
IBM SPSS Collaboration and Deployment Services
Version 6 Release 0

Authentication Service Developer's
Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 33.

Product Information

This edition applies to version 6, release 0, modification 0 of IBM SPSS Collaboration and Deployment Services and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introduction to web services 1
What are web services? 1
Web service system architecture 1
Web service protocol stack 2

Simple Object Access Protocol 2
Web Service Description Language 3

Proxies 5

Chapter 2. Authentication Service
overview 7
Accessing the Authentication Service 7
Calling Authentication Service operations. 7

Chapter 3. Authentication Service
concepts 9
Logging in 9

Actions 9
Services 10
Configuration 10

Logging out 11

Chapter 4. Operation reference 13
The changePassword operation 13
The doLogin operation 14
The getVersion operation 18
The login operation. 18
The logout operation 19

Chapter 5. JAX-WS clients 21
Generating a JAX-WS client 21

Packaging a JAX-WS client 21
Configuring a JAX-WS client 21

SOAPHandler example 22
Exercising web services from JAX-WS clients . . . 24

Chapter 6. Microsoft .NET
Framework-based clients 25
Adding a service reference 25

Service reference modifications 25
Configuring the web service endpoint 26
Configuring endpoint behaviors 27
Exercising the service 27

Single sign-on authentication 28

Chapter 7. Message header reference 29
Security headers 29

Security element 29
UsernameToken element 30
BinarySecurityToken and
BinarySecuritySSOToken elements 30

The client-accept-language element 31
HTTP headers 31

Notices 33
Trademarks 35

Glossary 37

Index 39

© Copyright IBM Corp. 2000, 2013 iii

iv IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Chapter 1. Introduction to web services

What are web services?
At a high level, a web service is a set of functionality distributed across a network (LAN or the Internet)
using a common communication protocol. The web service serves as an intermediary between an
application and its clients, providing both a standardized information structure and a standardized
communication protocol for interaction between the two.

Where other methods of distributed application architecture rely on a single programming language
being used on both the application and its clients, a web service allows the use of loosely coupled
services between non-homogenous platforms and languages. This provides a non-architecture-specific
approach allowing, for example, Java services to communicate with C# clients, or vice versa.

Advantages to implementing application functionality as web services include the following:
v Software written in different languages (Java or C#) running on different platforms (UNIX or

Windows) can exchange services and data
v Application functionality can be accessed by a variety of clients. For example, both a thin-client

interface and a rich-client interface can take advantage of the web service operations.
v Updates to the service are immediately available to all service clients

Web service system architecture
Web services are deployed and made publicly available using an application server, such as WebSphere,
JBoss Application Server, or Oracle WebLogic Server. The published web services are hosted by this
application server to handle application requests, access permissions, and process load. A high-level
architecture of how web services are implemented is displayed in the following diagram.

The client code supplies input to an operation offered by a proxy class. The proxy class generates a
request containing a standardized representation of the input and sends it across the network to the
application. A proxy class on the server receives the request and unmarshals the contents into objects for
processing by the application. Upon completing the operation, the application supplies a proxy with the
output. The proxy creates a standardized representation of that output and sends the response back to the
client. The client proxy unmarshals the response into native objects for subsequent processing by the
client code.

Standardizing the format of the information passing between the client and the application allows a client
written in one programming language to communicate with an application written in another. The proxy

Request Request

ResponseResponse

Figure 1. Web service architecture

© Copyright IBM Corporation 2000, 2013 1

classes, which are automatically generated from a web service description by a variety of toolkits, handle
the translation between native programming objects and the standardized representation. See the topic
“Proxies” on page 5 for more information.

Web service protocol stack
A web service implementation depends on technologies often organized in a layered stack. The
implementation itself defines a standard protocol for each technology layer, with each layer depending on
the layers appearing below it in the stack.

Beginning at the bottom of the stack, the Transport layer defines the technology standards for
communication, allowing information to move across the network. HTTP or HTTPS are often used as the
standard for the transport layer.

The Packaging layer rests on top of Transport and defines the standard for structuring information for
transport across the network. The SOAP format is commonly used, which offers an XML structure for
packaging the data. See the topic “Simple Object Access Protocol” for more information.

The topmost layer is Description and identifies the standards used by the layers below it in the stack, as
well as providing the definition of the interface available for client use. The most common means of
conveying this information is through the use of a WSDL file. See the topic “Web Service Description
Language” on page 3 for more information.

Simple Object Access Protocol
The Simple Object Access Protocol (SOAP) is a way to pass information between applications in an XML
format.

SOAP messages are transmitted from the sending application to the receiving application, typically over
an HTTP session. The actual SOAP message is made up of the Envelope element, which contains a Body
element and an optional Header element.
v Envelope. This mandatory element is the root of the SOAP message, identifying the transmitted XML

as being a SOAP packet. An envelope contains a body section and an optional header section.
v Header. This optional element provides an extension mechanism indicating processing information for

the message. For example, if the operation using the message requires security credentials, those
credentials should be part of the envelope header.

v Body. This element contains the message payload, the raw data being transmitted between the
sending and receiving applications. The body itself may consist of multiple child elements, with an
XML schema typically defining the structure of this data.

A SOAP packet and the corresponding XML is structured in the following way:

Figure 2. Web service protocol stack

2 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Web Service Description Language
A Web Service Description Language (WSDL) file provides an XML-based map of what functionality the
published web service allows, separating the implementation in the service from the interface. The WSDL
defines the following:
v The access location of the web service
v Operations the web service exposes
v Parameters the exposed operations accept
v Any request or response messages associated with the operations

The WSDL provides the information necessary to generate a client-side proxy in the target programming
language.

In accordance with the WSDL specification adopted by the World Wide Web Consortium, information in
the WSDL is organized into the following sections:
v Types. Content definitions for web service operation input and output. See the topic “Types” for more

information.
v Messages. Input and output definitions for the web service operations. See the topic “Messages” on

page 4 for more information.
v PortTypes. Groups of operations offered by the web service. See the topic “Port types” on page 4 for

more information.
v Bindings. Protocols and formats for the web service operations. See the topic “Bindings” on page 4 for

more information.
v Services. Endpoints at which the web service functionality can be accessed. See the topic “Services” on

page 5 for more information.

Types
The types element of a WSDL file contains the data type definitions employed by messages processed by
the web service. These definitions use XML to organize the information relevant to the type element
being defined. Consider the following example type definitions:
<wsdl:types>
<schema targetNamespace="http://xml.spss.com/security/remote"
xmlns="http://www.w3.org/2001/XMLSchema">
<element name="getProviders">
<complexType />

</element>
<element name="getProvidersResponse">
<complexType>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header>
 <ns1:client-accept-language soapenv:mustUnderstand="0"
 xsi:type="xsd:string" xmlns:ns1="http://xml.spss.com/ws/headers">
 en-US;q=1.0, en;q=0.8
 </ns1:client-accept-language>
 </soapenv:Header>

 <soapenv:Body>
 <getProviders xmlns="http://xml.spss.com/security/remote"/>
 </soapenv:Body>

</soapenv:Envelope>

Figure 3. An example SOAP packet

Chapter 1. Introduction to web services 3

http://www.w3.org/TR/wsdl

<sequence>
<element name="providerInfo[unbounded]" type="tns1:providerInfo" />

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>

This section defines two elements, getProviders and getProvidersResponse. The former is an empty element.
The latter contains a sequence of providerInfo child elements. These children are all of the providerInfo type,
which is defined elsewhere.

In practice, the WSDL file typically references type element definitions found in an external XML schema.
For instance, the following definition uses security-remote.xsd to define type elements.
<wsdl:types>
<xs:schema>
<xs:import namespace="http://xml.spss.com/security/remote"
schemaLocation="security-remote.xsd"/>

</xs:schema>
</wsdl:types>

Messages
The message elements of a WSDL file defines the input or output parameters for operations available in
the web service. Each message can consist of one or more parts, with the parts similar to the parameters
of a function call in a traditional programming language. Consider the following two example message
definitions:
<wsdl:message name="getProvidersResponse">
<wsdl:part element="tns2:getProvidersResponse" name="parameters" />

</wsdl:message>
<wsdl:message name="getProvidersRequest">

<wsdl:part element="tns2:getProviders" name="parameters" />
</wsdl:message>

The getProvidersResponse message contains a single part, corresponding to the getProvidersResponse element
defined in the types section of the WSDL file. Similarly, the getProvidersRequest message also contains a
single part, as defined by the getProviders element in the types section. See the topic “Types” on page 3
for more information.

Port types
The portType element of a WSDL file defines the actual interface to the web service. A port type is simply
a group of related operations and is comparable to a function library, module, or class in a traditional
programming language. The definition specifies the parameters for the operations, as well as any values
returned. The parameters and return values correspond to messages defined elsewhere in the WSDL file.
Consider the following example port type definition:
<wsdl:portType name="ProviderInformation">
<wsdl:operation name="getProviders">
<wsdl:input message="impl:getProvidersRequest" name="getProvidersRequest" />
<wsdl:output message="impl:getProvidersResponse" name="getProvidersResponse" />

</wsdl:operation>
</wsdl:portType>

The ProviderInformation port type consists of a single operation, getProviders. Input to this operation
corresponds to the getProvidersRequest message. The operation returns information in the structure defined
by the getProvidersResponse message. See the topic “Messages” for more information.

Bindings
The binding element of a WSDL file binds the interface defined by the port type to transport and
messaging protocols. Consider the following example binding definition:
<wsdl:binding name="ProviderInformationSoapBinding" type="impl:ProviderInformation">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getProviders">
<wsdlsoap:operation soapAction="" />
<wsdl:input name="getProvidersRequest">
<wsdlsoap:body namespace="http://xml.spss.com/security/remote" use="literal" />

</wsdl:input>
<wsdl:output name="getProvidersResponse">

4 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

<wsdlsoap:body namespace="http://xml.spss.com/security" use="literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

In this case, the transport attribute of the wsdlsoap:binding element defines HTTP as the transport
protocol. The getProviders operation in the interface is bound to the SOAP messaging protocol.

Services
The service element of a WSDL file identifies the network location at which the service interface can be
accessed. Consider the following example service definition:
<wsdl:service name="ProviderInformationService">
<wsdl:port binding="impl:ProviderInformationSoapBinding" name="ProviderInformation">
<wsdlsoap:address location="http://pes_server:8080/security-ws/services/ProviderInformation" />

</wsdl:port>
</wsdl:service>

In this example, the operations comprising the ProviderInformation port type can be accessed at:

http://pes_server:8080/security-ws/services/ProviderInformation

Proxies
Proxies serve as bridges between the client and the web service. A client-side proxy marshals the input
objects into a standardized representation which is sent to the web service. A server-side proxy
unmarshals the information into input objects for the service operations. The results of the operation are
marshalled into standard representations and returned to the client. The client proxy unmarshals the
response information into objects for any additional processing by the client.

Creating a proxy is the first step when developing a web service client; the proxy is the translation-unit
between your application and the web service the application is using. Fortunately, many development
environments include tools for automatically generating the client proxy from the web service WSDL file,
allowing the client developer to focus on the client application code instead of transport and packaging
protocols.

The proxy classes generated from a WSDL file depend on the tool used. For Java, the wsdl2java tool,
which is part of the Apache Axis project, can be used. This tool produces a Java class for each type in the
WSDL. Each port type results in a Java interface. A binding creates a stub class, and a WSDL service
yields a service interface with a locator implementation. These generated classes and interfaces can be
called directly from a client application written in Java to access the web service functionality.

An alternative Java proxy tool is wsimport, which is part of JAX-WS. The general structure of the
generated classes is similar to that created by the Axis tool, but there are some differences. For example,
instead of using arrays for input fields and returned items, the code generated from the wsimport tool
uses List collections. In addition, if an input type matches an output type for a method, the wsimport
tool uses a Holder class for the parameter.

In contrast, on the .NET platform, the wsdl.exe tool is often used to generate a web service proxy. This
tool creates a single source file in a specified language containing the proxy class. This class includes both
synchronous and asynchronous methods for each operation defined in the WSDL. For example, the web
service operation getProviders results in the methods getProviders, getProvidersBegin, and
getProvidersEnd. The latter two can be used for asynchronous processing.

A variety of other tools exist for other programming languages. For details, consult the documentation for
those tools. In each case, the tool creates native programming constructs that permit leveraging a web
service regardless of the service implementation language.

Chapter 1. Introduction to web services 5

6 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Chapter 2. Authentication Service overview

The Authentication Service provides methods for users of client applications to connect to and disconnect
from the IBM® SPSS® Collaboration and Deployment Services server. When a user attempts to log in to
the system, the service provides access if the user credentials are valid. For a valid user, the service
reports information about the user, such as actions the user can perform, as controlled by the
authorization mechanism. In addition, the Authentication Service offers validated users the ability to
modify their passwords.

Accessing the Authentication Service
To access the functionality offered by the Authentication Service, create a client application using the
proxy classes generated by your preferred web service tool. The endpoint for the service is:
http://<host-name>:<port-number>/<context-root>/security-ws/services/Authentication

The value of <host-name> corresponds to the name or IP address of the machine on which IBM SPSS
Collaboration and Deployment Services Repository is installed.

Note: An IPv6 address must be enclosed in square brackets, such as [3ffe:2a00:100:7031::1].
The value of <port-number> indicates the port number on which the repository server is running. The
<context-root> value specifies the custom context root, if any, configured for your repository server. If your
system does not use a context root, omit this portion of the endpoint. To access the WSDL file for the
service, append ?wsdl to the service endpoint.

For example, if IBM SPSS Collaboration and Deployment Services Repository is running on port 80 of the
machine cads_server without a context root, the WSDL file can be accessed using the path:
http://cads_server:80/security-ws/services/Authentication?wsdl

Calling Authentication Service operations
Clients access the operations offered by the web service using a stub for the service. The following is an
example of how to acquire a stub in Java through Axis defined methods:
String context = "/security-ws/services/Authentication";
URL url = new URL("http", "cads_server", 80, context);
AuthenticationService service = new AuthenticationServiceLocator();
stub = service.getAuthentication(url);

The service operations can be called directly from the stub, such as:
stub.login();

© Copyright IBM Corporation 2000, 2013 7

8 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Chapter 3. Authentication Service concepts

Logging in
To interact with IBM SPSS Collaboration and Deployment Services, a user must log in to the system
using valid credentials created by an administrator. However, the functionality available may vary across
users. To allow a client application to respond appropriately to a user's functional capabilities, IBM SPSS
Collaboration and Deployment Services returns information about the user logging in and the server
being logged in to. This capabilities information can be classified into three primary categories, as
follows:
v Actions available to the user
v Services available on the server
v Configuration settings for the server

Actions
An action is something the user can do. The ability to perform an action is controlled by the IBM SPSS
Collaboration and Deployment Services access control mechanism. Access control can be applied to
objects in the repository or to actions. Think of repository objects as nouns and actions as verbs. Both can
have access control lists. Users, groups, or roles can be authorized to deal with these nouns or verbs.

The list of actions in the capabilities information are those that a specified user can actually use. If the
user has administrative rights, then the list will contain all of the actions defined in the installation. A
non-administrative user will have a subset of actions and may have none. Typical available actions
include the following:
v Access Contents and Folders. Access the IBM SPSS Collaboration and Deployment Services Repository.
v Access Syndicated Feeds. Access syndicated feeds such as RSS (Really Simple Syndication) feeds.
v Configuration. Modify repository settings.
v Configure Model. Configure models for scoring.
v Create Subscriptions. Create individual subscribtions to repository objects, such as folders, files, jobs,

etc. The subscribers receive e-mail messages when changes are made to the corresponding objects.
v Define and Manage Notifications. Define and manage notifications for multiple individuals for events

such as job success or failure.
v Define Credentials. Create, view, and modify security credentials for execution servers.
v Define Custom Properties. Define and modify custom properties for objects within the repository.
v Define Datasources. Define and modify data sources.
v Define Message Domains. Define and modify domains for JMS messaging.
v Define Promotion Policies. Define and modify policies (sets of rules) for promoting repository objects.
v Define Server Clusters. Define and modify execution server clusters.
v Define Servers. Define and modify execution servers.
v Define Topics. Define and modify topic hierarchy for the repository.
v Job Edit. Create and modify jobs. Note that job visibility to a user is determined by permissions.
v Job Run. Execute jobs. Note that job visibility to a user is determined by permissions.
v Manage Locks Manage locks that users create on repository resources, for example, unlock resources

locked by others.
v Manage IBM SPSS Collaboration and Deployment Services Enterprise View. Create, modify, and

delete Enterprise Views, Application Views, and Data Provider Definitions.
v Manage Subscriptions. Manage other users' subscriptions, and delete subscriptions.

© Copyright IBM Corp. 2000, 2013 9

v MIME Types. Manage MIME type mappings for the repository.
v Promote Objects. Promote repository objects.
v Repository Index. Reindex the contents of the repository.
v Run Custom Dialogs Run IBM SPSS Statistics custom dialogs.
v Run Report Dynamically. Run dynamic reports, such as Business Intelligence Reporting Tools (BIRT)

reports, in IBM SPSS Collaboration and Deployment Services Deployment Portal.
v Schedules. Manage job schedules.
v Score Model. Score models.
v Show All Versions. View all versions of objects (labeled and unlabeled) in IBM SPSS Collaboration and

Deployment Services Deployment Portal. By default, users are able to see only labeled versions in IBM
SPSS Collaboration and Deployment Services Deployment Portal.

v Show latest. View only the latest version of objects.
v Submit Work Submit work (for example, reports) for processing by IBM SPSS Collaboration and

Deployment Services.
v User Preference Administration. Manage the preferences of other users. Note that IBM SPSS

Collaboration and Deployment Services products do not provide any user interfaces for modifying the
preferences of other users. This setting only applies if calling the User Preference Web Service directly.

v View Expired Files. View expired content, such as files and jobs.
v View Model Management Dashboard. View model management dashboards in IBM SPSS

Collaboration and Deployment Services Deployment Manager and IBM SPSS Collaboration and
Deployment Services Deployment Portal.

Note: Show latest action is a subset of Show All Versions and if a user has both actions, Show All Versions
supersedes Show latest.

The most important piece of information about an action is its resource ID. This is a non-localized,
internal identifier of the action. Much of the time the client is only interested in whether the user has
access to the action or not. In such cases, the client should examine the list of actions for the user and see
if the resource ID exists. If it does, the user can do something with the action. That information can be
used to modify the client interface accordingly. For example, if the resource ID for Export Content is
present in the capabilities information, a menu item for exporting can be enabled for a user.

Services
IBM SPSS Collaboration and Deployment Services includes a variety of web services. Service information
includes a list of all services available using a resource ID to identify each. A client can use the resource
IDs to access the services without a need to hard-code the URL path of each service.

For example, if the repository is running on port 80 of cds_server, the Provider Information Service has a
resource ID of security/providers with a URL of:

http://cds_server:80/security-ws/services/ProviderInformation

A client should use the service information to build a map of resource ID to service URLs. The URLs are
suitable for being passed to a service locator, usually generated by a proxy code generator.

Configuration
Configuration information identifies modifiable properties of the repository. Services may offer these
configurable items to allow control over settings used. The items can be presented to a client user to be
customized as needed. Configuration items are characterized by the following properties:
v A configkey used to internally access the item
v A name used to identify the item

10 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

v A group identifier used to classify similar items together

For example, the configuration item for allowing a guest user has a name of Allow guest user with a
configkey of com.spss.security/enableGuest. The item belongs to the group Security, allowing it be grouped
with other security-related items in client interfaces. The default value is 0.

All values for configuration items are stored as strings, with boolean values stored as "0" and "1." Some
items can have a collection of values, but most only have one. In addition, items without values are
possible.

Logging out
Logging out involves disconnecting a user from the repository. The act of logging out returns two pieces
of information about the user session, as follows:
v Time the user logged in
v Duration of the session

Chapter 3. Authentication Service concepts 11

12 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Chapter 4. Operation reference

The changePassword operation
Changes the password for the user specified in the SOAP header to a new value.

Input fields

The following table lists the input fields for the changePassword operation.

Table 1. Fields for changePassword.

Field Type/Valid Values Description

changePassword changePassword Password information for the user.
The user ID, security provider, and
domain are obtained using the
current authenticated subject.

Return information

The following table identifies the information returned by the changePassword operation.

Table 2. Return Value.

Type Description

string General purpose response. Just a string.

Java example

Changing a password involves the specification of two pieces of information in a ChangePassword object:
the old password and the new password. Supply the changePassword operation with this object to
perform the change.
ChangePassword cp = new ChangePassword();
cp.setNewPassword("newpwd");
cp.setOldPassword("password");
String status = stub.changePassword(cp);

SOAP request example

Client invocation of the changePassword operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username>validUser</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">
en-US;q=1.0, en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>
<changePassword xmlns="http://xml.spss.com/security/remote">
<ns2:changePassword oldPassword="password" newPassword="newpwd"

© Copyright IBM Corp. 2000, 2013 13

xmlns:ns2="http://xml.spss.com/security"/>
</changePassword>

</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a changePassword operation call by sending a SOAP response message containing
the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<changePasswordResponse xmlns="http://xml.spss.com/security/remote">
<ns1:status xmlns:ns1="http://xml.spss.com/security">OK</ns1:status>

</changePasswordResponse>
</soapenv:Body>

</soapenv:Envelope>

The doLogin operation
Returns information about the actions, services, and configuration of the IBM SPSS Collaboration and
Deployment Services server. This information is useful in the determination of how a client interacts with
the server.

Return information

The following table identifies the information returned by the doLogin operation.

Table 3. Return Value.

Type Description

capabilities The capabilities of the server and how they are available
for the user. A client should usually ask for this as a part
of a user login operation.

Java example

To access server information, call the doLogin operation for the service stub. This operation returns a
Capabilities object from which actions, services, and configuration information can be obtained.
Capabilities cap = stub.doLogin();
Actions act = cap.getActions();

SOAP request example

Client invocation of the doLogin operation generates a SOAP request message that is sent to the server for
processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username xsi:type="xsd:string">validUser</wsse:Username>
<wsse:Password xsi:type="xsd:string">password</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:mustUnderstand="0" xsi:type="xsd:string"
xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0, en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>
<doLogin xmlns="http://xml.spss.com/security/remote"/>

</soapenv:Body>
</soapenv:Envelope>

14 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

SOAP response example

The server responds to a doLogin operation call by sending a SOAP response message containing the
results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<doLoginResponse xmlns="http://xml.spss.com/security/remote">
<ns1:capabilities platformVersion="2.5 (2.50.000.335) at 04/04/2007 22:13:59:921 CDT)"
stamp="2007-04-06T10:25:20.617-05:00" host="http://pes_server.spss.com:80"
userID="validUser" primaryPrincipalID="//uNative//validuser"
xmlns:ns1="http://xml.spss.com/security">
<ns1:actions>
<ns1:action name="Repository Index" description="Reindex the repository contents."
resourceID="contentRepository/index" url="/cr/index">
<ns1:navItems>
<ns1:navItem locus="bookkeeper" name="Repository Index" order="0"/>

</ns1:navItems>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Manage Subscriptions"
description="Manage other users’ subscriptions, for example, delete subscriptions"
resourceID="notification/manageIndividualSubscriptions">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Birt Installer" description="Birt Designer Installer"
resourceID="peaInstall/birtDesignerInstall" url="/birtdesignerinstall">
<ns1:navItems>
<ns1:navItem locus="bookkeeper" name="Birt Installer" order="0"/>

</ns1:navItems>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Define and Manage Notifications"
description="Define notifications of job processing events and content changes for multiple recipients"
resourceID="notification/multicastSubscriptions">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Define Custom Properties"
description="Define and modify custom properties for repository objects"
resourceID="contentRepository/customProperties">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Run Report Dynamically"
description="Permission to Run Report dynamically" resourceID="erExtension/RunReport"
url="/erExtension/RunReport">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Define Datasources"
description="Create and modify data source definitions"
resourceID="contentRepository/datasources">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Manage Enterprise View"
description="Allows user to create, edit, and delete Enterprise Views, Application Views,
and Data Provider Definitions."

resourceID="pev/managePevId">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Access Contents and Folders" description="Access the repository"
resourceID="contentRepository/folders">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Define Servers" description="Create and modify execution servers"
resourceID="contentRepository/servers">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Submit Work"
description="Allow work (e.g. reports) to be submitted to the Process Management System"
resourceID="prms/submitwork">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>

Chapter 4. Operation reference 15

<ns1:action name="Export Content" description="Export repository folder content"
resourceID="contentRepository/export">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="User Preference Administration"
description="Manage the preferences of other users" resourceID="userPref/Admin">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Import Content"
description="Import folders that have been exported from the repository"
resourceID="contentRepository/import">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="MIME Types" description="Manage MIME types and icons."
resourceID="configuration/MimeManager" url="/config/mimeManager">
<ns1:navItems>
<ns1:navItem locus="bookkeeper" name="MIME Types" order="0"/>

</ns1:navItems>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Configuration" description="Modify system-wide settings"
resourceID="configuration/Editor" url="/config/config">
<ns1:navItems>
<ns1:navItem locus="bookkeeper" name="Configuration" order="0"/>

</ns1:navItems>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="View Expired Files" description="View expired content"
resourceID="contentRepository/showExpired">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Define Topics"
description="Define and modify the repository topic hierarchy"
resourceID="contentRepository/topics">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Schedules" description="Create and modify schedules for jobs"
resourceID="prms/schedules">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Jobs"
description="Create and modify jobs.
Note: Use appropriate object security/permissions to restrict visibility to jobs."

resourceID="prms/jobs">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Define Credentials"
description="Create and modify security credentials for execution servers"
resourceID="contentRepository/credentials">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Show All Versions"
description="View all versions (labelled and unlabelled) of files in Deployment Portal"
resourceID="consumerUI/ShowAllVersions" url="consumerUI/ShowAllVersions">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
<ns1:action name="Create Subscriptions"
description="Subscribe to repository objects to get notified of changes to the objects (individual users only)"
resourceID="notification/individualSubscriptions">
<ns1:navItems/>
<ns1:permissions><ns1:permission>/perform</ns1:permission></ns1:permissions>

</ns1:action>
</ns1:actions>
<ns1:services>
<ns1:service resourceID="capabilities" name="security/wsCapabilities"
url="http://pes_server.spss.com:80/security-ws/services/CapabilityInformation"
>security/wsCapabilitiesDesc</ns1:service>

<ns1:service resourceID="notification/EventCollector" name="Event Collector Endpoint"
url="http://pes_server.spss.com:80/notification/services/EventCollector"/>

<ns1:service resourceID="notification/SubscriptionManager"
name="Subscription Manager Endpoint"
url="http://pes_server.spss.com:80/notification/services/SubscriptionManager"/>

<ns1:service resourceID="notification/SubscriptionRepository"
name="Subscription Repository Endpoint"
url="http://pes_server.spss.com:80/notification/services/SubscriptionRepository"/>

16 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

<ns1:service resourceID="pemupdate" name="PEM Update"
url="http://pes_server.spss.com:80/pem/update">This is not a SOAP web service, it’s
just a web site in Eclipse update format.</ns1:service>

<ns1:service resourceID="prms/ProcessManagement"
name="Endpoint address of the Process Management web service."
url="http://pes_server.spss.com:80/process/services/ProcessManagement"/>

<ns1:service resourceID="prms/SchedulingServer"
name="Endpoint address of the Process Management Scheduling Server web service."
url="http://pes_server.spss.com:80/process/services/SchedulingServer"/>

<ns1:service resourceID="reportservice/reportservice" name="SPSS Reporting Service"
url="http://pes_server.spss.com:80/reporting-ws/services/Reporting">Report Services</ns1:service>

<ns1:service resourceID="repository/ContentRepository"
name="Repository"
url="http://pes_server.spss.com:80/cr-ws/services/ContentRepository"/>

<ns1:service resourceID="repository/ContentRepositoryURI"
name="Repository URI"
url="http://pes_server.spss.com:80/cr-ws/services/ContentRepositoryURI"/>

<ns1:service resourceID="search/search" name="SearchService "
url="http://pes_server.spss.com:80/search-ws/services/Search">Searches the index</ns1:service>

<ns1:service resourceID="search/values" name="SearchValuesService "
url="http://pes_server.spss.com:80/search-ws/services/Values">Search values endpoint</ns1:service>

<ns1:service resourceID="security/authentication" name="security/wsAuthentication"
url="http://pes_server.spss.com:80/security-ws/services/Authentication"
>security/wsAuthenticationDesc</ns1:service>

<ns1:service resourceID="security/directoryManagement"
name="security/wsDirectoryManagement"
url="http://pes_server.spss.com:80/security-ws/services/DirectoryManagement"
>security/wsDirectoryManagementDesc</ns1:service>

<ns1:service resourceID="security/providers" name="security/wsProviderInformation"
url="http://pes_server.spss.com:80/security-ws/services/ProviderInformation"
>security/wsProviderInformationDesc</ns1:service>

<ns1:service resourceID="security/userDirectories" name="security/wsDirectoryInformation"
url="http://pes_server.spss.com:80/security-ws/services/DirectoryInformation"
>security/wsDirectoryInformationDesc</ns1:service>

<ns1:service resourceID="userpref/client" name="User Preference Client"
url="http://pes_server.spss.com:80/userpref-ws/services/Client">Client User
Preference services.</ns1:service>

<ns1:service resourceID="userpref/manager" name="User Preference Manager"
url="http://pes_server.spss.com:80/userpref-ws/services/Manager">Manager User
Preference services.</ns1:service>

</ns1:services>
<ns1:configuration>
<ns1:configItem configKey="com.spss.search/fieldFold" name="Field Count" group="Search ">
<ns1:value>5</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="com.spss.repository.ContentRepository/defaultCharset"
name="Default charset" group="Repository">
<ns1:value>UTF-8</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="mail.smtp.from" name="SMTP from e-mail address"
group="Notification">
<ns1:value>bmcgee18594@yahoo.com</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="com.spss.search/Normalizer/Mode"
name="Unicode Normalizer Mode " group="Search ">
<ns1:value>1</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="com.spss.security/enableGuest" name="Allow guest user"
group="Security">
<ns1:value>0</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="URLPrefix" name="URL Prefix" group="Setup">
<ns1:value>http://pes_server.spss.com:80</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="com.spss.search/fieldList" name="Field Order" group="Search ">
<ns1:value>Title</ns1:value>
<ns1:value>Description</ns1:value>
<ns1:value>Keyword</ns1:value>
<ns1:value>Author</ns1:value>
<ns1:value>Version Creation By</ns1:value>
<ns1:value>Label</ns1:value>
<ns1:value>Version Creation Date</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="com.spss.security/LoginInfo" name="Message" group="Security">
<ns1:value>PES 3.0</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="com.spss.search/pageSize" name="Default Page Size "
group="Search ">
<ns1:value>25</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="com.spss.configsys/clientProtocolTimeout"
name="Protocol Timeout" group="Deployment Manager">
<ns1:value>180</ns1:value>

</ns1:configItem>

Chapter 4. Operation reference 17

<ns1:configItem configKey="com.spss.repository.ContentRepository/notificationEnabled"
name="Repository Notification Enabled" group="Repository">
<ns1:value>1</ns1:value>

</ns1:configItem>
<ns1:configItem configKey="securityP/passwordAnnotation" name="security/cfgNameAnno"
group="security/cfgPseudoGroup"/>

<ns1:configItem configKey="securityP/supportPasswordChange"
name="security/cfgNameAllowPwdChange" group="security/cfgPseudoGroup">
<ns1:value>true</ns1:value>

</ns1:configItem>
</ns1:configuration>

</ns1:capabilities>
</doLoginResponse>

</soapenv:Body>
</soapenv:Envelope>

The getVersion operation
Returns the version number of the service.

Return information

The following table identifies the information returned by the getVersion operation.

Table 4. Return Value.

Type Description

string The version of the web service.

Java example

To access the version number of the service, call the getVersion operation from the service stub.
System.out.println("Service Version = " + stub.getVersion());

SOAP request example

Client invocation of the getVersion operation generates a SOAP request message that is sent to the server
for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<getVersion xmlns="http://xml.spss.com/security/remote"/>

</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getVersion operation call by sending a SOAP response message containing the
results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<getVersionResponse xmlns="http://xml.spss.com/security/remote">
<version>4.20.000</version>

</getVersionResponse>
</soapenv:Body>

</soapenv:Envelope>

The login operation
This operation is deprecated. Use the doLogin operation in place of this operation.

18 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

The logout operation
Returns information about the user's session.

Return information

The following table identifies the information returned by the logout operation.

Table 5. Return Value.

Type Description

logoutDetails Information about the user session being terminated.

Java example

To access session information, call the logout operation from the service stub. The operation returns a
LogoutDetails object from which the session information can be obtained. Use the getLoginStamp method
to access the login time as a Calendar object. Use the getDuration method to access the session duration
as a Duration object.
LogoutDetails ld = stub.logout();
java.util.Calendar cal = ld.getLoginStamp();
org.apache.axis.types.Duration dur = ld.getDuration();

SOAP request example

Client invocation of the logout operation generates a SOAP request message that is sent to the server for
processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken>
<wsse:Username>validUser</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">
en-US;q=1.0, en;q=0.8

</ns1:client-accept-language>
</soapenv:Header>
<soapenv:Body>
<logout xmlns="http://xml.spss.com/security/remote"/>

</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a logout operation call by sending a SOAP response message containing the
results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<logoutResponse xmlns="http://xml.spss.com/security/remote">
<ns1:logoutDetails loginStamp="2006-06-12T11:45:09.365-05:00"
duration="PT4M45.433S" xmlns:ns1="http://xml.spss.com/security"/>

</logoutResponse>
</soapenv:Body>

</soapenv:Envelope>

Chapter 4. Operation reference 19

20 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Chapter 5. JAX-WS clients

Java developers can create custom web service clients by using JAX-WS.

The discussion here assumes the use of Java 6. In general, the process for accessing IBM SPSS
Collaboration and Deployment Services web services involves the following steps:
1. Generate a web service client using wsimport
2. Package the client
3. Programmatically configure the client
4. Exercise the web service

Generating a JAX-WS client
To generate a JAX-WS client, open a command prompt and execute the Java 6 wsimport command.

The wsimport command creates JAX-WS service classes and JAXB classes that represent the WSDL
schema. For example, the following command executes wsimport for the Scoring.HttpV2 service, storing
the output in the current directory:
"c:\Program Files\IBM\Java60\bin\wsimport.exe" http://localhost:7001/scoring/services/Scoring.HttpV2?wsdl

In this example, the command obtained the WSDL from the server by using the endpoint name followed
by ?wsdl. The wsimport command requires access to the WSDL in order to generate the files. JAX-WS also
requires access to the WSDL file during runtime, so this example hard codes the value provided to
wsimport in the Java code. The generated client fetches the WSDL from that same location unless
otherwise specified. An alternative is to store the WSDL locally and refer to the local copy rather than
downloading the WSDL from the server.

Packaging a JAX-WS client
A JAX-WS client must be packaged as a jar file.

The following example command creates a jar file named scoring.jar:
"c:\Program Files\IBM\Java60\bin\jar.exe" -cvf scoring.jar *

This command assumes the command prompt is in the same location in which the client was generated.

If you store the WSDL locally, include the WSDL and XSD files in the jar file. Place the files in the
\META-INF\wsdl directory within the file. Refer to that directory programmatically when configuring the
client.

Configuring a JAX-WS client
JAX-WS clients can obtain the WSDL file remotely from the server or locally from within the jar file.

The following example demonstrates obtaining the WSDL from the server:
com.spss.scoring.ws.jaxws.ScoringServices service =

new com.spss.scoring.ws.jaxws.ScoringServices(
new URL("http://localhost:7001/scoring/services/Scoring.HttpV2?wsdl"),
new QName("http://xml.spss.com/scoring/wsdl", "ScoringServices"));

The URL includes the host and port for your server.

© Copyright IBM Corp. 2000, 2013 21

The following example demonstrates obtaining the WSDL from the within the jar file:
com.spss.scoring.ws.jaxws.ScoringServices service =

new com.spss.scoring.ws.jaxws.ScoringServices(
DemoClass.class.getResource("/META-INF/wsdl/scoring.wsdl"),
new QName("http://xml.spss.com/scoring/wsdl", "ScoringServices"));

In order to include the required SOAP security headers, create an object that implements
SOAPHandler<SOAPMessageContext>. See “SOAPHandler example” for an example handler object. The
following example shows how this object is used:
service.setHandlerResolver(new HandlerResolver()
{

@Override
public List<Handler> getHandlerChain(PortInfo portInfo)
{

List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(new SecurityHandler("user", "password", "en-US;q=1.0, en;q=0.8"));
return handlerChain;

}
});

Next, access the service endpoint:
ScoringV2 serviceEndpoint = service.getHttpV2();

After obtaining the service endpoint, set the JAX-WS standard endpoint address property, which specifies
the URL at which to access the endpoint.
Map<String, Object> requestContext = ((BindingProvider)serviceEndpoint).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

"http://localhost:7001/scoring/services/Scoring.HttpV2");

SOAPHandler example
JAX-WS clients must include an object that implements SOAPHandler<SOAPMessageContext>.

The following code provides an example of this object.
/**
** Licensed Materials - Property of IBM
** IBM SPSS Products: Collaboration and Deployment Services
** © Copyright IBM Corp. 2000, 2013
** US Government Users Restricted Rights - Use, duplication or
** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
**
***/

import java.util.Collections;
import java.util.Set;

import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

/**
* This is a SOAP handler that applies a security header and a language header to a SOAP message.
*/
public class SecurityHandler implements SOAPHandler<SOAPMessageContext>
{

// WS-Security header values
public static final String SECURITY = "Security";
public static final String USERNAME_TOKEN = "UsernameToken";
public static final String USERNAME = "Username";
public static final String PASSWORD = "Password";
public static final String WS_SECURITY_NAMESPACE =

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

// prefixes

22 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

public static final String WSSE_PREFIX = "wsse"; // ws service security
public static final String SPSS_PREFIX = "spss"; // spss prefix

// SPSS custom language header values
public static final String SPSS_HEADER_NAMESPACE = "http://xml.spss.com/ws/headers";
public static final String CLIENT_ACCEPT_LANGUAGE_HEADER = "client-accept-language";

private String i_username;
private String i_password;
private String i_acceptLanguage;

/**
* Creates a security and language handler
* @param username A user name to access the web service. Cannot be null.
* @param password A password to access the web service. Cannot be null.
* @param acceptLanguage The language that should be used by the web service.
* This value should be formatted according to the HTTP specification regarding
* the Accept-Language HTTP header (e.g. en-US;q=1.0, en;q=0.8)
* If the value is null, the language header will not be added.
*/
public SecurityHandler(String username, String password, String acceptLanguage)
{

i_username = username;
i_password = password;
i_acceptLanguage = acceptLanguage;

}

@Override
public boolean handleMessage(SOAPMessageContext context)
{

// Apply this handler to only outbound traffic
if((Boolean)context.get(SOAPMessageContext.MESSAGE_OUTBOUND_PROPERTY))
{

// get the message
SOAPMessage message = context.getMessage();
try
{

// get the message header
SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();
SOAPHeader header = envelope.getHeader();
if (header == null)
{

header = envelope.addHeader();
}

// add the UsernameToken header
header.addChildElement(createUsernameTokenSecurityHeader());
// assuming the language was provided, apply the custom language header
if(i_acceptLanguage != null)
{

header.addChildElement(createLanguageHeader());
}

}
catch (Exception e)
{

e.printStackTrace();
}

}
// allow any other handler to execute
return true;

}

/**
* This method creates a custom language header, which allows the scoring service
* to use the given language if possible.
* @return A custom language header
* @throws Exception
*/
private SOAPElement createLanguageHeader() throws Exception
{

SOAPFactory factory = SOAPFactory.newInstance();

// create a custom language header
SOAPElement languageHeader =

factory.createElement(CLIENT_ACCEPT_LANGUAGE_HEADER,SPSS_PREFIX,SPSS_HEADER_NAMESPACE);

// include the language text
languageHeader.addTextNode(i_acceptLanguage);

return languageHeader;
}

/**
* Creates the WS-Security SOAP header for UsernameToken as SOAPElement.

Chapter 5. JAX-WS clients 23

*
* @return the WS-Security SOAP header for UsernameToken
* @throws Exception as appropriate
*/
private SOAPElement createUsernameTokenSecurityHeader() throws Exception
{

SOAPFactory factory = SOAPFactory.newInstance();

// create a UsernameToken element
SOAPElement usernameToken =
factory.createElement(USERNAME_TOKEN, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

// add the username element
SOAPElement usernameElement =
factory.createElement(USERNAME, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

usernameElement.addTextNode(i_username);
usernameToken.addChildElement(usernameElement);

// add the password element
SOAPElement passwordElement =
factory.createElement(PASSWORD, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

passwordElement.addTextNode(i_password);
usernameToken.addChildElement(passwordElement);

// create the Security Header
SOAPElement securityHeader =
factory.createElement(SECURITY, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

securityHeader.addChildElement(usernameToken);

return securityHeader;
}

@Override
public boolean handleFault(SOAPMessageContext context)
{

// allow any other handler to execute
return true;

}

@Override
public void close(MessageContext context)
{

// do nothing
}

@Override
public Set<QName> getHeaders()
{

return Collections.emptySet();
}

}

Exercising web services from JAX-WS clients
Once properly configured, a JAX-WS client can make calls to IBM SPSS Collaboration and Deployment
Services web services.

For example, the following code calls the getConfigurations operation of the Scoring Service:
serviceEndpoint.getConfigurations();

24 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Chapter 6. Microsoft® .NET Framework-based clients

In order to use the web services from a Microsoft Windows Communication Foundation (WCF) client,
you will need Visual Studio 2008 or later. The discussion here assumes the use of Visual Studio 2008. In
general, the process for accessing IBM SPSS Collaboration and Deployment Services web services
involves the following steps:
1. Add a Service Reference. See the topic “Adding a service reference” for more information.
2. Configure the web service endpoint. See the topic “Configuring the web service endpoint” on page 26

for more information.
3. Programmatically configure the necessary endpoint behaviors. See the topic “Configuring endpoint

behaviors” on page 27 for more information.
4. Exercise the web service. See the topic “Exercising the service” on page 27 for more information.

Adding a service reference
The first step in using a WCF client to access IBM SPSS Collaboration and Deployment Services web
services is to make the service available to the Visual Studio project by adding it as a Service Reference.
1. In Visual Studio, right-click the folder’s References folder and select Add Service Reference.
2. Type the URL of the service WSDL location in the Address field, and click Go. The value corresponds

to the service endpoint appended with ?wsdl.
3. Specify the namespace in the Namespace field.
4. Click OK.

Visual Studio adds a new service reference to the Service Reference directory for the project. The name of
the reference corresponds to the specified namespace.

Important: If you have a .NET client created by using a version of IBM SPSS Collaboration and
Deployment Services before 6.0, you must regenerate your service references from the current WSDL files
to allow successful communication between your application and the current server. If you do not
regenerate your service references, you may experience a variety of errors that may include incorrect
namespace assignments, NullPointerExceptions in the web services being invoked, and data type
assignment errors.

Service reference modifications
Due to known compatibility issues between Microsoft tooling and some WSDL files, you need to
manually modify some service references before they can be used successfully. For information about the
specific issues, see articles 891386 and 326790 on the Microsoft Support site.

To modify a service reference:
1. In Visual Studio, select the project and click Show All Files from the Project menu.
2. Expand the service reference that needs to be modified.
3. Expand the Reference.svcmap node.
4. Open the Reference.cs file.
5. Make the required modifications.
6. Save the file.

For the Content Repository Service , Content Repository URI Service, and Process Management Service,
you need to make the following changes to the RowType class:

© Copyright IBM Corp. 2000, 2013 25

http://support.microsoft.com/kb/891386
http://support.microsoft.com/kb/326790

v private value[][] cellField should be changed to private value[] cellField

v public value[][] cell should be changed to public value[] cell

For the Scoring Service, you need to make the following changes:
v in the returnedDPDOutputTable class, private returnedDPDOutputValue[][]

returnedDPDOutputrowField should be changed to private returnedDPDOutputValue[]
returnedDPDOutputrowField

v in the returnedDPDOutputTable class, private returnedDPDOutputValue[][] returnedDPDOutputRow
should be changed to private returnedDPDOutputValue[] returnedDPDOutputRow

v in the returnedRequestInputTable class, private returnedRequestInputValue[][]
returnedRequestInputRow should be changed to private returnedRequestInputValue[]
returnedRequestInputRow

v in the returnedRequestInputTable class, private returnedRequestInputValue[][]
returnedRequestInputRowField should be changed to private returnedRequestInputValue[]
returnedRequestInputRowField

v in the requestInputTable class, private input1[][] requestInputRowField should be changed to
private input1[] requestInputRowField

v in the requestInputTable class, private input1[][] requestInputRow should be changed to private
input1[] requestInputRow

For the PevServices Service, you need to make the following changes:
v in the avTableConflict class, private avColumnMeta[][] avColumnConflictField should be changed to

private avColumnMeta[] avColumnConflictField

v in the avTableConflict class, private avColumnMeta[][] avColumnConflict should be changed to
private avColumnMeta[] avColumnConflict

v in the evTableConflict class, private evColumnMeta[][] evColumnConflictField should be changed to
private evColumnMeta[] evColumnConflictField

v in the evTableConflict class, private evColumnMeta[][] evColumnConflict should be changed to
private evColumnMeta[] evColumnConflict

Configuring the web service endpoint
In WCF, you can configure a service endpoint either declaratively using an app.config file, or
programmatically using the WCF APIs. The following steps describe the creation of a basic configuration
within an app.config file.
1. In Visual Studio, double-click the app.config file for the application (or web.config for a

web-application).
2. Find the system.serviceModel element. Create it if it does not already exist.
3. Find the client element. Create it if it does not already exist.
4. Create a new endpoint element as a child of the client element.
5. Specify the appropriate service endpoint URL as the value of the address attribute.
6. Specify basicHttpBinding as the value of the binding attribute.
7. Specify the appropriate service contract as the value of the contract attribute. The service contract is

the value of the service reference namespace appended with the service name.
8. Optionally specify a value for the name attribute that identifies a name for the endpoint configuration.

If the name is blank, the configuration is used as the default for the service.

The resulting app.config file should be similar to the following example:
<system.serviceModel>

<client>
<endpoint

address="http://cads_server:8080/cr-ws/services/ContentRepository"

26 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

binding="basicHttpBinding"
bindingConfiguration=""
contract="IBM.SPSS.ContentRepository"
name=""/>

</client>
</system.serviceModel>

Configuring endpoint behaviors
The following two issues complicate the use of IBM SPSS Collaboration and Deployment Services web
services by WCF clients:
v WCF does not allow the username and password to be transmitted over HTTP
v WCF does not correctly understand the SOAP Fault format returned by the services

To address these problems, a sample Visual Studio project is available that contains classes adding
endpoint behaviors that resolve both issues. The IBM SPSS Collaboration and Deployment Services
installation media includes this project.

To use these classes, ensure that the IBM.SPSS.WCF.Utilities project containing these classes has been
compiled and added as a referenced DLL to the Visual Studio project that exercises the web services.
When constructing a new service client instance, ensure that the behaviors are added as follows:
ContentRepositoryClient serviceClient = new ContentRepositoryClient();
serviceClient.Endpoint.Behaviors.Add(

new ApplyClientInspectorsBehavior(
new HeaderInjectionMessageInspector(

new UsernameTokenSecurityHeader("admin", "Abcdefg1")
),
new SOAPFaultFormatMessageInspector())

);

This adds two message inspectors to the behaviors for the endpoint. The first allows message headers to
be injected, permitting a UsernameToken security header containing the username and password to be
transmitted over HTTP. The second message inspector intercepts SOAP Faults, ensuring that they are
formatted for proper WCF processing.

Exercising the service
After adding the service reference to the project, configuring the endpoint, and adding the necessary
endpoint behaviors, the WCF-based web service client is ready. Add the .NET source code to the project
to exercise the web service as needed.

There may be instances in which the .NET client proxies are generated incorrectly, leading to unexpected
missing results at runtime. If a web service call returns no results when results are expected, the
generated .NET types associated with the request and response should be examined. Specifically,
members of the types may have two .NET attributes assigned. The first, MessageBodyMemberAttribute,
will often include the proper namespace for the member type. The second, XmlElementAttribute, should
have the same namespace as MessageBodyMemberAttribute. If this is not the case, add the namespace to
XmlElementAttribute. Moreover, the addition of XML serialization attributes, such as
System.XML.Serialization.XmlElementAttribute, may be necessary to correctly name the expected
namespace or element. For example, the following generated client code would need to be modified:
public partial class getUsersResponse {

System.ServiceModel.MessageBodyMemberAttribute(Namespace =
"http://xml.spss.com/pes/userPref/remote", Order = 0)]

public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

The corrected code is as follows:
public partial class getUsersResponse {

[System.ServiceModel.MessageBodyMemberAttribute(Namespace =
"http://xml.spss.com/pes/userPref/remote", Order = 0)]

[System.Xml.Serialization.XmlElementAttribute(ElementName="usersRequestResponse")]
public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

Chapter 6. Microsoft® .NET Framework-based clients 27

Single sign-on authentication
You can use single sign-on authentication for web service calls by obtaining a service ticket that you
include in your SOAP requests.

The general process of using single sign-on authentication for WCF clients includes the following steps:
1. Obtain a ticket-grating ticket (TGT) using .NET or WCF code.
2. Send the TGT to the IBM SPSS Collaboration and Deployment Services Repository server using the

SSO Authentication Service getToken operation to obtain a service ticket. This ensures that single
sign-on authentication occurs on the repository server.

3. Send the service ticket in the SOAP header for all subsequent web services calls from your client
application.

28 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Chapter 7. Message header reference

The headers for the transport and packaging layers contain vital information for processing a web service
call.

For IBM SPSS Collaboration and Deployment Services, the SOAP headers contain the security
information under which the web service call is processed. In addition, the HTTP headers contain
information about the client that initiated the web service request.

Security headers
Most IBM SPSS Collaboration and Deployment Services web service calls require security information in
the request message.

In general, the structure of this content follows the WS-Security extension to the SOAP 1.1 standard. This
documentation provides details on the XML elements and attributes that are recognized by IBM SPSS
Collaboration and Deployment Services. Some of the elements and attributes are required, some are
optional, and some are ignored. Refer to the following official specifications for details, but IBM SPSS
Collaboration and Deployment Services requires some special values not referenced in the official
specifications.
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

The following table defines the values of namespaces that are used for the SOAP header elements.

Table 6. SOAP header namespaces

Namespace prefix Namespace value

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

soapenv http://schemas.xmlsoap.org/soap/envelope/

spsssec http://xml.spss.com/security

Security element
The wsse:Security element is the main security header element included in a soapenv:Header element.

Table 7. Attributes of wsse:Security

Attribute Description Example

soapenv:actor Targets a given endpoint along the
message path. This value is ignored.

http://schemas.xmlsoap.org/soap/
actor/next

soapenv:mustUnderstand Clients can specify if the server must
process this element. This value is
ignored.

0

© Copyright IBM Corp. 2000, 2013 29

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

UsernameToken element
Use the wsse:UsernameToken element when a traditional user and password combination is required.

Table 8. Attributes of wsse:UsernameToken

Attribute Description

wsu:Id An optional string label for the security token. This value is ignored.

Table 9. Child elements of wsse:UsernameToken

Attribute Description Example

wsse:Username The xml value represents the identity of the
user.

a_user

wsse:Password The attribute Type specifies the type of
password. PasswordText is currently the
only supported type.

The xml value can handle plain text
passwords and encrypted data.

myPassword
[{AES}KrY+KLlOYo4O6545tgGsYQ==]

wsse:Nonce The xml value represents a
cryptographically random nonce encoded as
base64 data. This is currently ignored.

RUx1ugQo0o3g0Xyl+sUEsA==

wsu:Created The xml value represents the creation time
as a timestamp conforming to
wsu:Timestamp. This is currently ignored.

2013-10-08T02:09:20Z

BinarySecurityToken and BinarySecuritySSOToken elements
Binary security tokens may be used when IBM SPSS Collaboration and Deployment Services
communicates with itself or when single sign-on (SSO) is used. Customer usage of these token types is
limited to SSO.

The wsse:BinarySecurityToken and wsse:BinarySecuritySSOToken elements have the same format, but
only wsse:BinarySecurityToken is recognized in the official WS-Security standard. The element
wsse:BinarySecuritySSOToken was added as a nonstandard element when used in SSO.

Of these two elements, you should use wsse:BinarySecurityToken and you must supply the correct
attributes for proper handling. The most critical attribute is the wsu:Id value which is used during web
service request processing to handle the security token correctly.

Table 10. Attributes of wsse:BinarySecurityToken

Attribute Description Example

ValueType Indicates the type of the security
token. IBM SPSS Collaboration and
Deployment Services always writes
these values when creating its own
XML, but this value is currently
ignored during processing. You
should use
spsssec:BinarySecuritySSOToken.

spsssec:BinarySecurityToken
spsssec:BinarySecuritySSOToken

30 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Table 10. Attributes of wsse:BinarySecurityToken (continued)

Attribute Description Example

EncodingType Indicates the encoding type for the
token. The only currently supported
type is base64, so this value should
always be wsse:Base64Binary. IBM
SPSS Collaboration and Deployment
Services always writes these values
when creating its own XML, but this
value is currently ignored during
processing.

wsse:Base64Binary

wsu:Id An identifier for the token. This
value must be correctly provided.
You should always provide
spssSSOToken. The only valid case for
using spssToken is for internal web
service calls, which use an internal
token format.

spssToken
spssSSOToken

anyAttribute An extension mechanism to allow
any arbitrary attribute in other
namespaces. These extensions are
ignored.

The XML value for wsse:BinarySecurityToken and wsse:BinarySecuritySSOToken is string data in base64
format.

The client-accept-language element
This element restricts the set of natural languages that are preferred as a response to the request.

This element is inserted into a soapenv:Header element and is not related to WS-Security in any way. This
is the same value found in the HTTP header named Accept-Language as defined in RFC2068. The xml
value for this element might look like the following:
en-US;q=1.0, en;q=0.8

The namespace for this element could be any allowed value, such as ns1, which has an associated value
of http://xml.spss.com/ws/headers.

HTTP headers
In addition to SOAP headers, it is possible to apply HTTP headers as well. None of the HTTP headers is
required.

Table 11. HTTP headers

HTTP header Description

Accept-Language The accept language header value, as defined in RFC2068 (e.g. en-US;q=1.0,
en;q=0.8). If not supplied the server language setting is used as a default.

CLIENT_ADDR The client IP address that ultimately initiated the request.

CLIENT_HOSTNAME The client host name that ultimately initiated the request.

X-FORWARDED-FOR The client IP address that ultimately initiated the request. This is standard for
determining the originating IP address.

Chapter 7. Message header reference 31

The CLIENT_ADDR, CLIENT_HOSTNAME, and X-FORWARDED-FOR values are useful when a client application
makes a call through an HTTP proxy, load balancer, or when IBM SPSS Collaboration and Deployment
Services components make internal calls. The CLIENT_ADDR and CLIENT_HOSTNAME entries are specific HTTP
headers that can be set by IBM SPSS Collaboration and Deployment Services itself. The X-FORWARDED-FOR
header is a standard that some load balancers understand. These headers are used to make a best-effort
attempt in determining the originating client for a given call, allowing information to be used for
auditing purposes. The headers may not work as intended, but IBM SPSS Collaboration and Deployment
Services will fall back to reasonable defaults in those situations.

32 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2000, 2013 33

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
ATTN: Licensing
200 W. Madison St.
Chicago, IL; 60606
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

34 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other product and service names might be trademarks of IBM or other companies.

Notices 35

http://www.ibm.com/legal/copytrade.shtml

36 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Glossary

© Copyright IBM Corp. 2000, 2013 37

38 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

Index

Special characters
.NET framework 25
.NET proxies 5

A
actions 9, 14
app.config files

WCF clients 26
Authentication Service 7

actions 9
calling operations 7
concepts 9
configuration 10
logging out 11
services 10
stubs 7

B
BinarySecuritySSOToken element

in SOAP headers 30
BinarySecurityToken element

in SOAP headers 30
bindings

in WSDL files 4
body elements

in SOAP messages 2

C
Calendar class 19
capabilities

actions 9, 14
configuration 14
services 14

Capabilities class 14
changePassword operation 13
client-accept-language element

in SOAP headers 31
Content Repository service

WCF clients 25
Content Repository URI service

WCF clients 25
Created element

in SOAP headers 30

D
doLogin operation 14
Duration class 19

G
getDuration method 19
getLoginStamp method 19
getVersion operation 18

H
header elements

in SOAP messages 2, 29
SOAP security elements 29

Holder classes
in JAX-WS 5

HTTP 2
HTTP headers

for SOAP messages 31
HTTPS 2

J
Java clients 21, 22, 24
Java proxies 5
JAX-WS 5, 21, 22, 24

L
List collections

in JAX-WS 5
logging out 11
login 9

actions 9
configuration 10
services 10

login operation 18
logout 11
logout operation 19
LogoutDetails class 19

M
MessageBodyMemberAttribute

for WCF clients 27
messages

in WSDL files 4

N
namespaces

for SOAP security elements 29
Nonce element

in SOAP headers 30

P
Password element

in SOAP headers 30
passwords

changing 13
PevServices service

WCF clients 25
port types

in WSDL files 4
Process Management service

WCF clients 25

protocols
in web services 2

proxies 5
.NET 5
Java 5

S
Scoring service

WCF clients 25
Security element

in SOAP headers 29
services 14

in WSDL files 5
single sign-on

for WCF clients 28
WCF clients 25

SOAP 2
SOAPHandler 22
SSO

See single sign-on
stubs

Authentication Service 7

T
types

in WSDL files 3

U
Username element

in SOAP headers 30
UsernameToken element

in SOAP headers 30

V
Visual Studio 25

W
WCF clients 25, 27, 28

endpoint behaviors 27
endpoint configuration 26
limitations 25
service reference 25
single sign-on 25

web services
introduction to web services 1
protocol stack 2
system architecture 1
what are web services? 1

web.config files
WCF clients 26

Windows Communication
Foundation 25

WSDL files 2, 3
bindings 4

© Copyright IBM Corp. 2000, 2013 39

WSDL files (continued)
messages 4
port types 4
services 5
types 3

wsdl.exe 5
wsdl2java 5
wsimport 5, 21

X
XmlElementAttribute

for WCF clients 27

40 IBM SPSS Collaboration and Deployment Services: Authentication Service Developer's Guide

����

Printed in USA

	Contents
	Chapter 1. Introduction to web services
	What are web services?
	Web service system architecture
	Web service protocol stack
	Simple Object Access Protocol
	Web Service Description Language
	Types
	Messages
	Port types
	Bindings
	Services

	Proxies

	Chapter 2. Authentication Service overview
	Accessing the Authentication Service
	Calling Authentication Service operations

	Chapter 3. Authentication Service concepts
	Logging in
	Actions
	Services
	Configuration

	Logging out

	Chapter 4. Operation reference
	The changePassword operation
	The doLogin operation
	The getVersion operation
	The login operation
	The logout operation

	Chapter 5. JAX-WS clients
	Generating a JAX-WS client
	Packaging a JAX-WS client
	Configuring a JAX-WS client
	SOAPHandler example

	Exercising web services from JAX-WS clients

	Chapter 6. Microsoft® .NET Framework-based clients
	Adding a service reference
	Service reference modifications

	Configuring the web service endpoint
	Configuring endpoint behaviors
	Exercising the service
	Single sign-on authentication

	Chapter 7. Message header reference
	Security headers
	Security element
	UsernameToken element
	BinarySecurityToken and BinarySecuritySSOToken elements

	The client-accept-language element
	HTTP headers

	Notices
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	G
	H
	J
	L
	M
	N
	P
	S
	T
	U
	V
	W
	X

