
IBM SPSS Collaboration and Deployment Services
Version 6 Release 0

PevServices Service Developer's Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 53.

Product Information

This edition applies to version 6, release 0, modification 0 of IBM SPSS Collaboration and Deployment Services and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introduction to web services 1
What are web services? 1
Web service system architecture 1
Web service protocol stack 2

Simple Object Access Protocol 2
Web Service Description Language 3

Proxies 5

Chapter 2. PevServices Service overview 7
Accessing the PevServices Service 7
Calling PevServices Service operations. 7

Chapter 3. IBM SPSS Collaboration and
Deployment Services Enterprise View
concepts 9
Enterprise View 9

Data type 9
Application View 10

Environment 11
Direction 11

Data Provider Definition - Real Time 11
Variables 12
Uniform Resource Identifiers 13

Chapter 4. Operation reference 15
Manage port type 15

Operation reference. 15
Metadata port type 25

Operation reference. 25
Search port type 32

Operation reference. 32

Chapter 5. JAX-WS clients 41
Generating a JAX-WS client 41

Packaging a JAX-WS client 41
Configuring a JAX-WS client 41

SOAPHandler example 42
Exercising web services from JAX-WS clients . . . 44

Chapter 6. Microsoft .NET
Framework-based clients 45
Adding a service reference 45

Service reference modifications 45
Configuring the web service endpoint 46
Configuring endpoint behaviors 47
Exercising the service 47

Single sign-on authentication 48

Chapter 7. Message header reference 49
Security headers 49

Security element 49
UsernameToken element 50
BinarySecurityToken and
BinarySecuritySSOToken elements 50

The client-accept-language element 51
HTTP headers 51

Notices 53
Trademarks 55

Glossary 57

Index 59

© Copyright IBM Corp. 2000, 2013 iii

iv IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Chapter 1. Introduction to web services

What are web services?
At a high level, a web service is a set of functionality distributed across a network (LAN or the Internet)
using a common communication protocol. The web service serves as an intermediary between an
application and its clients, providing both a standardized information structure and a standardized
communication protocol for interaction between the two.

Where other methods of distributed application architecture rely on a single programming language
being used on both the application and its clients, a web service allows the use of loosely coupled
services between non-homogenous platforms and languages. This provides a non-architecture-specific
approach allowing, for example, Java services to communicate with C# clients, or vice versa.

Advantages to implementing application functionality as web services include the following:
v Software written in different languages (Java or C#) running on different platforms (UNIX or

Windows) can exchange services and data
v Application functionality can be accessed by a variety of clients. For example, both a thin-client

interface and a rich-client interface can take advantage of the web service operations.
v Updates to the service are immediately available to all service clients

Web service system architecture
Web services are deployed and made publicly available using an application server, such as WebSphere,
JBoss Application Server, or Oracle WebLogic Server. The published web services are hosted by this
application server to handle application requests, access permissions, and process load. A high-level
architecture of how web services are implemented is displayed in the following diagram.

The client code supplies input to an operation offered by a proxy class. The proxy class generates a
request containing a standardized representation of the input and sends it across the network to the
application. A proxy class on the server receives the request and unmarshals the contents into objects for
processing by the application. Upon completing the operation, the application supplies a proxy with the
output. The proxy creates a standardized representation of that output and sends the response back to the
client. The client proxy unmarshals the response into native objects for subsequent processing by the
client code.

Standardizing the format of the information passing between the client and the application allows a client
written in one programming language to communicate with an application written in another. The proxy

Request Request

ResponseResponse

Figure 1. Web service architecture

© Copyright IBM Corporation 2000, 2013 1

classes, which are automatically generated from a web service description by a variety of toolkits, handle
the translation between native programming objects and the standardized representation. See the topic
“Proxies” on page 5 for more information.

Web service protocol stack
A web service implementation depends on technologies often organized in a layered stack. The
implementation itself defines a standard protocol for each technology layer, with each layer depending on
the layers appearing below it in the stack.

Beginning at the bottom of the stack, the Transport layer defines the technology standards for
communication, allowing information to move across the network. HTTP or HTTPS are often used as the
standard for the transport layer.

The Packaging layer rests on top of Transport and defines the standard for structuring information for
transport across the network. The SOAP format is commonly used, which offers an XML structure for
packaging the data. See the topic “Simple Object Access Protocol” for more information.

The topmost layer is Description and identifies the standards used by the layers below it in the stack, as
well as providing the definition of the interface available for client use. The most common means of
conveying this information is through the use of a WSDL file. See the topic “Web Service Description
Language” on page 3 for more information.

Simple Object Access Protocol
The Simple Object Access Protocol (SOAP) is a way to pass information between applications in an XML
format.

SOAP messages are transmitted from the sending application to the receiving application, typically over
an HTTP session. The actual SOAP message is made up of the Envelope element, which contains a Body
element and an optional Header element.
v Envelope. This mandatory element is the root of the SOAP message, identifying the transmitted XML

as being a SOAP packet. An envelope contains a body section and an optional header section.
v Header. This optional element provides an extension mechanism indicating processing information for

the message. For example, if the operation using the message requires security credentials, those
credentials should be part of the envelope header.

v Body. This element contains the message payload, the raw data being transmitted between the
sending and receiving applications. The body itself may consist of multiple child elements, with an
XML schema typically defining the structure of this data.

A SOAP packet and the corresponding XML is structured in the following way:

Figure 2. Web service protocol stack

2 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Web Service Description Language
A Web Service Description Language (WSDL) file provides an XML-based map of what functionality the
published web service allows, separating the implementation in the service from the interface. The WSDL
defines the following:
v The access location of the web service
v Operations the web service exposes
v Parameters the exposed operations accept
v Any request or response messages associated with the operations

The WSDL provides the information necessary to generate a client-side proxy in the target programming
language.

In accordance with the WSDL specification adopted by the World Wide Web Consortium, information in
the WSDL is organized into the following sections:
v Types. Content definitions for web service operation input and output. See the topic “Types” for more

information.
v Messages. Input and output definitions for the web service operations. See the topic “Messages” on

page 4 for more information.
v PortTypes. Groups of operations offered by the web service. See the topic “Port types” on page 4 for

more information.
v Bindings. Protocols and formats for the web service operations. See the topic “Bindings” on page 4 for

more information.
v Services. Endpoints at which the web service functionality can be accessed. See the topic “Services” on

page 5 for more information.

Types
The types element of a WSDL file contains the data type definitions employed by messages processed by
the web service. These definitions use XML to organize the information relevant to the type element
being defined. Consider the following example type definitions:
<wsdl:types>
<schema targetNamespace="http://xml.spss.com/security/remote"
xmlns="http://www.w3.org/2001/XMLSchema">
<element name="getProviders">
<complexType />

</element>
<element name="getProvidersResponse">
<complexType>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header>
 <ns1:client-accept-language soapenv:mustUnderstand="0"
 xsi:type="xsd:string" xmlns:ns1="http://xml.spss.com/ws/headers">
 en-US;q=1.0, en;q=0.8
 </ns1:client-accept-language>
 </soapenv:Header>

 <soapenv:Body>
 <getProviders xmlns="http://xml.spss.com/security/remote"/>
 </soapenv:Body>

</soapenv:Envelope>

Figure 3. An example SOAP packet

Chapter 1. Introduction to web services 3

http://www.w3.org/TR/wsdl

<sequence>
<element name="providerInfo[unbounded]" type="tns1:providerInfo" />

</sequence>
</complexType>

</element>
</schema>

</wsdl:types>

This section defines two elements, getProviders and getProvidersResponse. The former is an empty element.
The latter contains a sequence of providerInfo child elements. These children are all of the providerInfo type,
which is defined elsewhere.

In practice, the WSDL file typically references type element definitions found in an external XML schema.
For instance, the following definition uses security-remote.xsd to define type elements.
<wsdl:types>
<xs:schema>
<xs:import namespace="http://xml.spss.com/security/remote"
schemaLocation="security-remote.xsd"/>

</xs:schema>
</wsdl:types>

Messages
The message elements of a WSDL file defines the input or output parameters for operations available in
the web service. Each message can consist of one or more parts, with the parts similar to the parameters
of a function call in a traditional programming language. Consider the following two example message
definitions:
<wsdl:message name="getProvidersResponse">
<wsdl:part element="tns2:getProvidersResponse" name="parameters" />

</wsdl:message>
<wsdl:message name="getProvidersRequest">

<wsdl:part element="tns2:getProviders" name="parameters" />
</wsdl:message>

The getProvidersResponse message contains a single part, corresponding to the getProvidersResponse element
defined in the types section of the WSDL file. Similarly, the getProvidersRequest message also contains a
single part, as defined by the getProviders element in the types section. See the topic “Types” on page 3
for more information.

Port types
The portType element of a WSDL file defines the actual interface to the web service. A port type is simply
a group of related operations and is comparable to a function library, module, or class in a traditional
programming language. The definition specifies the parameters for the operations, as well as any values
returned. The parameters and return values correspond to messages defined elsewhere in the WSDL file.
Consider the following example port type definition:
<wsdl:portType name="ProviderInformation">
<wsdl:operation name="getProviders">
<wsdl:input message="impl:getProvidersRequest" name="getProvidersRequest" />
<wsdl:output message="impl:getProvidersResponse" name="getProvidersResponse" />

</wsdl:operation>
</wsdl:portType>

The ProviderInformation port type consists of a single operation, getProviders. Input to this operation
corresponds to the getProvidersRequest message. The operation returns information in the structure defined
by the getProvidersResponse message. See the topic “Messages” for more information.

Bindings
The binding element of a WSDL file binds the interface defined by the port type to transport and
messaging protocols. Consider the following example binding definition:
<wsdl:binding name="ProviderInformationSoapBinding" type="impl:ProviderInformation">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getProviders">
<wsdlsoap:operation soapAction="" />
<wsdl:input name="getProvidersRequest">
<wsdlsoap:body namespace="http://xml.spss.com/security/remote" use="literal" />

</wsdl:input>
<wsdl:output name="getProvidersResponse">

4 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

<wsdlsoap:body namespace="http://xml.spss.com/security" use="literal" />
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

In this case, the transport attribute of the wsdlsoap:binding element defines HTTP as the transport
protocol. The getProviders operation in the interface is bound to the SOAP messaging protocol.

Services
The service element of a WSDL file identifies the network location at which the service interface can be
accessed. Consider the following example service definition:
<wsdl:service name="ProviderInformationService">
<wsdl:port binding="impl:ProviderInformationSoapBinding" name="ProviderInformation">
<wsdlsoap:address location="http://pes_server:8080/security-ws/services/ProviderInformation" />

</wsdl:port>
</wsdl:service>

In this example, the operations comprising the ProviderInformation port type can be accessed at:

http://pes_server:8080/security-ws/services/ProviderInformation

Proxies
Proxies serve as bridges between the client and the web service. A client-side proxy marshals the input
objects into a standardized representation which is sent to the web service. A server-side proxy
unmarshals the information into input objects for the service operations. The results of the operation are
marshalled into standard representations and returned to the client. The client proxy unmarshals the
response information into objects for any additional processing by the client.

Creating a proxy is the first step when developing a web service client; the proxy is the translation-unit
between your application and the web service the application is using. Fortunately, many development
environments include tools for automatically generating the client proxy from the web service WSDL file,
allowing the client developer to focus on the client application code instead of transport and packaging
protocols.

The proxy classes generated from a WSDL file depend on the tool used. For Java, the wsdl2java tool,
which is part of the Apache Axis project, can be used. This tool produces a Java class for each type in the
WSDL. Each port type results in a Java interface. A binding creates a stub class, and a WSDL service
yields a service interface with a locator implementation. These generated classes and interfaces can be
called directly from a client application written in Java to access the web service functionality.

An alternative Java proxy tool is wsimport, which is part of JAX-WS. The general structure of the
generated classes is similar to that created by the Axis tool, but there are some differences. For example,
instead of using arrays for input fields and returned items, the code generated from the wsimport tool
uses List collections. In addition, if an input type matches an output type for a method, the wsimport
tool uses a Holder class for the parameter.

In contrast, on the .NET platform, the wsdl.exe tool is often used to generate a web service proxy. This
tool creates a single source file in a specified language containing the proxy class. This class includes both
synchronous and asynchronous methods for each operation defined in the WSDL. For example, the web
service operation getProviders results in the methods getProviders, getProvidersBegin, and
getProvidersEnd. The latter two can be used for asynchronous processing.

A variety of other tools exist for other programming languages. For details, consult the documentation for
those tools. In each case, the tool creates native programming constructs that permit leveraging a web
service regardless of the service implementation language.

Chapter 1. Introduction to web services 5

6 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Chapter 2. PevServices Service overview

The PevServices Service provides functionality used when working with the input data sources for
analytic and scoring tasks. In general, the service provides the ability to perform the following tasks:
v Manage Enterprise View and Application View resource versions, allowing two versions of a view to

be merged into a new composite version
v Retrieve metadata about the variables available in data sources
v Search for Application View and Data Provider Definition - Real Time resources that are compatible

with specified criteria

The PevServices Service is often used in conjunction with the Scoring Service. Use the PevServices Service
to discover data sources that are compatible with a particular scoring configuration. The metadata for
variables in those data sources can be used to construct user interfaces that prompt for scoring input and
to validate any supplied data values.

Accessing the PevServices Service
To access the functionality offered by the PevServices Service, create a client application using the proxy
classes generated by your preferred web service tool. The service includes three port types having the
following endpoints:
http://<host-name>:<port-number>/<context-root>/pev/services/Manage
http://<host-name>:<port-number>/<context-root>/pev/services/Metadata
http://<host-name>:<port-number>/<context-root>/pev/services/Search

The value of <host-name> corresponds to the name or IP address of the machine on which IBM® SPSS®

Collaboration and Deployment Services Repository is installed.

Note: An IPv6 address must be enclosed in square brackets, such as [3ffe:2a00:100:7031::1].
The value of <port-number> indicates the port number on which the repository server is running. The
<context-root> value specifies the custom context root, if any, configured for your repository server. If your
system does not use a context root, omit this portion of the endpoint. To access the WSDL file for the
service, append ?wsdl to the service endpoint.

For example, if IBM SPSS Collaboration and Deployment Services Repository is running on port 80 of the
machine cads_server without a context root, the WSDL file can be accessed using the path:
http://cads_server:80/pev/services/Manage?wsdl
http://cads_server:80/pev/services/Metadata?wsdl
http://cads_server:80/pev/services/Search?wsdl

Calling PevServices Service operations
Clients access the operations offered by the web service using a stub for the service. The following is an
example of how to acquire a stub in Java through Axis defined methods:
String context = "/pev/services/Search";
URL url = new URL("http", "cads_server", 80, context);
pevService service = new pevServiceLocator();
stub = service.getStatus(url);

The service operations can be called directly from the stub, such as:
stub.getRtDpdInputDescription(type);

© Copyright IBM Corporation 2000, 2013 7

8 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Chapter 3. IBM SPSS Collaboration and Deployment Services
Enterprise View concepts

Enterprise View
The Enterprise View is an abstracted dictionary of the enterprise data used in predictive analytic
applications. It provides a simplified business-oriented picture of the enterprise data available for data
mining and reporting. The Enterprise View is constructed and maintained by a data expert (a database
administrator, for example). The Enterprise View editor in IBM SPSS Collaboration and Deployment
Services Deployment Manager provides the data expert with a graphical user interface to build, maintain,
and validate global information about enterprise data. Taken together, the Enterprise View editor, the
Application View editor, the Data Provider Definition editor, and the Data Provider Definition - Real
Time editor constitute the IBM SPSS Collaboration and Deployment Services Enterprise View builder user
interface used by data experts in constructing, validating, and managing the IBM SPSS Collaboration and
Deployment Services Enterprise View.

Upon installation, the Enterprise View is automatically created as an empty singleton object alongside the
IBM SPSS Collaboration and Deployment Services Repository. The data expert populates the empty
Enterprise View with table and column metadata used in predictive analytic applications. Changes to the
Enterprise View are handled in the same manner as all repository objects; a new version is created and
all previous versions continue to exist, unless they are deleted manually.

It is not possible to delete the Enterprise View from the repository completely. At least one version is
required. Only users who are members of the Administrators role, and those assigned to a role with the
Manage Enterprise View action, are allowed to work with the Enterprise View.

Each column in an Enterprise View table has a name that is unique within the table. In addition, columns
are characterized using the following metadata:
v Type. See the topic “Data type” for more information.
v Category information. The categories attribute defines categorical values for a column. The category

attributes are used by consuming applications to populate the values for selection fields or menus.
Categorical values can be used for any column, regardless of its type.

v Minimum/maximum. The minimum/maximum attributes function as user aids by providing defined
limits for each column. For example, the column INCOME might have a minimum value of 20000 and
a maximum value of 75000.

v Description. The Enterprise View column description is intended to provide high-level information
about the column.

For more information on working with the Enterprise View, see the IBM SPSS Collaboration and
Deployment Services Deployment Manager documentation.

The PevServices Service includes operations for merging two versions of the Enterprise View.

Data type
The type attribute specifies the type of data stored in a column. Each column can store data consisting of
only a single data type.

Table 1. Data types

Type Description

Boolean Used to store binary digits (0 or 1). These can be used to denote Boolean values, such as
Yes/No, True/False, or On/Off.

© Copyright IBM Corp. 2000, 2013 9

Table 1. Data types (continued)

Type Description

Date Values must have the form CCYY-MM-DD, where CCYY denotes the year, MM denotes the
number of the month (January = 1, February = 2, and so on), and DD denotes the day
(starting with 1). Optionally, the year can be preceded by + or –. Leading zeros for the
year, month, and day are optional. Spaces are not allowed before or after the – separator.

Daytime Values must have the form HH:MM:SS.xxx, where HH denotes the hours (ranging from 0
to 23), MM denotes the minutes (0 to 59), SS denotes the seconds (0 to 59), and xxx, the
milliseconds (0 to 999). First, note that only the 24-hour representation is allowed.
Furthermore, the seconds and milliseconds are optional. Leading zeros for the hours,
minutes, and seconds are optional. Spaces are not allowed before or after the : separator.

Decimal Used to store exact numbers. The scale and maximum precision can be configured. The
precision denotes the maximum number of digits each value may consist of. The scale
indicates how many of those digits may occur after the decimal point (that is, the fractional
part). The value of this parameter must be greater than or equal to zero and less than or
equal to the precision.

Double Represents signed, approximate numerical values. Double permits much larger numbers
than Float.

Float Represents signed, approximate numerical values. Double permits much larger numbers
than Float.

Integer Used for whole numbers (for example, 5 or 110).

Long Used for character data of variable length up to two gigabytes.

String Used to store a sequence of ISO-8859-Latin-1 characters. The maximum length of such a
sequence is configurable. Furthermore, the string may be empty and cannot contain the
newline (ASCII 10) or null (ASCII 0) characters.

Timestamp Allows values of the form CCYY-MM-DDTHH:MM:SS.xxx in accordance with the ISO 8601
standard. It is easy to see that it is nothing more than the concatenation of the Date and
the Time types, using a delimiter of T to indicate the beginning of the Time portion.
Consequently, the rules for the Date and the Time types are also applicable to the
Timestamp type.

Application View
An Application View collects a subset of tables and columns from the Enterprise View that relate to a
specific application. It captures additional information about how tables and columns are used in the
context of an application (for example, call center or fraud detection). There can be more than one
Application View associated with the Enterprise View.

The Application View serves two purposes. First, it provides a means to constrain the information
displayed to a user in a tool or application based on the IBM SPSS Collaboration and Deployment
Services Enterprise View. For example, a user may be interested only in call center information. By
identifying which IBM SPSS Collaboration and Deployment Services Enterprise View objects are used in
the call center application, user interface logic can limit results to only those relevant objects. Second, the
Application View provides a means for a system administrator or data expert to view the repository from
the perspective of an application. This is especially useful in assessing the effect changes might have on a
specific application.

Each column in an Application View table has a name that is unique within the table. In addition,
columns are characterized using the following metadata:
v Type. See the topic “Data type” on page 9 for more information.
v Environment. See the topic “Environment” on page 11 for more information.
v Direction. See the topic “Direction” on page 11 for more information.

10 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

v Description. The Application View column description is intended to provide high-level information
about the column.

For more information on working with the Application View, see the IBM SPSS Collaboration and
Deployment Services Deployment Manager documentation.

The PevServices Service includes operations for merging two versions of the Application View and for .

Environment
The environment settings provide a means of identifying which particular columns should be associated
with defined business segments. The business segments include:
v Analytical. Columns associated with an Analytic environment typically define the transaction data

needed to run analytic and optimization tasks.
v Operational. Columns associated with an Operational environment are typically used to deploy the

resultant analytics to operational channels.
v Reporting. Columns associated with an Reporting environment are typically used to provide the

resultant analytics to reporting channels.

The column environment determines the availability of the column in data provider definitions. The data
provider definition is associated with a particular environment for the Application View. Only columns
belonging to that environment will be available to the data provider definition. For example, an Analytic
data provider definition has access only to columns in the associated Application View that are defined as
Analytical.

Columns can be defined as belonging to multiple environments. For example, the column CUST_ID can
be assigned to both the Analytical and Operational roles. In this case, the column would be available in
both Analytic and Operational data provider definitions.

Direction
The direction setting specifies whether columns should be treated as predictors or targets. Predictors are
used as an input to machine learning (predictor fields); targets are used as output for machine learning
(predicted fields). The direction setting does not affect how columns are used or presented. The setting
serves as a aid, allowing users to ascertain each column's intended role. IBM SPSS Modeler is one
example of an application that utilizes the direction setting.

Data Provider Definition - Real Time
The Data Provider Definition - Real Time is used exclusively for real time interactions with applications.
A Data Provider Definition - Real Time links data sets directly to an Application View and indirectly to
Enterprise View tables and columns. A single Application View table may have more than one associated
Data Provider Definition - Real Time, each of which may point to a different data source.

A data set represents a source of data. In its simplest form, a data set maps to a single data source table
and abstracts the physical implementation of the data source. In addition to mapping to a data source
table, a data set can map to other data sets. Using this mechanism, data from various data sources can be
linked together.

The Data Provider Definition - Real Time retrieves data sets, one row at a time, from the following
sources:
v JDBC data source defined in the Data Provider Definition - Real Time
v Application server defined data source
v User context data defined in the Data Provider Definition - Real Time
v User created data supplier (implemented externally)

Chapter 3. IBM SPSS Collaboration and Deployment Services Enterprise View concepts 11

Note: Additional data columns can be derived from existing columns.

The PevServices Service includes operations for finding Data Provider Definition - Real Time items that
are compatible with an Application View and for accessing the input metadata for a specific Data
Provider Definition - Real Time.

Variables
Variables serve as input to analytical and scoring procedures, and are characterized by a set of metadata
values. The metadata attributes used for variables depend on the data source and may include:
v Name. Short name of variable that is unique within the data source and can be used as a variable

identifier.
v Variable type. The variable type indicates whether the variable is simple or category based. Category

types include group, multiple category, and multiple dichotomy.
v Display name. Descriptive name of the variable typically displayed in user interfaces.
v Data type. The type of data stored in the variable. See the topic “Data type” on page 9 for more

information.
v Measurement level. The IBM SPSS Statistics measurement level. Valid values include nominal, ordinal

and scale.
v Size. Variable size.
v Number of existing categories. A variable referred to as nominal, ordinal, or more generally

categorical allows only a discrete set of values to be used. The number of existing categories reports
the number of category values found in the data source for the variable.

v Category information. Obtaining the set of permissible values for categorical variables allows
elements of user interfaces, such as selection fields and menus, to present only valid values for those
variables. In addition, variable values supplied by the user can be validated against the allowed
category set. Each value in the category set is characterized by an id representing the value and a label,
if any, associated with the value.

v Multiple response set information. Multiple-response variables correspond to questions that can have
more than one value for each case. For example, the respondent may have been asked to circle all
magazines read within the last month in a list of magazines. Multiple-response data can be organized
in one of two ways. In the first approach, each possible response corresponds to a variable that can
have one of two values, such as 1 for no and 2 for yes; this is the multiple-dichotomy method.
Alternatively, the maximum number of possible answers from a respondent may be used to create that
number of variables, each of which can have a value representing one of the possible answers, such as
1 for Time, 2 for Newsweek, and 3 for PC Week. If an individual did not give the maximum number of
answers, the extra variables receive a missing-value code. This is the multiple-response or
multiple-category method of coding answers. In both approaches, the variables representing the
multiple responses are grouped for subsequent analysis. For a multiple-dichotomy group, each
component variable with at least one yes value across cases becomes a category of the group variable.
For a multiple-category group, each value becomes a category.

v Custom attribute information. In addition to standard attributes, variables in IBM SPSS Statistics data
files may have custom attributes defined. For example, there may be a variable attribute that identifies
the type of response for survey questions (for example, single selection, multiple selection,
fill-in-the-blank) or the formulas used for computed variables. Each attribute is characterized by an
attribute name and a set of permitted values.

The PevServices Service includes operations for retrieving the full set of metadata, the categorical
information, and the custom attributes for variables.

12 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Uniform Resource Identifiers
Resources within the IBM SPSS Collaboration and Deployment Services Repository are often referenced
using a uniform resource identifier. A content repository URI consists of the following items:
v The scheme spsscr:

v A hierarchical specification consisting of an authority definition and an optional object path
v An optional query specifying an object identifier
v Optional fragments defining version information

The URI has the following format:
spsscr://[host][:port]/[path/filename [?hierarchyType=type] | ?id=repositoryID][#l.label | #m.marker]

The hierarchical portion begins with two slashes, followed by the authority definition. This information
identifies the host name and port number for the repository containing the object, followed by a slash.
The authority definition may be omitted, in which case the URI indicates a relative location within the
repository processing the service request.
spsscr:///[path/filename [?hierarchyType=type] | ?id=repositoryID][#l.label | #m.marker]

The URI continues with either the full path to the object, including its name, or a question mark and a
query term consisting of the key id, an equals sign, and the repository resource identifier for the object.
This identifier can be obtained from the information returned by the getResource operation of the
Content Repository Service.

If the URI specifies an object path, the path may be followed by a query parameter designating the type
of hierarchy containing the object. This parameter begins with a question mark, followed by the key
hierarchyType, an equals sign, and the hierarchy type designator. Valid hierarchy types include folder, topic,
configuration, server, credential, datasource, enterprise, and submitted. If the hierarchyType parameter is
omitted, the folder hierarchy is used by default. The hierarchyType parameter is valid only when using the
path to identify the object.

Optional version fragments follow the object information. The fragments begin with a hash symbol (#),
followed by a single letter indicating whether the fragment is a version label (l) or a version timestamp
marker (m). The fragment ends with a period and the actual label or marker for the version. Replace any
spaces in the label or marker with escape characters. For example, the URI:
spsscr://myserver:80/marketing/campaign1#m.0:2006-10-08%2012:34:10.223

refers to the version of the campaign1 job in the marketing folder saved at 12:34 on October 8, 2006. A URI
that does not include a version fragment references the latest version of the object. For instance, the URI:
spsscr://localhost/campaign2

refers to the latest version of the job campaign2.

Chapter 3. IBM SPSS Collaboration and Deployment Services Enterprise View concepts 13

14 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Chapter 4. Operation reference

Manage port type
The Manage port type includes operations used for merging views.

Operation reference

The getAvMergeConflicts operation
Identifies differences in the definitions for two specified versions of an Application View that would
result in conflicts if the versions were merged. Conflicts result from columns in two versions of the same
table having different properties. For example, if both versions of the view have a table named
Demographics that contains a variable named Gender but the variable is defined for the Analytic
environment in one version and the Operational environment in the other, a conflict in the environment
type would occur should the versions be merged. Column properties that may have conflicting
definitions include the following:
v Column type
v Environment
v Direction
v Description

The results from this operation can be used to define resolutions for conflicts used in an actual version
merge.

Input fields

The following table lists the input fields for the getAvMergeConflicts operation.

Table 2. Fields for getAvMergeConflicts.

Field Type/Valid Values Description

preferredVersionUri string

mergeVersionUri string

Return information

The following table identifies the information returned by the getAvMergeConflicts operation.

Table 3. Return Value.

Type Description

avTableConflict[] This element describes merge conflicts for one table of
the Application View.

Java example

To identify definitions that conflict in two different versions of an Application View, supply the
getAvMergeConflicts operation with two strings corresponding to the uniform resource identifiers for the
view versions.

© Copyright IBM Corporation 2000, 2013 15

String prefVersionURI =
"spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.4:2009-02-02 14:34:50.407";

String mergeVersionURI =
"spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.1:2009-02-02 14:32:13.917";

AvTableConflict[] avConflicts = stub.getAvMergeConflicts(prefVersionURI, mergeVersionURI);

The operation returns an array of AvTableConflict objects containing conflict information organized by
tables in the view. Use the getName method for any array entry to access the name of the table containing
conflicts.

The getAvColumnConflict method for a table conflict object returns an array of AvColumnConflict objects
corresponding to conflicts between columns in the table. For any entry in this array, the getAvColumnMeta
method returns an array of AvColumnMeta objects containing metadata for the individual columns that
conflict.

The getVersionUri method reports the URI of the view containing the particular column definition. Use
the getColumnMeta method for a column metadata object to obtain an AvColumnMetaType object from
which the individual metadata values can be accessed. The getName method returns the name of the
column and the getType method returns its type.

Additional metadata for view columns can also be accessed. The getSupportedEnvironments method
returns an array of PevEnvironmentType objects indicating the environments in which the column is used.
Moreover, the getDirection method returns a ColumnDirectionType object from which the defined
column directions can be obtained.
for (int i = 0; i < avConflicts.length; i++) {

System.out.println(avConflicts[i].getName() +
" table has the following conflicts:");

AvColumnConflict[] colConflicts = avConflicts[i].getAvColumnConflict();
for (int j = 0; j < colConflicts.length; j++) {

AvColumnMeta[] colMeta = colConflicts[j].getAvColumnMeta();
for (int k = 0; k < colMeta.length; k++) {

AvColumnMetaType colMetaType = colMeta[k].getColumnMeta();
System.out.println(colMeta[k].getVersionUri() +

" has a column named + " + colMetaType.getName() +
" of type " + colMetaType.getType().toString());

PevEnvironmentType[] envTypes = colMetaType.getSupportedEnvironments().getValue();
System.out.println("Supported environments include:");
for (int m = 0; m < envTypes.length; m++) {

System.out.println(envTypes[m].toString());
}
Direction[] direct = colMetaType.getDirection().getValue();
System.out.println("The column is used as:");
for (int n = 0; n < direct.length; n++) {

System.out.println(direct[n].toString());
}

}
}

}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
String prefVersionURI =

"spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.4:2009-02-02 14:34:50.407";
String mergeVersionURI =

"spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.1:2009-02-02 14:32:13.917";
List<AvTableConflict> avConflictList = stub.getAvMergeConflicts(prefVersionURI, mergeVersionURI);
for (AvTableConflict avConflict : avConflictList)
{

System.out.println(avConflict.getName() + " table has the following conflicts:");
List<AvColumnConflict> colConflictList = avConflict.getAvColumnConflict();
for (AvColumnConflict colConflict : colConflictList)
{

List<AvColumnMeta> colMetaList = colConflict.getAvColumnMeta();
for (AvColumnMeta colMeta : colMetaList)
{

AvColumnMetaType colMetaType = colMeta.getColumnMeta();
System.out.println(colMeta.getVersionUri() +

" has a column named + " + colMetaType.getName() +
" of type " + colMetaType.getType().toString());

List<PevEnvironmentType> envTypeList = colMetaType.getSupportedEnvironments().getValue();
System.out.println("Supported environments include:");
for (PevEnvironmentType envType : envTypeList)

16 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

{
System.out.println(envType.toString());

}
List<Direction> directList = colMetaType.getDirection().getValue();
System.out.println("The column is used as:");
for (Direction direct : directList)
{

System.out.println(direct.toString());
}

}
}

}

SOAP request example

Client invocation of the getAvMergeConflicts operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getAvMergeConflicts xmlns="http://xml.spss.com/pev/remote">
<preferredVersionUri>spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.4:2009-02-02

14:34:50.407</preferredVersionUri>
<mergeVersionUri>spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.1:2009-02-02

14:32:13.917</mergeVersionUri>
</getAvMergeConflicts>

</soapenv:Body>
</soapenv:Envelope>

SOAP response example

The server responds to a getAvMergeConflicts operation call by sending a SOAP response message
containing the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getAvMergeConflictsResponse xmlns="http://xml.spss.com/pev/remote">
<ns1:avTableConflict name="Table1" xmlns:ns1="http://xml.spss.com/pev">

<ns1:avColumnConflict>
<ns1:avColumnMeta>

<ns1:versionUri>spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.4:2009-02-02
14:34:50.407</ns1:versionUri>

<ns1:columnMeta name="Col1" type="boolean">
<ns1:supportedEnvironments>

<ns1:value>analytic</ns1:value>
<ns1:value>operational</ns1:value>
<ns1:value>reporting</ns1:value>

</ns1:supportedEnvironments>
<ns1:direction>

<ns1:value>target</ns1:value>
</ns1:direction>

</ns1:columnMeta>
</ns1:avColumnMeta>
<ns1:avColumnMeta>

<ns1:versionUri>spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.1:2009-02-02
14:32:13.917</ns1:versionUri>

Chapter 4. Operation reference 17

<ns1:columnMeta name="Col1" type="boolean">
<ns1:supportedEnvironments>

<ns1:value>analytic</ns1:value>
<ns1:value>operational</ns1:value>
<ns1:value>reporting</ns1:value>

</ns1:supportedEnvironments>
<ns1:direction>

<ns1:value>predictor</ns1:value>
</ns1:direction>

</ns1:columnMeta>
</ns1:avColumnMeta>

</ns1:avColumnConflict>
</ns1:avTableConflict>

</getAvMergeConflictsResponse>
</soapenv:Body>

</soapenv:Envelope>

The getEvMergeConflicts operation
Identifies differences in the definitions for two specified versions of an Enterprise View that would result
in conflicts if the versions were merged. Conflicts result from columns in two versions of the same table
having different properties. For example, if both versions of the view have a table named Demographics
that contains a variable named Gender but the variable is defined as an integer in one version and a
string in the other, a conflict in the column type would occur should the versions be merged. Column
properties that may have conflicting definitions include the following:
v Column type
v Minimum value
v Maximum value
v Category values
v Description

The results from this operation can be used to define resolutions for conflicts used in an actual version
merge.

Input fields

The following table lists the input fields for the getEvMergeConflicts operation.

Table 4. Fields for getEvMergeConflicts.

Field Type/Valid Values Description

preferredVersionMarker string

mergeVersionMarker string

Return information

The following table identifies the information returned by the getEvMergeConflicts operation.

Table 5. Return Value.

Type Description

evTableConflict[] This element describes merge conflicts for one table of
the Enterprise View.

Java example

To identify definitions that conflict in two different versions of an Enterprise View, supply the
getEvMergeConflicts operation with two strings corresponding to the markers for the view versions.
String prefVersion = "3:2009-02-02 14:16:33.28";
String mergeVersion = "2:2009-02-02 14:15:39.57";
EvTableConflict[] evConflicts = stub.getEvMergeConflicts(prefVersion, mergeVersion);

18 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

The operation returns an array of EvTableConflict objects containing conflict information organized by
tables in the view. Use the getName method for any array entry to access the name of the table containing
conflicts.

The getEvColumnConflict method for a table conflict object returns an array of EvColumnConflict objects
corresponding to conflicts between columns in the table. For any entry in this array, the getEvColumnMeta
method returns an array of EvColumnMeta objects containing metadata for the individual columns that
conflict.

The getMarker method reports the version of the view containing the particular column definition. Use
the getColumnMeta method for a column metadata object to obtain an EvColumnMetaType object from
which the individual metadata values can be accessed. The getName method returns the name of the
column and the getType method returns its type.
for (int i = 0; i < evConflicts.length; i++) {

System.out.println(evConflicts[i].getName() +
" table has the following conflicts:");

EvColumnConflict[] colConflicts = evConflicts[i].getEvColumnConflict();
for (int j = 0; j < colConflicts.length; j++) {

EvColumnMeta[] colMeta = colConflicts[j].getEvColumnMeta();
for (int k = 0; k < colMeta.length; k++) {

EvColumnMetaType colMetaType = colMeta[k].getColumnMeta();
System.out.println("Version " + colMeta[k].getMarker() +

" has a column named + " + colMetaType.getName() +
" of type " + colMetaType.getType().toString());

}
}

}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
String prefVersion = "3:2009-02-02 14:16:33.28";
String mergeVersion = "2:2009-02-02 14:15:39.57";
List<EvTableConflict> evConflictList = stub.getEvMergeConflicts(prefVersion, mergeVersion);
for (EvTableConflict evConflict : evConflictList)
{

System.out.println(evConflict.getName() + " table has the following conflicts:");
List<EvColumnConflict> colConflictList = evConflict.getEvColumnConflict();
for (EvColumnConflict colConflict : colConflictList)
{

List<EvColumnMeta> colMetaList = colConflict.getEvColumnMeta();
for (EvColumnMeta colMeta : colMetaList)
{

EvColumnMetaType colMetaType = colMeta.getColumnMeta();
System.out.println("Version " + colMeta.getMarker() +

" has a column named + " + colMetaType.getName() +
" of type " + colMetaType.getType().toString());

}
}

}

SOAP request example

Client invocation of the getEvMergeConflicts operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>

Chapter 4. Operation reference 19

</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getEvMergeConflicts xmlns="http://xml.spss.com/pev/remote">
<preferredVersionMarker>3:2009-02-02 14:16:33.28</preferredVersionMarker>
<mergeVersionMarker>2:2009-02-02 14:15:39.57</mergeVersionMarker>

</getEvMergeConflicts>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getEvMergeConflicts operation call by sending a SOAP response message
containing the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getEvMergeConflictsResponse xmlns="http://xml.spss.com/pev/remote">
<ns1:evTableConflict name="Table1" xmlns:ns1="http://xml.spss.com/pev">

<ns1:evColumnConflict>
<ns1:evColumnMeta>

<ns1:marker>3:2009-02-02 14:16:33.28</ns1:marker>
<ns1:columnMeta name="Col1" type="string"/>

</ns1:evColumnMeta>
<ns1:evColumnMeta>

<ns1:marker>2:2009-02-02 14:15:39.57</ns1:marker>
<ns1:columnMeta name="Col1" type="boolean"/>

</ns1:evColumnMeta>
</ns1:evColumnConflict>

</ns1:evTableConflict>
</getEvMergeConflictsResponse>

</soapenv:Body>
</soapenv:Envelope>

The getVersion operation
Returns the version number of the service.

Return information

The following table identifies the information returned by the getVersion operation.

Table 6. Return Value.

Type Description

string

Java example

To access the version number of the service, call the getVersion operation from the service stub.
System.out.println("Service Version = " + stub.getVersion());

SOAP request example

Client invocation of the getVersion operation generates a SOAP request message that is sent to the server
for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVersion xmlns="http://xml.spss.com/pev/remote"/>
</soapenv:Body>

</soapenv:Envelope>

20 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

SOAP response example

The server responds to a getVersion operation call by sending a SOAP response message containing the
results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVersionResponse xmlns="http://xml.spss.com/pev/remote">
<version>4.20.000</version>

</getVersionResponse>
</soapenv:Body>

</soapenv:Envelope>

The performAvMerge operation
Combines two specified versions of an Application View into a new composite version. If the tables in
the two versions have conflicting definitions, resolutions for the conflicts can be supplied when calling
the operation. Conflicts can be identified using the getAvMergeConflicts operation. For any conflict that
does not have a specified resolution, the definition from the preferred version of the view is used in the
resulting merged version.

Input fields

The following table lists the input fields for the performAvMerge operation.

Table 7. Fields for performAvMerge.

Field Type/Valid Values Description

preferredVersionUri string

mergeVersionUri string

avTableResolution avTableResolution[] This element describes user specified
merge resolutions for one table of the
Application View.

Return information

The following table identifies the information returned by the performAvMerge operation.

Table 8. Return Value.

Type Description

mergeResult This element describes the result of an EV or AV merge.

Java example

To merge two different versions of an Application View,:
1. Use the getAvMergeConflicts operation to identify conflicts between the versions being merged. See

the topic “The getAvMergeConflicts operation” on page 15 for more information.
2. Create an array of AvTableResolution objects to define the resolutions for any table conflicts.
3. Use the setName method to define the name of the table for a resolution object.
4. Create an array of AvColumnMetaType objects to define the table columns for the conflict resolution.
5. Assign properties for the columns as needed. For example, use the setName and setType methods to

define the name and type for the column.
6. Create a ColumnEnvironmentType object and define the environments for the column. Use the

setSupportedEnvironments method to assign the object to the column metadata object.

Chapter 4. Operation reference 21

7. Create a ColumnDirectionType object and define the directions for the column. Use the setDirection
method to assign the object to the column metadata object.

8. Use the setColumnMeta method to assign the column definition to a resolution object.
9. Supply the performAvMerge operation with two strings corresponding to the URIs for the view

versions and the table resolution object array.

The operation returns a MergeResult object containing the URI for merged version of the view. Use the
getNewVersionUri method to access this value.

The following sample creates a new merged version of a view in which the conflict for the column Col1
in table Table1 is resolved by defining the type, environments, and direction for the column.
String prefVersionURI =

"spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.4:2009-02-02 14:34:50.407";
String mergeVersionURI =

"spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.1:2009-02-02 14:32:13.917";

AvTableResolution tableResolution = new AvTableResolution();
tableResolution.setName("Table1");
AvColumnMetaType colMeta = new AvColumnMetaType();
colMeta.setName("Col1");
colMeta.setType(PevDataType.BOOLEAN);

ColumnEnvironmentType envType = new ColumnEnvironmentType();
envType.addValue(PevEnvironmentType.ANALYTIC);
envType.addValue(PevEnvironmentType.OPERATIONAL);
envType.addValue(PevEnvironmentType.REPORTING);
colMeta.setSupportedEnvironments(envType);

ColumnDirectionType directionType = new ColumnDirectionType();
directionType.addValue(Direction.PREDICTOR);
colMeta.setDirection(directionType);

tableResolution.setColumnMeta(colMeta);
MergeResult result = stub.performAvMerge(prefVersionURI, mergeVersionURI, tableResolution);

System.out.println("URI for the merged version is: " + result.getNewVersionUri());

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
String prefVersionURI =

"spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.4:2009-02-02 14:34:50.407";
String mergeVersionURI =

"spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.1:2009-02-02 14:32:13.917";

AvTableResolution tableResolution = new AvTableResolution();
tableResolution.setName("Table1");
AvColumnMetaType colMeta = new AvColumnMetaType();
colMeta.setName("Col1");
colMeta.setType(PevDataType.BOOLEAN);

ColumnEnvironmentType envType = new ColumnEnvironmentType();
envType.getValue().add(PevEnvironmentType.ANALYTIC);
envType.getValue().add(PevEnvironmentType.OPERATIONAL);
envType.getValue().add(PevEnvironmentType.REPORTING);
colMeta.setSupportedEnvironments(envType);

ColumnDirectionType directionType = new ColumnDirectionType();
directionType.getValue().add(Direction.PREDICTOR);
colMeta.setDirection(directionType);

tableResolution.getColumnMeta().add(colMeta);
MergeResult result = stub.performAvMerge(prefVersionURI, mergeVersionURI, tableResolution);

System.out.println("URI for the merged version is: " + result.getNewVersionUri());

SOAP request example

Client invocation of the performAvMerge operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

22 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

<soapenv:Header>
<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<performAvMerge xmlns="http://xml.spss.com/pev/remote">
<preferredVersionUri>spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.4:2009-02-02

14:34:50.407</preferredVersionUri>
<mergeVersionUri>spsscr:///?id=0a010a07e80375f70000011effb874f9ab38#m.1:2009-02-02

14:32:13.917</mergeVersionUri>
<ns1:avTableResolution name="Table1" xmlns:ns1="http://xml.spss.com/pev">

<ns1:columnMeta name="Col1" type="boolean">
<ns1:supportedEnvironments>

<ns1:value>analytic</ns1:value>
<ns1:value>operational</ns1:value>
<ns1:value>reporting</ns1:value>

</ns1:supportedEnvironments>
<ns1:direction>

<ns1:value>predictor</ns1:value>
</ns1:direction>
<ns1:description/>

</ns1:columnMeta>
</ns1:avTableResolution>

</performAvMerge>
</soapenv:Body>

</soapenv:Envelope>

The performEvMerge operation
Combines two specified versions of an Enterprise View into a new composite version. If the tables in the
two versions have conflicting definitions, resolutions for the conflicts can be supplied when calling the
operation. Conflicts can be identified using the getEvMergeConflicts operation. For any conflict that does
not have a specified resolution, the definition from the preferred version of the view is used in the
resulting merged version.

Input fields

The following table lists the input fields for the performEvMerge operation.

Table 9. Fields for performEvMerge.

Field Type/Valid Values Description

preferredVersionMarker string

mergeVersionMarker string

evTableResolution evTableResolution[] This element describes user specified
merge resolutions for one table of the
Enterprise View.

Chapter 4. Operation reference 23

Return information

The following table identifies the information returned by the performEvMerge operation.

Table 10. Return Value.

Type Description

mergeResult This element describes the result of an EV or AV merge.

Java example

To merge two different versions of an Enterprise View:
1. Use the getEvMergeConflicts operation to identify conflicts between the versions being merged. See

the topic “The getEvMergeConflicts operation” on page 18 for more information.
2. Create an array of EvTableResolution objects to define the resolutions for any table conflicts.
3. Use the setName method to define the name of the table for a resolution object.
4. Create an array of EvColumnMetaType objects to define the table columns for the conflict resolution.
5. Assign properties for the columns as needed. For example, use the setName and setType methods to

define the name and type for the column.
6. Use the setColumnMeta method to assign the column definition to a resolution object.
7. Supply the performEvMerge operation with two strings corresponding to the markers for the view

versions and the table resolution object array.

The operation returns a MergeResult object containing the URI for merged version of the view. Use the
getNewVersionUri method to access this value.

The following sample creates a new merged version of a view in which the conflict for the column Col1
in table Table1 is resolved by setting the type to boolean.
String prefVersion = "3:2009-02-02 14:16:33.28";
String mergeVersion = "2:2009-02-02 14:15:39.57";

EvTableResolution tableResolution = new EvTableResolution();
tableResolution.setName("Table1");
EvColumnMetaType colMeta = new EvColumnMetaType();
colMeta.setName("Col1");
colMeta.setType(PevDataType.BOOLEAN);
tableResolution.setColumnMeta(colMeta);

MergeResult result = stub.performEvMerge(prefVersion, mergeVersion, tableResolution);

System.out.println("URI for the merged version is: " + result.getNewVersionUri());

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
String prefVersion = "3:2009-02-02 14:16:33.28";
String mergeVersion = "2:2009-02-02 14:15:39.57";

EvTableResolution tableResolution = new EvTableResolution();
tableResolution.setName("Table1");
EvColumnMetaType colMeta = new EvColumnMetaType();
colMeta.setName("Col1");
colMeta.setType(PevDataType.BOOLEAN);
tableResolution.getColumnMeta().add(colMeta);

MergeResult result = stub.performEvMerge(prefVersion, mergeVersion, tableResolution);

System.out.println("URI for the merged version is: " + result.getNewVersionUri());

SOAP request example

Client invocation of the performEvMerge operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

24 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<performEvMerge xmlns="http://xml.spss.com/pev/remote">
<preferredVersionMarker>3:2009-02-02 14:16:33.28</preferredVersionMarker>
<mergeVersionMarker>2:2009-02-02 14:15:39.57</mergeVersionMarker>
<ns1:evTableResolution name="Table1" xmlns:ns1="http://xml.spss.com/pev">

<ns1:columnMeta name="Col1" type="boolean">
<ns1:minimum/>
<ns1:maximum/>
<ns1:description/>

</ns1:columnMeta>
</ns1:evTableResolution>

</performEvMerge>
</soapenv:Body>

</soapenv:Envelope>

The validateObject operation

Input fields

The following table lists the input fields for the validateObject operation.

Table 11. Fields for validateObject.

Field Type/Valid Values Description

objectReference labeledUriType

realTimeUsage realTimeUsage

Return information

The following table identifies the information returned by the validateObject operation.

Table 12. Return Value.

Type Description

validationResult This element describes the result of a PEV object
validation.

Metadata port type
The Metadata port type includes operations used for working with information about variables.

Operation reference

The getCategories operation
Retrieves the category values and labels for a specified variable in a data source.

Chapter 4. Operation reference 25

Input fields

The following table lists the input fields for the getCategories operation.

Table 13. Fields for getCategories.

Field Type/Valid Values Description

categoryQuery categoryQuery This type represents a query used to
look up a list of categories for a
specific variable.

Return information

The following table identifies the information returned by the getCategories operation.

Table 14. Return Value.

Type Description

categoryType[]

Java example

To retrieve information about the categories for a variable:
1. Create a CategoryQuery object.
2. Provide the setLocation method with a string corresponding to the location of the IBM SPSS Statistics

data file as a URI.
3. Supply the setVariableName method with a string denoting the variable in the data file.
4. Supply the getCategories operation with the query object.

The operation returns an array of CategoryType objects. Each object in the array corresponds to a category
for the variable. Use the getId and getLabel methods to obtain the category values and associated labels.

The following sample retrieves the category information for the region variable in a data file.
CategoryQuery catQuery = new CategoryQuery();
catQuery.setLocation("spsscr:///?id=0a010a07e123f4280000011f5babe020845b");
catQuery.setVariableName("region");
CategoryType[] categories = stub.getCategories(catQuery);

for (int i = 0; i < categories.length; i++) {
System.out.println("Category " + categories[i].getId() +

" = " + categories[i].getLabel());
}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
CategoryQuery catQuery = new CategoryQuery();
catQuery.setLocation("spsscr:///?id=0a010a07e123f4280000011f5babe020845b");
catQuery.setVariableName("region");
List<CategoryType> categoryList = stub.getCategories(catQuery);

for (CategoryType category : categoryList)
{

System.out.println("Category " + category.getId() +
" = " + category.getLabel());

}

SOAP request example

Client invocation of the getCategories operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.

26 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getCategories xmlns="http://xml.spss.com/pev/remote">
<categoryQuery>

<location xmlns="http://xml.spss.com/pev"
>spsscr:///?id=0a010a07e123f4280000011f5babe020845b</location>

<variableName xmlns="http://xml.spss.com/pev">region</variableName>
</categoryQuery>

</getCategories>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getCategories operation call by sending a SOAP response message containing
the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getCategoriesResponse xmlns="http://xml.spss.com/pev/remote">
<ns1:category xmlns:ns1="http://xml.spss.com/pev">

<ns1:id>1.0</ns1:id>
<ns1:label>North East</ns1:label>

</ns1:category>
<ns2:category xmlns:ns2="http://xml.spss.com/pev">

<ns2:id>2.0</ns2:id>
<ns2:label>South East</ns2:label>

</ns2:category>
<ns3:category xmlns:ns3="http://xml.spss.com/pev">

<ns3:id>3.0</ns3:id>
<ns3:label>West</ns3:label>

</ns3:category>
</getCategoriesResponse>

</soapenv:Body>
</soapenv:Envelope>

The getCustomAttributes operation
Retrieves any custom attributes defined for a specified variable in a IBM SPSS Statistics data source.

Input fields

The following table lists the input fields for the getCustomAttributes operation.

Table 15. Fields for getCustomAttributes.

Field Type/Valid Values Description

customAttributesQuery customAttributesQuery This type represents a query used to
look up a list of custom attributes for
a specific variable.

Chapter 4. Operation reference 27

Return information

The following table identifies the information returned by the getCustomAttributes operation.

Table 16. Return Value.

Type Description

customAttributesType[]

Java example

To retrieve information about the custom attributes for a variable:
1. Create a CustomAttributesQuery object.
2. Provide the setLocation method with a string corresponding to the location of the IBM SPSS Statistics

data file as a URI.
3. Supply the setVariableName method with a string denoting the variable in the data file.
4. Supply the getCustomAttributes operation with the query object.

The operation returns an array of CustomAttributesType objects. Each object in the array corresponds to a
custom attribute for the variable. Use the getName method to obtain the attribute name. The getValues
method returns an array of strings corresponding to the attribute values.

The following sample retrieves the custom attribute information for the region variable in a data file.
CustomAttributesQuery custAttQuery = new CustomAttributesQuery();
custAttQuery.setLocation("spsscr:///?id=0a010a07e123f4280000011f5babe020845b");
custAttQuery.setVariableName("region");
CustomAttributesType[] custAtts = stub.getCustomAttributes(custAttQuery);

for (int i = 0; i < custAtts.length; i++) {
System.out.println("Attribute " + custAtts[i].getName() +

" has the following values:");
String[] valArray = custAtts[i].getValues();
for (int j = 0; j < valArray.length; j++) {

System.out.println(valArray[j]);
}

}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
CustomAttributesQuery custAttQuery = new CustomAttributesQuery();
custAttQuery.setLocation("spsscr:///?id=0a010a07e123f4280000011f5babe020845b");
custAttQuery.setVariableName("region");
List<CustomAttributesType> custAttList = stub.getCustomAttributes(custAttQuery);

for (CustomAttributesType custAtt : custAttList)
{

System.out.println("Attribute " + custAtt.getName() +
" has the following values:");

List<String> valList = custAtt.getValues();
for (String val : valList)
{

System.out.println(val);
}

}

SOAP request example

Client invocation of the getCustomAttributes operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"

28 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getCustomAttributes xmlns="http://xml.spss.com/pev/remote">
<customAttributesQuery>

<location xmlns="http://xml.spss.com/pev"
>spsscr:///?id=0a010a07e123f4280000011f5babe020845b</location>

<variableName xmlns="http://xml.spss.com/pev">region</variableName>
</customAttributesQuery>

</getCustomAttributes>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getCustomAttributes operation call by sending a SOAP response message
containing the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getCustomAttributesResponse xmlns="http://xml.spss.com/pev/remote">
<ns1:customAttributes xmlns:ns1="http://xml.spss.com/pev">

<ns1:name>myAtt1</ns1:name>
<ns1:values>Value1</ns1:values>

</ns1:customAttributes>
<ns2:customAttributes xmlns:ns2="http://xml.spss.com/pev">

<ns2:name>myAtt2</ns2:name>
<ns2:values>a</ns2:values>
<ns2:values>b</ns2:values>
<ns2:values>c</ns2:values>

</ns2:customAttributes>
</getCustomAttributesResponse>

</soapenv:Body>
</soapenv:Envelope>

The getVariableMetadata operation
Retrieves the metadata information for all variables in a specified data source.

Input fields

The following table lists the input fields for the getVariableMetadata operation.

Table 17. Fields for getVariableMetadata.

Field Type/Valid Values Description

metadataQuery metadataQuery This type represents a query used to
specify a location (URI) and table.

Chapter 4. Operation reference 29

Return information

The following table identifies the information returned by the getVariableMetadata operation.

Table 18. Return Value.

Type Description

pevMetaDataType This type represents the result returned from execution
of a metadata query

Java example

To retrieve the metadata information for variables:
1. Create a MetadataQuery object.
2. Provide the setLocation method with a string corresponding to the location of the data source as a

URI.
3. If the data source is a data provider definition, use the optional setTableName method to specify the

name of the table containing the variables of interest.
4. Supply the getVariableMetadata operation with the query object.

Use the getQualifier method for the returned PevMetaDataType object to obtain an array of
QualifierMetaType objects containing the variable metadata. For any entry in the array, the
getVariableMetaData method returns the metadata as an array of VariableMetaType objects.

A VariableMetaType object provides a variety of accessor methods for retrieving specific metadata values.
For example, the getName method returns the variable name. The getDataType method returns the
variable data type. Use the accessors as needed to obtain the metadata information.

The following sample retrieves the variable metadata for the CQ-DPD data provider definition.
MetadataQuery mdQuery = new MetadataQuery();
mdQuery.setLocation("spsscr:///CQ-DPD");
PevMetaDataType mdType = stub.getVariableMetadata(mdQuery);

QualifierMetaType[] qualifier = mdType.getQualifier();
for (int i = 0; i < qualifier.length; i++) {

System.out.println(qualifier[i].getName() +
" has the following variables:");

VariableMetaType[] varArray = qualifier[i].getVariableMetaData();
System.out.println("NAME\tVAR TYPE\tDATA TYPE\n");
for (int j = 0; j < varArray.length; j++) {

System.out.println(varArray[j].getName() + "\t" +
varArray[j].getVarType().toString() + "\t" +
varArray[j].getDataType().toString() + "\n");

}
}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
List<QualifierMetaType> qualifierList = mdType.getQualifier();

SOAP request example

Client invocation of the getVariableMetadata operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

30 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getVariableMetadata xmlns="http://xml.spss.com/pev/remote">
<metadataQuery>

<location xmlns="http://xml.spss.com/pev">spsscr:///CQ-DPD</location>
</metadataQuery>

</getVariableMetadata>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getVariableMetadata operation call by sending a SOAP response message
containing the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVariableMetadataResponse xmlns="http://xml.spss.com/pev/remote">
<ns1:return xmlns:ns1="http://xml.spss.com/pev">

<ns1:location>spsscr:///CQ-DPD</ns1:location>
<ns1:qualifier>

<ns1:name>CQ defects</ns1:name>
<ns1:description>CQ defects</ns1:description>
<ns1:variableMetaData>

<ns1:name>overall_status</ns1:name>
<ns1:varType>simple_variable</ns1:varType>
<ns1:displayName>overall_status</ns1:displayName>
<ns1:dataType>string</ns1:dataType>
<ns1:size>0</ns1:size>

</ns1:variableMetaData>
<ns1:variableMetaData>

<ns1:name>component_feature</ns1:name>
<ns1:varType>simple_variable</ns1:varType>
<ns1:displayName>component_feature</ns1:displayName>
<ns1:dataType>string</ns1:dataType>
<ns1:size>0</ns1:size>

</ns1:variableMetaData>
<ns1:variableMetaData>

<ns1:name>userimpact</ns1:name>
<ns1:varType>simple_variable</ns1:varType>
<ns1:displayName>userimpact</ns1:displayName>
<ns1:dataType>string</ns1:dataType>
<ns1:size>0</ns1:size>

</ns1:variableMetaData>
<ns1:variableMetaData>

<ns1:name>project</ns1:name>
<ns1:varType>simple_variable</ns1:varType>
<ns1:displayName>project</ns1:displayName>
<ns1:dataType>integer</ns1:dataType>
<ns1:size>0</ns1:size>

</ns1:variableMetaData>
</ns1:qualifier>

</ns1:return>
</getVariableMetadataResponse>

</soapenv:Body>
</soapenv:Envelope>

The getVersion operation
Returns the version number of the service.

Chapter 4. Operation reference 31

Return information

The following table identifies the information returned by the getVersion operation.

Table 19. Return Value.

Type Description

string

Java example

To access the version number of the service, call the getVersion operation from the service stub.
System.out.println("Service Version = " + stub.getVersion());

SOAP request example

Client invocation of the getVersion operation generates a SOAP request message that is sent to the server
for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVersion xmlns="http://xml.spss.com/pev/remote"/>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getVersion operation call by sending a SOAP response message containing the
results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVersionResponse xmlns="http://xml.spss.com/pev/remote">
<version>4.20.000</version>

</getVersionResponse>
</soapenv:Body>

</soapenv:Envelope>

Search port type
The Search port type includes operations used for identifying Application View and real-time Data
Provider Definition resources that match specified criteria.

Operation reference

The getCompatibleAv operation
Returns a list of all Application View resources in the system that match specified criteria. The criteria
that must be met by the returned views includes the following:
v Support for specified environments
v Presence of columns having specified names and types

32 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Input fields

The following table lists the input fields for the getCompatibleAv operation.

Table 20. Fields for getCompatibleAv.

Field Type/Valid Values Description

environment supportedEnvironment

dataItem pevCatalogColumn[] This represents the information in the
PEV Catalog Column entry. The
catalog in managed internally by
PEV. Entries are created and deleted
as Enterprise View columns are
created and deleted. The fields of this
object uniquely define (primary
composite key) a column entry
within a table of the catalog. The
catalog is global to all versions of the
Enterprise View. One cannot change
information in a catalog entry. One
can only create or delete EV Tables
(PEV will manage the entries). In
other words, one cannot rename an
Enterprise View column. Instead, a
new column must be created. This
limitation is reasonable since any
objects that reference a table name in
a SELECT statement would no longer
be valid anyway and must also be
updated.

Return information

The following table identifies the information returned by the getCompatibleAv operation.

Table 21. Return Value.

Type Description

resourceTablesByLabel[]

Java example

To retrieve Application View resources in the system that are compatible with specified criteria:
1. Create a SupportedEnvironment object.
2. Provide the setPevEnvironment method with a PevEnvironmentType value denoting the Application

View environment of interest.
3. Create an array of PevCatalogColumn objects for the data items that must exist in any matching

Application View resources. For each object, use the setName and setType methods to specify the
name and data type for the item.

4. Supply the getCompatibleAv operation with the environment and data item objects.

The operation returns an array of ResourceTablesByLabel objects containing information about
Application View resources matching the input criterion. The getName, getPath, and getBaseUri methods
return the name, resource path, and URI for a specific resource in the array.

Chapter 4. Operation reference 33

Different versions of Application View resources may contain different tables. Consequently, the table
information in a ResourceTablesByLabel object is organized by label. Use the getTablesByLabel method
to obtain an array of TablesByLabel objects for tables in different Application View versions. For any
entry in the array, the getLabel method returns the label of the Application View version containing the
table. The names of the tables in the version that contain the data items of interest are returned as a
string array using the getTable method.

The following sample retrieves Application View resources for the analytic environment that contain an
integer field named component.
SupportedEnvironment env = new SupportedEnvironment();
env.setPevEnvironment(PevEnvironmentType.ANALYTIC);

PevCatalogColumn dataItem = new PevCatalogColumn();
dataItem.setName("component");
dataItem.setType(PevDataType.INTEGER);
ResourceTablesByLabel[] resTables = stub.getCompatibleAv(env, dataItem);

for (int i = 0; i < resTables.length; i++) {
System.out.println("View " resTables[i].getName() +

"has a path of " + resTables[i].getPath() +
"and contains the following tables:");

TablesByLabel[] tabByLab = resTables[i].getTablesByLabel();
for (int j = 0; j < tabByLab.length; j++) {

System.out.println("LABEL = " tabByLab[j].getLabel());
String[] tables = tabByLab[j].getTable();
for (int k = 0; k < tables.length; j++) {

System.out.println(tables[k]);
}

}
}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
SupportedEnvironment env = new SupportedEnvironment();
env.setPevEnvironment(PevEnvironmentType.ANALYTIC);

PevCatalogColumn dataItem = new PevCatalogColumn();
dataItem.setName("component");
dataItem.setType(PevDataType.INTEGER);
List<ResourceTablesByLabel> resTablesList = stub.getCompatibleAv(env, dataItem);

for (ResourceTablesByLabel resTables : resTablesList)
{

System.out.println("View " resTables.getName() +
"has a path of " + resTables.getPath() +
"and contains the following tables:");

List<TablesByLabel> tabByLabList = resTables.getTablesByLabel();
for (TablesByLabel tabByLab : tabByLabList)
{

System.out.println("LABEL = " tabByLab.getLabel());
List<String> tablesList = tabByLab.getTable();
for (String tables : tablesList)
{

System.out.println(tables);
}

}
}

SOAP request example

Client invocation of the getCompatibleAv operation generates a SOAP request message that is sent to the
server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0

34 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

#PasswordText">pass</wsse:Password>
<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getCompatibleAv xmlns="http://xml.spss.com/pev/remote">
<environment pevEnvironment="analytic"/>
<dataItem name="component" type="integer"/>

</getCompatibleAv>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getCompatibleAv operation call by sending a SOAP response message containing
the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getCompatibleAvResponse xmlns="http://xml.spss.com/pev/remote">
<ns1:resourceTablesByLabel baseUri="spsscr:///?id=0a010a07e123f4280000011f5babe0208305"

name="CQ" path="/CQ" xmlns:ns1="http://xml.spss.com/pev">
<ns1:tablesByLabel label="LATEST">

<ns1:table>ClearQuest defects</ns1:table>
</ns1:tablesByLabel>

</ns1:resourceTablesByLabel>
</getCompatibleAvResponse>

</soapenv:Body>
</soapenv:Envelope>

The getCompatibleRtDpd operation
Returns a list of all Data Provider Definition - Real Time resources in the system that meet specified
criteria, including the following:
v Resources associated with a specified Application View
v Resources that include a specified table

Input fields

The following table lists the input fields for the getCompatibleRtDpd operation.

Table 22. Fields for getCompatibleRtDpd.

Field Type/Valid Values Description

avReference labeledUriType

Chapter 4. Operation reference 35

Table 22. Fields for getCompatibleRtDpd (continued).

Field Type/Valid Values Description

table pevCatalogTable This represents the information in a
PEV Catalog Table entry. The catalog
in managed internally by PEV.
Entries are created and deleted as
Enterprise View tables are created
and deleted. The fields of this object
uniquely define (primary composite
key) a table entry. The catalog is
global to all versions of the
Enterprise View. One cannot change
information in a catalog entry. One
can only create or delete EV Tables
(PEV will manage the entries). In
other words, one cannot rename an
Enterprise View table. Instead, a new
table must be created. This limitation
is reasonable since any consumers
that reference a table name in a
SELECT statement would no longer
be valid anyway and must also be
updated.

Return information

The following table identifies the information returned by the getCompatibleRtDpd operation.

Table 23. Return Value.

Type Description

labeledResourceType[]

Java example

To retrieve real-time data provider definitions in the system that are compatible with an application view:
1. Create a LabeledUriType object.
2. Provide the setBaseUri method with a string corresponding to the location of the application view as

a URI. Label or version markers should not be included in the URI. If a version other than LATEST is
needed, use the setLabel method to define the label.

3. Create a PevCatalogTable object.
4. Provide the setName method with a string denoting the name of a table that must be included in any

real-time data provider definition returned as a match.
5. Supply the getCompatibleRtDpd operation with the URI and table objects.

The operation returns an array of LabeledResourceType objects containing information about real-time
data providers matching the input criterion. The getName, getPath, and getLabel methods return the
name, resource path, and label for a specific provider in the array.

The following sample retrieves real-time data provider definitions for an application view that contain a
CQdefects table.
LabeledUriType type = new LabeledUriType();
type.setBaseUri("spsscr:///?id=0a010a077e08b4a40000011f5cabdad38098")

PevCatalogTable table = new PevCatalogTable();
table.setName("CQdefects");

36 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

LabeledResourceType[] resType = stub.getCompatibleRtDpd(type, table);

System.out.println("NAME\tPATH\tLABEL\n");
for (int i = 0; i < resType.length; i++) {

System.out.println(resType[i].getName() + "\t" +
resType[i].getPath() + "\t" + resType[i].getLabel() + "\n");

}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
LabeledUriType type = new LabeledUriType();
type.setBaseUri("spsscr:///?id=0a010a077e08b4a40000011f5cabdad38098")

PevCatalogTable table = new PevCatalogTable();
table.setName("CQdefects");

List<LabeledResourceType> resTypeList = stub.getCompatibleRtDpd(type, table);
System.out.println("NAME\tPATH\tLABEL\n");
for (LabeledResourceType resType : resTypeList)
{

System.out.println(resType.getName() + "\t" +
resType.getPath() + "\t" + resType.getLabel() + "\n");

}

SOAP request example

Client invocation of the getCompatibleRtDpd operation generates a SOAP request message that is sent to
the server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getCompatibleRtDpd xmlns="http://xml.spss.com/pev/remote">
<avReference baseUri="spsscr:///?id=0a010a077e08b4a40000011f5cabdad38098"/>
<table name="CQdefects"/>

</getCompatibleRtDpd>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getCompatibleRtDpd operation call by sending a SOAP response message
containing the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getCompatibleRtDpdResponse xmlns="http://xml.spss.com/pev/remote">
<ns1:compatibleDpd baseUri="spsscr:///?id=0a010a079039a7090000011f664c9e2a83b2"

label="LATEST" name="myRTDPD" path="/myRTDPD" xmlns:ns1="http://xml.spss.com/pev"/>
</getCompatibleRtDpdResponse>

</soapenv:Body>
</soapenv:Envelope>

Chapter 4. Operation reference 37

The getRtDpdInputDescription operation
Returns information about the inputs for a specified Data Provider Definition - Real Time, including table
keys, column names, and column types.

Input fields

The following table lists the input fields for the getRtDpdInputDescription operation.

Table 24. Fields for getRtDpdInputDescription.

Field Type/Valid Values Description

rtDpdReference labeledUriType

Return information

The following table identifies the information returned by the getRtDpdInputDescription operation.

Table 25. Return Value.

Type Description

rtDpdInputDescription This element describes all the possible inputs to the
Scoring Service. It contains information about the Real
Time Data Provider key(s) and Application View
columns for the table which the Data Provider Definition
is based, as well as the "relational" context data.

Java example

To retrieve information about the inputs for a real-time data provider definition:
1. Create a LabeledUriType object.
2. Provide the setBaseUri method with a string corresponding to the location of the real-time data

provider definition as a URI. Label or version markers should not be included in the URI. If a version
other than LATEST is needed, use the setLabel method to define the label.

3. Supply the getRtDpdInputDescription operation with the URI object.

The operation returns a RtDpdInputDescription object containing information organized by tables in the
real-time data provider definition. The getRtDpdTableDescription method returns an array of
RtDpdTableDescription objects corresponding to the tables.

The table description objects contain information about the columns and the keys for the tables. Use the
getAvColumn method for a table description object to obtain an array of PevCatalogColumn objects
corresponding to the columns in the table. The getName and getType methods return the name and type
for any entry in the column array.

Use the getKey method for a table description object to obtain an array of Key objects corresponding to
the keys for the table. The getName method reports the name for a key in the array. The getKeyColumn
method returns an array of Column objects containing the columns associated with a particular key. The
getName and getType methods return the name and type for any entry in the column array.

The following sample retrieves the column and key information for a real-time data provider definition.
LabeledUriType type = new LabeledUriType();
type.setBaseUri("spsscr:///?id=0a010a079039a7090000011f664c9e2a83b2")
RtDpdInputDescription inputDesc = stub.getRtDpdInputDescription(type);

RtDpdTableDescription[] tableDesc = inputDesc.getRtDpdTableDescription();
for (int i = 0; i < tableDesc.length; i++) {

System.out.println("Table " + tableDesc[i].getName() +

38 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

" contains the following columns in the application view:");
PevCatalogColumn[] catColumn = tableDesc[i].getAvColumn();
for (int j = 0; j < catColumn.length; j++) {

System.out.println(catColumn[j].getName() +
" (type = " + catColumn[j].getType().toString() + ")");

}

System.out.println("Table " + tableDesc[i].getName() +
" contains the following keys:");

Key[] keyArray = tableDesc[i].getKey();
for (int k = 0; k < keyArray.length; k++) {
System.out.println(keyArray[k].getName() +

" having key column(s):");
Column[] cols = keyArray[k].getKeyColumn();
for (int m = 0; m < keyArray.length; m++) {
System.out.println(cols[m].getName() +

" (type = " + cols[m].getType().toString() + ")");
}

}
}

For web service clients based on JAX-WS, replace the arrays in the sample with List collections and
update the array processing accordingly. For example:
List<RtDpdTableDescription> tableDesc = inputDesc.getRtDpdTableDescription();

SOAP request example

Client invocation of the getRtDpdInputDescription operation generates a SOAP request message that is
sent to the server for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>

<wsse:Security soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"
soapenv:mustUnderstand="0"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>Native//admin</wsse:Username>
<wsse:Password

wsse:Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0
#PasswordText">pass</wsse:Password>

<wsse:Nonce>ofOShsZMlgHcdD0o6A8PkQ==</wsse:Nonce>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
>2009-01-08T20:36:10Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>
<ns1:client-accept-language soapenv:actor="http://schemas.xmlsoap.org/soap/actor/next"

soapenv:mustUnderstand="0" xmlns:ns1="http://xml.spss.com/ws/headers">en-US;q=1.0,
en;q=0.8</ns1:client-accept-language>

</soapenv:Header>
<soapenv:Body>

<getRtDpdInputDescription xmlns="http://xml.spss.com/pev/remote">
<rtDpdReference baseUri="spsscr:///?id=0a010a079039a7090000011f664c9e2a83b2"/>

</getRtDpdInputDescription>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getRtDpdInputDescription operation call by sending a SOAP response message
containing the results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getRtDpdInputDescriptionResponse xmlns="http://xml.spss.com/pev/remote">
<ns1:rtDpdInputDescription xmlns:ns1="http://xml.spss.com/pev">

<ns1:rtDpdTableDescription name="CQdefects">
<ns1:key name="custID" isUnique="true">

<ns1:keyColumn name="customerid" type="string"/>
</ns1:key>
<ns1:avColumn name="component" type="integer"/>
<ns1:avColumn name="customerid" type="string"/>

</ns1:rtDpdTableDescription>

Chapter 4. Operation reference 39

</ns1:rtDpdInputDescription>
</getRtDpdInputDescriptionResponse>

</soapenv:Body>
</soapenv:Envelope>

The getVersion operation
Returns the version number of the service.

Return information

The following table identifies the information returned by the getVersion operation.

Table 26. Return Value.

Type Description

string

Java example

To access the version number of the service, call the getVersion operation from the service stub.
System.out.println("Service Version = " + stub.getVersion());

SOAP request example

Client invocation of the getVersion operation generates a SOAP request message that is sent to the server
for processing. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVersion xmlns="http://xml.spss.com/pev/remote"/>
</soapenv:Body>

</soapenv:Envelope>

SOAP response example

The server responds to a getVersion operation call by sending a SOAP response message containing the
results. An example of such a message follows.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getVersionResponse xmlns="http://xml.spss.com/pev/remote">
<version>4.20.000</version>

</getVersionResponse>
</soapenv:Body>

</soapenv:Envelope>

40 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Chapter 5. JAX-WS clients

Java developers can create custom web service clients by using JAX-WS.

The discussion here assumes the use of Java 6. In general, the process for accessing IBM SPSS
Collaboration and Deployment Services web services involves the following steps:
1. Generate a web service client using wsimport
2. Package the client
3. Programmatically configure the client
4. Exercise the web service

Generating a JAX-WS client
To generate a JAX-WS client, open a command prompt and execute the Java 6 wsimport command.

The wsimport command creates JAX-WS service classes and JAXB classes that represent the WSDL
schema. For example, the following command executes wsimport for the Scoring.HttpV2 service, storing
the output in the current directory:
"c:\Program Files\IBM\Java60\bin\wsimport.exe" http://localhost:7001/scoring/services/Scoring.HttpV2?wsdl

In this example, the command obtained the WSDL from the server by using the endpoint name followed
by ?wsdl. The wsimport command requires access to the WSDL in order to generate the files. JAX-WS also
requires access to the WSDL file during runtime, so this example hard codes the value provided to
wsimport in the Java code. The generated client fetches the WSDL from that same location unless
otherwise specified. An alternative is to store the WSDL locally and refer to the local copy rather than
downloading the WSDL from the server.

Packaging a JAX-WS client
A JAX-WS client must be packaged as a jar file.

The following example command creates a jar file named scoring.jar:
"c:\Program Files\IBM\Java60\bin\jar.exe" -cvf scoring.jar *

This command assumes the command prompt is in the same location in which the client was generated.

If you store the WSDL locally, include the WSDL and XSD files in the jar file. Place the files in the
\META-INF\wsdl directory within the file. Refer to that directory programmatically when configuring the
client.

Configuring a JAX-WS client
JAX-WS clients can obtain the WSDL file remotely from the server or locally from within the jar file.

The following example demonstrates obtaining the WSDL from the server:
com.spss.scoring.ws.jaxws.ScoringServices service =

new com.spss.scoring.ws.jaxws.ScoringServices(
new URL("http://localhost:7001/scoring/services/Scoring.HttpV2?wsdl"),
new QName("http://xml.spss.com/scoring/wsdl", "ScoringServices"));

The URL includes the host and port for your server.

© Copyright IBM Corp. 2000, 2013 41

The following example demonstrates obtaining the WSDL from the within the jar file:
com.spss.scoring.ws.jaxws.ScoringServices service =

new com.spss.scoring.ws.jaxws.ScoringServices(
DemoClass.class.getResource("/META-INF/wsdl/scoring.wsdl"),
new QName("http://xml.spss.com/scoring/wsdl", "ScoringServices"));

In order to include the required SOAP security headers, create an object that implements
SOAPHandler<SOAPMessageContext>. See “SOAPHandler example” for an example handler object. The
following example shows how this object is used:
service.setHandlerResolver(new HandlerResolver()
{

@Override
public List<Handler> getHandlerChain(PortInfo portInfo)
{

List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(new SecurityHandler("user", "password", "en-US;q=1.0, en;q=0.8"));
return handlerChain;

}
});

Next, access the service endpoint:
ScoringV2 serviceEndpoint = service.getHttpV2();

After obtaining the service endpoint, set the JAX-WS standard endpoint address property, which specifies
the URL at which to access the endpoint.
Map<String, Object> requestContext = ((BindingProvider)serviceEndpoint).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

"http://localhost:7001/scoring/services/Scoring.HttpV2");

SOAPHandler example
JAX-WS clients must include an object that implements SOAPHandler<SOAPMessageContext>.

The following code provides an example of this object.
/**
** Licensed Materials - Property of IBM
** IBM SPSS Products: Collaboration and Deployment Services
** © Copyright IBM Corp. 2000, 2013
** US Government Users Restricted Rights - Use, duplication or
** disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
**
***/

import java.util.Collections;
import java.util.Set;

import javax.xml.namespace.QName;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

/**
* This is a SOAP handler that applies a security header and a language header to a SOAP message.
*/
public class SecurityHandler implements SOAPHandler<SOAPMessageContext>
{

// WS-Security header values
public static final String SECURITY = "Security";
public static final String USERNAME_TOKEN = "UsernameToken";
public static final String USERNAME = "Username";
public static final String PASSWORD = "Password";
public static final String WS_SECURITY_NAMESPACE =

"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd";

// prefixes

42 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

public static final String WSSE_PREFIX = "wsse"; // ws service security
public static final String SPSS_PREFIX = "spss"; // spss prefix

// SPSS custom language header values
public static final String SPSS_HEADER_NAMESPACE = "http://xml.spss.com/ws/headers";
public static final String CLIENT_ACCEPT_LANGUAGE_HEADER = "client-accept-language";

private String i_username;
private String i_password;
private String i_acceptLanguage;

/**
* Creates a security and language handler
* @param username A user name to access the web service. Cannot be null.
* @param password A password to access the web service. Cannot be null.
* @param acceptLanguage The language that should be used by the web service.
* This value should be formatted according to the HTTP specification regarding
* the Accept-Language HTTP header (e.g. en-US;q=1.0, en;q=0.8)
* If the value is null, the language header will not be added.
*/
public SecurityHandler(String username, String password, String acceptLanguage)
{

i_username = username;
i_password = password;
i_acceptLanguage = acceptLanguage;

}

@Override
public boolean handleMessage(SOAPMessageContext context)
{

// Apply this handler to only outbound traffic
if((Boolean)context.get(SOAPMessageContext.MESSAGE_OUTBOUND_PROPERTY))
{

// get the message
SOAPMessage message = context.getMessage();
try
{

// get the message header
SOAPEnvelope envelope = message.getSOAPPart().getEnvelope();
SOAPHeader header = envelope.getHeader();
if (header == null)
{

header = envelope.addHeader();
}

// add the UsernameToken header
header.addChildElement(createUsernameTokenSecurityHeader());
// assuming the language was provided, apply the custom language header
if(i_acceptLanguage != null)
{

header.addChildElement(createLanguageHeader());
}

}
catch (Exception e)
{

e.printStackTrace();
}

}
// allow any other handler to execute
return true;

}

/**
* This method creates a custom language header, which allows the scoring service
* to use the given language if possible.
* @return A custom language header
* @throws Exception
*/
private SOAPElement createLanguageHeader() throws Exception
{

SOAPFactory factory = SOAPFactory.newInstance();

// create a custom language header
SOAPElement languageHeader =

factory.createElement(CLIENT_ACCEPT_LANGUAGE_HEADER,SPSS_PREFIX,SPSS_HEADER_NAMESPACE);

// include the language text
languageHeader.addTextNode(i_acceptLanguage);

return languageHeader;
}

/**
* Creates the WS-Security SOAP header for UsernameToken as SOAPElement.

Chapter 5. JAX-WS clients 43

*
* @return the WS-Security SOAP header for UsernameToken
* @throws Exception as appropriate
*/
private SOAPElement createUsernameTokenSecurityHeader() throws Exception
{

SOAPFactory factory = SOAPFactory.newInstance();

// create a UsernameToken element
SOAPElement usernameToken =
factory.createElement(USERNAME_TOKEN, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

// add the username element
SOAPElement usernameElement =
factory.createElement(USERNAME, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

usernameElement.addTextNode(i_username);
usernameToken.addChildElement(usernameElement);

// add the password element
SOAPElement passwordElement =
factory.createElement(PASSWORD, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

passwordElement.addTextNode(i_password);
usernameToken.addChildElement(passwordElement);

// create the Security Header
SOAPElement securityHeader =
factory.createElement(SECURITY, WSSE_PREFIX, WS_SECURITY_NAMESPACE);

securityHeader.addChildElement(usernameToken);

return securityHeader;
}

@Override
public boolean handleFault(SOAPMessageContext context)
{

// allow any other handler to execute
return true;

}

@Override
public void close(MessageContext context)
{

// do nothing
}

@Override
public Set<QName> getHeaders()
{

return Collections.emptySet();
}

}

Exercising web services from JAX-WS clients
Once properly configured, a JAX-WS client can make calls to IBM SPSS Collaboration and Deployment
Services web services.

For example, the following code calls the getConfigurations operation of the Scoring Service:
serviceEndpoint.getConfigurations();

44 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Chapter 6. Microsoft® .NET Framework-based clients

In order to use the web services from a Microsoft Windows Communication Foundation (WCF) client,
you will need Visual Studio 2008 or later. The discussion here assumes the use of Visual Studio 2008. In
general, the process for accessing IBM SPSS Collaboration and Deployment Services web services
involves the following steps:
1. Add a Service Reference. See the topic “Adding a service reference” for more information.
2. Configure the web service endpoint. See the topic “Configuring the web service endpoint” on page 46

for more information.
3. Programmatically configure the necessary endpoint behaviors. See the topic “Configuring endpoint

behaviors” on page 47 for more information.
4. Exercise the web service. See the topic “Exercising the service” on page 47 for more information.

Adding a service reference
The first step in using a WCF client to access IBM SPSS Collaboration and Deployment Services web
services is to make the service available to the Visual Studio project by adding it as a Service Reference.
1. In Visual Studio, right-click the folder’s References folder and select Add Service Reference.
2. Type the URL of the service WSDL location in the Address field, and click Go. The value corresponds

to the service endpoint appended with ?wsdl.
3. Specify the namespace in the Namespace field.
4. Click OK.

Visual Studio adds a new service reference to the Service Reference directory for the project. The name of
the reference corresponds to the specified namespace.

Important: If you have a .NET client created by using a version of IBM SPSS Collaboration and
Deployment Services before 6.0, you must regenerate your service references from the current WSDL files
to allow successful communication between your application and the current server. If you do not
regenerate your service references, you may experience a variety of errors that may include incorrect
namespace assignments, NullPointerExceptions in the web services being invoked, and data type
assignment errors.

Service reference modifications
Due to known compatibility issues between Microsoft tooling and some WSDL files, you need to
manually modify some service references before they can be used successfully. For information about the
specific issues, see articles 891386 and 326790 on the Microsoft Support site.

To modify a service reference:
1. In Visual Studio, select the project and click Show All Files from the Project menu.
2. Expand the service reference that needs to be modified.
3. Expand the Reference.svcmap node.
4. Open the Reference.cs file.
5. Make the required modifications.
6. Save the file.

For the Content Repository Service , Content Repository URI Service, and Process Management Service,
you need to make the following changes to the RowType class:

© Copyright IBM Corp. 2000, 2013 45

http://support.microsoft.com/kb/891386
http://support.microsoft.com/kb/326790

v private value[][] cellField should be changed to private value[] cellField

v public value[][] cell should be changed to public value[] cell

For the Scoring Service, you need to make the following changes:
v in the returnedDPDOutputTable class, private returnedDPDOutputValue[][]

returnedDPDOutputrowField should be changed to private returnedDPDOutputValue[]
returnedDPDOutputrowField

v in the returnedDPDOutputTable class, private returnedDPDOutputValue[][] returnedDPDOutputRow
should be changed to private returnedDPDOutputValue[] returnedDPDOutputRow

v in the returnedRequestInputTable class, private returnedRequestInputValue[][]
returnedRequestInputRow should be changed to private returnedRequestInputValue[]
returnedRequestInputRow

v in the returnedRequestInputTable class, private returnedRequestInputValue[][]
returnedRequestInputRowField should be changed to private returnedRequestInputValue[]
returnedRequestInputRowField

v in the requestInputTable class, private input1[][] requestInputRowField should be changed to
private input1[] requestInputRowField

v in the requestInputTable class, private input1[][] requestInputRow should be changed to private
input1[] requestInputRow

For the PevServices Service, you need to make the following changes:
v in the avTableConflict class, private avColumnMeta[][] avColumnConflictField should be changed to

private avColumnMeta[] avColumnConflictField

v in the avTableConflict class, private avColumnMeta[][] avColumnConflict should be changed to
private avColumnMeta[] avColumnConflict

v in the evTableConflict class, private evColumnMeta[][] evColumnConflictField should be changed to
private evColumnMeta[] evColumnConflictField

v in the evTableConflict class, private evColumnMeta[][] evColumnConflict should be changed to
private evColumnMeta[] evColumnConflict

Configuring the web service endpoint
In WCF, you can configure a service endpoint either declaratively using an app.config file, or
programmatically using the WCF APIs. The following steps describe the creation of a basic configuration
within an app.config file.
1. In Visual Studio, double-click the app.config file for the application (or web.config for a

web-application).
2. Find the system.serviceModel element. Create it if it does not already exist.
3. Find the client element. Create it if it does not already exist.
4. Create a new endpoint element as a child of the client element.
5. Specify the appropriate service endpoint URL as the value of the address attribute.
6. Specify basicHttpBinding as the value of the binding attribute.
7. Specify the appropriate service contract as the value of the contract attribute. The service contract is

the value of the service reference namespace appended with the service name.
8. Optionally specify a value for the name attribute that identifies a name for the endpoint configuration.

If the name is blank, the configuration is used as the default for the service.

The resulting app.config file should be similar to the following example:
<system.serviceModel>

<client>
<endpoint

address="http://cads_server:8080/cr-ws/services/ContentRepository"

46 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

binding="basicHttpBinding"
bindingConfiguration=""
contract="IBM.SPSS.ContentRepository"
name=""/>

</client>
</system.serviceModel>

Configuring endpoint behaviors
The following two issues complicate the use of IBM SPSS Collaboration and Deployment Services web
services by WCF clients:
v WCF does not allow the username and password to be transmitted over HTTP
v WCF does not correctly understand the SOAP Fault format returned by the services

To address these problems, a sample Visual Studio project is available that contains classes adding
endpoint behaviors that resolve both issues. The IBM SPSS Collaboration and Deployment Services
installation media includes this project.

To use these classes, ensure that the IBM.SPSS.WCF.Utilities project containing these classes has been
compiled and added as a referenced DLL to the Visual Studio project that exercises the web services.
When constructing a new service client instance, ensure that the behaviors are added as follows:
ContentRepositoryClient serviceClient = new ContentRepositoryClient();
serviceClient.Endpoint.Behaviors.Add(

new ApplyClientInspectorsBehavior(
new HeaderInjectionMessageInspector(

new UsernameTokenSecurityHeader("admin", "Abcdefg1")
),
new SOAPFaultFormatMessageInspector())

);

This adds two message inspectors to the behaviors for the endpoint. The first allows message headers to
be injected, permitting a UsernameToken security header containing the username and password to be
transmitted over HTTP. The second message inspector intercepts SOAP Faults, ensuring that they are
formatted for proper WCF processing.

Exercising the service
After adding the service reference to the project, configuring the endpoint, and adding the necessary
endpoint behaviors, the WCF-based web service client is ready. Add the .NET source code to the project
to exercise the web service as needed.

There may be instances in which the .NET client proxies are generated incorrectly, leading to unexpected
missing results at runtime. If a web service call returns no results when results are expected, the
generated .NET types associated with the request and response should be examined. Specifically,
members of the types may have two .NET attributes assigned. The first, MessageBodyMemberAttribute,
will often include the proper namespace for the member type. The second, XmlElementAttribute, should
have the same namespace as MessageBodyMemberAttribute. If this is not the case, add the namespace to
XmlElementAttribute. Moreover, the addition of XML serialization attributes, such as
System.XML.Serialization.XmlElementAttribute, may be necessary to correctly name the expected
namespace or element. For example, the following generated client code would need to be modified:
public partial class getUsersResponse {

System.ServiceModel.MessageBodyMemberAttribute(Namespace =
"http://xml.spss.com/pes/userPref/remote", Order = 0)]

public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

The corrected code is as follows:
public partial class getUsersResponse {

[System.ServiceModel.MessageBodyMemberAttribute(Namespace =
"http://xml.spss.com/pes/userPref/remote", Order = 0)]

[System.Xml.Serialization.XmlElementAttribute(ElementName="usersRequestResponse")]
public IBM.SPSS.ManagerUserPref.usersResponse usersResponse;

Chapter 6. Microsoft® .NET Framework-based clients 47

Single sign-on authentication
You can use single sign-on authentication for web service calls by obtaining a service ticket that you
include in your SOAP requests.

The general process of using single sign-on authentication for WCF clients includes the following steps:
1. Obtain a ticket-grating ticket (TGT) using .NET or WCF code.
2. Send the TGT to the IBM SPSS Collaboration and Deployment Services Repository server using the

SSO Authentication Service getToken operation to obtain a service ticket. This ensures that single
sign-on authentication occurs on the repository server.

3. Send the service ticket in the SOAP header for all subsequent web services calls from your client
application.

48 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Chapter 7. Message header reference

The headers for the transport and packaging layers contain vital information for processing a web service
call.

For IBM SPSS Collaboration and Deployment Services, the SOAP headers contain the security
information under which the web service call is processed. In addition, the HTTP headers contain
information about the client that initiated the web service request.

Security headers
Most IBM SPSS Collaboration and Deployment Services web service calls require security information in
the request message.

In general, the structure of this content follows the WS-Security extension to the SOAP 1.1 standard. This
documentation provides details on the XML elements and attributes that are recognized by IBM SPSS
Collaboration and Deployment Services. Some of the elements and attributes are required, some are
optional, and some are ignored. Refer to the following official specifications for details, but IBM SPSS
Collaboration and Deployment Services requires some special values not referenced in the official
specifications.
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
v http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

The following table defines the values of namespaces that are used for the SOAP header elements.

Table 27. SOAP header namespaces

Namespace prefix Namespace value

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

soapenv http://schemas.xmlsoap.org/soap/envelope/

spsssec http://xml.spss.com/security

Security element
The wsse:Security element is the main security header element included in a soapenv:Header element.

Table 28. Attributes of wsse:Security

Attribute Description Example

soapenv:actor Targets a given endpoint along the
message path. This value is ignored.

http://schemas.xmlsoap.org/soap/
actor/next

soapenv:mustUnderstand Clients can specify if the server must
process this element. This value is
ignored.

0

© Copyright IBM Corp. 2000, 2013 49

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf

UsernameToken element
Use the wsse:UsernameToken element when a traditional user and password combination is required.

Table 29. Attributes of wsse:UsernameToken

Attribute Description

wsu:Id An optional string label for the security token. This value is ignored.

Table 30. Child elements of wsse:UsernameToken

Attribute Description Example

wsse:Username The xml value represents the identity of the
user.

a_user

wsse:Password The attribute Type specifies the type of
password. PasswordText is currently the
only supported type.

The xml value can handle plain text
passwords and encrypted data.

myPassword
[{AES}KrY+KLlOYo4O6545tgGsYQ==]

wsse:Nonce The xml value represents a
cryptographically random nonce encoded as
base64 data. This is currently ignored.

RUx1ugQo0o3g0Xyl+sUEsA==

wsu:Created The xml value represents the creation time
as a timestamp conforming to
wsu:Timestamp. This is currently ignored.

2013-10-08T02:09:20Z

BinarySecurityToken and BinarySecuritySSOToken elements
Binary security tokens may be used when IBM SPSS Collaboration and Deployment Services
communicates with itself or when single sign-on (SSO) is used. Customer usage of these token types is
limited to SSO.

The wsse:BinarySecurityToken and wsse:BinarySecuritySSOToken elements have the same format, but
only wsse:BinarySecurityToken is recognized in the official WS-Security standard. The element
wsse:BinarySecuritySSOToken was added as a nonstandard element when used in SSO.

Of these two elements, you should use wsse:BinarySecurityToken and you must supply the correct
attributes for proper handling. The most critical attribute is the wsu:Id value which is used during web
service request processing to handle the security token correctly.

Table 31. Attributes of wsse:BinarySecurityToken

Attribute Description Example

ValueType Indicates the type of the security
token. IBM SPSS Collaboration and
Deployment Services always writes
these values when creating its own
XML, but this value is currently
ignored during processing. You
should use
spsssec:BinarySecuritySSOToken.

spsssec:BinarySecurityToken
spsssec:BinarySecuritySSOToken

50 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Table 31. Attributes of wsse:BinarySecurityToken (continued)

Attribute Description Example

EncodingType Indicates the encoding type for the
token. The only currently supported
type is base64, so this value should
always be wsse:Base64Binary. IBM
SPSS Collaboration and Deployment
Services always writes these values
when creating its own XML, but this
value is currently ignored during
processing.

wsse:Base64Binary

wsu:Id An identifier for the token. This
value must be correctly provided.
You should always provide
spssSSOToken. The only valid case for
using spssToken is for internal web
service calls, which use an internal
token format.

spssToken
spssSSOToken

anyAttribute An extension mechanism to allow
any arbitrary attribute in other
namespaces. These extensions are
ignored.

The XML value for wsse:BinarySecurityToken and wsse:BinarySecuritySSOToken is string data in base64
format.

The client-accept-language element
This element restricts the set of natural languages that are preferred as a response to the request.

This element is inserted into a soapenv:Header element and is not related to WS-Security in any way. This
is the same value found in the HTTP header named Accept-Language as defined in RFC2068. The xml
value for this element might look like the following:
en-US;q=1.0, en;q=0.8

The namespace for this element could be any allowed value, such as ns1, which has an associated value
of http://xml.spss.com/ws/headers.

HTTP headers
In addition to SOAP headers, it is possible to apply HTTP headers as well. None of the HTTP headers is
required.

Table 32. HTTP headers

HTTP header Description

Accept-Language The accept language header value, as defined in RFC2068 (e.g. en-US;q=1.0,
en;q=0.8). If not supplied the server language setting is used as a default.

CLIENT_ADDR The client IP address that ultimately initiated the request.

CLIENT_HOSTNAME The client host name that ultimately initiated the request.

X-FORWARDED-FOR The client IP address that ultimately initiated the request. This is standard for
determining the originating IP address.

Chapter 7. Message header reference 51

The CLIENT_ADDR, CLIENT_HOSTNAME, and X-FORWARDED-FOR values are useful when a client application
makes a call through an HTTP proxy, load balancer, or when IBM SPSS Collaboration and Deployment
Services components make internal calls. The CLIENT_ADDR and CLIENT_HOSTNAME entries are specific HTTP
headers that can be set by IBM SPSS Collaboration and Deployment Services itself. The X-FORWARDED-FOR
header is a standard that some load balancers understand. These headers are used to make a best-effort
attempt in determining the originating client for a given call, allowing information to be used for
auditing purposes. The headers may not work as intended, but IBM SPSS Collaboration and Deployment
Services will fall back to reasonable defaults in those situations.

52 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2000, 2013 53

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
ATTN: Licensing
200 W. Madison St.
Chicago, IL; 60606
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

54 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other product and service names might be trademarks of IBM or other companies.

Notices 55

http://www.ibm.com/legal/copytrade.shtml

56 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Glossary

© Copyright IBM Corp. 2000, 2013 57

58 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

Index

Special characters
.NET framework 45
.NET proxies 5

A
app.config files

WCF clients 46
Application View 32, 35

merge conflicts 15
merging versions 21

attributes
for variables 27

AvColumnConflict objects 15
AvColumnMeta objects 15
AvColumnMetaType objects 15, 21
AvTableConflict objects 15
AvTableResolution objects 21

B
BinarySecuritySSOToken element

in SOAP headers 50
BinarySecurityToken element

in SOAP headers 50
bindings

in WSDL files 4
body elements

in SOAP messages 2

C
categories

for variables 25
CategoryQuery objects 25
CategoryType objects 25
client-accept-language element

in SOAP headers 51
Column objects 38
ColumnDirectionType objects 21
ColumnEnvironmentType objects 21
Content Repository service

WCF clients 45
Content Repository URI service

WCF clients 45
Created element

in SOAP headers 50
CustomAttributesQuery objects 27
CustomAttributesType objects 27

D
Data Provider Definition - Real Time 35,

38

E
Enterprise View 9

merge conflicts 18
merging versions 23

EvColumnConflict objects 18
EvColumnMeta objects 18
EvColumnMetaType objects 18, 23
EvTableConflict objects 18
EvTableResolution objects 23

G
getAvColumn method

for RtDpdTableDescription objects 38
getAvColumnConflict method

for AvTableConflict objects 15
getAvColumnMeta method

for AvColumnConflict objects 15
getAvMergeConflicts operation 15
getBaseUri method

for ResourceTablesByLabel objects 32
getCategories operation 25
getColumnMeta method

for AvColumnMeta objects 15
for EvColumnMeta objects 18

getCompatibleAv operation 32
getCompatibleRtDpd operation 35
getCustomAttributes operation 27
getDataType method

for VariableMetaType objects 29
getDirection method

for AvColumnMetaType objects 15
getEvColumnConflict method

for EvTableConflict objects 18
getEvColumnMeta method

for EvColumnConflict objects 18
getEvMergeConflicts operation 18
getId method

for CategoryType objects 25
getKey method

for RtDpdTableDescription objects 38
getKeyColumn method

for Key objects 38
getLabel method

for CategoryType objects 25
for TablesByLabel objects 32

getMarker method
for EvColumnMeta objects 18

getName method
for AvColumnMetaType objects 15
for AvTableConflict objects 15
for Column objects 38
for CustomAttributesType objects 27
for EvColumnMetaType objects 18
for EvTableConflict objects 18
for Key objects 38
for PevCatalogColumn objects 38
for ResourceTablesByLabel objects 32
for VariableMetaType objects 29

getNewVersionUri method
for MergeResult objects 21, 23

getPath method
for ResourceTablesByLabel objects 32

getQualifier method
for PevMetaDataType objects 29

getRtDpdInputDescription operation 38
getRtDpdTableDescription method

for RtDpdInputDescription
objects 35, 38

getSupportedEnvironments method
for AvColumnMetaType objects 15

getTable method
for TablesByLabel objects 32

getTablesByLabel method
for ResourceTablesByLabel objects 32

getType method
for AvColumnMetaType objects 15
for Column objects 38
for EvColumnMetaType objects 18
for PevCatalogColumn objects 38

getValues method
for CustomAttributesType objects 27

getVariableMetaData method
for QualifierMetaType objects 29

getVariableMetadata operation 29
getVersion operation 20, 31, 40
getVersionUri method

for AvColumnMeta objects 15

H
header elements

in SOAP messages 2, 49
SOAP security elements 49

Holder classes
in JAX-WS 5

HTTP 2
HTTP headers

for SOAP messages 51
HTTPS 2

J
Java clients 41, 42, 44
Java proxies 5
JAX-WS 5, 41, 42, 44

K
Key objects 38
keys 38

L
LabeledUriType objects 35, 38
List collections

in JAX-WS 5

© Copyright IBM Corp. 2000, 2013 59

M
MergeResult objects 21, 23
merging views

Application View 15, 21
Enterprise View 18, 23

MessageBodyMemberAttribute
for WCF clients 47

messages
in WSDL files 4

metadata
for variables 29

MetadataQuery objects 29

N
namespaces

for SOAP security elements 49
Nonce element

in SOAP headers 50

P
Password element

in SOAP headers 50
performAvMerge operation 21
performEvMerge operation 23
PevCatalogColumn objects 32, 38
PevCatalogTable objects 35
PevEnvironmentType objects 15
PevMetaDataType objects 29
PevServices service

stubs 7
WCF clients 45

port types
in WSDL files 4

Process Management service
WCF clients 45

protocols
in web services 2

proxies 5
.NET 5
Java 5

Q
QualifierMetaType objects 29

R
ResourceTablesByLabel objects 32
RtDpdInputDescription objects 35, 38
RtDpdTableDescription objects 35, 38

S
Scoring service

WCF clients 45
Security element

in SOAP headers 49
services

in WSDL files 5
setBaseUri method

for LabeledUriType objects 35, 38

setColumnMeta method
for AvTableResolution objects 21
for EvTableResolution objects 23

setDirection method
for AvColumnMetaType objects 21

setLabel method
for LabeledUriType objects 35, 38

setLocation method
for CategoryQuery objects 25
for CustomAttributesQuery

objects 27
for MetadataQuery objects 29

setName method
for AvColumnMetaType objects 21
for AvTableResolution objects 21
for EvColumnMetaType objects 23
for EvTableResolution objects 23
for PevCatalogColumn objects 32
for PevCatalogTable objects 35

setPevEnvironment method
for SupportedEnvironment objects 32

setSupportedEnvironments method
for AvColumnMetaType objects 21

setTableName method
for MetadataQuery objects 29

setType method
for AvColumnMetaType objects 21
for EvColumnMetaType objects 23
for PevCatalogColumn objects 32

setVariableName method
for CategoryQuery objects 25
for CustomAttributesQuery

objects 27
single sign-on

for WCF clients 48
WCF clients 45

SOAP 2
SOAPHandler 42
SSO

See single sign-on
stubs

PevServices service 7
SupportedEnvironment objects 32

T
TablesByLabel objects 32
types

in WSDL files 3

U
Username element

in SOAP headers 50
UsernameToken element

in SOAP headers 50

V
validateObject operation 25
VariableMetaType objects 29
variables

attributes 27
categories 25
metadata 29

Visual Studio 45

W
WCF clients 45, 47, 48

endpoint behaviors 47
endpoint configuration 46
limitations 45
service reference 45
single sign-on 45

web services
introduction to web services 1
protocol stack 2
system architecture 1
what are web services? 1

web.config files
WCF clients 46

Windows Communication
Foundation 45

WSDL files 2, 3
bindings 4
messages 4
port types 4
services 5
types 3

wsdl.exe 5
wsdl2java 5
wsimport 5, 41

X
XmlElementAttribute

for WCF clients 47

60 IBM SPSS Collaboration and Deployment Services: PevServices Service Developer's Guide

����

Printed in USA

	Contents
	Chapter 1. Introduction to web services
	What are web services?
	Web service system architecture
	Web service protocol stack
	Simple Object Access Protocol
	Web Service Description Language
	Types
	Messages
	Port types
	Bindings
	Services

	Proxies

	Chapter 2. PevServices Service overview
	Accessing the PevServices Service
	Calling PevServices Service operations

	Chapter 3. IBM SPSS Collaboration and Deployment Services Enterprise View concepts
	Enterprise View
	Data type

	Application View
	Environment
	Direction

	Data Provider Definition - Real Time
	Variables
	Uniform Resource Identifiers

	Chapter 4. Operation reference
	Manage port type
	Operation reference
	The getAvMergeConflicts operation
	The getEvMergeConflicts operation
	The getVersion operation
	The performAvMerge operation
	The performEvMerge operation
	The validateObject operation

	Metadata port type
	Operation reference
	The getCategories operation
	The getCustomAttributes operation
	The getVariableMetadata operation
	The getVersion operation

	Search port type
	Operation reference
	The getCompatibleAv operation
	The getCompatibleRtDpd operation
	The getRtDpdInputDescription operation
	The getVersion operation

	Chapter 5. JAX-WS clients
	Generating a JAX-WS client
	Packaging a JAX-WS client
	Configuring a JAX-WS client
	SOAPHandler example

	Exercising web services from JAX-WS clients

	Chapter 6. Microsoft® .NET Framework-based clients
	Adding a service reference
	Service reference modifications

	Configuring the web service endpoint
	Configuring endpoint behaviors
	Exercising the service
	Single sign-on authentication

	Chapter 7. Message header reference
	Security headers
	Security element
	UsernameToken element
	BinarySecurityToken and BinarySecuritySSOToken elements

	The client-accept-language element
	HTTP headers

	Notices
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	G
	H
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

