Input parameters for getAllVersions
Field Use Type Description Example Value
source Required String The fully qualified path or

object URI of the file in
the repository

"/Temp
Folder/Temp.txt"
or
"0a58c3670016a78600
00010dcee0eaa28219"

submittedHierarchy Optional Boolean Indicates whether the file
is in the Submitted Jobs
folder

True or False

Table 3-35
Return value for getAllVersions
Type Description
List A list of resource objects. See The Resource class

on p. 49.

Table 3-36
Exceptions for getAllVersions
Type Description
ResourceNotFoundException The source file does not exist.
InsufficientParameterException Required parameters are not specified.
IllegalParameterException The specified source is a folder.

39

The PESImpl module

Example

This example retrieves information about all versions of the file MyReport.rptdesign, printing the
author, version marker, and version labels for each.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
resourceList = pesImpl.getAllVersions(source="/Demo/Drafts/MyReport.rptdesign")
for resource in resourceList:

print resource.getAuthor()
print resource.getVersionMarker()
print resource.getVersionLabel()

The getChildren method

getChildren(source,submittedHierarchy)

Retrieves a list of all files and folders within a specified repository folder.
Table 3-37
Input parameters for getChildren

Field Use Type Description Example Value
source Required String The fully qualified path or

object URI of the folder in the
repository

"/Temp Folder"
or
"0a58c3670016a78600
00010dcee0eaa28219"

submittedHierarchy Optional Boolean Indicates whether the folder is
in the Submitted Jobs folder

True or False

Table 3-38
Return value for getChildren

Type Description
List A list of resource objects. See

The Resource class on p. 49.

Table 3-39
Exceptions for getChildren

Type Description
InsufficientParameterException Required parameters are not specified.
ResourceNotFoundException The folder does not exist.

Example

The following sample retrieves the children of the /Demo/Drafts folder, printing the title, author,
and resource identifier for each.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
resourceList = pesImpl.getChildren(source="/Demo/Drafts")
for resource in resourceList:

print "Resource title:", resource.getTitle()
print "Resource author:", resource.getAuthor()
print "Resource ID:", resource.getResourceID()

40

Chapter 3

The getCustomPropertyValue method

getCustomPropertyValue(propertyName)

Retrieves the valid values accepted by a specified custom property.
Table 3-40
Input parameters for getCustomPropertyValue

Field Use Type Description Example Value
propertyName Required String The name of the custom property "FreeForm"

Table 3-41
Return value for getCustomPropertyValue

Type Description
List Returns a list of valid values the custom property accepts. If the property requires a selection

(for example, single select or multi-select), the list contains all valid values for the selection. If
it is a free-form property, the list contains the type of data the property accepts (for example,
String, Date, or Number).

Table 3-42
Exceptions for getCustomPropertyValue

Type Description
ResourceNotFoundException The specified property does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following sample accesses the values for the custom property Language.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
langList = pesImpl.getCustomPropertyValue(propertyName = "Language")
print langList

The getMetadata method

getMetadata(source,version,label,submittedHierarchy)

Retrieves the metadata attributes of a file or folder in the repository, including any custom
properties and topic information.
Table 3-43
Input parameters for getMetadata

Field Use Type Description Example Value
source Required String The fully qualified path or

object URI of the file or
folder in the repository

"/Temp
Folder/Temp.txt"
or
"0a58c3670016a78600
00010dcee0eaa28219"

41

The PESImpl module

Field Use Type Description Example Value
version Optional.

Either
version
or label
can be
specified.

String The specific version of the
file or folder

"0:2006-08-25
21:15:49.453"

label Optional.
Either
version
or label
can be
specified.

String The specific labeled version
of the file or folder

"Version 1"

submittedHierarchy Optional Boolean Indicates whether the file is
in the Submitted Jobs folder

True or False

Table 3-44
Return value for getMetadata
Type Description
Resource Container for information about a repository

object.For more information, see the
topic The Resource class on p. 49.

Table 3-45
Exceptions for getMetadata
Type Description
ResourceNotFoundException The source file or folder does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following example accesses the resource identifier for the /Demo/Drafts folder.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
resource = pesImpl.getMetadata(source="/Demo/Drafts")
resourceid = resource.getResourceID()

The importResource method

importResource(source,target)

Imports an existing *.pes export file from the local file system to the repository.
Table 3-46
Input parameters for importResource

Field Use Type Description Example Value
source Required String The fully qualified path (on the

local file system) of the file to
import

"C:\Temp\New.pes"

target Required String The fully qualified repository
path or object URI of the folder
into which to import

"/Temp Folder"
or
"0a58c3670016a7860000
010dcee0eaa28219"

42

Chapter 3

Table 3-47
Return value for importResource

Type Description
Boolean True or False based on whether the method runs successfully.

Table 3-48
Exceptions for importResource

Type Description
ResourceNotFoundException The source file or target folder does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following sample .

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.importResource(source="C:\Demo\drafts.pes",target="/Demo/Drafts")

The moveResource method

moveResource(source,target)

Moves a file or folder to another folder in the repository. A specified source file can be renamed
when it is moved, with the target type and existence determining the final name. The following
table describes the behavior of the renaming feature when moving a file:
Table 3-49
File renaming

Target Type Target Folder Exists Target Folder Does Not Exist
folder Source file becomes a child of the

target folder.
Source file moves to the parent
folder of the specified target and is
renamed to the target folder name.

file Source file moves to the folder
containing the target file and is
renamed to the target name.

Error reported.

For example, if the source is the file /Temp Folder/Temp.txt and the specified target is the folder
/Demo Folder, the following results may occur:

If folder Demo Folder exists, Temp.txt is moved to Demo Folder.
If folder Demo Folder does not exist, Temp.txt is moved to “ / “ and renamed to Demo Folder.

Alternatively, if the source is /Temp Folder/Temp.txt and the specified target is the file/Demo
Folder/Abc.dat, the following results may occur:

If folder Demo Folder exists, Temp.txt is moved to Demo Folder and renamed to Abc.dat.
If folder Demo Folder does not exist, an error is displayed.

43

The PESImpl module

Table 3-50
Input parameters for moveResource

Field Use Type Description Example Value
source Required String The fully qualified path or

object URI of the file or
folder in the repository

"/Temp
Folder/Temp.txt"
or
"0a58c3670016a78600
00010dcee0eaa28219"

target Required String The fully qualified path or
object URI of the folder
to move the file to. A
new file name can also
be provided for renaming
the specified file or folder
when it is moved.

"/New Folder"
or
"/New
Folder/abc.dat"

Table 3-51
Return value for moveResource

Type Description
Boolean True or False based on whether the method runs

successfully.

Table 3-52
Exceptions for moveResource

Type Description
ResourceNotFoundException The specified source does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following sample .

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.moveResource(source="/Demo/Drafts/MyReport.rptdesign",target="/Approved")
print bSuccess

The removeLabel method

removeLabel(source,label)

Removes a label from a file in the repository.
Table 3-53
Input parameters for removeLabel

Field Use Type Example Value Description
source Required String "/Temp Folder/Temp.txt"

or
"0a58c3670016a7860000
010dcee0eaa28219"

The fully qualified path or object
URI of the file in the repository

label Required String "Version 1" The label name to remove

44

Chapter 3

Table 3-54
Return value for removeLabel

Type Description
String URI of the updated file

Table 3-55
Exceptions for removeLabel
Type Description
ResourceNotFoundException The source file does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following sample removes the label Draft from the file MyReport.rptdesign.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
uri = pesImpl.removeLabel(source="/Demo/Drafts/MyReport.rptdesign", label="Draft")

The removeSecurity method

removeSecurity(source,principal,provider,cascade)

Removes the security access control list (ACL) from a specified file or folder in the repository.
Table 3-56
Input parameters for removeSecurity

Field Use Type Description Example Value
source Required String The fully qualified path or

object URI of the file or folder
in the repository

"/Temp
Folder/Temp.txt"
or
"0a58c3670016a7860000
010dcee0eaa28219"

principal Required String The user (such as admin) to
remove from the specified file
or folder

admin

provider Optional String The security provider (such as
Native) to use for obtaining the
information about users

Native

cascade Optional Boolean Propagates the security settings
to all files and subfolders within
the specified folder

True or False

Table 3-57
Return value for removeSecurity

Type Description
Boolean True or False based on whether the method runs successfully.

Table 3-58
Exceptions for removeSecurity

Type Description
ResourceNotFoundException The source file or target folder does not exist.

45

The PESImpl module

Type Description
InsufficientParameterException Required parameters are not specified.
IllegalParameterException The specified user or security provider name is incorrect.

Example

The following sample removes the ACL for the principal icrod from the file MyReport.rptdesign.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.removeSecurity(source="/Projects/MyReport.rptdesign",principal="icrod")

The search method

search(criteria)

Searches for files in the repository, returning a list of file versions having metadata content that
matches the search criteria.
Table 3-59
Input parameters for search

Field Use Type Description Example Value
criteria Required String The value used to search file metadata "Age"

Table 3-60
Return value for search
Type Description
PageResult Structure in which each row corresponds to a search match.For more information,

see the topic The PageResult class on p. 50.

Table 3-61
Exceptions for search
Type Description
InsufficientParameterException Required parameters are not specified.

Example

The following searches for file versions that have the text Quarterly in any metadata fields.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
sResults = pesImpl.search(criteria="Quarterly")
sRows = sResults.getRows()
for sRow in sRows:

print "Author: ", sRow.getAuthor()
print "Title: ", sRow.getTitle()
for child in sRow.getChildRow():

print "Version: ", child.getVersionMarker()
print "Label: ", child.getVersionLabel()
print "Keywords:", child.getKeyword()
print "URI:", child.getUri()

The setLabel method

setLabel(source,version, label)

46

Chapter 3

Applies a label to a version of a file in the repository. If the file is already labeled, the original
label is replaced with the new label.
Table 3-62
Input Parameters for setLabel

Field Use Type Description Example Value
source Required String The fully qualified path or object

URI of the file in the repository
"/Temp Folder/Temp.txt"
or
"0a58c3670016a7860000
010dcee0eaa28219"

version Required String The specific version of the file "0:2006-08-25
21:15:49.453"

label Required String The label to apply to the file "Version 1"

Table 3-63
Return value for setLabel
Type Description
String URI of the updated file

Table 3-64
Exceptions for setLabel
Type Description
ResourceNotFoundException The source file or version does not exist.
InsufficientParameterException Required parameters are not specified.

Example

The following sample assigns the label Beta to the second version of the file MyReport.rptdesign.
The getVersionMarker method for a Resource object returns the marker for the desired
version to be labeled.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
betaVersion = \

pesImpl.getAllVersions(source="/Demo/Drafts/MyReport.rptdesign")[1].getVersionMarker()
print "Marker for the beta version is:", betaVersion
uri = pesImpl.setLabel(source="/Demo/Drafts/MyReport.rptdesign", version=betaVersion,

label="Beta")

The setMetadata method

setMetadata(source,version,label,props)

Applies metadata properties to files and folders in the repository. The following table identifies the
metadata properties and whether they can be applied to files and/or folders.
Table 3-65
Repository Object Properties
Metadata Property Resource Type
Author File
Description File or Folder
Title File or Folder
Expiration Date File or Folder

47

The PESImpl module

Metadata Property Resource Type
Keyword File
Topics File
Custom Metadata File or Folder

Table 3-66
Input parameters for setMetadata

Field Use Type Description Example Value
source Required String The fully qualified

path or object URI of
the file or folder in
the repository

"/Temp Folder/Temp.txt"
or
"0a58c3670016a7860000
010dcee0eaa28219"

version Optional.
Eitherversion
or label
can be
specified.

String The specific version
of the file to be
downloaded

"0:2006-08-25 21:15:49.453"

label Optional.
Eitherversion
or label
can be
specified.

String The label of the
specific version

"Label 1"

props Required Dictionary Contains all the
metadata to be set,
in the Dictionary
with the metadata
name as keys. As
shown in the Example
Value column, it
takes the list as a
value from topic
and Dictionary for
customProperty.
For the rest of the
metadata it takes
string.

{
‘author':'admin',
‘title':'newTitle',
‘description','desc',
‘topic':[a,b],
‘customProperty':

{ ‘language':'hindi|english',
‘FreeForm': ‘abcd'

}
}

Table 3-67
Return value for setMetadata

Type Description
String URI of the file or folder for which metadata

was set

Table 3-68
Exceptions for setMetadata
Type Description
InsufficientParameterException Required parameters are not specified.
ResourceNotFoundException The source file or folder does not exist.

Example

The following sample assigns the keyword Quarterly to the Production version of the file
MyReport.rptdesign.

48

Chapter 3

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
pDict = {'keyword':'Quarterly'}
uri = pesImpl.setMetadata(source="/Demo/Drafts/MyReport.rptdesign",version=prodVersion,

props=pDict)
print uri

The uploadFile method

uploadFile(source,target,versionFlag)

Saves a file to the repository from the local file system, with the option of creating a new version
of the file if it already exists.
Table 3-69
Input parameters for uploadFile

Field Use Type Description Example Value
source Required String The fully qualified path (on

the local file system) of the
file to upload

"C:\Temp\Temp.txt"

target Required String The fully qualified path of
the destination folder in the
repository where the file is to
be uploaded

"/Temp Folder"

versionFlag Optional Boolean If the specified file already
exists, a new version of the
file is created

True or False

Table 3-70
Return value for uploadFile
Type Description
String URI of the uploaded file

Table 3-71
Exceptions for uploadFile
Type Description
ResourceNotFoundException The source file or target folder does not exist.
ResourceAlreadyExistsException A file or folder with the same name as the source file exists

in the target folder and the versionFlag parameter is
not specified.

InsufficientParameterException Required parameters are not specified.

Example

This example uploads the file MyReport.rptdesign to the /Demo/Drafts folder in the repository. If
the file already exists, a new version of the file is uploaded using the versionFlag parameter.

from pes.util.PESExceptions import *
from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
try:

uri = pesImpl.uploadFile(source="C:\Demo\MyReport.rptdesign",target="/Demo/Drafts")
print "URI for the uploaded file is: ", uri

except ResourceAlreadyExistsException:
uri = pesImpl.uploadFile(source="C:\Demo\MyReport.rptdesign",target="/Demo/Drafts",

versionFlag=True)

49

The PESImpl module

print "URI for the uploaded file is: ", uri

Wrapper classes

The PESImpl API includes classes serving as wrappers for objects returned from the web
services called by the content repository methods. These wrapper classes provide an interface for
displaying the information returned by the methods.

The Resource class

The Resource class acts as a simplified wrapper to the repository object
ResourceSpecifer.Resource, offering access to object-specific information. In addition to
the standard metadata associated with repository objects, this class includes any custom metadata
information defined for objects in the repository. Table 3-72 lists all methods available in the
Resource class.
Table 3-72
Methods for the Resource class

Method Name Description
getAccessControlList Returns a dictionary of an object’s security permissions. It

contains the user name as a key and only the highest permission
given to the user. For example:
If user Joe has delete permission on resource X, then
getAccessControlList of the resource object representing X
will return {‘Joe':'DELETE'} and not all three permissions
(read, write, delete) from the web service call.

getOwner Returns the name of the owner of the object as a string
getAuthor Returns the name of the author of the object as a string
getContentSize Returns the size of the object
getCreatedBy Returns the name of the user who created the object as a string
getCreationDate Returns the creation date of the object as a datetime object
getDescription Returns the description of the object as a list
getDescriptionLanguage Returns the language of the object as a list
getExpirationDate Returns the expiration date of the object as a datetime object
isExpired Indicates whether the specified object has expired or not
getMIMEType Returns the MIME type of the object as a string
getModificationDate Returns the last modified date of the object as a datetime object
getObjectCreationDate Returns the object creation date of the object as a datetime object
getObjectLastModifiedBy Returns the user who last modified the object as a string
getObjectLastModifiedDate Returns the object last modified date of the object as a datetime

object
getResourceID Returns the resource identifier of the object as a string
getResourcePath Returns the path of the specified object as a string
getTitle Returns the title for the object as a string
getTopicList Returns the list of topics for the object
getVersionMarker Returns the version of the object as a string
getVersionLabel Returns the label of the object as a string

50

Chapter 3

Method Name Description
getCustomMetadata Returns any custom properties associated with the object as a

dictionary
getKeywordList Returns a list of keywords associated with the object

The IdentificationSpecifier class

This class acts as a simplified wrapper to the repository object IdentificationSpecifier,
allowing access to identification-specific data for the object. Table 3-73 lists all methods available
in the IdentificationSpecifier class.
Table 3-73
Methods for the IdentificationSpecifier class
Method Name Description
getIdentifier Returns the identifier value of an object as a string
getVersionMarker Returns the version of an object as a string
getVersionLabel Returns the label applied to an object version as a string

The PageResult class

This PageResult class serves as a container for search results. An individual hit in the results
corresponds to a row in the PageResult object. For example, a search that returns four resources
would yield a PageResult object containing four rows. Table 3-74 lists all methods available
in the PageResult class.
Table 3-74
Methods for the PageResult class
Method Name Description
getRows Returns a list of SearchRow objects. For more

information, see the topic The SearchRow class on p.
50.

The SearchRow class

The SearchRow class serves as a container for object-level information about an individual
search result. You can access metadata about an object using the methods of this class.Table 3-75
lists all methods available in the SearchRow class.
Table 3-75
Methods for the SearchRow class
Method Name Description
getTitle Returns the name of the file or folder
getAuthor Returns the author of the file or folder
getMIMEType Returns the MIME type of the file
getObjectLastModifiedBy Returns the user who last modified the file or

folder
getModified Returns the date and time the file or folder was

last modified
getFolderPath Returns the location of the file or folder

51

The PESImpl module

Method Name Description
getFolder Returns the name of parent folder of the file

or folder
getParentURI Returns the object URI of the parent
getTopic Returns the topics associated with the file or

folder
getChildRow Returns the list of SearchChildRow

objects (see the following section for more
information)

To access information at the version level for an object, use the getChildRow method to return
child rows corresponding to object versions.

The SearchChildRow class

The SearchChildRow class serves as a container for version-level information about an
individual search result. You can access metadata about an object version using the methods of
this class. Table 3-76 lists all methods available in the SearchChildRow class.

Table 3-76
Methods for the SearchChildRow class

Method Name Description
getExpirationDate Returns the expiration date of the file or folder
getKeyword Returns the keywords associated with the

version of the file or folder
getVersionLabel Returns the version label of the file or folder
getDescription Returns the description of the file or folder
getLanguage Returns the language
getVersionCreationDate Returns date and time the file or folder was

created
getVersionMarker Returns the version marker of the file or folder
getUri Returns the object URI of the file or folder

Process management API

Process management scripting offers the ability to work with jobs. This area includes the
following functionality:

Executing jobs
Retrieving job histories
Retrieving job details

This section outlines the PESImpl methods used for working with jobs stored in the repository.
Every method contains detailed syntax information, an example, and expected messages.

52

Chapter 3

Methods

The following sections list all process management scripting methods supported for IBM®
SPSS® Collaboration and Deployment Services.

Note: For all methods that require a path to files/folders in the repository, either the path or the
object URI can be used. The object URI can be obtained by viewing the object properties in
IBM® SPSS® Collaboration and Deployment Services Deployment Manager.

The cancelJob method

cancelJob(executionId)

Cancels a running job.
Table 3-77
Input parameters for cancelJob

Field Use Type Description Example Value
executionId Required String Execution ID for the job 0a58c33d002ce90800

00010e0ccf7b01800e

Table 3-78
Return value for cancelJob

Type Description
Boolean Returns a success message when the job is

cancelled

Example

This example terminates execution of the Reports job.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
execId = pesImpl.executeJob(source='/Demo/Jobs/Reports', notification = True,

asynchronous=True)
print "Execution ID: ", execId
status = pesImpl.cancelJob(execId)
print "Successful cancellation: ", status

The deleteJobExecutions method

deleteJobExecutions(executionId)

Deletes one or more job executions.
Table 3-79
Input parameters for deleteJobExecutions

Field Use Type Description Example Value
execu-
tionId

Required List List of job
execution
identifiers

[0a58c33d002ce9080000010e0ccf7b01800e,
0a59c33d002ce9080060010e0cdf7b01802r]

53

The PESImpl module

Table 3-80
Return value for deleteJobExecutions
Type Description
Boolean True or False based on whether the method runs successfully.

Example

This example deletes the executions for the Reports job.

from pes.util.PESExceptions import *
from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
executions = pesImpl.getJobExecutionList(source="/Demo/Jobs/Reports")
execRows = executions.getRows()

Get the execution ID from the execution history
deleteList = []
for exrow in execRows :

uuid = exrow.getEventObjId()
deleteList.append(uuid)

if len(deleteList) != 0:
print 'Deleting ',len(deleteList) ,' histories'
pesImpl.deleteJobExecutions(deleteList)

The executeJob method

executeJob(source,notification,asynchronous)

Runs a job synchronously or asynchronously based on the parameters passed. In the case
of a synchronous run, the method does not return until the job completes. In the case of an
asynchronous run, the method returns after the job starts.
Table 3-81
Input parameters for executeJob

Field Use Type Description Example Value
source Required String The fully qualified path (on the

local file system) of the file to
upload

"C:\Temp\Temp.txt"

notification Optional Boolean Indicates whether the job runs
with or without notifications.
Default is False.

True or False

asynchronous Optional Boolean Indicates whether the job runs
asynchronously. Default is
False.

True or False

Table 3-82
Return value for executeJob
Type Description
String The unique identifier for the execution of the job.

This identifier is used to reference a particular job
execution.

Example

This example initiates execution of the Reports job asynchronously with notifications.

54

Chapter 3

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
execId = pesImpl.executeJob(source='/Demo/Jobs/Reports', notification = True,

asynchronous=True)
print "Execution ID: ", execId

The getJobExecutionDetails method

getJobExecutionDetails(executionId,log,target)

Lists the run details for a specific job, including any job steps and iterations.
Table 3-83
Input parameters for getJobExecutionDetails

Field Use Type Description Example Value
execu-
tionId

Required String The execution Id of the job 0a58c33d002ce9080000
010e0ccf7b01800e

log Optional Boolean Indicates whether the job log is
displayed inline

True or False

target Optional String The location (on the local file
system) to store the logs. Only
used in conjunction with the
--log parameter.

"c:\logs"

Table 3-84
Return value for getJobExecutionDetails

Type Description
jobExecutionDetails Details about a job execution. For more information, see the topic The

jobExecutionDetails class on p. 56.

Example

This example retrieves information about job step executions for the job execution with identifier
execId , sending result for each step to the console.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
execDetails = pesImpl.getJobExecutionDetails(executionId=execId)
print "Job ID: ", execDetails.getUUID()
print "Event ID: ", execDetails.getEventUUID()
print "Started: ", execDetails.getStartDateTime()
print "Ended: ", execDetails.getEndDateTime()
for step in execDetails.getJobStepDetails():

print "Step ID: ", step.getEventUUID()
print "Step Name: ", step.getEventName()
print "Started: ", step.getStartDateTime()
print "Ended: ", step.getEndDateTime()
print "Success: ", step.getExecutionSuccess()

The getJobExecutionList method

getJobExecutionList(source)

Lists the runs for a specific job, including any currently running jobs and completed jobs, for all
versions of the job.

55

The PESImpl module

Table 3-85
Input parameters for getJobExecutionList

Field Use Type Description Example Value
source Required String The fully qualified path of the job in the

repository.
"/testJob"

Table 3-86
Return value for getJobExecutionList

Type Description
PageResult Container for the list of executions for a job. See For more information, see the

topic The PageResult class on p. 55..

Example

This example retrieves the executions for the Reports job, sending information about each
execution to the console.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")
executions = pesImpl.getJobExecutionList(source="/Demo/Jobs/Reports")
execRows = executions.getRows()
if execRows:

for exrow in execRows:
print "Job Path: ", exrow.getPath()
print "Object ID: ", exrow.getObjId()
print "Event ID: ", exrow.getEventObjId()
print "Version ", exrow.getVersionMarker()
print "Started: ", exrow.getEventStartDateTime()
print "Ended: ", exrow.getEventEndDateTime()

Wrapper classes

The PESImpl API includes classes serving as wrappers for objects returned from the web services
called by the process management methods. These wrapper classes provide an interface for
displaying the information returned by the methods.

The PageResult class

This PageResult class serves as a container for job execution results, allowing retrieval of job
execution specific data . An individual job execution corresponds to a row in the PageResult
object. For example, a job that had been executed four times corresponds to a PageResult object
containing four rows. Table 3-87 lists all methods available in the PageResult class.

Table 3-87
Methods for the PageResult class

Method Name Description
getRows Returns a list of Row objects, each representing an

execution of a job. For more information, see the
topic The Row class on p. 56.

56

Chapter 3

The Row class

The Row class serves as a container for job-level information about a job execution. You can
access metadata about a job execution using the methods of this class.Table 3-88 lists all methods
available in the Row class.

Table 3-88
Methods for the Row class

Method Name Description
getObjId Returns the execution ID of the job
getPath Returns the path of the job
getVersionMarker Returns the version marker of the job that

was run
getVersionLabel Returns the version label of the job that was

run
getEventObjId Returns the event ID of the job that was run
getEventState Returns the state of the running job
getEventCompletionCode Returns the completion code of the job
getEventStartDateTime Returns the start date and time of the job
getEventEndDateTime Returns the end date and time of the job
getQueuedDateTime Returns the queued date and time of the job

The jobExecutionDetails class

This class is returned from the getJobExecutionDetails method. It stores the run details for
a job and includes a list of jobStepExecution objects providing information about each step in
the job. Table 3-89 lists all methods available in the jobExecutionDetails class.
Table 3-89
Methods for the jobExecutionDetails class

Method Name Description
getJobStepDetails Returns a list of jobStepExecu-

tionDetails objects. For more
information, see the topic The
jobStepExecutionDetails class on p.
57.

getArtifactLocation Returns a list of job artifact locations
getCompletionCode Returns the completion code of the job

execution
getEndDateTime Returns the end date and time of the

job execution
getEventName Returns the event name of the job

execution
getEventUUID Returns the event ID of the job

execution
getExecutionState Returns the run state of the job

execution
getExecutionSuccess Returns success or failure status of the

job execution

57

The PESImpl module

Method Name Description
getExecutionWarning Indicates whether there were any

warnings
getLog Returns the log (as string) generated
getNotificationEnabled Indicates whether e-mail notifications

are enabled or not
getQueuedDateTime Returns the queued date and time of

the job execution
getStartDateTime Returns the start date and time of the

job execution
getUserName Returns the name of the user who ran

the job
getUUID Returns the execution ID of the job

The jobStepExecutionDetails class

This class stores the run details for a job step and stores a list of
jobStepChildExecutionDetails objects. This class contains the ExecutionDetails
object, to which it delegates all of its method calls.Table 3-90 lists all methods available in
the jobStepExecutionDetails class.

Table 3-90
Methods for the jobStepExecutionDetails class

Method Name Description
getJobStepChldExecution-
List

Returns a list of jobStepChildEx-
ecutionDetails objects. For
more information, see the topic The
jobStepChildExecutionDetails class on p.
58.

getArtifactLocation Returns a list of job step artifact locations
getCompletionCode Returns the completion code of the job step
getEndDateTime Returns the end date and time of the job

step
getEventName Returns the event name of the job step
getEventUUID Returns the event ID of the job step
getExecutionState Returns the run state of the job step
getExecutionSuccess Returns success or failure status of the job

step
getExecutionWarning Indicates whether there were any warnings
getLog Returns the log (as string) generated
getNotificationEnabled Indicates whether e-mail notifications are

enabled or not
getQueuedDateTime Returns the queued date and time of the

job step
getStartDateTime Returns the start date and time of the job

step
getUserName Returns the name of the user who ran the

job step
getUUID Returns the execution ID of the job step

58

Chapter 3

The jobStepChildExecutionDetails class

The jobStepChildExecutionDetails class serves as a container for child executions of
individual job steps. For example, an iterative report job step produces a child execution for each
iteration of the step. You can access metadata about the child executions using the methods of this
class. Table 3-91 lists all methods available in the jobStepChildExecutionDetails class.
Table 3-91
Methods for the jobStepChildExecutionDetails class

Method Name Description
getArtifactLocation Returns a list of child execution artifact

locations
getCompletionCode Returns the completion code of the child

execution
getEndDateTime Returns the end date and time of the child

execution
getEventName Returns the event name of the child

execution
getEventUUID Returns the event ID of the child execution
getExecutionState Returns the run state of the child execution
getExecutionSuccess Returns success or failure status of the child

execution
getExecutionWarning Indicates whether there were any warnings
getLog Returns the log (as string) generated
getNotificationEnabled Indicates whether e-mail notifications are

enabled
getQueuedDateTime Returns the queued date and time of the

child execution
getStartDateTime Returns the start date and time of the child

execution
getUserName Returns the name of the user who ran the

child execution
getUUID Returns the execution ID of the child

execution

Appendix

A
Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property right
may be used instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing, Legal and Intellectual Property Law, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA.

© Copyright IBM Corporation 2000, 2011 59

60

Appendix A

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml

Index
access control lists

applying, 30
removing, 44
retrieving, 37

ACL, 30, 37, 44
advanceSearch method, 28
advanceSearch operation, 7
applySecurity method, 30
applySecurity operation, 8

cancelJob method, 52
cascadeSecurity method, 31
cascadeSecurity operation, 9
copyResource method, 31
copyResource operation, 9
createFolder method, 32
createFolder operation, 10

deleteFile method, 33
deleteFile operation, 10
deleteFileVersion method, 34
deleteFileVersion operation, 11
deleteFolder method, 35
deleteFolder operation, 12
deleteJobExecutions method, 52
deleteJobExecutions operation, 24
downloadFile method, 36
downloadFile operation, 12

executeJob method, 53
executeJob operation, 24
export operation, 13
exportResource method, 36

file versions
deleting, 34

files
copying, 31
deleting, 33
downloading, 36
exporting, 36
importing, 41
metadata, 40
moving, 42
uploading, 48
versions, 38

folders
children of, 39
copying, 31
creating, 32
deleting, 35
metadata, 40
moving, 42

getAccessControlList method, 37
getAccessControlList operation, 14
getAllVersions method, 38
getAllVersions operation, 14
getChildren method, 39
getChildren operation, 15
getCustomPropertyValue method, 40
getCustomPropertyValue operation, 15
getJobExecutionDetails method, 54
getJobExecutionDetails operation, 25
getJobExecutionList method, 54
getJobExecutionList operation, 26
getMetadata method, 40
getMetadata operation, 16

IBM i, 2
IdentificationSpecifier class, 50
import operation, 17
importResource method, 41
installation, 1

IBM i, 2
UNIX, 2
Windows, 1

jobExecutionDetails class, 56
jobs

cancelling, 52
executing, 53
execution details, 54
executions, 52, 54

jobStepChildExecutionDetails class, 58
jobStepExecutionDetails class, 57

labels
applying, 45
removing, 43

legal notices, 59

moveResource method, 42
moveResource operation, 17

PageResult class, 29, 45, 50, 55
PESImpl module, 27

removeLabel method, 43
removeLabel operation, 18
removeSecurity method, 44
removeSecurity operation, 19
Resource class, 36, 38–39, 41, 49
Row class, 56

search
advanced, 28

© Copyright IBM Corporation 2000, 2011 61

62

Index

search method, 45
search operation, 19
SearchChildRow class, 51
SearchRow class, 50
Secure Sockets Layer, 27
setLabel method, 45
setLabel operation, 20
setMetadata method, 46
setMetadata operation, 21
SSL, 27

trademarks, 60

UNIX, 2
uploadFile method, 48
uploadFile operation, 22

Windows, 1

	IBM SPSS Collaboration and Deployment Services - Essentials for Python 4.2 Reference
	Contents
	1. IBM SPSS Collaboration and Deployment Services - Essentials for Python
	Overview
	Installation
	Installing on Windows
	Installing on UNIX
	Installing on IBM i

	2. Command line scripting
	Global keywords
	Repository connections
	Content repository scripting
	Keywords
	Operations
	The advanceSearch operation
	The applySecurity operation
	The cascadeSecurity operation
	The copyResource operation
	The createFolder operation
	The deleteFile operation
	The deleteFileVersion operation
	The deleteFolder operation
	The downloadFile operation
	The export operation
	The getAccessControlList operation
	The getAllVersions operation
	The getChildren operation
	The getCustomPropertyValue operation
	The getMetadata operation
	The import operation
	The moveResource operation
	The removeLabel operation
	The removeSecurity operation
	The search operation
	The setLabel operation
	The setMetadata operation
	The uploadFile operation

	Process management functions
	Keywords
	Operations
	The deleteJobExecutions operation
	The executeJob operation
	The getJobExecutionDetails operation
	The getJobExecutionList operation

	3. The PESImpl module
	Content repository API
	Methods
	The advanceSearch method
	The applySecurity method
	The cascadeSecurity method
	The copyResource method
	The createFolder method
	The deleteFile method
	The deleteFileVersion method
	The deleteFolder method
	The downloadFile method
	The exportResource method
	The getAccessControlList method
	The getAllVersions method
	The getChildren method
	The getCustomPropertyValue method
	The getMetadata method
	The importResource method
	The moveResource method
	The removeLabel method
	The removeSecurity method
	The search method
	The setLabel method
	The setMetadata method
	The uploadFile method

	Wrapper classes
	The Resource class
	The IdentificationSpecifier class
	The PageResult class
	The SearchRow class
	The SearchChildRow class

	Process management API
	Methods
	The cancelJob method
	The deleteJobExecutions method
	The executeJob method
	The getJobExecutionDetails method
	The getJobExecutionList method

	Wrapper classes
	The PageResult class
	The Row class
	The jobExecutionDetails class
	The jobStepExecutionDetails class
	The jobStepChildExecutionDetails class

	A. Notices
	Index

